l‘)

Check for
updates

An Ontology-Aware Unified Storage
Scheme for Knowledge Graphs

1,2(8) Baozhu Liu', Pengkai Liu', Sicong Dong?,

and Zhiyong Feng!+?

Sizhuo Li', Guozheng Rao

! College of Intelligence and Computing, Tianjin University, Tianjin, China
{1szskye,rgz,liubaozhu,liupengkai,sicongdong,zyfeng}@tju.edu.cn
2 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

Abstract. With the development of knowledge-based artificial intelli-
gence, the scale of knowledge graphs has been increasing rapidly. The
RDF graph and the property graph are two mainstream data models of
knowledge graphs. On the one hand, with the development of the Seman-
tic Web, there are a large number of RDF knowledge graphs. On the other
hand, property graphs are widely used in the graph database community.
However, different families of data management methods of RDF graphs
and property graphs have been seperately developed in each community
over a decade, which hinder the interoperability in managing large knowl-
edge graph data. To address this problem, we propose a unified storage
scheme for knowledge graphs which can seamlessly accommodate both
RDF and property graphs. Meanwhile, the concept of ontology is intro-
duced to meet the need for RDF graph data storage and query load.
Experimental results on the benchmark datasets show that the proposed
ontology-aware unified storage scheme can effectively manage large-scale
knowledge graphs and significantly avoid data redundancy.

Keywords: Knowledge graph - Unified storage scheme -
Ontology-aware

1 Introduction

Knowledge graphs have become the cornerstone of artificial intelligence. With
the applications of artificial intelligence, more and more fields begin to organize
and publish their domain knowledge in the form of knowledge graphs. Knowledge
graphs can not only describe various entities and concepts which exist in the real
world, but also can depict the relationships between these entities and concepts.
At present, knowledge graphs have been widely used in the fields of big data
analysis [1], knowledge fusion [2], precision marketing [3], and semantic search [4].

As the demand of knowledge-based Al applications, the amount of knowl-
edge graph data has been dramatically increasing. Currently, it is common that
knowledge graphs have millions of vertices and billions of edges. Many knowledge
graphs in the LOD (Linked Open Data) cloud diagram have more than 1 billion
© Springer Nature Switzerland AG 2020

X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 212-226, 2020.
https://doi.org/10.1007/978-3-030-60259-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60259-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-60259-8_17

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 213

triples. For example, the number of triples of the latest version of the DBpe-
dia [5] dataset has reached 13 billion. Meanwhile, a great amount of graph data
has been stored as property graphs. Therefore, many systems are developed in
graph database industry, including Neo4j [6], TigerGraph [7], and OrientDB [8].

In order to manage large-scale knowledge graph data, two mainstream data
models of knowledge graphs have been developed: the RDF (Resource Descrip-
tion Framework) model [9] and the property graph model. RDF is a standard
data model developed by the World Wide Web Consortium to represent and
manage information on the Semantic Web. In the graph database community,
the property graph model is another common data model which has built-in
support for vertex and edge properties [10]. At present, these two mainstream
data models for knowledge graphs have not been unified in a broader perspec-
tive of knowledge graph data management, which hinder the interaction while
managing knowledge graphs from different communities. A unified data model
helps reduce the cost of development of database management systems and real-
ize the interoperability of different types of knowledge graphs at the same time.
It has become an urgent need that RDF and property graphs can be effectively
managed in a unified storage scheme.

In this paper, we present a unified storage scheme for both RDF and prop-
erty graphs. Considering the mature storage management facilities in relational
databases, our unified storage scheme for knowledge graphs has been imple-
mented based on an RDBMS, using the relational data model as the physical
layer to realize our knowledge graph data model. Since knowledge graphs sup-
port querying instance information with rich ontology semantic information, it
is necessary to propose an ontology-aware unified storage scheme for knowledge
graphs. Ontology is introduced to optimize storage and facilitate query as a
heuristic information. Finally, we have designed and realized a prototype sys-
tem that implements the proposed storage scheme and supports efficient query
processing.

Our contributions can be summarized as follows:

1) We propose a novel unified storage scheme for knowledge graphs based on
relational data model, which can seamlessly accommodate both RDF and
property graphs.

