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Preface

This volume (LNCS 12317) and its companion volume (LNCS 12318) contain the
proceedings of the 4th Asia-Pacific Web (APWeb) and Web-Age Information Man-
agement (WAIM) Joint Conference on Web and Big Data (APWeb-WAIM 2020). This
joint conference aims at attracting professionals from different communities related to
Web and big data who have common interests in interdisciplinary research to share and
exchange ideas, experiences, and the underlying techniques and applications, including
Web technologies, database systems, information management, software engineering,
and big data.

APWeb-WAIM 2020 was held in Tianjin, China, during September 18–20, 2020.
APWeb and WAIM are two separate leading international conferences on research,
development, and applications of Web technologies and database systems. Previous
APWeb conferences were held in Beijing (1998), Hong Kong (1999), Xi’an (2000),
Changsha (2001), Xi’an (2003), Hangzhou (2004), Shanghai (2005), Harbin (2006),
Huangshan (2007), Shenyang (2008), Suzhou (2009), Busan (2010), Beijing (2011),
Kunming (2012), Sydney (2013), Changsha (2014), Guangzhou (2015), and Suzhou
(2016). Previous WAIM conferences were held in Shanghai (2000), Xi’an (2001),
Beijing (2002), Chengdu (2003), Dalian (2004), Hangzhou (2005), Hong Kong (2006),
Huangshan (2007), Zhangjiajie (2008), Suzhou (2009), Jiuzhaigou (2010), Wuhan
(2011), Harbin (2012), Beidaihe (2013), Macau (2014), Qingdao (2015), and
Nanchang (2016). Starting in 2017, the two conference committees agreed to launch a
joint conference. The first APWeb-WAIM conference was held in Beijing (2017), the
second APWeb-WAIM conference was held in Macau (2018), and the third
APWeb-WAIM conference was held in Chengdu (2019). With the increased focus on
big data, the new joint conference is expected to attract more professionals from
different industrial and academic communities, not only from the Asia Pacific countries
but also from other continents.

The high-quality program documented in these proceedings would not have been
possible without the authors who chose APWeb-WAIM for disseminating their find-
ings. After the double-blind review process (each paper received at least three review
reports), out of 259 submissions, the conference accepted 68 regular papers (acceptance
rate 26.25%), 29 short research papers, and 8 demonstrations. The contributed papers
address a wide range of topics, such as big data analytics, data and information quality,
data mining and application, graph data and social networks, information extraction
and retrieval, knowledge graph, machine learning, recommender systems, storage,
indexing and physical database design, text analysis, and mining. We are deeply
thankful to the Program Committee members for lending their time and expertise to the
conference. The technical program also included keynotes by Prof. James Hendler
(Rensselaer Polytechnic Institute, USA), Prof. Masaru Kitsuregawa (The University of
Tokyo, Japan), Prof. Xuemin Lin (University of New South Wales, Australia), and
Prof. Xiaofang Zhou (The University of Queensland, Australia). We are grateful to



these distinguished scientists for their invaluable contributions to the conference
program.

We thank the honorary chairs (Masaru Kitsuregawa and Keqiu Li) and the general
co-chairs (Xiaofang Zhou and Zhiyong Feng) for their guidance and support. Thanks
also go to the workshop co-chairs (Qun Chen and Jianxin Li), panel co-chairs (Bin Cui
and Weining Qian), tutorial co-chairs (Yunjun Gao and Leong Hou U), demo co-chairs
(Xin Huang and Hongzhi Wang), industry co-chairs (Feifei Li and Guoliang Li),
publication co-chairs (Le Sun and Yang-Sae Moon), and publicity co-chairs (Yi Cai,
Yoshiharu Ishikawa, and Yueguo Chen).

We hope you enjoyed the exciting program of APWeb-WAIM 2020 as documented
in these proceedings.

August 2020 Xin Wang
Rui Zhang

Young-Koo Lee
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Abstract. Many applications need to perform classification on large
sparse datasets. Classifying the cold-start users who have very few feed-
backs is still a challenging task. Previous work has applied active learn-
ing to classification with partially observed data. However, for large and
sparse data, the number of feedbacks to be queried is huge and many of
them are invalid. In this paper, we develop an active classification frame-
work that can address these challenges by leveraging online Matrix Fac-
torization models. We first identify a step-wise data acquisition heuristic
which is useful for active classification. We then use the estimations of
online Probabilistic Matrix Factorization to compute this heuristic func-
tion. In order to reduce the number of invalid queries, we further estimate
the probability that a query can be answered by the cold-start user with
online Poisson Factorization. During active learning, a query is selected
based on the current knowledge learned in these two online factorization
models. We demonstrate with real-world movie rating datasets that our
framework is highly effective. It not only gains better improvement in
classification, but also reduces the number of invalid queries.

1 Introduction

Large sparse data are common in various domains [1,9,10]. For example, the
Netflix dataset [1] contains user ratings on more than 17, 000 movies given by
480, 000 users, with a data sparsity of 98.82%. These datasets contain millions of
user-item interactions with a large majority of them missing. Many applications
need to perform classification on these sparse data. In practice, while it is possible
to train a good classifier from the existing users, the classifier can hardly perform
well on cold-start users during prediction phase.

Active learning is an effective strategy for the cold-start problems, i.e., the
system actively queries for more feedbacks from a user so that classification per-
formance can be improved. In previous work, active learning has been applied to
classifying partially observed data [2,3,5,6]. However, none of them are designed
for large and sparse datasets. The difficulty is two-fold: the number of potential
item queries is huge and most of the queries are invalid since a user only knows
a small portion of all the items.
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 3–10, 2020.
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To address the above challenges, we develop a novel framework to actively
classify the cold-start users in a large sparse dataset. We derive a simple yet
effective step-wise heuristic function that is useful for active classification. To
compute this heuristic function before each query, we use feedback estimations
given by an online Probabilistic Matrix Factorization [8] model. To reduce the
number of invalid queries, we use online Poisson Factorization model [4] to esti-
mate how likely a user can actually give the feedback. During active learning,
our framework iteratively consults and updates these two factorization models
for better classification performance and fewer invalid queries. The effectiveness
of our framework is evaluated on real-world user-item datasets.

2 Classification for Cold-Start Users

Problem Definition. Consider a large sparse dataset where each instance x =
{x1, . . . , xd} corresponds to a user’s feedback given to d items, and y is the label
of prediction.1 Suppose the system has a population of active users who have
sufficient feedbacks, Strain = {x(i), y(i)}i=1...Ntrain

. We can learn a good linear
classifier f∗ = w∗x from Strain with some convex loss measure l(y, f).

After training, we need to predict the label yc of a cold-start user xc who
has no previous feedback. At each round, the system is allowed to actively query
one feedback j from the user. xc,t denotes the temporary state of xc at round t,
thus xc,0 = 0. Each new user xc can only provide feedbacks to a subset of items
Ixc

and |Ixc
| � d. The remaining candidate queries for xc at each round is Cc,t,

and of which xc can only answer queries of Qc,t := Ixc
∩ Cc,t.

At each round, the system has to choose a query j from Cc,t. If j belongs to
Qc,t, the query is valid and the user will answer it so the system observes new
feedback xcj := (xc)j . After each valid query, we re-evaluate the performance of
our classifier on user xc, and proceed to the next round. Otherwise, the user will
keep skipping invalid queries until a valid one appears.

At any round t, we consider two goals: Goal 1 (Primary). To maximize the
prediction accuracy of the trained classifier on cold-start users f∗(xt,c). Goal
2 (Secondary). To minimize the number of queries skipped (invalid queries)
by each cold-start user xc. Our problem prefers a solution that optimizes the
primary goal while considers the secondary goal as much as possible.

3 Heuristics for Active Classification

To achieve Goal 1, we need to choose a sequence of queries for xc that leads to
the best classification accuracy. Here we assume to know Ixc

in advance.

Step-wise Objective. Without loss of generality, we simplify our discussion
to binary classification2, y ∈ {1,−1}. At round t, the predicted label of the
1 If a certain feedback is missing, we treat it as 0 by convention.
2 Our analysis can be extended to other scenarios such as regression and multi-label

classification.
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cold-start user is given by sgn(w∗xc,t), and the probability of it being wrong
is Pr(ycw∗xc,t ≤ 0). Our primary goal can be achieved by finding the optimal
sequence of queries s∗

t = (j1, j2, . . . , jt) that minimizes this probability from all
feasible query sequences St = {s|s ⊆ Ixc

, |s| = t}:

s∗
t = min

st∈St

Pr(ycw∗xc,t ≤ 0|st) (1)

We use a step-wise optimization strategy that can be proved a sufficient condition
for the optimality of Eq.(1). Suppose at round t we choose to query feedback jt,
the probability of wrong classification is

Pr(ycw∗xc,t ≤ 0|st) = Pr(ycw∗xc,t−1 ≤ −ycw
∗
jtxcjt |st−1 ∪ {jt}) (2)

where ycw∗xc,t−1 is a constant and st−1 is already determined. Minimizing the
above probability w.r.t. jt is thus equivalent to

jt = argmaxj∈Qc,t
{ycw

∗
j xcj} (3)

Suppose we indeed found the optimal query sequence s∗
t−1 for round t − 1, from

Eq.(2) it is obvious that objective (3) will lead to an optimal query sequence
for round t, in the sense of classification error minimization. By induction, this
proves that step-wise optimization using Eq. ( 3) is a sufficient condition for our
ultimate goal Eq. ( 1).

Heuristic Function. However, the step-wise objective (3) is not computable:
we do not know the value xj for all candidate j ∈ Qc,t at round t, and we
always cannot know the true label yc. We use the following heuristic function to
approximate Eq.(3):

jt = argmaxj∈Qc,t
|w∗

j xcj | (4)

In fact, |w∗
j xcj | denotes the amount of contribution from feature value xcj to the

final prediction output w∗xc. It can be computed so long as we have a reasonable
estimation of xcj .

Skip Reduction. In practice, the system does not know Qc,t, but has to choose
from Cc,t which is set of all candidate queries that are not asked so far. In order
to reduce the number of invalid queries (our second goal), it is useful to estimate
the probability of a feedback query j being valid, i.e.,

ocj := Pr(xcj > 0) (5)

In the next section, we discuss how to estimate xcj and Pr(xcj > 0) using
Probabilistic Matrix Factorization and Poisson Factorization, respectively.

4 Online Feedback Estimation for Cold-Start Users

4.1 Online Probabilistic Matrix Factorization

Given a sparse matrix X = {xi,j}[n×d], the goal of PMF model is to predict the
value of entry xi,j by leveraging the low rank property of the sparse matrix with
factorized Gaussian priors:
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Ui ∼ N (0, σ2
uIK); Vj ∼ N (0, σ2

vIK); xij |U, V ∼ N (UT
i Vj , σ

2) (6)

where K is the number of latent dimension, σ2
u, σ2

v and σ are prior Gaussian
variances.

For our problem, we can train the PMF model using the training
set X[Ntrain×d], where each row of the matrix denotes a training instance
{x(i)}i=1...Ntrain

. When a cold-start user (row) xc is added, its latent vector
Uc can be computed using closed form solution of the conditional probability of
Uc [7,11]. At round t, the conditional probability is given by

Pr(Uc,t|V,xc,t, σ
2, σ2

v) = N (Uc,t|μu
c,t, Σ

u
c,t) (7)

where

μu
c,t = (

∑

j∈obs(xc,t)

V T
j Vj +

IK

σ2
u

)−1
∑

j∈obs(xc,t)

(xcjVj)

Σu
c,t = σ2

∑

j∈obs(xc,t)

(V T
j Vj +

IK

σ2
u

)−1 (8)

obs(xc,t) is the set of already observed feedbacks in xc,t. From Eq.(8), we see that
both μu

c,t and Σu
c,t can be updated sequentially after receiving each j ∈ obs(xc,t).

Afterwards, we can get the estimation of each unobserved xcj as x̂cj = V T
j μu

c,t.
Combining this active process with our query selection heuristic Eq. (4), we

can have an active classification framework, whose basic idea is to update a
PMF model at each round and use the updated model to compute estimation
x̂cj . Afterwards, x̂cj is used in the heuristic for selecting a suitable query.

In our experiment, we will show that this strategy is very effective for our
primary goal. However, we did not consider the probability of xcj being invalid.
As a result, a user may have to skip many invalid queries. Next, we describe
an online algorithm that helps to estimate and update ocj during the active
classification process.

4.2 Online Poisson Factorization

We use Poisson Factorization [4] to predict ocj at any round t, where a Poisson
distribution Pois(·) is used to model each data entry and its conjugate prior
Gamma distribution Γ (·, ·) is used to model the latent user/item vectors:

θi ∼ Γ (a, ξi); βj ∼ Γ (b, ηj); oij |θ, β ∼ Pois(θT
i βj) (9)

here oij ∈ {0, 1} denotes whether each data entry xij exists or not in a sparse
matrix X[n×d] and θi, βj are K ′ � min(n, d) dimensional latent user/item vec-
tors. As discussed in [4], compared to Gaussian likelihood, Poisson distribution
is more suitable for implicit (0/1) feedbacks, where the amount of 0s and 1s are
significantly unbalanced.

To efficiently compute the inference problem involved in Poisson Factoriza-
tion, [4] introduces latent parameters zijk ∼ Pois(θikβjk), k = 1, . . . , K ′ that



Active Classification of Cold-Start Users in Large Sparse Datasets 7

measure the contribution from each latent dimension to oij . After we have
trained a Poisson Factorization model using the training data, we get the MAP
solution of βj . For a cold-start user xc, its parameters θc and zc have the follow-
ing conditional distributions:

Pr(θck|β, ξc, zcj ,oc, a) = Γ (a +
∑

j

zcjk, ξc +
∑

j

βjk) (10)

Pr(zcj |β, θ, ocj) = Mult(ocj ,
θcβj

θTc βj
) (11)

where ocj = 1 if feature xcj exists, and 0 otherwise. After we receive a new
observation ocj = 1, we can iteratively update zc and θc using Eq. (11) and
(10). When updating the conditional distribution of one parameter, we use the
MAP solution of the other. Specifically, the MAP of θck is

a+
∑

j zcj−1

ξ+
∑

j βj
. For the

multinational distribution of zcj , we use its mean value ocjθcβj

θT
c βj

instead. Similar
to the online update of PMF, the item latent vectors βj are assumed to be fixed
during the whole active classification process of xc.

Algorithm 1. active-dualmf
Require: a cold-start user xc; Hyper-parameters σ, σ2

u, σ2
v, a, b, ξ, η, ψ;

Require: linear classifier f∗ = w∗x, MAP of item latent feature vectors: V in PMF
and β in Poisson Factorsation. all trained from Strain;
Init: A ← (σ2

uI)−1,b ← 0, z ← 0,xc,0 ← 0, q ← 0, C ← {1, 2, . . . , d}
for t = 1, 2, . . . do

μu
c ← A−1b

θc ← a+
∑

j zcj−1

ξ+
∑

j βj
{Eq. (10)}

repeat
if q < ψ then

∀j ∈ C : x̂cj ← V T
j μu

c

jt ← maxj∈C |w∗
j x̂cj |

else
∀j ∈ C : ôcj ← βT

j θc

jt ← maxj∈C ôcj

end if
send query jt

q ← q + 1
C ← C − {jt}

until xcjt > 0 {query jt is answerable}
xc,t ← xc,t−1 + xcjt

Classify the user using f∗(xc,t)
Update A ← A + VjtV

T
jt {Eq. (8)}

Update b ← b + xcjtVjt {Eq. (8)}
Update zcj ← θcβj

θT
c βj

{Eq. (11)}
end for
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Table 1. Experiment Datasets

Datasets # Users # Items Sparsity

Ml-100k 943 1,682 0.937

Ml-1m 6,040 3,952 0.958

Ymovie 7,620 11,914 0.998

4.3 Integrating with Matrix Factorization Models

During active classification, we update both matrix factorization models after
receiving each new queried feedback. To compute the heuristic function, we rely
more on x̂cj at the earlier rounds. After an enough number of queries, we switch
to ôcj . We name this method as Active classification with dual Matrix Factoriza-
tion (active-dualmf), see Algorithm 1. Our algorithm is computationally feasible.
At each round, it only needs to perform one update step for each model.

5 Experiments

To evaluate our active classification framework, we use ml1m, ml100k3 and
ymovie4 datasets. The label of prediction is the gender of each user. These
datasets are sparse user-movie rating matrices and are widely used in the col-
laborative filtering literature. Table 1 shows their meta-information. The label
of prediction is the gender of each user. We select 100 users with more than
100 ratings from each gender as the cold-start users, the rest of data are kept
as the training set. As described earlier, we first train a linear classifier and all
our matrix factorization models using the training set. In prediction, we actively
classify each cold-start user starting from no initial feedback. We treat the feed-
backs already present in each dataset as the ground truth of valid queries Ixc

.
We compare active-dualmf to several baseline solutions. popular: always

selects the most popular item according to the training set. random: always
randomly selects an item for query. active-mean: active classification with mean
estimation. Specifically, at round t, select jt = maxj |w∗

j x̂
(m)
j |, where x̂

(m)
j is the

mean value of the feedback on item j in the training set. active-poisson: active
classification using only the estimations provided by Poisson Factorization, which
is equivalent to using active-dualmf with ψ = 0. active-pmf : active classification
using only the estimations provided by PMF, which is equivalent to using active-
dualmf with ψ = +∞.

The hyper-parameters of PMF and Poisson Factorization follow [4,8]. In
active-dualmf, we set ψ = 300 for all datasets. The experiment results are given
in Fig. 1. Active-dualmf and active-pmf always have highest classification per-
formance. As discussed earlier, both methods estimate the feedback values using

3 http://grouplens.org/datasets/movielens/.
4 http://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

http://grouplens.org/datasets/movielens/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Fig. 1. Experiment results. We measure the classification accuracy and the number of
skips at a given t. x-axis measures t divided by the total number of valid feedbacks on
average. The last two sub-figures show the impact of parameter ψ in the active-dualmf
experiment.

online matrix factorization models and select the query using our heuristic func-
tion. The third best method is active-mean, which also has considered the heuris-
tic but cannot accurately estimate the feedback values before each query. The
lower three plots of Fig. 1 show the amount of skips a user has performed. We
observe that active-poisson has the fewest number of skips because each query
is selected according to its likelihood of being valid. Active-dualmf has almost
similar performance as active-poisson. The popular baseline has the third fewest
number of skips. It is understandable that users are more likely to know a pop-
ular item. Overall, active-dualmf has good performance in both measures. It
achieves similar active classification performance as active-pmf with much fewer
queries skipped.

6 Conclusion

In this paper, we develop an active classification framework for cold-start users.
We identify a heuristic function that is effective for query selection. We com-
pute this function with the online feedback estimation given by a probabilistic
matrix factorization model. In order to reduce the number of invalid queries,
we use online Poisson Factorization to estimate the probability of whether each
unobserved query is valid. Our method performs significantly better compared
to several baseline solutions.

Acknowledgement. This work is supported by the National Key Research and Devel-
opment Program of China (2018YFB1004502), the National Natural Science Founda-
tion of China (61702532) and the Key Program of National Natural Science Foundation
of China (61532001).
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Abstract. Fully discovering knowledge from big data has to publish
and share corresponding datasets whenever required. However, the risk
for privacy leakage, i.e., record re-identification through some released
columns, in the datasets is a fatal problem that prevents these tasks.
Therefore, evaluating the sensitivity for different attributes is a prereq-
uisite for dataset desensitization and anonymization, after which datasets
can be published and shared in a privacy-preserving way. However, auto-
matically evaluating the sensitivity for attributes is challenging and
remains an open problem. In this work, we present a novel-but-simple
technique for quantifying the sensitivity in structural database. It auto-
matically evaluates the risks for re-identification for different columns
according to Record-linkage Attack. Under the support of our scheme,
the output sensitivity for the same attribute in different instances of a
relational schema varies. Moreover, our scheme can quantify the risks of
the columns no matter the semantics of columns are known or not. We
also empirically show that the proposed scheme is effective in dataset
sensitivity governance comparing with baselines.

Keywords: Data privacy · Record-linkage attack · Sensitivity ·
Attribute · Relational table

1 Introduction

Exploiting the value behind big data can benefit many applications such as
policy-making, interpersonal relationship discovery, etc. However, accomplishing
the task will inevitably introduce serious privacy issues. Many attacks that com-
promise privacy have been proposed over public datasets, which were initially
released for research. The majority of these attacks, referred to as Record-linkage
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Attack, combine network analysis, data mining and other technologies [2,5] to
infer the identities of specific record based on some background knowledge.
Specifically, according to Record-linkage Attack, for the multivariate structured
data, an adversary could link personally identifiable attributes (e.g., social secu-
rity number), or quasi-identifier (QI ) attributes (e.g., age, gender), which may
not expose the identity of the record independently but can leak the information
if combined with other attributes, with his background knowledge to identify a
particular or group of individuals in the dataset.

Existing Record-linkage Attack resist approach [1] requires user to prede-
fine the sensitive/insensitive attributes. However, this prerequisite can be hardly
satisfied, as the data owners could not gain insight into the sensitivity of each
attribute. Meanwhile, manually labelling the QI or sensitive attributes is inac-
curate and subjective. Obviously, it is of great importance if we can identify
and quantify all the “dangerous” attributes according to their risks of unveiling
personal information if compromised. Unfortunately, none of existing technique
has explicitly defined such a qualification rule. Existing system1 can arrange dif-
ferent sensitivity levels to corresponding columns by predefining the formats of
some sensitive attributes through regular expressions. However, it is impossible
to predefine templates for all attributes we may encounter. Besides, the formats
of the entries in the same column may be diverse, even if they exhibit the same
semantic meaning. Other techniques adopt some statistical tools to reflect the
sensitivity of each column, such as cardinality [3], the proportion of unique val-
ues [8] and information entropy [7]. These methods do not take into account the
correlation between columns, they consider each column independently. How-
ever, Record-linkage Attack can be successfully carried out by identifying tuples
through column combinations.

Therefore, in this work, to address the problem, we present a novel technique
for evaluating the sensitivity of each attribute in relational tables. The main
contributions of this paper are as follows.

– To the best of our knowledge, we are the first to formally quantify the sensi-
tivity of each column according to their re-identification risks.

– We demonstrate that our technique provides an objective measure for eval-
uating the sensitivity of each attribute empirically in a series of tables, and
can act as a fundamental scheme for further privacy protection and desensi-
tization. This technique is shown to be more realistic and complete than the
existing empirical or statistics-driven methods.

The rest of the paper is organized as follows. In Sect. 2, we formally present
the adversary model and key definition used in this paper. Our sensitivity eval-
uation method is proposed in Sect. 3. Empirical studies conducted over a group
of datasets are presented in Sect. 4. Section 5 concludes the paper.

1 https://www.dbsec.cn/pro/dms-s.html.

https://www.dbsec.cn/pro/dms-s.html
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2 Definitions and Adversary Model

Before introducing the details of our framework, we shall first present basic
definition and formally define the adversary model.

We adopt the definition of minimal unique column combination in [4],
denoted as UCC. In layman’s terms, the set of UCC is the set of independent pri-
mary keys and composite primary keys in a relational database R. Assume that
the adversary has background knowledge κ, with which Record-linkage Attack
can be performed to infer the real identification of some persons i in R. Obvi-
ously, as long as attribute(s) in κ can constitute a UCC of R, the adversary
would successfully identify i, which is recognized as a successful attack. On the
contrary, if κ doesn’t contain any UCC, the adversary can never know if any
information he got certainly corresponds to a unique tuple i in R.

Table 1. An Example dataset to be published

MINum Sex Age Zip Code Birthday Disease

EN569244 Female 19 721001 1230 Fever

EF863453 Male 23 121000 0422 Pneumonia

EX756421 Female 56 831100 0719 Fever

EA556754 Female 14 201100 0926 Appendicitis

EP974423 Male 23 012000 1111 Leukemia

EN540305 Female 67 831100 1230 Fever

EY775612 Male 19 721001 0717 Leukemia

Table 2. The UCC s of
Table 1

UCC

MINum

Age, Disease

Age, Birthday

Birthday, Zip Code

Age, Sex, Zip Code

Table 3. Background
knowledge 1

Name Age Birthday

Lin 19 1230

Klay 23 0422

Haibara 56 0719

Jessie 14 0926

Charlotte 23 1111

Selena 67 1230

Quinn 19 0717

Table 4. Background
knowledge 2

ID Number MINum

4852 EN569244

8617 EF863453

1713 EX756421

2125 EA556754

3713 EP974423

9905 EN540305

5430 EY775612

For instance, Table 1 (Re) is an ego dataset containing personal sensitive
information, where MINum refers to Medical Insurance Number. UCC s of Re

are listed in Table 2. Table 3 (R1) and 4 (R2) are the background knowledge κ of
an adversary. When an adversary only has Table 3 as his background knowledge
(i.e., κ contains only R1), it is impossible to determine the disease of any person



14 Z. Gong et al.

through either Age or Birthday, but by a combination of both. As the Age and
Birthday can form a UCC, the adversary can successfully identify every record
in Re. When κ contains only R2, since MINum is a UCC of Re, the adversary
can get the ID number of every patient in Table 1, which may lead to the more
disclosure of the private information.

3 The Risk of Re-identification

Given a database instance R with n columns, denoted as A1, . . . , An, for each
column combination U over them (it can be viewed as an extensive projection
without eliminating duplicate rows), if some rows of U are contained in κ, we
denote them by U � κ. Suppose the probabilities for {Ai} � κ are independent
with each other and referred to as p(Ai), respectively, then the success rate for
Record-linkage Attack with respect to a particular column can be carried out as
follows.

Firstly, if a column Ai itself constructs a UCC (i.e., a key), the proba-
bility of successful attack through Ai should be p(Ai). The reason is that as
long as some rows of these columns are contained in κ, the adversary can def-
initely execute the attack. Secondly, if Ai is an element of some UCC s but
not a UCC itself, the probability of successful attack through it would also
depend on other columns that appear in those UCC s. Generally, we denote these
UCC s as U(Ai) = {UCC|Ai ∈ UCC}. For each UCCj ∈ U(Ai), the adversary
needs to cover other columns to successfully implement the attack once Ai is
revealed. Suppose the columns that appear along with Ai in UCCj is B1, ..., Bk,
let P (UCCj�κ) be the probability for UCCj to be revealed (i.e., all the columns
of UCCj for some rows are covered by κ) then its posterior probability, given
that Ai is exposed, can be computed as P (UCCj � κ|{Ai} � κ) =

∏k
r=1 p(Br).

Notably, we also have to take into account the success rate for attacking through
other UCC s in U(Ai). Given U(Ai), the adversary will successfully complete the
attack if ∃UCCj ∈ U(Ai) such that UCCj � κ. Therefore, once Ai is exposed,
the successful attack probability through any UCC that contains Ai would be

P (success|{Ai} � κ) = 1 −
∏

UCCj∈U(Ai)

(1 − P (UCCj � κ|{Ai} � κ)) (1)

Eq. 1 in fact evaluates the posterior probability given that Ai has been exposed.
Then the eventual probability for successful attack via Ai should be

S(Ai) = p(Ai)P (success|{Ai} � κ). (2)

For instance, if we uniformly set the reveal probability of each column in
Table 1 as 0.5, respectively, then the sensitivity for the columns can be computed
accordingly as follows. S(MINum) = p(MINum) × (1 − 0) = 0.5, as MINum
itself constructs a UCC. S(Sex) = p(Sex)(1−(1−p(Age)p(ZipCode))) = 0.125.
Similarly, the sensitivity for the rest columns are 0.406, 0.313, 0.438, 0.375,
respectively. As discussed above, S(Ai) reflects the probability for successful
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Table 5. the UCCs of RPI

UCC Column combinations UCC Column combinations UCC Column combinations

UCC1 Id UCC6 Addr.,District3,Hp.,Name UCC11 Birth.,District4,Hp.

UCC2 CtfId UCC7 Addr.,District4,Hp.,Name UCC12 Birth.,Hp.,Name

UCC3 Birth.,Hp.,Zip UCC8 Addr.,Fax,Hp.,Name UCC13 Birth.,CtfTp,Gender,Hp.

UCC4 Gender,Hp.,Name UCC9 Addr.,Hp.,Name,Zip UCC14 Birth.,Gender,Hp.,Tel

UCC5 Addr.,Hp.,Name,Tel UCC10 Birth.,District3,Hp. UCC15 Addr.,Birth.,Hp.

attack through attribute Ai, according to which we can quantitatively evaluate
the attributes based on their risks for Record-linkage Attack.

Notably, according to Eq. 2, S(Ai) depends on p(Ai), which refers to the
general probability for Ai being revealed to an arbitrary adversary. Obtaining
those probabilities seems to be a challenging task. For ease of discussion, we set
p(Ai) uniformly as 0.5 in the followings such that we can focus on discussing the
intrinsic distribution-driven characteristics of each column, excluding all external
scenario-dependent factors.

4 Experiments

To evaluate the performance of our framework, we conduct empirical tests over 2
real-world datasets as follows. The first dataset, denoted as RPI, is a real personal
information tabular table containing 14 columns and 6478 tuples. These columns
semantically refer to user ID number, birthday (abbr., Birth.), address (abbr.,
Addr.), mobile number (abbr., Hp.), gender, etc. Another dataset is Pokec2, the
most popular on-line social media in Slovakia. It contains 59 columns including
gender, age, hobbies, interest, education, etc. As there are too many null entries,
we extract the tuples with relatively less null values. For UCC discovery, we use
Metanome Tool [6], an extensible implementation of [4].

4.1 Experimental Results

Sensitivity Justification. In the first group of experiments, given RPI, whose
UCC s are listed in Table 5, we uniformly set the reveal probabilities for columns
as 0.5. Figure 1 shows sensitivity results for each column according to Eq. 2.
ID and CtfID exhibit the highest sensitivity. In fact, either ID or CtfID can
construct a UCC itself as shown in Table 5. For Birthday, an attack is successful
only when the adversary gets other columns in UCCs that contain Birthday,
such as Mobile and Zip of UCC3 in Table 5. Since the attack on Birthday
requires more information, it would be more difficult to succeed when compared
with the attacks on ID and CtfID. Naturally, its sensitivity should be lower
than them, which is justified in Fig. 1.

To further illustrate the effectiveness, we use data masking method to desen-
sitize columns with high sensitivity, and re-compute the sensitivity afterwards.
2 http://snap.stanford.edu/data/soc-Pokec.html.

http://snap.stanford.edu/data/soc-Pokec.html
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Fig. 1. Sensitivity of RPI (p = 0.5) Fig. 2. Sensitivity of RPI after desensiti-
zation

For ID, we separately mask the last m digits of each entry with ‘�’. Figure 2
shows the sensitivity results before and after the masking. Obviously, a higher
level desensitization for ID results in a lower sensitivity, which also justifies
the rationality of our evaluation scheme. Notably, the sensitivity of ID (orig-
inally 0.5) has dropped significantly to 0.344 and 0.31, respectively; the sensi-
tivity of some other columns increase accordingly. Due to the masking, column
ID is no longer a key in the table, and forms new UCCs together with other
columns. Consequently, for the columns of newly-formed UCCs with respect
to ID, their sensitivity will increase; for the rest columns, their sensitivity will
remain unchanged.

Figure 3 shows the results of Pokec. As there are too many columns in Pokec,
we limit the number of columns in κ to be no more than 5 in Pokec. The reason
for such setting is as follows. There is little chance for an adversary to obtain
an extremely strong κ that contains so many columns at the same time, the
probability of which obviously decreases exponentially in term of the number
of columns. Similar to the phenomenon in the other datasets, the primary key
(user id) has the greatest sensitivity, and the sensitivity of other columns is
affected by the coverage of all UCC s.

Impact of Other Factors. Furthermore, we also adjust the values of some
parameters and explore how our model perceives these adjustments. First, we
adjust the number of tuples in Pokec, gradually increasing from 10 to 150000,
and explore the changes in the sensitivity of each column and the average sen-
sitivity of all columns. According to Fig. 4a, when the number of rows is small,
the average sensitivity of all columns (denoted as AS) fluctuates around 0.4.
However, when the number of tuples is beyond 35000, the sensitivity of non-
key columns decreases significantly. As the number of rows gradually increases,
more duplicate values would be produced on a single column or multiple col-
umn combinations, which makes it more difficult for an adversary to uniquely
re-identify individuals. Meanwhile, the differences on the numbers of tuples lead
to different sensitivity for the same columns. It strongly justifies that our model
is completely instance-aware.

In order to explore the impact of adversary’s κ on sensitivity, we adjust
the volume of κ, the maximal number of columns κ contains. Figure 4b shows
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Fig. 3. Sensitivity of Pokec (p = 0.5)

Fig. 4. Sensitivity changes w.r.t. other factors (in Pokec).

the corresponding results. Apparently, with the enhancement of κ, AS and the
sensitivity of other non-primary key columns gradually increase. This is because
the more columns an adversary obtains, the easier it is to successfully re-identify
individuals. Note that the sensitivity of the primary key of Pokec(user id) always
remains stationary during the adjustment above.

These experiments strongly confirm that our model is completely consistent
with our subjective perception of sensitivity. That is, as the number of rows of
dataset increases and the κ of the adversary enhances, the sensitivity of each col-
umn generally decreases and increases, respectively. However, the key of database
is not affected by these factors, and its sensitivity remains always the same and
the highest.

4.2 Comparison with Other Methods

To the best of our knowledge, we are the first to formally propose the sensi-
tivity of re-identification of a column and quantify it. Traditional techniques
adopt some statistical tools to reflect the risks for re-identification, such as car-
dinality [3] (CDN), the proportion of unique values [8] (POU) and information
entropy [7] (IE). We compare with them in following experiments.

Considering that the absolute sensitivity values produced by different meth-
ods are incomparable, we only compare the rank of each column accordingly.
The more sensitive the column is, the higher it ranks. The comparison results



18 Z. Gong et al.

Fig. 5. Comparison with baselines (in RPI).

Fig. 6. Comparison with baselines (in Pokec).

for RPI are shown in Fig. 5, where we denote our method as SQ for short. Appar-
ently, CDN, POU and IE produce similar results, which validates that they only
consider the distribution of the values in each single column. The ranking results
of SQ are consistent with them on some columns (e.g., CtfID and ID), but are
quite different on some others (e.g., Tel and Gender). Tel ranks higher than
Gender in CDN, POU and IE, but it is opposite with respect to SQ. The key
reason for this phenomenon is that other methods do not take into account the
correlation between columns, they consider each column independently. How-
ever, Record-linkage Attack can be successfully carried out by identifying tuples
through column combinations, in which case Gender plays an important role.
It is difficult to identify tuples by Gender itself, but its combination with other
columns (e.g., UCC4, UCC13 and UCC14 in Table 5) can be easily identified.
Consequently, it is irrational for CDN, POU and IE to give Gender a relatively
low sensitivity level. This justifies our scheme takes into account not only the
instance for each column but also the correlation between columns. Similar com-
parison results for Pokec are shown in Fig. 6, where the differences between SQ
and other methods are more observably.



Instance-Aware Evaluation of Sensitive Columns in Tabular Dataset 19

5 Conclusion

In this paper, we present an efficient and pervasive technique for quantifying
the sensitivity in structural database. It automatically evaluates the risks for
re-identification for different columns according to Record-linkage Attack. Under
the support of our scheme, the output sensitivity for the same attribute in dif-
ferent instances of a relational schema varies. We have objectively quantified it
through a combination of probability model and adversary model. Moreover, the
sensitivity quantifying results are basically in line with the common cognition
of the public. We also thoroughly show that the proposed scheme is effective in
dataset sensitivity governance comparing with baselines.

References

1. Abdelhameed, S.A., Moussa, S.M., Khalifa, M.E.: Privacy-preserving tabular data
publishing: a comprehensive evaluation from web to cloud. Comput. Secur. 72, 74–
95 (2018)

2. Backstrom, L., Dwork, C., Kleinberg, J.M.: Wherefore art thou r3579x?: anonymized
social networks, hidden patterns, and structural steganography. In: Proceedings of
the 16th International Conference on World Wide Web (WWW), pp. 181–190. ACM
(2007)

3. Chia, P.H., et al.: Khyperloglog: estimating reidentifiability and joinability of large
data at scale. In: Proceedings of the 40th Symposium on Security and Privacy (SP),
pp. 350–364. IEEE (2019)
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Abstract. RDF is a standard model for data interchange on the web
and is widely adopted for graph data management. With the explosive
growth of RDF data, how to process RDF data incrementally and maxi-
mize the parallelism of RDF systems has become a challenging problem.
The existing RDF data management researches mainly focus on paral-
lel query, and rarely pay attention to the optimization of data storage
and update. Also, the conventional parallel models for parallel query
optimizations are not suitable for data update. Therefore, we propose a
new design of an efficient parallel update system which is novel in three
aspects. Firstly, the proposed design presents a new storage structure of
RDF data and two kinds of indexes, which facilitates parallel process-
ing. Secondly, the new design provides a general parallel task execution
framework to maximize the parallelism of the system. Last but not least,
parallel update operations are developed to handle incremental RDF
data. Based on the innovations above, we implement an efficient parallel
update system (EPUR). Extensive experiments show that EPUR out-
performs RDF-3X, Virtuoso, PostgreSQL and achieves good scalability
on the number of threads.

Keywords: RDF data · Storage · Parallel processing · Batch update

1 Introduction

RDF (Resource Description Framework) [10] describes the relationship between
entities in the form of triples, i.e. (subject-predicate-object), also known as (S,
P, O) triples. More and more data providers publish and manage their dataset
with the help of RDF because of its simplicity and flexibility. However, the
rapid growth of RDF data presents new challenges for the storage and update
of traditional RDF system solutions.

One of the challenges in managing the explosive growth of RDF data is
to design an efficient storage structure and a parallel framework to maximize
the parallelism of the RDF system. The storage structure usually needs to be
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specially optimized to facilitate the execution of the parallel framework, such as
data partitioning and indexing. The key to improving the performance of RDF
systems is to make full use of multi-core resources to accelerate data processing,
especially modern computers are equipped with more and more cores. However,
most of the existing researches on parallel processing mainly focus on parallel
query while parallel data update is often ignored. For example, the parallel query
model proposed by RDF-3X [14] does not work well in parallel update, TripleBit
[18] with high speed of query processing does not support the update operation.
Therefore, a more general parallel framework is urgently needed to improve both
query and update performance of RDF systems.

Another challenge is how to update RDF data efficiently and incrementally.
Currently, many optimization techniques for data updates of the Relational
Database Management System (RDBMS) have been developed. However, the
optimization techniques for RDBMS are not applicable to RDF systems due to
the differences of storage structure. For example, the techniques of PostgreSQL
[12] extended from RDBMS has little effect on the processing of RDF data and
Virtuoso [4] does not support the incremental data update. Most of conventional
RDF systems usually do not support parallel update operations due to the high
correlation between RDF data. So, how to efficiently and incrementally update
RDF data in parallel still faces many challenges.

To address above challenges and opportunities, we design and implement an
efficient parallel update system and refer to it as EPUR. Our main contribu-
tions include: (1) We propose a new storage structure that supports multiple
data types. Meanwhile, we build statistics and index information to accelerate
locating the data. (2) We put forward a general chunk-oriented parallel task
execution framework to maximize system parallelism. (3) We implement par-
allel data update operations based on the proposed new storage structure and
chunk-oriented parallel task framework to deal with large-scale RDF data.

The rest of this paper is organized as follows: Sect. 2 describes the new storage
structure and indexes. Parallel task processing framework is illustrated in Sect. 3.
Section 4 gives introduction to the update operations in detail. We report the
experimental results in Sect. 5. Finally, we summary the related work and give
conclusion about this paper in Sects. 6 and 7 respectively.

2 Storage Structure and Index Information

2.1 Extended Storage Structure

RDF describes graph data in the form of triples t = (Subject, Predicate, Object),
it can also be marked as S P−→ O, which means S has property P and the value
is O. In the triples, S and P are both strings, but the O in real-world data may
have different types. For example, if O represents how much the price of the
ticket is, it would be appropriate to use a float type, but when the O is used
to describe the age, it is better to use int type. In view of this, the EPUR uses
four tuples (Subject, Predicate, ObjType, Object) to optimize the storage format,
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Fig. 1. Chunk-based storage structure

where ObjType represents the data type of Object. Then, the string is encoded
by String/ID mapping dictionary while numeric data such as time and age are
stored directly according to the literal value.

Fig. 2. Meta data structures

To improve the efficiency of data access, we put the tuples containing the
same Predicate together, called Predicate partition. As shown in Fig. 1, Chunk
Manager is the operation class of each copy, Chunk Manager Meta describes the
meta data information of the entire copy, and its structure is shown in Fig. 2a.
Chunk Manager Meta contains the ID of the Predicate, soType (sorted by S
or O), the number of stored tuples, the beginning and ending memory address
of the data. On the basis of Predicate partition, we divide each copy into a
series of Chunks with a unit size of 4KB. The advantage is that the physical
storage between different Chunks is independent, which is conducive to data
parallel operation and can simplify the page operations of the operating system.
Similarly, each Chunk has its meta data, called Chunk Meta, and its structure is
shown in Fig. 2b. The Chunk Meta records the maximum and minimum Subject
or Object value in the Chunk, which can be used to determine the range of values
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in the current Chunk. All Chunks are stored continuously. The next Chunk No
points to the inserted new Chunk and is initialized to NULL. The update Count
is used to record the number of updated tuples.

Table 1. Statistical information format

Statistical type Format

S-P Subject, Pre1, Pre2

O-P ObjType, Object, Pre1, Pre2

S-P-Count Subject, Pre1, count1, Pr2, count2

O-P-Count ObjType, Object, Pre1, count1, Pre2, count2

2.2 Statistics and Index Information

Statistics and index information play an important role in locating Chunk and
are helpful for improving the efficiency of update and query operations. In EPUR,
we store four kinds of statistics and two kinds of index information.

Statistical Information. As shown in Table 1, S-P and O-P list all related
Predicates of the Subject and Object. The number of Subject-Predicate(S-P-
Count) and Object-Predicate(O-P-Count) are also recorded, which can be used
to estimate the size of the data.

Index Information. EPUR has two kinds of indexes. Predicate partition index
records the relative position between each Predicate partition and starting posi-
tion of the data according to the used Space in Chunk Manager Meta. Predicate
partition index helps EPUR accelerate memory access by directly obtaining the
absolute address of each Predicate partition. Another index is the Chunk index,
which is generated from the minimum and maximum value in the Chunk Meta.
With the help of Chunk index, the EPUR can quickly locate the Chunk where
the data is stored by using binary search.

3 Parallel Task Execution Framework

To maximize the parallelism of RDF system on multi-core processors, it is nec-
essary to provide an effective mechanism to reduce data access conflicts and
minimize serial operations when performing data updates. In this section, we
first introduce chunk-oriented parallel processing model. Then, we introduce the
structure of thread-safe free lock queue model. At last, we describe window based
task execution strategy in detail.
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Fig. 3. Chunk-oriented subtask dispatcher

3.1 Chunk-Oriented Parallel Processing Model

In EPUR, Chunk is the minimal storage unit of graph data. Therefore, the EPUR
decomposes the whole task into a series of chunk level subtasks. These subtasks
can be processed at Chunk level in parallel, because they can access different
Chunks independently. As shown in Fig. 3, each Chunk has a task queue called
chunkQue. Illustrated by the example of Taski and Taskj , Taski and Taskj
can be decomposed into i1, i2, i3 and j1, j2, j3, etc. Furthermore, the i2 and
j2 attempt to delete and read data on different data Chunks separately. So,
the subtasks are inserted into the chunkQue of the corresponding data Chunk
through subtask dispatcher. Finally, the subtasks in the chunkQue are executed
in time-stamped order.

3.2 Thread-Safe Free Lock Queue Model

Parallel processing strategies may cause the resource competition unavoidably.
The traditional lock mechanism sometimes does not perform well under high
concurrency. Therefore, we propose a free lock queue to improve parallel per-
formance. When updating data, the EPUR locates the Chunks that need to
be updated through the index and allocates chunkQue for these Chunks. As is
shown in Fig. 4, the enqueue and dequeue operations of chunkQue are indepen-
dent of each other. Besides, the model uses atomic variables to count the current
number of tasks in the chunkQue. The worker thread will bind to a non-empty
chunkQue and execute the tasks in the enqueue order. When the atomic vari-
able value changes to zero, the worker thread discards the current chunkQue and
rebinds the new chunkQue. In addition, the EPUR adopts fixed size of continu-
ous memory for each chunkQue and recycles it through the cursor index of the
chunkQue to reduce the overhead of allocating and releasing memory.

3.3 Window Based Task Execution

In some cases, the number of subtasks in each chunkQue is extremely imbalanced.
Massive subtasks in a chunkQue will occupy the current worker thread and cause
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Fig. 4. Thread-safe free lock queue model

the subtasks in other chunkQue suffer from waiting for a long time. To minimize
the thread blocking during parallel processing, the EPUR sets a window thresh-
old for each chunkQue and proposes Algorithm 1. The subtasks in chunkQue are
processed in three stages. First, if the chunkQue is not empty and the number
of executed subtasks is less than the window size, subtasks will be executed in
order (Line 3–7 in Algorithm 1). Second, when the number of executed subtasks
reaches the window size and there are remaining subtasks in the chunkQue, the
current chunkQue will be abandoned and re-registered in the threadpool queue
to ensure that all subtasks in chunkQue will be executed (Line 9–14). Finally, to
reduce the performance loss caused by unnecessary thread switching, the algo-
rithm optimizes the thread switching in second stage. If the idle thread queue in
the threadpool is not empty, meaning that no other chunkQues are waiting to
be executed, so the current chunkQue continues to occupy the thread and reset
the accumulated count value (Line 15–16).

4 Parallel Update Operation

4.1 Batch Insertion

Batch insert is divided into three phases. The first stage is parallel parsing,
followed by parallel data insertion, and finally data sorting and merging.

Parallel Parsing. The data to be inserted is split evenly into slices based
on the maximum number of threads that can be executed in parallel. Each
thread is responsible for parsing a slice and generating a tuple set. During the
parsing period, the system needs to get the corresponding ID from the String/ID
mapping dictionary for string data. If the string cannot be found in the mapping
dictionary, the system will add the new string to the mapping dictionary and
assign a new ID to the string. However, the writing operation on the mapping
dictionary is exclusive, and it will prohibit other parsing threads from reading
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Algorithm 1: Window Based Task Execution
Data: winSize

1 curCount ← 0;
2 repeat
3 chunkTask ← chunkQue.pop();
4 execute(chunkTask);
5 curCount ← curCount + 1;
6 if curCount < winSize then
7 continue;
8 else
9 suspend current thread;

10 if chunkQue not empty then
11 if idleThreadpool.isEmpty() then
12 re-register the chunkQue in poolQue;
13 bind current thread to next chunkQue;
14 break;

15 curCount ← 0;
16 resume current thread;
17 else
18 break;

19 until chunkQue is empty;

and writing to the mapping dictionary to prevent other threads from parsing the
data, resulting in a huge overhead. Therefore, the EPUR temporarily stores the
tuple containing the new string and continues to parse the next tuple to reduce
access conflicts. Compared with building a new data warehouse, there are fewer
new strings in the process of inserting data into an existing data warehouse.
Therefore, the EPUR performs ID mapping and parsing operations on the new
strings in the unresolved tuples after all threads have finished parsing, and writes
all new IDs to the mapping dictionary.

Chunk Level Parallel Insertion. EPUR stores the tuples with same Predicate
into the same Predicate partition and has two copies of data sorted by S and O.
Each Predicate partition is continuously stored in units of Chunks. After parallel
parsing, tuples can be grouped by different Predicates. For the tuples containing
the new Predicate, the EPUR creates a new Predicate partition to store the
tuples. For tuples that predicates already exist, the EPUR uses the Predicate
partition index and Chunk index to search the Chunks in Predicate partition
where the tuples should be inserted. It should be noted that each Predicate
partition has two copies of the data, so the same operation should be performed
on another copy of the data to achieve data consistency.

Resort and Merge Operations. Before the tuples are inserted, the data in
the Chunks is already in order. To avoid frequent data movement caused by a
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large amount of data insertion, the newly inserted tuples are temporarily stored
at the end of the Chunks. When the Chunk space is insufficient, the EPUR will
apply for a new Chunk to store the tuples and update the next Chunk No in
Chunk Meta to point at the newly applied Chunk. Also, the data in the newly
applied Chunk and source Chunk will be merged and resorted after the insertion
operation is completed to ensure that the data is still in order.

4.2 Batch Deletion

Batch delete includes two different types: specific tuple deletion and conditional
pattern deletion. The parallel method used for deletion is implemented in the
same way as insertion based on the chunk-oriented storage. For the specific tuple
deletion, the EPUR determines the target Chunks in the SO and OS buffer by
index information. To avoid frequent data movement, the EPUR sets the data
to zero and marks the data type of the Object temporarily. When the data is
persisted to disk, the marked data will be completely deleted and the data in
the Chunks will be moved to cover the free space. For the conditional pattern
deletion, it can be divided into two situations based on whether the predicate
is known or not. As with data insertion, data deletion on Predicate partition
should also consider data consistency.

Predicate Known. The situation of predicate known includes three different
modes: (S, P , ?ObjType, ?O), (?S, P , ObjType, O), and (?S, P , ?ObjType,
?O). The last mode is known to delete the data where the Subject and Object
are unknown, which means to delete all the data in the specific partition. If the
Subject or Object is known, which is corresponds to the first two modes. With
the help of index information, the EPUR finds the Chunks that are involved
in the known Subject or Object in the Predicate partition, then deletes those
matching tuples.

Predicate Unknown. The situation of predicate unknown includes four dif-
ferent modes: (S, ?P , ObjType, O), (?S, ?P , ObjType, O), (S, ?P , ?ObjType,
?O), and (?S, ?P , ?ObjType, ?O). The last mode means to delete all the data
in the database. EPUR searches all Predicate partitions according to the Pred-
icate partition index, then deletes all the Predicate partition. According to the
S-P or O-P of statistics information in Table 1, the system can find out which
Predicate partition the Subject or Object appears in. So (S, ?P , ObjType, O),
(?S, ?P , ObjType, O), and (S, ?P , ?ObjType, ?O) modes can be translated into
the predicate known mode to precess. For example, (s1, ?P , INT , o1) indicates
that all Predicate partitions should delete the (s1, INT , o1) tuple. The system
obtains the Predicate through the statistics information, suppose the Predicate
of s1 includes P1, P2, P3, and the Predicate of o1 includes P1, P2, P5. Then, the
system selects the common Predicate P1, P2 to avoid unnecessary data process-
ing and converts predicate unknown deletion into predicate known conditional
pattern deletion. In this example, predicate unknown mode (s1, ?P , INT , o1)
can be translated into (s1, P1, INT , o1) and (s1, P2, INT , o1).
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4.3 Batch Modification

Considering that the memory space occupied by objects of different data types
are different and the data in the Chunks is in order, directly modifying the data
on the original data will cause a large overhead such as Chunk compression and
segmentation. So, the EPUR breaks down modification operation into two steps,
including the deletion of old data and the insertion of new data. The process of
batch deletion and insertion have been described in Sect. 4.1 and Sect. 4.2.

5 Evalution

All experiments were run on a dual 14-cores server with 2.40GHz Intel� Xeon�

CPU E5–2680, 256GB memory, CentOS 6.5 (2.6.32 kernel), and one 3500GB
SAS local disk.

5.1 Datasets

We chose LUBM (Lehigh University Benchmark) [6] and BTC 2012 (Billion
Triples Challenge) [17] to evaluate the update performance of EPUR. LUBM is
a program-generated dataset used to describe network of relationships between
entities in university. Different from LUBM, BTC is a real-world dataset cap-
tured from multiple data sources such as Dbpedia [1] and Freebase [2]. The
characteristics of the datasets are shown in Table 2, the most obvious difference
between the two data sets is that the number of predicates in BTC is much
larger than LUBM.

Table 2. Characteristics of Datasets

Dataset #Triples #Subject #Object #S ∩ O #Predicate

LUBM 5,000,000 785,288 586,147 180,039 18

BTC 5,000,000 919,129 1,713,351 827,663 57,193

5.2 Performance of Parallel Update Operation

Among the available RDF systems, we selected RDF-3X (latest version GH-
RDF-3X), Virtuoso (version 7.2), gStore, and PostgreSQL (Version 10) as com-
parison systems in the experiment because they represent three different kinds
of RDF stores. RDF-3X and gStore are traditional RDF systems that support
update operation. Virtuoso is one kind of RDBMS with extensive applicability
of RDF. PostgreSQL is a relational RDF store since it has built-in version for
RDF and uses snapshot isolation for concurrency control.
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Fig. 5. Overall Insert Performance of EPUR

Batch Insertion. The batch insert performance of each system was tested
under 5 million records. The experiment results are shown in Fig. 5a and 5b.
When the number of data to be inserted is larger than 500,000, EPUR performs
far better than RDF-3X and gStore on both LUBM datasets and BTC datasets.
The batch insert of gStore does not return results within 20 hours when the data
reaches a million so we give up the experiment on gStore. The performance of
RDF-3X is good under few data because RDF-3X inserts the data into a tem-
porary in-memory block instead of the source database. RDF-3X will combine
the temporary block with original database when the number of data reaches to
500 thousand, which may cause large data consolidation overhead. The snapshot
isolation in PostgreSQL for concurrency control works well when the data set is
small, but performance degrades as data grows. By comparing the experimen-
tal results of LUBM and BTC datasets, it can be seen that the performance of
EPUR on LUBM dataset is better than that of BTC. The main reason is that
the BTC dataset has more predicates, the amount of data to be inserted into
each Chunk is small. Each worker thread in EPUR only processes small amount
of data, the parallelism of the system is not fully exploited and thread switch-
ing also leads to bad locality. Different from RDF-3X, Virtuoso, and EPUR,
PostgreSQL has only one copy of data. It is unnecessary for PostgreSQL to con-
sider data consistency. Even through, the performance of EPUR is better than
PostgreSQL. In addition, we find that the response time of Virtuoso and Post-
greSQL is only about twice as fast as RDF-3X, indicating that multiple threads
in Virtuoso and PostgreSQL do not work efficiently.

Batch Deletion. The batch delete performance of each system was tested under
200 thousand records. The virtuoso does not support partial data deletion, so
we remove virtuoso in this part of experiment. We can see from Fig. 6a and 6b
that EPUR also performs better on LUBM dataset than on BTC dataset. The
reason is that the EPUR generates chunk-based subtasks from the same parallel
framework as insertion operations when deleting data. Therefore, the deletion
operation also faces the overhead problem caused by frequent thread switching.
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Fig. 6. Overall delete performance of EPUR

Instead of removing the target data directly, the EPUR sets the data to be
deleted to zero and marks the data type. Since PostgreSQL has only one copy
of data and does not need to consider the consistency of the backup data, the
deletion performance of PostgreSQL is better than other comparison systems.
Also, as the number of deleted data increases, the role of the parallel execution
framework in EPUR becomes more apparent, especially on LUBM dataset. When
the deleted data reaches 500 thousand, the performance of EPUR is about 2
times higher than other systems.

Fig. 7. Scalability with varied threads

5.3 Performance of Parallel Task Execution Framework

Scalability. We evaluated the scalability of EPUR by changing the number
of threads in parallel processing. It can be seen from Fig. 7a and 7b that as
the number of threads increases from 1 to 8, the performance improvement of
insertion and deletion operations on the LUBM dataset is more significant than
that on the BTC dataset. The reason is that EPUR deals with subtasks in
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parallel with Chunks, and the number of predicates in the LUBM dataset is less
than that in the BTC dataset. Therefore, the data to be inserted or deleted
is more centralized in LUBM dataset, resulting in a lower frequency of thread
switching, which indicates a higher thread utilization in LUBM. However, when
the number of threads increases from 8 to 16, the response time decreases slowly.
For LUBM dataset, the data to be inserted or deleted may be concentrated
in some of the same Chunks. As a result, the number of subtasks in different
chunkQues varies widely, which may cause some threads in the system to be
idle because each ChunkQue has only one execution thread at the same time. In
contrast to LUBM dataset, the data inserted or deleted is more evenly distributed
in the BTC dataset, and the negative impact of thread switching causes the
performance improvement of the system to become less apparent.

Fig. 8. Update performance with varied window sizes

Window Size. We recorded the response time of insertion and deletion opera-
tions under different window sizes to analyze the effect of window size on system
performance. It can be seen from Fig. 8a and 8b that the performance of the
system does not increase after reaching a certain window size (5 for LUBM and
3 for BTC). Compareing Fig. 8a and 8b, it can be seen that the effect of window
size on the LUBM dataset is stronger than that on the BTC dataset. The main
reason is that the data to be inserted or deleted in LUBM dataset may be dis-
tributed in some of the same Chunks due to the small number of predicates, so
the expansion of the window size can reduce the overhead caused by unnecessary
thread switching. Since the number of predicates in the BTC is much larger than
that in the LUBM, the subtasks in each chunkQue may be very small or even
not up to the window size, resulting in little performance improvement from
increasing the window size. Therefore, we can appropriately adjust the window
size to obtain better performance according to the characteristics of the data in
practical applications.
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6 Related Work

6.1 Storage and Parallel Processing

Nowadays, many RDF systems have been developed and can be roughly classified
into two types. Their storage structures are quite different. Traditional RDF
systems such as RDF-3X [14], TripleBit [18], gStore [20], and Neo4j [11] use
graphical structures to describe the relationships between entities. Meanwhile,
the systems transform the string into ID through String/ID mapping dictionary,
which also reveals their limitations that they do not support different data types
well [7] and cannot perform theta-join [19]. Another type of RDF systems are
usually extended from RDBMS, such as Virtuoso [4] and PostgreSQL [12]. For
example, PostgreSQL converts RDF data into relational data tables to store,
which may result in large space consumption and high time complexity of reading
and writing operations.

Compared with parallel query processing, existing RDF systems pay less
attention to parallel data updates. For example, TripleBit with high speed of
query processing under billions of data uses bitmap matrix to store data, but
it does not support the update operation. Updating data for TripleBit means
reloading the whole source data, which is hard to tolerate in practical applica-
tions. Due to the limitation of the storage structure, the parallel framework of
the extended system x-RDF-3X [15] is suitable for query operations but does
not work well in data updates, resulting in poor update performance. Therefore,
most of the existing research mainly focuses on parallel query optimization while
less work on parallel update and storage optimization. However, as the size of
data continues to expand, efficient storage structure and online updates methods
become more and more important in data management.

6.2 Update

Currently, only a few of RDF systems support online update (incremental) oper-
ation, which is unavoidable for the real-world data. When updating the data,
database systems typically locks the data and then overwrites the data [9,16] or
writes a new copy of the new data [3,5,13]. The former utilizes the lock man-
ager to provide concurrency control, many database systems have shown limited
multi-core scalability and even performance degradation because of the bottle-
necks latch contention [9]. For example, gStore does not support read-committed
isolation and the lock mechanism causes the update performance of the system to
degrade. The latter, also known as a multi-version system, allows update trans-
actions to be performed in parallel with read transactions, even if they access the
same record. For example, to support update (incremental) operations, x-RDF-
3X is extended from RDF-3X, it creates temporary memory block to store the
inserted data, and merge with the main database when the temporary memory
block is out of space. One drawback of this method is that when the system is
unexpectedly powered off, the data in the memory block may lost. Another is
that the overhead of maintaining additional storage space can have a negative
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impact on overall system performance. In addition, some efficient update systems
fail to deal with large-scale data. For instance, the update operations of Neo4j
are very intuitive but it does not perform well in face of large-scale data. Neo4j
is suitable for lightweight data updates without super nodes [8]. Virtuoso has
high data loading speed, but does not support partial data update and deletion.

7 Conclusion and Future Work

In this paper, we propose a solution for large-scale RDF data management,
including storage and parallel update operations. We design and implement a
new storage structure and a general parallel framework to accelerate the update
processing of RDF data. The results show that our solution based on chunk-
oriented parallel processing makes full use of the potential of multi-cores and
achieve better update performance than existing systems. As future work, we
will work on extending EPUR for scaling the data and using the distributed
computing architecture to optimize the performance, including distributed stor-
age and efficient communication protocols between distributed nodes. Also, we
will do further work on parallel queries to play the role of the generic parallel
framework.
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Abstract. Local community detection aims to find the communities
that a given seed node belongs to. Most existing works on this problem
are based on a very strict assumption that the seed node only belongs
to a single community, but in real-world networks, nodes are likely to
belong to multiple communities. In this paper, we introduce a novel algo-
rithm, HqsMLCD, that can detect multiple communities for a given seed
node. HqsMLCD first finds the high-quality seeds which can detect better
communities than the given seed node with the help of network represen-
tation, then expands the high-quality seeds one-by-one to get multiple
communities, probably overlapping. Experimental results on real-world
networks demonstrate that our new method HqsMLCD outperforms the
state-of-the-art multiple local community detection algorithms.

Keywords: Multiple local community detection · Network
embedding · Seed set expansion

1 Introduction

Community structure generally exists in networks [11], where nodes are more
densely connected in the same community. Community detection, which aims
to discover the community structure of networks, is a fundamental problem in
analyzing complex networks and has attracted much attention recently [3,4,
15]. Most community detection methods detect all communities in the network.
However, for a large-scale network, we may not care about all communities in the
network, but just a part of it, such as communities that contain a particular node,
called seed node. In addition, working on the entire graph is time-consuming,
especially on large-scale networks. Sometimes it is also hard or impossible to
obtain the complete information of the network, such as the World Wide Web.

Local community detection, which finds the communities of a given seed
node, is proposed to handle the above situations, and it has many applications
in the real world. For instance, in collaboration networks [14], we may discover
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the working group membership of a particular person through local community
detection; and in product networks, the shopping platform may find the products
that customers are interested in by detecting the community of purchased prod-
ucts. Most existing algorithms [1,16] for local community detection are based
on a strict assumption that the seed node only belongs to a single community,
however, in real-world networks, quite a number of nodes appear in multiple com-
munities. It is a more challenging task to detect all local communities related to
the seed node, we call this problem multiple local community detection (MLCD).
Yang and Leskovec [14] detected multiple hierarchical communities by finding
multiple local minima in the local community detection method. He et al. [7]
introduced a Local Spectral Subspaces based algorithm (LOSP) to expand dif-
ferent seed sets to communities, which are generated from the ego-network of
the given seed node. Kamuhanda and He [9] proposed a Nonnegative Matrix
Factorization algorithm to detected multiple communities, and automatically
determine the number of detected communities. Hollocou et al. [8] solved the
problem by expanding the initial seed to a candidate seed set and applying a
local community detection algorithm (e.g., PageRank-Nibble [1]) for seeds in the
seed set individually. However, these proposed methods still have the following
two problems.

1. Sensitive to the position of the seed node. Existing works select a
new community member from nodes around the seed node, for instance, adding
surrounding nodes to detected communities one by one until reaching the local
optimum of some quality functions (e.g., conductance) [7,14], or applying matrix
factorization methods on the subgraph expanded by the seed node [9]. These
methods tend to involve correct nodes, if most of the nodes near the seed node
belong to the same community as the seed node, and will get high quality (e.g.,
accuracy) detected communities. Otherwise, they will get low quality communi-
ties. Thus, the quality of detected communities is sensitive to the position of the
seed node in the community.

2. Insensitive to the local structure of the seed node. Different nodes
in a network have different local structures, such as degree centrality, closeness
centrality, and betweenness centrality, resulting in different properties of commu-
nities. To be concrete, different seed nodes have different numbers of communities
that they belong to. However, existing works are insensitive to such characteris-
tics of the seed nodes. The number of detected communities they output is highly
related with the input parameters [8,9] or the feature of the entire network [7],
and it cannot adaptively change with the number of ground-truth communities
of the seed node.

In this paper, we introduce a novel approach HqsMLCD for MLCD to address
the above problems. HqsMLCD follows the general framework introduced by
MULTICOM [8], and improves the accuracy of detected communities via identi-
fying high-quality seed nodes. HqsMLCD finds high-quality seeds based on net-
work embedding methods, which mitigates the impact of the seed node position.
Further, it uses local clustering methods to recognize the local structures of the
seed node, and determine the number of high-quality seeds adaptively. Finally,
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HqsMLCD expands each high-quality seed to find accurate local communities
via existing local community detection methods.

We conducted extensive empirical studies on three real-world networks. The
results demonstrate that HqsMLCD achieves the best accuracy of MLCD com-
pared with the state-of-the-art methods, and the trend of the number of detected
communities is consistent with the overlapping memberships of the seed node.

The rest of the paper is organized as follows: we present the background
and related work in Sect. 2, and we introduce the concept of high-quality seeds
in Sect. 3. In Sect. 4, we elaborate on our algorithm HqsMLCD. In Sect. 5, we
provide experimental results, and we draw conclusions in Sect. 6.

2 Background and Related Work

Before introducing our algorithm, we present the notations that we use through-
out the paper, the problem definition and the general framework of multiple
local community detection, and some closely related work.

2.1 Notations

– Graph. Let G = (V,E) be an undirected, unweighted graph, where V =
{v1, v2, · · · , vn} is the set of n nodes in G, and E is the edge set of G.

– Communities. For a seed node vs, let Cs be the set of ground-truth commu-
nities that contain vs, each community ci ∈ Cs is the set of nodes belonging to
ci. Similarly, Cd is the set of communities detected by community detection
methods.

– Network Embedding. For a graph G, its network embedding YG ∈ R
n×d is

a matrix of vertex latent representation, where d is the dimension of embed-
ding, and YG(v) denotes the embedding vector for node v.

2.2 Problem Definition

Multiple Local Community Detection (MLCD). Given a graph G and
a seed node vs. Multiple local community detection algorithm returns a set of
detected communities Cd. For each community ci ∈ Cs, we consider the most
similar community cj ∈ Cd as the corresponding detected community of ci.
The algorithm aims to return communities that are as similar as possible to
the ground-truth communities, i.e., maximizing

∑

ci∈Cs

max {sim (ci, cj )|cj ∈ Cd}

|Cs| , (1)

where sim(ci, cj) is a metric that measures the similarity between ci and cj ,
generally using F1 score.
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F1 Score. Given a ground-truth community ci and a detected community cj , F1

score is defined as

F1(ci, cj) =
2precision(ci, cj) × recall(ci, cj)
precision(ci, cj) + recall(ci, cj)

, (2)

where precision(ci, cj) = |ci∩cj |
|cj | , recall(ci, cj) = |ci∩cj |

|ci| .

2.3 General Framework of MLCD

Existing works on multiple local community detection follow a general frame-
work [8,12], which separates into two steps: 1) finding new seeds on the basis of
the initial seed node; 2) and then applying local community detection methods
to new seeds to obtain multiple detected communities. Figure 1 illustrates the
overview of the general framework.

Fig. 1. General framework.

2.4 Related Work

Most of the existing local community detection methods are based on seed set
expansion. Specifically, they first take the given seed node as an initial commu-
nity, then apply a greedy strategy to add nodes to the community until reaching
the local or global minimum of some quality functions (e.g., local modularity).
Many works improve this method by generating reasonable order of nodes to
add to the detected community, such as using random walk [1,2], combining
higher-order structure [16], and applying spectral clustering methods [6,7].

The above local community detection methods focus on detecting a single
community of the seed node, ignoring the fact that the given seed node may
belong to other overlapping communities in the real-word graph. To address this
issue, few methods have been introduced. Yang and Leskovec [14] proposed a
method which only detects multiple communities by finding multiple local min-
ima of the quality function (e.g., conductance) used in the greedy strategy, which
causes that the latter detected community completely contains the former one.
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LOSP [7] generates several seed sets from the ego-network of the initial seed
node, then expands these seed sets based on their local spectral subspace. Hol-
locou et al. [8] first found new seeds by clustering the graph which is embedded
in a low dimension vector space by a score function of seed set, like Personalized
PageRank, then expanded them to multiple communities, however, new seeds are
always far away from the initial seed, cause the communities expanded by new
seeds including a lot of nodes that beyond the ground-truth communities, and
may not contain the initial seed, which is inconsistent with the goal of recovering
all the communities of the seed node. Kamuhanda and He [9] applied nonnegative
matrix factorization on the subgraph extracted by using Breadth-First Search
(BFS) on the initial seed node to solve this problem, it is a novel idea, but the
members of detected communities are limited in the range of the subgraph, which
ignore the structure of the network, and the number of communities decided by
the algorithm is highly related to the size of the subgraph, which is inflexible
and illogical. Inspired by MULTICOM [8], Ni et al. [12] proposed a method
LOCD following the framework introduced in Sect. 2.3 recently. The difference
between LOCD and our work include two main following points. First, we proved
the existence of high-quality seeds (Sect. 3.1) and clearly defined quality score
and high-quality seeds with graph representation learning. Second, we improved
the accuracy of high-quality seeds through clustering methods, and examined
the effectiveness through ablation study. Besides, we used more evaluations and
baselines in experiments, and tested on more real-world datasets. According to
the F1 score on Amazon in their paper, our work (0.895) outperforms LOCD
(0.7863).

3 High-Quality Seeds

According to the general framework of MLCD, we find local communities by
expanding seed nodes, different seed nodes result in different detected communi-
ties. We call seed nodes that can generate communities close to the ground-truth
communities as high-quality seeds. In this section, we first empirically verify the
existence of high-quality seeds, and then qualitatively analyze how to find them.

3.1 The Existence of High-Quality Seeds

We assume that for all nodes in a ground-truth community, the high-quality
ones can generate communities that are more similar to the ground-truth com-
munity than other nodes through a certain local community detection method
(e.g., PageRank-Nibble [1]). In order to demonstrate the existence of high-quality
seeds, we conduct an empirical study.

Three real-world networks Amazon, DBLP and Youtube are used. For each
network G, we randomly pick 30 nodes as seed nodes vs. For a seed node vs,
we choose a ground-truth community cs that vs belongs to, then use PageRank-
Nibble for vs and all other nodes belong to cs to detect their local communities,
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(a) F1 score of communities detected
by the seed node and “high-quality“
seed.

(b) Results of difference between av-
erage cosine similarity of “same-com-
pairs” and “diff-com-pairs”.

Fig. 2. Experimental results of high-quality seeds

finally compute the F1 score. Figure 2(a) illustrates the average F1 score of com-
munities detected by the 30 seed nodes and the best communities detected by
nodes from the ground-truth community that the seed nodes belong to.

We can see that, in the community which the randomly picked seed node
belongs to, there exist nodes that can generate a better community than the
seed node through a local community detection method, and we call such nodes
high-quality seeds.

3.2 High-Quality Seed Identification with Network Representation
Learning

Since most existing local community detection methods are based on seed set
expansion, which tends to include the neighbors of the seed node into the
detected community, high-quality seeds should have high similarity with its
neighbors in the same community. Furthermore, the detected community should
contain the initial seed node, therefore high-quality seeds are expected to have
high similarity with the initial seed node.

In order to find high-quality seeds with the above characteristics, we need a
similarity measure that can imply whether nodes belong to the same community.
Nowadays, network representation learning (aka., network embedding) is a pop-
ular approach to learn low-dimensional representations of nodes and effectively
preserve the network structure, like the community structure. Thus intuitively,
the similarity between node embeddings could be approximated as the proba-
bility of belonging to the same community, so we use node embeddings to select
high-quality seeds.

We also conduct an experiment to verify our intuition. First, we randomly
pick 100 seed nodes in each of the network Amazon, DBLP, and Youtube, then
sample a subgraph around each seed node with BFS, and learn the embeddings
of these subgraphs. From each subgraph, we select 50 “same-com-pairs” which
refers to node pairs composed of two nodes from the same community, and 50
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“diff-com-pairs” which refers to node pairs composed of two nodes from different
communities. After that, for each subgraph, we compute the difference between
average cosine similarity of “same-com-pairs” and “diff-com-pairs”, if the differ-
ence is greater than 0, the similarities between node embeddings are considered
capable of detecting community relations, and the results as shown in Fig. 2(b).

It shows that most similarities between embeddings of nodes from the same
community are greater than those from different communities, which means the
similarities could partially reflect the probability of whether belonging to the
same community. Thus, network representation learning can be used to find
high-quality seeds, the specific quantitive method is introduced in Sect. 4.

4 Multiple Local Community Detection
with High-Quality Seeds

In this section, we present our proposed method, Multiple Local Community
Detection with High-Quality Seeds (HqsMLCD for short). Our optimizations
focus on the selection of new seeds in the general framework described in
Sect. 2.3, and we use the new high-quality seeds as the input of local community
detection methods to detect multiple communities.

Fig. 3. Framework of HqsMLCD.

Figure 3 shows the overall framework of HqsMLCD. We first use BFS sample
a subgraph around the given seed node to find all candidates of high-quality
seeds, then apply network representation learning methods on the subgraph
to obtain embeddings of candidate nodes. On top of the embeddings, we fur-
ther cluster the candidate nodes to several clusters. After that, we calculate the
Quality Score of all candidates in clusters, and nodes with the highest quality
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Algorithm 1. Multiple Local Community Detection
Input: graph G, initial seed node vs
1: Initialize:

Sh ← ∅ (high-quality seeds)
Cd ← ∅

2: Gs ← Sampling(G, vs)
3: YGs ← Embedding(Gs)
4: Lcan ← Clustering(YGs) (candidate clusters)
5: for li in Lcan do
6: for vj in li do
7: qj ← Compute the quality score of each candidate vj using Equation 3
8: end for
9: vh ← node in li with the highest quality score qh

10: Sh ← Sh ∪ {vh}
11: end for
12: for vi in Sh do
13: ci ← Local community detection(G, vi)
14: Cd ← Cd ∪ {ci}
15: end for
16: return Cd

score in each cluster are considered as high-quality seeds, which are expanded to
detected communities finally by local community detection method. Algorithm1
illustrates the pseudo-code.

4.1 Sampling and Embedding Candidate Subgraph

For a graph G and the seed node vs, to find high-quality seeds, we first sam-
ple a subgraph Gs where high-quality seeds are selected in, named candidate
subgraph. The sampling method we used is breadth-first search (BFS), since
it can uniformly include nodes around the seed node. The number of steps of
BFS is determined through parameter tuning, and the details are described
in Sect. 5.3. Then we get embedding YGs

of the candidate subgraph with the
network representation learning method. We choose the unsupervised method
DeepWalk [13] in the implementation, since we don’t have any labeled data
in advance. DeepWalk feeds random walk paths as sentences to the Skip-gram
model, and Skip-gram tries to predict “context” of “word” in “sentence”, i.e.,
predict nearby nodes of the node on a random walk path.

4.2 Clustering Candidate Subgraph

We then cluster the embedded candidate subgraph to several clusters. As illus-
trated in Fig. 3, candidate nodes in Gs may come from several different ground-
truth communities, we want to select one single node as the high-quality seed
in each ground-truth community, so that we could recover the correct num-
ber of communities, and avoid to miss some ground-truth communities. We
choose Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
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Fig. 4. Example of clustering and non-clustering candidate subgraph.

method [5] in this step, as DBSCAN could automatically decide the number of
clusters, i.e., number of detected communities in our algorithm. We use the simi-
larity between node embeddings as the metric of DBSCAN, so we could partition
the nodes of different communities flexibly, as we demonstrate in Sect. 3.2.

For instance, given a seed node vs and its candidate subgraph as in Fig. 4,
without clustering, we may generate high-quality seeds that are close to each
other, and would lead to the neglect of the nodes in some ground-truth com-
munities as their quality score may less than nodes in other clusters. Besides,
without clustering, the number of high-quality seeds should be given as a param-
eter, which is hard to know in advance in the practice.

4.3 Quality Score and High-Quality Seed Identification

After getting several clusters of candidate nodes, we compute the quality score of
every node in all clusters, and select nodes with the highest quality score in each
cluster as high-quality seeds. As we mentioned in Sect. 3.2, high-quality seeds
have a high possibility of belonging to the same community with their neighbors
and the initial seed node vs. Using cosine similarity between node embeddings
approximated as the probability of belonging to the same community, we define
the quality score QS of node v as

QS(v) =

∑

u∈N(v)

Sim (YGs
(u), YGs

(v))

|N (v) | + Sim (YGs
(v), YGs

(vs)) , (3)

where N(v) is the set of neighbors of v. The similarity between the node and its
neighbors makes better performance while applying local community detection
method on it, and similarity between the node and the seed node vs ensures vs
be involved in detected communities, which is one of the main goals of MLCD.
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4.4 Expand to Detected Communities

In this step, each high-quality seed is expanded to a detected community by
a local community detection algorithm based on seed set expansion. We use
PageRank-Nibble method [1] which is widely used in local community detection.
Further, we also make the following two changes to Pagerank-Nibble: 1) if the
current detected community is identical with some community detected before,
we find the next local minima of the sweep procedure to generate a larger com-
munity, so we could find not only communities with different structures, but also
hierarchical communities, which both exist in real-world networks. 2) Inspired
by Kamuhanda and He [9] who added the neighbors of initial community mem-
bers to refine the final community, we also introduce a refinement step which
adds the given seed node to the detected community when the detected com-
munity doesn’t contain it and at least one of its neighbors is involved in the
detected community. Finally, we obtain multiple communities as the results.
PageRank-Nibble uses conductance as the stop criteria, makes sure the detected
communities with low conductance, and combining our selection of seed node,
the detected communities can achieve higher similarity with the ground-truth
community.

4.5 Time Complexity

Here we analyse the time complexity of each step of HqsMLCD. The time com-
plexity of BFS is O(n+m), where n is the number of nodes, and m is the number
of edges in the subgraph. The complexity of both DeepWalk and DBSCAN is
O(nlogn). High-quality seeds can be identified with O(n). Pagerank-Nibble costs
O(vol(Supp(p))+nplognp), where p is the PageRank vector, Supp(p) is the sup-
port of p, vol(S) denotes the volume of subset S, and np = |Supp(p)|.

5 Experiments

In this section, we evaluate HqsMLCD on real-world networks. We first introduce
the evaluation criteria of our experiments, then we present the basic information
of datasets and the state-of-the-art baselines. We present the results on param-
eter tuning, and the results of comparing HqsMLCD with existing methods.

5.1 Evaluation Criteria

– F1 Score. Defined in Eq. 2
– Conductance. The conductance of a set S ⊂ V is

Φ(S) =
cut(S)

min(vol(S), vol(V \S))
, (4)

where cut(S) is the number of edges with one endpoint in S, and another one
not; vol(S) is the sum of the degree of nodes in S.
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Table 1. Statistics of read-world datasets

Dataset Nodes Edges Average degree

Amazon 334,863 925,872 5.53

DBLP 317,080 1,049,866 6.62

LiveJournal 3,997,962 34,681,189 17.35

Table 2. Statistics of communities in read-world datasets

Dataset Number of
communities

Average
community size

Number of top
communities

Amazon 75,149 30.23 1,517

DBLP 13,477 53.41 4,961

LiveJournal 664,414 10.79 4,703

Table 3. The number of nodes with different om

Dataset om = 2 om = 3 om = 4 om = 5

Amazon 3,839 1,652 506 225

DBLP 10,468 2,275 707 221

LiveJournal 19,640 5,819 1,793 926

– The number of detected communities. Cd denotes the set of detected
communities, and the number of detected communities is |Cd|.

– The seed node coverage. We expect to find multiple communities that
contain the initial seed node vs, so the coverage of vs is a key criterion, which
is defined as

cov(vs, Cd) =
| {ci|vs ∈ ci, ci ∈ Cd} |

|Cd| .

5.2 Datasets and State-of-the-Art Methods

Datasets. In order to quantify the comparison of algorithm results with the
actual situation. We use three real-world networks with ground-truth communi-
ties provided by SNAP [10,14]: the product network Amazon, the collaboration
network DBLP and the online social network LiveJournal. All three networks are
unweighted and undirected, and are widely used in academic literature. Table 1
and Table 2 shows the statistics of them and their ground-truth communities.

We use the top 5, 000 communities provided by SNAP as the ground-truth
communities in our experiments. The number of ground-truth communities after
removing the duplicate shows in Table 2. Then we group the nodes in ground-
truth communities according to the number of communities they belong to (i.e.,
overlapping memberships or om for short [7,9], node with om = 2 means it
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Fig. 5. The average F1 score of applying different BFS steps in HqsMLCD.

belongs to 2 communities at the same time). The number of nodes with differ-
ent om of three datasets shows in Table 3. Note that there are too few nodes
belonging to more than five communities to achieve meaningful experimental
results.

In the following experiments, for each om group, we randomly pick 500 nodes
as the initial seed node if there are more than 500 nodes in the group, otherwise,
pick all nodes in the group. Besides, we only pick seed nodes whose communities
sizes are between 10 and 100 (the range of DBLP is 0 to 200, because of its
larger community structure).

Baselines. We compare our algorithm with several state-of-the-art multiple
local community detection methods. He et al. [7] generated several seed sets
from the ego-network of the initial seed node, then applied LOSP to obtain
multiple detected communities. MULTICOM [8] finds new seeds based on the
Personalized PageRank score of seed set, then expands new seeds by PageRank-
Nibble. MLC [9] uses nonnegative matrix factorization on the subgraph around
the initial seed node to get multiple communities. In addition, to verify the
effective of clustering proposed in Sect. 4.2, we also consider HqsMLCD-nc as a
baseline, which is HqsMLCD without clustering phase.

5.3 Parameter Tuning of the BFS Steps

One of the main parameters of HqsMLCD is the steps of BFS, so we study the
effectiveness of it. Figure 5 shows the average F1 score on Amazon, DBLP and
LiveJournal that use different BFS steps in HqsMLCD. We can see that the F1

score reaches peak value when BFS step equals to a suitable value (e.g., BFS step
equals to 3 on Amazon), and the best step of BFS varies on different datasets.
The BFS step determines the range of high-quality seeds selection. Too small
steps may not contain high-quality seed nodes, but too large steps will contain
too much noise. Note that for LiveJournal we only set BFS step to be 1, 2 and
3, because the subgraphs in LiveJournal with steps larger than 3 contain too
many noisy nodes, and are too large to be processed efficiently.

5.4 Accuracy Comparison

In this section, we use the F1 score to measure the accuracy of multiple detected
communities. Table 4 lists the average F1 scores grouped by om of five methods
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Table 4. F1 score results. Bold numbers are the best scores, and underlined numbers
are the second-best ones.

Dataset Algorithm om = 2 om = 3 om = 4 om = 5 Mixed om

Amazon LOSP 0.570 0.562 0.512 0.438 0.546

MULTICOM 0.809 0.802 0.764 0.872 0.798

MLC 0.784 0.787 0.774 0.785 0.783

HqsMLCD-nc 0.843 0.861 0.882 0.884 0.861

HqsMLCD 0.882 0.901 0.907 0.890 0.895

DBLP LOSP 0.528 0.494 0.488 0.443 0.509

MULTICOM 0.556 0.482 0.497 0.455 0.520

MLC 0.403 0.361 0.383 0.356 0.384

HqsMLCD-nc 0.587 0.519 0.537 0.514 0.555

HqsMLCD 0.602 0.532 0.538 0.532 0.568

LiveJournal LOSP 0.601 0.632 0.522 0.598 0.588

MULTICOM 0.750 0.698 0.698 0.650 0.699

MLC 0.664 0.710 0.646 0.697 0.679

HqsMLCD-nc 0.785 0.721 0.712 0.689 0.727

HqsMLCD 0.818 0.753 0.753 0.718 0.761

on three datasets, and the last column shows the average F1 scores of using
nodes as seed nodes from all om groups.

We can see that HqsMLCD achieves the best results on three real-world
networks, and most results of HqsMLCD-nc outperform the other three base-
lines. The advantage of them mainly comes from the high-quality seeds we used
to detect local communities. Besides, HqsMLCD is better than HqsMLCD-nc,
demonstrating that clustering candidate subgraph is effective.

5.5 Conductance Comparison

We also compare the conductance of the detected communities by different
MLCD algorithms. Figure 6 shows the average conductance of communities
detected by each algorithm. HqsMLCD and HqsMLCD-nc outperform the other
three methods on all three datasets. Note that LOSP, MULTICOM, HqsMLCD-
nc, and HqsMLCD all use conductance as the measure to generate detected
communities, and our methods still outperform LOSP and MULTICOM, which
means the high-quality seeds we select can indeed generate better communities.
Comparing with MLC, HqsMLCD also achieves lower conductance. This implies
with the help of high-quality seeds, the seed expansion-based method can also
surpass the Nonnegative Matrix Factorization-based solution.
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Fig. 6. Conductance results.

5.6 Number of Detected Communities

Here we compare the number of detected communities of different methods to
demonstrate the ability to capture the local structures with respect to the given
seed node. Figure 7 illustrates the number of detected communities of LOSP,
MLC, and HqsMLCD for nodes with different om on Amazon, DBLP, and
LiveJournal. Note that MULTICOM and HqsMLCD-nc require the number of
detected communities as a input parameter, they have no ability to adaptively
determine the number of communities, so we do not visualize them in the figure.
The black line represents the number of communities that seed nodes actually
belongs to, i.e., om. We can see that the trends of MLC and LOSP remain stable
when om increases, but the results of HqsMLCD are consistent with the trend
of ground-truth. This phenomenon implies that our algorithm can recognize dif-
ferent local structures and utilize them for community detection.

Fig. 7. Number of detected communities.

5.7 Seed Node Coverage

Next we examine the seed node coverage of detected communities. It is an impor-
tant indicator, as the target of multiple local community detection is to detect
multiple communities that the seed node belongs to. We evaluate seed coverage
of MULTICOM, MLC, HqsMLCD-nc, and HqsMLCD on Amazon, DBLP and



MLCD via High-Quality Seed Identification 51

Fig. 8. Seed coverage results.

LiveJournal. Since LOSP includes the seed node in every seed set, we do not
compare it here. Figure 8 illustrates the average seed coverage on three datasets
grouped by om. It is clear to see that HqsMLCD-nc and HqsMLCD outper-
form MULTICOM and MLC. Note that our method uses the same framework
as MULTICOM, but HqsMLCD identifies the high-quality seeds similar to the
given seed node via network representation. However, MULTICOM may find
new seeds far away from the initial seed node. Therefore, except the community
expanded by the initial seed node, the communities generated by new seeds of
MULTICOM hardly contain the initial seed node.

5.8 Running Time

At last, we compare the running time of these algorithms on Amazon, DBLP
and LiveJournal. For each method, we calculate the average time of detecting
all communities of a single seed node on different datasets, Table 5 shows the
result. We can see that the running time of LOSP increases rapidly as the size of
graph increases, and cost more than 500 s for a single seed node on LiveJournal.
Although HqsMLCD doesn’t achieve the best time efficiency, HqsMLCD, MLC,
and MULTICOM have a similar time cost. Considering the improvement brought
by HqsMLCD for the community detection problem, such a little overhead of
the time cost is acceptable.

Table 5. Average running time (s) of detecting all communities of a seed node.

Algorithm Amazon DBLP LiveJournal

LOSP 4.24 7.62 538.71

MULTICOM 6.04 9.12 11.37

MLC 1.39 2.82 12.51

HqsMLCD 5.14 6.78 17.19
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6 Conclusion

In this paper, we proposed a method, HqsMLCD, for recovering all communities
which a seed node belongs to. In HqsMLCD, we first embedded and clustered the
candidate subgraph which sampled from the whole network, then selected high-
quality seeds through the quality scores, at last, expanded each high-quality
seed to a detected community. The comprehensive experimental evaluations
on various real-world datasets demonstrate the effectiveness of our detection
algorithm.
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Abstract. Subgraph isomorphismis a well known NP-hard problem that
finds all the matched subgraphs of a query graph in a large data graph.
The state-of-the-art GPU-based solution is the vertex-oriented joining
strategy, which is proposed by GSI. It effectively solves the problem
of parallel write conflicts by taking vertices as processing units. How-
ever, this strategy might result in load-imbalance and redundant mem-
ory transactions when dealing with dense query graph. In this paper, we
design a new storage structure Level-CSR and a new partition-oriented
joining strategy. To avoid the influence of vertices with large degrees, we
divide the dense vertices in traditional CSR into several GPU-friendly
tasks and store them in Level-CSR. Then, an efficient execution strat-
egy is designed based on the partitioned tasks. The partition strategy
can improve the load imbalance caused by the irregularity of real-world
graphs, and further reduce the redundant global memory access caused
by the redundant neighbor set accessing. Besides, to further improve the
performance, we propose a well-directed filtering strategy by exploit-
ing a property of real-world graphs. The experiments show that com-
pared with the state-of-the-art GPU based solutions, our approach can
effectively reduce the number of unrelated candidates, minimize memory
transactions, and achieve load balance between processors.

1 Introduction

Graph analysis has been attracting increasing attention in both industry and
research communities. As one of the most fundamental problems in graph
analysis, subgraph matching has a wide range of application scenarios, e.g.,
biomedicine [3], social network [4,8] and knowledge graph [13]. Given a query
graph Q and a large data graph G, subgraph matching is to extract all subgraph
isomorphic embedding of Q in G. An example of subgraph matching is given in
Fig. 1. Figure 1(a) shows a target graph G, Fig. 1(b) shows a query graph Q and
Fig. 1(c) shows the matching of Q in G.

Subgraph isomorphism is a well-known NP-hard problem [5]. It has been
studied on CPU for decades. Most CPU solutions are based on the backtracking
tree search strategy [12] and adopt a heavy pruning techniques to reduce the
search space [6,7]. However, the search space is still too large. Therefore, GPU
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 53–68, 2020.
https://doi.org/10.1007/978-3-030-60259-8_5
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Fig. 1. An example of query and data graph.

acceleration becomes a promising technology to improve efficiency. Since parallel
subgraph matching algorithms on GPU will generate intermediate results simul-
taneously, to avoid the parallel writing conflicts, GpSM [1] and GunrounkSM [9]
adopt an edge-oriented [18] join strategy and employ a “2-step output scheme”
[1]. In the edge-oriented strategy, each processor takes one edge as a processing
unit. The candidate edges are joined through shared vertices. The algorithm
performs the same join procedure twice, where the additional joining is to deter-
mine the writing address for each processor. Doubling the work makes the edge-
oriented strategy inefficient. GSI [2] adopts a vertex-oriented joining strategy
and uses a Prealloc-Combine approach to avoid writing conflicts when generat-
ing intermediate results in parallel. Different from the edge-oriented approach,
the vertex-oriented strategy joins candidate vertices instead of edges through
shared edges, and each processor takes one vertex as a processing unit. The
vertex-oriented joining strategy avoids work duplication caused by the two-step
method. A vertex is joined into intermediate results though multi-edges between
itself and the “axis”1 vertices in the existing result. However, each processor in
the vertex-oriented approach has to access the full neighbors of axis vertices.
While in the real-world graphs [19], the size of vertices’ neighbor sets sharply
varies. This strategy might incurs load imbalance and redundant neighbor access.

In this paper, we propose an efficient GPU subgraph isomorphism algo-
rithm based on the partition-oriented joining strategy. Different from the vertex-
oriented approach, our approach doesn’t take vertices as the minimal processing
unit. By carefully partitioning the graph data, we divide all vertices and their
neighbors into small fine-grained task partitions and store them in a CSR-based
structure for efficient parallel neighbor set accessing. Through the efficient CSR-
based index structure, our approach can achieve natural load balance between
processors. The redundant global memory access can also be reduced.

Another essential way to improve efficiency and scalability is filtering. We
observe that the real-world graph usually follows the power-law distribution. In
the subgraph isomorphism problem, that means 1) most edges are connected
with a few vertices, and 2) a few vertices might cause most of the invalid inter-
mediate results. Based on these observations, we design a new filtering strategy
1 The vertices that have edges connected with the joined vertex.
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Table 1. Notations

Notations Descriptions

ϕ Subgraph isomorphism

g, G and Q Graph, target graph and guery graph

Deg(u), C(u) and adj(u) Degree, candidate set and neighbors of u

Lv(u), L(u, u′) Lable of u and (u, u′)

D(u) The joining order of query vertices

Mi Intermediate results from the ith iteration

S(u), S(v) Encoding of vertex u and v

V (Q) The collection of vertices on the query graph

P (Q) The vertices in V (Q) that have been joined

by considering the different impact of vertices. For vertices with small degrees,
lightweight filtering is performed. While for “heavy” vertices, heavy filtering will
be carried out by traversing their neighbors. By distinguishing the different types
of vertices, we can achieve a better filtering effect with less overhead.

Our contributions are summarized as follows:

– We propose an efficient filtering strategy with only small overhead by explor-
ing the power-law property of real-world graph.

– We propose an efficient partitioned graph data structure Level-CSR, through
which we can access the neighbors of vertices in a more efficient and load
balanced manner.

– We propose a partition-oriented joining strategy which can reduce both load
imbalance and redundant memory access.

– We conduct extensive experimental evaluation on the real data sets, and the
result demonstrates that our partition-oriented joining strategy can achieve
up to 1.82X speed up over the vertex-oriented strategy and 179X speedup
over the edge-oriented joining strategy. And compared with the vertex-orient
strategy, our approach can reduce up to 70% memory transactions.

The rest of the paper is organized as follows. Section 2 gives a formal defi-
nition of subgraph isomorphism and describes the GPU background. Section 3
provides an overview of the whole process. Section 4 introduces a 2-step filtering
strategy. Level-CSR structure and partition-oriented joining strategy are intro-
duced in Sect. 5. Section 6 shows the experimental results. Section 7 concludes
the paper.

2 Preliminaries

2.1 Problem Definition

In this paper, we focus on the most general case, where vertices and edges all have
labels. We use g = (V,E,Lv, L) to denote the graph, where V is a set of vertices,
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E is a set of edges, Lv is a function that associates a vertex u with a label Lv(u),
and L is a function that associates a vertex pair (u, u′) with a label L(u, u′). In
the following, we give a formal definition of subgraph iosmorphism and related
preliminaries. The frequently used notations are summarized in Table 1.

Definition 1 (Subgraph Isomorphism). Given graphs Q=(V , E, Lv, L) and
G = (V ′, E′, L′

v, L′), the subgraph isomorphism from Q to G is an injective
function ϕ:V → V ′ that satisfies:
(1)∀u ∈ V,Lv(u) = L′

v(ϕ(u)); (2)∀(u, u′) ∈ E, (ϕ(u), ϕ(u′)) ∈ E′, L(ϕ(u), ϕ(u′))
= L′((u, u′)).

Definition 2 (Subgraph Matching). Given a data graph G and a query
graph Q, a subgraph matching finds all subgraphs in G that are isomorphic
to Q.

2.2 Related Work

Subgraph Matching on CPU. The research on subgraph matching attracts
lasing attention and Ullman algorithm [10] was first proposed to solve this prob-
lem. The proposed backtracking method laid the foundation for the subsequent
research. VF2 [12] and QuickSI [17] proposed that joining vertices by specific
order rather than random selection is an effective way to improve the perfor-
mance. To reduce cartesian product costs, TurboISO [16] and BoostIso [7] pro-
posed combining similar vertices in query graphs and data graphs. CFL-match
[6] proposed a core-forest-leaf based joining method. In CFL-match, the vertices
in the query graph are classified into three types: core, forest, and leaf. And
the joining order is determined by the types. In recent years, the MapReduce
framework has also been introduced to accelearting Subgraph matching [15].

Subgraph Matching on GPU. GpSM [1] and GunrounkSM [9] abandoned
the backtracking framework and adopted a breadth-first strategy. The joining
order is determined by generating a spanning tree. To write in parallel, both of
them choose the “2-step” scheme. For the edge-labeled graph, GSI [2] proposed
a new storage structure PCSR, which stores edges separately according to the
label. To avoid performing a same join twice as in edge-oriented methods, GSI
adopts the pre-allocation strategy to improve performance. There are also par-
allel subgraph matching algorithms executing based on reducing candidates [14]
on GPU. While, in this paper we only focus on the joining based method.

3 Overview

The framework of our algorithm is given in Fig. 2, which consists of three phases:
filtering, sorting and joining. In the filtering phase, a set of candidate vertices
in data graph G are collected for each query vertex u as C(u). Then, the query
vertices’ joining order D(u) is determined. And in the joining phase query vertex
u joins C(u) by the order determined in the previous phase.
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Fig. 2. Framework of algorithm.

3.1 Filtering Phase

Due to the inherent properties of GPU and subgraph isomorphism, a lightweight
filtering is prefered. However, the capacity of global memory is limited. Besides,
we notice that real-world graph data often follow the power-law distribution. It
means that the large-degree vertices should be specifically considered. Based on
the observation, we design a 2-stage filtering strategy. The details are introduced
in Sect. 4.

3.2 Sorting Phase

It has been shown that the matching order of query vertices is a very important
factor in reducing the intermediate results. We adopt the methods in CFL-match
[6] and GSI as our basis to determine the addition order of query vertices. The
sorting runs as follows: we first decompose the query vertices according to the
core-multi-forest strategy, and then generate two vertex subsets core and forest.
We then iteratively map vertices one by one from query graph to data graph.
We first pick the core vertex, followed by joining the forest layer by layer, until
the query graph is finished. In each layer, the joining order is determined by the
score of the vertices. The score is determined by score = C(u)

Deg(u) [2]. When u has
been determined, the “axis” vertex is determined by the frequency of the edge.
The detail process is shown in Fig. 3.
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3.3 Joining Phase

When the candidate set C(u) of all query vertices are collected and the
joining order is obtained, we start the joining phase. Consider the exam-
ple in Sect. 1. We have C(u0) = {v0}, C(u1) = {v1}, C(u2) = {v2},
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C(u3) = {v4}, C(u4) = {v3, v5, v6, v7}, C(u5) = {v0, v10, v11, v12, v13} and
C(u6) = {v0, v10, v11, v12, v13}. The joining order obtained from Sect. 3.3 is
D(u) = {u1, u3, u4, u0, u5, u6, u2}. C(u1) is first taken as the intermediate result,
denoted as M0 such that M0 = {v1} and u1 is added into P (Q). Then we join
u3, since u3 has only one candidate vertex v4, and L(v1, v4) = L(u1, u3) = c, the
intermediate result of the second iteration M1 is {v1, v4}, and P (Q) is updated
to {u1, u3}. In the third iteration, there are two edges connected between P (Q)
and u4, i.e., L(u1, u4) = a, L(u3, u4) = b. Therefore the process can be divided
into two stages. In the first stage, C(u4) are joined to the intermediate result
through L(u1, u4). Then in the second step, L(u3, u4) is used to filter out invalid
temporary results. Such that only when vertices with both L(v1, v) = a and
L(v3, v) = b satisfied can produce valid intermediate results Then we continue
to iterate until P (Q) = V (Q). The details of the 2-stage joining method are
discussed in Sect. 5.

4 Power-Law Distribution Based Flitering Strategy

In the subgraph matching problem, filtering invalid intermediate results is an
essential way to improve computing efficiency and reduce space consumption.
Since the subgraph matching can produce a large amount of intermediate
results and require considerable resources. The CPU-based solutions usually
adopt heavyweight filtering methods to reduce the cost from invalid interme-
diate results. A heavyweight filtering strategy is usually not suitable for GPU
architecture since it will incur instruction divergence and random global memory
access. However, lightweight filtering methods might result in a large amount of
candidates and produce more invalid intermediate results in the joining phase,
which limit the processing scale of GPU. Therefore, a more powerful filtering
strategy is desired when it comes to large real-world graphs.

We observe that most real-world graphs have the power-law distribution
property [19]. That is, most of the edges are connected to a few vertices, and
most of the invalid intermediate results are caused by a few heavy vertices. Exist-
ing pruning methods usually adopt a unified method to deal with all vertices,
without considering the different impacts caused by different vertices.
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Therefore, in this paper we design and implement a 2-stage filtering strategy
for different data vertices. In the lightweight filtering stage, we use the method
as proposed in GSI to encode the neighbor information of each vertex as a
length-N bit vector signature S(v) for both the data graph and query graph
[2]. Then we can obtain the initial candidate set by conducting intersection on
the signature between the query graph and data graph. In the second filtering
stage, we perform further filtering on vertices whose degrees are between 32 and
512 from candidate sets, by checking whether the first-order neighbors of these
vertices can match that of the vertex u in the query graph. The reason for setting
the upper bound of vertex degree is that when one’s degree is too large, a vertex
is much likely to match all the query vertices, so filtering these vertices might
consume more resources but with fewer improvements.

An example is illustrated in Fig. 4. The query vertex u0 has two edges, one
with label a and the other with label b. According to the number of different
labels of edges, the first stage of filtering is performed. We can see that S(v2)
& S(u0) �= S(u0), then {v1, v3} is obtained as the initial C(u0). In the second
stage, further filtering is performed. We assume that vertices with the degree
Deg(v) >5 are the heavy vertices. Then v3 will be further pruned, and C(u0) is
updated to {v1}.

5 A Partition-Oriented JOIN Execution Strategy

In the subgraph matching problem, the joining process is to add new query ver-
tices into P (Q) and update the intermediate result until P (Q) expands to V (Q).
The key to improving performance is to improve the efficiency of the joining
process. Extensive researches focus on improving the efficiency of graph-based
algorithms on GPU [1,2,9]. However, performing parallel subgraph isomorphic
queries efficiently still remains challenging.

5.1 Existing Problems

The vertex-oriented strategy is the state-of-art subgraph matching strategy. This
strategy is well designed to increase efficiency and reduce joining overhead. So
we use this strategy as our baseline. First of all, we use an simple example to
illustrate the joining process. Assume the joining vertex u has 2 edges (u, u0),
(u, u1) connected with P (Q), and σu0,u1(M) is denoted as the result table of
u0 and u1 in M . For each record (vi, vj) in σu0,u1(M), we read adj(vi) and
adj(vj). Then the final result can be expressed as adj(vi) ∩ adj(vj) ∩ C(u). In
the first stage, we pre-allocate memory for u through edge (u, u0) and conduct
adj(vi) ∩ C(u). In the second stage, we validate the result generated in the first
stage by checking whether adj(vi) ∩ C(u) belongs to adj(vj). Since different
processors have to access different neighbor sets, this strategy might incur the
following two problems.
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Load Imbalance Between Warps. To coalesce the accessed global memory,
the vertex-oriented method assigns one warp to deal with a task. A task is one
vertex from intermediate result table M and its neighbor lists. However, the
sizes of neighbor lists of real-world graphs vary sharply. Severe load imbalance
might occur between warps. In this case, GPU will spend much time on vertices
with a large degree. However, for vertices with a small degree, the size of their
neighbors is even smaller than the warp size. And hence most threads in this
warps are idle. It will result in unnecessary consumption of computing resources.

Redundant Global Memory Access. In the validation stage, to validate the
vertex set adj(vi) ∩ C(u) generated in the first stage, the vertex-oriented app-
roach has to access the full neighbors lists of vj to check whether adj(vi) ∩ C(u)
exists. This process in vertex-oriented approach requires a cartesian product
and will result in a large amount of memory access. The neighbors set has to be
accessed repeatedly. However, only part of the neighbors are required. This stage
is time consuming especially when |adj(vi) ∩ C(u)| and |adj(vj)| are both large.
Therefore, reducing redundant memory access in this stage will largely improve
the efficiency of the algorithm.
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Fig. 5. CSR and Level-CSR.

In order to solve these two problems, we propose 1) a partition-based graph
representation named Level-CSR structure, and 2) a partition-based joining
strategy, which can reduce both load imbalance and redundant global memory
access.

5.2 Level-CSR

The key idea of the load-balancing and memory-efficient joining strategy is to
partition the tasks. We first review the traditional storage structure Compressed
Sparse Row structure (CSR) as shown in Fig. 5(a). row offset array stores the
address of each vertex’s neighbors, column index array stores all the neighbors
linearly, and edge value stores the corresponding labels. The advantage of tra-
ditional CSR is that it allows a vertex to locate its first neighbor in O(1) time,
and all neighbors are stored continuously. Therefore the locality can be guaran-
teed. However, this design has an obvious deficiency. When it requires to visit
one of the neighbors of v, the whole adj(v) has to be accessed.

Different from CSR, Level-CSR splits up vertices’ neighbors. The row offset
array doesn’t point to their neighbors in column index. We divide the each



Partition-Oriented Subgraph Matching on GPU 61

17

32 threads

32

32

20

17

32

32

20

32 threads

adj(vi)

adj(vj)

P0(vi)

P0(vj)

P1(vj)

P2(vj)

Fig. 6. Reorganize the workload to
achieve load balance

Row_offset
_aux of  vi

One 
memory 

transac on

Issue:
 massive memory 

transac ons

adj(vi) 
par ons of 

adj(vi) 

P0(vi)

P1(vi)

P2(vi)

Fig. 7. Reducing memory transaction
by avoiding invalid data access

neighbor set in column index into multi-partitions with a given partition size
N . The sizes of all partitions except the last one are all N . Then we create a
secondary index row offset aux between each vertex and their neighbors, and
associate row offset with column index. The row offset aux array stores the
start address of each partition in column index. The row offset array stores
the first partition index in the row offset aux array. Here we give an example
in Fig. 5 (b). The edge value array and node value array are the same as those
in CSR. As we can see, vertices with degrees less than N are not split, while
vertices with degree larger than N are split into several groups. Such that, in the
first join stage, the neighbor set of vertices with a large degree can be accessed
in parallel. This can reduce the burden of any single processor. In the second
stage, this algorithm can quickly determine the neighbor with row offset aux
with fewer memory transactions than accessing all its neighbors.

5.3 Partition-Oriented Joining Strategy

Based on the partitioned graph representation Level-CSR, our partition-oriented
joining strategy inherits the same two-stage approach from the vertex-oriented
joining. In the first stage, we generate a prefix-sum for each partition instead of
each vertex from intermediate results. Then the memory for candidate vertices
is pre-allocated based on the prefix-sum. Each partition records its own writing
address. When generating intermediate results, we assign a unique warp to deal
with one partition. Then the results could be written back in parallel. As in
the vertex-oriented strategy, our approach can naturally guarantee inner-warp
load balance and memory coalesced accesses. Moreover, our partition-oriented
joining strategy can achieve further load balance between warps, which increases
the hardware resource utilization.

We give an example in Fig. 6. The vertex-oriented approach assigns one warp
to each vertex. Each warp accesses the neighbor set batch by batch in a size of
32. Since the size of adj(vi) is small, the workload of vi is light, and some threads
are even idle. The size of adj(vj) is large, so it requires multiple batch operation
to complete the whole task. This will result in the load imbalance between warps.
In our partition-oriented approach, assume N is set with 32, adj(vi) will be set
as one partition since its size is smaller than N , and adj(vj) will be divided into
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three partitions p0, p1 and p2. All of them will be indexed by row offset aux
array. When joining new vertices, we can rearrange the workload with one warp
[11] to each two task partitions through row offset aux, such that adj(vi) and
p0 are assigned to one warp. p1 and p2 are assigned to another warp. Then the
load imbalance has been improved.

In the validation stage, all records in (vi, vj)’s intermediate results generated
in the first stage need to be verified, and we assign one warp to deal with one ver-
tex pair. Through row offset aux, we can efficiently locate the subset that may
contain the vertex vj to be verified in adj(vi). As shown in Fig. 7, when testing
with traditional CSR structure, the whole neighbor set adj(vi) has to be accessed,
which result in redundant memory transactions. In our partition-oriented strat-
egy, the possible partition can be quickly located through the row offset aux
array. Therefore, the validation of each vertex pair can be finished with fewer
memory transactions. The overall joining phase is summarized in Algorithm1.

Algorithm 1. Joining a new vertex

Input: query graph Q,partial result table Mi corresponding to the query ver-
tices set P (Q), the vertex to be joined and its candidate set C(u),and linking
edges E between P (Q) and u.

Output: update intermediate table Mi+1

1: select the first edge (u′
0, u), allocate space for write buffer B, offset array

addr, tasks id T and partition index P .
2: launch a GPU kernel function to generate task for the new vertex;
3: for each row mi (a partial match) in M do
4: Write the match of u′

0 in mi to T and generate partition index P .
5: end for
6: for linking edge (u′

i, u) in E do
7: launch a GPU kernel function to join Mi with C(u):
8: for each row task ti in T do
9: let bufi be the segment addri addri+1 in B

10: assume that v′
i match u′ in ti

11: let Npi
(v′

i, l) be the neighbor set partition of v′
i.

12: if (u′
i, u) is the first edge (u′

0, u) then
13: bufi=adjpi

(v′
i, l) \ mi ∩ C(u)

14: else
15: for each newly generated result rj in bufi do
16: rj=rj ∩ adjpj

(v′
i, l)

17: end for
18: end if
19: end for
20: end for
21: allocate memory for intermediate table M ′

22: launch a GPU kernel function to link Mi andB to generate Mi+1

The core difference between our approach and GSI is the different joining
strategies when dealing with vertices that have multiple edges connected to the
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Table 2. Dataset description

Dataseta Vertices Links |LE | |LV | PL-exponent

gowalla 196,591 950,327 10 1 2.65

citeseer 384,413 1,751,463 10 1 2.73

Google 875,713 5,105,039 10 2 2.73

LiveJournal 4,847,571 68,993,773 10 2 2.65

wikipedia-en 4,206,784 101,500,998 10 2 2.21
aThese datasets are all download from [21]

existing results. When verifying the candidate result through the second and later
edges, GSI has to perform a full scan on one’s all neighbors to verify whether
an edge exists. While in our approach, benefiting from the partition-based level-
CSR structure, our strategy only needs to access the necessary neighbors. And
the redundant global memory access can be avoided.

5.4 GPU Implementation and Optimizations

Parameter Setting. The setting of parameter N has an important impact on
the performance of partition-oriented joining. If N is set to a large value, the
system has to access more neighbor subsets in the validation stage. While if N
is set to a small value, the storage maintenance cost will increase. On the other
hand, each 32 threads are organized and scheduled as a warp. If the partition
size is even smaller than the warp size, some threads in a warp may become idle.
Therefore, the number of task N assigned to each warp should be divisible by
the warp size (32). Since a memory transaction is 128B and each vertex id is
stored with 4 Bytes. We set our partition size N to 32, such that each warp can
read and process a partition with only one memory transaction.

Shared Memory Optimization. In partition-oriented joining strategy, there
are two types of global memory access schemes: 1) reading the neighbor lists
from global memory, and 2) writing newly generated results to global memory
in the first stage. To further improve the performance, we use shared memory
to reduce global memory transactions. Since each warp has M partitions and
generates at most M × 32 new results, to reduce the global memory access, we
cache all neighbor partitions on shared memory to reduce global memory reading.
Then, to avoid global memory writing, we adopt a similar write caching strategy
as proposed in GSI. The newly generated intermediate results are cached on
shared memory and written back to global memory after all tasks finished. Since
each warp handles a limited number of partitions, the system doesn’t need to
frequently check whether the cache is full and only write back after all partitions
are completed.
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6 Evaluation

We evaluate our method against the representative edge-oriented method Gun-
rock [9] and vertex-oriented2 method GSI [2] separately. All experiments are
conducted on a server with ubuntu 16.04. The server is equipped with Intel Sil-
ver 4210 2.20GHz CPU, 64G host memory, and a NVIDIA RTX 2080Ti with 34
SMs and 11GB global memory.

Datasets. The experiments are conducted on five real-world datasets, as shown
in Table 2. Since the filtering strategy as proposed in this paper targets for
power-law distribution. In this paper we choose five datasets that follows the
power-law distribution. The power-law exponent metric is also listed in Table 2,
which indicates the power-law distribution degree. We randomly assign vertex
and edge labels following the power-low distribution. For the query graph, we
perform randomly selected data graph until 8 vertices are visited [20]. And then
we randomly select two of them and connect them with a randomly chosen edge
label, until the average degree reaches 2. For each benchmark, we generate 50
query graphs and report the average query running time.

6.1 Evaluation of Filtering Strategy

To verify the effectiveness of our 2-step filtering strategy, we compare it with the
pruning techniques used in GSI that is based on the vertex label and edge label.
The metric is the size of the most significant intermediate result, which are the
critical bottleneck that limits the scalability of GPU-based subgraph matching.
The experiment shows that our 2-step strategy can reduce the intermediate size
from 10.1% to 31.6%, as shown in Table 3.

6.2 Comparison with the State-of-the-Art GPU Algorithms
and the Evaluation of Scalability

The second set of experiments are to evaluate the performance of our app-
roach to other stare-of-the-art GPU algorithms, the edge-oriented approach in
Gunrock and the vertex-oriented approach in GSI [2]3. As reported in Fig. 8,
Our partition-oriented method can achieve up to 179.59X speedup over the
edge-oriented method, and 1.06X-1.82X(on average 1.67X) speedup over the
vertex-oriented method. In addition, to evaluate the scalability, we generate a
series of synthetic graphs datasets using the RMAT4 graph generator. These
graphs are under power-law distribution. Each dataset has n vertices with
3 uniformly assigned vertex labels and 8n directed edges with 10 uniformly
assigned edge labels. Since the edge-oriented approach runs extremely slow on
2 We use a self-implemented vertex-oriented version since the source code of GSI is

not publicly available.
3 Since our approach only concentrates on the join execution strategy, we don’t imple-

ment the PCSR structure which is orthogonal to our method for a fair comparison.
4 https://github.com/farkhor/PaRMAT.

https://github.com/farkhor/PaRMAT
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the largest dataset, we only compare the vertex-oriented and partition-oriented
solutions and the results are displayed in Fig. 9. The experiment shows that
the partition-oriented approach shows consistently better performance than the
vertex-oriented approach, and also shows good scalability.

6.3 The Efficiency of Partition-Oriented Approach

In this subsection, we evaluate the efficiency of our partition-oriented approach.
As discussed in Sect. 5, our approach can achieve natural balance since our
approach reorganizes the task in a more fine-grained way. Then to verify the
effectiveness of our strategy in reducing memory transactions, we calculate the
total amount of memory transactions in the verification stage of the algorithm.
Table 3 reports the memory transaction amount of vertex-oriented method and
partition-oriented method on all five datasets. Our partition-oriented approach
can primarily reduce the memory transaction amount from 28% to 70%. In addi-
tion, we calculate the additional storage cost caused by the level-CSR structure.
As reported in Table 3, the level-CSR structure can bring considerable improve-
ment with little storage overhead. The experiment shows that our approach could
effectively improve the performances.

Table 3. Performance of filtering, memory transactions, and storage overhead

Dataset 2-step reduces the

candidate set

Global memory

transactions

Level-CSR storage

overhead

1-step 2-step drop vertex-oriented partition-oriented drop CSR level-CSR overhead

gowalla 577K 465K 19% 991K 316K 68% 15.99M 16.87M 1.05

citeseer 193K 133K 32% 191K 138K 28% 29.56M 31.20M 1.06

Google 1.6M 1.1M 31% 4.9M 1.5M 70% 85.18M 89.07M 1.05

LiveJournal 87.1M 80.1M 8% 83M 38.7M 47% 1427M 1462M 1.02

wikipedia-en 44.4M 37.8M 15% 107M 62.3M 58% 1641M 1676M 1.02
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6.4 Additional Experiment

In this subsection, we further evaluate the influence of different parameters
including 1) the density of query graph, 2) the size of query graph, 3) the size
of partition and 4) the number of vertex label. In this set of experiments, we
only consider the vertex label because enlarging the edge label size will drasti-
cally reduce the result size. We evaluate both the vertex-oriented and partition-
oriented strategy and use the wiki-en dataset in Table 2 as benchmark. We fix
the size of query graph with 8 vertices and vary the number of edges from 16 to
32. The result is shown in Fig. 10 (a). Since varying the density might change
the joining order and the result size, the runtime doesn’t regularly decrease as
the number of edges increases. Our partition-oriented strategy shows better per-
formance than vertex-oriented strategy on the dense graph. It is because our
partition-oriented strategy performs much better on the validation strategy. To
evaluate the influence of the size of query graph. We fix the density of the graph
with 3 and vary the number of vertices from 6 to 12. As shown in Fig. 10 (b),
although the runtime does not monotically changing because of the randomness
of query, our partition-oriented strategy show consistently better performance
than the vertex-oriented strategy. An essential parameter in our approach is the
partition size N . We evaluate the influence of parameter N by configuring dif-
ferent Ns on two benchmarks, google and wiki-English. We use the same setting
with the first experiment, and the graph average degree is 2. As reported in
Fig. 10 (c), the algorithm will reach the best performance when N is 32. When
N is configured with a small number, some of the threads in each warp will be
idle. When set with a large number, the cost of the validation stage will increase,
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since it has to access more invalid neighbor set. The last experiment is to evaluate
the influence of vertex labels in the data graph. We use both vertex-oriented and
partition-oriented approach. All query graphs have 8 vertices with the average
degree 3. We vary the number of vertex labels from 2 to 18. As the number of
labels increases, runtime decreases. Both of the two methods demonstrate sharp
dropping in runtime because we use dense query graph, and the size of final
results drastically decrease. When |Lv| > 10, the runtime quickly slows down to
zero as candidate sets are already minimal.

7 Conclusion

In this paper, we propose a partition-oriented joining strategy which takes advan-
tage of GPU parallelism to deal with subgraph matching problem. Through
carefully partitioning the graph and designing GPU-friendly execution strategy,
our approach can reduce both load imbalance and memory transactions in the
joining stage. Based on the power-law property of the real-world graph, a well-
directed filtering strategy is designed to pruning irrelevant candidate vertices.
Experiment results show that our method is efficient and effective.
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2. Zeng, L., Zou, L., Özsu, M.T., Hu, L., Zhang, F.: GSI: GPU-friendly subgraph
isomorphism. CoRR. abs/1906.03420 (2019)

3. Liu, H., Keselj, V., Blouin, C.: Biological event extraction using subgraph match-
ing. In: ISSMB, pp. 110–115 (2010)

4. Ma, T., Yu, S., Cao, J., Tian, Y., Al-Dhelaan, A., Al-Rodhaan, M.: A comparative
study of subgraph matching isomorphic methods in social networks. IEEE Access
6, 66621–66631 (2018)

5. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman (1979). ISBN 0-7167-1044-7

6. Bi, F., Chang, L., Lin, X., Qin, L., Zhang, W.: Efficient subgraph matching by
postponing cartesian products. In: SIGMOD Conference, pp. 1199–1214 (2016)

7. Ren, X., Wang, J.: Exploiting vertex relationships in speeding up subgraph iso-
morphism over large graphs. PVLDB 8(5), 617–628 (2015)

8. Liu, G., et al.: Multi-constrained graph pattern matching in large-scale contextual
social graphs. In: ICDE, pp. 351–362 (2015)

9. Wang, Y., Davidson, A.A., Pan, Y., Wu, Y., Riffel, A., Owens, J.D.: Gunrock:
a high-performance graph processing library on the GPU. In: PPoPP, 11:1–11:12
(2016)

https://doi.org/10.1007/978-3-319-18120-2_18
https://doi.org/10.1007/978-3-319-18120-2_18


68 J. Chen et al.

10. Ullmann, J.R.: An algorithm for subgraph isomorphism. J. ACM 23(1), 31–42
(1976)

11. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algo-
rithms at maximum warp. In: PPOPP, pp. 267–276 (2011)

12. Conte, D., Foggia, P., Sansone, C., Vento, M.: Thirty years of graph matching in
pattern recognition. IJPRAI 18(3), 265–298 (2004)
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Abstract. Shortest path query is an important problem in graphs and
has been well-studied. In this paper, we study a special kind of shortest
path query on a vertex subset. Most of the existing works propose various
index techniques to facilitate shortest path query. However, these indexes
are constructed for the entire graphs, and they cannot be used for the
shortest path query on a vertex subset. In this paper, we propose a novel
index named pb-tree to organize various vertex subsets in a binary tree
shape such that the descendant nodes on the same level of pb-tree consist
of a partition of their common ancestors. We further introduce how to
calculate the shortest path by pb-tree. The experimental results on three
real-life datasets validate the efficiency of our method.

Keywords: Shortest path · Vertex subset · Index

1 Introduction

Graph is an important data model to describe the relationships among various
entities in the real world. The shortest path query is a fundamental problem on
graphs and has been well studied in the past couple of decades. In this paper, we
study a special case of the shortest path query problem. Consider the following
applications in the real world. In social networks, some users need to investigate
the shortest path inside a specified community for two individuals. For example,
someone intends to know another by the peoples with the same hobby or occu-
pation. In transportation networks, some vehicles are restricted to a designated
area such that they need to know the shortest route inside such area. The query
problem in the above applications can be modeled as the shortest path query on
a given vertex set for graphs. Given a graph G(V,E) and a vertex subset Vs ∈ V ,
it is to find the shortest path from the starting vertex vs to the ending vertex
ve on the induced subgraph of G on Vs.

It is obvious that the shortest path on a vertex subset Vs can be searched
by the existing shortest path algorithms, e.g. Dijkstra algorithm. However, these
algorithms are not efficient for the shortest path query on the large graphs. Most
existing works propose various index techniques to enhance the efficiency of the
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 69–85, 2020.
https://doi.org/10.1007/978-3-030-60259-8_6
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shortest path query on the large graphs. The main idea of these works is that:
build an index to maintain the shortest paths for some pairs of vertices in a graph.
Given a query, algorithms first retrieve the shortest path to be visited among the
vertices in the index and then concatenate them by the shortest paths which are
not in the index. Unfortunately, such index techniques cannot be used for the
shortest path problem proposed in this paper. It is because the vertex subset Vs

is “dynamic”. Different users may concern about the shortest path on distinct
vertex subset Vs. The indexes for the entire graph G may not be suitable for the
induced graph Gs on some given vertex subset Vs. The shortest path searched
using the indexes for entire graph G may contain some vertices that are not in
Vs. Therefore, the important issue is to develop an index technique such that it
can be utilized for answering the shortest path query on various vertex subsets.

In this paper, we propose a novel index, named pb-tree, to make the shortest
path query on a vertex subset more efficient for the large graphs. The pb-tree T
is a binary tree to organize various vertex subsets of V such that all the vertex
subsets in the same level of T form a partition of V . The partition on the lower
level is essentially a refinement of that on a higher level. By pb-tree, several
vertex subsets with the highest level, which are included in Vs, can be retrieved
to answer the shortest path query efficiently on Vs by concatenating the shortest
paths maintained in these vertex subsets.

The main contributions of this paper are summarized below. First, we study
the problem of the shortest path query on a given vertex subset and develop a
novel index pb-tree to solve it. We introduce how to construct pb-tree efficiently.
Second, we propose an efficient query algorithm based on pb-tree to answer such
shortest path query. Third, we analyze the time and space complexity for pb-tree
construction and query algorithm. Forth, we conduct extensive experiments on
several real-life datasets to confirm the efficiency of our method.

The rest of this paper is organized as follows. Section 2 gives the problem
definition. Section 3 describes what is pb-tree and how to construct it. We intro-
duce how to answer the shortest path query on a vertex subset using pb-tree in
Sect. 4 and conduct experiments using three real-life datasets in Sect. 5. Section 6
discusses the related works. Finally, we conclude this paper in Sect. 7.

2 Problem Statement

A weighted graph is a simple directed graph denoted as G = (V,E,w), where
V is the set of vertices and E is the set of edges in G, each edge e ∈ E is
represented by e = (u, v), u, v ∈ V , e is called u’s outgoing edge or v’s incoming
edge and v (or u) is called u (or v)’s outgoing(or incoming) neighbor. w is a
function assigning a non-negative weight to every edge in G. For simplicity, we
use w(u, v) to denote the weight of the directed edge (u, v) ∈ E. A path p in G
is a sequence of vertices (v1, v2, · · · , vk), such that (vi, vi+1) is a directed edge in
G for 1 ≤ i ≤ k−1. The weight of path p, denoted as w(p), is defined as the sum
of the weight of every edge in p, i.e., w(p) =

∑
1≤i≤k−1 w(vi, vi+1). Our work

can be easily extended to handle the undirected graphs, in which an undirected
edge (u, v) is equivalent to two directed edges (u, v) and (v, u).
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Fig. 1. A graph G and the pb-tree of it (Color figure online)

In this paper, we study a special kind of shortest path query restricted to
a vertex subset. Given a vertex subset Vs ⊆ V , an induced subgraph on Vs,
denoted as Gs(Vs, Es), is a subgraph of G satisfying the two following conditions:
(1) Es ⊆ E; (2) for any two vertices vi, vj ∈ Vs, if (vi, vj) ∈ E, then (vi, vj) ∈ Es.
We say a path p is in Gs if all the vertices and edges that p passing through are
in Gs. Next, we give the definition of the shortest path query on a given vertex
subset Vs.

Definition 1 (The shortest path query on a vertex subset). Given a
graph G = (V,E,w), a vertex subset Vs ∈ V , a source vertex vs and a destination
vertex ve, where vs, ve ∈ Vs and Gs is the induced graph on Vs, the short path
query on Vs is to find a path p∗ with the minimum weight w(p∗) among all the
paths in Gs.

Figure 1(a) illustrates an example graph G and Vs is bounded in red dot line.
The shortest path from v10 to v2 on G and Vs are (v10, v12, v2) and (v10, v14, v2)
respectively because v12 is not in Vs.

3 Partition-Based Tree for Shortest Path Query
on a Vertex Subset

In this section, we propose a novel index, named Partition-Based Tree (or
pb-tree for simplicity), to improve the efficiency of the shortest path query on a
given vertex subset. A pb-tree, denoted as T , essentially is an index to organize
several vertex subsets in a binary tree shape. Specifically, every leaf node in pb-
tree T represents a vertex subset, and it can be regarded as a cluster of V . Thus
the set of leaf nodes is a partition of V . Every non-leaf node is the super set of
its two children. By pb-tree, the nodes in pb-tree which are included in a given
Vs can be anchored rapidly and then they can be utilized to answer the shortest
path query on Vs. In the following, we first introduce what is pb-tree and then
discuss how to construct it. Finally, we explain how to partition a graph into
several clusters.
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Table 1. Frequently used notations

Notation Description

l(ui) The level of the node ui ∈ T

Px A shortest path tree rooted at vx on G

Si The set of all the shortest path trees rooted at all the entries of ui on Gi

p∗
x,y The shortest path from vx to vy in G

ax,y The abstract path from vx to vy in G

Ai The set of all the abstract paths for all the pairs of entry and exit in ui

3.1 What Is Partition-Based Tree?

Definition 2 (Partition). Given a graph G(V,E), a partition P of G is a
collection of k vertex subsets {V1, · · · , Vk} of V , such that: (1) for ∀Vi, Vj (i �= j),
Vi ∩ Vj = ∅; (2) V =

⋃
1≤i≤k Vi. Each Vi ⊆ V is called a cluster in G. A vertex

vx is called an entry of cluster Vi under partition P, if (1) vx ∈ Vi; and (2) ∃vy,
vy /∈ Vi ∧ vy ∈ N−(vx). Similarly, A vertex vx is called an exit of cluster Vi,
if (1) vx ∈ Vi; and (2) ∃vy, vy /∈ Vi ∧ vy ∈ N+(vx). N−(vx) and N+(vx) are
vx’s incoming and outgoing neighbor set, respectively. Entries and exits are also
called the border vertices.

We use V.entry and V.exit to denote the entry set and exit set of G respec-
tively, and use Vi.entry and Vi.exit to denote the entry set and exit set of
cluster Vi respectively. Obviously, V.entry =

⋃
1≤i≤k Vi.entry and V.exit =⋃

1≤i≤k Vi.exit.
The pb-tree T is essentially an index to organize various vertex subsets in

a similar shape as a binary tree. Given a partition P of G, a pb-tree can be
constructed. Specifically, every leaf node ui ∈ T corresponds to a cluster Vi under
P and all leaf nodes consist of the partition P. Every non-leaf node corresponds
to the union of the vertex subsets represented by its two children, respectively.
Each node in pb-tree has a level to indicate the location of it in the pb-tree. We
use l(ui) to denote the level of the node ui ∈ T . For every leaf node ui in T , we
set l(ui) = 1. For the root node uroot of T , we set l(uroot) = h. Note that all
the non-leaf nodes on the same level consist of a partition of G and each node
can be regarded as a cluster under this partition. The partition comprised of the
nodes on the low level is a refinement of the partition on the high level.

There are two kinds of information should be maintained with a pb-tree T .
A shortest path tree set is maintained for every leaf node and an abstract
path set is maintained for every non-leaf node. We first introduce the shortest
path tree set below.

Given a connected graph G(V,E) and a vertex vx ∈ V , a shortest path
tree rooted at vx on G, denoted as Px, is a tree such that the distance from
vx to any other vertex vy in the tree is exactly the shortest distance from vx
to vy in G. Every leaf node ui ∈ T is essentially a vertex subset of V . Let Gi

denote the induced subgraph of G on ui. The shortest path tree set Si of ui is
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the set of all the shortest path trees rooted at all the entries of ui on Gi, i.e.,
Si = {Px|vx ∈ ui.entry, Px ⊆ Gi}.

We next give the definition of the abstract path for every non-leaf node in
pb-tree.

Definition 3 (Abstract Path). Given a non-leaf node ui ∈ T , vx and vy are
the entry and exit of ui respectively. An abstract path from vx to vy, denoted as
ax,y, is a vertex sub-sequence of the shortest path p∗

x,y from vx to vy in G such
that all the vertices in ax,y are the border vertices of ui’s children.

Based on above definition, an abstract path ax,y can be considered as an
“abstract” of the shortest path p∗

x,y by consisting of the border vertices of ui’s
children. For every non-leaf node ui ∈ T , its abstract path set Ai is the set of all
the abstract paths for all the pairs of entry and exit in ui, i.e., Ai = {ax,y|vx ∈
ui.entry, vy ∈ ui.exit}.

Figure 1(b) shows the pb-tree of graph G in Fig. 1(a). For a leaf node u1, a
shortest path tree set is maintained for it. For a non-leaf node u7, an abstract
path set is maintained for it. For the readers convenience, Table 1 lists some
frequently used notations.

3.2 How to Construct Partition-Based Tree?

As shown in Algorithm 1, the pb-tree is constructed in a bottom-up manner.
Given a partition P of G, Algorithm 1 first calls Leaf-Node (Vi) to construct
the leaf node ui for every cluster Vi ∈ P (line 2–4). U is a temporary set to
maintain all the nodes on the same level h. In each iteration, Algorithm1 calls
Non-Leaf-Node (U) to construct the non-leaf nodes on the level h + 1 by
merging the nodes on the level h (line 5–7). When U is empty, Algorithm 1
terminates and returns the pb-tree T . In the following, we introduce how to
construct the leaf nodes and the non-leaf nodes by Leaf-Node (Vi) and Non-

Leaf-Node (U) respectively.

Algorithm 1: Partition-Based-Tree (G, P)
Input: G, a partition P of G
Output:the pb-tree T based on P.

1: T ← ∅, U ← ∅, h ← 1;
2: for each cluster Vi ∈ P do
3: Leaf-Node (Vi);
4: U ← U ∪ {ui};
5: while U �= ∅ do
6: Non-Leaf-Node (U);
7: h ← h + 1, U ← U ∪ Th;
8: return T
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Algorithm 2: Leaf-Node (Vi)
1: ui ← Vi, Si ← ∅;
2: for each vx ∈ Vi.entry do
3: computes the shortest path tree Px rooted at vx on Gi;
4: Si ← Si ∪ {Px}
5: interts ui with Si into T as a leaf node;

Leaf Node Construction: Given a partition P of G, all the clusters in P are
the leaf nodes of T . The pseudo-code of Leaf-Node is shown in Algorithm 2. For
each cluster Vi ∈ P, Algorithm 2 first sets Vi as a leaf node ui and calculates the
shortest path tree set Si (line 1). There are several methods and we use Dijkstra
algorithm to compute the shortest path tree Px for each entry vx ∈ ui.entry (line
3). Finally, Algorithm2 inserts ui with Si and the crossing paths into pb-tree T
as a leaf node (line 5).

Figure 2 depicts a cluster V1 (Fig. 2(a)) and its shortest path trees rooted at
two entries in V1 (Fig. 2(b)). For example, the shortest path from v1 to v2 in G
is exactly the simple path from v1 to v2 in the shortest path tree P1.

Fig. 2. Leaf node construction

Non-leaf Node Construction: The non-leaf nodes in pb-tree T are constructed
level by level. A temporary set U is utilized to maintain all the nodes on the
level h which have been constructed in T and then Algorithm3 constructs all the
non-leaf nodes on the level h+1 by merging two nodes with the maximum size of
crossing edge set in U iteratively. A crossing edge set between node ui and uj

on the same level of T , denoted as Ci,j , is the set of all the crossing edges between
ui and uj , i.e., Ci,j = {(vx, vy)|vx ∈ ui ∧ vy ∈ uj or vx ∈ uj ∧ vy ∈ ui}. It is
worth noting that Ci,j = Cj,i. In each iteration, two nodes ui and uj with the
maximum |Ci, j| in U are merged into a new node uk. Note that the uk.entry and
uk.exit are the subset of ui.entry ∪ uj .entry and ui.exit ∪ uj .exit respectively.
It is because some of the entries and exits of ui (or uj) become the internal
vertices of uk after merging ui and uj . Algorithm 3 computes the abstract path
set Ak for uk by Dijkstra algorithm. Finally, uk is inserted into T with Ak as
the parent of ui and uj . Note that there may be only one node ui in U in the
final iteration. In this case, ui will be left in U and be used for constructing the
level h + 2 of T with all the non-leaf nodes on the level h + 1.
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Algorithm 3: Non-Leaf-Node (U)
1: while |U | > 1 do
2: selects ui and uj with the maximum |Ci,j | from U ;
3: uk ← ui ∪ uj ;
4: computes the abstract path set Ak for uk;
5: inserts uk with Ak into T as the parent node of ui and uj ;
6: U ← U \ {ui, uj}

Figure 3 shows the construction of the pb-tree. The leaf nodes are constructed
in the same way as Fig. 2. U is {u1, u2, u3, u4, u5, u6} in the begining. The algo-
rithm first merges u1 and u2 into u7, because |C1,2| = 3 is maximum. The
entries of u7 is v1 and v10. The algorithm uses the Dijkstra algorithm to com-
pute the shortest paths from v1 and v10. The shortest path from v1 to v6 on V7

is (v1, v12, v2, v4, v15, v16, v6), and the abstract path a1,6 is (v1, v2, v4, v6). In the
same way, a10,6 is maintained as (v10, v2, v4, v6). After that, u8 is mergred by
u5 and u6. u9 is merged by u3 and u4. To construct the T3, U is {u7, u8, u9}.
The algorithm merges u7 and u8 into u10, cause |C7,8| = 2 is larger than |C8,9|
and |C7,9|. After that, U is {u9}, and u9 is used to construct the higher level of
T . Then U is {u9, u10}. u11 is constructed by merging u9 and u10. The abstract
paths in those nodes are computed in the same way as computing the abstract
paths in u7.

3.3 How to Partition Graph to Several Clusters

There are several ways to partition a graph to several clusters. For different
partitions, the number of entries and exits are different. In our problem, the fewer
number of entries and exits makes the smaller size of pb-tree index. Intuitively,
the fewer edges among different clusters result in the less number of entries and
exits in graphs. Thus it is a problem to find an optimal partition such that
the edges among different clusters are sparse and the edges in the same cluster
are dense. This problem has been well studied, and there are many effective
and efficient algorithms[1,4,17] to solve it. In this paper, We adopt the METIS
algorithm[1], which is a classic graph partition algorithm.

3.4 Complexity Analysis

For graph G, let m be the number of edges, k be the number of clusters, α and
β be the maximum number of vertices and edges inside the cluster and a be the
maximum number of the borders in each cluster.
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Fig. 3. pb-tree construction

Time Complexity: For each leaf node, the shortest path tree set can be
built in O(a(α log α + β)) time. All the leaf nodes can be constructed in
O(kα2logα + kαβ). As a binary tree, the maximum level of pb-tree is logk + 1
and the maximum number of the non-leaf nodes on level h is k

2h−1 . A non-leaf
node on level h is constructed by merging two children. The entry and the exit
sets of the two children can be merged in O(1). The time complexity of search-
ing all the neighbors of borders on level h is O(m). The number of borders in
a non-leaf node on level h is O(2h−1a), and the number of the vertices in it
is O(2h−1a) because abstract paths are computed only by the borders of the
children. The Dijkstra algorithm is utilized to compute the abstract paths from
each entry. Computing all the abstract paths in a non-leaf node on level h is
in O(2h−1a(2h−1alog(2h−1a) + 22h−2a2)) = O(8h−1a3). The time complexity of
constructing the non-leaf nodes on level h is O(4h−1ka3 +m). Because there are
log k + 1 levels in pb-tree, then we have

logk+1∑

h=2

(4h−1ka3 + m) = mlogk +
4
3
ka3(4logk − 1) = mlogk +

4
3
ka3(k2 − 1)

Thus the time complexity of constructing all the non-leaf nodes and pb-tree
are O(mlogk + k3a3) and O(kαβ + mlogk + α3k3) respectively.

Space Complexity: In the worst-case, each shortest path tree in a leaf node
contains all the vertices and edges in that node. The number of the shortest
path trees in a leaf node is O(a); thus the number of vertices in each leaf node is
O(aα) = O(α2) and the number of edges is O(aβ) = O(αβ). The space complex-
ity of leaf nodes is O(kα2 + kαβ). For a non-leaf node on level h, the number of
the borders is 2h−1a, and the number of the abstract paths is O(4h−1a2). In the
worst-case, each abstract path contains all the vertices in the node. The space
complexity of the non-leaf nodes on level h is O(a34h−1k). Because there are
log k + 1 levels in pb-tree, then we have

logk+1∑

h=2

(a34h−1k) =
4
3
ka3(4logk − 1) =

4
3
ka3(k2 − 1)
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Algorithm 4: Query-Processing (q = (Vs, vs, ve))
Input: Vs, vs, ve, pb-tree T , G
Output:p∗

s,e

1: Q ← Vs, τs ← 0
2: while ve ∈ Q do
3: gets vx from Q with minimum τx
4: if vx is expanded by ay,x then
5: Path-Recover (Q, ay,x)
6: if vx ∈ ui.entry then
7: if ui is a complete node then
8: Node-Identify (Q, vx, ui)
9: else

10: Partial-Search (Q, vx, ui)
11: if vx /∈ ui.entry ∨ vx ∈ ui.exit then
12: updates the τ of vx’s outgoing neighbors in Q;
13: dequeues vx from Q
14: return p∗

s,e

The space complexity of constructing all the non-leaf nodes is O(k3a3), and
the space complexity of constructing the pb-tree is O(k3α3 + kαβ).

4 Query Processing by pb-tree

4.1 Querying Algorithm

In this section, we introduce how to find the shortest path on a given vertex
subset by pb-tree. For a vertex subset Vs, all the nodes in pb-tree can be divided
into three categories: Complete node , Partial node and Irrelevant node .
A node u ∈ T is a complete node for Vs if all the vertices in u are included in
Vs, and it is a partial node if there exists a proper vertex subset of u included in
Vs. Correspondingly, u is an irrelevant node if all the vertices in u are outside of
Vs. Note that if a node is a complete node, then all its descendant are complete
nodes. We propose a Dijkstra-based algorithm on pb-tree to make the query
more efficient by expanding the abstract paths in complete non-leaf nodes and
the shortest path trees in partial leaf nodes.

The querying algorithm is shown in Algorithm4. Algorithm 4 utilizes a prior
queue Q to iteratively dequeue the vertices in Vs until the ending vertex ve is
dequeued. In each iteration, a vertex vx is dequeued from Q with the minimum
τx, where τx is the distance from the starting vertex vs to it. Initially, Q is set as
Vs. τs is 0 and τx is ∞ for other vertices in Vs. If vx is an exit and it is expanded
by an abstract path ay,x, Algorithm 4 calls Path-Recover to dequeue all the
vertices in the path represented by ay,x from Q (line 4–5) and then updates τz
for every vx’s outgoing neighbor vz in Q (line 12). If vx is an entry of a leaf
node ui, Algorithm 4 calls Node-Identify to find the complete node uj with
the highest level such that vx is still an entry of uj . Node-Identify uses the
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Algorithm 5: Partial-Search (Q, vx, ui)
1: for each vy ∈ Px do
2: if vy /∈ Vs then
3: deletes the branch below vy;
4: else
5: if vy ∈ Q then
6: updates p∗

s,y and τy;

Algorithm 6: Path-Recover (Q, ay,x)
1: for each ai,i+1 ⊂ ay,x do
2: if ∃ a child node uk of uj , ai,i+1 ∈ Ak then
3: Path-Recover (ai,i+1);
4: else
5: gets p∗

i,i+1 by searching Pi

6: Q ← Q \ p∗
i,i+1

abstract paths to expand the exits of uj and then updates Q (line 8). Note
that uj may be the leaf node ui. If such uj does no exist, the leaf node ui is a
partial node, then Algorithm4 calls Partial-Search to expand the vertices in
ui and updates Q (line 10). If vx is not an entry or exit, it must be an internal
vertex in a leaf node ui, then Algorithm 4 updates vx’s outgoing neighbors in Q
in the similar way as Dijkstra algorithm (line 12). Algorithm 4 terminates when
the ending vertex ve first dequeued from Q and the τe is the shortest distance
from vs to ve on Vs. Next, we introduce Node-Identify, Partial-Search and
Path-Recover respectively.

