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Abstract. Knowledge graph (KG) as the source of side information has
been proven to be useful to alleviate the data sparsity and cold start.
Existing methods usually exploit the semantic relations between enti-
ties by learning structural or semantic paths information. However, they
ignore the difficulty of information fusion and network alignment when
constructing knowledge graph from different domains, and do not take
temporal context into account. To address the limitations of existing
methods, we propose a novel High-order semantic Relations-based Tem-
poral Recommendation (HRTR), which captures the joint effects of high-
order semantic relations in Collaborative Knowledge Graph (CKG) and
temporal context. Firstly, it automatically extracts different order con-
nectivities to represent semantic relations between entities from CKG.
Then, we define a joint learning model to capture high-quality represen-
tations of users, items, and their attributes by employing TransE and
recurrent neural network, which captures not only structural informa-
tion, but also sequence information by encoding semantic paths, and to
take their representations as the users’/items’ long-term static features.
Next, we respectively employ LSTM and attention machine to capture
the users’ and items’ short-term dynamic preferences. At last, the long-
short term features are seamlessly fused into recommender system. We
conduct extensive experiments on real-world datasets and the evalua-
tion results show that HRTR achieves significant superiority over several
state-of-the-art baselines.

Keywords: Collaborative knowledge graph · High-order semantic
relation · Structural information · Temporal recommendation

1 Introduction

Collaborative Filtering (CF) is the most popular recommendation strategy,
which exploits users’ historical interactions to infer their preferences. However,
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they usually suffer from the data sparsity and cold start problem. Various types
of side information have been incorporated to address it, such as social net-
works [7], temporal context [11] and user/item attributes [14]. Knowledge graph
(KG) as the source of auxiliary data has been widely adopted to enhance recom-
mendation. It connects various entities and links from different topic domains
as nodes and edges to develop insights on recommendation.

Some state-of-art methods utilizing KG are proposed to boost recommenda-
tion quality. Meta-path based methods extract paths between two entities to rep-
resent different semantic relations, which leverages the relations of item-item [19],
user-user [1,10,21], and user-item [6,9]. They can generate effective recommen-
dation by modeling the user preference based on the semantic relations. Because
the extracted meta-paths rely on manually designed features based on domain
knowledge, they are always incomplete to represent all semantic relations. KG
embedding based methods [14,16,20] automatically learn the embeddings of enti-
ties to capture entity semantics and incorporate them to recommendation frame-
work. But A major limitation of these KG embedding methods is less intuitive
and effective to represent the connection semantic relations of entities. For exam-
ple, Zhang et al. [20] extracted items’ semantic representations from structural
content, textual content and visual content by capturing entity semantics via
TransR, but ignored the high-order semantic relations between paired entities
for recommendation. Then, some methods try to seek a way which not only
can capture the semantic relations of entities and paths, but also not rely on
handcrafted features and domain knowledge. Sun et al. [12] employed recurrent
neural network (RNN) to learn semantic representations of both entities and
high order paths to improve recommendation.