2) We introduce ontology as a rich semantic information to optimize our knowl-
edge graph storage scheme. Additionally, the prefix encoding is adopted to
save storage space and reflect the hierarchical information between the ontolo-
gies.

3) Extensive experiments on several datasets are conducted to verify the effec-
tiveness and efficiency of our storage scheme. The experimental results show
that the triple traversal time of our scheme is less than that of the Neo4j.

The rest of this paper is organized as follows. Section 2 briefly introduces the
related work and several formal definitions are given in Sect. 3. The ontology-
aware unified storage scheme is described in detail in Sect.4. Section 5 shows
experimental results on benchmark datasets. Finally, we conclude in Sect. 6.

214 S. Li et al.

2 Related Work

Relational storage scheme is one of the main methods of storing knowledge graph
data. In this section, various relational storage schemes are introduced, including
Triple table, Horizontal table, Property table, Vertical partitioning, and Sextuple
indexing.

Triple Table. Triple table is a storage scheme with a three-column table in a
relational database. The scheme of this table is:

triple_table(subject, predicate, object)

Each triple in a knowledge graph is stored as a row in triple_table. The triple
table is the simplest way to store knowledge graphs in a relational database.
Although the triple table storage scheme is clear, the number of rows in the
triple_table is equal to the number of edges in the corresponding knowledge
graph. Therefore, there will be many self-joins after translating a knowledge
graph query into an SQL query. The representative system adopting triple table
storage scheme is 3store [11].

Horizontal Table. Each row of the horizontal table stores all the predicates
and objects of a subject. The number of rows is equal to the number of differ-
ent subjects in the corresponding knowledge graph. The horizontal table storage
scheme, however, is limited by the following disadvantages: (1) the structure
of the horizontal table is not stable. The addition, modification or deletion of
predicates in knowledge graphs will directly result in the addition, modification
or deletion of columns in the horizontal table. The change to the structure of
the table often leads to high costs; and (2) the number of columns in the hori-
zontal table is equal to the number of different predicates in the corresponding
knowledge graph. In a real-world large-scale knowledge graph, the number of
predicates is likely to reach tens of thousands, which is likely to exceed the max-
imum number of columns in the table allowed by the relational database. The
representative system adopting horizontal table storage scheme is DLDB [12].

Property Table. The property table is a refinement of the horizontal table,
storing those subjects of the same type in one table, which solves the problem
of exceeding the limit of the maximum number of columns in the horizontal
table scheme. However, there still exists several drawbacks of the property table
storage scheme: (1) the number of predicates is likely to reach tens of thousands
in a real-world large-scale knowledge graph and thus a large number of tables
need to be created. The number of the tables may exceed the maximum number
of tables; and (2) the property table storage scheme can cause the problem of
null value. The representative system adopting property table storage scheme is
Jena [13].

Vertical Partitioning. The vertical partitioning storage scheme creates a two-
column table for each predicate [14]. Subjects and objects of the same predicate
will be stored in one table. Compared with the previous storage schemes, the

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 215

problem of null value is solved. However, the vertical partitioning storage scheme
also has its limitation: the number of tables to be created is equal to the number
of different predicates in knowledge graphs, and the number of predicates in
a real-world large-scale knowledge graph may exceed several thousand, which
leads to high cost while maintaining the database. The representative database
adopting the vertical partitioning storage scheme is SW-Store [15].

Sextuple Indexing. Six tables are built to store all the six permutations of
triples in sextuple indexing storage scheme, namely spo, pos, osp, sop, pso, and
ops. The sextuple indexing storage scheme helps alleviate the self-join problem of
single table and improve the efficiency of some typical knowledge graph queries.
The sextuple indexing storage scheme adopts typical “space-for-time” strategy,
therefore, a large amount of storage space is required. Typical systems adopting
the sextuple indexing storage scheme are RDF-3X [16] and Hexastore [17].
Inspired by the above relational storage schemes, our unified storage scheme
adopts the relational data model as the physical layer to realize our knowledge
graph data model. The details of our scheme will be introduced in Sect. 4.

3 Preliminaries

In this section, we introduce several basic background definitions, including RDF
graph, property graph, triple partition, and triple classification, which are used
in our algorithms.