Partial Search: For a partial node ui and an entry vx, the shortest path tree Px

of Si is utilized to expand the shortest paths. Algorithm5 utilizes BFS to search
Px. For every vy ∈ Px, if vy /∈ Vs, the branch below vy can be ignored (line 3).
And if vy ∈ Q, the Algorithm 5 updates the p∗

s,y and τy (line 6).

Path Recover: For an abstract path ay,x of a complete node uj , Path-

Recover computes p∗
y,x in the descendant nodes of uj . As shown in Algo-

rithm6, for each sub-abstract path ai,i+1 of ay,x which can be found in one of
uj ’s children, Algorithm 6 calls Path-Recover in that child to compute the
ai,i+1 (line 3). Otherwise, Algorithm 6 searches the shortest path tree Pi to com-
pute p∗

i,i+1 (line 5).

Node Identify: Given a leaf node ui and a vertex vx ∈ ui.entry, the pseudo-
code of Node-Identify is shown in Algorithm 7. It first finds the parent node
of ui. If vx is an entry of the parent node, and it is a complete node, Algorithm7
checks the parent node of it in the same way (line 3–4). uj is the complete node
on the highest level and vx is an entry of it. Then Algorithm7 searches the
shortest path tree Px to update the exits of uj in Q, if uj is a leaf node (line 7).
If uj is a non-leaf node, Algorithm7 utilizes the abstract paths which start from
vx to update the exits of uj in Q (line 9).
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Algorithm 7: Node-Identify (vx, ui)
1: finds the parent node uj of ui;
2: while vx ∈ uj .entry and uj is a complete node do
3: ui ← uj

4: finds the parent node uj of ui;
5: uj ← ui

6: if uj is a leaf node then
7: updates the τ of the exits in Q using the shortest path trees in uj ;
8: else
9: updates the τ of the exits in Q using the abstract paths in uj ;

4.2 Example

Figure 4 shows the query process from v10 to v3 on Vs. Initially, Q is set as Vs

and τ10 is set to 0. In the 1st iteration, v10 is dequeued from Q. v10 is an entry
of a partial node u1. The algorithm searches the shortest path tree P10 in u1.
Because v12 is not in Vs, only τ14 is updated to 4 and p∗

10,14 is updated to (10, 14).
v10 is also an exit of u1, τ4 is updated to 8 and p∗

10,4 is updated to (10, 4). In the
2nd iteration, v14 is dequeued from Q. Cause v14 is not an entry of u1, algorithm
updates the p∗

10,2 to (10, 14, 2) by the edge (v14, v2), and τ2 is updated to 6. As
an exit of u1, the algorithm searches the outgoing neighbors of v2 in the 3rd
iteration. τ4 is updated to 7 and p∗

10,4 is updated to (10, 14, 2, 4). This is the (1)
of Fig. 4. In the 4th iteration, because v4 is an entry of u2, and it is not an entry
of u7, P4 in u2 is searched and τ6 is updated. In the same way, τ7 is updated
in the next iteration, and p∗

10,7 is updated to (10, 14, 2, 4, 15, 16, 6, 7). Then v7 is
dequeued from Q. It is an entry of a complete node u3. The algorithm searches
the pb-tree and finds the complete node u9 with the highest level such that v7 is
an entry of it. That is the (2) of Fig. 4. In u9, the abstract path a7,5 is utilized
to update the p∗

10,5 and τ5. In the next iteration, v5 is dequeued from Q and it
is expanded by a7,5. The algorithm computes p∗

7,5 by computing p∗
7,8 in u3 and

p∗
9,5 in u4. u3 and u4 are the leaf nodes. Therefore, the algorithm searches P7

in u3 and P9 in u4. All the vertices in p∗
7,5 are dequeued from Q. After that, τ3

Fig. 4. A shortest path query from v10 to v3 on Vs
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and p∗
10,3 are updated by the edge (v5, v3). This is the (3) of Fig. 4. In the next

iteration, v3 is dequeued from Q. The algorithm terminates and returns p∗
10,3.

4.3 Complexity Analysis

Time Complexity: For a graph G and a vertex subset Vs, let r and q be the
number of vertices and edges in Gs, k be the number of clusters, α and a be
the maximum number of vertices and borders in each cluster, ψc and ψp be the
number of the complete leaf nodes and the partial leaf nodes. The identification
of each node is in O(1), and the number of nodes in pb-tree is 2k − 1. The time
complexity of identifying all the nodes is O(2k − 1) = O(k). For an entry of a
complete leaf node, the algorithm finds the complete nodes on a higher level in
O(logk+1) = O(logk), when all the complete nodes are on the highest level. For
a complete node on level logk+1, the number of the borders is O(ka). Searching
the abstract paths from that vertex is in O(ka). Thus the time complexity of
expanding the shortest paths from an entry of a complete leaf node is O(logk +
ka). For an entry of a partial leaf node, the algorithm searches the shortest
path tree in that node in O(α). For the exits of the complete leaf nodes and
the vertices in partial leaf nodes, whose number is O(ψca + ψpα), the algorithm
searches all the neighbors of it in Vs in O(ψcar+ψpαr). For an abstract path, in
the worst-case, it is in the node on level logk+1, and all the borders of that node
are in the path. The number of the borders is O(ka), and for each pair of the
borders, the Path-Recover searches a shortest path tree in a leaf node. The
time complexity of computing such an abstract path is O(kaα). The number of
the borders in complete nodes is ψca. To sum up, because ψc + ψp = k, α ≥ a,
the time complexity of our method is O(ψca(logk +ka)+ψpaα+ψcar +ψpαr +
ψcaαka + k) = O(kαr + k2α3). In the worst-case, the number of the complete
nodes is zero, and all the shortest path trees can not be utilized. Then time
complexity is O(ψpαr) = O(rlogr + q), which is the time complexity of the
Dijkstra algorithm. In practice, the complexity is much smaller than the worst-
case complexity.

Space Complexity: The query algorithm maintains a prior queue Q. In the
worst-case, all the vertices in Vs will be dequeued from Q. Therefore, the space
complexity is the number of vertices in Vs, i.e. O(r).

5 Experiements

In this section, we study the performance of our algorithm on three real-life
network datasets. Section 5.1 explains the datasets and experimental settings.
Section 5.2 presents the performance of the algorithms.

5.1 Datasets and Experimental Settings

Experimental Settings. All the experiments were done on a 2.50 GHz Intel(R)
Xeon(R) Platinum 8255C CPU with 128G main memory, running on Linux VM-
16-3-ubuntu 4.4.0-130-generic. All algorithms are implemented by C++.
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Datasets. We use three real road networks from the 9th DIMACS Implementa-
tion Challenge (http://users.diag.uniroma1.it/challenge9/download.shtml). All
the edges of them are the real roads in the corresponding areas. Table 2 summa-
rizes the properties of the datasets. |V | and |E| are the number of vertices and
edges in the road network.

Table 2. Datasets

Dataset |V | |E| Description

NY 264,346 733,846 New York City Road Network

BAY 327,270 800,172 San Francisco Bay Area Road Network

COL 435,666 1,057,066 Colorado Road Network

Query Set. For each dataset, we use four different kinds of partitions, which
partition the graph into 100, 150, 200, and 500 clusters respectively. We construct
a pb-tree for each partition. We study the query performance by varying vertex
subset Vs. We test 9 kinds of queries, where every query set is a set of queries
with a same size of vertex subsets. These vertex subsets contain the 10%, 20%,
30%, 40%, 50%, 60%, 70%, 80% and 90% vertices randomly taken from V . For
each query set, we test 100 random queries and report the average querying time
as the results for the current query set.

5.2 Experimental Results

Exp-1. Build Time of Index. Figure 5 shows the build time of the pb-tree
based on different number of clusters. Observe that, as the number of the clusters
increases, the build time of the leaf nodes and the non-leaf nodes are decreased.
The main reasons are as follow. As the number of leaf nodes increases, the
number of the vertices in a single leaf node decreases. And the time to build the
shortest paths tree also decreases. For non-leaf nodes, although the number of
all the non-leaf nodes increases, the time to compute the abstract paths based
on the Dijkstra algorithm also decreases.
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Fig. 5. Build time of pb-tree

http://users.diag.uniroma1.it/challenge9/download.shtml
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Exp-2. Index Size. Figure 6 shows the size of the pb-tree based on different
number of clusters. As the number of the clusters increases, though the size and
the number of non-leaf nodes are increased, the size of leaf nodes and the pb-tree
are decreased. The main reasons are as follow. On the one hand, as the number
of the vertices in a leaf node decreases, the number of the vertices maintained
in the shortest path trees also decreases. On the other hand, for more clusters,
there will be more non-leaf nodes and more abstract paths in them. Therefore,
the size of the non-leaf nodes increases.
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Fig. 6. Index size of pb-tree

Exp-3. Query Time Based on Different Number of Clusters. Figure 7
shows the query time using the four pb-trees based on 100, 150, 200 and 500
clusters on three datasets in four kinds of vertex subsets whose number of the
vertices are 90%, 80%, 70% and 60% of the number of the vertices in V . We made
two observations. The first one is that for the vertex subsets with the same size,
the more clusters the pb-tree is based on, the less time the query processing will
take. The reason is that there are more complete nodes and abstract paths can
be used. Secondly, as the size of the vertex subsets decreases, the query time
also decreases. This is mainly because as the size of the vertex subsets decreases,
more vertices are unreachable, and the query results can be returned faster.
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Fig. 7. Query time based on different number of clusters

Exp-4. Query Efficiency. We compared our algorithm with Dijkstra algo-
rithm. Table 3 shows the query times using the pb-tree based on 100 clusters and
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the Dijkstra algorithm. On each dataset, we find that the Dijkstra algorithm
takes more time than our method on each size of vertex subset. We also find
that when the size of the vertex subset is 80% of the vertices in V , the time
difference between the two methods is minimal. That is because most of the
nodes in pb-tree are partial nodes in that case, so most of the abstract paths can
not be used. When the size of the vertex subset drops below 50% of the vertices
in V , the query times for both methods tend to stabilize. That mainly because
most of the vertices are unreachable, and the results can be returned quickly.
For our method, the shortest path trees in each leaf node can be used, which
makes our method have a better performance than the Dijkstra algorithm.

Table 3. Query times(s)

Dataset Method 90% 80% 70% 60% 50% 40% 30% 20% 10%

NY pb-tree 87.0191 13.8673 9.65E-02 5.44E-04 6.48E-05 1.65E-05 2.59E-05 8.78E-05 2.08E-05

Dijkstra 969.062 102.884 10.26720 4.11E-02 5.74E-04 4.94E-04 2.67E-04 1.60E-04 2.40E-04

BAY pb-tree 32.8067 0.72000 9.86E-05 4.38E-05 3.22E-05 8.12E-05 3.59E-05 5.77E-05 2.02E-05

Dijkstra 542.614 10.1591 4.34E-02 9.45E-04 4.52E-04 5.02E-04 1.74E-04 2.91E-04 3.00E-04

COL pb-tree 30.3478 6.36190 1.48E-03 2.69E-04 6.45E-05 4.98E-05 8.59E-05 5.77E-05 4.85E-05

Dijkstra 743.509 90.7764 0.494680 8.02E-03 1.15E-03 1.87E-03 1.76E-03 1.21E-03 9.47E-04

6 Related Work

In this section, we will mainly discuss two categories of related work: the first one
is the existing algorithms for answering unconstrained shortest path queries; the
other one is existing approaches for answering constrained shortest path queries.

In the first category, the traditional shortest path query algorithms, such as
the Dijkstra algorithm[5], can be used to solve the problems we supposed in this
paper. But it will take a long time to answer the query. The shortest path quad
tree is proposed in [13]. Xiao et al. in [16] proposes the concept of the compact
BFS-trees. A novel index called TEDI has been proposed by Wei et al. in [15]. It
utilizes the tree decomposition theory to build the tree. Ruicheng Zhong et al.
propose a G-Tree model in [18]. Goldberg et al. in [6] propose a method which
is to choose some vertices as landmark vertices and store the shortest paths
between each pair of them. Qiao et al. in [11] propose a query-dependent local
landmark scheme. [2] proposes another novel exact method based on distance-
aware 2-hop cover for the distance queries. However, those methods can not be
used to answer the problem we proposed in this work because the vertices in
those pre-computed paths maybe not in the given vertex subset.

In the second category, several works [7,9,10,14] study the constrained short-
est path problem on a large graph. A Lagrangian relaxation algorithm for the
problem of finding a shortest path between two vertices in a network has been
developed in [7]. H. C. Joksch et al. propose a linear programming approach
and a dynamic programming approach in [9]. Kurt Mehlhorn et al. present the
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hull approach, a combinatorial algorithm for solving a linear programming relax-
ation in [10]. [14] tackles a generalization of the weight constrained shortest path
problem in a directed network. Some works aim to answer the query with the
constrained edges. Bonchi et al. propose an approximate algorithm for short-
est path query with edge constraints in [3]. But the algorithm can not support
the exact shortest path query. Michael N. Rice et al. propose a method by pre-
calculating the paths between some of the two vertices with the label of the edge
in [12]. Mohamed S. Hassan et al. construct an index called EDP, which is one
of the state-of-art methods to answer the query with the constrained edges in
[8]. The EDP contains many subgraphs with the same label of edges and stores
every shortest path from an inner vertex to a border vertex in each subgraph.
Those methods can not be used to solve the problem we proposed in this paper,
cause the vertex subset Vs is not constrained by labels or another weight of the
edges.

7 Conclusion

In this paper, we study the problem of the shortest path query on a vertex subset.
We first give the definition of the shortest path query on a vertex subset. Second,
we propose a novel index named pb-tree to facilitate the shortest path query on
a vertex subset. We introduce what the pb-tree is and how to construct it. We
also introduce how to utilize our index to answer the queries. Finally, we confirm
the effectiveness and efficiency of our method through extensive experiments on
real-life datasets.

Acknowledgments. This work is supported by the National Key Research and Devel-
opment Project 2019YFB2101903 and the National Natural Science Foundation of
China No. 61402323, 61972275.

References

1. Abou-Rjeili, A., Karypis, G.: Multilevel algorithms for partitioning power-law
graphs. In: 20th International Parallel and Distributed Processing Symposium
(IPDPS 2006) Proceedings, Rhodes Island, Greece, 25–29 April 2006. IEEE (2006)

2. Akiba, T., Iwata, Y., Yoshida, Y.: Fast exact shortest-path distance queries on
large networks by pruned landmark labeling. In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 349–360 (2013)

3. Bonchi, F., Gionis, A., Gullo, F., Ukkonen, A.: Distance oracles in edge-labeled
graphs. In: Proceedings of the 17th International Conference on Extending
Database Technology, EDBT 2014, Athens, Greece, 24–28 March 2014, pp. 547–558
(2014)

4. Dhillon, I.S., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a
multilevel approach. IEEE Trans. Pattern Anal. Mach. Intell. 29(11), 1944–1957
(2007)

5. Dijkstra, E.W., et al.: A note on two problems in connexion with graphs. Numer.
Math. 1(1), 269–271 (1959)



An Index Method for the Shortest Path Query on Vertex Subset 85

6. Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph
theory. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2005, Vancouver, British Columbia, Canada, 23–25 Jan-
uary 2005, pp. 156–165 (2005)

7. Handler, G.Y., Zang, I.: A dual algorithm for the constrained shortest path prob-
lem. Networks 10(4), 293–309 (1980)

8. Hassan, M.S., Aref, W.G., Aly, A.M.: Graph indexing for shortest-path finding
over dynamic sub-graphs. In: Proceedings of the 2016 International Conference on
Management of Data, pp. 1183–1197 (2016)

9. Joksch, H.C.: The shortest route problem with constraints. J. Math. Anal. Appl.
14(2), 191–197 (1966)

10. Mehlhorn, K., Ziegelmann, M.: Resource constrained shortest paths. In: Paterson,
M.S. (ed.) ESA 2000. LNCS, vol. 1879, pp. 326–337. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45253-2 30

11. Qiao, M., Cheng, H., Chang, L., Yu, J.X.: Approximate shortest distance com-
puting: a query-dependent local landmark scheme. In: IEEE 28th International
Conference on Data Engineering (ICDE 2012), Washington, DC, USA (Arlington,
Virginia), 1–5 April 2012, pp. 462–473 (2012)

12. Rice, M.N., Tsotras, V.J.: Graph indexing of road networks for shortest path
queries with label restrictions. PVLDB 4(2), 69–80 (2010)

13. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proceedings of the ACM SIGMOD International Con-
ference on Management of Data, SIGMOD 2008, Vancouver, BC, Canada, 10–12
June 2008, pp. 43–54 (2008)

14. Smith, O.J., Boland, N., Waterer, H.: Solving shortest path problems with a weight
constraint and replenishment arcs. Comput. OR 39(5), 964–984 (2012)

15. Wei, F.: TEDI: efficient shortest path query answering on graphs. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, 6–10 June 2010, pp. 99–110 (2010)

16. Xiao, Y., Wu, W., Pei, J., Wang, W., He, Z.: Efficiently indexing shortest paths
by exploiting symmetry in graphs. In: 12th International Conference on Extending
Database Technology, EDBT 2009, Saint Petersburg, Russia, 24–26 March 2009,
Proceedings, pp. 493–504 (2009)

17. Xu, X., Yuruk, N., Feng, Z., Schweiger, T.A.J.: SCAN: a structural clustering
algorithm for networks. In: Berkhin, P., Caruana, R., Wu, X. (eds.) Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Jose, California, USA, 12–15 August 2007, pp. 824–833. ACM
(2007)

18. Zhong, R., Li, G., Tan, K., Zhou, L.: G-tree: an efficient index for KNN search on
road networks. In: CIKM, pp. 39–48 (2013)

https://doi.org/10.1007/3-540-45253-2_30


Efficient Personalized Influential
Community Search in Large Networks

Yanping Wu, Jun Zhao, Renjie Sun, Chen Chen, and Xiaoyang Wang(B)

Zhejiang Gongshang University, Hangzhou, China
yanpingw.zjgsu@gmail.com, junzhao.zjgsu@gmail.com,

renjiesun.zjgsu@gmail.com, {chenc,xiaoyangw}@zjgsu.edu.cn

Abstract. Community search, which aims to retrieve important com-
munities (i.e., subgraphs) for a given query vertex, has been widely stud-
ied in the literature. In the recent, plenty of research is conducted to
detect influential communities, where each vertex in the network is asso-
ciated with an influence value. Nevertheless, there is a paucity of work
that can support personalized requirement. In this paper, we propose a
new problem, i.e., maximal personalized influential community (MPIC)
search. Given a graph G, an integer k and a query vertex u, we aim to
obtain the most influential community for u by leveraging the k-core con-
cept. To handle larger networks efficiently, two algorithms, i.e., top-down
algorithm and bottom-up algorithm, are developed. To further speedup
the search, an index-based approach is proposed. We conduct extensive
experiments on 6 real-world networks to demonstrate the advantage of
proposed techniques.

Keywords: Influential community · Personalized search · k-core

1 Introduction

Retrieving communities and exploring the latent structures in the networks can
find many applications in different fields, such as protein complex identification,
friend recommendation, event organization, etc. [8,10]. There are two essential
problems in community retrieval, that is community detection and community
search. Generally, given a graph, community detection problem aims to find all
or top-r communities from the graph [12,16], while community search problem is
to identify the cohesive communities that contain the given query vertex [6,18].
In this paper, we focus on the category of community search problem, which is
very important for personalized applications. For instance, we can conduct better
friend recommendation by identifying the important community that contains
the query users. Similarly, we can make better event organization by retrieving
the community, which contains the user that we want to invite.

In the literature, lots of research tries to find personalized communities by
emphasizing the structure cohesiveness. While, in many cases, we also need to
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consider the influence of obtained communities. Recently, there are some research
that tries to find communities with large influence, e.g., [1,2,14]. In [14], Li
et al. propose a novel community model called k-influential community, where
each vertex is associated with a weight (i.e., influence value) in the graph. A
community (i.e., subgraph) is essential when it is cohesive and has large influence
value. Efficient algorithms are developed to obtain the top-r communities with
the largest influence value. Given the importance of the problem, [1,2] try to
speedup the search from different aspects. Since influence value is user’s natural
property, by considering the influence value, it can lead us to identify more
significant communities.

Nevertheless, the existing works on influential community detection mainly
focus on finding all or top-r influential communities. The personalized situation
is not considered. To fill this gap, in this paper, we propose the maximal per-
sonalized influential community (MPIC) search problem. Given a graph G, an
integer k and a query vertex q, the MPIC is the community with the largest
influence value that contains q, and satisfies the k-core (i.e., the degree of each
vertex inside is no less than k), connectivity (i.e., the subgraph is connected) and
maximal (i.e., no other supergraph satisfies the previous criteria) constraints. As
defined in the previous work [14], the influence value of a community is the min-
imum weight of all the vertices in the community. Given the graph in Fig. 1,
if k = 3 and the query vertex is v8, then the vertices in the dotted line is the
corresponding MPIC. Note that, the k-core model is also used in the previous
works to measure the cohesiveness of the community [1,2,14].

Challenges. The main challenges of the problem lie in the following two aspects.
Firstly, the real-world networks, such as social networks, are usually large in size.
It is critical for the algorithms to scale for large networks. Secondly, since we
investigate the personalized scenario, there may be plenty of queries generated
by users in real applications, it is important that the developed algorithms can
meet the online requirements.

Contributions. To the best of our knowledge, we are the first to investigate
the maximal personalized influential community (MPIC) search problem. The
contributions of this paper are summarized as follows.

– We formally define the MPIC search problem.
– To handle large networks, two algorithms, i.e., top-down algorithm and the

bottom-up algorithm, are developed based on different searching orders.
– An index-based method is proposed in order to meet the online requirements.
– We conduct extensive experiments on 6 real-world networks to evaluate the

performance of proposed techniques. As shown, the developed techniques can
significantly speedup the search compared with the baseline.

2 Problem Definition

We consider a network G = (V,E, ω) as an undirected graph, where V and E
denote the vertex set and edge set, respectively. Each vertex u ∈ V is associated
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Fig. 1. Running example (The number in the vertex denotes its weight)

Algorithm 1: ComputeCore(G, k)
Input : G : a graph, k : degree constraint
Output : k-core of G
while exists u ∈ G with deg(u,G) < k do1

G = G \ u ;2

return G3

with a weight denoted by ω(u), representing the influence of vertex u. The vertex
weight can be its PageRank score or other user defined value. Without loss of
generality, we use the same setting as the previous work for vertex weight, where
different vertices have different weights [14]. Note, if that is not the case, we use
the vertex id to break the tie. We denote the number of vertices by n = |V |
and the number of edges by m = |E|. A subgraph S = (VS , ES) is an induced
subgraph of G, if VS ⊆ V and ES = {(u, v)|u, v ∈ VS , (u, v) ∈ E}. Given a
subgraph S, the neighbors of u ∈ VS is denoted by N(u, S) = {v|v ∈ VS , (u, v) ∈
ES}, and deg(u, S) represents the degree of u in S, i.e., deg(u, S) = |N(u, S)|.
In this paper, we utilize the k-core model to represent the cohesiveness of a
community, which is also widely used in the literature [1,14].

Definition 1 (k-core). Given a graph G and a positive integer k, a subgraph
S ⊆ G is the k-core of G, denoted by Ck(G), if S satisfies the following con-
ditions. (i) deg(u, S) ≥ k for each vertex u in S. (ii) S is maximal, i.e., any
subgraph S′ ⊃ S is not a k-core.

To compute the k-core of a graph, we can remove the vertex whose degree is
less than k recursively. The time complexity of computing k-core is O(m) [20]
and the detailed algorithm is shown in Algorithm1. To identify important com-
munities, we consider both the cohesiveness and the influence of a community.
We employ the widely used influence value to measure the influence of a com-
munity [1,14].

Definition 2 (Influence value). Given an induced subgraph S of G, the influ-
ence value of S is the minimum weight of the vertex in VS, denoted as f(S), i.e.,
f(S) = minu∈VS

ω(u).
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In the previous works, people usually focus on finding all or top-r influen-
tial communities [1,2,14]. While, as discussed, in real applications, it is also
essential to identify the personalized influential communities for different user
queries. Given this requirement, we define the maximal personalized influential
community as follows.

Definition 3 (Maximal Personalized Influential Community (MPIC)).
Given a graph G, a positive integer k and a query vertex q, a maximal
personalized influential community, short as MPIC, is an induced subgraph
S of G, which meets all the following constraints.

– Connectivity: S is connected;
– Cohesiveness: each vertex in S has degree at least k;
– Personalized: query vertex q is contained in S, i.e., q ∈ VS;
– Maximal: there is no other induced subgraph S′ that (i) satisfies the first three

constraints (i.e., connectivity, cohesiveness and personalized constraints), (ii)
is a supergraph of S, i.e., S′ ⊃ S, and (iii) has the same influence value as
S, i.e., f(S) = f(S′);

– Largest: S is the one with the largest influence value and satisfies the previous
constraints.

Problem Definition. Given a graph G = (V,E, ω), a query vertex q and a
positive integer k, we aim to develop efficient algorithm to find the maximal per-
sonalized influential community (MPIC) for the query, denoted by MPIC(q, k).

Example 1. As shown in Fig. 1, the number in each vertex is the corresponding
weight. Suppose k = 3 and query vertex is v8. Then we can see that the subgraph
S1 = {v6, v7, v8, v9, v10} in the dotted line is the corresponding MPIC with
influence value of 6. While the subgraph S2 = {v1, v2, v3, v4, v5, v6, v7, v8, v9,
v10}, which satisfies the first four constraints of MPIC with influence value of 1,
is not the MPIC, because it is not the one with the largest influence value.

3 Solutions

In this section, we first introduce some properties about the maximal personal-
ized influential community. Then we develop two approaches, top-down method
and bottom-up method by verifying the vertices in different orders. Finally, to
support efficient online processing and scale for large networks, an index-based
method is proposed based on the bottom-up framework.

3.1 Properties of Maximal Personalized Influential Community

Lemma 1. Given a graph G, an integer k and a query vertex q, then the influ-
ence value of MPIC(q, k) is at most the weight of q, i.e., f(MPIC(q, k)) ≤ ω(q).

Proof. MPIC(q, k) must contain q. Based on the definition of influence value, we
have f(MPIC(q, k)) = minu∈MPIC(q,k) ω(u) ≤ ω(q). Thus, the lemma holds.
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Algorithm 2: Top-Down Algorithm

Input : G : a graph, k : degree constraint, q : query vertex
Output : MPIC for the query
Ck(G) ← ComputeCore(G, k);1

if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that contains q;4

S ← sort vertices of Ck(G, q) in descending order based on vertex weights;5

Q ← ∅; i ← 0;6

while i < S.size do7

Q ← Q ∪ {S[i]};8

If S[i] = q then break;9

i ← i + 1;10

if q ∈ Ck(Q) then11

return the connected component containing q in Ck(Q)12

i ← i + 1;13

while i < S.size do14

Q ← Q ∪ {S[i]};15

if q ∈ Ck(Q) then16

return the connected component containing q in Ck(Q)17

i ← i + 1;18

Lemma 2. Given a graph G and two induced subgraphs S1 and S2, we have
VS2 ⊂ VS1 and VS1 = VS2 ∪ {u}. If the weight of u is smaller than the influence
value of S2 (i.e., ω(u) < f(S2)), then the influence value of S1 is smaller than
that of S2 (i.e., f(S1) < f(S2)).

Proof. Based on the definition of influence value, f(S1) = minv∈VS1
ω(v) ≤ ω(u)

< f(S2). Therefore, the lemma holds.

3.2 Top-Down Algorithm

In this section, we present the top-down algorithm which is inspired by the
existing influential community detection method [1]. According to Lemma 1, the
influence value of the identified MPIC is at most ω(q). To find the community
with the largest influence value, we can first add all the vertices whose weight
is no less than ω(q) and check if we can obtain a community that satisfies the
first four constraints of MPIC. If so, we can output the identified community.
Otherwise, we can add some vertices with weight smaller than ω(q) to find the
MPIC. The detailed algorithm is shown in Algorithm2.

In Algorithm 2, we first compute the k-core of G, denoted by Ck(G). Since
the MPIC must be inside Ck(G), if q does not belong to the k-core, error code
is returned in Line 3, which means we cannot find a MPIC containing q. Oth-
erwise, due to the connectivity constraint, we only need to keep the connected
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component that contains q. Then we sort the survived vertices in descending
order by their weights and store them in S (Lines 4–5). We load the query q
and the vertices ranked above q into Q (Lines 7–10). If the k-core Ck(Q) of Q
contains q, then we return the connected component containing q, which can
be obtained by conducting a BFS from q (Lines 11–12). Otherwise, we add the
remaining vertices in S one by one to Q until the k-core of Q contains the query
vertex q, and the connected component is returned (Lines 14–18).

Example 2. Consider the graph in Fig. 1. Suppose k = 3 and the query vertex is
v8. Following the top-down algorithm, we first compute the k-core of G. Thus,
v11 and v12 are deleted, because they violate the degree constraint. Then we
add v8 and the vertices ranked higher (i.e., {v10, v9}) than v8 into Q. However,
they cannot form a 3-core. Then we insert vertex one by one into Q. Until v6 is
added, there is a 3-core containing query v8, i.e., {v10, v9, v8, v7, v6}, which is
the MPIC returned.

3.3 Bottom-Up Algorithm

In the top-down algorithm, we first add all the vertices ranked higher than q
into Q. After that, by adding each vertex into Q, we need to invoke the k-core
computation procedure. Even though the time complexity of k-core computation
is O(m), in the worst case, we need to repeat the process n times, which can
be time-consuming. Ideally, we can add more vertices into Q for each iteration.
However, in order to guarantee the correctness of the algorithm, it is difficult to
determine the appropriate number of vertices to be added. If too many vertices
are added, we may need a lot of computations to shrink the result. Otherwise, we
still need to compute the k-core plenty of times. To reduce the computation cost,
in this section, the bottom-up method is proposed, which can avoid computing
the k-core repeatedly.

According to Lemma 2, for a given induced subgraph, we can increase its
influence value by removing the vertex with the smallest weight. Intuitively, since
we aim to find the MPIC, we can iteratively remove the vertices with the smallest
weight and keep tracking the other constraints of MPIC, until the MPIC is found.
Different from the top-down approach, in the bottom-up method, we visit the
vertices in ascending order and remove the unpromising vertices iteratively. The
detailed algorithm is shown in Algorithm3.

For the algorithm, the first three steps are exactly the same as the top-down
method (Lines 1–4). Then, we sort the survived vertices in ascending order by
the weight of vertex and store them in S (Line 5). Then we try to remove the
vertex with the current smallest weight one by one until the query vertex q is
met (Lines 6–10). For each vertex u processed, we invoke the Delete procedure,
which details are shown in Lines 11–26. For each processed vertex u, we need
to ensure the remained subgraph satisfies the k-core constraint. After deleting a
vertex, it may cause its neighbors to have less than k neighbors. Then we remove
these vertices as well (Lines 17–20). We put the vertices that violate the degree
constraint into R and process them iteratively. When w = q (Line 15), it means
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Algorithm 3: Bottom-Up Algorithm

Input : G : a weighted graph, k : degree constraint, q : query vertex
Output : MPIC for the query
Ck(G) ← ComputeCore(G, k);1

if q /∈ Ck(G) then2

return error3

Ck(G, q) ← the connected component of Ck(G) that contains q;4

S ← sort vertices of Ck(G, q) in ascending order based on vertex weights;5

while S �= ∅ do6

D ← ∅;7

u ← S.front();8

if Delete(u, q, S,D) = 1 then9

return S ∪ D10

Procedure Delete(u, q, S,D);11

initialize a queue R = {u};12

while R �= ∅ do13

w ← R.pop();14

if w = q then15

return 116

for each v ∈ N(w,S) do17

deg(v, S) ← deg(v, S) − 1;18

if deg(v, S) < k then19

R.push(v);20

remove w from S;21

D ← D ∪ {w};22

for each connected component S′ in S do23

if q /∈ S′ then24

remove S′ from S;25

return 026

either (i) the input vertex u of Delete procedure is q, or (ii) deg(q, S) becomes
less than k because of the deletion u. In this case, the remained subgraph S
and D (i.e, S ∪ D) form the MPIC. This is because, when we remove the input
vertex u, it will cause the remained subgraph does not contain q or q violates
the degree constraint. The reason that we keep tracking the deleted vertices
D for each Delete procedure is for case when ii situation happens. Since the
identified community should satisfy the connectivity constraint, we can safely
remove the connected components in S that do not contain q (Lines 23–25).

Example 3. Consider the graph in Fig. 1. Suppose k = 3 and the query vertex
is v8. Following the bottom-up approach, v11 and v12 are firstly deleted due to
the k-core computation. After deleting the vertex v1 with the smallest weight,
the remained graph are separated into two connected components. Therefore,
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Algorithm 4: Index Construction

Input : G : a graph
Output : constructed index
for k from 1 to kmax do1

Ck(G) ← ComputeCore(G, k);2

rn ← empty root node of Tk;3

for each connected component S in Ck(G) do4

BuildNode(k, rn, S);5

Procedure BuildNode(k, rn, S);6

u ← the vertex with the smallest weight in S;7

R ← {u}; D ← ∅;8

while R is not empty do9

w ← R.pop();10

for each v ∈ N(w,S) do11

deg(v, S) ← deg(v, S) − 1;12

if deg(v, S) < k then13

R.push(v);14

remove w from S;15

D ← D ∪ {w};16

construct an intermediate node crn containing D;17

append crn to the parent node rn;18

for each connected component S′ in S do19

BuildNode(k, crn, S′);20

we can safely remove the connected component {v2, v3, v4, v5} from S since it
does not contain the query vertex. Then, we process v6. As we can see, when
processing v6 in the Delete procedure, it will result in v8 violating the degree
constraint. Then we can stop and output {v6, v7, v8, v9, v10} as the result.

3.4 Index-Based Algorithm

In the bottom-up approach, we invoke the k-core computation at the beginning
of the algorithm and the total cost of checking degree constraint in Delete only
takes O(m) time, which avoids lots of computations compared to the top-down
method. However, the bottom-up approach still has some limitations. (i) When
deleting the vertices, it still costs a lot for processing very large graphs. (ii) For
real applications, different users may have different requirements and there may
exist a large amount of queries. Therefore, it is hard for it to meet the online
requirement.

Motivated by the requirements, in this section, we propose an index-based
algorithm by leveraging the bottom-up framework. In the bottom-up method, for
a given k, we try to delete the vertex u with the smallest weight in each iteration
by Delete procedure. Then we can obtain the MPIC for certain vertices, such
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Fig. 2. Example for index construction

as the vertex u and the vertices removed when processing u. If we process the
vertices in order, we can obtain the MPICs for all the vertices. Therefore, we
can build a tree structure index according to the processing order. Let kmax be
the largest core number, i.e., the largest k value for any k-core. If we build a
tree index for each k value, then we can answer any given query efficiently. In
Algorithm 4, we present the details of how to index the visited vertices effectively.
Then we show how to answer a query by utilizing the index.

Index Construction. In Algorithm 4, we build a tree index for each k value
from 1 to kmax (Lines 1–5). In each iteration, we first compute the corresponding
k-core, and for each connected component, we construct the indexed tree nodes
by invoking BuildNode procedure. The details of BuildNode procedure are
shown in Lines 6–20. The BuildNode procedure is very similar to the Delete

procedure in Algorithm 3. It starts by processing the vertex with the smallest
weight (Line 7). When we process a vertex u, it will cause some other vertices
violating the degree constraints (Lines 11–14) and we add them and u into D
(Line 16). According to the bottom-up method, it means the vertices in D belong
to the same MPIC. Then we construct an intermediate node crn that contains
the vertices in D, and append it to its parent node rn (Lines 17–18). Then
we recursively call the BuildNode to process each connected component S′ of
the remained subgraph S (Lines 19–20). After processing each k, the index is
constructed. Based on the construction process, we can see that the MPIC of a
vertex consists of its belonged intermediate node and its children nodes in the
index.

Example 4. Figure 2 shows the constructed index for the graph in Fig. 1 when
k = 1, 2, 3. The ER node is the empty root node. It is for the case when the
computed k-core in Line 2 of Algorithm 4 is not connected. For k = 1, the
constructed index is shown in Fig. 2(a). We first process v1 which will result in 2
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connected components. Then we remove v2 and v3 and create two intermediate
nodes for them, since the removal of them does not make other vertices violate
the degree constraint. When deleting v4, the degree of v5 becomes less than 1.
Then we construct an intermediate node that contains v4 and v5. We conduct
similar procedure for the other connected component, and the constructed index
is shown in the right branch. Similar procedure is conducted for k = 2, 3, where
the corresponding index are shown in Figs. 2(b) and 2(c).

Query Processing. As we can see, for a given query, the MPIC consists of the
intermediate node that contains the query vertex and all its children nodes in
the corresponding k index. If we maintain kmax pointers for each vertex to its
corresponding intermediate nodes, we can efficiently locate the vertex’s interme-
diate node for a given k and traverse the index to return the result. For a given
query, if we cannot find its intermediate node in the index, it means it does not
has a MPIC for the query.

Example 5. Consider the graph in Fig. 1. The constructed index is shown in
Fig. 2 for k = 1, 2, 3. Given the query vertex v8, the MPIC is the vertices in the
dotted line for k = 1, 2, 3 respectively.

Discussion. If we do not need to retrieve the specific vertices in MPIC, the
index can answer the query in O(1) time by just returning the pointer for the
intermediate node. Otherwise, we need to traverse from the intermediate node to
obtain all the vertices. In this paper, we use the second case in the experiments,
since the first two algorithms will obtain all the vertices in MPIC.

4 Experiments

In this section, we conduct extensive experiments on real-world networks to
evaluate the performance of proposed techniques.

4.1 Experiment Setup

Algorithms. Since there is no previous work for the proposed problem, we con-
duct experiments with the proposed three algorithms, i.e., top-down algorithm,
bottom-up algorithm and index-based algorithm. The top-down algorithm serves
as the baseline method.

Datasets. We evaluate the algorithms on 6 real-world datasets, i.e., Email,
Brightkite, Gowalla, YouTube, Wiki and Livejournal. Table 1 shows the statistic
details of the datasets. The datasets are downloaded from the Stanford Network
Analysis Platform1, which are public available. Similar as previous work, we use
the PageRank value to serve as the vertex weight [14].

1 http://snap.stanford.edu.

http://snap.stanford.edu
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Table 1. Statistics of datasets

Dataset #Vertices #Edges dmax kmax

Email 36,692 183,831 1,367 43

Brightkite 58,228 214,078 1,134 52

Gowalla 196,591 950,327 14,730 51

YouTube 1,134,890 2,987,624 28,754 51

Wiki 1,791,488 13,846,826 16,063 72

Livejournal 3,997,962 34,681,189 14,815 360

Fig. 3. Index construction time

Parameter and Workload. To evaluate the performance of proposed tech-
niques, we vary the weight of query vertex and k. To generate the query vertices,
we sort the vertices according to the weight and divide them into 5 buckets. For
each bucket, we randomly select 200 vertices as query vertices. For k, we vary k
from 5 to 25 with 10 as the default value. For each setting, we run the algorithms
10 times and report the average response time.

All algorithms are implemented in C++ with GNU GCC 7.4.0. Experiments
are conducted on a PC with Intel Xeon 3.2 GHz CPU and 32 GB RAM using
Ubuntu 18.04 (64-bit).

4.2 Experiment Result

Results of Index Construction. We first present the index construction time
for all datasets, the results are shown in Fig. 3. As we can observe, the index
construction phase is very efficient. It only takes 0.290 seconds for Brightkite
dataset. For the largest network Livejournal, which has more than 34 million
edges, it only takes 325.656 s for constructing the index.

Results of Varying Query Vertex Weight. By varying the query vertex
weight, we conduct the experiments on all the datasets. The response time is
shown in Fig. 4, where k is set as the default value. As observed, the bottom-up
method is much faster than the top-down method, since the top-down method
may compute the k-core many times. Among all, the index-based method runs
fastest, due to the novel index structure proposed. In the two largest datasets,
i.e., Wiki and Livejournal, the index-based method achieves up to 6 orders of
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Fig. 4. Experiment results by varying query vertex weight

magnitudes speedup compared with the top-down method. As we can see, the
bottom-up and index-based methods are not sensitive to the weight of query
vertex. While, for the top-down method, the response time increases when the
weight increases. This is because, for query vertex with larger weight, it may
compute the k-core more times when adding vertices one by one.

Results of Varying k. We conduct the experiments on all the datasets by
varying the query parameter k. The results of response time are shown in Fig. 5,
where similar trend can be observed. The bottom-up and index-based methods
are significantly faster than the top-down method, and the index-based method
is the fastest one for all cases. In the largest dataset, i.e., Livejournal, the index-
based method can achieve up to 6 orders of magnitudes speedup compared with
the top-down method. With the increase of k, the response time of top-down
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Fig. 5. Experiment results by varying k

method decreases. This is because, for larger k, the identified MPIC tends to be
smaller. As shown, the bottom-up and index-based methods can scale well for
the parameter k.

Summary. As demonstrated in the experiments, both bottom-up and index-
based methods are significantly faster than the top-down method, and they
can scale well for different query parameters. Especially for the index-based
method, it usually can achieve orders of magnitudes speedup. Given the exper-
iment results, in real applications, users can make a trade-off when selecting
algorithms. If index construction is allowed by the applied platform, it would be
better to use the index-based method. Otherwise, users can select the bottom-up
method, which can also provide competitive performance.
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5 Related Work

We present the related work from the following three aspects, i.e., cohesive sub-
graph mining, community search and influential community detection.

Cohesive Subgraph Mining. Cohesive subgraph mining is a very important
tool for graph analysis and can find many applications in different fields [4,17].
In the literature, different models are proposed to measure the cohesiveness of
a subgraph, such as k-core [20], k-truss [21], clique [5], etc. There are also some
works that try to identify cohesive subgraph on special graphs, such as identifying
k-core and k-truss over uncertain graphs [11,19].

Community Search. For cohesive subgraph mining, people usually focus on
finding all or high ranked cohesive subgraphs. Given a graph G and query ver-
tices, the community search problem aims to identify a densely connected sub-
graph that contains the query vertices [8]. To measure the cohesiveness of a com-
munity, different models are used. In [6,18], authors use the minimum degree to
serve as the metric, which is similar to the k-core constraint. [18] proposes a
global search framework to identify the community. Cui et al. [6] develop a local
search method to avoid visiting too many vertices. Huang et al. [9] leverage the
k-truss model and propose the triangle-connected k-truss community problem. It
designs a triangle connectivity-preserving index to efficiently search the k-truss
communities. There is lots of research for other kinds of graphs, e.g., attribute
graphs and profile graphs [3,7]. [8] presents a comprehensive survey of recent
advanced methods for community search problems.

Influential Community Detection. In traditional community detection/
search problems, the influence value of a community has been neglected. In [14],
Li et al. present a novel community model called k-influential community. Given
a graph G, each vertex is associated with a weight, i.e., influence value. It aims
to find the top-r k-influential communities, where the cohesiveness is measured
based on the k-core model. In [2], Chen et al. propose the backward searching
technique to enable early termination. Recently, Bi et al. [1] develop a local
search method, which can overcome the deficiency of accessing the whole graph.
Li et al. [15] present an I/O-efficient algorithm to compute the top-r influential
communities. In [13], authors further investigate the case when each user is asso-
ciated with multiple weights. However, as observed, these works aim to identify
the influential communities for the whole network, while the personalized case
has not been considered.

6 Conclusion

In this paper, we investigate the maximal personalized influential community
search problem, which is an important tool for many applications, such as per-
sonalized friend recommendation, social network advertisement, etc. In order to
scale for large networks, two algorithms, i.e., top-down algorithm and bottom-
up algorithm, are developed based on different vertex accessing orders. To fulfill
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the requirement of online searching, an index based method is proposed. Finally,
comprehensive experiments are conducted to verify the advantage of developed
techniques on 6 real world datasets.

Acknowledgments. Xiaoyang Wang is supported by NSFC61802345. Chen Chen is
supported by ZJNSF LQ20F020007.
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Abstract. Most existing graph convolutional networks focus on utiliz-
ing supervised information for training semi-supervised graph learning.
However, the inherent randomness of supervised information can reduce
the robustness of graph convolutional network models in some cases.
To cope with this problem, in this paper, we propose a novel semi-
supervised graph representation learning method RUGCN by leveraging
explicit unsupervised information into training. We first propose a prac-
tical training method to ensure unsupervised information measurable by
preserving both unsupervised (ranking smoothing) and semi-supervised
(Laplacian smoothing) information. And then, we introduce a broadcast
cross-entropy function to ensure ranking smoothing run in harmony with
Laplacian smoothing. Experiments show that RUGCN achieves compet-
itive results and stronger robustness.

Keywords: Social media · Representation learning · Semi-supervised
learning · Graph convolutional network

1 Introduction

Semi-supervised graph embedding methods exploit the graph or structure of
data and learning with very few labels [1]. The graph convolutional network
(GCN)-based model is an import approach of semi-supervised graph embedding
and achieves significant improvement on popular benchmarks. The GCN-based
models, including GCN [13], graphSAGE network [4], and so on. However, the
GCN-based approaches utilize supervised information with paying little atten-
tion to the randomness brought by labeled nodes (an example is shown in Fig. 1),
which can weaken the robustness of the model. Firstly, labeled nodes in different
position passing different levels of supervised information, in some cases, super-
vised information can be biased or weak for distant unlabeled nodes. Secondly,
the position of labeled nodes as data prior knowledge is independent of mod-
els. Thus the randomness is inevitable. Finally, most GCN-based approaches
only explicitly take supervised information into consideration, which brings the
position randomness into models.
c© Springer Nature Switzerland AG 2020
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Sampled unlabeled nodes:

Indicate true classes of nodes:

Unlabeled nodes:

Labeled nodes:

Class 1:           Class 2:

6

Uncertain nodes:

Fig. 1. Suppose nodes in the above graph belong to two classes, and each class has one
labeled node in training, i.e., node 2 and one of the uncertain nodes. If we randomly
take node 6 as a labeled node, it’ll bring the following negative effects. (Color figure
online)

To cope with the above limitation in GCN, the key idea of this paper is to
explicitly leverage the local semantics of unsupervised information into semi-
supervised GCN. This leads us to investigate the connections between semi-
supervised and unsupervised graph learning: 1) Most unsupervised graph learn-
ing methods are based on consistency prior assumption [2] or label smooth-
ness assumption that adjacent nodes on the graph are more likely to have the
same label. The previous proposed semi-supervised graph methods [1] adopt
this assumption to regularize models, which is consistent with label smoothness
assumption to some extent. 2) A practical strategy proposed by [3], which sug-
gests putting supervised information into a neural network as a plug-in of the
unsupervised algorithm, training both unlabeled and labeled data while shar-
ing network parameters. It shows that both semi-supervised and unsupervised
information can be trained in a unified framework.

In this paper, based on GCN, we present a novel model RUGCN, a robust
Graph Convolutional Network for semi-supervised graph embedding. Specifi-
cally, in Fig. 1, we sample from the unlabeled nodes to get the blue nodes, and
we explicitly maintain each blue node’s local semantics(blue line). The contri-
butions of this paper are follows:

– We present a novel practical training method, which makes unsupervised
information measurable and simultaneously maintaining both unsupervised
and semi-supervised information.

– We introduce a broadcast cross-entropy function to ensure the measured unsu-
pervised information being non-trivial, which first treats the output dimen-
sion as a settable parameter and obtains the multi-dimensional node class by
utilizing aggregation function.

– Experiments show that RUGCN achieves competitive results, especially in
random node classification task.
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2 Preliminaries

2.1 Notation

Given an undirected graph G = (V, E), where V = {v1, v2, . . . , vn} represents the
vertex set with |V| = n, and E is the edge set. The symmetric adjacency matrix
of G is defined as A ∈ R

n×n where aij denotes the edge weight between nodes
vi and vj , for unweighted graph, aij = 1 if vi connects to vj , otherwise aij = 0.
We further define feature matrix X = {x1,x2, . . . ,xn} ∈ R

n×k where i-th row
corresponds to the k-dimensional feature of node vi, the diagonal degree matrix
D = diag{d1, d2, . . . , dn} where di =

∑
j aij . For simi-supervised learning, Vl

and Vu are the set of labeled and unlabelled vertices, respectively. The ground
truth labels are denoted as Y, and the estimated labels on both labeled and
unlabeled vertices are denoted by Ŷ = {Ŷl, Ŷu} ∈ R

n×C , where C as label class
numbers. Our goal is to predict the unknown labels Yu in transductive learning.

2.2 Graph Convolutional Network

In our model, we select graph convolution as hidden layer, node feature matrix
X of k-th convolution layer is updated as:

X(k) = σ
(
D̃− 1

2 ÃD̃− 1
2 X(k−1)Θ

)
(1)

where Ã = A + I, D̃ = D + I and I = diag{1}n is the identity matrix, Θ is a
trainable parameter matrix and σ represents activation functions. This convolu-
tion is essentially a type of Laplacian smoothing [17], thus the main drawback
of GCN is over-smoothing, which can lead the features indistinguishable.

3 Methodology

In this section, we explicitly integrate the unsupervised loss into the existing
GCNs framework. The overall framework is shown in Fig. 2.

Convolution Convolution

Broadcast cross-entropy loss 

shu e

pooling

Fig. 2. The network structure of RUGCN.
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3.1 Ranking Smoothing

The recently proposed unsupervised Gaussian embedding methods [7,8,11]
assume that the target embedding obeys Gaussian distribution. We adopt this
idea and calculate the dissimilarity on the top layer of our model, which is sim-
ilar to graph Laplacian regularization of label propagation algorithms [19]. We
denote the top layer output logits as Z, the t-th node output logit zt ∼ N (μt,Σt),
where μt ∈ R

D,Σt ∈ R
D×D represent the mean vector and covariance matrix,

respectively. In other words, zt is composed of μt and Σt.

Dissimilarity. To measure the ranking smoothing between unlabeled node
pairs, we choose KL-divergence between two multivariate Gaussian to measure
the pair-wise nodes dissimilarities:

DKL(zt‖zs) = Ezt

(

log
zt
zs

)

=
1
2

(
log

det Σs

detΣt
− D + tr

(
Σ−1

s Σt

)
+

(μs − μt)TΣ−1
s (μs − μt)

) (2)

based on above formula, we define unsupervised loss LU as follows:

LU =
∑

(t,s)

exp (DKL(zt‖zs)) , (t, s) ∈ Vu (3)

Sampling. We further parameterize the local ranking scope. We build a subset
Ẽuu of Euu to replace the original one:

Ẽ(1)
uu = {Eij}, i ∈ Vu, j �∈ Vl, 0 < |N(i)| ≤ k (4)

where k is a hyperparameter controls the degree of unlabeled nodes.

3.2 Laplacian Smoothing

To avoid the ranking smoothing being trivial, we set up a haperparameter M
to keep output dimension D equal to M times the number of label classes C.
Thus we have Z ∈ R

n×D. Finally, we define the index of each label class based
on shuffle function and Ŷ formally as follows:

indexc = Shuffle(0, 1, ..., |D| − 1), |indexc| = M, c = 1, 2, . . . , C

Ŷ = softmax(Z) = exp(δ(Zindexc))/Z
(5)

where δ is a pooling function such as mean or sum function, Z is a column vector
and each element is the corresponding sum of exponential Z. Then we define the
final cross-entropy loss over all labeled nodes as:

LX = −
∑

l∈Ŷl

C∑

c=1

Ŷlc lnZlc (6)
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We treat the output dimensions as a tunable parameter, and we denote above
loss function as broadcast cross-entropy loss. The overall loss of RUGCN is define
as:

L = LX + α ∗ LU (7)

4 Related Works

Unsupervised Learning. DeepWalk [5,6] treats nodes as words and random
walks as sentences, learning embeddings via the prediction of posterior proba-
bility between nodes and its neighboring nodes. Yang [18] proves that deepWalk
is equivalent to factorize matrix. Some methods are based on ranking, such as
LINE [7–9]. Different from the above methods based on local similarity, DGI [12]
learns global patch representation via comparing global and local mutual infor-
mation of embeddings. In summary, these unsupervised learning methods assume
local and/or global similarities in data [2].

Semi-supervised Learning. This category includes a majority of GCNs [13,
15]. Most proposed GNNs in existing open-source graph neural network
libraries [16] are designed to follow the message-passing architecture, the differ-
ence among these GNNs lies in how to design aggregation and update functions,
such as spectral graph convolutional neural network [13] and Graph attention
neural network [15]. More graph embedding methods can be referred to [10].

5 Experiments

5.1 Experimental Settings

For evaluation, we implement our experiments on three popular citation datasets,
namely, CORA [13], Citeseer [1], and Pubmed [13], and an active research fields
of authors dataset Coauthor Physics(CPhy) [14]. On each dataset, the research
documents are considered as nodes in a graph, their citation relations are consid-
ered as edges, and all documents are described by bag-of-words feature vectors.
The statistics of all datasets are presented in Table 1. We compare RUGCN per-
formance with four models and two variant models: Label Propagation(LP) [14],
a nonparametric model proposed earlier, and we only compare its performance
on Planetoid Node Classification. GCN [13], a simple and effective neural net-
work composed of two convolutional layers and has widely used in transductive
setting. GAT [15], a multi-head attention-based neural network, which can be
applied in both transductive and inductive settings. GraphSAGE [4](GS-mean),
an inductive graph learning method which is effective in processing large graphs.
GCNNorm, a variant model that denotes the original GCN network structure
with the ranking smoothing, we use Euclidean distance as c2 function to mea-
sure the ranking loss. RUGCNOB, a variant model which denotes our proposed
RUGCN without broadcast cross-entropy loss, which only uses the traditional
cross-entropy.
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Table 1. Summary of the datasets.

Dataset Classes Features Nodes Edges

CORA 7 1,433 2,708 5,278

Citeseer 6 3,703 3,327 4,552

Pubmed 3 500 19,717 44,324

CPhy 5 8,415 34,493 247,962

Table 2. Planetoid split: classification
accuracy from 10 random initialization.

Model CORA CiteSeer PubMed

LP 74.4 67.8 70.5

GCN 81.5 70.3 77.8

GAT 81.8 71.4 78.7

GS-mean 76.6 68.6 76.5

GCNNorm 82.4 71.9 78.0

RUGCNOB 81.0 70.4 78.5

RUGCN 82.0 72.1 78.8

Table 3. Random split: classification
accuracy from 10 random initialization.

Model CPhy Citeseer Pubmed CORA

LP 86.6 67.8 70.5 74.4

GCN 92.8 71.9 77.8 81.5

GAT 92.5 71.4 78.7 81.8

GS-mean 93.0 71.6 77.4 79.2

GCNNorm 93.2 73.8 78.4 81.8

RUGCNOB 92.5 74.3 78.1 80.5

RUGCN 93.7 75.2 78.3 82.4

5.2 Planetoid Node Classification

In this experiment, we use the fixed data split from Planetoid [7], we adopt
the following hyperparameters in this experiment: first hidden layer size is 32
and search trade-off α in [1, 5, 10] for unsupervised information, the learning
rate is 0.05, maximal epoch size is 200, weight decay for Adam optimizer is
0.0005, negative slope for Leaky-ReLU is 0.2, we search M in [2, 5, 10, 15, 20],
and the degree threshold is k = 999. As shown in Table 2, we can see that
RUGCN outperforms on Citeseer and PubMed datasets (improve over original
GCN by 2.6% and 1.3%), and also perform better than RUGCNOB (improve
over CiteSeer by 2.4%), it illustrates the effectiveness of our proposed broadcast
cross-entropy loss. GCNNorm achieves the best result on CORA (improve over
original GCN by 1.1%). Both GCNNorm and RUGCN achieve better results,
while GCNNorm gets the best results on CORA, which shows that the effect of
using different methods to measure unsupervised information is various.

5.3 Random Node Classification

To verify the robustness of the model against unbalanced supervised informa-
tion, we follow the classification method in [14]. In Table 3, GCNNorm also
performs better than the original GCN (the highest is 2.6% higher than the
original GCN on Citeseer). Compared with the results in Planetoid Node Clas-
sification, RUGCNOB and RUGCN both improve better accuracy than original
GCN, the main reason being that we use more unlabeled nodes into our ranking
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smoothing procedure, leading to the better exploitation of unsupervised infor-
mation and robustness of models in the transductive setting. Although RUGCN
has great performance, the GAT is better than RUGCN in PubMed, the main
reason may that the attention mechanisms allow the GAT to adjust the message
propagation automatically. However, GAT also lacks the interpretation of data.

Fig. 3. The training and test accuracy of each epoch in different dimensions.

5.4 Accuracy Analysis of Broadcast Cross-Entropy

To evaluate our broadcast cross-entropy loss function is effective, we select the
labeled samples that result in a bad performance in the second classification
task. We fix the random seed of this sampling to keep the result of each training
is same. We set the number of early-stopping as 10, and only the parameter M
can change. Figure 3 shows the accuracy of each epoch with different dimensions
M , where M = 1 means we use the traditional cross entropy-function, otherwise
representing the broadcast cross-entropy function in different parameters. As
shown in Fig. 3, the main noticeable fact is that high training accuracy does not
mean good generalization. The training accuracy quickly reaches the maximum
and becomes flat on dimension 1, which also higher than training accuracy on
other dimensions, but the corresponding test accuracy is always not the best
result. Besides, when the dimension is 10 or 20, the training accuracy is always
under the unsaturated state. In contrast, the test accuracy can reach the highest
peak. This also verifies that the proposed broadcast cross-entropy loss can avoid
training over-fitting and keep generalization.
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Fig. 4. The supervised loss (broadcast cross-entropy loss) and unsupervised loss (rank-
ing loss) of each epoch in different dimensions.

5.5 Supervised and Unsupervised Loss of RUGCN

We further analyze supervised loss (broadcast cross-entropy loss) and unsuper-
vised loss (ranking loss) of RUGCN in different dimensions, which is shown in
Fig. 4, here we set the trade-off parameter as 1 for all datasets. From Fig. 4,
we can observe that the curve changes in three data sets tend to be consistent.
In the upper three graphs, when we increase the dimension, unsupervised loss
increases, and RUGCN needs more epoch for convergence. It illustrates that a
higher dimension can enhance the strength of ranking part in RUGCN, and the
ranking procedure also extends the time of reaching a steady-state of RUGCN.
In the below three graphs, when we increase the dimension, supervised loss is
increasing, and became slower gradually. It indicates that supervised and unsu-
pervised loss complement each other in training, resulting in RUGCN not totally
rely on supervised loss and alleviate the randomness brought by supervised
information.

5.6 Uncertainty and Class-Correlation Visualization

Uncertainty Analysis. In this experiment, we analyze the uncertainty (vari-
ance embeddings) of RUGCN, which is shown in Fig. 5. Experimental setting is
followed by [8]. Overall, the curves of node variances increase as the log10 degree
of nodes (x-axis) increases in CORA and CPhy, this trend of Pubmed is the oppo-
site. Meanwhile, RUGCN’s performance increases higher on CORA and CPhy
than Pubmed, which indicates the variance embeddings of high degree nodes
carry more uncertainties. And the complex connectivity of different datasets
shows a different influence on the ranking part of RUGCN.
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Fig. 5. Uncertainty analysis from ran-
domness classification.

Fig. 6. Pearson correlation heatmap on
CORA from randomness classification.

Class-Correlation Analysis. The class-correlation is shown in Fig. 6. We set
the M = 5, and the CORA have seven classes, resulting in the dimension of
node embeddings is 35. The axes represent the predefined class label for each
dimension (e.g., 34(9) represents the class 9 of dimension 34). We notice that
dimensions that belong to the same class are positively correlated with each
other. It illustrates that the class information-passing is reliable, and the RUGCN
can well maintain both unsupervised (ranking smoothing) and semi-supervised
information (Laplacian smoothing).

6 Conclusions

In this paper, we leverage explicit unsupervised information to improve the
robustness of GCN-based semi-supervised learning. Our approach provides a
new method of utilizing unsupervised information such as local semantics of
unlabelled nodes to optimize semi-supervised learning and a new variant of
cross-entropy function. Though RUGCN takes advantage of local semantics of
unlabeled nodes, the complex connectivity of unlabeled nodes can still affect
the performance of RUGCN. In future work, we will explore the effectiveness of
collective semantics of labeled and unlabeled nodes.
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graph infomax. CoRR abs/1809.10341 (2018)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. CoRR abs/1609.02907 (2016)

14. Shchur, O., Mumme, M., Bojchevski, A., Günnemann, S.: Pitfalls of graph neural
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Abstract. With the explosion of cellular data, the content sharing in
proximity among offline Mobile Social Networks (MSNs) has received
significant attention. It is necessary to understand the face-to-face (e.g.
Device-to-Device, D2D) social network structure and to predict con-
tent propagation precisely, which can be conducted by learning the low-
dimensional embedding of the network nodes, called Network Repre-
sentation Learning (NRL). However, most existing NRL models con-
sider each edge as a binary or continuous value, neglecting rich informa-
tion between nodes. Besides, many traditional models are almost based
on small-scale datasets or online Internet services, severely confining
their applications in D2D scenarios. Therefore, we propose ResNel, a
RESCAL-based network representation learning model, which aims to
regard the multi-dimensional relations as a probability in third-order
(3D) tensor space and achieve more accurate predictions for both dis-
covered and undiscovered relations in the D2D social network. Specifi-
cally, we consider the Global Positioning System (GPS) information as
a critical relation slice to avoid the loss of potential information. Experi-
ments on a realistic large-scale D2D dataset corroborate the advantages
of improving forecast accuracy.

Keywords: Content sharing prediction · Network representation
learning · Mobile social networks · Device-to-Device (D2D) · Relation
network

1 Introduction

Social Network Analysis (SNA) has been pervasive as a means of understanding
network structure recently. Network Representation Learning (NRL) can convert
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Fig. 1. Content sharing in D2D offline MSNs [23].

social network characteristics into low-dimensional vectors for vertex classifica-
tion [4], clustering [1] and link prediction [8].

The top 10% videos in YouTube account for around 80% of all the views [3],
implying the fact that retransmission of the same files induces network resources
wasted. Device-to-Device (D2D) communication is a promising method to cache
and share the multimedia contents via short-range communication technologies
(e.g. Wi-Fi and Bluetooth) [6,17,19,21], which reduces the repeated downloads
and alleviates the backbone traffic pressure [11]. Figure 1 shows representative
sharing. Lucy has a WhatsApp installed on her device initially, and then she can
share it with her friend Denny via the D2D link. As such, Denny can share with
anyone nearby. Hence, D2D Mobile Social Networks (MSNs) come into being.
It is noteworthy that each transmission during D2D communication is precious
and hard-won because the content is pressing and is shared based on interest and
friendship [18]. Thereby, link prediction, also called Content Sharing Prediction
(CSP) in realistic offline MSNs is essential and valuable.

Some NRL models explore the link prediction problem from the local net-
work structure. However, the majority of them are conducted on online networks
and barely consider various interactions (e.g. content types, sharing time, and
geographical information.) or just regard the relation as a binary or continuous
value between users (Challenge 1). On the other hand, a few studies involving
edge relations still exist imprecise separations of correct links and malicious links
(Challenge 2).

In this paper, We propose ResNel to improve CSP accuracy with the
third-order (3D) probability-scored tensor factorization based on social multi-
relational embeddings. Due to the location characteristics of D2D communica-
tion, we develop a specific relation slice called Global Positioning System (GPS).
As a result, the sharing-based relation triple can be represented as a 3D tensor,
wherein a sender links to a receiver through relations containing App types and
GPS, shown in Fig. 2. This paper makes the following contributions:

– To the best of our knowledge, it is a prior work to extend the multi-
dimensional relations between users into probability rather than the binary
value in a 3D tensor space based on network structures of a real-world large-
scale D2D data set.
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Fig. 2. Illustration of the proposed embedding ResNel from D2D sharing-based MSNs
to third-order (3D) tensor space.

– We consider GPS as a critical slice, which can avoid the loss of potential
information, separate the true and false triples accurately, as well as detect
missing links or forecast the future links in offline MSNs effectively.

– Compared to other state-of-the-art models, experimental results on the real
show the better performance of ResNel, with 3–7 times enhancement in
terms of MRR as well as 5.2 times for mean Hits@k.

2 Related Work

2.1 Network Representation Learning Based on Network Structure

The word vector representation model based on network structure, represented
by word2vec model, lately has set off a wave in the area of representation learn-
ing, which inspires the research of NRL as well. DeepWalk [10], the first proposed
node vectorization model based on the Word2vec, imitates the text generation
process via the random walk path. Others, such as node2vec [5] and SDNE [16],
tend to learn embeddings of network vertices based on the local network struc-
ture. However, they do not adequately consider the rich semantic information
over edges but merely regard the single relation as a binary number or a contin-
uous value in the networks, which may lead to the loss of vast potential infor-
mation. Besides, they conduct their analysis almost on online datasets derived
from some popular social networking sites with restricted relations, such as click
rate, interest sharing, and retweets. In contrast, some unique edge information,
such as GPS or user mobility [12], is seldom considered.

2.2 Link Predictions Based on Relation Extraction

Relation extraction (RE) recent years has been a significant task to enrich
Knowledge graph (KG) [7]. Knowledge Representation Learning (KRL), as a
crucial method used for RE, maps nodes (entities) or edges (relations) in KG
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into low-dimensional vector spaces, which is favourable to construction, rea-
soning and application in Web-scale knowledge bases (KBs). TransE [2], as a
widely-used method in KRL, considers the relation in each triple (head, relation,
tail) as a translation from the head entity to tail entity. Cunchao Tu et al. [14],
considering the text interactions between vertices in social networks, propose
a translation-based social relation extraction model (TransNet). TransLink [24]
jointly embeds both users and interactive behaviours into a unified low-dimension
space. However, both of the transitive models are not fully expressive due to the
absolute contradiction imposed on different relation types. Thus, it is necessary
to consider the multi-dimensional relations between users.

3 Preliminaries

3.1 Definitions

Definition 1 (Knowledge Network Graph). Given a directed graph G =
{VH , E, VT }, where V = VH ∪ VT is the set of vertices (entities), VH represents
the head entity, while VT signifies tail entity. And E ⊆ V × V is the set of edges
(relations). We define G be the knowledge network graph (KNG).

Definition 2 (Social Network Graph). Given a directed graph G = {V,E},
where V is the set of vertices (users) and E ⊆ V ×V is the set of edges (various
interactions). Besides, the edges in E are either labeled as EL (discovered rela-
tions) or EP (undiscovered relations), thus existing E = EL + EP . We define G
be the Social Network Graph (SNG).

3.2 Multi-relational Prediction Model Based on the Binary Tensor

The Construction of Relational Tensors. The KNG G, with n entities and
m relationships, can be represented by a 3D tensor X ∈ R

n×n×m, where the
value of a triple represented by the indices (i, j, k) in tensor X is given by the
cell xijk. The scoring scheme is defined as follows:

– The tensor element value is 1 when the relational fact is true, and 0 or -1
otherwise, i.e., xijk ∈ {0, 1}, or xijk ∈ {−1, 1}; ∀i, j, k.

Relational Reasoning Based on Knowledge Representation. To perform
collective learning on multi-relational data, RESCAL [9] decomposes a tensor
into a factor matrix A ∈ R

n×r and a core tensor W ∈ R
r×r×m, where r is

the number of latent factors. Note that the k-th slice of the tensor contains
k relations among entities, denoted as Xk and approximately expressed as the
following equation by decomposition:

Xk ≈ AWkAT, for k = 1, · · · ,m. (1)
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The factor matrices A and Wk can be computed by solving the regularized
minimization problem,

min
A,Wk

1

2
(
∑

k

‖ Xk − AWkA
T ‖2

F +λ(‖ A ‖2
F +

∑

k

‖ Wk ‖2
F)). (2)

We use the alternating least-squares (ALS) approach to improve the compu-
tational efficiency of (2). Thus the factor matrices A and Wk are given by

A ← [
m∑

k=1

XkAWT
k + XT

k AWk][
m∑

k=1

Bk + Ck + λI]−1, (3)

where Bk = WkATAWT
k ,Ck = WT

k A
TAWk, and Rk ← ((A⊗A)T(A⊗A) +

λI)−1(A ⊗ A)vec(Xk), ⊗ is the Kronecker product.

4 Proposed Method

4.1 Multi-relational Prediction Model Based
on the Probability-Scored Tensor

The edge in KNG is usually simplified as a binary or a continuous value, which
is not enough to present comprehensive edge information. In this work, we use
the interactions between vertices to infer richer potential information.

Fig. 3. Tensor decomposition of the relation tensor X.

We redefine SNG by dividing user set V into head user (sender) and tail
user (receiver) (G = {VH , E, VT }). The relation measures prediction r(h, t) is
generalized by the logistic function:

Phtk = σ(ϕ(h, t, k)), (4)

where σ(x) = 1
1+e−x . Phtk = xijk corresponds to the valid probability when

the relation r(h, t) is true (e.g. Phtk = P (Yhtk = 1)). And ϕ(h, t, k) is the
scoring function. And we can forecast the probabilities of both discovered and
undiscovered triples as follows:

– The tensor element xijk represents the probability that the fact is 1, i.e.,
xijk ∈ [0, 1]; ∀i, j, k.
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4.2 ResNel: RESCAL-based Social NRL Model

Model Foundation. ResNel is proposed based on the probability tensor factor-
ization. According to the observed relation k between entity h and t. We model
the scoring function as follows:

ϕ(h, t, k) = eThWket. (5)

Figure 3 models the user multi-dimensional interactions (various APP types
and GPS information) in 3D tensor spaces in detail.

Model Solution. Stochastic Gradient Descent (SGD) with mini-batches and
AdaGrad are used by minimizing the negative log-likelihood loss function with
L2 regularization on the embeddings of the considered model:

min
eh,Wk,et

∑

r(h,t)∈Γ

f(eh,Wk, et) + g(eh,Wk, et), (6)

where f(eh,Wk, et) = log(1 + exp(−Yhtkϕ(h, t, k))), and g(eh,Wk, et) = λ(‖
eh ‖22 + ‖ Wk ‖2F + ‖ et ‖22).

Let λ denote the regularization coefficient and Γ as the training set, rewrite
the problem (6) as

Υ (Γ ) =
∑

r(h,t)∈Γ

f(eh,Wk, et) + g(eh,Wk, et). (7)

We use SGD to solve the problem f(eh,Wk, et), and the gradients of the
scoring function are shown as follows:

∇eh
ϕ(h, t, k) = Wket,

∇Wk
ϕ(h, t, k) = eheTt ,

∇et
ϕ(h, t, k) = WT

k eh.
(8)

Therefore, we can finally write the gradient of these parameters for one triple
r(h, t). The optimization with respect to embeddings in Υ (Γ ) can be written as:

∇eh
Υ (r(h, t)) = −Yhtkϕ(h, t, k)σ(Wket) + 2λeh,

∇Wk
Υ (r(h, t)) = −Yhtkϕ(h, t, k)σ(eheTt ) + 2λWk,

∇et
Υ (r(h, t)) = −Yhtkϕ(h, t, k)σ(WT

k eh) + 2λet.
(9)

Notably, we discuss the SGD for this scoring function in Algorithm 1. If Γ
only contains positive triples, we generate η negative triples per positive train
triple by corrupting either the head entity or the tail entity of the positive triple,
which can be referred to [13], and Λ corresponds to the embeddings eh,Wr, et.
Algorithm 1 firstly forms the random entities and relation embeddings of social
networks. Then we generate samples, including negative and positive triples.
To accurately address the optimal solution, the gradient for parameters Λ is
conducted iteratively (lines 3–5). The AdaGrad is used to update the learning



118 Q. Zhang et al.

Algorithm 1. SGD for the Social Multi-relational
Prediction Model

Input: Train set Γ , Validation set Γv, learning rate α,
embedding dimension k, regularization parameters λ,
negative ratio η, batch size b, max iter m, stopping s.

ei ← randn(k), for each i ∈ E;
Wi ← randn(k, k), for each i ∈ V;

Output: The entities and the relation embeddings eh,
1. for i = 1, · · · , m do
2. for j = 1, · · · , |Γ |/b do
3. Γb ← sample(Γ, b, η)
4. Update embeddings w.r.t.:
5.

∑
r(h,t)∈Γb

∇Υ (r(h, t); Λ)

6. Update learning rate α using AdaGrad
7. end for
8. if i mod s = 0 then
9. break if MRR on Γ decreased
10. end if
11. end for

rate α (line 6). Because the optimization problem is to model the relationship
between entities, we can easily quantify the relationship in social networks as a
slice and add it to the tensor for the subsequent solution.

A tensor decomposition model is considered to be fully expressed if there
exists an embedding of both entities and relationships for any real triples. As a
result, we can accurately separate true triples and false triples. Because of the
certain contradiction imposed on different relation types, we establish a bound
(i.e. the rank of decomposition) with the embedding dimension of entities to
ensure that our model is fully expressive by Theorem 1.

Theorem 1. Given any ground truth over a set of entities E and relations V,
there exists a ResNel model with n-dimensional head and tail entity embeddings
of dimensionality n = r and r × r relation embeddings, where n is the number
of entities, which accurately represents that ground truth.

Proof. Let eh and et be the n-dimensional one-hot binary vector representations
of heal entity eh and tail entity et respectively. For each head entity e

(i)
h , tail

entity e
(j)
t , as well as relation r(k), we let the i-th and j-th element respectively

represent the related vectors eh and et be 1, all other elements 0. Further, if the
relation between (eh, et) is true and 0 otherwise, we will set the ij element of
the matrix W ∈ R

r×r to 1. Thus the tensor products of these entity embeddings
and the relation embedding can accurately represent the original tensor after
applying the logistic sigmoid. ��
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5 Data Preprocessing

We conduct the experiment on the realistic large-scale offline user transmission
data set from Xender, one of the world’s leading mobile APPs for D2D contents
sharing [20]. In the dataset, user behaviors contain 9 columns (FileType, MD5,
SenderID, ReceiverID, TimeStamp, UserIP, Country, GPS, FilesSize), we select
the three most valuable items of which as <APP name, sender, receiver> in
01/08/2016 to conduct our experimental data trace.

Fig. 4. APP relation tagging from Google Play Store.

5.1 APP Relation Labels and Metadata

In order to accurately predict users’ interests sharing and make interest recom-
mendations broadly, we crawl all of the APPs’ name and the category in which
they fall as their label from Google Play, noting that each different APP cor-
responds to only one label. Then we match the crawled data table in the form
of <APP name, label> properties each row with the experimental data table,
converting the APP name to the corrected label. Taking the WhatsApp APP
as an example, Fig. 4 shows the process of tagging in detail. The App named
WhatsApp is substituted by the Communication relation label after mapping,
thus generating the metadata of our experiment, called Xender-filtered.

In our experiment, the Xender -filtered data set consists of 64,028 transmis-
sions between 72,550 users with 48 relation labels related to APP types. It is
worth mentioning that ResNel particularly takes geographic cosine similarity [20]
into account, which is used as the 49th label in our trail. Specifically, in order
to better investigate the labels, we depict the whole 48 types of labels for APP,
where the top two are Communication and Tools, shown in Fig. 5.

Considering there are only positive triples in our data set, we generate neg-
ative triples based on local closed-world assumption [2]. In this way, we can
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Fig. 5. 48 types of APP from Xender.

get negative examples by changing either the sender or receiver randomly. The
negative samplings are used in the training process of positive examples in the
follow-up experiment.

5.2 DBSCAN Clustering and Geographic Cosine Similarity

Unlike online relations, the content sharing of offline MSNs is limited by geo-
graphic positions and always follows the principle of homogeneity. Considering
that the actual motion of each user is ranging other than a single point with the
diversity of the geographical location in the real world, we use DBSCAN [22] to
cluster the users’ geographical information. The clusters are then used as fea-
ture vectors of the vertices to calculate geographic cosine similarity between user
pairs. Considering the impact of the latitude, longitude and sample numbers in
the cluster, we leverage the scan radius value of 0.05 with the minimum sample
number is 1. Thus, we clustered 64,028 transmissions into 5590 clusters. The
result of clustering is shown in Fig. 6(a).

Since the geographic similarity of all users is sparse, we select some active
user pairs to observe the distribution of geographic similarity. It can be clearly
seen from Fig. 6(b) that the geographical locations of active users are always sim-
ilar, with more than 70% of users having cosine similarities above 0.7, which also
manifests that geographical factor has a significant impact on the offline trans-
mission. Therefore, geographic cosine similarity is used as the critical relation
slice between vertices (users) among the 3D tensor space in ResNel to improve
the accuracy of transmission prediction.
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Fig. 6. Preprocessing results of location relation.

6 Experiment

We experiment on Xender -filtered data set. Compared to a bunch of state-of-
the-art models, ResNel not only takes full advantage of the semantic relation
between entities but also is fully expressive.

6.1 Baselines

In order to validate the performance of our model, we compare it with some
KRL and NRL models:

– RESCAL [15] It performs collective learning via the underlying components
of the model and provides an efficient algorithm for computing the 3D tensor
decomposition.

– TransNet [14] It regards the interaction between vertices as a translation
operation and formalizes the task of Social Relation Extraction (SRE) to
evaluate the capability of NRL method on modelling the relations between
vertices.

– Deepwalk [10] It receives n-dimensional node embeddings by performing
random walks to generate random walk sequences and then employs Skip-
Gram to learn node representation.

6.2 Parameter Settings

For ResNel, we use SGD as our optimizer to train embeddings. Concerning hyper-
parameters, we set the initial learning rate is 0.5, which is tuned at runtime with
AdaGrad later. Meanwhile, we try varying the batch size similar to [13], but it
makes no difference to the results. Without loss of generality, we deal with 100
batches each epoch, and the ratio of negatives generated every positive training
triple is 1.
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6.3 Evaluation Metrics

To evaluate the performance, we mainly focus on two metrics: MRR and Hits@k.
MRR (Mean Reciprocal Rank) represents the mean of the sum of the reciprocal
of the rank of all correct labels, and higher value indicates better performance,
while Hits@k means the proportion of correct labels ranked in the top k and
a substantial value is equivalent to a better effect likewise. All of them are the
standard evaluation measures for both KRL and NRL.

6.4 Parameter Sensitivity

In order to evaluate the parameter sensitivity of ResNel, we select differ-
ent embedding sizes and the regularization parameter lambda, where embed-
ding size ranges in {20, 25, 30, 35, 40, 50, 60}, and regularization parameter λ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}, to obtain the best hyper-parameters.

Figure 7 shows the evaluation results with the change of regularization
parameter lambda and embedding size. As we can see from the left part of
Fig. 7, when the regularization parameter lambda changes from 0.1 to 1, the
MRR and Hits@k value increase sharply, and then the curve flattens out, which
is similar to the trend of the evaluation results with the change of embedding
size in the right part of Fig. 7. According to experimental results, we fundamen-
tally conclude that the performance of the ResNel model is best when λ ≥ 0.4,
embedding size ≥ 40 meanwhile.

Fig. 7. Parameter sensitivity.

6.5 Experiment Results and Analysis

Figure 8 unfolds a clear comparison between our proposed ResNel and all the
baselines in terms of the CSP results with various evaluation metrics. We can
see that ResNel achieves remarkable and fantastic improvements than all the
baselines.
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Fig. 8. Evaluation results on Xender -filtered data set.

As we can see clearly from Fig. 8(a), MRR of our model keeps linearly growing
when embedding size <40 and converges when embedding size ≥40, while base-
lines have no apparent changes. Furthermore, the best MRR of ResNel attains
0.704 at 50 embedding size, which is a good confirmation of the previous param-
eter sensitivity settings. Moreover, all NRL models perform poorly on relation
prediction task among different indexes on account of ignoring of rich semantic
information over edges when representing the structure information of vertexes.
Oppositely, ResNel and RESCAL achieve satisfactory results over MRR, which
is aligned with a key of taking the details on edges into consideration. In contrast
with ResNel, RESCAL also has poor performance on MRR with 12% to 24%
categorically lower than ResNel since it only considers a single label on the edge
every time, which may be consistent with the situation in KG.

Besides, we make a comparison among Hits@1 to Hits@10 under the con-
dition that all of the contrast models and ResNel keep their best embedding
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size, with RESCAL (50), TransNet (100), DeepWalk (128), and ResNel (50).
As shown in Fig. 8(b), we can suggest that mean Hits@k of our model is 5.2
times the others and mainly unchanged when the k value of ranges from 1 to
10, while the others exist a sharp linear rise. It richly indicates effectiveness,
stability and robustness of ResNel on modelling and predicting content sharing
relations between users.

ResNel can avoid the loss of a majority of relations up to a point since it
regards the multi-dimensional relations between users as probabilities. To take a
step forward, Fig. 8(c) plainly reveals that ResNel obtains the highest Average
MRR (2–6 times as much as the other NRL models). Therefore, social multi-
relational learning based on probability tensor is significant.

7 Conclusion

In this paper, considering characters between D2D interaction, we propose
ResNel, a RESCAL-based network representation learning model, to explore
the content sharing prediction based on the real D2D data set. We employ the
probability-scored tensor in 3D tensor spaces to predict the probability of both
discovered and undiscovered relations between users. Given the importance of
offline geographical location, we add GPS as a special relation slice. A higher
MRR and Hits@k value demonstrate a better predictive accuracy of our model.
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Abstract. The notion of node similarity is useful in many real-world
applications. Many existing similarity measurements such as SimRank
and its variants have been proposed. Among these measurements, most
capture the structural information of a graph only, and thus they are
not suitable for graphs with additional label information. We propose a
new similarity measurement called LSimRank which measures the sim-
ilarities among nodes by using both the structural information and the
label information of a graph. Extensive experiments on datasets verify
that LSimRank is superior over SimRank and other variants on labeled
graphs.

Keywords: Node similarity · Labeled graph · Random walk

1 Introduction

The problem of measuring the similarity among nodes is a fundamental one in
graph analysis such as collaborative filtering [3], web page ranking [10], link
prediction [12], graph clustering [26], spam detection [19], and natural language
processing [15]. Among those existing similarity measurements, SimRank is one
that is commonly used [8]. It has been shown that SimRank works very well in
many applications [3,12,15]. The intuition behind SimRank is that “two objects
are similar if they are referenced by similar objects”. Based on similar intuitions,
quite a few variants of SimRank have also been proposed [3,15].

Many real graphs come with node labels, node similarity for such graphs has
been studied in [6,20,23]. However, there are limitations in such work such as
giving zero similarity to non-identical labels, assumption of concept taxonomy,
and the resulting utility. In this paper, we propose a new similarity measurement
among nodes called LSimRank which captures both the node label information
and the structural information of the given graph. Our contributions are as fol-
lows: (1) Unlike the existing work [6,20], LSimRank can give non-zero similarity
among nodes with different yet similar labels. (2) In LSimRank, in order to cap-
ture better label information of a node, we consider the label information of its
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neighborhood and compute the label similarity between two nodes using mea-
surements such as total variance distance and Jaccard similarity. (3) Extensive
experiments on real datasets verify that LSimRank is superior to SimRank, and
superior to SemSim [23] which is the state-of-the-art SimRank measurement for
labeled graphs.

This paper is organized as follows. Section 2 reviews the related work.
Section 3 provides preliminaries and the problem definition. Section 4 introduces
our proposed similarity measurement, LSimRank. Section 5 defines a label simi-
larity measurement between nodes. Section 6 introduces the approximation algo-
rithms for estimating LSimRank values. Section 7 presents the experimental
results and Sect. 8 concludes the paper and gives a few directions for future
study.

2 Related Work

SimRank, proposed by Jeh and Widom [8], is a widely used similarity measure-
ment in many areas. The idea behind SimRank is that two nodes are similar
if their neighbours are similar. They further proposed a Random Surfer-Pairs
model to interpret SimRank by random walk pairs, which is very useful in
designing approximation algorithms. There are quite many follow-up studies
on SimRank, which we review as follows.

Since the computation of the accurate SimRank scores in large graphs is
extremely costly, there has been much interest in approximation algorithms for
SimRank. The first random walk based approximation algorithm is proposed
by Fogaras and Racz [7]. They proposed an index structure called fingerprint
trees which to represent reversed random walks in a compact way. Another
indexing method called SLING is proposed in [21] which gives near-optimal
time complexity and guarantees a small additive error. TSF [16] and READS
[9] are dynamic indexing algorithms which will be further described in Sect. 6.
Several index-free approximation algorithms are proposed: in [14], the proposed
ProbSim estimates SimRank scores with provable approximation guarantees; in
[18], a Monte Carlo based algorithm UniWalk can simulate the original BiWalk
in computing SimRank scores with a rectified factor.

Variants of Simrank have been proposed to overcome limitations of SimRank
and improve the accuracy. SimRank++, proposed by Antonellis et al. [3], adds a
new parameter called evidence score to improve the accuracy of SimRank in click
graphs. Zhao et al. [25] proposed P-Rank which considers both in-neighbours and
out-neighbors in the SimRank computation. In [24], SimRank* is proposed to
traverse more incoming paths that are ignored by SimRank, and thus avoids the
“zero-SimRank” problem. ASCOS++[5] solves the problem that two nodes can
only reach each other through paths of odd lengths and includes the weights of
the edges along the paths in the calculation.

Some existing work has studied the node similarity in labeled graphs. [20]
proposed a new framework of meta path-based similarity and a new definition of
similarity measure, PathSim, that captures the subtle similarity semantics among
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peer objects in networks. [6] introduced a new measurement called NSimGram
which uses the label sequences found in paths of bounded length q leading to the
nodes. However, these new measurements only apply non-zero similarity to nodes
with the same labels. For nodes with different labels, the similarities are always
0. [17,22] focus on the relations between nodes. Such a relation is predefined
based on the labels of edges in a path. They measure the similarity between
nodes based on paths with particular relations. If two nodes do not follow paths
with the given relations which meet at one node, then the similarity is 0.

SemSim [23] boosts the SimRank of labeled graphs with semantics. Our recur-
sive form of LSimRank is similar to SemSim [23]. The advantages of our approach
are as follows: 1) SemSim [23] adopts the Lin Score [13] as the label similarity
measurement, but it only works in graphs with a taxonomy of the label concepts.
We make a in depth study on the label similarity in Sect. 4 and define a new
label similarity measurement which does not depend on a concept taxonomy.
Experimental studies in Sect. 7 show that our new label similarity measurement
is superior to the use of Lin Score. 2). The random surfer-pairs form in SemSim
[23] depends on a new graph G2 which is obtained from the original graph G. If
the original graph G is large, the size of G2 may be very large, as a result, the
cost of computing the similarity may be also very high. We introduce the ran-
dom surfer-pairs form which depends only on the original graph, so the cost of
computing the similarity is much lower. We prove that our random surfer-pairs
form is equivalent to the recursive form in our technical report [2] concretely. 3).
Using our random surfer-pairs form, many sophisticated ideas in existing work
can be adopted for approximating the similarity scores as described in Sect. 6.

3 LSimRank

We first define our problem. Given a labeled graph G = (V,E) with the following
properties, 1) G can be directed or undirected, 2) each node in G has at least
one label and LG is the set of distinct labels in G, 3) the whole graph G can be
easily accessed, where V is the node set and E is the edge set. The problem is
to measure the similarity among nodes in G.

In order to measure the similarity between nodes in labeled graphs, we pro-
pose LSimRank which captures both the label information and the structural
information. The basic intuition of LSimRank can be interpreted as ’two objects
are similar if they have similar labels and are referenced by similar objects’.
We measure how similar the labels of two nodes u and v are using a func-
tion L(u, v) ∈ [0, 1]. For simplicity, we call L(u, v) the label similarity function.
Details of how L(u, v) is defined and computed are given in Sect. 4.

As for SimRank, the process of computing LSimRank can also be recursively
propagated beyond the localized neighborhood scope to the entire graph, so that
the global structure may be involved. Next, we show the iterative form of LSim-
Rank and then derive the corresponding random surfer-pairs form.
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[Recursive Form]. Given a graph G, let In(u) be the in-neighbour set of u and
let LS(u, v) denote the LSimRank score between u and v. C ∈ (0, 1) is a decay
factor. The recursive form of LSimRank is defined as follows,

LS(u, v) =

{
C·L(u,v)

|In(u)||In(v)|
∑

a∈In(u)b∈In(v) LS(a, b) if u �= v

1 if u = v
(1)

Theorem 1. The solution to the recursive form of LSimRank in Equation (1)
is unique when C �= 1

Proof. Please see our technical report [2].

[Random Surfer-Pairs Form]. Based on the recursive form in Equation (1),
we can obtain the corresponding random surfer-pairs form of LSimRank.

Let πu = (u0, u1, u2, ..., uk) and πv = (v0, v1, v2, ..., vk) be two random walks
with same length. u0 = u and v0 = v. Note that k can be any positive number
here. Let I(πu, πv) be an indicator function which is 1 if the last node of πu and
πv is the first meeting point, i.e. uk = vk and ui �= vi for 0 ≤ i < k. We denote
the length of πu by �(πu).

Define L′(πu, πv) =
∏k

i=0 L(ui, vi) as the label similarity between two random
walks πu,πv. Then the random surfer-pairs form of LSimRank can be defined as

LS′(u, v) =
∑

πu,πv

I(πu, πv)Pr(πu, πv)L′(πu, πv)C�(πu)

= E[I(πu, πv)L′(πu, πv)C�(πu)]
(2)

where Pr(πu, πv) is the probability of sampling random walks πu and πv given
starting points u and v. Then we prove that LS′(u, v) in Equation (2) exactly
models our original definition of LSimRank by showing that LS′(u, v) equals
LS(u, v) in Equation (1). In the proof of the following Lemma, v · π stands for
a path of node v followed by path π.

Lemma 1. LS′(u, v) is equivalent to LS(u, v) in Eq. 1.

Proof. Please see our technical report [2].

Equation (2) considers all the paths up to length ∞, but this can be very
expensive. A practical way is to limit the length of paths. Given a positive integer
t, only those pathes whose length is no larger than t are considered in Equation
(2). The value of t is usually set as 10 in previous works [7,8,16].

4 Label Similarity Function

One easy way to define the label similarity is to directly compare the labels of
nodes. If u and v have the same label, then L(u, v) = 1, otherwise L(u, v) = 0.
This is in fact the measurement by Lin score [13] given in SemSim [23] when no
concept taxonomy is given: suppose two nodes have the same label X, the lowest
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common ancestor (LCA) of X will be X itself, while for two nodes with different
labels there is no LCA for the labels and the conceptual similarity becomes zero.
So in graphs without taxonomy, Lin score is too simplistic, since the similarity
values can only be 0 or 1. Another weak point of Lin score is that it only considers
the labels of u and v, while we have much more information in the graph.

We define a more comprehensive label similarity function based on two intu-
itions: 1. “The label information of a node u does not only depends on its own
label, but also depends on the labels in its neighborhood”. 2. “Closer neighbors of
u contribute more to the label information of u than farther neighbors”. Here,
we give one example to show that using the labels of neighbors is very helpful in
similarity measurement. Consider a citation network, each node is a conference
paper and each edge is a citation relationship. The conference which a paper
belongs to is the label of this paper. E.g., paper [8] is from KDD and paper [7]
is from WWW. So if we only consider their own labels, then the label similarity
is 0 and the LSimRank score is also 0. However, [8] and [7] are closely related,
since [8] proposes the definition of SimRank and [7] presents a scalable algo-
rithm to compute approximate SimRank scores. If we consider the labels of of
their neighbors, we can find that they are cited by many papers from the same
conference, so the label similarity and LSimRank score should not be 0.

Specifically, we propose to define a label vector Pu for each node u in G,
which captures the characteristics of the labels in the neighborhood of u within
h hops. We use a decay factor of Cl of value in (0,1). For simplicity, each label
is represented by an integer. There is one entry Pu(a) for each label a in LG,
initially set to 0. We examine the h-hop neighborhood of u, for each node v in
this neighborhood, if v is in i-th hop from u, and the label of v is b, then we add
Ci

l to Pu(b). As Cl ∈ (0, 1), farther neighbors contribute less to the label vector.
After processing the h-hop neighborhood, let M be the sum of all entries in Pu,
we normalize the values by replacing Pu(a) by Pu(a)/M for each label a in LG.

The time complexity of computing Pu is O(dh
max), which will increase as h

increases, where dmax is the maximum degree in G. So a large h will lead to poor
time complexity. In our experiment, we only show the results when h = 1, since
we observe that the results of LSimRank is already acceptable when h = 1. We
also show the results when h = 2 in our technical report [2]. The improvement
of the results from h = 1 to h = 2 is not obvious. So h = 1 is often sufficient.

In some graphs, one node may have multiple labels. In order to handle this
case, we distribute the contribution of a node to each label equally, which means
that if one node has m labels and it is an i-th hop neighbor of node u, then it
has 1/m × Ci

l contribution to the count of these m labels in the label vector Pu.
Now, the problem becomes measuring the similarity between two label vec-

tors Pu and Pv. Total variation distance and Kullback-Leibler divergence are
two widely used measurements for computing the distance between probabil-
ity distributions. However, since Kullback-Leibler divergence is asymmetric, if
Kullback-Leibler divergence is used, then LSimRank will also be asymmetric,
which means that L(u, v) �= L(v, u), which is not desirable. So we choose to use
total variation distance here. We use DTV D to represent total variation distance.
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DTV D(Pu, Pv) =
1
2

∑|LG|
i=1

|Pu(i) − Pv(i)| (3)

Since the smaller the distance is, the more similar the two nodes are, we define
the label similarity between u and v as

L(u, v) = 1 − DTV D(Pu, Pv) (4)

Jaccard similarity is another commonly used measurement for the similarity
between two vectors.

L(u, v) =
∑|LG|

i=1 min(Pu(i), Pv(i))∑|LG|
i=1 max(Pu(i), Pv(i))

(5)

We call LSimRank with different label similarity functions, LSimRank-Lin,
LSimRank-TVD and LSimRank-Jaccard. We will compare these alternatives
in the experiments. In the following, we introduce two different strategies for
enhancing the computation of label similarity.

4.1 Strategy 1: Pre-computing Label Vectors

In computing LSimRank, we may reuse many label similarity values multiple
times. If we compute the label similarity values every time we encounter them in
LSimRank computation, it may incur much extra time cost. So if we pre-compute
label similarity values, the time cost can be reduced a lot. However, if we pre-
compute all label similarity values, the time complexity is O(|V |2(dh

max + |LG|))
where dmax is the maximum degree in the graph and h is the number of hops used
in computing the label vectors and we need O(|V |2) space to store them, which is
prohibitive for large graphs. Instead, we can pre-compute the label vector Pu for
each node u, then the space cost and time cost of the pre-computation process
are reduced to O(|V ||LG|) and O(|V |dh

max), respectively. With the pre-computed
label vectors, the time cost of computing one label similarity is O(|LG|).

It is well known that the degree distribution of nodes in many graphs satisfies
power law distribution, which means that only a small portion of nodes have
large degrees and most of the nodes have small degrees. Also, in computing the
LSimRank scores, those nodes with larger degrees will be used more times than
those with small degrees, since more paths go through nodes with large degrees.

Based on this observation, we can design a better method for computing
label similarities. We divide all nodes into two sets, large degree set and small
degree set, based on their degrees. For example, we put 10% nodes with the
largest degrees into the large degree set and put the remaining 90% nodes into
the small degree set. For those nodes in the large degree set, we pre-compute the
label vectors for them, since these nodes have large degrees and the time cost
of computing the label vectors is very expensive. While for those nodes in the
small degree set, we do not pre-compute the label vector for them, since their
degree is small and the pre-computation of label vectors will not reduce the time
cost a lot but incur extra space cost. Let w = 0.1. The space cost and time cost
of the pre-computation process are O(w|V ||LG|) and O(w|V |dh

max),respectively.
In computing the label similarity, the time cost is O(dh

max + |LG|).
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4.2 Strategy 2: Using Similarity Between Labels

With the above optimization algorithm we still have some problems. First, we
need O(|V ||LG|) space to store the pre-computed label vectors for each node,
which needs large space cost for large graphs. Also, in the querying process, we
need to spend extra time O(|LG|) to compute each label similarity value.

In order to further reduce the cost, we directly use the similarity between
labels instead of the label similarity between nodes in computing LSimRank.
Suppose we want to compute the similarity between two labels l1 and l2, we first
randomly select m node pairs {(u1, v1), (u2, v2), ..., (um, vm)} with labels l1 and
l2. Then we compute the label similarity of these m node pairs and use the aver-
age value of these label similarity as the similarity between l1 and l2. Let L∗(l1, l2)
be the similarity between l1 and l2, we have L∗(l1, l2) =

∑m
i=1 L(ui, vi)/m. The

computation of L(ui, vi) is based on Eq. 4 or 5 Then, for all node pairs (u, v)
where u has label l1 and v has label l2 or u has label l2 and v has label l1, we use
the similarity between labels l1 and l2 to replace the label similarity between u
and v, i.e. L(u, v) = L∗(l1, l2).

With this method, the time cost of computing the similarity between labels is
O(m(dh

max + |LG|)|LG|2). The space cost of storing the similarity between labels
is O(|LG|2), which is much smaller than the space cost O(|V ||LG|) for Strategy
1. Note that |LG| is a small number in most graphs as shown in our experiments.
O(1) time is needed for the query process for looking up the label similarity. In
our experiments in Sect. 7, using 1%|V | (m = 1%|V |) node pairs is enough for
getting accurate results.

We summarize the space and time cost of these two strategies in Table 1.

Table 1. Index space, Indexing time and CPU time for computing one label similarity

Index space Indexing time CPU time

Strategy 1 O(|V ||LG|) O(|V |dhmax) O(|LG|)
Strategy 2 O(|LG|2) O(|V |(dhmax + |LG|)|LG|2) O(1)

5 Computing LSimRank

In order to solve LS(u, v) in Equation (1), we can rewrite Equation (1) in the
following iterative form

LSk+1(u, v) =

{
C·L(u,v)

|In(u)||In(v)|
∑

a∈In(u)b∈In(v) LSk(a, b) if u �= v

1 if u = v
(6)

with the ground state of LS0(u, v) = 0, if u �= v and LS0(u, v) = 1, if u = v.
LSk(u, v) is the LSimRank value between u and v in the k-th iteration. With
Equation (6), we can compute LSk+1(u, v) based on LSk(u, v) recursively.
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Theorem 2. LSimRank scores in Equation (6) has the following properties

1. (Symmetry) LSk(u, v) = LSk(v, u)
2. (Monotonicity) 0 ≤ LSk(u, v) ≤ LSk+1(u, v) ≤ 1
3. (Convergence) The solution to the iterative form of LSimRank always exists

and converges to a fixed point LS∗(u, v), which is the theoretical solution to
the recursive form of LSimRank in Equation (1).

Proof. Please see our technical report [2].

Property 3(Convergence) guarantees that the unique solution to the recur-
sive LSimRank Equation (1) can be reached by computing LSk(u, v) iteratively.
In [25], it has been shown that such an iterative form converges to the fixed
point very quickly, i.e. k = 5. The space and time complexity of computing the
LSimRank score with Eq. 6 is O(|V |2) and O(kd2max|V |2) respectively.

6 Approximation Algorithms

We have introduced a simple algorithm of computing LSimRank scores in Eq. 6,
but the time and space cost of this algorithm is prohibitive on large graphs. So
approximation algorithms are necessary for computing LSimRank in real-world
applications. All the estimations in the following algorithms is unbiased and the
prove is shown in our technical report [2]. The error bounds and the complexities
are also shown in our technical report [2].

6.1 Basic Algorithm

Based on the random surfer-pairs form in Eq. 2, we can design a Monte Carlo
based approximation algorithm. First, we generate a reverse random walk from
each node in the graph. In fact, we do not need to generate totally independent
random walks. Instead, we generate a set of coalescing walks: each pair of walks
will follow the same path after their first meeting time. More precisely, we start
a reversed walk from each node. In each time step, the walks at different nodes
independently choose an in-neighbor uniformly. If two walks are at the same
node, they follow the same edge. All random walks stop when the length of ran-
dom walks reaches the maximum length t. If we repeat such simulation process
r times, let πi

u and πi
v be the truncated random walks in the i-th simulation,

which end at the meeting node of the random walks from u and v, then the
estimation of LS(u, v) is

̂LS(u, v) =
r∑

i=1

I(πi
u, πi

v)L′(πi
u, πi

v)C�(πi
u)/r (7)

Recently, a few sophisticated approximation algorithms have been proposed
to estimate SimRank. However, such algorithms cannot be applied to LSim-
Rank directly, since LSimRank considers the labels of nodes. In the following
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subsections, we propose variants of such algorithms which can be applied for
computing LSimRank. In Sect. 6.2, we describe the index-based approximation
algorithms and in Sect. 6.3, we describe the index-free approximation algorithms.
We compare all these algorithms in Sect. 7.3.

6.2 Index-Based Approximation Algorithms

The existing index-based approximation algorithms for SimRank named SLING
[21], FR [7], READS [9] and TSF [16] are frequently cited in SimRank related
work. For LSimRank, we propose variants of these algorithms whose names start
with ’L-’ in the following. We find that for SLING and FR, no simple variants can
be applied to handle LSimRank, since we cannot compute the label similarity
between random walks based on their indexes, so we focus on READS [9] and
TSF [16].

[L-SAforest]. In READS [9], the indexing process constructs an SA forest using
sampled random walks from each node, then SA sets are formed which contain
leaf nodes in the SA forest as the index. If two leaf nodes are in the same SA
tree, then they are assigned to the same SA set and the random walks from
them have a common meeting point. In the querying process, in order to obtain
the SimRank value between nodes, we only need to check if two nodes are in
the same SA set or not. However, the index of READS contains no information
about the sampled random walks which are necessary for computing the label
similarity between random walks in LSimRank. So we need to keep the SA trees
as the index. We call the method L-SAforest. The difference between the querying
process of L-SAforest and READS is that we should multiply the contribution of
each random walk pair with the label similarity between them as the contribution
to the LSimRank values. The querying process of L-SAforest is shown in our
technical report [2] and the correctness of this method has been proved in [9].

[L-TSF]. In TSF [16], Rg one-way graphs are sampled as the index. To sample
a one-way graph, each vertex in the reversed graph randomly selects an outgoing
edge and |V | such edges compose a one-way graph. In the querying process, the
algorithm samples Rq random walks from the query node u with length T on
the original graph, then for each sampled random walk, we find the nodes with
common meeting points in the sampled random walk in the one-way graph and
add the contributions to the corresponding similarity scores.

L-TSF has the same indexing process as TSF, while in the querying process,
we multiply the contribution of each random walk pair with the label similarity
between the pair as the final contribution to the LSimRank values.

6.3 Index-Free Approximation Algorithms

ProbSim [14] and Uniwalk [18] are two recently proposed index-free algorithms
for SimRank. Here we describe variants of these approaches for LSimRank.
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[L-ProbSim]. In each simulation, ProbeSim generates a
√

c-walk W (u) =
(u1, u2..., uk) from the query node u. Then, on each partial

√
c-walk W (u, i) =

(u1, ..., ui), i = 2, ..., k, we find all the paths in graph G which have meeting
points with W (u, i) from each node v ∈ |V | and the length from u and v to
the meeting point should be the same. We compute the contributions to the
SimRank score S(u, v) based on these paths from u and v with meeting points.
Finally, we sum all contributions in all partial random walks.

In L-ProbeSim, we multiply each contribution with the label similarity
between the paths from u and v to the meeting point as the contribution to the
LSimRank score. The algorithm of L-ProbeSim shows in our technical report [2].
The difference between this new algorithm and the original one in [14] is that
we construct a tree T to store all the paths, which is used to compute the label
similarity between paths with meeting points.

[L-UniWalk]. UniWalk extends a path starting from the query node u by 2
steps forwards iteratively. At each iteration, let p be the center point in the path
and v be the end point, then we check if p is the first meeting point of two
sub-paths, one from u to p and the other from v to p. If yes, then we compute
the contribution of these two sub-paths to the SimRank score between u and v.
The iteration process stops when the length of the path equals 2l where l is a
pre-defined maximum length. We sum all contributions in every iteration as the
estimation of the SimRank score between u and v.

In L-UniWalk, the difference is that in each iteration, we multiply the contri-
bution to SimRank with the label similarity between two sub-paths as the con-
tribution to LSimRank score between u and v. Note that UniWalk is designed
for handling undirected graphs, and the experimental results show that UniWalk
performs worse than others in directed graphs.

7 Experimental Results

First, we show the effectiveness of LSimRank in comparison with SimRank.
Secondly, we compare the effectiveness all variants of LSimRank mentioned in
Sect. 4, i.e. LSimRank-TVD and LSimRank-Jaccard, and related work on labeled
graphs, namely SemSim from [23], PathSim from [20], and NSimGram from [6].
Thirdly, we compare the accuracy and cost of different approximation algorithms
for LSimRank.

Note that we have also compared the two optimization strategies in Sect. 4
and the details are reported in [2]. We find that LSimRank using optimization
Strategy 2 in 4.2 outperforms Strategy 1 in 4.1 in that it is more efficient while
producing very similar results. Hence in this section, we only report our results
based on Strategy 2.

7.1 Experiment Settings

We run experiments on four real-world datasets which are available in [1,11].
The statistics of these datasets are shown in Table 2. In Wikispeedia, each node
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Table 2. Statistics of datasets

Network |V | |E| |L|
Wikispeedia(WK) 4.6 × 103 1.2 × 105 14 directed

Amazon-meta(AM) 5.5 × 105 1.8 × 106 100 undirected

US-Patents(UP) 3.8 × 106 1.6 × 107 6 directed

Wikipedia Links(WL) 1.2 × 107 3.8 × 108 10 directed

is a Wikipedia article and each edge is a hyperlink between articles. Each node
label is the category which the article belongs to. In Amazon-meta, nodes are
products (books, music CDs, DVDs and video tapes). If two products are bought
together then there is a link between them. The node label is the category which
the product belongs to. In Cit-Patents, each node is a patent and each edge
represents a citation relationship. The node label is the category which the patent
belongs to. Wikipedia Links consists of the wikilinks of the Wikipedia. Nodes
are Wikipedia articles, and directed edges are hyperlinks. Wikipedia Links has
no node label, so we need to generate the node labels. We use 10 labels and
we randomly assign a label to each node with a uniform probability, which
follows the generating process in [4]. We use 1-hop neighbors for computing
the label similarity between nodes. Our experiments in the technical report [2]
show that 1-hop returns similar accuracy compared with 2-hops. All algorithms
are implemented in C++, and we conduct experiments on a Linux machine with
Intel 3.40GHz CPU, 16GB memory. For fair comparison, we set the decay factors
C = Cl = 0.8 for all algorithms as in previous work [7–9,21].

7.2 Comparing LSimRank and SimRank

SimRank scores are computed using the brute-force algorithm in [8] and LSim-
Rank scores are computed by Eq. 6. We use Strategy 1 in Sect. 4.1 for com-
puting label similarity in LSimRank. Since the computations cost a lot of time
on large graphs, we only show the results on WK. In WK, nodes may have
multiple labels. In our experiment, we test six query nodes, “Internet”, “Com-
puter Science”, “Linux”, “DNA”, “Food” and “Jazz”. The query node “Internet”
has two labels, “IT”(information technology) and ”Citizenship”. “Computer Sci-
ence” and “Linux” have one label, “IT”. “DNA” has label “Science”. “Food” has
label “Everyday Life”. “Jazz” has label “Music”. Because of the space limit, we
only show the results of “Internet”. First, we show the top-10 nearest neighbors
of the query nodes. Second, we evaluate LSimRank and SimRank based on their
performance on the link prediction problem1.

[Top-10 Nearest Neighbors]. Table 3 shows the top-10 nearest neighbors of
the query node ’internet’ with label ’IT’ in LSimRank-TVD. Table 3 shows the
1 NDCG and precision are two commonly used metrics in top-k query problems. How-

ever, these two metrics cannot be used here, since they need the ground-truth rank
of nodes which does not exist in our case.
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top-10 nearest neighbors of the query node “internet” with label “Citizenship”
in LSimRank-TVD. Table 3 shows the top-10 nearest neighbors of the query
node “internet” in SimRank. We only show the results of LSimRank-TVD.
Other LSimRank algorithms return similar results, so we show them in our
technical report [2]. We also show the 10-nearest neighbors of querying “Com-
puter Science(IT)”, “Linux(IT)”, “DNA(Science)”, “Food(Everyday Life)” and
“Jazz(Music)” in the technical report [2].

When we use different labels for the query node “Internet”, the results of
LSimRank are totally different and there is no overlap between them. In addi-
tion, if we check the results using label “IT”, it is obvious that the results are
closely related to “internet” in terms of information technology. And this is
also true for label “Citizenship”. However, the results of SimRank contain some
nodes from both cases using labels “IT” and “citizenship” and also include some
unrelated nodes, which means the quality of results is quite poor. This proves
that LSimRank can filter many unrelated nodes when we consider node labels.
So LSimRank outperforms SimRank in labeled graphs.

Table 3. Top-10 NN for (a)“Internet(IT)” with LSimRank-TVD; (b)“Internet
(Citizenship)” with LSimRank-TVD; (c)“Internet” with SimRank

(a)

1 X Window core

protocol

2 HTTP cookie

3 Wikisource

4 Napster

5 Wikispecies

6 InterBase

7 GNU Project

8 GNU Linux

naming controversy

9 X Window System

10 World Wide Web

(b)

1 Local community

2 Garden Gnome

Liberation Front

3 Creative Commons

4 History of

the Internet

5 Mass media

6 Broadcasting

7 Working poor

8 Publishing

9 Video

10 FairTax

(c)

1 Japanese grammar

2 X Window

core protocol

3 Local community

4 Telephone exchange

5 Defaka

6 Scent of a Woman

7 Weather map

8 Shabo language

9 Garden Gnome

Liberation Front

10 Wikispecies

Table 4. Node ranks: “Internet(IT)”

Adjacent node LSimRank-
TVD

LSimRank-
Jaccard

SemSim PathSim NSimGram SimRank

Compact disk 56 58 NA NA NA 322

World wide web 5 13 9 8 15 45

Computer 54 59 89 101 138 401

Google 25 32 44 39 28 95

Linux 24 28 26 20 31 93

Wikipedia 40 52 87 78 69 145
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Table 5. Node ranks: “Internet(Citizenship)”

Adjacent node LSimRank-
TVD

LSimRank-
Jaccard

SemSim PathSim NSimGram SimRank

Mass media 8 15 12 13 9 58

Broadcasting 11 9 24 14 13 66

Publishing 19 21 35 17 15 92

Education 48 51 NA NA NA 96

Table 6. Node ranks: “Computer Science(IT)”

Adjacent node LSimRank-
TVD

LSimRank-
Jaccard

SemSim PathSim NSimGram SimRank

Programming
language

11 9 13 17 12 42

History of
computing
hardware

14 15 21 18 11 66

Data Encryption
Standard

9 11 12 21 15 47

Wikisource 29 36 NA NA NA 49

Table 7. Node ranks: “Linux(IT)”

Adjacent node LSimRank-
TVD

LSimRank-
Jaccard

SemSim PathSim NSimGram SimRank

OpenBSD 9 7 21 12 10 11

GNU 4 6 11 13 5 7

X Window System 12 11 19 23 9 15

World Wide Web 53 59 NA NA NA 109

[Link Prediction].Another popular way to evaluate different node similarity
measurements is measuring their effectiveness in the link prediction problem
[3,5]. The basic idea is to remove some edge from the graph and then check which
node similarity measurement can make most useful prediction on the missing
edge. First, we remove one edge (u, v) from the graph, then we run the one-to-
all query on node u, and we compare the ranks of the similarity scores between
(u, v) in different node similarity measurements. The measurement which ranks
the similarity score of (u, v) the highest is the best in link prediction.

We experiment on six adjacent edges of the query node “Internet(IT)”, four
adjacent edges of the query node “Internet (Citizenship)”, four adjacent edges
of the query node “Computer Science” and four adjacent edges of the query
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node “Linux”. In each experiment, we delete one such edge, then we compute
the similarity scores of the node connected with the deleted edge. The results
are shown in Tables 4, 5, 6 and 7. The lower the number is, the higher the
rank of the node is. “NA” means that the similarity score is 0, which means the
measurements does not work here. Here we also include three existing algorithms
SemSim [23], PathSim [20] and NSimGram [6] for comparison. In some cases,
SemSim, PathSim and NSimGram are “NA”, so these algorithms do not work.
In most cases, the rank of nodes in LSimRank-TVD and LSimRank-Jaccard
are much higher than other algorithms. LSimRank-TVD is slightly better than
LSimRank-Jaccard.

In order to see if LSimRank outperform SimRank in more cases and find the
best label similarity function, we repeat the link prediction process 1000 times,
with randomly chosen query nodes. In Table 8, we show the accuracy of each
algorithm in link predictions. The accuracy means the the percentage of link
prediction cases in which the corresponding algorithm returns the highest rank.
We show the results of WK and AM. There is no taxonomy in WK, so Lin Score
[13] in SemSim [23] becomes a simple indicator function as we stated in Sect. 4.
As a results, the result of SemSim [23] is very poor. While AM has the taxonomy.
We find that in most of the cases, the rank in LSimRank-TVD is the highest
among all algorithms mentioned in this section in Table 8. SemSim [23] is used in
graphs with taxonomy, but we find that TVD is still slightly better than SemSim
[23] in the graph (AM) with taxonomy. In the graph (WK) without taxonomy,
TVD is much better than SemSim [23].

Table 8. The accuracy of different algorithms in link predictions

Dataset LSimRank-
TVD

LSimRank-
Jaccard

SemSim PathSim NSimGram SimRank

WK 69.5% 21.7% 0.9% 3.4% 4.1% 0.4%

AM 42.5% 24.3% 29.8% 1.4% 1.7% 0.3%

7.3 Comparing Approximation Algorithms

[Precision]. We measure the quality of different approximation algorithms in
LSimRank by using precision which is the percentage of top-k nearest neighbors
in approximation algorithms among the ground-truth top-k nearest neighbors.

Precision= |approximated top k nodes set ∩ exact top k nodes set|/k.
The results of the iterative form of LSimRank in Eq. 6 serves as the ground-

truth in our experiments. We only show the precision for the small graph WK,
since the computation time cost is prohibitive in large graphs.

In Fig. 1(a), we find that L-SAforest and L-ProbeSim outperform other index
and index-free algorithms, respectively. L-TSF performs poorly, since it is based
on the assumption that no cycle with length shorter than t exists in the given



LSimRank: Node Similarity in a Labeled Graph 141

graph, but this assumption is not true in many graphs. L-UniWalk is designed
only for undirect graphs and it performs poorly on directed graphs. In addition,
We find that the accuracy is high for nearer neighbors, i.e., when k is small, but
the result quality decreases quickly when we estimate more nearest neighbors,
i.e., when k is large.

Fig. 1. (a) Top-k query precision, (b) Query time cost

Fig. 2. (a) Indexing time, (b) Index space(a) Indexing time, (b) Index space

[Querying Efficiency]. We evaluate the querying efficiency for each approxi-
mation algorithm based on the query times. The query times of LSimRank and
LSimRank* are shown in Fig. 1(b) and each result is averaged over 100 single
source queries. Figure 1(b) shows that L-UniWalk has the lowest querying time
cost for large graphs, since the query cost of UniWalk is unrelated to the graph
size. But its accuracy is not acceptable as shown in Fig. 1(a). The query time of
L-SAforest is slightly higher than L-UniWalk on large graphs. Since L-SAforest
improves the accuracy a lot, this is a good trade-off between querying cost and
accuracy. While on small graphs, the querying cost of L-SAforest is the lowest.
Other algorithms are always worse than L-SAforest.

[Indexing Cost]. We compare the time and space cost of the indexing pro-
cess for all algorithms in Fig. 2(a) and 2(b). The indexing process contains two
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parts: 1. pre-computing the label similarity, 2. constructing the index for query-
ing process. Index-free algorithms (L-ProbeSim and L-Uniwalk) has no cost for
constructing the index.

In index-based algorithms, L-TSF has the lowest time and space cost, and
the basic algorithm has the highest time and space cost. Although L-TSF has
the lowest querying time cost, it has very low precision. So it is an undesirable
trade-off. L-SAforest has slightly higher time and space cost than L-TSF, but the
cost is still acceptable. So L-SAforest is still the best algorithm in index based
algorithms. For index-free algorithms, there is no index cost, but pre-computing
the label similarity values takes time. We do not show the index space cost of
L-ProbeSim and L-UniWalk, since when the total number of labels |L| is small,
the space cost O(|L|2) is also very small in LSimRank.

[Recommendations in Practice]. We have the following recommendations:
1. Total variation distance performs best in computing the label similarity func-
tion. 2. When the number of different labels |L| is not very large, LSimRank is
superior to LSimRank-Basic in query time and index space cost. 3. We recom-
mend to use L-SA Forest or L-ProbeSim for approximation, since they have the
highest accuracy with acceptable time and space cost. If we can afford the cost
of constructing the index in L-SAforest, then L-SAforest is preferred, otherwise,
L-ProbeSim is recommended.

8 Conclusion

In this paper, we propose a new node similarity measurement called LSimRank
which captures both structural information and label information in graphs. We
give a recursive definition of LSimRank and derive a corresponding random-
surfer pairs form. In order to capture the label information of nodes, we define
a label similarity function. We introduce several approximation algorithms to
speed up the computation of LSimRank. Extensive experiments on datasets
verify that LSimRank is superior over SimRank on labeled graphs. There are
a few directions for future study. First, it may be helpful to include edge labels
in measuring similarity. We can easily extend the label vector to include the
edge labels within h-hop neighbors. Second, it may be interesting to design new
algorithms to handle dynamic graphs.
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Abstract. A reachability query is a fundamental graph operation in
real graph applications, which answers whether a node can reach another
node through a path in a graph. However, the increasingly large amounts
of real graph data make it more challenging for query efficiency and
scalability. In this paper, we propose a Fruited-Forest (FF) approach
to accelerate reachability queries in large graphs by constructing four
kinds of fruited-forests from a reduced DAG in different traversal orders.
We build different binary-label schemes for the four kinds of fruited-
forests to cover reachability between nodes as much as possible, and
create a corresponding index for the deleted edges which are deleted
during the construction of fruited-forests. Our experimental results on
18 large real graph datasets show that our FF approach requires less
index construct time and a smaller index size, which is more scalable to
answer reachability queries compared with other existing works.

Keywords: Reachability query · Fruit-forest · Large graph · DAG
reduction · Spanning tree

1 Introduction

Given a directed graph G = (V,E) with n nodes (n = |V |), and m edges (m =
|E|), a reachability query (u → v? u, v ∈ V ) is to answer if there exists a path
(u, v) = (v1, v2, · · · , vp) in G where (vi, vi+1) is an edge in E, for 1 ≤ i <
p, u = v1, and v = vp. If the graphs are in small-scales, a reachability query
can be answered by depth-first search (DFS) or reachability transitive closures.
However, these methods are not efficient when the graphs grow large, since DFS
is inefficient for large-scale datasets and reachability transitive closures occupy
a huge storage space.

Inspired by the result of DAG reduction Gε by [9], we propose a FF approach
to answer a reachability query, using topological order and topological level to
maximize the coverage of unreachable node pairs and reachable node pairs, just
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 145–153, 2020.
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like the real fruited trees with full of fruits. In addition, we construct the index
of transitive closure for each node by a bottom-up method to reduce the index
construction time and size.

2 FF Construction from DAG

Given a result of DAG reduction Gε (Fig. 1), and its topological order, FF can
be constructed by four kinds of spanning trees, with different topological orders
and constructions, including top-down from left to right, top-down from right
to left, bottom-up from left to right, bottom-up from right to left. We use X
to represent the topological order of a node from top (node’s indegree is 0) to
bottom (node’s outdegree is 0) and left to right (i.e., left first), X from top to
bottom and right to left (i.e., right first), ¬X from bottom to up and left to
right, and ¬X from bottom to up and right to left.

16
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Fig. 1. DAG Gε
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Definition 1. ILM-X(X) Given the topological order X(X), an ILM-X(X)
tree T ε

x(T ε
x) is a X(X)-order spanning tree of Gε, where the incoming edge to a

node v in T ε
x(T ε

x) is from its last graph parent node u, which has the maximum
topological order among v’s parents in X(X).

Definition 2. OLM-¬X(¬X) Given the topological order ¬X(¬X), an OLM-
¬X(¬X) tree T ε

¬x(T ε
¬x) is a ¬X(¬X)-order spanning tree of Gε, where the out

edge to a node v in T ε
¬x(T ε

¬x) is from its last graph child u, which has the
maximum topological order among v’s child in ¬X(¬X).

From the above, the FF constructed from DAG consists of four kinds of
forests, i.e., ILM-X, ILM-X, OLM-¬X and OLM-¬X. As shown in Fig. 2, Fig. 3,
Fig. 4 and Fig. 5, the number in the circle is the node ID, and the number next
to the circle is the topological order of the node.



Fruited-Forest 147

16

15

12

3

1

0

1

2

3

15

16

14

13 7

10 8

56 4

2

0

5

6

7

8

9

10

11 12

13

14

11

9 4

Fig. 4. OLM-¬X tree

16

15

14

2

0

0

1

2

3

15

16

12

13 11

9 8

410 5

3

1

5

7

8

4

6

10

11 14

12

13

7

6 9

Fig. 5. OLM-¬X tree

0

2

4

(a) Tree 1

1

3

(b) Tree 2

5

[2,16]

[3,16]

[4,4] [5,8]

[0,1]

[1,1]

6

8 10

7 9 13

14 11 12

15

16

[6,8]

[7,8]

[8,8]

[9,16]

[10,16]

[11,12]

[12,12]

[13,16]

[14,16]

[15,16]

[16,16]

Fig. 6. Labels of ILM-X

3 Interval Labeling

We use the constructed trees to create a binary label for each node in this section,
so that these trees contain the most information between nodes, including reach-
ability and unreachability information.

Interval Labels for Nodes in FF. We assign a binary label to each node,
with the first label representing the topological order of the node, and the second
label representing the maximum topological order of the node that can reach in
the tree. The following four figures (Fig. 6, Fig. 7, Fig. 8 and Fig. 9) show the
interval labels corresponding to ILM-X, ILM-X, OLM-¬X and OLM-¬X.

Lemma 1. Given four different topological orders of X, X, ¬X and ¬X, u
and v have an ancestor-descendant relationship if and only if the following four
conditions meet simultaneously: (1) Xu < Xv; (2) Xu < Xv; (3) ¬Xu > ¬Xv;
(4) ¬Xu > ¬Xv.

Lemma 2. Let IX(u) = [s, e] , IX(u) = [s, e], I¬X(u) = [s, e], I¬X(u) = [s, e]
be the interval labels assigned to u based on ILM-X, ILM-X, OLM-¬X and
OLM-¬X, respectively. ∀u, v ∈ V ε, (1) IX(v) ⊂ IX(u); (2) IX(v) ⊂ IX(u); (3)
I¬X(u) ⊂ I¬X(v); (4) I¬X(u) ⊂ I¬X(v). If anyone of the above four conditions
is satisfied, u can reach v.

The Top-Level of Node in FF. The level of the topology is not changed
whether the topological order is obtained from left to right or right to left. That
is, the depth of the topology remains unchanged, so that we can construct a
topological level for each node based on ILM-X trees as shown in Fig. 10.

Lemma 3. Nodes on the same topological level are mutually unreachable.

We present our result in Fig. 11 according to above lemmas. The x-axis is
the topological order of the nodes, and the y-axis is the topological level of the
nodes. Table 1 lists the four different interval labels and the topological level.
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4 Index of Deleted Edges

Most reachable nodes can be judged quickly from the above constructed FF,
since most nodes except the root nodes have only one parent node in the forest.
However, one node may have multiple parent nodes in Gε. That is, because some
of the reachability relationships are broken during FF construction. According
to the four different kinds of forests we constructed, the original reachability
has been retained to the greatest extent, but there is still a part of reachability
relationships are broken by deleted edges, so we create an out-index for each
node whose original reachability relationships with other nodes are broken.

In order to speed up the index construction and reduce the index size, we
propose a bottom-up index construction method by upward step from leaf nodes.
Once a node has the deleted reachability, the reachability of the deleted node of
the node is added to the index of the node, and as to its parent node, just add
the index of the node to the index of its parent node.



Fruited-Forest 149

Table 1. Labels of nodes in four kinds of trees

ID Level ILM(X.Y) ILM(¬X,Y) OLM(X,Y) OLM(¬X,Y)

0 0 (0, 2) (2, 16) (16, 16) (14, 14)

1 0 (3, 16) (0, 1) (13, 13) (16, 16)

2 1 (1, 2) (3, 16) (15, 16) (13, 14)

3 1 (4, 16) (1, 1) (12, 13) (15, 16)

4 2 (2, 2) (4, 4) (14, 16) (11, 11)

5 2 (8, 16) (5, 8) (11, 13) (12, 16)

6 2 (5, 7) (9, 16) (9, 9) (7, 7)

7 4 (13, 16) (7, 8) (3, 3) (9, 16)

8 3 (10, 16) (6, 8) (10, 16) (10, 16)

9 4 (9, 9) (11, 12) (7, 9) (4, 4)

10 3 (6, 7) (10, 16) (8, 9) (6, 7)

11 5 (11, 12) (12, 12) (6, 16) (3, 4)

12 6 (12, 12) (14, 16) (4, 16) (2, 7)

13 4 (7, 7) (13, 16) (5, 5) (5, 7)

14 5 (14, 16) (8, 8) (2, 3) (8, 16)

15 7 (15, 16) (15, 16) (1, 16) (1, 16)

16 8 (16, 16) (16, 16) (0, 16) (0, 16)

5 Answer Reachability Queries

Our FF approach presents the following 4-step judgement to answer whether u
can reach v:

(1) Are they are on the same topological level based on Lemma 3? If they are
on the same topological level, u cannot reach v. Otherwise, the second step
is performed.

(2) Does an ancestor-descendant relationship exists between u and v based on
Lemma 1? If it does not exist, u cannot reach v. Otherwise, the third step
is performed.

(3) Have they contained relationships between the four different interval labels
in the four different forests based on Lemma 2? If they do not exist, it
means that the reachability of u and v cannot be answered by the con-
structed FF, and then the four step is performed. Otherwise, u can reach
v.

(4) Whether v exists in the index of u, if it exists, u can reach v, otherwise, u
cannot reach v.

6 Experimental Studies

We conduct a set of experiments in order to compare the performance of our
Fruited-Forest (FF) algorithm with other reachability approaches. We test the
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Table 2. 15 Real Large Graph Datasets

DataSet |V| |E| |E|/|V|
citeseer 693947 312282 0.450

email 231000 223004 0.965

LJ 971232 1024140 1.054

mapped100K 2658702 2660628 1.000

mapped1M 9387448 9440404 1.005

twitter 18121168 18359487 1.013

uniprot22m 1595444 1595442 0.999

uniprot100m 16087295 16087293 0.999

uniprot150m 25037600 25037598 0.999

web 371764 517805 1.392

wiki 2281879 2311570 1.013

citeseerx 6540399 15011259 2.295

dbpedia 3365623 7989191 2.374

go-uniprot 6967956 34770235 4.990

HostLink 12754590 26669293 2.091

efficiency of our algorithm on 15 real large real datasets which are used in [4,6,7],
as shown in Table 2. As given in [6], we classify the graphs with the average degree
smaller than 2 as sparse graphs and the ones with the average degree larger than
or equal to 2 as dense graphs.

It is proved that the BFL algorithm is more efficient in constructing of index
than other algorithms in [4], including GRAIL [8], PWAH8 [3], TF-Label [1],
HL [2], Feline [5], IP+ [7] and TOL [10], on 15 real large-scale datasets shown
in Table 2. However, BFL needs more space to storage index than TOL on 15
real large-scale datasets. BFL performs best on 13 out of all 15 datasets, except
citeseer and email . Therefore, we only compare experimental results with
BFL, TOL, GRAIL. All algorithms, including FF, are implemented in C++ and
compiled by G++ 6.3.3. All these experiments are performed on the machine
with 3.20 GHz Intel Core i5–6500 CPU, 32 GB RAM running on CentOS7/Linux.

We compare FF with BFL, GRAIL and TOL, from three aspects, including
the index construction time, index size, and query time in 15 real datasets using
equal workloads shown in Table 3 and Fig. 12, Fig. 13 and Fig. 14. The query
time is the total running time of a total of 1,000,000 reachability queries. The
best results are highlighted in bold font. For experiments that run longer than
24 h or run more than 32GB of memory, we use “—” instead of the experimental
results.
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Table 3. Index Construction Time (ms), Index Size (KB) and Query Time (ms) on
15 Real Datasets

DataSet Index Time Index Size Query Time

BFL GRAIL TOLFF BFL GRAIL TOL FF BFL GRAIL TOL FF

citeseer 86 792.8 250 83.4 17132.5 2710.7 10956.8 1228.8 39.9 438.3 87.6 14.2

email 17 229.4 80 11.8 8350.7 7.5 3379.2 264.8 50.7 7666.2 75.7 12.4

LJ 68 1031.3 75.7 63.2 35671 3793.9 15564.8 844.4 79.1 3980740.8 90.8 29.8

mapped100K 182 2894.2 870 113.9 80129 10385.6 45260.8 460.5 35.2 365 104.4 21

mapped1M 642 11566.8 3100 398.7 275369 36669.7 169267.2 1614.1 34.9 429.6 96.632 23.1

twitter 1495 — 5880 666.7 617821.2— 333209.6 2338.9 31.7 — 97.556 15.3

uniprot22m 88 1760.9 580 79.4 58683.4 6232.2 25804.8 613.8 35.1 478.3 92.3 10.4

uniprot100m 1334 25059.3 5200 1222 620522.5 62841 292761.6 22223.3 36.8 707 95.2 26.3

uniprot150m 692 34610.1 8090 1004.4 267115.5 97803.1 474828.8 909.5 34.2 543.8 97 6.4

web 56 368 130 43.9 15231 1452.2 5734.4 885.2 77.4 439624.2 84 74.8

wiki 124 2304.8 750 73.7 82699.3 8913.6 38297.6 251.9 35.6 734222.5 91.9 8.2

citeseerx 1465 8264.6 2150 1596.7 292454.5 25548.4 116736 236544 54.5 31750.9 92.2 131.6

dbpedia 731 16197.3 2240 667.8 111779.8 27218.9 58265.6 13267.4 58.1 639.3 95 54.1

go-uniprot 1812 5425.1 1120 187.2 197731.3 13147.1 124620.8 820.9 35.5 113331.2 98.2 9.1

HostLink 2203 19646 4100 1547.9 372529.2 49822.6 231321.6 32275.4 71.1 6915906 99.7 64.8

Fig. 12. Index construction time

Fig. 13. Index size
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Fig. 14. Query time

7 Conclusion

In this paper, we proposed a FF approach to speed up answering reachabil-
ity queries. FF is constructed with four different kinds of forests with different
topological orders, including ILM-X, ILM-X, OLM-¬X and OLM-¬X. Besides,
we designed to assign an interval label to each node in the tree, so that we
can quickly judge the reachability between nodes through their interval label. In
addition, we established a topological level for each node, and the nodes in the
same topology level are not reachable to each other. Our experimental results
on 15 real datasets showed that not only the index size and the construction
time are greatly optimized by FF, but also the query time is much shorter. In
terms of all three measures, our FF approach performed much better than BFL,
GRAIL and TOL. Therefore, our FF is able to deal with accessible queries for
large-scale graphs.
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Abstract. At present, more and more researchers have focused on the
study of the frequent trajectory sequence pattern mining in location-
based social network (LBSN), in which the trajectories of contributing
frequent patterns in users’ trajectory database must have same or sim-
ilar the location coordinates and conform to the semantics and time
constraints. In this paper, we focus on the study of users’ daily frequent
mobile pattern. Excessive limitations on location information may limit
the results of mining users’ frequent mobile pattern. Therefore, based on
the frequent trajectory sequence pattern mining in LBSNs, we first define
a new frequent semantic trajectory sequence pattern mining (FSTS-PM)
problem that focuses on the study of mining users’ frequent mobile pat-
tern. FSTS-PM problem does not consider the location coordinates of
the trajectory points, but uses the distance and time constraints among
the trajectory points in a trajectory sequence to optimize the user’s fre-
quent mobile pattern mining results. Then, we propose the modified Pre-
fixSpan (MP) algorithm which integrates the distance and time filtering
mechanism based on the original PrefixSpan to find frequent semantic
trajectory sequence pattern. Finally, the extensive experiments verify the
performance of MP algorithm.

Keywords: Location-based social networks · Frequent pattern ·
Trajectory sequence · Mobile pattern

1 Introduction

With the development of GPS technology and the wide application of intel-
ligent terminals, location-based social network (LBSN) services have developed
rapidly [1,2], such as Foursquare, Geolife. The most basic trajectory is GPS com-
posed of latitude and longitude coordinates and time. Each trajectory point is
usually accompanied by the descriptions of the semantic labels, such as “restau-
rant” or “hospital”. At present, there have been a lot of researches on frequent
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 154–161, 2020.
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trajectory sequence pattern mining algorithms, so as to find frequent moving
sequences of the relationships between users’ locations [3–7]. In [5], a spatial-
temporal trajectory mining algorithm was proposed. However, mining the lack
of semantic trajectory pattern cannot fully convey users’ rich movement behav-
iors. In [6], the semantic dimension was put into the spatial-temporal trajectory
sequence pattern. However, a location only corresponded to a semantic label. In
fact, a single semantic label sometimes fails to fully describe the spatial location
information and limit the mining results. Therefore, in [7], Arya et. al solved the
singleness problem of the semantic label.

In this paper, based on the problem of mining users’ frequent trajectory
sequence pattern, we focus on mining users’ daily frequent mobile pattern.
Mining users’ daily frequent mobile pattern benefits every aspect of people’s
daily lives. For example, we find that most users will choose to go to the gym
for exercise after work, and then go to the restaurant for dinner. Therefore,
office→gym→restaurant is the users’ daily frequent mobile patten, which is not
restricted by spatial conditions. Therefore, users in different cities and even in
different countries are likely to contribute to the frequent mobile pattern. How-
ever, in the traditional problem of mining users’ frequent trajectory sequence
pattern, the spatial location information of the frequent elements between the
trajectory sequences must be consistent or both within a certain region, which
will limit the results of mining users’ frequent mobile pattern.

Therefore, in this paper, we define a new frequent semantic trajectory
sequence pattern mining (FSTS-PM) problem to mine users’ daily frequent
mobile pattern. Given a series of users’ daily trajectories in LBSN services, an
integer threshold, distance and time constraints, FSTS-PM problem is not lim-
ited by spatial location information, but needs to satisfy both distance and time
constraints between trajectory points. In order to solve FSTS-PM problem, we
propose the modified PrefixSpan (MP) algorithm. On the basis of the tradi-
tional PrefixSpan [8] sequence pattern mining algorithm, MP algorithm cleverly
integrates the distance and time constraints, so as to efficiently filter the non-
conforming sequences and speed up the return of algorithm results.

The remainder of this paper is organized as follows: The problem definitions
are introduced in Sect. 2. The details of MP algorithm are described in Sect. 3.
A series of experimental results are presented in Sect. 4. The paper is concluded
in Sect. 5.

2 Problem Definition

In this paper, P = {p1, p2, · · · , pn} represents a series of location, in which
each location is composed of two-dimensional latitude and longitude geographic
coordinate pi = (pi · longitude, pi · latitude). I represents the set of the semantic
label categories. Each location pi obtains the semantic label set Ii by mining its
check-in information (there may be multiple semantic labels on each location).

Definition 1 (Moving Trajectory). A user’s moving trajectory is com-
posed of a sequence of locations with the time stamps < (p1, t1),
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Table 1. The semantic trajectory database

No. Sequence

1 (a,(0,0),0),({abc},(30,40),10),(d,(60,80),30),({ae},(120,160),40),(f,(180,240),50)

2 ({ad},(0,0),0),(c,(45,60),20),({df},(90,120),40)

3 ({ef},(300,400),0),({df},(450,600),10),(c, (1200,1600),40),({ae},(900,1200),90)

4 ({af},(600,800),0),(c,(1200,1600),30),(b, (1800,2400,),60),(c,(450,600),100)

· · · , (pi, ti), · · · , (pn, tn) >, in which each element (pi, ti) represents the user
is on the location pi at time ti.

Definition 2 (Semantic Trajectory Database S). A user’s semantic tra-
jectory is composed of a semantic sequence with the time stamps and location
coordinates < id, s >=< (I1, p1, t1), · · · , (Ii, pi, ti), · · · , (In, pn, tn) >, in which
id is the sequence number, s represents a sequence, and each element (Ii, pi, ti)
represents the user has check-in at the location pi at time ti. The information of
check-in contains the semantic label set Ii of the location pi.

The spatial distance between trajectory points in each trajectory is defined
as Sd(pi, pj), and the calculation formula is as follows:

Sd(pi, pj) =‖ pi, pj ‖ (1)

where ‖ pi, pj ‖ is the Euclidean distance between the trajectory points pi and
pj .

The evaluation of check-in time interval between each trajectory point in
each trajectory is defined as Td(ti, tj), and the calculation formula is as follows:

Td(ti, tj) = tj − ti (2)

where tj is the user’s check-in time stamp at the trajectory point pj , and ti is
the user’s check-in time stamp at the trajectory point pi.

Definition 3 (Frequent Semantic Trajectory Sequence Pattern). Let
I = {i1, · · · , ii, · · · , in} defines a series of semantic items. Any semantic tra-
jectory sequence < id, s >=< (I1, p1, t1), · · · , (Ii, pi, ti), · · · , (In, pn, tn) >, in
which Ii ∈ I and pi ∈ P , supports the sub-frequent semantic sequence pat-
tern Í = {Í1, Í2, · · · , Ím} (m < n) or the trajectory sequence gives the sub-
semantic sequence a support, when 1 ≤ k1 < k2 <, · · · , km ≤ m, {Í1 ⊆ Ik1 , Í2 ⊆
Ik2 , · · · , Ím ⊆ Ikm

}, Sd(pki
, pki+1) ≥ σ, Td(tki

, tki+1) ≤ γ, in which σ and γ are
the pre-given distance and time constraints. Similarly, given the semantic tra-
jectory database S, which contains a series of trajectory sequences, an integer
threshold δ, and distance and time constraints σ and γ. We can consider the
sub-semantic sequence Í as a frequent semantic trajectory sequence pattern in
the semantic trajectory database S when support(Í) ≥ δ.
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Example 1 Next, we give an example. Table 1 shows the semantic trajectory
database S, which contains the semantic label set I = {Chinese food(a), dessert
shop(b), cafe(c), shopping center(d), western restaurant(e), cinema(f)}, mini-
mum support threshold δ = 2, time constraint γ = 50, distance constraint
σ = 500. In the semantic trajectory database S, the latitude and longitude of
each trajectory point is expressed as an integer for the convenience of subse-
quent calculations. For the number 1 trajectory sequence, the semantic item a
appears twice in the number 1 trajectory sequence, so it contributes two sequence
lengths. For semantic item a, however, the number 1 trajectory sequence only
contributes support(a) = 1, and the whole trajectory database S contributes
support(a) = 3. So the semantic term a is a frequent semantic sequence pattern.

3 MP Algorithm

MP algorithm is based on the most representative frequent sequence pattern
mining algorithm prefixSpan.

Definition 4 (Semantic Postfix). Give a user’s semantic trajectory sequence
< (I1, p1, t1), · · · , (Ii, pi, ti), · · · , (In, pn, tn) >. For any of the semantic set Ii
(1 ≤ i ≤ n), < (Ii+1, ‖ pi+1, pi ‖, ti+1−ti), (Ii+2, ‖ pi+2, pi ‖, ti+2−ti), · · · , (In, ‖
pn, pi ‖, tn − ti) > defines the semantic postfix.

We demonstrate the steps of mining frequent semantic trajectory sequence
pattern by MP algorithm in the semantic trajectory database shown in Table 1.
Still assume that the minimum support threshold δ = 2, the time constraint
γ = 50, the distance constraint σ = 500.

Step 1: Count the number of occurrences of the 1-length frequent
semantic sequences. Scan S to find the number of occurrences of all 1-length
frequent semantic sequences in the semantic trajectory database: < a >: 4;
< b >: 2; < c >: 4;< d >: 3;< e >: 2;< f >: 4 (those exceeding the minimum
support threshold 2 can be considered as frequent semantic sequences).

Step 2: Split search space. Based on the step 1, we can divide the search
space into six subspaces: (1) the prefix < a >;· · · ; (6) the prefix < f >.