Almost all above methods rely on knowledge graph which includes various
information from different domains. However, information fusion and network
alignment are also very difficult. To address the limitations of constructing
knowledge graph, a solution is to design a lightweight Collaborative Knowledge
Graph (CKG) by only utilizing the facts in one domain as knowledge. CKG
that often includes the interaction behaviors of users on items and side infor-
mation for items (e.g., item attributes and external knowledge) and users (e.g.,
age, zip code, and occupation). Wang et al. [17] proposed Knowledge Graph
Attention Network (KGAT), which explicitly models high-order connectivities
in CKG and recursively propagates the embedding from a node’s neighbors to
refine its representation. But it only considered the high-order relations between
users and items. Wang Hongwei et al. [15] proposed RippleNet which extends
a user’s potential preference along links in the CKG. These methods model
user’s preference by utilizing the high-order semantic representations and rela-
tions into recommender system, while they don’t consider temporal influence.
Xiao et al. [18] proposed KGTR which captures the joint effects of interactions
by defining three categories relationships in CKG and considers the effect of
temporal context. It can obtain the first and second order semantic relations by
TransE and the embeddings of user’s and item’s various attributes, however, can
not learn the high-order semantic relations.
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Considering the limitations of existing solutions, we believe it is critical to
develop a model that can effectively exploit high-order connections in CKG and
take temporal information into account. To this end, we propose a novel High-
order semantic Relations-based Temporal Recommendation (HRTR), which cap-
tures the joint effects of high-order semantic relations in CKG for recommen-
dation. HRTR firstly mines semantic relations about some entities from differ-
ent order connectivities. Then, it jointly learns high-quality representations of
users, items, and their attributes to capture structural knowledge by employing
TransE [2] and to explore sequence information by using recurrent neural net-
work to encode semantic paths, which are regard as the users’/items’ long-term
static features. Next, by splitting the users’ interactions with a time window,
the users’ short-term dynamic preferences are learned by LSTM [5]. The set of
users who have recently interacted with an item is used to explore the items’
short-term features by attention mechanism [13]. At last, the long-term and
short-term preferences of users and items are integrated to recommend an item
list to a user.

We summarize our main contributions as follows:

– We propose a joint learning model to capture high-quality representations of
entities in a lightweight Collaborative Knowledge Graph, which not only can
capture structural information, but also can explore sequence information by
automatically encoding extracted semantic paths.

– We seamlessly fuse high-quality representations of entities and temporal con-
text for recommendation, which effectively captures the users’ and items’
stable long-term and short-term dynamic preferences.

– We conduct experiments on real-world datasets, and the results show the
significant superiority of HRTR over several state-of-the-art baselines.

2 Related Work

In this section, we review existing works on meta path based methods, KG
embedding based methods, and semantic relation based methods, which are most
related to our work.

2.1 Meta Path Based Methods

Meta path based methods capture the relations between two entities in KG by
defining meta-paths, which are predefined by using handcrafted features based
on domain knowledge. They generally infer a user preference by leveraging the
different entity similarity of item-item [19], user-item [6,9], and user-user [1,10,
21]. HeteRec [19] learned the user preference on an item connected with his/her
rated item via different meta paths. SemRec [10] captured semantic similarity
among users by introducing the weighted meta path. Wang et al. [1] and Zheng
et al. [21] respectively proposed matrix factorization model to regularize user
similarity derived from meta path. SimMF [9] extended matrix factorization
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based model by adding meta path based user-item similarity. They successfully
model the user preference based on the semantic relations, but they heavily
rely on manually designed features based on domain knowledge and can not
completely represent all semantic relations between two entities.

2.2 KG Embedding Based Methods

KG embedding based methods first capture the entity embedding by exploiting
the structural information of KG and incorporate the learned entity embeddings
into a recommendation framework. CKE proposed by Zhang et al. [20] combined
CF with item embeddings obtained via TransR [8]. DKN [16] combined the
treated entity embeddings with CNN for news recommendation. SHINE [14]
embed three types of networks by designing deep autoencoders for celebrity
recommendations. But a major limitation of these KG embedding methods is
less intuitive and effective to represent the semantic relations of entities.

2.3 Semantic Relation Based Methods

Another kind of methods effectively improves the performance of recommenda-
tion by mining the high-order semantic relations or integrating various other
information and strategies to capture better representations for recommenda-
tion. Sun et al. [12] employed RNN to model different order semantics of paths
to characterize user preferences. Wang et al. [17] proposed knowledge graph
attention network (KGAT), which recursively propagates the embedding from a
node’s neighbors to refine its representation and discriminates the importance
of neighbors by using an attention mechanism. Wang Hongwei et al. [15] pro-
posed RippleNet which extends a user’s potential preference along links in CKG.
These methods model users’ preferences by utilizing the high-order semantic rep-
resentations and relations, while they do not consider temporal influence. Xiao
et al. [18] proposed KGTR which captures the joint effects of interactions by
defining three categories relationships and temporal context.