Definition 1 (RDF Graph). Let U, B, and L be three infinite disjoint sets of
URIs, blank nodes, and literals, respectively. A triple (s,p,0) € (UU B) x U X
(UUBUL) is called an RDF triple, where s is the subject, p is the predicate,
and o is the object. A finite set of RDF triples is called an RDF graph.

Definition 2 (Property Graph). A property graph is a tuple G =
(V,E,p,\,0) where:

1) Vis a finite set of vertices,

2) E is a finite set of edges and VN E = {),

3) p: E— (V xV) is a mapping that associates an edge with a pair of vertices.
For example, p(e) = (v1,vs2) indicates that e is a directed edge from vertex vy
to va,

4) Let Lab be the set of labels. \: (V UE) — Lab is a mapping that associates
a vertex or an edge with a label, i.e., v € V (ore € E) and A(v) =1 (or
Ae) =1), then [is the label for vertex v (or edge e),

5) Let Prop be the set of properties and Val be the set of values. o : (V U E) x
Prop — Val is a mapping that associates a vertex (or edge) with its corre-
sponding properties, i.e., v € V (ore € E), p € Prop and o(v,p) = val (or
o(e,p) = wval), then the value of the property p of the vertex v (or edge e) is
val.

216 S. Li et al.

Definition 3 (Triple Partition). Let T be a finite set of RDF triples whose
values of subjects and objects are not blank nodes. T can be divided into three
subsets, including X(T), Y(T), and Z(T).

X(T) ={(s,p,0) | (s,p,0) € T Ap=rdf:type} 1)

(
Y(T)={(s,p,0) | (s,p,0) €T No € L} (2)
Z(T)={(s,p,0) | (s,p,0) € T Ap#rdf:type Ao ¢ L} (3)
The three subsets satisfy the following two conditions: (1) X(T) U Y (T) U
Z(T) =T; and (2) X(T)NY(T)N Z(T) = 0. Since a triple set T is divided

into three subsets, the triple classification of T" based on triple partition can be
defined as Definition 4.

Definition 4 (Triple Classification). Let C be the set of classes of triples.
C = {mem,prop,edge}. ¢ : T — C is a mapping that associates an RDF triple
with its corresponding class.
mem if t € X(T)
e(t) =< prop ift €Y (T)
edge ift € Z(T)

The example RDF graph shown in Fig. 1 describes a music knowledge graph
where (LangLang, plays, FateSymphony) € Z(T) and ¢((LangLang, plays,
FateSymphony)) = edge.

Richard Clayderman

Beethoven Fate Symphony Q
lays rdf type

plays df: type .

Composer birthDate rdfitype Q Pianist
1770-12-16 li| © rDate
Music l__'_| “1982-6-14”

Fig. 1. An example RDF graph.

4 Ontology-Aware Unified Storage Scheme

In this section, we first propose a basic storage scheme for both RDF and prop-
erty graphs, then we optimize the basic storage scheme by introducing the infor-
mation of ontology. Finally, we present our data loading algorithm.

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 217

VERTEX EDGE
| vid ‘ vproperties f e | eid ‘ Vidggart | Videng | eproperties f sy
VTYPE, - ETYPE,
| vid | vproperties }+ - | eid ‘ Vidgtart | Videng | eproperties |¢ el
: i
I I
: ‘ i
VTYPE; ETYPE;
| vid ‘ vproperties |4 -- ‘i | eid ’ Vidgart | videng | eproperties |¢ = Ai
} |
i |
VTYPE, % ETYPE,, %
| vid | vproperties }4 . | eid ’ Vidgart | Videng | eproperties |‘ __

Fig. 2. The basic storage scheme.

4.1 A Basic Storage Scheme

The basic storage scheme is composed of several relations, including VERTEX,
EDGE, VTYPE;, VTYPE;,..., VTYPE, (n is the number of vertex labels), ETYPE,,
ETYPE,..., ETYPE,, (m is the number of edge labels), as shown in Fig.2. Actu-
ally, relation VTYPE; is a partition of relation VERTEX, while relation ETYPE; is a
partition of relation EDGE.

For property graphs, the first column in VERTEX records the encodings of
all the vertices in the property graph, while the properties of those vertices
are kept in the second column. Meanwhile, the first column in EDGE holds the
encodings of all the edges, while the information of the head vertices, tail vertices,
and properties of those edges are kept in the second, third, and forth column,
respectively. VTYPE; (0 < i < n) records the information of those vertices of the
same label, while ETYPE; (0 < j < m) records the information of those edges of
the same label.