Step 3: Search for the frequent semantic trajectory sequences in sub-
spaces. By creating a postfix database, subsets of semantic sequence patterns
can be mined iteratively. Table 2 records the postfix database creation process,
which is explained as follows:

First, we need to find a semantic sequence pattern with the prefix < a >.
According to the definition of semantic postfix, it will form the < a >
− postfix database in semantic trajectory database S, which includes four
postfix sequence: (1) ({abc}, 50, 10), (d, 100, 30), ({ae}, 200, 40), (f, 300, 50) >;
(2) ({−d}, (0, 0, 0), (c, 75, 20), ({df}, 150, 40) >; (3)< {−e}, 0, 0 >; (4)<
({−f}, 0, 0), (c, 1000, 30), (b, 2500, 60), (c, 250, 100) >. Then by scanning the <
a > − postfix database, the 2-length frequent semantic sequences can be found:
< ac >: 2; < ad >: 2; < af >: 2, < {ae} >: 2.
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Table 2. The creation of postfix database

prefix Postfix database Frequent pattern

< a > < ({abc}, 50, 10), (d, 100, 30), ({ae}, 200, 40), (f, 300, 50) >;

< (−d, 0, 0), (c, 75, 20), ({df}, 150, 40) >; < {−e}, 0, 0 >;

< {−f}, 0, 0), (c, 1000, 30), (b, 2000, 60), (c, 250, 100) >

< a >; < ac >; < ad >;

< af >; < {ae} >;

< acd >; < acf >

< b > < ({−c}, 0, 0), (d, 50, 20), ({ae}, 150, 30), (f, 250, 40) >;

< (c, 2250, 40) >

< b >

< c > < (d, 50, 20), ({ae}, 150, 30), (f, 250, 40) >; < ({df}, 75, 20) >;

< {ae}, 500, 50 >; < (b, 1000, 30), (c, 1250, 70) >

< c >; < cd >; < cf >;

< ca >; < ce >; < cae >

< d > < ({ae}, 100, 10), (f, 200, 20) >; < (c, 75, 20), ({df}, 150, 40) >;

< ({−f}, 0, 0), (c, 1250, 30), ({ae}, 750, 80) >

< d >; < df >

< e > < (f, 100, 10) >; {−f}, 0, 0), ({df}, 250, 10), (c, 1500, 40),

({ae}, 1000, 90) >

< e >; < ef >

< f > < ({df}, 250, 10), (c, 1500, 40), ({ae}, 1000, 90) >; < c, 1000, 30),

(b, 2000, 60), (c, 250, 100) >

< f >

Next, we need to loop the above process and divide the semantic sequence
containing < a > into 4 subsets: (1) containing the prefix < ac >; (2) containing
the prefix < ad >; (3) contains the prefix < af >; (4) containing the prefix
< {ae} >. These subsets create their own postfix databases in the same way
that the < a > − postfix database is created:

< ac > − postfix database contains two postfix sequence: (1) <
(d, 50, 20), ({ae}, 150, 30), (f, 250, 40) >; (2) < ({df}, 75, 20). Then scan the
< ac > − postfix database. And the 3-length frequent semantic sequences
can be found: < acd >: 2, < acf >: 2.
< ad > − postfix database contains two postfix sequences: (1) <
({ae}, 100, 10), (f, 200, 20) >; (2) < ({−f}, 0, 0) >. Since it has no hope of
having more frequent semantic sequences, the < ad > − postfix database is
terminated.
< af > − postfix database has not had any non-empty postfix sequence, so
< af > − postfix database is terminated.
< {ae} > − postfix database contains a sequence of non-empty postfix: <
(f, 100, 10) >, which have not had more frequent semantic sequences, so <
ae > − postfix database is terminated.

Next we search for the 3-length frequent semantic sequence pattern that
contains < a >. The semantic sequences containing < a > is divided into two
subsets: (1) containing the prefix < acd >; (2) containing the prefix < acf >.
Then create their postfix database: < acd > − postfix database contains two
postfix sequences: (1) < ({ae}, 100, 10), (f, 200, 20) >; (2) < (−f, 0, 0) >. The
postfix database has not produced more frequent semantic sequence patterns, so
terminate the postfix database.

The < acf > − postfix database has not had any non-empty sequences, so
the postfix database is terminated.

At this point, all frequent semantic sequence patterns containing < a >
prefix finish searching. And the frequent semantic trajectory sequence patterns
including < b >, < c >, < d >, < e >, and < f > prefixes is similar to the
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Table 3. The Description of the experimental datasets

Foursquare Brightkite Geolife

Number of trajectories 30,000 40,000 50,000

Average item 6 7 8

Total number of items 50,000 60,000 70,000

Table 4. The parameter setting

Parameter Range Default value

Grid size 2–10 unit 10 unit

Frequent threshold δ 0.1%–0.5% 0.1%

Distance constraint 0.2–1.0 km 1.0 km

Time constraint 60–100 min 100min

mining of < a > prefix. These postfix databases are created and the final mining
results are shown in Table 2.

4 Experiments

4.1 Experiment Setup

We make the experiment on three real LBSN datasets: Foursquare, Geolife, and
Brightkite. The basic information for these three datasets is described in Table 3.
And the total number of item in the whole trajectory database is 70000. Table 4
shows the changes of experimental parameters. In the experiment, MP algorithm
will mainly carry out comparative experiments with NB algorithm. NB algorithm
first uses PrefixSpan algorithm to find frequent semantic sequences. Then scan
the results of frequent semantic sequence pattern to filter out results that do not
meet the distance and time constraints. A series of experiments are conducted
on the PC of Microsoft Windows win10, Intel Core i5 CPU, 3.20 GHz, and 16GB
memory in java JDK 1.8. Each experiment is taken for 10 times and the average
result of 10 experiments will be as the final value.

4.2 Experimental Analysis

The Effect of Grid Sizes on the Efficiency of the Algorithms. The top
three figures in Fig. 1 show the running time of MP and NB algorithms with
the change of the granularity of grid in Foursquare, Geolife, and Brightkite.
We can find that the larger granularity, the longer the running time of the two
algorithms. And we can also find that the running time of MP algorithm is less
than that NB algorithm.
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Fig. 1. The effect of four parameters for the algorithms

The Effect of Frequent Threshold on the Efficiency of the Algorithms.
The three figures in the second row of Fig. 1 show the running time of MP and
NB algorithms with the change of frequent threshold in Foursquare, Geolife,
and Brightkite. We can find that the running time of both algorithms decreases
slightly with the increase of frequent threshold. And we can also find that the
running time of MP algorithm is still less than that of NB algorithm.

The Effect of Distance Constraint on the Efficiency of the Algorithms.
The three figures in the third row of Fig. 1 show the running time of MP and
NB algorithms with the change of distance constraint in Foursquare, Geolife, and
Brightkite. First, we can find that the larger the distance constraint, the longer
the running time of MP algorithm will be. However, the running time of NB
algorithm will be basically unchanged. And we can still get the same conclusion
as above: the running time of MP algorithm is less than NB algorithm.

The Effect of Time Constraint on the Efficiency of the Algorithms. The
bottom three figures in Fig. 1 show the running time of MP and NB algorithms
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with the change of time constraint in Foursquare, Geolife, and Brightkite. We
can find that the longer the time constraint setting, the longer the running time
of MP algorithm will be. However, the running time of NB algorithm will be
basically unchanged. And we can still get the same conclusion as above: the
running time of MP algorithm is less than NB algorithm.

5 Conclusions

In this paper, we focus on mining the users’ daily frequent mobile pattern. We
first give the definition of FSTS-PM problem. Next, we propose MP algorithm
to solve FSTS-PM problem. MP algorithm integrates the distance and time
constraint conditions into the process of frequent semantic trajectory sequence
mining, and filters out the nonconforming trajectories directly. Finally, the effec-
tiveness of MP algorithm is verified by a large number of experiments.
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Abstract. In recent years, aligning users across different social networks
receives a significant attention. Previous studies solve the problem based
on attributes or topology structure approximation. However, most of
them suffer from error propagation or the noise from diverse neighbors.
To address the drawback, we design intra and inter attention mecha-
nisms to model the influence of neighbors in local and across networks.
In addition, to effectively incorporate the topology structure informa-
tion, we leverage neighbors from labeled pairs instead of these in orig-
inal networks, which are termed as matched neighbors. Then we treat
the user alignment problem as a classification task and predict it upon a
deep neural network. We conduct extensive experiments on six real-world
datasets, and the results demonstrate the superiority of the proposed
method against state-of-the-art competitors.

Keywords: User alignment · Intra and inter attentions · Matched
neighbors

1 Introduction

As the advancement of social networks and Web 2.0, users may have many dif-
ferent social network accounts in diverse social platforms. In particular, these
platforms are independent from each other. Thus, an important problem arises,
namely how to identify the same user in different platforms, which is well known
as user alignment. One intuitive solution of user alignment is to compare user
profiles such as gender, name, etc [2,6]. However, the user profiles across social
networks are often heterogenous or even faked. Consequently, they cannot pro-
vide sufficient alignment evidence. Modelling topology structure similarity is
also considered in user alignments [3,4]. Specifically, IONE [3] simultaneously
learns node context embeddings in local and across networks, while PALE [4]
learns local network embeddings independently. In addition, there also exists
some attribute based work [1,5], which solves this problem with user attribute
similarity comparison. However, most of above methods do not comprehensively
exploit the information of both user attributes and topology structures to solve
c© Springer Nature Switzerland AG 2020
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the user alignment problem. Recently, method incorporating both user attributes
and topology structures is proposed to align users across social networks [7],
yet it still remain some drawbacks. For example, the method only consider the
local topology structures. Therefore, it cannot propagate node information from
neighbors across networks, where it may suffer from error propagation or noise
from diverse neighbors.

According to above analysis, there are still two main challenges in user align-
ment problem: (1)How to incorporate the topology structures? For any candidate
pair of users, they usually have different topology structures, and incorporat-
ing the whole topology structures may introduce some noise. (2)How to deal
with diverse neighbors? Because of diverse neighbors, it requires taking neighbor
influence in local and across networks into consideration. More importantly, the
contribution of each neighbor is usually not equal and should be weighted. To
address the two challenges, we propose the INAMA model in this paper, i.e.,
using IN-tra/-ter Attention Mechanisms for user Alignments. To solve chal-
lenge (1), we define matched neighbors (See in Sect. 3.1), which preserves
the local topology structures by using labeled aligned neighbors instead of the
whole neighbors. To address challenge (2), we design intra and inter attention
mechanisms to distinguish the influence of diverse neighbors in local and across
networks. Finally, we treat user alignment problem as a supervised classification
task and apply a deep neural network to generate the alignment labels. To sum
up, the main contributions of the paper are as follows:

– To incorporate topology structure information, we define the matched neigh-
bors, which consists of nodes from labeled aligned neighbors and reduces the
error propagation by noisy nodes, to replace the original neighbors.

– To capture effective node information propagation by diverse matched neigh-
bors, two attention mechanisms are designed to distinguish influence of them
in local and across networks, respectively.

– Extensive experiments have been conducted on six real-world datasets, and
the results demonstrate the superiority of our approach.

2 Related Work

As we know, user profile plays an important role for the same user identification
across networks. Many attempts by comparing user names have been extensive
studied [2,6]. For example, Zafarani et al. [6] aligned users by adding or removing
user names’ prefix or postfix upon their habits. Yet Kong et al. [1] solved the
problem according to cosine similarities of TF-IDF textual features. Mu et al. [5]
proposed latent user space to determine user identities in a metric learning way.
Because node attributes are usually diverse and heterogeneous, above methods
may be not strong enough to indicate user identities. As aforementioned in the
introduction, incorporating topology structures also give the evidence. IONE [3]
and PALE [4] are two famous methods to consider topology structures for user
alignment, while they ignore the node attributes.
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Recently, incorporating both user attributes and topology structures to align
users becomes a hot topic. Some matrix decomposing based unsupervised meth-
ods are extensive studied [8]. Zhong et al. [9] proposed a unsupervised co-training
model to integrate both user attributes and relationships with neighbor pairs.
MEgo2Vec [7] is a latest model, which designs an ego network for each node pair
to learn the structure consistencies and node attribute similarities.

3 Methodology

3.1 Preliminary

In this section, we briefly give necessary definitions and then formally formulate
the problem. In order to effectively incorporate the topology structures, we give
the definition of matched neighbors to instead of using the whole networks as
follow:

Definition Matched Neighbors. Let Gs and Gt be the source and target
networks, respectively. We use notations Ns and N t to represent neighbor sets
in the two networks, where Ns

v and N t
u indicate the neighbors of nodes v ∈ Gs

and u ∈ Gt. Existing aligned pairs are denoted as (As, At), where As
i ∈ Gs and

At
i ∈ Gt refer to the corresponding nodes of i-th aligned pair. Thus, given two

nodes v ∈ Gs and u ∈ Gt, we construct the matched neighbors Mv ∈ Gs and
Mu ∈ Gt for them by the following steps:

(1) Given two existing aligned pairs (As
i , A

t
i) and (As

j , A
t
j), if there is a rela-

tionship between As
i and As

j , we add an edge between At
i and At

j . Similarly,
we do the same operation to augment the relationships in source network.
(2) After step (1), we obtain new neighbor sets Ns and N t for the two aug-
mented networks. Then, we generate matched neighbors for nodes v and u
with respect to Mv = Ns

v ∩As and Mu = N t
u ∩At. Besides, we add each node

itself to the matched neighbor set.

When generating matched neighbors done, we can model the local topology
similarities between users across networks. Thus, we solve the issue, how to incor-
porate topology structures, with matched neighbors. In addition, node attributes
often plays an important role for aligning users. According to both local topology
and node attribute similarities, we can formulate the user alignment problem as
follow:

Problem User Alignment Across Social Networks. Let (v, u) be a candi-
date user pair and Mv and Mu refer to the corresponding matched neighbors,
where v ∈ Gs and u ∈ Gt. Notation X is used to represent the node attributes.
Incorporating both user attributes and topology structures, we treat the problem
as following classification task:

f : (v, u,Mv,Mu,X) → ŷ, (1)

where ŷ is a binary value, with 1 indicating the same person, and 0 otherwise.
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3.2 The Proposed INAMA Model

According to above analysis, to solve the user alignment problem, we consider
both node attributes and topology structures. Specifically, we adopt matched
neighbors instead of original topologies. We show the overview framework of our
proposed model in Fig. 1.

(b) Attention Mechanism(a) INAMA Model

Input Layer ...

v Mv
...

u

Embedding Layer ... ...
Share weights

Attention Layer

Difference Layer

Intra Attention Intra AttentionInter Attention

Subtract--Subtract- Subtract--Subtract-
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Hidden Layer

Softmax (2)Output Layer

Probability
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Fig. 1. The illustration of INAMA model. (a) shows the overall architecture, where
users v and u are with respect to the nodes from source and target networks, and Mv

and Mu represent their matched neighbors. Blue and red lines from Embedding Layer
to Attention Layer are intra attention and inter attention mechanisms, respectively.
(b) introduces the activation unit for Attention Layer, which adaptively learns the
neighbor influences. (Color figure line)

As shown in Fig. 1(a), our method is composed of three main components:
(i) Firstly, we apply an embedding layer to transform raw features into low
dimensional dense representations. (ii) Then two attention mechanisms, i.e.,
intra and inter attentions, are introduced to model the influences of matched
neighbors in local and across networks. (iii) Then we concatenate the differences
of attention results. Finally, a deep neural network is employed to generate the
predictive logits and a binary softmax is used to predict the alignment labels.

Node Embedding. Let the feature size be F and embedding size be d. In
embedding layer, a shared feature weight W (0) ∈ RF×d and bias b(0) ∈ Rd×1

are introduced to transform raw features into low dimensional dense represen-
tations. Non-linear activation function tanh is adopted in this layer. Therefore,
for arbitrary node v, given its node attributes Xv, the node embedding can be
formulated as follow:

h(1)
v = tanh(W (0)Th(0)

v + b(0)), (2)

where h(0)
v denotes the raw feature Xv, and h

(1)
v represents the embedding result.

Through node embedding, we can obtain low dimensional dense representations
for all nodes.
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Neighbor Attention. After node embedding, we further smooth each node’s
representation by their matched neighbors’ representations. Inspired by [10],
we introduce a local activation characteristic of users and adaptively calculate
the contribution of each neighbor. In attention layer, we design intra and inter
attentions, which model the node information propagation in local and across
networks, respectively. According to Fig. 1(b), the novel local activation unit is
applied on the matched neighbors, where a weighted sum pooling is performed
to adaptively calculate node representation based on its matched neighbors.

Specifically, given a candidate pair (v, u) and their matched neighbors Mv =
[v1, ..., vP ] and Mu = [u1, ..., uQ], where P and Q are the numbers of respective
matched neighbors. After node embedding, we obtain the embedding results
h

(1)
v , h(1)

u , [h(1)
v1 , ..., h

(1)
vP ] and [h(1)

u1 , ..., h
(1)
uQ ] for respective nodes and their matched

neighbors. We calculate the intra and inter attentions for node v as Eq. 3 and
Eq. 4:

h(2)
v = g(h(1)

v ;h(1)
v1

, ..., h(1)
vP

) =
P∑

i=1

a(h(1)
vi

, h(1)
v ) · h(1)

vi
=

P∑

i=1

wih
(1)
vi

, (3)

h
′(2)
v = g(h(1)

v ;h(1)
u1

, ..., h(1)
uQ

) =
Q∑

i=1

a(h(1)
ui

, h(1)
v ) · h(1)

ui
=

Q∑

i=1

wih
(1)
ui

. (4)

Here, h(2)
v and h

′(2)
v represent the attentional results of v in local and across

networks, a(·) is a feed-forward network with output as the activation weight.
Similarly, we calculate intra and inter attention results for node u as h

(2)
u and

h
′(2)
u in the same way. Following the popular setting in attention based methods,

we normalize the attention weights within
∑

i wi = 1 in Eq. 3 and Eq. 4.

Objective Function. When neighbor attention process done, we concatenate
the differences between the corresponding attention results, i.e, |h(2)

v −h
(2)
u | and

|h′(2)
v −h

′(2)
u |. Then we apply a function f such as the full connection operation on

the concatenation to predict the matching score ŷ = f(|h(2)
v −h

(2)
u |; |h′(2)

v −h
′(2)
u |).

Consequently, we can formulate the objective function as the cross entropy loss:

L =
1
n

n∑

i=1

CrossEntropy(ŷi, yi), (5)

where n is the number of training samples, and ŷi and yi refer to the predicted
and true labels for i-th candidate pair, respectively.
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4 Experiments

4.1 Experimental Setup

Datasets. We collected three pairs of Social Networking Services (SNS) datasets
(w.r.t. Douban Online-Offline, Flickr-Lastfm and Flickr-Myspace) from [8]. We
also extract three pairs of academia datasets. In particular, we employ the co-
author network from DBLP1 and split the whole dataset to three networks
in chronological order (w.r.t. year 2016, 2017 and 2018). In each network, we
select Yoshua Bengio as the center node and construct the co-author subnet-
work with regard to the nodes, which can be reached from the center node with
no more than four-hops. Conference names of conference papers are treated as
node attributes. We construct the ground truth in terms of the author identi-
ties in DBLP. Because of discrete user attributes, we represent them in one-hot
encoding way, with 1 indicating users have the attribute and 0 otherwise. The
statistical details are summarized in Table 1.

Table 1. The statistics of datasets.

Dataset Source network Target network #Features #Matched pairs

#Nodes #Edges #Nodes #Edges

Douban Online-Offline 1,118 3,022 3,906 16,328 187 1,118

Flickr-Lastfm 12,974 32,298 15,436 32,638 3 452

Flickr-Myspace 6,714 14,666 10,733 21,767 3 267

DBLP 17-16 9,455 27,721 1,1509 33,858 2,059 1,823

DBLP 18-16 5,562 15,966 1,1509 33,858 1,831 1,028

DBLP 18-17 5,562 15,966 9,455 27,721 1,833 1,156

Baseline Methods. To evaluate the performance of our INAMA method,
we compare it with several state-of-the-art methods. Specifically, two conven-
tional supervised methods KNN and SVM are adopted as baselines. We also
consider three recent embedding methods, namely ULink [5], IONE [3] and
MEgo2Vec [7], as our baseline methods.

Implementation Details. We employ Mean Reciprocal Rank (MRR) to eval-
uate all methods and the computation can be formulated as follow:

MRR =
1
N

N∑

i=1

1
hit(xi)

, (6)

where hit(x) represents the position of the corrected linked user in the returned
list of the top-k candidates, and N is the number of test users. For a fair com-
parison, the embedding size is set as 50 for all embedding methods. We repeat
each experiment five times and report the average performance.
1 http://dblp.uni-trier.de/.

http://dblp.uni-trier.de/
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4.2 Experimental Results

Main Results. We show the MRR performance in Table 2. According to
Table 2, INAMA achieves the best on four datasets (academia datasets and
Flickr-Myspace) and the second positions on the remainder two datasets. On
academia datasets, INAMA has the average improvements of 18.07%, 34.34%
and 13.02% compared to IONE, ULink and MEgo2Vec respectively. The MRR
results reveal that our method is much more suitable for the datasets with rich
attributes. The reasons are two-folded: (i) INAMA comprehensively exploits
both node attributes and topology structures. (ii) Our model simultaneously
captures the influence of diverse neighbors in local and across networks.

Table 2. MRR performance on the six datasets (%), where the best and second results
are in bold and underline, respectively.

Dataset KNN SVM ULink IONE MEgo2Vec INAMA

Douban Online-Offline 22.48 21.72 27.37 82.94 89.13 84.95

Flickr-Lastfm 8.36 7.89 8.40 16.57 11.51 14.21

Flickr-Myspace 8.95 9.06 9.20 8.09 9.12 11.43

DBLP 17-16 12.65 9.24 18.06 36.22 42.62 52.07

DBLP 18-16 12.56 12.61 18.45 32.09 34.33 55.35

DBLP 18-17 14.91 11.26 22.03 39.05 46.56 54.15

Ablation Studies. In this part, we try four variants of INAMA to figure out
the impacts of node features, matched neighbors, intra and inter attentions.
We construct one-hot encoding inputs based on node ids to replace the node
features and denote it as ∼ id. We remove the matched neighbors, intra and inter
attentions to validate the effectiveness of topology and information propagation
influence in local and across networks. The above three variants are denoted as
∼ w/oneighbor, ∼ w/o intra and ∼ w/o inter. We show the MRR performance
of different variants in Table 3. Comparing the results of ∼ id with INAMA, node
attributes affect our model significantly on datasets with rich attributes. It proves
the aforementioned statement that our method is more suitable for datasets
with rich inputs. Similarly, the results also validate the effectiveness of matched
neighbors. More importantly, by using intra and inter attention manners, our
model improves average 2% and 1.9% MRR performance respectively.

Table 3. MRR performance of different variant models.

Dataset ∼id ∼w/o neighbor ∼w/o intra ∼w/o inter INAMA

Douban Online-Offline 25.53 32.28 81.21 80.86 84.95

Flickr-Lastfm 10.13 10.00 11.08 11.94 14.21

Flickr-Myspace 9.17 10.93 10.83 10.65 11.43

DBLP 17-16 16.34 33.45 50.83 50.55 52.07

DBLP 18-16 15.97 28.40 54.44 54.42 55.35

DBLP 18-17 16.96 32.61 51.80 52.29 54.15
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5 Conclusion

In this paper, we propose the INAMA model to solve user alignment problem.
To effectively incorporate topology structures, we generate matched neighbors
instead of original topology structures. To distinguish information propagation
influence in local and across networks, we introduce intra and inter attention
mechanisms. Comprehensive experiments on six real-world datasets have been
conducted, and the results demonstrate the superiority of the proposed method
against state-of-the-art techniques.
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Program of China, 2018YFB2101100, 2018YFB2101101 and NSFC under Grant Nos.
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Abstract. With the rapid development of social networks, discovering
the propagation mechanism of information has become one of the key
issues in social network analysis, which has attracted great attention.
The existing propagation models only take into account individual influ-
ence between users and their neighbors, ignoring that different topologies
formed by neighbors will have different influence on the target user. In
this paper, we combine the influence of neighbor structure on different
topics with the distribution of user interest on different topics, propose
an propagation model based on structure influence and topic-aware inter-
est, called NSTI-IC. We use an expectation maximization algorithm and
a gradient descent algorithm to learn parameters of NSTI-IC. The exper-
imental results on real datasets show that NSTI-IC model is superior to
classical IC and structInf-IC models in terms of MSE and accuracy.

Keywords: Social networks · Propagation model · Structure
influence · Expectation maximization

1 Introduction

Social network sites such as WeChat, Sina Weibo, Facebook and Twitter make
communication among people more closer. These online social networks enable
users to retweet, comment, and tag, which make new ideas and products spread
quickly. In recent years, it has become one of the hot topics in data mining com-
munity to discover the mechanism of information propagation in social networks.

In order to describe the law of information propagation in social networks,
various information propagation models have been proposed. Kempe et al. [2]
first proposed the Independent Cascade (IC) model and Linear Threshold (LT)
model. Liu et al. [3] proposed a TI-IC model by considering the topic distribu-
tion of propagation items and the interest distribution of users simultaneously.
However, these propagation models mainly consider the interaction between indi-
viduals, and do not consider the influence of neighbor structure on individuals.
Recent studies have found that the diversity of neighbor structures in social net-
works is an important factor affecting information propagation, and the proba-
bility of propagation is closely related to the number of different structures [5].
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 170–178, 2020.
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In this paper, we take into consideration the influence of neighbor struc-
ture on different topics and the distribution of user interest on different topics,
propose a novel information propagation model in social networks – An Inde-
pendent Cascade Model based on Neighbor Structures and Topic-aware Interest,
called NSTI-IC. To learn the parameters of the NSTI-IC model, we first use an
expectation maximization algorithm (EM) to obtain the influence probabilities of
different structures on different users, and then use a gradient descent algorithm
to solve the influence vectors of neighbor structures and the interest vectors of
users. Experimental results on two real data sets show that NSTI-IC model is
better than classical propagation models in terms of mean square error(MSE),
accuracy and other metrics. The source code for this paper can be downloaded
from https://github.com/Zhang-chu-han/NSTI-IC.

2 Model Definition

This section begins with some preliminary knowledge, and then introduces the
independent cascade model NSTI-IC.

The social network is represented by a directed graph G = (V,E), and the
users’ historical action log is recorded as L. Each record in L is denoted as a triple
l = (u, i, t), which means user u accepted propagation item i at time t. Assume
that there is a topic distribution for each propagation item and an interest
distribution for each user. For each topic z ∈ [1, Z], where Z represents the
number of topics, we assume that each user has an interest component θzu on topic
z. Therefore, each user u has an interest distribution vector θu = (θ1u, θ2u, · · · , θZu )
on different topics.

In the propagation process of item i, if user u accepts a propagation item i,
we call user u active; otherwise, we call user u inactive. As shown in literature [9],
whether or not the current inactive user u becomes active in the propagation of
item i depends largely on the possible influence of the active neighbor structures
around u on u itself. In this paper, we only consider 20 neighbor structures
formed by 2, 3, and 4 active nodes, represented by a set S = {s0, s1, s2, ......, s19},
as shown in Table 1. White node represents the target user and the red node
represents active neighbor nodes before the target user is active.

Because user u has an interest distribution vector θu = (θ1u, θ2u, · · · , θZu ) on
different topics, we further assume that the influence of structure s ∈ S on
different topics is different, and there is also the influence distribution vector
θs = (θ1s , θ

2
s , · · · , θZs ) on different topics for structure s. In the propagation of

item i, the probability that user u is activated by active neighbor structure s is

defined as ps,u = θs • θu =
Z∑

j=1

θjsθ
j
u.

The NSTI-IC model works as follows. At time t = 0, only partial nodes D ⊆ V
(for example, the initial publisher of weibo) is active nodes on propagation item
i; at time t ≥ 1, if any neighbor node v of u within the period of (t − τ, t)
become active, then structure s consisting of neighbor node v and other active
nodes has one chance to activate node u, the activation probability of node u is

https://github.com/Zhang-chu-han/NSTI-IC
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ps,u = θs • θu. Here τ is defined as the maxmium time interval, which mean that
the propagation is valid in this time interval. The effect of this parameter τ will
be evaluated in the experiment. If neighbor structure s does not activate node
u, neighbor structure s will not attempt to activate node u in the future. When
there are multiple active neighbor structures around node u, the probability of
node u being activated is piu = 1 − ∏

s∈S
(u)
i

(1 − θs • θu)n
+
s,u,i , where S

(u)
i repre-

sents a set of neighbor structures which attempt to activate node u during the
propagation of item i, and n+

s,u,i represents the number of instances of neighbor
structure s around node u that may influence node u during the propagation of
item i. This is because that the same structure can appear multiple times around
node u. For example, structure s4 appear multiple times in Fig. 1. At the same
time, we assume that if structure si is the substructure of another structure sk,
the function of structure si is replaced by structure sk, and only structure sk
attempts to activate other inactive nodes. As shown in Fig. 1, when an instance
of structure s1 is a substructure of structure s4, structure s1 will not attempt to
activate node u0, but structure s4 will attempt to activate node u0. When a node
is activated, this node and the surrounding active nodes form a new neighbor
structure to attempt to other inactive nodes. The propagation process continues
until there are no nodes that can be activated.

Table 1. All influence structures consisting of 2, 3 and 4 active neighbor nodes

k Sk k Sk k Sk k Sk

0 5 10 15

1 6 11 16

2 7 12 17

3 8 13 18

4 9 14 19

Fig. 1. An example for illustrating the NSTI-IC model
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3 Learning Algorithms for NSTI-IC

In this section, we firstly use an EM algorithm to compute the probability ps,u
that neighbor structure s activates node u, and then use a gradient descent algo-
rithm to obtain the influence vector θs = (θ1s , θ

2
s , · · · , θZs ) of neighbor structure

s and the interest vector θu = (θ1u, θ2u, · · · , θZu ) of user u by fixing ps,u.
Before using the EM algorithm, the log-likelihood function (Q function) of

the complete data needs to be constructed. Let I be the set of all propagation
items. A+

i represents the set of nodes that are activated during the propagation
of item i, and A−

i represents the set of nodes that are not activated during the
propagation of item i. S

(u)
i represents the set of neighbor structures that may

influence node u during the propagation of item i, and S̄
(u)
i represents the set

of neighbor structures that have no influence on node u during the propagation
of item i. n+

s,u,i represents the number of instances of neighbor structure s that
may influence node u during the propagation of item i, and n−

s,u,i represents
the number of instances of neighbor structure s that have no influence on node
u during the propagation of item i. Referring to the symbol representation of
standard EM algorithm, Θ̂ represents the current estimation of parameters Θ,
and the log-likelihood function of complete data is as follows.

Q
(
Θ, Θ̂

)
=

|I|∑

i

{
∑

u∈A+
i

[
∑

s∈S
(u)
i

n+
s,u,i(

p̂s,u
p̂iu

logps,u + (1 − p̂s,u
p̂iu

)log(1 − ps,u))

+
∑

s∈S̄
(u)
i

n−
s,u,ilog(1 − ps,u)] +

∑

u∈A−
i

∑

s∈S̄
(u)
i

n−
s,u,ilog(1 − ps,u)}

By calculating the derivative of Q function to ps,u, we obtain the following
iterative formula.

ps,u =

|I|∑

i=1

(n+
s,u,i × p̂s,u

p̂i
u

)

|I|∑

i=1

(n+
s,u,i + n−

s,u,i)

Based on the above formula, we give the pseudo code of EM algorithm, as
shown in algorithm 1. In line 1, the algorithm preprocesses the data, calculates
all the S

(u)
i , S̄

(u)
i (∀i ∈ I,∀u ∈ V ), n+

s,u,i and n−
s,u,i(∀i ∈ I,∀s ∈ S,∀u ∈ V ) and

saves them. In line 2∼6, the algorithm randomly initializes the parameter ps,u,
and then alternately performs E step and M step until convergence.

After obtaining the influence probability ps,u of neighbor structure s on user
u, we adjust the structure influence vector θs = (θ1s , θ

2
s , · · · , θZs ) and the user

interest vector θu = (θ1u, θ2u, · · · , θZu ) to fit the influence probability ps,u. Thus,
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we can construct the following optimization objective. We use a gradient descent
algorithm to solve the optimization objective.

arg min
sj∈S,uk∈V

1/2

|S|∑

j=1

|V |∑

k=1

(psj ,uk
− θsj • θuk

)2

Algorithm 1. An EM algorithm for learning the NSTI-IC model
Input: a social network G = (V,E), an action log L
Output: parameters ps,u(∀s ∈ S,∀u ∈ V )

1: Scan G and L to obain all S
(u)
i , S̄

(u)
i (∀i ∈ I, ∀u ∈ V ), n+

s,u,i and n−
s,u,i(∀i ∈ I,∀s ∈

S,∀u ∈ V );
2: for all s ∈ S do
3: for all u ∈ V do
4: Init ps,u;
5: end for
6: end for
7: repeat
8: for all i ∈ I do
9: for all u ∈ V do

10: if u is active in event i then
11: piu = 1 − ∏

s∈S
(u)
i

(1 − ps,u)n
+
s,u,i ;

12: end if
13: end for
14: end for
15: for all s ∈ S do
16: for all u ∈ V do

17: ps,u =

|I|∑

i=1

(

n+
s,u,i× p̂s,u

p̂iu

)

|I|∑

i=1
(n+

s,u,i+n−
s,u,i)

;

18: end for
19: end for
20: until convergence

4 Experimental Results and Analysis

4.1 Experimental Setup

We conduct the experiments on a real dataset, Sina Weibo. Sina Weibo is a
Chinese social network site similar to Twitter that allows users to comment
on Weibo or retweet Weibo to other users, which can be downloaded from
http://aminer.org/structinf. The dataset contains a social networks G(V,E) and
an action log L(u, i, t). The tuple (u, i, t) contained in L means that user u

http://aminer.org/structinf
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affected by i at time t. If user uj affected by i at time tj , a friend uk of user uj

affected by i at time tk , and tj is earlier than tk, then we believe that this affec-
tion was propagated from user uj to user uk. We use two algorithms StructInf-
Basic and StructInf-S2 proposed by [10] to constuct two datasets, Data Basic
and Data S2, respectively. Data Basic contains 800 microblogs and 287965 users,
and Data S2 contains 800 microblogs and 419532 users.

4.2 Comparison Models and Metrics

We compare NSTI-IC with the following two models.

1) IC [2]. In this model, each node has two states, active and inactive state. Each
active node has only one chance to activate the inactive neighbor node, and
this process is irreversible. The stop condition of propagation is that there
has no node being activated.

2) StructInf-IC [10]. As shown in [10], different neighbor structures formed by
active nodes will have different effects on tatget node. In this paper, we use
the StructInf method [10] to compute the influence probability of neighbor
structures. These influence probabilities are embedded in the IC model, the
propagation mechanism similar to IC model is used to simulate the propaga-
tion process of information. We call this model StructInf-IC.

We divide all propagation items into training set and test set in a ratio of 8:2,
and ensure that all actions of one propagation item was either in the training set
or in the test set. We firstly learn the parameters of the model on the training
set, and then predict the propagation result of each new propagation item in
the test set according to the learned model. The detailed prediction process is
as follows. For each propagation item i, we use the learned model to compute
the activated probability for each node, and calculate Mean Square Error (MSE)
and accuracy according to the predicted probability and activation threshold.
Lastly, we calculate the average value on all propagation items.

4.3 Comparison of Different Models

Comparison on MSE. Table 2 and Table 3 shows MSE of different models on
two datasets Data Basic and Data S2 respectively. In Data S2, StructInf-IC is
slightly superior to IC in terms of MSE, which indicates that neighbor structure
plays an important role in information propagation. NSTI-IC takes into account
both the user interests and the influence of neighbor structure, thus NSTI-IC is
obviously superior to the existing models.
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Table 2. Mean Squared Error of different
models in Data Basic

Model MSE

IC 0.072

StructInf-IC 0.149

NSTI-IC 0.053

Table 3. Mean Squared Error of different
models in Data S2

Model MSE

IC 0.153

StructInf-IC 0.144

NSTI-IC 0.109

Comparison on Accuracy. Figure 2 and Fig. 3 show the accuracy of differ-
ent models with respect to different activation thresholds δ on Data Basic and
Data S2 respectively. If the activation probability of a node is not less than
activation threshold δ, then this node is regarded as an active node.

As can be seen from Fig. 2, the accuracy of StructInf-IC is slightly lower than
that of IC, which indicates that on Data Basic, structure influence have little
effect on model accuracy. The accuracy of NSTI-IC is always higher than that of
other models on Data Basic, which shows that the combination of user interest
and structure influence can achieve the best prediction effect on Data Basic.
As can be seen from Fig. 3, StructInf-IC is less accurate than NSTI-IC, but is
better than IC, which indicates that on Data S2, neighbor structures play a role
in accuracy. NSTI-IC combine the influence of neighbor structures with the user
interests on different topics, and it is obviously better than other models in terms
of accuracy.

Fig. 2. Accuracy of different models on
Data Basic

Fig. 3. Accuracy of different models on
Data S2

5 Related Work

In recent years, researchers have paid more and more attention to the influence
of neighbor structure on users in social networks. In 2012, Ugander et al. [5] first
considered the impact of the diversity structures on users in social networks.
They believed that structure was an important factor in individual decision-
making, and this idea was later widely applied to different scenarios. In 2017,
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Zang et al. [8] quantified the structural mode of information propagation and
found new structural mode through the proposed analysis of seven indicators.
Later, they found the structural complexity of information propagation was far
greater than previously suspected, so they adopted a larger dimensional approach
to structural complexity [9]. In 2018, Huang et al. [1] proposed the dynamic
prediction problem of ternary relationship. They studied how the third edge
affected the strength of existing two edges through time effect and different
structural information formed between users. In 2019, Xudong Wu et al. [7]
proposed a new measurement method to accurately evaluate the contribution of
neighbor structure of each user to information propagation in the social network.
Rizi et al. [4] used a graph embedding method to simulate the social influence
of activated users on the event. In the same year, Wang et al. [6] used Node2vec
to extract the representative characteristics of users, established the multi-label
classification model called NNMLInf to predict the social impact.

Although structural influence has been proved to play an important role in
information propagation, to the best of our knowledge, no work has considered
the joint influence of neighbor structures and topic-aware user interest on infor-
mation propagation.

6 Conclusion

In this paper, we consider both structure influence and user interest on differ-
ent topics, and propose an independent cascade model called NSTI-IC based
on neighbor structures and topic interest. We use the expectation maximization
algorithm and the gradient descent algorithm to learn model parameters. Com-
pared with the existing propagation model, NSTI-IC can predict the propagation
results of information more accurately.

Acknowledgment. This work was supported by the National Natural Science Foun-
dation of China (No. 61972135, No. 61602159), the Natural Science Foundation of Hei-
longjiang Province (No. LH2020F043), and the Innovation Talents Project of Science
and Technology Bureau of Harbin (No. 2017RAQXJ094).

References

1. Huang, H., Dong, Y., et al.: Will triadic closure strengthen ties in social networks?
ACM Trans. Knowl. Disc. Data (TKDD) 12(3), 1–25 (2018)

2. Kempe, D., Kleinberg, J., et al.: Maximizing the spread of influence through a social
network. In: Proceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 137–146 (2003)

3. Liu, Y., Xie, S., Zhong, Z., Li, J., Ren, Q.: Research on topic-interest based influ-
ence maximization algorithm in social networks. J. Comput. Res. Dev. 55(11),
2406–2418 (2018)

4. Rizi, F.S., Granitzer, M.: Predicting event attendance exploring social influence.
In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing,
pp. 2131–2134 (2019)



178 C. Zhang et al.

5. Ugander, J., et al.: Structural diversity in social contagion. In: Proceedings of the
National Academy of Sciences, pp. 5962–5966 (2012)

6. Wang, X., et al.: NNMLInf: social influence prediction with neural network multi-
label classification. In: Proceedings of the ACM Turing Celebration Conference-
China, pp. 1–5 (2019)

7. Wu, X., Fu, L., et al.: Collective influence maximization. In: Proceedings of the
Twentieth ACM International Symposium on Mobile Ad Hoc Networking and
Computing, pp. 385–386 (2019)

8. Zang, C., Cui, P., et al.: Quantifying structural patterns of information cascades. In:
Proceedings of the 26th International Conference on World Wide Web Companion,
pp. 867–868 (2017)

9. Zang, C., Cui, P., et al.: Structural patterns of information cascades and their
implications for dynamics and semantics. arXiv preprint arXiv:1708.02377 (2017)

10. Zhang, J., Tang, J., et al.: Structinf: mining structural influence from social
streams. In: Proceedings of the 31th AAAI Conference on Artificial Intelligence
(2017)

http://arxiv.org/abs/1708.02377


Knowledge Graph



Knowledge Graph Attention Network
Enhanced Sequential Recommendation

Xingwei Zhu1, Pengpeng Zhao1(B), Jiajie Xu1, Junhua Fang1, Lei Zhao1,
Xuefeng Xian2(B), Zhiming Cui3, and Victor S. Sheng4

1 Institute of AI, Soochow University, Suzhou, China
ppzhao@suda.edu.cn

2 Suzhou Vocational University, Suzhou, China
xianxuefeng@jssvc.edu.cn

3 Suzhou University of Science and Technology, Suzhou, China
4 Texas Tech University, Lubbock, TX, USA

Abstract. Knowledge graph (KG) has recently been proved effective
and attracted a lot of attentions in sequential recommender systems.
However, the relations between the attributes of different entities in
KG, which could be utilized to improve the performance, remain largely
unexploited. In this paper, we propose an end-to-end Knowledge Graph
attention network enhanced Sequential Recommendation (KGSR)
framework to capture the context-dependency of sequence items and the
semantic information of items in KG by explicitly exploiting high-order
relations between entities. Specifically, our method first combines the
user-item bipartite graph and the KG into a unified graph and encodes
all nodes of the unified graph into vector representations with TransR.
Then, a graph attention network recursively propagates the information
of neighbor nodes to refine the embedding of nodes and distinguishes
the importance of neighbors with an attention mechanism. Finally, we
apply recurrent neural network to capture the user’s dynamic preferences
by encoding user-interactive sequence items that contain rich auxiliary
semantic information. Experimental results on two datasets demonstrate
that KGSR outperforms the state-of-the-art sequential recommendation
methods.

Keywords: Sequential recommendation · Knowledge graph · Graph
neural network

1 Introduction

In the age of information explosion, recommender systems are widely used in
various fields (e.g., e-commerce, social media, and news portals) to help users
discover what they are interested in from mass information. In these scenarios,
a user’s tastes are usually dynamic and evolving by nature. The key factors of
building an effective recommender system are accurately characterizing the user’s
dynamic preferences and distilling collaborative signal of the items. Sequential
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 181–195, 2020.
https://doi.org/10.1007/978-3-030-60259-8_15
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recommendation, which aims to predict next activity of the user, has attracted
many researchers’ sights recently.

1u 2u 3u 4u

1i 2i 3i 4i 5i

1e 2e 3e 4e

5e

Users

Items

Entities

Relations:

:Interact

:Author

:Series

:Genre

1r 1r
1r

2r
2r

3r

1r

2r

3r

6e 7e

4r4r

4r

Fig. 1. A book example of knowledge graph. r2, r3, and r4 are from KG.

Various sequential recommendation methods have been proposed and
achieved encouraging results. One of the representative work is the classic fac-
torizing personalized markov chain [13] model, which assumes that the previous
one action (or previous few) is the foundation of the next activity and success-
fully characterizes short-range item transitions for the recommendation. How-
ever, with the markov assumption, an independent combination of the past inter-
actions may limit the performance of recommendation [18]. Another line of work
develops recurrent neural network (RNN) [4,22] methods to encode historical
interaction records of each user into a hidden state. The hidden state is fur-
ther used to predict the next action of the users. RNN methods, which profit in
exploring the item-to-item sequential relations with the advanced memory cell
structures like long short-term memory (LSTM) [5] and gated recurrent units
(GRU) [4], have been successfully equipped for various application scenarios.

More recently, knowledge-enhanced sequential recommender (KSR) [6]
applies RNN-based models to capture sequential user preference and further
incorporates knowledge graph (KG) to enhance the semantic representation of
key-value memory networks. By introducing knowledge-enhanced memory net-
works to capture attribute-level user preference, KSR has achieved remarkable
performance. However, the relations between the attributes of different entities
have not been adequately considered. As illustrated in Fig. 1, given a book KG
that user u1 has interacted with books i1, i2 and i4, we predict the next item
i5 interacted by u1. Between items i2 and i5, there are three connections in
Fig. 1: the purple, blue, and green solid lines. We believe that these deep-layer
connections are helpful in predicting the next item i5 successfully:

• i2
−r1−→ u2

r1−→ i3
r3−→ i5

• i2
−r1−→ u3

r1−→ i4
−r1−→ u4

r1−→ i5
• i2

r2−→ e2
r4−→ e6

−r4−→ e3
−r2−→ i5
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Taking the last connection as an example, it illustrates that the authors of books
i2 and i5 are e2 and e3 respectively, and the genres of author e2 and e3 are both
e6. Considering only the attribute level, items only implicitly capture the col-
laborative signal of directly connected nodes. And the relationship information
that author attributes e2 and e3 both connected to the genre attribute e6 in the
third connection could potentially enhance sequential recommendations. How-
ever, existing works have not fully exploited the high-order dependency between
entities and their local graph contexts in KG.

To this end, in this paper, we put forward a novel Knowledge Graph atten-
tion network enhanced Sequential Recommendation (KGSR) framework, which
introduces a graph attention network into a sequential recommender to explic-
itly exploit the high-order dependency between different entities in KG. Firstly,
we combine user behaviors and item knowledge into a unified relational graph
as the KG that we use, and encode all nodes of the KG into vector representa-
tions with TransR [10]. Then, the graph attention network module recursively
updates each node’s embedding according to its embedding and its neighbors’
embeddings, where a neural attention mechanism is employed to learn the weight
of each neighbor. Finally, the RNN-based network encodes the user’s sequential
interactions for capturing dynamic user preferences. Therefore, we can fully mine
the collaborative signals from the collective user behaviors and knowledge graph,
and then predict the user’s next interaction.

The contributions of this work are summarized as follows:

• To our best knowledge, we firstly introduce the high-order dependency
between entities in KG into sequential recommendation to fully exploit the
collaborative signals in interaction and knowledge graph.

• We develop the KGSR for the sequential recommendation in an end-to-end
manner, where TransR parameterizes the entities and relations as vector rep-
resentations, and the graph attention network propagates the information of
node’s local graph context in the KG, while the RNN-based networks model
user’s sequential intents.

• We conduct extensive experiments on two benchmark datasets to demonstrate
the effectiveness of our proposed method.

2 Related Work

In this section, we review the recent work from three orientations: general recom-
mendation, sequential recommendation, and knowledge-aware recommendation.

2.1 General Recommendation

Traditional recommendation methods, such as k-nearest neighbor [14] and
matrix factorization algorithms [8], are often based on the idea of collaborative
filtering: matching users based on similar preferences and interests. The datasets
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used by recommendation systems can generally be classified into explicit feed-
back datasets and implicit feedback datasets. The recommendation methods
using explicit feedback data treat the recommendation as a rating prediction
problem. However, most users do not usually rate the items, and the user’s
implicit feedback (e.g., clicks) is often available. Therefore, most methods focus
on processing implicit feedback data to make recommendations. Bayesian per-
sonalized ranking (BPR) [12], which optimizes the latent factor model with a
pair-wise ranking loss, is a representative method on implicit feedback. General
recommendation is good at capturing users’ general preferences, but fail to adapt
to situations where user interests are often dynamically shifted.

2.2 Sequential Recommendation

The sequential recommendation method is designed to learn the chronological
sequence of user interaction and then predict the likely user interaction items
for the next step. The classical factorizing personalized markov chain (FPMC)
method [13], which is a hybrid model of markov chain and matrix factorization,
learns the transformation relationship between item-item to predict the next
item based on the last interaction item. Another popular neural network method
is recurrent neural networks. LSTM and GRU are two classical methods based on
RNN, which have been widely applied in various scenarios such as session-based
GRU [4], user-based GRU [2,18,22] and attention-based GRU [9]. Recommender
system with external user memory networks [1] is proposed to introduce the
memory mechanism to captured item-level and feature-level sequential patterns
explicitly.

2.3 Knowledge-Aware Recommendation

Knowledge graph has been widely adopted to address data sparsity and cold
start problems and has achieved great success. However, knowledge graph is
just widely leveraged in traditional recommendation task scenarios, and remains
largely unexploited in the field of sequential recommendation. Collaborative
knowledge base embedding (CKE) [20], which is the first work to apply embed-
ding and deep learning methods to extract semantic representations from the
knowledge graph automatically, is a representative regularization-based method.
One of the representative path-based methods is knowledge-aware path recurrent
network (KPRN) [16], which not only encodes both entities and relations in a
path into a unified representations, but also performs reasoning based on paths
to deduce user preference. Knowledge graph attention network (KGAT) [15]
develops an advanced graph attention network method to explicitly perform the
propagation of collaborative information between nodes in KG, and it contains
both path-based and regularization-based ideas. In addition to non-sequence
recommendation methods such as CKE, KPRN and KGAT, KSR has recently
successfully introduced KG to enhance sequential recommendation. KSR [6]
combines knowledge-enhanced key-value memory networks and GRU to cap-
ture attribute-based user preference and sequential user preference, respectively.
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Although KSR has made a good improvement on the baseline, it did not fully
exploit the multi-layer connection relationship between different entities in KG.

KG Embedding Layer GRU

GRU

GRU

Collaborative Knowledge Propagation Module Sequential Modeling Module

Fig. 2. Illustration of the proposed KGSR model. The left module is the KG embedding
layer, the middle is the collaborative knowledge propagation module, and the right is
the sequential modeling module.

3 Knowledge Graph Attention Network Enhanced
Sequential Recommendation

In this section, we introduce our proposed KGSR model. The overall framework
is illustrated in Fig. 2. We first describe the problem statement in our work and
then present the architecture of our model in detail.

3.1 Problem Statement

Before introducing our proposed model, we first formally detail some basic con-
cepts and notations involved in our work.

Recommendation System Dataset. We denote a set of users as U =
{u1, u2, ..., u|U|} and a set of items as I = {i1, i2, ..., i|I|}, where |U| and |I| rep-
resent the numbers of users and items, respectively. We build the training set’s
interaction data into a user-item bipartite graph G1 = {(u, yu,i, i)|u ∈ U , i ∈ I},
where yu,i = 1 if user u has already interacted with item i; otherwise, yu,i = 0.

Knowledge Graph. All triples in the KG are denoted as G2 = {(h, r, t)|h, t ∈
E , r ∈ R}, where E = {e1, e2, ..., e|E|} is the set of entities and R =
{r1, r2, ..., r|R|} is the set of relations. Each triplet represents that there is a
relation r from head entity h to tail entity t.
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Hybrid Knowledge Graph. Based on the item-entity alignment set, we com-
bine the user-item bipartite graph G1 and the KG G2 into a unified graph
G = {(h, r, t)|h, t ∈ E ′, r ∈ R′}, where E ′ = E ∪ U and R′ = R∪{Interact}. The
additional relation Interact is the observed interaction yu,i = 1 between user u
and item i.

Task Description. We now formulate the sequential recommendation task to
be addressed in our work. Taking the hybrid knowledge graph G and a user u’s
history interaction sequence S = {su

1 , ..., su
t , ..., su

|S|−1}, (su
t ∈ I) as the input,

where the index t denotes the relative time index, we aim to learn a function to
predict the next item su

|S| that the user touches.

3.2 KG Embedding Layer

Before executing knowledge propagation, we need to vectorize the entities and
relations in the hybrid KG. We first initialize the embedding of entities and
relations as R

d
e and R

k
r randomly. Then we choose to employ TransR [10], a

widely used knowledge graph embedding method, to embed representations of
entities. TransR learns the embedding of entities and relations in the graph,
requiring entities and relations to satisfy the constraints: er

h + er ≈ er
t , if the

triple (h, r, t) exists in the graph, where er
h = Wreh and er

t = Wret, (eh, et ∈ R
d
e ,

er ∈ R
k
r ). Wr ∈ R

k×d projects the representations of entities into the relation
r’s space. As described above, given a triplet (h, r, t), we have the energy score
as follows:

Fkg(h, r, t) = ‖Wreh + er − Wret‖22 (1)

The lower score of Fkg(h, r, t), the more likely the triplet is true, and vice versa.
Similar to BPR, TransR’s loss is defined as follows:

Lkg =
∑

(h,r,t,t′)∈Γ

− ln σ(Fkg(h, r, t′) − Fkg(h, r, t)) (2)

where Γ = {(h, r, t, t′)|(h, r, t) ∈ G, (h, r, t′) /∈ G}. The symbol t′ is an entity
chosen at random from set {e|e ∈ E , e /∈ t}. σ(·) represents the logistic sigmoid
function.

3.3 Collaborative Knowledge Propagation Module

The KG contains a large amount of entity attribute information. Previously, KSR
[6] has been proposed to combine sequential recommender with the attribute
information in the existing KG via key-value memory network. However, it
ignores the dependency between an entity and its local graph context, which
would be insufficient to explore the attributed-based collaborative signal between
items. And it is unable to mine global user-item relationships. Our idea is to
introduce the graph attention network to capture global user-item and item-
item relationships simultaneously. And then, the RNN-based method simulates
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the sequence, where each item embedding has already contained the global col-
laborative signal. Next, we present how to propagate node embeddings via graph
attention network recursively.

Information Propagation. Given an entity k ∈ E and a set of triples
Nk = {(h, r, t)|(h, r, t) ∈ G, h = k}. After a layer of propagation, the node k’
ego-network [11], which is merged with the neighbor nodes’ embeddings, is rep-
resented as follows:

eNk
=

∑

(h,r,t)∈Nk

π(h, r, t)et (3)

where π(h, r, t) determines how much information is propagated from the neigh-
bor entity t to the entity k. π(h, r, t) is formed as follows:

π′(h, r, t) = (Wret)� tanh (Wreh + er) (4)

π(h, r, t) =
exp (π′(h, r, t))∑

(h,r′,t′)∈Nh
exp (π′(h, r′, t′))

(5)

where tanh is the activation function and Eq. 5 is to normalize the relevance
scores between entity h and its every neighbor entity. Specifically, when calcu-
lating π(h, r, t) in Eq. 3, each neighbor of the entity k is the parameter h here.

Information Aggregation. Based on the ego-network obtained above, we
merge the entity representation ek and its ego-network representation eNk

as
the next layer’s representation of entity k. The fusion function is formulated as
follows:

e
(1)
k = LeakyReLU(W (1)(ek � eNk

)) (6)

where W (1) ∈ R
d′×d is the dimensional transition matrix between two layers,

and � is the element-wise product. LeakyReLU is the activation function.

Recursive Propagation. In order to explore more information, we stack more
propagation layers to gather the multi-layer connection information from the
higher-hop neighbors. In the l-th layer, entity k’s representation is formulated
as follows:

e
(l)
k = LeakyReLU(W (l)(e(l−1)

k � e
(l)
Nk

)) (7)

where the l-th layer’s ego-network representation of entity k is defined as follows:

e
(l)
Nk

=
∑

(h,r,t)∈Nk

π(h, r, t)e(l−1)
t (8)

where e
(l−1)
t is from the previous information propagation layer, retaining the

information of entity t’s (l − 1)-hop neighbors.
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Fully-Connected Layer. After the L-layer operation, we learned multiple
representations for each entity k, namely {e

(1)
k , e

(2)
k , ..., e

(L)
k }. We first concatenate

them into a single vector as final representation of entity k, as follow:

e′
k = e

(0)
k ‖ e

(1)
k ‖ ... ‖ e

(L)
k (9)

where ‖ denotes the concatenation operation. We obtain entity embedding set
E∗ = {e′

1, ..., e
′
k, ..., e′

|E|}, where e′
k ∈ R

d′
, d′ = d + d(1) + d(2) + ... + d(L), and

then we project them into a fully-connected layer.

e∗
k = e′

kWs + bs (10)

where Ws ∈ R
d′×d, bs ∈ R

d. We obtain new entity embedding set E∗ =
{e∗

1, e
∗
2, ..., e

∗
|E|}, and we can form a new item embedding matrix I∗ ∈ R

|I|×d based
on item-entity alignment set. Obviously, the user-item and attribute-based item-
item collaborative signal is seamlessly injected into the representation learning
process via the multi-layer embedding propagation.

3.4 Sequential Modeling Module

Here, we apply a sequential recommendation method to model the user’s his-
torical interactions, which usually follow a chronological order. RNN has been
proved to be effective in various sequence coding tasks. LSTM and GRU are two
typical variants of RNN, which are proposed to solve the deficiency of the RNN
method in dealing with long-dependencies. Here we choose GRU as our sequence
encoder because GRU has a simpler structure than LSTM and has similar effects
in most cases.

Given a user u’s interaction sequence {su
1 , ..., su

t , ..., su
|S|−1}, we look up

items embedding matrix I∗ ∈ R
|I|×d to obtain the input items’ embedding

{eu
1 , ..., eu

t , ..., eu
|S|−1}. The current hidden state vertor hu

t ∈ R
d can be com-

puted by GRU-based recommender taking previous hidden state vector hu
t−1

and current item’s embedding vector eu
t as input.

hu
t = GRU(hu

t−1, e
u
t ;Φ) (11)

where GRU(·) is the GRU cell. Φ denotes all relevant parameters of the GRU
unit.

3.5 Model Prediction and Learning

Through the calculation of the sequential recommendation method, we obtain
the final user preference representation hu

t . Then, we conduct inner product of
user representation hu

t and item representation e∗
i looked up from matrix I∗, and

the score is used for ranking:

ŷ(u, i) = (hu
t )�e∗

i (12)
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The higher the score of ŷ(u, i), the higher the probability that user u will interact
with item i next. Additionally, we optimize the recommendation model with BPR
loss [12] as follows:

Lrec =
∑

(u,i,j)∈O
− ln σ(ŷ(u, i) − ŷ(u, j)) (13)

where O = {(u, i, j)|(u, i) ∈ Q+, (u, j) ∈ Q−} is the training set, and Q+ denotes
the set of observed (positive) interactions between user u and item i while Q−

indicates the set of unobserved (negative) interaction sampled randomly.
Finally, we minimize the overall objection function, which learns Eq. 2 and

Eq. 13 jointly, to train our proposed KGSR model, as follows:

L = Lrec + Lkg + λ‖Θ‖22 (14)

where Θ is the set of all trainable parameters, and L2 regularization is introduced
to prevent overfitting.

4 Experiments

In this section, we first present our experimental settings and then compare and
analyze our experimental results.

4.1 Dataset Description

To verify the effectiveness of our model KGSR, we conducted a giant amount
of comparison experiments on two benchmark datasets: Amazon-book1 and
Yelp20182.

• Amazon-book is a widely used benchmark dataset in book recommenda-
tions, which contains product reviews and metadata from Amazon. To ensure
the quality of the datasets, we filter unpopular items and inactive users with
fewer than ten records.

• Yelp2018 comes from the 2018 edition of the Yelp challenge, wherein the
local businesses like restaurants and bars are viewed as the items. Similarly,
we use the 10-core setting to ensure that each user and item have at least ten
interactions.

In addition to the recommendation system datasets, we also need the knowl-
edge graph datasets. The KG used in this paper is released by [15] on GitHub.
For Amazon-book, its KG is extracted from Freebase, which provides two-hop
neighbor entities of items. In contrast, Yelp2018’s KG is extracted from the local
business information network (e.g., category, location, and attribute). For clarity,
detailed statistics of the two processed datasets are presented in Table 1.
1 http://jmcauley.ucsd.edu/data/amazon.
2 https://www.yelp.com/dataset/challenge.

http://jmcauley.ucsd.edu/data/amazon
https://www.yelp.com/dataset/challenge
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Table 1. Statistics of the two datasets.

Amazon-book Yelp2018

User-item interaction Users 70,595 45,805

Items 24,914 45,043

Interactions 846,094 1,282,878

Knowledge graph Entities 88,572 90,961

Relations 39 42

Triplets 2,557,656 1,845,261

4.2 Experimental Settings

Evaluation Metrics. To evaluate the performance of each method for the
sequential recommendation, we adopt two common Top-N metrics, Hit Rate@10
[19] and NDCG@10 [17,21]. Hit@10 just cares about the probability of the
ground-truth and falls into the first ten items predicted, while NDCG@10 is
a position-aware metric. In particular, when there is only one test item for each
user, Hit@10 is equivalent to Recall@10 and proportional to P@10.

For the test method, we apply the strategy in [3,7]. We take the last one
of each user’s interaction record as the test set, and then all the remaining
interaction records are used as the train set. When testing, the last item in the
user interaction sequence is used as the ground-truth, and then it forms final test
examples with 100 randomly selected items that are not in the user interaction
record. The final result shows the ranking of the ground-truth item among the
101 test examples.

Baselines. We choose the following methods as the baselines to compare with
our model:

• BPR [12]: Bayesian personalized ranking is a classic method, which uses a
pair-wise loss function to model the relative preferences of users.

• NCF [3]: Neural collaborative filtering replaces the inner product of tradi-
tional MF with a neural architecture, which provides the model with nonlin-
earity modeling capability.

• CKE [20]: Collaborative knowledge base embedding is the first work lever-
aging structural content from the KG, textual content and visual content for
recommender systems. Here, we simply extract knowledge from KG.

• FPMC [13]: Factorizing personalized markov chains combines matrix factor-
ization and first-order markov chain for the next-basket recommendation. It
could capture both sequential effects and the general interests of users.

• RUM [1]: It first utilizes a memory network to improve sequential recom-
mendation, where item-level (RUMI) and feature-level (RUMF ) are its two
variants. We only report the results of RUMI here.

• GRU4Rec [4]: Gated recurrent unit uses an RNN-based method to model
user action sequences for the session-based recommendation. It utilizes the
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session-parallel mini-batch training process and ranking-based loss functions
for improvement.

• GRU4Rec+: We use the BPR model to pretrain item embedding and take
it as the input of GRU4Rec.

• KSR [6]: Knowledge-enhanced sequential recommender is the first time that
sequential recommender is integrated with existing KG information by lever-
aging external memories.

Table 2. Overall performance comparisons on both Amazon-Book and Yelp2018
datasets. Experimental results are reported in terms of Hit@10 and NDCG@10 evalu-
ation methods. Boldface indicates the best results, while the second best is underlined.

Amazon-Book Yelp2018

Hit@10 NDCG@10 Hit@10 NDCG@10

BPR 0.6511 0.4614 0.8437 0.5768

NCF 0.6890 0.4820 0.8450 0.5790

CKE 0.7515 0.5457 0.8557 0.5918

FPMC 0.6986 0.4835 0.7645 0.5164

RUM 0.7511 0.5412 0.8666 0.5891

GRU4Rec 0.7501 0.5402 0.8553 0.5887

GRU4Rec+ 0.7515 0.5398 0.8660 0.5990

KSR 0.7656 0.5550 0.8720 0.6060

KGSR 0.8056 0.5987 0.8984 0.6432

Improv. 5.222% 7.865% 3.022% 6.144%

Parameter Settings. The experimental results of the baselines we report are
all parameters optimized to the data set. We implement our KGSR model in
Tensorflow. We set the depth of graph attention network L as 3 with hidden
dimension 64, 32, and 16, respectively. We only use one layer of GRU here. The
default Xavier initializer to initialize the model parameters and the embedding
size is fixed to 50. We optimize our models with Adam optimizer, where the
batch size is fixed at 128. Optimal learning rate α = 0.0001 and the coefficient
λ = 10−5 of L2 normalization for our experiments. We apply an embedding
dropout technique where the drop ratio d = 0.1. We will conduct experiments
to analyze the impact of the depth of the graph attention network L and the
maximum length of the sequence in the future. We set the depth L of the graph
attention neural network to 1, 2, 3, and 4 respectively to analyze the impact of
L. To investigate the impact of sparsity, we limit the maximum length of the
input sequence to simulate datasets with different degrees of sparsity. The input
sequence length is limited to 10, 20, 30, 40, or 50, respectively.
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4.3 Performance Comparison

We compare our model with all baselines in terms of Hit@10 and NDCG@10. The
results of all models are reported in Table 2. We have the following observations:

• In terms of two evaluation metrics (i.e., Hit Rate and NDCG), our method
KGSR consistently performs better than all baseline methods on two bench-
mark datasets. By using the graph attention network method to propagate
signals recursively, KGSR successfully captures the collaborative signals in
interactions and the knowledge graph. This indicates importance of the col-
laborative information in collective user behaviors and knowledge graph to
the sequential recommendation method.

• Among all the non-sequential baselines, CKE achieves the most competitive
performance on both datasets compared to BPR and NCF. Maybe this is
because CKE additionally introduces items’ fact information from KG, which
can make up for the collaborative information not included in the interaction
information between items. BPR achieves comparable performance to NCF
on the dense dataset Yelp2018 but performs slightly worse than NCF on the
relatively sparse dataset Amazon-book. This proves that the neural network
structure introduced by NCF can effectively characterize user-item interac-
tions.

• Among the sequential baselines, FPMC is the only non-neural network
method and has the worst performance. RUM uses key-value memory net-
works to learn the long-term and short-term preferences of users. Compared
to GRU4Rec, RUM has obtained advanced sequence recommendation perfor-
mance. We use BPR pre-trained items embedding as the input to GRU4Rec to
optimize GRU4Rec+. With the pre-training, GRU4Rec+ achieves the second-
best performance of all baselines, behind KSR. KSR, which uses key-value
memory networks to incorporate the user’s attribute-level preference and
GRU to capture the user’s sequence preference, obtains the best performance
among all baselines. However, in KSR, entity and relationship representation
of KG and the embedding of items require pre-training. The quality of the
pre-trained embedding has a great impact on the performance of the KSR,
so this may be why although the KSR in terms of our results reported here
is better than other baselines, the margin is not very large.

• Finally, we compare our proposed model KGSR with the strongest baseline
KSR model. It is clear to see that our model KGSR improves over the KSR
w.r.t. NDCG@10 by 7.865% and 6.144% on the Amazon-book and Yelp2018,
respectively. By using a graph attention network to simultaneously capture
the collaborative signals in interaction and knowledge graph and using GRU
to capture user’s sequence preference, KGSR naturally combines the side
information of the knowledge graph to improve the performance of sequen-
tial recommendation. This verifies that our method improves the sequential
recommendation performance more effectively compared with KSR.
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4.4 Model Analysis and Discussion

The above is an overall comparison of the experimental results. Our model
achieved significant improvements across all baselines. In this paragraph, we
further experiment and analyze our model to better understand it. We first ana-
lyze the effect of the depth L of the graph attention network on the sequential
recommendation, and then limit the maximum length of the input sequence
interacted by each user to simulate the sparseness of the data. On datasets with
different degrees of sparseness, we compare the performance of our model and
KSR.
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Fig. 3. Influence of depth L of graph attention network.

Influence of Depth L of Graph Attention Network. Previously, we have
proved that the introduction of the graph attention network can effectively
improve the performance of sequential recommendation. Here we further exper-
imentally analyze the effect of the depth of graph attention network on the final
sequential recommendation performance. We set the depth of propagation layers
to 1, 2, 3, and 4, respectively. Our experimental results are reported in Fig. 3.
From line chart, we can see that the final model performance is optimal when
the number of layers is 3. In addition, analyzing Fig. 3 and Table 2, our model
with one layer’s graph attention network is also better than the best perfor-
mance baseline KSR, which indicates that the information propagation of graph
attention network can effectively capture the collaborative signals in interaction
and knowledge graph and improve the sequential recommendation.

Influence of Maximum Length of the Input Sequence. To further study
the advantages of our model, we limit the maximum length of input user inter-
action sequences to 10, 20, 30, 40, and 50, respectively, on the amazon-book
dataset. The corresponding average interaction lengths are 6.65, 8.15, 8.86, 9.3,
and 9.59, respectively. And the experimental results of our model and KSR under
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Table 3. Influence of maximum length of the input sequence on the Amazon-book
dataset.

Max len 10 20 30 40 50

Avg len 6.65 8.15 8.86 9.3 9.59

KSR Hit@10 0.7365 0.7547 0.7588 0.7590 0.7637

NDCG@10 0.5320 0.5446 0.5446 0.5508 0.5542

KGSR Hit@10 0.7911 0.7964 0.8019 0.8020 0.8056

NDCG@10 0.5841 0.5932 0.5953 0.5972 0.5987

Improv. Hit@10 7.413% 5.525% 5.680% 5.665% 5.484%

NDCG@10 9.793% 8.924% 9.310% 8.424% 8.021%

these cases are reported in Table 3. From this table, we can see that in terms
of both evaluation methods, compared with KSR, our model has the smallest
improvement when the maximum length is 50, and the most significant growth
when the maximum length is 10. In general, the shorter the length of user interac-
tion sequence, the greater the promotion of our model’s performance over KSR.
This shows that the more sparse the dataset, the better our approach performs
than KSR.

5 Conclusion

In this paper, we proposed an end-to-end method named Knowledge Graph
attention network enhanced Sequential Recommendation (KGSR). By exploring
multi-layer connectivity in knowledge graph, our method distills the collabora-
tive signals between different entities, which greatly helps sequential methods
find relevant items for recommendation accurately. Specifically, our method uti-
lizes TranR to vectorize all entities in knowledge graph. And a graph attention
network is introduced to perform information propagation, while the GRU cap-
tures the transitions of items in interaction sequences. The graph attention net-
work not only makes up for the insufficiency of the RNN-based method to fully
capture the context-dependency of sequence items but also successfully captures
the semantic information of items in knowledge graph. Extensive experiments
on two benchmarks datasets demonstrate the rationality and effectiveness of our
model KGSR.
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Abstract. In this paper, we focus on temporal-aware knowledge graph
(TKG) completion, which aims to automatically predict missing links in a
TKG by making inferences from the existing temporal facts and the tem-
poral information among the facts. Existing methods conducted on this
task mainly focus on modeling temporal ordering of relations contained
in the temporal facts to learn the low-dimensional vector space of TKG.
However, these models either ignore the evolving strength of temporal
ordering relations in the structure of relational chain, or discard more
consideration to the revision of candidate prediction results produced by
the TKG embeddings. To address these two limitations, we propose a
novel two-phase framework called TKGFrame to boost the final perfor-
mance of the task. Specifically, TKGFrame employs two major models.
The first one is a relation evolving enhanced model to enhance evolving
strength representations of pairwise relations pertaining to the same rela-
tional chain, resulting in more accurate TKG embeddings. The second
one is a refinement model to revise the candidate predictions from the
embeddings and further improve the performance of predicting missing
temporal facts via solving a constrained optimization problem. Exper-
iments conducted on three popular datasets for entity prediction and
relation prediction demonstrate that TKGFrame achieves more accurate
prediction results as compared to several state-of-the-art baselines.
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1 Introduction

Knowledge graphs (KGs) such as Freebase [2], YAGO [17] and DBpedia [13] have
proven to be highly valuable resources for many applications including informa-
tion extraction [21], semantic search [1] and question answering [6]. However,
in fact, KGs with large scales are usually far from complete, because the facts
contained in KG are mainly mined from unstructured sources using machine
learning and information extraction techniques, and no single source is suffi-
ciently comprehensive as well as technique is sufficiently perfect. Therefore, KG
completion1 is a long-standing but increasingly important task in the research
field.

KG embedding, which aims to embed KG elements (i.e., entities and rela-
tions) into the latent, low-dimensional, and real-valued vector representations,
has been proven to be a powerful technique for KG completion. Over the
last few years, several approaches have been developed for this task and two
main groups can be distinguished: translational distance-based methods such as
TransE [3] and its numerous variants, and semantic matching methods such as
RESCAL [16]. Although most of these methods have exhibited both effectiveness
and strong generalization capabilities for KG completion, we observed that they
only treat KG as a static graph and the assumption in the background is that
the facts involved in KG are universally true. Obviously, the assumption is inad-
equate and inconceivable in many real-world scenarios. In fact, quite of facts in
KG are extremely ephemeral or tend to be valid only in a specified time period.
An illustration of the comparison between KG and temporal-aware knowledge
graph (TKG) based on the topic “soccer player” is in Fig. 1. Intuitively, exist-
ing approaches may make mistakes without considering the temporal aspects of
facts when learning KG embeddings.

In recent years, most of contemporary researchers turn to distributed repre-
sentations of temporal knowledge graphs (a.k.a TKG embeddings) to deal with
the TKG completion problem. It aims to automatically predict missing links
in a TKG by making inferences from the existing temporal facts and the tem-
poral information among the facts. A series of representation learning methods
for TKG completion, e.g., t-TransE [10], TransE-TAE [9], TTransE [12] and
HyTE [5], have been implemented to model the temporal ordering of relations
contained in the temporal facts to learn a low-dimensional vector space of TKG.
See Sect. 2.2 for more details on TKG embedding methods.

Although existing TKG embedding methods on the above task have achieved
preliminary performance improvements, they still suffer from two major limita-
tions: (1) The model ignores the evolving strength of pairwise relations pertaining
to the same relational chain, which results in some temporal information loss in
the learned embeddings. (2) The model only relies on the learned embeddings to
predict the plausibility of missing links in the TKG, and lacks more consideration

1 KG completion, as known as link prediction in KG, aims to automatically predict
missing links between entities based on known facts involved in KG.
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Fig. 1. (a) An example of KG on the topic “soccer player”, in which five entities (e.g.,
“David Beckham”, “United Kingdom”) are represented as vertices, and four types of
relations (e.g., “plays for”, “wasBornIn”) are represented as directed edges with labels
in four different colors between vertices; (b) An example of TKG augmented from (a),
in which each directed edge as relation with timestamp represented as [tstart, tend]
denotes its connected fact that starts in tstart and ends in tend, e.g., (“David Beck-
ham”, “plays for”, “Manchester United”) is true only during 1996–2003. Note that, as
for some facts with special time intervals, if the facts do not end yet, we represent their
timestamps as [tstart, + ��], e.g., the fact (“David Beckham”, “isMarriedTo”, “Victo-
ria Beckham”), with the timestamp [1999, + ��]; for some facts are factual ones, we
represent their timestamps as [− ��, + ��], e.g., the fact (“Manchester”, “belongs to”,
“United Kingdom”) with the timestamp [− ��, + ��].

to the further revision of prediction results, leading to a suboptimal performance
on TKG completion.

To address the above limitations, we propose a novel two-phase framework
called TKGFrame to boost the final performance of TKG completion task.
TKGFrame addresses these issues by applying two models, namely relation
evolving enhanced model and refinement model. Specifically, in the relation
evolving enhanced model, based on the work of Jiang et al. [9], a refined tempo-
ral evolving matrix is introduced to enhance evolving strength representations
of pairwise relations in the same relational chain. For example, for the relation-
based chain associated with the same person, the temporal ordering relation
wasBornIn needs to use greater strength to evolve into diedIn than into gradu-
atedFrom in the temporal-aware embedding space measured by the refined tem-
poral evolving matrix. This kind of temporal ordering enhanced information can
be regarded as a regularization term for a joint optimization problem to learn
TKG embeddings. The refinement model formulates the plausibility prediction
of missing temporal facts in the TKG from the embeddings as an integer linear
programming (ILP) problem, in which two types of additional common-sense
constraints for temporality are utilized to effectively filter out those implausi-
ble predictions for the purpose of improving the prediction quality. In addition,
another advantage of the refinement model is that it would benefit to improve the
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explainability for the final prediction results by better handling temporal con-
flicts in relations. By integrating the above two models seamlessly into a complete
framework, it can achieve more accurate prediction results. It is worthwhile to
highlight our contributions as follows:

– We propose a novel two-phase framework called TKGFrame for TKG com-
pletion.

– We present three extensions of TKGFrame based on the idea of incorporat-
ing temporal order among relations for learning TKG embeddings [9]: (1)
refine a new temporal evolving matrix for better modeling evolving strength
representations of pairwise relations pertaining to the same relational chain
following the timeline; (2) formulate plausibility measure of the candidate
predictions of missing temporal facts as a constrained optimization problem,
and propose an ILP approach to solve it as well as avoid implausible pre-
dictions from the embedding results; and (3) integrate two models into the
proposed TKGFrame seamlessly.

– We conduct extensive experiments on three real-world datasets, newly col-
lected from two popular KG projects, namely YAGO 3 and Wikidata, and
compare our results against some state-of-the-art baseline methods on both
entity prediction and relation prediction tasks. Experimental results have ver-
ified the effectiveness of TKGFrame.

– To illustrate the evaluation of our model and facilitate further research on this
topic, we have made the experimental details and source code of the model
publicly available2.

The remainder of this paper is organized as follows. We review related
research in this area in Sect. 2. Section 3 provides the details of each model
derived from TKGFrame. In Sect. 4, we conduct extensive experimental eval-
uations and provide an analysis of the effectiveness of our model in terms of
entity prediction and relation prediction, respectively. Finally, the conclusions
and future work are described in Sect. 5.

2 Related Work

In this section, we provide an overview of the typical methods for KG embedding
learning. These approaches have offered state-of-the-art results for KG and TKG
completion on several benchmarks. According to whether the temporal-aware
information is considered or not in the learned KG embeddings, the methods
can be summarized into two major branches, including static KG embedding
methods and temporal-aware KG embedding methods.

2 The experimental details and source code of the model are publicly available at
https://github.com/zjs123/TKGComplt.

https://github.com/zjs123/TKGComplt
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2.1 Static Knowledge Graph Embedding Methods

Static KG embedding methods aim to map each entity and each relation in a KG
to a latent, low-dimensional, and real-valued vector representation and compute
a score to measure the plausibility for each triple by applying a scoring function
to these representations. The well-known TransE model [3] maps entities to
vectors and regards r as translations from a head entity h to a tail entity l.
Based on TransE, a number of improved models have been proposed, such as
TransH [20] and TransR [14]. Specifically, TransE [3] attempts to make h+r and
l be as close as possible by adjusting the vectors for the head entity h, relation
r, and tail entity l. The TransH model [20] models relations as vectors on a
relation-specific hyperplane with an associated translation operation. TransE
and TransH both embed the entities and relations into the same space. The
TransR model [14] considers separate entity and relation spaces to better capture
the differences between entities and relations.

2.2 Temporal-Aware Knowledge Graph Embedding Methods

In recent years, an increasing number of researchers have paid attention to this
promising area, and many efforts have been made for learning temporal prop-
erty among relations and relation embedding simultaneously. Jiang et al. [10]
took the happen time of facts into account, and proposed a TKG embedding
model by simply extending standard TransE model. Jiang et al. [9] extended
the above work and made an attempt to incorporate temporal order informa-
tion for TKG completion. Specifically, in this approach, instead of incorporating
temporal-aware information in the learned embeddings, it first learns tempo-
ral order among relations (e.g., wasBornIn → worksAt → diedIn), and then
these relation orders are incorporated as consistency constrains to learn TKG
embeddings. However, some explicit temporal relation dependencies in relational
chains in the model are not fully considered, which affects the actual quality of
the TKG embeddings. In contrast to [9], Dasgupta et al. [5] proposed a TKG
embedding model called HyTE inspired from the objective of TransH [20], which
is able to directly incorporate temporal information in the learned embeddings.
Specifically, they firstly divide an input TKG into multiple static subgraphs,
each of which is pertinent for a timestamp, and then project all the entities and
relations of each subgraph onto the hyperplane specific with a timestamp for
joint learning of the hyperplane vectors and the representations of the TKG ele-
ments distributed in the subgraphs. TTransE [12] investigated temporal scope
prediction over unannotated triples, and extended existing TransE-style scoring
functions. TA-TransE [8] utilized digit-level LSTM to learn TKG embeddings
combining with existing scoring functions such as TransE and DistMult. For
both TTransE and TA-TransE, they verify the effectiveness of the joint learning
framework which is based on existing scoring function, with temporal informa-
tion regularization. In addition, another study in Know-Evolve [19] is mostly
focused on factual knowledge evolving. It uses a bilinear model (RESCAL) and
employs a deep recurrent neural network in order to learn non-linearly evolving
entities.
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3 The Proposed Two-Phase Framework

In this section, two models and detailed steps within the proposed TKGFrame
are introduced in detail.

3.1 Phase I: Relation Evolving Enhanced Model for TKG
Embedding

Our TKG embedding model is expected to better model temporal evolution
among facts in the temporal-aware embedding space. For this, Jiang et al. [9]
firstly propose a key assumption that temporal ordering relations occurring in the
facts are associated with each other and evolve in a time dimension. In the guide
of this assumption, they attempt to capture the temporal order among relations
by using a temporal evolving matrix T ∈ R

n×n, where n is the dimension of rela-
tion embedding, While experimental evidence indicates that T is indeed helpful
for incorporating temporal-aware information to the learned TKG embeddings.

Inspired by the above idea, we refine a new temporal evolving matrix Te ∈
R

n×n for better modeling temporal dependencies in a relational chain. The
key distinction between these two forms of temporal evolving matrices (i.e., T
and Te) is that in the former, T only can separate given prior relation and
subsequent relation which share the same head entity in the temporal-aware
embedding space, whereas in the latter, Te is able to enhance evolving strength
representations of pairwise relations pertaining to the same relational. Specif-
ically, for the same person, there exists a temporal dependency, denoted as
wasBornIn → graduatedFrom → worksAt → diedIn. As a result, for the first
case, wasBornIn can evolve into graduatedFrom, graduatedFrom can evolve into
worksAt, and worksAt can evolve into diedIn in a time dimension, with the
same intensity. For the second case, wasBornIn can evolve into graduatedFrom,
worksAt and diedIn with the strength as once, twice, and three times, which
can be measured by Te, T2

e, and T3
e. Following the similar process introduced

above, graduatedFrom can also evolve into worksAt and diedIn in once and twice
strength as presented by Te and T2

e, respectively. A simple graphical illustration
for this example is shown in Fig. 2. In this way, we enhance the evolvement among
temporal ordering relations by exploiting different evolving strength measures.
It indicates that the farther distance of the pairwise relations in a relation-based
chain, the more evolving strength they need.

As studied in [9], we also formulate TKG embedding as an optimization
problem based on a temporal-aware regularization term. Given any two positive
training quadruples (ei, ri, ej , tri

) and (ei, rj , em, trj
), they share the same head

entity and a temporal ordering relation pair 〈ri, rj〉. If tri
< trj

, we have a pair of
positive temporal ordering relations, denoted as r+ = 〈ri, rj〉, and corresponding
negative relation pair r− = 〈ri, rj〉−1 by inverse. Our optimization requires that
positive temporal ordering relation pairs in each relational chain3 should have
lower scores than negative pairs. Therefore, we have a temporal scoring function:
3 The relational chain can be constructed by connecting temporal relations sharing

the same head entity ranked by an order of their timestamps.
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Fig. 2. An illustration of two forms of temporal evolving matrices (i.e., T and Te) in
the temporal-aware embedding space. For instance, there exist four temporal ordering
relations for the same person, denoted as r1 = wasBornIn, r2 = graduatedFrom, r3 =
worksAt, r4 = diedIn, ranked in chronological order in a relation-based chain lr. The
relation between entity ei and entity ej corresponds to a translation vector ri by the
TransE model, i.e., ei + ri ≈ ej when (ei, ri, ej) holds (j = i + 1, j ≤ 5, i = 1), as
shown in (a). We obtain prior relation’s projection riT near subsequent relation ri+1 in
the space by projection by T, i.e., riT ≈ ri+1, but ri+1T �= ri (i = 1, 2, 3), as shown
in (b). Similar to (b), we obtain prior relation’s projection riT

j−i near subsequent
relation rj based on their dependency strength in lr in the space by projection by Te,
i.e., riT

j−i
e ≈ rj , but rjT

j−i
e �= ri (j = i + 1, j ≤ 4, i = 1, 2, 3), as shown in (c).

g(〈ri, rj〉) = ‖riTj−i
e − rj‖l1/l2 , (1)

where Te is a parameter to be learned by our model from the training data,
and Tn

e is to enhance the evolving strengths of pairwise relations with different
dependency distances in the relation-based chain, which has introduced in the
earlier parts of this section. We are expected to obtain a low score when the
temporal ordering relation pair is in chronological order, and a high score other-
wise. Note that Te is also an asymmetric matrix, resulting in loss function with
asymmetric property, so as to a better modeling of temporal ordering relation
pairs.

However, in practice, Eq. 1 cannot ensure that the scores of positive tem-
poral ordering relation pairs are absolutely low to fulfill the projection when
the chronological order exists, as pointed by Zhou et al. [22]. Hence, we follow
the strategy adopted in modeling previous work [18] and leverage an optimized
objective function as the temporal loss function:

Or =
∑

r+∈D+
r

[g(r+) − γ1]+ + μ
∑

r−∈D−
r

[γ2 − g(r−)]+, (2)

where D+
r and D−

r denote the sets of positive temporal ordering relation pairs
and negative temporal ordering relation pairs covering all the relation-based
chains, respectively. [·]+ = max(·, 0), γ1, γ2 > 0 are two hyperparameters, μ > 0
is used for smoothing as well as to strike a trade-off between the two terms in
Eq. 2, and is fixed to 0.5 in our implementation. To summarize, the advantages
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of Eq. 2 is two-fold: firstly, we are able to directly control the absolute scores of
positive and negative temporal ordering relation pairs as needed, with setting
g(r+) ≤ γ1 and g(r−) ≥ γ2 (γ2 > γ1 and γ1 is a relatively small positive value);
secondly, we are still expected to preserve the characteristic of the margin-based
ranking criterion deriving from TransE model [3], with setting g(r−) − g(r+) ≥
γ2 − γ1.

Moreover, in order to make the temporal-aware embedding space compatible
with the observed temporal facts, we make use of the temporal fact set Δ and
follow the same scoring function applied in TransE model:

f(es, r, eo) = ‖es + r − eo‖l1/l2 . (3)

Combining Eq. 2 and Eq. 3, the final optimization problem can be solved by
minimizing the joint scoring function as follows:

L =
∑

t+∈Δ+

∑

t−∈Δ−
[γ + f(t+) − f(t−)]+ + λOr, (4)

where t+ ∈ Δ+ is a positive temporal fact, and t− ∈ Δ− is a negative temporal
fact by randomly replacing head or tail entity of the positive one. In our settings,
the constrains are: ‖es‖2 ≤ 1, ‖ri‖2 ≤ 1, ‖eo‖2 ≤ 1, ‖rj‖2 ≤ 1, ‖riTn

e ‖2 ≤ 1,
and ‖rjTn

e ‖2 ≤ 1 for presenting the model from overfitting during training.
The first term in Eq. 4 enforces the resulting temporal-aware embedding space

compatible with the whole of observed temporal triples, and the second term
further requires the space to be consistent and more accurate. Hyperparameter
λ strikes a trade-off between the two terms. We use stochastic gradient descent
over shuffled mini-batches to solve this minimization problem.

3.2 Phase II: Refinement Model

After obtaining the TKG embeddings generated from the previous phase, the
plausibility prediction of the missing temporal triples from these embeddings
inevitably suffers from inferior embedding performance. Hence, in this section,
we further model plausibility measure of the candidate predictions as a con-
strained optimization problem, and propose an integer linear programming (ILP)
approach to eliminate implausible predictions from the embedding results. ILP
is an optimization model with constraints and the whole of variables are required
to be non-negative integers [4].

Objective Function. We first define a decision variable xs,r,o for each candidate
quadruple sr

s,o = (es, r, eo, tr). These variables are binary and indicate whether
quadruple sr

so is true or false.

xs,r,o =
{

1, ifsr
s,o = (es, r, eo, tr) is selected to be retained

0, otherwise .

We then define the objective function as follows:

min
∑

xs,r,o

(min f(sr
s,o) − θ) × xs,r,o, (5)
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where f(sr
s,o) represents the plausibility predicted by the prior embedding model,

as computed in Eq. 3. The lower score, the more likely to be valid. θ is the
threshold used to select temporal facts with sufficiently high possibility (see
implementation details in Sect. 4.2 for its value in our experiments).

Constraints. Inspired in part by the considerations given by [9], we then illus-
trate two categories of common-sense constraints associated temporality for our
ILP model: temporal disjointness constraint and temporal ordering constraint.

(1) Temporal Disjointness Constraint. It claims that the time intervals
of any two temporal facts with a same functional relation (i.e., relation type)
and a same head entity, or a same tail entity are non-overlapping. For example,
a person can only be spouse of one person during a specified time interval, so
(e1, wasSpouseOf, e2, [1994, 1998])∩ (e1, wasSpouseOf, e3, [1992, 2000])∩ (e2 
=
e3) → false. These constraints can be represented as:

xs,r,l + xs,r,m ≤ 1, xn,r,o + xp,r,o ≤ 1,

∀r ∈ C1 , txs,r,l
∩ txs,r,m


= ∅, txn,r,o
∩ txp,r,o


= ∅ (6)

where C1 are functional relations described such as wasBornIn, and txs,r,l
, txs,r,m

are time intervals for two temporal facts with a common head entity as well as
diverse tail entities, respectively. Similarly, txn,r,o

, txp,r,o
are also time intervals

for two temporal facts with a common tail entity as well as diverse head entities,
respectively.

(2) Temporal Ordering Constraint. It claims that some temporal relations
occurr in order. Correspondingly, the fact related to the relation always happens
before another one. For example, a person must be born before he graduates, so
(e1, wasBornIn, e2, t1) ∩ (e1, graduatedFrom, e3, t2) ∩ (t1 > t2) → false. These
constraints can be represented as:

xs,ri,l + xs,rj ,m ≤ 1,∀(ri, rj) ∈ C2, txs,ri,l
≤ txs,rj,m

(7)

where C2 = {(ri, rj)} are relation pairs in which each pair has precedent order
such as (wasBornIn, graduatedFrom). These relation pairs can be discovered
automatically in experimental datasets by statistical strategies and finally man-
ually calibrated.

ILP Model. With the two constraints as described above, we define our final
ILP model as follows:

min
∑

xs,r,o

(min f(sr
s,o) − θ) × xs,r,o (8)

s.t. ∀r ∈ C1 , txs,r,l
∩ txs,r,m


= ∅, txn,r,o
∩ txp,r,o


= ∅
xs,r,l + xs,r,m ≤ 1
xn,r,o + xp,r,o ≤ 1,

∀(ri, rj) ∈ C2, txs,ri,l
≤ txs,rj,m

xs,ri,l + xs,rj ,m ≤ 1
xs,r,o ∈ {0, 1}. (9)
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Table 1. Statistics of datasets.

Dataset #Entity #Relation #Triples Time Interval

#Train #Valid #Test

YAGO11k 10,623 10 16.4k 2k 2k [100 - 2017]

Wikidata12k 12,554 24 32.5k 4k 4k [19 - 2020]

Wikidata11k 11,134 95 112k 14.3k 14.2k [25 - 2020]

It is obvious that the first constraint restricts the selection of facts with a com-
mon head/tail entity and diverse tail/head entity, along with non-overlapping
time intervals will be selected. The second constraint restricts that when a pair of
facts with precedent ordering relation is selected, but their time intervals do not
satisfy this order, they will also be excluded. We minimize this objective func-
tion in order to find the best assignment of indicator variables to minimize the
overall score of test quadruples while complying with the temporal constraints.
We use PuLP4, which is an LP modeler written in python, to solve the problem.

4 Experiments and Analysis

In this section, we first provide an overview of the datasets used in the experi-
ments, and then conduct an extensive experimental evaluation and provide an
analysis of the experimental results in terms of entity prediction task and relation
prediction task, respectively.

4.1 Datasets

We evaluate our model and baselines on three datasets, which are derived from
two popular KG projects, namely YAGO 3 [15] and Wikidata [7]. We distill out
all the facts with timestamps and select those ones pertaining to top-N types
of frequent time-sensitive relations in each dataset for our experiments. Simple
statistics of the datasets are summarized in Table 1. In the following, we detail
each dataset.

– YAGO11k: This is a subset of YAGO 3 [15] released by HyTE 2018 [5],
containing 10,623 distinct entities, 10 types of most frequent time-sensitive
relations, and in a total of 20.4k temporal triples. Here the temporal facts
in this dataset are in the form of (#factID, OccurSince, ts), (#factID, Occu-
rUntil, te) indicating the fact is valid during [ts : te], where #factID denotes
a specific fact (es, r, ee).

– Wikidata12k: This is a subset of Wikidata released by HyTE 2018 [5],
containing 12,554 distinct entities, 24 types of most frequent time-sensitive
relations, and in a total of 40.5k temporal triples. This is almost 2 times larger
than YAGO11k.

4 https://pypi.python.org/pypi/PuLP.

https://pypi.python.org/pypi/PuLP
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– Wikidata11k: This is a subset of Wikidata released by TA-TransE [8],
containing 11,134 distinct entities, 95 types of time-sensitive relations, and
in total of 28.5k temporal triples.

For getting the test and validation set for each dataset, we randomly sample
roughly 80% of instances as training, 10% as validation and 10% for testing on
each dataset.

4.2 Entity Prediction

Compared Baseline Methods. In order to evaluate our model more com-
prehensively, a suite of state-of-the-art baselines are compared, including the
following:

– TransE [3]5. This is a simple but effective traditional distance-based model.
– TransH [20] (See footnote 5). This model instead models entities as vectors

on a relation-specific hyperplane with an associated translation operation for
dealing with the complex relations.

– TransE-TAE [9]. This model utilizes a temporal ordering of relations to
model the knowledge evolution in the time dimension. Observed relation
ordering with respect to the same head entity is modeled as a regularization
term in conjunction with TransE scoring function. As no code is available, we
implemented it by ourselves.

– TransH-TAE [9]. This model performs the operations as same as TransE-
TAE for learning temporal ordering among relations, and then incorporates
them to TransH scoring function as a regularization term. As no code is
available, we implemented it by ourselves.

– TTransE [12]6. This model studies scoring functions that incorporate tem-
poral representation into a TransE-style scoring function, with a focus on the
temporal relation prediction task.

– TA-TransE [8]7. This model utilizes digit-level LSTM to learn TKG embed-
dings combining with existing scoring functions such as TransE and DistMult.

– HyTE [5]8. This model incorporates time associated information in the
entity-relation spaces by associating each timestamp with a corresponding
hyperplane.

– TKGFramewithout ILP. This is the variant of our model. We remove the
refinement model in the second phase from TKGFrame, which degenerates to
only performed the temporal ordering enhanced model in the first phase for
TKG completion. We use the subscript without ILP to denote this setting.

5 The code for TransE and TransH is from https://github.com/thunlp/OpenKE.
6 The code for TTransE is from https://github.com/INK-USC/RE-Net/tree/master/

baselines.
7 The code for TA-TransE is from https://github.com/nle-ml/mmkb.
8 The code for HyTE is from https://github.com/malllabiisc/HyTE.

https://github.com/thunlp/OpenKE
https://github.com/INK-USC/RE-Net/tree/master/baselines
https://github.com/INK-USC/RE-Net/tree/master/baselines
https://github.com/nle-ml/mmkb
https://github.com/malllabiisc/HyTE
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Evaluation Metrics. The entity prediction task aims to predict missing head
or tail entity of a triple as introduced in Definition 3.3. In the testing stage, for
each quadruple (es, r, ee, t), we also regard it as a triple without considering its
time dimension t, and replace its head/tail entities with all entities in the TKG
to construct candidate triples. Then we rank all these entities in descending
order of the scores, which are calculated by our scoring function as Eq. 3. Based
on the entity ranking list, we adopt two standard metrics from [3]: (1) the mean
rank of correct entities (MR), and (2) the proportion of correct entities ranked
in top-10 rank entities called Hit@10. As pointed out by Bordes et al. [3], the
two metrics are desirable but flawed when a corrupted triple exists in the test
set. To address this problem, we filter out the whole of corrupted triples that
occurred in the test set before ranking. We call the former dataset as Raw and
the latter one as Filter in the evaluation.

Implementation Details. We implement our model and the baselines in
PyTorch. All the experiments are performed on an Intel Xeon CPU E5-2640
(v4) with 128 GB main memory, and Nvidia Tesla P100. We initialize all the
baselines with the parameter settings in the corresponding papers and then turn
them on our datasets for best performance for a fair comparison9. For the tempo-
ral ordering enhanced model in TKGFrame, we create 100 mini-batches for each
epoch during training. The embedding dimension d ∈ {50, 100, 200}, margin γ1
and γ2 are set in the range of {1, 2, 4}, learning rate l ∈ {10−2, 10−3, 10−4}, neg-
ative sampling ratio n ∈ {1, 3, 5}, hyperparameter λ ∈ {10−2, 10−3, 10−4}, and
threshold θ ∈ {10, 11, 12, 13}. The best configuration is chosen based on Raw
MR on the validation dataset. The final parameters are d = 100, γ1 = γ2 = 4, l
= 10−2, n = 3, λ = 10−2, θ = 11 and taking l2-norm for YAGO11k dataset and
d = 100, γ1 = γ2 = 4, l = 10−2, n = 3, λ = 10−2, θ = 11 and taking l1-norm
for Wikidata12k dataset. For Wikidata11k, the final configuration are d = 100,
γ1 = γ2 = 4, l = 10−3, n = 3, λ = 10−2, θ = 11 and l1-norm.

Results. Table 2 illustrates the results for entity prediction. We have four major
findings. (1) Not surprisingly, temporal-aware embedding models have more obvi-
ous advantages than traditional translation-based models such as TransE and
TransH on all metrics. This verifies that incorporating temporal information to
guide the TKG embedding learning improves the performance of entity predic-

9 We train TransE and TransH on all datasets with embedding dimension d = 100,
margin γ = 1.0, learning rate l = 10−3 and taking l1-norm. The configuration of
TAE-TransE and TAE-TransH are set as embedding dimension d = 100, margin
γ1 = γ2 = 4, learning rate l = 10−4, regularization hyperparameter t = 10−3 and
taking l1-norm for YAGO11k and Wikidata12k datasets, and d = 100, γ1 = γ2

= 2, l = 10−5, t = 10−3, taking l1-norm for Wikidata11k. We train TA-TransE
and TTransE with the same parameter setting as introduced in [11]. For TA-TransE
model, the configuration are embedding dimension d = 100, margin γ = 1, batch size
bs = 512, learning rate l = 10−4 and taking l1-norm for all the datasets. For HyTE,
we initialize the same parameter setting as HyTE, in which embedding dimension d
= 128, margin γ = 10, learning rate l = 10−5, negative sampling ratio n = 5 and
using l1-norm for all the datasets.
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Table 2. The experimental results of different methods on three datasets for entity
prediction task. The best and second best baseline results in each column are boldfaced
and underlined, respectively (the lower are better for MR, and the higher are better
for Hit@10).

Dataset YAGO11k Wikidata12k Wikidata11k

Models MR Hit@10(%) MR Hit@10(%) MR Hit@10(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 1535.7 1522.2 13.7 15.6 1309.8 1296.1 28.1 37.3 200.5 187.5 47.2 72.3

TransH 1431.9 1419.5 14.1 16.2 1063.6 1050.0 30.2 39.9 193.5 180.9 47.3 73.0

TransE-TAE 1118.1 1105.1 16.7 22.5 738.0 723.8 33.0 42.6 55.7 42.3 60.4 80.2

TransH-TAE 1124.9 1111.8 17.1 22.4 488.2 474.1 36.1 48.3 55.1 42.1 61.0 81.8

TTransE 1172.0 1171.5 12.8 13.3 505.6 503.4 36.3 40.4 58.9 56.6 61.5 64.6

TA-TransE 1547.9 1534.9 11.7 13.2 663.0 653.9 34.7 43.7 94.1 85.9 61.2 74.6

HyTE 590 – 18.6 – 237.7 – 32.6 – 36.3 – 73.8 –

TKGFramewithout ILP 671.0 662.3 27.5 29.9 439.9 428.1 38.0 50.9 47.1 34.1 64.7 88.0

TKGFrame 549.6 542.1 29.0 31.3 165.5 153.8 38.1 51.7 30.9 17.6 65.4 88.6

tion. (2) Compared with TransE-TAE, TransH-TAE, and TA-TransE, HyTE
obtains better performance on Raw MR metrics. This demonstrates its superi-
ority to structure the hyperplanes in the entity-relation space compatible with
these temporal facts on the datasets. (3) TKGFrame outperforms all the base-
lines by a significant improvement. The Raw MR drops by nearly 6.8%, 30.3%
and 14.8%, and Filter Hit@10 rises about 39.1%, 7.0% and 8.3% on YAGO11k,
Wikidata12k and Wikidata11k dataset, respectively. This demonstrates that the
relation evolving enhanced model is beneficial for generating more accurate TKG
embeddings, and the refinement model is useful to remove more implausible
predictions. In addition, TKGFrame achieves better performance results than
TKGFramewithout ILP on all metrics, illustrating the importance of filtering out
implausible predictions from the candidates provided by the relation evolving
enhanced model. (4) One interesting observation is that TKGFrame does not
outperform HyTE on Wikidata11k with Raw Hit@10. One explanation is that
because it contains variety of relation types and the distribution of temporal
ordering relations especially for the ones in the structure of relational chain is
more sparse, this affects the actual quality of the learned TKG embeddings.

4.3 Relation Prediction

Evaluation Metrics. Similar to the entity prediction task, following [3], we
adopt two standard metrics for predict missing relation of a quadruple (fact),
including MR and Hit@1.

Results. Table 3 shows the results for relation prediction. We have three major
findings. (1) TKGFrame outperforms all the baselines by a significant improve-
ment, we verify that the relation evolving enhanced model is valuable to improv-
ing the representations of temporal ordered relations in pairwise. (2) The refine-
ment model is indeed able to improve the performance of relation prediction, the
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Table 3. The experimental results of different methods on three datasets for relation
prediction task. The best and second best baseline results in each column is boldfaced
and underlined, respectively (the lower are better for MR, and the higher are better
for Hit@1).

Dataset YAGO11k Wikidata12k Wikidata11k

Models MR Hit@1(%) MR Hit@1(%) MR Hit@1(%)

Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter Raw Filter

TransE 1.61 1.60 65.2 66.9 1.26 1.21 85.3 88.2 1.18 1.12 93.6 94.2

TransH 1.57 1.56 67.0 68.1 1.25 1.14 85.5 87.4 1.21 1.15 1.15 92.8

TransE-TAE 1.53 1.51 71.4 72.7 1.23 1.20 85.9 88.9 1.11 1.09 89.6 90.2

TransH-TAE 1.44 1.42 75.5 76.4 1.21 1.11 86.5 89.0 1.23 1.14 84.1 85.4

TTransE 1.47 – 73.8 – 1.22 – 86.0 – 1.08 – 96.3 –

TA-TransE – – – – – – – – – – – –

HyTE 1.38 – 78.4 – 1.12 – 88.8 – 1.10 – 97.2 –

TKGFramewithout ILP 1.29 1.28 77.3 78.2 1.20 1.11 85.0 88.4 1.05 1.03 97.7 98.1

TKGFrame 1.18 1.07 86.5 86.6 1.12 1.06 92.0 92.2 1.04 1.02 97.8 98.3

Raw MR drops by nearly 14.4%, 0% and 3.7%, and the Filter Hit@1 rises about
13.3%, 3.5% and 4.3% on YAGO11k, Wikidata12k and Wikidata11k dataset,
respectively. This main reason is that two categories of common-sense constraints
associated temporality are leveraged to better handle temporal conflicts in rela-
tions. Relation prediction can be viewed as a multi-label problem that the same
entity pair may have multiple relation labels. For example, (“Einstein”, “ETH
Zürich”) could have two valid relations: graduatedFrom and worksAt. Though
using the temporal constraints, we are aware that the two relations have differ-
ent valid periods, and therefore we would remove the implausible one to improve
Hit@1 accuracy.

5 Conclusion

This paper presents a novel two-phase framework, called TKGFrame, to further
improve the performance of the TKG completion task. TKGFrame consists of
two major models, namely (1) relation evolving enhanced model and (2) refine-
ment model, corresponding to two phases of TKGFrame. To be specific, the first
model attempts to enhance evolving strength representations of pairwise rela-
tions in the same relational chain by learning a new temporal evolving matrix,
resulting in more accurate TKG embeddings. In the second model, we formu-
late plausibility measure of candidate predictions of unseen temporal facts in
the TKG provided by the embeddings from the first model as a constrained
optimization problem, and an ILP model is proposed to solve this problem as
well as effectively filter out those implausible prediction results presented con-
flict strictly in each other. The above two models are seamlessly integrated into
TKGFrame, which is beneficial to produce more accurate predictions for TKG
completion. Comprehensive experiments on three popular datasets show that
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the proposed solution outperforms state-of-the-art baselines in terms of entity
prediction and relation prediction tasks.

In terms of future work, we attempt to exploit our solution in several kinds of
extensions and follow-up studies. One direction is to give greater consideration to
enhance the representations of time-sensitive facts by including side information
(e.g., type consistency information, accurate textual information) beyond their
temporal ordering relations in a relation-based chain that we have considered
thus far. A second direction of extension is to a specific consideration regarding
the enrichment of temporal ordering relations in pairwise. We will explore using
comparing with similar popular facts and timestamp-based label propagation
method, to further mine temporal ordering relations, even for some low-resource
datasets. A third direction for studying is to further consider using our proposed
framework for temporal scope prediction of news facts.
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Abstract. With the development of knowledge-based artificial intelli-
gence, the scale of knowledge graphs has been increasing rapidly. The
RDF graph and the property graph are two mainstream data models of
knowledge graphs. On the one hand, with the development of the Seman-
tic Web, there are a large number of RDF knowledge graphs. On the other
hand, property graphs are widely used in the graph database community.
However, different families of data management methods of RDF graphs
and property graphs have been seperately developed in each community
over a decade, which hinder the interoperability in managing large knowl-
edge graph data. To address this problem, we propose a unified storage
scheme for knowledge graphs which can seamlessly accommodate both
RDF and property graphs. Meanwhile, the concept of ontology is intro-
duced to meet the need for RDF graph data storage and query load.
Experimental results on the benchmark datasets show that the proposed
ontology-aware unified storage scheme can effectively manage large-scale
knowledge graphs and significantly avoid data redundancy.

Keywords: Knowledge graph · Unified storage scheme ·
Ontology-aware

1 Introduction

Knowledge graphs have become the cornerstone of artificial intelligence. With
the applications of artificial intelligence, more and more fields begin to organize
and publish their domain knowledge in the form of knowledge graphs. Knowledge
graphs can not only describe various entities and concepts which exist in the real
world, but also can depict the relationships between these entities and concepts.
At present, knowledge graphs have been widely used in the fields of big data
analysis [1], knowledge fusion [2], precision marketing [3], and semantic search [4].

As the demand of knowledge-based AI applications, the amount of knowl-
edge graph data has been dramatically increasing. Currently, it is common that
knowledge graphs have millions of vertices and billions of edges. Many knowledge
graphs in the LOD (Linked Open Data) cloud diagram have more than 1 billion
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X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 212–226, 2020.
https://doi.org/10.1007/978-3-030-60259-8_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60259-8_17&domain=pdf
https://doi.org/10.1007/978-3-030-60259-8_17


An Ontology-Aware Unified Storage Scheme for Knowledge Graphs 213

triples. For example, the number of triples of the latest version of the DBpe-
dia [5] dataset has reached 13 billion. Meanwhile, a great amount of graph data
has been stored as property graphs. Therefore, many systems are developed in
graph database industry, including Neo4j [6], TigerGraph [7], and OrientDB [8].

In order to manage large-scale knowledge graph data, two mainstream data
models of knowledge graphs have been developed: the RDF (Resource Descrip-
tion Framework) model [9] and the property graph model. RDF is a standard
data model developed by the World Wide Web Consortium to represent and
manage information on the Semantic Web. In the graph database community,
the property graph model is another common data model which has built-in
support for vertex and edge properties [10]. At present, these two mainstream
data models for knowledge graphs have not been unified in a broader perspec-
tive of knowledge graph data management, which hinder the interaction while
managing knowledge graphs from different communities. A unified data model
helps reduce the cost of development of database management systems and real-
ize the interoperability of different types of knowledge graphs at the same time.
It has become an urgent need that RDF and property graphs can be effectively
managed in a unified storage scheme.

In this paper, we present a unified storage scheme for both RDF and prop-
erty graphs. Considering the mature storage management facilities in relational
databases, our unified storage scheme for knowledge graphs has been imple-
mented based on an RDBMS, using the relational data model as the physical
layer to realize our knowledge graph data model. Since knowledge graphs sup-
port querying instance information with rich ontology semantic information, it
is necessary to propose an ontology-aware unified storage scheme for knowledge
graphs. Ontology is introduced to optimize storage and facilitate query as a
heuristic information. Finally, we have designed and realized a prototype sys-
tem that implements the proposed storage scheme and supports efficient query
processing.

Our contributions can be summarized as follows:

1) We propose a novel unified storage scheme for knowledge graphs based on
relational data model, which can seamlessly accommodate both RDF and
property graphs.

2) We introduce ontology as a rich semantic information to optimize our knowl-
edge graph storage scheme. Additionally, the prefix encoding is adopted to
save storage space and reflect the hierarchical information between the ontolo-
gies.

3) Extensive experiments on several datasets are conducted to verify the effec-
tiveness and efficiency of our storage scheme. The experimental results show
that the triple traversal time of our scheme is less than that of the Neo4j.

The rest of this paper is organized as follows. Section 2 briefly introduces the
related work and several formal definitions are given in Sect. 3. The ontology-
aware unified storage scheme is described in detail in Sect. 4. Section 5 shows
experimental results on benchmark datasets. Finally, we conclude in Sect. 6.
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2 Related Work

Relational storage scheme is one of the main methods of storing knowledge graph
data. In this section, various relational storage schemes are introduced, including
Triple table, Horizontal table, Property table, Vertical partitioning, and Sextuple
indexing.

Triple Table. Triple table is a storage scheme with a three-column table in a
relational database. The scheme of this table is:

triple table(subject, predicate, object)

Each triple in a knowledge graph is stored as a row in triple table. The triple
table is the simplest way to store knowledge graphs in a relational database.
Although the triple table storage scheme is clear, the number of rows in the
triple table is equal to the number of edges in the corresponding knowledge
graph. Therefore, there will be many self-joins after translating a knowledge
graph query into an SQL query. The representative system adopting triple table
storage scheme is 3store [11].

Horizontal Table. Each row of the horizontal table stores all the predicates
and objects of a subject. The number of rows is equal to the number of differ-
ent subjects in the corresponding knowledge graph. The horizontal table storage
scheme, however, is limited by the following disadvantages: (1) the structure
of the horizontal table is not stable. The addition, modification or deletion of
predicates in knowledge graphs will directly result in the addition, modification
or deletion of columns in the horizontal table. The change to the structure of
the table often leads to high costs; and (2) the number of columns in the hori-
zontal table is equal to the number of different predicates in the corresponding
knowledge graph. In a real-world large-scale knowledge graph, the number of
predicates is likely to reach tens of thousands, which is likely to exceed the max-
imum number of columns in the table allowed by the relational database. The
representative system adopting horizontal table storage scheme is DLDB [12].

Property Table. The property table is a refinement of the horizontal table,
storing those subjects of the same type in one table, which solves the problem
of exceeding the limit of the maximum number of columns in the horizontal
table scheme. However, there still exists several drawbacks of the property table
storage scheme: (1) the number of predicates is likely to reach tens of thousands
in a real-world large-scale knowledge graph and thus a large number of tables
need to be created. The number of the tables may exceed the maximum number
of tables; and (2) the property table storage scheme can cause the problem of
null value. The representative system adopting property table storage scheme is
Jena [13].

Vertical Partitioning. The vertical partitioning storage scheme creates a two-
column table for each predicate [14]. Subjects and objects of the same predicate
will be stored in one table. Compared with the previous storage schemes, the
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problem of null value is solved. However, the vertical partitioning storage scheme
also has its limitation: the number of tables to be created is equal to the number
of different predicates in knowledge graphs, and the number of predicates in
a real-world large-scale knowledge graph may exceed several thousand, which
leads to high cost while maintaining the database. The representative database
adopting the vertical partitioning storage scheme is SW-Store [15].

Sextuple Indexing. Six tables are built to store all the six permutations of
triples in sextuple indexing storage scheme, namely spo, pos, osp, sop, pso, and
ops. The sextuple indexing storage scheme helps alleviate the self-join problem of
single table and improve the efficiency of some typical knowledge graph queries.
The sextuple indexing storage scheme adopts typical “space-for-time” strategy,
therefore, a large amount of storage space is required. Typical systems adopting
the sextuple indexing storage scheme are RDF-3X [16] and Hexastore [17].

Inspired by the above relational storage schemes, our unified storage scheme
adopts the relational data model as the physical layer to realize our knowledge
graph data model. The details of our scheme will be introduced in Sect. 4.

3 Preliminaries

In this section, we introduce several basic background definitions, including RDF
graph, property graph, triple partition, and triple classification, which are used
in our algorithms.

Definition 1 (RDF Graph). Let U, B, and L be three infinite disjoint sets of
URIs, blank nodes, and literals, respectively. A triple (s, p, o) ∈ (U ∪ B) × U ×
(U ∪ B ∪ L) is called an RDF triple, where s is the subject, p is the predicate,
and o is the object. A finite set of RDF triples is called an RDF graph.

Definition 2 (Property Graph). A property graph is a tuple G =
(V,E, ρ, λ, σ) where:

1) V is a finite set of vertices,
2) E is a finite set of edges and V ∩ E = ∅,
3) ρ : E → (V × V ) is a mapping that associates an edge with a pair of vertices.

For example, ρ(e) = (v1, v2) indicates that e is a directed edge from vertex v1
to v2,

4) Let Lab be the set of labels. λ : (V ∪ E) → Lab is a mapping that associates
a vertex or an edge with a label, i.e., v ∈ V (or e ∈ E) and λ(v) = l (or
λ(e) = l), then l is the label for vertex v (or edge e),

5) Let Prop be the set of properties and Val be the set of values. σ : (V ∪ E) ×
Prop → V al is a mapping that associates a vertex (or edge) with its corre-
sponding properties, i.e., v ∈ V (or e ∈ E), p ∈ Prop and σ(v, p) = val (or
σ(e, p) = val), then the value of the property p of the vertex v (or edge e) is
val.
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Definition 3 (Triple Partition). Let T be a finite set of RDF triples whose
values of subjects and objects are not blank nodes. T can be divided into three
subsets, including X(T), Y(T), and Z(T).

X(T ) = {(s, p, o) | (s, p, o) ∈ T ∧ p = rdf:type} (1)

Y (T ) = {(s, p, o) | (s, p, o) ∈ T ∧ o ∈ L} (2)

Z(T ) = {(s, p, o) | (s, p, o) ∈ T ∧ p �= rdf:type ∧ o /∈ L} (3)

The three subsets satisfy the following two conditions: (1) X(T ) ∪ Y (T ) ∪
Z(T ) = T ; and (2) X(T ) ∩ Y (T ) ∩ Z(T ) = ∅. Since a triple set T is divided
into three subsets, the triple classification of T based on triple partition can be
defined as Definition 4.

Definition 4 (Triple Classification). Let C be the set of classes of triples.
C = {mem, prop, edge}. ϕ : T → C is a mapping that associates an RDF triple
with its corresponding class.

ϕ(t) =

⎧
⎪⎨

⎪⎩

mem if t ∈ X(T )
prop if t ∈ Y (T )
edge if t ∈ Z(T )

The example RDF graph shown in Fig. 1 describes a music knowledge graph
where (LangLang, plays, FateSymphony) ∈ Z(T ) and ϕ((LangLang, plays,
FateSymphony)) = edge.

Fig. 1. An example RDF graph.

4 Ontology-Aware Unified Storage Scheme

In this section, we first propose a basic storage scheme for both RDF and prop-
erty graphs, then we optimize the basic storage scheme by introducing the infor-
mation of ontology. Finally, we present our data loading algorithm.
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Fig. 2. The basic storage scheme.

4.1 A Basic Storage Scheme

The basic storage scheme is composed of several relations, including VERTEX,
EDGE, VTYPE1, VTYPE2,..., VTYPEn (n is the number of vertex labels), ETYPE1,
ETYPE2,..., ETYPEm (m is the number of edge labels), as shown in Fig. 2. Actu-
ally, relation VTYPEi is a partition of relation VERTEX, while relation ETYPEj is a
partition of relation EDGE.

For property graphs, the first column in VERTEX records the encodings of
all the vertices in the property graph, while the properties of those vertices
are kept in the second column. Meanwhile, the first column in EDGE holds the
encodings of all the edges, while the information of the head vertices, tail vertices,
and properties of those edges are kept in the second, third, and forth column,
respectively. VTYPEi (0 � i � n) records the information of those vertices of the
same label, while ETYPEj (0 � j � m) records the information of those edges of
the same label.

For RDF graphs, the first column of each row in VERTEX records the URI of an
instance. The URIs of properties and the corresponding literals of this instance
are kept in the second column. Besides, the first column of each row in EDGE
holds a predicate p where ϕ((s, p, o)) = edge. The subjects and objects of this
predicate are stored in the second column and the third column, respectively.
VTYPEi records the information of those vertices of the same type, while ETYPEj
records the information of those edges of the same type.

4.2 The Ontology Information

RDFS (RDF Schema) is an extension of RDF, and it provides the framework to
describe application-specific classes and properties. Classes in RDFS are much
like classes in object oriented programming languages which allows resources to
be defined as instances of classes, and subclasses of classes. More specifically, the
class rdfs:Class declares a resource as a class for other resources. The property
rdfs:subClassOf is an instance of rdf:property that is used to state that all
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Fig. 3. Ontology hierarchical structure.

the instances of one class are instances of another. Since a class can be further
refined into subclasses, an ontology of an RDF graph is actually a hierarchical
structure of classes.

Algorithm 1: OntologyEncoding(T )
Input : Ontology T = (V, E, v0, Label, Id, μ), where Id = ∅
Output: The encoded ontology T

1 Vl ← getLeaf(T.V ); // Get all the leaf node in T
2 foreach v ∈ Vl do
3 return id ← getCode(v);

4 return T ;
5 Function getCode (v)
6 if v isSubclassOf vj then
7 vj .index ← |Vl|;
8 Vl ← Vl ∪ {vj};
9 return getCode(vj) + v.index;

// The plus sign refers to string concatenation

10 else
11 return v.index;

The structure of an ontology can be described in terms of a tree, where the
nodes represent classes, and the edges represent the relationships between them.
The definition of an ontology can be formally given as:

Definition 5 (Ontology). An ontology is a 6-tuple O = (V,E, vo, Label, Id, μ)
where

1) V is a finite set of nodes,
2) E is a finite set of edges and V ∩ E = ∅,
3) v0 is the root node of the tree structure and v0 ∈ V ,
4) Let Label be the set of labels,
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5) Let Id be the set of the encodings of nodes. Each node has a unique encoding,
which contains its complete hierarchical information,

6) μ : V → Id is a mapping that associates a node with its corresponding encod-
ing, i.e., v ∈ V and μ(v) = id, then the encoding of node v is id.

The example ontology hierarchical structure is extracted from Lehigh Univer-
sity Benchmark (LUBM) [18]. The root of the ontology hierarchy is owl:Thing, as
shown in Fig. 3. Meanwhile, the hierarchical structure is formed by transitivity
of the property rdfs:subClassOf, e.g., Publication has Article, Book, Manual,
Software, Specification, and UnofficialPublication as its direct subclasses.

In order to save storage space and reflect the hierarchical structure of the
ontology, we leverage the prefix encoding to encode classes in each ontology.
Algorithm 1 shows the recursive procedure of ontology encoding, meaning that
it first encodes the leaf node, then upward encodes the nodes until the root
owl:Thing is encountered.

4.3 An Optimized Storage Scheme

In this section, we modify the basic storage scheme and propose an ontology-
aware unified storage scheme for knowledge graphs. The optimized storage
scheme is composed of three main relations, including VERTEX, EDGE, and
ONTOLOGY, and several auxiliary relations, as shown in Fig. 4. VERTEX and EDGE
store the information of all the vertices and edges in a knowledge graph. Mean-
while, the encodings of the ontologies in RDF graphs are kept in relation
ONTOLOGY.

Fig. 4. The ontology-aware unified storage scheme.

The storage scheme of RDF and property graphs in our optimized version
is similar to that in the basic version, except for an extra relation ONTOLOGY
and an extra field ontology id in relation VERTEX and relation VTYPEi. Since
the prefix encoding is adopted to reflect the hierarchical structure between RDF
classes, queries assuming the subClassOf relationship between an RDF class and
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its subclasses can be completed by using the keyword “LIKE” in a fuzzy match
inquiry process. Therefore, the ontology helps improve the reasoning capability
and optimize queries as a heuristic information.

When storing a property graph, the value of ontology id will be left empty.
An example scheme for a given property graph is shown in Fig. 5 (a), and the
property graph is shown in Fig. 5 (b).

Fig. 5. Example scheme for a given property graph.

When storing an RDF graph, the first column of each row in VERTEX records
the URI of an instance, while the third column records the encoding of the
corresponding ontology. An example scheme for RDF graph is shown in Fig. 6,
and the corresponding RDF graph is shown in Fig. 1.

4.4 Loading Algorithm

We present a loading algorithm which is shown in Algorithm2 to import RDF
data. The input of the algorithm is an RDF graph G and its corresponding
ontology T . The processed triples are stored into an auxiliary data structure
VEO. The auxiliary data structure VEO is built on top of our storage scheme.

Algorithm 2 consists of three parts: (1) if ϕ((s, p, o)) = mem (lines 2–5),
getLabel function is invoked to obtain the corresponding label of o, then
traverseO function is called to traverse T in depth-first order and get the
node vc with label l, finally function μ gets the ontology encoding of vc; (2)
if ϕ((s, p, o)) = prop (lines 6–9), getProperty function is provided to get the
property information corresponding to s, then VEO is updated with the latest
value of properties; and (3) if ϕ((s, p, o)) = edge (lines 10–11), (p, s, o) is inserted
into VEO.

Theorem 1. Given an RDF graph G and its corresponding ontology T , we
assume that the triples in G are processed and stored into the auxiliary data
structure VEO by Algorithm2. The time complexity of Algorithm2 is bounded
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Fig. 6. Example scheme for a given RDF graph.

Algorithm 2: TripleLoading(G,T )
Input : RDF graph G, Ontology T = (V, E, v0, Label, Id, μ)
Output: The auxiliary data structure VEO

1 foreach (s, p, o) ∈ G do
2 if ϕ((s, p, o)) = mem then
3 l ← getLabel(o);
4 vc ← traverseO(v0, l); // Traverse ontology T from v0
5 insert (s, μ(vc)) into VEO ; // Get the ontology encoding of vc

6 else if ϕ((s, p, o)) = prop then
7 property ← getProperty(VEO, s);
8 p ← property + p + o;
9 update p in VEO ;

10 else
11 insert (p, s, o) into VEO ;

12 return VEO ;
13 Function traverseO (v, l)
14 if v �= NULL then
15 if v.lab = l then // Depth-first search

16 return v;

17 else
18 traverseO(v.firstChild, l);
19 traverseO(v.nextBrother, l);
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by O(|S|(|V | + |E|)), where |S| is the number of triples in G, |V | is the number
of nodes in ontology T , and |E| is the number of edges in ontology T .

Proof. (Sketch) Since Algorithm 2 contains three branches and the total time
complexity is equal to the time complexity of the branch with the largest time
complexity, the time complexity of Algorithm2 is equal to the complexity of the
first branch. In the worst case, every triple in G belongs to class mem. The time
complexity of traversing T is |V |+ |E|. Thus, the time complexity of Algorithm 2
is bounded by O(|S|(|V | + |E|)) 	


5 Experiments

In this section, extensive experiments were conducted to evaluate the perfor-
mance of our scheme, using open source database AgensGraph [19] as our rela-
tional backend. Experiments were carried out on a machine which has 4-core,
Intel(R) Xeon(R) Platinum 8255C CPU @ 2.50 GHz system, with 16 GB of mem-
ory, running 64-bit CentOS 7.

5.1 Datasets

We use an RDF data benchmark LUBM [18] in our experiments. This benchmark
is based on an ontology called Univ-Bench for the university domain. Univ-
Bench describes universities and departments and the activities that occur at
them. The test data of LUBM is synthetically generated instance data over that
ontology. Meanwhile, LUBM offers 14 test queries over the data. Table 1 shows
the characteristics of the datasets in our experiments.

Table 1. Characteristics of datasets

Dataset File# Total size (MB) V# E# Triples#

LUBM1 15 13.6 17,150 23,586 103,397

LUBM2 34 29.3 39,510 54,342 237,210

LUBM3 50 43.5 57,652 79,933 348,105

LUBM4 71 61.1 82,204 113,745 493,844

LUBM5 93 79.6 107,110 148,846 493,844

5.2 Experimental Results

The experimental results show the effectiveness and efficiency of our ontology-
aware unified storage scheme. Data insertion and deletion can be completed
efficiently. Meanwhile, our scheme is more compact than Neo4j and the traversal
time of the triples in our scheme is less than that in Neo4j on all data sets. In
our experiments, we provide two versions of the unified storage schemes, one of
which is a basic version without the ontology information, while the other is an
optimized version with the ontology information.
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(a) Data Insertion (b) Data Deletion

Fig. 7. The experimental results of data insertion and deletion on LUBM datasets.

Data Insertion and Deletion. The experimental results show that the average
execution speed of the basic version is 4.73% and 9.52% faster than that of
the optimized version in data insertion and deletion, respectively, which is not
counterintuitive. Though the optimized version is slightly inferior to the basic
version, it is complete with the respect to the semantic information. Therefore,
it is quite important to measure the tradeoffs between efficiency and reasoning
capability.

Actually, the time costs of two versions are on the same order of magnitude,
thus are comparative, as shown in Fig. 7. Although the performance of the opti-
mized version is not better than that of the basic version, it is worthwhile to
trade the slight overhead for reasoning capability.

Fig. 8. The experimental results of repository size while inserting data.

Repository Size. We check the change of the file size before and after the data
sets being loaded. Experiments were conducted to compare the space required
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for the optimized version with the basic version and Neo4j, which supports an
RDF plugin for importing RDF data.

Compared with the optimized version, the repository size of the basic version
is reduced from 5.11% to 13.36%, as shown in Fig. 8. It is reasonable that the
optimized version requires more storage space for the hierarchical structure of
ontologies. Though the basic version performs better, the repository size of two
versions are on the same order of magnitude. Therefore, it is worthwhile to trade
a little space for capability. Besides, it can be observed that the optimized version
outperforms Neo4j on several data sets, i.e., LUBM2, LUBM4, and LUBM5.
The growth rate of repository size in Neo4j is higher than that of our basic and
optimized version.

Fig. 9. The experimental results of triple traversal.

Triple Traversal. We also evaluate the time required to traverse all triples in
a graph and the experimental results are shown in Fig. 9. The average execution
speed in the optimized version is about 99 times faster than that in Neo4j,
i.e., our optimization method on average outperforms Neo4j by two orders of
magnitude over LUBM data sets. In order to show the results clearly, we change
the scale of the Y-axis to logarithmic.

Query Speed. We select four type-related queries from the 14 test queries that
LUBM offers: Q1 directly refers to the type information of UndergraduateStu-
dent, Q2 refers to the type information of GraduateStudent with some filtering
conditions, Q3 assumes the subClassOf relationship between Professor and its
subclasses. It is obvious that class Professor has a wide hierarchy. Q4 assumes
the subClassOf relationship between Person and its subclasses. Similarly, class
Person features a deep and wide hierarchy.

We compare the basic storage scheme with the optimized storage scheme, and
the execution time results of Q1, Q2, Q3, and Q4 are shown in Fig. 10. When
changing the size of datasets from LUBM1 to LUBM5, query times of these
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(a) Q1 (b) Q2

(c) Q3 (d) Q4

Fig. 10. The experimental results of efficiency on LUBM datasets.

two schemes have increased. Meanwhile, it can be observed that the optimized
version has better query efficiency on all 4 queries. Compared with the basic
version, the average query time of the optimized version is reduced from 23.24%
to 40.33%.

6 Conclusion

This paper proposes a unified storage scheme for both RDF and property graphs
and introduces the concept of ontology to reflect the hierarchical relationships
between RDF classes. A prototype system of our storage scheme is designed
and implemented based on AgensGraph. Extensive experiments on the LUBM
benchmark datasets verify the effectiveness and efficiency of our storage scheme.
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Abstract. Knowledge reasoning aims to infer new triples based on exist-
ing triples, which is essential for the development of large knowledge
graphs, especially for knowledge graph completion. With the develop-
ment of neural networks, Graph Convolutional Networks (GCNs) in
knowledge reasoning have been paid widespread attention in recent years.
However, the GCN model only considers the structural information of
knowledge graphs and ignores the ontology semantic information. In this
paper, we propose a novel model named IterG, which is able to incor-
porate ontology semantics seamlessly into the GCN model. More specif-
ically, IterG learns the embeddings of knowledge graphs in an unsuper-
vised manner via GCNs and extracts the semantic ontology information
via rule learning. The model is capable of propagating relation layer-
wisely as well as combining both rich structural information in knowledge
graphs and ontological semantics. The experimental results on five real-
world datasets demonstrate that our method outperforms the state-of-
the-art approaches, and IterG can effectively and efficiently fuse ontology
semantics into GCNs.

Keywords: Graph convolutional neural networks · Knowledge
reasoning · Knowledge graphs

1 Introduction

With the rapid development of artificial intelligence, Knowledge Graphs (KGs)
have become a large-scale semantic network on top of the existing World Wide
Web. KGs store facts as triples in the form of (head entity, relation, tail entity),
abbreviated as (h, r, t). Entities and relations in the real world can be formally
described in the form of a KG, where nodes represent entities and edges represent
relations. With the development of big data and semantic web technology, a
large number of KGs, such as YAGO [15,16], WordNet [9], and Freebase [1],
have been developed, which have also supported a wide range of applications,
including question answering [22], relation extraction [25], and recommendation
systems [5].
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With the emergence of KGs, knowledge reasoning has become a basic ser-
vice to support upper-level applications and attracted widespread attention.
KG-oriented knowledge reasoning is intended to use various learning methods
to infer the existing relations between entity pairs, and automatically identify
wrong knowledge based on existing data to supplement KGs. For example, if
a KG contains facts such as (HUAWEI, isBasedIn, Shenzhen), (Shenzhen,
stateLocatedIn, Guangdong), and (Guangdong, countryLocatedIn, China), we
can find the missing link (HUAWEI, headquarterLocatedIn, China). The tar-
get of knowledge reasoning is not only the attributes and relations between
entities, but also the attribute values of entities and the conceptual level of
ontologies. For instance, if an entity’s ID number is known, the gender, age, and
other attributes of this entity can be obtained through inference. Therefore, it
is very important to efficiently and accurately realize the knowledge reasoning
task on KGS.

To address these knowledge reasoning tasks, one of the solutions is to directly
model the triples of KGs through a neural network, and obtain the embeddings
of the elements of triples for further reasoning based on a score function. Each
entire network forms a scoring function, and the output of the neural network
is the scoring value. Socher et al. [14] proposed a neural tensor network named
NTN, which replaced the traditional neural network layer with a bilinear tensor
layer, and linked the head entity and the tail entity in different dimensions to
characterize the entity complex semantic relations between them. Chen et al.
[3] introduced a similar neural tensor network model to predict new relations
in KGs. By initializing the entity representations learned from text using an
unsupervised method, the model can be improved. Recently, Shi and Weninger
[13] proposed a shared variable neural network model named ProjE. The main
method of ProjE is to treat the entity prediction expectation as a multi-candidate
ranking problem, and take the candidate with the highest ranking as the entity
prediction result.

With the development of neural networks, GCNs in knowledge reasoning has
been paid widespread attention in recent years, and it can perform convolution
on arbitrary structural graphs [4,8]. However, GCNs are suitable for processing
undirected graphs, and the relations in KGs are directed. Therefore, in order
to apply GCNs to knowledge reasoning, Schlichtkrull et al. [12] proposed the
Relation Graph Convolutional Networks (R-GCNs) model to solve the problem
of knowledge reasoning from a structural perspective. The R-GCN model intro-
duces GCNs into knowledge reasoning for the first time from a graph perspective,
and has achieved outstanding results on some datasets on link prediction and
entity classification. However, in this method, the evolutionary design based on
GCNs is not well described, and for datasets with fewer types of relations, the
quality of the processing results will be reduced. Therefore, the R-GCN model
is not mature enough compared with other inference models, and there is still
abundant room for improvement.

To this end, we propose a novel model named Iteratively learning Graph con-
volutional network with ontology semantics (IterG) for knowledge reasoning,
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which learns the embeddings of KGs in an unsupervised manner via GCNs.
In particular, the semantic ontology information in KGs is extracted via rule
learning. The model is capable of propagating relations layer-wisely as well as
combining both rich structural information in KGs and the semantic ontology
information. We evaluate our proposed methods with the link prediction task
and verify the running performance on public benchmark datasets, i.e., WN18
and FB15K. Experimental results show that our approach achieves better per-
formance compared with the state-of-the-art approaches.

The major contributions of our work are three-fold:

1. We propose an iteratively learning graph convolutional network model IterG,
which is regarded as a framework to complement the KGs. It can effectively
accomplish the knowledge reasoning problem on KGs.

2. To enhance the reasoning ability of the model, we extract the semantic ontol-
ogy information in KGs via rule learning and integrating semantics into IterG.
The model is capable of propagating relations layer-wisely as well as combin-
ing both rich structural information in KGs with ontological semantics.

3. The experimental results on five benchmarks demonstrate that our proposed
IterG outperforms the current state-of-the-art methods, including both tra-
ditional and deep learning based methods. And IterG can effectively and
efficiently fuse ontology semantics into GCNs.

The rest of this paper is organized as follows. Section 2 reviews related work.
In Sect. 3, the preliminaries of GCNs are introduced. In Sect. 4, we provide the
details of the proposed algorithm for learning the embeddings of the entities and
relations in KGs. Section 5 shows the experimental results, and we conclude in
Sect. 6.

2 Related Work

In this paper, we focus on iteratively learning graph convolutional network and
integrating ontology semantics from KGs. Thus the related work includes two
parts: knowledge reasoning based on GCNs and rule learning.

2.1 R-GCN Models

The entities in KGs are connected to each other with relations. Each entity
and its neighboring entities form a star structure. In a star structure, there is a
relation from a central entity to an adjacent entity, and vice versa. In order to be
able to learn KGs from the perspective of neighboring entities and apply them to
KG completion, Schlichtkrull et al. [12] introduced R-GCNs from the perspective
of graphs, which modeled the KGs via encoding the star structure from the
micro level. Unlike knowledge reasoning from the perspective of text processing,
R-GCN considers the problem of knowledge reasoning from the perspective of
structure, which evolved from GCNs. Since GCNs only deal with undirected
graphs and KGs are mostly directed graphs, R-GCNs are designed to be adapted
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to directed relations. The R-GCN model can be viewed as a set of autoencoders,
including an encoder and a decoder.

However, the experimental results of the R-GCN model are not stable enough:
the improvements obtained on the AIFB and AM standard datasets are signifi-
cant, whereas the experimental results on the MUTAG and BGS datasets are not
good, which is caused by the nature of the datasets. MUTAG, a molecular map
data set, is relatively simple from the perspective of both representing atomic
bonds and the existence of a certain characteristic. BGS is a rock type data set
with hierarchical feature descriptions released by the British Geological Survey,
where the relations only indicate the existence of a specific feature or feature
hierarchy. To address this issue, an improvement is to introduce the attention
mechanism and replace the normalization constants with attention weights [12].

The R-GCN model introduced GCNs to knowledge reasoning for the first
time from the perspective of graphs. It has achieved good results on some
datasets on link prediction and entity classification. However, in this method, the
evolutionary design based on GCNs is not well described, and for datasets with
fewer types of relations, the quality of the processing results will be reduced. In
addition, the experimental results of R-GCNs lacks comparison with the latest
baselines, and the reliability remains to be verified.

2.2 Rule Learning

The rule-based reasoning methods are well-studied in traditional knowledge engi-
neering for decades, which use logical rules for reasoning on KGs. The reasoning
component inside the NELL KG uses first-order relational learning algorithms
for reasoning [2]. The reasoning component learns the probabilistic rules, and
after manual screening and filtering, it brings in specific entities to instantiate
the rules and infer new relationship instances from other relationship instances
that have been learned. The YAGO KG uses an inference machine named Spass-
YAGO to enrich KG content [17]. Spass-YAGO abstracts the triples in YAGO to
equivalent rule classes and uses chain superposition to calculate the transitivity
of the relationship. The superposition process can be iterated arbitrarily, and
the expansion of YAGO is completed by using these rules. Wang et al. [20,21]
proposed a first-order probabilistic language model ProPPR (programming with
personalized PageRank) for knowledge reasoning on KGs. Paulheim and Bizer
[11] proposed two algorithms, SDType and SDValidate which use the statisti-
cal distribution of attributes and types to complete triples, and to identify false
triples. SDType infers the types of entities by statistically distributing the types
of head and tail entities, similar to the weighted voting mechanism, which assigns
weight to the voting of each attribute. SDValidate first calculates the frequency
of the relation-tail entity, and the low-frequency triples are further calculated
by the statistical distribution of attributes and types. The triples with scores
less than the threshold are considered to be potentially wrong. Jang et al. [7]
proposed a pattern-based method to evaluate the quality of KG triples. This
method directly analyzes the data pattern in KGs. According to the assumption
that more frequent patterns are more reliable, the patterns with high occurrence
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rates are selected, including the head entity patterns and the tail entity patterns,
etc., and then these patterns are used for triples quality analysis.

Unlike the above previous works, we focus on the GCNs with ontology seman-
tics, and propose an iteratively learning graph convolutional network model
called IterG for the knowledge reasoning on large-scale KGs. The model is capa-
ble of propagating relations layer-wisely as well as combining both rich structural
information in KGs and the ontology semantic information. To the best of our
knowledge, the IterG is the first work to integrate ontology semantic information
into GCNs for knowledge reasoning.

3 Preliminaries

The notations used throughout this paper are defined first. A KG G = {E,R, T}
contains a set of entities E, a set of relations R, and a set of triples T =
{(h, r, t) | h, t ∈ E; r ∈ R}. Given a triple (h, r, t), the symbols h, r, and t
denote head entity, relation, and tail entity, respectively. For instance, a triple is
(Tianjin, isLocatedIn, China) , which means that Tianjin is located in China.

3.1 Graph Convolutional Networks

Graph Convolutional Neural Networks (GCNNs) generalize traditional convo-
lutional neural networks to the graph domain. There are mainly two types of
GCNNs: spatial GCNNs and spectral GCNNs. Spatial GCNNs view the convo-
lution as “patch operator” which constructs a new feature vector for each node
using its neighborhood information. Spectral GCNNs define the convolution by
decomposing a graph signal s ∈ Rn (a scalar for each vertex) on the spectral
domain and then applying a spectral filter gθ (a function of eigenvalues of Lsym)
on the spectral components. However, this model requires explicitly computing
the Laplacian eigenvectors, which is impractical for real large graphs. A way to
avoid this problem is approximating the spectral filter gθ with Chebyshev poly-
nomials up to k-th order. Defferrard et al. [4] applied this technique to build a
k-localized ChebNet, where the convolution is defined as:

gθ � s ≈
K∑

k=0

θ′
kTk(Lsym)s, (1)

where s ∈ Rn is the signal on the graph, gθ is the spectral filter, � denotes
the convolution operator, Tk is the Chebyshev polynomials, and θ′ ∈ RK is a
vector of Chebyshev coefficients. By the approximation, the ChebNet is actually
spectrum-free.

However, some disadvantages exist in the first-generation parameter method,
for example, the convolution kernel does not have spatial localization. In [8], Kipf
and Welling simplified GCNNs by limiting K = 1 and approximating the largest
eigenvalue λmax of Lsym by 2. In this way, the convolution becomes

gθ � s = θ
(
I + D− 1

2 AD− 1
2

)
s, (2)
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where θ denotes the only Chebyshev coefficient left. The advantages of the con-
volution kernel designed by Eq. (2) are: (1) the convolution kernel has only one
parameter, so the complexity of the parameters is greatly reduced; (2) convolu-
tion kernel has good spatial localization. We focus on this simplified GCN model
in the rest of this paper.

3.2 OWL Web Ontology Language Axioms

In this paper, we mainly study how to integrate ontology semantic information
into GCNs. Axioms are the main components of KG ontologies, since they are
important to enrich semantics in KGs.

OWL (Web Ontology Language) is a semantic web ontology language with
formally defined meaning and is designed to represent rich and complex knowl-
edge about entities and relations. OWL defines multiple types of axioms, which
can be used for rule reasoning. Our model is inspired by the IterE [24] model,
which proposes seven object attribute expression axioms selected from the OWL
ontology language. Essentially, for each type of axioms, we can draw rule conclu-
sions through the embeddings of relations based on the linear mapping hypothe-
sis. For instance, considering axiom SymmetricOP(hasFriend), if a KG contains
the triple (Alice, hasFriend,Bob), according to the rule conclusion of symmetric
axiom in Table 1, a new triple (Bob, hasFriend, Alice) can be inferred. So the
axioms that the relations satisfy can be obtained by calculating the similarity
between the embeddings of relations and the rule conclusions. In general, the
higher the similarity, the more likely the relations is to satisfy the corresponding
axioms. The details of the conclusions of each axiom are listed in Table 1, where
the rule form (x, r, x)1 of ReflexiveOP(OPE) means reflexive.

Table 1. Seven types of axioms and translated rule formulation.