Different from these works, our proposed method not only can effectively
exploit semantics of entities and high-order connectivities, but also take the
long-short term preferences of users and items into account.

3 Our Proposed Model

Let U = {u1, u2, · · · } and V = {v1, v2, · · · } denote the sets of users and items,
respectively. M = {Muv|u ∈ U, v ∈ V } is a sparse user-item interaction matrix
that consists of users, items, and the interactions which include rating, browsing,
clicking and so on. Meanwhile, there are various attributes of users and items,
such as gender, age, occupation, which are significant auxiliary information for
recommendation result. We aim to build temporal personalized recommendation
model for a user based on the semantic embeddings of users, items and their
attributes, and then recommend items to users.
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The overview of our proposed HRTR is shown as Fig. 1, which consists of
three parts: (1) learning high quality semantic representations of users, items and
their attributes by TransE and RNN; (2) training long-short term preferences of
users and items, in which the learned semantic representations are considered as
the long-term features, the short-term features of users and items are captured
by LSTM and attention machine based on the learned semantic embeddings
and interactions, repectively; (3) predicting how likely a user interacts an item
by integrating these learned long-short term preferences into a sigmoid based
prediction model.

Fig. 1. The framework of high order semantic relations temporal recommendation

3.1 Different Order Semantic Relations Mining

Designing Collaborative Knowledge Graph. Given U , V , M as well as
users’/items’ attributes, user-item interaction graph and user/item attribute
graph are defined, which is regarded as the formal construction of Collabora-
tive Knowledge Graph (CKG).

As illustrated in Fig. 2, taking movie data as an example, the users and items
are treated as entities. When there is an observed interaction between user u
and item i (e.g., purchases, clicks, ratings), a link will be constructed between
them. Here, user-item interaction graph G1 is denoted as G1 = {(u,muv, i)|u ∈
U, i ∈ V,muv ∈ R′}, and R′ is the interaction sets. In addition to the inter-
actions, users/items have different types of side information to profile them.
The user/item attribute graph G2 is defined to organize the side information in
the form of directed graph. Formally, it is presented as G2 = {(h′, r′, t′)|h′ ∈
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U ∪ V, t′ ∈ Ψ, r′ ∈ Ω}, where Ψ is the attribute values set, Ω is the attribute set
and contain canonical relations and their inverse direction. (h′, r′, t′) describes
that there is a semantic relationship r′ from h′ to t′. For example, (Tom, age, 45)
states the fact that Toms age is 45. Then, Collaborative Knowledge Graph which
encodes user interactions and the side information of users and items is defined as
a unified graph G = {(h, r, t), h, t ∈ ε, r ∈ R}, where ε = U ∪V ∪Ψ , R = R′ ∪Ω.

Fig. 2. Different order semantic relations mining on CKG

Different Order Semantic Relations Mining. The key to successful rec-
ommendation is to fully exploit the high-order relations in CKG, which rep-
resents the way to learn the embedding of entities by using the first-order,
second-order or even higher-order semantic relations, respectively. Formally,
we define the L-order relations between nodes as a multi-hop relation path:
e0

r1−→ e1
r2−→ · · · rL−→ eL, where el ∈ ε and rl ∈ R, (el−1, rl, el) is the l − th

triplet, and L is the length of relation path. Then we can denote the semantic
relation paths that reach any node from e0 with different length l. As shown
in Fig. 2, for an entity “Tom”, we can exploit the first-order semantic relations,
Tom

age−−→ 45, Tom
occupation−−−−−−−→ teacher, Tom

rating−−−−→ TheTerminal(TT ) and

Tom
rating−−−−→ Schindler′sList(SL), which represents the attributes of Tom, and

his rating activities, respectively. They can be easily extended to the second-
order semantic relations, which contains more richer semantics. For exam-
ple, Tom

age−−→ 45
−age−−−→ Alice, Tom

occupation−−−−−−−→ teacher
−occupation−−−−−−−−→ Alice,

Tom
rating−−−−→ TT

−rating−−−−−→ Bob, Tom
rating−−−−→ SL

directedby−−−−−−−→ Steven, which indi-
cates semantic relations between Tom and Alice, Bob, Steven relying on common
attributes, rating on one item TT , or the relationship on SL. However, to exploit
such high-order relations, there are challenges: 1) the number of semantic paths
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increases dramatically with the order size, which will lead to more computation
in training it, and 2) the different order relations are of different importance to
recommendation, which requires the model to carefully define them.