For RDF graphs, the first column of each row in VERTEX records the URI of an
instance. The URIs of properties and the corresponding literals of this instance
are kept in the second column. Besides, the first column of each row in EDGE
holds a predicate p where ¢((s, p, 0)) = edge. The subjects and objects of this
predicate are stored in the second column and the third column, respectively.
VIYPE; records the information of those vertices of the same type, while ETYPE;
records the information of those edges of the same type.

4.2 The Ontology Information

RDFS (RDF Schema) is an extension of RDF, and it provides the framework to
describe application-specific classes and properties. Classes in RDFS are much
like classes in object oriented programming languages which allows resources to
be defined as instances of classes, and subclasses of classes. More specifically, the
class rdfs:Class declares a resource as a class for other resources. The property
rdfs:subClassOf is an instance of rdf:property that is used to state that all

218 S. Li et al.

o

Employee :l I:i:l Publication
AdministrativeStaff ; ;

Faculty UnofficialPublication Book Manual ~ Software Specification Article

ClericalStaff SystemsStaff Lecturer PostDoc Professor ConferencePaper JournalArticle TechnicalReport
[l -]

AssistantProfessor AssociateProfessor Chair ~ Dean FullProfessor ~ VisitingProfessor

Fig. 3. Ontology hierarchical structure.

the instances of one class are instances of another. Since a class can be further
refined into subclasses, an ontology of an RDF graph is actually a hierarchical
structure of classes.

Algorithm 1: ONTOLOGYENCODING(T)

Input : Ontology T = (V, E, vo, Label, Id, 1), where Id = ()
Output: The encoded ontology T’
1V, « getLeaf(T.V); // Get all the leaf node in T

2 foreach v € V; do
L return id < getCode(v);

3
4 return T

5 Function getCode (v)

6 if v isSubclass0f v; then

7 vj.index — |Vi|;

8 Vi — ViUu{v,};

9 return getCode(v;) + v.index;

// The plus sign refers to string concatenation

10 else
11 L return v.index;

The structure of an ontology can be described in terms of a tree, where the
nodes represent classes, and the edges represent the relationships between them.
The definition of an ontology can be formally given as:

Definition 5 (Ontology). An ontology is a 6-tuple O = (V, E, v,, Label, Id, 1)
where

1) Vis a finite set of nodes,

2) E is a finite set of edges and VN E = (),

3) wq is the root node of the tree structure and vy € V,
4) Let Label be the set of labels,

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 219

5) Let 1d be the set of the encodings of nodes. Each node has a unique encoding,
which contains its complete hierarchical information,

6) p:V — Id is a mapping that associates a node with its corresponding encod-
ing, i.e., v € V and pu(v) = id, then the encoding of node v is id.

The example ontology hierarchical structure is extracted from Lehigh Univer-
sity Benchmark (LUBM) [18]. The root of the ontology hierarchy is owl: Thing, as
shown in Fig. 3. Meanwhile, the hierarchical structure is formed by transitivity
of the property rdfs:subClass0f, e.g., Publication has Article, Book, Manual,
Software, Specification, and UnofficialPublication as its direct subclasses.

In order to save storage space and reflect the hierarchical structure of the
ontology, we leverage the prefix encoding to encode classes in each ontology.
Algorithm 1 shows the recursive procedure of ontology encoding, meaning that
it first encodes the leaf node, then upward encodes the nodes until the root
owl: Thing is encountered.

4.3 An Optimized Storage Scheme

In this section, we modify the basic storage scheme and propose an ontology-
aware unified storage scheme for knowledge graphs. The optimized storage
scheme is composed of three main relations, including VERTEX, EDGE, and
ONTOLOGY, and several auxiliary relations, as shown in Fig.4. VERTEX and EDGE
store the information of all the vertices and edges in a knowledge graph. Mean-
while, the encodings of the ontologies in RDF graphs are kept in relation
ONTOLOGY.