Object property axiom Rule form

ReflexiveOP(OPE) (x, r, x)1

SymmetricOP(OPE) (y, r, x) ← (x, r, y)

TransitiveOP(OPE) (x, r, z) ← (x, r, y), (y, r, z)

EquivalentOP(OPE1 ... OPEn) (x, r2, y) ← (x, r1, y)

SubOP(OPE1 OPE2) (x, r2, y) ← (x, r1, y)

InverseOP(OPE1 OPE2) (x, r1, y) ← (y, r2, x)

SubOP(OPChain(OPE1 ... OPEn) OPE) (y0, r, y2) ← (y0, r1, y1), (y1, r2, y2)

4 The IterG Model

In this section, we describe our proposed IterG model in detail. Given a KG
G = {E,R, T}, our objective is to learn structural and ontological information
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at the same time and complement each other’s advantages, while graph con-
volutional networks only learn the structural characteristics of nodes without
considering the semantic information on the KGs. So we seamlessly integrate
ontology semantic information into GCNs via the IterG model.

4.1 Intuition

We first introduce the overall architecture of IterG before reporting the detailed
implementation of model’s design principle that conforms to the template
method design pattern, which is shown in Fig. 1 and includes two main parts:
(i) auto-encoder layer and (ii) reasoning layer.

Fig. 1. The IterG architecture.

Auto-encoder layer extracts the structural information from KGs through
a two-layer graph convolutional neural network, thereby obtaining the embed-
dings of nodes and relations.

Reasoning layer uses the embeddings of relations to conduct axiom induc-
tion, and then uses the axiom injection to select triples with high confidence and
adds them to the original KG for the next iterative learning.

4.2 Graph Auto-Encoder Model

In order to obtain the embeddings of nodes and relations in KGs, we introduce a
graph auto-encoder model comprised of an entity encoder and a scoring function
(decoder). In this paper, GCNs are used as the encoder and ANALOGY as
the decoder. First, we use a two-layer graph convolutional neural network to
obtain the embeddings of the nodes in KGs, and then use ANALOGY to get the
embeddings of the relations, which is shown in Fig. 2.
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Fig. 2. Graph auto-encoder model.

As the encoder, the R-GCN model maps each entity vi ∈ V to a real-valued
vector ei ∈ R

d. The R-GCN model use the following propagation rule expressed
in the message-passing architecture [6] that aggregates information from a node’s
local neighbors and forwards the aggregated information to the next layer,

h
(l+1)
i = σ

⎛

⎝
∑

r∈R

∑

j∈Nr
i

1
ci,r

W (l)
r h

(l)
j + W

(l)
0 h

(l)
i

⎞

⎠ , (3)

where Nr
i denotes the neighbors of node i under the relation r ∈ R, ci,r is a

normalization constant, δ denotes an activation function, and h
(l)
i is the hidden

state of i-th node at the relation r ∈ R. This layer-wisely propagation model can
be implemented in sparse-dense matrix multiplications and has a computational
complexity linear to the number of edges.

ANALOGY is used as the decoder in the experiments and ANALOGY per-
forms well on the standard link prediction task. In ANALOGY, every relation r
is associated with a diagonal matrix Mr ∈ R

d×d and a triple (h, r, t) is scored as

f(h, r, t) = eT
h Rret . (4)

The main innovation of ANALOGY is to apply analogy inference to the KG
embedding, which adds constraints to the model’s score function to capture the
information of the analogy structure in KGs, thereby optimizing the embedding
representation of entities and relations in KGs.

4.3 Rule Learning

After graph auto-encoder learning, the learning entity is represented by real-
valued vectors and the relation is represented by matrices, which are used for
rule learning. In order to learn new rules via relation matrices, we introduce
the IterE [24] model, which employs seven object attribute expression axioms
selected from the OWL ontology language. IterE is proposed based on the
basis of embeddings learned with linear map assumption. Essentially, for each
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type of axioms, we can draw rule conclusions through the embeddings of rela-
tions based on the linear mapping hypothesis. For instance, considering axiom
SymmetricOP(hasFriend), if a KG contains the triple (Alice, hasFriend,Bob),
according to the rule conclusion of symmetric axiom in Table 1, a new triple
(Bob, hasFriend, Alice) can be inferred. So the axioms that the relations satisfy
can be obtained by calculating the similarity between the relation embeddings
and the rule conclusions. In general, the higher the similarity, the more likely
the relations is to satisfy the corresponding axioms. The rule conclusions of the
OWL axioms are listed in Table 2.

Table 2. OWL axioms and rule conclusion.

Object property axioms Rule conclusion

ReflexiveOP(r) Mr = I

SymmetricOP(r) MrMr = I

TransitiveOP(r) MrMr = Mr

EquivalentOP(r1, r2) Mr1 = Mr2

subOP(r1, r2) Mr1 = Mr2

inverseOP(r1, r2) Mr1Mr2 = I

subOP(OPChain(r1, r2), r) Mr1Mr2 = Mr

Axiom Induction. After we calculated the relation embeddings using the
graph auto-encoder model, relation embeddings are used to induce a set of
axioms, denoted as A. To this end, IterG employs an effective pruning strat-
egy to generate a possible axiom pool P which contains all possible axioms.
Then we calculate the similarity between the relation embeddings and the rule
conclusions to predict the score for each axiom p ∈ P .

Before calculating axiom scores with relation embeddings, concrete relations
are applied to replace relation variables r, r1, r2, and r3 in Table 2. As long as
more than one axioms is satisfied, this axiom will be added to the pool, and a
pool of possible axioms P is produced. In general, there are two methods for
generating axiom pool. One way is to find possible axioms by traversing all the
relations, however, the complexity of this method is too high. Another method is
to generate axiom pool using random walks on KGs, but it is cannot be ensured
that all possible axioms are covered. Therefore, we adopt a pruning strategy
that combines traversal and random selection, which achieves a good balance
between complexity and the coverage of possible axioms.

After getting relation embeddings and axiom pool P , a score sp for each
axiom p ∈ P can be calculated based on the rule conclusions for each type of
axioms. Mp

1 and Mp
2 denote the relation embeddings and the rule conclusions,

respectively, which may be a single matrix or the dot product of two matrices.
Generally, the values of Mp

1 and Mp
2 will be quite similar but not equal during

the calculating process. So we calculate the similarity between Mp
1 and Mp

2 and
when the higher the similarity, the more confident the axiom p will be.
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Axiom Injection. IterG can infer a set of new triplets Tnew through axiom
injection with a KG G and a possible axiom set A, which employs axiom injection
to infer new triples. The process of reasoning can be summarized in the following
form:

(hp, rp, tp) ← (h1, r1, t1), (h2, r2, t2), ..., (hn, rn, tn) (5)

where the right side triples (hk, rk, tk) ∈ T with k ∈ [1, n] are generated from
the rule conclusions of axioms, and (hp, rp, tp) /∈ T is a new inferred triple which
will be added into KGs.

A new set of triples Tnew = {(hp, rp, tp) | hp ∈ E or tp ∈ E} can be
obtained via high-confidence axioms after axiom injection. Thus, the previous
KG is updated. Then the process goes back to the graph auto-encoder model to
start a new learning iteration.

5 Experimental Evaluation

In this section, our method is evaluated on the link prediction task. Extensive
experiments are conducted to verify the validity of our IterG model on both
benchmark and real-world KGs.

5.1 Datasets

In this research, we evaluate our models on benchmarks WN18, FB15k, and
FB15k-237. Link prediction tasks are usually performed on FB15k and WN18,
which are subsets of relational database Freebase and WordNet, respectively.
WordNet is a semantic vocabulary KG, which has been widely used in the field
of natural language processing. Freebase is a well-known knowledge base con-
taining general facts. We also select FB15k-237 as the experimental data set,
which removed all inverse triple pairs, as in [18] Toutanova and Chen found that
both FB15k and WN18 have serious flaws. A simple baseline LinkFeat using a
linear classifier on the sparse feature vector of the observed training relationship
can greatly outperform other methods [18]. Table 3 gives a summary of these
datasets.

Table 3. Datasets used in the experiments.

Dataset WN18 FB15k FB15k-237

Entities 40,943 14,951 14,541

Relations 18 1,345 237

Train edges 141,442 483,142 272,115

Val. edges 5,000 50,000 17,535

Test edges 5,000 59,071 20,466
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In addition to the above three datasets, we also use two sparse datasets
WN18-sparse and FB15k-sparse, which contain only sparse entities. It is explored
whether IterG really contributes to sparse entity embeddings on sparse datasets.
Table 4 gives a summary of these datasets.

Table 4. Sparse datasets used in the experiments.

Dataset WN18-sparse FB15k-sparse

Entities 40,943 14,951

Relations 18 1,345

Train edges 141,442 483,142

Val. edges 3,624 18,544

Test edges 3,590 22,013

5.2 Baselines

DisMult [23] is selected as the first baseline, which is a common baseline for link
prediction experiment, and it can perform well on standard data sets such as
FB15k. However, DisMult cannot model antisymmetric and inverse modes due
to the symmetric nature of the model. We add LinkFeat proposed in [18] as a
second baseline, which is a simple neighbor-based LinkFeat algorithm.

We further compare IterG to ComplEx [19], HolE [10], and R-GCN [12],
which are the state-of-the-art models for link prediction. ComplEx solves the
problem of DisMult and can infer symmetric and antisymmetric modes in the
complex space. In addition, it can also derive inverse rules because of the exis-
tence of conjugate complex numbers. HolE is simlar to ComplE, however, HolE
replaces the vector-matrix product with circular correlation. Finally, we also
compare with IterE on sparse datasets.

5.3 Experimental Settings

The experimental settings are mainly divided into two parts, including graph
auto-encoder model and rule learning. We first introduce the experiment set-
tings of the graph auto-encoder model. For FB15k and WN18, a basic decom-
position, with a single encoding layer and two basic functions, is employed to
obtain the results. For FB15k-237, when the block dimension is 5×5 and embed-
ding dimensional equals 500, the block decomposition performs the best. Before
normalization, encoder is regularized via edge dropout. The dropout rate of the
self-loops is equal to 0.2, and the dropout rate of the other edges is equal to 0.4.
And l2 regularization is applied to the decoder with a parameter of 0.01. Adam
optimizer is used in the graph auto-encoder model with a learning rate of 0.01.
Finally, our model and baselines are trained with full-batch optimization.

Then we introduce the experimental settings of the rule learning part. In
the part of axiom induction, the minimum axiom probability p is set to 0.5 and
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the inclusion probability t is set to 0.95. For axiom injection, in order to choose
axioms with high confidence as much as possible and introduce as little noise as
possible, a threshold θ is set for each dataset and axioms with scores saxiom > θ
are regarded as high quality axioms.

5.4 Results

Two commonly evaluation metrics are employed to provide results: Mean Recip-
rocal Rank (MRR) and Hits@n, which can be calculated in the raw and the
filtered setting [12]. The experimental results show both filtered and raw MRR,
and filtered Hits@1, Hits@3, and Hits@10.

Table 5. Results on the Freebase and WordNet datasets.

Model FB15k WN18

MRR Hits @ MRR Hits @

Raw Filtered 1 3 10 Raw Filtered 1 3 10

LinkFeat 0.779 0.804 0.938 0.939

DistMult 0.248 0.634 0.522 0.718 0.814 0.526 0.813 0.701 0.921 0.943

R-GCN 0.251 0.651 0.541 0.736 0.825 0.553 0.814 0.686 0.928 0.955

HolE 0.232 0.524 0.402 0.613 0.739 0.616 0.938 0.930 0.945 0.949

ComplEx 0.242 0.692 0.599 0.759 0.840 0.587 0.941 0.936 0.945 0.947

IterG 0.245 0.684 0.603 0.765 0.853 0.592 0.943 0.933 0.947 0.951

Table 6. Results on FB15k-237.

Model MRR Hits @

Raw Filtered 1 3 10

LinkFeat 0.063 0.079

DistMult 0.100 0.191 0.106 0.207 0.376

R-GCN 0.158 0.248 0.153 0.258 0.414

IterG 0.153 0.253 0.148 0.267 0.421

CP 0.080 0.182 0.101 0.197 0.357

TransE 0.144 0.233 0.147 0.263 0.398

HolE 0.124 0.222 0.133 0.253 0.391

ComplEx 0.109 0.201 0.112 0.213 0.388

Table 5 demonstrates the experimental results of the IterG model and other
models on FB15k and WN18. On the FB15k and WN18 datasets, IterG out-
performs the DistMult, but is not as good as LinkFeat like all other systems on
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these two dataset. Compared with R-GCNs, the experimental results of IterG
are also improved, which exactly demonstrates that the semantic information in
KGs is effective for knowledge reasoning, and the ontology semantic information
can improve the performance of GCNs.

Table 7. Results on the sparse datasets.

Model FB15k-sparse WN18-sparse

MRR Hits @ MRR Hits @

Raw Filtered 1 3 10 Raw Filtered 1 3 10

TransE 0.335 0.418 0.102 0.711 0.847 0.255 0.398 0.258 0.486 0.645

DistMult 0.558 0.738 0.593 0.875 0.931 0.324 0.600 0.618 0.651 0.759

ComplEx 0.677 0.911 0.890 0.933 0.944 0.327 0.616 0.540 0.657 0.761

ANALOGY 0.675 0.913 0.890 0.934 0.944 0.331 0.620 0.543 0.661 0.763

R-GCN 0.673 0.907 0.894 0.933 0.944 0.328 0.613 0.537 0.659 0.763

ITerE 0.675 0.901 0.870 0.931 0.948 0.359 0.613 0.529 0.662 0.767

IterG 0.682 0.908 0.885 0.923 0.945 0.365 0.617 0.548 0.667 0.768

The results of the IterG model and other models on FB15k-237 are demon-
strated in Table 6. It can be inferred from the results that our IterG model is
much better than DistMult, highlighting the importance of a separate encoder
model. And in FB15k-237, the performance of the LinkFeat is worse than other
models since inverse relations have been deleted. As aforementioned, the per-
formance of IterG and R-GCN on FB15k-237 is similar. The IterG model is
further compared with other models and it also exhibits superior performance.
The above results indicate that the ontology semantic information can effectively
enhance the reasoning ability of IterG.

In Table 7, we evaluate the IterG model and other models on sparse datasets.
First, the link prediction results of IterG perform better than ANALOGY, which
means most of the triplets injected into GCNs learning are useful. And the link
prediction results also show that learning axioms from graph auto-encoder model
works well. Second, IterG outperforms IterE on WN18-sparse and FB15k-sparse,
which shows that GCNs can better extract the structural information in KGs,
thereby generating more accurate relation embeddings. The results show that,
even in the sparse datasets, our IterG model demonstrates its superiority over
other models.

Based on the experimental results, we can conclude that: (1) the results in
link prediction demonstrate that IterG outperforms all baselines, which indicates
that IterG is capable of fusing ontology semantic information into GCNs, and
(2) ontology semantic information in the IterG model can significantly improve
the knowledge reasoning ability of GCNs.
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6 Conclusion

In this paper, we propose an novel GCN framework, named IterG, for knowledge
reasoning. In IterG, the structural and ontology semantic information on KGs are
extracted at the same time, and the rule learning and GCNs are seamlessly fused
to better accomplish the knowledge reasoning task. In particular, to enhance the
reasoning ability of the model, we extract the ontology semantic information in
KGs via rule learning. The model is capable of propagating relations layer-wisely
as well as combining both rich structural information in KGs with the ontology
semantic information. The evaluation on five real-world datasets demonstrates
that our method outperforms the state-of-the-art approaches, and IterG can
effectively and efficiently fuse ontology semantics into GCNs.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (61972275).
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Abstract. Knowledge graph (KG) embedding models are proposed to
encode entities and relations into a low-dimensional vector space, in turn,
can support various machine learning models on KG completion with
good performance and robustness. However, the current entity ranking
protocol about KG completion cannot adequately evaluate the impacts of
KG embedding models in real-world applications. However, KG embed-
dings is not widely used as word embeddings. An asserted powerful KG
embedding model may not be effective in downstream tasks. So in this
paper, we commit to finding the answers by using downstream tasks
instead of entity ranking protocol to evaluate the effectiveness of KG
embeddings. Specifically, we conduct comprehensive experiments on dif-
ferent KG embedding models in KG based recommendation and ques-
tion answering tasks. Our findings indicate that: 1) Modifying embed-
dings by considering more complex KG structural information may not
achieve improvements in practical applications, such as updating TransE
to TransR. 2) Modeling KG embeddings in non-euclidean space can effec-
tively improve the performance of downstream tasks.

Keywords: Knowledge graph · Embedding model · Evaluation

1 Introduction

Knowledge graph is a collection of fact triples in form of <subject, predicate,
object>. Many downstream tasks have achieved better performance by using
facts in the KG, such as question answering system [1], recommendation sys-
tem [17,22], and natural language processing tasks [15]. Recently, the knowledge
graph embedding (KGE) models aim to formalize the latent semantics implied

c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 242–256, 2020.
https://doi.org/10.1007/978-3-030-60259-8_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60259-8_19&domain=pdf
https://doi.org/10.1007/978-3-030-60259-8_19


Fine-Grained Evaluation of KGE Models in Downstream Tasks 243

in the facts into low-dimensional continuous vector space. The generated embed-
dings in turn can support various machine learning models on KG completion
with good performance and robustness. It is intuitive that the KG embeddings
should also improve the performance of machine learning based downstream
applications seamlessly.

Since first work [3] proposed the TransE model based on semantic transla-
tion theory for KGE, more researchers dedicated their focus to improving the
models on KG completion. One direction to modify KGE models is to consider
more complex KG structural information, such as TransH [20], TransR [8], and
HolE [11]. Xiao et al. [21] deem that the original KGE models could not well
depict the characteristics of KG due to the ill-posed algebraic system and over
strict geometric forms, and proposed the ManifoldE based on the manifold prin-
ciple. Afterward, another direction of improving KGE models is to encode KG
into non-Euclidean presentation spaces. For instance, Sun et al. [14] proposed
a novel method of embedding multi-relational graphs with non-Euclidean mani-
folds, which embeds KG into complex vector spaces. Kolyvakis et al. [7] proposed
a HyperKG model using hyperbolic space to reflect the topological characteris-
tics of KG better. The detailed review on KGE can be found in [18].

The traditional evaluation method of the KGE model is the entity ranking
(ER) protocol. ER protocol first removes the head entities in the test triples in
order and replaces them with other entities in the dictionary. Then it calculates
the energy of the test triples with these corrupt triples and orders them in
ascending order. At last, we use the rank of the correct triples in test as the KGE
evaluation indicator. The whole process is repeated while removing the tail entity
instead of the head entity. Although the ER protocol can reflect the performance
of the KGE model to some extent on KG completion, there is no systematic
analysis of the KGE improvements in downstream tasks. Recent advances in
KGE model have reached around 90% accuracy on traditional benchmark. Why
are KG embeddings not widely used as word embeddings in downstream tasks?
Is an asserted improved KG embedding model really also effective in downstream
tasks? In this paper, we commit to finding the answers.

Specifically, we conduct comprehensive experiments on different KG embed-
ding models in KG based recommendation and question answering tasks. In the
same representation space, the embedding of different KGE modeling methods is
used as a pre-training result, which is measured by downstream task experiments.
Meanwhile, we experiment with KGE models which in different representation
spaces. In addition, we perform multiple sets of experiments on the KGE dimen-
sion in the downstream task to try to find the impact of the embedded dimension
on the downstream tasks.

The consistent experimental results indicate that: 1) The traditional evalu-
ation protocol has limitations, and the existing KGE model’s ability to capture
knowledge is overestimated. 2) Modifying embeddings by considering complex
KG structural information may not achieve improvements in practical appli-
cations. For instance, in KGE downstream tasks, the recommendation task
model only depends on the entity embedding. Therefore, the TransR model with
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improved relational embedding does not improve performance in recommenda-
tion tasks. 3) Encoding KG in non-euclidean space can effectively improve the
performance of KG embeddings in downstream tasks. For example, the embed-
ding result of HyperKG based on hyperbolic space has a certain hierarchical
structure, while the model based on Euclidean space does not have. Hence,
HyperKG has better performance in the question answering tasks which need to
predict the answer entities accurately.

2 Preliminaries

Knowledge graph consists of the entity set E , the relation set R and the set
K ⊂ E × R × E of fact triples (h, r, t), where h, t ∈ E and r ∈ R. We refer to h, r
and t as the head entity, relation, and tail entity to the triple, respectively [18].
KGE models translate entity h,t and relation r into low-dimensional dense con-
tinuous vectors h, t ∈ R

de and r ∈ R
dr , where de and dr is the dimension of the

embedding. In this work, we mainly consider the currently prevalent translation
distance KGE models, which guarantee the effectiveness of the embedding mod-
els by minimizing the semantic deviation distance of fact triples. The semantic
translational distance induces a ranking: triples with short distance are consid-
ered more likely to be true than triples with long distance. Traditional transla-
tion distance KGE models are based on Euclidean space, but in recent years,
more models based on non-euclidean space have been proposed. We find that
these new models have more characteristics derived from their respective spaces
compared to the traditional KGE model based on Euclidean space. However,
the differences of final performance and characteristics of these KGE models are
unclear. Therefore, we select the most classic KGE models as the evaluation
object according to the following two criterias:

– Choose KGE models based on different embedding spaces to analyze their
characteristics and the final embedding performance;

– Choose KGE models based on the same embedding space to measure the
impact of modeling methods on model of performance.

TransE [3]. TransE is the most representative translational distance model. In
2013, Mikolov et al. [9] found translation invariance in word vector space such as
“China - Beijing ≈ America - Washington”. In the same year, Bordes et al. [3]
proposed the TransE model by treating relations as translation vectors between
entities. The TransE model represents entities and relationships in the same
space, the relationship vector r is the translation between the head entity vector
h and the tail entity vector t, that is, h + r ≈ t. TransE’s semantic translation
distance is calculated in Euclidean space. The scoring function is defined as the
distance between h + r and t, i.e.,

s(h, r, t) = −‖h + r − t‖1/2. (1)

The score is expected to be small if (h, r, t) holds.
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TransH [20]. In order to overcome the limitations of the TransE model in dealing
with 1-to-n, n-to-1 and n-to-n relationships, the TransH model transforms the
fact tuples onto the hyperplane of the relationship. For each fact triple (h, r, t),
TransH first projects the head entity h and tail entity t onto the relational hyper-
plane along the normal vector wr of the relation r. The head entity projection
vector h⊥ and tail entity projection vector t⊥ are represented as follows:

h⊥ = h − w�
r hwr, t⊥ = t − w�

r twT . (2)

The translation distance of the TransH model is also calculated in Euclidean
space. For a given fact triple (h, r, t), there is h⊥ + r ≈ t⊥. The scoring function
is defined as follows:

s(h, r, t) = − ‖h⊥ + r − t⊥‖22 . (3)

TransR [8]. The TransH model still embeds entities and relationships in a same
semantic space, which limits the model’s expressiveness. TransR embeds entities
and relationships into different semantic spaces, which strengthens the model’s
modeling ability. For each fact triple (h, r, t), TransR first projects the entity
vector from the entity space to the relationship space through the projection
matrix Mr of the relationship r, which is represented by h⊥ and t⊥ as follows:

h⊥ = Mrh, t⊥ = Mrt. (4)

The projections are then assumed to be connected by r on the relation space
with a low error if (h, r, t) holds, i.e., h⊥ + r ≈ t⊥. The scoring function is
accordingly defined as:

s(h, r, t) = − ‖h⊥ + r − t⊥‖22 . (5)

HolE [11]. Different from the above-mentioned semantic translation models,
HolE is a classic semantic matching model. The model calculates the credibility
of facts by measuring the similarity of latent semantics of entities and relations
embodied in their vector space representations. For a given fact triple (h, r, t),
the HolE model first uses a loop operation to form the head and tail entities of
the fact into the form h � t ∈ R. Then, the credibility of the combined vector
and relationship representation are calculated. The scoring function of HolE is
as follows:

s(h, r, t) = r�(h � t) =
d−1∑

i=0

[r]i
d−1∑

k=0

[h]k · [t](k+i) mod d, (6)

where d = de = dr.

ManifoldE [21]. Although the embedding ability of the above models is improv-
ing, they still calculate the translational distance in the Euclidean space. The
geometric form of semantic translation model based on Euclidean space is over
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strict. The ManifoldE model loosens the previously over strict geometric form,
placing the tail entity t in the fact triplet approximately on the manifold (sphere
space, hyperplane space, etc.), extending from a point to a manifold that resem-
bles a high-dimensional spherical. The intuitive geometric form is a hyperspher-
ical surface with h + r as the center of the sphere and the relation radius Dr.
The scoring function is defined as:

M(h, r, t) = ‖h + r − t‖22, (7)

s(h, r, t) =
∥∥M(h, r, t) − D2

r

∥∥2
. (8)

HyperKG [7]. The HyperKG model learns the hyperbolic embedding of entities
and relationships, which can reflect the topological characteristics of the knowl-
edge graph better. Kolyvakis et al. [7] defined the term embedding as h + Πβt,
where Π is a hyperparameter controlling the number of successive circular shifts.
The scoring function is accordingly defined as:

s(h, r, t) = dp (h + Πβt, r) . (9)

RotatE [14]. To improve the inference ability of the translation model, the
RotatE model defines each relationship as the rotation from the head entity h
to the tail entity t in the complex vector space. For a given fact triple (h, r, t),
we expect that:

t = h ◦ r, where |ri| = 1, (10)

and ◦ is the Hadmard (or element-wise) product. The scoring function of RotatE
is as follows:

s(h, r, t) = ‖h ◦ r − t‖. (11)

3 Tasks and Evaluation Protocols

The Entity ranking (ER) protocol is the most widely used protocol for evaluating
the performance of a KGE models. However, for a given relationship, it can only
focus on a small part of all possible facts due to the limitations of its measurement
methods. For this reason, the ER protocol overestimates the performance of the
KGE models and cannot perform fine-grained evaluation of the models. We
attempt to use specific KGE downstream tasks to measure embedding models
in different spaces in order to dig more characteristics of models, as well as
conduct comprehensive evaluation and analysis on model performance. We adopt
question answering and recommendation system, which are the two kinds of
the most common downstream tasks of KGE, as the performance metrics. In
this section, we introduce each KGE downstream task models and discuss the
relationship between the KGE models and the downstream task models.
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3.1 Question Answering

Compared with other question answering systems, the KEQA models [6] only
rely on the upper-level embedding of entities and relationships, which not require
additional information. The KEQA models aim at common simple questions,
and the main idea is to ensure that the models can accurately identify entity
and predicate (relation) in the question to improve the accuracy of the answer.
Instead of directly inferring entities and predicates, the KEQA models combine
the representations of entities and predicates in the KG embedding space, and
design a joint distance metric, which returns the three learning vectors closest
to the facts in KG as candidate answers. The KEQA models are mainly divided
into the following three parts.

Predicate and Head Entity Learning Model. Take a question as input,
and return a vector, as far as possible to ensure that the vector is close to the
embedding obtained by the KGE model. This module mainly contains a simple
neural network composed of the bidirectional recursive neural network layer and
injection layer. Its core idea is to assign different weights according to the order
of words in the question. The purpose is to find a spot in the predicate space
as news headlines predicate representation and a spot in the entity embedding
space as its entity representation.

Head Entity Detection Model. In this module, the model selects one or
more consecutive words from the problem as the name of the header entity, so
that the scope of entity search can be reduced from all entities in KG to part
of entities with the same or similar names. Same as the previous module, this
process also uses a bidirectional recursive neural network (such as LSTM) model
for implementing the head entity tag detection task.

Joint Search on Embedding Spaces. If the head entity in a fact triple
belongs to candidate head entities, then this fact is included in the candidate
facts of the question. The model designs a joint distance measure of the struc-
ture and relationship information retained in KGE. The proposed joint distance
metric is defined as:

minimize
(h,�,t)∈K

‖p� − p̂�‖2 + β1 ‖eh − êh‖2 + β2 ‖f (eh, p�) − êt‖2

− β3 sim [n(h), HEDentity] − β4 sim [n(�), HEDnon] .
(12)

Function n(.) returns the name of the entity or predicate. HEDentity and
HEDnon denote the tokens that are classified as entity name and non-entity
name by the HED model. Function sim[·, ·] measures the similarity of two strings.
Function f(.) define as the KG embedding algorithm. β1, β2, β3, and β4 are
predefined weights to balance the contribution of each term. Finally, according
to the ranking results, the most appropriate facts are selected from the candidate
set, and the tail entity of the fact triple is used as the final answer.
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3.2 Recommendation Systems

DKN. The DKN model [16] is an online news recommendation system that pro-
vides customers with personalized news recommendations. Unlike other recom-
mendation systems, news recommendation systems are full of knowledge entities
and common sense because of the high concentration of news language. DKN is
a content-based deep recommendation framework for click prediction. It takes
candidate news and a set of user click news history as input and calculates the
prediction probability of a user clicking candidate news. The key component
of DKN is a multi-channel and word-entity-aligned knowledge-aware convolu-
tional neural network (KCNN) that fuses semantic-level and knowledge-level
representations of news. KCNN is an extension of the traditional CNN model,
which allows the flexible integration of knowledge in knowledge graphs into sen-
tence representation learning. After extracting knowledge from candidate news,
the KCNN module stacks the word embedding, entity embedding, and context
embedding of the candidate news as the initialization input of the module. The
three embedded matrices are aligned and stacked as follows:

e =
1

|context(e)|
∑

ei∈context(e)

ei, (13)

W = [[w1g (e1) g (e1)] [w2g (e2) g (e2)] . . . [wng (en) g (en)]] ∈ R
d×n×3, (14)

where w1:n represents the word embedding, g(e1:n) represents the transformed
entity embeddings, and g(e1:n) represents the transformed context embeddings.

Through the KCNN module, the embedding of candidate news and user click
news can be obtained. Then the attention module can be used to convert user
clicks into user embeddings. Finally, DNN is used to calculate the probability of
the user clicking on the news. We use the AUC score of DKN as an indicator of
recommendation performance.

Translational Models for Item Recommendation. The above two down-
stream task models both use KGE as auxiliary information to help downstream
models better complete their tasks, while this model uses the semantic trans-
lation model to recommend products directly. It does not belong to the down-
stream application task of KGE, but we still take it as the evaluation index of
KGE model in different spaces. The reason is that we analyze the process of the
model and find that the final evaluation index of the model is the performance of
completing missing facts. Wang et al. [19] proposed that the traditional ER is not
suitable for the task of knowledge base completion (KBC) performance evalua-
tion due to its limitations, but the PR protocol they proposed is not suitable for
application model datasets because of high computational cost. The task of this
model is to recommend products (tail entities) to users (head entities). In short,
it is to complete the original KG triples (users, recommendations, products).
Different from ER protocol and PR protocol, this model can not only effectively
measure the performance of model KBC but also test large-scale datasets. We
use P@5 as an indicator of model recommendation performance [13].
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4 Experimental Study

We use KGE downstream task models introduced in Sect. 3 to conduct experi-
mental studies to evaluate the performance of various KGE models in different
spaces. All datasets, experimental results, and source code in the experimental
research are public, and for the convenience of other research works, we also
provide data and log information generated during the experimental interme-
diate process. For all embedding models in different spaces, we evaluate the
performance of different dimensions and different downstream tasks of KGE, so
as to explore the characteristics of embedding models in different spaces and
provide suggestions and help for future research on KGE and downstream task
models. Experimental results show that the existing KGE model’s ability to
acquire knowledge is overestimated, and the traditional measurement proto-
col may even lead to misleading conclusions. We find that the HyperKG and
RotatE models based on non-Euclidean space can provide excellent performance
for KGE downstream tasks. As for models in Euclidean space, the performance
of TransE, TransH, and TransR lags behind, especially the TransR model with
a more complex structure performs the worst on most downstream tasks. The
experimental results show that KGE models based on non-Euclidean space gen-
eralizing points to relaxed geometric forms can effectively improve the ability of
KGE model entity embedding and relation embedding. KGE models based on
Euclidean space limit their performance because of extremely strict geometri-
cal forms. Modifying embeddings by considering more complex KG structural
information may not achieve improvements in practical applications. When the
embedding models rely too much on additional information, the performance of
embedding the entity and relationship will decrease.

4.1 Hyperparameter Settings of KGE

To keep effort tractable, we verify the MRR (for ER) of the data according to
the datasets to select the best hyperparameters. For the embedding models in
different presentation spaces, we performed an exhaustive grid search on the fol-
lowing hyperparameter settings: learning rate η ∈ {0.0001, 0.001, 0.01, 0.05, 0.1},
margin hyperparameter γ ∈ {0.5, 1, 2, 3, 4}. In order to analyze the relation-
ship between the dimensions of the embedding models and the downstream
tasks of KGE, we select the best hyperparameters in different dimensions of
de ∈ {50, 100, 150, 200, 250, 300} to obtain the final model. We trained each
model for up to 1000 epochs during the grid search. Therefore, the expression
ability of the embedding models is maximized.

4.2 Experiments on KEQA

Datasets. Instead of the typical evaluation of embedding models, we use the
real dataset corresponding to the specific downstream application model. The
subsets of traditional knowledge graphs (such as FB15K, WN18, FB-237, etc.)
are not suitable for downstream models, and the scale of these datasets is too
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Table 1. The statistics of the question answering datasets.

FB2M FB5M SimpleQuestions

# Relations 4,641 5,279 1,837

# Entities 647,657 751,227 131,681

# Training 1,604,874 1,780,111 75,910

# Validation N.A N.A 10,845

# Test N.A N.A 21,687

Table 2. The performance of KEQA with different objective functions on FB2M.

‖p� − p̂�‖2 ‖eh − êh‖2 ‖f (eh, p�) − êt‖2

TransE 0.701 0.173 0.703

TransH 0.711 0.185 0.727

TransR 0.714 0.171 0.734

ManifoldE sphere N.A N.A N.A

RotatE 0.716 0.188 0.738

HyperKG 0.723 0.196 0.727

small to be necessary for research in this experiment. We first introduce the
knowledge graph subset and question answering dataset used in KEQA model
experiments.

FB2M and FB5M: Freebase is a real and credible KG dataset. The commonly
used data sets for evaluating KGE models, such as FB15K and FB237, are all
subsets of Freebase. The KEQA model uses two large subsets of Freebase: FB2M
and FB5M. Their corresponding statistics are shown in Table 1, and the repeated
facts have been deleted.

SimpleQuestions: It contains more than ten thousand simple questions associ-
ated with corresponding facts. All these facts belong to FB2M. It has been used
as the benchmark for the recent QA-KG methods [2,4,10].

Performance Results. In order to evaluate the effect of KGE on the perfor-
mance of KEQA model under different embedding spaces, the embedding algo-
rithm mentioned in Sect. 2 is applied to the dataset FB2M or FB5M to learn
P and E. Note that P and E are not the additional sources of information.
Then, the KEQA model is applied to predict the header entities and predicates
of each question in the test set. The performance of the model is measured by
the accuracy of predicting header entities and predicates, and the evaluation
criteria are defined as accurate predictions of new questions. The performance
of KEQA that based on different KGE models on SimpleQuestions about FB2M
and FB5M are listed in Fig. 1(a) and Fig. 1(b), respectively.
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From graph (a) and (b) in Fig. 1, we can clearly find that the performance
of the embedding models in different spaces in the KEQA task is divided into
three parts. It is worth noting that Manifold Sphere model is precarious, and
its embedding performance is random. This is related to the algebraic form and
embedding space of the Manifold Sphere model. The embedding of spherical
space depends too much on the initialization of the sphere radius, which directly
determines the upper limit of embedding performance of the model. Therefore,
unlike other models, the Manifold Sphere model in spherical embedding space
has poor robustness and poor embedding performance overall. Besides, the per-
formance of KEQA based on semantic translation models is significantly better
than that based on semantic matching models, and as the dimensions increase,
the performance of KEQA based on semantic translation models continues to
improve. In contrast, the performance of KEQA based on semantic matching
continues to decline. For semantic translation-based models, the performance of
the embedding models in non-Euclidean space is more satisfactory than that
of the Euclidean space, especially when embedding at a low dimension. This
means that HyperKG in hyperbolic embedding space and RotatE in complex
vector space can successfully and efficiently capture the structural and semantic
features of entities and relationships. For the embedding models such as TransE,
TransH, and TransR in the traditional Euclidean space, there is no significant
difference in performance when the embedding dimension is less than 200. But
as the dimensions increase, the TransH and TransR models with stronger gen-
eralization capabilities achieve better results. The performance of each model
declines on the larger data scale FB5M dataset but remained consistent on the
whole.

To better understand the performance changes of different KGE models, we
study three terms dependent on KGE model in the KEQA objective function
(Eq. 12) and analyze the influence of embedding models on related terms in
the KEQA objective function under different spaces. We choose the embedding
dimension with the best performance and perform three sets of experiments,
respectively. Each set of experiments only retains one of the terms as the new
objective function. The performance of KEQA with different objective functions
on FB2M is summarized in Table 2.

From the results in Table 2, we draw three main observations. First, HyperKG
and RotatE can provide better embedding and improve prediction accuracy
in the module of predicate representation prediction and the module of head
entity representation prediction. Second, among the embedding methods based
on Euclidean space, although TransR can provide better relational embedding,
its entity embedding performance is inferior. In addition, we find that TransH’s
entity embedding performs significantly better than TransE and TransR, which
is different from our normal cognition.

4.3 Experiments on DKN

Datasets. The news data for the DKN experiments came from Bing News’
server logs. Each log mainly includes the user id, news title, news url, timestamp,
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and click identifier (0 means no click, 1 means click). The news dataset is divided
into two parts, which are randomly sampled from October 16, 2016, to June 11,
2017, as a training set, and randomly selected from June 12, 2017, to August 11,
2017, as a test set. Besides, the original author of the model retrieves all entities
that appear in the dataset and entities within their one hop in Microsoft Satori
knowledge graph, and extract all edges (triples) with confidence greater than
0.8 among them. Table 3 shows the basic statistics of the news dataset and the
extracted knowledge graph. After a simple analysis of the dataset distribution,
we find that the average word count of each news headline is 7.9 words and
the entity word count is 3.7 words, which indicates that entities occupy almost
half of news headlines. The high frequency of the entity in the news headline
indicates the importance of the entity, hence, the embedding effect of the entity
will have a significant impact on the performance of the model.

Table 3. The statistics of the extracted knowledge graph.

The extracted knowledge graph

# Relations 1,166

# Entities 36,350

# Triples 772,258

avg.# entities per title 3.7

Performance Results. The comparison results of different KGE models are
shown in Fig. 1(c). The critical components of DKN model and KCNN mainly
make use of entity embedding and context embedding, so the final performance of
DKN model depends on the entity embedding of KGE models. There are several
main conclusions to be drawn from this observation. First, the performance of
DKN models based on different KGE models shows a clear hierarchical structure,
and there is a vast difference in performance between different KGE models.
HyperKG based on hyperbolic space has the best performance, while RotatE
based on complex vector space is slightly inferior, but both are better than the
Trans series based on Euclidean space. Second, we find that the dimensions of
entity embedding have little effect on the final performance of the DKN model.
The reason is that in KCNN, the word embedding, entity embedding, and context
embedding need to be uniformly mapped to the same dimension (50 dimensions),
so the difference brought by the entity embedding dimension is eliminated during
the compression process. Third, TransH performance based on Euclidean space is
significantly better than TransR. Although TransR is an optimization model for
TransH, the entity embedding ability is worse than TransH. It is worth noting
that TransR improves the generalization ability of the model by embedding
entities and relationships in different spaces, and can effectively deal with multi-
relationship problems. However, a part of the semantic information is embedded
in the transformation matrix at the same time, which may be the cause of the
poor embedding performance of TransR.
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4.4 Experiments on Item Recommendation

Datasets. The dataset is MoviesLens 1M [5]. MoviesLens 1M is a classic dataset
for evaluating recommendation systems, and it contains 1,000,209 anonymous
ratings of approximately 3,900 movies made by 6,040 MovieLens users. Enrico
Palumbo et al. [12] construct corresponding knowledge graphs using mapped
DBpedia data. Furthermore, We purify the knowledge graph to get a refined
dataset. The basic statistics of the knowledge graph constructed are shown in
Table 4.
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Fig. 1. Results of downstream tasks using different KGE.

Table 4. The statistics of MovieLens 1M datasets.

MovieLens 1M

# Relations 19

# Entities 29,166

# Triples 3,974,676
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Performance Results. Unlike the other two KGE downstream application
models, the item recommendation task is to use the translation model to rec-
ommend products for users. Instead of measuring the ability of the KGE model
to embed entities or relationships, it measures the KBC performance of the
entire KGE model, that is, the ability to complete triples of facts that did
not exist currently. The comparison of the results of different KGE models is
shown in Fig. 1(d). We find that the KBC performance of most embedding mod-
els is related to dimensions, and KBC performance is maximized at 100–150
dimensions. After that, as the dimension increases, the more noise introduced
by embedding leads to a decrease in performance. For large datasets such as
MoviesLens 1M, HyperKG and RotatE have a excellent KBC performance, with
HyperKG reaching a peak of 0.1976. In Euclidean space-based models such as
TransE, TransH, and TransR, TransH achieves the best results when dealing
with KBC tasks, while TransE and TransR are not suitable for dealing with
KBC tasks.

4.5 Discussion

We utilize specific KGE downstream tasks as an alternative, which are question
answering system and recommendation system, to compare the performance of
KGE models in different embedding spaces. Based on the experimental results,
we summarize the following findings:

– The traditional evaluation protocol has limitations, and the existing KGE
model’s ability to capture knowledge is overestimated.

– The KGE models based on non-Euclidean space generalize the points into a
relaxed geometric form, which can effectively improve the ability of the KGE
model to embed entities and relationships, especially in terms of accurate
prediction tasks and KBC tasks;

– The KGE models based on Euclidean space, modifying embeddings by consid-
ering more complex KG structural information may not achieve improvements
in practical applications, such as updating TransE to TransR. This indicates
that the generalization improvement of embedded models in the traditional
Euclidean space cannot improve their performance, especially when the mod-
els rely on the transformation matrix excessively.

5 Conclusion

We investigate whether the current KGE models based on different embedding
spaces can provide good support for KGE downstream application tasks, as
well as the differences between the models. We believe that the commonly used
KGE evaluation protocol is inappropriate for answering these two questions, and
take the downstream task as an alternative. The experimental results prove this
hypothesis, traditional evaluation protocols overestimate the ability of the KGE
model to capture knowledge, and many KGE models perform poorly in down-
stream tasks. Besides, we found that using Non-Euclidean space as embedding
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space is an effective generalization method, which can improve the ability of
model knowledge acquisition and enrich knowledge characteristics.
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Abstract. Text-based end-to-end question answering (QA) systems
have attracted more attention for their good robustness and excellent
performance in dealing with complex questions. However, this kind of
method lacks certain interpretability, which is essential for the QA sys-
tem. For instance, the interpretability of answers is particularly signifi-
cant in the medical field, in that interpretable answers are more credible
and apt to acception. The methods based on knowledge graph (KG) can
improve the interpretability, but suffer from the problems of incomplete-
ness and sparseness of KG. In this paper, we propose a novel method
(EGQA) to solve complex question answering via combining text and
KG. We use Wikipedia as a text source to extract documents related
to the question and extract triples from the documents to construct a
raw graph (i.e., a small-scale KG). Then, we extract the evidence graphs
from the raw graph and adopt Attention-based Graph Neural Network
(AGNN) to embed them to find the answer. Our experiments conduct
on a real medical dataset Head-QA, which shows that our approach
can effectively improve the interpretability and performance of complex
question answering.

Keywords: Question answering · Evidence graph · Neural network

1 Introduction

QA systems provide people with needed information and are widely used in
many fields, such as medical, financial, and e-commerce [3]. Most approaches are
focused on answering simple questions, while complex questions have always been
one of the challenges in QA. Great use of data is available with the widespread
usage of the internet, which provides one of the best sources to obtain informa-
tion and accelerate the development of the text-based QA system [8]. With the
rapid development of deep learning, text-based end-to-end QA systems emerge
in recent years, which has achieved better performance in answering complex
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 257–269, 2020.
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questions with good robustness. However, this kind of approach also has an
apparent weakness, which is the lack of interpretability. Interpretability is essen-
tial and necessary in many domains, especially in the medical field, where the
uninterpretable answer is often not trusted enough to be adopted by medical staff
when it comes to the vital health of patients. As shown in Fig. 1, the text-based
end-to-end QA system outputs the answer without interpretability.

Recently, with the emergence of KG, numerous KG-based QA methods have
been proposed [5]. For a given natural language problem, the KG-based QA
system mainly solves it by semantically parsing, and then make use of the KG
to query and deduce to obtain the answer. On account of the characteristics of
KG’s structure, this kind of method can provide the interpretability of answers
by outputting the subgraph related to the questions and answers. However, the
existing KG is suffering from the problems of incomplete and sparse, which limits
the performance of KG-based QA approaches. As shown in Fig. 1, the KG-based
QA system cannot find the answer to this question due to the incompleteness of
KG.

Text-based QA

Reversible 
inhibitor

Antidepressant

Toloxatone

KG-based QA

Model

missing
Monoamine 

oxidase

Serotonin

EGQA

Question: Which anti-infective agent is a reversible inhibitor of monoamine oxidase
that causes interactions with antidepressants that increase serotonin?

Teicoplanin
TeicoplaninMoclobemide

No answer !

Teicoplanin

be reversible 
inhibitor of

Monoamine 
oxidase

Antidepressantcure

GNN

Answers with 
evidence

Cause interaction
with

serotonin

ToloxatoneMoclobemide be reversible 
inhibitor of

Monoamine 
oxidase

Teicoplanin

Cause 
interaction with

Antidepressant

Fig. 1. A text-based QA system can find the answer but cannot provide nterpretability,
while the KG-based QA system cannot find the answer because the missing node in
the KG. Our approach EGQA can find the answer with interpretability.

For this reason, we propose a method (EGQA) to answer complex questions
by combining text and KG, which can make up for the weakness of the two
kinds of methods and provide interpretability while improving the performance.
Our method includes three parts. Firstly, we use Wikipedia as the source of
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the text, extract the five most relevant documents according to the question.
Then, we extract the triples from documents to construct a raw graph (i.e., a
small-scale knowledge graph), and the raw graph is denoised and optimized to
obtain several candidate evidence graphs, and AGNN is used to embed them to
obtain the feature of question. At last, we adopt the TextCNN to embed the
question and compare it with the candidate evidence graphs to find the most
relevant evidence graph to obtain the candidate nodes of answer and rank the
candidate nodes to find the final answer. As shown in Fig. 1, through our method,
an interpretable answer is found.

The main contributions of this paper are as follows:

– We propose a novel model combining text and KG to answer complex ques-
tions, which makes up for the deficiency of previous works;

– We provide interpretability of the answer with guaranteed accuracy, making
the answer more credible;

– We verify our model on a real-world medical dataset, and the results demon-
strate that the model can effectively improve the performance of complex
questions with interpretability.

2 Related Work

2.1 Text-Based End-to-end QA Systems

Text-based end-to-end QA system commonly can be divided into three subtasks:
question analysis, document retrieval, and answer generation, the different pro-
cessing of the three subtasks result in different approaches. With the develop-
ment of machine learning, the performance of text-based end-to-end systems has
improved in recent years.

Hermann et al. [9] defined an approach to solving machine reading tasks and
provides large-scale supervised reading comprehension data, which can learn to
read real documents and answer complex questions with little prior knowledge
of language structure. Hewlett et al. [10] presented WIKIREADING, a large-
scale natural language understanding task, and publicly-available dataset. Its
task is to predict the value of text from Wikipedia’s structured knowledge base
by reading the text of the corresponding article in Wikipedia. Wang et al. [18]
presented the gated self-matching networks for reading comprehension style QA,
which is designed to answer questions in a given document. Yu et al. [22] pro-
posed a novel QA architecture called QANet. Instead of recurrent networks, its
encoder only contains convolution and self-attention, where convolution mod-
els local interactions and self-attention models global interactions. Xiao et al.
[20] proposed a multi-hop QA model, which can find the answers from multi-
ple related documents. Lu et al. [14] proposed a new unsupervised method that
combines evidence from multiple documents retrieved dynamically to answer
complex questions. Although text-based end-to-end QA systems use powerful
machine learning models to improve performance and increase the accuracy of
answers effectively, such methods lack interpretability and lead to reduced reli-
ability of the answers.
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2.2 Knowledge Graph-Based QA Systems

The traditional knowledge graph-based question answering system can be
divided into three types. The first one is based on semantic parsing [1]. The
main idea is to convert natural language into a series of logical forms, which can
express the entire question to semantics, and then query in the knowledge graph
through a query language to find the answer. These approaches rely on the first
step of semantic parsing from natural language to logical forms, which has the
problem of the error transmission, resulting in poor performance of the models
and low recall rate. The second is based on information extraction [12]. This
type of method extracts the entities in the question and queries the knowledge
graph to obtain the subgraph centered on the entity. Each node or edge in the
subgraph can be used as a candidate answer. Although this kind of method can
improve the recall rate, it is still limited by the incompleteness of the KG because
it depends on the mapping from natural language to the KG. The third is based
on vector modeling [2]. The questions and candidate answers are embedded in
distributed representation. The distributed representations are trained by train-
ing data to make the score of the vector representation of the questions and
correct answers as high as possible. This type of method effectively avoids errors
in semantic parsing and improves the performance of models. However, these
methods are also limited by the incompleteness of KG. In recent years, with the
rapid development of deep learning, the mainstream knowledge graph-based QA
systems mainly utilize deep learning to improve traditional methods and have
achieved excellent performance. However, all of these models focus on improving
the performance of QA systems but make the interpretability worse and worse.

Wikipedia
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raph N

eural N
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ork

Answer

Fig. 2. Overview of EGQA

3 Our Methods

As shown in Fig. 2, we mainly introduce our model from four parts: (1) find
documents from Wikipedia according to the given question, (2) build the raw
graph based on the SPO (Subject-Predication-Object) triples extracted from the
documents, (3) extract the candidate evidence graphs from the raw graph, and
(4) use the AGNN to find the most relevant evidence graph to find the final
answer. We elaborate on each part in the following subsections.
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3.1 Document Retrieval

To reduce the search cost, we adopt a classic document retrieval system proposed
by [4]. This system converts all articles into TF-IDF (Term Frequency - Inverse
Document Frequency) weighted bag-of-word vectors. Assume that m documents
form a collection of documents: D = {N1, N2, . . . , Nm}, and the number of
occurrences of the phrase j in the document Nj is denoted as Cij , the TF and
IDF of the phrase j are:

TF =
Cij∑n
j=1 Cij

, (1)

IDF = log
m

h + 1
, (2)

where n is the number of phrase j in document Ni, and h is the total number of
documents containing phrase j. Thus, the comprehensive frequency of phrase j
in the document Nj can be calculated as TF ∗ IDF. We utilize bigram counts as
the participle model, and then map each phrase to a hash value using the feature
hash table [19], and we can encode each documents into a dictionary containing
the frequencies of each phrase.

After extracting the most related documents, we define each set of informa-
tion in the document as a triple of two entities and a relationship which is repre-
sented as (S, P,O). We adopt Open IE [15] to extract the required information
and use the NLTK package to perform POS tagging and NER on the extracted
documents in the preprocessing. As for the processing of SPO triples, we use
named entities and the extracted tokens as the processing objects respectively.
Regarding triples, we mainly extract them based on the dependency syntax.
After eliminating irrelevant words without dependent structure, the results of
dependency syntactic analysis are analyzed together with specific statements to
generate triples.

Since the SPO triples depend on different text during extraction, the quality
of the triples varies. We use the same procedure as [14] to take the paired distance
between the parts of the triples as the confidence index of each triple relationship.
Suppose that in a SPO triple, the distance of S and P , P and O are d1 and d2,
the confidence indices of S − P and P − O are:

bS−P =
1

d1 + 1
, (3)

bP−O =
1

d2 + 1
. (4)

When the same SPO pair appears in different documents {Si}, their common
score is:

b =
∑

si

1
di + 1

. (5)
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3.2 Raw Graph Construction

We use graphs to represent the knowledge involved in the documents. We form
the raw graph based on the SPO triples extracted from the related documents,
and then extract the candidate evidence graphs. The raw graph is represented
as G = (V,E) where V is the set of nodes and E is the set of edges.

A complex question often requires information from multiple documents and
we use triples from multiple documents to build the raw graph. In contrast to
the other models, this may generate a lot of noise and synonym entities which
can be resolved in the subsequent extraction process. In order to determine the
importance of different nodes, we assign different weights to nodes and edges
during the construction process. The allocation of weights is mainly based on
the premise that the more an item is relevant to the token mentioned in the
question, the more important it is to solve the problem.

We refer to the method proposed by [14], which does not take the predicate
in the triple as an edge but as a single node, i.e., each SPO triple can form two
entity nodes and one predicate nodes in the graph. If the node S or node O
already exist in the graph, an edge will be extended from the existing node to
connect the new node. Due to the same entity node may appear in different forms
in multiple triples, we use entity-mention dictionary [11], a dictionary (shown as
Table 1) compiled from a large knowledge base, including the probability that
the same text form points to different standard entities.

Table 1. Mention dictionary

Mention Entity Probability

007 007 (Shanty Town) 0.1000

007 5th Ward Boyz 0.0182

007 James Bond 0.1318

007 James Bond (literary character) 0.3045

We can calculate the similarity of two nodes via this dictionary, i.e., when two
nodes have the same standard form of entity e, the similarity is the difference of
probabilities, otherwise the similarity is zero. The similarity of two word phrases
i, j can be calculated as:

simi,j =
{ |dic [i, e] − dic [j, e]|, i → e and j → e

0, � ∃ e
, (6)

where dic denotes mention dictionary. When there are two nodes whose similarity
exceeds the threshold, we connect them by a bidirectional edge, whether the node
is an entity or a predicate. When setting the weight of each node, we first observe
whether there is a standard entity e pointed by both a token of the question and
the node. If there is and the similarity is higher than the threshold, it is used



Learning to Answer Complex Questions with Evidence Graph 263

as the weight; otherwise, the similarity is set as zero. The weight of node v is
calculated as:

Wv =
{

simv,q, simv,q > S
0, simv,q < S

, (7)

where q is the token of the question which is close to the node v, and S is the
threshold. With regard to the edges in the triples, we use the confidence index
obtained in the previous extraction as the weight:

We = bv1−v2, (8)

where v1 and v2 are the two nodes connected by the edge e. The articles in
Wikipedia often contain descriptions of the entity, and the characteristics of
its syntactic patterns are very easy to profile. For example, we can extract the
attribute relation like (xenobiotic,chemical substance) and establish the corre-
sponding attribute node from the statement “A xenobiotic is a chemical sub-
stance found within an organism that is not naturally produced or expected to be
present within the organism”, the attribute node can perform filtering function
when ranking the answer node later.

3.3 Evidence Graph Construction

After constructing the raw graph, we need to find the relevant nodes with the
question in the raw graph. Here we use the previous entity-mention dictionary
to find the nodes that have a certain degree of similarity to the token in the
question and regard them as anchors to extract key information.

Definition 1 (Anchor). Suppose there is a token set {q1, q2, q3, ..., qn} in the
question, when there is node v in the raw graph, it meets the condition simv,qi > S
with any question token qi, where S is the similarity threshold, then we called
node v as an anchor.

After getting the anchors, our goal is to construct the evidence graphs containing
the answer node from the raw graph.

Definition 2 (Evidence Graph). Suppose there is token set {q1, q2, q3, ..., qn}
in the question, and each token qi corresponds to a collection of corresponding
anchors set as

{
V i
1 , V i

2 . . . V i
n

}
, and if there is a subgraph (V,E), where V con-

tains at least one node in each anchor set, then we call it as an evidence graph.

In the process of evidence graph construction, in order to improve the efficiency
and accuracy, it is necessary to ensure that the number of edges is as small as
possible and the sum of weights is as large as possible. Regarding the construction
of evidence graphs, we refer to the classic algorithm as [6]. we use each anchor
node as the initial state of a tree and make them grow synchronously. We select
the edges and nodes with larger weights at each step. When two trees meet, we
merge them; when any tree covers at least one node in each anchor node set, the
tree stops growing and exists as a candidate evidence graph. We set a maximum
value to limit the number of candidate evidence graphs, and select graphs with
larger comprehensive weight when there are candidate results more than the
limited number.
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3.4 Answer Generation

After obtaining the candidate evidence graphs of the question, we need to choose
the graph which can obtain the correct answer. The previous method [21] com-
pares graphs by analyzing the differences between nodes, which only mechani-
cally calculates the features at the node level of the graph, lacking the analysis
of the overall structure. Hence, we utilize AGNN [16] to analyze the features of
candidate evidence graphs.

When training the model of the evidence graph, we need a standard value
to form the loss with the output of evidence graph. We use TextCNN [13] to
obtain a vector representation of a question, which first encodes the question
as a collection of tokens, and then converts each token into a word2vec vector
that we have pre-trained according to Wikipedia. After extracting features from
the one-dimensional convolutional layer, the set consisting of these word vectors
enter a MaxPooling layer to make the length of the sentence vectors uniform,
and the final output vector Vq can be used as a question representation when
constructing candidate graphs later.

AGNN [16] is a model based on GNN to process graphs with state of the art
performance. It replaces the original fully-connected layers with the attention
mechanism, which can make each node in the graph learn the characteristics of
neighboring nodes dynamically and adaptively during the propagate process, and
reduce parameters to improve efficiency at the same time. The AGNN estimates
which neighbor is more relevant to the node during each iteration of the graph
node and measures its contribution accordingly.

For an evidence graph G, we extract all the nodes and edges from it, where
the edges are encoded in COO format, i.e., set up two lists, and the first list
contains the index of the source node, while the index of the target node is
specified in the second list. Regarding the nodes, we use the vector of word2vec
obtained from Wikipedia to go through a linear layer as the initialization state
of each node:

H
(1)
i = WTXi + b, (9)

We applied AGGN’s attention-based propagation layer to realize information
intersection between nodes. Different from the previous GNN, AGNN uses scalars
to transfer information between a node and its neighbors in each propagation
layer:

H(t+1) = P (t)H(t), (10)

where P (t) is a matrix of n ∗ n, n represents the number of nodes, each element
in the matrix represents the delivery parameters of two nodes, the parameters of
non-adjacent nodes are represented by zero. The propagation mode of the nodes
is as follows:

H(t+1) =
∑

j∈N(i)∪{i}
P

(t)
ij H

(t)
j , (11)

P
(t)
i = softmax

([
β(t) cos

(
H

(t)
i ,H

(t)
j

)]

j∈N(i)∪{i}

)

, (12)
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where cos represents the cosine similarity of two vectors, and N(i) represents
the neighbors of node i in the graph.

In terms of output, we take the output vector with anchor in the model to pass
through the previous TextCNN, and take its representation in the hidden layer
as the final graph-level output vector. After obtaining the target evidence graph,
we select the entity nodes other than the anchors as the candidate answers, and
then rank the candidate answers by comparing the type node of the answer with
the predict type of the answer to find the final answer.

4 Experiments

4.1 Dataset

In our experiment, we use Wikipedia as the source of information. We apply
wikiextractor1, a python package that decoded all information on Wikipedia
into text, with each keyword corresponding to a document, excluding the content
other than text. Data in Wikipedia performs well in multiple areas of testing,
indicating its wide coverage. Considering the application scenario of interpretable
QA, we choose an area with high interpretable requirement which is medical,
and chose a latest dataset containing complex questions. We extracted data
from HEAD-QA [17], which consists a set of questions from exams to obtain
a professional position in the Spanish health system that are challenging even
for highly professional people. This dataset contains six specific subdivisions,
and we selecte a total of 2288 questions in the two parts of Pharmacology and
Medicine as our experimental dataset.

4.2 Baselines

To measure the effectiveness of our model, we choose two Text-based QA meth-
ods and two KG-based QA methods as baselines.

DrQA [4]: DrQA is an open domain question answering system based on RNN
and multi-task learning, which is trained on a large-scale corpus.

QUEST [14]: QUEST is a question answering system based on document infor-
mation extraction. It extracts the documents related to the question from the
open corpus, then builds the documents into graphs, extracts the graphs through
Steiner Tree, and finally outputs the answer nodes from the Steiner Tree.

STAGG [21]: STAGG is a KG-based QA system that turns questions into
semantic graphs of a certain length and then turns the semantic graphs into
SPARQL to query the answers in the knowledge graphs.

OQA [7]: OQA extracts information from different knowledge bases at same
time. It analyzes the problem structure, and finally translates the question into
a structured query statement to get an answer.

1 https://github.com/attardi/wikiextractor.

https://github.com/attardi/wikiextractor
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Table 2. Statistics of the questions in HEAD-QA

Category Question Train Graph Positive Negative

Pharmacology 1139 457 55721 523 55198

Medicine 1149 455 57723 567 57156

Table 3. Evaluation results on the HEAD-QA test set

MRR Hits@5 Precision@1

DrQA 0.327 0.341 0.312

QUEST 0.329 0.346 0.314

STAGG 0.286 0.324 0.278

OQA 0.276 0.312 0.269

EGQA 0.354 0.361 0.335

4.3 Training and Evaluation

During the training of AGNN, we use part of the data as the train set and
validation set, the rest of the data as the test set. We need both positive and
negative evidence graph of the question for training. So when we extract a can-
didate evidence graph from the documents for each question, we examine the
non-anchor nodes for each candidate evidence graph, which is positive when a
node is very close to the real answer, otherwise it is negative. The information
about all the evidence graphs is shown in Table 2.

In each round of training, we calculate the features of the graph by taking the
cosine similarity of the output vector of each evidence graph and the question
vector as the reward function:

f(g) = cos(vg, vq), (13)

where vg is the output vector of the graph g through AGNN, and vq is the output
vector of the question through TextCNN. Its loss function is set as:

loss(x, y) =
∑

i max(0, (1 − x[y] + x[i]))
x· size

, (14)

where x is the set composed of the value of the evidence graph after the reward
function, y is the distribution of the positive graph in x while i is the distribution
of the remaining negative graph, and x· size is the length of x. By calculating
for the loss function, we can implement parameter updates for both TextCNN
and AGNN. We use Adam optimizer to train the model with a learning rate as
0.01. In order to prevent overfitting of the model, we use a layer of Dropout in
the model to actively forget some dimensions of the vector, and the forgetting
rate is set at 30%. Since the word2vec vector dimension of the node is 300, we
also added two linear layers to compress the vector.
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Fig. 3. Evaluation results by entity number

Since the evidence graph outputs a non-standard form of the answer
extracted from the text, in order to adapt it to the multi-option characteris-
tics of the dataset, we compare the output answer with all the options and
select the one with the maximum percentage of the shared token as the selection
object. Because there may be multiple answer nodes with different priorities in
one evidence graph, we use the following evaluation metrics: the main metric is
Mean Reciprocal Rank (MRR), we also adopt Precision@1 (P@1) the probabil-
ity that the most likely answer node predicts accurately directly and Hits@k,
the probability that the top-k answers contain the correct answer.

4.4 Results

As shown in Table 3, EGQA performed better than all the baselines in the test
set. It can be proved that the system which extract documents from Wikipedia
in real time and construct evidence graphs for complex question is proved to be
more advantageous than the previous system. As can be seen from the Table 3,
end-to-end methods such as DrQA perform significantly better than those purely
KG-based QA methods such as OQA, and their performance is very close our
method EGQA. This means that the end-to-end approaches can often extract
more information from the text than the KG-based methods, and can achieve
good results on complex questions on the basis of not pursuing interpretability.

Since our primary goal is to ensure efficiency while dealing with complex ques-
tions, we test performance for all models based on the complexity of questions.
As shown in Fig. 3, when the number of the entities in the question is small, i.e.,
only a few entities are involved, the methods based on knowledge graph perform
very well. This approach can guarantee the accuracy close to that of text-based
QA, and can also provide the interpretability of the answer through the output
of subgraph of KG. However, as the entities and relationships involved in the
question increase, the accuracy of the KG-based QA methods decreases dramati-
cally, largely due to the limitation that KG-based QA methods rely too much on
the mapping from natural language to logical language or semantic graph, which
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often leads to poor representation on complex questions. When dealing with sim-
ple one-hop questions, our model is very similar to KG-based QA methods, but
KG-based QA’s performance is better because the entity representation of the
knowledge graph is more standardized. However, as the scale of the questions
increases, the complexity of the graph increases exponentially, so we can take
advantage of the excellent ability of deep learning to process large-scale graph
data to extract the characteristics of the evidence graphs. Our model in dealing
with complex questions is better than other models which benefits from both
information extraction of the graph and information process by deep learning.

5 Conclusion

In this paper, we propose a method to combine text and KG to solve complex
questions. The method works by extracting knowledge graphs from wikipedia
and using a trained graph neural network to get the answers. Experiments on
the real dataset HEAD-QA show that our method can better deal with complex
questions and provide interpretability compared with the baselines. In the future
work, we intend to consider more methods in text information extraction to
eliminate excessive noise in the raw graph and improve the accuracy of triples.
At the same time, we also consider applying the idea of the current model to
more tasks such as text reading comprehension. By extracting the text content
in real time, we can analyze the importance of different sub-graphs of the raw
graph, so as to extract the main body of the article and make an overview.
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Abstract. SPARQL, as one of the most powerful query languages over
knowledge graphs, has gained significant popularity in recent years. A
large amount of SPARQL query logs have become available and provided
new research opportunities to discover user interests, understand query
intentions, and model search behaviors. However, a significant portion of
the queries to SPARQL endpoints on the Web are robotic queries that are
generated by automated scripts. Detecting and separating these robotic
queries from those organic ones issued by human users is crucial to deep
usage analysis of knowledge graphs. In light of this, in this paper, we pro-
pose a novel method to identify SPARQL queries based on session-level
query features. Specifically, we define and partition SPARQL queries into
different sessions. Then, we design an algorithm to detect loop patterns,
which is an important characteristic of robotic queries, in a given query
session. Finally, we employ a pipeline method that leverages loop pat-
tern features and query request frequency to distinguish the robotic and
organic SPARQL queries. Differing from other machine learning based
methods, the proposed method can identify the query types accurately
without labelled data. We conduct extensive experiments on six real-
world SPARQL query log datasets. The results demonstrate that our
approach can distinguish robotic and organic queries effectively and only
need 7.63 × 10−4 s on average to process a query.

Keywords: SPARQL · Session search · Query classification

1 Introduction

With the rapid development of Semantic Web technologies, more and more
data are published as knowledge graphs in Resource Description Framework
(RDF) [11] triple form (subject, predicate, object). SPARQL [9], as one of
the most widely used query languages for accessing knowledge graphs, has
become the de-facto standard in this context. Currently, there are approximately
c© Springer Nature Switzerland AG 2020
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1.5 × 1011 RDF triples from different domains1 that can be explored by 557
SPARQL endpoints on the Web2. As a result, numerous SPARQL query logs
are generated every day and have recently become available for researchers to
discover user interests, understand query intentions, and model search behav-
iors [15,17].

Motivations: Conducting extensive analysis of massive SPARQL logs is chal-
lenging. One of the main problems is that there is a significant portion of queries
to SPARQL endpoints that are robotic queries. Robotic queries are usually gen-
erated and issued by automated scripts or programs for index size inferring,
data crawling, or malicious attacking, while organic queries imply the real infor-
mation need of human users. Raghuveer [15] pointed out that 90% of queries
in USEWOD dataset [3] are requested by less than 2% no-human users. Sim-
ilarly, in DBpedia3 SPARQL query log dataset, 90% queries are provided by
only 0.4% automated software programs. It indicates that robotic queries dom-
inate organic ones in terms of volume and query load. Therefore, it is crucial to
pre-process query logs by detecting and separating robotic queries from organic
queries before diving into deep analysis works.

Most of existing methods [4,15] on distinguishing between robotic and
organic query are mainly based on agent names recorded in SPARQL logs [4,15]
and query request frequency [15]. However, each of them has disadvantages.
For agent names, it is simple and effective to select organic queries from trusted
agents, but the trusted agent list needs to be manually specified and is not always
available. Following the specification of Apache’s log format4, agent names will
be recorded on 400 error and 501 error only. Besides, smart crawlers can fake
agent names by adding them to the request header. For query request frequency,
how to determine an appropriate threshold is annoying. Therefore, recognizing
the different types of queries only by the agent name or frequency is not enough.
Moreover, several machine learning based methods [10,19] have been proposed
to detect robotic queries in conventional search engines. However, they rely on
user demography features and sufficient labelled training data, which are usually
missing in SPARQL search scenarios.

Solutions: Given the above observations, in this paper, we propose a framework
to classify robotic and organic queries by detecting features of robotic queries in
SPARQL session-level. Specifically, we organize sequences of queries as sessions
which are defined considering the time and semantic constraints. Then, according
to three types of loop patterns that distribute in robotics queries, i.e., single intra
loop pattern, the sequence of intra loop pattern, and inter loop pattern, we design
algorithms to detect each pattern. Our loop detection algorithm is a training-free
process which focuses on detecting characteristic of robotic queries and has high
efficiency with a complexity of O(nlogn) where n presents the session length.

1 http://linkeddata.org/.
2 https://sparqles.ai.wu.ac.at/availability.
3 https://wiki.dbpedia.org/.
4 http://httpd.apache.org/docs/current/mod/mod log config.html.

http://linkeddata.org/
https://sparqles.ai.wu.ac.at/availability
https://wiki.dbpedia.org/
http://httpd.apache.org/docs/current/mod/mod_log_config.html
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Finally, we implement a pipeline method that takes query request frequency
and loop pattern features into consideration to distinguish robotic and organic
queries. To guarantee the high precision for organic queries, a rule has been
specially set to relax the constraint of robotic queries, i.e., if one session that
comes from one user is detected with loop patterns, then all the sessions of
the same user will be classified into robotic queries. Moreover, our method can
provide the explanation for each identified query (i.e., filtered by frequency, or
the specific loop pattern).

Contributions: The contributions of this paper are summarized as follows:

– We propose an efficient and simple pipeline method in SPARQL session-level
to distinguish between organic and robotic queries.

– We design a new training-free algorithm that can accurately detect loop pat-
terns that is an important characteristic for robotic queries, with a complexity
of O(nlogn) where n is the session length.

– We conduct extensive experiments on six real-world SPARQL query log
datasets. The results indicate that our approach is effective and efficient.

Organization: The remainder of this paper is organized as follows. Sect. 2
presents basic SPARQL query log analysis. The details of our method (includ-
ing preliminary, loop pattern detection algorithm, and query classifying method)
are described in Sect. 3. In Sect. 4, we show experiments on real-world SPARQL
queries to demonstrate the effectiveness and efficiency of our method. Sect. 5
discusses related work. Finally, conclusions are presented in Sect. 6.

2 SPARQL Query Log Analysis

Before we design our query detection algorithm, we first collect real-world
SPARQL query logs and present basic analysis.

2.1 Datasets

We use data collected from six different SPARQL endpoints: affymetrix5, dbsnp6,
gendr7, goa8, linkedspl9, and linkedgeodata10. The first five datasets are a part
of Bio2Rdf [2] which is a bioinformatic RDF cloud. The linkedgeodata [20] makes
the information collected by the OpenStreetMap project [7] available as an RDF
knowledge graph. All these SPARQL logs have been modified into RDF format
like LSQ [18], which makes them easy to analyze.
5 http://affymetrix.bio2rdf.org/sparql.
6 http://dbsnp.bio2rdf.org/sparql.
7 http://gendr.bio2rdf.org/sparql.
8 http://goa.bio2rdf.org/sparql.
9 http://linkedspl.bio2rdf.org/sparql.

10 http://linkedgeodata.org/sparql.

http://affymetrix.bio2rdf.org/sparql
http://dbsnp.bio2rdf.org/sparql
http://gendr.bio2rdf.org/sparql
http://goa.bio2rdf.org/sparql
http://linkedspl.bio2rdf.org/sparql
http://linkedgeodata.org/sparql
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Table 1. Statistics of SPARQL query logs.

Dataset Queries Executions Users Begin time End time

affymetrix 618,796/630,499 1,782,776/1,818,020 1,159 2013-05-05 2015-09-18

dbsnp 545,184/555,971 1,522,035/1,554,162 274 2014-05-23 2015-09-18

gendr 564,158/565,133 1,369,325/1,377,113 520 2014-01-16 2015-09-18

goa 630,934/638,570 2,345,460/2,377,718 1,190 2013-05-05 2015-09-18

linkedgeodata 651,251/667,856 1,586,660/1,607,821 26,211 2015-11-22 2016-11-20

linkedspl 436,292/436,394 756,806/757,010 107 2014-07-24 2015-09-18

In our collected data, every SPARQL query and execution is identified by a
unique id. One query can have multiple executions. We recognize different users
by their encrypted IP address. The basic information about the datasets in this
paper can be found in Tabble 1. The queries column indicates the number of
queries without parse error and the number of all the queries. The executions
column presents executions without parse error and the number of all the exe-
cutions. We also list the number of users and the time interval of the data.

2.2 Preliminary Analysis

We perform preliminary analysis about query distributions over users and time
span, as well as query template repetitions.

Distribution of Queries Executed by Users: As mentioned above, many
prior works [15,18] have noticed that most SPARQL queries are provided by few
no-human users, and we also find the similar phenomenon in our data. We first
group queries by users and then sort users by the number of queries they execute.
Then we calculate how many users contribute to 95% executions at least. Results
can be found in Table 2. In terms of the number of executions, 95% executions
are contributed by very few users (less than 7%) in all the datasets, and less
than 0.5% in the sum of all datasets.

Table 2. 95% executions are contributed by α% users.

Dataset affymetrix dbsnp gendr goa linkedspl linkedgeodata all

α 1.47 3.65 1.54 1.60 1.87 6.80 0.40

Table 3. The percentage (β%) of unique templates

Dataset affymetrix dbsnp gendr goa linkedspl linkedgeodata all

β 0.25 0.28 0.16 0.20 0.67 0.19 0.28
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Fig. 1. Distributions of the number of submitted queries x and time span t of the sub-
mitted queries for every user. The X-axis indicates different intervals about the number
of submitted queries, Y-axis means how many users are in this interval. Different colors
in the bar mean different time spans of these users.

Distributions of Queries, Users, and Time Span Together: We associate
users with the number of queries they submit and the time span of these sub-
mitted queries for each user, as illustrated in Fig. 1. In terms of the number of
users, most users execute 1–80 queries within 1 h.
Query Template Repetition: As mentioned by Raghuveer [15], robotic
queries tend to use fixed query templates. We extract the query template for
every query in our data. We match the extracted query templates to calculate the
percentage of unique templates over all queries, which means that the lower the
number is, the more repetitions of templates are in queries. The query templates
are extracted by replacing IRI, variable and literal with IRI , VAR , LIT
respectively like [15]. We calculate the similarity between two templates based
on string edit distance by fuzzywuzzy11. The query template repetition results
of six datasets are reported in Table 3. We find that the percentage of unique
templates behind queries is less than 0.7%. For all the data sets except linked-
geodata, the number of unique templates is about 0.3% of the number of all
queries. The results indicate that the large repetitive query templates exist in
real-world queries.

3 Our Method

In this section, we present the definition of SPARQL query session based on time
and semantic constraints, as well as descriptions of three loop patterns, which
are important features of robotic queries and characterized by the distribution of
query templates in a given SPARQL query session. Then, we design a loop pat-
tern detection algorithm to capture the loop features of robotic queries. Finally,
we implement a pipeline method that leverages query request frequency and loop
pattern features to solve the organic and robotic query identifying problem.
11 https://pypi.org/project/fuzzywuzzy/.

https://pypi.org/project/fuzzywuzzy/
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3.1 Preliminaries

Definition 1. Term(q): term set of one query. All variables and specific
terms ( i.e. RDF IRIs) used in the query are included in the term set.

Definition 2. Session. Considering a sequence of queries q1, q2, q3 · · · qn12,
which is ordered by time and executed by one user. We define a SPARQL query
sequence as a session if it satisfies the following two constraints:

– If we use time(q) to represent the time when query q is executed, this sequence
of queries satisfies time(qn) − time(q1) < time threshold.

– For any continuous query pair (qi, qi+1) in this sequence, it satisfies term(qi)∩
term(qi+1) �= ∅.
In this paper, we set time threshold to 1 h. The reason why we include

variables in the term set is that users usually do not change variable names
they use in a query. If two continuous queries executed by one user share one
variable, we can infer that two queries have some potential correlations and
should be included in the same session. Next, we introduce three types of loop
patterns in the SPARQL session-level.

Single Intra Loop Pattern: Robotic queries often come from a loop in auto-
mated scripts or programs trying to collect enough information to satisfy their
uses. In these sessions, the structure of queries remains the same, but variables,
literals, or IRIs are changing. (1) In some cases, machines want to collect all
the information about one specified subject, then in queries, only predicates are
changing as shown in below Example 1. (2) For cases in which machines want to
find out the same information shared by some subjects, the subjects are changing,
as shown in Example 2. (3) If a machine wants to collect the subjects with certain
types or values, then only objects are changing (see Example 3). (4) There are
also cases in which the numeric values in SPARQL constraint operators FILTER,
OFFSET and LIMIT and the string values in REGEX functions are changing.

Example1: predicate change
{ ?s <http://bio2rdf.org/affymetrix_vocabulary:x-flybase> ?o}
{ ?s <http://bio2rdf.org/affymetrix_vocabulary:x-omim> ?o }

Example2: subject change

{<http://linkedgeodata.org/triplify/node2957398896> rdfs:label ?label}

{<http://linkedgeodata.org/triplify/node1885439658> rdfs:label ?label}

Example3: object changing

{?item rdf:type <http://www.openlinksw.com/schemas/rdfs/TechArticle#this>}

{?item rdf:type <http://wordnet.okfn.gr/resource/synset-noun-2> }

12 We only consider queries without parse errors and merge the same queries in adjacent
positions. For instance, a sequence [0, 1, 1, 1, 2] (in which 0, 1, 2 means the query id)
can be processed to [0, 1, 2].
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All the cases described above remain the structure of the original SPARQL
query and change one or more variables, IRIs, and literal values. This is to say,
the query templates behind queries in this kind of loop are the same. This is the
so-called single intra loop pattern. If we use 0 to represent the template index,
‘+’ means appearing one or more times, then the single intra loop pattern can
be expressed by [0+].

Sequence of Intra Loop: In our dataset, excepting the single intra loop intro-
duced above, we also notice there are sequences of intra loops. This type of loop
pattern shows up when, for example, the machine gets one target attribute for all
the subjects, then queries for another attribute. If we use numbers to represent
template index, ‘+’ means appearing one or more times, then this loop pattern
can be expressed by [0 + 1 + · · · ].

Inter Loop Pattern: Another type of loop pattern is inter loop pattern, which
is used, for instance, to query all the features for one subject, then change to
another subject. Using the same method as above, inter loop pattern can be
expressed by [(01 · · · )+]. Notice 0,1 here can be a single query or a intra loop.

3.2 Loop Pattern Detection Algorithm

In this section, we introduce our loop pattern detection algorithm, as shown in
Fig. 2. In a nutshell, the algorithm we implement contains the following steps:

– Step1: Generate templates, we organize the queries as sessions (Such as
QuerySeq in Fig. 2) defined in Sect. 3.1, and replace each query in the orig-
inal session with its corresponding template index to generate a sequence of
template index.

– Step2: Merge the same items in adjacent positions, we merge the
continuous same items and generate a sequence of template index without
repetitions in adjacent positions (i.e. TmpltSeqWoRep). An example of this
step is shown in Fig. 2.

– Step3: Is it a single intra loop? , we detect a single intra loop pattern
which can be expressed as [0+]. Therefore, if TmpltSeqWoRep only contains
one template index, then this session has intra loop pattern.

– Step4: Is it a sequence of intra loop? , we detect the sequences of intra
loop which have the order like [0 + 1 + · · · ]. We recognize such pattern by
calculating the percentage of len(TmpltSeqWoRep) and len(QuerySeq) and
regard sessions with this value lower than thre1 as sessions with sequence of
intra loop patterns. We design this step because if merging the same items
in adjacent positions can let the length of the session shrink to lower than a
threshold, there must be so many repetitions in adjacent positions. The set
of thre1 is provided in Sect. 3.2.

– Step5: Is it a inter loop, we detect inter loops which has the pattern like
[(01)+]. Details about this function can be found in Inter Loop Detection
section below.
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Step4:

Template ID:
001100111220012

0 0 1 1 0 0 1 1 1 2 2 0 0 1 2Template ID:

TmpltSeq
WoRep: 0 - 1 - 0 - 1 - - 2 - 0 - 1 2

Step3: 

Yes
Return 

No

Yes
Return 

No

Return  
Yes

Return no 
pattern exists

No

QuerySeq
q1~q15

Original  
Session

Step1:
Generate templates

Step2:
Merge the same items in adjacent positions

Step5: 

Fig. 2. Overview of loop pattern detection algorithm.

If a session contains one of the patterns described above, then we think
queries of this session can be classified into robotic queries. All the thresholds
mentioned in Algorithms are determined by experiments in Thresholds Setting
section below.

Inter Loop Detection: As described in Sect. 3.1, the inter loop pattern can
be expressed by [(01...)+]. We detect this pattern by calculating the maximum
subsequence which loops over the entire session. We use a Queue to store this
subsequence. A detailed example is provided by Fig. 3. Scanning the input
(TmpltSeqWoRep) from left to right, add the item that do not exist in Queue
into Queue (step1–2 in Fig. 3). For items that are already in Queue, the subse-
quence beginning from a specific item in TmpltSeqWoRep should be matched
against subsequence in Queue. The subsequence can match over the sequence
in Queue from the beginning (step3–4 and step6–8) or the middle. Also, Queue
can be extended like step5. Notice that Fig. 3 is only the first step of Detect
inter loop function. The percentage of len(Queue) and len(QuerySeq), presents
in what extent intra loop pattern exists. Therefore, if this value is lower than
thre2, then we think a inter loop pattern exists in this session.

Thresholds Setting: In order to find 2 thresholds mentioned in Sect. 3.2,
we extract 3, 000 sessions in all the data randomly to find different fea-
tures in sessions with different lengths. We use len ori, len1, len2 to indicate
len(QuerySeq), len(TmpltSeqWoRep), len(Queue) in the following sections.
len ori, is just the length of original session; len1 means the length of session
after removing the continuous same template index; len2 is the length of max-
imum subsequence which appears in a session, corresponding to the length of
Queue in Fig. 3. We consider three kinds of features:
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Fig. 3. An example of inter loop detection

(a) len1/len ori (b) len2/len ori (c) len2/len1

Fig. 4. Distribution of len1/len ori, len2/len ori and len2/len1.

– Distribution of len1/len ori in sessions with different lengths, which can
present the distribution of intra loop, both single intra loop and sequence
intra loop pattern.

– Distribution of len2/len ori in sessions with different lengths, which can
present the distribution of intra loop and inter loop pattern.

– Distribution of len2/len1 in sessions with different lengths, which can
present the distribution of inter loop, because len2 is computed based on
TmpltIdxWoRep.

The Distribution of three features can be seen in Fig. 4. In terms of
len1/len ori, sessions with lengths more than 100 are almost 0, which indi-
cates there are lots of intra loops. On the contrary, in shorter sessions with
lengths less than 100, distribution of len1/len ori is different. The turning point
of len1/len ori in Fig. 4a is about 0.1, therefore, we set thre1 to 0.1. Using the
same method, according to Fig. 4b, we set thre2 to 0.1.



Characterizing Robotic and Organic Query in SPARQL Search Sessions 279

(a) affymetrix (b) dbsnp

(c) gendr (d) goa

Fig. 5. Loop pattern distribution in affymertrix, dbsnp, gendr and goa.

Comparing three figures in Fig. 4, we can conclude that most of the sessions
with lengths longer than 100 contain intra loop patterns. In sessions with lengths
of 100–500, there are a few inter loop patterns existing.

Complexity: Considering the process in Fig. 2, assuming that the length of
the original session is n, step3 and step4 have the complexity of constant. The
complexity of step2 is linear, and the complexity for step1 and step5 which con-
tains the operation of finding an item in an ordered list is O(nlogn). Therefore,
the complexity of our loop pattern detection algorithm is O(nlogn).

3.3 Robotic and Organic Query Classification Pipeline Method

We design a pipeline method to classify robotic and organic queries by leveraging
query request frequency and loop patterns, which contains the following steps:

1) Frequency Test: For a query sequence ordered by time and generated by
one user, we check the query request frequency first. For every query in this
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(a) linkedgeodata (b) linkedspl

Fig. 6. Loop pattern distribution in linkedgeodata and linkedspl.

sequence, we create a time window in 30 min and if the number of queries
in this window is more than 30, we infer the query request frequency of this
sequence is too high and all the queries generated by this user are detected
as robotic queries.

2) Session Generation: We organize query sequences as sessions following the
definition we introduce in Sect. 3.1.

3) Loop Pattern Detection Algorithm: Using algorithm described in
Sect. 3.2, we detect loop patterns based on SPARQL query sessions.

Considering the number of organic queries is very small, we think the recall of
robotic query classification is more important. Therefore, we set a rule: if one
of the sessions of one user can be detected as a loop pattern, all the queries of
the same user will be classified into robotic queries. Note that, the agent name
constraint can also be added into this pipeline before the Frequency Test. Usually,
some browser-related agent names are selected as a sign of organic queries.

4 Experiments

To scrutinize the effectiveness and efficiency of the proposed method, We con-
duct experiments on six real-world datasets. We first evaluate the loop pattern
detection algorithm and its average runtime. Then, we validate the effectiveness
of our pipeline method to classify robotic and organic queries, as well as the
efficiency for a query and a session.

4.1 Loop Pattern Detection

We detect three loop patterns mentioned in Sect. 3.1 using our loop pattern
detection algorithm. Results shown in Fig. 5 and Fig. 6 indicate our algorithm
can recognize all the sessions with lengths more than 1,000 in 5/6 datasets and
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Fig. 7. Query Request Time (UTC) distribution of the linkedgeodata.

most sessions with lengths of 80–1,000. For dbsnp, gendr, and linkedspl, there
are loop patterns distributed in sessions with lengths of 50–80.

Also, in different datasets, the distribution of different patterns is a little
different. The most common loop pattern in all the datasets is the single intra
loop pattern. The second common loop pattern is the sequence of intra loop
pattern, which appears in dbsnp in particular. Besides, in linkedgeodata, there is
a considerable number of inter loop patterns. Most sessions with lengths of more
than 80 can be detected, which illustrates our algorithm can capture features
of robotic queries. For the efficiency, experiments on linkedspl dataset show our
algorithm can process a query in 2.37×10−4 s, and a session in 0.001 s on average.

4.2 Robotic and Organic Query Classification

Our pipeline method utilizes the query request frequency and loop patterns to
identify robotic and organic queries. The classification results are reported in
Table 4. We also list the number of robotic queries filtered by different con-
straints. Query request frequency can filter out the most robotic queries and
our Loop Pattern Detection Algorithm can filter out a considerable number of
robotic queries. Even though the number of queries filtered by loop pattern
detection is smaller than the number of queries filtered by frequency, it is still
a fairly big number considering the number of organic queries. Taking gendr as
an example, the overall number of organic queries is 1262, but the number of
queries filter by loop pattern is 1214, which will disturb analysis work if they
are mixed up.
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Table 4. Classification results.

Dataset Robotic
queries count

Organic
queries count

Robotic queries
filtered by loop

Robotic queries
filtered by freq

affymetrix 990,684 7,659 1,108 989,576

dbsnp 1,191,001 2,146 55 1,190,946

gendr 981,549 1,262 1,214 980,335

goa 1,430,506 1,827 624 1,429,882

linkedspl 745,810 1,230 376 745,434

linkedgeodata 1,480,573 18,380 10,160 1,470,413

Fig. 8. Query Request Time (UTC) distribution of gendr.

Furthermore, considering there is no ground truth in robotic and organic
query classification tasks, we visualize the distribution of queries requested to
endpoints at different times within one day and use the difference of distribu-
tions in robotic and organic queries to evaluate the effectiveness of our methods.
Results can be seen in Fig. 7 and Fig. 8. We only show two canonical distributions
here. The rest datasets are similar to these two distributions. The distributions
in both linkedgeodata and gendr for organic queries follow a strong daily rhythm.
Like [4], with most activities happening during the European and American day
and evening. This indicates a direct human involvement. For robotic queries,
most of them are uniformly distributed. An interesting thing here is that, in
1:00–3:00 in gendr, we check queries in this time interval and find most of the
queries are very likely to come from an automated script that examines the
availability of endpoint every day. These kinds of queries are hard to remove for
two reasons: 1) They do not have a high request frequency. 2) They do have
diversity in the session-level. But we can notice their existence by the visual-
ization we present here, and we can remove such queries manually. Besides, the
experiment shows that our pipeline method can process a query in 7.63× 10−4 s
and a query sequence from one user in 5.33 s on average.
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5 Related Work

SPARQL Log Analysis: SPARQL log analysis can provide rich information
in many aspects. Many prior works [1,8,13,14,21] have focused on the analysis
of SPARQL query logs. They analyze SPARQL queries from statistical features
(i.e. occurrences of triple patterns), shape related features (i.e. occurrences of
SPARQL queries with a shape of tree), etc. However, these works mainly analyze
SPARQL queries in isolation. Features between queries have not been fully ana-
lyzed. Currently, similarity between queries in a query sequence which is from
the same user and ordered by time (in [15], this sequence is called as session)
has been noticed by [5,14,15]. The similarity feature has been utilized in query
augmentation based on the analysis of previous (historic) queries [12,16,23].
In [16], authors define session based on the definition of [15] but add a 1-h time
window constraint. Our work moves onward by adding a semantic constraint on
the definition of session. Raghuveer [15] introduce intra and inter loop patterns
which are characteristics of robotic queries from the session viewpoint. Then,
they evaluate the prevalence of these patterns in USEWOD dataset [3] by loop
detection technique they design. However, the method they introduce is quite
simple and can not satisfy the need to distinguish between robotic and organic
queries. In light of this, we classify loop patterns more carefully and give a spe-
cific definition of these patterns. Furthermore, according to the features of each
pattern, we design an algorithm to detect loop patterns, which can be used in
the robotic and organic query classification scenario.

Robotic and Organic Query Classification: The need to distinguish
between machines and humans in SPARQL search is recognized by [4,15,17].
Rietveld et al. [17] find organic queries and robotic queries have very differ-
ent features. In [15], robotic queries are recognized by query request frequency
and the agent names. Bielefeldt et al. [4] are the first to introduce an idealised
view of organic and robotic queries. They separate wikidata [22] SPARQL query
logs into organic queries and robotic queries mainly by manually specified agent
lists. They have published this classified dataset. Based on this dataset, Bonifati
et al. [6] analyze different features of both queries. However, as we mentioned
above, distinguishing robotic and organic queries by agent names and query
request frequency has drawbacks. In this paper, we consider an important char-
acteristic, i.e., loop pattern, and design a pipeline method for robotic and organic
queries classification problem leveraging query request frequency and loop pat-
tern detection algorithm. Experiments on six real-world SPARQL query logs
indicate that our method is more effective and efficient.

6 Conclusion

In this paper, we propose a novel method to distinguish robotic and organic
queries based on SPARQL session-level query features. We first organize queries
as sessions. Then, we design an algorithm to detect loop patterns, which is
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an important characteristic of robotic queries. Furthermore, we implement a
pipeline method to separate robotic queries from organic queries by leveraging
query request frequency and loop patterns. Our method does not require user
demography features and sufficient labelled training data. The effectiveness and
efficiency of our method has been validated by experiments on six real-world
SPARQL query log datasets.
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Abstract. This paper works on a new task - Tail Entity Recognition and
Linking (TERL) for Knowledge Graphs (KG), i.e., recognizing ambigu-
ous entity mentions from the tails of some relational triples, and link-
ing these mentions to their corresponding KG entities. Although plenty
of work has been done on both entity recognition and entity linking,
the TERL problem in this specific scenario is untouched. In this paper,
we work towards the TERL problem by fully leveraging KG informa-
tion with two neural models for solving the two sub-problems, i.e., tail
entity recognition and tail entity linking respectively. We finally solve the
TERL problem end-to-end by proposing a joint learning mechanism with
the two proposed neural models, which could further improve both tail
entity recognition and linking results. To the best of our knowledge, this
is the first effort working towards TERL for KG. Our empirical study
conducted on real-world datasets shows that our models can effectively
expand KG and improve the quality of KG.

Keywords: Tail Entity Recognition and Linking · Infobox Linking ·
Knowledge Graph

1 Introduction

Nowadays, Knowledge Graphs (KG) has become the most popular way to store
factual knowledge in the form of triples (head, predicate, tail). While in a rela-
tional triple head and tail denote two entities in a relation predicate, in an
attribute triple tail is the value of an attribute predicate for an entity head.
In recent years, KG have been successfully applied to a wide variety of applica-
tions including semantic search [4], question answering [22], and recommendation
systems [28] etc.
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Fig. 1. Example triples requiring tail entity recognition and linking

Despite their usefulness and popularity, KG are often incomplete and noisy
due to the unclean and incomplete data sources employed at the KG construction
stage. While most existing efforts are focused on relation prediction [25] and
entity typing [15] for KG, this paper solely pays attention to recognizing entity
mentions from the tail of some triples and linking them to their corresponding
KG entities. As the examples shown in Fig. 1, in these triples, the predicate is
a relation, but the tail appears just as a plain string, where one or more entity
mentions are unrecognized and unlinked to their corresponding KG entities.
For example, the “Starring” of “The Forbidden” is “Jackie Chan Jet Li”, but
“Jackie Chan Jet Li” is a plain string. The two entity mentions “Jackie Chan”
and “Jet Li” are not detected and linked to their corresponding entities in KG.
This kind of phenomenon widely exists in manually-constructed KG and KG
that are generated from encyclopedia’s infobox [18] such as DBPedia [1] and
Yago [2]. According to our sampling statistics on BaiduBaike [21], among 20
millions relational triples extracted from 16 millions entities’ infobox, more than
12 millions triples have their tail entity mentions unrecognized and unlinked to
the corresponding KG entities. Therefore, it is crucial to perform Tail Entity
Recognition and Linking (TERL) for these triples.

Generally, two nontrivial challenging sub-problems in TERL should be tack-
led: one is to identify all the hidden entity mentions that might be mixed with
each other from the tails of triples, the other is to link these entity mentions to
their corresponding KG entities. Although plenty of work has been done on both
Named Entity Recognition (NER) [6,19] and Entity Linking (EL) [5,11,26], the
two problems are mainly studied on document-level or sentence-level. But the
texts in TERL are even shorter, i.e., phrase-level, which means the entity men-
tions has much less textual context to be leveraged in TERL. Thus, traditional
NER and EL approaches could hardly be applied successfully on TERL.

Fortunately, we have plenty of KG information about the triple and the
candidate entities of the mentions that could be leveraged. There is also some
pioneer work conducted on the second challenge by addressing a similar problem
called infobox linking [18], which aims at linking entity mentions in the infobox
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of encyclopedias. Existing infobox linking algorithms can be roughly put into
two categories: surface matching [7,23] and relatedness ranking [10,18]. Surface
matching only relies on simple string matching for entity linking. Relatedness
ranking methods conduct some hand-craft features to characterize the related-
ness between the candidate entity and the entity mentions, which do not take
full advantage of KG information. In addition, without considering the recogni-
tion of entity mentions from the tails of the triples, infobox linking task is just
a sub-problem of TERL.

In this paper, we work towards the TERL problem by fully leveraging KG
information with a deep neural network method. To solve the first challenge of
TERL, i.e., tail entity recognition, we view it as a word sequence labeling prob-
lem. The tail entity recognition result is not only decided by the textual context
within the tail element, but also the relation in the triple. An entity mention
may have multiple aspects, and different relations focus on different aspects of
entity mentions. Therefore, we innovatively propose a Relation Projection layer
on top of BiLSTM layer [13] to extract some relation features, and the condi-
tional random fields (CRFs) [16] are used as the last layer, to predict the label
of each word and model sequence label dependencies. For the second challenge,
different from the existing approaches on infobox linking above, we propose to
learn embedding vectors for entity mentions and KG entities based on the tags
in KG. Particularly, we propose a concept of relation tags and considering each
tags has different importance to entity mention and candidate entities, we intro-
duce attention mechanism here to obtain mention and entities representations.
Then, we calculate the similarity scores between an entity mention representa-
tion and each of its candidate KG entity representation. Finally, we choose the
most similar mention-entity pair as the linking result.

However, if we tackle the two sub-tasks separately, the relatedness between
the two sub-tasks is not employed, and the errors generated in the tail entity
recognition stage would propagate to tail entity linking. Therefore, we propose to
solve the TERL problem in an end-to-end manner by jointly learning the above
two models for tail entity recognition and tail entity linking. To achieve this, we
apply a sharing mechanism for multi-task training using BiLstm-Projection lay-
ers as a shared feature extractor. In this way, we could leverage their relatedness
and increase the correlation of the tail entity recognition module and the tail
entity linking module.

We summarize our contributions as follows:

– To the best of our knowledge, this is the first effort working towards Tail
Entity Recognition and Linking (TERL) for KG.

– We propose neural models for the two sub-problems of TERL, i.e., entity
mentions recognition and entity linking for the tails of triples respectively.

– We finally solve the TERL problem end-to-end by proposing a joint learning
mechanism for the two proposed neural models, which could further improve
both entity mentions recognition and entity linking results.

– Our empirical study conducted on real-world datasets demonstrates that our
model outperforms state-of-the-art approaches on the two sub-problems of
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TERL, i.e. entity mentions recognition and entity linking for the tails of
triples respectively.

Roadmap: The rest of the paper is organized as follows. We cover the related
work in Sect. 2 and then formally define the problem in Sect. 3. After introducing
our models in Sect. 4, we present our empirical study in Sect. 5. We conclude the
paper in Sect. 6.

2 Related Work

In this section, we firstly present the existing work on Named Entity Recognition
(NER) and Entity Linking (EL) respectively, and then introduce some recent
work on Infobox Linking.

2.1 Named Entity Recognition (NER)

NER is a task that seeks to locate and classify named entities in unstruc-
tured texts. The majority of the existing NER systems treat the task as a
word sequence labeling problem and model it using conditional random fields
(CRFs) [16] on top of hand-engineered features or, more recently, using BiL-
stm [17,20] capable of learning hidden lexical and syntactic features. In addi-
tion, NER systems have been achieving state-of-the-art results by using word
contextual embeddings, obtained with language models [9].

One sub-problem in TERL can also be taken as a special kind of NER
problem. Compared to the existing NER problems which are mainly studied
on document-level or sentence-level, the NER problem in TERL is more chal-
lenging given that the texts in TERL are even shorter, which means the entity
mentions lack enough textual context information in TERL.

2.2 Entity Linking (EL)

EL is the task of associating a specific textual mention of an entity in a given
document with a large target catalog of entities in KG. Current approaches to EL
make extensive use of deep neural networks and distributed representations [12,
24,26], which have achieved state-of-art results where context-aware word, span
and entity embeddings, together with neural similarity functions, are essential
in these frameworks. These methods assume that the entity mentions have been
given, which ignore the important dependency between NER and EL.

2.3 Infobox Linking

Infobox linking is similar to TERL which considers the tail entity mention has
been detected. Infobox Linking aims at linking entity mentions to their corre-
sponding KG entities. To address this problem, some existing methods have been
proposed, including surface name matching [7] and relatedness ranking [10,18].
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Surface Matching. This kind of methods [7] are simply based on string match-
ing without using KG information and entity linking techniques. They extract
values from infobox directly and use string matching to find the entities which
should be linked. In specific, if there exists an entity name exactly matched with
the infobox value, then the value will be replaced by the link to the matched
entity. However, the ambiguity of entity name and the inconsistency of surface
name make this method inaccurate.

Relatedness Ranking. In order to take advantage of KG information, some
approaches based on machine learning models have been proposed. [29] propose
an infobox linking method by designing seven features for candidate entities and
then exploit a logistic regression model to determine the relevance of infobox’s
value and candidate entity. [18] extend the features set used in the above method
and propose a boosting-based approach using GBDT and logistic regression to
increase the reliability of the proposed model.

3 Problem Definition

A typical KG consists of a number of facts, usually in the form of triples denoted
as (head, predicate, tail), where head is an entity, tail can be either another entity
or an attribute, and head entity links to tail by predicate. If the tail of the triple is
an entity, we call this triple as a Relation Triple, otherwise we call it an Attribute
Triple.

A widely existing problem to KG constructed manually and KG generated
from encyclopedia’s infobox is that many relation triples have their tails appear
just as plain strings, where one or more entity mentions are unrecognized and
unlinked to their corresponding KG entities. To solve this problem, we propose a
new task - Tail Entity Recognition and Linking (TERL) for Knowledge Graphs
(KG), aiming at recognizing ambiguous entity mentions contained in the tail of
some relation triples, and linking these mentions to their corresponding entities
in KG. More formally, we define the TERL task as follows:

Definition 1. Tail Entity Recognition and Linking (TERL). For a rela-
tion triple (head,relation,tail string) in KG, where tail string is a plain string
without links, the task of TERL recognizes all the entity mentions M =
{m1,m2, ...} from the tail string. And then, for each mi ∈ M , TERL identi-
fies its corresponding candidate entity set C(mi) = {ei,1, ei,2, ...} from the KG,
and finally links mi to its corresponding entity ei,j ∈ C(mi).

4 Our Approach

Given a relation triple (head, relation, tail string), our model firstly uses
Relation-aware Tail Entity Recognition Module to detect entity mentions in
tail string. This part will be introduced in Sect. 4.1. Then the Tail Entity Link-
ing module links these mentions to their corresponding entities in KG, as will
be covered in Sect. 4.2. We further design a sharing mechanism to jointly learn
the two modules, which will be presented in Sect. 4.3.
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Fig. 2. The architecture of Our Tail Entity Recognition model

4.1 Relation-Aware Tail Entity Recognition

Given a relation triple (head, relation, tail string), this module aims at recog-
nizing all entity mentions from tail string, which can be modeled as a sequential
text labeling problem. Particularly, for an input tail string M with s character
{w1, w2, ..., ws}, where wi denotes the i-th character in M , our task is to assign
a label li to each character wi, where li ∈ {B, I,O,E}, where the labels B, I, E
represent the begin, middle, end words of an entity and the label O represents
the other words.

Figure 2 describes the architecture of our model for tail entity recognition.
Briefly, for each token in tail string, we use the pre-trained word embeddings [8]
to represent them, and then apply a Bi-LSTM layer to learn the semantics
among them. Apart from that, we design a Relation Projection layer to learn
token representations, which is followed by a CRF layer. Finally, we employ the
outputs of CRF layer to detect entity and the outputs of Relation Projection
to learn the shared mention embeddings for linking. More details are shown as
follows.

Relation-Aware Tokens Representation Learning. In this section, we
briefly introduce how to get the relation-aware representation of each token in
the input tail string. We feed the pre-trained word embedding of each token into
a bi-directional LSTM layer to learn hidden states. The forward and backward
outputs are concatenated to construct token representation:

hwi
= [

−→
hwi

;
←−
hwi

] (1)

where
−→
hwi

and
←−
hwi

denote the forward and backward hidden state of BiLSTM
layer.
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Fig. 3. Simple illustration of Relation Projection

The entity recognition results are decided not only by the textual context
within the tail string, but also the relation in the triples. For instance, given two
relation triples (William Shakespeare, Work, Romeo and Juliet) and (Romeo and
Juliet, Characters , Romeo and Juliet), the two tail string are same and an exist-
ing NER model may output one same results. However, considering the relation
in triples, the NER results should be different. If the relation is “Work”, the
whole string “Romeo and Juliet” is an entity mention. For the relation “Charac-
ters”, two entity mentions “Romeo” and “Juliet” should be detected. Thus, we
take the relation of triples into account. To achieve this, we innovatively propose
a Relation Projection layer to capture the hidden relation information. Particu-
larly, we design a Relation Projection (RP) Layer on top of the BiLSTM layer
to extract the hidden relation features. For each relation r, we set a projection
matrix Wr , which may project entity mentions from token space to relation
space. Figure 3 describes a simple illustration of Relation Projection. With the
mapping matrix, we define the projected of token as:

wr
i = hiWr (2)

where Wr is the projection matrix for relation r.

Entity Detection. Different common NER problem, TERL task only need
predict entity boundaries. Formally, given the tail string M with s words M =
{w1, w2, ..., ws}, and one entity Ei,j where it is composed by a continuous word
sequence (wi, wi+1, ..., wj). Specially, we tag the boundary word wi as “B” and
wj as “E”. The word inside entities assigned with label “I” and non-entity word
are assigned with “O” labels.

We recognize entity as shown in Fig. 2. For each token in tail string, we
predict a boundary label by feeding its relation-aware representation wr

i into a
ReLU activation function. Considering conditional Random Fields (CRFs) [16]
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always perform well in modeling sequence label dependencies (e.g., label “I”
must be after “B”), we use a CRF layer as the last layer.

Given a training set {(Mi, yi)}, the loss function in Tail Entity Recognition
is shown as follows:

LER = −
∑

i

log (p(y|M)) (3)

where p(y|M) is a family of conditional probability over all possible label
sequence y given M .

Apart from that, we also learn the shared entity mention representation in
this stage. We average the representation for each token within Ei,j to represent
the shared entity mention. The shared representation of entity mention Ei,j is
obtained as follows:

Ei,j =
1

j − i + 1

j∑

k=i

wr
k (4)

where wr
k is the relation-aware representation for the k-th token in sequence M .

If necessary, the shared mention representation will be sent into the Tail Entity
Linking module.

4.2 Relation Tags-Aided Mention and Entity Representation
Learning for Tail Entity Linking

Given a relation triple (head,relation,tail string), m is an entity mention con-
tained in tail string. This module links the entity mention m to its correspond-
ing entity in KG. The key of this task is getting appropriate representations of
entity mention and candidate entities.

Traditional entity linking makes mention representations aware of their local
context. In our task, however, contexts are not available to mentions, which hin-
ders us to gain more useful information from local contexts. Fortunately, there
exists a large number of tags in KG. To represent mention and candidate enti-
ties well, our method fully leverages tag information. Briefly, we collect relevant
tag information from KG and use attention mechanism to get mention repre-
sentations and candidate entity representations. Then we select the candidate
entity as the corresponding one, which has the most similar representation to
the mention representation (Fig. 4).

Mention Representation Using Attentive Relation Tags. In this part,
we propose a concept of Relation tags and explain how to get mention rep-
resentations. For a relation r, we construct a triple set tripler = {(S, r,O)}
from KG, where S is an entity set and O is another entity set. We do statistics
to each entity’s tags in the set O, and take the top k tags with the highest
frequency as the Relation tags of r, denoted as Tagr = {tagr1, tagr2, ..., tagrk}.
m is an entity mention contained in tail string. We organize m and Tagr as
a new sequence m Tagr = {m, tagr1, ..., tagrk}. Considering tags in the Rela-
tion tags should be paid different attentions by assigning different weights for
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Fig. 4. Our Tail Entity Linking Module Architecture shown for the triple (head,r,m)
and candidate entity ej .

contributing mention representation learning. For example, in a triple (“Rush
Hour(1998 film)”, “Starring”, “Jackie Chan”), the Relation tags of relation
“Starring” is {“Actor”,“Singer”, ...}. In common sense, the tag “Actor” has
greater effect on mention “Jackie Chan” than tag “Singer”. Based on this obser-
vation, the mention-aware tag representation tagm can be built using attention
mechanism [27]:

zsm = (WQEm )(WKtagr
s)

� (5)

αr
s =

exp(zsm)
∑k

s=1 exp(zsm)
(6)

tagm =
k∑

s=1

αr
s(WV tagr

s ) (7)

where matrix WQ , WK and WV are trainable parameters, tagr
s is the word

embedding of the s-th tag in the set Tagr. Em is the shared entity mention
embedding mentioned in Eq. 4. The final mention representation is generated by
concatenating the representation of m and tagm :

xm = [Em ; tagm ] (8)

Attention-Based Candidate Entity Representation. The candidate enti-
ties generation is mainly based on the string comparison of mentions and names
of entities in KG. To generate candidate entity set which contains possible enti-
ties, it is necessary to build a mention-entity dictionary D that contains a vast
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amount of information on the surface forms of entities, such as name variations,
abbreviations, aliases, etc.

Given a triple (head, r,m), the candidate entity set of m is denoted as C(m) =
{e0, e1, ..., en}, what we need to do is to learn the representations for each entity
in C(m). The method of achieving candidate entity representations is similar
to the way of learning mention representations. Considering that each tag of a
candidate entity ej contributes differently to the relation r. For instance, the
tag “Actor” is more important than the tag “Singer” to the relation “Starring”.
We introduce attention mechanism to tackle this problem. In details, we firstly
get the tags of entity ej from KG denoted as Tagej = {tag1, tag2..., tagn}, then
we use attention mechanism on Tagej and relation r, to get the relation-aware
representation erj :

zq = (W1r)(W2tag
ej
q )

�
(9)

αr
q =

exp(zq)∑n
q=1 exp(zq)

(10)

erj =
n∑

q=1

αr
q(W3tag

r
q) (11)

where matrix W1,W2 and W3 are trainable parameters. r is the word embedding
of relation r. tagej

q means the q-th tag embedding of candidate entity ej and αr
q

is the weight of tagej
q .

To merge some semantic information, we concatenate ej and erj . The final
representation of candidate entity ej is xj :

xej
= [ej ;erj ] (12)

where ej is word embedding of entity ej .

Entity Linking Score. We use cosine similarity to compute the final score
between mention representation xm and each candidate entity representation
xei

. Then we select the candidate entity ê with the highest score as the corre-
sponding entity in KG:

scorem = Cosine(xm ,Cm ) (13)

where xm is the mention representation of m and matrix Cm contains all the
candidate entity representations. The linking loss function is the cross entropy:

LEL = −
T∑

i=1

M(i)∑

m=1

y�
mlog(softmax(scorem )) (14)

where T is the total number of relational triple (head,relation,tail string) in
training data, and M(i) denotes the number of mention in i-th tail string. The
golden entity for mention m is represented by the one-hot vector y�

m.
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4.3 Joint Learning

It’s not a good choice to train Entity Recognition (ER) and Entity Linking (EL)
independently since the errors generated from ER can propagate to EL. That
is, the wrong ER decision will decrease the performance of the linking module.
Luckily, this problem can be avoided by proper context understanding (i.e. EL).

Therefore, we apply a joint learning strategy to learn these two parts jointly.
In details, we apply a parameter sharing mechanism for multi-task training using
BiLSTM and Relational Projection layers as shared feature extractor. Firstly
we get the shared mention representation (Eq. 4) from the extractor. Then the
shared mention representations will be propagated into EL module. Parameter
sharing greatly reduces the risk of overfitting and increases the correlation of ER
module and tail EL module. During the training phase, we feed the ground-truth
labels into ER module so that the EL module will be trained without affection
from incorrect entity recognition. The joint learning loss is then obtained by
summing the individual loss:

L = LER + LEL (15)

where LER and LEL denote the loss function for ER module and EL module,
respectively.

In addition, due to the fact ER module may detect some incorrect men-
tions that should not be linked. For instance, the incorrect mention “Romeo
and Juliet” has corresponding entity in KG but it should not be linked to KG.
This fact influences both ER and EL modules. In this case, we design another
loss function to improve the performance of joint learning model. The NNEL
(No-Need Entity Linking) loss is shown as follows:

LNNEL =
T∑

i=1

̂M(i)∑

m=1

max(score(m)) (16)

where the T is the total number of Relational Triple in training data, M̂(i)
denotes the number of entity mentions in i-th tail string which do not need to
be linked. The score(m) represents the cosine similarity scores between m and
candidate entity set C(m). So the final joint learning loss function is shown as
follows:

L = LER + LEL + LNNEL (17)

5 Experiments

5.1 Datasets and Metrics

We crawl entity articles from BaiduBaike [21] and HudongBaike [3] which contain
information including infoboxes, descriptions and tags. In order to obtain amount
of data without tremendous manual annotation efforts, we collect anchor texts
that contain hyperlink to the reference entity from infoboxes. Suppose that for
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Table 1. Comparison of ER results in the test set.

Methods Baidupedia Hudongpedia

Recall Precision F1 Recall Precsion F1

BiLstm-CRF (Huang et al.) 73.84% 84.56% 78.83% 72.63% 85.32% 78.46%

Bert case (Devlin et al.) 75.94% 89.19% 82.03% 75.71% 89.12% 81.86%

BiLstm-RT-CRF (Only NER) 86.93% 91.12% 88.97% 86.52% 90.68% 88.54%

Joint Learning model 89.48% 91.20% 90.34% 89.51% 91.08% 90.28%

Joint Learning model (+NNEL Loss) 89.38% 91.05% 90.20% 88.32% 90.79% 89.53%

an entity article e, its infobox has several relations, one relation value m is an
anchor text which is linked to an entity em. These elements construct a relation
triples denoted as (e, relation,m), and the corresponding entity of m in KG is em.
The rest candidate entities for m to construct negative examples in the way we
introduce in Sect. 4.2. To reduce manual cost, we simulate real KG data in which
one or more entity mentions included in tail element and create two datasets
using these relation triples from BaiduBaike and HudongBaike respectively. The
dataset1 (denoted as Baidupedia) includes 54000 triples and dataset2 (denoted
as Hudongpedia) includes 50000 triples.

As for the evaluation metrics, we use Recall, Precision and F1 to evaluate
the performance of the Tail Entity Recognition and like the existing state-of-
the-art infobox linking model [18], we use Precision to assess the performance
of the Tail Entity Linking task.

5.2 Baseline Methods

We compare our joint learning model with NER and infobox linking models sep-
arately on BaiduPedia and HudongPedia. We choose two state-of-the-art NER
models including BiLstm-CRF [14] and Bert-base [9], and some state-of-the-art
infobox linking models as baselines. The details of baseline infobox linking mod-
els are as follows. BoW Model [7] proposes a straightforward method which is to
compare the context of the mention and the description of candidate entities. LR
Ranking Model [29] convertes the ranking problem into a classification problem
and solves it using logistic regression. SVM Ranking Model [10] designs a svm
model which uses a max-margin loss to train the model. GBDT+LR Model [18]
extends the feature set used in LR Ranking Model and proposes a boosting-based
approach.

5.3 Results

Comparison with Individual Modules. TERL task considers one or more
entity mentions existing in tail string, which can be solved by joint learning
model in this paper. In order to prove the effectiveness of our joint learning
model on both tasks, we compare the joint learning model with popular NER
and Infobox Linking models separately. And to understand whether the joint
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learning approach is advantageous for NER and EL, we also compare the results
obtained by the same models when training with separate objectives.

1. Comparison with NER models. The comparison results for NER can be
found in Table 1. Our single BiLSTM-RT-CRF method surpasses all competi-
tors on NER by a large margin, at least 10% on Recall in both datasets. This
means our method can detect different entity mentions in a same tail string
depending the different relation in triple. It can be attributed to the Relation
Projection Layer which can capture the relation information well. Our joint
learning model achieves best performance on all metrics in that entity recog-
nition can benefit from tail entity linking and each wrong entity detection can
be avoided by proper context understanding. The results explains the relation
in triple and joint learning can influence entity detection in our scenario. The
performance on two datasets have no significant difference, which shows that
our model can achieve good results in different KG. The NNEL Loss does
not improve the performance in NER stage, because incorrect span may have
been captured in common joint learning model.

2. Comparison with EL models. In the EL case, in order to perform a fair
comparison, the mentions that are linked by the Tail Entity Linking system
correspond to the ones detected by the joint learning approach. We compare
our joint learning model with several state-of-the-art infobox linking models.
And to evaluate our joint learning model, we compare joint learning model
with individual linking module. The results can be observed in Table 2. The
joint learning model obviously increases the linking precision. In addition,
the Precision of Joint Learning model (+NNEL Loss) can reach 93.69%
in BaiduPedia and can reach 89.87% in Hudongpedia, which is much higher
than other models. The results show the NNEL loss has great influence on tail
entity linking task, and as expected, the NNEL Loss can reduce the number of
incorrect mentions that should not be linked. It is noticeable that the results
of these models on the two datasets perform a little difference on Precision,
which results from the following reasons. (1) Entities in the Baidupedia have
an average of 6 tags while entities in the Hudongpedia have 4 tags averagely.
Therefore, our model which based on entity tag information, performed better
on Baidupedia. (2) As mentioned in Sect. 2, these baselines extract features
from entity description that provides a concise summary of salient informa-
tion of entity with hyperlink. The entity description information are less in
Hudongpedia than in the Baidupedia. So, the final result of Hudongpedia is
not so good as that in the Baidupedia.

The results in Table 1 and Table 2 show that, as expected, Entity Recognition
could benefit from Infobox Linking and vice versa. This indicates that by lever-
aging the relatedness of the tasks, we can achieve better results. In addition, the
results prove the NNEL loss has significant influence on TERL task, especially
in the EL stage.
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Table 2. Comparison of EL results in the test set.

Methods BaiduPedia HudongPedia

Precision Precision

BoW Model (Chen et al.) 59.31% 61.28%

LR Ranking Model (Xu et al.) 82.12% 78.63%

SVM Ranking Model (Dredze et al.) 85.21% 80.72%

GBDT+LR Model (Li et al.) 88.39% 82.21%

Only Linking 89.96% 85.21%

Joint Learning model 90.99% 86.46%

Joint Learning model (+NNEL Loss) 93.69% 89.87%

6 Conclusions

In this paper, we work towards the TERL problem by fully leveraging KG infor-
mation with two neural models for solving the two sub-problems, i.e., tail entity
recognition and tail entity linking respectively. We propose an end-to-end frame-
work to solve the TERL problem by proposing a joint learning mechanism for the
two proposed neural models, which could further improve both entity recognition
and entity linking results. Our experiments on real-world datasets demonstrate
that our model performs much better than baseline models and can solve TERL
task which are not taken into account by other methods.
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Abstract. Natural Answer Generation (NAG), which generates natu-
ral answer sentences for the given question, has received much atten-
tion in recent years. Compared with traditional QA systems, NAG could
offer specific entities fluently and naturally, which is more user-friendly
in the real world. However, existing NAG systems usually utilize sim-
ple retrieval and embedding mechanism, which is hard to tackle com-
plex questions. They suffer issues containing knowledge insufficiency,
entity ambiguity, and especially poor expressiveness during generation.
To address these challenges, we propose an improved knowledge extractor
to retrieve supporting graphs from the knowledge base, and an extend-
ing graph transformer to encode the supporting graph, which consid-
ers global and variable information as well as the communication path
between entities. In this paper, we propose a framework called G-NAG,
including a knowledge extractor, an incorporating encoder, and an LSTM
generator. Experimental results on two complex QA datasets demon-
strate the efficiency of G-NAG compared with state-of-the-art NAG sys-
tems and transformer baselines.

Keywords: Question answering · Natural Answer Generation · Graph
transformer

1 Introduction

Natural Answer Generation (NAG), which devotes to providing fluent answers
in the form of natural language sentences, has received much attention in recent
years. Compared with traditional question answering (QA) systems that merely
offer accurate Answer Semantic Units (ASU) [10], NAG could satisfy users in
real-world scenarios where fluency is of strong demand.

Generally, the popular NAG framework consists of three modules, as shown in
Fig. 1-a. Knowledge extractor recognizes the topic entity and retrieves its related
triples from the underlying Knowledge Base (KB). After Knowledge encoder
representing these candidate triples and the question as two sequences, Gener-
ator could generate the natural answer with an attention mechanism. Existing
NAG systems have achieved some success focused on simple problems (one topic
entity), such as [6,10,27].
c© Springer Nature Switzerland AG 2020
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A: Yes , martial actor Jason Statham work with Paul Anderson in the film Death Race , as well as Olivier 
Megaton in Transporter 3 in 2008 . 

ASU
entities in 
question
other entities

a) Existing NAG systems b) G-NAG 
Knowledge 
extractor

Knowledge 
encoder

Bi-LSTM
Generator

Knowledge extractor

Extending graph 
transformer
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Q: Do you know the martial actor who appeared in Paul Anderson 's and Olivier Megaton 's film in the same year ?
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Fig. 1. Natural Answer Generation process of an example question.

However, there are still many non-trivial issues due to linguistic complexity
that the above systems do not perform well. (1) In Knowledge extractor. On
the one hand, existing NAG systems recognize one topic entity and retrieve its
one-hop neighbors related to the question. When a question contains more enti-
ties and multi-hop relations, they may leave out some critical entities. Take Q
in Fig. 1 as an example, the ASU Jason Statham should be retrieved through
2-hops from the mentioned entities in question so that it may be left by previ-
ous knowledge extractor with one-hop retrieval mechanism. On the other hand,
without considering the global structure in KB, the above systems do disam-
biguation before retrieving triples. Thus, they may choose irrelevant entities far
apart from others, such as Paul Thomas Anderson which may be confused with
the correct entity Paul W.S. Anderson but unrelated to the question in Fig. 1-a.
(2) In Knowledge encoder. Previous NAG systems encode triples as a sequence,
such as a list by LSTM [10,27] or key-value structure by Memory Network [6],
which is too simple to express complicated semantic information. For the same
example, triple-list or key-value could not represent the topological structure of
the supporting graph clearly, which is the key to generate answers logically.

We focus on these challenges above and propose some novel solutions. (1)
In Knowledge extractor, we consider to retrieve multi-hop triples around men-
tioned entities, such as 2-hops, as some may not appear in questions but useful for
answer generating. Since multi-hop retrieval may return a supporting graph with
much redundancy, we propose a simplifying method based on semantic similar-
ity, as shown in Fig. 1-b. Meanwhile, we solve entity ambiguity after retrieving
triples based on the global structure in KB to choose correct entities. (2) In
Knowledge encoder. Since graph transformer [13] is proposed to generate sum-
marization and achieve excellent performance, we employ an extending graph
transformer as encoder, which has more capacity to encode complicated pair-
wise relationships than the sequence structure. To fit the NAG problem, we
introduce the communication path and two extra vertices to capture global or
variable information, respectively (to be discussed in Sect. 2.3).
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In this paper, we propose a framework called G-NAG (Graph-based NAG) to
implement the generation process, which also consists of three modules, as shown
in Fig. 1-b. Compared with previous work, we enlarge the retrieval range before
disambiguation and then propose a simplifying strategy based on semantic simi-
larity in Knowledge extractor. Moreover, we replace the sequence encoder with a
graph transformer considering communication path as well as global and variate
vertices. Based on Wikimovie dataset [16] and DBpedia, we reconstruct a QA
dataset in movie domain aimed at multi-hop question answering. Experimental
results on the original Wikimovie and new dataset demonstrate the efficiency of
our model compared with state-of-the-art NAG systems and transformer base-
lines.

We summarize our main contributions of this paper as follow:

– We design a generation framework G-NAG, which generates natural and log-
ical answer based on KB. To our knowledge, it is the first framework that
aims at addressing complex NAG problem.

– We present a novel knowledge extractor which enlarges retrieval range before
disambiguation and simplifies triples based on semantic similarity to gain the
supporting graph.

– We propose an extending graph transformer to represent the supporting
graph, which considers the communication path and captures global or vari-
able information by extra vertices.

– We implement experiments on two datasets in the movie domain. The results
demonstrate that G-NAG performs better compared with existing NAG
approaches and transformer baselines, especially in complex natural answer
generation problems.

2 Methodology

In this section, we introduce the notations employed in this paper.

Basic Definition: We denote a given question as Q, and its accurate Answer
Semantic Units as ASU . There is only one type of ASU for each question, i.e.,
the ASU maybe two actors but not an actor and a writer. The generated natural
answer is denoted as A, and knowledge triples in KB are in the form 〈s, p, o〉,
where s,o are entity vertices (ent) and p is relation edge (rel).

Graph Definition: We define the initial graph by multi-hop retrieval as a inter-
connected graph set G = [Gi = (Vq, Vo, Ei)], where vertex v ∈ Vq is mentioned
in question, v ∈ Vo denotes other retrieved vertex, and Ei is a set of relation
edges that link vertices. After disambiguation and graph simplifying, the final
supporting graph is denoted as G. In encoding section, we convert G to an
unlabeled graph G′ = (V ′, P ′), where V ′ is a set of all vertices and P ′ is a
matrix describing communication path among vertices.
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2.1 Framework Overview

Our G-NAG framework consists of three modules: Knowledge Extractor, Incor-
porating Encoder, and Generator. We depict an overview with a concrete exam-
ple in Fig. 2.

In Knowledge Extractor: Given the question Q, G-NAG maps each entity
phrase to its candidate linking vertices v ∈ Vq in underlying KB. Allowing for
the ambiguity of phrase linking, k-hop neighbors of these v ∈ Vq are retrieved
from KB. These triples construct a large graph, which could be divided into
an inter-connected graph set G, as illustrated in Fig. 2 a-I. Then for disam-
biguation, we employ a cost-distance strategy as a-II. Further, G-NAG removes
redundant vertices and edges by semantic similarity to acquire a simplified sup-
porting graph G as shown in Fig. 2 a-III. In Incorporating Encoder: G-NAG
obtains the embedding of supporting graph and question through concatenating
a novel graph transformer (to be discussed in Sect. 2.3) and bi-LSTM, as shown
in Fig. 2-b. Specially, we consider the communication path between vertices-pair
in graph attention calculation. Before encoding, we convert the supporting graph
G to an unlabeled bipartite graph G′, which contains global and variate vertices
(to be discussed in Sect. 2.2).

Q: Do you know the martial actor who appeared in Paul Anderson 's and Olivier Megaton 's film in the same year ?
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Fig. 2. Natural Answer Generation process of an example question.

In Generator: G-NAG predicts output word wt at each time step t by gener-
ating from vocabulary or copying from supporting graph G and question Q via
a soft switch p. As illustrated in Fig. 2-c, token with underline is copied from
question text, and the colored token is from the graph, while other ordinary
words are generated from the vocabulary.

2.2 Knowledge Extractor

We propose an improved knowledge extractor in this section to provide a more
accurate supporting graph. Specifically, we enlarge the extraction range by multi-
hop retrieval before entity disambiguation, then solve the ambiguity based on the
global graph structure, and simplify the graph by semantic similarity eventually.
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In the offline phase, following a similar procedure to [25], G-NAG encodes the
underlying KB into a common low-dimensional vector space. We employ TransE,
which refers to that p of each triple is represented as translation operation from
head vertex s to tail vertex o. Take triple 〈s, p, o〉 as an example, o should be
the closest vertex of s + p, while semantically similar vertices should be closed
as well.

Multi-hop Retrieval
Given Q, we map each entity phrase enti to its candidate linking vertices v ∈ Vq

in KB, while a entity phrase ent1 may be matched more than one vertex as
a set, such as vent1 = [v1

i ] ⊆ Vq. Allowing for the ambiguity of phrase linking
temporarily, we retrieve k-hop neighbors of each linking vertex to construct a
large graph. As some linking vertices are far apart in KB, the large graph could
be divided into a graph set G = [Gi = (Vq, Vo, Ei)] where Gi are unconnected
to each other, Vq denotes linking vertices for entity phrase in question and Vo

denotes the other vertices retrieved. Factual questions usually have only a group
of core multi-hop relationships, that is, the distances between exact entities are
all within a fixed number of hops, so target entities are rarely distributed on two
completely different graphs Gi.

Entity Disambiguation
In this stage, G-NAG deals with the ambiguous vertices in Vq. To ensure the
integrity of the supporting graph, we remain at most M graphs in G with more
linking entity phrases (Assume n graphs cover all entity phrases and denote m
as a parameter). Then considering one of the remaining graphs Gi, we compute
its cost motivated by [25] formulated as follow:

M = max(m,n), CostGi
=

∑

(s,p,o)∈Gi

‖s + p − o‖22 (1)

Because of the cumulative effect of error, the candidate G with the minimum
cost could be selected with the strongest internal relevance.

Moreover, we propose a minimum-distance method to delete redundant link-
ing vertices in G for each entity phrase. Take vent1 = [v1, v2] in Fig. 3-a as an
example, we define the shortest path (number of edges) between v1 and each
vertex of vent2 as the minimum-distance between v1 and vent2. Then we rank
vertices v in the same ventj according to the minimum-distance sum of v and
other ventj . Further, we only keep the vertex with the minimum sum in each v.

Graph Simplifying
In this stage, G-NAG deletes redundant vertices in Vo. For each vertex v ∈ Vo

in graph, we keep it if there exists a communication path between two linking
vertices vi, vj ∈ Vq containing it. In other words, we remove v ∈ Vo only related
to one entity phrase, which means a weak correlation with Q. Here, we regard
two vertices as isomorphic if they share the same neighborhood and connect
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every common neighbor vertex with edges of the same relation. Then we merge
isomorphic vertices and concatenate their text attributions as one vertex.

G-NAG further deletes redundant vertices in Vo using aggregated semantic
similarities based on word embedding [9]. For this step, we only consider the
alternative vertex v ∈ Vo that could be removed without affecting the connectiv-
ity of the graph. Specifically, for each vertex, we concatenate triples containing
it as a word sequence T , then use Word2Vec [15] to compute string similarities
between T and question Q following [20]. Where, w represents a word of the
string, and the average is used as the aggregation functions. Finally, we keep the
top-k alternative vertices in Vo with a higher score.

Similarity(Q,T ) = Agg cos(wQ, wT ) (2)

Different from existing NAG systems, which match triples with the question
directly, G-NAG performs multi-hop retrieval in entity-level without considering
relation phrases, then simplifies the graph based on semantic similarity. This
strategy allows G-NAG to handle implicit relations, where predicates are missed
in question, more effectively.

In addition, we identify the wild-card, i.e., who, when or main type phrase,
i.e., actress in Fig. 1, in question text, which will be the text attribution of variate
vertex described in next section.

vg

vv

v1

v2

v1 v2

b) Graph Conversiona) Minimum-Distance

vent1

vent2

v1

c) Communication Path

communi 
cation path:

Fig. 3. Example of minimum distance, graph conversion and communication path

2.3 Incorporating Encoder

The encoder receives discrete inputs (question text and supporting graph defined
before) and encodes them into numerical representations jointly [3], to accom-
plish neural network feeding.

Graph Conversion
Inspired by [2,13], we convert the extracted graph to an unlabeled bipartite
graph. Specifically, we replace each relation edge with two vertices, where one
represents the forward direction of the relation and the other represents the
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reverse. The key difference with the above work is G-NAG introduces two extra
vertices vv, vg to capture effective information.

Specifically, global vertex connects to vertices v ∈ Vq mentioned in the ques-
tion to update the global state following the reasoning perspective as humans.
Besides, variate vertex connects to other retrieved vertices v ∈ Vo and global ver-
tex, where its text attribution is a wild-card, i.e., who, or ASU type recognized
by knowledge extractor, i.e., actor. Therefore, the variate vertex vv concerns the
other retrieved vertices v ∈ Vo except for these mentioned in question, while
global vertex vg mainly grasps the whole graph via mentioned vertices v ∈ Vq

and variate vertex vv.
As shown in Fig. 3-b, global vertex vg, which concentrates information via

two mentioned vertices and the variate vertex, could reach all vertices in G′.
Therefore, we initialize the decoder state using global vertex representation after
self-attention following [13,26]. Moreover, since the variate vertex has specific
text attribution, it focuses more on other involved vertices v ∈ Vo especially
ASU, which is of vital importance for the generation. The conversion result is
G′ = (V ′, P ′), where V ′ is a vertex set and P ′ is a matrix storing communication
path between every vertices-pair. Take vertices pair v1, v2 as an example in
Fig. 3-c, a sequence of vertex text attribution along the path from v1 to v2
expresses the communication path. Note we choose the shortest path between
vertices-pair (numbers of edges) and adopt embedding average when two or more
equal length paths exist.

Graph Transformer
In this section, the text attribution of vertices is embedded as V = [vi], vi ∈ Rd

in a dense continuous space using bi-LSTM described in the Question encoder
section, which is the input of graph transformer. Same as typical transformer,
each vertex has 3 vector representations q(query), k(key), v(value).

Our graph transformer maintains a similar architecture as that in [13], which
is proposed to generate summarization in the scientific domain. Compared with
summarization generation, there are two differences in our task that is also
challenges for encoding.

– Entities in supporting graph could be divided into mentioned vertices v ∈
Vq and other retrieved vertices v ∈ Vo, while the former linked by entity
phrases are related to answers but the latter may be ASU or supplementary
information that could be omitted.

– There are closer relationships between entities than that of a summarization
since the supporting graph is for a specific question in NAG, not for a scientific
topic.

Therefore, we improve the graph transformer as following.
For each original vertex, G-NAG employs self-attention over the whole con-

verted graph while [13] only calculates on local neighborhoods. This design allows
vertex to capture more information except for neighborhoods since the support-
ing graph in the NAG task is smaller and more logically connected than that in
the long-text summarization generation task.
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Besides, we extend the conventional self-attention architecture by explic-
itly encoding the communication path between vertices-pair vi, vj in the align-
ment model motivated by [22]. Specifically, we encode the communication path
described following into d-size dimension space and add it to vertex vj ’s k(key)
vector for calculation. Thus, we represent vi as the weighted sum of all vertices’
v(value) vectors with the consideration of communication path, formulated as
follow:

v̂i =
N

‖
n=1

∑

j∈V

αn
ijW

n
V vj , where an

ij =
exp((Wkkj + WRrij)

�
WQqi)∑

z∈V exp((Wkkz + WRriz)
�

WQqi)
(3)

where ‖ represents concatenation, αn
ij is normalized attention coefficient com-

puted by self-attention mechanism per head, and Wn
V is transformation’s weight

matrix of v(value). For each attention function α, WK , WQ are transforma-
tion’s weight matrix of k (key) and q (query), where rij denotes the embedded
communication path between vi, vj and WR ∈ Rd∗d is a parameter matrix of r.

For global and variate vertex, we compute their representation over neigh-
bor vertices without path encoding respectively. As discussed before, we capture
retrieved information by variate vertex and obtain global state by global vertex,
which allows graph transformer to better articulate global patterns and ASU
location. Since the edges around each extra vertex do not represent real rela-
tion in KB, we only contextualize global and variate vertices’ representation
by attending over their neighborhoods. As a result, these two vertices’ repre-
sentations are calculated attending over their neighborhoods in G′ formulated
as follows. Here, Ng denotes the neighborhoods of vg and the representation
calculation of vv is the same as vg.

v̂g =
N

‖
n=1

∑

j∈Ng

αn
j Wn

V vj , where an
j =

exp((Wkkg)�
WQqi)∑

z∈Ng
exp((Wkkz)

�
WQqg)

(4)

Finally, we adopt the conventional transform architecture, which is composed
of a stack of D = 6 identical layers. As illustrated in Fig. 2 b, each layer consists
of a self-attention mechanism and feed-forward network, both around by a resid-
ual connection. The final representation of vertices is denoted as V D = [vD].

In the following, we describe the representation of the communication path
between vertices-pair. Given a vertex sequence along the communication path
between two vertices, we concatenate the text attribution pi of each vertex as
sequence p = [pi]. Then, we acquire d-sized corresponding embedding sequence
s = [si] inspired by the label sequence embedding procedure in [28]. Considering
continuous or discrete representations separately, we employ the average method
and self-attention method to calculate representation vector rij .

Average Method: Calculate the averaged embedding as the representation
vector of the communication path.
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Self-attention Method: Use attention function as presented in Eq. 4 to acquire
the representation of s as hs = [hs

i ], then define a weight γ to calculate weighted
sum of hs as r:

γi =
exp(ei)∑L

k=0 exp(ek)
, ei = v�tanh(Whshs

i + b) (5)

where L denotes the length of communication path.

Question Encoder
The question encoder transforms the question text into a vector representation
by Recurrent Neural Network (RNN). The tokens of the question qi are fed
into a single-layer bidirectional LSTM [11] one by one, producing a sequence of
concatenated encoder hidden states hqi. While hqi is expressed by [

−→
hqi,

←−
hqL−i+1],

which are encoded by a forward and a backward RNN independently. We use
encoder state hqL = [

−−→
hqL,

←−
hq1] to represent the whole question, while encoder

output list hqi is stored for attention distribution calculation.

2.4 Generator

To predict answer words yt in each time step, we use LSTM decoder. Dur-
ing training, decoder accepts the embedding of previous output words y<t =
y1, y2, ..., yt−1, a context vector ct with attention on inputs, and decoder hidden
state of previous step st−1 to update hidden state: st = f(yt−1, st−1, ct). Inspired
by Copynet [7], we apply the copy mechanism to deal with the unknown or special
words expected to appear in the answer sentence. In the following, we describe
the generation process in decoder at each time step.

Firstly, we initialize the decoder state using global vertex representation as
s0. Then we compute the graph context vector cg using N-headed attention as
follows, which is a weighted sum of vertex representations.

cg = st +
N

‖
n=1

∑

i∈V

αn
i Wn

GvD
i , whereαi =

exp((Wkki)
�

WQst)∑
z∈V exp((Wkkz)

�
WQst)

(6)

Similarly, the question context vector cq is computed attending over the
question text as in [1]. Then we concatenate cg and cq as final context vector ct.
Below, parameters Wh,Ws, b

∗ are learned during training, and L indicates the
length of question sequence.

cq =
L∑

j=1

βn
j hj , where βj =

exp(ej)∑L
k=0 exp(ek)

, ej = v�tanh(Whhj +Wsst+b∗) (7)

G-NAG model generates answer words both from vocabulary based on atten-
tion and copying words via pointing. Therefore, we define a soft switch g within
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0 to 1, which chooses between predicting a vocabulary word by distribution Pv

or copying a word via attention distribution [αi, βj ]. Eventually, we acquire a
final probability distribution over the extend vocabulary as follows.

P (w) = gPcopy(w)+(1−g)Pv(w), where g = sigmoid(W�
h ht+W�

s st+bg) (8)

Pcopy =
∑

j:wj=w
(αj + βj) Pv = softmax(Wv1(Wv2[st, ct] + b1) + b2) (9)

Besides, we minimize negative log-likelihood of the target word w∗
t for each time

step, and the overall loss is defined as their sum.

L =
1
T

∑T

t=0
(−logP (w∗

t )) (10)

3 Experiment

3.1 Datasets

Our model attempts to generate natural answers, especially for complex ques-
tions that contain logical relations between entities. To our knowledge, there
is not an existing dataset naturally fitted to this problem. Thus, we tailor
the Wikimovie1 dataset [16] according to our requirements as wikimovie*.
Moreover, we reconstruct a multi-hop dataset wikimovie-multihop from the
Wikimovie and DBpedia by manual annotation. The original Wikimovie dataset
consists of simple question-ASU pairs, external KB and natural sentences from
Wikipedia about the movie, which covers 10 topics. To expand knowledge, we
search cast members’ related triples in DBpedia by DBpedia Lookup Service.
Statistics of the two datasets are available in Table 1.

Table 1. Data statistics of dataset

Dataset Total movie
num

QA-pairs Avg length
of question

Avg length
of answer

Avg triples
per QA-pair

wikimovie* 6429 12037 17 14 4.7

multihop 13066 34472 15 15 5.5

wikimovie*: Take each natural sentence in Wikimovie as an ideal answer, we
search the related triples in underlying KB and choose one o (object) among
the triples as ASU . Then let annotators generate the corresponding question,
which contains the triple information mentioned in the answer without variate
and movie name as Example 1. We remove the QA-pair if its ASU is not unique.
Since each natural sentence in Wikimovie is around one movie, the related graph
is star-like and within 2-hops.
1 http://fb.ai/babi.

http://fb.ai/babi
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Example 1. Given the natural answer “Resident Evil is a 2013 English movie
directed by Paul Anderson and starring Li Bingbing”. One possible question is
“What is the language of the 2013 film by Paul Anderson and Li Bingbing”.

wikimovie-multihop: We extract sub-graph randomly in underlying KB with
limited size, while the sub-graph should contain more than 2-hop relations
between entities, but no more than 4-hop for the longest path. Then for each
sub-graph, we mask one vertex to be ASU that is not in the border. Based
on the sub-graph, let annotators generate QA pairs in natural language sen-
tences, while the question must be answerable and the answer should contain
all information without missing. Note that entities not essential for reasoning
ASU could be omitted or replaced, i.e., in 2008 replaced by in the same year
in Sect. 1. After annotators providing 460 QA pairs, we extend the dataset by
replacing the sub-graph in underlying KB with the same graph structure.

3.2 Evaluation Metrics

Automatic Evaluation: Similar to existing NAG systems [10,27], we compute
ASU-acc to evaluate the correctness of ASU . Following [5], we adopt some word-
overlap based metrics (WBMs)2 including BLEU-4 [19], and METEOR [4] to
measure the co-occurrences of references and generated answers.

Manual Evaluation: Further, it is hard to automatically evaluate the natural-
ness and correctness of generated answers. Following [17], we employ a manual
evaluation to measure the Naturalness and Correctness respectively by a score
among 0–5, where the higher the score, the better the evaluation. The Kappa
coefficient for inter-annotator is 0.744, and the p-value for scores is less than
0.01.

3.3 Comparison Models

Throughout existing researches on the natural language answer generation prob-
lem, we compare our model (G-NAG) with state-of-the-art NAG models from
different perspectives.

– GenQA [27], a standard seq2seq model with attention using encoder-decoder
structure. It retrieves the best-matched triple by MLP and encodes it with
the question encoded by LSTM to generate a natural answer.

– COREQA [10], a similar structure to GenQA. Moreover, it retrieves more
one-hop triples and introduces the copy mechanism.