Generally, shorter semantic paths indicate stronger relations, while longer
ones may represent more semantic relations. To increase model efficiency, We
only consider the semantic paths with the length less than a threshold and take
the semantic relations started from an entity of user or item into account.

3.2 Semantic Relation Learning

We aim to parameterize entities and relations as vector representations to
improve recommendation, which not only learns the structural information, but
also the sequence information of semantic relations. Here we employ TransE [2],
a widely used method, on CKG to capture this structural knowledge. Sequence
information of semantic paths is exploited by adopting RNN.

Structural Embedding. To capture this structural information, TransE is
used to learn it by optimizing the probability P (h, r, t) of the relational triples
(h, r, t), which exists in the graph. So the probability P (h, r, t) is formalized as
follows:

LSE = P (h, r, t) =
∑

(h,r,t+)∈CKG

∑

(h,r,t−)∈CKG−
σ(g(h, r, t+) − g(h, r, t−)) (1)

where σ(x) = 1/(1+ exp(x)) is sigmoid function. The CKG and the CKG− are
the positive and negative instances set, respectively. g(·) is the energy function
which represents the correlation from h to t in the relation r. The score of g(·)
is lower if the triplet is more likely to be true. Here, we define g(h, r, t) as follow:

g(h, r, t) = ||eh + er − et||L1/L2 + b1 (2)

where eh, er, et are the embedding of h,r and t; b1 is a bias constant. The rela-
tions of entities are modeled through the triples, which can inject the direct
connections into embedding to increase the model representation ability.

Sequence Embedding. Structural embedding can capture entity semantics
and semantic relations between entities, however, can not study the semantic
relations of high-order paths. By regarding the entities in different high-order
semantic paths as a sequence, we naturally think that recurrent neural networks
are suitable for modeling different order semantic paths. This is mainly because
that it has capability in modeling sequences with various lengths. To this end,
we adopt RNN to learn the semantics of entities by encoding the semantic paths
with different lengths, and then a pooling operation is used to get the final
semantic representation.

Assume n paths of different lengths from an user ui to any another entity ej ,
i.e., pl = e0

r1−→ e1
r2−→ · · · · · · rT−−→ eT with e0 = ui, the RNN learns a representation
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hlt for each entity et in pl, which considers both the embeddings of entities in the
path and the order of these entities. It encodes the sequence from the beginning
entity of the path e0 to the subsequent entity et. For entity et

Olt = δ(W · Ol(t−1) + H · hlt + b2) (3)

where W is the linear transformation parameters for the previous step, H is for
current step; b2 is the bias term; δ is the sigmoid function. Ol(t−1) is a learned
hide state by encoding the subsequence from e0 to et−1, Olt is a learned hide
state after learning the embedding of hlt at step t. For n paths from a user entity
ui, their last representations are O1T1 , O2T2 · · · OnTn

, where Tn is the length of
pn. Based on this, we get the entity representation O[ui] by adding a max pooling
or an average pooling operation towards all the n paths. Similarly, we can get
the representation O[vj ] of item vj . So the objective function can be defined as:

LSP =
∑

(ui,vj)∈CKG+

− ln δ(ŷ(ui, vj) − y(ui, vj)) (4)

where the probability ŷ(ui, vj) = δ(O[ui]TO[vj ]) is predicted by conducting inner
product of user and item representations, CKG+ is positive instances set, σ(·)
is the sigmoid function.