VERTEX EDGE

‘ vid ‘ vproperties ‘ ontology id ‘f - | eid ‘ Vidgtart | Videng ‘ eproperties k -

VTYPE, | ETYPE, |

‘ vid ‘ vproperties ‘ ontology id }47 - j: | eid ‘ Vidgtare | Videng ‘ eproperties ‘« - —i
3 |

VTYPE, | ETYPE, !

| vid | vproperties | ontology id Je-- J [eid | vidwn | videa | eproperties - |

ONTOLOGY

‘ ontology id ‘ ontology ‘

Fig. 4. The ontology-aware unified storage scheme.

The storage scheme of RDF and property graphs in our optimized version
is similar to that in the basic version, except for an extra relation ONTOLOGY
and an extra field ontology_id in relation VERTEX and relation VTYPE;. Since
the prefix encoding is adopted to reflect the hierarchical structure between RDF
classes, queries assuming the subClassOf relationship between an RDF class and

220 S. Li et al.

its subclasses can be completed by using the keyword “LIKE” in a fuzzy match
inquiry process. Therefore, the ontology helps improve the reasoning capability
and optimize queries as a heuristic information.

When storing a property graph, the value of ontology_id will be left empty.
An example scheme for a given property graph is shown in Fig.5 (a), and the
property graph is shown in Fig.5 (b).

VERTEX EDGE
vid vproperties | ontology_id eid | vidgan | Videna | eproperties
3.1 name: Lucy 6.1 3.1 4.1
41 acmid: 220 6.2 5.1 42 Professor AUTHORS ‘ Publication
4.2 acmid: 240 7.1 4.2 41 name: Lucy [~ ‘ | acmid: 220
5.1 | name: Irene 81| 3.1 5.1 (nt 1l
VTYPE, ETYPE,
vid vproperties | ontology_id cid | vidgaw | Videa | eproperties
3.1 | name: Lucy | 6.1 3.1 4.1 SUPERVISES 3 CITES
VTYPE, 6.2 5.1 4.2 AUTHORS
vid | vproperties | ontology_id ETYPE,
4.1 | acmid: 220 eid | vidgar | Vvidena | eproperties Student Publuatmn
4.2 | acmid: 240 7.1 42 4.1
VTYPE; ETYPE; name: lrunc acmld 240
vid vproperties | ontology_id cid ‘ Vidgor | Vidend ‘ eproperties ‘
5.1 name: Irene | 8.1 ‘ 3.1 5.1 ‘
(a). The example scheme for property graph (b). An example property graph

Fig. 5. Example scheme for a given property graph.

When storing an RDF graph, the first column of each row in VERTEX records
the URI of an instance, while the third column records the encoding of the
corresponding ontology. An example scheme for RDF graph is shown in Fig. 6,
and the corresponding RDF graph is shown in Fig. 1.

4.4 Loading Algorithm

We present a loading algorithm which is shown in Algorithm 2 to import RDF
data. The input of the algorithm is an RDF graph G and its corresponding
ontology T. The processed triples are stored into an auxiliary data structure
VEO. The auxiliary data structure VEO is built on top of our storage scheme.

Algorithm 2 consists of three parts: (1) if ¢((s,p,0)) = mem (lines 2-5),
getLabel function is invoked to obtain the corresponding label of o, then
traverse0 function is called to traverse T in depth-first order and get the
node v. with label [, finally function u gets the ontology encoding of v.; (2)
if p((s,p,0)) = prop (lines 6-9), getProperty function is provided to get the
property information corresponding to s, then VEO is updated with the latest
value of properties; and (3) if ¢((s,p, 0)) = edge (lines 10-11), (p, s, 0) is inserted
into VEO.

Theorem 1. Given an RDF graph G and its corresponding ontology T, we
assume that the triples in G are processed and stored into the auziliary data
structure VEO by Algorithm 2. The time complexity of Algorithm 2 is bounded