– HM-NAG [6], an improvement of COREQA. It encodes all related triples in
key-value structure without matching with the question and selects proper
triples completely by attention during generation.

2 WBMs are implemented in https://github.com/Maluuba/nlgeval.

https://github.com/Maluuba/nlgeval
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Except for existing NAG systems, we compare several baselines containing graph
attention or transformer. Since these models have no knowledge extractor mod-
ule, we feed the same simplified graph after converting as input.

– GraphWriter [13], a graph2seq model for summarization containing graph
transformer without variate vertex and communication path during the self-
attention calculation.

– Transformer [23], a sequence transformer proposed originally without graph
structure.

3.4 Implementation Details

In knowledge extractor, we recognize entity phrases by StanfordCoreNLP tools
and use Word2Vec [15] with 300 dimension vectors trained on the EN-wiki
dataset to compute string similarities. Besides, we keep the top-2 alternative
vertices in Vo with a higher score, and set k = 2, m = 3 in extractor module.

In experiments, G-NAG and baseline models are trained for about 40 epochs
with the learning rate as 0.03, where gradients are updated by Adam [12] learning
rule. In both datasets, we add word occurring more than 5 times into vocabulary
and the state size of word embedding and batch size are both set to 256. For
the transformer, we set layer D as 6, attention heads as 4, following the setting
in [13], and use a self-attention based method to encode the communication path
described in Sect. 2.3.

3.5 Result

Table 2 shows the answer generation performance on the wikimovie* dataset.
From the result, we can see that G-NAG performs better than NAG baselines3

both in the automatic or manual evaluation due to the improved knowledge
extractor. Meanwhile, G-NAG outperforms GraphWriter and Transformer in
ASU-acc, BLEU-4, and METEOR with stronger information express-ability of
graph embedding method.

Table 2. Performances on dataset Wikimovie*

Model GenQA COREQA HM-NAG GraphWriter Transformer G-NAG

ASU-acc 0.6506 0.6680 0.6818 0.8171 0.7913 0.8310

BLEU-4 0.3421 0.3792 0.3879 0.4282 0.4014 0.4419

METEOR 0.3722 0.3990 0.4113 0.4527 0.4371 0.4809

Natural 2.5 2.7 2.7 3.4 3.1 3.4

Correctness 2.0 2.5 2.7 3.4 3.1 3.6

3 Since different tailoring for the dataset, the result of HM-NAG is not the same as it
reported.
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Considering manual evaluation, both G-NAG and GraphWriter, employing
graph transformer, could generate fluent natural answers with the same score
in Naturalness. Moreover, our G-NAG obtains a higher score in Correctness as
it introduces two extra vertices and communication path embedding into the
self-attention calculation.

Next, we prove the effectiveness of our model in wikimovie-multihop dataset
in Table 3. Compared with G-NAG, ASU-acc metrics of NAG baselines are unsat-
isfactory as they use one-hop triple retrieval, which solves complex relations
hardly in a multi-hop situation. Meanwhile, we see that G-NAG achieves higher
ASU-acc than GraphWriter and Transformer which are fed with the same sup-
porting graph since G-NAG has more ability to capture the ASU by variate
vertex representation.

Table 3. Performances on dataset Wikimovie-multihop

Model GenQA COREQA HM-NAG GraphWriter Transformer G-NAG

ASU-acc 0.3071 0.4129 0.4513 0.7544 0.7403 0.7816

BLEU-4 0.1608 0.2011 0.2106 0.3322 0.3078 0.3471

METEOR 0.2034 0.2351 0.2509 0.3777 0.3541 0.3912

Natural 2.1 2.3 2.4 3.1 3.0 3.2

Correctness 1.7 2.1 2.2 3.2 2.9 3.3

A comparison in manual evaluation between sequence-based knowledge rep-
resentation, such as NAG baselines or Transformer, and graph transformer-
based framework proves the express-ability of graph transformer. We analyze
that sequence-based systems may miss information during retrieving or gen-
erating stage, therefore the generated answers get a low score. Further, as for
graph transformer, G-NAG could generate more logical and perfect answers than
GraphWriter, which is reflected in BLEU-4 and Correctness metrics.

Table 4. Performances on implicit relation dataset Wikimovie*

Model GenQA COREQA HM-
NAG

GraphWriter Transformer G-NAG

ASU-acc 0.5217
(−0.129)

0.5513
(−0.117)

0.5904
(−0.091)

0.7744
(−0.0430)

0.7502
(−0.041)

0.7909
(−0.040)

BLEU-4 0.2904
(−0.052)

0.3122
(−0.067)

0.3212
(−0.067)

0.3884
(−0.040)

0.3571
(−0.044)

0.4037
(−0.038)

METEOR 0.3317 0.3520 0.3688 0.4243 0.3914 0.4427

Natural 2.3 2.6 2.6 3.4 3.0 3.4

Correctness 1.8 2.2 2.3 3.2 2.7 3.5
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As mentioned in Sect. 2.2, G-NAG can handle implicit relations in questions,
which is a challenge to NAG but the common situation in daily life, i.e., Q in
Fig. 2. Thus, we select the QA pairs in Wikimovie* where the questions have
no obvious attribute or relational predicates. As shown in Table 4, G-NAG per-
forms better than NAG baselines as it extracts triples depending more on the
entity, not the relation, which is reflected in the decline value of ASU-acc and
BLEU-4 compared with Table 3. Moreover, G-NAG keeps retrieved vertices as
well as relation edges with higher scores in graph simplifying so as to identify
these implicit relations. Furthermore, we can see that although the automatic
metrics have fallen, the Naturalness and Correctness of G-NAG stay essentially
flat because of the ability of generator module. However, G-NAG may gener-
ate redundant information in this situation, which will be discussed in the case
study.

Table 5. Example outputs of various systems versus Gold.

Question∗ Do you remember the César-winner actress who appeared in
director Rupert Sanders’ and Drew Goddard’s film in the same year?

Knowledge (movie-1, release year, 2012), (movie-1, directed by, Rupert Sanders),
(movie-1, starred actor, ASU), (movie-2, release year, 2012),
(movie-2, directed by, Drew Goddard), (movie-2, starred actor, ASU)

HM-NAG César-winner Rupert Sanders worked with Rupert Sanders in the
film Snow White and the Huntsman, and Drew Goddard in the
film Bad Times at the El Royale in the same year

GraphWriter César-winner Kristen Stewart worked with Rupert Sanders in the
film Snow White and the Huntsman in 2012, and Drew Goddard
in the film The Cabin in the Woods

G-NAG César-winner Kristen Stewart worked with Rupert Sanders in the
film Snow White and the Huntsman, and Drew Goddard in the film
The Cabin in the Woods in 2012

Gold Yes, César-winner Kristen Stewart worked with Rupert Sanders
in the film Snow White and the Huntsman, as well as
Drew Goddard in The Cabin in the Woods in 2012

Questionmulti What is the release date of the animated movie by Kurt Frey and
Ben Stassen?

Knowledge (movie-1,directed by,Ben Stassen), (movie-1,written by,Ben Stassen),
(movie-1, written by, Kurt Frey), (movie-1, release year, ASU)

HM-NAG Haunted Castle is a animated film written by writer Kurt Frey
and Ben Stassen

GraphWriter Haunted Castle is a 2001 animated horror film written by writer
Kurt Frey and directed by Ben Stassen

G-NAG Haunted Castle is a 2001 animated horror film written by writer
Kurt Frey and directed by co-writer Ben Stassen

Gold Written by Kurt Frey and directed by co-writer Ben Stassen,
Haunted Castle is a 2001 animated film
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3.6 Case Study

Table 5 gives some outputs from our model, GraphWriter, and HM-NAG which
performs better than the other two NAG baselines. ASU and other entities in
this table are marked as bold and italics separately, while copy words marked
as underline and superscript denotes the dataset QA pairs from. Besides, we use
(movie-1,movie-2) to denote mentioned movies in the order that they appear in
gold answers.

In Case 1, though HM-NAG recognizes entities correctly, it fails to generate
ASU and accurate movie names because of triple missing. Meanwhile, because
GraphWriter does not consider path information in the attention calculation, it
has not a comprehensive grasp of graph structure to generate year in the right
position. In Case 2, when the given question contains implicit relations, it is hard
for HM-NAG to recognize all accurate relations and ASU . Moreover, even fed
with a more accurate graph, GraphWriter misses the relation reflected in gold
answer by co-writer. As implicit relation affects the simplifying stage, G-NAG
obtains a supporting graph with more redundant entities while it generates extra
information as horror.

4 Related Work

Our work belongs to the NAG task and draws inspiration from the research fields
of graph-to-sequence, and copying mechanism.

NAG: [10,27] propose an end-to-end model to encode question and related
knowledge as a sequence. Further, [6] put these triples into Key-Value memory
proved effective by [16]. The above work provides a feasible framework consists
of retrieving and generating that is followed by G-NAG. However, limited by
the simple retrieval and sequence representation structure, these systems do not
perform well in complex questions, which stimulates us to make improvements.

Graph-to-Sequence: To find alternative representation structure for NAG, we
notice that converting graph to sequence is wildly studied from different aspects.
The above work proves that the graph is an effective structure to encode complex
information [14], which fits our requirements. As for graph representation, the
key idea is to learn a mapping to embed nodes as points in a low-dimensional
vector space. Motivated by [13,24,28], we employ graph transformer considering
communication path to encode the supporting graph.

Attention and Copy Mechanism: Since unknown or special words in source
text may impede predicting, Copying based on Attention has been proven
extremely useful for a broad range of text generation tasks. To judge where
to copy from, Copynet [7] utilizes the soft attention distribution to produce an
output sequence containing elements from the input. This solution is applied to
dialogue system [7], NMT [8], summarization [18,21], QA system [10], etc.
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5 Conclusion and Future Work

In this paper, we propose a novel generating framework based on graph trans-
former to address the natural answer generation problem (NAG). The model
we put forward, named G-NAG, improves knowledge extraction by multi-hop
retrieval before disambiguation and simplifying strategy. Besides, it mainly
increases express-ability by an extending graph transformer to encode the
supporting graph for generating. Experimental results on two closed-domain
datasets demonstrate that our model significantly outperforms existing NAG
models, and prove the effectiveness of graph attention and transformer mean-
while. In the future, we expect G-NAG to find the balance between enlarging
retrieval range and controlling graph size. Moreover, we try to solve the repeti-
tion problems by coverage model or other approaches.

Acknowledgement. This work was supported by NSFC under grant 61932001 and
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Abstract. The existing literatures of the query processing on knowl-
edge graphs focus on an exhaustive enumeration of all matches, which is
time-consuming. Users are often interested in diversified top-k matches,
rather than the entire match set. Motivated by these, this paper for-
malizes the diversified top-k querying (DTQ) problem in the context of
RDF/SPARQL and proposes a diversification function to balance impor-
tance and diversity. We first prove that the decision problem of DTQ
is NP-complete, and give a baseline algorithm with an approximation
ratio of 2. Secondly, an index-based algorithm with the early termina-
tion property is proposed. The index is adept in parallel diversified top-k
selection in multicore architectures. Using real-world and synthetic data,
we experimentally verify that our algorithms are efficient and effective
in computing meaningful diversified top-k matches.

Keywords: Diversified top-k query · RDF/SPARQL · Parallel graph
processing

1 Introduction

Query processing on the RDF graph has been well studied. Some systems [15] rely
on relational join to get the results, and some [18] rely on subgraph isomorphism
algorithm. The query response time is reasonable since the query graph is quite
small in most applications. As knowledge graphs are growing in size, the number
of isomorphic subgraphs in such RDF graphs can be excessively large. Users usu-
ally prefer seeing a ranked result list rather than a list of unranked matches. The
top-k graph pattern matching problem is introduced under the circumstances. A
score function is used to measure the quality of subgraphs based on the weight
on nodes/edges. Only the k best subgraphs are returned. Unfortunately, the
resulting subgraphs are often highly overlapped and dominated by some very
high weight nodes/edges, while more representative subgraphs may be missed.
Finally, diversity is introduced into search results to remedy the situation.

Example 1 A fraction of an RDF graph is shown in Fig. 1(a). The graph has weights
on nodes such that a higher weight implies higher importance. A user wants to find

c© Springer Nature Switzerland AG 2020
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a director of the romance film and the birthplace of this director. The corresponding
SPARQL query is “?movie directedBy ?director; ?movie rdf:type Romance;?director
birthPlace ?country”, as shown in Fig. 1(b). There are many matching subgraphs in
GD. We limit the number of matches to a small k. In this example, let us set k =
2. The question is which set of two matches is better. If we return (mo1, d1, c1) and
(mo1, d2, c2) as matches for (?movie, ?director, ?country), we have the max total weight
in all answers. But mo1 appears in both answers. The results seem redundant to the
user. Instead, the disjoint matches (mo1, d1, c1) and (mo2, d2, c2) form a better solution
set, as balancing both diversity and importance. Hence, in selecting the top-k matches,
we aim to reduce the overlapping information among the matches and improve the
importance.

To achieve the trade-off between importance and diversity, we study the
Diversified Top-k Querying (DTQ) problem. The importance of a result set is
measured by the sum of its nodes’ weight. The diversity is measured by a distance
function. To the best of our knowledge, this is the first study to consider both
the importance score and diversity of a result on the knowledge graph.

Fig. 1. An example; the meanings of the vertex labels are: mo-movie; d-director; g1-
romance; g2-comedy; c - country; so-soccer player; te-soccer team; p1-directedBy; p2-
rdf:type; p3-birthPlace; p4-birthDate; p5-hasHeight; p6-team; p7-isLocatedIn.

There are two major challenges of solving DTQ: (1) Assume that we can
generate and store all matches for a query, the remaining problem becomes how
to select a set with both high importance and high diversity. Though the state-of-
the-art [11] provides an approximation ratio of 2, it requires O( 12kn2) time, where
n is the number of matches. When n is large, the runtime is unacceptable. (2)
Generating all matches may be prohibitively costly. So a ranking-while-matching
mechanism is preferable to return k matches without an exhaustive search, while
still having a good result.

We propose two algorithms for DTQ targeting on the above challenges. Our
contributions are summarized as follows.

– We formalize the Diversified Top-k Querying problem in the knowledge graph
and prove the decision version of this problem is NP-complete.
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– We develop an approximation algorithm DTQ-Base with a guarantee of 2 in
O(kn) time, where n indicates the total number of matches.

– To solve the DTQ problem more efficiently, we propose a heuristic algorithm
DTQ-Index based on the Backbone index. We generate diversified top-k
matches using the runtime version of the Backbone index, which leverages
multicore processing to maximize throughput and reduce latency.

– Using both real-world and synthetic datasets, we empirically verify the effi-
ciency and effectiveness of our algorithms. The studies show that DTQ-Base
is much faster than state-of-the-art algorithms, and DTQ-Index achieves com-
petitive results with DTQ-Base while taking much less time.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 introduces some notions and defines the problem. The proposed
approach consists of two phases: offline index construction and online query pro-
cessing, which are elaborated in Sects. 4 and 5, respectively. We present experi-
mental results with detailed insights in Sect. 6. Conclusions are made in Sect. 7.

2 Related Work

The proposed problem falls into the category of the top-k graph pattern match-
ing problem. Top-k graph pattern matching is to retrieve k best matches from
the match set. Many different forms of top-k queries have been studied in the
literature [10,12]. Gupta et al. [12] rank the results based on edge weight, and
rely on exhaustive indexes on every node. To provide more flexibility of top-k
pattern matching, Cheng et al. [10] extend matching semantics by allowing the
edge to path mapping, and propose to rank matches based on their compactness.
Unfortunately, the resulting subgraphs from the above methods are often highly
overlapped and not very representative.

Under the circumstances, diversity is introduced to graph pattern matching
in [7,11,16,17]. Result diversification is a bi-criteria optimization problem for
balancing relevance and diversity. Arnaout et al. [7] follow a rank-after-matching
paradigm, which is not efficient especially for large graphs for which the number
of matches could be enormous and hence computing all the matches could be
very time-consuming. Fan et al. [11] designate an output node in the query graph,
then the result only includes a set of nodes that are matches of the output node.
Yang et al. [17] consider diversity solely and measure diversity by the number
of nodes covered by all the matches. Wang et al. [16] also extend edge to path
mapping and use the diversification strategy in [17].

Our work differs from prior work in the following aspects: (1) Diversified
top-k graph pattern matching is typically a bi-criteria optimization problem
of relevance and diversity. As SPARQL is our query language, our work seeks
an exact match without relevance problem. Importance and diversity are two
significant concerns in our setting. (2) Most work [10,12] in top-k graph pattern
matching suppose weight on edges to reflect the strength of connection between
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nodes, while we suppose weight on nodes to reflect the importance. (3) Existing
solutions utilize subgraph matching algorithms to find top-k results, which are
difficult to be parallelized intrinsically. Our work, however, uses a novel index to
support parallel execution.

3 Problem Definition

The Resource Description Framework (RDF) [1] is a data model developed by
the World Wide Web Consortium (W3C) to represent billions of facts in the
knowledge graphs. The SPARQL query language [2] correspondingly provides a
triple-pattern-based format to query over RDF stores. Their formal definitions
are presented as follows.

Definition 1. An RDF data graph GD(VD, ED, LD, ψD,WD) is a directed,
labeled multi-graph, where VD is a set of data nodes, ED ⊆ VD ×VD is the set of
directed edges, |ED| denotes the number of triples in GD. LD is the set of edge
labels, and ψD is a labeling function with ψD : ED → LD. WD is an importance
mapping function defined on the node set as WD : VD → R ∈ [0, 1].

Definition 2. A SPARQL query graph GQ(VQ, EQ, LQ, V ars, φQ) is a
directed, labeled multi-graph, where VQ is the set of query nodes, EQ ⊆ VQ × VQ

is the set of directed edges, LQ is the set of edge and node labels, V ars are the
variables to be answered, and φQ is a labeling function with φQ : VQ ∪ EQ →
V ars ∪ LD.

For example, Fig. 1(a) shows an example RDF graph with |VD| =
21 nodes and |ED| = 24 edges. Figure 1(b) shows a query Q1 with
four nodes. VQ = {?movie, ?director, romance, ?country}, and V ars =
{?movie, ?director, ?country}.

Processing a SPARQL query graph GQ against an RDF graph GD is anal-
ogous to finding all subgraph isomorphisms of GQ in GD. The group of all
matches is denoted as M(GD, QD). For the sake of brevity, we will use the node
set (tuple notation) to refer to the match induced by the node set. For example,
the subgraph (mo1, d1, c1) is a match of Q1 in GD.

Definition 3. Given a match mi = (mV
i ,mE

i ) of a SPARQL query GQ in an
RDF graph GD, where mV

i and mE
i are the node set and edge set in this match

respectively, the Importance Score of mi is defined as

δI(mi) =
1

|V ars|
∑

vj∈mV
i

WD(vj) (1)

|V ars| is used to normalize δI to [0, 1]. For example, the importance score
for the match (mo1, d1, c1) is 0.87.
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Definition 4. Given two matches mi = (mV
i ,mE

i ) and mj = (mV
j ,mE

j ), their
Distance is defined as

δD(mi,mj) = 1 − |mV
i ∩ mV

j |
|mV

i ∪ mV
j | (2)

The distance function measures the “dissimilarity” of two matches.
For example, the distance of match (mo1, d1, c1) and (mo1, d2, c2) is 1 −
| (mo1,d1,c1)∩ (mo1,d2,c2)|
| (mo1,d1,c1)∪ (mo1,d2,c2)| = 1 − 1

5 = 0.8.
Based on δI() and δD(), we give the formal definition of our DTQ problem.

Definition 5. Given an RDF graph GD, a SPARQL query GQ, a positive inte-
ger k and a parameter λ ∈ [0, 1], the Diversified Top-k Querying Problem
is to find a set of k matches M such that

F (M) = arg max
M⊆M(GD,QD)

[(k−1)(1−λ) ·
∑

mi∈M

δI(mi)+2λ ·
∑

mi,mj∈M, i<j

δD(mi,mj)]

(3)

λ is a predefined parameter to strike a balance between the two factors. The
diversity metric is scaled down with 2λ, since there are k(k−1)

2 factors for the
difference sum, while only k factors for the important sum. DTQ is to find a
set of k matches from M(GD, QD) such that the bi-criteria objective function is
maximized.

Theorem 1. The decision problem of DTQ is NP-complete.

Proof. The decision problem of DTQ is in NP since one can guess a k-element
set M and then check whether M ⊆ M(GD, QD) and F (M) ≥ LB in PTIME.
To show the lower bound LB, observe that by setting λ = 1, DTQ is reduced to
the k-diverse set problem [14] as its special case, which is known to be NP-hard
[14]; hence DTQ is NP-hard. Thus, DTQ is NP-complete. �	

3.1 DTopk-Base Algorithm

DTQ is nontrivial to approximate, which is suggested by results for the max-sum
diversification [9]. Despite the hardness, we provide a simple greedy algorithm
with an approximation guarantee of 2. Suppose we have computed and stored
M(GD, QD), δI(mi) and δD(mi,mj) for all matches mi,mj ∈ M(GD, QD).
DTopk-Base first initializes an empty set S for top-k matches. Next, it iteratively
selects a match u that maximize F

′
u(S) = 1

2 (k−1)(1−λ)δI(u)+2λd(u, S), where
d(u, S) =

∑
v∈S δD(u, v). Then add it to S. This process repeats k times and

outputs S. We denote it as DTopk-Base shown in Algorithm 1.
DTopk-Base runs in time proportional to k times the cost of computing

F
′
u(S) for all u. Suppose n = |M(GD, QD)|. As δI(·) is modular, the value of
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1
2 (k − 1)(1 − λ)δI(u) will not change in each iteration. d(u, S) for all u can be
updated in O(n), so each F

′
u(S) is amortized only O(1). Hence, the total time

complexity of DTopk-Base is O(kn). DTopk-Base achieves a 2-approximation
ratio, and we prove it in the Appendix.

Algorithm 1. DTopk-Base Algorithm
Input: M(GD, QD): all matches; δI(·): importance function; δD(·, ·): distance function; k: a cardi-

nality constraint
Output: S: a diversified result set, where |S| = k and S ⊆ M(GD, QD)
1: S = ∅
2: while |S| < k do

3: find u ∈ M(GD, QD)\S, maximizing F
′
u(S) = 1

2 (k − 1)(1 − λ)δI(u) + 2λd(u, S)

4: S = S ∪ u
5: return S

3.2 DTopk-Index Overview

Algorithm 1 requires M(GD, QD) to be computed firstly. Thus, it is not efficient
especially for large knowledge graphs. To rectify this, we present a heuristic
algorithm for DTQ, denoted as DTopk-Index. DTopk-Index selectively gener-
ates matches with high important score and high diversity gain. DTopk-Index
consists of two phases: offline index construction and online query processing. In
the offline phase, given a knowledge graph GD, we extract its Backbone index.
In the online phase, given a SPARQL query GQ, we first process it against the
Backbone index to prune unnecessary part. The remaining part, called the run-
time Backbone index, generates partial results in parallel. Then, we enumerate
diversified top-k matches from the partial results in a level-wise manner to get
a high-quality set. We will discuss the details in the next two sections.

Fig. 2. Backbone index of GD in Fig. 1(a)
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Algorithm 2. Backbone Index Construction
Input: GD: RDF graph, C = {c1, c2, · · · , cl}: categories
Output: Backbone index BI-top, BI-bottom
1: for every triple t in GD do
2: sid, pid, oid = encode(t)
3: insert (sid, pid, oid) to encode table ET
4: if pid not in Sub preds[sid] then
5: Sub preds[sid].append(pid)
6: Sub bitmap[sid] = makeBitmap(Sub preds[sid])
7: for each ci in C do
8: initialize BI − top[ci] and BI − bottom[ci]
9: for every triple t in ET do
10: send (sid, pid, oid) to corresponding category BI-bottom[cj ]
11: BI-top[cj ].cnt++
12: BI-top[cj ].bitmap=BI-top[cj ].bitmap∧ Sub bitmap[sid]
13: return BI-top, BI-bottom

4 Offline Index Construction

4.1 Backbone Index

Entities in the RDF graph could be classified into different categories. For exam-
ple, in DBPedia 2015-10 dump, there are 453 entity categories, like Person, Place,
Work and so on. We can get the categories from the ontology of knowledge graph
and rdf:type value. Entities of the same category are likely to share the same
set of predicates. For example, in the DBPedia dataset, for entities in the Movie
category, they always contain predicates like director, producer, starring and so
forth.

Based on this observation, this paper proposes a novel Backbone
index based on the entities’ category and predicates set. The Backbone
index (BI) consists of two-level structures. The top-level structure is
indexed according to the category; each index instance is composed of the
〈entity category, predicate bitmap, the number of triples〉. The bottom-level
structure contains all the triples belonging to this category; each instance is
composed of 〈subject, predicate, object〉.

As most knowledge graphs are auto-constructed by crawling from webpages,
the incompleteness is unavoidable. For example, in Fig. 1(a), the birthDate value
of director d3 is missing. So the predicate bitmap of category Director will be
the conjunction of each entity’s predicate bitmap. Predicate bitmap is in the
form of p7p6 · · · p1, where pi has the same definition in Fig. 1. Predicate bitmap
of d1 and d2 is 0001100, and predicate bitmap of d3 is 0000100, so the predicate
bitmap of Director will be 0000100.

Taking the example in Fig. 1(a), GD contains four categories, namely Movie,
Director, Soccer player, and Soccer team. And its Backbone index is shown in
Fig. 2.

4.2 Implementation

The Backbone index can be easily extracted by two linear scans on the knowledge
graph. The algorithm is presented in Algorithm2. On the first scan, we encode
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RDF strings into numerical IDs to avoid the storage overheads (Line 2–3).
Besides, we store every new predicate for each subject in Sub preds. Multi-value
is common in the RDF graph. We only store per predicate once in each bitmap.
A new predicate bitmap is iteratively constructed for a distinct subject (Line
4–6). On the second scan, we send (sid, pid, oid) to the corresponding category,
then update BI-top (Line 9–12).

The time complexity of BI construction is linear to the triple count in the
knowledge graph, which is O(2|ED|). The space complexity of BI-top is too small
to be omitted. We compactly store each triple in BI-bottom using three integers
of 4 bytes, one for each triple component, namely sid, pid, and oid. The space
complexity of the Backbone index is O(12|ED|) bytes.

5 Diversified Top-k Querying Processing

In this section, we present a novel algorithm DTopk-Index for generating diversi-
fied top-k matches. Briefly, it works as follows: (1) Given a SPARQL query GQ,
we first decompose it into a sequence of star subqueries. Then, multithreading is
leveraged to match these subqueries to the Backbone index to get partial results.
These results are called the runtime Backbone index. (2) We generate diversified
top-k matches in a level-wise manner using the runtime Backbone index.

Fig. 3. Q2 and its runtime Backbone index

5.1 Runtime Backbone Index

Incoming SPARQL query is first decomposed into a sequence of disjoint
forks. A fork is a star-shaped subquery. The triple patterns in a fork share
identical subject join variable. For example, Q2 in Fig. 3 is decomposed
into two forks, f1 = {?movie p1 ?director, ?movie p2 ?genre} and f2 =
{?director p3 ?country}. Then, each fork matches to zero or more categories.
According to BI-top in Fig. 2, f1 is mapped to {c1(Movie)} and f2 is mapped
to {c2(Director), c3(Soccer player)}. This mapping uses query structure infor-
mation to eliminate the non-promising part in BI, e.g., {c4(Soccer Team)}.
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Instead of the whole Backbone index, we only need a fraction of it,
called the runtime Backbone index BIR regarding the SPARQL query. BIR

also consists of two-level structures. The top-level structure BIR − top is
indexed according to the forks in query; each index instance is composed of
the 〈fork, the number of partial results〉. The bottom-level structure BIR −
bottom contains all the partial results belonging to this fork. We also store the
node weight with partial results together.

The implementation is straightforward. Relevant triples can be immediately
identified at query time and loaded into main memory in linear I/O time regard-
ing the size, by reading the BI corresponding to categories in the fork. Then,
triples within the fork are joined on the subject. Loading triples and joining
them on subject are carried out separately on each fork since there is no depen-
dence among forks. That offers us a great opportunity to improve efficiency by
multithreading. We assign the individual fork for evaluation to a distinct thread.

Algorithm 3 summarizes BIR construction steps. First, we decomposed GQ

into a group of forks (Line 1). Each fork is evaluated on a distinct thread (Line
2). Each fork matches to a set of categories according to the bitmap in BI − top.
We load triples in them to a cached table CT . Note that only triples with
corresponding predicates in f will be loaded (Line 3–5). Finally, triples in CT
with the identical subject are joined to produce partial results for this fork (Line
6–7). After all forks finish, we do a synchronization (Line 8).

Clearly, finding the diversified top-k matches in GD (or BI) is equivalent to
finding them in BIR. The size of BIR is much smaller than that of BI most of the
time. Besides, the time complexity of this algorithm is dominated by the slowest
fork. If a fork has plenty of triples to deal with, we can further divide categories
into multiple threads. All we need is merging partial results that belong to the
same fork in the end. The selection of parallel granularity is quite flexible.

The reason why we use fork as the basic join unit lies in the high coverage
of almost-star-shaped graph patterns in real-world query logs [8]. Users tend to
build their queries gradually by a sequence of star queries. Generating partial
results of forks in parallel is of paramount importance to improve efficiency.

In Fig. 3 we show the BIR for Q2. For fork f1, we load all triples which
contains predicate p1 and p2 from BI-bottom[c1]. For fork f2, we load all triples
which contains predicate p3 from BI-bottom[c2] and BI-bottom[c3]. Each fork
has 5 partial results after self-join.

Algorithm 3. DTopk-Index Phase 1: runtime Backbone index construction
Input: BI: Backbone index; GQ: a SPARQL query
Output: BIR: runtime Backbone index
1: forks=Decompose(GQ)
2: for each f in forks in parallel do
3: C=MatchCategory(BI-top,f)
4: for each cj in C do
5: CT=Load(BI-bottom[cj ],f)
6: BIR − bottom[f ] = Join(CT, f)
7: BIR − top[f ].cnt = |BIR − bottom[f ]|
8: *synchronization*
9: return BIR
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5.2 Diversified Top-k Match Computation

In this subsection, we assemble the partial results in the runtime Backbone index
to perform ranking and matching simultaneously. We carry on the assembling
process in two stages.

The first stage of our solution aims to maximize diversity. We adopt a level-
wise generation paradigm which eases diversity constraint gradually. We start
by selecting a fork fh from BIR and call it head fork. Usually, the fork with
the minimum instance count is selected for better selectivity. The instances in
BIR − bottom[fh] are sorted by the variables’ total weight in descending order.
These instances are the start points to expand partial results into full ones. Now,
we initialize the solution set S = ∅ and start the level-wise generation progress.
At Level 0, we scan the sorted BIR −bottom[fh] in a top-down manner to collect
a maximal set of disjoint matches in S and move on to Level 1. Let Si be the
set of matches generated at Level i, each m ∈ Si contains at most i identical
nodes in each mj , where ∀mj ∈ S0 ∪ S1 ∪ · · · ∪ Si−1. There are |V ars| variable
in GQ, so there are |V ars| − 1 levels at most. The search terminates whenever
k matches are collected in S.

Algorithm 4 shows the pseudo code for Stage 1. S is initially empty and
level = 0 (Line 1–2). We choose a fork from runtime Backbone index BIR

and sort instances by weight in descending order (Line 3–4). At Level 0, we
start from each instance in BIR − bottom[fh] to generate all disjoint matches
(Line 5–8). If |S| < k, we ease the diversity constraint level by level, where
level ∈ {1, 2, · · · , |V ars| − 1}. At Level i, the newly generated match should
overlap with mj ∈ S at most i nodes (Line 9–13). Once k matches are obtained,
Stage 1 terminates and records S, tr pointer and level.

Since BIR is stored in tabular format, we use relational join to present our
subfunction FindDisjointMatch(tr,GQ, BIR) and FindMatch(tr, level,GQ,
BIR, S). The join operator conforms with three major principles: (1) We create
a linear order of the forks f1,f2,· · · , fk, where f1 is the head fork. The matching
will be conducted in this order.. (2) The partial match is greedily joined with the
candidate with the highest weight. This makes matches with higher importance
scores be generated prioritized. (3) At Level i, the new match should have at
most i overlapped nodes with any match in S. We use an extra counter to record
the number of overlapped nodes in a partial match.
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Algorithm 4. DTopk-Index Phase 2 Stage 1
Input: BIR: runtime Backbone index; GQ: a SPARQL query; k: a cardinality constraint; fh: head

fork
Output: S: a result set;tr: stopping instance; level: stopping level
1: S = ∅
2: level = 0
3: fh ← HeadFork(BIR)
4: Sort(BIR − bottom[fh])
5: for each tr in BIR − bottom[fh] do
6: S = S ∪ FindDisjointMatch(tr, GQ, BIR, S)
7: if |S| == k then
8: return S, tr, 0
9: for level ∈ {1, 2, · · · , |V ars| − 1} do
10: for each tr in BIR − bottom[fh] do
11: S = S ∪ FindMatch(tr, level, GQ, BIR, S)
12: if |S| == k then
13: return S, tr, level

Stage 1 makes sure S as diversified as possible. At Stage 2, we continue with
a mechanism SWAP, which keeps loosening the grip on diversity in exchange for
high importance score. SWAP resumes the level-wise match generation, contin-
uing at the level and instance of BIR − bottom where Stage 1 ends. The new
match may swap with a match in S. Our SWAP mechanism allows us to set
up an early termination criterion for this stage, which can significantly improve
efficiency.

We sort matches in S based on the importance score in descending order.
Suppose the sorted list is S = {m1,m2, · · · ,mk} and mk has minimum impor-
tance score. We only replace mk with the new match. For the swapping condition,
recall Eq. 3, we have

F (S) = (k − 1)(1 − λ)
k∑

i=1

δI(mi) + 2λ
∑

i<j

δD(mi,mj), where mi,mj ∈ S

= F (S \ mk) + [(k − 1)(1 − λ)δI(mk) + 2λ

k−1∑

i=1

δD(mk,mi)] (4)

We use F (mk) to denote the contribution of mk, then F (mk) = (k − 1)(1 −
λ)δI(mk) + 2λ

∑k−1
i=1 δD(mk,mi). The contribution of a new generated match

mk+1 is F (mk+1) = (k − 1)(1 − λ)δI(mk+1) + 2λ
∑k−1

i=1 δD(mk+1,mi). If
F (mk+1) > F (mk), we swap mk+1 with mk to get a better S. We rearrange
the inequality and formalize the swapping condition.

Swapping Condition. We swap the next candidate mk+1 with mk, if:

(k − 1)(1 − λ)(δI(mk+1) − δI(mk)) > 2λ(δD(mk, S \ mk) − δD(mk+1, S \ mk)) (5)

We keep generating new match and see whether swapping condition is satis-
fied. If it is satisfied, we swap and reorder the S based on importance score.

Stopping Condition. Stage 2 can terminate if the following inequality is sat-
isfied:

δI(mk) > δI(mk+1) (6)
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We stop once the important score of the new match is lower than mk. As
we generate match from BIR − bottom[fh], there is an assumption that instance
with a high score in BIR − bottom[fh] is more likely to produce high-quality
match. It is realistic in many domains. For example, an influential researcher is
more likely to produce high-quality papers published in top conferences.

Stage 2 is described in Algorithm 5. First, we sort each match in S by impor-
tance score (Line 1). Then, we resume match generation at which Stage 1 stops
(Line 2–8). For every new match, we check whether TerminationCondition is
satisfied. If not, go on. Swap mk and mk+1 if SwappingCondition is satisfied.
When all matches at Level i have been generated, and if i < |V ars| − 1, we
continue with the next level. This recursive process continues until either we can
terminate early or j > |V ars| − 1 (Line 9–16).

Algorithm 5. DTopk-Index Phase 2 Stage 2
Input: S: a temporal result set; BIR: runtime Backbone index; GQ: a SPARQL query; tr:start

instance; level: start level; k: a cardinality constraint; fh: head fork
Output: S: a diversified top-k result set
1: Sort(S)
2: for instance in {BIR − bottom[fh][tr + 1], · · · , BIR − bottom[fh][end]} do
3: mk+1 = FindMatch(instance, level, GQ, BIR, S)
4: if TerminationCondition(mk+1, mk) then
5: return S
6: else if SwappingCondition(mk+1, mk) then
7: S = (S \ mk) ∪ mk+1
8: Sort(S)
9: for j ∈ {level + 1, level + 2, · · · , |V ars| − 1} do
10: for each instance in BIR − bottom[fh] do
11: mk+1 = FindMatch(instance, j, GQ, BIR, S)
12: if TerminationCondition(mk+1, mk) then
13: return S
14: else if SwappingCondition(mk+1, mk) then
15: S = (S \ mk) ∪ mk+1
16: Sort(S)

Example 2. Consider Q2 in Fig. 3. Let k = 3 and λ = 0.5, we rank forks in BIR
by the number of instances. We randomly select f1 as the head fork. We sort instances
in BI-bottom[f1] in descending order of weight. First, linear scan BI-bottom[f1] from
top to bottom to generate a set of disjoint matches, which are (mo1, d1, g1, c1) and
(mo3, d3, g2, c2). Since k = 3, and |S| = 2 < k, we continue to search for matches having
overlapping nodes with S. We move on to Level 1, the overlap size is set to 1. Still, we
linear scan BI-bottom[f1] from top to bottom to generate new matches. We get match
(mo2, d2, g1, c2). Now |S| = k, so Stage 1 terminates. We sort S in descending order
as (mo1, d1, g1, c1, 0.89), (mo2, d2, g1, c2, 0.76) and (mo3, d3, g2, c2, 0.51)(normalized by
|V ars|). We begin Stage 2. We resume from Level 1 and instance (mo3, d3, g2), and
there is no other match. There is no match in Level 2, either. We move to Level 3. Now,
(mo1, d2, g1, c2, 0.79) is obtained and its weight is larger than (mo3, d3, g2, c2, 0.51).
We examine whether the Swapping Condition is satisfied. The answer is no. Finally,
(mo4, d3, g2, c2, 0.44) is generated, and its score is lower than (mo3, d3, g2, c2, 0.51).
Stage 2 terminates and return S = {(mo1, d1, g1, c1), (mo2, d2, g1, c2), (mo3, d3, g2, c2)}.
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Table 1. Data Statistics

Dataset Triples (M) S ∪ O (M) P C Raw size (GB) Index time (sec) Index size
(MB)

LUBM100 13.88 3.30 17 12 2.46 75 167

WatDiv10m 10.91 1.05 86 24 1.54 46.3 131

DBPedia 31.38 13.55 670 453 3.52 117.9 376.6

DBLP 176.63 45.17 27 4 30.64 752 2120

6 Experiments

In this section, we conduct several experiments to verify the effectiveness and
efficiency of our diversified top-k querying algorithms.

Datasets: Table 1 describes the datasets, where S, P , O, and C denote
the unique subjects, predicates, objects and categories. We use two synthetic
datasets LUBM100 [3] and WatDiv10m [4]. Each node in LUBM100 and Wat-
Div10m is assigned a weight chosen randomly between 0 and 1. We also use two
real datasets DBLP [5] and DBPedia 2015-10 core [6]. The importance of a node
v in DBLP and DBPedia is defined as log(vout degree)

log(max out degree) . This setting follows
an intrinsic nature: as an author in DBLP, the more papers he writes, the more
likely he is an influential researcher.

Queries: We use the benchmark queries in LUBM and WatDiv. For DBLP and
DBPedia, we manually choose some meaningful queries from their query logs.
Size of a SPARQL query is defined as |Q| = |Vq|+|Eq|. To fully test our methods,
we make sure the number of matches for each query is larger than 10k.

Algorithms: There is no ground-truth algorithm of the DTQ problem. Because
it is impracticable to enumerate all k-subsets of results when their counts are
over 10k. We implemented our algorithms DTopk-Base and DTopk-Index. The
problem of finding the diversified top-k matches in a heterogeneous network has
been studied earlier [11], so we adapt its method in our DTQ problem setting.
We denote it as DTopk-Fan, which is also a 2-approximation method.

Hardware: We implement three algorithms in C++, having the O3 optimiza-
tion flag enabled and the OpenMP framework to enable multithreaded execution.
We set them up on a machine with 128 GB RAM, 480GB SSD, and two Intel
Xeon CPUs (6 cores each), running 64-bit CentOS 7.

We run all the experiments 5 times and report their mean. We use the single-
thread version of DTopk-Index without a special statement.

6.1 Results

Exp1-Backbone Index. The last two columns in Table 1 show the Backbone
index size and construction time. Generating the Backbone index is very fast.
Even for the largest graph DBLP, the index creation takes up to 13 min. The
index size is ten times smaller than the raw size.
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Exp2-Effectiveness Study. We evaluate the effectiveness the three methods,
DTopk-Base, DTopk-Index vs. DTopk-Fan. We measure effectiveness by com-
puting F (·) and the ratio IR = |M(GD,QD)|

|M(GD,QD)| , where M(GD, QD) indicates the
number of matches identified by the algorithms when they terminate. Appar-
ently, IR = 1 for DTopk-Base and DTopk-Fan as they examine all the matches
(results are not shown in figures). Figure 4 illustrates the results.

Effect of Varying the k: Fixing Q and λ = 0.5, we vary k from 5 to 25.
As shown in Fig. 4(b), the ratio IR of DTopk-Index increases from 0.09 to 0.23
when k increases from 5 to 25. The reason is that, for a larger k, more matches
have to be identified and examined by the algorithms. Other datasets show
the same trend in Fig. 4(f), 4(j), and 4(l). Comparing DTopk-Base and DTopk-
Fan, the F (·) has distinguishable differences in DBLP, while LUBM, WatDiv,
and DBPedia do not. This phenomenon stems mainly from many nodes have a
really high weight (high out-degree) in DBLP. The node weight follows uniform
distribution in LUBM, WatDiv, and DBPedia. The selection strategy in DTopk-
Base can pick up nodes with high weight quickly than DTopk-Fan.

Effect of Varying the |Q|: Fixing k = 5 and λ = 0.5, we vary |Q| from 3
to 11. The results shown in Fig. 4 tell us that DTopk-Index effectively reduces
excessive matches and achieve competitive result comparing to DTopk-Base and
DTopk-Fan. Taking LUBM as an example, DTopk-Index produces no more than
25% matches in Fig. 4(d), but the F (·) is very close to that of DTopk-Base and
DTopk-Fan in Fig. 4(c).

Exp3-Efficiency Study We next evaluate the efficiency of the three algorithms.
For DTopk-Base and DTopk-Fan, the runtime includes time to generate all
matches.

Effect of Varying the k: Fixing Q and λ = 0.5, we vary k from 5 to 25. The
results are shown in Figs. 5(a)– 5(d). DTopk-Fan and DTopk-Index are more
sensitive to the increase of k than DTopk-Base. A possible explanation is the
select function of DTopk-Base can be updated incrementally. Recall function
F

′
u(S) = 1

2 (k − 1)(1 − λ)fu(S) + 2λd(u, S) in DTopk-Base, for a match u, fu(S)
actually equals to δI(u), and d(u, S) denotes the distance between u and every
element in the existing solution set S. Suppose at iteration i, match v is added
to S. At iteration i + 1, we could update F

′
u(S + v) = 1

2 (k − 1)(1 − λ)fu(S) +
2λ[d(u, S)+d(u, v)] = F

′
u(S)+2λd(u, v). This update costs just a little time. The

time complexity of DTopk-Fan is O(12kn2), as it iteratively selects two matches
m1,m2 that maximize F ′(m1,m2) = (1 − λ)(δI(m1) + δI(m2)) + 2λδD(m1,m2).
So DTopk-Fan is always slower than DTopk-Base and DTopk-Index.

Effect of Varying the |Q|: Fixing k = 5 and λ = 0.5, we vary |Q| from 3 to
11. In Figs. 5(e)– 5(f), as |Q| grows, it takes more time to produce all matches,
so runtime also grows in DTopk-Base and DTopk-Fan. For some very compli-
cated queries, like |Q| = 11 in WatDiv, both DTopk-Base and DTopk-Fan take
more than 1000 s to finish, which is unacceptable in real-world applications. In
contrast, DTopk-Index always finishes within a reasonable time as it produces
much fewer matches.



Diversified Top-k Querying in Knowledge Graphs 333

Fig. 4. Effectiveness evaluation, fixing λ = 0.5

Effect of Multi-Threads: In Fig. 5(g)– 5(h), we compare the workload latency
using multi-threaded implementations. We combine 5 queries in LUBM and Wat-
Div, and vary thread from 1 to 10. The response time decreases by 69% and
65% on LUBM and WatDiv, respectively. The primary trend of DTopk-Index is
almost linearly downward with an increasing number of threads. This efficiency
improvement lies in the parallelization of forks in the runtime Backbone index,
which encourages us to seek parallelization when assembling forks in the future
work.

Fig. 5. Efficiency evaluation, fixing λ = 0.5, and t represents thread
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7 Conclusions

In this paper, we study the Diversified Top-k Querying problem in knowl-
edge graphs. We establish the complexity of this problem and provide a
2-approximation algorithm DTopk-Base. With the help of the Backbone index,
we also present a heuristic algorithm DTopk-Index with early-termination prop-
erty. The experimental results prove that our methods are efficient and effective
on large knowledge graphs.
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Appendix

We will prove the approximation ratio of Algorithm1 is 2. M(GD, QD) is named
M for short. For disjoint subsets S, T ⊆ M, let d(S) =

∑
u,v∈S δD(u, v), d(S, T ) =∑

u∈S,v∈T δD(u, v) and f(S) =
∑

u∈S δI(u).
Now we define marginal gain. For any given subset S ⊆ M and an element

u ∈ M\S, let F (S) be the value of the objective function, du(S) =
∑

v∈S δD(u, v)
be the marginal gain on the diversity, fu(S) = f(S+u)−f(S) = f(u) = δI(u) be
the marginal gain on the importance, and Fu(S) = (1−k)(1−λ)fu(S)+2λdu(S)
be the total marginal gain on the objective function. Let f

′
u(S) = 1

2 (k − 1)(1 −
λ)fu(S) and F

′
u(S) = f

′
u(S) + 2λdu(S).

We utilize the a theorom in [13]: Given a metric distance function d(·, ·), and
two disjoint sets X and Y , the following inequality holds: (|X| − 1)d(X,Y ) ≥
|Y |d(X).

Let O be the optimal solution and G be the greedy one at the end of the
Algorithm 1. Let Gi be the greedy solution at the end of step i, i < k; let
A = O∩Gi, B = Gi\A and C = O\A. By Lemma 1, we have the following three
inequalities: (1) (|C| − 1)d(B,C) ≥ |B|d(C); (2) (|C| − 1)d(A,C) ≥ |A|d(C); (3)
(|A| − 1)d(A,C) ≥ |C|d(A). Besides, we have (4) d(A,C)+ d(A)+ d(C) = d(O).

When k = 1, match u with the largest δI(u) must be in both G and O, so
F (G) = 1

2 (k − 1)(1 − λ)fu(S) + 2λdu(S) = 1
2 (k − 1)(1 − λ)δI(u) + 0 = 1

2F (O)
apparently.

When k > 1, suppose |C| = 1 and i = k − 1. Let v be the element
in C, and let u be the element taken by the greedy algorithm in the next
step, and then F

′
u(Gi) ≥ F

′
v(Gi). Therefore, (k−1)(1−λ)

2 fu(Gi) + 2λdu(Gi) ≥
(k−1)(1−λ)

2 fv(Gi) + 2λdv(Gi), which implies Fu(Gi) = (k − 1)(1 − λ)fu(Gi) +
2λdu(Gi) ≥ (k−1)(1−λ)

2 fu(Gi) + 2λdu(Gi) ≥ (k−1)(1−λ)
2 fv(Gi) + 2λdv(Gi) ≥

1
2Fv(Gi), hence F (G) ≥ 1

2F (O).
Now we can suppose that k > 1 and |C| > 1. We apply the following

non-negative multipliers to Inequality. (1) (2) (3) and Eq. (4) and add them:
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(1)× 1
|C|−1 + (2)× |C|−|B|

k(|C|−1) + (3)× i
k(k−1) + (4)× i|C|

k(k−1) ; then we have d(A,C) +

d(B,C) − i|C|(k−|C|)
k(k−1)(|C|−1)d(C) ≥ i|C|

k(k−1)d(O).
Since k > |C|, we have d(C,Gi) = d(C,A + B) = d(C,A) + d(C,B) ≥

i|C|
k(k−1)d(O). Suppose P is a set, we define function f

′
(P ) =

∑
x∈P f

′
x(P ). Then,

∑
v∈C f

′
v(Gi) = f

′
(C ∪ Gi) − f

′
(Gi) = f

′
(O) − f

′
(G). Therefore,

∑

v∈C

F
′
v(Gi) =

∑

v∈C

[f
′
v(Gi) + 2λd({v}, Gi)]

=
∑

v∈C

f
′
v(Gi) + 2λd(C,Gi) ≥ (f ′(O) − f ′(G)) + 2λ × i|C|

k(k − 1)
d(O)

Let ui+1 be the element taken at step (i + 1), and then we have F
′
ui+1

(Gi) ≥
1
k (f ′(O) − f ′(G)) + 2λi

k(k−1)d(O). Summing over all i from 0 to k − 1, we have

F
′
(G) =

∑i=k−1
i=0 F

′
ui+1

(Gi) ≥ (f ′(O)−f ′(G))+λd(O). Hence, F
′
(G) = f ′(G)+

2λd(G) ≥ f ′(O) − f ′(G) + λd(O), and F (G) = (k − 1)(1 − λ)f(G) + 2λd(G) =
2f ′(G) + 2λd(G) ≥ f ′(O) + λd(O) = 1

2 [(k − 1)(1 − λ)f(O) + 2λd(O)] = 1
2F (O).

So the approximation ratio of Algorithm 1 is 2. This completes the
proof. �	
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Abstract. Knowledge graph (KG) as the source of side information has
been proven to be useful to alleviate the data sparsity and cold start.
Existing methods usually exploit the semantic relations between enti-
ties by learning structural or semantic paths information. However, they
ignore the difficulty of information fusion and network alignment when
constructing knowledge graph from different domains, and do not take
temporal context into account. To address the limitations of existing
methods, we propose a novel High-order semantic Relations-based Tem-
poral Recommendation (HRTR), which captures the joint effects of high-
order semantic relations in Collaborative Knowledge Graph (CKG) and
temporal context. Firstly, it automatically extracts different order con-
nectivities to represent semantic relations between entities from CKG.
Then, we define a joint learning model to capture high-quality represen-
tations of users, items, and their attributes by employing TransE and
recurrent neural network, which captures not only structural informa-
tion, but also sequence information by encoding semantic paths, and to
take their representations as the users’/items’ long-term static features.
Next, we respectively employ LSTM and attention machine to capture
the users’ and items’ short-term dynamic preferences. At last, the long-
short term features are seamlessly fused into recommender system. We
conduct extensive experiments on real-world datasets and the evalua-
tion results show that HRTR achieves significant superiority over several
state-of-the-art baselines.

Keywords: Collaborative knowledge graph · High-order semantic
relation · Structural information · Temporal recommendation

1 Introduction

Collaborative Filtering (CF) is the most popular recommendation strategy,
which exploits users’ historical interactions to infer their preferences. However,
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they usually suffer from the data sparsity and cold start problem. Various types
of side information have been incorporated to address it, such as social net-
works [7], temporal context [11] and user/item attributes [14]. Knowledge graph
(KG) as the source of auxiliary data has been widely adopted to enhance recom-
mendation. It connects various entities and links from different topic domains
as nodes and edges to develop insights on recommendation.

Some state-of-art methods utilizing KG are proposed to boost recommenda-
tion quality. Meta-path based methods extract paths between two entities to rep-
resent different semantic relations, which leverages the relations of item-item [19],
user-user [1,10,21], and user-item [6,9]. They can generate effective recommen-
dation by modeling the user preference based on the semantic relations. Because
the extracted meta-paths rely on manually designed features based on domain
knowledge, they are always incomplete to represent all semantic relations. KG
embedding based methods [14,16,20] automatically learn the embeddings of enti-
ties to capture entity semantics and incorporate them to recommendation frame-
work. But A major limitation of these KG embedding methods is less intuitive
and effective to represent the connection semantic relations of entities. For exam-
ple, Zhang et al. [20] extracted items’ semantic representations from structural
content, textual content and visual content by capturing entity semantics via
TransR, but ignored the high-order semantic relations between paired entities
for recommendation. Then, some methods try to seek a way which not only
can capture the semantic relations of entities and paths, but also not rely on
handcrafted features and domain knowledge. Sun et al. [12] employed recurrent
neural network (RNN) to learn semantic representations of both entities and
high order paths to improve recommendation.

Almost all above methods rely on knowledge graph which includes various
information from different domains. However, information fusion and network
alignment are also very difficult. To address the limitations of constructing
knowledge graph, a solution is to design a lightweight Collaborative Knowledge
Graph (CKG) by only utilizing the facts in one domain as knowledge. CKG
that often includes the interaction behaviors of users on items and side infor-
mation for items (e.g., item attributes and external knowledge) and users (e.g.,
age, zip code, and occupation). Wang et al. [17] proposed Knowledge Graph
Attention Network (KGAT), which explicitly models high-order connectivities
in CKG and recursively propagates the embedding from a node’s neighbors to
refine its representation. But it only considered the high-order relations between
users and items. Wang Hongwei et al. [15] proposed RippleNet which extends
a user’s potential preference along links in the CKG. These methods model
user’s preference by utilizing the high-order semantic representations and rela-
tions into recommender system, while they don’t consider temporal influence.
Xiao et al. [18] proposed KGTR which captures the joint effects of interactions
by defining three categories relationships in CKG and considers the effect of
temporal context. It can obtain the first and second order semantic relations by
TransE and the embeddings of user’s and item’s various attributes, however, can
not learn the high-order semantic relations.
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Considering the limitations of existing solutions, we believe it is critical to
develop a model that can effectively exploit high-order connections in CKG and
take temporal information into account. To this end, we propose a novel High-
order semantic Relations-based Temporal Recommendation (HRTR), which cap-
tures the joint effects of high-order semantic relations in CKG for recommen-
dation. HRTR firstly mines semantic relations about some entities from differ-
ent order connectivities. Then, it jointly learns high-quality representations of
users, items, and their attributes to capture structural knowledge by employing
TransE [2] and to explore sequence information by using recurrent neural net-
work to encode semantic paths, which are regard as the users’/items’ long-term
static features. Next, by splitting the users’ interactions with a time window,
the users’ short-term dynamic preferences are learned by LSTM [5]. The set of
users who have recently interacted with an item is used to explore the items’
short-term features by attention mechanism [13]. At last, the long-term and
short-term preferences of users and items are integrated to recommend an item
list to a user.

We summarize our main contributions as follows:

– We propose a joint learning model to capture high-quality representations of
entities in a lightweight Collaborative Knowledge Graph, which not only can
capture structural information, but also can explore sequence information by
automatically encoding extracted semantic paths.

– We seamlessly fuse high-quality representations of entities and temporal con-
text for recommendation, which effectively captures the users’ and items’
stable long-term and short-term dynamic preferences.

– We conduct experiments on real-world datasets, and the results show the
significant superiority of HRTR over several state-of-the-art baselines.

2 Related Work

In this section, we review existing works on meta path based methods, KG
embedding based methods, and semantic relation based methods, which are most
related to our work.

2.1 Meta Path Based Methods

Meta path based methods capture the relations between two entities in KG by
defining meta-paths, which are predefined by using handcrafted features based
on domain knowledge. They generally infer a user preference by leveraging the
different entity similarity of item-item [19], user-item [6,9], and user-user [1,10,
21]. HeteRec [19] learned the user preference on an item connected with his/her
rated item via different meta paths. SemRec [10] captured semantic similarity
among users by introducing the weighted meta path. Wang et al. [1] and Zheng
et al. [21] respectively proposed matrix factorization model to regularize user
similarity derived from meta path. SimMF [9] extended matrix factorization
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based model by adding meta path based user-item similarity. They successfully
model the user preference based on the semantic relations, but they heavily
rely on manually designed features based on domain knowledge and can not
completely represent all semantic relations between two entities.

2.2 KG Embedding Based Methods

KG embedding based methods first capture the entity embedding by exploiting
the structural information of KG and incorporate the learned entity embeddings
into a recommendation framework. CKE proposed by Zhang et al. [20] combined
CF with item embeddings obtained via TransR [8]. DKN [16] combined the
treated entity embeddings with CNN for news recommendation. SHINE [14]
embed three types of networks by designing deep autoencoders for celebrity
recommendations. But a major limitation of these KG embedding methods is
less intuitive and effective to represent the semantic relations of entities.

2.3 Semantic Relation Based Methods

Another kind of methods effectively improves the performance of recommenda-
tion by mining the high-order semantic relations or integrating various other
information and strategies to capture better representations for recommenda-
tion. Sun et al. [12] employed RNN to model different order semantics of paths
to characterize user preferences. Wang et al. [17] proposed knowledge graph
attention network (KGAT), which recursively propagates the embedding from a
node’s neighbors to refine its representation and discriminates the importance
of neighbors by using an attention mechanism. Wang Hongwei et al. [15] pro-
posed RippleNet which extends a user’s potential preference along links in CKG.
These methods model users’ preferences by utilizing the high-order semantic rep-
resentations and relations, while they do not consider temporal influence. Xiao
et al. [18] proposed KGTR which captures the joint effects of interactions by
defining three categories relationships and temporal context.

Different from these works, our proposed method not only can effectively
exploit semantics of entities and high-order connectivities, but also take the
long-short term preferences of users and items into account.

3 Our Proposed Model

Let U = {u1, u2, · · · } and V = {v1, v2, · · · } denote the sets of users and items,
respectively. M = {Muv|u ∈ U, v ∈ V } is a sparse user-item interaction matrix
that consists of users, items, and the interactions which include rating, browsing,
clicking and so on. Meanwhile, there are various attributes of users and items,
such as gender, age, occupation, which are significant auxiliary information for
recommendation result. We aim to build temporal personalized recommendation
model for a user based on the semantic embeddings of users, items and their
attributes, and then recommend items to users.
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The overview of our proposed HRTR is shown as Fig. 1, which consists of
three parts: (1) learning high quality semantic representations of users, items and
their attributes by TransE and RNN; (2) training long-short term preferences of
users and items, in which the learned semantic representations are considered as
the long-term features, the short-term features of users and items are captured
by LSTM and attention machine based on the learned semantic embeddings
and interactions, repectively; (3) predicting how likely a user interacts an item
by integrating these learned long-short term preferences into a sigmoid based
prediction model.

Fig. 1. The framework of high order semantic relations temporal recommendation

3.1 Different Order Semantic Relations Mining

Designing Collaborative Knowledge Graph. Given U , V , M as well as
users’/items’ attributes, user-item interaction graph and user/item attribute
graph are defined, which is regarded as the formal construction of Collabora-
tive Knowledge Graph (CKG).

As illustrated in Fig. 2, taking movie data as an example, the users and items
are treated as entities. When there is an observed interaction between user u
and item i (e.g., purchases, clicks, ratings), a link will be constructed between
them. Here, user-item interaction graph G1 is denoted as G1 = {(u,muv, i)|u ∈
U, i ∈ V,muv ∈ R′}, and R′ is the interaction sets. In addition to the inter-
actions, users/items have different types of side information to profile them.
The user/item attribute graph G2 is defined to organize the side information in
the form of directed graph. Formally, it is presented as G2 = {(h′, r′, t′)|h′ ∈
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U ∪ V, t′ ∈ Ψ, r′ ∈ Ω}, where Ψ is the attribute values set, Ω is the attribute set
and contain canonical relations and their inverse direction. (h′, r′, t′) describes
that there is a semantic relationship r′ from h′ to t′. For example, (Tom, age, 45)
states the fact that Toms age is 45. Then, Collaborative Knowledge Graph which
encodes user interactions and the side information of users and items is defined as
a unified graph G = {(h, r, t), h, t ∈ ε, r ∈ R}, where ε = U ∪V ∪Ψ , R = R′ ∪Ω.

Fig. 2. Different order semantic relations mining on CKG

Different Order Semantic Relations Mining. The key to successful rec-
ommendation is to fully exploit the high-order relations in CKG, which rep-
resents the way to learn the embedding of entities by using the first-order,
second-order or even higher-order semantic relations, respectively. Formally,
we define the L-order relations between nodes as a multi-hop relation path:
e0

r1−→ e1
r2−→ · · · rL−→ eL, where el ∈ ε and rl ∈ R, (el−1, rl, el) is the l − th

triplet, and L is the length of relation path. Then we can denote the semantic
relation paths that reach any node from e0 with different length l. As shown
in Fig. 2, for an entity “Tom”, we can exploit the first-order semantic relations,
Tom

age−−→ 45, Tom
occupation−−−−−−−→ teacher, Tom

rating−−−−→ TheTerminal(TT ) and

Tom
rating−−−−→ Schindler′sList(SL), which represents the attributes of Tom, and

his rating activities, respectively. They can be easily extended to the second-
order semantic relations, which contains more richer semantics. For exam-
ple, Tom

age−−→ 45
−age−−−→ Alice, Tom

occupation−−−−−−−→ teacher
−occupation−−−−−−−−→ Alice,

Tom
rating−−−−→ TT

−rating−−−−−→ Bob, Tom
rating−−−−→ SL

directedby−−−−−−−→ Steven, which indi-
cates semantic relations between Tom and Alice, Bob, Steven relying on common
attributes, rating on one item TT , or the relationship on SL. However, to exploit
such high-order relations, there are challenges: 1) the number of semantic paths
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increases dramatically with the order size, which will lead to more computation
in training it, and 2) the different order relations are of different importance to
recommendation, which requires the model to carefully define them.

Generally, shorter semantic paths indicate stronger relations, while longer
ones may represent more semantic relations. To increase model efficiency, We
only consider the semantic paths with the length less than a threshold and take
the semantic relations started from an entity of user or item into account.

3.2 Semantic Relation Learning

We aim to parameterize entities and relations as vector representations to
improve recommendation, which not only learns the structural information, but
also the sequence information of semantic relations. Here we employ TransE [2],
a widely used method, on CKG to capture this structural knowledge. Sequence
information of semantic paths is exploited by adopting RNN.

Structural Embedding. To capture this structural information, TransE is
used to learn it by optimizing the probability P (h, r, t) of the relational triples
(h, r, t), which exists in the graph. So the probability P (h, r, t) is formalized as
follows:

LSE = P (h, r, t) =
∑

(h,r,t+)∈CKG

∑

(h,r,t−)∈CKG−
σ(g(h, r, t+) − g(h, r, t−)) (1)

where σ(x) = 1/(1+ exp(x)) is sigmoid function. The CKG and the CKG− are
the positive and negative instances set, respectively. g(·) is the energy function
which represents the correlation from h to t in the relation r. The score of g(·)
is lower if the triplet is more likely to be true. Here, we define g(h, r, t) as follow:

g(h, r, t) = ||eh + er − et||L1/L2 + b1 (2)

where eh, er, et are the embedding of h,r and t; b1 is a bias constant. The rela-
tions of entities are modeled through the triples, which can inject the direct
connections into embedding to increase the model representation ability.

Sequence Embedding. Structural embedding can capture entity semantics
and semantic relations between entities, however, can not study the semantic
relations of high-order paths. By regarding the entities in different high-order
semantic paths as a sequence, we naturally think that recurrent neural networks
are suitable for modeling different order semantic paths. This is mainly because
that it has capability in modeling sequences with various lengths. To this end,
we adopt RNN to learn the semantics of entities by encoding the semantic paths
with different lengths, and then a pooling operation is used to get the final
semantic representation.

Assume n paths of different lengths from an user ui to any another entity ej ,
i.e., pl = e0

r1−→ e1
r2−→ · · · · · · rT−−→ eT with e0 = ui, the RNN learns a representation
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hlt for each entity et in pl, which considers both the embeddings of entities in the
path and the order of these entities. It encodes the sequence from the beginning
entity of the path e0 to the subsequent entity et. For entity et

Olt = δ(W · Ol(t−1) + H · hlt + b2) (3)

where W is the linear transformation parameters for the previous step, H is for
current step; b2 is the bias term; δ is the sigmoid function. Ol(t−1) is a learned
hide state by encoding the subsequence from e0 to et−1, Olt is a learned hide
state after learning the embedding of hlt at step t. For n paths from a user entity
ui, their last representations are O1T1 , O2T2 · · · OnTn

, where Tn is the length of
pn. Based on this, we get the entity representation O[ui] by adding a max pooling
or an average pooling operation towards all the n paths. Similarly, we can get
the representation O[vj ] of item vj . So the objective function can be defined as:

LSP =
∑

(ui,vj)∈CKG+

− ln δ(ŷ(ui, vj) − y(ui, vj)) (4)

where the probability ŷ(ui, vj) = δ(O[ui]TO[vj ]) is predicted by conducting inner
product of user and item representations, CKG+ is positive instances set, σ(·)
is the sigmoid function.

Finally, we have the objective function to jointly learn Eqs. (1) and (4), as
follows:

L = LSE + LSP (5)

We optimize LSE and LSP alternatively. Specifically, all representations for
nodes are updated by randomly sampling a batch of instances h, r, t, t′; hereafter,
we randomly sample some users or items and mine semantic paths starting from
them, and update the representation for all nodes. Then we can get the embed-
dings of users, items and their attributes UL, VL, Ua, Va, which are regard as
the long term preferences of users and items for temporal recommendation.

3.3 Training Long-Short Term Preference of Users and Items

Users Long-Short Preference. A user preference is compose of the long-
term and short-term preference. The long-term preference indicates the stable
interest, which is represented by semantic presentations of the user’s interacted
items and their attributes. The short-term preference indicates a user’s dynamic
interest, which are learned by LSTM here. The size of time window t is the key
issue when modeling the user dynamic preference. The more fine-grained interest
changes can be captured by using smaller time window, but the training data
is very sparse and the learning process is difficult. On the contrary, the larger
time window will has sufficient training data, while the model is less adaptive
for capturing dynamics changes of a user preference. To this end, we adopt
the latest n items to model the user short term preference, which ensures the
enough training data to train the user preference. Instead of inputting the user
interacted history in form of items sequence into LSTM, the learned semantic
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representations of the interacted items and their attributes are regarded as pre-
train input of LSTM. This makes the training faster and more effective. Finally,
the output of LSTM US is taken as the user short-term preference.

Items Long-Term Preference. Similar to the user preference, the item pref-
erences are also made up of two parts. The learned semantic representations
of items and their attributes are regarded as their long-term preferences. Their
short-term features are determined by the popularity of them changing over
time. We think that the most fashionable items currently have a greater con-
tribution to user preference. Here, we adopt attention machine to capture the
short-term characteristics of items because of its capability of keeping the con-
textual sequential information and exploiting the relationships between items.
At last, the items recently viewed by all users are used as attention input. Simi-
lar to [13], the attention vector for items (1, 2, · · · I) are calculated by using Eq.
(6) at each output time t.

V ′
s =

∑
(δ(zT tanh(Wcct + Wyyi))yi) (6)

where z , Wc,Wy are learnable parameters, ct is the training item at time t and
yi is i-th item in input sequence. δ(·) is a sigmoid function. Lastly, ct and V ′

s

are concatenated as the next input ct+1. The final output Vs can be regarded as
items’ dynamic preferences.

3.4 Recommending Items to Users

Our task is to predict items which the user likely to prefer to when giving the
long-short term preferences of users, items and their attributes. They can be con-
catenated into a single vector as the input of a standard multi-layer perceptron
(MLP), as follow:

UP = UL‖Ua‖US

VP = VL‖Va‖VS

(7)

where ‖ is the concatenation operation. ŷuv is used to represent the probability
of the user u interact with the item v. It is represented by Eq. (8)

ŷuv = σ(hTOL) (8)

where OL is output of MLP. For any l − th layer, Ol is defined as Eq. (9)

Øl = φl(λlOl−1 + ϑl) (9)

where φl, λl, ϑl are the ReLU activation function, weight matrix and bias vector
for the l-th layer’s perceptron, respectively. Ol−1 is the l − 1-th layer’s output of
MLP. UP and VP are the input of input layer.

We treat yuv as label, which represents the actual interaction. 1 means user
u has interacted with item v, and 0 otherwise. Therefore, the likelihood function
is defined as Eq. (10):
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p(y, y−|Θf ) =
∏

(u,v)∈y

ŷuv
∏

(u,v)∈y−
(1 − ŷuv) (10)

Taking the negative logarithm of the likelihood, we gain the objective function
as Eq. (11):

L = −
∑

(u,v)∈y

log ŷuv −
∑

(u,v)∈y−
log(1 − ŷuv)

= −
∑

(u,v)∈y∪y−
yuv log ŷuv + (1 − yuv) log(1 − ŷuv)

(11)

where y−is the negative instances set, which is uniformly sampled from unob-
served interactions with the sampling ratio related to the number of observed
interactions. The output of each neuron is controlled in [0,1] by using sigmoid
function. The learning will stop when their output is near to either 0 or 1.

We adopt adaptive gradient algorithm to optimize our model, which auto-
matically adapts the step size to reduce the efforts in learning rate tuning. In the
recommendation stage, candidate items are ranked in ascending order according
to the prediction result, and we recommend the top ranked items to users.

4 Experiments

In this section, we perform experiments to evaluate HRTR. We first introduce
experimental setup, including the datasets, baselines, evaluation metrics and
parameter settings, and then present the experiment results against the related
baselines.

4.1 Experimental Setup

Dataset Description. To demonstrate the effectiveness of HRTR, We conduct
experiments on two public datasets. The one is MovieLens-1M1 which consists of
6,040 users, 3,952 items and approximately 1M explicit ratings. Besides the user-
item ratings, it also includes some auxiliary information about users and items,
such as age, occupation, zip code, genre, title, director, etc. Ratings ranging
from 1 to 5 are transformed into either 1 or 0, where 1 indicates a user have
rated an item, otherwise 0. Another one is Yelp2, which contains 4700000 review
information, 156000 businesses and 110000 users. Here we consider businesses,
for example movie theaters, as items. We set the threshold to 10, which represents
that a user has at least 10 interactions.

For each user, his/her interactions are first sorted based on interactive time,
and the latest one is regarded as the test positive instance and others are utilized
as positive instances for training. Finally we randomly sample four negative
instances for per positive one, and randomly sample 99 unrated items as the
test negative instances.
1 https://grouplens.org/datasets/movielens/.
2 https://www.yelp.com/dataset/challenge.

https://grouplens.org/datasets/movielens/
https://www.yelp.com/dataset/challenge
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Evaluation Metrics. Hit Ratio (HR) and Normalized Discounted Cumulative
Gain (NDCG) are used to evaluate the performance of a ranked list [4]. The HR
intuitively measures whether the recommendation list includes the test item.
The NDCG measures the ranking of the test item in top-K list. We calculate
HR and NDCG for each test user and take the average score as the final results.

Baselines. To validate the effectiveness of our proposed HRTR, we compare it
with the following state-of-the-art baselines

– NCF [3]: It uses a multi-layer perceptron replacing the inner product to learn
the user-item interactions.

– MCR [6]: It is a meta path based model, which extracts qualified meta paths
as similarity between a user and an item.

– CKE [20]: It is a collaborative KG embedding based method, which learns
item latent representations by combining structural, textual and visual infor-
mation in a unified framework.

– KGTR [18]: It is a semantic relation plus temporal method, which defines
three relationships in CKG to express interactions for recommendation.

Parameter Settings. For structural embedding training, the embedding size is
fixed to 100, hyper parameter b1 is set to 7, and L1 is taken as distance metric.
For sequence embedding training, the threshold of the longest semantic path
length is set to 6. A longer path hardly improves performance but brings heavier
computational overhead. We implement HRTR in Python based on the Keras
framework and employ mini-batch Adam to optimize it. For MovieLens dataset,
16 items are selected as the input of LSTM for one user to learn his/her short
term preference. For Yelp, 8 items are selected to mine users’ preference. We
select items which interacted by all users in the latest hour as input of attention
to learn the items’ short term features.

We find out other optimal parameters for HRTR by experiment and take
HR and NDCG as metrics to evaluate them. We apply a grid search to find out
the best values for hyperparameters: the dimension of representation vector d is
tuned in {50, 100, 150, 200}, the batch size s is searched in {128, 256, 512, 1024,
2048}. Due to space limitation and the same trend, only the results on MovieLens
are shown in Fig. 3. From Fig. 3 we can see that HR@10 and NDCG@10 firstly
increase and then decrease with the increase of d. The performance of HRTR
is best when d = 100. As s increases, its performance increases rapidly and
tends to be stable with different batch size and the best performance is obtained
when bach size is set to 2048. So we set s = 2048 and d = 100 as the optimal
parameters for MovieLens, while for Yelp s = 2048 and d = 150. The optimal
parameters of baselines are set to their recommended values.
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Fig. 3. The performance of our HRTR with different dimensions and batch sizes

4.2 Results and Analysis

Results Analysis of HRTR. Here, we report the performance of our HRTR
for top@k recommendation on MovieLens, where k is tuned in {5, 10, 15, 20,
25, 30}. Firstly, the batch size is set to 2048 and the dimension is tuned in {50,
100, 150, 200}, the results are shown in Fig. 4. Some interesting observations can
be noted from Fig. 4. With increasing of k, HR@k and NDCG@k are improved
rapidly and tend to be stable. In general, HR@k and NDCG@k get better results
when d = 100, while the difference is very slight. The result is consistent with the
analysis in parameter settings. That shows it is not sensitive to vector dimension.

As shown in Fig. 5, we also tested the top@k item recommendations, when
vector dimension is fixed to 100 while batch size is searched in {512, 1024, 2048}.
We can observe that HR@k and NDCG@k increase when k varies from 5 to 30.
HR@k and NDCG@k all get the better performance when batch size becomes
larger and it is obvious for NDCG@k. Due to the same trends, the results on
Yelp are not described in detail.

Comparing HRTR with Baselines. Table 1 summarizes the performance
of all methods on two datasets and the best performance is boldfaced. MCR
without considering temporal information and CKE without employing seman-
tic paths achieve poor performance compared with other methods. This confirm
that semantic path and temporal context are useful to provide better recommen-
dation. MCR highly outperforms all models if the ranking list is short. That is
mainly because MCR exploits the entity relation in the KG by introducing meta
paths relying on domain knowledge, which has its superiority when requiring
shorter recommendation list. The performance of KGTR is closest to HRTR.
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Fig. 4. HR@K and NDCG@K results with different dimensions

Fig. 5. HR@K and NDCG@K results with different batch size

The reason is that they all consider semantic relation with temporal context.
While HRTR is still superior to KGTR. The mainly reason is that HRTR can
capture high order semantic relation, KGTR can not do it. For sparser Yelp
dataset, HRTR achieves significantly better performance than other methods,
that shows that HRTR is more suitable for sparser data.
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Table 1. Performance of all comparison methods across all the evaluation metrics.

Datesets Methods HR@k NDCG@k

5 10 20 5 10 20

MovieLens-1M NCF 0.5339 0.6812 0.8204 0.3501 0.4102 0.4403

MCR 0.5764 0.5873 0.6079 0.4354 0.4001 0.3809

CKE 0.4251 0.5736 0.7345 0.1585 0.1698 0.1999

KGTR 0.5402 0.6978 0.8303 0.3603 0.4232 0.4501

HRTR 0.5102 0.6989 0.8312 0.3412 0.4120 0.4508

Yelp NCF 0.1123 0.1360 0.2011 0.1650 0.1123 0.0543

MCR 0.1202 0.1143 0.1156 0.1815 0.1828 0.1798

CKE 0.0931 0.1098 0.1172 0.1212 0.1131 0.0821

KGTR 0.1102 0.1179 0.1206 0.1528 0.1698 0.1658

HRTR 0.1090 0.1379 0.2152 0.1811 0.1903 0.1822

5 Conclusions

In this paper, we proposed a High-order semantic Relations-based Temporal Rec-
ommendation model (HRTR) that explores the joint effects of different seman-
tic relations in CKG and temporal context. HRTR overcame the limitations of
existing KG-aware methods by jointly learning different order semantic rela-
tions between entities, which not only captures structural information, but also
explores sequence information in CKG. HRTR respectively exploited the users’
and items’ long and short term features, which could capture their stable and
temporal dynamic preferences. Extensive experiments were conducted on real
datasets and the experimental results demonstrated the significant superiority of
HRTR over state-of-the-art baselines. In future, we plan to design an effectively
unified model to simultaneously explore the structural and sequence information
to improve the performance.
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Abstract. Knowledge graph (KG) has been proven to be effective to
improve the performance of recommendation because of exploiting struc-
tural and semantic paths information in a static knowledge base. How-
ever, the KG is an incremental construction process with interactions
occurring in succession. Although some works have been proposed to
explore the evolution of knowledge graph, which updates the entity rep-
resentations by considering the previous interactions of related entities.
However, we believe that the semantic path information between the
involved entities and the occurring interaction itself also can refine their
representations. To this end, we propose a temporal knowledge graph
incremental construction model, which updates the entity representa-
tions by considering interaction itself and high-order semantic paths
information. Specifically, different length semantic paths between user
and item are automatically extracted when an interaction occurs. Then
we respectively employ recurrent neural network and standard multi-
layer perceptron (MLP) to capture different length path semantic infor-
mation and interaction itself information for updating the entity repre-
sentations. Finally, we use MLP to predict the probability that a user
likes an item after seamlessly integrating these variations into a uni-
fied representation. We conduct experiments on real-world datasets to
demonstrate the superiority of our proposed model over all state-of-the-
art baselines.

Keywords: Knowledge graph · Semantic path · User interaction ·
Recurrent neural network

1 Introduction

Recommender system (RS) recently has been active in various fields. Similar to
the event detection method [13], the goal of RS is to find items that the user are
more interested by using user’s historical behaviors. Matrix Factorization (MF)-
based methods [2,8] have achieved great success, however, their performances
will be significantly reduced when the data is sparse and they lack the further
exploration of hidden relationship encoded in datasets (e.g., user-item pair).
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To address theses limitations, researchers try to utilize knowledge graph (KG)
to help us discover potential interrelationships between users, items and user-
item pairs. Meta path-based methods [3,4,11] mainly add entity similarity (user-
user, item-item and user-item) derived from meta paths in KG into collaborative
filtering (e.g., the latent factor model [5] (LFM)). However, they heavily rely on
handcrafted features and domain knowledge, and are not enough to fully capture
the critical paths of the entity relationship. KG embedding based methods [9–
12] automatically learn the embeddings of entities in KGs by using structural
information and entity properties, but ignore the path semantic information.
Recurrent Knowledge Graph Embedding (RKGE) [6] not only learned the entity
representations, but also the semantic paths. However, all KG-aware methods
mentioned above can get better performance by assuming that KG has been
fully constructed and is static. In fact, the knowledge graph construction is
a temporal and incremental process. When an interaction occurs, entities and
edges are added to KG. Knowledge graph evolutionary methods [1,7,14] learned
better entity representations by introducing the temporal order of interactions.
However, they did not consider the impact of high-order semantic path in KG
when updating the entity representations.

Considering the limitations of existing methods, we propose a temporal
knowledge graph incremental construction model for recommendation (KGCR),
which not only considers interaction itself, but also high-order semantic paths
information when updating their representations. Specifically, it automatically
extracts different length paths between user-item pairs when an interaction
occurs. Then the entity representations are updated by exploring the impact of
interact itself and semantic paths learning by recurrent neural network (RNN)
and MLP, respectively. Finally, we use MLP to predict the recommendation
results after seamlessly integrating these variations into a unified representa-
tion. The experimental results show its superiority over other state-of-the art
baselines.

2 Methodology

Given user-item interaction data and auxiliary information about users and
items, our goal is to incrementally construct knowledge graph based on the order
of interaction occurring, which not only considers the previous representations
of the two involved entities, but also the impact of interaction itself and high-
order semantic paths. The overall framework of KGCR is shown in Fig. 1, which
consists of three parts: 1) extracting different length semantic paths between
user and item when a user interact with an item at t time; 2) employing RNN
and MLP to respectively mine the impact of semantic representations in dif-
ferent length paths and interaction itself of the user and item; 3) Training and
recommendation after fusing these impacts into a unified MLP model.

2.1 Incremental Temporal Knowledge Graph

We regard the interactions between users and items as temporal sequence, and
then traditional static KG need to be augmented into incremental temporal KG.
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Fig. 1. The overall framework of KGCR.

When a user interacts with an item at time t, an edge will be added between
them, as shown in Fig. 1. Here, we extend triplet representation for static KG
to introduce time dimension and incremental temporal knowledge graph GT is
denoted as GT = {(u, yui, i, t)|u ∈ U, i ∈ I, yui ∈ R′}, where R′ is the interaction
sets (e.g.,purchases, clicks, ratings), yui = 1 if a user interacts with an item,
otherwise 0, t ∈ R+ is the occurring time of this interaction. So an incremental
temporal KG containing M edges corresponding M observed interactions can
be regarded as the globally ordered set D = {(u, yui, i, tm)}M

m=1, where 0 ≤ t1 ≤
t2 ≤ · · · tm ≤ · · · tM . In addition to the interactions, users/items are profiled by
their different types of side information, which is organized in the form of directed
graph Ga. Formally, it is denoted as Ga = {(h, r, t)|h ∈ U ∪ I, r ∈ Ψ, t ∈ Λ},
where Ψ is the attribute set and consists of their canonical and inverse relations,
Λ is the attribute value set. When users/items are firstly joined to GT , their
attributes are also added. Then GT and Ga can be denoted as a unified graph
G = GT ∪ Ga.

2.2 Semantic Paths Mining

Having an observed interaction at time t, KGCR regards it as an incoming
event that will alter the semantic representations of entities. As shown in Fig. 1,
for entity pair (Keen,Casino), we can exploit different order semantic paths
to mining their different semantic relations. For example, Keen likes Casino
can be inferred by: 1) Keen

interact−−−−−→ Seven
genre−−−−→ Drama

−genre−−−−−→ Casino, 2)

Keen
interact−−−−−→ Seven

genre−−−−→ Drama
−genre−−−−−→ Copycat

directedby−−−−−−−→ Steven
direct−−−−→

Casino, 3) Keen
occupation−−−−−−−→ Doctor

−occupation−−−−−−−−→ Tom
interact−−−−−→ Casino. These

paths capture semantic relations of 1) belonging to the same genre, 2) belong-
ing to the same genre and being directed by the same director, or 3) being
watched by users with same occupation. Thus, we exploit entity relations to
update involved entity representations when an interaction occurs. So the seman-
tic relations between entity pair (u, i) is denote as a multi-hop relation path:
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e0
r1−→ e1

r2−→ · · · rL−→ eL, where el ∈ U ∪ I ∪ Λ and rl ∈ R′ ∪ Ψ, (el−1, rl, el) is the
l − th triplet, and L is the length of relation path.

2.3 Evolution of Semantic Presentations for Entities

Given an interaction m = (uk, yui, in, tm) ∈ D, and assume that m is user
uk’s s-th interaction while it is in’s q-th interaction. Then we update the their
representations with the following function, respectively:

νuk(ts) = δ1(wu
t νuk(ts−1) + wzλuk(ts−)) (1)

νin(tq) = δ1(wi
tν

in(tq−1) + wzλin(tq−)) (2)

where wu
t ,wi

t , wz are training parameters, ts = tq = tm is the time of observed
interaction, ts−1 is the time of the latest interaction in which uk was involved,
ts− represents the time that m is just to happen. νuk(ts−1) and νuk(ts) respec-
tively indicates latest vector representation of uk before and after considering
the impact of an interaction m. Vectors in Eq. 2 are similar to Eq. 1, so they will
not be described in detail. Here λuk(ts−) is equal to λin(tq−), which represents
the influence due to this interaction and is expressed in a unified form λ(tm).
It consists of two part: 1) g1(νuk (ts−1),νin (tq−1)) represents the interplay of
two involved entities; 2) g2(huk ,hin ) indicates the impact of different length
semantic paths. Thus, it is defined as follow:

λ(tm) = δ2(g1(νuk (ts−1),νin (tq−1)) + g2(huk ,hin )) (3)

where δ1(·) and δ2(·) are nonlinear functions, which can be equal (softmax in
our case). g1(νuk (ts−1),νin (tq−1)) is computed as:

g1(νuk (ts−1),νin (tq−1)) = φl(νuk (ts−1)T ,νin (tq−1)) (4)

where φl is the l layer ReLU operation. g2(huk ,hin )) is learned by RNN.
Assume that the threshold of semantic path length is set to L and there are

jl paths with l lengths between entity pair (uk, in), pγ
l is the γ-th semantic paths

having l length, which is represented as pγ
l = eγ0

l

r1−→ eγ1
l

r2−→ · · · · · · rl−→ eγl

l with
eγ0
l = uk, eγl

l = in. For entity eγl

l

hγt

l = δ(W · h
γ(t−1)

l + H · νγt

l + b2) (5)

where W , H are parameter matrix; b2 is the bias term; δ is activation function
(sigmoid function in our case); νγt

l is a vector representation of entity eγt

l . h
γ(t−1)

l

is a learned hide state by encoding the subsequence from eγ0
l to e

γ(t−1)

l , hγt

l is a
learned hide state after learning the embedding of νγt

l at step t.
So hγ0

l and hγl

l can be regarded as the updated user and item latent rep-
resentations after learning the semantic information of paths pγ

l . Then we can
explore huk

l and hin
l after learning all the paths with l length. They can be fur-

ther considered as the input of training all semantic paths with l+1 length. huk

and hin can be obtained through pooling all different length semantic paths.
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2.4 Efficient Training for Recommendation

We treat the representations νuk(ts) and νin(tq) as the input of MLP to train
this model. Its output ŷui indicates the probability of the user uk interacts with
the item in, which is shown as Eq. 6

ŷui = φl(νuk(ts),νin(tq)) (6)

where φl is the l layer ReLU activation operation. By applying negative sampling,
we gain the objective function as Eq. 7:

L = −
∑

(u,i)∈D

log ŷui −
∑

(u,i)∈D−
log(1 − ŷui)

= −
∑

(u,i)∈D∪D−
yui log ŷui + (1 − yui) log(1 − ŷui)

(7)

where D− is the negative instances set. Our model is optimized using adaptive
gradient algorithm, and in the recommendation stage, the top ranked items are
recommended after we rank candidate items in ascending order.

3 Experimental Results

3.1 Experimental Setting

Dataset Description and Evaluation Metrics. To demonstrate the effec-
tiveness of our KGCR, we adopt two real-world public datasets from different
domains for empirical study. The first one is Movielens 100k dataset and is com-
bined with IMDB. The second one is Yelp, which is much sparser than Movie-
lens 100k. If a user interacts with an item (e.g. rating or writing a review), the
feedback is set to 1, otherwise 0. Hit Ratio (HR@K) and Normalized Discounted
Cumulative Gain (NDCG@k) are adopted to evaluate the effectiveness of KGCR,
and the recommendation list is tuned in {5, 10, 15}.

Baselines. To validate the superiority of KGCR, we compare it with several
baselines: (1) NCF [2]: It is a deep neural networks framework to model interac-
tions, which replaces inner product with MLP. (2) MCRec [3]: It is a path-based
model, which extracts qualified meta-paths as connectivity between a user and
an item. (3) RKGE [6]: It is a KG embedding approach, which learns semantic
representations of entities and entity paths. (4) CKE [12]: It is a representative
regularization-based method, which exploits semantic embeddings derived from
TransR to enhance matrix factorization. (5) KGAT [9]: It explicitly models the
high-order relationship in KG and recursively propagates the entity representa-
tion to its neighbors.
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Parameter Settings. We randomly initialize parameters with Gaussian distri-
bution, and optimize it by SGD. For hyper parameters, the batch size is searched
in {512, 1024, 2048}, the learning rate is tuned in {0.0001, 0.0005, 0.001, 0.005}.
The vector dimension varies among {10, 20, 50, 100 }. The layers of MLP is
set in {32, 16, 1}. For baselines, we employ the suggested values in the original
papers for most parameters.

3.2 Experiment Results and Analysis

Impacts of Semantic Path Lengths. As proposed by Sun et al. [6], shorter
paths are more useful to exploit the entity relations because of more clearer
semantic meanings. Here, we tune the length of semantic paths in {2, 4, 6, 8,
10,12} and input to KGCR. Figure 2 depicts the results on the two datasets.
From the results, we observe that the performance of KGCR firstly increase and
then decrease with the path length increasing. It shows that proper path length
has a critical impact on performance.

Fig. 2. HR@10 and NDCG@10 of different length of paths on two Datasets

Impact of Interaction Itself and Semantic Paths. To better assess the
impact of interaction itself and semantic paths, we firstly compare KGCR with its
variation KGCR N without considering the influence of them. From the results,
as shown in Table 1, we can see that KGCR is superior to KGCR N, which shows
it is necessary to consider both interaction itself and semantic paths.

Comparing KGCR with Baselines. We compare the proposed KGCR with
baselines, the results are summarized in Table 2. We can observe that KGCR con-
sistently achieves the best performance. That mainly because that KGCR incre-
mentally updates entity representations by considering the influence of inter-
action itself and semantic paths, while MCRec, CKE and RKGE are always
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Table 1. Comparison KGCR with KGCR N.

Datesets Methods HR@k NDCG@k

5 10 20 5 10 20

MovieLens 100k KGCR 0.5271 0.6942 0.8212 0.3505 0.420 0.4110

KGCR N 0.4877 0.5448 0.7031 0.3078 0.2033 0.2988

Yelp KGCR 0.1398 0.1402 0.2167 0.1832 0.1983 0.1804

KGCR N 0.1102 0.1254 0.1723 0.1098 0.1035 0.0964

based on the assumption that the knowledge graph is already constructed and is
static, KGAT ignores topological information and NCF does not take auxiliary
information in KG. The performance of KGCR on Yelp is better than all other
methods, that implies that KGCR is more suitable for sparser data.

Table 2. Comparison of KGCR and baselines.

Datesets Methods HR@k NDCG@k

5 10 20 5 10 20

MovieLens 100k NCF 0.5011 0.6832 0.8204 0.3513 0.4166 0.4280

MCRec 0.5764 0.5873 0.6079 0.4354 0.4001 0.3809

CKE 0.4723 0.5125 0.6812 0.3013 0.3142 0.3902

RKGE 0.5412 0.6703 0.7256 0.3312 0.3301 0.3458

KGAT 0.4509 0.5902 0.6902 0.3468 0.3577 0.3529

KGCR 0.5271 0.6942 0.8212 0.3505 0.4205 0.4110

Yelp NCF 0.1123 1360 0.2011 0.1650 0.1123 0.0543

MCRec 0.1202 0.1143 0.1156 0.1815 0.1828 0.1798

CKE 0.0931 0.1098 0.1172 0.1212 0.1131 0.0821

RKGE 0.1325 0.1401 0.1312 0.0894 0.1254 0.1024

KGAT 0.1334 0.1382 0.1552 0.1758 0.1268 0.1256

KGCR 0.1398 0.1402 0.2167 0.1832 0.1983 0.1804

4 Conclusion

In this paper, we proposed KGCR, which updates the entity representations
when an interaction occurs. it overcame the limitations of existing KG-aware
methods by combining interplay of two involved entities with the variations
brought from high-order semantic paths. That were respectively employed by
applying RNN and MLP. Through extensive experiments on real-world datasets,
we demonstrated the superiority of our proposed model over all state-of-the-art
baselines. For future works, we plan to extend the variations to other entities by
recursively propagating the entity embeddings in knowledge graph.
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Abstract. Existing recommendation algorithms suffer from cold-start
issues as it is challenging to learn accurate representations of cold-start
users and items. In this paper, we formulate learning the representations
of cold-start users and items as a few-shot learning task, and address it
by training a representation function to predict the target user (item)
embeddings based on limited training instances. Specifically, we pro-
pose a novel attention-based encoder serving as the neural function, with
which the K training instances of a user (item) are viewed as the interac-
tive context information to be further encoded and aggregated. Experi-
ments show that our proposed method significantly outperforms existing
baselines in predicting the representations of the cold-start users and
items, and improves several downstream tasks where the embeddings of
users and items are used.

Keywords: Cold-start representation learning · Few-shot learning ·
Attention-based encoder

1 Introduction

Existing recommendation systems (RS) such as Matrix Factorization [14] and
Neural Collaborative Filtering [11] are facing serious challenges when making
cold-start recommendations, i.e., when dealing with a new user or item with
few interactions for which the representation of the user or the item can not be
learned well.

To deal with such cold-start challenges, some researches are conducted which
can be roughly classified into two categories. The first category incorporates
side information such as knowledge graph (KG) to alleviate the cold-start
issues [3,25,26,28]. Specifically, these methods first pre-process a KG by some
knowledge graph embedding methods such as TransE [1], TransH [27] and so on,
and then use the entities’ embeddings from KG to enhance the corresponding
items’ representations. For instance, Zhang et al. [28] learn item representations
by combining their embeddings in the user-item graph and the KG. Cao et al. [3]
and Wang et al. [25] jointly optimize the recommendation and KG embedding
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 363–377, 2020.
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tasks in a multi-task learning setting via sharing item representations. However,
existing KGs are far from complete and it is not easy to link some items to the
existing entities in KG due to the missing entities in KG or the ambiguous issues.

The second category uses meta learning [2] to solve the cold-start issues.
The goal of meta learning is to design a meta-learner that can efficiently learn
the meta information and can rapidly adapt to new instances. For example,
Vartak et al. [21] propose to learn a neural network to solve the user cold-start
problem in the Tweet recommendation. Specifically, the neural network takes
items from user’s history and outputs a score function to apply to new items.
Du et al. [4] propose a scenario-specific meta learner framework, which first trains
a basic recommender, and then tunes the recommendation system according to
different scenarios. Pan et al. [16] propose to learn an embedding generator for
new ads by making use of previously learned ads’ features (e.g., the attributes
of ads, the user profiles and the contextual information) through gradient-based
meta-learning.

All these KG-based and meta learning based methods aim to directly learn
a powerful recommendation model. Different from these methods, in this paper,
we focus on how to learn the representations of the cold-start users and items.
We argue that the high-quality representations can not only improve the recom-
mendation task, but also benefit several classification tasks such as user profiling
classification, item classification and so on (which is justified in our experiments).
Motivated by the recently proposed inductive learning technique [7,23], which
learns node representations by performing an aggregator function over each node
and its fixed-size neighbours, in this paper, we aim to learn the high-quality
representations of the cold-start users and items in an inductive manner. Specif-
ically, we view the items that a target user interacts with as his/her contextual
information and view the users that a target item interacts with as its contex-
tual information. We then propose an attention-based context encoder (AE),
which adopts either soft-attention or multi-head self-attention to integrate the
contextual information to estimate the target user (item) embeddings.

In order to obtain a AE model to effectively predict the cold-start user and
item embeddings from just a few interactions, we formulate the cold-start repre-
sentation learning as a few-shot learning task. In each episode, we suppose a user
(item) which has enough interactions with items (users) as the target object to
predict. Then AE is asked to predict this target object using only K contextual
information, i.e., for each target user, AE is asked to use K interacted items to
predict his/her representation, while for each target item, AE is asked to use
K interacted users to predict the representation of the target item. This train-
ing scheme can simulate the real scenarios where there are cold-start users or
cold-start items which only have a few interactions.

We conduct several experiments based on both intrinsic and extrinsic embed-
ding evaluation. The intrinsic experiment is to evaluate the quality of the learned
embeddings of the cold-start users and items, while the extrinsic experiments are
three downstream tasks that the learned embeddings are used as inputs. Experi-
ments results show that our proposed AE can not only outperform the baselines
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in the intrinsic evaluation task, but also benefit several extrinsic evaluation tasks
such as personalized recommendation, user classification and item classification.

Our contributions can be summarized as: (1) we formulate the cold-start rep-
resentation learning task as a K-shot learning problem and propose a simulated
episode-based training schema to predict the target user or item embeddings. (2)
We propose an attention-based context encoder which can encode the contex-
tual information of each user or each item. (3) Experiments on both intrinsic and
extrinsic embedding evaluation tasks demonstrate that our proposed method is
capable of learning the representations of cold-start users and items, and can
benefit the downstream tasks compared with the state-of-the-art baselines.

2 Approach

In this section, we first formalize learning the representations of cold-start users
and cold-start items as two separated few-shot learning tasks. We then present
our proposed attention-based encoder (AE) in solving both these two tasks.

2.1 Few-Shot Learning Framework

Problem Formulation. Let U = {u1, · · · , u|U |} be a set of users and I =
{i1, · · · , i|I|} be a set of items. Iu denotes the item set that the user u has
selected. Ui denotes the user set in which each user u ∈ Ui selects the item i.
Let M be the whole dataset that consists of all the (u, i) pairs.

Problem 1: Cold-Start User Embedding Inference. Let D
(u)
T =

{(uk, ik)|Tu|
k=1} be a meta-training set, where ik ∈ Iuk

, |Tu| denotes the number
of users in D

(u)
T . Given D

(u)
T and a recommendation algorithm1(e.g., Matrix fac-

torization) that yields a pre-trained embedding for each user and item, denoted
as eu ∈ Rd and ei ∈ Rd. Our goal is to infer embeddings for cold-start users
that are not observed in the meta-training set D

(u)
T based on a new meta-test

set D
(u)
N = {(u′

k, i′k)|Nu|
k=1 }, where i′k ∈ Iu′

k
, |Nu| denotes the number of users in

the meta-test set D
(u)
N .

Problem 2: Cold-Start Item Embedding Inference. Let D
(i)
T =

{(ik, uk)|T i|
k=1} be a meta-training set, where uk ∈ Uik , |T i| denotes the num-

ber of items in D
(i)
T . Given D

(i)
T and a recommendation algorithm that yields a

pre-trained embedding for each user and item, denoted as eu ∈ Rd and ei ∈ Rd.
Our goal is to infer embeddings for cold-start items that are not observed in the
meta-training set D

(i)
T based on a new meta-test set D

(i)
N = {(i′k, u′

k)|Ni|
k=1}, where

u′
k ∈ Ui′

k
, |N i| denotes the number of items in D

(i)
N .

1 We also select some node embedding methods (e.g., DeepWalk [17], LINE [20]) which
accept user-item bipartite graph as input and output a pre-trained embedding for
each user and item.
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Note that these two tasks are symmetrical and the difference between these
two tasks is that the roles of users and items are swapped. For simplicity, we
present the cold-start user embedding inference scenario, and the cold-start item
embedding inference scenario is similar to the cold-start user embedding infer-
ence scenario if we simply change the role of the users and items. In the following
parts, we omit the subscript and simply use DT and DN to denote the meta-
training set and meta-test set in both two tasks.

For the cold-start user embedding inference task, DN is usually much smaller
than DT , and the cold-start users in DN only have selected a few items, i.e.,
there are few (u′

k, i′k) pairs in DN . Thus it is difficult to directly learn the user
embedding from DN . Our solution is to learn a neural model fθ parameterized
with θ on DT . The function fθ takes the item set Iu of user u as input, and
outputs the predictive user embedding êu. The predictive user embedding is
expected to be close to its target embedding. Note that the user in DT has
enough interactions, thus the pre-trained embedding eu is convincing and we
view it as the target embedding.

In order to mimic the real scenarios that the cold-start users only have inter-
acted with few items, we formalize the training of the neural model as a few-shot
learning framework, where the model is asked to predict cold-start user embed-
ding with just a few interacted items. To train the neural function fθ, inspired
by [24], we form episodes of few-shot learning tasks. In the cold-start user infer-
ence task, in each episode, for each user uj , we randomly sample K items from
Iuj

and construct a positive support set SK
u+
j

= {iu+
j ,k}K

k=1, where iu+
j ,k is sam-

pled from Iuj
and denotes the k-th sampled item for the target user uj . We

also randomly sample K negative items and construct a negative support set
SK

u−
j

= {iu−
j ,k}K

k=1, where each item iu−
j ,k is not in Iuj

. Based on the sampled
items, the model fθ is expected to predict more similar embedding to the tar-
get user embedding when given SK

u+
j

and more dissimilar embedding when given

SK
u−
j
. We use cosine similarity to indicate whether the predicted embedding is

similar to the target embedding. To further optimize the neural model fθ, we
minimize the regularized log loss defined as follows [10]:

L = − 1
|Tu|

|Tu|∑

j=1

(log(σ(ŷu+
j
)) + log(1 − σ(ŷu−

j
))) + λ||θ||2, (1)

where ŷu+
j

= cos(fθ(SK
u+
j
), uj), ŷu−

j
= cos(fθ(SK

u−
j
), uj), θ denotes the parameters

of the proposed model fθ, σ is a sigmoid function, the hyper-parameter λ controls
the strength of L2 regularization to prevent overfitting. Once the model fθ is
trained based on DT , it can be used to predict the embedding of each cold-
start user u′ in DN by taking the item set I ′

u as input. Similarly, we can also
design another neural model gφ to learn the representations of cold-start items.
Specifically, gφ can be trained on DT , and can be used to predict the embedding
of each cold-start item i′ in DN by taking the user set U ′

i as input.
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Fig. 1. The proposed attention-based encoder fθ framework. gφ is similar to fθ if we
simply swap the role of the users and items.

2.2 Attention-Based Representation Encoder

In this section, we detail the architecture of the proposed neural model fθ (gφ

is similar if we simply swap the role of the users and items). For the cold-start
user embedding inference task, the key idea is to view the items that a user
has selected as his/her contextual information, and we expect fθ to be able to
analyze the semantics of the contextual information, to aggregate these items
for predicting the target user embedding. Using AE as fθ, a more sophisticated
model to process and aggregate contextual information can be learned to infer
target user embedding.

Embedding Layer. As mentioned before, we first train a recommendation
(node embedding) algorithm on the whole dataset M to obtain the pre-trained
embeddings eu and ei. Note that we view ei as contextual information, and eu in
DT as target user embedding. Both eu and ei are fixed. Given each target user
uj and the support set SK

uj
= {SK

u+
j

∪ SK
u−
j
}, we map the support set SK

uj
to the

input matrix xK×d = [ei1 , · · · , eiK ] using the pre-trained embeddings, where K
is the number of interacted items, d is the dimension of pre-trained embeddings.
The input matrix is further fed into the aggregation encoder.

Aggregation Encoder. We present two types of aggregation encoder, namely
soft-attention encoder and self-attention encoder.

(1) Soft-attention Encoder. Inspired by [10] that uses soft-attention mecha-
nism to distinguish which historical items in a user profile are more important
to a target user, in this paper, we first calculate the attention score between the
target user embedding euj

and each item embedding eik that he/she has selected,
then we use weighted average items’ embeddings to represent the predicted user
embedding êuj

:
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aujik =
exp(r(euj

, eik))
∑K

k′=1 exp(r(euj
, eik′ ))

, (2)

r(euj
, eik) = WT

1 RELU(W2(euj
� eik)), (3)

êuj
=

1
K

K∑

k=1

aujikeik , (4)

where r is soft-attention neural function that has the element-wise operation �
between the two vectors euj

and eik , W1 ∈ Rd×1, W2 ∈ Rd×d are two weight
matrices, RELU is an activate function, K is the number of interacted items.

(2) Self-attention Encoder. Same as [22], our self-attention encoder consists
of several encoding blocks. Each encoding block consists of a self-attention layer
and a fully connected layer. Using such encoding blocks can enrich the interac-
tions of the input items to better predict the target user embedding.

Self-attention layer consists of several multi-head attention units. For each
head unit h, we view the input matrix x into query, key and value matrices.
Then linear projections are performed to map the query, key, value matrices to
a common space by three parameters matrices WQ

h , WK
h , WV

h . Next we calcu-
late the matrix product xWQ

h (xWK
h )T and scale it by the square root of the

dimension of the input matrix 1√
dx

to get mutual attention matrix. We further
multiply the attention matrix by the value matrix xWV

h to get the self attention
vector aself,h for head h:

aself,h = softmax(
xWQ

h (xWK
h )T

1√
dx

)xWV
h . (5)

We concatenate all the self attention vectors {aself,h}H
h=1 and use a linear

projection WO to get the self-attention output vector SA(x), where H is the
number of heads. Note that SA(x) can represent fruitful relationships of the
input matrix x, which has more powerful representations:

SA(x) = Concat(aself,1, · · · , aself,H)WO. (6)

A fully connected feed-forward network (FFN) is performed to accept SA(x)
as input and applies a non-linear transformation to each position of the input
matrix x. In order to get higher convergence and better generalization, we apply
residual connection [9] and layer normalization [13] in both self-attention layer
and fully connected layer. Besides, we do not incorporate any position informa-
tion as the items in the support set SK

uj
have no sequential dependency. After

averaging the encoded embeddings in the final FFN layer, we can obtain the
predicted user embedding êuj

.
Given the target user embedding euj

and the predicted user embedding êuj
,

the regularized log loss are performed to train AE (Eq. 1). For the self-attention
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model, the parameters θ = [{(WQ
h ,WK

h ,WV
h )}H

h=1, {(wl, bl)}H
l=1,W

O], where wl,
bl are the weights matrix and bias in the l-th FFN layer, for the soft-attention
model, the parameters θ = [W1,W2]. Figure 1 illustrates the proposed model fθ.

3 Experiment

In this section, we present two types of experiments to evaluate the quality of
embeddings resulted by the proposed AE model. One is an intrinsic evaluation
which involves two tasks: cold-start user inference task and cold-start item infer-
ence task. The other one is an extrinsic evaluation on three downstream tasks: (1)
Personalized recommendation, (2) Item classification and (3) User classification.

Table 1. Statistics of the datasets.

Dataset #Users #Items #Interactions #Sparse Ratio

MovieLens-1M 6,040 3,706 1,000,209 4.47%

Pinterest 55,187 9,916 1,500,809 0.27%

3.1 Settings

We select two public datasets, namely MovieLens-1M2 [8] and Pinterest3 [6].
Table 1 illustrates the statistics of the two datasets. For simplicity, we detail the
settings of training fθ (the settings of training gφ is similar if we simply swap
the roles of users and items). For each dataset, we first train the baseline on the
whole dataset M to get the pre-trained user embedding eu and item embedding
ei. We then split the dataset into meta-training set DT and meta-test set DN

according to the number of interactions for each user. In MovieLens-1M, the
users in DT interact with more than 40 items, and this splitting setting results
4689 users in DT and 1351 users in DN . In Pinterest, the users in DT interact
with more than 30 items, and this results 13397 users in DT and 41790 users
in DN

4. We use DT to train fθ, and use DN to do downstream tasks. The
pre-trained eu in DT is viewed as target user embedding and ei is viewed as
contextual information.

2 https://grouplens.org/datasets/movielens/.
3 https://www.pinterest.com/.
4 When training gφ, in MovieLens-1M, the items in DT interact with more than 30

users, and this results 2819 items in DT and 887 items in DN . In Pinterest, the items
in DT interact with more than 30 users, and this results 8544 items in DT and 1372
items in DN .

https://grouplens.org/datasets/movielens/
https://www.pinterest.com/
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Table 2. Performance on cold-start user and item embedding evaluation. We use
averaged cosine similarity as the evaluation metric.

Methods MovieLens (user) Pinterest (user) MovieLens (item) Pinterest (item)

3-shot 8-shot 3-shot 8-shot 3-shot 8-shot 3-shot 8-shot

LINE 0.623 0.709 0.499 0.599 0.423 0.593 0.516 0.578

AEw-LINE 0.680 0.749 0.502 0.644 0.460 0.602 0.534 0.585

AEo-LINE 0.926 0.962 0.926 0.928 0.726 0.802 0.726 0.804

AEe-LINE 0.964 0.990 0.984 0.987 0.797 0.849 0.783 0.845

DW 0.413 0.535 0.504 0.596 0.489 0.528 0.526 0.563

AEw-DW 0.445 0.568 0.518 0.630 0.496 0.521 0.564 0.596

AEo-DW 0.828 0.835 0.847 0.892 0.603 0.784 0.664 0.736

AEe-DW 0.866 0.887 0.950 0.988 0.767 0.834 0.739 0.820

MF 0.399 0.503 0.444 0.524 0.579 0.729 0.503 0.569

AEw-MF 0.424 0.512 0.492 0.556 0.592 0.743 0.524 0.589

AEo-MF 0.836 0.945 0.646 0.813 0.713 0.809 0.698 0.823

AEe-MF 0.949 0.971 0.799 0.857 0.849 0.932 0.837 0.908

FM 0.542 0.528 0.539 0.564 0.535 0.543 0.474 0.495

AEw-FM 0.568 0.559 0.583 0.584 0.553 0.573 0.495 0.513

AEo-FM 0.702 0.803 0.809 0.826 0.723 0.809 0.694 0.804

AEe-FM 0.810 0.866 0.948 0.968 0.817 0.870 0.794 0.867

GS 0.693 0.735 0.584 0.664 0.593 0.678 0.642 0.682

AEw-GS 0.704 0.744 0.624 0.642 0.624 0.686 0.654 0.694

AEo-GS 0.806 0.896 0.825 0.906 0.747 0.828 0.712 0.812

AEe-GS 0.951 0.972 0.912 0.984 0.869 0.942 0.816 0.903

GAT 0.723 0.769 0.604 0.684 0.613 0.698 0.684 0.702

AEw-GAT 0.724 0.784 0.664 0.682 0.664 0.726 0.694 0.712

AEo-GAT 0.846 0.935 0.886 0.916 0.757 0.868 0.725 0.821

AEe-GAT 0.969 0.981 0.952 0.991 0.869 0.950 0.846 0.912

3.2 Baseline Methods

We select the following baseline models for learning the user and item embed-
dings, and compare our method with the corresponding baseline methods.

Matrix Factorization (MF) [12]: Learns user and item representations by
decomposing the rating matrix.

Factorization Machine (FM) [18]: Learns user and item representations
through considering the first-order and high-order interactions between features.
For fair comparison, we only use the users and items as features.

LINE [20]: Learns node embeddings through maximizing the first-order proxim-
ity and the second-order proximity between a user and an item in the user-item
bipartite graph.
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DeepWalk (DW) [17]: Learns node embeddings through first performing ran-
dom walk to sample sequences of nodes from the user-item bipartite graph, and
then using Skip-Gram algorithm to learn user and item embeddings.

GraphSAGE (GS) [7]: Learns node embeddings through aggregating node
information from a node’s local neighbors. We first formalize the user-item inter-
action ratings as a user-item bipartite graph, and then aggregate at most third-
order neighbours of each user (item) to update the user (item) representation.
We find using second-order neighbours can lead to the best performance.

GAT [23]: Learns node embeddings through adding attention mechanism upon
the GraphSAGE method. We also find using second-order neighbours can lead
to the best performance.

AE-Baseline: Is our proposed method which accepts the pre-trained embed-
dings of items (users), and predicts the final embeddings of the corresponding
users (items) by the trained fθ or gφ. We use the name AE-baseline to denote
the pre-trained embeddings are produced by the corresponding baseline method.
We compare our model AE with these baselines one by one. To verify the effec-
tiveness of the attention part, we have three variant models: (1) AEo-baseline
which uses soft-attention as attention encoder. (2) AEe-baseline which uses
self-attention as attention encoder. (3) AEw-baseline which discards the atten-
tion part and use multilayer perceptron (MLP) to replace it.

3.3 Intrinsic Evaluation: Evaluate Cold-Start Embeddings

Here we illustrate the settings in the cold-start user inference task. We select both
MovieLens-1M and Pinterest datasets to do evaluation. As mentioned before, we
train our model fθ on DT . However, in order to make effective evaluation of the
predicted user embeddings, the target users should be obtained from the users
with sufficient interactions. Thus in this task, we drop out DN and split the
meta-training set DT into training set Tr and test set Te with ratio 7:3. We first
use each baseline method to train the meta-training set DT to get the target
user embedding. Then for each user in Te, we randomly drop out other items
and only maintain K items to predict the user embedding. This simulates the
scenario that the users in the test set Te are cold-start users. We train fθ on Tr

and do the evaluation on Te. After trained on Tr, fθ outputs the predicted user
embeddings in Te based on the K interacted items. For each user, we calculate
the cosine similarity between the predicted user embedding and the target user
embedding, and average them to get the final cosine similarity to denote the
quality of the predicted embeddings. For all the baseline methods, we use Tr

and the Te (each user in Te only has K items) to obtain the predicted user
embeddings and calculate the average cosine similarity. In our experiments, K
is set as 3 and 8, the number of encoding blocks is 4, the number of heads H is
2, the parameter λ is 1e−6, the batch size is 256, the embedding dimension d is
16 and the learning rate is 0.01.
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Experimental Results. Table 2 lists the performance of the proposed model
AEo-baseline, AEe-baseline and other baselines under K-shot training settings.
The results show that our proposed AEo-baseline and AEe-baseline significantly
improve the quality of the learned embeddings comparing with each baseline.
Besides, we have four findings: (1) Compared with AEw-baseline, both AEo-
baseline and AEe-baseline have better performance, which demonstrates adding
attention mechanism is useful. (2) The performance of AEe-baseline is better
than AEo-baseline, which implies that using self-attention is better than using
soft-attention. The reason is that multi-head self-attention has a more pow-
erful representation ability than soft-attention. (3) When K is relative small
(i.e., K = 3), the performance of all the baselines gets lower, while the proposed
method AEo-baseline and AEe-baseline still have a good performance. (4) Some
competitive baselines such as GraphSAGE and GAT can alleviate the cold-start
problem by aggregating user’s (item’s) information from user’s (item’s) first-
order or high-order neighbours, however, their performance is lower than our
proposed method. The reason is that for the cold-start users and the cold-start
items, there are still few high-order neighbours. Both (3) and (4) demonstrates
all the baselines are difficult to deal with the cold-start issues, while our model
is capable of generating good representations for cold-start users and items.

3.4 Extrinsic Evaluation: Evaluate Cold-Start Embeddings
on Downstream Tasks

To illustrate the effectiveness of our proposed method in dealing with learning
the representations of the cold-start users and items, we evaluate the resulted
embeddings on three downstream tasks: (1) Personalized recommendation (2)
User classification and (3) Item classification. For each task, for the proposed
method, we use fθ and gφ to generate the user and item embeddings in DN to
do evaluation; for the baseline methods, we directly train the baseline on M and
use the resulted user and item embeddings to do evaluation.

Personalized Recommendation Task. Personalized recommendation task
aims at recommending proper items to users. Recent approaches for recommen-
dation tasks use randomly initialized user and item embeddings as their inputs,
which often get suboptimal recommendation performance. We claim that a high-
quality pre-trained embeddings can benefit the recommendation task.

We use MovieLens-1M and Pinterest datasets and select Neural Collabo-
rative Filtering (NCF) [11] as the recommender. We first randomly split DN

into training set and test set with ratio 7:3, and then feed the user and item
embeddings generated by our model or the baselines into the GMF and MLP
unit in NCF as pre-trained embeddings, which are further fine-tuned during
training process. During the training process, for each positive pairs (u, i), we
randomly sample one negative pairs. During the test process, for each positive
instance, we randomly sample 99 negative instance [11]. We use Hit Ratio of
top m items (HR@m), Normalized Discounted Cumulative Gain of top m items
(NDCG@m) and Mean Reciprocal Rank (MRR) as the evaluation indicator.
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Fig. 2. Recommendation performance of GraphSAGE, GAT and our proposed method
when using first-order and high-order neighbours.

The hyperparameters we used are the same as [11]. Table 3 illustrates the rec-
ommendation performance. Note that the method NCF represents using the
randomly initialized embeddings. The results show that: (1) Using pre-trained
embeddings can improve the recommendation performance. (2) Our model
beats all the baselines. (3) Compared with AEw-baseline+NCF method which
uses MLP layer to replace the attention encoder, using soft-attention and self-
attention can improve the performance. (4) Due to the strong representation
ability of multi-layer self-attention mechanism, the performance of using self-
attention encoder is better than using soft-attention encoder. All the above
analysis shows that our proposed method has the ability of learning high-quality
representations of cold-start users and items. We further show the recommen-
dation performance of GraphSAGE (GS), GAT and our proposed method AEe-
GS, AEe-GAT when using first-order, second-order and third-order neighbours
of target users and target items. Figure 2 illustrates the recommendation per-
formance. The results show that all the methods have better performance when
using second-order neighbours. Besides, our proposed method significantly beats
GS and GAT due to the strong representation ability.

Item Classification Task. We evaluate the encoded item embeddings in AE
through a multi-label classification task. The goal is to predict multi-labels of
items given the user-item interactive ratings. Intuitively, similar items have a
higher probability belonging to the same genre, thus this task needs high-quality
item embeddings as input features. We select MovieLens-1M dataset, in which
the movies are divided into 18 categories (e.g., Comedy, Action, War). Note that
each movie belongs to multi genres, for example, the movie ‘Toy Story (1995)’
belongs to there genres, namely animation, children’s, and comedy. We use logis-
tic regression classifier which accepts the item embeddings as input features to
do evaluation. Specifically, we first randomly split DN into training set and test
set with ratio 7:3, and then use item embeddings generated by our model or the
baselines as input features. Next we train the logistic regression classifier in the
training set and finally evaluate the performance in the test set. Micro-averaged
F1-score is used as an evaluation metric. Table 4 illustrates the item classification
performance. The result shows that our proposed model beats all the baselines,
which verifies our model can produce high-quality item representations. Besides,
the performance of AEw-baseline is lower than AEo-baseline and AEe-baseline;
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Table 3. Performance on recommendation performances.

Methods MovieLens Pinterest

HR@5 NDCG@5 MRR HR@5 NDCG@5 MRR

NCF 0.392 0.263 0.260 0.627 0.441 0.414

LINE + NCF 0.633 0.631 0.648 0.642 0.543 0.587

AEw-LINE + NCF 0.641 0.637 0.652 0.644 0.549 0.582

AEo-LINE + NCF 0.659 0.640 0.664 0.651 0.568 0.590

AEe-LINE + NCF 0.666 0.646 0.679 0.659 0.585 0.593

DW+NCF 0.621 0.620 0.634 0.587 0.392 0.367

AEw-DW + NCF 0.628 0.624 0.643 0.593 0.403 0.369

AEo-DW + NCF 0.646 0.640 0.663 0.624 0.483 0.402

AEe-DW+NCF 0.673 0.643 0.684 0.652 0.462 0.433

MF + NCF 0.558 0.577 0.579 0.711 0.660 0.666

AEw-MF + NCF 0.562 0.564 0.581 0.718 0.672 0.678

AEo-MF + NCF 0.573 0.583 0.589 0.726 0.702 0.693

AEe-MF + NCF 0.597 0.591 0.595 0.748 0.725 0.736

FM + NCF 0.448 0.286 0.265 0.641 0.453 0.424

AEw-FM + NCF 0.451 0.291 0.271 0.652 0.482 0.482

AEo-FM + NCF 0.482 0.334 0.326 0.723 0.702 0.672

AEe-FM + NCF 0.495 0.357 0.346 0.756 0.721 0.729

GS + NCF 0.657 0.664 0.657 0.743 0.642 0.681

AEw-GS + NCF 0.668 0.672 0.675 0.753 0.652 0.693

AEo-GS + NCF 0.683 0.693 0.684 0.778 0.683 0.723

AEe-GS + NCF 0.703 0.724 0.704 0.782 0.693 0.735

GAT + NCF 0.667 0.672 0.664 0.765 0.664 0.702

AEw-GAT + NCF 0.684 0.681 0.682 0.771 0.674 0.719

AEo-GAT + NCF 0.694 0.702 0.704 0.782 0.693 0.723

AEe-GAT + NCF 0.713 0.724 0.735 0.793 0.713 0.746

AEe-baseline has the best performance, which verifies adding attention encoder
can improve the performance; due to the strong representation ability, using
self-attention is a better choice than using soft-attention.

User Classification Task. We further evaluate the encoded user embeddings
in AE through a classification task. The goal is to predict the age bracket of
users given the user-item interactions. Intuitively, similar users have same tastes,
thus they have a higher probability belonging to the same age bracket. We select
MovieLens-1M dataset, and the users are divided into 7 age brackets, (i.e., Under
18, 18–24, 25–34, 35–44, 44–49, 50–55, 56+). We use logistic regression classifier
which accepts user embeddings as input features to do evaluation. Specifically,
we first randomly split DN into training set and test set with ratio 7:3, and
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Table 4. Performance on item classification and user classification task.

Methods Movielens-1M

Items
classification
(micro-averaged
F1 score)

Users
classification
(averaged F1
score)

LINE 0.6052 0.3031

AEw-LINE + NCF 0.6111 0.3067

AEo-LINE + NCF 0.6478 0.3294

AEe-LINE 0.6620 0.3309

DW 0.5335 0.2605

AEw-DW+ NCF 0.5435 0.2685

AEo-DW + NCF 0.5687 0.2799

AEe-DW 0.5707 0.2894

MF 0.4791 0.2273

AEw-MF + NCF 0.4852 0.2291

AEo-MF + NCF 0.5364 0.2368

AEe-MF 0.5496 0.2477

FM 0.4809 0.2803

AEw-FM + NCF 0.4883 0.2894

AEo-FM + NCF 0.4912 0.3194

AEe-FM 0.5062 0.3286

GS 0.5931 0.2941

AEw-GS + NCF 0.6012 0.3011

AEo-GS + NCF 0.6342 0.3134

AEe-GS 0.6546 0.3295

GAT 0.6135 0.3147

AEw-GAT + NCF 0.6243 0.3256

AEo-GAT + NCF 0.6464 0.3456

AEe-GAT 0.6646 0.3673

then use user embeddings generated by our model or the baselines as input
features. Next we train the logistic regression classifier in the training set and
finally evaluate the performance in the test set. Averaged F1-score is used as an
evaluation metric. Table 4 shows the user classification performance. The result
shows that our method beats all baselines, which further demonstrates our model
is capable of learning the high-quality representations.

4 Related Work

Our work is highly related to the meta learning method, which aims to design
a meta-learner that can efficiently learn the meta information and can rapidly
adapt to new instances. It has been successfully applied in Computer Vision (CV)
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area and can be classified into two groups. One is the metric-based method which
learns a similarity metric between new instances and instances in the training
set. Examples include Matching Network [24] and Prototypical Network [19].
The other one is model-based method which designs a meta learning model to
directly predict or update the parameters of the classifier according to the train-
ing data. Examples include MAML [5] and Meta Network [15]. Recently, some
works attempt to use meta learning to solve the cold-start issue in the recommen-
dation systems. Pan et al. [16] propose to learn a embedding generator for new
ads by making use of previously learned ads’ features through gradient-based
meta-learning. Vartak et al. [21] propose to learn a neural network which takes
items from user’s history and outputs a score function to apply to new items. Du
et al. [4] propose a scenario-specific meta learner, which adjust the parameters
of the recommendation system when a new scenario comes. Different from these
methods that aim to directly learn a powerful recommendation model, we focus
on how to learn the representations of the cold-start users and items, and we
design a novel attention-based encoder that encode the contextual information
to predict the target embeddings.

5 Conclusion

We present the first attempt to solve the problem of learning accurate represen-
tations of cold-start users and cold-start items. We formulate the problem as a
few-shot learning task and propose a novel attention-based encoder AE which
learns to predict the target users (items) embeddings by aggregating only K
instances corresponding to the users (items). Different from recent state-of-the-
art meta learning methods which aim to directly learn a powerful recommen-
dation model, we focus on how to learn the representations of cold-start users
and items. Experiments on both intrinsic evaluation task and three extrinsic
evaluation tasks demonstrate the effectiveness of our proposed model.
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Abstract. As the emerging topic to solve the loss of time dimension informa-
tion, sequential recommender systems (SRSs) has attracted increasing attention
in recent years. Although SRSs can model the sequential user behaviors, the inter-
actions between users and items, and the evolution of users’ preferences and item
popularity over time, the challenging issues of data sparsity and cold start are
beyond our control. The conventional solutions based on cross-domain recom-
mendation aims to matrix completion by means of transferring explicit or implicit
feedback from the auxiliary domain to the target domain.Butmost existing transfer
methods can’t deal with temporal information. In this paper, we propose a Long
Short-Term Memory with Sequence Completion (SCLSTM) model for cross-
domain sequential recommendation. We first construct the sequence and supple-
ment it in which two methods are proposed. The first method is to use the intrinsic
features of users and items and the temporal features of user behaviors to estab-
lish similarity measure for sequence completion. Another method is to improve
LSTM by building the connection between the output layer and the input layer of
the next time step. Then we use LSTM to complete sequential recommendation.
Experimental results on two real datasets extracted from Amazon transaction data
demonstrate the superiority of our proposed models against other state-of-the-art
methods.

Keywords: Cross-domain sequential recommendation · Long short-term
memory · Sequence completion

1 Introduction

With the explosively growing amount of online information, recommender system (RS)
is playing an indispensable role in our daily lives as well as in the Internet industry for
the problem of information overload. The traditional RSs [1], including the content-
based, collaborative filtering and hybrid collaborative filtering RSs, model the user-item
interactions in a static way and lost the time dimension.

In the real world, users’ shopping behaviors usually happen successively in a
sequence, rather than in an isolated manner. Taking the real events of someone U1
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depicted in Fig. 1 as an example, U1 bought a bag of infant formula milk, a baby stroller
and diapers successively. So we can all guess about the likelihood of buying baby bot-
tles. Likewise, the sequential dependencies can be seen in next case. Before U2 started
a vacation, he booked a flight, several tickets for some tourist attractions and rented a
car successively, and his next action may be booking a local hotel. In such a case, based
on the location of each attraction and car rental company, we can guess the location of
the hotel. In the above scenario, each of U2’s next actions depends on the prior ones
and therefore all the four consumer behaviors are sequentially dependent. Such kind of
sequential dependencies commonly exist in actual data but cannot be well captured by
the conventional collaborative filtering RSs or content-based RSs [2], which essentially
motivates the development of sequential RSs.

Fig. 1. Two examples of sequential RSs

Furthermore, user interest is dynamic rather than static over time [30]. How to cap-
ture user interest accurately to enhance the accuracy of recommendation results is an
enormous practical challenge in RSs. For example, many people want to watch horror
movies when Halloween comes and love movies are always popular on Valentine’s Day.
Such dynamics are of great significance for precisely profiling a user or an item for more
accurate recommendations. The traditional RSs can’t capture the dynamic change of
interest or behavior well when sequential recommender systems (SRSs) are competent
for the task.

In conclusion, sequential recommender systems meet our requirements for these
objective situations, so they can greatly improve recommendation performance [3].

Unfortunately, recommender systems are generally faced with data sparsity and cold
start problems in that users interact with only an extremely tiny part of the commodities
on a website or a directory and sequential recommender systems are no exception.
As a promising solution to address these issues, cross-domain recommender systems
[4, 5] have gained increasing attention in recent years. This kind of algorithm tries to
utilize explicit or implicit feedbacks from multiple auxiliary domains to improve the
recommendation performance in the target domain. As shown in Fig. 2, commodities
are divided into different domains according to their attributes or categories. Users who
have active data in both domains are called linked users and we mark them with dashed
red box. Users who only have active data in the target domain are called cold start users.
Our goal is to make recommendations for cold start users by linked users. Linked users
serve as a bridge for our model to transfer knowledge across domains. Existing studies
[4, 5, 6, and 7] can’t process sequence data. The sequence is split into separate data to fill
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in the user/itemmatrix and all temporal information is discarded. Therefore, how to deal
with sequence data for cross-domain recommender systems remain an open problem.

Fig. 2. Illustration of the cross-domain recommendation for cold-start users

To address the above challenges, we propose a Long Short-Term Memory with
Sequence Completion (SCLSTM) model for cross-domain sequential recommendation
in this paper. Specifically, we first construct the sequence and supplement it in which two
methods are proposed. The first method is to use the intrinsic features of users and items
and the temporal features of user behaviors to establish similarity measure for sequence
completion. Another method is to improve Long Short-TermMemory network (LSTM)
by building the connection between the output layer and the input layer of the next
time step. Complete the sequence by adding this input logic unit. Then we use LSTM
to complete sequential recommendation. Our major contributions are summarized as
follows:

• We define the concept of sequence completion and propose two methods of sequence
completion. One uses similarity measure, the other uses improved LSTM.

Feature

Similarity measureSequence

Time

Sim I

Sim U

Filling posi on

SequenceSequence comple on

LSTM Recomme
nda on

Ra ng similarity

Feature similarity

Time similarity

Fig. 3. SCLSTM with similarity measure recommendation framework
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• We propose a Long Short-Term Memory with Sequence Completion (SCLSTM)
model for cross-domain sequential recommendation, which can solve data sparsity
and cold start problems of sequential recommender systems.

• We systematically evaluate our proposal through comparing it with the state-of-the-
art algorithms on the dataset of Amazon1. The results confirm that our new method
substantially improves the recommendation performance.

2 Sequence Completion

In real life, there are many sequences, such as a piece of text, a pulse signal and amelody.
When we read a damaged book, it is difficult for us to understand it accurately. We must
fill these sequences with external knowledge to solve these problems. For example,
look at a fragmentary passage, “The Spider-Man series broke ground by featuring, a
from behind Spider-Man’s secret identity.” Almost all superhero fans understand what
it means. “The Spider-Man series broke ground by featuring Peter Parker, a high school
student from Queens behind Spider-Man’s secret identity.” Why has this happened?
These superhero fans use their animation knowledge to picture the sentence.We formally
define the sequence completion as follows.

Definition 1. (Sequence Completion) For a sequence Sm of missing elements, the miss-
ing elements are recovered by analyzing the effective elements and context knowledge.
Make the sequence Sm close to the complete sequence S. (min{|S − Sm|}).

Take a word recognition as an example, given a word “spi_er” with a missing letter,
we guess that the word is “spinner”, “spider” or others according to dictionary infor-
mation. Then, according to the context information, the word “spider” is determined.
But when the word with a missing letter becomes “s_er”, it’s very difficult to deter-
mine what it really means. Common algorithms, especially RNN (Recurrent Neural
Network)-based algorithms, can use sequence data to classify and are actually sequence
completion algorithms. But these algorithms face two difficult problems. First of all, the
sparser the data, the worse the algorithm performance. Especially the cold start problem
is a fatal blow to these supervised algorithms. Secondly, the sequence of recommender
system is quite different from the common sequence. Limited by the sampling method
and platform, we cannot capture all the sequence data. Take book purchase record of
Amazon as an example, the channels for users to obtain books include hypostatic stores,
websites and libraries, even could borrow them from friends. But we can only collect
part of the data through Amazon, so we can’t get the real complete sequence on reading
records.

For these reasons and more, we propose two novel algorithms of sequence
completion.

3 SCLSTM with Similarity Measure

We propose a recommendation framework called SCLSTM based on similarity measure
model and the framework is as shown in Fig. 3. First, we extract three kinds of data from

1 https://www.amazon.com.

https://www.amazon.com
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the logs, which they are users-items interaction sequences, users/items feature graph and
users action time list. Then, we use these three groups of data to build three similarity
measure models for users and items. The rating similarity, feature similarity and time
similarity are calculated respectively, and combining three models to get user similarity
SimU and item similarity SimI. Next, the user similarity is used to determine the location
and length of sequence completion and item similarity is used to determine the content
of sequence completion. Based on the previous step, we complete sequence completion
and get relatively complete sequence data. Finally, we use the sequence we just obtained
as input and use the LSTM model to recommend.

3.1 User and Item Similarity Measures

Rating Similarity Measure
We decide to use the classic cosine similarity algorithm to calculate rating similarity.
We can compute the first similarity measure between user a and b as follows:

PRab =
∑

e∈I(a,b)(rae − ra)(rbe − rb)
√∑

e∈I(a,b)(rae − ra)2
√∑

e∈I(a,b)(rbe − rb)2
(1)

SimR
ab = e−ωPRab(ω > 0) (2)

Where ω is a predefined parameter. Given two users a and b, rae represents the user’s
rating of the item e and ra represents the average score of user a. If they have commonly
rated items, I(a, b) represents the set of common items. |I(a, b)| represents the size of
the set. Here, we adopt an exponential function to transform users’ rating difference into
a similarity value. The greater the value of Sim, the greater the similarity.

For items, our formula has the same principle and form. Given two items c and d ,
we can compute the similarity measure between item c and d as follows:

PRcd =
∑

e∈I(c,d)(rec − rc)(red − rd )
√∑

e∈I(c,d)(rec − rc)2
√∑

e∈I(c,d)(red − rd )2
(3)

SimR
cd = e−ωPRcd (ω > 0) (4)

Feature Similarity Measure
In e-commerce websites, users and merchandise have many characteristics besides the
shopping records. For example, mobile phones have many features such as brand, price,
color and screen size, etc. These features are just as important as the rating matrix but
often ignored by similarity measure. We decided to use similarity search on graph to
deal with these similarity measure [26]. First of all, we use user features and commodity
features to create two graphs. Users, items and their features are the nodes on the graph.
An edge indicates that the user/itemowns the feature. If two nodes have similar neighbors
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in the network, we think they are similar. We can compute the second similarity measure
between node a and b as follows:

SimF
ab =

∑|I(a)|
i=1

∑|I(b)|
j=1 SimF

(
Ii(a), Ij(b)

)

|I(a)||I(b)| (5)

SimF
ab = 0, ifI(a) = ∅ or I(b) = ∅ (6)

SimF
aa = 1 (7)

SimF
ab = SimF

ba, symmetric (8)

Where I(a) represents the entry neighborhood of node a, |I(a)| represents the size of the
neighborhood. This recursive algorithm is the same on two graphs, so we can express it
uniformly.

Time Similarity Measure
With the advent of the era of mass information that consists of great time span data,
the importance of temporal information is highlighted. Intuitively, the older the data
is, the less time weight will be in similarity calculation, so the conventional research
always use the forgetting curve to model the time factor. However, the time difference
between different events or behaviors also contains important information. Sequence can
represent relative time difference, but absolute time difference is often ignored. In the
case of movies, we can measure the similarity of two movies by the number of people
watching them together. But there are two difficult problems in the actual calculation.
First of all, for many similar films, we can no longer distinguish the similarity differences
in detail by traditional algorithms. Secondly, most of the time, what we are looking for
is the next movie that we will see immediately after this movie, rather than the movie
that will be seen eventually. So we created a model using time difference to compute
similarity. The basic idea is that the closer the two movies are viewed, the more relevant
they are. Take another example of a computer journal, the time interval between the
author’s papers published on TOC and TPDS is very short. Therefore, we can think that
TOC and TPDS themes are very similar, and the level is very close. In order to solve the
above problems, we created a time similarity measure model as follows:

�Tc,d |ui =
∑kcd

j=1 g
(
tc|ui − td |ui

)

kcd tm
(9)

�Tc,d = |I(c)||I(d)|
|I(c, d)| ·

∑|I(c,d)|
i=1 �Tc,d |ui

|I(c, d)| (10)

SimT
cd = e−μ�Tc,d (μ > 0) (11)

Where μ is a predefined parameter. Take shopping behavior as an example, �Tc,d |ui
represents the average time interval between the purchase of items c and d by user ui.
tc|ui represents the time when user ui purchases commodity c at one time. tm represents
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the average time interval of user ui‘s shopping behavior. Because usersmay buy the same
product multiple times, kcd represents the number of times user ui purchases commodity
c. g

(
tc|ui − td |ui

)
indicates that for each tc|ui , we select the closest td |ui to calculate the

time difference. When there are two closest times, select the one that can get a positive
value. I(c, d) represents a set of userswho jointly purchase two items.|I(c, d)| represents
the size of the set. I(c) represents a set of users who purchased item c. �Tc,d represents
the average time interval between the purchase of items c and d by all common users.
The first half of the formula ensures that hot users/items do not affect the accuracy of
the formula in Eq. 10. Here, we adopt an exponential function to transform users’ rating
difference into a similarity value.

In the later experiments, we verified the superiority of our innovative similarity
algorithm. Finally, we combine the three categories of similarity:

Sim = α SimR + βSimF + γ SimT (12)

Where α, β and γ are the weights to control the importance of the three parts and Sim
is the similarity we finally get.

3.2 Sequence Completion with Similarity Measure

First of all, given a cold start user a, we design a formula to calculate the heterogeneous
similarity between user a and item c, so as to get the most similar top-N items with user
a, and restrict these items from the target domain.

Simac =
∑

i∈Ic Simai

|I(c)| (13)

Then, we change the SimT model slightly, and change the absolute time to the relative
time, we can get a similarity model SimRT and �TRT about the relative time.

Given a rating sequence of user a, j is an element in the sequence and i is an element
in the set of top-N. The filling fraction formula is as follows:

fij = 1

ni
SimaiSim

RT
ji (14)

Find the largest fij, fill its corresponding element i into the sequence, and fill in the front
or back of position j. The front and back are determined by the positive and negative of
�TRT . ni indicates the number of times the element i has been filled in the sequence.

Finally, the sequence is updated and the filling fraction is calculated repeatedly. The
algorithm is repeated l times and l < N . The rating scores are calculated together as
follows:

rai=ra + τ
∑m

k=1
SimR

ak(rki − rk) (15)

Where τ is a predefined parameter, and τ > 0. Finally, the filling sequence S ′ is obtained.
The pseudocode of the proposed sequence completion algorithm is shown in Algorithm
1.
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: the sequence length that we set, .
Output : the filling sequence we obtained. 

1: while do
2: for each item  in do
3: for each item  in do
4: ;

5: ;
6: if then
7:       Fill element  into the sequence, immediately after ;
8:  else Fill element  into the sequence, ahead of ;
9: ;
10:  return ;

Algorithm 1 sequence completion 
Input : user a rating sequence for items. 

: the set of most similar top-N items with user .

3.3 Sequential Recommendation

Through Long Short-Term Memory network (LSTM) [28], we finally get the rec-
ommended results for cold start users. We choose Cross Entropy Loss to find the
error.

4 SCLSTM with Improved LSTM

Another model is to improve LSTM by building the connection between the output layer
and the input layer of the next time step. Complete the sequence by adding this input
logic unit. We can see the architecture of the model in Fig. 4.

Fig. 4. Improved LSTM framework

By adding a judgment unit, we decide whether to take the output of this step as the
input of the next step, so as to move the whole sequence backward. The algorithm uses
the filling fraction formula in the previous chapter. The formula of judgment unit is as
follows:

Ipt =
{
Opt−1, if WifOpt−1xt−1 + bi ≥ Wjfxtxt−1 , then t + +;
xt, if WifOpt−1xt−1 + bi < Wjfxtxt−1

(16)

Where Ipt represents the input of time step t,Opt−1 represents the output of time step t−1
and xt represents the sequence element of time step t. fij is the filling fraction formula in
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Eq. 14. t++means to insertOpt−1 into the sequence, then the remaining elements move
backward in turn. Wi and Wj is the weight parameter and bi is the deviation parameter.
Theywere trained togetherwith other parameters of LSTM. In the process of propagation
of neural networks, when Ipt = Opt−1, the propagation actually stops. Therefore, the
number of iterations must be greater than the length of the maximum sequence.

5 Experiments

5.1 Experiments Settings

We use the Amazon dataset [29] to evaluate the performance of our model and baselines.
There are ratings, simple attribute and reviews in total spanning from May 1996 to July
2014. It has 21 categories of items and we choose the three most widely used categories
in cross-domain recommendation to perform the experiment. In order to gain better
experiment performance, we filter the content in the dataset. We grab data from IMDb2

and Google3 to supplement features of users and items. The statistics of the two datasets
are given in Table 1. We compare our model with the following baselines:

Table 1. The statistics of the two datasets

Dataset 1 Dataset 2

Domain Movies Books Movies CDs

Users 3479 4237

Items 3983 2473 4302 5766

Ratings 19011 13002 43658 30263

Density 0.00193 0.00132 0.00176 0.00122

CMF: Collective Matrix Factorization (CMF) [27] tends to incorporate different
sources of information by simultaneously factorizing multiple matrices.

EMCDR: This model [25] adopts matrix factorization to learn latent factors first and
then utilize an MLP network to map the user latent factors.

Markov-RS: Markov chain-based sequential recommender systems [10] adoptMarkov
chain models to model the transitions over user-item interactions in a sequence, for the
prediction of the next interaction.

LSTM: Given a sequence of historical user-item interactions, an RNN-based sequential
recommender system [28] tries to predict the next possible interaction by modelling the
sequential dependencies over the given interactions.

2 https://www.imdb.com/.
3 https://www.google.com/.

https://www.imdb.com/
https://www.google.com/
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5.2 Evaluation Metric

In both data sets, we choose the domain with sparse data as the target domain. We select
some users randomly in the target domain and hide their information as cold start users.
In our experiments, we set the proportions of cold start users as 70%, 50% and 30%
of the initial users respectively. The proportion is denoted as φ. We adopt Root Mean
Square Error (RMSE) and Hit Ratio defined as follows as the evaluation metrics.

RMSE =
√

∑

rac∈Itest

(
rac − rac

∧)2

|Itest | (17)

Where Itest is the set of test ratings. rac denotes an observed rating in Itest . rac
∧

represents
the predictive value of rac. |Itest | is the number of test ratings.

Hit Ratio =
∑

u G(Tu ∈ R(u, t))

|U | (18)

Where G(·) is an indicator function, R(u, t) is a set of items recommended to user u at a
specified time period t, Tu is the test item that user u accessed at a specified time period
t and |U | is size of all test sets. If the test item appears in the recommendation set, we
call it a hit.