Finally, we have the objective function to jointly learn Eqs. (1) and (4), as
follows:

L = LSE + LSP (5)

We optimize LSE and LSP alternatively. Specifically, all representations for
nodes are updated by randomly sampling a batch of instances h, r, t, t′; hereafter,
we randomly sample some users or items and mine semantic paths starting from
them, and update the representation for all nodes. Then we can get the embed-
dings of users, items and their attributes UL, VL, Ua, Va, which are regard as
the long term preferences of users and items for temporal recommendation.

3.3 Training Long-Short Term Preference of Users and Items

Users Long-Short Preference. A user preference is compose of the long-
term and short-term preference. The long-term preference indicates the stable
interest, which is represented by semantic presentations of the user’s interacted
items and their attributes. The short-term preference indicates a user’s dynamic
interest, which are learned by LSTM here. The size of time window t is the key
issue when modeling the user dynamic preference. The more fine-grained interest
changes can be captured by using smaller time window, but the training data
is very sparse and the learning process is difficult. On the contrary, the larger
time window will has sufficient training data, while the model is less adaptive
for capturing dynamics changes of a user preference. To this end, we adopt
the latest n items to model the user short term preference, which ensures the
enough training data to train the user preference. Instead of inputting the user
interacted history in form of items sequence into LSTM, the learned semantic
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representations of the interacted items and their attributes are regarded as pre-
train input of LSTM. This makes the training faster and more effective. Finally,
the output of LSTM US is taken as the user short-term preference.

Items Long-Term Preference. Similar to the user preference, the item pref-
erences are also made up of two parts. The learned semantic representations
of items and their attributes are regarded as their long-term preferences. Their
short-term features are determined by the popularity of them changing over
time. We think that the most fashionable items currently have a greater con-
tribution to user preference. Here, we adopt attention machine to capture the
short-term characteristics of items because of its capability of keeping the con-
textual sequential information and exploiting the relationships between items.
At last, the items recently viewed by all users are used as attention input. Simi-
lar to [13], the attention vector for items (1, 2, · · · I) are calculated by using Eq.
(6) at each output time t.

V ′
s =

∑
(δ(zT tanh(Wcct + Wyyi))yi) (6)

where z , Wc,Wy are learnable parameters, ct is the training item at time t and
yi is i-th item in input sequence. δ(·) is a sigmoid function. Lastly, ct and V ′

s

are concatenated as the next input ct+1. The final output Vs can be regarded as
items’ dynamic preferences.

3.4 Recommending Items to Users

Our task is to predict items which the user likely to prefer to when giving the
long-short term preferences of users, items and their attributes. They can be con-
catenated into a single vector as the input of a standard multi-layer perceptron
(MLP), as follow:

UP = UL‖Ua‖US

VP = VL‖Va‖VS

(7)

where ‖ is the concatenation operation. ŷuv is used to represent the probability
of the user u interact with the item v. It is represented by Eq. (8)

ŷuv = σ(hTOL) (8)

where OL is output of MLP. For any l − th layer, Ol is defined as Eq. (9)

Øl = φl(λlOl−1 + ϑl) (9)

where φl, λl, ϑl are the ReLU activation function, weight matrix and bias vector
for the l-th layer’s perceptron, respectively. Ol−1 is the l − 1-th layer’s output of
MLP. UP and VP are the input of input layer.

We treat yuv as label, which represents the actual interaction. 1 means user
u has interacted with item v, and 0 otherwise. Therefore, the likelihood function
is defined as Eq. (10):
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p(y, y−|Θf ) =
∏

(u,v)∈y

ŷuv
∏

(u,v)∈y−
(1 − ŷuv) (10)

Taking the negative logarithm of the likelihood, we gain the objective function
as Eq. (11):

L = −
∑

(u,v)∈y

log ŷuv −
∑

(u,v)∈y−
log(1 − ŷuv)

= −
∑

(u,v)∈y∪y−
yuv log ŷuv + (1 − yuv) log(1 − ŷuv)

(11)

where y−is the negative instances set, which is uniformly sampled from unob-
served interactions with the sampling ratio related to the number of observed
interactions. The output of each neuron is controlled in [0,1] by using sigmoid
function. The learning will stop when their output is near to either 0 or 1.