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 221

VERTEX
vid vproperties ontology_id Thing l;l 1
Beethoven birthDate:1770-12-16 14.1 .
Fate Symphony 1.5.3 [Person 1.4 Work 1.5
Richard Clayderman | 142 ' '
Lang Lang birthDate:1982-6-14 142 [
VTYPE, Pl L]
vid ‘ vproperties ontology_id Composer Pianist Music
| Beethoven | birthDate:1770-12-16 | 14.1 | § 1.4.1 142 fo1s3
VTYPE, ‘ ‘
‘ vid vproperties ‘ ontology_id ‘
Fate Symph 15.3
ate Symphony ‘ ‘ EDGE
VTYPE; i . eid Vidggar Videna eproperties
; vid vproperties ontology id composes Beethoven Fate Symphony
Rlcha]r-d Claﬁ/dennan) ij% plays | Richard Clayderman| Fate Symphony
ang Lang birthDate:1982-6-14 4. plays Lang Lang Fate Symphony
ONTOLOGY ETYPE
1
ontol(:gyild Ot_i_t]?_k)gy ‘ eid Vidgare ‘ Vidend ‘ eproperties ‘
ng ‘ composes Beethoven ‘ Fate Symphony‘ ‘
14 Person
15 Work ETYPE,
1.4.1 Composer eid Vidstan Vidend eproperties
142 Pianist plays |Richard Clayderman| Fate Symphony
153 Music plays Lang Lang Fate Symphony
Fig. 6. Example scheme for a given RDF graph.
Algorithm 2: TRIPLELOADING(G,T)
Input : RDF graph G, Ontology T = (V, E,vo, Label, Id, u)
Output: The auxiliary data structure VEO
1 foreach (s,p,0) € G do
2 if ¢o((s,p,0)) = mem then
3 l «+ getLabel(o0);
4 ve — traverse0(vo,!); // Traverse ontology T from vo
5 insert (s, u(ve)) into VEO,; // Get the ontology encoding of w.
6 else if ¢((s,p,0)) = prop then
7 property «— getProperty(VEO, s);
8 p < property + p + o;
9 update p in VEO,;
10 else
11 L insert (p, s,0) into VEO,;
12 return VEO;
13 Function traverse0 (v,l)
14 if v # NULL then
15 if v.lab =1 then // Depth-first search
16 L return v;
17 else
18 traverse0(v. firstChild,l);
19 traverse0(v.nextBrother,l);

222 S. Li et al.

by O(|S|(|V| + |E|)), where |S| is the number of triples in G, |V| is the number
of nodes in ontology T, and |E| is the number of edges in ontology T

Proof. (Sketch) Since Algorithm 2 contains three branches and the total time
complexity is equal to the time complexity of the branch with the largest time
complexity, the time complexity of Algorithm 2 is equal to the complexity of the
first branch. In the worst case, every triple in G belongs to class mem. The time
complexity of traversing T is |V|+ |E|. Thus, the time complexity of Algorithm 2
is bounded by O(|S|(|]V| + | E|)) |

5 Experiments

In this section, extensive experiments were conducted to evaluate the perfor-
mance of our scheme, using open source database AgensGraph [19] as our rela-
tional backend. Experiments were carried out on a machine which has 4-core,
Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz system, with 16 GB of mem-
ory, running 64-bit CentOS 7.

5.1 Datasets

We use an RDF data benchmark LUBM [18] in our experiments. This benchmark
is based on an ontology called Univ-Bench for the university domain. Univ-
Bench describes universities and departments and the activities that occur at
them. The test data of LUBM is synthetically generated instance data over that
ontology. Meanwhile, LUBM offers 14 test queries over the data. Table 1 shows
the characteristics of the datasets in our experiments.

Table 1. Characteristics of datasets

Dataset | File# | Total size (MB) | V# E# Triples#
LUBM1 | 15 13.6 17,150 | 23,586 | 103,397
LUBM2 34 29.3 39,510 | 54,342 | 237,210
LUBMS3 | 50 43.5 57,652 | 79,933 | 348,105
LUBM4 | 71 61.1 82,204 | 113,745 | 493,844
LUBMS5 | 93 79.6 107,110 | 148,846 | 493,844

5.2 Experimental Results

The experimental results show the effectiveness and efficiency of our ontology-
aware unified storage scheme. Data insertion and deletion can be completed
efficiently. Meanwhile, our scheme is more compact than Neo4j and the traversal
time of the triples in our scheme is less than that in Neo4j on all data sets. In
our experiments, we provide two versions of the unified storage schemes, one of
which is a basic version without the ontology information, while the other is an
optimized version with the ontology information.