5.3 Experimental Results

The experimental results of RMSE on “Movies & Books” are shown in Table 2, and
the results on “Movies & CDs” are presented in Table 3. The best performance of these
models is shown in boldface. Because the data in the movie domain is relatively dense,
we regard the movie domain as an auxiliary domain in both datasets. Our approaches
are SCLSTMwith similarity measure (SCLSTM1) and SCLSTMwith improved LSTM
(SCLSTM2). The parameters α, β and γ were finally determined to be 0.3, 0.1 and 0.6
in Eq. 14.

Table 2. Recommendation performance on “Movies & Books”

RMSE

φ 70% 50% 30%

CMF 1.4621 1.3305 1.2648

EMCDR 1.3583 1.0048 0.9496

Markov-RS 1.4365 1.4008 1.3701

LSTM 1.2543 1.1568 0.9970

SCLSTM1 0.9477 0.9432 0.9376

SCLSTM2 0.9951 0.9765 0.9320
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Table 3. Recommendation performance on “Movies & CDs”

RMSE

φ 70% 50% 30%

CMF 1.6255 1.6118 1.6032

EMCDR 1.6753 1.1238 1.1494

Markov-RS 1.4213 1.4077 1.3653

LSTM 1.2775 1.2203 1.0988

SCLSTM1 1.1380 1.0776 1.0152

SCLSTM2 1.2203 1.0377 0.9961

We evaluate the performance of different models under different values of φ by
RMSE model. From Tables 2 and 3, one can draw the conclusion that SCLSTM1 and
SCLSTM2 are superior to all the state-of-the-art methods in cross-domain recommenda-
tion for cold start users. LSTM, SCLSTM1 and SCLSTM2 all perform better than CMF
and EMCDR which proves the effectiveness of deep learning methods in cross-domain
recommendation, even though the algorithm is not specially designed for cross-domain
recommendation. With the increasing sparsity of data, the efficiency of all algorithms
has declined. But we can see that the efficiency of SCLSTM1 fall less than those of
other algorithms. Its performance is the most stable of all algorithms. When the data is
denser, SCLSTM2 performs better than SCLSTM1. When the data becomes sparse, the
performance of SCLSTM1 begins to exceed that of SCLSTM2. This is closely related
to the advantage of SCLSTM1 as an algorithm based on similarity measure.
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Distinguished from other recommender systems, the most important feature of
sequence recommendation is that its input and output are sequences. With this, we can
not only recommend, but also recommend the right products at the right time. RMSE
can’t express this feature, but Hit Ratio can. Specified time period t represents the contin-
uous t-times shopping behavior. We predict the t-times shopping information, and then
compare it with the real t-length sequence. If there is one data coincidence, it means
one hit. For the non-sequence recommendation algorithms CMF and EMCDR and the
sequence recommendation algorithm Markov-RS which cannot output sequence data,
we use Top-t data instead of prediction data. Figure 5 and 6 show that the results of Hit
Ratio vary with t while φ = 30%. As you can see from the graph, the smaller the t, the
greater the ratio of our two algorithms over other algorithms. With the increase of φ, t
is fixed to 5 because of the sparse data in Fig. 7 and 8. Combining these four graphs, we
can see that our two algorithms show great superiority in Hit Ratio.
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Finally, we use collaborative filtering with different similarity algorithms to predict
movie ratings in theAmazonmovie dataset andutilizeRMSE to evaluate the performance
of all similarity algorithms. The similar algorithms we compare are Euclidean Distance
(ED), ChebyshevDistance (CD), Cosine Similarity (CS), Personalized PageRank (PPR),
SimRank (SR) [26], Jaccard Coefficient (JC) and our Time SimilarityMeasure (TS). The
experimental results are shown in Fig. 9 and our algorithm shows great superiority.
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6 Related Work

Sequential Recommender Systems. Existing works about sequential recommender
systems (SRSs) mostly consist of traditional sequence models [8–10], latent represen-
tation models [11–15], and deep neural network models [16–21].

Yap [8] proposed a sequential pattern-based recommender system which can mine
frequent patterns on sequence data. Garcin [9] proposed a method of directly calculating
the Markov chain transition probability based on the explicit observations. Feng [10]
embedded the Markov chains into a Euclidean space and then calculates the transition
probabilities between interactions based on their Euclidean distance.

Factorization machine-based SRSs usually utilize the matrix factorization or tensor
factorization to factorize the observed user-item interactions into latent factors of users
and items for recommendations [11, 12]. Such methods presents challenges in the face
of data sparsity. Embedding-based SRSs learn a latent representations for each user and
item for the subsequent recommendations by encoding all the user-item interactions in
a sequence into a latent space. Specifically, some works take the learned latent represen-
tations as the input of a network to further calculate an interaction score between users
and items, or successive users’ actions [13, 14], while other works directly utilize them
to calculate a metric like the Euclidean distance as the interaction score [15].

Deep neural networks nearly dominate SRSs in the past few years.Wu [16] proposed
a method of capturing the long-term dependencies in a sequence with long short-term
memory (LSTM)model while Hidasi [17] utilized gated recurrent unit (GRU)model and
Quadrana [18] utilized hierarchical RNN. Both models are based on the improvement of
recurrent neural network (RNN). A few works [19, 20] developed convolutional neural
networks (CNN)-based SRSs. They first put all sequence data into a matrix, and then
treat such a matrix as an image in the time and latent spaces. However, due to the
limited sizes of matrix dimension CNN-based SRSs cannot effectively capture long-
term dependencies. This is an obvious defect for sequence recommendation. Wu [21]
transformed sequence data into directed graphs by mapping each sequence to a path and
taking each interaction as a node in the graph, and then utilized graph neural network
(GNN)-based SRSs to commendation.
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Cross-Domain Recommender Systems. Cross-domain recommender systems have
gained increasing attention in recent years. Existing studies [4–7] including the
knowledge aggregation-based cross-domain recommender systems and the knowledge
transfer-based cross-domain recommender systems and the latter methods is the focus
of current research. Pan [22] proposed an adaptive models sharing potential features
between two domains. Unlike adaptive algorithms, Pan [23] proposed a cooperative
algorithms by learning potential features simultaneously between two domains, and
optimizing a common objective function. Li [24] proposed a model based on rating
patterns transfer.

7 Conclusion and Future Work

In this paper, we propose a Long Short-TermMemory with Sequence Completion model
for cross-domain sequential recommendation. We first construct the sequence and sup-
plement it in which two methods are proposed. Then we use LSTM to complete sequen-
tial recommendation. Experimental results on two real datasets extracted from Ama-
zon transaction data demonstrate the superiority of our proposed models against other
state-of-the-art methods. The current context of a user or commodity may greatly affect
the user’s choice of goods. When making recommendations, this should be taken into
account. Therefore context-aware cross-domain sequential recommendations would be
an important direction in our future works.
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Abstract. Most recommender systems provide recommendations by
listing the most relevant items to a user. Such recommendation task
can be viewed as a personalized ranking problem. Previous works have
found it advantageous to improve recommendation performance by incor-
porating social information. However, most of them have two primary
defects. First, in order to model interaction between users and items,
existing works still resort to biased inner production, which has proved
less expressive than neural architectures. Second, they do not delicately
allocate weights of social neighbor influence based on the user feature
or the item feature in a recommendation task. To address the issues, we
propose an Item-level Attentive Social Recommendation model, IASR
for short, in this paper. It employs an item-level attention mechanism
to adaptively allocate social influences among trustees in the social net-
work and gives more accurate predictions with a neural collaborative
filtering framework. Extensive experiments on three real-world datasets
are conducted to show our proposed IASR method out-performs the
state-of-the-art baselines. Additionally, our method shows effectiveness
in the cold-start scenario.

Keywords: Social recommendation · Personalized ranking · Attention
mechanism

1 Introduction

In recent years, recommender systems are gaining growing popularity due to the
rapid growth of the Internet, which also brings the issues of information explosion
and information overload. Many large companies, e.g., e-commerce companies
like Amazon and eBay, video companies like Netflix and Hulu and social net-
working companies like Facebook have all built successful recommender systems
to improve their services and make more profits. One of the most commonly
c© Springer Nature Switzerland AG 2020
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Fig. 1. A real-world example of item-aware neighbor influence allocation.

used approaches for building recommender systems is collaborative filtering, in
which past interactions between users and items are utilized for modeling the
latent features of users and items. Among a vast majority of existing collabo-
rative filtering models, matrix factorization (MF) [15,23] is known as the most
popular one. The basic idea is to represent users and items in a low-dimensional
latent space by decomposing the interaction matrix into two low-dimension ones.
Therefore, a user’s interaction with an item can be modeled by the inner product
of the corresponding latent features.

Traditional recommender systems suffer from cold-start problems. In most
real-world scenarios, many cold users exist in recommendation problem. Cold
users are users have few or even no consumption histories. To alleviate cold-
start problems, researchers proposed many social recommendation methods [17,
29,32]. By integrating social information, users’ features can be modeled not only
from historical interactions’ perspective but also from the social connections’
perspective.

Roughly speaking there are mainly two types of recommender systems. The
first type uses social connections to guide the sampling process of training pairs.
Representative works are [20,26,29,32]. The basic idea of this type of approaches
is to categorize items into detailed sets for each user with the help of social
connections. For example, in [32], items are categorized into three classes for
user u—items consumed by u, items not consumed by u but consumed by u’s
friends/trustees, items neither consumed by u nor u’s friends/trustees. With
detailed categorization, such models apply different assumptions to give the sets
an ordered rank, which can be used for guiding the sampling process. The second
type, however, directly utilizes social connections to build latent features for MF.
Representative methods are [7,25]. Taking [7] as an example, the TrustSVD
model is built on top of the famous SVD++ [14] model. [7] redesigns the predict
function by adding a new term which reflects the neighbors’ influences.

Although both types of methods mentioned above can improve the ranking
performance to some extent, there still exist two unresolved problems. The first
problem is that they employ biased inner products of items’ and users’ latent
features, which is reported in [9] to be less expressive than deep neural network
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based structures. The second problem is that existing works pay little attention
to how to control neighbor influences elaborately. We present Fig. 1 as a real-
world example. Someone may take more advice from his basketball teammates
when deciding whether to buy a basketball, while listening to his riding club-
mates more when purchasing a bicycle. People shall adapt the proportion of
social neighbors’ influence for different items.

To address such issues, we present Item-level Attentive Social
Recommendation, IASR for short. The main contributions of our work are as
follows:

1. We substitute the traditional inner product module to a multi-layer percep-
tron structure to capture high-level and non-linear interaction information.

2. We present a neural network based attention module to elaborately model
trustee influences with respect to not only user features but also item features.

3. Extensive experiments on three real-world datasets show better performance
of our IASR model against existing state-of-the-art approaches. Moreover,
our proposed IASR model alleviates the cold-start problems as proved by the
experimental results.

2 Related Work

In this section, we will review the most related works from two perspectives.
The first is social recommendation for personalized ranking, which is the gen-
eral target of our work. The second is applications of attention mechanism in
recommender systems.

2.1 Social Recommendation for Personalized Ranking

In [11], Hu et al. raise their opinion that implicit data are of great importance
in recommender systems. Following in [22], Rendle et al. present a bayesian per-
sonalized ranking. Rendle et al. pioneeringly point out that the main task of
recommender systems should not be the regression of explicit ratings. However,
researcher should focus on a classification problem more, which is to decide
the preference order when given one user with two items. Since then, many
approaches about personalized ranking have been proposed. In [26], Wang et al.
follow the work in [32] by defining strong and weak ties in a social network, which
can help categorize the while item set even more delicately. In [31], an embedding
based social recommender is proposed by identifying semantic friends. Later in
[29], Yu et al. extend the work in [31] to heterogeneous networks, and propose
a model to identify implicit friendships, with whose help the item set is catego-
rized into five ordered sets just like [26,32], generating more fine-grained train-
ing samples for BPR loss function. Apart from BPR-based ranking approaches,
there also exist other approaches [5,25]. [5,25] study users’ exposure in implicit
data, and try to model them accurately by studying social influences, and finally
enhance ranking results.
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2.2 Attention Mechanism in Recommender Systems

Attention mechanism is first introduced for machine translation problems in
[1] and gets popular in many research areas [4], e.g. QA [10,16,24] and docu-
ment classification [12,28]. Attention mechanisms draw researchers’ attention for
mainly three reasons. First, such models achieve great improvements in related
areas. Second, they handle a critical problem in recurrent neural networks (RNN)
that is the performance degradation when input size is very large. Last, they are
able to provide extra interpretability. Many recommender systems employ atten-
tion mechanism as well. He et al. propose a neural network model in [8] which
uses an attention network to distinguish which historical items in a user profile is
of greater importance. In [3], Cao et al. use attention mechanism to help aggre-
gate members’ embeddings to form a group embedding in terms of each item.
This is a similar work to ours. However, our work do not need explicit group
information, allowing it to be more widely applicable. In [30], Yu et al. develop a
neural attentive interpretable recommendation system that can assign attentive
weights to interacted items of a user, which will later contribute to modeling
user’s profile.

3 Method

In this section, we present our IASR model. First of all, we briefly overview our
model. We then describe our model in detail. Lastly, we discuss the optimization
method for our model.

Before discussing the model, we need to formulate the task. In our work, we
focus on giving personalized ranking under implicit data settings, with the help
of social network data. Here we define U = {u1, . . . , un} as the user set of n users,
as well as I = {i1, . . . , im} as the item set of m items. The implicit feedback is
defined as a matrix R ∈ {0, 1}n×m with ru,i denoting the value in the u-th row
and i-th column of R. ru,i = 1 when the interaction between user u and item i is
observed, and ru,i = 0 otherwise. Additionally, we define T ∈ {0, 1}n×n, whose
u-th row, v-th column’s value tu,v denotes the observation of trust-ship from
user u to user v. Similarly, tu,v = 1 if such trust-ship is observed, and tu,v = 0
vice versa. With all these data given, our model should be able to give the order
of all items for each user, according to his or her personal preferences.

3.1 Model Overview

Figure 2 shows the overview of our IASR model. Formally, we use pu ∈ R
du×1 to

denote user u’s embedding and qi ∈ R
di×1 to denote item i’s embedding. Here du

and di means the dimension for users’ and items’ embedding vectors respectively,
and they do not have to be the same thanks to the neural network design which
will be discussed later. However, for the convenience of model presentation, we
assume they have the same size, and use d to denote the dimension. IASR accepts
user u and item i as inputs, and through T , all the trustees of user u can be
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Fig. 2. The overview of our IASR model.

looked up. Trustees of user u can be denoted as a set Nu = {v|tu,v = 1}. The
general steps of our model are as follows:

esocialu,i = IAttn(pu, qi,Nu), (1)

ŷu,i = NNPred(pu, qi,e
social
u,i ), (2)

where IAttn denotes the Item-level Attention module and NNPred denotes the
Neural Network Prediction module. IAttn accepts pu, qi and Nu, adaptively
allocates trustee weights, and then generates the aggregated social representation
esocialu,i . NNPred accepts the social representation along with embeddings of the
user and the item, and then gives the final prediction. Both modules will be
discussed in the following parts. In advance of introducing these two modules,
a brief introduction of the K-way Vector Aggregator will be given, which is
a component both utilized in the Item-level Attention module and the Neural
Network Prediction module.

3.2 Model Details

K -Way Vector Aggregator Following the ideas in [21], which proposes a
factorization machine model to capture all the single variables and pairwise
interactions in a single vector, we extend the factorization machine model to a
higher perspective, i.e., from single vector to multiple vectors.

Figure 3 illustrates our design of k-way vector aggregator. A k-way vector
aggregator accepts k vectors of the same size din ∈ N and extracts their first-
order and second-order information into a new vector of size dout ∈ N:

vpooling1 =
�
�
�
�

k

i=1

(vin
i ), (3)

vpooling2 =
�
�
�
�

k

i=1,j=1,i<j

(vin
i � vin

j ), (4)
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Fig. 3. Illustration of a 4-way vector aggregator.

vpooling = (vpooling1‖vpooling2), (5)

vout = V A(vin
1 , . . . ,vin

k ) (6)

= Wkwav
pooling + bkwa, (7)

where ‖ represents the concatenation operation among vectors, vin
i ∈ R

din

means
the i-th input vector and vpooling ∈ R

dpooling

denotes a hidden pooling layer
which is the concatenation of vpooling1 ∈ R

dpooling1
and vpooling2 ∈ R

dpooling2
.

Here vpooling1 contains the first-order information of the input vectors by sim-
ply joining them up into a large vector. Hence the size of vpooling1, i.e., dpooling1,
is k × din. Similarly, vpooling2 is the concatenation of second-order informative
vectors. Each second-order informative vector (e.g. vin

1 � vin
2 ) is the hadamard

product of two different input vectors and thus its size dpooling2 is k×(k−1)
2 din.

We put vpooling1 and vpooling2 together to form vpooling, and then feed it into a
linear transformation, notated by a weight matrix Wkwa ∈ R

dout×dpooling

and a
bias vector bkwa ∈ R

dout

, projecting all the first-order information and second-
order information into a new latent space of dimension vout ∈ R

dout

.

Fig. 4. Illustration of item-level attentive social representation aggregation.
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Item-Level Attention Module. In order to utilize the social information
in a single recommendation task, i.e., to decide whether to recommend item
i to user u, we need to aggregate the trustees’ information. In our model, we
perform a weighted sum over the embeddings of user u’s trustees. The weight,
denoted by α(u, i, v), reflects the influence of user v, who is a trustee of user u, on
deciding whether to recommend item i to user u. Different from most previous
works, we treat the recommended item i as an input variable that contributes
in learning the weight allocation, based on our intuition that trustees’ influence
varies when recommending different items. Figure 4 introduces the structure of
this component. More precisely, we have the following definitions:

o(u, i, v) = MLP social(V Asocial(pu, qi,Nu)), (8)

α(u, i, v) = softmax(o(u, i, v)) =
exp(o(u, i, v))

∑Nu

v′ exp(o(u, i, v′))
, (9)

esocialu,i = IAttn(pu, qi,Nu) (10)

=
Nu∑

v

α(u, i, v)pv, (11)

where esocialu,i denotes the output of this component, V Asocial a 3-way vector
aggregator accepting the embeddings of user u, item i and a trustee v, MLP social

a neural attention network which is capable of expressing non-linear information.
In (8), for each trustee of user i’s, we project recommendee embedding, item

embedding and trustee embedding to a score denoted by o(u, i, v) via V Asocial,
MLP social step by step. Nextly in (9), we normalize the scores using a softmax
function, ensuring their summation to be 1. Lastly, we treat the normalized
scores, denoted by α(u, i, v), as weights, and calculate the weighted sum of the
embeddings of trustees as the aggregated trustee embedding, which is exactly the
output of this component. We further detail the structure of the neural attention
network, i.e., MLP social, as follows:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

e1 = σ(W1e
in + b1)

. . . . . .

eh = σ(Wheh−1 + bh)

eout = wTeh

, (12)

where ein, ei, eout and h denote the input vector of the network, the i-th hidden
layer of the network, the output vector of the network and the number of hidden
layers in this network, respectively. Also, we use Wi and bi to represent the
weight matrix and bias vector in the i-th hidden layer. In order to capture
the non-linear information, we apply a non-linear activation function σ(·), e.g.
sigmoid, tanh or ReLU, to each hidden layer. In the end, the last layer’s output
eh will be transformed to a score value with vector w.

In order to avoid too expensive computation cost on those users who have
a large number of friends, we use a hyper-parameter Nn to control the number



IASR 401

of trustees participating in the aggregation. That is if a user u has a neigh-
bor size larger than Nn, we will randomly select Nn neighbors to complete the
aggregation.

Neural Network Prediction Module. With trustees’ embeddings aggre-
gated, we are now able to give the prediction of a recommendation task. Figure 5
shows the structure of this part.

Fig. 5. Illustration of the neural network prediction module.

Similar to the designs of neural attention network in Sect. 3.2, we use a neural
network to predict the score of recommendation. We have the following defini-
tions:

eaggu,i = V Apred(pu, qv,e
social
u,i ), (13)

scoreu,i = MLP pred(eaggu,i ), (14)

ŷu,i = NNPred(pu, qi,e
social
u,i ) (15)

= σ(scoreu,i), (16)

where esociali,j represent the aggregated trustee embedding for recommendation
task over the user-item pair < i, j >. V Apred is a 3-way vector aggregator accept-
ing the embeddings of user u, item i and user u’s aggregated trustee embedding
in respect to item i. MLP pred means a neural network for prediction which will
be discussed shortly after. ŷu,i is the prediction score. Since we are looking into
recommendations over implicit data in our work, ŷu,i should be a real number
in the range of [0, 1]. We use a sigmoid function σ(·) to normalize the prediction
score.

MLP pred shares the same structure as (12). However, they do not share the
same settings for network depth and layer widths. Thus their parameters are
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learned unrelatedly. We adopt the fashion that not sharing the same network
among social part and prediction part in our model because their outputs do
not share a same semantic space.

3.3 Model Optimization Method

Unlike rating prediction under explicit interaction settings, our task is more
like a classification problem rather than a regression problem that is to classify
an input triplet <u, i, j> where u denotes the user and i, j the two items into
two categories: u prefer i over j and u prefer j over i. In order to solve this
classification problem, most existing works apply a pairwise optimization method
[22,26,32]. However, in our work, we use noise contrastive estimation loss like
[27] in optimization instead of a pair-wise fashion. For an observed interaction
<u, i>, we have:

l(u, i, θ) = log σ(scoreu,i) + Ej∼p(j)[log σ(−scoreu,j)], (17)

L(U, I, θ) =
∑

u

∑

i

l(u, i, θ) (18)

where l(u, i, θ) is the loss in terms of one observed interaction, p(j) denotes a
noise distribution where an item j can be drawn from, L(U, I, θ) means the com-
plete form of loss function. In practical, p(j) which is the distribution of noisy
samples can be replaced by uniform sampling from all observed interactions.
Also, since the accurate expectation of the distribution is expensive to calculate,
we directly draw Ns samples from observed interactions to substitute the lat-
ter term Ej∼p(j)[log σ(−scoreu,j)] in (17) where Ns is another hyper-parameter
denoting the number of samples drawn for computing the NCE loss. We adopt
such sampling approach for the reason that the training data distribution is a
natural option for noise distribution p(j). Since our model is designed in an
end-to-end fashion, loss can be easily back-propagated to update user and item
embeddings, model parameters as well.

4 Experiments

4.1 Experimental Settings

Datasets. We conduct experiments on following 3 real-world datasets:

CiaoDVD. Ciao is an European online-shopping website1. CiaoDVD is a
dataset crawled from the entire category of DVDs from website in December,
2013. This dataset contains user ratings and trust relationships. This dataset
is first introduced in [6].
Delicious. Delicious is originally founded in 2003 as a social bookmarking ser-
vice2. This dataset contains social information and bookmarking information,
and is introduced in [2].
1 https://www.ciao.co.uk/.
2 https://del.icio.us/(not available when paper is written).

https://www.ciao.co.uk/
https://del.icio.us/
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Epinions. This dataset is collected from Epinions.com web site, which is also
a European online-shopping website, with a crawler introduced in [18,19]. This
dataset is publicly accessible3.

Since interactions in CiaoDVD and Epinions are explicit ratings, we treat
them as implicit interactions in our experiments by simply view a rating as an
observed consumption interaction.

Baseline Methods. To show the better performance of personalized ranking
provided by our IASR model, we compare it with the following baselines:

Random. This method gives an random order for each item list.
MostPopular. This method ranks items in the query according to their pop-
ularity which is defined by their occurrences in the training set. This is a non-
personalized baseline.
MF-BPR. This method is proposed in [22] by Rendle et al. By replacing the
point-wise optimizing approach with the bayesian pair-wise optimizing way, tra-
ditional MF method can achieve better performance in the task of personalized
recommendation in implicit datasets.
NeuMF. Proposed by He et al. [9], this model replaces the inner product with a
neural architecture. It has the capability to learn the non-linearity information
form user-item interactions.
TBPR. Proposed in [26], this is an extensive work of MF-BPR. It divide
the item set into 5 non-overlapping and ordered sets by bringing in the idea of
strong and weak ties.
SERec. Proposed in [25], this work looks into user exposures by utilizing social
network information. It integrates social exposure into collaborative filtering to
improve recommendation under implicit data settings.

Parameter Settings. We implement our model based on Pytorch4. The code
can be found here5. We make the validation set the same way as the test set. User
and item embeddings are trained from scratch. All hidden layers are randomly
initialized with a Gaussian distribution of mean 0 and standard deviation 0.1. We
use the Adam optimizer [13] to optimize the loss function and apply mini-batch
gradient descent to better utilize GPU. Mini-batch size is searched in {128, 256,
512}. Weight decay is searched in {0.000001, 0.00001, 0.0001, 0.001}. Learning
rate is searched in {0.001, 0.005, 0.01, 0.05, 0.1}. Embedding sizes d is set to 64.
We empirically employ a 3-layer tower structure in the neural networks following
[9], that is the size of every hidden layer is half of the last hidden layer. ReLU
activation is used as the non-linear function in our neural networks.

3 http://www.trustlet.org/downloaded epinions.html.
4 https://pytorch.org/.
5 https://github.com/tytao17/IASR.

http://www.trustlet.org/downloaded_epinions.html
https://pytorch.org/
https://github.com/tytao17/IASR
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Table 1. Performance of baseline methods and our method

Dataset Metrics Rand MP MF-BPR [22] NeuMF [9] TBPR [26] SERec [25] IASR

CiaoDVD HR@5 0.0316 0.0789 0.1368 0.1158 0.1263 0.0842 0.1579

HR@10 0.0842 0.1579 0.2211 0.1789 0.2158 0.1368 0.2474

NDCG@5 0.0191 0.0469 0.0765 0.0663 0.0827 0.0546 0.1098

NDCG@10 0.0360 0.0714 0.1036 0.0861 0.1125 0.0719 0.1383

MRR 0.0456 0.0694 0.0926 0.0792 0.1036 0.0724 0.1262

Delicious HR@5 0.0581 0.1002 0.3030 0.2138 0.1936 0.0623 0.3914

HR@10 0.1086 0.1507 0.3838 0.2955 0.2727 0.1170 0.4731

NDCG@5 0.0345 0.0659 0.2498 0.1532 0.1411 0.0374 0.3241

NDCG@10 0.0506 0.0821 0.2757 0.1794 0.1668 0.0547 0.3504

MRR 0.0555 0.0821 0.2610 0.1645 0.1570 0.0586 0.3292

Epinions HR@5 0.0508 0.3039 0.4620 0.4478 0.4010 0.0489 0.4665

HR@10 0.0995 0.4213 0.5929 0.5796 0.5216 0.0926 0.5919

NDCG@5 0.0299 0.2134 0.3384 0.3263 0.2919 0.0282 0.3465

NDCG@10 0.0454 0.2513 0.3809 0.3692 0.3310 0.0422 0.3869

MRR 0.0520 0.2188 0.3315 0.3210 0.2896 0.0498 0.3404

Table 2. Performance of baseline methods and our method over cold users

Dataset Metrics Rand MP MF-BPR [22] NeuMF [9] TBPR [26] SERec [25] IASR

CiaoDVD HR@5 0.0476 0.0794 0.1111 0.1587 0.0952 0.0794 0.1587

HR@10 0.1111 0.1587 0.1587 0.2063 0.1905 0.1746 0.2698

NDCG@5 0.0269 0.0489 0.0568 0.0875 0.0676 0.0468 0.0835

NDCG@10 0.0477 0.0739 0.0725 0.1029 0.0976 0.0778 0.1176

MRR 0.0531 0.0723 0.0727 0.0889 0.0924 0.0695 0.0913

Delicious HR@5 0.0543 0.0886 0.1257 0.1000 0.0971 0.0600 0.2457

HR@10 0.0914 0.1486 0.2114 0.1629 0.2000 0.1257 0.3314

NDCG@5 0.0320 0.0631 0.0852 0.0611 0.0635 0.0375 0.1880

NDCG@10 0.0440 0.0821 0.1123 0.0812 0.0969 0.0583 0.2156

MRR 0.0512 0.0828 0.1048 0.0797 0.0900 0.0620 0.1996

Epinions HR@5 0.0558 0.3176 0.3863 0.3691 0.3090 0.0258 0.4335

HR@10 0.0944 0.3863 0.5107 0.4979 0.3648 0.0644 0.5365

NDCG@5 0.0340 0.2157 0.2804 0.2609 0.2318 0.0169 0.3350

NDCG@10 0.0461 0.2381 0.3204 0.3024 0.2505 0.0291 0.3684

MRR 0.0551 0.2102 0.2796 0.2600 0.2341 0.0405 0.3350

4.2 Performance Comparison

Table 1 and Table 2 detail the performance of different models. In Table 2, cold
users are defined as users with fewer than 5 interactions in the training set.
SERec reports bad results because of hardship in tuning parameters, so we
skip it in this section. In each row, the best result is in boldface while the second
best result is underlined. From the presented results, we can see that:
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1. Random shows the worst performance while MostPopular shows the sec-
ond worst performance in most cases, since they have no personalized knowl-
edge about the datasets.

2. MF-BPR shows surprisingly good results than other state-of-the-art meth-
ods, for its great simplicity and generality.

3. In some cases, NeuMF shows the second best performance, because it can
capture non-linear information as our model.

4. Also in some cases, TBPR shows the second best performance for its utiliza-
tion of social information.

5. In most cases, our proposed IASR model outperform all the compared base-
line methods. We believe it is for the combination of two advantages.

6. Out proposed IASR model shows little performance degradation in cold-user
settings, which certifies its ability to solve cold-start problems in recommen-
dation systems.

Table 3. Results of random user-item pairs selected from test set of Delicious

User Item Trustees and weights

#870 #127 #29 #60 #61 #269 #484 #538 #802 #881 - -

0.211 0.094 0.130 0.091 0.089 0.092 0.089 0.205 - -

#961 #786 #172 #240 #378 #380 #573 #590 #657 #723 #1043 #1185

0.077 0.097 0.089 0.081 0.112 0.105 0.110 0.105 0.108 0.117

#1111 #813 #122 #153 #356 #578 #735 #1140 #1166 - - -

0.121 0.136 0.147 0.147 0.147 0.153 0.150 - - -

#1185 #785 #172 #240 #355 #536 #567 #573 #590 #657 #797 #961

0.075 0.085 0.105 0.097 0.105 0.107 0.100 0.105 0.102 0.111

4.3 Attention Mechanism Analysis

To evaluate the effectiveness of item-level attention mechanism, we conduct some
case studies. Presented in Table 3, we randomly draw 4 users from test set of
Delicious whose positive test items are ranked top-5. For each user, we give his
or her id and positive test item id, as well as his or her trustees’ ids with allocated
weights below them. Weights in bold font denote the interaction between this
trustee and the positive item can be observed in the training set. We can see in
these nicely ranked cases, our model tends to allocate greater weights to those
who have interacted with the item, thus helps rank this item in a higher position.
It proves the effectiveness of the attention mechanism in our IASR model.
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4.4 Hyper-parameter Analysis

Our IASR model is mainly related to two hyper-parameters, Nn for controlling
the maximum neighbor size and Ns for controlling the NCE sampling size. We
study these two parameters on Delicious and CiaoDVD. On both datasets,
we set the embedding size to 16, Ns to 255 when studying Nn and Nn to 10
when studying Ns.

Fig. 6. Performance of IASR using different neighbor size Nn on CiaoDVD and
Delicious.

From Fig. 6, we can find on CiaoDVD, larger neighbor size Nn brings better
performance while on Delicious the performance starts to decrease when Nn is
set too large. We believe drawing too many neighbors in aggregation phase may
bring some unnecessary noise thus finding a optimal neighbor size for a specific
dataset is important.

Fig. 7. Performance of IASR using different sampling size Ns on CiaoDVD and
Delicious.

From Fig. 7, we can find on both datasets, the metrics HR@10 and NDCG@10
improve while the sampling size grows from a small value, and start to drop when
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the sampling size becomes too large. This indicates larger sampling size helps
the learning process of IASR in general, however too aggressive sampling size
settings will hurt the learning process.

5 Conclusion and Future Work

In this work, we devise a neural network based model which utilizes item-
level attention for social recommendation. With neural networks, our model
is endowed with the ability to explore the non-linearity in user item interac-
tions. With attention mechanism, our model can adaptively allocate trustees’
influences in recommendation tasks. We compare our model with other state-
of-the-art models on three real-world datasets to show the effectiveness of our
model in not only common recommendation tasks but also those for cold users.

In the future, our work can be extended to two major directions. First, we
can bring in more external information rather than social networks, which can
be used to train the users’ and items’ latent features more accurately. Second,
we will study how the adaptively learned trustees’ weights change over time by
utilizing some session based datasets.
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Foundation of China Projects No. U1936213, No. U1636207, and the Shanghai Science
and Technology Development Fund No. 19511121204, No. 19DZ1200802.

References

1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473 (2014)

2. Cantador, I., Brusilovsky, P.L., Kuflik, T.: Second workshop on information het-
erogeneity and fusion in recommender systems (HetRec2011) (2011)

3. Cao, D., He, X., Miao, L., An, Y., Yang, C., Hong, R.: Attentive group recommen-
dation. In: SIGIR, pp. 645–654 (2018)

4. Chaudhari, S., Polatkan, G., Ramanath, R., Mithal, V.: An attentive survey of
attention models. arXiv preprint arXiv:1904.02874 (2019)

5. Chen, J., Feng, Y., Ester, M., Zhou, S., Chen, C., Wang, C.: Modeling users’
exposure with social knowledge influence and consumption influence for recom-
mendation. In: CIKM, pp. 953–962 (2018)

6. Guo, G., Zhang, J., Thalmann, D., Yorke-Smith, N.: ETAF: an extended trust
antecedents framework for trust prediction. In: ASONAM, pp. 540–547 (2014)

7. Guo, G., Zhang, J., Yorke-Smith, N.: TrustSVD: collaborative filtering with both
the explicit and implicit influence of user trust and of item ratings. In: AAAI (2015)

8. He, X., He, Z., Song, J., Liu, Z., Jiang, Y.G., Chua, T.S.: Nais: neural attentive
item similarity model for recommendation. TKDE 30(12), 2354–2366 (2018)

9. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative
filtering. In: WWW, pp. 173–182 (2017)

10. Hermann, K.M., et al.: Teaching machines to read and comprehend. In: Advances
in Neural Information Processing Systems, pp. 1693–1701 (2015)

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1904.02874


408 T. Tao et al.

11. Hu, Y., Koren, Y., Volinsky, C.: Collaborative filtering for implicit feedback
datasets. In: ICDM, pp. 263–272 (2008)

12. Kiela, D., Wang, C., Cho, K.: Dynamic meta-embeddings for improved sentence
representations. In: EMNLP, pp. 1466–1477 (2018)

13. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

14. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: SIGKDD, pp. 426–434 (2008)

15. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer 8, 30–37 (2009)

16. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention
for visual question answering. In: NeurIPS, pp. 289–297 (2016)

17. Ma, H., Yang, H., Lyu, M.R., King, I.: SoRec: social recommendation using prob-
abilistic matrix factorization. In: CIKM, pp. 931–940 (2008)

18. Massa, P., Avesani, P.: Trust-aware recommender systems. In: RecSys, pp. 17–24
(2007)

19. Massa, P., Souren, K., Salvetti, M., Tomasoni, D.: Trustlet, open research on trust
metrics. SCPE 9(4) (2008)

20. Pan, W., Chen, L.: GBPR: group preference based Bayesian personalized ranking
for one-class collaborative filtering. In: IJCAI (2013)

21. Rendle, S.: Factorization machines. In: ICDM, pp. 995–1000 (2010)
22. Rendle, S., Freudenthaler, C., Gantner, Z., Schmidt-Thieme, L.: BPR: Bayesian

personalized ranking from implicit feedback. In: UAI, pp. 452–461 (2009)
23. Sarwar, B.M., Karypis, G., Konstan, J.A., Riedl, J., et al.: Item-based collaborative

filtering recommendation algorithms. WWW 1, 285–295 (2001)
24. Sukhbaatar, S., Weston, J., Fergus, R., et al.: End-to-end memory networks. In:

NeurIPS, pp. 2440–2448 (2015)
25. Wang, M., Zheng, X., Yang, Y., Zhang, K.: Collaborative filtering with social

exposure: a modular approach to social recommendation. In: AAAI (2018)
26. Wang, X., Lu, W., Ester, M., Wang, C., Chen, C.: Social recommendation with

strong and weak ties. In: CIKM, pp. 5–14 (2016)
27. Wu, G., Volkovs, M., Soon, C.L., Sanner, S., Rai, H.: Noise contrastive estima-

tion for scalable linear models for one-class collaborative filtering. arXiv preprint
arXiv:1811.00697 (2018)

28. Yang, Z., Yang, D., Dyer, C., He, X., Smola, A., Hovy, E.: Hierarchical attention
networks for document classification. In: NAACL-HLT, pp. 1480–1489 (2016)

29. Yu, J., Gao, M., Li, J., Yin, H., Liu, H.: Adaptive implicit friends identification
over heterogeneous network for social recommendation. In: CIKM, pp. 357–366
(2018)

30. Yu, S., Wang, Y., Yang, M., Li, B., Qu, Q., Shen, J.: NAIRS: a neural attentive
interpretable recommendation system. In: WSDM, pp. 790–793 (2019)

31. Zhang, C., Yu, L., Wang, Y., Shah, C., Zhang, X.: Collaborative user network
embedding for social recommender systems, pp. 381–389 (2017)

32. Zhao, T., McAuley, J., King, I.: Leveraging social connections to improve person-
alized ranking for collaborative filtering. In: CIKM, pp. 261–270 (2014)

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1811.00697


Spatio-Temporal Self-Attention Network
for Next POI Recommendation

Jiacheng Ni1, Pengpeng Zhao1(B), Jiajie Xu1, Junhua Fang1, Zhixu Li1,
Xuefeng Xian2(B), Zhiming Cui3, and Victor S. Sheng4

1 Institute of AI, Soochow University, Suzhou, China
ppzhao@suda.edu.cn

2 Suzhou Vocational University, Suzhou, China
xianxuefeng@jssvc.edu.cn

3 Suzhou University of Science and Technology, Suzhou, China
4 Texas Tech University, Lubbock, TX, USA

Abstract. Next Point-of-Interest (POI) recommendation, which aims
to recommend next POIs that the user will likely visit in the near future,
has become essential in Location-based Social Networks (LBSNs). Var-
ious Recurrent Neural Network (RNN) based sequential models have
been proposed for next POI recommendation and achieved state-of-the-
art performance, however RNN is difficult to parallelize which limits
its efficiency. Recently, Self-Attention Network (SAN), which is purely
based on the self-attention mechanism instead of recurrent modules,
improves both performance and efficiency in various sequential tasks.
However, none of the existing self-attention networks consider the spatio-
temporal intervals between neighbor check-ins, which are essential for
modeling user check-in behaviors in next POI recommendation. To this
end, in this paper, we propose a new Spatio-Temporal Self-Attention Net-
work (STSAN), which combines self-attention mechanisms with spatio-
temporal patterns of users’ check-in history. Specifically, time-specific
weight matrices and distance-specific weight matrices through a decay
function are used to model the spatio-temporal influence of POI pairs.
Moreover, we introduce a simple but effective way to dynamically mea-
sure the importances of spatial and temporal weights to capture users’
spatio-temporal preferences. Finally, we evaluate the proposed model
using two real-world LBSN datasets, and the experimental results show
that our model significantly outperforms the state-of-the-art approaches
for next POI recommendation.

Keywords: Self-Attention Network · Point-of-Interest · Recommender
system

1 Introduction

Nowadays, due to the popularity of Location-based Social Networks (LBSN),
such as Foursquare and Yelp, users can share their locations and experiences
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 409–423, 2020.
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with friends. As a result, huge amounts of check-in data have been accumulated
with an increasing need of Point-of-Interest (POI) recommendation, which also
gains great research interest in recent years. Different from traditional recom-
mendation, spatio-temporal information (i.e., time intervals and geographical
distances) of users’ check-ins is critical in POI recommendation. However, inte-
grating spatio-temporal transitions into recommendation is a long-term chal-
lenge.

To model users’ sequential patterns, the Markov Chain based model is an
early approach for sequential recommendation. Factorizing Personalized Markov
Chain (FPMC) models users’ sequential information through factorizing user-
item matrix and utilizing item-item transitions for next basket recommendation
[14]. However, the Markov assumption is difficult to establish a more effective
relationship among factors. With the development of deep learning, Recurrent
Neural Network (RNN) has been successfully applied to capture the sequential
user behavior patterns, some examples are Long Short-Term Memory (LSTM)
[8] and Gated Recurrent Units (GRU) [4].

Some recent works have extended RNN to model the spatio-temporal infor-
mation, which capture the transition patterns of user check-ins, for POI recom-
mendation and demonstrate the effectiveness. Time-LSTM equips LSTM with
time gates, which are specially designed, to model time intervals [26]. ST-RNN
models local temporal and spatial contexts with time-specific transition matri-
ces for different time intervals and distance-specific transition matrices for differ-
ent geographical distances [13]. HST-LSTM combines spatio-temporal influences
into LSTM model naturally to mitigate the data sparsity in location predic-
tion problem [10]. Also by enhancing LSTM network, STGN introduced spatio-
temporal gates to capture spatio-temporal information between check-ins [24].
However, RNN-based models are difficult to preserve long-range dependencies.
Moreover, these methods need to compute step by step (i.e., computation of the
current time step should wait for the results of the last time step), which leads
to these models hard to parallelize.

Recently, a new sequential model Self-Attention Network (SAN) was pro-
posed, which is easy to parallelize and purely based on a self-attention mechanism
instead of recurrent modules [16]. It achieves state-of-the-art performance and
efficiency in various sequential tasks [17,22]. The essence of the self-attention net-
work is to capture long-term dependencies by calculating the weight of attention
between each pair of items in a sequence. Actually, a pure self-attention network
treats a sequence as a set, essentially without considering the order of the items
in a sequence. The order of the items in a sequence is extremely important for
sequential modeling tasks. To model the order information of the sequence, Tan
et al. [15] applied the positional embedding to encode the sequential position
information for semantic role labeling. Moreover, SASRec [9] applied position
embedding into the self-attention mechanism to consider the order of the items.
ATRank [25] divided items’ time into intervals whose length increases exponen-
tially, where each interval represents a time granularity. However, none of the
above self-attention networks take the spatio-temporal information into consid-
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eration. It is dramatically important to consider time intervals and geographical
distances between neighbor items for next POI recommendation. Hence, how to
integrate time intervals and geographical distances into the self-attention net-
work is a big challenge.

To this end, in this paper, we propose a new Spatio-Temporal Self-Attention
Network (STSAN) by incorporating spatio-temporal information between check-
ins into a self-attention block for next POI recommendation. Specifically, we map
the time and distance intervals between two check-ins to a weight between two
POIs by a decay function. In this way, POI i will get a high attention score
on POI j if their spatio-temporal intervals are relatively short, and vice versa.
Furthermore, in order to capture the dynamic spatio-temporal preferences of
different users, we combine the spatial and temporal weights adaptively and
incorporate them into the self-attention block. Experimental results show that
incorporating spatio-temporal information into the self-attention block can sig-
nificantly improve the performance of next POI recommendation.

To summarize, our contributions are listed as follows.

– We propose a novel framework, Spatio-Temporal Self-Attention Network
(STSAN), to model time and distance intervals through a decay function
and incorporate the weight values into a self-attention block for next POI
recommendation.

– We introduce a simple but effective way to adaptively measure the impor-
tance of spatial and temporal weight, which can capture the spatio-temporal
preferences of different users.

– We conduct extensive experiments on two representative real-world datasets,
i.e., Gowalla and Foursquare, to demonstrate the effectiveness of our proposed
model. The experimental results show that our proposed STSAN outperforms
state-of-the-art methods, especially RNN-based models.

2 Related Work

In this section, we give a brief review of POI recommendation and discuss related
work from two aspects, which are traditional POI recommendation and leverag-
ing neural networks for POI recommendation.

2.1 Traditional POI Recommendation

Matrix Factorization (MF) is a traditional method to learn users’ general taste,
which factorizes a user-item rating matrix into two lower dimensionality matri-
ces, each of which represents the latent factors of users or items [11]. Cheng
et al. [1] firstly fused MF with geographical and social influence by modeling
the probability of a user’s check-in as a Multi-center Gaussian Model for POI
recommendation. Yao et al. [20] extended the traditional MF-based approach
by exploiting a high-order tensor instead of a traditional user-item matrix to
model multi-dimensional contextual information. Another line of work focuses
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on Markov Chain based methods, which estimate an item-item transition matrix
and use it for predicting next item. For instance, FPMC fuses matrix factoriza-
tion and first-order Markov Chains to capture the long-term preference and
short term transitions respectively [14]. FPMC-LR employs FPMC to model the
personalized POI transitions and aims to recommend POIs for next hours by
merging consecutive check-ins in previous hours [2]. PRME, proposed by [5],
uses a metric embedding method to model the sequential patterns of POIs. He
et al. [6] further proposed a tensor-based latent model, which fuses the observed
successive check-in behavior with the latent behavior preference of each user to
address a personalized next POI recommendation problem.

2.2 Neural Networks for POI Recommendation

With the impressive achievement of deep learning methods in different domains
such as computer vision and natural language processing, there exist various
methods employing and extending deep neural networks for POI recommenda-
tion. Yang et al. [18] proposed a deep neural architecture named PACE, which
jointly learns the embeddings of users and POIs to predict both user preferences
and various context associated with users and POIs. Zhang et al. [23] presented
a unified framework named NEXT to learn user’s next movement intention and
incorporate meta-data information and temporal contexts for next POI recom-
mendation. Recurrent Neural Network (RNN) has been successfully employed
to capture users’ dynamic preferences from the sequence of check-ins. ST-RNN
[13], which employs time-specific and distance-specific transition matrices to
characterize dynamic time intervals and geographical distances respectively, was
first proposed to model the spatial and temporal contexts for the next location
prediction. Recently, HST-LSTM was proposed to mitigate the data sparsity
in the location prediction problem by combining the spatio-temporal influences
into the LSTM model [10]. A more recent work STGN equipped LSTM with
the new time and distance gates to model time and distance intervals between
neighbor check-ins and extract users’ long-term and short-term interests [24].
Though RNN-based methods are efficient in modeling sequential patterns, they
still suffer from several weaknesses, such as large time consuming, being hard to
parallelize and preserve long-range dependencies.

3 Our Approach

In this section, we first formalize the problem statement of next POI recommen-
dation and then present the architecture of our Spatio-Temporal Self-Attention
Network (STSAN) for next POI recommendation.

3.1 Problem Statement

In the setting of next POI recommendation, we denote a set of users as U ={
u1, u2, ..., u|U |

}
and a set of POIs as V =

{
v1, v2, ..., v|V |

}
, where |U | and |V |
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Fig. 1. The architecture of our proposed STSAN.

are the number of users and POIs respectively. For a user u ∈ U , we use Lu =
(vu

1 , vu
2 , ..., vu|L|) to denote a sequence of check-ins in chronological order. And

each check-in record vu
i is associated with its timestamp tui and its geographic

coordinates sui of a POI. The goal of next POI recommendation is to predict
possible top-k POIs that a user may visit at next time step, given the user
historical check-ins.

3.2 Spatio-Temporal Self-Attention Network

As we mentioned above, spatial and temporal information is essential in POI
recommendation. Thus, we propose a spatio-temporal self-attention network
(STSAN) to integrate time and distance intervals into a self-attention block
through a decay function. As shown in Fig. 1, STSAN consists of four compo-
nents, i.e., Embedding layer, Spatio-Temporal weight block, Self-attention block
and Prediction layer. Specifically, we first transform the sparse representation of
POIs (i.e., one-hot representation) into a unique latent vector. This latent vector
has a lower dimension and can capture precise semantic relationships between
POIs. For spatial and temporal context, we utilize a decay function to measure
the importance of time and distance intervals, forming a hybrid weight matrix.
Then a user’s sequential patterns are learned by a self-attention network, where
the hybrid weight matrix is integrated into. Finally, we predict the next POI
with a higher probability score.

Embedding Layer: As the length of user’s check-in sequence is not fixed, we
transform the training sequence Lu = (vu

1 , vu
2 , ..., vu|L|) into a sequence with a
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fixed length L̂u = (vu
1 , vu

2 , ..., vun), where n denotes the maximum length that our
model handles. If the sequence length is less than n, we employ zero-padding to
fill the left side of the sequence until the sequence length is n. If the sequence
length is larger than n, we just consider the most recent n check-ins. Thus we
can create a POI embedding matrix M ∈ R

|V |×d where d is the latent dimension.
Since the self-attention network ignores the positional information of previous
POIs in a check-in sequence, we inject a positional matrix P ∈ R

n×d into the
input sequence embedding. The input matrix can be defined as follows:

E =

⎡

⎢
⎢
⎣

Mv1 + P1

Mv2 + P2

...
Mvn

+ Pn

⎤

⎥
⎥
⎦ (1)

Spatio-Temporal Weight Block: In order to capture spatio-temporal infor-
mation between check-ins, given the temporal and spatial sequence associated
with the user’s check-ins (i.e., (tu1 , tu2 , ..., tun) and (su1 , su2 , ..., sun)), we can calculate
the temporal and spatial transition matrices Tu and Su as follows:

Tu
ij =

{
Δtuij , i � j

0, i < j
(2)

Su
ij =

{
Δduij , i � j

0, i < j
(3)

where Δtuij and Δduij are the time intervals and distance intervals between check-
in vu

i and check-in vu
j respectively. Since the smaller the spatio-temporal intervals

between two POIs, the more related the two POIs are. We use an interval-aware
decay function to convert the time and distance intervals into an appropriate
weight. Hence the temporal weight matrix T̂

u
and the spatial weight matrix Ŝ

u

can be calculated as follows:

T̂
u

ij =

{
g(Δtuij), i � j

0, i < j
(4)

Ŝ
u

ij =

{
g(Δduij), i � j

0, i < j
(5)

where g is the decay function, which is defined as g(x) = 1/log(e + x). Due to
the nature of sequences, the model should consider only the previous POIs when
predicting the current POI. Thus we employ the future blinding that ignores
the influence of future POIs. That is to say, if POI vj is behind POI vi in a
sequence, the attention score of vi on vj will be 0. What’s more, spatial and
temporal contexts are not always the same important for capturing the patterns
of check-in sequence. For instance, a user may decide to visit a museum near the
restaurant where he or she had dinner on the previous day. Although the time
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intervals of two check-ins are long (i.e., more than 24 h), the restaurant and the
museum are close geographically. Thus we utilize a learnable weight factor α that
the model can adjust adaptively while training to balance the influence of the
spatial and temporal contexts. The hybrid weight is the adaptive combination
of the temporal weight and the spatial weight, which is defined as follows:

H = α · T̂ + (1 − α) · Ŝ, (6)

where 0 < α < 1. Finally we convert it through a linear projection:

Ĥ = WH + b, (7)

where W ∈ R
n×n is a global learnable projection matrix, and b ∈ R

n×n is the
bias, which can capture the high-order spatio-temporal transition patterns of all
check-in sequences and make the model more flexible.

Self-Attention Block: We can obtain the embedding matrix E from the above
embedding layer as the input of self-attention block, given a check-in sequence
(v1, v2, ..., vn). In order to model the transition patterns of the sequence, we use
the self-attention network proposed by [16], which can capture the relationships
between POIs in the sequence. Firstly, the scaled dot-product attention is defined
as follows:

Attention(Q,K,V) = softmax(
QKT

√
d

)V, (8)

where Q,K,V represent query, key, and value respectively, d denotes the latent
dimension of each POI. In the self-attention block, the query, the key and the
value are equal to E. We also convert them to three matrices through a linear
projection and feed them into an attention layer:

WSA = softmax(
EWQ(EWK)T√

d
), (9)

F = STSA(E) = ĤWSA(EWV ), (10)

where WQ,WK ,WV ∈ R
d×d are the projection matrices and Ĥ is the hybrid

weight matrix obtained from the spatio-temporal weight block. We argue that
layer normalization is beneficial for stabilizing and accelerating at the training
process [12], which is defined as follows:

LayerNorm(x) = α̃ � x − μ√
σ2 + ε

+ β̃, (11)

where x is an input vector with all features of a sample, � is an element-wise
product (i.e., the Hadamard product), σ and μ are the variance and the mean of
x respectively, α̃ and β̃ are learned scaling factors and bias terms. Since existing
methods have demonstrated that the last visited POI plays an important role
on predicting next POI [7,14], we also utilize a residual connection to propagate
the last POI’s embedding to the final layer.

F̂ = E + LayerNorm(F), (12)
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In order to learn more complex transitions between POIs, we apply a two-layer
fully-connected layer with the ReLU activation function.

O = ReLU(F̂W1 + b1)W2 + b2, (13)

where W1,b1,W2,b2 are model parameters.

Prediction Layer: After the self-attention block, we predict the next POI based
on Ot, given the first t POIs. We calculate the user’s preference for POIs through
a dot product operation as follows:

rvi,t = OtMT
vi

, (14)

where rvi,t is the relevance of POI vi being the next POI given the first t POIs.
A high score rvi

means a high relevance. Ot denotes the t-th line of O, and
M ∈ R

|V |×d is a POI embedding matrix. Note that the model inputs a sequence
(v1, v2, ..., vn) and its excepted output is a ‘shifted’ version of the same sequence
(v2, v3, ..., vn+1). After training process, we can generate next POI recommen-
dations by the last row of matrix O.

3.3 Network Training

During the training process, we apply the binary cross-entropy loss as the opti-
mization objective function of our model as follows:

−
∑

vi∈Lu

∑

t∈[1,2,...,n]

[log(σ(rvi,t)) +
∑

vj /∈Lu

log(1 − σ(rvj ,t))], (15)

In each training epoch, for each target POI vi in each sequence, we randomly
sample a negative POI vj . And we use Adam to optimize the parameters in our
model, which is a variant of gradient descent and can adapt the learning rate
for each parameter by performing a little update for frequent parameters and
heavily update for infrequent parameters.

3.4 Complexity Analysis

Space Complexity: Compared with SASRec [9], whose total number of param-
eters is O(|V |d + nd + d2) from the embedding layer, self-attention layers, feed-
forward networks and layer normalization, our proposed model needs to consider
the time and the distance intervals of all POI pairs in a user’s check-in sequence.
Thus the space complexity of our model inevitably grows but is acceptable, which
is O(|U |n + |V |d + nd + d2).

Time Complexity: The time complexity of our model consists mostly of
the spatio-temporal weight block and the self-attention block. Hence it is
O(|U |n2 + nepochn2d), where nepoch is the number of epochs at the training
process. If the total number of users |U | is equal to nepochd, our model will be
about twice slower than the original self-attention network. Although the time
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Table 1. Statistics of the datasets after preprocessing

Dataset #User #POI #Check-in Density

Gowalla 51089 106735 3136810 0.058%

Foursquare 3376 11860 584028 1.459%

complexity of our model increases to some extent for the computation of spatial
and temporal transition matrices, the parallelism nature of the self-attention
network has not been destroyed. Thus our model is also much faster than those
RNN-based methods, whose computation on time step t should wait for the
results of time step t − 1.

4 Experiments

In this section, we first describe datasets, evaluation metrics and baseline meth-
ods used in our experiments. Then we evaluate the performance of STSAN com-
pared with the state-of-the-art baseline methods and analyze our experimental
results.

4.1 Datasets

We conducted experiments on two public available LBSNs datasets (i.e.,
Gowalla1 and Foursquare2), which have user-POI interactions, timestamps of
check-ins and locations of POIs. Gowalla is a location-based social networking
website where users share their locations by checking-in and the dataset was
generated worldwide from February 2009 to October 2010 [3]. Foursquare con-
tains check-ins in New York and Tokyo collected from April 2012 to February
2013 [19]. Each check-in of the two datasets is associated with its timestamp
and geographic coordinates. For both datasets, we remove users with fewer than
10 check-ins and POIs visited by fewer than 10 users. The statistics of the two
datasets are summarized in Table 1. We sort each user’s check-ins according to
the chronological order and take the early 70% of users’ check-ins as the training
data, the last 30% as the testing data.

4.2 Evaluation Metrics and Implementation Details

To evaluate the recommendation performance of STSAN and the baseline meth-
ods, we adopt two widely used evaluation metrics, i.e., Recall and Normalized
Discounted Cumulative Gain (NDCG). Recall measures the accuracy of the rec-
ommendation. For an instance in the testing set, Recall@K is 1 if the visited
POI appears in the set of top-K recommended POIs, and 0 otherwise. NDCG

1 http://snap.stanford.edu/data/loc-gowalla.html.
2 https://sites.google.com/site/yangdingqi/home/foursquare-dataset.

http://snap.stanford.edu/data/loc-gowalla.html
https://sites.google.com/site/yangdingqi/home/foursquare-dataset
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is a position-aware metric, which assigns larger weights on higher positions. In
this paper, we choose K = {5, 10} to illustrate different results of Recall@K and
NDCG@K. In the default version of STSAN, we set the embedding size d to 100
on Gowalla and 50 on Foursquare. The maximum sequence length n is set to
50 on both datasets. Following [9], we implement our experiments in Tensorflow
and apply the mini-batch Adam optimizer to optimize the parameters in our
model. We set the learning rate to 0.001 initially. The number of epochs is set
to 200, the batch size is 128 and we apply only one self-attention block.

4.3 Baselines

We compare our proposed model STSAN with the following representative meth-
ods, which are briefly described as follows.

– RNN: This is a traditional recurrent architecture, which only considers the
sequence of POIs in its hidden unit while ignoring additional contextual infor-
mation [21].

– ST-RNN: It replaces the single transition matrix in RNN to model spatio-
temporal contexts by including time-specific and distance-specific transition
matrices during model learning [13].

– HST-LSTM: It combines spatio-temporal influences into a LSTM model
naturally to mitigate the data sparsity in the location prediction problem
[10].

– STGN: Enhancing LSTM network, STGN introduces the spatio-temporal
gates to capture the spatio-temporal relationships between successive check-
ins [24]. We use its variation named STGCN, which uses couple input and
forget gates.

– SASRec: This is a strong sequential model, which applies self-attention
mechanisms to capture long-term sequential semantics [9].

– T-SAN: This is a variant of our proposed model with only temporal context.
– S-SAN: This is a variant of our proposed model with only spatial context.
– STSAN: This is our proposed model.

4.4 Performance Comparison

In this subsection, we analyze the performance of the proposed STSAN, com-
paring with eight baselines on two datasets. Our experimental results in terms of
Recall@K and NDCG@K are shown in Table 2. From the table we can see the fol-
lowing observations: Compared with the standard RNN, ST-RNN, HST-LSTM,
and STGN perform better on the two datasets. This confirms that incorporating
time and distance information into the standard RNN architecture is critical for
improving the POI recommendation performance. SASRec achieves a better per-
formance, comparing with RNN-based methods. This confirms the advantages
of self-attention mechanisms to model sequential patterns. Although ST-RNN,
HST-LSTM and STGN take the spatio-temporal information into consideration,
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Table 2. Experimental results of STSAN and baselines. The best performing method
in each row is boldfaced.

Dataset Method Topk= 5 Topk= 10

Recall NDCG Recall NDCG

Gowalla RNN 0.0893 0.0674 0.1136 0.0756

ST-RNN 0.0967 0.0706 0.1229 0.0792

HST-LSTM 0.1128 0.0816 0.1433 0.0905

STGN 0.1348 0.1020 0.1714 0.1139

SAN 0.2093 0.1440 0.2812 0.1672

T-SAN 0.2660 0.1896 0.3418 0.2140

S-SAN 0.2369 0.1699 0.3092 0.1934

STSAN 0.3113 0.2287 0.3699 0.2478

Foursquare RNN 0.1206 0.0809 0.1799 0.0999

ST-RNN 0.1306 0.1087 0.1867 0.1197

HST-LSTM 0.2067 0.1546 0.2662 0.1738

STGN 0.2366 0.1736 0.3018 0.1920

SAN 0.3966 0.2746 0.5140 0.3126

T-SAN 0.4177 0.2922 0.5286 0.3282

S-SAN 0.4046 0.2871 0.5149 0.3229

STSAN 0.4243 0.3033 0.5221 0.3350

they perform worse than SASRec, which may be due to the weakness of RNN
architectures. Finally, our proposed model STSAN achieves the best recommen-
dation performance regardless of the datasets and the evaluation metrics. This
proves that STSAN can better capture long-term and short-term preferences
like SASRec. Although SASRec has also achieved a better result than RNN-
based methods, it cannot incorporate the time and the distance intervals, which
are essential for POI recommendation. Our proposed STSAN outperforms SAS-
Rec as the time and the distance intervals can be correctly combined into the
self-attention block.

4.5 Discussions

In this subsection, we explore the effectiveness of spatio-temporal components
in our architecture via an ablation study and investigate the influence of hyper-
parameters.

Effectiveness of Spatio-Temporal Context: In order to explore the effec-
tiveness of spatial and temporal context, we illustrate the performance of SAS-
Rec, T-SAN, S-SAN and STSAN in Table 2. SASRec applies the original self-
attention block following [9]. Both T-SAN and S-SAN are variants of our pro-
posed model with only temporal context or spatial context respectively. For T-
SAN, we replace the hybrid weight matrix H as the temporal transition matrix
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Fig. 2. Performance with different embedding sizes and number of self-attention block.

T̂ calculated by Eq. (2). For S-SAN, the hybrid weight matrix H is replaced
by the spatial transition matrix Ŝ calculated by Eq. (3). As we can see from
the experimental results, both T-SAN and S-SAN outperform SASRec. This
suggests that incorporating the temporal weight and the spatial weight into
self-attention block yields a significant improvement in POI recommendation.
Moreover, STSAN combines spatial and temporal context through dynamically
learning to give the proper weight to spatial and temporal transition matrices.
Thus, it achieves the best performance among these methods. This means that
time and distance intervals are both critical for improving the recommendation
performances.

Influence of Hyper-parameters: Figure 2(a) shows the performance of four
self-attention based models with different embedding sizes on Foursquare. As we
can see from our experimental results, high dimensions can capture more charac-
teristic information of POIs. On the other hand, the performance of four models
is almost unchanged when the embedding size exceeds 50. This demonstrates
that the model with a larger dimension cannot capture more useful patterns
of POIs. The original self-attention mechanism (Transformer) proposed by [16]
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Fig. 3. Visualization of the spatio-temporal weight at random sampled sequences of
user A on Foursquare.

Fig. 4. Visualization of the spatio-temporal weight at random sampled sequences of
user B on Foursquare.

stacks several self-attention blocks to capture complicated sequential patterns.
We conduct the experiments of our model with varying the number of self-
attention blocks on Foursquare. Figure 2(b) shows that a larger number of self-
attention blocks cannot significantly improve the recommendation performance.
This may be because the hierarchical self-attention structure may increase the
number of model parameters and the model may suffer over-fitting.

4.6 Visualization of Attention Weight

As we mentioned above, different users may have different spatio-temporal inter-
ests. In this subsection, we seek to reveal the different influence of time and dis-
tance intervals on the check-in sequences of different users through the visual-
ization of three weight matrices (i.e., the temporal weight matrix T̂, the spatial
weight matrix Ŝ and the hybrid weight matrix H). We randomly choose two
check-in sequences among all users and convert these three weight matrices of
each sequence into heat maps as shown in Fig. 3 and 4, which only shows the
last 20 positions of each sequence. From the visualizations, we can conclude as
follows.

Firstly, the heat map of the temporal weight indicates that more recent POIs
will obtain more attention (a higher weight) due to the decay function. In reality,
two POIs that a user visited in a short time tend to have similar characteristics.
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Similarly, two POIs with short distance intervals are related to each other, which
can be depicted from the heat map of the spatial weight. The heat map of the
hybrid weight is a fusion of the two heat maps above.

Secondly, as we can see from Fig. 3(c) and Fig. 4(c), the heat map of the
hybrid weight of user A is more similar to the heat map of the temporal weight.
This indicates that user A tends to be more time focused. On the contrary, the
heat map of the hybrid weight of user B is more similar to the spatial weight.
This demonstrates that user B may prefer to walk out so that closer POIs can
obtain more attention.

Overall, the visualizations of the spatio-temporal weight show the effective-
ness of our proposed model in dynamically capturing users’ spatial and temporal
preferences.

5 Conclusion

In this paper, we proposed a spatio-temporal self-attention based model named
STSAN for next POI recommendation. We incorporated the time and distance
intervals between check-ins in a sequence to enhance the recommendation perfor-
mance of standard self-attention networks. Specifically, we designed a decay func-
tion to obtain the weight of spatio-temporal intervals. Furthermore, we combined
the spatial and the temporal weight dynamically to capture the spatio-temporal
interests of the user through an adaptive factor. Extensive experimental results
on two real-world datasets showed that STSAN outperforms the state-of-the-art
methods. This demonstrates the effectiveness of our STSAN in modeling the
spatio-temporal information into the self-attention network. In the future, we
will consider richer context information, such as social relationships and textual
contents to further improve the performance for next POI recommendation.
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Abstract. In mobile edge-cloud networks, multiple edge nodes form
a mesh network to cooperate with each other. To maximize the ben-
efit of resource-limited edge nodes, the content providers jointly opti-
mize the content caching and recommendation decisions. However, the
cooperation between edge nodes complicates both the content caching
and recommendation decisions. To solve this problem, in this paper, we
propose an efficient joint cooperative content caching and recommenda-
tion scheme in edge-cloud networks. Specifically, we formulate the joint
cooperative content caching and recommendation problem as an integer-
linear programming problem to minimize the average download delay,
with controllable user preference distortion tolerance. We propose an
efficient heuristic algorithm to solve the formulated problem due to its
NP-hardness. We evaluate the performance of the proposed scheme with
the MovieLens dataset. The simulation results demonstrate that the pro-
posed scheme can decrease the average download latency by up to 37%
and improve average cache hit rate by up to 24%, as compared with
state-of-the-art solutions.

Keywords: Edge-cloud networks · Content caching ·
Recommendation system · Edge computing

1 Introduction

With the paradigm shift from mobile cloud computing to mobile edge comput-
ing, mobile edge-cloud (MEC) network has emerged as a promising solution to
address the conflict between explosively increasing mobile traffic data caused by
5G, Internet of Things (IoT) [3,15] or Intelligent Connected Vehicle (ICV) [16]
and the scarce backhaul network bandwidth. In mobile edge-cloud networks, the
content providers (CPs) can cache some of its content items in edge nodes that
is in the close proximity of mobile users. Since the requests of these content
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 424–438, 2020.
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items can be served at the edge node, benefits are obtained such as redundant
data transmission reduction, backhaul network bandwidth saving, user quality
of experience (QoE) improvement, etc [19]. As the storage space of edge nodes
are limited to cache all the content items, the content caching policy have to be
properly designed to maximize the benefits of MEC network [10].

Various content caching polices have been proposed during the past decade,
of which the average download delay and cache hit rate are two important per-
formance metrics. To maximize the cache hit rate, a natural design is to rank the
content items according to its popularity which usually follows Zipf distribution,
and cache the top K content items in the edge node [14]. Note that in MEC net-
works, all edge nodes forms a mesh network and can cooperate with each other
[12]. More specifically, a user request that can not only be served by the local
edge node but also by its neighboring nodes which have the item. In the worst
case, this request will be directed to the cloud platform. Obviously, the coop-
eration between edge nodes further improve the cache hit rate and reduce the
average download delay. Taking the cooperation between edge nodes into con-
sideration, several cooperative content caching policies were proposed recently
to maximize the cache hit rate and minimize the download delay, which utilize
the convex optimization method [8,18] or deep reinforcement learning method
[9,20]. Nevertheless, these popularity based content caching policies assume that
the popularity of content items is pre-known, or at least can be accurately pre-
dicted, which is difficult in practical scenarios where the preferences of users
change dynamically.

Recently, more and more CPs use recommendation systems to generate per-
sonalized recommendation lists of short videos, songs, movies or other content
items to cater the preference of individual users. Recommendation system not
only improves the satisfaction of users but also boosts the number of content
requests. For example, more than 80% video traffic are driven by recommen-
dation system at Netflix [5]. In MEC networks, the content caching and rec-
ommendation policies of the CP are mutually dependent and interacting. On
the one hand, the recommendation lists will change the user request statistics,
which further affect the content caching policy. On the other hand, the recom-
mendation system are prone to recommend the content items that cached in
the edge node to maximize the cache hit rate. In view of this, some researchers
propose to jointly design and optimize the content caching and recommenda-
tion policies in small cell networks where a single edge node is deployed [1,2,11]
or multiple edge nodes without cooperation [6]. However, due to the fact that
the cooperation between edge nodes complicates both the content caching and
recommendation policies, an efficient joint cooperative content caching and rec-
ommendation scheme is still missing in MEC networks.

In this paper, inspired by [1,2,11], we propose an efficient joint coopera-
tive content caching and recommendation scheme in MEC networks. The main
contributions of this paper are summarized as follows.
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1. We formulate the joint content caching and recommendation problem as
integer-linear programming (ILP) to minimize the average download latency,
where the cooperation between edge nodes is taken into account.

2. We propose an approximate but practical heuristic algorithm to solve the ILP
problem formulated due to its NP-hardness. First, the original problem is
decoupled into two subproblems, recommendation-aware cooperative content
caching problem and caching-aware recommendation problem. Lagrangian
relaxation and dual decomposition methods were used to further decompose
the recommendation-aware cooperative content caching problem into two sub-
problems and subgradient method is employed to solve it. We also propose an
efficient algorithm to deal with the caching-aware recommendation problem.

3. We evaluate the performance of the proposed algorithm using real world
dataset. Experiment results demonstrate that the proposed algorithm can
efficiently improve caches performance and decrease the average download
latency in comparison with existing caching strategies.

The reminder of this paper is organized as follows. In Sect. 2, we introduce the
system model. In Sect. 3, we formulate the joint cooperative content caching and
recommendation problem as an ILP problem to minimize the average download
delay. The heuristic algorithm to solve the ILP problem formulated is detailed
in Sect. 4. In Sect. 5 we present simulation results to evaluate the performance
of the proposed algorithm. Finally, we conclude the paper in Sect. 6.

Fig. 1. A MEC based cooperative caching region.
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2 System Model

2.1 Network Model

We consider a MEC network which consists of a cloud server and N base stations
(BSs), as shown in Fig. 1. Each BS has equipped with an edge server En, n =
1, 2, · · · , N with storage capacity Sn. En is connected to the cloud server via the
backhaul link with a data transmission rate dn,0. Besides, all the edge servers
are connected with each other to form a mesh network, where dn,m denotes the
data transmission rate between En and Em, m = 1, 2, · · · , N, m �= n.

Assume there is a CP deploy its network service in this MEC network to
serve U users that randomly scattered over the coverage areas of all the BSs.
Let Un denote the number of users within the coverage area of BS n, we have
U =

∑N
n=1 Un. The CP has in total I content items, where si denotes the size

of item i, i = 1, 2, · · · , I. The CP deploys its content items at the cloud server,
and also caches a part of the items at the edge servers. When a user in the
coverage area of BS n requests item i, it will be delivered in three ways. (1)
Local delivery: if En has cached item i, then it will deliver item i to the user
directly. (2) Inter-edge delivery: if En has not cached item i but another edge
servers has, En will fetch item i from the other edge server and then deliver it
to the user. (3) Cloud delivery: if none of the edge servers has cached item i, En

will fetch it from the cloud server and then deliver it to the user.
Let y = {yn,i, n ∈ [1, N ], i ∈ [1, I]} denote the caching decision, where

yn,i = 1 indicates item i is cached at En, and yn,i = 0 otherwise. Let z =
{zn,i,m, n,m ∈ [1, N ], i ∈ [1, I]} denote the content delivery decision, where
zn,i,m = 1 indicates an inter-edge delivery of item i from Em to En, and zn,i,m =
0 otherwise. Obviously, we have zn,i,n = yn,i,∀n ∈ [1, N ],∀i ∈ [1, I]. We denote
the download delay of cloud delivery as Ln,i,0, so we have Ln,i,0 = si/dn,0.
Similarly, we denote the download delay of local delivery and inter-edge delivery
as Ln,i,m, where

Ln,i,m =

{
0, if m = n,

si/dn,m, if m �= n.
(1)

2.2 Recommendation Model

Apparently, different users have different preference on the content items, which
can be obtained via conventional recommendation algorithms (e.g., collaborative
filtering) based on the comments or visiting history of the users. Denote the
preference of users as q = {qu,i, u ∈ [1, U ], i ∈ [1, I]}, where 0 ≤ qu,i ≤ 1 is the
preference of user u on item i. After obtaining q, the recommendation system
selects the top R items and recommend them to user u.

To allow some flexibility to adapt to the cache decisions, we introduce a
recommendation window for user u that contains the top Ku items according to
the preference, where R ≤ Ku ≤ I. Let Wu denote the set of candidate items
inside the recommendation window. Then the CP will select R items from Wu

according to some selection criteria and recommended them to user u.
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In the best case, the CP recommends the top R items from the recommen-
dation window to the user, which are exactly the top R items according the
preference of the user. On the contrary, in the worst case, the CP recommend
the bottom R items from the recommendation window to the user. Obviously, the
quality of recommendation is deteriorated in the worst case. Here we introduce
User Preference Distortion (UPD) to quantitatively measure the gap between
the best and worst cases, which is expressed as [2]

Tu(Ku, R) = 1 −

Ku∑

i=Ku−R+1

qu,i

R∑

i=1

qu,i

(2)

It can be seen from (2) that the window size Ku plays an important role in
determining the caching efficiency and quality of recommendation. More specif-
ically, with smaller Ku, the UPD is smaller, leading to better quality of recom-
mendation. However, the cached content items may have less chance of being
recommended. On the other hand, with larger Ku, more cached content items
can be recommended to the user, however the UPD is also larger. The CP has
to make a tradeoff between the caching efficiency and quality of recommenda-
tion. Let tu ∈ [0, 1) denote the UPD tolerance, i.e., as long as Tu(Ku, R) ≤ tu,
the user is satisfied with the recommendation result. Therefore, the maximum
window size can be obtained as

K∗
u = max{Ku|Tu(Ku, R) ≤ tu}. (3)

2.3 User Request Model

Let x = {xu,i, u ∈ [1, U ], i ∈ [1, I]} denote the recommendation result, where
xu,i = 1 indicates item i is recommended to user u, and xu,i = 0 otherwise.
When R items are recommended to user u, these items will be requested with
higher possibility. In other words, the recommendation result has an impact
on the user request. To capture the impact of recommendation on user u, we
introduce a vector ru = [ru,1, ru,2, · · · , ru,I ], where

ru,i = xu,i · 1
R

. (4)

The probability of user u requests item i can be obtained as

pu,i = au · ru,i + (1 − au) · qu,i, (5)

where au denotes the sensitivity of user u to the recommendation result.
Given the definitions above, the local content popularity qn,i, i.e., the proba-

bility that item i requested by the users in the coverage of BS n, can be obtained
as

qn,i =
Un∑

u=1

pu,i. (6)
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3 Problem Formulation

The problem of joint cooperative caching and recommendation (JCCR) in mobile
edge-cloud networks can be described as follows: for a given network topology,
the storage capacity of each edge server and the preference of users, how should
the CP place the content items on each edge server and which items should be
recommended to users such that the average download latency is minimized?
This is also equivalent to maximizing the cache hit rate. Therefore, the JCCR
problem can be formulated as

P1 : max
x,y,z

N∑

n=1

I∑

i=1

N∑

m=1

qn,i · zn,i,m · (Ln,i,0 − Ln,i,m) (7)

s.t.
I∑

i=1

si · yn,i ≤ Sn, ∀n ∈ [1, N ] (8)

zn,i,m ≤ ym,i, ∀n ∈ [1, N ], i ∈ [1, I],m ∈ [1, N ] (9)
N∑

m=1

zn,i,m ≤ 1, ∀n ∈ [1, N ], i ∈ [1, I] (10)

∑

i∈Wu

xu,i = R, ∀u ∈ [1, U ] (11)

xu,i ∈ {0, 1}, ∀u ∈ [1, U ],∀i ∈ Wu (12)
yn,i ∈ {0, 1}, ∀n ∈ [1, N ],∀i ∈ [1, I] (13)
zn,i,m ∈ {0, 1}, ∀n ∈ [1, N ],∀i ∈ [1, I],∀m ∈ [1, N ] (14)

Constraint (8) ensures that the total size of the items cached on an edge server
does not exceeds its storage capacity. Inequality (9) indicates that an item can
be fetched from the edge server m only if it caches that item. Inequality (10)
reflects the cooperation among the edge servers. Specifically, the users within the
coverage of BS n will fetch item i from En if item i is cached on En. Otherwise,
the users will fetch item i from another edge server that has this item. Constraint
(11) guarantees R items within recommendation window are recommended to
each user. Since P1 is an ILP problem which is NP-hard, in the next section, we
propose a heuristic algorithm to solve this problem.

4 Algorithm Design

In this section, we present the heuristic algorithm designed to solve P1. As
the content caching and recommendation are mutually dependent, solving P1

is intractable. Instead, we use a two stage approach, namely recommendation-
aware cooperative content caching and caching-aware recommendation, to
address the problem of cooperative content caching and recommendation respec-
tively.
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4.1 Recommendation-Aware Cooperative Content Caching

In the recommendation-aware cooperative content caching stage, first we set
Ku = R to obtain a tentative recommendation result as

x′
u,i =

{
1, if item i ∈ Wu,

0, otherwise.
(15)

With x′, P1 can be simplified as

P2 : max
y,z

N∑

n=1

I∑

i=1

N∑

m=1

qn,i · zn,i,m · (Ln,i,0 − Ln,i,m) (16)

s.t. (8), (9), (10), (13), (14).

The cooperative caching problem P2 is still an ILP problem, but is a gener-
alized assignment problem. We leverage Lagrangian relaxation and dual decom-
position method [13] to solve the problem, as this problem is convex. By com-
bining the objective function (16) and constraint (9) by Lagrangian multiplier
η = {ηn,i,m, n,m ∈ [1, N ], i ∈ [1, I]}, the Lagrangian dual problem of P2 can
be expressed as

min
η

L(η)

s.t. ηn,i,m ≥ 0,∀n ∈ [1, N ],∀i ∈ [1, I],∀m ∈ [1, N ],
(17)

where the Lagrangian function L(η) is expressed as

L(η) = max
y,z

{
N∑

n=1

I∑

i=1

N∑

m=1

qn,i · zn,i,m · (Ln,i,0 − Ln,i,m)

+
N∑

n=1

I∑

i=1

N∑

m=1

qn,i · ηn,i,m · (ym,i − zn,i,m)

}

s.t. (8), (10), (13), (14).

(18)

By separating y and z, the Lagrangian function L(η) can be further decom-
posed into two subproblems P3 and P4 as

P3 : max
y

N∑

n=1

I∑

i=1

N∑

m=1

qn,i · ηn,i,m · ym,i

s.t. (8), (13).

(19)

and

P4 : max
z

N∑

n=1

I∑

i=1

N∑

m=1

qn,i · (Ln,i,0 − Ln,i,m − ηn,i,m) · zn,i,m

s.t. (10), (14).

(20)

respectively.
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Algorithm 1. Recommendation-aware Cooperative Content Caching
Input: N , I, U , Un, qu,i, Ln,i,0, Ln,i,m, si, Sn

Output: y, z
1: Initialize l = 0, θ1 = +∞, θ2 = −∞, d=2, and assign η with random positive

values;
2: Calculate x′

u,i, ru, pu,i and qn,i according to (15) (4), (5) and (6), respectively;
3: while termination criterion not satisfied do
4: Calculate αm,i according to (21);
5: Obtain y by solving P3 with the DP algorithm;
6: Update θ2 according to (22);
7: Obtain z according to (23);
8: Update θ1 according to (24);
9: if θ1 has not decreased for the last 10 consecutive iterations then

10: d = d/2;
11: end if
12: Update η according to (25);
13: l = l + 1;
14: end while
15: return y, z

After the decomposition, P2 can be solved in an iterative way, which is
summarized in Algorithm 1. The key steps are as follow, where l denotes the
index of iteration.

1. First, we fix η and solve P1 to obtain the caching decision y (Lines 4–6).
Apparently, P3 can be further decomposed into N independent one-
dimensional knapsack problems if we regard

αm,i =
N∑

i

qn,i · ηn,i,m (21)

as the profit of assigning item i to edge server Em. Dynamic Program-
ming(DP) algorithm can be then utilized to solve these independent knapsack
problems [17]. Note that with y, we can solve P2 using a greedy algorithm to
obtain a lower bound θ2. Denote the value of the objective function of (16)
with y and the greedy algorithm as v(O), we have

θ2 = max{θ2, v(O)}. (22)

2. Next, with the given η and y, we solve P4 to obtain the content delivery
decision z (Lines 7–8). Similarly, we further decompose P4 into N × I one-
dimensional knapsack problems, where the optimal solutions are given by

zn,i,m =

{
1, if βn,i,m = max{βn,i,m|ym,i = 1, m ∈ [1, N ], m �= n},

0, otherwise.
(23)
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Here βn,i,m = qn,i · (Ln,i,0 − Ln,i,m − ηn,i,m). Note that after solving P3 and
P4, we obtain a upper bound θ1. Denote the value of L(η) with y and z as
v(L), we have

θ1 = min{θ1, v(L)}. (24)

3. Finally, after obtaining y and z, we update η by

ηn,i,m = [ηn,i,m − λ · gn,i,m]+, (25)

where gn,i,m = (ym,i − zn,i,m) · qn,i is the subgradient direction, λ = d · (θ1 −
θ2)/‖g‖2 is the step size (Lines 9–12). Parameter d is initially set as d = 2,
and it will reduce to half of its current value if θ1 does not decrease after 10
iterations.

The whole process is repeated until either one of the following conditions is met:
(1) l > 600, (2) d ≤ 0.005, (3) (θ1 − θ2)/θ1 < 0.01 and (4) θ1 remains unchanged
after 20 consecutive iterations.

In Algorithm 1, the time complexity of solving P3 is O(N · I · max(Sn)),
moreover, the complexity of solving P4 is O(N · I · N) = O(I · N2). Therefore,
the total computational complexity of Algorithm1 is given by O(U · I + (N · I ·
max(Sn) + I · N2) · l) = O(N · I · max(Sn, N) · l).

4.2 Caching-Aware Recommendation

As stated above, the recommendation decisions of the CP is affected not only
by the preference of the users, but also by the caching decision y and content
delivery decision z obtained from Algorithm1. Next, we show how to make the
recommendation decision for user u in the coverage of BS n.

1. First, given the UPD tolerance tu, we obtain the maximum window size K∗
u

according to (3). Given the preference of users q, the set of candidate items
inside the recommendation window, Wu, can also be obtained. We sort Wu

in decreasing order according to the user preference, and obtain a new set
Vu = {vu(k) | k ∈ [1,K∗

u], vu(k) ∈ [1, I]}.
2. Reorder Vu as follows: for vu(k), k = 1, 2, · · · ,K∗

u, if zn,vu(k),n = 0, move
vu(k) to the last position of Vu.

3. Reorder Vu again as follows: for vu(k), k = 1, 2, · · · ,K∗
u, if

∑N
m=1 zn,vu(k),m =

0, move vu(k) to the last position of Vu.
4. Finally, recommend the top R items of Vu to user u.

The procedures of caching-aware recommendation are summarized in Algo-
rithm 2. The computational complexity is O(U · max(K∗

u) + U · max(K∗
u) +

U · max(Ku) · I) = O(U · max(K∗
u) · I).

5 Performance Evaluation

In this section, we evaluate the performance of the proposed scheme with the
popular MovieLens Dataset [7]. We randomly select 600 users and 2000 movies,
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Algorithm 2. Caching-aware Recommendation
Input: y, z, q, tu;
Output: the recommendation list ˜R = { ˜Ru, u ∈ [1, U ]};
1: for u ∈ [1, U ] do
2: Calculate K∗

u according to (3);
3: Obtain Vu by reordering Wu;
4: for k ∈ [1, K∗

u] do
5: if zn,vu(k),n = 0 then
6: Move vu(k) to the last position of Vu;
7: end if
8: end for
9: for k ∈ [1, K∗

u] do
10: if

∑N
m=1 zn,vu(k),m = 0 then

11: Move vu(k) to the last position of Vu;
12: end if
13: end for
14: Add top R items of Vu to ˜Ru;
15: end for
16: return ˜R

where the data includes user ratings of movies in a 0–5 rating scale. Let cu,i

denotes the ratings of user u on movie i. Then, the user preference can be
obtained as

qu,i =
∑U

v=1 max{0, sim(u, v)} · cv,i
∑I

i=1

∑U
v=1 max{0, sim(u, v)} · cv,i

, (26)

where sim(u, v), u, v ∈ [1, U ] is the similarity between user u and v which is
obtained using collaborative filtering algorithm [4]. For simplicity, we assume
the storage capacity of all the edge servers are the same. The other parameters
for simulations are listed in Table 1.

Table 1. Simulation parameters

Parameter Value

N 7

U 600

I 2000

si [1, 4]

dn,0 1

dn,m 10

au (0.5, 0.7]

tu [0, 1]
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We compare the performance of the proposed scheme with other three
schemes listed as follows.

1. Local Popularity Caching (LPC): This is a local content popularity based
caching policy that is widely adopted, where each edge server caches the
most popular items. Note that in LPC, the caching decisions are made purely
based on content popularity without taking the recommendation decisions
into account. The local content popularity can be obtained from (6) by setting
x = 0 and au = 0.

2. CawR: This is a joint caching and recommendation scheme proposed in [2],
where the caching and recommendation decisions are made jointly for each
edge server. However, in CawR, the edge servers can not communicate with
each other.

3. CawR-2: This is an improved version of CawR. In CawR-2, the caching
decisions are made in the same way as CawR. However, the recommendation
decisions are made according to Algorithm 2.

The average download latency of the four schemes are shown in Fig. 2. As
can be seen from the figure, the average download latency of all the four schemes
decrease as the storage capacity increases from 20 to 100. However, the average
download latency of CawR, CawR-2 and the proposed scheme decrease at a faster
speed. Moreover, the average download latency of LPC is the highest. Compared
with CawR, the average download latency of CawR-2 is reduced by 24% when the
storage capacity is 100, which indicates the effectiveness of caching-aware recom-
mendation algorithm proposed in this paper. Compared with CawR-2, there is
around 13% performance gain with the proposed scheme when the storage size is
100. This shows the proposed recommendation-aware cooperative edge caching
can further decrease the download latency. In other words, the proposed scheme
achieves 37% performance gain compared with the original CawR scheme when
the storage size is 100. It is also shown from the figure that the UPD tolerance
has an impact on the average download latency. As compared with the case with
tu = 0, if the users can accept a small distortion (i.e., tu = 0.05), the average
download latency with CawR, CawR-2 and the proposed scheme can be further
reduced by around 10%. It is also found from the figure that, the performance
of CawR and CawR-2 decrease as the number of recommended items increase.
However, the proposed scheme is more robust.

In Fig. 3, we show the average cache hit rate of the four schemes. The average
cache hit rate of LPC is the lowest in all the cases. As the storage capacity of the
edge servers increases from 20 to 100, the average cache hit rate also increases.
This is because with larger storage capacity, more items can be cached at the
edge servers. The average cache hit rate of the proposed scheme has around 13%
and 24% gain over that of CawR-2 and CawR, respectively, which is consistent
with the results shown in Fig. 2. It is also found that with tu increases from
0 to 0.05, the average hit rate of CawR, CawR-2 and the proposed scheme
also increases. This is because the recommendation window size is larger with
tu = 0.05, therefore the cached items are more likely to be recommended to the
users. However, there is a tradeoff between the cache hit rate and the satisfaction
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(a) R=4

(b) R=8

(c) R=12

Fig. 2. The average download latency of LPC, CawR, CawR-2 and the proposed
scheme, where (a) R = 4, (b) R = 8 and (c) R = 12. Solid lines and dashed lines
correspond to tu = 0 and tu = 0.05, respectively.
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(a) R=4

(b) R=8

(c) R=12

Fig. 3. The average cache hit rate of LPC, CawR, CawR-2 and the proposed scheme,
where (a) R = 4, (b) R = 8 and (c) R = 12. Solid lines and dashed lines correspond to
tu = 0 and tu = 0.05, respectively.
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of users on the recommended items. If tu is too large, the satisfaction of users
might be hurt, resulting in the users turn to other competitive CPs.

6 Conclusion

In this paper, we propose an efficient joint cooperative content caching and
recommendation scheme for edge-cloud networks where multiple edge nodes form
a mesh network to cooperate with each other. First, we formulate the joint
cooperative content caching and recommendation problem as an ILP problem.
Then, we propose an efficient two-stage heuristic algorithm to solve the ILP
problem since it is NP-hard. The first stage is recommendation-aware cooperative
content caching, and the second stage is caching-aware recommendation. We
validate the effectiveness of the proposed scheme with the MovieLens dataset.
Experiment results demonstrated that the proposed scheme achieves superior
performance as compared with the state-of-the-art solutions in terms of average
download latency and average cache hit rate. A tradeoff between cache hit rate
and the satisfaction of the users on the recommendation results is left as a future
study.
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Abstract. Matching between questions and suitable users is an appeal-
ing and challenging problem in the research area of community question
answering (CQA). Usually, different from the traditional recommenda-
tion systems where a user has only a single role, each user in CQA can
play two different roles (dual roles) simultaneously: as a requester and
as an answerer. For different roles, users usually have varying interests
and expertise in different topics and knowledge domains, which is rarely
addressed in the previous methods. Besides, based on an explicit single
link between two users, existing methods cannot capture implicit associ-
ations between their possibly similar roles. Therefore, in this paper, we
propose the structure of a dual role graph and employ the link predic-
tion approach to make CQA recommendation on the graph. Moreover,
we develop a Dual Role Neural Graph auto-encoder (DRNGae) frame-
work, which can: 1) encode the dual role graph structure to capture
the implicit dual role correlation by propagating high-order information
embeddings of graph neural network; 2) learn variable weights with the
dual role feature preferences from dual role content information by self-
attention mechanism; 3) reconstruct the graph structure to predict the
possible interaction links. Experimental studies on real-world datasets
verify our design and prove that our model achieves significantly bet-
ter performance than baselines in link prediction (95.3% AUC, 96.2%
AP on Citeseer dataset) and CQA recommendation (79.5% recall@25,
76.7% ndcg@25 on Yahoo! answer dataset).

Keywords: CQA recommendation · Dual role graph · Graph neural
network · Self-attention

1 Introduction

With the explosive growth of e-commerce and social media platforms, commu-
nity question answering (CQA) has become more and more popular as a web
service. People are sharing their knowledge (answering questions) and seeking
information (requesting questions and getting answers). Typical Q&A websites

c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 439–454, 2020.
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like Yahoo! Answers1 and Zhihu2, where users can collide with the sparks of
collective wisdom, make it more easily and accurately to find information what
their needs.

Though CQA website advantages over traditional information retrieval, it
has thousands of questions posted daily, which make it also faces several unique
challenges. First, The large number of questions makes it difficult for a gen-
eral user to find a suitable question to answer in a short time [5]. Second, [11]
show that many questions cannot be resolved immediately, which means that
requesters may have to wait a long time to get a satisfactory answer. So, if
the site can automatically recommend new questions or suitable answerers, It
can help questions to be answered as soon as possible, which will increase user
engagement and benefit the development of CQA websites. Judging by this, pro-
viding recommendation service is an essential part of the CQA social network.

Since the explicit link between users’ interaction, the recommendation is
actually to predict the non-obvious association links between users and items in
the network. Therefore, more and more researchers regard the recommendation
task as a link prediction task, and the core problem is how to embed the bipar-
tite graph of users and items. A user-item association graph-based algorithm is
proposed for making collaborative filtering recommendations [2]. [3] proposes
a ranking factor graph (RFG) model to capture the general social patterns of
link formation in heterogeneous social networks. However, these approaches fail
to capture high-order information about user-item interactions and ignores the
different importance of node-independent content information. To solve it, We
catch the high-order relations and content information by using graph neural
network [9] and self-attention network [19] respectively.

As the particularity of CQA recommendation, each user in the CQA website
can play two different roles (dual role) simultaneously: the requester and the
answerer. We take an illustrative example to show the distinction and connection
between the two roles of users. Fig. 1 lists some questions requested and answered
by two users in CQA. As we can see, user A (a computer scientist) who as a
requester only wants to learn cooking is more likely to request questions about
cooking while as an answerer to answer many computer-related questions based
on his specialty, the request and answer of user B (a chef) are the opposite
of user A. Obviously, there is an implicit connection between the two roles:
the preferences of a user in the two roles are different, and users may have
similar relationships in some role. Hence, it is necessary to take into account both
requester and answerer preferences of users simultaneously in CQA. [22] proposes
a topic probabilistic framework, and modeling the two roles to analyze the latent
topic information for users, but are not suitable for discovering and modeling the
varies personality preferences on the same topic. To overcome this limitation, in
this work, we naturally view CQA recommendation as a link prediction problem
on a dual role graph, which can enhance answerer-question-requester interaction
to embed different preferences of two roles.

1 http://answers.yahoo.com/.
2 http://www.zhihu.com/.

http://answers.yahoo.com/
http://www.zhihu.com/
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Fig. 1. An example of the user in CQA.

This paper proposes a Dual Role Neural Graph auto-encoder (DRNGae)
framework to model the dual role preferences for CQA recommendation. Vary-
ing preferences of the two roles are learned by modeling explicit content features
(e.g., answer text and question text) and implicit correlation. Specifically, we
first construct an input graph with dual role that contains the interaction infor-
mation, where the content features of the node can be embedded as optional
components. Then, the graph neural network is used to capture the hidden dual
role correlation by propagating high-order information embedding in the graph,
and the self-attention network is used to calculate different weights for the two
roles’ different feature preferences from the content information. Finally, the
graph structure is reconstructed to predict the possible interaction between the
users and the questions through the auto-encoder structure.

To summarize,our major contributions include:

1. We propose a novel dual role neural graph-based auto-encoder framework for
CQA recommendation, which explicitly models the different preferences of
the users’ two roles with implicit correlation.

2. We introduce the graph neural network to capture the implicit dual role
correlation and self-attention mechanism focus on modeling different feature
preferences for the dual role.

3. We achieve state-of-the art performance in link prediction (95.3% AUC, 96.2%
AP on Citeseer dataset) and CQA recommendation (79.5% recall@25, 76.7%
ndcg@25 on Yahoo! answer dataset).
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2 Related Work

2.1 Link Prediction

From the perspective of link prediction, the final recommendation performance
can be determined by the modeling of the graph structure. Its purpose is
to learn how to encode the input graph into a mapping of low-dimensional
embedding. Recent approaches always use an auto-encoder architecture to learn
the embedding via some encoder transformation, like GAE/VGAE [10] use a
GCN [9] encoder to learn the latent representation for graph and its variants
ARGA/ARVGA [14], which use an adversarially regularized auto-encoder algo-
rithm to learn the embedding.

Unfortunately, the above algorithms of the node embedding largely ignore
the high-order information of each node. It can’t extract implicit association
between nodes, which may lead to poor performance in practical application. In
this paper, we explore GNN [20] to catch high-order relations to address this
issue.

2.2 Ranking Recommendation

Another related research is to learn a ranking model to generate the recom-
mended list of recommendations. In recent years, more and more researches use
the graph-based method, which exploits the interactions graph to catch user pref-
erence. For example, GC-MC [1] adopts GCN encoding the first-order neighbors
to represent the users and items. HOP-Rec [23] enhances the user’s representa-
tion through random walks in which the user interacts with multi-hop items to
build the recommender model.

The most related work considering the dual roles in CQA is DRM [22], which
maps the two roles of users into two asker and answerer space with a probabilis-
tic framework. it proposes a dual role model (DRM) to modeling the latent topic
information for users’ embedding. However, the latent topics they get can not
highlight the importance of different topics, which masks the individual differ-
ences between users on the same topic.

Despite their success, these approaches are not sufficient to detect implicit
interactions between the dual roles of users for CQA recommendation since the
dual roles hide the implicit interaction of users. In this work, we catch high-order
relations to capture the implicit dual role interaction on a dual role graph by
graph neural network, And utilize the self-attention network to represent the
user’s preferences of two roles.

3 DRNGae: Dual Role Neural Graph Auto-encoder

In this section, we first characterize our proposed Dual Role Neural Graph auto-
encoder (DRNGae) framework, schematically depicted in Fig. 2, and formalize
the notation used in it. And then introduce how to use the graph topology and
node features to reconstruct the graph structure for predict the unobserved links.
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Fig. 2. Schematic depiction of the Dual Role Neural Graph auto-encoder (DRNGae)
framework, which the Node Encoder learn the node representation and the Auto-
Encoder is trained to reconstruct the graph structure to predict the hidden links (the
red dashed linkes at Input denotes the unobserved possible links, then we predict them
in the Output the red solid line). (Color figure online)

3.1 Problem Definition and Framework

As show in Fig. 2, the input is a undirected graph G = {A,X}. where A ∈ R
N×N

(N is the number of nodes), is an adjacency matrix representing the topological
structure of the graph G, of which A ∈ {Aij = 1,Aij = 0}N×N , where 1
represents the currently known positive edge with node i and j, 0 represents the
non-existent negative edge with node i and j, and X ∈ R

N×F (F is the dimension
of feature matrix embedding) is an optional feature matrix of available explicit
features associated with each node, i.e. content information.

Give a graph G, our purpose is to map the topology of nodes ai and the
node features xi to low-dimensional vectors agnn

i ∈ R
N and xattn

i ∈ R
F by GNN

network and Self-Attention network respectively in the node encoder part. And
then, the auto-encoder architecture is to learn a set of low-dimensional latent
variables zi ∈ R

D (D is the dimension of embedding) with the formal format
Enc(agnn

i , xattn
i ) that can generate approximate reconstruction vector âi (at link

prediction stage, we disregard the output x̂i), which minimizes the error between
ai and âi, thereby maintaining the global graph structure of A for predict the
possible interaction links.

3.2 Node Encoder

GNN Encoder. In a (undirected) graph G, GNN is a multi-layer network. In
each layer, the multi-hop neighbor informations can be aggregated to maintain
a set of node representations.

As follows the graph neural network [9,20], let N (i) be neighbours of node i
in G. We denotes al

i to be the node vector representation of i at the l-th GNN
layer. al

i is obtained by:
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al
i = g

(
WG

∑
j∈N (i)

Al
ija

l−1
j + BGal−1

i

)
(1)

where g() denotes a non-linear activation function (we use Leaky-ReLU with
negative input slope 0.1), {WG,BG} are parameter matries. In this work, we
set A1

ij = Aij , a
0
i = ai, and l = 3, so agnn

i is equal to a3
i , as follows:

agnn
i = a3

i

We can see that the GNN naturally catches high-order relations to find the
implicit correlation between nodes. Taking the first two layers for example [8]:
for every node i at the second layer, a2

i contains information of its 1-hop neigh-
bours a1

j . Since a1
j has already encoded its own 1-hop neighbours at the first

layer, a2
i actually encodes information of its 2-hop neighbours. In short, the

new node representation al
i contains both the previous layer vector al−1

i and a
weighted aggregation of neighbour vectors al−1

j . This is, agnn
i = a3

i is the new
node representation of ai which be an adjacency vector of the i-th node in A.

Attn Encoder. Self attention is a special case of attention mechanism, which
has been successfully applied to many research topics including NLP [19] and
QA [12]. So in this paper, self-attention is applied to capture feature-ferture
transitions of each node feature sequence itself without regard to their distances.
We have the feature sequence embedding of each node feature (xi), i.e., xi =
[x1

i , x
2
i , ..., x

n
i ]. Then, we feed them into the self-attention layer to better capture

the global feature preference. Lastly, each node feature (xattn
i ) after the attention

layer can be formulated as:

xattn
i = mean-pooling

(
softmax

( (xiWQ)(xi(WK)�)√
dk

)
(xiWV )

)
(2)

where the projection matrices {WQ,WK ,WV } and dk is the dimension of
sequence embedding.

3.3 Auto-encoder

Encoder Model. We first get the new node representation vector agnn
i with

high-order information by GNN Encoder module. And the aim of the encoder
model Enc(agnn

i , zi) is : RN → R
D. We take a simple inference model parame-

terized by stacking two layers (t = [0, 1]):

zt+1
i = Enc(agnn

i , zti ;W
t,Bt) (3)

each layer of the network can be expressed with the function
Enc(agnn

i , zti ;W
t,Bt) as follows:

Enc(zti , a
gnn
i ;Wt,Bt) = σ(agnn

i ⊕ zti ; θ) (4)
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Here, zti is the input for layer, and zt+1
i is the output after layer. For simplicity,

we set θ contains all the weight units parameters Wt and bias units parameter
Bt which need to learn in the encoder model and σ(·) denotes a non-linear
activation function (we use ReLU(·) = max(0, ·)). ⊕ is the concat function. In
this paper, if the feature matrix X is available, we set z0i = xattn

i ∈ R
F , which can

get by training with Attn encoder. So the set of low-dimensional latent variables
zi ∈ R

D is constructed as follows:

z1i = MLP(agnn
i ⊕ xattn

i ; θ0) (5)

z2i = MLP(agnn
i ⊕ z1i ; θ

1) (6)

this encoder model Enc(zi, a
gnn
i ) = q(zi|agnn

i , xattn
i ) encodes both graph struc-

ture and node features into a representation zi = q(zi|agnn
i , xattn

i ) = z2i . Sim-
ilarly, if the feature matrix X doesn’t exist, encoder model Enc(zi, a

gnn
i ) =

q(zi|agnn
i ) which only consider the graph structure A. The next chapters are

introduced by assuming X is available.

Decoder Model. Our decoder model aims to reconstruct the node vector ai of
the graph structure A to predict the unobserved links on it. For reconstructing
it, we consider to stack two layers of the decoder part to obtain an approxi-
mate vector (âi

gnn ⊕ x̂i
attn) of the graph node’s high-order embedding and node

feature’s attention embedding as follows:

âi
gnn ⊕ x̂i

attn = Dec(âi
gnn, x̂i

attn|zi) (7)

Dec(âi
gnn, x̂i

attn|zi) = MLP
(

MLP(zi; (θ1)�); (θ0)�
)

(8)

and then training a link prediction layer to predicts the node vector âi for link
prediction:

âi = MLP
(
âgnn
i ; (WG)�)

(9)

Inference and Learning. Many studies [1,21] have shown that parameter
sharing is a very effective form of regularization, which helps to improve the
learning and generalization ability of the model. So, we constrain our frame-
work by sharing the weight units parameters Wt that can reduce parameters
nearly twice as much as unconstrained architecture, but notice that the bias units
parameters Bt do not share. The parameters θ are learned via backpropagation
and optimized by minimizing the Masked Balanced Cross-Entropy (MBCE) [16]
loss, which only allows the contribution of parameters related to the observation
edge. However, the number of observed (positive) edges is usually significantly
less than the number of un-observed (negative) edges, resulting in extreme class
imbalance [13]. In this work, we define a weight factor ζ as the multiplier of
positive class in the cross-entropy loss formula to deal with class imbalance. So,
in the end, we can compute the MBCE loss of each node vector ai as follows:

Lai
= −ailog(ϕ(âi)) · ζ − (1 − ai)log(1 − ϕ(âi)) (10)
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LMBCE =
mi � Lai∑

mi
. (11)

Here, ζ = 1 − # positive links
# negative links , ϕ(·) is the sigmoid function, � is the Hadamard

product, and mi is the boolean function: mi = 0, if ai = 0, else mi = 1.

Loss with Node Feature. Node feature, also called side information, can
encode information complementary to the topological structure of the input
graph, which has been proved to improve the prediction performance of the
model [10,21] significantly. If the explicit node features matrix X ∈ R

N×F is
available, we can compute the augmented L loss which contains both graph
structure and node feature informations to simply improve performance, and as
follows:

L = LMBCE + Lxi
(12)

Lxi
= −xattn

i log(ϕ(x̂attn
i )) − (1 − xattn

i )log(1 − ϕ(x̂attn
i )) (13)

where xatt
i and x̂att

i can be obtained through the Attn encoder module and
Decoder Model calculation respectively.

4 Node Encoder: Dual Role GNN and Feature
Self-attention

In this section, we first introduce how to use GNN to represent the higher-order
information of nodes (agnn

i ) to capture the implicit dual role correlation in dual
role graph. Then we propose an attention-based model to modeling dual role
feature preferences (xattn

i ) of a user with two roles.

4.1 Dual Role GNN

In a CQA website, each user always plays two different roles (dual role) simul-
taneously: the answerer and the requester. In light of this situation, we consider
the decomposition of a tripartite graph into two role’s bipartite graphs and rep-
resent the node information of the two roles, respectively. For the convenience
of distinction, we use superscript (·)a to indicate the answerer role and (·)r to
indicate the requester role.

As illustrated in Fig. 3 (left), A is the adjacency matrix of the topological
structure of input graph G, which can be divided into two-subgraph (Answerer-
Question Graph and Requester-Question Graph) adjacency matrices (Aa and
Ar), then we can represent the nodes of these two subgraphs with GNN layers
respectively, so as to extract the higher-order information under dual role graphs,
finally, a new node representation (agnn

i ) of the user is computed by synthesizing
the node vectors (answerer role vector (aa-gnn

i ) and requester role vector (ar-gnn
i )

) of dual roles that contain two roles’ higher-order information as follows:

agnn
i = mean-pooling

(
aa-gnn
i , ar-gnn

i

)
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Fig. 3. The architecture of Dual Role GNN (left) and Dual Role Feature Self-Attention
(right)

Similar to Eq. (1), the hidden representation for the answerer role vector and
requester role vector are computed as follows:

(aa-gnn
i )l = g

(
WG

∑
j∈N (i)

(aa)lij(a
a)l−1

j + BG
1 (aa)l−1

i

)
(14)

(ar-gnn
i )l = g

(
WG

∑
j∈N (i)

(ar)lij(a
r)l−1

j + BG
2 (ar)l−1

i

)
(15)

where the WG shares between the dual role graph and also shared in Eq. (9).

4.2 Dual Role Feature Self-attention

For dual role, we use two attention layers to capture the different preferences
of the dual role. The first is to obtain the different weight of each role’s feature
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information, and the second is to obtain the different feature preferences of
each user’s dual roles. As illustrated in Fig. 3 (right), we first have each node
feature sequence embedding (xa

i = [xa1
i , xa2

i , ..., xan
i ] and xr

i = [xr1
i , xr2

i , ..., xrn
i ])

of two roles’s node features (X a and X r). Then we can formulate the feature
preferences (xa-attn

i and xr-attn
i ) of each role by the first self-attention layer as:

xa-attn
i = mean-pooling

(
softmax

( (xa
iW

Q
1 )(xa

i (W
K
1 )�)√

dk1

)
(xa

iW
V
1 )

)
(16)

xr-attn
i = mean-pooling

(
softmax

( (xr
iW

Q
2 )(xr

i (W
K
2 )�)√

dk2

)
(xr

iW
V
2 )

)
(17)

Finally, the dual role feature preferences of each user can be computed by the
second self-attention layer as:

xattn
i = mean-pooling

(
softmax

( (xar
i bfWQ

3 )(xar
i (WK

3 )�)√
dk3

)
(xar

i WV
3 )

)

where xar
i = [xa-attn

i , xr-attn
i ], {WQ

i ,WK
i ,WV

i } is the projection matrices and
dki is the dimension of sequence embedding (i = [1, 2, 3]).

5 Experiments

In this section, we conduct experiments for demonstrating the effectiveness of
our models on the following research questions:

1. RQ1: Can our models outperform other link prediction methods from the
perspective of link prediction?

2. RQ2: How does DRNGae perform as compared with state-of-the-art recom-
mendation methods?

3. RQ3: Does dual roles help the DRNGae?

5.1 Link Prediction (RQ1)

Datasets. To verify the effectiveness of solving the recommendation problem
from the perspective of link prediction, we conduct experiments on three bench-
mark graph datasets: Cora,Citeseer, PubMed for the link prediction task, and
the results are shown in Table 1. Each dataset takes scientific publications as
nodes and citation relationships as edges. The feature in each document is a
unique word. See [17] for the details.

Baselines. To demonstrate the effectiveness, we compared our algorithms
against the following link prediction task methods:

– DeepWalk (DW) [15]: is a new representation method for learning the
latent space representation of nodes in a social network.
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Table 1. Statistics of the datasets for
link prediction task.

Dataset Nodes Links Node Density
features

Cora 2708 5429 1433 0.00144
Citeseer 3327 4732 3703 0.00083
PubMed 19717 44338 500 0.00023

Table 2. Statistics of Yahoo! Answers
dataset.

Dataset User Question Answer
number number number

User-10 1643 1160 33195
User-15 810 648 23567
User-25 342 261 14988

– Spectral Clustering (SC) [18]: is an effective clustering method for learning
social embedding based on graph theory.

– VGAE [10]: utilize a variational graph auto-encoder to embed the graph
structure and content information.

– ARVGA [14]: considers a adversarially regularization approach into a vari-
ational graph auto-encoder for learning graph embedding.

Metrics. We adopt two widely used metrics to evaluate the performance: AUC
score (the area under a receiver operating characteristic curve) and AP score
(average precision). We divided the {Cora,Citeseer, PubMed} dataset into
train/validation/test sets same as [10,14], and show the mean AUC and AP
score after 10 standard error iterations, on which initializing the random weights
of the fixed data segments.

Implementation Details. First, we randomly set a group of elements in the
adjacency matrix as the missing state, and collect their indexes as the validation
set. Then, training the auto-encoder to generate a set of predictions (a list of 1
and 0) for those missing indexes to evaluate the final results. In all experiments,
We train 100 epochs with a mini-batch size of 64 samples and set the dimension
of the hidden layer fixed in [512, 256, 128]. We use Adam algorithm for gradient
descent optimization in the learning rate at [0.0001, 0.001, 0.01] and employ a
regularization form of early stopping to prevent overfitting on the validation set.
For other baselines, we keep the same settings as the corresponding papers.

Experimental Results. The details of the experimental results are shown in
Table 3. As we can see, our model achieves outstanding performance for link
prediction with and without node features, and adding node features improves
predictive performance across datasets significantly. The margin in the results
between DRNGae and other methods has further proved that it is feasible for
CQA recommendation from the perspective of link prediction.

5.2 CQA Recommendation (RQ2)

Datasets. We download the Yahoo! Answer datasets from the Yahoo! Answer
Datasets API3 for experiments. Then the whole dataset (U, Q, A) is divided
3 https://webscope.sandbox.yahoo.com/

https://webscope.sandbox.yahoo.com/
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Table 3. Results for Link Prediction. ∗ denote experiments do not support node fea-
tures.

Method Cora Citeseer PubMed

AUC AP AUC AP AUC AP

SC∗ [18]: 0.846 0.885 0.805 0.850 0.842 0.878

DW∗ [15] 0.831 0.850 0.805 0.836 0.844 0.841

DRNGae∗ 0.893 0.914 0.857 0.889 0.925 0.928

VGAE [10]: 0.914 0.926 0.908 0.920 0.944 0.947

ARVGE [14] 0.924 0.926 0.924 0.930 0.965 0.968

DRNGae 0.940 0.949 0.953 0.962 0.963 0.964

into three subsets according to the number of questions answered by users. We
divide 80% of each subset into training sets and 20% into test sets, in which the
training set is only used for parameter estimation and the test set is used for
evaluation. The statistical details of all subsets are shown in Table 2. It can be
seen that each data set contains a user set, a question set and an answer set.
For example, the user set, question set and answer set of User-10 are defined as
U-10, Q-10 and A-10 respectively. We take the users who answered more than 10
questions as the user set U-10, and then take the number of questions (answers)
that be requested (answered) by these users as question set Q-10 (answer set
A-10). And so on for the other subsets.

Baselines. We compared our proposed DRNGae against state-of-the-art meth-
ods:

– DRM [22]: propose a dual role model to extract latent topic information
through PLSA [7] to analyze the effect of different roles in CQA.

– GC-MC [1]: encode the user and item representation only with the first-order
neighborhood in graph by adopting an auto-encoder structure.

– HOP-Rec [23]: is a state-of-the-art graph-based model, which uses random
walk with the high-order neighborhood information to enhance the represen-
tation of users and items.

Metrics. We make a top-N recommendation from the perspective of link predic-
tion. For each node (user node or question node), we predict the links between a
user node and each question nodes and recommending the appropriate questions
to the user. Similarly, for a question node, recommending the question to top-N
users who are the most qualified to answer it. Following [23], we employ two
metrics to evaluate the effectiveness of top-N recommendation: recall@K and
ndcg@K. We report the mean metrics for all users/questions in the test set.

Experimental Results. Figure 4 shows the performance comparison results
of the top-N recommendation. As can be seen, DRNGae consistently yields the
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(a) User-10 – recall@K (b) User-15 – recall@K (c) User-25 – recall@K

(d) User-10 – ndcg@K (e) User-15 – ndcg@K (f) User-25 – ndcg@K

Fig. 4. Performance of top-N recommendation where N in [5,10,15,20] on the three
datasets.

best performance on all the datasets. It validates the superiority of the model
that we proposed. In particular, in all datasets, the recall and ndcg scores of
DRNGae increased by about 10% and 2% compared with the strongest base-
line, respectively, i.e., HOP-Rec. DRNGae outperforms GC-MC, which means
the implicit user correlation from the higher-order information of the user plays
an active role. The GNN can naturally catch high-order relations, which makes
the results more efficient than other topic model-based methods. DRNGae out-
performs HOP-Rec, which means the implicit correlation and different weights
of dual role has positive effects on CQA recommendation.

5.3 Is Dual Role Helpful? (RQ3)

As there is little work on CQA recommendation with the dual role, it is curious
to see whether using the dual role of users is beneficial to the recommenda-
tion task. Towards this end, we further investigated the contribution of the dual
role for the DRNGae and the influence of components. The results are summa-
rized in Table 4. The DRNGaea indicates that the method only uses a single
role (answerer role) of a user to experiment. As we can see, compared with
DRNGaea, two metrics are improved on three datasets, which improves 13.75%,
17.0%, 19.43% at recall@20 and 5.31%, 4.37%, 2.83% at ndcg@20. And we can
see that as N becomes larger (User-N), the interaction data of dual role users
decreases sharply, resulting in the positive influence of Dual Role undermined.
This result is highly encouraging, indicating the effectiveness of using a dual role
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Table 4. Influence of Dual Role at recall@20 and ndcg@20. DRNGaea denote exper-
iments only consider answerer role, DRNGae(Non-GNN) is the model only used the
Attn-Enc and DRNGae(Non-Attn) is only GNN-Enc used in.

Method User-10 User-15 User-25

recall ndcg recall ndcg recall ndcg

HOP-Rec [23]: 0.8044 0.5028 0.7501 0.7064 0.6899 0.7567

DRNGaea 0.7863 0.4986 0.7274 0.6984 0.6653 0.7459

DRNGae(Non-GNN) 0.8515 0.5099 0.7983 0.7129 0.7328 0.7592

DRNGae(Non-Attn) 0.8809 0.5181 0.8334 0.7199 0.7738 0.7635

DRNGae 0.8944 0.5251 0.8510 0.7289 0.7946 0.7670

%Improv. 13.75% 5.31% 17.0% 4.37% 19.43% 2.83%

for CQA recommendation. We attribute the improvement to the DRNGae can
capture the implicit dual role correlation by GNN-Encoder, and extract the dual
role feature preferences by Attn-Encoder, which is also proved by experiments
DRNGae(Non-Attn) and DRNGae(Non-GNN). And both them compare with
DRNGaea and find that the influence of GNN-Encoder is more powerful which
mean that the implicit dual role correlation is more important.

6 Conclusion and Future Work

In this paper, we explicitly incorporated the dual role of user into the recon-
struction function of auto-encoder architecture for CQA recommendation. We
devised a new model DRNGae, which captures the implicit dual role correlation
by extracting high-order information on the dual role graph. And learn variable
weights for dual role feature preferences to help improve the model performance.
Experiments on a great quantity of real-world datasets show that the proposed
model is rational and effective.

In the future, we will further improve DRNGae by taking the temporal
dynamic information into account the preferences of dual roles since the behav-
ior of users will change with time [4]. In addition, we are interested in exploring
the method of adversarial learning [6] between the two roles, which may improve
the performance of DRNGae.
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20. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)
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Abstract. Knowledge Graph (KG) contains rich real-world auxiliary
information, which can be leveraged to improve the performance of rec-
ommender systems. Nevertheless, existing recommender systems usu-
ally sample and aggregate neighbor entities and relations that link to
target items to enrich the representations of items or users, whereas
ignoring combinatorial features among different neighbor entities and
relations. To resolve the problem mentioned above, we propose an end-
to-end Knowledge Graph based Wide & Deep (KGWD) framework to
leverage combinatorial features effectively. At the wide level, KGWD
introduces a novel Triplet Compressed Interaction Network (TriCIN) to
generate high-order combinatorial features among different triplets asso-
ciated with the target item automatically. At the deep level, KGWD
discovers users’ potential long-distance preferences by mining multi-hop
neighbor information over the KG. We conduct experiments on three
real-world datasets, i.e., Yelp2018, Last-FM, and Amazon-book, to eval-
uate the performance of KGWD. Experimental results demonstrate that
KGWD outperforms state-of-the-art schemes significantly. Specifically,
in all three datasets, KGWD improves the F1-score by more than 5%
over the state-of-the-art.

Keywords: Recommender systems · Knowledge graph · Wide & Deep

1 Introduction

General recommender systems usually perform recommendations through user-
item interactions, e.g., Collaborative Filtering (CF) [1–3], whereas the accuracy
and diversity are limited. Due to problems of data sparsity and cold start of
CF-based schemes, researchers started to take auxiliary information into recom-
mender systems to enrich representations of items and users. Prior studies [4–9]
demonstrate that combining auxiliary information improves performance of rec-
ommender systems effectively.

In recent years, Knowledge Graph (KG) has been proposed to describe rela-
tions between entities. It provides useful information implying users’ potential
preferences, which can be leveraged to improve the performance of recommen-
dations. Existing KG-based recommendation schemes can be roughly divided
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 455–469, 2020.
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Fig. 1. The comparison between the ideas of conventional KG-based models and our
model.

into two categories, i.e., path-based schemes and embedding-based schemes.
Path-based schemes select different patterns of paths among entities in the
KG by path selection algorithms [5,11] or defining meta-path patterns [10,12].
This type of schemes rely on the selection or definition of meta-paths heav-
ily. Moreover, defining meta-path requires domain knowledge and consumes a
large amount of labor. Embedding-based schemes employ Knowledge Graph
Embedding (KGE) [13] algorithms to represent the information of the KG, and
integrate them with the items or users in recommender systems. This type of
schemes gradually become the mainstream direction of KG-based recommender
systems, including CKE [4], KGCN [7], and KGAT [8]. Although embedding-
based schemes can effectively integrate information of the KG into recommender
systems, they take into consideration the internal relationship along KG paths
only, and ignore combinatorial features among different triplets from different
paths. This leaves a large space for improvement.

Combinatorial features are generated by transformation of raw features. They
can be leveraged to infer a user’s more precise preferences for personalized rec-
ommendations. A number of schemes have been proposed for combinatorial fea-
ture selection and generation, e.g., [14–16]. Conventional combinatorial feature
generation methods not only rely on domain knowledge heavily, but also are
time-consuming and laborious. Thus, new schemes have been proposed to gen-
erate combinatorial features automatically, including FM [17], NFM [3], and
xDeepFM [18], which improves the performance of recommender systems. Nev-
ertheless, these schemes are all KG-free, making them incapable of leveraging
the strengths of KG.
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Figure 1 shows the comparison of the ideas of conventional KG-based models
and ours. It shows that the existing approaches enrich the representations of
the items by integrating the internal relationship along KG paths only, ignor-
ing the combinatorial features among the KG triplets. In face of limitations of
existing approaches, we propose an end-to-end Knowledge Graph based Wide &
Deep (KGWD) framework in this paper. KGWD consists of a wide part and a
deep part. The wide part generates bounded degree high-order combinatorial
features automatically at triplet-wise level; the deep part propagates informa-
tion of multi-hop neighbors to the target item. Compared with the state-of-the-
art schemes, KGWD can leverage explicit information between neighbors and
implicit combinatorial features in the KG, leading to performance improvement.

The contributions of this paper are summarized as follows:

– We introduce a novel Triplet Compressed Interaction Network (TriCIN) to
model users’ implicit preferences by generating high-order combinatorial fea-
tures at triplet-wise level automatically.

– We propose a KGWD framework to leverage both wide and deep information
simultaneously. KGWD models users’ long distance preferences along KG
paths, and takes into consideration the triplet-wise combinatorial features to
discover users’ personalized preferences.

– We conduct extensive experiments on three real-world datasets, which demon-
strate the effectiveness of KGWD. Specifically, KGWD improves the F1-score
by more than 5% over the state-of-the-art in all three datasets.

2 Related Work

There are two categories of studies relevant to our work, corresponding to the
wide and deep part of KGWD, respectively. The wide part is corresponding to
combinatorial feature generation, whilst the deep part is relevant to neighbor
information propagation.

2.1 Combinatorial Feature Generation

Combinatorial features can be considered as the combinations of rules that indi-
cate users’ potential preferences. For example, FM [17] models second-order
cross features as pairwise dot product of raw feature vectors, including both
useful and useless combinations. NFM [3] is a variant of FM, which combines
deep neural network with FM. Wide & Deep [19] and DeepFM [20] introduce a
hybrid framework that takes into consideration both low-order and high-order
feature interactions. Based on Wide & Deep, DCN [21] introduces a Cross Net
to generate bounded degree high-order features at bit-wise level automatically,
while xDeepFM [18] proposes a Compress Interaction Network (CIN) to generate
bounded degree combinatorial features at vector-wise level. Nevertheless, these
studies do not leverage KG to generate features. To make full use of KG, we
introduce a TriCIN, which can model the users’ implicit preferences by generat-
ing combinatorial features at triplet-wise level over the KG.
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2.2 Neighbor Information Propagation

The neighbors of a target item in KG usually contain a lot of attribute informa-
tion, which implies users’ potential preferences. How to model neighbor informa-
tion of the target item is a critical procedure for KG-based recommender systems.
Zhang et al. [4] proposed CKE, which combines CF with structural, textual,
and visual content in a unified framework. Wang et al. [6] proposed RippleNet,
which learns users’ embeddings by simulating the propagation of user preferences
over the links in the KG. Inspired by Graph Convolution Network (GCN) [22],
KGCN [7] and KGAT [8] were proposed to model neighbor information and
propagate them from neighbors to center recursively. We propose to propagate
neighbor information to enrich the item representations and discover the users’
long distance preferences. With the integration of both implicit combinatorial
features and explicit information between neighbors in the KG, KGWD can
acquire a more comprehensive profile of the user’s preferences.

3 The KGWD Framework

In this section, we introduce the KGWD framework. We first formulate the KG-
based recommendation problem, then present the architecture of KGWD from
whole to part.

Fig. 2. The overall architecture of KGWD.
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3.1 Problem Formulation

In a general recommendation scenario, there is a set of M users U =
{u1, u2 u3, ..., um}, and a set of N items I = {i1, i2, i3, ..., in}. There are also
historical interactions between users and items, which can be represented by
a user-item interaction matrix. The user-item matrix Y ∈ RM×N is defined
according to users’ explicit and implicit feedback, e.g., clicking, browsing, or
purchasing. In user-item matrix Y , yui = 1 indicates that user u interacts with
item i, while yui = 0 indicates the opposite.

In KG-based recommender systems, in addition to the user-item matrix, there
is a KG G, which contains auxiliary information related to items. The KG is a
directed graph that is composed of triplets (h, r, t), where h, t ∈ E is the head
and tail entity, respectively, and r ∈ R is the relation between h and t. Moreover,
there exists an item-entity alignment set that is used to map the items to the
entities of KG.

The objective of KGWD is to learn a predicted function ŷui = F (u, i|Θ, Y,G)
according to the given user-item interaction matrix Y and the KG G. ŷui denotes
the probability of user u interacting with item i, and Θ denotes the model
parameters of function F .

3.2 The Architecture of KGWD

The overall architecture of KGWD is illustrated in Fig. 2. KGWD takes a user
u and an item i as input, and outputs the predicted probability that user u
interacts with item i. The item i is also a seed that is used to find the multi-hop
neighbors in the KG. We use the first-hop neighbors to generate combinatorial
features in the wide part, and use the multi-hop neighbor information to model
users’ long distance preferences in the deep part. The embeddings of entities
and relations of the KG will be learned automatically through this end-to-end
framework.

The Wide Part. The wide part of KGWD framework is inspired by the idea
of high-order combinatorial feature generation. The combinations of different
neighbors of the target item imply the users’ potential preferences. Thus, we
propose a Triplet Compressed Interaction Network (TriCIN) to generate high-
order combinatorial features at triplet-wise level for each pair (u, i). The term
wide refers to the wide range of features that can be selected.

TriCIN consists of a Triplet Embedding Layer (TEL) and a CIN [18]. The
architecture of TEL is illustrated in Fig. 3. For each pair (u, i) to be predicted, we
first find the first-hop neighbors of item i in the KG. Herein, we define Si

neighbor

as the set of first-hop neighbors of the target item i in the KG, which consists
of relations and tail entities. For each triplet (h, r, t) in Si

neighbor, TEL projects
h and t into the vector space of r through a transformation matrix:

erh = W reh, ert = W ret. (1)
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Fig. 3. The architecture of Triplet Embedding Layer (TEL).

Wherein eh,et ∈ R
k and er ∈ R

d are the embeddings for h, t, and r, respectively;
k and d are the dimensions of embeddings. W r ∈ R

d×k is the transformation
matrix, which projects the entities from the k-dimension entity space into the
d-dimension relation space.

In recommender systems, triplets can be considered as the meta paths that
contain users’ preferences. In order to retain the information of a triplet, we
concatenate erh, er, and ert , and feed the concatenated embedding into a fully
connected layer for aggregation:

etripletj = σ(WConcat(erh,er,e
r
t )). (2)

Wherein etripletj is the embedding for triplet j; σ(·) is an activation function,
e.g., ReLU or LeakyReLU; W is the parameter vector of the fully connected
layer.

Moreover, user information is introduced to distinguish the influence of dif-
ferent triplets. The final representation of triplet j is formulated as follows:

eutripletj = eu ◦ etripletj . (3)

Wherein eutripletj is the embedding for triplet j associated with user u; eu is
the embedding for user u; ◦ denotes the Hadamard product (<a1, a2, a3> ◦
<b1, b2, b3> = <a1b1, a2b2, a3, b3>). The triplet j here is one of the neighbors of
item i in the KG.

CIN is a scheme proposed by Lian et al. [18] to generate high-order combi-
natorial features at vector-wise level automatically. The order of feature interac-
tions grows with the network depth. Here, we define the low-order feature matrix
as follows:

X0 = [eutriplet1 ,e
u
triplet2 , ...,e

u
tripletm ]. (4)
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Herein, X0 ∈ R
m×d is the low-order feature matrix that is composed of the raw

embedding for tripletj associated with user u; m is the number of the first-hop
neighbor set Si

neighbor.
Then, we take X0 as input, and the k-order feature embeddings are formu-

lated as follows:

Xk
h,∗ =

Hk−1∑

i=1

m∑

j=1

W k,h
ij (Xk−1

i,∗ ◦ X0
j,∗), 1 ≤ h ≤ Hk. (5)

Wherein X0
j,∗ = eutripletj is the j-th triplet embedding associated with user u,

Hk−1 denotes the number of feature embeddings in the (k− 1)-th layer, W k,h ∈
R

Hk−1×m is the parameter matrix for the h-th feature embeddings.
After calculating the high-order feature embeddings, sum pooling is applied

on each feature map of the hidden layer:

pki =
D∑

j=1

Xk
i,j , k ∈ [1, T ], i ∈ [1,Hk]. (6)

Wherein D denotes the dimension of embedding, T denotes the depth
of the network. Then TriCIN concatenates all pooling embeddings pk =
Concat(pk1 , p

k
2 , ..., p

k
Hk

) with length Hk to form the final triplet-wise represen-
tation:

ewide = Concat(p1,p2, ...,pT ) ∈ R

∑T
i=1 Hi . (7)

The Deep Part. The other part of KGWD is the deep part. The term deep
refers to the depth of neighbors used to enrich representations of items in the
KG. The deep part of KGWD leverages the information of multi-hop neighbors
along the KG to discover users’ long distance preferences. It also integrates the
influence of users into the neighbor weights. Namely, the influence of different
neighbors are closely related to users, head entities, and relations.

To predict a (u, i) and its neighbor triplet set Nh = {(h, r, t)|(h, r, t) ∈ G}, we
represent the embeddings for neighbors as the linear combination of tail entities,
where the weights are computed according to the user u and the triplet (h, r, t):

euNh
=

∑

(h,r,t)∈Nh

π(u, h, r, t)et. (8)

Wherein euNh
is the embedding of the neighbor information corresponding to user

u; π(u, h, r, t) denotes the weights, which influence the information propagation
from t to h on each triplet (h, r, t). π(u, h, r, t) is formulated as follows:

π(u, h, r, t) = Mean(eu ◦ σ(eh + er)). (9)

Wherein eu ∈ R
d,eh ∈ R

k,er ∈ R
d are embeddings of the user, the head entity,

and the relation, respectively. We set d equal to k for the sake of simplicity.
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Mean(·) is the mean function; σ(·) is an activation function. Hereafter, we apply
softmax function to normalize the influence coefficients:

π(u, h, r, t) =
exp(π(u, h, r, t))∑

(u,h,r′,t′)∈Nh
exp(π(u, h, r′, t′))

. (10)

Note that the influence coefficients take into consideration both users and
triplets, which effectively discover different users’ preferences.

The final step is the aggregation of head entity and the neighbor information
euNh

. Based on KGAT [8], we apply bi-interaction aggregator to acquire the
aggregation:

edeep = LeakyReLU(W 1(eh + eNh
))

+ LeakyReLU(W 2(eh ◦ eNh
)).

(11)

Wherein W 1,W 2 ∈ R
d′×d are the trainable weight matrices. By analogy, the

multi-hop neighbor information propagation can be realized.

3.3 Model Prediction

Besides the triplet-wise combinatorial features from the wide part and neighbor
information from the deep part, there is a linear part in Fig. 2 (the leftmost
path), which models the low-order embeddings of triplets associated with user
u:

eutriplet = Concat(eutriplet1 ,e
u
triplet2 , · · · ,eutripletm). (12)

elinear = W lineare
u
triplet. (13)

Wherein W linear are the parameters of the linear part.
Then we concatenate all embeddings together, and feed them into a fully

connected layer for the predictions:

einput = Concat(elinear,ewide,edeep,eu). (14)

ŷ = sigmoid(W outputeinput). (15)

Wherein W output are the parameters of the fully connected layer; ewide and
edeep are the output of the wide part and the deep part, respectively; eu denotes
the embedding for user u.

3.4 Parameter Learning

To optimize parameters of our framework, we choose the Binary Cross Entropy
Loss (BCELoss):

L = − 1
N

N∑

i=1

yilogŷi + (1 − yi)log(1 − ŷi) (16)



Knowledge Graph Based Wide & Deep Framework for Recommendation 463

Wherein N denotes the number of training instances; yi and ŷi are the ground
truth and the predicted probability of the user u interacting with the item i,
respectively.

After adding the L2-regularization, the complete loss function is defined as
follows:

J = L + λ||Θ||22. (17)

Wherein λ is the hyper-parameter of L2-regularization; Θ denotes all parameters
of KGWD.

4 Experiments

4.1 Datasets

We utilize the datasets released by KGAT [8] to evaluate the effectiveness of
KGWD, which include three public datasets: Yelp2018, Last-FM, and Amazon-
book. Freebase1 is the KG used for Amazon-book and Last-FM, while the item
knowledge extracted from the local business information network is used as KG
data for Yelp2018.

– Yelp20182: A dataset released from Yelp challenge 2018. Only businesses,
e.g., restaurants and bars, are seen as items interacted with users for recom-
mendations in this paper.

– Last-FM3: A widely used music recommendation dataset, which contains
users’ historical music listening records from Last.FM online music system.
Only a subset of records are used.

– Amazon-book4: A subset of Amazon-review, which is a dataset used for
product recommendation. Only the records of book products are used.

Statistics of the three datasets are summarized in Table 1. All history inter-
actions are treated as positive instances. 80% of interactions of each user are
randomly selected as the training set, while the remaining are used as the test
set. Moreover, we randomly select 10% of interactions from the training set as
the validation set. For the training set and validation set, a negative sampling
approach is used to generate a negative instance for each positive instance, which
the user does not interact with. In order to reduce the test time, we generate
negative samples with the positive/negative ratio of 1/5 for the test set.

4.2 Baselines

We compare the proposed KGWD framework with the following six baselines.

1 https://developers.google.com/freebase/data.
2 https://www.yelp.com/dataset/challenge.
3 https://grouplens.org/datasets/hetrec-2011/.
4 http://jmcauley.ucsd.edu/data/amazon/.

https://developers.google.com/freebase/data
https://www.yelp.com/dataset/challenge
https://grouplens.org/datasets/hetrec-2011/
http://jmcauley.ucsd.edu/data/amazon/
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Table 1. Statistics of the three datasets used.

Yelp2018 Last-FM Amazon-book

#Users 45,919 23,566 70,679

#Items 45,538 48,123 24,915

#Interactions 1,185,068 3,034,796 847,733

#Entities 90,961 58,266 88,572

#Relations 42 9 39

#Triplets 1,853,704 464,567 2,557,746

– FM [17]: generates second-order features by dot product between inputs. We
take users, items, and the first-hop neighbors as the raw features and feed
them into FM.

– NFM [3]: combines the linear characteristic of FM and the nonlinear char-
acteristic of deep neural networks by concatenating the FM under the deep
neural networks.

– xDeepFM [18]: a CTR prediction model based on FM, where CIN is pro-
posed to generate vector-wise combinatorial features.

– xDeepFM+TEL: extends xDeepFM with our proposed Triplet Embedding
Layer, and generates combinatorial features at triplet-wise level for recom-
mendations. It is equivalent to the KGWD without the deep part.

– KGCN [7]: an end-to-end model inspired by GCN [22]. It enriches the item’s
representations by integrating their associated attributes in the KG. It can be
considered as the KGWD without the wide part to compare with the whole
KGWD.

– KGAT [8]: another GCN based model. It proposes a collaborative KG and
a bi-interaction aggregator, which enriches the item’s representations.

Herein, FM and NFM both generate second-order features among input
attributes, while xDeepFM and xDeepFM+TEL generate high-order combina-
torial features at vector-wise level and triplet-wise level. KGCN and KGAT are
both embedding-based methods, which enrich representations of items by neigh-
bor information propagation in the KG.

4.3 Experiment Setup

Evaluation Metrics. In recommendation scenarios, both CTR prediction and
top-K recommendation prediction need to be evaluated. We adopt F1 score to
evaluate the performance of CTR prediction, and NDCG@K to evaluate the
performance of top-K recommendation prediction. Herein, K is set to 20 by
default. All experimental results are reported as average for all users in the test
set.
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Parameters Setting. We optimize the KGWD framework with Adam opti-
mizer, where the batch size is set to 1024. We use Xavier initializer [23] to ini-
tialize the trainable parameters. The embedding size is fixed to 32 for Yelp2018
and Last-FM, 8 for Amazon-book. In the wide part, the number of first-hop
triplets is set to 30 for Yelp2018, 35 for Last-FM and Amazon-book. In the deep
part, the number of neighbor hops is fixed to 3 and the number of neighbors per
hop is fixed to 6 for all datasets. We set the learning rate and L2 regularization
coefficient to 1e−3 and 1e−5, respectively.

For baselines, we fix the dimension of embeddings the same as KGWD cor-
responding to different datasets for a fair comparison. For FM-based baselines,
the number of feature fields is set the same as the number of first-hop triplets
in the wide part of KGWD. For KGCN, the number of neighbor hops and the
neighbor nodes of each hop are also set the same as that in the deep part of
KGWD. The learning rate is set to 1e−3 for all baselines except KGAT, and the
learning rate of KGAT is set by default. The L2 regularization coefficient is set to
1e−8 for KGCN, while the others are set as 1e−5. The other hyper-parameters
of baselines are set as default.

Table 2. The performance of KGDW compared with other baselines.

Category Model Yelp2018 Last-FM Amazon-book

F1 NDCG@20 F1 NDCG@20 F1 NDCG@20

Wide FM 0.6363 0.8497 0.5649 0.8430 0.4801 0.7750

NFM 0.6204 0.8686 0.5792 0.8939 0.4831 0.7621

xDeepFM 0.5531 0.8335 0.4650 0.7596 0.5070 0.8010

xDeepFM+TEL 0.5609 0.8470 0.4653 0.7631 0.5233 0.7983

Deep KGCN 0.6203 0.8433 0.6230 0.8418 0.4704 0.7504

KGAT 0.6201 0.9083 0.4890 0.8881 0.5659 0.8764

Wide & Deep KGWD 0.7277 0.9121 0.7178 0.9323 0.6145 0.8580

4.4 Results and Discussion

Overall Comparison. The overall results are presented in Table 2. From the
table, we make the following major observations:

– In general, KGWD outperforms the state-of-the-art baselines in most cases,
which demonstrates the effectiveness of our framework. Note that the
improvement of F1-score is larger than NDCG@20, which demonstrates that
KGWD performs better on CTR predictions than on Top-K predictions.

– The performance of KGCN and KGAT are better than the baselines in the
wide category, which demonstrates that neighbor information along paths in
the KG can discover users’ preferences. Nevertheless, the results of KGWD
demonstrate that combinatorial features of triplets play an important role for
performance improvement.
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– xDeepFM+TEL performs better than xDeepFM in most cases, which demon-
strates that generating combinatorial features at triplet-wise level is helpful
for discovering users’ potential preferences. It also demonstrates that the TEL
we propose can effectively model the triplet information in the KG.

KGWD performs better on more dense datasets, i.e., Yelp2018 and Last-
FM. Instead, Amazon-book is a sparser datasets with lots of triplets in the KG,
KGWD may introduce noises from the KG and performs worse than KGAT on
the metric NDCG@20. It demonstrates that KGWD can discover more infor-
mation from the KG, and the triplet-wise combinatorial features and neighbor
information along paths in the KG are useful supplementary for recommenda-
tions.

Model Analysis. The main idea of KGWD is the combination of combinatorial
features at triplet-wise level and neighbor information along paths over the KG,
which are corresponding to the wide part and the deep part, respectively. Since
these two parts are partially based on xDeepFM and KGCN, we compare the
results of KGWD, xDeepFM+TEL, and KGCN. As shown in Table 2, for three
different datasets, KGWD increases by 16.68%, 25.25%, and 9.12% on F1 score,
and 6.51%, 16.92%, and 5.97% on NDCG@20 over xDeepFM+TEL. Meanwhile,
KGWD increases by 10.74%, 9.48%, and 14.41% on F1 score, and 6.88%, 9.05%,
and 10.76% on NDCG@20 over KGCN. The results demonstrate that perfor-
mance improvement of using combinatorial features at triplet-wise or neighbor
information along paths alone is limited. Nevertheless, when KGWD combines
these two aspects together, the performance improvement is significant, which
demonstrates the effectiveness of our framework.

Table 3. The Performance of KGWD with different dimension of embedding.

D Yelp2018 Last-FM Amazon-book

F1 NDCG@20 F1 NDCG@20 F1 NDCG@20

8 0.7233 0.9110 0.6512 0.8922 0.6116 0.8547

16 0.7260 0.9113 0.6921 0.9159 0.6044 0.8484

32 0.7261 0.9122 0.7174 0.9316 0.6041 0.8486

4.5 Parameters Analysis

The Performance of Dimension of Embedding. In this experiment, we
vary the dimension of embedding D to investigate its influence on recommen-
dations on different datasets. The results are shown in Table 3. From the table,
we can see that increasing D can help improve performance on Yelp2018 and
Last-FM, which indicates that a larger D is likely to encode more information
of users and items. Note that the performance on Amazon-book decreases along
with an increasing D. This is likely because the Amazon-book dataset is sparse,
and a larger D may introduce noise rather than useful information.
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Fig. 4. The Performance of KGWD with different number of neighbors selected in the
wide part.

Fig. 5. The Performance of KGWD with different numbers of neighbors selected in the
deep part.

The Performance of Different Numbers of Neighbors Selected in the
Wide Part. The first-hop neighbors in the wide part are the raw features
used in combinatorial feature generation. Thus, we vary the number of neigh-
bors F in the wide part to investigate its influence on recommendations on
different datasets. From Fig. 4, we observe that increasing F initially improves
performance, whereas a too large F adversely harms performance. This is likely
because a large F causes overfitting.