We adopt adaptive gradient algorithm to optimize our model, which auto-
matically adapts the step size to reduce the efforts in learning rate tuning. In the
recommendation stage, candidate items are ranked in ascending order according
to the prediction result, and we recommend the top ranked items to users.

4 Experiments

In this section, we perform experiments to evaluate HRTR. We first introduce
experimental setup, including the datasets, baselines, evaluation metrics and
parameter settings, and then present the experiment results against the related
baselines.

4.1 Experimental Setup

Dataset Description. To demonstrate the effectiveness of HRTR, We conduct
experiments on two public datasets. The one is MovieLens-1M1 which consists of
6,040 users, 3,952 items and approximately 1M explicit ratings. Besides the user-
item ratings, it also includes some auxiliary information about users and items,
such as age, occupation, zip code, genre, title, director, etc. Ratings ranging
from 1 to 5 are transformed into either 1 or 0, where 1 indicates a user have
rated an item, otherwise 0. Another one is Yelp2, which contains 4700000 review
information, 156000 businesses and 110000 users. Here we consider businesses,
for example movie theaters, as items. We set the threshold to 10, which represents
that a user has at least 10 interactions.

For each user, his/her interactions are first sorted based on interactive time,
and the latest one is regarded as the test positive instance and others are utilized
as positive instances for training. Finally we randomly sample four negative
instances for per positive one, and randomly sample 99 unrated items as the
test negative instances.
1 https://grouplens.org/datasets/movielens/.
2 https://www.yelp.com/dataset/challenge.

https://grouplens.org/datasets/movielens/
https://www.yelp.com/dataset/challenge
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Evaluation Metrics. Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) are used to evaluate the performance of a ranked list [4]. The HR
intuitively measures whether the recommendation list includes the test item.
The NDCG measures the ranking of the test item in top-K list. We calculate
HR and NDCG for each test user and take the average score as the final results.

Baselines. To validate the effectiveness of our proposed HRTR, we compare it
with the following state-of-the-art baselines

– NCF [3]: It uses a multi-layer perceptron replacing the inner product to learn
the user-item interactions.

– MCR [6]: It is a meta path based model, which extracts qualified meta paths
as similarity between a user and an item.

– CKE [20]: It is a collaborative KG embedding based method, which learns
item latent representations by combining structural, textual and visual infor-
mation in a unified framework.

– KGTR [18]: It is a semantic relation plus temporal method, which defines
three relationships in CKG to express interactions for recommendation.

Parameter Settings. For structural embedding training, the embedding size is
fixed to 100, hyper parameter b1 is set to 7, and L1 is taken as distance metric.
For sequence embedding training, the threshold of the longest semantic path
length is set to 6. A longer path hardly improves performance but brings heavier
computational overhead. We implement HRTR in Python based on the Keras
framework and employ mini-batch Adam to optimize it. For MovieLens dataset,
16 items are selected as the input of LSTM for one user to learn his/her short
term preference. For Yelp, 8 items are selected to mine users’ preference. We
select items which interacted by all users in the latest hour as input of attention
to learn the items’ short term features.

We find out other optimal parameters for HRTR by experiment and take
HR and NDCG as metrics to evaluate them. We apply a grid search to find out
the best values for hyperparameters: the dimension of representation vector d is
tuned in {50, 100, 150, 200}, the batch size s is searched in {128, 256, 512, 1024,
2048}. Due to space limitation and the same trend, only the results on MovieLens
are shown in Fig. 3. From Fig. 3 we can see that HR@10 and NDCG@10 firstly
increase and then decrease with the increase of d. The performance of HRTR
is best when d = 100. As s increases, its performance increases rapidly and
tends to be stable with different batch size and the best performance is obtained
when bach size is set to 2048. So we set s = 2048 and d = 100 as the optimal
parameters for MovieLens, while for Yelp s = 2048 and d = 150. The optimal
parameters of baselines are set to their recommended values.
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Fig. 3. The performance of our HRTR with different dimensions and batch sizes