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 223

400000 900

Basic Version == Basic Version ==
Optimized Version mm==m Optimized Version
350000 800
700
300000
g g 600
E 250000 QE’
= = 500
S S
% 200000 :;)
] 2 400
[n]]
150000 200
100000 200
50000 < < < 4 <4 100 < < 4 < 4
% % % % % % % % % %
%, %, %, %, %,
% % % % % % %
(a) Data Insertion (b) Data Deletion

Fig. 7. The experimental results of data insertion and deletion on LUBM datasets.

Data Insertion and Deletion. The experimental results show that the average
execution speed of the basic version is 4.73% and 9.52% faster than that of
the optimized version in data insertion and deletion, respectively, which is not
counterintuitive. Though the optimized version is slightly inferior to the basic
version, it is complete with the respect to the semantic information. Therefore,
it is quite important to measure the tradeoffs between efficiency and reasoning
capability.

Actually, the time costs of two versions are on the same order of magnitude,
thus are comparative, as shown in Fig. 7. Although the performance of the opti-
mized version is not better than that of the basic version, it is worthwhile to
trade the slight overhead for reasoning capability.

80

Raw Data
Basic Version ===
70 Optimized Version
Neodj ——

60

50

40

Repository size(MB)

30

) H_m
10 A [l

Fig. 8. The experimental results of repository size while inserting data.

Repository Size. We check the change of the file size before and after the data
sets being loaded. Experiments were conducted to compare the space required

224 S. Li et al.

for the optimized version with the basic version and Neo4j, which supports an
RDF plugin for importing RDF data.

Compared with the optimized version, the repository size of the basic version
is reduced from 5.11% to 13.36%, as shown in Fig. 8. It is reasonable that the
optimized version requires more storage space for the hierarchical structure of
ontologies. Though the basic version performs better, the repository size of two
versions are on the same order of magnitude. Therefore, it is worthwhile to trade
a little space for capability. Besides, it can be observed that the optimized version
outperforms Neo4j on several data sets, i.e., LUBM2, LUBM4, and LUBMS5.
The growth rate of repository size in Neo4j is higher than that of our basic and
optimized version.

Optimized Version m===
leodj ——

In(Execution time)(ms)

L oalll

4 =l
% % % % %
% % % % %

Fig. 9. The experimental results of triple traversal.

Triple Traversal. We also evaluate the time required to traverse all triples in
a graph and the experimental results are shown in Fig. 9. The average execution
speed in the optimized version is about 99 times faster than that in Neod4j,
i.e., our optimization method on average outperforms Neo4j by two orders of
magnitude over LUBM data sets. In order to show the results clearly, we change
the scale of the Y-axis to logarithmic.

Query Speed. We select four type-related queries from the 14 test queries that
LUBM offers: Q1 directly refers to the type information of UndergraduateStu-
dent, Q2 refers to the type information of GraduateStudent with some filtering
conditions, @3 assumes the subClassOf relationship between Professor and its
subclasses. It is obvious that class Professor has a wide hierarchy. Q4 assumes
the subClassOf relationship between Person and its subclasses. Similarly, class
Person features a deep and wide hierarchy.

We compare the basic storage scheme with the optimized storage scheme, and
the execution time results of Q1, @2, @3, and Q4 are shown in Fig.10. When
changing the size of datasets from LUBMI1 to LUBMS5, query times of these

An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 225

70 120

Basic Version =—= Basic Version &=—=
Optimized Version ==

Optimized Version mm=m

20

10 I

0
2
K2

% <
%,

Execution time(ms)
Execution time(ms)

G Yy <

4

(a) Q1

140 100

Basic Version =—= Basic Version =
Optimized Version === Optimized Version ===
120 %

Execution time(ms)
Execution time(ms)

Fig. 10. The experimental results of efficiency on LUBM datasets.

two schemes have increased. Meanwhile, it can be observed that the optimized
version has better query efficiency on all 4 queries. Compared with the basic
version, the average query time of the optimized version is reduced from 23.24%
to 40.33%.

6 Conclusion

This paper proposes a unified storage scheme for both RDF and property graphs
and introduces the concept of ontology to reflect the hierarchical relationships
between RDF classes. A prototype system of our storage scheme is designed
and implemented based on AgensGraph. Extensive experiments on the LUBM
benchmark datasets verify the effectiveness and efficiency of our storage scheme.