The Performance of Different Numbers of Neighbors Selected in the
Deep Part. The number of neighbors of each hop N is an important hyper-
parameter in the deep part. To explore the impact of N , we conduct experiments
with different N on KGWD. The results are shown in Fig. 5. From the figure,
we find that increasing N improves the performance of KGWD, because more
neighbors per hop can capture more users’ long distance preferences. Neverthe-
less, a too large N may introduce noises and cause overfitting. Moreover, a larger
N also takes more memory and increases the computational burden.

5 Conclusions

In this paper, we proposed an end-to-end Knowledge Graph based Wide &
Deep (KGWD) framework for recommender systems. KGWD introduces a novel
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TriCIN to generate combinatorial features from the KG at triplet-wise. More-
over, to model the users’ explicit and implicit preferences more effectively,
KGWD combines both triplet-wise combinatorial features (wide part) and path-
along neighbor information (deep part) together. Experiments on three real-
world datasets demonstrate that our framework outperforms the state-of-the-art
schemes.

We plan to carry out future work from the two directions below. (1) The
influence of different triplet-wise combinatorial features is different. Introducing
attention mechanism to the wide part is an important future work direction.
(2) Considering the relations between triplet-wise combinatorial features and
neighbor information can better combine the advantages of these two aspects,
which is also a future direction worth working on.
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Abstract. Rider demand responsive systems (RDRS) makes a match
between numerous requests and vehicles, it is a challenging problem
to make the maximal match as soon as the real-time requests pop up
in the RDRS. Much research has been addressed on this issue. How-
ever, there is still not much work on handling the appointment-based
requests. In this paper, we propose an algorithm called BMF (Bipartite
Minimal-cost Flow) to solve the taxi-rider match scheduling problem
with appointment-based rider requests on a time-dependent road net-
work. Riders and vehicles are modeled as vertices in a bipartite graph,
and the maximal utility calculation is transformed to the minimal cost
flow problem that could be solved efficiently. Experimental results show
that the proposed scheme can effectively decrease the average waiting
time of riders (>44% reduction) at the cost of acceptable increase on the
running time.

Keywords: Appointment-based request · Taxi-rider match · Rider
demand responsive system

1 Introduction

In recent years, there has been increasing concern about the Rider Demand
Responsive Systems (RDRS) [2,7]. The taxi-rider matching is usually viewed as
a kind of spatial matching problem that aims to match two sets of objects with
optimization goals based on their spatial locations [9,12,13]. Appointment-based
taxi service has been a kind of business of taxi companies for long. However, the
appointment-based requests are not well studied and integrated into the existing
RDRS platform. The appointment-based requests usually processed separately in
a semi-manual approach; and in some taxi-hailing platforms the service is simply
not provided. Riders’ user experience would degrade sharply with the growth
of the waiting time when the scheduled pickup is late. As the road networks
are affected by various factors [1], it is still hard to incorporate the changing
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 470–477, 2020.
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traveling time information for the match of appointment-based requests. The
system should be flexible enough to dynamically adjust the matching pairs when
better matching opportunities emerge in realtime. In this paper, we propose an
efficient utility-based algorithm that integrates the real-time and appointment-
based requests for RDRS. The major contributions of this paper are as follows:

– We propose an algorithm assigns both the real-time and appointment-based
requests within the same framework.

– We propose an algorithm called BMF (Bipartite Minimal-cost Flow) to solve
the taxi-rider match scheduling problem.

– We conduct experiments on real-world historical origin-destination datasets
to verify the effectiveness of the proposed methods.

To the best of our knowledge, the proposed scheme is the first to efficiently
integrate and process both the real-time and appointment-based requests within
the same framework.

2 Related Work

According to whether requests are predefined or dynamically added, the prob-
lem could be classified into the static and the dynamic RDRS. The static RDRS
problem could be viewed as a special member of the general class of the Dial-
a-Ride Problem (DARP) [2,3]. The static version of RDRS corresponds to the
static DARP where all customer/rider queries are known in priori, on which
existing works on the DARP have primarily focused. Also, as the general DARP
is NP-hard, only small instances that involve a few cars and dozens of requests
can be solved optimally, usually by resorting to integer linear programming tech-
niques. In dynamic RDRS problem, requests are popped up in real-time. Tong
et al. [9,10] viewed the RDRS as the online minimum bipartite matching problem
in real-time spatial data. The authors evaluated four representative online algo-
rithms, and argued that Greedy significantly outperforms the other algorithms in
almost all practical cases. Tong et al. [11] developed a two-step framework that
integrates offline prediction for the flexible two-sided online task assignment.
The problem of task assignment in spatial data is also called spatial matching
problem [12,13], which aims to match two sets of objects with optimization goals
based on their spatial locations. Yiu et al. [13] proposed an algorithm of edge-
pruning strategies based on the spatial properties of the problem for optimal
assignment. Hassan et al. [5] proposed a framework that formulates the online
spatial task assignment as the multi-armed bandit problem. Recent works have
used reinforcement learning to provide optimization algorithms for matching
problem. Tang et al. model the ride dispatching problem as a Semi Markov Deci-
sion Process to account for the temporal aspect of the dispatching actions [8]. [6]
proposed a multi-agent reinforcement learning solution to the ride dispatching
problem. Most of the existing approaches for the dynamic RDRS problem only
handle the real-time tasks/requests, and the pair of assignments could not be
revoked once they are matched. In this paper we consider both the real-time and
appointment-based requests within the same framework, and the vehicles and
requests are set in a flexible way to be revokable to maximize the overall utility.
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3 Preliminaries and Problem Definition

3.1 Road Network

The road network is represented by a directed graph Gr = (Vr, Er), where Vr

is a set of vertices and Er ⊆ Vr × Vr is a set of ordered pairs of vertices, with
a weight function w : (Er, t) → R mapping edges to time-dependent real-valued
weights. For simplicity, we denote w(u, v, t) as the weight of an edge e(u, v) ∈ Er

at time t, and it represents the amount of time required to reach v starting from
u at time t. Given two vertices x1, xk, we also denote w(x1, xk, t) as the minimal
accumulated weight from node x1 to xk if there is a path {x1 → x2... → xk}.

3.2 Query Set

Each request, e.g. q, is associated with a submission timestamp t0, an origin
location o, a destination location d, and a preferred time window [t1, t2]. The
requests could be categorised into two types: the real-time requests, and the
appointment-based requests, which are denoted as Q1, Q2 respectively:{

q ∈ Q1, if q.t1 ∈ [t0, now + T1]
q ∈ Q2, if q.t1 ∈ (now + T1,∞)

(1)

where now is the current time, T1 is the minimal time gap for making appoint-
ments. The appointment set Q2 could further be divided into two parts by
another time factor T2 > T1:{

q ∈ Q1
2, if q ∈ Q2, q.t1 ∈ (now + T1, now + T2]

q ∈ Q2
2, if q ∈ Q2, q.t1 ∈ (now + T2,∞)

(2)

Then the ready set of requests are denoted as Q and defined as follows:

Q = Q1 ∪ Q1
2 (3)

3.3 Utility of Assignment

We denote u(c, q, t) as the utility of a real-time request based assignment, and
it consists of a trajectory-related utility trac(c, q, t) and a service-related utility
serv(c, q, t). The utilities are defined as follows:

u(c, q, t) = α ∗ trac(c, q, t) + (1 − α) ∗ serv(c, q, t), α ∈ [0, 1] (4)

trac(c, q, t) =
U

w(c, q, t)
, w(c, q, t) = w(lc, q.o, t) (5)

serv(c, q, t) =

⎧⎨
⎩

(1 + Δ(c, q, t))−1, pt(c, q, t) < q.t1
1 + e−Δ(c,q,t), q.t1 ≤ pt(c, q, t) ≤ q.t2
0, pt(c, q, t) > q.t2

(6)
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where U is a predefined factor to normalize the cost for vehicle c traveling to
pick up q, lc is the location of vehicle c, pt(c, q, t) is the expected time point of
picking up q by vehicle c and Δ(c, q, t) is the length of time when the pickup is
ahead or behind the time point pt(c, q, t).

For an appointment-based request q ∈ Q2, the utility is defined similar to
the real-time request except an amplifying factor in service-related utility:

serv(c, q, t) =

⎧⎨
⎩

(1 + Δ(c, q, t))−1, pt(c, q, t) < q.t1
K ∗ (1 + e−Δ(c,q,t)), q.t1 ≤ pt(c, q, t) ≤ q.t2
0, pt(c, q, t) > q.t2

(7)

where K ≥ 1 is a parameter that amplifies the utility of serving appointment
requests compared to real-time requests. For the sake of concise, the utilities are
also denoted as u(c, q), serv(c, q), trac(c, q) respectively if time t is known in the
context.

3.4 Utility of Match

From the view of the whole road network Gr, given a set of requests Q, a set of
vehicles C, and current time t, the overall utility of a match M between Q and
C is:

util(Gr, Q,C,M)t =
∑

(c,q,t)∈M
u(c, q, t) (8)

where with assignment (c, q, t) vehicle c could only serve request q during the
trip. Suppose M is the set of matches, the goal of the RDRS system is to find a
match that maximises util(Gr, Q,C,M)t:

M∗
t = argmax

M
{util(Gr, Q,C,M)t : M ∈ M} (9)

4 Matching Riders and Vehicles

4.1 Building Bipartite Graph

The proposed scheme first builds a bipartite graph Gb(Vb, Eb) based on sets of
vehicles and requests. As illustrated in Fig. 1, the set of vehicles is positioned on
the left (C), and the set of requests is positioned on the right (Q). Each pair of
vehicle and request is connected by an edge if the vehicle is able to pick up the
rider before the end of the desired time window, i.e. pt(c, q, t) ≤ q.t2 for vehicle
c and request q. Two special nodes denoted by Source and Sink are also added,
where Source connects to each of the vehicles and Sink connects to each of the
requests. Every edge (vi, vj) has a capacity and a cost weight attached to it,
which are defined as follows:

cap(vi, vj) = 1, (vi, vj) ∈ Eb (10)

cw(vi, vj) =

{
−u(vi, vj), vi ∈ C , vj ∈ Q

0, vi = Source || vj = Sink
(11)



474 Y. Lai et al.

1,-u(c1,q3)

c1 q1

cm

c3

c2 q2

q3

qn

Sink
Source

1,-u(c1,q2)

1,-u(c1,q1)

1,-u(c3,q3)

1,-u(c2,q3)

1,-u(c2,q2)
1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

1,0

cap=1, cw=0

C Q

1,0

Fig. 1. An example of graph Gb that illus-
trates the possible match between vehi-
cles and requests. Each edge in the graph
is attached with a capacity cap and cost
weight cw.

Fig. 2. Distributions of origin-
destination pairs on the Xiamen
Island, Fujian Province, China.
The red/blue point indicates the
origin/destination of a trip. (color
figure online)

Algorithm 1: Bipartite Match Algorithm
1 d = min(|C|, |Q|);
2 while d > 0 do
3 M ← MCFP (Gb, Source, Sink);
4 if M is a feasible match then break;
5 else d = d − 1;

6 return M;

4.2 Solving the Minimum-Cost Flow Problem

Having the graph Gb built, we transform the static maximal match utility prob-
lem defined at Eq. 9 to the following minimum-cost flow problem (MCFP) [4]:

minimize :
∑

(u,v)∈Eb

cw(u, v) ∗ f(u, v) (12)

where f(u, v) is the flow through edge (u, v), f(u, v) = 1 means there is an
assignment (u, v) in the match. When Eq. 12 has the minimal-cost maximum
flow, M∗ has the largest overall utility defined at Eq. 9 because the cost weight
is set −u(vi, vj) in Gb in Eq. 11. Algorithm 1 is the pseudocode of the procedures
searching the maximal flow and maximal match utility.

5 Experimental Study

5.1 Experimental Settings

We conduct the experiments with real-world road network of Xiamen island
and Xiamen Taxi Trip Datasets. The schemes are implemented in Java 1.8 and
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Table 1. Overall performance of the schemes.

Schemes/metrics Average
waiting
time (s)

Average
match-
ing time
(s)

Success
ratio of
real-time
requests

Success
ratio of
appoint-
ment
requests

Overall
satisfac-
tion
ratio

Average
income
(RMB)

DFM 182.59 0.057 0.5509 0.9147 0.5975 65.26

MFM 193.55 0.073 0.9207 0.9535 0.9242 78.44

MUM 114.46 0.081 0.9347 0.9535 0.9375 79.26

BMF 107.21 0.130 0.9375 0.9535 0.9400 79.50

experiments are run on a desktop server with Intel Core i5 (4 cores), 8 G DDR3
RAM. The origin-destination pairs (Fig. 2) of trips are extracted from taxi oper-
ating table of the Xiamen Trip Dataset. The interval between two sequential
requests is 3 s and the total simulation time is 1 h.

To study the performances, we also conduct other three algorithms besides
the proposed BMF scheme: (1) Distance First Match(DFM): matches a request
to the nearest taxi and the matched pairs is irrevocable; (2) Maximum Flow
Match (MFM): is adopted based on [9], which uses bipartite graph to match
taxis and requests as more as possible; (3) Maximum Utility Match (MUM):
uses bipartite graph to match taxis and requests based on the utility calculation
similar to BMF, but the requests are not revokable.

5.2 Result Analysis

Overall Performance. By default, the number of vehicles is 300, the length
of the pickup window is 5 min, the percentage of appointment-based requests is
10%, the amplifying factor K is 1.5, and the balance factor α is 0.5. The time
gap T1 and T2 are set 5 and 30 min respectively.

Table 1 presents the overall performance of the schemes. The proposed BMF
scheme has the shortest waiting time at 107.21 s. Compared to other schemes,
it gains more than 44% of reduction of the average waiting time of riders. Also,
BMF has the highest overall request satisfaction ratio at 0.94. The performance
of MUM is similar to BMF and has better performance than other schemes. Yet
because the assignment is not revokable, taxis might have to fulfill requests even
when better matches appear. Compare to other schemes, BMF scheme has larger
matching time per epoch. This is because of the extra complexity solving the
MCFP problem. The overall income of drivers are also showed in the table. As
depicted in Table 1, the proposed BMF scheme has the highest average income.
We follow the pricing strategies in Xiamen City and charge 20 RMB additional
service fee for the appointment-based requests.



476 Y. Lai et al.

Impact Factors. We also vary other parameters, i.e., the number of taxis, the
width of preferred pickup window to study their impact on the schemes. Figure 3
depicts the impact of the number of taxis. From the figure, we could see that
the average waiting time of riders for the successful requests decreases as the
number of taxis grows for all the schemes. Yet the waiting time of BMF and
MUM changes more sharply, which decreases from above 150 s to about 66 s.
Figure 4 illustrates the impact of the preferred pickup window of requests, which
is set to 1, 3, 5 and 7 min. From Fig. 4 we could see that the satisfaction ratio and
income increase as the preferred pickup window grows for all the schemes, but
the performance on the average waiting time degrades. This is understandable
as larger pickup window means more flexibility on the time, and hence more
chance for taxis being able to pickup the riders. So the income of drivers also
increases from about 40 RMB to near 80 RMB for most of the schemes except
DFM. As the DFM scheme adopts a distance-first approach for the matching,
the increased pickup window has less impact on the average waiting time, and
its average income is about 13 RMB less than other schemes.

Fig. 3. Impact of number of taxis on (a) the average waiting time, (b) global utility,
(c) ratio of real-time requests, (d) ratio of appointment, (e) overall success ratio, and
(f) average income.

Fig. 4. Impact of the interval of preferred pickup window on (a) the average waiting
time, (b) global utility, (c) ratio of real-time requests, (d) ratio of appointment, (e)
overall success ratio, and (f) average income.

6 Conclusions

We have proposed an algorithm called BMF to solve the taxi-rider match
scheduling problem on the time-dependent road network. The trajectory and ser-
vice related utilities are defined, based on which the maximal utility calculation
is transformed to the minimal cost flow problem that could be solved efficiently.
The scheme integrates and processes both the real-time and appointment-based
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requests, and requests could be revoked to maximize the overall utility. Experi-
mental results show that the proposed scheme can effectively decrease the waiting
time of riders.
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Abstract. Recommending events to groups is different from to single-user in
event-based social networks (EBSN), which involves various complex factors.
Generally, group recommendation methods are either based on recommendation
fusion or model fusion. However, most existing methods neglect the fact that user
preferences change over time. Moreover, they believe that the weights of different
factors that affect group decision-making are fixed in different periods. Recently,
there are a few works using the attention mechanism for group recommendation.
Although they take into account the dynamic variability of user preferences and
the dynamic adjustment of user features weights, they haven’t discussed more
features of groups and events affecting group decision-making. To this end, we
propose a novel Feature-levelHierarchical Attention Network (FHAN) for group
event recommendation for EBSN. Specifically, group decision-making factors are
divided into group-feature factors and event-feature factors, which are integrated
into a two-layer attention network. The first attention layer is constructed to learn
the influence weights of words of group topics and event topics, which generates
better thematic features. The second attention layer is built to learn the weights of
group-feature factors and event-feature factors affecting group decision-making,
which results in better comprehensive representation of groups and events. All
influence weights of different features in the model can be dynamically adjusted
over time. Finally, we evaluate the suggested model on three real-world datasets.
Extensive experimental results show that FHAN outperforms the state-of-the-art
approaches.

Keywords: Event-based social network · Hierarchical attention network · Group
recommendation · CNN

1 Introduction

With the rapid development of social network services, Event-Based Social Networks
(EBSN) have emerged and become more and more popular, such as Meetup, Plancast,
Douban, etc. Through the platforms, it is easier for people to organize and participate
in events or activities such as going to concerts with friends, watching movies with
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family and attending academic meetings with colleagues, Differing from ordinary social
networks, EBSN generally don’t serve for a single user, but rather for groups attending
activities together. Therefore, recommending events to groups has become an important
task for EBSN.

The group recommendation systems usually fuse the preferences of each user in a
group when recommending [1], which may occur at different stages of recommendation
process. In generally, preference fusion methods can be divided into two categories [6,
8, 23]: recommendation fusion and model fusion. Among them, the recommendation
fusion is to first generate a recommendation or calculate a prediction score for each
group member, and then generate a group recommendation or a group prediction score
[2, 5]; the model fusion is to first fuse member preference models for generating a
group preference model, and then make recommendations [3, 7–9]. Whether using the
methods based on recommendation fusion or model fusion, the user preferences in the
group are usually considered in a static form, which is inconsistent with the real situation
that user preferences may change over time. Moreover, these methods believe that the
weights of factors that affect group decision-making are fixed in different periods. [26,
27] proposed the group recommendation methods based on attention mechanism, which
take into account the dynamic variability of user preferences and the dynamic adjustment
of the weights of user feature factors. However they haven’t considered more features
of groups and events such as the categories of groups, the locations of events, the cost
of events, the topics of groups and events, etc.

Themotivation of the solution in this paper is: group participation in an event activity
is affected by a variety of factors, and different factors have different influence weights
on the group’s decision whether to participate in an event activity and the influence
weights are not fixed, but change over time. For example, multiple members of a family
form a group and decide whether to go to cinema together. There are some factors that
affect them to go to cinema together: (1) Whether the content of the movie meets their
interests; (2) The price of movie ticket; (3) The movie broadcast time; (4) The distance
which is from the cinema to home and so on. If the movie theater is far away from
their home, “distance” may be an important factor for them to consider when the family
decides whether to go to cinema. If the family buys a private car over time, traveling
becomes very convenient. So when the family considers whether to watch a movie next
time, “distance” may be not an important factor for them to consider. Therefore, the
influence weight of “distance” has changed when they decide whether to watch a movie.

To this end, we propose a novel method called Feature-level Hierarchical Attention
Network (FHAN) for recommending events to groups in EBSN. In order to capture
the dynamic attributes of influencing factors, we use the attention networks that can
automatically assign the weight of each factor and adjust it dynamically. The hierarchi-
cal structure can better generate different levels of group features and event features.
Specifically, we first embed the original features both of groups and events into a low-
dimensional dense vector space. Then we use a convolutional neural network and an
attention mechanism to learn the topical characteristics of groups and events. The influ-
ence weights of group theme features, event theme features, and other features are
learned through another attention mechanism. Weights and feature vectors are weighted
and summed, and then be sent to a fully connected neural network. Thus, a high-level
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group representation and event representation are obtained. The contributions of the
paper can be summarized as follows:

• For recommending events to groups,we build a feature-level hierarchical attention net-
work framework with good scalability. To best of our knowledge, it is the first work to
generalize a framework using feature-level attention for group event recommendation
in EBSN.

• Through the feature-level hierarchical attention network, not only can we learn the
influence weights of different words on the group topics and event topics, resulting in
better theme characteristics, but also learn the influence weights of the group-feature
factors and event-feature factors. The influence weights can be dynamically adjusted
over time. Finally, a high-level comprehensive feature representation of group and
event are generated for group event recommendation.

• We have performed experiments on three real datasets, to verify that the suggested
model have better performance than the state-of-art models.

The remaining of the paper is organized as follows: Sect. 2 introduces the related
works; the problem statement is discussed in Sect. 3; Sect. 4 describes the details of
FHAN; Comparative experiments on real datasets are conducted in Sect. 5, and we
summarize the work in the end.

2 Related Work

Group recommendation is different from traditional recommendation, and mainly uses
preference fusion methods for recommendation, which can be divided into model-based
fusion methods and recommendation-based fusion methods [24].

The model fusion method fuses user preferences of group to generate a group prefer-
ence model, and then group recommendation is produced based on the group preference
model. Yu et al. [8] proposed a model fusion method based on item feature scores. The
process of model fusion is to find the preference model with the smallest global distance
of user preference models in the group as the group preference model. Yuan et al. [4]
proposed a probabilistic model called COM to simulate the generation of group pref-
erences for events. COM aggregates the preferences of group members with different
weights to estimate the group’s preferences for events, thereby performing group rec-
ommendation. Kagita et al. [10] proposed a fusion method based on priority sequence
mining and virtual user model. The user preference model is composed of a series of
item sequences. It constructs a virtual user preference model through priority sequence
mining to achieve preference fusion.

The recommendation fusion method fuses users’ prediction score or a list of rec-
ommended items to obtain a group prediction score or a group recommendation list.
O’Connor et al. [23] combined the user recommendation list with the least pain strategy
to get the group recommendation list. Chen et al. [11] used genetic algorithm to optimize
the weights of group members, and proposed a group recommendation method combin-
ing collaborative filtering and genetic algorithm. The research results of Naamani-Dery
et al. [12] show that a balance can be found between the size of the recommendation list
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and the cost of group preference extraction, and the scale of the group recommendation
list can be reduced by iterative preference extraction.

Whether it is a method based on traditional recommendation fusion or model fusion,
they did not consider that the preferences of users in the group change dynamically over
time, and they did not even consider the influence weights of group feature and event
feature on the decision-making problem.

Recently, attention mechanism has become a research hotspot. There are a large
number of applications in the fields of natural language processing, statistical learning,
image video and recommendation systems [13–17].

Researchers engaged in the research of recommendation systems have introduced the
attention mechanism to improve the recommendation performance. Chen et al. [18] pro-
posed Attention Collaborative Filtering (ACF) model and introduced a novel attention
mechanism in collaborative filtering to solve challenging of item and component-level
implicit feedback in multimedia recommendation. He et al. [15] proposed a neural net-
work model called NAIS to solve the problem of collaborative filtering of projects. The
key of NAIS is the attention network and it can distinguish which historical item in
the users’ portrait is more important for prediction. Ying et al. [19] proposed a novel
two-layer hierarchical attention network that expresses users’ long-term and short-term
preferences through different layers of attention, forming final preferences, and rec-
ommending the next item that users may be interested in. Zhou et al. [20] proposed a
modeling framework called ATRank for user heterogeneous behavior sequences based
on attention mechanism, and applied it to recommendation scenarios. Chen et al. [21]
proposed a probabilistic model HTPF, which takes into account both user attention and
preferences in social recommendation.

The above studies are applied to the traditional recommendation system. It provides
a good research idea for the combination of attention mechanism and group recom-
mendation. Cao et al. [27] proposed the AGREE model. For the first time, the attention
mechanism in neural networks is used for group recommendation. However, this method
doesn’t consider the influenceweights of the item features. Vinh Tran et al. [26] proposed
the MoSAN model, which introduces attention mechanism to group recommendation.
This method can model complex group decision-making processes. But it lacks in-depth
mining features of the topics both of groups and events. Moreover, it doesn’t consider
the comprehensive impact of both group features and event features on group decisions.

3 Problem Statement

LetG= {g1, g2,… gL} denote a set of groups;U = {u1, u2,… uN} denote a set of users;
E = {e1, e2, … eM} denote a set of events; where L, N and M are the total numbers of
groups, users and events, respectively. Each group consists of several users.

The decision whether a group participate an event is influenced by group-feature
factors and event-feature factors. In this paper, we just list some important factors for
discussion. The group-feature factorsmainly include topic users and category of a group,
and the event-feature factors include topic time, distance and cost of an event. Whether it
is a group feature or an event feature, the degree of influence on the decision is different.
Moreover, the influence weights are not fixed, but change with time.
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Our goal is to predict the group’s preference for the event, given group g and event
activity e.

Input: group original features, event original features, target group g, target event e.
Output: group g′s preference score for event e.

4 FHAN Model

This section introduces suggested feature-level hierarchical attention group event rec-
ommendation (FHAN) model. We show the general framework first, and then describe
the specific situations at each layer.

4.1 Model Framework

Our FHAN model architecture is shown in Fig. 1, which is a feature-level hierarchical
attention network. The bottom layer is the decision factors that influence the group
participation event. The left side is the group-feature factors and the right side is the
event-feature factors. We first embed all factors into the low-dimensional dense vector
space through embedding. For factors other than group topics and event topics, we
directly use their low-dimensional dense vectors as their feature vectors. The topics of
group and event are generally the main factors affecting group decision-making, and are
generally described in text. Therefore, we construct the first-level attention network to
learn about this part of the elements, which uses the attention mechanism to capture the
weights of the words’ impact on text sentences. The convolution and pooling operation
of the convolutional neural network are used to obtain the final semantics of the text.
Finally, the topic features of group and event are obtained through the fully connected
layer learning.

After obtaining the feature vectors of group-feature factors and event-feature factors,
in order to capture how various factors influence the decision of group participation
event, we build the second-level attention network. It can automatically learn the impact
weight of each factor through the attention mechanism. The weights and feature vectors
are weighted and summed, and then we send it to the fully connected network. After
that, we obtain high-level representation of group and event. Finally, the representation
of group and event is multiplied to obtain the group’s prediction score for event.

This paper provides a general model framework. The influencing factors are not
limited to those listed in the model framework. Users can compress or expand according
to their own conditions. At the same time, the attention mechanism can also be appro-
priately adjusted. For example, if the different influence weights of users in the group
on event preferences are to be considered, the attention mechanism can be added before
“group users” mapping feature vectors.

4.2 Embedding Layer

One-Hot encoding is usually used as an embedding vector of attributes, but it is too
sparse and the relationship between the data is lost. Therefore, this paper does not use
One-Hot coding. Instead, we encode a digital dictionary containing raw data such as
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Fig. 1. The architecture of FHAN model

group category, group users, group topic, event topic, event time, event cost, and event
distance. Then a dictionary embedding matrix will be constructed and the embedding
vector of each factor will be obtained through look-up table. The category embedding
vector gcategory of group, user embedding vector gusers of group, event time embedding
vector etime, event cost embedding vector efee, and event distance embedding vector
edistance are directly used as their respective feature vectors.

4.3 First Attention Layer

Figure 2 is the expanded form of the first attention layer. First, the topics of group and
event are mapped to a low-dimensional vector space through embedding. The dimension
set in this paper is 30, which is enough to express text semantics. Let K = {1,2,3, …,
30}. The input vectors of this layer are X1, X2, X3….X30. The topics are text composed
of words. There is a contextual relationship between words. The context at different
positions has different weights on the semantic impact of words. We can learn the
influence weights of words through the attention mechanism. Take the vector X3 as an
example and directly use the similarity to calculate the weights. Formula 1 is to calculate
the influence weights. Formula 2 is to calculate the weighted sum of the weights and the
vectors.

γ3,i = XiX3
∑

i∈K∩i �=3 XiX3
, (1)
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Y3 =
∑

i∈K∩i �=3
γ3,iXi, (2)

where γ3,i is the influence weight of the i-th input vector on X3.
We get the weighted sum of each input vector through the attention layer: Y1,

Y2, Y3…Y30. Then use the convolution operation to get the feature map, as shown
in formula 3.

A = f
(∑

W0Y + b0
)
, (3)

where A is the feature map output by the convolution layer, f is the ReLu activation
function, W0 and b0 are filtering weights and filtering offset parameters, respectively.

The main function of the Pooling layer is down-sampling, which further reduces the
number of parameters by removing unimportant features in the feature map. There are
many Pooling methods. This paper uses Max Pooling, which is to take the maximum
value in the feature as the sample value after sampling.

After the convolution and pooling layers, the input vector is finally transformed into
low-dimensional dense topic feature vectors for group and event: gtopic and etopic.

convolu on & pooling
layer

input layer

a en on layer

X1 X2 X3 X29 X30

Y1 Y2 Y3 Y29 Y30

∑

γ3,29

γ3,30γ3,1
γ3,2

Fig. 2. Expanded view of the first attention layer

4.4 Second Attention Layer

The influence weights of group-feature factors and event-feature factors are calculated
through neural network learning. Equations 4 and 5 show the calculation of group-feature
factors’ affecting weights. For the calculation of event-feature factors’ affecting weights,
see Eq. 6 and 7.

hi = ∅(Wigi + bi), (4)
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αi = exp
(
uTi hi

)

∑
i∈{categry:1,users:2,topic:3} exp

(
uTi hi

) , (5)

hj = ∅

(
Wjej + bj

)
(6)

βj =
exp

(
uTj hj

)

∑
j∈{topic:1,time:2,fee:3,distance:4} exp

(
uTj hj

) , (7)

where Wi, bi and ui denote model parameters of group-feature factors, Wj, bj and uj
denote model parameters of event-feature factors, hi and hj represent implicit represen-
tations of group-feature factors and event-feature factors, gi and ej are feature vector of
the factors generated by the embedding layer and the first attention layer, respectively.
∅ is the activation function and we use tanh as the activation function. αi and βj are
the influence weights of group-feature factors and event-feature factors, respectively.
Finally, we calculate the attention-weighted summation of group features and event fea-
tures to obtain the group feature vector ggroup and event feature vector eevent at this
stage.

ggroup =
∑

i∈{categry:1,users:2,topic:3} αigi, (8)

eevent =
∑

j∈{topic:1,time:2,fee:3,distance:4} βjej. (9)

4.5 Fully Connected Layer and Output Layer

We send the group feature vector ggroup and the event feature vector eevent to the fully
connected layer to further learn the features. Then map them to vector space of the same
dimension at the same time. Finally, the final representation vector of the group g is
multiplied with the final representation vector of the event e to obtain a prediction score.

g = tanh
(
Wgroupggroup + bgroup

)
, (10)

e = tanh(Weventeevent + bevent), (11)

ŷge = g · eT. (12)

4.6 Model Training

We take the group’s rating for event as a regression task. We use supervised method to
train the model and take the mean square error as the loss function. AdamOptimizer as
the optimizer is used to optimize the mean square error function.

L = 1

N

∑(
ŷ − y

)2
, (13)

where N represents the number of samples in the training dataset, y and ŷ denote the
real target score and prediction score in the training dataset.
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5 Experiment

In this section, we compare the experimental results of FHAN with other five base-
line methods and three variant methods on three real datasets. Generally speaking, our
experimental goal is to answer the following research questions (RQ):

• RQ1: How does FHAN perform as compared to existing advanced methods?
• RQ2: How does attention affect FHAN model?
• RQ3: How does FHAN model perform with different hyper-parameters values?

5.1 Experiment Setup

Datasets. We performed experiments on three real datasets. The first two datasets are
from two different cities on the Meetup1 website: Philadelphia and Montgomery. There
are 239 groups and 22358 events in the Philadelphia dataset, and 1347 groups and
25408 events in the Montgomery dataset. The actual score data of the two datasets is
a floating point number between 0–5. We discarded the data with zero score. The zero
score is most likely that the user did not participate in scoring and does not represent the
true score. Both datasets include various group-feature factors and event-feature factors,
such as group category, group users, group topic, group latitude and longitude, event
topic, event time, event cost, and event latitude and longitude. This paper calculates the
distance which is from the group location to the event location according to the latitude
and longitude of the group and the event. The distance is considered as an event-feature
factor. So the group-feature factors and event-feature factors contained in Philadelphia
and Montgomery datasets are: group topic, group category, group users, event topic,
event time, event fee, event distance.

The third dataset comes from MovieLens 1M. This dataset contains more than 100
million comments frommore than 6,000 users on nearly 4,000movies. SinceMovieLens
1M contains only users and no groups. This paper first divides users who have rated the
same movie into a group, so that we have nearly 4,000 groups. Then take the user-rated
movies as events that the group has participated in. If there are multiple users rating a
movie at the same time, we take their average score as the score for a group participating
movie event. Therefore, the group’s score for movie ratings ranges from 1 to 5. Each
group is equivalent to participating in multiple movie events. Finally, we generate a new
dataset MovieLens New. The new dataset includes one group-feature factor and two
event-feature factors: group users, event topic and event time.

Table 1 is the statistical information of the three datasets. We divide the three data-
sets into training dataset and testing dataset.

Evaluation Metrics. Weuse two indicators to evaluate model performance: RootMean
Square Error (RMSE) and Mean Absolute Error (MAE). For the two metrics, a smaller
metric value indicates better recommendations.

1 http://www.meetup.com/.

http://www.meetup.com/
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Table 1. Statistics of datasets.

Datasets Philadelphia Montgomery MovieLens
New

Group 239 1347 3952

Event 22358 25408 3952

Score (0, 5] (0, 5] [1, 5]

RMSE =
√

1

|T |
∑

(g,e)∈T
(
ŷge − yge

)2
, (14)

MAE = 1

|T |
∑

(g,e)∈T
∣
∣ŷge − yge

∣
∣, (15)

where g and e represent groups and events, and T is the number of samples in the test
set, ŷge and yge denote the prediction score and real target score in the test set.

Baselines. We compared our model FHAN with baseline methods as follows.

• Random: An algorithm that predicts a random score based on the distribution of the
training set, assuming the distribution is normal.

• CF [25]:The similarity between users or projects is combinedwith the user’s historical
scoring data to calculate the user’s preference for the project. This method has the
problems of sparse data and cold start.

• NMF [22]: The generalized structure of matrix factorization and the structure of
multi-layer perceptron are combined, and the linear features of matrix factorization
and the non-offline features of neural networks are combined in themodeling user-item
interaction.

• AGREE [27]: It is the first to use the attention mechanism in neural networks for
group recommendation. This model considers that the members of the group have
different weights for different items. The user-item interaction information is used to
improve the effect of group recommendation. AGREE is similar to the variant method
in our model framework that puts an attention mechanism before the “group user”
embedding vector instead of the “group topic” and lacks another attentionmechanism.

• MoSAN [26]: It uses an attention mechanism to obtain the influence of each user in
the group. The model can learn the influence weights of users in the group, and it
recommends items to the group based on the weights and preferences of its members.
The method can model complex group decision-making processes. This method con-
siders different contexts when calculating the influence weights of users in a group,
which is similar to the structure of our model removing “CNN + Attention” and only
considering the issue of user-user interactions attention weights.

• FHAN0:Avariant of themodel in this paper, which removes the attentionmechanism
based on the model FHAN.
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Table 2. Performance comparison of different methods

Training Metrics Algorithms

Random CF NMF AGREE MoSAN FHAN 0 FHAN 1-1 FHAN 1-2 FHAN

Philadelphia (50%) RMSE 0.744 0.611 0.573 0.501 0.498 0.527 0.488 0.485 0.421

MAE 0.492 0.384 0.384 0.363 0.369 0.379 0.375 0.369 0.338

Philadelphia (70%) RMSE 0.712 0.558 0.561 0.493 0.489 0.515 0.472 0.471 0.402

MAE 0.483 0.371 0.373 0.358 0.365 0.372 0.369 0.363 0.311

Philadelphia (90%) RMSE 0.699 0.55 0.551 0.482 0.48 0.505 0.465 0.461 0.385

MAE 0.471 0.363 0.363 0.349 0.354 0.365 0.359 0.356 0.292

Montgomery (50%) RMSE 0.751 0.622 0.575 0.506 0.499 0.526 0.485 0.483 0.425

MAE 0.493 0.383 0.384 0.364 0.369 0.381 0.377 0.371 0.339

Montgomery (70%) RMSE 0.711 0.556 0.561 0.491 0.487 0.513 0.477 0.476 0.412

MAE 0.484 0.375 0.375 0.359 0.366 0.374 0.368 0.364 0.313

Montgomery (90%) RMSE 0.697 0.552 0.549 0.483 0.482 0.508 0.464 0.463 0.382

MAE 0.473 0.361 0.362 0.348 0.353 0.368 0.355 0.359 0.288

MovieLens New (50%) RMSE 1.592 0.985 0.981 0.891 0.881 0.922 0.882 0.883 0.834

MAE 1.226 0.751 0.743 0.693 0.699 0.723 0.699 0.698 0.645

MovieLens New (70%) RMSE 1.573 0.976 0.967 0.883 0.874 0.913 0.871 0.872 0.825

MAE 1.218 0.743 0.737 0.685 0.691 0.712 0.695 0.691 0.634

MovieLens New (90%) RMSE 1.505 0.923 0.916 0.862 0.862 0.892 0.863 0.86 0.816

MAE 1.207 0.728 0.724 0.679 0.68 0.703 0.689 0.682 0.625

• FHAN1-1: A variant of the model in this paper. It is equivalent to the model that the
second-level attention mechanism is removed and the first-level attention mechanism
is retained in FHAN.

• FHAN1-2: A variant of the model in this paper. It is equivalent to the model that the
first-level attention mechanism is removed and the second-level attention mechanism
is retained in FHAN.

Parameter Settings. The dimensions of the embedding matrix are 32 dimensions for
the two datasets on Meetup and the MovieLens New dataset is 256 dimensions. The
learning rate is set to 0.0001. We take AdamOptimize as optimizer. The dropout is set
to 0.2 and the batch_size is set to 256. The convolution sliding window window_sizes
= {2, 3, 4, 5}. The number of convolution kernels is 8. The attention_size is set to 8.
Epoch = 20.

5.2 Overall Performance Comparison (RQ1)

On three datasets, we compared the FHANmodel with other baseline methods, as shown
inTable 2.Wehave the following observations: (1)Our FHANmodel achieves the best on
all three datasets, which is better than the current advanced methods. On both indicators,
it is less than 0.05 compared to each baseline method, which shows that our model has
clearly improved in terms of performance; (2) The models that use attention (including
the baseline method and our model method) perform better than models that do not use
attention, indicating that the attention mechanism has played a role in improving model
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performance; (3) The AGREE and MoSAN models are inferior to our FHAN model,
because they only consider the impact weight of “group users” factor and the MoSAN
model does not fully mine the topic semantics of groups and events; (4) The higher the
proportion of the training dataset, the better the performance of eachmodel, which shows
that training with a large amount of data can better fit the model and can learn better
features. Training with a small amount of data will cause the model to be under-fitting.

5.3 The Role of Attention on the Model (RQ2)

From the experimental results of the model FHAN and the variant models FHAN0,
FHAN1-1, FHAN1-2, the hierarchical attention model is better than the model without
attention or with the single-layer attention. It indicates that two attention mechanisms
layers have a positive effect on the model. The first attention layer promotes the model
to capture the influence weights of words in text semantics, resulting in better topic
feature vectors for group and event. The second attention layer enables the model to
automatically calculate the influence weights of group-feature factors and event-feature
factors, resulting in more excellent comprehensive feature vectors of group and event.

In order to better understand the dynamic changes of the weights generated by the
attention mechanism in the model, we take the Philadelphia city dataset as an example,
and sort the training data set by the time of the event. We take out 50%, 70%, and
90% of the data volume, respectively. We examine the change in the output values of
the second-level attention weights. As shown in Fig. 3, Fig. 3(a) is the changes in the
attention weights of group-feature factors at three different moments, reflecting that the
influence weight of the group topic is decreasing, and the influence weights of the user
and category of the group are increasing. The reason may be that more consideration
is given to: how the opinions of the users in the group are unified and whether the
type of event activity is consistent with the type of group attention. Figure 3(b) shows
the changes in attention weights of event-feature factors at three different moments,
reflecting that the topic impact weight of the event is first rise and then fall, the cost and
distance impact weights of the event are decreasing, and the time impact weight of the
event is increasing. The reason may be that the group’s interest in the event’s topical
declines after rising, and group does not care much about the cost of participating in the
event and the location of the event. They are more concerned about whether they have
time to participate in the event.

5.4 Effect of Hyper-parameters on Model Performance (RQ3)

There are mainly two hyper-parameters in the FHAN model: Attention Size and Group
Size. Since the two urban datasets on Meetup are basically the same in terms of the
impact of hyper-parameters on model performance, this paper selects the Philadelphia
city data representative Meetup dataset.

Attention Size. The attention size may affect the model’s ability to evaluate source
information and choose an appropriate recommendation strategy. In order to study the
effect of attention size, we tested the model performance when the attention size was 8,
16, 32 and 64, as shown in Fig. 4. The results show that FHAN is robust to changes in
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attention size. For the Meetup dataset, we set the attention size to 8, and it is possible
to calculate the feature vectors with a small attention size. However, excessive attention
size may cause over-fitting and degrade model performance. For the MovieLens New
dataset, because it is not sensitive to the choice of attention size, we also set the attention
size to 8.
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Fig. 3. The changes of attention weight

Fig. 4. Impact of attention size: RMSE and MAE of FHAN model on two datasets.

Fig. 5. Impact of group size: RMSE and MAE of FHAN model on two datasets.
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Group Size. To study the performance of FHAN model on different group sizes, we
run the experiments when the group size was {1–5, 6–10, 11–15, 16–20} members. As
shown in Fig. 5, the results show that the FHAN model performs best at a group size of
6–10 members.

6 Conclusions

In this paper, we propose a model called FHAN to solve the problem of recommend-
ing events to groups. The FHAN model not only captures the influence weights of
words when learning the topic feature of group and event, but also captures the influ-
ence decision weights of group-feature factors and event-feature factors when learning
the comprehensive features of group and event. These impact weights are not fixed but
dynamically adjusted. Finally, we generate a high-level comprehensive feature represen-
tation of group and event, which makes the prediction score of the group participation
event more accurate. Experimenting on three real datasets, our FHAN model performs
best. In future research work, we intend to further optimize the model and improve the
model recommendation performance.
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Abstract. The goal of sequential recommendations is to capture the
transitions of users’ interests. Most existing methods utilize sequential
neural networks to model interaction records, mapping items into latent
vectors. Although such methods do explore the transitions of items in
interaction sequences, they only capture the sequence dependencies of
items, neglecting the deep semantic relevance between items. Such lim-
ited information contributes less to catching the complicated sequential
behaviors of users accurately. In this paper, we propose a novel model
Knowledge-Aware Sequential Recommendation (KASR), which captures
sequence dependencies and semantic relevance of items simultaneously
in an end-to-end manner. Specifically, we first convert the interaction
records into a knowledge-transfer interaction sequence, which reflects
the fine-grained transitions of users’ interests. Next, we further recur-
sively aggregate information in the knowledge graph based on a specific
relation attention network, to explicitly capture the high-order relevance
between items. A knowledge-aware GRU is later introduced to explore
the sequential and semantic relevance between items automatically. We
have conducted extensive experiments on three real datasets, and the
results demonstrate that our method outperforms the state-of-the-art
models.

Keywords: Recommendation systems · Recurrent neural networks ·
Sequential prediction · Knowledge graph

1 Introduction

Recommendation systems are ubiquitous, extracting useful information from
online resources to help us locate data sources quickly. As the interests of users
always change dynamically, to simulate dynamic and evolving preferences for
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Fig. 1. Example of relevant attributes of movies.

better user experience, Sarver et al. [15] proposed the sequential recommen-
dation, which aims to predict the next item following a specific interaction
sequence.

Sequential recommendations have great value in web applications, such
as product prediction in online e-commerce, news exposure on the website,
page push in a click session. For capturing sequential users’ behaviors, some
work [12,16] is proposed to predict the next item based on Markov Chains.
Recently, the majority of studies have introduced powerful deep learning algo-
rithms into sequential recommendations. Some research [4,5] proposes recur-
rent neural networks to capture the contextual relevance of items in interac-
tion sequences. In addition, other existing work [8,24] designs networks to cap-
ture users’ long-term preferences and local interests simultaneously. By encoding
interaction sequences into hidden vectors, the above methods do capture users’
dynamic preferences, but they also have some limitations. Since the hidden vec-
tors only contain the associated information in each dependent sequence, it is
insufficient to capture the complicated preferences of users accurately. Further-
more, previous methods only consider the transitions of items in sequences but
neglect the fact that the attributes of items are often related to each other. As
a real example shown in Fig. 1, Alice has watched four movies recently that are
regarded as her interaction sequence [m1, m2, m3, m4]. It is observed that m1

and m2 belong to the same subjects, while both m2 and m3 are directed by
Joss Whedon. The attribute association between movies reflects the fine-grained
sequential preferences of users. By mining rich semantic information in KG, we
may infer that Alice will watch an action movie next time directed by Joss
Whedon or written by Stan Lee.

The attributes of items are not isolated but linked up with each other, form-
ing a knowledge graph (KG) [23]. To capture fine-grained users’ preferences,
many non-sequential methods [20,21,26] introduce KG to enhance the modeling
of knowledge-aware recommendations. Still, these non-sequential methods model
each static user-item interaction independently, failing to capture the contextual
relevance of items and cannot be applied to sequential prediction. For sequential
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recommendations, Huang et al. [6] utilize TransE [1] to get pre-trained entity
embedding to incorporate external KG into sequential recommendations. How-
ever, KSR [6] regards KG embedding and recommendation as two independent
tasks with shared item embedding. Such separate modeling cannot fuse sequence
dependencies and semantic relevance accurately. Since instead of directly plug-
ging high-order relations into the model optimized for the recommendation, such
a method only explores users’ preferences in an implicit way, which may ignore
long dependency in sequences and affect the final performance [21]. Therefore,
it is urgent and intuitive but challenging to design a unified model to capture
both the sequence of interactive records and the semantic information in KG
simultaneously.

Considering the above issues, we propose a novel model KASR, to capture
the sequence dependency and semantic relevance of items simultaneously. Dif-
ferent from the existing knowledge-aware recommendation models, our method
judiciously integrates KG embedding into sequential recommendations in an
end-to-end manner. In detail, we first introduce a knowledge-transfer interac-
tion sequence based on relevant attributes between items, which incorporates
the semantics of KG and reflects the fine-grained transitions of users’ poten-
tial interests. To fully capture the high-order semantic relevance of items, a
specific relation attention network is proposed to recursively aggregate informa-
tion in KG. Furthermore, we present the knowledge-aware GRU that unifies the
knowledge-transfer interaction sequence and high-order information aggregation
in KG, automatically exploring the sequential and semantic relevance to capture
the implicit preferences of users. To our best knowledge, this is the first effort
to integrate KG embedding into sequential recommendations in an end-to-end
manner. Our contributions are summarized as follows:

1. We propose an end-to-end model that captures both sequential dependency
and semantic relevance of items, exploring the intrinsic correlation between
KG embedding and sequential recommendations.

2. We introduce the relation attention network to explicitly aggregates the high-
order relevance in KG, and a unified knowledge-aware GRU directly plugs the
relevance into the modeling of interaction sequences.

3. Extensive experiments are conducted on three real-world datasets, and the
results show that our model outperforms the state-of-the-art baselines.

2 Problem Definition

In this section, we formally define the basic notations used in this paper. Suppos-
ing that we have n items represented as V = {v1, v2, ..., vn}. Our task focuses on
the recommendation with implicit feedback, where we sort the interaction items
generated by a user at time t according to relative time to form the interaction
sequence, denoted as St = [v1, v2, ..., vt].

A knowledge graph can be considered as G = (E ,R), which includes a large
number of entity-relation-entity triples that represent the facts in the real world.
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E and R are the set of entities and relations, and each triple is represented as
{(ei, rij , ej)|ei, ej ∈ E ; rij ∈ R}, where rij denotes the relation between the
entity ei and ej . In knowledge-aware sequential recommendations, each item
vi corresponds to an entity ei in KG, so that the interaction sequence St =
[v1, v2, ..., vt] can be equivalently denoted as St = [e1, e2, ..., et]. As mentioned
earlier, attributes between items are always linked with each other. We denote
the relevant attributes between entity ei and ej as the set A(ei,ej). What’s more,
given an origin sequence St, we formally define the corresponding knowledge-
transfer interaction sequence as Sa

t = [e1,A(e1,e2), e2, ..., et−1,A(et−1,et), et],
where A(et−1,et) denotes the relevant attributes between any two adjacent enti-
ties.

Based on the preliminaries above, given an interaction sequence St as well as
knowledge graph G, our task is to infer the next item following the sequence at
time t + 1. Specifically, our model outputs a probability vector ŷ ∈ R

n, where
n denotes the number of candidate items and ŷi indicates the probability of the
i-th candidate item being selected next time.

3 The Proposed Method

In this section, we introduce the Knowledge-Aware Sequential Recommendation
model (Fig. 2). Given an interaction sequence, KASR outputs the probability of
all the corresponding candidate items being selected next time.

3.1 Knowledge-Transfer Interaction Sequence

Users’ interests always change dynamically, and the characteristics of interacted
items will affect the change. To capture the fine-grained preferences of users at
the attribute level, we explore the transitions of users’ interests by mining the rel-
evance between items. In reality, there is usually more than one related attribute
between any item-pair, which has different priorities to describe their relevance.
Inspired by [9], the degree of nodes reflects the structure and semantic in a
graph, and nodes with a larger degree always represent stronger characteristics.
For an interaction sequence St, we extract T relevant attribute nodes between
two items and keep the degree of nodes as large as possible, as the connections
to construct a knowledge-transfer sequence Sa

t . The validity of sampling based
on degrees will be demonstrated in the experimental part.

The formal description of constructing a knowledge-transfer interaction
sequence is shown in Algorithm 1. We first sort the neighbor nodes of all entities
in the descending order of degrees (Line 2–4). Then, loop through any adjacent
item-pair in St and extract their relevant attributes in G. For adjacent items
vi and vj , we map them to the corresponding entity and obtain the intersec-
tion of neighbor nodes LI , which contains all the relevant attributes between
ei and ej (Line 6–9). Then, we extract T connection attributes from LI while
keeping the degree of nodes as large as possible (Line 10–12). Note, for the last
entity et, we use the padding node as its relevant attributes at the current time.
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Fig. 2. The workflow of KASR model. Given an interaction sequence, the original
interaction sequence is converted into a knowledge-transfer sequence first. Then, we
aggregate the high-order semantic information of entities in KG. A knowledge-aware
GRU explores sequential relevance and high-order connectivities between items simul-
taneously. Finally, we calculate the probability that candidate items may be selected
based on hidden vectors.

Finally, all entities are spliced one after another by connection attributes to
form the knowledge-transfer interaction sequence Sa

t (Line 13), which implicitly
reflects the fine-grained transitions of users’ interests. It is worth mentioning that
the knowledge-transfer sequence we introduced can be easily extended to items
in multiple contexts. For simplicity, we only consider the relevant attributes
between adjacent items.

3.2 Attention Information Aggregation

Relation Attention Network. Knowledge graph is a natural graph struc-
ture, where each node is cooperatively characterized by its neighbor nodes.
Each entity ei is denoted as an entity embedding ei ∈ R

d and each relation
rij is denoted as a relation embedding rij ∈ R

d. Here, d is the dimension size.
N(ei) = {(ei, rij , ej)|(ei, rij , ej) ∈ G} denotes the set of neighbor nodes to ei.
To capture the different contributions of each neighbor to ei, we integrate the
relation features to improve self-attention [19] to compute the attention score:

g(ei, rij , ej) = Wr · (ei � rij � ej) + br, (1)

α(ei,ej) =
exp(g(ei, rij , ej))∑

(êi,r̂ij ,êj)∈N(ei)
exp(g(êi, r̂ij , êj))

, (2)

where Wr ∈ R
d×d and br ∈ R

d are weight matrices applied to every triple.
� denotes the dot product operation. The output normalized coefficient α(ei,ej)

represents the contribution of neighbor ej to ei.

High-Order Information Aggregation. Relation attention calculates the dif-
ferent contributions of neighbor nodes, which makes it possible for us to aggre-
gate features of neighbors to capture the semantic relevance of items. Formally,
the neighborhood aggregation information of entity ei is defined as:
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Algorithm 1: Constructing Knowledge-Transfer Interaction Sequence
Input: knowledge graph G = (E ,R), size of attribute nodes T ;

interaction sequence St = [v1, v2, · · · , vt]
Output: knowledge-transfer interaction sequence Sa

t

1 initialize Sa
t , adjacency matrix M;

2 foreach e ∈ E do
3 M[e] = sorting neighbors(e) by node degree;
4 end
5 for [vi, vj ] in St do
6 mapping [vi, vj ] to entities [ei, ej ];
7 Lei ← M[ei];
8 Lej ← M[ej ];
9 LI ← Interaction(Lei ,Lej );

10 foreach e in LI do

11 add e to A(ei,ej) util T nodes in A(ei,ej);
12 end

13 Sa
t ← concat(Sa

t , [ei : A(ei,ej)]);

14 end
15 return Sa

t ;

eN(ei)
=

∑

(ei,rij ,ej)∈N(ei)

α(ei,ej) · ej , (3)

where α(ei,ej) controls how much information entity ei aggregates from neighbor
node ej . The output vector eN(ei)

∈ R
d indicates the aggregated neighbor infor-

mation of node ei. Finally, we combine the features of the central node ei itself
and neighbor nodes to update ei as:

fagg(ei, eN (ei)) = σ
(
Wf · [ei || eN (ei)] + bf

)
, (4)

where Wf ∈ R
d×2d and bf ∈ R

d are weight matrices, and || is the concatenation
operation. σ is the sigmoid function. Information in KG propagates layer by
layer along with relations. Inspired by previous methods [20,21], we can stack
multi-layer information aggregation to explore the high-order semantic relevance
between entities. Formally, we iteratively define k-order information aggregation
of ei as:

eki = fagg(ek−1
i , ek−1

N (ei)
), (5)

where ek−1
i and ek−1

N (ei)
are the node’s feature itself and aggregation information

at the previous layer, respectively. We use ei as the initial feature. After k-
layer attention information aggregation, the updated embedding eki contains the
high-order semantic information that transfers and accumulates multi-layer.
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3.3 Knowledge-Aware GRU

The knowledge-transfer interaction sequence Sa
t implicitly reflects the fine-

grained transitions of users’ interests. For an entity pair [et → A(et,et+1) → et+1]
in Sa

t , the connection attributes A(et,et+1) express how the user’s interests trans-
fers from et to et+1, which is taken as the transferred embedding of user at time
t:

eat =
∑

ei∈A(et,et+1)

softmax (D(ei)) · ei, (6)

where D(ei) calculates the degree of attribute node ei in KG, and ei represents
its embedding. Then, the improved knowledge-aware GRU (KA-GRU) computes
the current hidden state vector ht conditioned on the hidden state ht−1, trans-
ferred embedding eat and the aggregated information ekt :

êt = Wd · (
[eat || ekt ]

)
, (7)

ht = KA-GRU(ht−1, êt;Φ), (8)

where Wd ∈ R
d×2d controls the contribution of the item’s high-order information

and transfer knowledge to users’ preferences. Φ includes all the parameters of
KA-GRU networks to be learned.

3.4 Recommendation and Training

After feeding Sa
t into KA-GRU, we obtain t hidden vectors, which encode the

sequential and semantic relevance between interactive items. The hidden state ht

indicates the user’s current interest at time t, and we regard it as the sequence’s
local representation sl. And all the t hidden states imply the user’s long-term
preferences, which are considered as global representation sg:

sg =
t∑

i=1

αi · hi, (9)

αi = Ws · σ(Wlht + Wghi), (10)

where αi guides the different priorities of each item in St. W· ∈ R
d×d are weight

matrices. sl ∈ R
d is combined with sg ∈ R

d as the representation of sequence to
compute the score of candidate item ei:

yi =
(
Wp · (sl || sg)T

) · ei. (11)

Here, ·T represents transpose and Wp ∈ R
d×d is the weight matrix. After

that, we can get the output score y ∈ R
n for all candidate items, which is fed

into a softmax function:
ŷ = softmax(y), (12)

where the normalized scores ŷ ∈ R
n, and each element indicates the probability

that corresponding candidate item that will be selected next time.
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Table 1. Statistics of three datasets.

Datasets # Users # Items # Interactions # KG Triples

MovieLens-1M 5,216 2,344 644,952 20,195

Amazon-Book 7,521 2,467 357,562 681,101

Last-FM 14,143 47,890 2,385,889 2,228,651

To optimize the proposed model, we opt for the cross-entropy loss function.
For each sequence St, the loss is defined as the cross-entropy between the pre-
dicted probability and the ground truth. We formally define the optimization
function as:

L(Θ) = −
n∑

i=1

yilog(ŷi) + (1 − yi)log(1 − ŷi) + λ||Θ||22, (13)

where y is the one-hot vector of the ground truth item, and Θ is parameters of our
model, including all the weights of networks and the embedding table of entities
and relations. The last term is L2 regularization to prevent overfitting. Finally,
we apply Back-Propagation Through Time (BPTT) to optimize parameters of
the objective function.

4 Experiments

In this section, we conduct experiments with related baselines on three real-world
datasets and report the comparison results.

4.1 Datasets

To evaluate the proposed model, we conduct experiments on three real-world
datasets, which vary in terms of application scenario, size, and sparsity. For the
knowledge graph, we extract triples subsets from the open Knowledge Base [27]
in recommendation systems.

MovieLens-1M1 is a widely used personalized movie rating dataset, which
consists of a large number of 1 to 5 explicit ratings on the Movie-Lens website.

Amazon-Book2 is selected from the widely used dataset Amazon-review in
production recommendation where data is collected from the world-leading e-
commerce platform.

Last-FM3 is a music dataset from Last.fm online system, and we view the tracks
as items. Since the Last-FM music dataset is very large, we take the subset where
the timestamp is from Jan 2010 to May 2010.
1 https://grouplens.org/datasets/movielens/.
2 https://jmcauley.ucsd.edu/data/amazon/.
3 https://grouplens.org/datasets/hetrec-2011/.

https://grouplens.org/datasets/movielens/
https://jmcauley.ucsd.edu/data/amazon/
https://grouplens.org/datasets/hetrec-2011/
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Following previous methods [20,21], we have filtered out items without corre-
sponding entities in KG for all datasets. To ensure the quality of the datasets, we
only keep users with at least 20 interactions and items with at least 5 interactions,
while explicit interaction is converted into implicit feedback. Then, we group
interaction records by users and sort them in ascending order of timestamps to
build interaction sequences. The basic statistics of three datasets are summarized
in Table 1, and the code is available at https://github.com/qqingwang/KASR.

4.2 Experimental Setup

Baselines. To prove the effectiveness of our model, we compare it with the
three lines of related methods that will be mentioned in the related work section,
baselines as following:

• BPR [11] is one of the most common comparison models which utilizes
Bayesian Personalized Ranking to sort items in pairs.

• NCF [3] is a state-of-the-art recommendation model that replaces the inner
product with a neural architecture to implement Matrix Factorization.

• CKE [26] first proposes to incorporate structural, textual, and visual knowl-
edge to improve recommendation performance. For fairness, we implement a
simplified CKE by only using KG in this paper.

• FPMC [12] is a classic hybrid model that combines Matrix Factorization and
Markov Chain to explores sequential features and users’ interests for the next
prediction.

• GRU4REC [4] proposes an RNNs-based deep learning model for sequential
recommendation firstly. It utilizes session-parallel mini-batch training process
and employs a ranking-based loss function.

• STAMP [8] is a hybrid model that constructs two network structures to
capture the users’ general preferences and current interests of the last click
in an interaction sequence.

• KSR [6] incorporates KG into sequential recommendations based on Memory
Networks. Different from our models, KSR models interaction sequences and
KG as two independent tasks and ignores their intrinsic relevance.

• SRGNN [24] constructs sequences as graph structure data and utilizes graph
neural networks to model complex transitions of items, thus obtaining accu-
rate item embedding.

Implementation Details. In sequential recommendation, our task is to predict
the next item after a specific sequence. For simplicity, we segment the ordered
interaction records into short item sequences by a sliding window of length 10 to
20. For each user, we hold the latest two sequences as valid data and test data,
respectively, and the remaining are for training. We adopt the widely used leave-
one-out method [3,25] to evaluate performance. Considering the massive scale
of data and the time-consuming calculation, we randomly sampled 500 items
(including the target item) that are not in the interaction sequence as candidate
items. We predict the probability of 500 items being selected and rank items

https://github.com/qqingwang/KASR
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Table 2. Performance comparison of different methods.

Model MovieLens-1M Amazon-Book Last-FM

HR NDCG MRR HR NDCG MRR HR NDCG MRR

BPR 0.272 0.136 0.105 0.306 0.183 0.123 0.359 0.169 0.135

NCF 0.389 0.188 0.139 0.388 0.236 0.172 0.599 0.320 0.241

CKE 0.423 0.206 0.143 0.430 0.206 0.154 0.621 0.303 0.223

FPMC 0.432 0.192 0.140 0.515 0.257 0.178 0.598 0.299 0.212

GRU4REC 0.584 0.297 0.215 0.562 0.312 0.240 0.620 0.443 0.371

STAMP 0.594 0.308 0.221 0.583 0.322 0.252 0.639 0.450 0.372

KSR 0.621 0.315 0.228 0.628 0.370 0.292 0.675 0.502 0.449

SRGNN 0.602 0.306 0.223 0.613 0.359 0.283 0.681 0.517 0.457

KASR 0.638 0.332 0.243 0.654 0.402 0.321 0.707 0.529 0.468

according to it. Following previous methods [6,25], we use metric Hit Ratio
(HR), Normalized Discounted Cumulative Gain (NDCG), and Mean Reciprocal
Rank (MRR) to evaluate the ranking performance. HR measures whether the
target item is presented on the top list, NDCG and MRR measure the ranking
quality. Due to space limitations, we only report the above metrics of the top-20
recommendation list, the metrics of top-5 and top-10 follow the same result.

For all baselines above, we either apply a grid search for hyper-parameters
based on validation or follow the original parameter settings. In our model
KASR, we adopt a 2-layer GRU network, where the hidden size and embedding
size are fixed to 100, and batch size is fixed to 128. During training, the learning
rate α = 0.0005 and the coefficient λ = 10−7 of L2 normalization. We adopt
an embedding dropout technique where the drop ratio is set to 0.2. Besides, we
search the number T of relevant attributes between two items and layers K of
information aggregation from 1 to 4. We uniformly sample N neighbors of each
entity as its neighbors set, and the size of N is tested in {2, 4, 8, 16}. We will
discuss how the key hyperparameters affect the performance in Sect. 4.5.

4.3 Performance Comparison

Comparative results of KASR with the other eight baseline methods are pre-
sented in Table 2. Among all baselines, the proposed model KASR outperforms
other methods in terms of all metrics on all three datasets. In conventional
methods, NCF obtains better results than BPR in all cases, and CKE incor-
porates KG in collaborative filtering and improves performance. In general, the
performance of conventional recommendations is worse than that of sequential
recommendations, which shows that non-sequential models are not suitable for
recommending the next item. Our method explores the dependency of items in
interaction sequences and achieves better results than all conventional models.

The basic sequential model FPMC performs poorly than other sequential
methods, which indicates that it is insufficient to model sequential features
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Fig. 3. Performance comparison of knowledge-transfer in interaction sequence.

Fig. 4. Performance comparison of relation aggregation attention.

Fig. 5. The influence of the degree of nodes on results.

by only considering the transitions between successive items. Both GRU4REC
and STAMP explicitly capture users’ long-term preferences and current inter-
ests, which outperform conventional methods and FPMC. None of the above
vanilla methods consider side-information or explore the semantic relevance
between items. KSR introduces Memory Networks to capture users’ preferences
at the attribute level, and its performance exceeds the simple sequential mod-
els above. However, as mentioned earlier, KSR ignores the intrinsic correlation
between recommendation and KG embedding. Instead, our method introduces
the knowledge-transfer interaction sequence to capture the fine-grained transi-
tions of users’ interests and explore the high-order relevance between items simul-
taneously, which considers the intrinsic correlation and achieves better results.
Besides, SRGNN utilizes graph neural networks to model more complex tran-
sitions between items. It gets the second-best results on the Last-FM dataset,
only inferior to KASR. Different from SRGNN, our model applies graph neural
networks to the knowledge graph. By aggregating the high-order information,
KASR captures the inherent semantic relevance of items in KG while model-
ing the interactive sequences and achieves the best results. Experimental results
show that our method greatly improves performance.

4.4 Study of Different Variants

Effectiveness of Transfer Knowledge. We introduce the knowledge-transfer
sequence to capture the fine-grained transitions of users’ preferences. As shown
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in Fig. 3, we conduct a variety of experiments to verify its benefit, where ‘w/o’
means that the transferred embedding in Eq. 7 has been removed. It is obvious
that considering knowledge-transfer can accurately predict the next item with
a higher score, achieving a better result on all datasets. The result verifies that
knowledge-transfer based on relevant attributes helps to capture users’ prefer-
ences more accurately.

Effectiveness of Relation Attention Network. To mine rich semantic infor-
mation in KG, we propose a relation attention network, and we also design differ-
ent attention network to verify the value. Specifically, one vanilla attention only
uses the embedding of entities to calculate the weight, while the other one con-
siders the relation features according to Eq. 1. The results are presented in Fig. 4,
and we can observe that relations between entities help to capture the inherent
semantic association between items genuinely and achieves better results.

Influence of Node’s Degree. We design several model variants to explore the
influence of nodes degree. As shown in Fig. 5, ‘D samp’ extracts attribute nodes
based on degree and ‘R samp’ extracts randomly. Similarly, ‘D emb’ represents
transferred embedding based on the degree of nodes, while ‘M emb’ indicates the
average of all attributes. It can be observed that “D samp + D emb” achieves
the best results on the three datasets, while “R samp + M emb” gets the worst
results. Therefore, it is necessary to consider the degree of nodes.

(a) T (b) N (c) K

Fig. 6. Hyperparameter analysis on three datasets.

4.5 HyperParameter Analysis

In this section, we examine the influence of three key parameters in our method:
the number T of connection attributes in knowledge-transfer sequences, size N
of sampling neighbor nodes, and layers K in information aggregation.

As shown in Fig. 6 (a), the model achieves the best results when T = 2 or
T = 3. It verifies that considering more relevant knowledge between items helps
better capture transitions of users’ interests. Moreover, T with a too large value
may bring some noise and reduce the performance. Next, we conduct extensive
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...

singer

album

...

Fig. 7. A real case of interaction sequence from the Last-FM dataset, where the green
box represents the prediction ranked list for music at a specific time t, and the red box
is the music of ground truth selected by the user. (Color figure online)

experiments to evaluate the model with different size N of neighbor nodes when
aggregating information. Figure 6 (b) shows the experimental results, where the
Amazon-Book dataset gets the best performance when N = 8, and the other two
datasets achieve the best results when N = 4. Since the KG of Amazon-Book is
sparse, aggregating more neighbor nodes may get richer relevant information. It
is necessary to choose an appropriate value of N . Besides, we vary the different
K-order aggregation to study the impact of high-order relevance between items,
where K = 0 means no information is aggregated. Figure 6 (c) indicates that
high-order information aggregation can improve performance, and the model
achieves the best performance when the value of K is in [1,2]. However, with an
increase of K value, aggregation may capture more irrelevant information and
decrease performance. In general, although the above parameters have a slice of
influence on results, they are still robust.

4.6 Case Study

Experimental results have shown that our method can predict the next item
accurately. The primary benefit of KASR is that it fully explores the sequential
dependency of items and mines the semantic association between items at the
same time, capturing the potential interests of users more deeply. We act as a
real example from the Last-FM dataset in Fig. 7, where the record is music. In
this example, we present two types of attributes of items, including “singer” and
“album”. We can observe that the user listens to a lot of music from different
albums of the same singer. At the time t3, as the user has already listened
to two music from the same album, KASR captures more users’ preferences
at attributes “album” and tends to recommend the next music from the same
album. However, the user selects music from the singer’s other two albums at t3
and t4, which shows his interest point in the singer’s various albums. KASR is
capable of capturing the fine-grained transitions of the user’s interest point from
“album” to “singer”, and it is more likely to expose the singer’s other new albums
that have never appeared before at time t5. The real example shows that users’
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interests always change dynamically, and our model considers the deep relevance
between items to capture the potential preferences of users genuinely.

5 Related Work

Collaborative Filtering (CF) [11] is currently one of the most popular recom-
mender algorithms. In sequential recommendations, inspired by CF, Sarver et
al. [14] measure the similarity between items according to co-occurrence fre-
quency in sequences. To capture the context information in sequences, Markov
Decision Process [16] is proposed to model sequential interactions. FPMC [12]
is a hybrid model of Matrix Factorization (MF) [7] and Markov Chain (MC),
which explores the sequential feature between two clicks. Chen et al. [2] propose
a logistic Markov embedding method to predict the next playlist. However, MC-
based methods assume that past items are independent of each other, which is
actually inappropriate for sequential recommendations.

Some existing research applies deep learning in recommendation systems,
e.g., CF-based on Restricted Boltzmann Machines [13] and hierarchical repre-
sentation encoder-decoder model [22]. NCF [3] replaces the inner product in MF
with a neural architecture. Inspired by natural language processing, RNNs are
introduced into sequential recommendations. Hidasi et al. [4] first propose RNNs
to model session recommendations and introduce a training strategy [5] for p-
RNN. Xu et al. [18] apply data augmentation and method shifts to improve the
performance. STAMP [8] considers the current interest and long-term prefer-
ences of users simultaneously. Recently, a new study [24] utilizes graph neural
networks to model sequences and explore relevance between items.

To solve the problem of sparse data and cold start, many studies have intro-
duced side-information into recommendations, including social networks [17],
knowledge graphs [26], and text descriptions [10]. KG contains rich semantic
information between the items, and many efforts utilize deep learning to enhance
the performance of knowledge-aware recommendations. Especially, CKE [26]
introduces the knowledge graph into deep CF. RippleNet [20] explores users’ hier-
archical preferences based on Memory Network. KGCN [21] applies graph neu-
ral networks to capture the higher-order feature between items. However, these
methods are for non-sequential recommendation task. KSR [6] first integrates
external KG into the sequential recommendations. Different from our model,
KSR ignores the intrinsic relevance between KG and interaction sequences.

6 Conclusion

In this paper, we propose a novel model KASR, which integrates the knowledge
graph into sequential recommendations in an end-to-end manner. Our method
mainly has three benefits. First, we deeply explore the fine-grained transitions of
users’ interests based on the relevant attributes in the knowledge-transfer interac-
tion sequence. Second, the attention information aggregation explicitly explores
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the high-order semantic relevance between items, which implies users’ prefer-
ences. Finally, a knowledge-aware GRU is introduced to automatically capture
the sequential relevance and high-order connectivities between items for predict-
ing the next item. Experiments have been conducted on real datasets to evaluate
our model, and the results show KASR achieves better performance than other
start-of-the-art methods.
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Abstract. Due to the prevalence of human activity in urban space,
recommending ROIs (region-of-interest) to users becomes an important
task in social networks. The fundamental problem is how to aggregate
users’ preferences over POIs (point-of-interest) to infer the users’ region-
level mobility patterns. We emphasize two facts in this paper: (1) there
simultaneously exists ROI-level and POI-level implicitness that blurs the
users’ underlying preferences; and (2) individual POIs should have non-
uniform weights and more importantly, the weights should vary across
different users. To address these issues, we contribute a novel solution,
namely GANR2 (Graph Attentive Neural Network for Region Recom-
mendation), based on the recent development of attention network and
Neural Graph Collaborative Filtering (NGCF). Specifically, to learn the
user preferences over ROIs, we provide a principled neural network model
equipped with two attention modules: the POI-level attention module,
to select informative POIs of one ROI, and the ROI-level attention mod-
ule, to learn the ROI preferences. Moreover, we learn the interactions
between users and ROIs under the NGCF framework. Extensive exper-
iments on two real-world datasets demonstrate the effectiveness of the
proposed framework.

Keywords: Region recommendation · Graph neural network ·
Location-based social networks · Attention mechanism · Multi-context

1 Introduction

The rapid urbanization process has been nurturing big and complex urban
space and changing our lifestyles on an unprecedented scale and speed. Urban
region-level activities modeling is widely recognized as a fundamental task.
Researchers [1–3] have found that a large proportion of visitors visited multiple
POIs resided in small regions. Different from POI, ROI refers to the integrated
urban areas with specific functionalities that attract users’ attentions and activ-
ities. Character users’ preferences among these regions is benefit us to develop
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 509–516, 2020.
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a better region recommendation for users. In this paper, we endeavor to recom-
mend a set of nearby locations rather than an individual location, i.e., region
recommendation. Such recommendation satisfies the requirements of urbaniza-
tion and modern civilization, while filtering the latent information of a particular
urban region from user-generated spatio-temporal data.

Most of the existing location recommendation solutions are designed to rec-
ommend POIs [4,5]. However, if we direct applied these location methods to
region recommendation, it means that we treat the user ROI preferences as the
average POI preferences located in one ROI. Recently, a few ROI recommenda-
tion related studies have appeared [2,6]. Pham et al. [7] utilized the interactions
between POIs to improve recommendation performances and reduce the region
recommendation problem to the geometric intersection problem. Xu et al. [2]
utilized the ConvLSTM network to learn the global and personal preferences of
users over regions, while it still ignored the correlation between users’ prefer-
ences over POI-level and ROI-level. As such, these solutions are insufficient to
capture the complicated dynamic process of making check-in decisions by users,
resulting in the suboptimal performance of region recommendation.

Recommending an ROI is more complicated than recommending a POI since
different POIs differentially contribute to users’ attentions and activities in a
region. In this work, we approach the fundamental problem in region recom-
mendation, i.e., how to aggregate the preference of POIs located in the same
region to decide users’ check-in activities on regions. The key challenges here are
how to design an expressive model to appropriately learn the user preferences in
one region and how to adapt his/her preferences when this user interacts with
other regions. Based on the above analysis, when designing graph neural net-
work architecture with attention mechanism for ROI recommendation, we need
to address the following new issues:

(1) ROI-level attention, which models users’ preferences on different
regions. Each user is associated with a set of regions via tracking their check-in
history data. However, a set of check-in regions feedback does not necessarily
indicate equal region preferences. To better characterize users’ preferences,
the implicit feedback in the region-level requires different attentions on the
set of regions.
(2) POI-level attention, which learns the importance of neighbors in the
same region. For each POI in one region, POI-level attention aims to learn
the importance of neighbors in the same region and assign different attention
values to them. Therefore, how to design a model that can discover the subtle
differences of POIs in the same region and learn their weights properly is
desired.

In this paper, we propose a novel graph neural network architecture, dubbed
Graph Attentive Neural Network for region recommendation (GANR2), which
is equipped with both ROI- and POI- level attentions. The ROI-level attention
is able to learn the importance of each ROI and assign proper weights to them,
which can represent users’ preferences over ROIs. Meanwhile, POI-level attention
is able to learn the importance of POIs located in the same ROI, and assign
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Fig. 1. Illustration of GANR2: the left part depicts the user-POI and user-ROI inter-
actions, and the right part is the representation of GANR2.

different attention values to these POIs, which can represent inside each ROI
users’ preferences on different POIs. Specifically, we employ the state-of-the-art
NGCF framework to learn the user-region interactions. Extensive evaluations
demonstrate that GANR2 achieves superior recommendation performance on
real-world datasets.

2 Preliminaries

2.1 Problem Definition

Suppose we have M users U = {u1, u2, ...uM}, N POIs P = {p1, p2, ..., pN}, and
S regions R = {r1, r2, ..., rS}. The s-th region rs ∈ R consists of a set of POIs,
i.e., region components with POI index Bs = {Bs,1, Bs,2, ..., Bs,�Bs�}, where
Bs,�∗� ∈ P, and |Bs| is the size of the region rs. There are two kinds of observed
interaction data among U , P, and R, namely, user-ROI interactions and user-
POI interactions. We use Y = [yi,j ]M×S to denote the user-ROI interactions
and X = [xi,j ]M×N to denote the user-POI interactions. In our work, we also
leverage heterogeneous contexts associated with each POI, such as temporal
features, category feature. Specially, we use Cn to denote the properties of POI
pn, including temporal popularity features, category features, etc.

Inspired by the works [8,9], we utilize density-based cluster method to detect
regions. Specially, we first use the grid-based methods to split the urban area
into small regions, and then calculate the popularity of each region grid. Finally,
we merge them with density-based algorithms into ROIs.

Given a target user um, our task is defined as recommending a list of ROIs
that user um may interacted in, which is formally defined as follows:

Input: Users U , POIs P, ROIs R, User-ROI interactions , User-POI interac-
tions X, and POI contexts C.
Output: A personalized ranking function that map an ROI to a real value
for each user

∼
y : R → R.
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3 Graph Attentive Neural Network

Figure 1 depicts the architecture of our neural network model GANR2. At a high
level, our model employs the embedding-based graph attentive neural network
framework. Given a user um, an ROI rs, and the n-th POI pn in the ROI rs, we
use αms to denote um’s preference degree w.r.t. rs and βmsn to represent um’s
preference degree w.r.t. pn in rs. We use two attention subnetworks to learn
the two preference scores jointly. Specially, the ROI-level attention module is
to learn the users’ preferences over regions and POI-level attention module is
to learn users’ preferences over POIs in the same region. Furthermore, we use
an embedding layer to deal with heterogeneous contexts in a unified manner to
generate POI’s feature content.

3.1 Model

In addition to explicitly parameterizing each user um with zm, GANR2 also
models users based on the set of ROIs that they check-in. Therefore, each ROI
rs is associated with two factor vectors. One is denoted as vs, which is the basic
ROI vector in the latent factor model. The other one, denoted as qs, is the
auxiliary region latent vector which is used to characterize the users based on
the set of ROIs they interact with. The overall preference degree of a user is
obtained through the sum: em = zm +

∑

s∈Ym

αmsqs.

Next we elaborate the three components.

Embedding Layer. Given the users’ check-in history data, we supply all pieces
of information except the POI p to represent the POI’s content. However, the
factors in the context set C is heterogeneous in terms of data type. Here, we
introduce two types of features that we have extracted from POIs.

Category Features. Given a POI pn, we first extract the textual content feature
fnc from POIs’ categories by using one-hot representation, and then transform
it to latent vector through the embedding layer.

Popular Temporal Features. Intuitively, a popular POI will have a higher vis-
iting probability (a.k.a. its popularity). In this paper, we exploit two kinds of
popularity features, that is, overall popularity and temporal popularity.

ROI-Level Attention. The purpose of ROI-level attention is to learn a user’s
latent factors by considering the ROIs that a user um has interacted with.

To alleviate the limitation of the mean-based aggregator, an intuitive solution
is to tweak αms to be aware of the target user um, i,e., assigning an individualized
weight for each (um, rs) pair as follows:

hm = δ(W.

{
∑

s∈Cm

αmsqs

}

+ b), (1)

where αms denotes the attention weight of the interactions with rs in contribut-
ing to the user um’s latent factor when characterizing um’s preference from the
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interaction history Ym. Specially, we parameterize the ROI-level attention score
αms with a two-layer neural network, which we call the ROI-level attention
network. The input to the attention network is the context-aware ROI represen-
tation xs, the neighborhood ROI latent and auxiliary vector vs and qs, and the
user latent vector zm. Formally, the attention network is defined as

α∗
ms = wT

1 .δ(W1uzm + W1vvs + W1pqs + W1xxs + b1) + c1, (2)

where W (1∗) and bias b1 are the first layer parameters, the vector w1 and bias
c1 are the second layer parameters, and δ(x) is the ReLU function.

The final attention weights are obtained by normalizing the above attentive
scores with the softmax function, which can be interpreted as the contribution
of the interaction to the user um’s latent presentation as

αms =
exp(α∗

ms)∑
s∈Ym

exp(α∗
ms)

. (3)

POI-Level Attention. The goal of POI-level attention is to assign POIs in the
same ROI attentive weights that are consistent with user preference, and then
apply the weighted sum to construct the ROI content representation. We use |s∗|
to denote the size of the set and xsn to denote the context embedding of POI pn.
Each ROI rs may be encoded into a variable-sized set of POI component features
xs∗. We perform an attention mechanism with a two-layer neural network to
extract these POIs that are critical to generate the ROI representation, and
model a user’s preference degree in each POI in the same ROI by relating POI-
level attention βmsn with user’s latent vector zm. The POI context embedding
xsn is represented as follows:

xs = δ(W.

{
∑

n∈Bs

βmsnxsn

}

+ b), (4)

β∗
msn = wT

2 .δ(W2uzm + W2xxms + b2) + c2, (5)

βmsn =
exp(β∗

msn)
∑

n∈Bs
exp(β∗

msn)
, (6)

where the matrices W2∗ and bias b2 are the first layer parameters, the vector w2

and bias c2 are the second layer parameters, and δ(x) is the ReLU function.

3.2 Interaction Learning with NGCF

NGCF is a graph neural network based framework for item recommendation [10].
In our model, after we have obtained the ROI-level latent vectors hm for the
user um, um’s final representation is represented as hm + zm. Following the
mainstream recommender models [10], we first build a parameter matrix as an
embedding look-up table as follows:

E = [h1 + z1, ..., hM + zM , v1, ..., vS ]. (7)
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Table 1. Comparisons on two datasets evaluated by Recall and NDCG.

Method NYC TKY

Recall NDCG Recall NDCG

USG 0.1462 0.1633 0.1031 0.1762

PACE 0.2187 0.2078 0.1615 0.2425

GeoDCF 0.2864 0.3108 0.2146 0.3563

NGCF 0.2541 0.28152 0.1973 0.3242

GANR2 0.316 0.3599 0.2265 0.3845

Then, we construct the Laplacian matrix L as [10]. By implementing the matrix-
form propagation rule, we can simultaneously update representations for all users
and ROIs in a rather efficient way. After propagating with L layers, we obtain
multiple representations for the user um, namely {e1um, ..., eLum}, where elum =
hl
um + zlum and elrs = vl

s. Here, we also concatenate them to construct the final
embedding for a user. We do the same operation on ROIs by concatenating the
item representations {e1rs, ..., e

L
rs} learned by different layers to the final ROI

embedding as
e∗
um = e1um||...||eLum , e∗

rs = e1rs||...||eLrs, (8)

where || is the concatenation operation. Finally, we conduct the inner product
to estimate the user’s preference towards the target ROI as

∼
y(um, rs) = e∗

um
T e∗

rs. (9)

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate our model on public Foursquare check-in datasets col-
lected from two big cities, namely, New York (NYC) and Tokyo (TKY) [11]. To
evaluate the effectiveness of top-K recommendation and preference ranking, we
adopt two widely-used evaluation protocols: recall@K and ndcg@K. By default,
we set K = 20. We report the average metrics for all users in the test set

Baselines. We compare GANR2 with several representation methods: USG [4],
PACE [5], GeoDCF [1], NGCF [12].

4.2 Performance Comparison

We first compare the recommendation performance of all methods. Table 1 shows
the overall rating prediction error w.r.t. Recall and NDCG on NYC and TKY
datasets. Our proposed GANR2 achieves the best performance on both datasets,
significantly outperforming the state-of-the-art MF and Hybrid methods (the
average improvement over the second best baseline GeoDCF is 9.25%).
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(a) NYC (b) TKY

Fig. 2. Effect of attention mechanisms on NYC and TKY.

(a) NYC (b) TKY

Fig. 3. Effect of POI and ROI context information on NYC and TKY.

4.3 Model Analysis

Effects of Attention Mechanisms at ROI- and POI- Level. To get a better
understanding of GANR2, we evaluate the key components of GANR2, that is,
ROI- and POI-level attentions. We compare GANR2 with its three variants:(1)
GANR2-P: the POI-level attention of GANR2 is eliminated; (2) GANR2-R: the
ROI-level attention score α of GANR2 is eliminated during aggregating ROIs;
(3) GANR2-PR: two attention mechanisms (ROI-level attention α and POI-
level attention β) are both eliminated. As suggested in Fig. 2, GANR2-P and
GANR2-R yields worse performance than GANR2, which validates the benefits
of the ROI-level and POI-level attentions in aggregation.

Effects of Context Information of POI, ROI. GANR2 provides embedding
layer to integrate the context of information to model users’ preferences GANR2.
In this subsection, we compare GANR2 with its two variants: (1) GANR2-PF: the
user-POI interactions is removed; (2) GANR2-RF: both the user-POI interac-
tions and the context information about POIs are removed. As shown in Fig. 3, in
terms of analyzing POI context information, GANR2-PF performs worse than
GANR2, indicating that POI context information is important to learn user
latent vector and boost the recommending ROI performance.

5 Conclusions

In this paper, we have proposed a graph attentive neural network for region
recommendation (GANR2) to address the implicit feedback in ROI- and POI-
level. We observe that the user preferences over ROI- and POI-level are usually
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neglected in conventional location recommendation methods. To this end, we
introduce the ROI- and POI-level attention modules to infer the users’ underly-
ing preferences encoded in the implicit user feedback. To the best of our knowl-
edge, GANR2 is the first ROI recommendation model that exploits an atten-
tion mechanism to learn the aggregation strategy from data in a dynamic way.
The extensive experiments on two real-world datasets validate the performance
of GANR2 over state-of-the-art recommendation approaches by a considerable
margin.
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Abstract. Data sparsity is a common problem in collaborative ranking
for personalized recommendation with implicit feedback. Several pre-
vious work tried to ‘borrow’ feedback information from users’ neigh-
borhood as their prior preferences to alleviate this problem. However,
they emphasize the overlapping interests of users and their neighbor-
hood while de-emphasize the importance of users’ own specific taste,
which leads to under-personalization. In addition, they ignore the col-
laborative influence among items which is also important for preference
learning.

To solve these problems, we propose an effective collaborative rank-
ing method Generalized Collaborative Personalized Ranking (GCPR),
which utilizes the collaborative influence among users and items in a uni-
fied framework. It strengthens the specific taste of users by using inner-
basket influence of items to enhance the personalization. In addition, it
utilizes cross-basket influence of items to dig more collaborative items
to further alleviate the sparsity problem. Then, we utilize generalized
AUC to learn a confidence-based listwise preference, and propose a post-
training based on self-paced learning to solve the top-biased problem
of the generalized AUC. Experimental results on four public real-world
datasets show that GCPR achieves better performance than traditional
collaborative filtering (CF) methods and state-of-the-art collaborative
ranking methods.

Keywords: Collaborative ranking · Implicit feedback ·
Personalization · Sparsity

1 Introduction

Recommender systems have been studied to resolve the issue of information
overload in various fields during the past decades, like products-to-customer
recommendation in e-commerce platforms and people-to-people recommendation
in social networks, etc. The key of personalized recommendation with implicit
c© Springer Nature Switzerland AG 2020
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Fig. 1. A simple example illustrates: (a) collaborative influence includes inter-user (blue
dashed) and inter-item (green dashed) influence. denotes the observed ‘like’, and
is the ‘like’ inferred from collaborative influence. Previous CR work only consider the
inter-user influence (blue dashed arrow), which is exemplified as user u ‘borrows’ i6

from his/her neighbor u1 to alleviate his/her preference sparsity (i.e. u1
i6��� u). (b) the

non-overlapping observed items between u and his/her neighborhood (i.e. P+
u where

P+
u ⊆ Pu) is assigned with a lower confidence (i.e. 0) than Pu\P+

u . (Color figure online)

feedback is to learn preference from users’ past behaviors [3–5], i.e. learning the
relative preference of each user on items. However, users often gave feedbacks
on a small proportion of items, which let this preference learning suffer from the
sparsity problem.

Bayesian Personalized Ranking (BPR) [13] is a well-known pairwise prefer-
ence learning method. It assumes users prefer the items given positive feedback
than the others. However, these partial orders are coarse-grained (caused by
sparsity), and its assumption of independence between users does not always
hold [11]. To solve these problems, several collaborative ranking (CR) methods
[9,11,12] have been proposed to utilize the inter-user influence to refine the pref-
erence relations. Figure 1 is a simple example which illustrates how this inter-user
influence work (blue dashed line in Fig. 1(a)). Besides the preference relations
{i1,i2,i5}�u{i3,i4,i6} (BPR), they acquire preference relations {i6}�u{i3,i4} via
the inter-user influence, which alleviates the sparsity problem to some extent.

However, those CR methods above have two drawbacks: (1) non-overlapping
observed items between u and his/her neighborhood (P+

u in Fig. 1(b)) are always
weighted lower than overlapping observed items (e.g. i1 and i5 in Fig. 1(b)),
which means they relatively overemphasize those observed items shared with
user neighbors, while de-emphasizing the importance of non-shared personalized
interests. This will lead to under-personalization. (2) They ignore the inter-item
influence which is also important for preference learning. In Fig. 1(a), there exists
inter-item influence between observed item i2 and unobserved item i4, which are
always appeared together. Through i2, we have a high level of confidence that u
may also like i4, which can alleviate the sparsity problem from a different aspect.

To solve these problems, we design a new CR method called GCPR (Gen-
eralized Collaborative Personalized Ranking) based on implicit feedbacks. The
main contributions of this paper include: (1) we consider two types of inter-item
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influences: inner-basket influence is to enhance the personalized specific prefer-
ences and cross-basket influence to alleviate the sparsity problem. (2) We utilize
generalized AUC to learn a confidence-based listwise preference, and propose a
post-training based on self-paced learning to solve its top-biased problem. (3)
Extensive experiments are conducted, and the results show that GCPR outper-
forms traditional CF methods and state-of-the-art CR methods.

2 Background

2.1 Bayesian Personalized Ranking

Preference is the ordering relation between items according to user’s taste [1],
and preference learning (PL) deals with the learning of these preferences from
the feedbacks [4]. Pairwise PL [3] is one of the most widely-used PL. In PL,
utility function and preference relation (PR) [4] are used to denote the prediction
function and pairwise preference (�), respectively. To keep consistent with the
given preferences, utility function f(·) for item-pair (i, j) of user u, should satisfy

i �u j ⇔ f(u; i) > f(u; j) (1)

where i �u j means user u prefers item i to item j.
Rendle [13] proposed a well-known PL method BPR for personalized rank-

ing based on Bayesian inference, which assumes a user prefers the items given
positive feedbacks Pu to other items I\Pu, i �u j where i ∈ Pu and j ∈ I\Pu.
BPR tries to maximize the posterior probability, i.e.

p(Θ| �u) ∝ p(�u |Θ)p(Θ)

where Θ is the model parameters. BPR is a basic and effective PL method with
theoretical basis.

2.2 Collaborative Personalized Ranking

While PRs in BPR are coarse with only comparing items with positive feedback
and those without, which let BPR suffer from sparsity.

To solve this problem, some BPR extensions have been proposed with con-
sidering inter-user influence. GBPR [11] proposes group preference iGu

�u j,
derived from the global group of the user, and then enhance individual prefer-
ence. PRIGP [12] splits the observed items from user’s neighborhood into item
groups according to their cumulative number of occurrences for both sparsity and
personalization. However, PRIGP treats all the neighbors equally and ignores
the degree of inter-user influence. In a different way, CML [6] uses metric learning
to learn latent factors of users and items in the same compact space to reduce
the impact of sparsity to some extent. CPLR [9] considers the degree of inter-
user influence on the preferences of both observed and unobserved items, and
acquires more explicit (i.e. �u) and implicit (i.e. confidence) PRs.
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Table 1. Notations and denotations.

Notation Description Notation Description

U User set I Item set

u A user i An item

R Feedback matrix rui Feedback of u on i

Pu Observed items of u P+
u Non-overlapping items of u

Nu Nearest neighbors of u Ni Nearest neighbors of i

Eu Collaborative itemset of u cui The confidence that u likes i

τ Inter-user influence degree ψ Inter-item influence degree

L Loss Θ Model parameter(s)

θ Coupling coefficient γ(·) Relativeness function

However, only the potential preferences influenced by the user neighbor-
hood are included by the inter-user influence of GBPR, PRIGP and CPLR,
but those collaborative items which are related (e.g., similar and complemen-
tary) to the observed items are ignored. For example, people who has bought a
computer would like to buy computer accessories or just replace it with a new
one. These potential interests can be transductive inferred by the internal prop-
erties of items. This negligence make GBPR, PRIGP and CPLR still suffer from
sparsity. Another problem is that they only assign confidences (aka. weights)
to the overlapping observed items between user and neighborhood (Fig. 1(b)),
which means the confidence of personal interests (P+

u ) is lower than the sharing
interests (Pu\P+

u ). However, the personal interests reflects the specific taste of
user, which is crucial for personalized recommendation, and this leads to under-
personalization.

3 Our Approach

3.1 Problem Definition

Let u denote a user and i denote an item. The implicit feedback1 matrix R is
defined as:

rui =
{

1, if (u, i) interaction is observed.
0, otherwise.

Let Pu represent the items with observed feedbacks of u, i.e., Pu = {i|i ∈ I, rui =
1}, and I\Pu denote the items without observed feedbacks. Table 1 shows the
notations and corresponding descriptions used in this paper.

Our goal is to generate a personalized ranking list of items from I\Pu for
each user u using the implicit feedbacks.

1 We consider the implicit feedback since it is more common than explicit feedback.
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3.2 Generalized Collaborative Personalized Ranking (GCPR)

We firstly give the objective function, and detail how to obtain collaborative
preference and calculate confidence. Then, the optimization and a post-training
process based on self-paced learning to solve the top-biased problem in listwise
ranking are presented. Finally, the algorithm is shown and analyzed.

Objective Function. For user u, we denote the collaborative itemset from
collaborative influences as Eu. Then, I is divided into three non-overlapping
subsets: the observed itemset Pu, the collaborative (unobserved) itemset Eu and
the left unobserved itemset Lu, where Lu = I − Pu − Eu.

We assume there exists a listwise preference relation: user prefers the observed
items from Pu over Eu and Lu, and prefer Eu over Lu, i.e. Pu �u Eu �u Lu,
and can be simplified:

Pu �u Eu, Eu �u Lu (2)

which is equivalent to i �u k, k �u j where ∀i ∈ Pu, ∀k ∈ Eu and ∀j ∈ Lu.
To learn the listwise preference above, we try to maximize the generalized

AUC [17,18], i.e. GAUCf = 1
|U |

∑
u∈U GAUCf (u), to find a utility function f(·),

GAUCf (u) =

∑
i∈Pu,k∈Eu

1(f(u; i) > f(u; k)) +
∑

k∈Eu,j∈Lu
1(f(u; k) > f(u; j))

|Pu||Eu| + |Eu||Lu|
where f(u; i) is the predicted feedback and 1(·) is binary indicator function.

Further, we simplify GAUC by removing constants and replace 1(·) with the
sigmoid function σ(·) like BPR [13], and define minΘGCPR-OPT (L) as follows,

L = −ln(
∏

u∈U

∏

i∈Pu,k∈Eu,j∈Lu

p(i >u k >u j)) + Reg(Θ)

≈
∑

u∈U

[ ∑

i∈Pu

∑

k∈Eu

Luik +
∑

k∈Eu

∑

j∈Lu

Lukj

]

+ λΘ||Θ||22

= −
∑

u∈U

[ ∑

i∈Pu

∑

k∈Eu

cuikln(σ(r̂uik)) +
∑

k∈Eu

∑

j∈Lu

cukj ln(σ(r̂ukj))

]

+ λΘ||Θ||22 (3)

where r̂uik = r̂ui − r̂uk, r̂ui = f(u; i) = WuV T
i and Θ = {W,V}. W and V

denote the latent factor matrices of U and I, respectively. W ∈ R
|U |×d and

V ∈ R
|I|×d. λΘ is the regularization coefficient. cuik and cukj are the pairwise

confidence coefficients, which describe how much confidence that we have with
the preference relations i �u k and k �u j, respectively.

Collaborative Preference. The foundation of personalized ranking recom-
mendation is that a portion of unobserved items would be preferred by user, and
they should be ranked ahead of other unobserved items. To find those items, for
user u, we collect the unobserved items as Eu by transductive inferring from the
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collaboration of users and items in a heuristic way. Collaborative preferences are
those ordering relations between Eu and Lu (i.e., Eu � Lu).

Eu contains items from inter-user influence (C(U)
u ) and items from inter-item

influence (C(I)
u ). C

(U)
u is based on the assumption that the items liked by similar

users would be also preferred by user u, and C
(I)
u is based on the assumption

that items similar to those items liked by user u would also be preferred by u.

Eu = C(U)
u ∪ C(I)

u (4)

C
(U)
u is transductive inferred from u’s neighborhood with similar taste,

C(U)
u = {t | ∃ u′ ∈ Nu, t ∈ Pu′ , t /∈ Pu} (5)

where Nu is the nearest neighbors of user u.
C

(I)
u is transductive inferred based on the relatedness (e.g., similarity and

complementarity) between Pu (as a basket) and I\Pu, i.e. observed items have
influence on some of unobserved items (cross-basket influence),

C(I)
u = {t | ∃ i ∈ Pu, t ∈ Ni, t /∈ Pu} (6)

where Ni is the nearest neighbors of item i.
In Fig. 1(a), C

(I)
u ={i4} since i4 is one of the nearest neighbors of i2 where

i2 ∈ Pu, and this cross-basket influence can be exemplified as i2
i4��� u. Then, a

new listwise PR {i1,i2,i5} �u {i4,i6} �u {i3} can alleviate the sparsity problem.

Confidence of Preference. The information granularity of implicit feedbacks
is coarse, e.g. buy or not buy, which does not reflect the preference intensity.
To solve this problem, we calculate the confidence of preference based on the
inner-basket influence and cross-basket influence between items.

We assume item i′ has influence on another item i because item i′ appears
in the nearest neighbors Ni,

ψ(i′ ��� i) = γ(i′, i) · 1(i′ ∈ Ni) (7)

where γ(·) is a non-negative relativeness function and ψ(·) is asymmetric.
Based on the assumption above, inter-item influence also exists in Pu (inner-

basket influence). Items in Pu may receive influences from others in Pu,

c
(IB)
ui =

∑
i′∈Pu,i′ �=i

ψ(i′ ��� i) (8)

where i ∈ Pu. For an observed item i, if it is more related to other observed
items, i would be more preferred by the user and get a larger confidence.

Similarly, the degree of cross-basket influence of observed items on C
(I)
u ,

c
(CB)
uk =

∑
i′∈Pu

ψ(i′ ��� k) (9)
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where k ∈ C
(I)
u . Then, a unified formula of confidence is as following,

c
(I)
ui =

∑
i′∈Pu,i′ �=i

ψ(i′ ��� i) (10)

where i ∈ Pu ∪ C
(I)
u . Similarly, we get the confidence from inter-user influence,

c
(U)
ui =

∑
u′∈Nu

τ(u′ ��� u) · 1(i ∈ Pu′) (11)

τ(u′ ��� u) = γ(u′, u) · 1(u′ ∈ Nu) (12)

where i ∈ Pu ∪ C
(U)
u . τ(u′ ��� u) is the inter-user influence degree from u′ to u.

As in Sect. 1 and Sect. 2.2, c
(U)
ui =0 and ∀i ∈ P+

u , which results in under-
personalization. This can be alleviated by fusing the inter-user and inter-item
influence. We use the simple weighted average to combine c

(U)
ui and c

(I)
ui after

their normalizations,

cui = θ c̄
(U)
ui + (1 − θ) c̄

(I)
ui (13)

where c̄
(U)
ui = |Eu∪Pu|∗c

(U)
ui /

∑
k∈Eu∪Pu

c
(U)
uk . θ is a coupling coefficient, θ ∈ [0, 1].

The confidence can be used to finely tune the intensity of preference relations
in preference learning. To control its variance, p-norm is used, i.e., (cui)p. We
set p < 1 to shrink the confidences close to 1. For an item triple (i, k, j) from
(Pu, Eu, Lu), the pairwise confidence is calculated,

cuik =
(cui)p + μ

(cuk)p + μ
, cukj = (cuk)p + μ (14)

where μ is a smooth constant. p and μ are set 0.9 and 1, respectively.
γ(·) in Eq. (7) and Eq. (11) is a relativeness measure function defined on pairs

of users/items based on R. For simplicity, Jaccard similarity is used in this paper.

Fig. 2. A simple example illustrates inner-basket and cross-basket influence.
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Example. A simple example in Fig. 2 shows how the inner-basket and cross-
basket influence alleviate sparsity and enhance personalization. Dotted arrow
denotes source item has influence on end item (ψ(·) in Eq. (7)). And dotted
arrows in Pu are inner-basket influence, and dotted arrows out from Pu reflect
cross-basket influence. Through cross-basket influence, C

(I)
u = {c1, c2} can be

found and assigned with confidence according to Eq. (6) and Eq. (9) to alleviate
the sparsity. Through inner-basket influence, {p2, p3} are weighted with differ-
ent confidences according to Eq. (8), to enhance the personalization. Note that,
actually, left-out items are more than observed items and collaborative items.

Optimization. L can be optimized by stochastic gradient descent (SGD), and
updating rules are given in Eq. (15). Uniformly sampling strategy is used: ran-
domly pick a user u from U , then an item triad (i, k, j) is randomly picked from
(Pu, Eu, Lu).

Θ ← Θ − η · ∂GCPR-OPT
∂Θ

(15)

where η is the learning rate. The gradients of the parameters in Θ are calculated,

∂GCPR-OPT

∂Wu
= −cuikσ(−r̂uik)(Vi − Vk) − cukjσ(−r̂ukj)(Vk − Vj) + 2λΘWu

∂GCPR-OPT
∂Vi

= −cuikσ(−r̂uik)Wu + 2λΘVi

∂GCPR-OPT

∂Vk
= cuikσ(−r̂uik)Wu − cukjσ(−r̂ukj)Wu + 2λΘVk

∂GCPR-OPT

∂Vj
= cukjσ(−r̂ukj)Wu + 2λΘVj

Post-training. In personalized ranking, top-biased problem is that top posi-
tions are not treated more important than lower positions. minΘGCPR-OPT
in Eq. (3) is optimized based on generalized AUC in which top-biased problem
exists.

Fig. 3. A simple example shows the transformation of the item-list of user u for top-2
recommendation (a) before training, (b) after traning and (c) after post-training.
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A simple example in Fig. 3 illustrates a case of top-2 recommendation, and the
transformation of the ranking item-list of u : (a) before training, (b) after training
and (c) after post-training. After GCPR training, GCPR put items i1 and i2 to
proper positions to minimize the ranking loss L, where L = L(i1)+L(i2)), which
reaches the stable trade-off of these two ranking losses. L(i1)=

∑
i1>uj Lui1j and

L(i2)=
∑

i2>uj Lui2j . L(i1) < L(i2) due to i1 ranks more close to the top than
i2. While, a better result is shown in Fig. 3(c) for top-2 recommendation, which
can be realized by putting more attention on the ranking of i1.

To solve this problem, we adopt self-paced learning (SPL) [8,19]. The idea of
SPL is to learn ‘easy’ samples first and then gradually learn ‘complex’ samples,
which simulates the process of human learning. The solution strategy of SPL is
to assign different weights to these samples: larger weights on ‘easy’ samples and
smaller weights on ‘complex’ samples. We assume that, after the convergence
of GCPR training, the larger the ranking loss (L(i)) of the item is, the more
complex it is. We adjust L to L = ωi1L(i1)+ωi2L(i2) where ωi1 > ωi2 > 0. Due
to L(i1) < L(i2), and we simply let ωi = 1

σ(L(i))+1 .
Since L(i) can be decomposed into pairs of items, i.e. L(i) =

∑
i>uj Luij =

−∑
i>uj lnσ(r̂uij), we realize SPL in a smooth way by auto-tuning the weight

of pairwise ranking loss as follows,

ωuik =
1

σ(Luik) + 1
(16)

ωukj is calculated similar with ωuik. The whole loss function is redefined as:

L =
∑
u∈U

[ ∑
i∈Pu

∑
k∈Eu

ωuikcuikLuik +
∑

k∈Eu

∑
j∈Lu

ωukjcukjLukj

]
+ λΘ||Θ||22 (17)

Algorithm. The pseudo-code of GCPR is shown in Algorithm 1, which consists
of three stages: setup, training and post-training. In setup stage, |Nu| (|Ni|)
nearest neighbors are found for each user u (item i) based on γ(·), and then the
whole items are split into three overlapping itemsets: Pu, Eu and Lu. In training
stage, for each time, we randomly sample a user u and an item triad (i, k, j),
then calculate the gradients and update Θ. The post-training stage adjusts the
weights of different item-pair losses according to Eq. (16) and Eq. (17).

In setup stage, we adopt inverted index [2] to speed up the nearest neigh-
bors retrieval since R is sparse. Assuming that, user (item) and its |Uco−like|
(|Ico−liked|) neighbors co-like (be co-liked by) at least one item (user), the com-
plexity is O(|U ||Uco−like| + |I||Ico−liked|). Since |Nu| ≤ |Uco−like| and |Ni| ≤
|Ico−liked|, the lower bound is O(|U ||Nu| + |I||Ni|)), and further simplified as
O(|U | + |I|) since |Nu| and |Ni| are usually preset small. The complexity of
training stage and post-training stage are O(Td) and O(T ′d). The whole com-
plexity is O(|U ||Uco−like| + |I||Ico−liked| + Td + T ′d).
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Algorithm 1. Generalized Collaborative Personalized Ranking (GCPR)
Input: Implicit feedback matrix R; user set U ; item set I; the size of nearest neighbors

|Nu| and |Ni|; dimension of latent factor d; regulization coefficient λΘ, and learning
rate of GCPR training η and post-training η′; number of iteration in GCPR training
T and post-training T ′.
Output: The latent factors W and V .

1: Setup:
2: for each item i ∈ I do
3: Select |Ni| nearest neighbors and form Ni based on γ(·).
4: for each user u ∈ U do
5: Select |Nu| nearest neighbors and form Nu based on γ(·).
6: Split the itemset I into three parts: Pu, Eu and Lu, and calculate the confidences

of items in Pu ∪ Eu according to Eq.(13).

7: Training:
8: Randomly initialize the parameters W and V .
9: for i = 1 to T do

10: Randomly select a user u from U .
11: Randomly select an item triad (i, k, j) from (Pu,Eu,Lu), and get cui and cuk.
12: Calculate the gradients and update W and V , according to Eq.(15).

13: Post-training:
14: for i = 1 to T ′ do
15: Randomly select a user u from U .
16: Randomly select an item triad (i, k, j) from (Pu,Eu,Lu), and get cui and cuk.
17: Calculate the item-pair loss Luik and Lukj , and their weights ωuik and ωukj .
18: Calculate the gradients and update W and V , according to Eq.(16) and Eq.(17).

4 Experiments

4.1 Datasets

Four public real-world datasets for recommendation task are adopted: Net-
flix5K5K2, Amazon3, ML-100K4 and Delicious2K5. Netflix5K5K contains
282,474 ratings with 5000 users on 5000 movies. Amazon describes 195,791 buy-
ing records with 6170 users on 2753 items from Amazon website. ML-100K
includes 1,000,209 ratings given by 6040 users on 3,952 movies. Delicious2K
describes the tag information from user on online bookmarks, which collects
230,942 user-tag records with 1,867 users and 40,897 tags. The same as [9,11,13],
we consider ratings higher than 3 as positive feedbacks. Table 2 shows these
datasets.

2 https://www.netflix.com/, please refer to [9].
3 http://jmcauley.ucsd.edu/data/amazon/.
4 https://grouplens.org/datasets/movielens/.
5 https://grouplens.org/datasets/hetrec-2011/.

https://www.netflix.com/
http://jmcauley.ucsd.edu/data/amazon/
https://grouplens.org/datasets/movielens/
https://grouplens.org/datasets/hetrec-2011/
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Table 2. Statistic of datasets.

Dataset User Item Size Density(%)

Netflix5K5K 5000 5000 151,256 0.61

Amazon 6170 2753 195,791 1.15

ML-100K 943 1682 100,000 6.30

Delicious2K 1867 40,897 230,942 0.30

4.2 Evaluation Metrics

Some common evaluation metrics for top-N recommendation are used, includ-
ing Precision (Pre@N), Recall (Recall@N), Mean Average Precision (MAP@N
[15]), Mean Reciprocal Rank (MRR@N [16]), Normalized Discounted Cumu-
lative Gain (NDCG@N [7]). All the experiments are under the same five-fold
cross-validation.

4.3 Baselines

Nine representative recommendation algorithms are used as baselines, including
traditional CF methods: POP, UCF, ICF [14], WRMF [10], and several CR
methods: BPR [13], GBPR [11], PRIGP [12], CML [6], CPLR [9].

– POP. The items are ranked by the popularity for all users.
– UCF. User-based Collaborative Filtering collects the items from the nearest

neighbors of the user and ranks them by the aggregation.
– ICF [14]. Item-based Collaborative Filtering recommends the items which

are most similar to the observed itemset.
– WRMF [10]. Weighted Regularized Matrix Factorization considers different

weights for user’s preferences in matrix factorization.
– BPR [13]. Bayesian Personalized Ranking is a basic pairwise learning

method.
– GBPR [11]. Group Bayesian Personalized Ranking relaxes the inter-user

independence assumption of BPR by introducing the group preference.
– PRIGP [12]. Personalized Ranking with Item Group considers those items

with observed feedbacks from user’s nearest neighbors and splits them into
item groups with ranking relations.

– CML [6]. Collaborative Metric Learning uses metric learning, i.e. replaces
dot-product in BPR with hinge loss of Euclidean distance, to consider the
triangle inequality between user-item, user-user and item-item relationships.

– CPLR [9]. Collaborative Pairwise Learning to Rank considers the inter-user
influence on both items with observed feedbacks and those without.

4.4 Implementation and Parameter Setting

We implemented our model using TensorFlow6. Let topN = 10, d = 100, η = 0.1,
and T = 10000∗|U |. For post-training, let T ′ = 1000∗|U | and η′ = 0.001. We
6 https://www.tensorflow.org.

https://www.tensorflow.org
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Table 3. Prediction performance (ave. of five-fold cross-validation) of nine baselines
and GCPR. The best results of all are in bold, and the best among nine baselines are
underlined. *, ** indicate p ≤ 0.01, and p ≤ 0.001 based on the Wilcoxon signed rank
test.

Dataset Metric Model Improve

POP UCF ICF WRMF BPR GBPR PRIGP CML CPLR GCPR

Netflix5K5K Prec@10 8.2 12.8 12.1 12.0 13.3 13.2 13.3 13.3 12.8 13.8 3.8%*

Recall@10 11.5 20.5 18.2 20.4 20.2 20.3 19.8 20.3 18.6 22.3 8.8%**

MAP@10 4.6 9.7 8.7 9.1 9.6 9.6 9.3 9.2 8.6 11.0 13.4%**

MRR@10 20.7 32.9 31.1 29.6 33.0 32.8 32.4 31.5 31.4 35.1 6.4%*

NDCG@10 25.9 38.3 36.3 36.3 38.5 38.4 37.8 37.5 36.8 40.6 5.5%*

ML-100K Prec@10 11.8 20.7 18.4 20.7 22.2 21.2 20.5 22.2 22.0 22.7 2.3%

Recall@10 10.9 22.7 19.4 22.9 23.8 23.1 21.9 24.3 23.4 25.2 3.7%*

MAP@10 5.2 12.1 10.5 11.8 12.7 11.7 11.1 12.7 12.4 13.9 9.4%**

MRR@10 31.5 49.3 46.0 46.3 50.5 47.9 46.3 50.5 50.3 53.2 5.3%*

NDCG@10 36.8 54.7 51.1 52.9 56.0 53.7 52.4 56.0 55.6 58.3 4.1%*

Amazon Prec@10 1.3 4.4 4.5 4.5 4.6 4.8 4.4 5.0 4.3 5.2 4%*

Recall@10 2.7 9.8 10.1 10.7 10.2 10.8 9.8 11.2 9.6 11.8 5.4%**

MAP@10 1.0 4.6 4.9 4.5 4.3 4.6 4.4 5.0 4.1 5.5 10%**

MRR@10 4.3 14.2 15.1 13.9 13.8 14.4 13.9 15.6 13.1 16.5 5.7%**

NDCG@10 5.8 17.7 18.3 17.9 17.7 18.3 17.4 19.5 16.9 20.4 4.6%*

Delicious2K Prec@10 6.8 16.6 17.1 15.7 18.2 17.2 16.0 17.4 18.7 20.2 8%**

Recall@10 7.0 16.9 17.5 16.0 18.5 17.5 16.3 17.9 19.1 20.9 9.4%**

MAP@10 3.4 10.1 10.9 8.4 11.1 10.4 9.8 10.4 11.7 14.1 20.5%**

MRR@10 19.5 45.1 49.0 40.8 49.0 46.4 44.8 46.1 50.4 53.9 6.9%**

NDCG@10 23.1 50.0 52.7 47.5 53.6 51.3 49.5 51.0 54.8 58.0 5.8%*

explore regularization coefficient λΘ in {100, 10, ... 0.0001} for WRMF, BPR,
GBPR, PRIGP, CML and GCPR. |Nu| and |Ni| are explored in {5, 10, 20, 50,
100, 200} same in UCF, ICF, PRIGP, CPLR and GCPR. For WRMF, the con-
fidence weight coefficient α is chosen from {1, 2, 3, 4, 5}. For GBPR, the size
of group |G| and ρ are chosen from {1, 2, 3, 4, 5} and {0.2, 0.4, 0.6, 0.8, 1.0},
respectively. For PRIGP, α is chosen from {0.001, 0.01, ... 10}. We use the CML
implementation7 and tune the margin m in {0.01, 0.05, ... 5, 10}. α, β and γ of
CPLR are chose in {0, 1} [9]. The coupling coefficient θ of GCPR is explored in
{0, 0.2, 0.4, 0.6, 0.8, 1}. Grid search is used to find the best parameter(s) for all
the methods.

4.5 Results and Analysis

Prediction Performance. Table 3 lists the results of nine baselines and GCPR
with five metrics (@top-10) on datasets, and we can get following conclusions:
(1) GCPR consistently outperforms the baselines on all datasets across various
metrics. GCPR not only performs much better than traditional CF methods,
but also beats PL methods. (2) Among nine baselines, CML and CPLR are two
state-of-the-art CR methods. CML performs better on ML-100K and Amazon
while CPLR performs better on the sparsest dataset Delicious2K. (3) GBPR and
7 https://github.com/changun/CollMetric.

https://github.com/changun/CollMetric
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Fig. 4. The influence of parameters (|Nu|, |Ni|).

Fig. 5. The influence of parameter θ.

PRIGP perform unstable, even worse than BPR on ML-100K and Delicious2K,
due to that they ignore the influence degree. (4) Since POP, UCF, ICF and
WRMF are not ranking-oriented, their performances are not as good as CR
methods in most cases. Interestingly, among four datasets, the improvement of
GCPR over others is relevant with the sparsity. GCPR improves most on the
sparsest dataset Delicious2K and least on the densest dataset ML-100K. BPR,
GBPR, PRIGP, CML and CPLR suffer from the sparsity, and GBPR, PRIGP
and CPLR suffer from the under-personalization. The results confirm that GCPR
effectively deal with the problems of under-personalization and sparsity.

Effects of Parameters. Figure 4(a–d) examines the effect of varying the neigh-
borhood size (|Nu| and |Ni|) on the performance of GCPR. When |Nu| and |Ni|
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Table 4. Performance (NDCG@10,%) of GCPR(CB), GCPR(IB) and the best baseline.

Dataset Best Baseline GCPR(CB) GCPR(IB)

Netflix5K5K 38.5 39.8 (+3.4%) 39.1 (+1.6%)

ML-100K 56.0 57.7 (+3.0%) 57.9 (+3.4%)

Amazon 19.5 20.5 (+5.1%) 20.3 (+4.1%)

Delicious2K 54.8 55.7 (+1.6%) 56.8 (+3.6%)

Fig. 6. The training curves of GCPR.

increase from 5 to 200, the performance first increases, then decreases slightly
on Netflix5K5K and Delicious2K while sharply on Amazon and ML-100K. With
more neighbors chosen, more potential interests accompanied with noise are
introduced, especially on denser datasets like Amazon and ML-100K. The proper
sizes should be larger on sparser data set. The coupling coefficient θ in Eq. (13)
is the importance of inter-item influence. From Fig. 5(a–b), we find that the best
results (θ = 0.6) are always produced by combing the collaborative influence on
both users and items.

Effectiveness of Cross-Basket and Inner-Basket Influence. Cross-basket
influence can help alleviate the sparsity and inner-basket influence can enhance
personalization. GCPR(CB), GCPR(IB) are GCPR variants only including cross-
basket influence and inner-basket influence, respectively. Table 4 shows they
perform better than other baselines, and by combining cross-basket and inner-
basket influence, GCPR always performs best.

Impact of Post-training. Figure 6 shows the performance of GCPR without
and with post-training, after the convergence of GCPR training, further training
GCPR with self-paced learning leads to a significant improvement, about 1.8%
and 1.6% absolute improvement on NDCG@10. Self-paced learning can put more
effort on learning the observed items and collaborative items at the top positions,
which can alleviate the top-biased problem of GAUC.
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5 Conclusion

To solve the under-personalization and sparsity problems in previous CR meth-
ods, we propose utilizing inner-basket influence and cross-basket influence of
items, and then we design a generalized collaborative ranking method (GCPR).
To learn the listwise preference of users, we design an objective function based
on generalized AUC with preference confidence. Further, self-paced learning is
used to solve the top-biased problem in generalized AUC. Experimental results
show that GCPR is an effective CR method for personalized recommendation.
For future work, we will try to improve GCPR in the setting of explicit feedback.

Acknowledgements. This work was partially sponsored by National 863 Program of
China (Grant No. 2015AA016009).
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Abstract. Multi-hop reasoning is an essential part of the current read-
ing comprehension and question answering areas. The reasoning methods
have been extensively studied, and most of them are generally focused
on the pre-retrieval based inference, with the help of a few paragraphs.
These methods are fixed and unable to cope with dynamic and complex
questions. Here, we propose to utilize the dynamic graph reasoning net-
work for multi-hop reading comprehension question answering.

Specifically, the new approach continuously infers the clue entities and
candidate answers based on the question and clue paragraphs. The clue
entities and candidate answers extracted at each hop are used as new
nodes to expand the dynamic graph. Then we iteratively update the
semantic representation of the questions via dynamic question memory,
and apply the graph attention network to encode the information of infer-
ence paths. Extensive experiments on two datasets verify the advantage
and improvements of the proposed approach.

Keywords: Multi-hop reasoning · Graph attention network ·
Commonsense

1 Introduction

Question answering (QA) has been a popular topic in recent years. In partic-
ular, machine reasoning methods have been studied extensively to support QA
services. Prominent ones include reading comprehension CommonsenseQA [12]
and multi-hop HotpotQA [16]. However, machine reasoning, especially multi-hop
reasoning is still a challenging problem [5]. Most of the work [2] are established
in two parts: retrieving paragraphs and reasoning. Retrieving paragraphs and
reasoning are separated. The retriever is consequently unable to cover all the
necessary informative paragraphs, and the ability of reasoning depends largely
on the results of the earlier retriever.

Current models for single document QA tend to seek answers in sentences
matched by the question, which does not involve complex reasoning. Complex
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logical reasoning can better verify the model’s reasoning ability. Earlier work [11]
used Bi-attention flow between questions and context, and pre-trained model
such as Bert [4] to capture the implied relationship between questions and con-
text. With the development of graph neural networks, more and more work [5,15]
completes the inference of complex logic by constructing inference graphs.

Figure 1 presents an example of multi-hop reading comprehension. We com-
plete the document retrieval based on the raw question text in the first stage,
which retrieves the information of the beginning and end hop. The information
required by the middle hop may not be related to the initial input.

Fig. 1. Stages of Multi-hop reasoning: retrieving documents, constructing dynamic
graph, and updating query.

In this paper, we propose a novel framework for question-answer based on
dynamic graph processing. The retrieved information, and the question repre-
sentation will change iteratively. In the current hop, we use the key entities
called clue entities in the question and context to retrieve information called
clue paragraphs. Based on the previous hop clue paragraphs, we then reasoned
to obtain the next hop clue entities and candidate answers until we find the
correct answer. This kind of dynamic iteration process of retrieval-reasoning can
provide an explicit inference paths.

Complex multi-hop reading comprehension QA requires explicit inference
paths to illustrate the rigor of its reasoning logic. Previous deep learning based
models cannot provide a sufficient explanation of the reasoning process. We
use clue entities and candidate answers to dynamically construct graph, then
utilize the graph attention network [13] to aggregate the information of the
inference paths. With the deepening of reasoning, the expression of the question
has different from the original question. We use a dynamic memory network to
update iteratively the semantic information of the question at each hop.

The contribution of this work can be summarized as follows: 1). We pro-
pose a novel framework of dynamical graph reasoning for multi-hop reading
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comprehension open-domain questioning answer; 2). Experiments on two
datasets verify the improvements, compared with the baselines; 3). The new
approach reveals novel explainability.

2 Related Works

Machine Reading Comprehension: Compared with traditional rule-based
machine reading comprehension methods, models based on deep learning are
better at mining semantic information of context, resulting in a significant per-
formance improvement. R-NET [14] is an end-to-end neural networks model for
reading comprehension QA. It matches the question and passage with gated
attention-based recurrent networks to obtain the question-aware passage repre-
sentation. BIDAF [11] network, a multi-stage hierarchical process that represents
the context at different levels of granularity and uses bidirectional attention flow
mechanism to obtain a query-aware context representation without early sum-
marization.

Open-Domain QA: However, open-Domain QA is not limited to reasoning on
certain documents, but to find supporting evidence to answer questions based
on prior knowledge or large-scale document sets. Recently, DrQA [2] leverages a
neural model to extract the accurate answer from retrieved paragraphs, usually
called retrieval-extraction framework. Rajarshi et al. [3]uses gated recurrent unit
to update the query at each step conditioned on the state of the reader and the
reformulated query is used to re-rank the paragraphs by the retriever. Kenton et
al. [8]treats evidence retrieved from open corpus as a latent variable, and jointly
learns the retriever and reader from question-answer string pairs and without
any IR system.

Graph Neural Network: Graph modeling is incresingly used in reasoning.
Entity-GCN [1] considers three different types of edges that connect different
entities in the entity graph. DFGN [15] constructs a dynamic entity graph,
wherein each reasoning step irrelevant entities are softly masked out, and a
fusion module is designed to improve the interaction between the entity graph
and the documents. Cognitive Graph QA [5] employs an machine reading com-
prehension model to predict answer spans and possible next-hop spans, and
then organizesthem into a cognitive graph. Compared with previous work, our
architecture extends the query memory mechanism and the underlying graph
reasoning model.

3 Dynamic Graph Reasoning

3.1 Proposed Framework

The proposed framework in Fig. 2. It consists of three core modules: Multi-
level Features Extraction, Dynamic Question Memory, Dynamic Graph Atten-
tion Reasoning. The multi-level features extraction module iteratively extracts
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Fig. 2. Dynamic graph reasoning framework.

the clue entities and candidate answers, the dynamic graph reasoning mod-
ule encodes the information of the inference paths, and the dynamic question
memory is updated accordingly at each hop.

Our approach encodes the question memory dynamically. We first take the
raw question text as the initialization of clue paragraphs, and extract the key
information in the clue paragraphs as the clue entities, then retrieve paragraphs
related to clue entities as the next hop clue paragraphs. The clue entity and can-
didate answers are used as nodes, and an dynamic graph is established according
to the progressive relationship in the reasoning process.

Each node has two vector embeddings representation, one is the question
memory and the other is the context semantic embedding. The context semantic
embedding requires the graph attention neural network model GAT [13] aggerate
neighbor information of the inference paths, and the question memory update is
based on the memory of the previous hop and the question semantic embedding
of the current hop via dynamic memory network [7].

3.2 Multi-level Features Extration

We take questions and choices, and related documents as input to the module to
obtain multi-level features that include question embedding, context semantic
embedding, and clue entities and candidate answers.

We use clue entities x to retrieve related document para[x] from Wikipedia.
Then we transform these document mentioned clue entities x in previous hop as
clue[x] in current hop to extract candidate answers a and useful next-hop clue
entities y from the para[x]. Utilizing “pointer vectors” Shop, Ehop, Sans, Eans



Dynamic Multi-hop Reasoning 539

as additional learnable parameters to predict targeted spans. The probability
P start
ans [i] and P end

ans [i] of the ith input token to be the start and end position of an
candidate answer span respectively. The process extract the candidate answers
based on the start and end position of the span. The same process is followed
by clue entities span. We use the next hop clue entities y to extract relevant
documents para[y] from Wikipedia, and use the predecessor documents para[x]
which extracted clue entities y as current hop clue paragraphs clue[y]. Both are
put into the model to extract the further hop candidate answers and clue entities.

3.3 Dynamic Question Memory

For multi-hop reasoning QA, the characterization of the question should be
updated progressively. For the different candidate answers obtained by reason-
ing, the question representation also changes accordingly. The question repre-
sentation for the final correct answer has changed significantly from the original
question. In its general form, the question memory module is comprised of an
attention mechanism as well as a recurrent network with which it updates its
memory [7]. During each iteration, the attention mechanism attends over the
question vector representations E and the previous memory mi−1. The scoring
function S takes as input the feature set z(E,m) and produces a scalar score.
We use a gating function as our attention mechanism. For each iteration i, the
mechanism takes the vector representation E of current question and a previous
memory mi−1 as inputs to compute gating.

gi = S(E,M i−1) = σ
(
W2tanh

(
W1z(E,mi−1) + b1

)
+ b2

)
(1)

Based on the previous memory mi−1, we update the question memory for each
time of the multi-level features extraction. The initial state of this GRU is ini-
tialized to the question vector itself: m0 = E0.

hi
t = giGRU(E, hi

t−1) + (1 − gi)hi
t−1 (2)

mi = GRU(hi
t,m

i−1) (3)

3.4 Dynamic Graph Attention Reasoning

The nodes of a dynamic graph are dynamically added based on the reasoning of
each hop. At each reasoning hop, we will obtain new candidate answers and clue
entities as new nodes to expand the dynamic graph. At the same time, we use
the context semantic vector outputed by the feature extraction module as the
initialization vector representation of the dynamic graph nodes and the current
hop question memory vector as the question memory of the candidate answers
nodes. The dynamic graph can effectively aggregate the information of the infer-
ence paths through the encoding of multiple neural attention layers. There may
be multiple paths passing through the same node. Therefore, Using the atten-
tion mechanism for different paths of this node will capture the information
differences of different inference paths more finely.
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We use graph attention networks (GAT) [13] to encode the information of
different inference paths. Specifically, GAT takes all the nodes as input, and
updates node feature through its neighbors in the graph. The input to our layer
is a set of node features h; module produces a new set of node features h

′
as

its output. Then performing a shared attentional mechanism a to computes
attention coefficients, and applying the LeakyReLU nonlinearity:

aij =
exp

(
LeakyRelu

(
Weij [hi||hj ]

))

∑
j∈Ni

exp

(
LeakyRelu

(
Weik [hi||hk]

)) (4)

Where Weij is the weight matrix corresponding to the edge type eij between
the i-th and j-th nodes. Where W ∈ Rd×d is a weight matrix to be learned, σ(·)
denotes an activation function, and aij is the attention coefficients, which can
be calculated by:

h
′
i = σ

( ∑
j∈Ni

aijWhj

)
(5)

4 Experiments

4.1 Experiments Setup

Datasets: We use CommonSenseQA1 and HotpotQA2 for the evaluation. Com-
monSenseQA is a dataset for multi-choices commonsense question answering
which inferences correct answer with prior knowledge. It collected 12,247 com-
monsense questions which each question has only one correct answers and four
distractors. The full-wiki dump of HotpotQA contains training set (90,564 ques-
tions), a development set (7,405 questions). We have selected several powerful
basic models, including MUPPET [6], CogQA [5], ESIM+ELMO [16], CoS-E
[10], KagNet [9].

4.2 Quantitative Study of Commonsense Reason

In CommonSenseQA, multiple options are given along with the question, and
the model needs to pick the one option as correct answer. The accuracy of the
answer is the main indicator of the evaluation model. The results on the Com-
monSenseQA dataset showing in Fig. 3 illustrates that our model outperform
all comparison models.

1 https://www.tau-nlp.org/commonsenseqa.
2 https://hotpotqa.github.io.

https://www.tau-nlp.org/commonsenseqa
https://hotpotqa.github.io
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Fig. 3. Comparisons with different models on commonsenseQA.

From the comparison chart of accuracy, our approach makes the accuracy
higher. Compared to other models that only use the raw question text as context
material, we use external knowledge sources like Wikipedia as supporting facts
for inference, and make full use of the semantic information of the relevant
documents retrieved. Although there is often a complex reasoning relationship
between external knowledge and question, our model can handle them well and
thus exhibit higher accuracy. In addition, since we iteratively use external sources
as supporting facts, the path of inference is explicit and interpretable.

4.3 Quantitative Study on Question Answering

For the evaluation of HotpotQA, Exact Match (EM), precision, recall and F1
score of not only answers but also sentence-level supporting facts to verify the
model’s reasoning ability and explainability.

Accuracy Results: The results on HotpotQA dataset are listed in Table 1. Not
only Exact Match (EM), precision, recall and F1 score of our proposed approach
performs much better than the baseline model and MUPPET, but also strong
competition with the latest models CogQA.

Table 1. Answer results of HotpotQA.

Methods Answer

EM F1 Pre Recall

Baseline 17.70 26.40 27.56 27.71

MUPPET 31.09 39.22 41.20 42.76

CogQA 36.56 48.49 51.29 49.06

Our Approach 34.03 45.73 48.60 46.05

Explainability Study: For multi-hop reading comprehension QA, not only
need to gain the final answer, often the internal process of multi-hop reasoning
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is very critical. The higher the comprehensive evaluation metrics of supporting
facts, the stronger the model reasoning ability. Our proposed model achives the
highest value of supporting facts in Fig. 4, indicating that our model has strong
multi-hop reasoning ability and interpretability.

0
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30

40

50

60

70

Baseline model MUPPET CogQA our approach

F1 precision recall

Fig. 4. Supporting facts and joint metric on HotpotQA

Query memory mechanism provides iterative memory for our reasoning at
each hop, and updates simultaneously clue entities and documents, which make it
more accurate to get support facts. The dynamic graph attention neural network
has greater advantages in aggregating inference paths information, and obtaining
accurate reasoning answers.

5 Conclusion

We design a novel cyclic iterative reasoning framework to tackle complex infer-
ence tasks. We continually looking for clue entities and candidate answers to
construct dynamic and explicit inference graph, using an attention mechanism to
capture information about the different inference paths, and cyclically updating
context information. Compared to other models, the proposed approach shows
advantages and improvements, not only in accuracy but also in qualitative stud-
ies. In future work, we will continue to expand the existing progress.
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Abstract. Multi-hop machine reading comprehension (MRC) requires models
to mine and utilize relevant information from multiple documents to predict
the answer to a semantically related question. Existing work resorts to either
document-level or entity-level inference among relevant information, which can
be too coarse or too subtle, resulting less accurate understanding of the texts. To
mitigate the issue, this research proposes a sentence-based multi-hop reasoning
approach named SMR. SMR starts with sentences of documents, and unites the
question to establish several reasoning chains based on sentence-level representa-
tions. In addition, to resolve the complication of pronouns on sentence semantics,
we concatenate two sentences, if necessary, to assist in constructing reasoning
chains. The model then synthesizes the information existed in all the reasoning
chains, and predicts a probability distribution for selecting the correct answer.
In experiments, we evaluate SMR on two popular multi-hop MRC benchmark
datasets - WikiHop and MedHop. The model achieves 68.3 and 62.9 in terms
of accuracy, respectively, exhibiting a remarkable improvement over state-of-the-
art option. Additionally, qualitative analysis also demonstrates the validity and
interpretability of SMR.

Keywords: Reading comprehension · Multi-hop question answering · Sentence
representation · Text understanding

1 Introduction

Machine reading comprehension (MRC) is an important and desired aspect in natural
language understanding. Its purpose is to usemachines to extract desired information and
knowledge automatically, based on a given question and some documents. Compared
to the basic tasks in natural language processing, such as named entity recognition and
relation extraction, MRC is a more complicated and higher-level task, which requires
deeper understanding of semantics.

In recent years, to verify the effect of MRC models, many data sets have been
developed, represented by SQuAD [10].Most of the existing datasets are aimed at single-
hop MRC task such that each question corresponds to a document, and the information
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for solving the question is restricted to that document. In other words, there is not a
reasoning process among several documents, which nevertheless does not reflect real-life
scenarios.

To better evaluate MRC models in a more realistic setting, the task of multi-hop
MRC is delivered, where to answer a given question, multiple supporting documents are
necessary. In other words, the multi-hop MRC task requires models to make reasoning
hops among documents based on the information of the question, in order to find enough
useful knowledge for predicting the answer. We focus on multi-hop MRC in this paper.

The multi-hop MRC task is notoriously challenging from at least the following
three aspects. First, for each question, there are many supporting documents, but only
a small portion of them contain information to resolve the question, and the rest are
interference. Most existing MRC models find it difficult to handle documents of large
scale, and have little anti-interference capability. Second, the information to resolve the
question is distributed among multiple documents, which requires effective reasoning
to form a reliable chain of information clue. However, current models are weak at
performing effective reasoning over multiple documents. Third, there may be multiple
possible chains of information clue formed by reasoning, which need to be screened and
evaluated by quadratic sorting. The quality of this operation brings great uncertainty to
MRC models in unveil the correct reasoning chain.

In view of these difficulties, in contrast to existingwork resorting to either document-
level or entity-level reasoning, which can be too coarse or too subtle, we propose SMR,
a progressive model based on sentence-level reasoning. It is naturally inspired by the
reading comprehension strategy of human. When human deal reading comprehension,
one usually finds the keywords from the question firstly, and then searches for a sentence
semantically related to the keywords in the supporting documents. Next, based on the
knowledge of the current sentence, she reasons for the subsequent logical sentence to
locate it, which is considered to be a hop. Finally, all the sentences extracted from the
supporting documents make up a reasoning chain of information clue, and the answer
can be finally derived.

To imitate the aforementioned process, SMR finds a sentence existing in the sup-
porting documents according to the main entity in the question, to start the reasoning.
Then, it employs a Sentence Selector, which iteratively selects a relevant sentence as
an intermediate reasoning node, resulting in a complete chain. In this way, SMR will
construct multiple reasoning chains, and in the end, it leverages an Answer Predictor to
infer the answer, which integrates the information of the reasoning chains, as well as the
question to derive a probability distribution of answers.

Further, sentences in human language often contain pronouns, and accurate resolu-
tion of pronouns and the nouns they refer to are essential for guiding reasoning, e.g., to
link the pronoun ‘it’ in sent2 of Fig. 1 with the noun ‘the Johannesburg Zoo’ in sent1.
Although existing co-reference resolution methods may help, it is practically non-trivial
to conduct it without mistakes, in which case mistakes will be propagated to MRC.
To alleviate the issue, we propose to concatenate two sentences (e.g., sent1 and sent2)
into one concatenation sentence (e.g., sent3). Hence, when the model needs to reason
from sent1 to sent2, it will choose sent3 as a node instead to avoid extra hopping, which
substantially reduces the difficulty in overly long reasoning.
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The Johannesburg Zoo is an zoo in Johannesburg, South Africa.

Established in 1904 it has recently been registered as a Section 
21 non-profit organization.

sent1

sent2

The Johannesburg Zoo is an zoo in Johannesburg, South Africa.
Established in 1904 it has recently been registered as a Section 
21 non-profit organization.

sent3doc1

Fig. 1. Representation enrichment via concatenation of adjacent sentences.

Contributions. In summary, the proposed model SMR consists of three modules: Sen-
tence Represent, Sentence Selector and Answer Predictor. And we make the following
contributions in this paper:

• We proposed to leverage sentence-based reasoning for MRC, which constructs
multiple chains that connect sentences relevant to the question;

• We introduce sentence concatenation to handle the potential issue of co-reference in
context for effective sentence-based reasoning;

• We achieve competitive accuracy results on popular multi-hop datasets, and SMR is
demonstrated to be able to explain the reasoning process.

Organization. We discuss related work in Sect. 2. Section 3 introduces the model SMR
in details, including sentence representation, sentence selector and answer predictor.
Then, we report the experimental study with in-depth analysis in Sect. 4, and conclude
the paper in Sect. 5.

Note that existingmulti-documentMRCdatasets have different formats, correspond-
ing to various types of multi-document MRC. This research mainly focuses on the popu-
lar multi-hop datasets WikiHop and MedHop [8], where one needs to choose the correct
answer from the given candidate set to the given question, based on a collection of
documents.

2 Related Work

In recent years, variousmulti-hopMRC datasets have been developed, and these datasets
all demand models to understand the semantics of texts and find the internal relationship
between texts. However, their questions have different forms. For example, HotpotQA
[9] and TriviaQA [17] contain {question, document set, answer}, where the answer must
be generated, and the question is a natural language text. On the other hand, QAngaroo
WikiHop andMedHop [8] contain {question, document set, answer, candidates}, where
the answer is an entity presented in the given candidate set, and the question consists
of an entity and a relationship. Some others such as Who Did What [18] and Children’s
Book Test [19] provide cloze-style MRC datasets, on which the models need to predict
the missing word/entity in questions.

According to the characteristics of these data sets, researchers have developed various
models to handle the tasks. For example, [8] fuses multiple documents into a long one,
and then uses the single-hop MRC model with bidirectional attention mechanism to
deduce the answer. However, because the documents after fusion are too long and the
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model has no information skipping capability, the performance of the model is far less
accurate than that in the single-hop task.

With the assistance of knowledge guidance, [2] enables the model to integrate the
semantics of documents, but the approach is difficult to apply due to the fact that external
knowledge tends to be limited to a specific field.

Focus on reasoning, [4] gathers all possible reasoning paths according to the entities
contained in the documents, and then scores each path to select the correct reasoning
path.However, themethod extractsmany invalid paths that are apt to bring in interference
and waste computing resources.

[5, 6] uses graph neural networks [20] to obtain the relationship between entities, and
adds self-attentionmechanism [7] into themodel,which obtains a gain in the result. How-
ever, themodel has poor interpretability owing to lack explicit reasoning, andmeanwhile
it is of high complexity and low efficiency.

The research in this paper was inspired by the research by EPAr [3], which cre-
ates a document explorer to select documents to build an inference tree. We follow the
same framework to establish SMR, but substantially differ by incorporating sentence-
based reasoning, explicit paths and sentence concatenation (to be introduced in Sect. 3).
The innovative design implements a MRC model with higher accuracy and better
interpretability (to be detailed in Sect. 4) (Fig. 2).

Sentence Selector

Sentence Selector

Sentence Selector

Bi-LSTM

Answer 
Predictor Score(c)

Cand1

P(answer)

P(answer)

P(answer)

Bi-LSTM

Self-Attention

Bi-LSTM

QuestionDoc1 Doc2 Docn

...

...

...

...

Reasoning Chains

...

...

Candn

A sentence

Character 
embedding

Word
 embedding

...

...

Le  en ty Rela on

Fig. 2. Framework of sentence-based MRC.

3 Model

In the section, we introduce our proposed model for multi-hop MRC, which comprises
three modules.

Before delving into the details, we first formally define the task that is investigated
in this paper.
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Task Definition. In the task of multi-hop MRC [8], there is a question q and a set
of supporting documents T ′. In particular, the question q is provided in the form of a
tuple (le, r, ?), where le is the left entity, and r represents the relation between le and
the unknown right entity, which is the answer. In addition, there is also a candidate set
C ′ = {c′

η}Hη=1 containing the correct answer. The purpose is to predict the unknown right
entity from C ′.

In the sequel, we explain our proposed model, which first performs sentence seg-
mentation and semantic encoding (Sect. 3.1), then inferences to build the multi-hop
chains based on the encoded semantics (Sect. 3.2), and finally mines the evidence of the
multi-hop chains to rank the candidates for finding the answer (Sect. 3.3).

3.1 Sentence Representation

We first conduct text preprocessing and word encoding methods. Then, we divide the
supporting documents into single sentences and concatenation sentences. Subsequently,
we explain the encoding methods of these steps.

Word Encoding. The goal of word encoding is to characterize the question and
supporting documents as vectors for inputting into neural networks.

We first filter documents to reduce the number of interfering documents and the GPU
memory occupied by the model. In practice, we use the TF-IDF algorithm to calculate
and rank the cosine similarity between the question and each supporting document.

Then, we intercept the top-N supporting documents with the least similarity as the
new supporting document set T = {tn}Nn=1. We apply the same word embedding and
semantic encoding for le, r and T .

For word embedding, we combine character embedding and pre-trained Glove word
embedding [12] as the initial word embedding and input them into a Highway Network
[21] to obtain the final word representation. We use L′, R′ and X′ to denote the word
embedding of le, r and T respectively.