4.2 Results and Analysis

Results Analysis of HRTR. Here, we report the performance of our HRTR
for top@k recommendation on MovieLens, where k is tuned in {5, 10, 15, 20,
25, 30}. Firstly, the batch size is set to 2048 and the dimension is tuned in {50,
100, 150, 200}, the results are shown in Fig. 4. Some interesting observations can
be noted from Fig. 4. With increasing of k, HR@k and NDCG@k are improved
rapidly and tend to be stable. In general, HR@k and NDCG@k get better results
when d = 100, while the difference is very slight. The result is consistent with the
analysis in parameter settings. That shows it is not sensitive to vector dimension.

As shown in Fig. 5, we also tested the top@k item recommendations, when
vector dimension is fixed to 100 while batch size is searched in {512, 1024, 2048}.
We can observe that HR@k and NDCG@k increase when k varies from 5 to 30.
HR@k and NDCG@k all get the better performance when batch size becomes
larger and it is obvious for NDCG@k. Due to the same trends, the results on
Yelp are not described in detail.

Comparing HRTR with Baselines. Table 1 summarizes the performance
of all methods on two datasets and the best performance is boldfaced. MCR
without considering temporal information and CKE without employing seman-
tic paths achieve poor performance compared with other methods. This confirm
that semantic path and temporal context are useful to provide better recommen-
dation. MCR highly outperforms all models if the ranking list is short. That is
mainly because MCR exploits the entity relation in the KG by introducing meta
paths relying on domain knowledge, which has its superiority when requiring
shorter recommendation list. The performance of KGTR is closest to HRTR.
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Fig. 4. HR@K and NDCG@K results with different dimensions

Fig. 5. HR@K and NDCG@K results with different batch size

The reason is that they all consider semantic relation with temporal context.
While HRTR is still superior to KGTR. The mainly reason is that HRTR can
capture high order semantic relation, KGTR can not do it. For sparser Yelp
dataset, HRTR achieves significantly better performance than other methods,
that shows that HRTR is more suitable for sparser data.
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Table 1. Performance of all comparison methods across all the evaluation metrics.

Datesets Methods HR@k NDCG@k

5 10 20 5 10 20

MovieLens-1M NCF 0.5339 0.6812 0.8204 0.3501 0.4102 0.4403

MCR 0.5764 0.5873 0.6079 0.4354 0.4001 0.3809

CKE 0.4251 0.5736 0.7345 0.1585 0.1698 0.1999

KGTR 0.5402 0.6978 0.8303 0.3603 0.4232 0.4501

HRTR 0.5102 0.6989 0.8312 0.3412 0.4120 0.4508

Yelp NCF 0.1123 0.1360 0.2011 0.1650 0.1123 0.0543

MCR 0.1202 0.1143 0.1156 0.1815 0.1828 0.1798

CKE 0.0931 0.1098 0.1172 0.1212 0.1131 0.0821

KGTR 0.1102 0.1179 0.1206 0.1528 0.1698 0.1658

HRTR 0.1090 0.1379 0.2152 0.1811 0.1903 0.1822

5 Conclusions

In this paper, we proposed a High-order semantic Relations-based Temporal Rec-
ommendation model (HRTR) that explores the joint effects of different seman-
tic relations in CKG and temporal context. HRTR overcame the limitations of
existing KG-aware methods by jointly learning different order semantic rela-
tions between entities, which not only captures structural information, but also
explores sequence information in CKG. HRTR respectively exploited the users’
and items’ long and short term features, which could capture their stable and
temporal dynamic preferences. Extensive experiments were conducted on real
datasets and the experimental results demonstrated the significant superiority of
HRTR over state-of-the-art baselines. In future, we plan to design an effectively
unified model to simultaneously explore the structural and sequence information
to improve the performance.
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