Acknowledgments. This work is supported by the National Natural Science Foun-
dation of China (61972275), the Natural Science Foundation of Tianjin (17JCY-
BJC15400), and CCF-Huawei Database Innovation Research Plan.

226

S. Li et al.

References

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Duan, W., Chiang, Y.Y.: Building knowledge graph from public data for predic-

tive analysis: a case study on predicting technology future in space and time. In:
Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics
for Big Geospatial Data, BigSpatial 2016, pp. 7-13 (2016)

Wang, H., Fang, Z., Zhang, L., Pan, J.Z., Ruan, T.: Effective online knowledge
graph fusion. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9366, pp. 286—
302. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25007-6_17

Fu, X., Ren, X., Mengshoel, O., Wu, X.: Stochastic optimization for market return
prediction using financial knowledge graph. In: 2018 IEEE International Conference
on Big Knowledge, pp. 25-32 (2018)

Li, Y.: Research and analysis of semantic search technology based on knowledge
graph. In: 2017 IEEE International Conference on Computational Science and
Engineering (CSE) and IEEE International Conference on Embedded and Ubiqui-
tous Computing (EUC), vol. 1, pp. 887-890 (2017)

Lehmann, J., et al.: DBpedia-a large-scale, multilingual knowledge base extracted
from wikipedia. Semant. Web 6(2), 167-195 (2015)

The Neod4j Team: The neodj manual v3.4 (2018). https://neodj.com/docs/
developermanual /current/

TigerGraph Inc.: Tigergraph: the world’s fastest and most scalable graph platform
(2012). https://www.tigergraph.com/

OrientDB Ltd.: Orientdb: first multi-model database (2010). http://orientdb.com/
W3C: RDF 1.1 concepts and abstract syntax (2014)

. Angles, R., Arenas, M., Barceld, P., Hogan, A., Reutter, J., Vrgo¢, D.: Foundations

of modern query languages for graph databases. ACM Comput. Surv. 50(5), 1-40
(2017)

Harris, S., Gibbins, N.: 3store: efficient bulk RDF storage. In: PSSS1 - Practical
and Scalable Semantic Systems, Proceedings of the First International Workshop
on Practical and Scalable Semantic Systems, vol. 89 (2003)

Pan, Z., Heflin, J.: DLDB: extending relational databases to support semantic web
queries. In: PSSS1 - Practical and Scalable Semantic Systems, Proceedings of the
First International Workshop on Practical and Scalable Semantic Systems, vol. 89
(2003)

Wilkinson, K.: Jena property table implementation. In: In SSWS, Athens, Georgia,
USA, pp. 35-46 (2006)

Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: Scalable semantic web data
management using vertical partitioning. In: VLDB, pp. 411-422 (2007)

Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: SW-store: a vertically parti-
tioned DBMS for semantic web data management. VLDB J. 18(2), 385-406 (2009).
https://doi.org/10.1007/s00778-008-0125-y

Neumann, T., Weikum, G.: RDF3X: a RISC-style engine for RDF. Proc. VLDB
Endow. - PVLDB 1, 647-659 (2008)

Weiss, C., Karras, P., Bernstein, A.: Hexastore: Sextuple indexing for semantic
web data management. PVLDB 1, 1008-1019 (2008)

Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems.
Web Semant. Sci. Serv. Agents World Wide Web 3(2-3), 158-182 (2005)
Bitnine-OSS: Agensgraph: a transaction graph database based on PostgreSQL
(2017). http://www.agensgraph.org

https://doi.org/10.1007/978-3-319-25007-6_17
https://neo4j.com/docs/developermanual/current/
https://neo4j.com/docs/developermanual/current/
https://www.tigergraph.com/
http://orientdb.com/
https://doi.org/10.1007/s00778-008-0125-y
http://www.agensgraph.org

	An Ontology-Aware Unified Storage Scheme for Knowledge Graphs
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Ontology-Aware Unified Storage Scheme
	4.1 A Basic Storage Scheme
	4.2 The Ontology Information
	4.3 An Optimized Storage Scheme
	4.4 Loading Algorithm

	5 Experiments
	5.1 Datasets
	5.2 Experimental Results

	6 Conclusion
	References