For semantic encoding,we passL′,R′, andX′ through a bidirectional LSTMnetwork
[22] with v hidden units and concatenate the bidirectional output of LSTM as the word-
level semantic representation. We use L∈ R

Ql×v, R∈ R
Qr×v, X∈ R

N×J×v as the word
encoding of le, r and T , respectively, where Ql , Qr , J are the word-level lengths of le, r
and T respectively.

Since each candidate c
′
η can be found in the supporting document set T , we take out

the word encoding corresponding to c
′
η in X, average it at the word-level and then get

cη∈Rv as the semantic encoding of c
′
η.

Sentence Encoding. TheSentenceEncodingmainly divides eachdocument into several
sentences and converts each sentence to a vector.

We first cut a documents t into multiple sentences to obtain the single sentence set
Do = {

doi
}I
i=i s.t. doi ∈ R

K×v where I is the number of single sentences contained in
t, K is the number of words that make up a single sentence and doik is the corresponding
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word encoding in X. We then connect all two adjacent single sentences in the document

to obtain the concatenation sentence set Db = {
dbi

}I−1
i=1 , d

b
i can be given as

dbi =doi ‖doi and 1 ≤ i < I , (1)

where ‖ is used to indicate concatenation. Next, we joint Do and Db to complete the
sentence division of t and get the sentence set D; that is,

D = Do ∪Db, (2)

where ∪ refers to union.
We adopt the same operation for all supporting documents and get the word-level

sentence encoding S of T ; that is,

S=D1 ∪D2 ∪ . . . ∪DN = {s1, . . . , sI ′ }, (3)

where I ′ is the number of total sentences including single sentence and concatenation
sentence of T . We apply a self-attention mechanism [7] to implement vector representa-
tion of sentences and get the sentence-level sentence encoding set E of T . Specifically,
the formula we use to transform a sentence si into a vector representation ei∈ R

v is as
follows (K is considered as the length of all sentences for simplicity); that is,

aik = tanh(W2 tanh(W1sik + b1) + b2),
âi = softmax(ai),
ei = ∑K

k=1 âiksik

(4)

3.2 Sentence Selector

In the section, we utilize a hierarchicalmemory network [23] to construct sentence-based
reasoning chains.

We define two phases for Sentence Selector: selecting a node and establishing a hop
edge. In the selecting phase, the model extracts a sentence that is most relevant to the
network memory statem as the starting node of the current hop. During the establishing
phase, themodel updatesm to prepare for jumping the next node, which can be compared
to generating the current jump edge.

We choose to use the left entity as the starting node of the inference chain, so the
model initializes m with the last state of L and updates it with a Gated Recurrent Unit
(GRU) [14].

Selecting a Node. At each hop h, the model calculates the correlation between each
sentence encoding ei in E and current memory statemh based on the bilinear-similarity
and obtains a node selection distribution Psent , which can be described as

pi = eTi WPmh,
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Psent = softmax(p). (5)

Then, we choose the sentence si ∈ S as the starting node of the current hop, where i
satisfies

Psent(i) = max(Psent). (6)

Establishing a Hopping Edge. After selecting the starting node of h hop, the model
calculates the bilinear-similarity ofmh and each word sik in si and normalizes it to obtain
a weight μ; that is,

νk = sTikWmmh,

μ = softmax(ν). (7)

Now, we use μ to calculate the weighted average s̄i of all the words in si and then
input it into a GRU cell to update mh, which can be described as

s̄i = ∑K
k=1 sikμk ,

mh+1 = GRU(s̄i,mh).
(8)

Afterwards, we can combine the two sections together as a recurrent unit U,
(
sh+1,mh+1

)
= U (mh). (9)

U can continuously select nodes by updating m. Looping for U H times, we can get
a H-hop reasoning chain Schain = {s1, s2, . . . , sH } where each sentence sh is selected
iteratively as a node by U in S. To reduce the fortuity of reasoning chain generation, we
repeat Sentence Selector M times to generate M possible H -hop reasoning chains for
the model.

3.3 Answer Predictor

In the section, the model mainly predicts the probability of each candidate as the answer
based on the H-hop reasoning chains obtained in Sentence Selector. Each chain may be
a logical reasoning path from one entity to another.

Therefore, the model also introduces the question as auxiliary evidence to select the
answer that meets the requirements of the question. Answer Predictor consists of two
parts: reasoning chain information integration and calculating the probability distribution
of answers.

Information Integration. Since the predicted answer exists in the last hop sH of a
reasoning chain, we calculate the attention σ between the first H − 1 hop of chain and
the question for each word in sH . Then, σ is used to compute the weighted average
x ∈ R

v of sH . The formulas can be expressed as
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x =
∑K

k=1
sHkσk . (10)

For calculating σ , we first horizontally stitch the top H − 1 hop of Schain to obtain
sfore; that is,

sfore = s1‖s2‖ . . . ‖sH−1. (11)

Thenwe calculate an information victor δk though adopting aLSTMwith an attention
mechanism [24] to encode sfore and the top k − 1 words of sH . In the meanwhile,
considering the impact of the question on σ , we calculate the α-correlation [3] εk of δk

with the left entity and relationship, mathematically,

aki = ωTtanh
(
Wasifore + Wbvk + b

)
,

ck = softmax(ak),
gk = ∑

i c
k
i s

i
fore,

δk = LSTM(sk−1
H , vk−1, gk−1),

εk = α
(
δk , l

)
+ α

(
δk , r

)

(12)

where vk is the hidden states of LSTM at the kth step, l and r are the final state of L and
R respectively. In addition, α can be defined as

α(x, y) = WT
α1((Wα2x + b) ◦ y), (13)

where ◦ represents element-wise multiplication.
Finally, ε integrating the information of Schain and the question can be used to

calculate attention σ ,

σ = softmax(ε). (14)

Probability Distribution Evaluation. After the above, we get a vector x of highly
integrated reasoning chains and problem information. Thus, we can use x to calculate a
probability distribution Panswer of candidate ci as the answer; that is,

θi = Wθ1Relu(Wθ2[ci; x; ci ◦ x] + bθ2) + bθ1),

Panswer = softmax(θ),
(15)

where Relu is the activation.
We calculate Panswer for all reasoning chains and get the answer probability distri-

bution set P̃answer = {Pi
answer}Mi=1. Aggregating the results of all reasoning chains, the

score of the candidate cη as the answer can be given as

score
(
cη

) =
∑M

i=1
Pi
answer(cη). (16)
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4 Experiments

In the section, we describe the data sets used to evaluate the model, parameter settings,
and experimental configurations firstly; additionally, we demonstrate the results and
ablation studies of the proposed model.

4.1 Datasets

WeuseWikiHop andMedHop [8] data sets to evaluate our proposedmodel; in particular,
we exploit the unmasked version of them.

WikiHop is a massive multi-hop MRC data set which provides about 43.8k samples
for training set and 5.1k samples for development set. Each sample contains an average of
13.7 supporting documents, which can be divided into about 50 sentences and documents
are collected from Wikipedia. The question of each sample contains an entity and a
relationship. They form a triple of the WikiData knowledge base with the unknown
answer that is contained in the provided candidate set.

MedHop is smaller dataset which consists of 1.6K samples for training set and 342
samples for development set. It mainly focuses on the domain of molecular biology
and its each sample including a question, a document set and a candidate set has the
same structure as the samples of WikiHop. And the difference is that each document
set includes an average of 9.6 supporting documents, and can be divided into about 40
sentences.

In experiments, we use all samples in the training set to train our proposed model
and all samples in the development set to adjust the hyper-parameters of the model.

4.2 Experimental Settings

We use NLTK [15] to divide the supporting document set into word tokens and sentence
tokens in different granularity and the candidate set and the question into word tokens.

We use the 300-dimensional Glove pre-trained word embedding (with 840B tokens
and 2.2 M vocabulary size) [12] to represent initial word tokens. The number of hidden
units of all LSTM-RNN [22] is 100. We use dropout [25] with probability 0.5 for every
trainable layer. We select top-10 documents which contains an average of 30 single
sentences and 20 concatenation sentences after filtering by using the TF-IDF algorithm
in each sample.

We use cross entropy loss to measure the level of model training, and use the Adam
optimizer to train our model and set the learning rate at 0.001. We train 20k steps using
four Nvidia 1080Ti GPUs. On each GPU, the batch size is fixed at 4, and the total batch
size is 20. We use accuracy as an indicator for the multi-hop MRC task.

4.3 Result and Analysis

Table 1 presents the results of our proposed multi-hop MRC model on development set
and test set1 of WikiHop, and we compare it with the results that were reported in their
original papers.

1 We are in the process of obtaining the results on the hidden test set.
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Table 1. Accuracy on theWikiHop development set and test set, where “-” denotes that the values
are unavailable currently.

Model Accuracy (%)

Dev Test

BiDAF [26] – 42.9

Entity-GCN
[13]

64.8 67.6

CFC [7] 66.4 70.6

BAG [27] 66.5 69.0

EEPath [4] 67.1 –

EPAr [3] 67.2 69.1

SMR (ours) 68.3 –

We can observe that our proposed model achieves the highest accuracy of 68.3 on
the development set for all the models in the table. Compared to the best previous result
whose accuracy is 67.2, it is a 1.1 improvement on development set. It’s worth noting
that our model no use pre-trained language models such as ELMO [16] and Bert [11]
which has been shown to give MRC models a significant gain. Therefore, to be fair, the
result of the proposed model doesn’t compare with those of the pre-trained language
model.

We also show the results on MedHop in Table 2. We have a noticeable improvement
on MedHop test set. In addition, our proposed model is more interpretable because the
sentence-level reasoning chain it generates can be regarded as an explicit path for human
reasoning.

Table 2. Accuracy on theMedHop test set, where the results marked “*” were originally reported
by [8].

Model Accuracy (%)

Max -mention∗ 9.5

Document -cue∗ 44.9

BiDAF [26] 47.8

Majority -candidate -per -query -type∗ 58.4

EPAr [3] 60.3

SMR (ours) 62.9

In order to reveal howSMRmodel based on sentence reasoning can realize reasoning
and find the answer, we illustrate an example in Fig. 3 to visualize this process. In SMR,
relevant supporting documents are screened out, and the sentence sets containing single
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and concatenation sentences are obtained by sentence division. Relying on the sentences
set, SMR constructs two different reasoning chains: chain1 and chain2. Through the SR,
SS and AP modules, our model predicts the answer: ‘loon op zand’. It can be seen
from Fig. 3 that the process of SMR predicting the answer constructs a reasoning path
consistent with human cognition.

relation: located in the administrative territorial entity 
left entity: haunted castle

The Haunted Castle ( Dutch : Spookslot ) is a haunted attraction 
in the amusement park Efteling in the Netherlands.

The park has created huge economic benefits for the local.

Efteling is a fantasy-themed amusement park in Kaatsheuvel in 
the Netherlands.

The attractions are based on elements from ancient myths and 
legends, fairy tales, fables, and folklore.

Kaatsheuvel is a village in the Dutch province of North Brabant,
situated along highways N261 and N628.

With a population of roughly 16,600, it is the largest village in 
and the capital of the municipality of Loon op Zand.

The Haunted Castle was designed by Ton van de Ven and was 
the first attraction built outside the Fairy Tale Forest .",

Ton van de Ven (January 1, 1944 September 16, 2015) was a 
Dutch industrial designer.

He is best known as the creative director at the Efteling theme 
park.

sent1

sent2

sent3

sent4

sent5

sent6

sent7

sent8

sent9

The Haunted Castle ( Dutch : Spookslot ) is a haunted attraction 
in the amusement park Efteling in the Netherlands. The park has 
created huge economic benefits for the local

"Efteling is a fantasy-themed amusement park in Kaatsheuvel in 
the Netherlands. The attractions are based on elements from 
ancient myths and legends, fairy tales, fables, and folklore.

Kaatsheuvel is a village in the Dutch province of North Brabant,
situated along highways N261 and N628. With a population of 
roughly 16,600, it is the largest village in and the capital of the 
municipality of Loon op Zand

The Haunted Castle was designed by Ton van de Ven and was the 
first attraction built outside the Fairy Tale Forest. Ton van de Ven 
(January 1, 1944  September 16, 2015) was a Dutch industrial 
designer.

Ton van de Ven (January 1, 1944  September 16, 2015) was a 
Dutch industrial designer. He is best known as the creative 
director at the Efteling theme park.

sent10

sent11

sent12

sent13

sent14

doc1

doc2

doc3

doc4

Supporting 
document set

question

candidates: amsterdam, rotterdam, hague, utrecht, loon op zand
answer: loon op zand

reasoning 
chains

sent1 sent3 sent12left entity answer

sent7 sent14 sent3 sent12left entity answer

chain1:

chain2:

Fig. 3. Sample case of SMR reasoning process.

In the process of constructing the reasoning chains, our model uses self-attention [7]
to integrate all the words in a sentence into a vector which represents the semantics of
the sentence. EPAr [3] does the same at the document level as well. Because sentences
have fewer words, less information is lost in the process than documents, which is the
advantage of SMR compared to EPAr. EEPath [4] takes out all possible paths as the basis
for predicting the answer. Our model builds valid reasoning path by integrating sentence
information and the obtained path has some logic, so our model has more accurate path
and higher efficiency compared with EEPath.

SMR use sentence sets which contain single and concatenation sentences to generate
T-hop inference chains, which can deal with the pronouns among the sentences well.
As chain1 and chain2 in Fig. 3, sent5 and sent6 are two single sentences from the same
document, and sent12 is the concatenation of the two sentences. In the reasoning process,
sent3 chooses sent12 as the node of one hop instead of sent5 or sent6. Although containing
the key word: ‘Kaatsheuvel’, sent5 is difficult to reason to sent6 because sent6 used a
pronoun ‘it’ to express the keyword but the model does not understand the meaning of
the pronoun. And sent6 contains important intermediate information for predicting the
answer and must be a node in the chain of reasoning. Jumping from the sent3 to sent12
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can not only capture the key word information contained in sent5, but also match the
pronoun in sent6 with the key word.

Therefore, the existence of concatenation sentence canmake themodelmore suitable
for the situation where there are and there are no pronouns in the inference chain. If the
concatenation sentence is too long, the process of integrating it into a vector will lose
too much semantic information. Therefore, the model combines two adjacent single
sentences into a concatenation sentence, which can satisfy most cases. Meanwhile, the
existence of a single sentence avoids the model choosing unnecessary concatenation
sentences as nodes such as the second node of chain1 choosing sent3 instead of sent11.

4.4 Ablation Study

In order to better understand the contributions of different modules to the performance
of our proposed model, we designed several ablation studies (Table 2) on the WikiHop
development set.

If removing the sentence-based reasoning from the model, we will encode the doc-
uments directly using the self-attention mechanism [7] and replace sentence encoding
S, E with the resulting document vectors. Then we carry out multi-hop reasoning at the
document level and the accuracy of SMR will reduce by 1.1 absolutely. This proves the
validity of our proposed reasoning at the sentence level for the multi-hop MRC task.

If we only use one reasoning chain in the model, that is, we don’t repeat SC module,
the accuracy of SMR will decrease by 2.2%. This demonstrates that constructing multi-
ple inference chains can reduce the randomness of reasoning path generation indeed. If
the TF-IDF algorithm isn’t used to filter the documents, the accuracy of the model we
obtained will be reduced by 1.9%. This proves that removing some irrelevant articles can
help to get more accurate reasoning chains, while the model will occupy fewer comput-
ing resources and achieve higher training efficiency due to the reduction of supporting
documents (Table 3).

Table 3. Ablation results on the WikiHop development set.

Model Accuracy (%)

Dev �

Full model 68.3 –

- document-based
reasoning

67.2 1.1

- one reasoning
chain

66.1 2.2

- TF-IDF algorithm 66.4 1.9

- single sentence 65.6 2.7

- concatenation
sentence

65.1 3.2
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We also investigate the effect of single sentences and concatenation sentences on
the model effect. Specifically, we use single-sentence set Do instead of all sentence
set D for T-hop reasoning and the accuracy is reduced by 2.7%. At the same time, we
also replace D with the concatenation sentence set Db and the accuracy is reduced by
3.2%. According to the ablation, we can infer that using only the single sentence set
may prevent the model from understanding the meaning of pronouns that may exist.
However, the merely using concatenation sentence set can lead to excessive interference
between sentences in the reasoning process. Therefore, the combined using of single
sentences and concatenation sentences can better cope with the presence of pronouns in
adjacent sentences and reduce the negative influence between sentences to improve the
performance of the model.

5 Conclusion

In this paper, we have proposed a multi-hop MRC model sentence-based reasoning
named SMR, where sentences play a pivotal role in constructing reasoning chains.
Besides, we innovatively use concatenation sentence to deal with the semantic encoding
of pronouns in a single sentence, which has been proved by experiments to improve
the model effect significantly. We also presented that SMR can illustrate its reasoning
through hopping across multiple sentences. The superior performance on WikiHop and
MedHop data sets verifies the effectiveness of SMR.

In the future, we will verify the effect of SMR after adding the pre-trained language
model, although it has achieved excellent performance. We also plan to focus on gener-
ative models incorporating sentence-based reasoning like Masque [1]. Moreover, it is of
interest to investigate other types of multi-hop MRC datasets, e.g., the newly proposed
benchmark HotpotQA [9].
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61902417 and 71971212, and PNSF of Hunan under grant No. 2019JJ20024.
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Abstract. Scholarly network analysis is a fundamental topic in
academia domain, which is beneficial for estimating the contribution
of researchers and the quality of academic outputs. Recently, a pop-
ular fashion takes advantage of network embedding techniques, which
aims to learn the scholarly information into vectorial representations for
the task. Though great progress has been made, existing studies only
consider the text information of papers for scholarly network representa-
tion, while ignoring the effects of many intrinsic and informative features,
especially the different influences and contribution of authors and coop-
erations. In order to alleviate this problem, in this paper, we propose a
novel Author Contributed Representation for Scholarly Network (ACR-
SN) framework to learn the unique representation for scholarly networks,
which characterizes the different authors’ contribution. Specifically, we
first adopt a graph convolutional network (GCN) to capture the struc-
ture information in the citation network. Then, we calculate the corre-
lations between authors and each paper, and aggregate each embedding
of authors according to their contribution by using the attention mech-
anism. Extensive experiments on two real world datasets demonstrate
the effectiveness of ACR-SN and reveal that authors’ contribution to the
paper varies with the corresponding authorities and interested fields.

Keywords: Scholarly network embedding · Scholar cooperation ·
Graph convolutional network

1 Introduction

Recent years have witnessed the rapid accumulation of scholarly data, containing
rich information of research publishing records with citation networks, which
provides unprecedented opportunities for scholarly network analysis [25]. Indeed,
with the help of scholarly network analysis, on one hand, we could uncover the
trend of research. On the other hand, it is convenient for researchers to choose
an appropriate partner and evaluate the influence of work from the micro view.
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citation network 

A

B

C

papers embedding

A
B
C

fields of study

authors

authors cooperation

abstract

Fig. 1. The overview of scholarly network embedding.

Towards scholarly network analysis, there are many kinds of studies, such
as predicting the authorities of authors [12], predicting the influence of paper
[4] and paper recommendation [24]. Though large efforts have been made, the
researchers usually consider the paper textual information, while the great ben-
efits of academic cooperation are largely under-explored. In fact, cooperation is
of great importance for scholars, especially for young researchers. Therefore, in
this paper, we aim to study a more comprehensive scholarly network analysis by
considering cooperation effects.

In academic networks, dissertations are often considered as research units
that can be clustered to higher levels by domains or authors [26]. As shown in
Fig. 1, three papers (i.e., A, B, C) can form a citation network, e.g., paper A
cites paper B and C. We can make deep analysis about their abstract contents
and authors. Specifically, the abstracts generally reflect their study fields and the
authors can constitute a co-author relationship which demonstrates the author-
ity of each researcher in different fields. Moreover, different authors may make
different contribution to a paper, due to their various authorities and areas
of interest. Collaboration in each paper can be obtained by summarizing the
embedded vector of each author. By combining these aspects, the preliminary
performance of the dissertations is fully formed. In addition, the cited neigh-
bours of the paper are often in closer research fields in the citation network.
Therefore, this constraint on similarity should be retained when learning the
scholarly network.

Along this line, we propose a novel scholarly network embedding frame-
work called Author Contributed Representation for Scholarly Network (ACR-
SN). We first extract the study fields from paper abstract and embed authors
of the papers. Then we combine authors embedding and study fields in the
paper through the novel author-paper attention mechanism, which could capture
the authors’ influences and interests. Considering the different contribution of
authors to a certain paper, the contribution attention layer is introduced to form
the initial representation of papers from the aggregation of authors embedding.
Next, we utilize graph convolutional network (GCN) to preserve the citation
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based similarities of neighbors and the structural features in citation network.
Finally, extensive experiments on several scholarly networks demonstrate the
effectiveness of our model.

In summary, the major contribution of this paper can be briefly summarized
as follows:

– We propose a novel framework (ACR-SN), which describes the different influ-
ences and interests of authors for each paper.

– We adopt two layers of attention network. The first is to catch the influence
of authors in the paper, and the second is to measure different contribution
of authors which leads to better initial embedding of the paper. Considering
the similarities in paper and its references, we use GCN to incorporate the
paper attributes in information diffusion of the network.

– We conduct extensive experiments on two real world datasets, which demon-
strate our ACR-SN framework shows significant performance in many down-
stream tasks including paper classification and citation prediction.

2 Related Work

In this section, we will summarize the related works in scholarly data analysis
and network embedding techniques.

Scholarly Data Analysis. Scholarly data contains multiple scholarly enti-
ties, e.g., papers and authors, as well as multiple scholarly relations, e.g., cita-
tions among papers, co-authors relationship among authors [25]. Among dif-
ferent scholarly networks, there are various analysis and applications. As for
the citation network, research [4] predicts the influence of paper, and research
[24] recommends paper based on citation and hierarchical structure of scientific
knowledge. For a more comprehensible way of research articles organization,
some researchers form a study map [20]. As for the co-author network, some
researchers predict the influence and authority of authors using cooperation
information [12]. Some studies also analyze authors’ contribution with different
relations among them [17]. Among these various analysis in scholarly network,
the embedding of scholarly entities, authors and papers both are the fundamen-
tal issues to solve. This paper focuses on citation networks, and the research
object is paper.

Network Embedding. Network embedding is intensively studied these years.
The aim of network embedding is to get a low dimensional representation which
can model the structure and some other properties of network. There are mainly
three kinds of methods:

The first kind of methods are based on matrix-factorization, for example,
the well-known Laplacian eigenmaps (LE) [3] and graph factorization (GF) [1].
These methods utilize the eigenvectors as the network representation.
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The second kind is based on random walk. These methods use truncated
random walk to get the neighbors representation of nodes to decrease the com-
plexity. DeepWalk [16] and node2vec [7], as two typical methods, are also based
on inner product of node pairs. However, unlike the matrix-factorization meth-
ods, these methods learn nodes embedding to maximize the probability of visit-
ing two nodes on one truncated random walk, rather than using a deterministic
node similarity measure.

The third kind of embedding methods combine node attributes and network
structure. The previous two methods learn the node represetation from the struc-
ture of network, while node attributes are ignored. Unlike them, TADW [27] is
based on deepwalk while incorporateing node information. In scholarly network
embedding field, Paper2vec [6] combines graph and text information of paper
to form the representation. Except for the supervised representations, there are
some unsupervised methods, such as UPPSNE [28], and SANE [22], which use
pairwise node embedding to represent node; MCNE [23], which learns multi-
ple preference of users in the social network. Also there are some task specific
methods, for example, LSNE [5] is a link-oriented signed network embedding
method, and DLPQV [11] uses network embedding method to evaluate the qual-
ity of patents. Furthermore, some researchers use deep learning methods, which
expand the convolution from Euclidean domain to non-Euclidean domain, and
these methods are called graph convolutional networks. Among these methods,
GCN [9] uses the first-order neighbors to simplify the filter in convolutional net-
work. To get representation inductively, GraphSAGE [8] learns the aggregation
of a node’s neighbor, instead of learning a deterministic node embedding. GAT
combines attention mechanism into graph convolutional network, considering dif-
ferent influence of nodes’ neighbours. Additionally, there is some improvement
methods like Geom-GCN [15], which proposes geometric aggregation scheme for
graph neural networks to overcome the weakness of message-passing neural net-
works used in GCN. The deep learning based embedding methods inspire us to
use GCN to represent articles in citation network.

3 Preliminary and Problem Definition

In this section, we give the definition to the scholarly network embedding prob-
lem. To get a better embedding of paper, here we use both author cooperation
and text information of paper to represent it. Let p denote a paper from the
corpus P . For the information in paper, we use xp ∈ 1×d to denote the abstract
text of p, which consists of the averaged d-dimensional words embeddings of
words in the abstract. As for the citations among papers, this relationship can
be represented by an adjacency matrix C ∈ R

|P |×|P |, where cij ∈ {0, 1} denotes
if there is citation relationship between paper pi and paper pj . There is also a
set of authors Au of the research papers, and each paper p corresponds to an
author group aup, which is a subset of Au.

Given the preliminaries above, we define the problem to solve in this paper:
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Table 1. Summary of notations.

Notation Definition

G Graph

P Set of papers in scholarly network

C Adjacency matrix of paper citations in scholarly network

Au Set of paper authors

aui Authors group of paper i

X Text embedding of paper

xi Text embedding of paper i,l × d

d Dimension of embeddings

V Embedding of the papers in the network,|P | × d

vi Embedding of the paper i,1 × d

Θ(i) Parameters in layer i of GCN

k Number of paper classes

Z Paper classification prediction, |P | × k

l Number of words in paper p

authorj Embedding of author j,1 × d

acij Importance of author j to the paper i,1 × d

nhid Number of hidden layers in GCN

� Element-wise multiplication

Definition 1. Scholarly Network: A scholarly network would be denoted as
G = (P,C,Au,X), where P is a set of paper, C is a set of citations and refer-
ences among these papers. X is the text information in paper, here is the average
word embeddings of each paper’s abstract.

Definition 2. Scholarly Network Embedding: Given a scholarly network
G = (P,C,Au,X), the aim of scholarly network representation is to get a rep-
resentation vi of each paper pi in a low-dimension space, combining the infor-
mation of paper and the corresponding authors. The target is to lessen the clas-
sification loss between the categories predicted using representation vi and true
labels.

4 Author Contributed Representation for Scholarly
Network Framework

In this section, we propose a model ACR-SN to represent paper in scholarly
network, the framework of which is shown in Fig. 2. The whole structure of our
model consists of three parts: 1) Paper information input; 2) Author-abstract
pairwise attention and author contribution attention layer, which is to fully
capture the influence of the authors and learn the attribute of paper from its



Author Contributed Representation for Scholarly Network 563

Modeling citation network

(A)

abstract

authors

…

Modeling papers

A

B

C

D

E

F
G

author contribution attention

pairwise attention

combined 
author 
embedding

A

B

C

D

E

F
G

GCNcitation network

Fig. 2. Framework of Author Contributed Representation for Scholarly Network (ACR-
SN). The left part is papers modeling and right is citation network modeling.

abstract; 3) graph convolutional network which is utilized to preserve the struc-
ture and transmit the node embeddings in the citation network. The notations
are shown in Table 1.

4.1 Network Input

The input of ACR-SN is a citation network, in which each node is a paper,
containing authors and abstracts. Take paper i as an example, author j in author
group aui author is mapped to an embedding vector authorj using one hot
embedding, word k in the abstracts also reflect to a same dimensional vector
wordk by word2vec embedding method. To construct embedding for each paper
with the author and abstract information, our model is introduced as below.

4.2 Modeling Papers

Paper modeling is the core part of our method, which aims to capture author
and abstract information. It consists of two layers of mechanism. The first layer
is a pairwise attention between authors and study areas of the paper, which
captures the author’s expertise and interest in the areas covered by the paper
to generate the embeddings of authors in each paper. The second layer is used
to captures the different contribution of authors to the same paper.

Paper-Author Pairwise Attention. The abstract of paper i could be split
into several topics through the words embeddings wordk. Meanwhile, the authors
in aui also appear in multiple papers, indicating that they have different research
interests. To emphasize differences in authors’ interests and papers’ topics, here
we utilize a pairwise method to model the interaction between papers and
authors. The details of this attention layer are shown below.
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For paper i and author j in aui, the representation of paper i is calculated
as follows:

acij = Mean(xi � authorj), (1)

aci =
[
aci1, . . . ,acij , . . . ,ac|aui|

]
. (2)

Here xi ∈ R
l×d is the paper embedding matrix, which is the average of lookup

vectors of the words in the abstract of paper i, and l is the total number of words.
authorj is the embedding of author j in aui. � represents the elementwise
product between these vectors. Notice that authorj ∈ R

d would be filled to R
l×d

automatically, and acij ∈ R
1×d is column average of the elementwise product,

representing the embedding of author j in paper i. After column concatenation,
the aggregated paper representation vector is aci ∈ R

|aui|×d.
After generating the authors embeddings, we use another attention layer to

aggregate them to form the embedding of paper. The second attention layer is
the author attention, which is discussed in the next subsection.

Author Attention. To get the paper representation, an intuitive idea is to
stack the representation of authors together and use the average pooling to
get paper representation vector. However, this idea ignores the fact that each
author may contributes to the paper differently. So we introduce the attention
mechanism to apply different importance to each author. The attention layer is
a linear layer to learn each author’s contribution ai to the paper i. The detailed
attention weight learning progress is shown below:

a′
i = W · aci + b, (3)

where aci ∈ R
|aui|×d is the vectors of the authors’ representations of paper i.

Ai ∈ R
1×d is the attention weight of the authors to the paper i, and b is the

bias vector. The output a′
i ∈ R

|aui| is the attention weights of authors of paper
i. The attention weight ai is normalized by the softmax function:

ai =
exp(a′

ij)
∑|aui|

j=1 exp(a′
ij)

. (4)

Here a′
ij is the j-th component of a′

i. The normalization makes sure each author’s
attention weight is in [0, 1], and the sum of authors contribution is 1.

The paper representation vi is calculated in the following form:

vi = aci · ai. (5)

In this equation, aci and ai are calculated in Eq. (2) and Eq. (4), and the
output vi ∈ R

d is the representation vector of paper i. After the calculation in
this subsection, the initial embedding of articles is formed. By using two layers
of attention in authors and abstracts, we incorporate different kinds of informa-
tion in scholarly data. To combine the citation structure and learn an accurate
representation, we will introduce the GCN framework in the next section.
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4.3 Modeling Citation Network

In this part we will show how to use GCN to form the final representation of
paper i under the constraint of similarities in its citations.

Here all papers in the dataset P compose a feature matrix V ∈ |P |×d, where
|P | is the number of papers in the citation network, d is dimension of feature
vectors. The citation network can be presented in adjacency matrix C, which is
generated from paper set P and citations in this network; the degree matrix is
denoted as D. Following the spectral approaches in graph neural network, GCN
limits the convolution operation to one-localized to avoid overfitting, and uses
renormalization trick to refrain from numerical instabilities and exploding or
vanishing gradients. So the aggregator in GCN is ĈX, where Ĉ = D̃− 1

2 C̃D̃− 1
2

which is a normalization trick in GCN [9], in which C̃ = C + IN , D̃ij =
∑

j Ãij .
The forward process is described in the following part.

The input of this part is the representation matrix of paper V , consists of
vectors calculated by Eq. (5). The weight in the first layer is denoted as Θ(0),
and the calculation in first layer is shown as below:

F = ĈV Θ(0), (6)

where Θ(0) ∈ R
|P |×nhid is the weight of first layer. nhid is the number of hidden

layers in GCN. The output F ∈ R
|P |×nhid is the input of next graph convolution

layers. The structure of the next layer is similar to the first layer, except the
ReLU unit and softmax layer.

Z = softmax(ĈReLU(F )Θ(1)), (7)

where Z ∈ R
|P |×k is the convolved signal matrix, and k is the final number of

classification of papers. The softmax layer is applied row-wise. The weight in this
layer is Θ(1) ∈ R

nhid×k. The output of the model is the probability of each type
which the paper is divided into. And the next subsection will show the learning
process.

4.4 Model Learning

Objective Function. For the proposed ACR-SN model, we use cross entropy
shown in Eq. 8 to promise that papers are divided into correct area as much as
possible. As mentioned in GCN [9], the loss function is defined in cross-entropy
form to maximize the similarity of node representation to the node label:

L = −
∑

l∈YL

k∑

f=1

Ylf lnZlf . (8)

Here YL is the labeled set. k is the number of node classes. Ylf is the vector of
true labels, and Zlf is the predicted possibilities of each paper in each class. To
optimize our model, we use Adam optimizer to learn the parameters.
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Parameter Initialization. In the cooperation attention part, we initialize the
authors initial weight to all 1 vectors, assuming all the authors contributes
equally to the paper features. For the initial author embedding, we use word
embedding to get low dimension one hot embedding of authors and words. As
for words in the abstract, we use word2vec to generate their initial embeddings.
For all the words in the abstract in the dataset, we select the top 3000 frequent
words for a brief embedding. The author and word embedding are randomly
initialized and can be learned during training.

In the GCN part, we initialize the weight with a Gaussian distribution, with
a mean of 0 and deviation of 1/

√
outdimension.

5 Experiments

5.1 Experimental Settings

Datasets. For the purpose of learning the embedding of papers in the schol-
arly network, here we conduct the experiments on two scholarly networks to
demonstrate the effectiveness of our proposed model ACR-SN:

– Semantic Scholar [2]. This is an open scholarly database. Here we downloaded
the 2017-10-30 version from the Semantic Scholar website. In [14], they con-
structed DBLP dataset by extracting four study fields, namely Database,
Data Mining, Artificial Intelligence and Computer Vision. In this paper, we
also used these four areas, and filtered the data in Semantic Scholar dataset to
extract the paper in these fields. After the preprocessing step, there are 48,878
papers. The max connected subgraph contains 46,637 papers and 174,185
citation links.

– DBLP [18]. This is a famous paper dataset in computer science. After filtering
out the papers in the four areas mentioned before, there are 78,939 papers in
the dataset.

The detailed statistics of datasets is shown in Table 2. These two datasets are
both popular in scholarly data mining. The number of four kinds of papers is

Table 2. The statistics of datasets.

Datasets Semantic scholar DBLP

#Nodes 48,878 62,137

#Links 174,622 319,222

#Authors 47,343 77,260

Study fields DB 4,579 6,340

DM 23,851 10,956

AI 7,754 20,915

CV 12,694 23,962
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basically balanced, except for the relatively small ones in Database field. The
quantity of authors and papers are similar in both datasets. And DBLP is slightly
larger compared with Semantic Scholar dataset.

Baselines. As mentioned in the Sect. 2, we selected several state-of-the-art
methods to demonstrate the effectiveness of our learned scholarly network
embedding by ACR-SN:

Structure-based Methods:

– Node2vec [7], different from DeepWalk [16], it designs a biased truncated
random walks to efficiently explore diverse neighborhood and utilizes the
skip-gram model to learn the node embedding.

– LINE [19] is a method that defines the first-order and second-order proximity
of network structure to obtain the node representation, respectively.

Combined Methods:

– Node2vec+attr is a method using combined features of Node2vec and paper
attributes to classify the paper.

– LINE+attr also combines the representation of LINE with paper features.
– UPP-SNE [28], which is the abbreviation of user profile preserving social

network embedding, learns the node embedding by preserving the structure
of network and node attributes simultaneously.

– Paper2vec [6] solves the problem similar to our method. This method learns
the embedding of paper from text information, and uses the citation network
structure to jointly refine the learned embedding.

Deep Learning based Methods:

– GraphSAGE [8] is a general inductive network embedding framework which
generates embedding by aggregating features from a node’s neighbors.

– GCN [9] optimizes the node embedding in a semi-supervised framework,
which has the similar objective function with our method.

– GAT [21] considers different weights of neighbors to a node in a network,
using attention mechanism in graph neural network.

– ACR-SN-avg is the reduced version of our proposed model ACR-SN without
containing the attention part.

Evaluation. In the classification experiments, the evaluation metric we used is
Accuracy, which is defined by the portion between nodes classified correctly and
the total number of nodes:

accuracy =
#nodes classified correctly

#nodes
. (9)

As for the link prediction task, we used average precision(AP) and area under
curve(AUC) to evaluate the effectiveness of experiments. For each experiment,
we randomly selected 10% to 90% from the dataset as training set, and split the
remaining part to validation set and test set.
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Table 3. The experimental results of node classification on semantic scholar.

Methods Training ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Node2vec 0.7002 0.7035 0.7040 0.7063 0.7076 0.7069 0.7082 0.7068 0.7144

LINE 0.6368 0.6421 0.6436 0.6457 0.6445 0.6460 0.6461 0.6464 0.6571

Node2vec+attr 0.7344 0.7442 0.7481 0.7505 0.7513 0.7525 0.7544 0.7565 0.7627

LINE+attr 0.6883 0.7046 0.7138 0.7167 0.7115 0.7192 0.7177 0.7117 0.7308

UPP-SNE 0.6113 0.6160 0.6187 0.6192 0.6196 0.6205 0.6210 0.6267 0.6230

Paper2vec 0.6869 0.6915 0.6933 0.6969 0.6972 0.6967 0.6993 0.7003 0.7122

GraphSAGE 0.4748 0.4748 0.4877 0.4884 0.4886 0.4903 0.4885 0.4898 0.5018

GCN 0.7141 0.7193 0.7162 0.7334 0.7332 0.7387 0.7429 0.7427 0.7480

GAT 0.7958 0.7982 0.7968 0.8013 0.7997 0.7998 0.8050 0.8080 0.8130

ACR-SN-avg 0.7683 0.781 0.7926 0.8012 0.8052 0.8096 0.8155 0.8205 0.8287

ACR-SN 0.7770 0.7888 0.7953 0.8000 0.8044 0.8079 0.8144 0.8212 0.8295

Table 4. The experimental results of node classification on DBLP.

Methods Training Ratio

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Node2vec 0.7199 0.7272 0.7295 0.7322 0.7344 0.7367 0.7347 0.7281 0.7269

LINE 0.6862 0.6894 0.6929 0.6951 0.6988 0.6999 0.7015 0.7034 0.7049

Node2vec+attr 0.7078 0.7204 0.7249 0.7298 0.7322 0.7345 0.7320 0.7256 0.7258

LINE+attr 0.6897 0.7024 0.7119 0.7136 0.7148 0.7104 0.7171 0.7118 0.7235

UPP-SNE 0.3747 0.3778 0.3793 0.3786 0.3794 0.3802 0.3798 0.3750 0.3791

Paper2vec 0.3700 0.3731 0.3772 0.3785 0.3799 0.3805 0.3791 0.3756 0.3777

GraphSAGE 0.3653 0.3680 0.3722 0.3746 0.3752 0.3780 0.3761 0.3750 0.3767

GCN 0.3957 0.3945 0.3995 0.4049 0.4172 0.4142 0.4046 0.4038 0.4056

GAT 0.5436 0.5439 0.5321 0.5374 0.5353 0.5384 0.5424 0.5449 0.5460

ACR-SN -avg 0.7292 0.7541 0.7634 0.7703 0.7732 0.7739 0.7779 0.7829 0.7808

ACR-SN 0.7300 0.7553 0.7623 0.7739 0.7770 0.7748 0.7792 0.7778 0.7777

Implementation Details. We implemented our method ACR-SN based on
Pytorch framework. We used Adam optimizer and set the learning rate to 0.005.
The epoch is set to 300 to reach a stable accuracy performance. The embedding
dimension d here is set to 128, and the output layer size(number of paper areas)
is 4. Similar to [9], we used a two layer GCN, the hidden layer dimension is 16.
In each iteration, we used a full dataset and perform batch gradient descent.
The memory usage is O(|E|) for the usage of sparse storage method. For the
Node2vec, we set the walk length to 5, and the window size to 3. For LINE, we
used both the first and second neighbors and set the negative samples to 5.

For the link prediction task, we split the 80% of total edges as train-set,10%
as validation-set and the rest as test-set. For each set of edges we randomly
generated the same size of negative edges that did not appear in the original
graph, that is 50% true edges versus 50% false edges.
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5.2 Results and Analysis

Here we utilize two tasks to validate the effectiveness of the method. 1). Node
Classification: this task is to conduct the classification of papers. 2). Link Pre-
diction: this task is to determine whether there is a citation link between two
arbitrary papers. These two tasks are widely used in network embedding field.
Next, we will introduce the details of these experimental results:

Node Classification. Table 3 and Table 4 illustrate the detailed results on
Semantic Scholar and DBLP datasets. On Semantic Scholar dataset, the pro-
posed ACR-SN outperforms structure-based method (Node2vec, LINE) and the
combined methods (Node2vec+attr, LINE+attr, UPP-SNE, Paper2vec), which
demonstrates the efficiency of our proposed method. The comparison results
between these two kinds of methods demonstrate that structure feature is neces-
sary, and attributes of nodes also play an important role in learning the node rep-
resentation. The results of Node2vec+attr and LINE+attr reveal that the intu-
itive combination of structure feature and attributes improve the representation
ability compared with structure-based methods, while pairwise attention and
author attention in ACR-SN catch the features of paper more effectively. Further-
more, Our method performs better on the unique scholarly datasets compared
with UPP-SNE. Also, the utilization of graph convolutional network learn the
network structure information better than the CBOW model used in Paper2vec.
Finally, ACR-SN achieves higher accuracy than GCN and GraphSAGE, which
indicates that our model is more suitable on the scholarly datasets. But on lower
training ratio, GAT gains slightly higher accuracy than ACR-SN.

As for DBLP dataset, ACR-SN gain higher accuracy than most baselines.
Surprisingly, the structure-based methods (Node2vec, LINE) achieve higher
accuracy than the combined methods. The addition of node attributes reduces
the experimental performance, which illustrates that content and combined
methods are sensitive to the scholarly datasets. The decrease in accuracy indi-
cates that some of the baselines are also sensitive to data imbalance.

In order to demonstrate the effectiveness of attention mechanism, we com-
pare ACR-SN with its variant ACR-SN-avg on the task of node classification,
and show the experimental results on Table 3 and Table 4. ACR-SN-avg is the
variant of ACR-SN without considering the second attention layer, which uses
the average of author embeddings instead of the attention network. The results
show that our method gains higher accuracy than the average method under the
small training ratio. It demonstrates that the author’s contribution attention
layer can distinguish the different importance of authors, and achieve a better
paper classification result.

Link Prediction. The link prediction task is to determine if there exits the
citation relationship in a pair of papers based on their learned node embeddings.
Figure 3 shows the link prediction results on semantic scholar dataset. As shown
in Fig. 3, we observe that ACR-SN gains the highest AUC among these compared
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Fig. 3. Link prediction results on
Semantic Scholar.

Fig. 4. Parameter Sensibility of the
Embedding Dimensions.

methods. Specifically, our method ACR-SN is trained on node classification task,
and we use these learned embedding on the link prediction task, which is a cross-
task experiment. Comparing to the unsupervised methods like Node2vec, LINE
and GraphSAGE, ACR-SN achieves the highest average precision on Semantic
Scholar dataset. This result demonstrates that our method can learn the paper
embedding effectively.

Table 5. The Distribution of Author Attention Weights in the paper.

Papers Authors Weights

Mixture Representations for Inference and
Learning in Boltzmann Machines

Neil D. Lawrence 0.0932

Christopher M. Bishop 0.8024

Michael I. Jordan 0.1044

Loopy Belief Propagation for Approximate
Inference: An Empirical Study

Kevin P. Murphy 0.4036

Yair Weiss 0.2436

Michael I. Jordan 0.3528

Parameter Sensibility Analysis. In our model, embedding dimension is an
important parameter. So in Fig. 4, we can observe that with the embedding
dimension of paper increasing, the accuracy in node classification is in a rising
trend. In DBLP dataset, the accuracy shows the fluctuation. While in Semantic
Scholar dataset, the performance of higher embedding dimension is better. As a
result, we use the same 128 dimension of paper embedding in all experiments.

5.3 Case Study

From the scholarly dataset, we choose two papers of Michael I. Jordan, professor
of UCB, to demonstrate the different contribution of authors in a paper. We



Author Contributed Representation for Scholarly Network 571

select two papers [10] and [13] in his different developing phase, published in
1999 and 2013 respectively. The authors’ attentions in these two papers are
shown in Table 5. Michael I. Jordan plays different roles in these papers. In
both papers, he is the last author. In the first paper, according to our attention
calculation, he contributes about ten percent to the paper fewer than the second
author, while in the second paper the attention value suggests that the authors
contribute nearly averaged to this work. It suggests that the author contributes
to paper in different stages differently, and the various contribution could help
us to better comprehend the relationship between the authors and papers.

6 Conclusion

In this paper, we proposed a novel scholarly network embedding framework called
ACR-SN, for scholarly network analysis. Specifically, we proposed two attention
networks for capturing the authors’ influences and contribution, respectively.
Then we utilized a GCN method to model the diffusion of papers’ attributes
influences. Extensive experiments show the effectiveness of ACR-SN in many
applications including paper classification and citation prediction.

There are still some further directions in the future. First, we would combine
the citation network with co-author network. Second, we would deepen the study
of co-author relationship for the scholarly network analysis.
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Abstract. Textual-visual cross-modal retrieval has become a hot
research topic in both computer vision and natural language processing
communities. However, existing deep cross-modal hashing methods either
rely on amounts of labeled information or have no ability to learn an accu-
racy correlation between different modalities. In this paper, we address
the unsupervised cross-modal retrieval problem using a novel framework
called coupled dual generative adversarial networks (CDGAN). This
framework consists of two cycle networks: a text-to-image-to-text(t2t)
network and an image-to-text-to-image(i2i) network. The t2t network is
used to learn the relation among an original text, the generated image
and the generated text using the similarity of original and generated
image-text, and the i2i network is used to learn the relation among an
original image, the generated text and the generated image. Therefore,
two groups of mixed hash codes of image-text are learned in this frame-
work. Furthermore, our proposed CDGAN seamlessly couples these two
cycle networks with generative adversarial mechanism so that the hash
codes can be optimized simultaneously. Extensive experiments show that
our framework can well match images and sentences with complex con-
tent, and it can achieve the state-of-the-art cross-modal retrieval results
on two popular benchmark datasets.

Keywords: CDGAN · Cross-modal · Retrieval

1 Introduction

With the rapid growth of data, how to efficiently and accurately retrieve the
required information from massive data of heterogeneous modalities becomes
a hot research topic. Thus, cross-modal retrieval [1,20–23,25] which aims to
enable flexible retrieval across different modalities (e.g., texts vs. images), plays
a key role in information retrieval. Specifically, retrieved images (resp. texts) are
highly relevant to a given textual (resp. image) query. However, the challenge
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X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 574–587, 2020.
https://doi.org/10.1007/978-3-030-60259-8_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60259-8_42&domain=pdf
https://doi.org/10.1007/978-3-030-60259-8_42


Unsupervised Cross-Modal Retrieval 575

of cross-modal retrieval is to measure the similarity between different types of
data, which is referred to as the heterogeneity gap.

In order to bridge the heterogeneity gap, most existing methods are proposed
to learn a common space for different modalities. By projecting cross-modal
data into the latent space, the correlations across different modalities can be
effectively and efficiently measured by their hamming distance. These cross-
modal methods can be generally categorized into two groups: supervised methods
and unsupervised methods.

Recently, supervised hashing methods [13,20,24] are used to capture the
correlation between different modalities, and this kind of method can further
exploit the semantic labels to learn more consistent hash codes for the semantic-
relevant cross-modal data. However, label data collection is infeasible, as it is
time-consuming and labor-intensive. Different from supervised methods, unsu-
pervised cross-modal hashing methods can leverage unlabeled data to realize effi-
cient cross-modal retrieval. Therefore, this kind of method is more flexible and
applicable in real world applications. Among unsupervised deep hashing meth-
ods, Unsupervised Generative Adversarial Cross-modal Hashing (UGACH) [27]
captures the underlying manifold structure by a graph-based unsupervised cor-
relation. Unsupervised coupled Cycle generative adversarial Hashing networks
(UCH) [9] can be optimized to learn common representation and hash codes
simultaneously. However, most unsupervised methods learn a single group of
hash codes for each modal by preserving semantic correlation between different
modalities, and ignore the underlying manifold structure in a certain elevated
status.

In this paper, we propose a novel unsupervised cross-modal retrieval using
generative adversarial network called CDGAN. Coupled dual generative adver-
sarial networks are designed to build two cycle networks in a unified framework,
where two groups of mixed original and generated data hash codes are learned in
the network. In each modal, a group hash codes consist of the original data hash
codes and the generated data hash codes, and we call it mixed hash codes. Thus,
the hash codes can provide more feature information. Specifically, hash codes of
the original and pseudo data are similar and can be optimized simultaneously.
The main contributions of our paper are outlined as follows:

(1) We design an unsupervised cross-modal retrieval framework by coupled dual
generative adversarial networks. Mixed hash codes can be obtained in each
modal, which can capture more underlying manifold structure across differ-
ent modalities.

(2) In the proposed networks, mixed hash codes of multi-modal learning can
interact with each other and achieve optimal performance when network is
convergence in a unified framework.

(3) Experiments on two real-world datasets with image-text modalities show
that CDGAN can outperform other baselines and achieve the state-of-the-
art performance in cross-modal retrieval applications.
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2 Related Work

In this section, we introduce some representative supervised and unsupervised
cross-modal hashing methods. Specifically, the most related work on topic of
unsupervised cross-modal hashing methods are reviewed, which can be roughly
categorized into the shallow and the deep schemes, according to whether they
use the deep networks.

In supervised methods, Deep Visual semantic Hashing (DSVH) [24], Cross-
modal Correlation Learning With Multigrained Fusion by Hierarchical Network
(CCL) [26], Deep Cross-Modal Hashing (DCMH) [13], Scalable Deep Multimodal
Learning for Cross-Modal Retrieval (SDML) [12], Self-Supervised Adversarial
Hashing (SSAH) [1], and Cross-Modal Adaptive Message Passing for Text-Image
Retrieval (CAMP) [28] encode individual modalities into their corresponding fea-
tures by constructing two different pathways in deep networks, and this method
significantly mitigate the modality gap and achieve superior retrieval perfor-
mance. SSAH learns hash codes by preserving semantic correlation with label
information networks between different modalities. CAMP takes comprehen-
sive and fine-grained cross-modal interactions into account. However, supervised
methods use labeled semantic information that requires massive labor cost, mak-
ing it infeasible in real-world applications. Our paper focuses on unsupervised
field that is lacks sufficient explorations.

In unsupervised methods, for shallow structure Canonical Correlation Anal-
ysis (CCA) [3] projects data from different modalities into a common hamming
space to maximize their correlations. CVH [14] is proposed to consider both intra-
view and inter-view similarities to keep the cross-modal relationship. Hashing
(CMFH) [5] learns unified hash codes by collective matrix factorization. Latent
Semantic Sparse Hashing (LSSH) [7] is proposed to utilize the sparse coding
and the matrix factorization to extract the latent features for images and texts.
Fusion Similarity Hashing (FSH) [6], explicitly embeds the graph-based fusion
similarity across modalities into a common Hamming space. However, it is illus-
trated that deep cross-modal hashing methods are usually more effective than
shallow structure.

Recently, deep learning with neural networks based unsupervised cross-modal
hashing methods [15] have been widely used to learn hash codes. Unsupervised
Generative Adversarial Cross-modal Hashing (UGACH) [27] captures the under-
lying manifold structure across different modalities by a graph-based unsuper-
vised correlation. Unsupervised coupled Cycle generative adversarial Hashing
networks (UCH) [9] can optimize simultaneously to learn common representa-
tion and hash codes. However, only one group of hash codes can be learned in
these deep methods, the lack of the hash codes expression leads to be insuf-
ficient in cross-modal retrieval. In contrast, our CDGAN can effectively build
the modality correlation by a framework that can directly learning coupled dual
cycle framework. Besides, the hash codes are updated iteratively to preserve
various data information.
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Fig. 1. The proposed unsupervised generative cross-modal learning framework. The
entire framework consists of two training paths: text-to-image-to-text, and image-
to-text-to-image. It includes nine networks: two sentence encoders RNNreal

enc and
RNNfake

enc , two image encoders CNNreal
enc and CNNfake

enc , two sentence decoders
RNNreal

dec and RNNfake
dec , two image generators Gfake and Greal, one image discrim-

inator D. Furthermore, it also has four networks for generating binary codes Breal
v ,

Bfake
v , Breal

t , and Bfake
t .

3 CDGAN Cross-Modal Network

As demonstrated in [9], learning binary codes that preserve the neighborhood
structure of the original data is an effective improvement for the unsupervised
training of deep hashing network. Specifically, we learn the mixed hash codes,
which can preserve more information. Figure 1 shows the overall architecture for
the proposed cross-modal retrieval learning framework, named CDGAN. The
entire system consists of three training parts: text-to-image-to-text generative
feature learning, image-to-text-to-image generative adversarial feature learning,
and the hash codes learning part. The first part is t2t. At first, a pseudo image is
generated from the input text. Then, a pseudo text is generated from the pseudo
image. Finally, we make the original text be similar to the pseudo text. At the
same time, the second part i2i is from image generates a text, and then from text
generate image, at last, the original image is similar with pseudo image. In the
third part, our method generates two group mixed hash codes of each modal,
and the binary codes of original image-text and the generated image-text are
similar. The input data is image-text data pair.

The t2t part: the t2t networks integrate by text-to-image(t2i), image-to-
text(i2i), and binary hash code learning. It generates an image from the textual
feature, and then generate a sentence from the embedded pseudo image.

The i2i part: t2t is a dual structure by integrating both image-to-text(i2t)
and text-to-image(t2i). It generates an sentence from the embedded generative
image, and then generate a image from the textual feature.
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As mentioned above, from the RNNreal
enc , RNNfake

enc , CNNreal
enc , and

CNNfake
enc , the hash codes can be got. Then, the binary hash codes is that

original image-text(Breal
v , Breal

t ) and the generated image-text(Bfake
v , Bfake

t ).

3.1 CDGAN for Text-to-Image-to-Text Generation

As shown in Fig. 1, at first, text features are mapped into a common space using
RNNreal

enc . Secondly, it generates image from text features using Greal. Thirdly,
extracting features from the generated image by CNNfake

Enc . At last, from the
extracting features generate text description by RNNfake

dec . In this procedure, the
original image is similar as the generated image. Thus, the cross entropy method
[2] is used to evaluate the similarity between original image and generated image.
Then, binary codes of original and generated text are generated.

3.2 CDGAN for Image-to-Text-to-Image Generation

As shown in Fig. 1, at first, image features are extracted into a common space
using CNNreal

enc . Secondly, it generates text from image features using RNNfake
dec

generator. Thirdly, extracting features from the generated text by RNNfake
enc . At

last, from the extracting features generate image using Gfake. In this procedure,
the original image is similar as the generated image. Thus, the discriminator D
is used to judge the similarity between original text and generated text. Then,
binary codes of original and generated images are generated.

3.3 Text-to-Image Generation

For the text-to-image training part (t2i), our goal is to encourage the text fea-
ture t to be able to generate an image that is similar to the text. We adopt
an attentional generative adversarial network [16], which has an significantly
outperformance for generating realistic image.

At first, the text encoder is a recurrent neural network (RNN)[8] that extracts
semantic vectors from the text description, which includes word and sentence
embedding pair (w, em).

(w, em) = RNNenc(θt) (1)

Then, for the image generating procedure, we adept attentional generative
network [16]. In our network, it has m generators (G0, G1, ..., Gm−1), which take
the hidden states (F0, F1, ..., Fm−1) as input. Specifically, we use h to represent
the sentence vector, and Vi is the generated image. Here, z ∼ N(0, 1) is a noise
vector usually sampled from a standard normal distribution. And F attn

i is the
proposed attention model at the i − th stage image generation. The adversarial
loss for Gi is defined as:

h0 = F0(z, em) (2)
hi = Fi(hi−1, F

attn
i (hi−1, (w, em))) (3)

Vi = Gi(hi)i ∈ 1, 2, 3, ...,m − 1 (4)
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A natural way to model such a conditional distribution is to use a GAN
[17,18], which consists of a discriminator and a generator. The discriminator
is trained to distinguish the real samples from the generated samples. And the
generator is used to generate image. In each training stage, the generator G and
discriminator D are trained alternately. At the i− th stage, the generator Gi has
a corresponding discriminator Di. The adversarial loss for Gi is defined as:

LGi
= − 1

2EVi∼pV i
[log(Di(Vi))]

− 1
2EVi∼pV i

[log(Di(Vi, em))] (5)

where Vi is a generated image sampled from the distribution pV i in the i −
th stage. The first part is the visual realism unconditional loss to distinguish
whether the image is real or fake. While the second part is the conditional loss
determines whether the image matches the sentence or not.

After a training step of Gi, each Di is trained to discriminate the input is
real or fake by minimizing the loss defined as follows:

LDi
= − 1

2EV G
i ∼p

V G
i

[log(Di(V G
i ))]

− 1
2EVi∼pVi

[log(1 − Di(Vi))]

− 1
2EV G

i ∼p
V G
i

[log(Di(V G
i , em))]

− 1
2EVi∼pVi

[log(1 − Di(Vi, em)] (6)

where V G
i is from the real image distribution pV G

i
in the i − th stage.

The final objective function of the generator G is as follows:

LG =
m−1∑

i=0

LGi
(7)

Then, the final objective function of the discriminator D is as follows:

LD =
m−1∑

i=0

LDi
(8)

3.4 Image-to-Text Generation

For the image-to-text part, our goal is to encourage the image visual feature
to be able to generate sentences that are similar to the image caption. As for
image encoding, it is a Convolutional Neural Network (CNN) that maps images
to semantic vectors and is pre-trained on ImageNet. Where θv and θt are the
parameters of the image and text decoders, CNNenc and RNNdec transform
the encoded vectors into a common embedding space, and xv and yt are the
resulting mapped vectors for the image and the text. We formulate the image
encoders and text decoders as:

xv = CNNenc(θv) (9)
yt = RNNdec(θt) (10)
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Algorithm 1. The learning algorithm for CDGAN
Input: Q = (v, t) .
Output: binary hash codes for database points Bv , Bt.
Initialization: initialize θv,θt mini-batch size
M and iteration number n.
repeat

Function:text-to-image-to-text
Draw text-to-image .
1: Text encoding → treal by RNNreal

enc

2: Update treal by (1)
3: Update image generator Gi using (5).
4: Update image discriminator Di using (6).
Draw image-to-text .
5: Image encoding→ vfake by CNNfake

enc

6: Update vfake by (9)
7: Update text generator RNNfake

dec using (10).
Function:image-to-text-to-image
Draw image-to-text .
1: Image encoding→ vreal by CNNreal

enc

2: Update vreal by (9)
3: Update text generator RNNreal

Dec using (10).
Draw text-to-image .
4: Text encoding → tfake by RNNfake

enc

5: Update tfake by (1)
6: Update image generator Gi using (5).
7: Update image discriminator Di using (6).
Update hash codes B

until a fixed number of iterations

The whole alternating learning algorithm for the proposed CDGAN is briefly
outlined in Algorithm 1.

3.5 Hash Codes Learning

Bv and Bt are the binary codes of image and text. In this paper, Tv and Tt are
the transformation functions which map the encoded vectors into hash codes.
Breal

v is the binary codes of real image, Bfake
v is the binary codes of generating

image, Breal
t is the binary codes of real text, and Bfake

t is the binary codes of
generating text. The binary hash codes of image Bv consist of Breal

v and Bfake
v .

And the binary hash codes of text Bt consist of Breal
t and Bfake

t . Then, we can
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get the binary hash codes by the following formulation:

Breal
v = Tv(CNNreal

enc (θv)) (11)
Bfake

v = Tv(CNNfake
enc (θv)) (12)

Breal
t = Tt(RNNreal

enc (θt)) (13)

Bfake
t = Tt(RNNfake

enc (θt)) (14)

At last, the binary codes of image and text are similar. Thus, the binary
codes loss is calculated using the following formulation (15):

min
θv,θt

J(B) = ‖ Breal
v − Breal

t ‖2F + ‖ Bfake
v − Breal

t ‖2F
+ ‖ Breal

v − Bfake
t ‖2F + ‖ Bfake

v − Bfake
t ‖2F (15)

3.6 Optimization

The discrete constraint is the major difficulty to optimize the objective function
(15). In deep hashing network, we can generate the strict binary hash codes Bv

and Bt by (16) and (17). sgn(·) is the sign function that outputs +1 for positive
input and −1 otherwise on each element. Then, we can generate the strict binary
hash codes by:

Bv = sgnv(λCNNreal
enc (θv) + (1 − λ)CNNfake

enc (θv)) (16)
Bt = sgnt(λRNNreal

enc (θt) + (1 − λ)RNNfake
enc (θt)) (17)

However in the backward propagation, the gradient of the sign function is
zero for all nonzero input. To handle this vanishing gradients problem, we follow
[4,11] to adopt tanh function in function (18) and (19):

Bv = tanhv(λCNNreal
enc (θv) + (1 − λ)CNNfake

enc (θv)) (18)
Bt = tanht(λRNNreal

enc (θt) + (1 − λ)RNNfake
enc (θt)) (19)

4 Experiments

4.1 Datasets

Two popular benchmark datasets in cross-modal retrieval: MIRFlickr-25K [10]
and Microsoft COCO [19] are used for evaluation.

The original MIRFLICKR-25K dataset [10] consists of 25,000 images col-
lected from Flickr website. And each image is associated with several textual
tags, in witch the image-text pair is annotated with at least one of the 24 unique
labels. 20,015 image-text pairs are used in our experiment, because the unla-
beled data is removed. We take 2,000 image-text pairs as the query set and the
remaining as the retrieval database. The text for each point is represented as a
1386-dimensional bag-of-words vector. For supervised baselines, we select 5,000
image-text from retrieval set to construct training set.
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We also evaluate our approach on the MSCOCO dataset [19]. It contains
82,783 training images and 40,504 validation images. Each image has five dif-
ferent sentences and is labeled with at least one of 80 unique labels. In our
experiment, 122,218 image-text pairs are used to formulate the dataset where
2,000 image-text pairs are randomly selected as a query set and the remain-
ing 120,218 pairs are regarded as a retrieval set. For supervised methods 6,000
image-text pairs are randomly selected to construct training set from retrieval
set.

4.2 Baselines and Evaluation

We compare our method with six methods, including several unsupervised
shallow-structure-based methods (CVH [14], CMFH [5], STMH [4], LSSH [7]
and FSH [6]), and deep-structure-based methods (CMSSH [11] and UCH [9]).
CMSSH is supervised method and UCH is unsupervised method. For fair com-
parison, deep network CNN-F is used to extract deep features for all shallow
structure based methods.

To evaluate CDGAN, we choose three metric methods. Firstly, the mean
average precision (MAP) is a widely used metric to measure the accuracy of the
hamming ranking protocol. Secondly, the precision and recall for the returned
points given any hamming radius are adopted to evaluate the retrieval perfor-
mance. Finally, in this paper, visual results of text-to-image retrieval can demon-
strate the quality of the retrieved image generated by our conditional GAN and
image-to-text retrieval prove the quality of the generated text.

4.3 Implementation Details

We experiment with image encoder ResNet152. For ResNet152, we obtain the
global image feature by taking a mean-pooling over the last spatial image fea-
tures. The dimensions of the image feature vectors is 2048 for ResNet152 and
then reduce the dimension to 16, 32, and 64. As for text preprocessing, we con-
vert all sentences to lower case, resulting in a vocabulary words.

We set the word embedding size to 300 and the dimensionality of the joint
embedding space to 1024 and then reduce the dimension to 16, 32, and 64. For
the sentence encoder, we use a GRU-based encoder to get the abstract feature
representation. The number of hidden units of both GRUs is set to 1024. For
the sentence decoder, we adopt a one-layer GRU-based decoder which has the
same hidden dimensions as the GRU-based encoder.

In each t2i part, there are three generators for images in total, where dimen-
sions are 64 × 64, 128 × 128, 256 × 256. Followed [16], a pre-trained bi-directional
GRU was used to calculate the semantic embedding from text descriptions. The
sentence length is 24.

4.4 Experiment Results

The Mean Average Precision (MAP). The MAP results are presented in
Table 1. We group these compared methods into two categories: supervised and
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Table 1. The MAP results of baselines and CDGAN on MIRFLICKE-25K and COCO
datasets.

Task Method MIRFLICKE-25K COCO

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits

I → T CVH 0.5869 0.5753 0.5722 0.4744 0.4755 0.4590

STMH 0.5742 0.5821 0.6023 0.4054 0.4149 0.4065

LCMH 0.5592 0.5691 0.5852 0.4212 0.4515 0.4411

LSSH 0.5891 0.6041 0.6243 0.4689 0.4735 0.4853

FSH 0.5802 0.5839 0.5914 0.4530 0.4894 0.4942

CMSSH 0.5981 0.5935 0.6007 0.5034 0.5161 0.5172

OURS 0.6102 0.6120 0.6141 0.5297 0.5242 0.5256

T → I CVH 0.5985 0.5954 0.5892 0.4702 0.4745 0.4589

STMH 0.5855 0.584 0.6222 0.3911 0.4220 0.4491

LCMH 0.5614 0.5693 0.5821 0.4510 0.4714 0.4712

LSSH 0.5830 0.5882 0.6014 0.4565 0.4606 0.4653

FSH 0.5757 0.5764 0.5832 0.4711 0.5092 0.5149

CMSSH 0.5984 0.5932 0.6007 0.5036 0.5164 0.5178

OURS 0.6113 0.6122 0.6141 0.5291 0.5249 0.5251

Table 2. Comparison results between the proposed CDGAN and UCH. The results
are evaluated on COCO according to the MAP score.

Task Method COCO

16 bits 32 bits 64 bits

I → T UCH 0.5014 0.5147 0.5371

OURS 0.5297 0.5242 0.5256

T → I UCH 0.4861 0.4992 0.5212

OURS 0.5291 0.5249 0.5251

unsupervised. CMSSH is traditional supervised methods information, achieve
relatively good performance on retrieval tasks. And LCMH, FSH, and LSSH is
unsupervised methods, which can achieve comparable performance in general.
In Table 1, we compare our CDGAN with five cross-modal methods with the
output dimensions of 16 bits, 32 bits and 64 bits. Then the results show that
CDGAN significantly outperforms all the other baselines. From the experimental
results, our proposed CDGAN outperforms other competitors by comparing all
these methods. In detail, the MAP of our method is higher than that of the
baseline methods in MIRFLICKR-25K and MSCOCO. I → T denotes that the
query is image and the database is text, and T → I denotes that the query is
text and the database is image. The best results for MAP are shown in bold.
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(a) (b)

Fig. 2. The Precision-Recall curves on MIRFLICKR-25K.

Generated  Images

Text :A house is on the wild.

Generated  Images

Text :A crane drives on the street.

Generated  Images

Text :A Pizza with meet and vegetables.

Fig. 3. Visual results of text-to-image generation.

Comparison CDGAN with UCH. We additionally compare our proposed
CDGAN with UCH, which is a representative unsupervised deep learning based
method proposed recently in MSCOCO dataset. Table 2 shows the results of
comparison between UCH and CDGAN in term of MAP values on MSCOCO
datasets. It is obvious that our proposed CDGAN outperforms UCH with dif-
ferent code lengths.

The main reason may be that UCH just calculates single hash codes, which
causes that the hash codes is lack of accuracy and thus the retrieval performance
is constrained. With no need to build similarity matrix, our CDGAN exploiting
modality correlation by generating modality data with couple-dual-GAN. In
each modal it can learn more powerful representations. Therefore, more reliable
various group hash codes can be achieved with the proposed CDGAN method.
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Precision-Recall Curves. The Precision-Recall curves was used to evaluate
the visual-semantic similarity between the images and their text descriptions.
Additionally, the Precision-Recall curves is obtained by varying the hamming
radius from 0 to 64 with a step size 1. Figure 2 shows Precision-Recall curves
of all methods with 64-bit hash codes on MIRFLICKR-25K datasets. If one
method’s Precision-Recall is not completely wrapped by another method’s P-
R Precision-Recall. Usually equilibrium point is used to measure which one is
better. The equilibrium point is the value when P = R. if this value is large,
the performance of the learner is better. In the Fig. 2, the equilibrium point of
CDGAN is about 0.65. Thus, the Precision-Recall curves of CDGAN can get a
good performance than other methods.

Results of Text-to-Image Generation. Figure 3 shows some examples of
text-to-image. There are three groups data in Fig. 3, at first, the original text
is as input, and then the generated images is behind the text. Although the
quality of the generated images is not the same as the original images, they still
contain the shapes, colors, and backgrounds of the object. These experiment
results show that our model can generate certainly good images from the text
in the same data pair. Thus, our model can preserves the complex underlying
image-text relations.

5 Conclusions

In this paper, we proposed a novel unsupervised coupled dual generative adver-
sarial hashing network in cross-modal retrieval for large-scale datasets. The
uniqueness of our method is that mixed hash codes can be learned in an unified
framework without using any label information. Moreover, in a training proce-
dure hash codes learn alternately, and achieve optimal performance at the same
time. Experiments on two widely-used datasets show that our proposed model
can significantly outperform other baselines and can achieve the state-of-the-art
performance in real applications.

Acknowledgments. This work was supported by the Strategic Priority Research
Program of the Chinese Academy of Sciences (XDC02050200).
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Abstract. Measuring similarity of objects in information network is a primitive
problem and has attracted many studies for widely applications, such as recom-
mendation and information retrieval.With the advent of large-scale heterogeneous
information network that consist of multi-type relationships, it is important to
research similarity measure in such networks. However, most existing similarity
measures are defined for homogeneous network and cannot be directly applied
to HINs since different semantic meanings behind edges should be considered.
This paper proposes GSimRank that is the extended form of the famous SimRank
to compute similarity on HINs. Rather than summing all meeting paths for two
nodes in SimRank, GSimRank selects linked nodes of the same semantic cate-
gory as the next step in the pairwise random walk, which ensure the two meeting
paths share the same semantic. Further, in order to weight the semantic edges, we
propose a domain-independent edge weight evaluation method based on entropy
theory. Finally, we proof that GSimRank is still based on the expected meeting
distance model and provide experiments on two real world datasets showing the
performance of GSimRank.

Keywords: Similarity measure · Heterogeneous information network · Semantic
relation · Entropy

1 Introduction

Heterogeneous information networks (HINs), the logical graphs involvingmultiple typed
objects and multiple typed links, have been used to represent the underlaying data in
many applications, such as the bibliographic networks, social networks and knowledge
network encoded in Wikipedia. In recent years, HIN analysis has attracted a lot of atten-
tion since its superior ability of complicate data model. Unlike traditional homogeneous
information networks which only carry inter-node structural information, HINs further
encompass semantic information that explain the nodes and their interactions. Such
semantic information present new opportunities to many data-driven problems. In par-
ticular, we are interested in the similarity measure between objects in HINs. Typically,
the objects can be organized into a graph G = (V ,E), where the nodes V model the
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objects and the edges E model their interactions. Given a node u ∈ V , how do we
measure the similarity of other nodes to u?

Similarity measure plays a fundamental role in network analysis. For example, sim-
ilarity measure provides object distances in HINs for classification and clustering and
it is also helpful to identify similarity objects in recommender systems and information
retrieval systems. Similarity computation has been extensively studied for traditional
categorical and numerical data types in relational data. Generally, these researches fall
into one of the following 2 categories: (1) content-based similarity measures, treating
each object as a bag of attributes or as a vector of feature weights, likely Similarity Join
[2]; (2) link-based similarity measures, focusing on the linkages between objects, such
as personalized PageRank [4], SCAN [5] and SimRank [8]. Based on the evaluation of
[10], link-based similarity measures produce better correlation with human judgments
compared with content-based measures. For most studies leveraging link information
in networks, they are focused on homogeneous networks or bipartite networks, disre-
garding the subtlety of difference types among nodes and edges which carry different
semantic meanings. If we adopt these link-based similarity measures to HINs, it does
not make sense to mix them without distinguishing their semantics. Specifically, with
various types of interconnected objects, different semantic edges of similarity arise from
different underlying reasons. As shown in Fig. 1, for the same object (e.g., paper p1),
there could be multiple classes of similarity with different result objects (e.g., paper p2
for the same mentioned term “HIN”, and paper p4 for the same author a3).

Author Paper Term

a1

a2

a3

a4

p1

p2

p4

HIN

structure

(a) A simple HIN of DBLP

link

p3

Paper

Author

Conf.

Write

Publish

Term
Mention

Citation

(b) Network Schema of DBLP

Fig. 1. A network schema of DBLP and a simple HIN about author, conf. and paper.

To distinguish the different semantics behind edges ofHINs, SunY. et al. definesmeta
paths on network schema and proposes PathSim to measure the similarity by symmetric
path instances [11]. Although PathSim could achieve peer similarity, it does not count
the asymmetric valuable paths. That is to say, PathSim is a kind of local similarity
measure. Besides, even meta path can distinguish the different semantics, PathSim does
not weight their contributions.When PathSim is computed onHINs, meta path should be
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designed and selected by experts firstly. These limitations also exist in other meta path-
based distance measures, such as PCRW [12] and HeteSim [13]. Recently, Yuan F. et al.
propose a family of Metagraph-based similarity (MGS) that utilize a learning-to-rank
technique to automatically learns the right parameters for desired semantic similarity
measure [1]. However, its performance is limited by the training datasets.

In this paper, we study the similarity problem between same typed objects on HINs.
To produce a global and semantic-aware similarity measure, we propose GSimRank, a
general form of the famous SimRank on HINs. GSimRank ensures that similar objects
are more likely to be related to some other similar objects of the same type. Concretely,
GSimRank is still based on the pairwise random walk model which promises a global
score. To distinguish different semantic edges on the meeting paths, we constrain the
random walk under the same semantic edge selection. Suppose (u, v) is a node pair in
pairwise randomwalk, then (a, b) is the next step node pair if and only if same-typed a, b
link to u, v respectively. Further,we propose a domain-independent unsupervisedweight-
ing method based on entropy theory to weight the contributions of different semantic
edges of G. The intuition is that given a specific semantic relation, the edge distribution
determines its capacity of object property representation. If a semantic relation has higher
capacity, i.e., its edge instance could be more valuable to identify the linked objects, it is
more important for similarity computation. Extensive experimental studies on synthetic
and real datasets demonstrates the effectiveness of GSimRank on HINs.

The rest of the paper is organized as follows. Section 2 defines the problem of
similarity computation on HINs. Section 3 describes our proposed GSimRank and its
properties, followed by the computation method in Sect. 4. Experimental results are
presented in Sect. 5.We discuss the related work in Sect. 6 and conclude with a summary
of this paper in Sect. 7.

2 Problem Statement

First, we declare that similarity is a measure defined on two same-typed objects. Given
a link-based measure, we can compute a value s for two objects u and v on a HIN, only
if u and v are of the same type; otherwise, u and v are relevant with a score s. We define
some concepts that are crucial for similarity computation.

Definition 1. Heterogeneous Information Network. An information network
is defined as a directed graph G = (V ,E) where each object v ∈ V belongs to one
particular object type φ(v) ∈ A, and each link e ∈ E belongs to one particular relation
ϕ(e) ∈ E. When the types of objects |A| > 1 or the types of relations |E| > 1, the
network is called heterogeneous information network; otherwise, it’s homogeneous
information network.

To study the semantic relationships ofHINs, network schema is an efficient technique
as shown in Fig. 1 and the definition is as follow.

Definition 2. Network Schema. A meta template for G with the object mapping φ :
V → A and edge mapping ϕ : E → R, is a directed graph defined over object types A
and semantic relations R, denoted as TG = (A,R). A sematic edge of R is defined as a
tuple R(X ,Y ) where X and Y are node type, and X ,Y ∈ A.
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Definition 3. Meta Path. Meta path is a type of path defined on the network schema
TG = (A,R) of G, denoted as T = (A1 . . .Al+1), describing a composite relation
R = R1 ◦R2 ◦ . . .◦Rl between object type A1 and Al+1 where ◦ denotes the composition
operator on the semantic edges, and for 1 ≤ i ≤ l, R(Ai,Ai+1).

We use t to denote a path of G. Suppose t = (v1 . . . vl) and T = (A1 . . .Al). If
φ(vi) = Ai for 1 ≤ i ≤ l, we say t is a path instance of T , t ∈ T . GSimRank is a general
form of SimRank, in which G2 and node pair are two important concepts. In this paper,
we give the extended definitions on HINs. Given a HIN G, node pair are two ordered
nodes of the same type, e.g., if (u, v) ∈ Ai, (u, v) is a node pair. G2 is a HIN based on
G, where each node represents an ordered node pair of G, and (a, b) points to (c, d) in
G2 if a points to c and b points to d in G.

Due to the various semantic edges (a.k.a. semantic classes) on HINs, it is difficult
to distinguish and mix them in a unified link-based distance measure. First, we give an
axiom: if two same-typed nodes u and v of G both link to a node x, we can say u and v
are similar since e(u, x) and e(v, x) belong to a same semantic relation. For example,
in Fig. 1, p1 and p2 are similar for their common mentioned term “HIN”. Then, we can
extend this axiom to measure the similarity through longer paths. As shown in Fig. 1, the
author a1 and a2 have no common neighbor. But we know that a1 writes p1; a2 writes
p2; p1 and p2 are similar. Hence, we can infer that a1 and a2 have a certain similarity
score since theywrite the similar papers. In conclusion, we can get an inference: given a
node pair (u, v) of G, we can compute the similarity score, denoted as s(u, v), through
counting the similarity scores of its neighbor node pairs in G2. Finally, the problem
statement of this paper is defined as follow.

Definition 4. Semantic-aware Similarity. Given any node pair (u, v) of a HIN G, the
semantic-aware similarity of (u, v), denoted as s(u, v), is a weighted sum of its neighbor
node pairs according to their semantic relations between them so that each rise of s(u, v)
stems from same semantic aspects.

3 GSimRank

3.1 Motivation

To measure similarity of objects based on their relationships, SimRank first formally
introduced the famous intuition that “two objects are similar if they are related to sim-
ilar objects.” SimRank has successfully applied this idea on homogeneous information
networks and bipartite networks. Detailly, SimRank score of node pair (u, v), denoted
as s′(u, v), specifies how soon two random surfers are expected to meet at same node.
If u = v, s′(u, v) = 1, otherwise,

s′(u, v) = c

|Γ (u)||Γ (v)|
|Γ (u)|∑

i=1

|Γ (v)|∑

j=1

s′(Γi(v), Γj(v)) (1)
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where c is the decay factor (0 < c < 1), Γ (∗) is the neighbor set of node ∗ (in or out,
but not in and out), and |Γ (∗)| is the set size. SimRank is based on “random surfer-pairs
model” on graph, and its equivalent form is

s′(u, v) =
∑

t:(u,v)�(x,x)

P[t]cl(t) (2)

Specially, Eq. (2) is defined on G2, and the summation is taken over all tours t of
G2, which is composed by 2 same-length paths of G: t(u . . . x) and t(v . . . x). P[t] is
the traveling probability on graph and l(t) is the length of a tour t. These two equa-
tions make SimRank be a state-of-art measure for similarity. However, SimRank can-
not be directly applied on HINs without the ability of semantic distinguishing. Taking
Fig. 1 as an example, if we compute s′(p1, p3) based on Eq. (1), a meeting path may
be t : (p1, p3) → (a3, a3) which expresses that 2 papers p1 and p3 are both written
by a same author a3 so that it’s reasonable for similarity computation. At the same
time, there are some unreasonable meeting paths arising the final similarity score, likely

which can be considered as the combination
of two random walking paths: t(p1a3p4) and . The sematic logic of t
for s′(p1, p3) can be translated as follows: (1) p1 and p4 are similar since their common
author a3; (2) p3 and p4 are similar for the same term ; (3) p1 and p3 have a
certain similarity. Obviously, this logic is not reasonable without semantic consistency,
and this tour t should not be counted into s′(p1, p3).

3.2 Basic GSimRank Equation

To distinguish the semantics of HINs for similarity computation, we design GSimRank
basedon the intuition that “two same-typedobjects are similar if they are related to similar
same-typed objects.” Effectively, it inherits the iterative definition form of SimRank and
rises the score through same semantic relation every time. Given a HIN G = (V ,E)

with the network schema TG = (A,R), and two object u, v ∈ Ai, the GSimRank score
between them are denoted as s(u, v). If u = v, s(u, v) = 1; otherwise,

s(u, v) = c

|Γ (u)||Γ (v)|
|A(u,p)|∑

k=1

|Ak (u)|∑

i=1

|Ak (v)|∑

j=1

s
(
Ak,i(u),Ak,j(v)

)
(3)

where A(u, v) is the object type set about the in/out-neighbors of u and v, Ak(∗) is the
in/out-neighbors of the given node ∗ of the type Ak and Ak,i(∗) is the ith element of
Ak(∗).

In detail, the similarity score s(u, v) depends on the similarities of their neighbor
nodes. Comparing with the classic SimRank of Eq. (1) that sums the similarities of all
possible neighbor pairs, i.e., s′

(
Γi(u), Γj(v)

)
, GSimRank only exploits neighbor node

pairs, i.e., s
(
Ak,i(u),Ak,j(v)

)
. It ensures the semantic consistency for similarity com-

putation. Practically, only the similarities between linked objects of same type should
be considered, which make the semantic of two links consistent. In the perspective of
object and attribute, it is more easily to explain. Suppose the neighbors of a given object
u in G are its attribute values. That’s to say if ∃Ak,i(u) ∈ Γ (u),Ak,i(u), is the value
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of u in attribute Ak . Thus, the score s(u, v) in Eq. (3) is computed based on the val-
ues of their corresponding attributes. For example, if we compute s(p1, p2) in Fig. 1,

and .GSimRankonly sums the sim-
ilarities of same attributes: , s(a1, a2), s(a3, a2) and .
While SimRank counts all the similarities, likely , and so on.
These different attribute similarities make the semantic relations confused on HINs.

3.3 Weighting Semantic Relations

Different semantic relations have different contribution for the similarity of object on
HINs. Practically, many studies have confirmed this opinion [9]. However, few works
straightforward study this problem for similarity. In this paper, we propose a sematic
relation weighting approach based on entropy theory.

Definition 5. Semantic Relations. Given a network schema TG = (A,R), semantic
relation describes the symmetric relationship between two object types Ai,Aj ⊆ A,
denoted as SR

(
Ai,Aj, κ

)
, with a semantic κ , and SR

(
Ai,Aj, κ

) = SR
(
Aj,Ai, κ

)
.

For example, SR(paper, term,mention) is a semantic relation that describes themen-
tion relationship between paper and term in Fig. 1. Since the semantic between two
object types is usually unique in TG , we use SR(paper, term) for short. Specially, distinct
from the ordered semantic edge, semantic relation is symmetric. Based on Definition 5,
semantic weighting problem in this paper is to weight the contribution wk for each
semantic relation SRk(∗, ∗) so that if the κ of SRk is more important for the link-based
similarity measure, wk should be higher.

Wepropose an entropy-based approach to the semanticweight problem for similarity.
Generally, given a semantic relation SR

(
Ai,Aj

)
, e(u, v) is an edge instance ofR

(
Ai,Aj

)
if

e(u, v) ∈ E, u ∈ Ai, v ∈ Aj. The intuition of our method is that “the edge distribution of a
semantic relation SR is more chaotic, the edge instance of SR represent more properties
of its linked objects.” For example, in Fig. 1, the similarities between papers can be
computed via R(paper, paper) or R(paper, conf .). Generally, the edge distribution of
semantic relation “citation” is more disorder than “publish” since the paper number is
far more than conf. and a paper citing another paper is more stochastic than published
in a conference. Thus, SR(paper, paper) is more credible than SR(paper, conf .) for
similarity search. In special case, if all papers of a DBLP HIN are published in one
conf., the semantic relation SR(paper, conf .) is useless for similarity computation since
we cannot distinguish papers according to their conf . attribute. We can use entropy to
measure the disorder or chaos of a given semantic relation [14]. To computer the entropy
of SR

(
Ai,Aj

)
, we first study the corresponding semantic edge R

(
Ai,Aj

)
, and propose the

following assumption:

Assumption 1. Given a semantic edge R
(
Ai,Aj

)
, selecting one node from Ai and Aj

respectively to create an edge instance of R is a random variable, denoted as Rij.

Based on the assumption, creating an edge e
(
vix, vjy

)
of G, vix ∈ Ai, vjy ∈ Aj, is

a random event as shown in Fig. 2. Detailly, the random variable Rij depends on two
random variables Ai and Aj, and selecting vix and vjy are two random events for Ai and Aj
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respectively. Therefore, the probability of edge e
(
vix, vjy

)
, denoted as pxy, is computed

by

pxy = p(Ai = vix)p
(
Aj = vjy

) = dj(vix)∑
m
dj(vim)

di
(
vjy

)
∑
n
di

(
vjn

) (4)

where di(∗) is the degree of node ∗ pointing to nodes of Ai.

Object Type Ai

.

.

.

Object Type Aj

.

.

.

vi1

Creating edges of R(Ai,Aj) as a Random Variable Rij

Probability of e:
p[e(vix,vix)]

vi2

vim

vj1

vj2

vjn

Random Event 
e(vix,vix)

vix

viy

selecting
vi

selecting
vj

Entropy of  
R(Ai,Aj):

H(Rij)

Fig. 2. An illustration of entropy computation for a given semantic edge R.

Further, the entropy of R
(
Ai,Aj

)
, denoted as H

(
Rij

)
, is

H
(
Rij

) = −
|Ai |∑

x=1

|Aj|∑

y=1

pxy log pxy (5)

Obviously, we have H
(
Rij

) = H
(
Rji

)
base on Eq. (5). Finally, the weight of

SR
(
Ai,Aj

)
, denoted as wij, is computed by

wij = 2H
(
Rij

)
∑
Ak∈A

∑
Ai∈A

H (Rkl)
(6)

All the edge instances ofSR
(
Ai,Aj

)
have the sameweightwij . considering theweights

of semantic relations for similarity, Eq. (3) of GSimRank can be rewritten as

s(u, v) = c

|Γ (u)||Γ (v)|
|A(u,p)|∑

k=1

wxk

⎧
⎨

⎩

|At(v|)|∑

i=1

Ak (v)|∑

j=1

s
(
Ak,i(u),Akj(v)

)
⎫
⎬

⎭ (7)

where φ(u) = Ax, and wxk is the weight of SR(Ax,Ak). Specially, in homogeneous
information network or bipartite network, Eq. (7) is equivalent to Eq. (1) of SimRank
since wxk ≡ 1 and |A(u, v)| = 1.
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3.4 Properties of GSimRank

Some good properties of GSimRank are shown in Theorem 1.

Theorem 1. Basic Properties of GSimRank:

1. Symmetric: s(u, v) = s(v, u);
2. Self -maximum: s(u, v) ∈ [0, 1]. If u = v, s(u, v) = 1.

Proof. Sinceφ(u) = φ(v), givenAk ,wxk is same for both s(u, v) and s(v, u). IfAk,i(u) =
Ak,j(v), it’s symmetric for s

(
Ak,i(u),Ak,j(v)

) = s
(
Ak,j(v),Ak,i(u)

) = 1; otherwise,
Eq. (7) of GSimRank will continue the counting until a node pair (a, b)makes Ak,i(a) =
Ak,j(b) in (k)th iteration and we can infer that the similarity score s is symmetric in
(k − 1)th iteration. Therefore, s(u, v) = s(v, u) based on back forward propagation. �

In general, given u and v of a HINsG, let s′(u, v) be the result of SimRank via Eq. (1).
Since the constraint of node pairs in Eq. (3), and the weight w in Eq. (7) are all less than
1, we can get . Because and s(u, u) = 1.
In each iteration of Eq. (7), s

(
Ak,j(v),Ak,i(u)

)
are nonnegative. Thus, . �

SimRank has an important intuitive model based on “random surfers”, i.e., random
surfer-pairs model. GSimRank, an extended form of SimRank on HINs, are still based
on “random surfers”.Wewill show that GSimRank score s(u, v)measures how soon two
random surfer paths are expected as the same node if they started at the same-typed nodes
and randomly walked the graph subject to a same meta path. Distinct from PathSim,
GSimRank counts all possible path instances, i.e., both symmetric and asymmetric meta
paths could be utilized for similarity computation.

First, we extend the concept of expected meeting distance (EMD) in classical Sim-
Rank to constrained expected meeting distance (CEMD). Given any strong connected
HIN G, let u, v be any two nodes in G. The EMD m′(u, v) is formally defined as

m′(u, v) =
∑

t:(u,v)�(x,x)

P[t]l(t) (8)

Due to the “infinite EMD” problemof tours, SimRank designs the expected-f meeting
distance, which computes the expected f (l(t)), where f (z) = cz , instead of computing
expected length l(t) in Eq. (8). And the formula of expected-f meeting distance is shown
in Eq. (2). Based on Eq. (2), we define m(u, v), the similarity between u and v of same
type in G based on CEMD, as

m(u, v) =
∑

T :Ai�Aj
A⊆TG

∑

t:(u,v)�(x,x)
t∈T

P[t]cl(t) (9)

where T is the meta path of TG , φ(u) = Ai, and t is a path instance of T . We will show
thatm(u, v) exactly models our original definition of GSimRank by showing thatm(u, v)
satisfies the GSimRank Eq. (3).

First, if u = v, m(u, v) = s(u, v) = 1 since l(t) = 0. If there is no path t from
(u, v) to any singleton nodes, in which case m(u, v) = 0, it’s easy to see that s(u, v) = 0
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from Eq. (3) since no similarity would flow to (u, v). Otherwise, consider the tours
t from (u, v) to a singleton node x in which the first step is to their out-neighbors
Ok((u, v)) of Ak , i.e., and . Here we use two paths
in step on G to instead t on G2, formally written as t = ta‖tb . Then, the tours from(
Ak,i(u),Ak,j(v)

)
to x is denoted as t′. For each t we can derive a corresponding t′ by

splitting the edges e
(
(u, v),

(
Ak,i(u),Ak,j(v)

))
ofG2 at the beginning.And corresponding

to the path instance t and t′, we derive meta path T ′ from T where by
splitting the meta edge (A(u),Ak). We use A(u, v) to denote the bijection that takes each
T ′ from T via Ak . Moreover, the probability of traveling t is

p[t] = 1

|O(u)||O(v)|p
[
t′
]

(10)

Now, we can rewrite the sum of Eq. (9) in the first step by splitting meta path T and
its corresponding path instance t at the same time:

(11)

Obviously, out-edges in Eq. (11) can be swapped for in-edges. Therefore, Eq. (11)
is identical to Eq. (3) of GSimRank. Since the solution of Eq. (3) is unique (proof in
Sect. 5), s(u, v) = m(u, v) for any node pair (u, v), u, v ∈ V We have the following
theorem.

Theorem 2. The GSimRank score, defined in Eq. (3), between two nodes is their
constrained expected meeting distance traveling back-edges, for f (z) = cz .

In the same way, the weigh parameters w can also be integrated into Eq. (11). Based
on Theorem 1, we have the following inferences:

Corollary 1. The GSimRank score s(u, v), defined in Eq. (7), between two nodes is their
constrained expected meeting distance m(u, v), defined in Eq. (9) and weigh parameters
w of semantic relations computed by Eqs. (4)–(6).

Corollary 2. The GSimRank score between two nodes is semantic aware, i.e., each
meeting path that rises the final score is semantic constancy. Formally, for each meeting
path t = ta‖tb, ta(a1, . . . , am), tb(b1, . . . , bm) , we can get that φ(ai) = φ(bi) and

.
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4 Computing GSimRank

A basic solution to the GSimRank equations can be reached by iteration to a fixed-point.
For each node type Ai of G, let ni be the node number of type Ai. Since the definition
of GSimRank that similarity only exists between same-typed nodes, we keep n2i entries
sk(∗, ∗), where sk(u, v) gives the score between a and b on iteration k, and u, v ∈ Ai.
For G, we will have entries sk(∗, ∗) of length

∑|A|
i=1 n

2
i . We can successively compute

sk+1(∗, ∗) based on sk(∗, ∗). First, we initialize s0(∗, ∗):

s0(u, v) =
{
1 (if u = v)
0 (if u �= v)

(12)

To compute sk+1(u, v) based on sk(∗, ∗), we use the GSimRank Eq. (3) or Eq. (7)
to get (taking Eq. (3) for example):

sk+1(u, v) = c

|I(u)||I(v)|
|A(u,ν)|∑

k=1

|Ak (ω)|∑

i=1

|Ak (0)|∑

j=1

sk
(
Ak,i(u),Ak,j(v)

)
(13)

for u �= v, and sk+1(u, v) = 1 for u = v. We update the similarity of (u, v) using the
similarity scores of its neighbor node pairs from the previous iteration k.

Theorem 3. Given a HIN G = (V ,E), there exists a unique solution of GSimRank, and
limk→∞ sk(u, v) = s(u, v) for any node pair (u, v) of G.

Proof. First, we will prove the existence of a solution based on our basic algorithm
for GSimRank. Based on the initialization, we get . Since there are
no non-negative functions or parameters in GSimRank equation, we can infer the fact
based on iteration:

By the Completeness Axiom of calculus, we can get limk→∞ sk(u, v) = s(u, v), i.e.,
each sequence

{
sk(u, v)

}
converges to a limit s(u, v). If we plug all the limit into Eq. (13),

we can get the GSimRank equation form. Therefore, the limits satisfy the GSimRank
equation. Now, we have proved the uniqueness.

Suppose s1(u, v) and s2(u, v) are two solutions for (u, v), and s1(u, v) > s2(u, v).
Based on Eq. (7), there must exist: sm−1

1

(
Ak,i(u),Ak,j(v)

)
> sn−1

2

(
Ak,i(u),Ak,j(v)

)
.

If , based on the iteration of Eq. (7), there must exist (a, b), a �= b, and
. This contradicts the monotonicity fact above.

If m > n, we have:

sn−1
1

(
Ak,i(u),Ak,j(v)

) �= sn−1
2

(
Ak,i(u),Ak,j(v)

)
or

sn+1
1

(
Ak,i(u),Ak,j(v)

)
> sn+1

2

(
Ak,i(u),Ak,j(v)

)
.
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Both these two situations derive that s01(a, b) �= s02(a, b) and a �= b. This also
contradicts our initial conditions.

Therefore, the solution of GSimRank is unique and limk→∞ sk(u, v) = s(u, v). �
Let us analyze the time and space requirements of GSimRank. Let n̄ be the average

of |Ai| and |A| = m, the final space complexity is O
(
mn̄2

)
. Let d̄ be the average of

in-neighbor pairs and K is the number of iterations until convergence. The time required
is O

(
Kmn̄2d̄

)
since in each iteration, all node pairs in Eq. (3) are updated with values

from their in-neighbor pairs. Obviously, the space requirement of GSimRank is far less
than SimRank, which needs O

(|V |2).

5 Experiments

5.1 Experiment Setting

In this section, we report on some preliminary experiments to show that GSimRank
scores do in fact extend SimRank similarity into HINs derived from practical data sets.
We ran experiments on two data sets.

DBLP Dataset. Thefirst is a subset ofDBLP,which contains 128,651papers and31,264
authors from 160 famous conferences and journals about machine learning, database,
data mining and information retrieval in last 10 years. Then, we extract 4256 terms from
paper titles and create a DBLPHIN based on the network schema in Fig. 1 with an added
R(paper, year).

IMDB Datasets. The second data set is about movies from IMDb which includes
movies, genres, directors, actors, years, gross (integer, inmillions), rating, reviewer num-
ber (integer, in thousands) and length (integer, in minutes). The Movie HIN is designed
based on movie centric network schema (i.e., other type nodes only link to movie node).
Detailly, the IMDb network includes 1482 movies, 112 genres, 529 directors and 4795
actors (Table 1).

Table 1. Summary of datasets.

Datasets #node #edge #node type #semantic relations

DBLP 164,341 963,258 5 4

IMDb 8,547 16,651 9 8

A good evaluation for measuring similarity is difficult to design without extensive
standard datasets. Thus, we first create two datasets based on some heuristic rules and
adopt NDCG and MAP to evaluate the similarity measures [1]. Although admittedly
not definitive or exhaustive, this method does illustrate empirically important aspects
of GSimRank. In our experiments, we only focus on the similarities between papers in
DBLP HIN and movies in Movie HIN. We create the similar set for each object u based
on co-reference rules as follow:
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• Paper similar set: If paper v has a “coauthor”, “co-conf.” or “co-term” node with u,
we set v ∈ SC(u). Further, for each condition, add one point for similarity rank (e.g.,
if v satisfies all the 3 conditions, it has the top score 3).

• Movie similar set: If movie v has a “co-actor”, “co-director” or “co-genre” node with
u, we set v ∈ SC(u), and rank them as paper similar set.

5.2 Baselines

We evaluate our proposed method against baseline methods, as follows.

• GSR: The proposed GSimRank measure.
• RWR: Random walk with restart [15], a widely used relevance measure on graphs.
We set the restart probability c = 0.15.

• SR: The SimRank measure. We run SimRank on HINs only considering the structure
information, with decay factor c = 0.85.

• GSR-W: GSimRank measure with uniform weights. That is, we do not differentiate
the importance of semantic relations, i.e., wxk = 1 in Eq. (7).

• PS: The PathSimmeasure, designed for peer similarity search on HINs based on meta
path. We adopt the meta path (PTPAP) for DBLP HIN and (MGMDM ) for Movie
HIN respectively (short for first letter).

• HS: The HeteSim relevance measure, is designed for relevance search in HINs based
on SimRank. We use the same meta paths as PathSim.

• MGP:TheMetagraph based proximitymeasure.MGP is a supervised learningmethod
for semantic proximity search on HINs. We choose “mention” for DBLP; “direct” for
IMDb. The size of Metagraph is limited in 2 to 5 and 20% are reserved for training
as advised.

5.3 Performance and Analysis

Comparison to Baselines. We report the NDCG and MAP of the rankings produced
by these similarity measure in Table 2.

Table 2. Performance of baselines

Datasets Metrics RWR SR PS HS MGP GSR-W GSR

DBLP NDCG 0.2418 0.3562 0.6049 0.6275 0.7841 0.7663 0.8015

MAP 0.2864 0.3751 0.5814 0.5649 0.7561 0.7218 0.7824

IMDb NDCG 0.2159 0.3472 0.5994 0.5827 0.7625 0.7124 0.7926

MAP 0.2315 0.3505 0.5418 0.5569 0.7052 0.6703 0.7686

The key findings are summarized as follow. (1) GSR performs consistently better
than all other algorithms in any case. Detailly, these methods can be divided into 3
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levels based on their performances. Without semantic distinguishing capability, RWR
and SimRank cannot work well in HINs. Many objects that don’t belong to the same
class with the query node are returned. PathSim and HeteSim returned the same-typed
objects based on specific meta paths and they perform better than RWR and SimRank,
and their evaluations are close. The same meta paths designed for them may be an
important reason. MGP algorithm performs most closely to our proposed method. (2)
GSR performs better than GSR-W, by more than 8%, which demonstrates the various
semantic relations of HINs do have different contributions for similarity search and
our proposed weighting method is effective. (3) The performances on DBLP are better
than on IMDb, especially for PS and HS. Since IMDb has richer semantics than DBLP,
limited meta paths cannot fully exploit them. MGP has the same problem due to the
given semantic class. Meanwhile, GSR performs stable.

Extensive Studies on Top-k Similarity Search. First, we select the most top-k similar
nodes as test datasets. As Fig. 3 shown, k = {10, 20, 50}. GSR still perform better than
other measures. Further, GSR is sensitive to top-k similar objects. When k = 10, the
score raises by more than 10% than its global value. With k increasing, the performance
of GSR drops sharply.

Convergence. In this paper, we define the convergence of GSimRank is that for any
given node, the rank of its similar objects does not change, and the error of similarity
score is less than 10−4. Generally, GSimRank can converge in 7 iterations as shown
in Fig. 4. First, semantic weights do not affect the convergence speed visibly. Second,
considering the differences between DBLP and IMDb, data scale and semantic amount
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Fig. 3. Top-k similarity search test.

Fig. 4. Convergence speeds of various baselines.
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have no influence on convergence speed (i.e., iterations). Another key finding is that the
speed in first 4 iterations is much faster than the following iterations.

6 Related Work

This paper focus on link-based similarity measure on information networks. Personal-
ized PageRank [17] computers the probability starting from a source node to a target
node in a given network based on randomwalk with restart. The following works extend
it for online queries [15] and the top-k search [18]. However, it is an asymmetrical sim-
ilarity measure. SimRank [4] computes the similarity of two objects by their neighbors’
similarities. Since its briefly intuition and solid mathematical theory, many extended
variants of SimRank are proposed [16, 19]. Because of its computational complexity,
many following works focus on its fast computation [3], [7]. However, these measures
are designed for homogeneous networks or bipartite networks.

PathSim [11], first defining Network Schema andMeta Path on HINs to distinguish
thedifferent semantics behind edges,measures the similarity of same-typedobjects based
on symmetric path instances of specific meta path. Now meta path-based distances are
widely used for HIN analysis [6, 9]. Although PathSim can product peer similarity,
it is still a local measure for HINs without considering the asymmetric meta paths.
PCRW [12] measures the entity proximity in a labeled directed graph constructed by
rich metadata of scientific literature. But PCRW is restricted by its asymmetric property.
HeteSim extends SimRank for HINs based on meta path [13]. However, it aims to
measure the relevance of different-typed objects, but not the similarity of the same-
typed objects. To exploit the semantic relations of HINs, some learning methods are
proposed based on meta paths [9]. Recently, Yuan F. et al. propose a family of MGS
that utilize a learning-to-rank technique to automatically learns the right parameters
for desired semantic similarity measure [1]. However, the performance of supervised
methods relies on the quality of training datasets.

7 Conclusion

In this paper, we study the similarity measure problem in HINs and propose GSimRank,
which selects linked nodes of the same semantic category as the next step in the pairwise
random walk, which promises the semantic consistency of two meeting paths. Further,
entropy theory is firstly utilized to weight the semantic edges for similarity computation.
Finally, GSimRank is still based on the expected meeting distance model. In the further,
we will study the fast computation of GSimRank, and research its applications on graph
embedding, context-aware recommendation and other problems of graph data analysis.
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Development Program no. 2019JZZY010105, NSF of Shandong, China no. ZR2017MF065.
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Abstract. Second language acquisition (SLA) modeling is to predict
whether second language learners could correctly answer the questions
according to what they have learned, which is a fundamental building
block of the personalized learning system. However, as far as we know,
almost all existing methods cannot work well in low-resource scenarios
due to lacking of training data. Fortunately, there are some latent com-
mon patterns among different language-learning tasks, which gives us an
opportunity to solve the low-resource SLA modeling problem. Inspired
by this idea, we propose a novel SLA modeling method, which learns
the latent common patterns among different language-learning datasets
by multi-task learning and are further applied to improving the predic-
tion performance in low-resource scenarios. Extensive experiments show
that the proposed method performs much better than the state-of-the-
art baselines in the low-resource scenario. Meanwhile, it also obtains
improvement slightly in the non-low-resource scenario.

Keywords: Second language acquisition modeling · Multi-task
learning

1 Introduction

Knowledge tracing (KT) is a task of modeling how much knowledge students
have obtained over time so that we can accurately predict how students will
perform on future exercises and arrange study plans dynamically according to
their real-time situations [1,7]. Particularly, second language acquisition (SLA)
modeling is a kind of KT in the filed of language learning. With the increasing
importance of language-learning activity in people’s daily life [4], SLA modeling
attracts much more attention and we focus on SLA modeling in this paper.
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Fig. 1. Illustration of an example of SLA modeling task

SLA modeling is the learning process of a specific language, thus each SLA
modeling task has a corresponding language, e.g., English, Spanish, and French.
Meanwhile, each language is composed of many exercises, and an exercise is the
smallest data unit. For an exercise, there are three possible types, i.e., listen,
Translation, and Reverse Tap, and the answers to the exercises are all sentences
regardless of the type of the exercise. In an exercise, the student will be asked
to write the answer sentence, and the student-provided sentence and the correct
sentence will be compared word by word to evaluate the ability of the student.
As an English exercise shown in Fig. 1, there are three words correctly answered,
i.e., “I ”, “love” and “and”. Therefore, SLA modeling task is to predict whether
students can answer each word correctly according to the exercise information
(meta-information, correct sentence with corresponding linguistic information).
Thus, it can be simply token into a word-level binary classification task.

In SLA modeling task, low-resource is a common phenomenon which affects
the training process significantly. Specifically, this phenomena is mainly caused
by two reasons: (1) For some specific language-learning datasets, e.g. Czech, the
size of dataset may be very small because we cannot collect enough language-
learning exercises; (2) For a user, he/she will encounter cold start scenario when
starting to learn a new language. However, almost all existing methods for SLA
modeling task train a model separately for each language-learning dataset and
thus their performance largely depends on the size of training data. Thus, they
can hardly work well in low-resource scenarios.

Intuitively, there are lots of common patterns among different language-
learning tasks, such as the learning habits of users and grammar learning skills.
If the latent common patterns across these language-learning tasks can be well
learned, they can be used to solve the low-resource SLA modeling problem.
Inspired by this idea, we propose a novel multi-task learning method for SLA
modeling, which is a unified model to process several language-learning datasets
simultaneously. Specifically, the proposed model learns shared features across
all language-learning datasets jointly, which is the inner nature of the language-
learning activity, and can be taken as important prior-knowledge to deal with
small language-learning datasets. Moreover, the embedding information of a user
is shared, so the learning habits and language talents of the user could be shared
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Fig. 2. Illustration of our encoder-decoder structure

in the unified model. Therefore, when a user begins to learn a new language, the
unified model can work well even though there is no exercise data for this user.

Extensive experiments show that our method performs much better than the
state-of-the-art baselines in low-resource scenarios, and it also obtains improve-
ment slightly in the non-low-resource scenario. Additionally, we have publicly
released our codes to facilitate follow-on researchers.1 (Fig. 2)

2 Methods

2.1 Problem Definition

Suppose there are N second language-learning datasets {D1,D2, ..,DN}, and
the kth dataset Dk is composed of Mk exercises {ek1 , e

k
2 , ..., e

k
Mk}, where ekj is the

jth exercise in the kth dataset.
There are two kinds of information in an exercise ekj , i.e., the meta infor-

mation and the language related context information. The meta information
contains two user-related information: (1) user: the unique identifier for each
student, e.g., D2inf5, (2) country: student’s country, e.g., CN, and the following
five exercise-related information: (1) days: the number of days since the stu-
dent started learning this language, e.g., 1.793, (2) client: the student’s device
platform, e.g., android, (3) session: the session type, e.g., lesson, (4) format (or
type): exercise type, e.g., Listen, (5) time: the amount of time in seconds that
the student answer, e.g., 16 s. This is shared among all language datasets. The
information of the context in the exercise ekj includes the word sequence, that
is {w1

ekj
, w2

ekj
, ..., wl

ekj
}, and word’s linguistic sequences, such as {p1

ekj
, p2

ekj
, ..., pl

ekj
},

which is the POS-tagging of each word. This is unique to each language-learning
dataset. At last, ekj has a word level label sequence {y1

ekj
, y2

ekj
, ..., yl

ekj
}, where

yekj ∈ {0, 1}. yekj = 0 means this word is answered correctly, and yekj = 1 means

1 https://github.com/nghuyong/MTL-SLAM.

https://github.com/nghuyong/MTL-SLAM
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the opposite. Our task is to build a model based on users’ exercises, and further
to predict word-level label sequence of future exercises.

2.2 Model

Our model is an encoder-decoder structure with two encoders, i.e., a meta
encoder and a context encoder, and a decoder. We use the meta encoder to learn
the non-linear relationship between meta information, use the context encoder to
learn the representation of a sequence of words and use the decoder to generate
the final prediction of each word.

Meta Encoder: The meta encoder is a multi-layer perceptron (MLP) based
neural network. It takes the metadata as inputs, and these inputs are first con-
verted into high-dimensional representations by the embedding layers. Then,
we separately concatenate the user-related embeddings and the exercise-related
embeddings, and send them into MLPuser and MLPexercise to get the repre-
sentation of ruser and rexercise, respectively. Finally, we concatenate these two
features and obtain the final representation of whole meta information rmeta by
MLPmeta. The meta encoder can be formulated as

ruser = MLPuser([xuser, xcountries, xdays])

t = MLPexercise([xformat, xsession, xclient, xtime])

rmeta = MLPmeta([ruser, rexercise])

(1)

where for the sake of simplicity, the variables are omitted from the subscript ekj .

Context Encoder: The context encoder consists of three sub-encoders, i.e., a
word level context encoder and two character level context encoders. The word
level encoder can capture better semantics and longer dependency than the char-
acter level encoders [10]. By modeling the character sequence, we can partially
avoid the out-of-vocabulary (OOV) problem [5]. Furthermore, we only use the
word sequence in the datasets without using provided linguistic information here.
The previous work [8] has pointed out that the linguistic information given by
the datasets has mistakes. We can learn certain word information and linguistic
rules through two character level encoders.

Given the word sequence {w1
ekj

, w2
ekj

, ..., wl
ekj

}, we first obtain the word repre-

sentation through Embeddingword, and then obtain the sentence representation
gt through BiLSTMword. Define that each word consists of a sequence of char-
acters wt = {c1, c2, ..., cM}. For character-level modeling, we first obtain the
character representation through Embeddingchar, and then calculate the word
representation through CNN or LSTM, and get the whole sentence representa-
tion ĝt and g̃t through BiLSTM. At last, we concatenate gt, ĝt and g̃t, and send
the result to a MLP, and get the final output of the context encoder rcontextt .
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The process is formulated as

xt = Embeddingword(wt) mi = Embeddingchar(ci)
(g1, g2.., gl) = BiLSTMword(x1, x2, .., xl)

ĥwt
= LSTM(m1,m2, ..,ml) h̃wt

= CNN(m1,m2, ..,ml)

(ĝ1, .., ĝl) = BiLSTMchar−lstm(ĥw1 , .., ĥwl
)

(g̃1, ..., g̃l) = BiLSTMchar−cnn(h̃w1 , ..., h̃wl
)

rcontextt = MLPcontext([gt, ĝt, g̃t])

(2)

Decoder: The decoder takes the output of meta encoder rmeta and the output
of context encoder rcontextt as inputs, the prediction of word wt is computed with
a MLP. It is formulated as

pt = MLPdecoder([rcontextt , rmeta]) (3)

where the activation function of MLPdecoder is sigmoid function.

Table 1. The statistics of Duolingo SLA modeling dataset

en es es en fr en

#Exercises (Train) 824,012 731,896 326,792

#Exercises (Dev) 115,770 96,003 43,610

#Exercises (Test) 114,586 93,145 41,753

#Unique words 2,226 2,915 2,178

#Unique users 2,593 2,643 1,213

2.3 Multi-task Learning

Suppose there are N languages, and each has a corresponding dataset. Since our
task is to predict the exercise accuracy of language learners on each language,
we can regard these predictions as different tasks. Therefore, there are N tasks.
We use cross-entropy loss for each task, which encourages the correct predictions
and punishes the incorrect ones. Specifically, we have

LossDk
= − 1

N

N∑

t=1

(αyt · log(pt) + (1 − α)(1 − yt) · log(1 − pt))

Lossfinal =
N∑

k=1

LossDk

(4)

where α is the hyper parameter to balance the negative and positive samples.
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In multi-task learning, parameters in meta encoder and decoder are shared,
and each task only has its own parameters of the context encoder part. In this
way, the common patterns extracted from all language datasets can be utilized
simultaneously by the shared meta encoder and decoder.

3 Experients

3.1 Datasets and Settings

We conduct experiments on Duolingo SLA modeling shared datasets, which have
three datasets and are collected from English students who can speak Spanish
(en es), Spanish students who can speak English (es en), and French students
who can speak English (fr en) [9]. Table 1 shows basic statistics of each dataset.

We compare our method with the following state-of-the-art baselines:

– LR Here, we use the official baseline provided by Duolingo [9]. It is a simple
logistic regression using all the meta information and context information.

– GBDT Here, we use NYU’s method [8], which is the best method among all
tree ensemble methods. It uses an ensemble of GBDTs with existing features
and manually constructed features based on psychological theories.

– RNN Here, we use singsound’s method [6], which is the best method among
all sequence modeling methods. It uses an RNN architecture and encoder four
features: exercise, context, linguistic and user features.

– ours-MTL It is our encoder-decoder model without multi-task learning.
Thus, we will separately train a model for each language-learning dataset.

SLA modeling is actually the word level binary classification task, so we use
area under the ROC curve (AUC) [3] and F1 score [2] as evaluation metric.

3.2 Experiment on Small-Scale Datasets

We first verify the advantages of our method in cases where the training data of
a language dataset is insufficient. Specifically, we gradually decrease the size of
training data from 400K (300K for fr en) 1K and keep the development set and
test set. For our multi-task learning method, we reduce the training data of one
language dataset and keep the remaining other two datasets unchanged.

As shown in Fig. 3, our method obtain a huge improvement compared with
all baselines when the training data of a language dataset is insufficient. For
example, as shown in AUC/en es in Fig. 3, using 1K training data, our multi-
task learning method still could get the AUC score of 0.738, while the AUC
score of ours-MTL is only 0.640, and existing RNN, GBDT and LR methods are
0.659, 0.658 and 0.650 respectively. Therefore, the performance of introducing
the multi-task learning increases by nearly ten percent. Moreover, to achieve
the same performance as our multi-task learning 1K training data, the methods
without multi-task learning require more 10K training data, which is ten times
more than ours. Thus, multi-task learning utilizes data from all language-
learning datasets simultaneously and effectively alleviate the problem of lacking
data in a single language-learning dataset.
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Fig. 3. Comparison of our method and baselines on training data of different sizes

Table 2. The statistics of two users
(the following number is the number of
words in exercises)

User Dataset Train Dev Test

RWDt7srk es en 361 68 19

fr en 519 80 51

t6nj6nr/ es en 562 245 274

fr en 998 0 0

Table 3. Comparison of our
method and baselines in the cold
start scenario

Methods AUC F1

LR [9] 0.765 0.083

GBDT [8] 0.751 0.187

RNN [6] 0.771 0.276

Ours-MTL 0.770 0.210

Ours 0.881 0.411

3.3 Experiment in the Cold Start Scenario

Further, we can directly predict a user’s answer on a language without any
training exercises of this user on this language at all. This is cold start scenario
and also the situation that the language-learning platforms must consider.

Specifically, it can be found that user RWDt7srk and t6nj6nr/ are all English
speakers and learn both Spanish and French, so they have exercise data both in
es en and fr en. The statistics are shown in Table 2. For baseline methods, we
remove the data of these two users on the training set as well as development set
of es en, and then train a model. At last, we use the trained model to directly
predict the data of these two users on the es en test set. For our multi-task
method, the training data of these two users is also removed from the es en, but
fr en and en es are unchanged.
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As shown in Table 3, if we do not use multi-task learning to predict the new
users directly, the performance will be very poor. Compared with the method
without multi-task learning, such as ours-MTL, our multi-task learning method
increases by 11% on ACU and 20% on F1. Because of the multi-task learn-
ing, the user information of these two users has been learned through the fr en
dataset. Therefore, although there is no training data of these two users on es en,
we can still obtain good performance with multi-task learning.

Table 4. Comparison of our method with existing methods among different languages

Methods en es es en fr en

AUC F1 AUC F1 AUC F1

LR [9] 0.774 0.190 0.746 0.175 0.771 0.281

GBDT [8] 0.859 0.468 0.835 0.420 0.854 0.493

RNN [10] 0.861 0.559 0.835 0.524 0.854 0.569

GBDT+RNN [6] 0.861 0.561 0.838 0.530 0.857 0.573

Ours-MTL 0.863 0.564 0.837 0.527 0.857 0.575

Ours 0.864 0.564 0.839 0.530 0.860 0.579

3.4 Experiment in the Non-low-Resource Scenario

In this section, we will observe the performance of our method in the non-low-
resource scenario. Specifically, we use all the data on the three language datasets
and this is exactly 2018 public SLA modeling challenge held by Duolingo.2 Here,
we add a new baseline GBDT+RNN. This is SanaLabs’s method [6] which com-
bines the prediction of a GBDT and an RNN, and it’s also the current best
method on the 2018 public SLA modeling challenge.

As shown in Table 4, although the improvement is not very big, our method
surpasses all existing methods on all three datasets and refreshes the best scores
on all three datasets. Therefore, our method also gains improvement slightly in
the non-low-resource scenario.

4 Conclusion

In this paper, we propose a novel multi-task learning method for SLA modeling.
As far as we know, this is the first work applying multi-task neural network to
SLA modeling. Extensive experiments show that our method performs much bet-
ter than state-of-the-art baselines in low-resource scenarios, and it also obtains
improvement slightly in the non-low-resource scenario. The long version of this
work is at https://arxiv.org/abs/1908.09283.
2 http://sharedtask.duolingo.com/2018.html.

https://arxiv.org/abs/1908.09283
http://sharedtask.duolingo.com/2018.html
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Abstract. Multi-view clustering (MVC), which aims to explore the underlying
structure of data by leveraging heterogeneous information of different views, has
brought along a growth of attention.Multi-viewclustering algorithms based on dif-
ferent theories have been proposed and extended in various applications. However,
existing of most MVC algorithms are shallow models. They learn structure infor-
mation of multi-view data by mapping multi-view data to low-dimensional repre-
sentation space directly, which ignore the Non-linear structure information hidden
in each view. This weakens the performance of multi-view clustering to a certain
extent. In this paper, we propose a multi-view clustering algorithm based on mul-
tiple Auto-Encoder, named MVC-MAE, to cluster multi-view data. MVC-MAE
algorithm adopts Auto-Encoder to capture the non-linear structure information of
each view in a layer-wise manner. To exploit the consistent and complementary
information contained in different views, we also incorporate the local invariance
within each view and consistent and complementary information between any
two views. Besides, we integrate the representation learning and clustering into a
unified step, which jointly optimizes these two steps. Extensive experiments on
three real-world datasets demonstrate a superior performance of our algorithm
compared with 13 baseline algorithms in terms of two evaluation metrics.

Keywords: Multi-view clustering · Auto-Encoder · Complementary
information · Consistent information · Local geometrical information

1 Introduction

Multi-view data is ubiquitous in many real-world applications, where data are collected
fromdifferent information sources or distinct feature extraction approaches. For instance,
an image can be described by color, texture, edges and so on. A piece of news may be
simultaneously reported by languages of different countries. Since different views may
describe distinct perspectives of data, only using the information of a single view is
usually not sufficient for multi-view learning tasks. Therefore, it reasonable and critical
to explore the actual clustering structure by synthesizing heterogeneous information
from multiple views.

© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 612–626, 2020.
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As there are a lot of unlabeled multi-view data in real life, unsupervised learning,
especially multi-view clustering, has attracted widespread interests from researchers.
To exploit the heterogeneous information contained in different views, various MVC
algorithms have been investigated from different theory aspects, such as graph-based
clustering algorithms [1], spectral clustering-based algorithms [2], subspace cluster-
ing based algorithms [3], non-negative matrix factorization based algorithm [4, 5], and
canonical correlation analysis based algorithms [6, 7]. Although existing multi-view
clustering algorithms have achieved reasonable performance, most of them use shallow
and linear embedding models to reveal the underlying clustering structure in multi-view
data, which are not capable of modeling the non-linear nature of complex data.

To overcome this drawback, one effective way is integrating deep learning into clus-
tering algorithms to utilize the feature learning ability of neural networks. For the single-
view clustering tasks, DEC [8] designed a clustering embedding layer byminimizing the
KL(Kullback Leibler)-divergence between the predicted cluster label distribution with
the predefined one. On the other hand, several works have devoted to developing deep
multi-view clustering algorithms, e.g., deep canonical correlation analysis (DCCA) [6]
and multi-view deep matrix factorization (DMF-MVC) [9]. DCCA is a deep multi-view
clustering algorithm that learns the data of each view and finally fuses information of
different views into a common consensus representation, and then conducts some cluster-
ing approaches such as k-means on the learned representation. DMF-MVC used a deep
Semi-NMF structure to capture the non-linear structure and generate a valid consensus
at the last level. However, these two algorithms cannot simultaneously model consistent
and complementary information among multiple views. Exploring consistent or com-
plementary information among multiple views is also an important research direction
[10]. Some algorithms [4, 5] focus on exploring consistent information with different
formulations, while other algorithms [3, 11] concentrate on exploring complementary
information. While effectual, most existing algorithms only use one kind of information
and cannot simultaneously model consistent and complementary information among
multiple views. Recently, [12, 13] have also shown that simultaneously discerning these
two kinds of information can achieve better representation learning, but they belong to
semi-supervised learning-based methods by exploiting the partial label information of
multi-view data. Therefore, learning a low-dimensional representation across multiple
views via neural networks is still worth exploring.

In this paper, we propose a Multi-view Clustering algorithm based on Multiple
Auto-Encoder, named MVC-MAE (see Fig. 1). Specially, MVC-MAE first employs
multiple Auto-Encoders to capture the Non-linear structure information in multi-view
data to derive the low-dimensional representation of different views. Then, MVC-MAE
designs a novel regularization inspired Cross-Entropy, which guarantees the obtained
low-dimensional representation more consistent and complementary between any two
views.Also, to protect the local invariancewithin each view,we also incorporate the local
regularization. In addition, someMVCalgorithms need to performa post-processing step
(e.g., k-means) after obtaining the low-dimensional representation. However, the learned
representation may not be best suited for clustering. Based on DEC, we incorporate the
clustering embedding layer into our algorithm, which can achieve mutual benefit for the
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clustering step and representation learning. We summarize the following contributions
of this paper:

• We propose a novel deep multi-view clustering algorithm (MVC-MAE), which can
joint capture the hierarchical information, preserve the local geometrical information
within each view, model explicitly consistent and complementary information, and
obtain the clustering assignments.

• A novel regularization strategy based on the objection function of Cross-Entropy is
proposed. This strategy can force the low-dimensional representation of the same
sample in different views to be as consistent and complementary as possible.

• Extensive experiments on three datasets show that our proposed algorithmoutperforms
13 baseline algorithms in terms of two evaluation metrics.

The rest of this paper is arranged as follows. Section 2 describes some related work.
Section 3 introduces a novel MVC algorithm and gives a detailed interpret. Extensive
experiments are conducted in Sect. 4. Finally, we give some conclusions in Sect. 5.

2 Related Work

For existingmulti-view clustering algorithms,we can group these algorithms into six cat-
egories from different theoretical aspects. First, some algorithms adopt NMF techniques
to cluster multi-view data, which aims to obtain a consensus indicator factorization
among multi-view data. Liu et al. [4] developed an MVC algorithm from the perspec-
tive of NMF (MultiNMF), which seeks a latent consensus factor through NMF among
various views. To capture the local geometric information, Wang et al. [5] incorporated
the graph regularization and MultiNMF. The second category of algorithms is to use
a Subspace Clustering algorithm to solve this problem. DiMSC [3] extended subspace
clustering into the multi-view domain, and utilize the Hilbert Schmidt Independence
Criterion (HSIC) as a diversity term to explore the complementarity of multi-view rep-
resentations. Thirdly, some spectral clustering algorithms have also been proposed to
cluster multi-view data. CoregSC [14] developed a typical multi-view clustering method
based on spectral clustering and kernel learning in a co-training style. The fourth category
of algorithms is canonical correlation analysis (CCA) for multi-view clustering, which
uses CCA to project the multi-view high dimensional data into a low-dimensional sub-
space. Kamalika et al. [15] proposed an MVC algorithm based on CCA, which projects
the data in each view to a lower-dimensional subspace. Fifth, most of the people explore
multi-view features with graph-based models. This category of algorithms seeks to find
a fusion graph across all views and then uses graph-cut algorithms or other technologies
(e.g., spectral clustering) on the fusion graph to produce the clustering results. Nie et al.
[16] proposed a novel Auto-weighted Multiple Graph Learning (AMGL) framework to
learn a set of weights automatically for all the graphs, and this process does not need any
parameter. All of the above five kinds of algorithms belong to the shallow model, but
they are not able to fully capture the non-linear and hierarchical structure information
within each view.
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The last category of algorithms is a multi-view clustering algorithm based on deep
learning theory, and these algorithms may intersect with algorithms of the first five cate-
gories. Inspired by deep learning, some deepmulti-view clustering algorithms have been
proposed recently. There are two kinds of algorithms. One is deep multi-view cluster-
ing based on matrix factorization, and the other is deep multi-view clustering based on
Canonical Correlation Analysis (CCA). DMF-MVC [9] extends deep matrix clustering
to multi-view clustering cases. Another algorithm is deep multi-view clustering based
on Association analysis, such as DCCA. In DCCA [6], two networks are used to extract
the non-linear features of each view, and CCA maximizes the correlation between the
extracted features at the top layer.

Our MVC-MAE is a deep multi-view clustering algorithm based on Auto-Encoder,
too. It is different from the existing multi-view cluster algorithms in that it not only
captures the consistent and complementary information across different views as well
as the local geometrical information but also incorporates a clustering embedding layer
to train the clustering step together with representation learning.

3 The Proposed Algorithm

In this section, we present MVC-MAE to cluster multi-view data in detail.

3.1 Notations

For multi-view data, let X = {X (s) ∈ �m×ns}Ss=1 represent the original data of all views,
where S denotes the number of views, ns is the feature dimension of s-th view, m is the
number of samples, X (s) represents the s-th view multi-view data and X (s)

i represents
the i-th sample of s-th view. CCluster represents the number of clusters.

3.2 MVC-MAE Algorithm

The critical point of synthesizing multi-view information to cluster multi-view data is to
reasonably fuse within-view information and between-views information to derive more
high-quality results. It is obviously that only using the shallow models cannot capture
the complex information within each view and considering only one of complementary
or consistent information among multiple views is insufficient to cluster multi-view
data. MVC-MAE captures the hierarchical information by Auto-Encoder and respects
the local geometrical information by constructing an affinity graph within each view,
preserves the consistent and complementary information among different views by a
regularization strategy between any two views. In addition, we also incorporate the
clustering embedding layer into our algorithm, which aims to integrate representation
learning and clustering into a step. The architecture of MVC-MAE is shown in Fig. 1.

Non-linear Structure Information. In unsupervised learning, Auto-Encoder [17] has
been popularly practiced in various areas, mainly due to its unique feature learning
ability. Deep Auto-Encoder is an excellent framework to capture non-linear structure
information between the low-dimensional representation and the input data. Deep Auto-
Encoder is composed of two components, i.e., the encoder component and encoder
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View 1

...

View 2

...

View S

...

Affinity Graph
..

Embedding

Clustering

Encoder

... ... ...Decoder

Fig. 1. The architecture of MVC-MAE. L(s1,s2)
2CC denotes the regularization loss of consistent and

complementary information between two views X (s1) and X (s2), LCC denotes the sum of losses
between any two views, and Z denotes the concatenation of learned low-dimensional represen-
tations (i.e., {H (s)}Ss=1) from different views. At the clustering step, the clustering embedding
layer performs clustering based on Z , and in return, adjusting Z according to the current clustering
result.

component, where the encoder component consists of multiple non-linear functions that
map the input data to the representation space and the decoder component consists of
multiple non-linear functions mapping the representations in representation space to
reconstruction space.

In our algorithm, MVC-MAE contains multiple encoder components
{
E(s)

}S
s−1 and

multiple decoder components
{
D(s)

}S
s=1,where they are composed ofK layers non-linear

functions. For the s-th view, we denote the encoder component E(s) and the decoder
componentD(s), respectively, and denote the learned representationH (s). Here, to better
optimize Deep Auto-Encoder, we adopt a modified loss function [18], as follows:

LAE =
S∑

s=1

m∑

i=1

∥∥∥
(
X̃ (s)
i − X (s)

i

)∥∥∥ � B(s)
i

∥∥∥∥∥
=

S∑

s=1

∥∥∥
( ˜X (s) − X (s)

)
� B(s)

∥∥∥ (1)

where X (s) and ˜X (s) denote the real samples and the reconstructed samples of s-th view,
respectively,� means the Hadamard product and B(s)

i = {B(s)
i,j }nj=1. If Xi,j = 0, B(s)

i,j = 1,

else B(s)
i,j = β > 1. By minimizing the loss function of Eq. (1), the revised Auto-Encoder

not only smoothly captures the data manifolds as well as preserves the similarity among
samples [19], but also imposes more penalty on the reconstruction error of the non-zero
elements than that of zero elements [18].
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Local Geometrical Information. To respect the local geometrical structure, we con-
struct the affinity graphs {W (s)}Si=1 for each view by adopting Euclidean distance in

which W
(s)

i,j = 1 if one of X (s)
i and X (s)

j is among k nearest neighbors of the other [20].
As a result, we maximize the following likelihood estimation:

LLocal =
S∑

s=1

∏

W (s)
i,j

(P(s)
i,j ) (2)

Where P(s)
i,j = P(s,s)

i,j is the joint probability between the i - th sample and the j - th

sample in the X (s) view, which is defined as follow:

P(s,s)
i,j = 1

1 + exp(−H (s)
i (H (s)

j )T )
(3)

Therefore, we can respect the local geometrical structure within each view by
minimizing the negative log-likelihood as follows:

LLocal =
S∑

s=1

(−
∑

W (s)
i,j >0

logP(s)
i,j ) (4)

Consistent and Complementary Information. The complementary principle of
multi-view data refers to some unique knowledge contained in each view, which is
not available in other views. On the other hand, the consistent of multi-view data means
that there is some common knowledge in each view. Since different views can describe
the same sample from different perspectives, the proposed algorithm should preserve
consistent and complementary information contained in multi-view data as much as
possible. In other words, the key of MVC is how to capture consistent and complemen-
tary low-dimensional representation across different views. A straightforward method
is to concatenate these representations directly as the final representation result. It can-
not guarantee consistent information between multi-view data. Another widely used
method is to enforce multi-view data to share the same representation layer. However,
it will lose too much complementary information from multi-view data due to the same
representation layer.

To preserve consistent and complementary information, we design a novel regular-
ization strategy inspired by the cross-entropy loss function of binary classification. First,
we review the loss function of the cross-entropy of the binary classification:

LB(Y t |Y p) = −
m∑

i=1

(Y t
i log(Y

p
i ) + (1 − Y t

i ) log(1 − Y p
i ))

= −
m∑

i=1

(log(Y p
i )Y

t
i + log(1 − Y p

i )(1−Y t
i ))

= −
m∑

i=1

log
(
(Y p

i )Y
t
i · (1 − Y p

i )(1−Y t
i )

)
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= − m
�
i

(
(Y p

i )Y
t
i · (1 − Y p

i )(1−Y t
i )

)
(5)

where Y t
i denotes the label of i-th sample and Y p

i denotes the prediction probability of i-
th sample. In the binary classification problem, the set of true labels maybe 0 or 1. When

the true label is 1, only the first term is calculated: LB(Y t |Y p) = −
m∑

i=1
log

(
(Y p

i )Y
t
i · 1

)
;

otherwise, only the second term is calculated: LB(Y t |Y p) = − log
(
1 · (1 − Y p

i )(1−Y t
i )

)
.

Take multi-view clustering as with two views an example. For the low-dimensional
representations of two views from the same sample, we hope them to be as consistent as
possible; for low-dimensional representations of different samples from different views,
we want their differences to be as large as possible. As a result, we propose to maximize
the following loss function:

L(s1,s2)
2CC

=
m∏

i,j

(
(P(s1,s2)

i,j )
C(s1,s2)
i,j (1 − P(s1,s2)

i,j )
1−C(s1,s2)

i,j

)

=
m∑

i,j=1

log

(
(P(s1,s2)

i,j )
C(s1,s2)
i,j (1 − P(s1,s2)

i,j )
1−C(s1,s2)

i,j

)

=
m∑

i,j=1

log

(
(P(s1,s2)

i,j )
C(s1,s2)
i,j (1 − P(s1,s2)

i,j )
1−C(s1,s2)

i,j

)

=
m∑

i,j=1

(
C(s1,s2)
i,j log(P(s1,s2)

i,j ) + (1 − C(s1,s2)
i,j ) log(1 − P(s1,s2)

i,j )
)

(6)

where s1= 1, s2= 2, and P(s1,s2)
i,j is the joint distribution between X (s1) and X (s2) views,

which is defined as follows:

P(s1,s2)
i,j = 1

1 + exp(−H (s1)
i (H (s2)

j )T )
(7)

For C(s1,s2)
i,j in Eq. (6), we interpret it as whether two representations H (s1)

i and

H (s2)
j from two views describe the same sample: if they are from the same sample,

C(s1,s2)
i,j is 1, otherwise C(s1,s2)

i,j is 0. Formally, C(s1,s2)
i,j ∈ {0, 1} denotes whether H (s1)

i

and H (s2)
j are from the same sample. In detail, C(s1,s2)

i,j = 1 if i = j. Otherwise, C(s1,s2)
i,j

= 0. So when C(s1,s2)
i,j = 1, we maximize the first term of the loss function so that the

two representations may be consistent while pushing away them when C(s1,s2)
i,j = 0. Of

course, the two samples are not entirely same, so complementary information is retained
between two views. Furthermore, if two samples X (s)

i and X (s)
j are similar according

to the local geometrical information, the representation H (s)
i and H (s)

j should also be
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similar, although they are from different samples. They should not be pushed away.
Equation (6) is relaxed as follows:

L(s1,s2)
2CC =

m∑

i,j=1

(
C(s1,s2)
i,j log(P(s1,s2)

i,j )
)

+
m∑

i,j=1,Ws1
i,j =0,Ws2

i,j =0

(
(1 − C(s1,s2)

i,j ) log(1 − P(s1,s2)
i,j )

)

(8)

However, the number of views of most real-world multi-view data may be greater
than two, sowefirst construct Eq. (6) to save the loss function between pairs of views, and
then maximize them uniformly. The final optimized loss function is shown in formula
(9):

LCC =
S∑

s1=1

S∑

s2=s1+1

L(s1,s2)
2CC (9)

Weconcatenate the representations of different views as input for the next step.Mean-
while, the concatenation approach can also preserve the complementary information in
each view to some extent.

Clustering Loss. To preserve the clustering structure of low-dimensional representa-
tion, a clustering embedding loss (CEL [8]) is adopted, which is measured by KL-
divergence in MVC-MAE. Specifically, based on the learned representation of different

views, we concatenate them as Z = S||
s=1

H (s), where || represents concatenation opera-

tion. Given the initial cluster centroids {μj}CCluster
j=1 , according to [8], we use the Student’s

t-distribution as a kernel to measure the similarity between the representation Zi and
centroid μj:

Qi,j = (1 + ∥∥Zi − μj
∥∥2)−1

∑
j′ (1 + ∥∥Zi − μj′

∥∥2)−1
(10)

where Qi,j is interpreted as the probability of assigning the sample i to cluster j. To this
end, we define our objective as a KL divergence loss between the soft assignment Qi,j

and the auxiliary distribution Ei,j as follows:

LCLU =
∑

i

∑

j

Ei,j log
Ei,j

Qi,j
(11)

where Ei,j is computed by raising Qi,j to its second power and normalizing it with the
frequency per cluster as follow:

Ei,j =
Q2
i,j

/
fi

∑
j′ Q

2
i,j′

/
fj′

(12)

where fj = ∑
i Qi,j are soft cluster frequencies.

During the training procedure, we optimize the clustering loss according to Eq. (11)
to help Auto-Encoder adjust the representation Z and obtain the final clustering results.
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Total Loss. By integrating the above loss functions, we jointly optimize the following
loss function:

L = LAE + αLLocal + γLCC + θLCLU (13)

Where α, γ and θ > 0 are hyper-parameters. By minimizing the loss function, we
obtain the final clustering results directly from the last optimized Q, and the cluster of
Zi is obtained as argmax(Qi), which is the most likely assignment.

3.3 Model Optimization

To optimize the proposed algorithm, we apply the optimizer Adam to minimize the
objective in Eq. (13). Besides, in order to avoid falling into a local optimal solution, we
first use a big learning rate (e.g., 1e−3) for layer-wise pre-training, and then use a smaller
learning rate (e.g., 1e−5) for fine-tuning. After pre-training, we initialize cluster centers
{μj}CCluster

j=1 by employing k-means on Z and calculate the soft clustering assignments
distributions of all samples through Eq. (12). Then in the following training, the cluster
centers {μj}CCluster

j=1 are updated together with the embedding Z using the optimizer Adam

based on the gradients of LCLU with respect to {μj}CCluster
j=1 and Z . We calculate target

distributionEwithQ byEq. (12), calculate clustering lossLCLU according toEq. (11) and
update our proposed algorithm by minimizing Eq. (13). Finally, we obtain the clustering
labels with final Q by Eq. (10).

4 Experiments

4.1 Experiments Setting

Datasets. The experiment results are measured on three real-world datasets, includ-
ing one text dataset, two image datasets. The statistics of the three datasets including
HW2source1, 100leaves2 and BBCSport 3 are shown in Table 1.

Table 1. Statistics of three benchmark datasets

Dataset #instance #view #cluster #d1 #d2 #d3

BBCSport 544 2 5 3183 3203 –

HW2sources 2000 2 10 76 240 –

100leaves 1600 3 100 64 64 64

1 https://archive.ics.uci.edu/ml/datasets/One-hundred+plant+species+leaves+data+set.
2 https://cs.nyu.edu/roweis/data.html.
3 http://mldlxg.ucd.ie/datasets/segment.html.

https://archive.ics.uci.edu/ml/datasets/One-hundred%2bplant%2bspecies%2bleaves%2bdata%2bset
https://cs.nyu.edu/roweis/data.html
http://mldlxg.ucd.ie/datasets/segment.html
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Table 2. The configurations of MVC-MAE on different datasets. We only show the architecture
of the encoder (the third column). The decoder reverses the encoder. The number of clustering
embedding layer is set to the number of clusters in the corresponding dataset (the fourth column).

Dataset #View #neurons in each layer of encoder #neurons in clustering embedding
layer

BBCSport View 1 3183-256-64-16 5

View 2 3203-256-64-16

HW2sources View 1 76-512-128-32 10

View 2 240-512-128-32

100leaves View 1 64-500-100 100

View 2 64-500-100

View 3 64-500-100

Compared Algorithms. We compare the proposed MVC-MAE with the following
clustering algorithms:NMF [21] (SingleView), AE [22] (SingleView), CoregSC,Multi-
NMF,MultiGNMF,DiMSC,RMSC[23],MVCF [24],MVGL[25], SWML[26],AMGL
[16], DCCA, DMF-MVC. Meanwhile, for enhancing the comparison experiments. AE-
Concat (AE-C) and AE-ConcatShallow (AE-CS) are also developed to test evaluation.
The number of each layer of AE-C is the same as that of MVC-MAE and AE-CS’s
Encoder and Decoder Component only contain one layer non-linear function. AE-C is
a single view clustering algorithm which concatenates the features of each view as its
input. AE-CS is the shallow version of AE-C. Among those MVC algorithms, which
require an additional clustering step, we use k-means or spectral clustering to cluster
the learned representation according to the original paper. We implement our proposed
algorithm, AE, AE-C and AE-CS by using TensorFlow framework and adopt LeakRelu
[27] as the activation function of all internal layers except for the input, output and clus-
tering embedding layer. For our algorithm, the layer configurations for different datasets
are shown at Table 2. α, γ and θ are set to 10, 0.1 and 0.1, respectively.

Evaluation Metrics. In order to measure the clustering performance of different algo-
rithms, two standard clustering evaluation metrics are adopted, i.e., Clustering Accuracy
(ACC) and Normalized Mutual Information (NMI) [6]. These measures range in [0, 1],
and the larger the value, the better the clustering performance.

4.2 Clustering Performance

For each experiment, we run each algorithm 20 times on each dataset and then record the
average results as well as the standard deviations. Note that 0.00 means that the value is
close to zero, and 0 denotes zero. The results performance on three real-world datasets is
shown in Tables 3 where the best results are highlighted in bold. Note That since DCCA
can only deal with two views, it can’t give clustering results for 100leaves with three
views.
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Table 3. Cluster performance on three datasets

Type Algorithm Accuracy (%) Normalized mutual information (%)

Digits BBCSport 100leaves Digits BBCSport 100leaves

Single view NMF-1 View 70.15(0) 37.86(0.00) 35.62(0.00) 63.00(0) 24.60(0.00) 66.17(0)

NMF-2 View 71.00(0) 44.60(0) 20.87(0.00) 68.74(0) 51.90(0) 52.49(0)

NMF-3 View – – 37.75(0.00) – – 66.40(0.00)

AE-1 View 69.45(2.40) 48.49(7.39) 60.28(1.31) 63.85(1.89) 30.75(7.43) 80.90(0.51)

AE-2 View 71.97(6.17) 44.98(1.26) 20.61(1.32) 70.13(3.72) 53.88(2.41) 54.53(1.62)

AE-3 View – – 47.66(1.84) – – 73.18(0.6)

AE-CS 84.45(1.88) 46.54(6.49) 62.88(1.62) 79.58(0.99) 21.02(9.73) 83.25(0.51)

AE-C 87.39(1.26) 51.61(3.1) 66.4(1.16) 80.03(1.52) 49.89(2.7) 85.35(0.4)

Multi-view Multi-NMF 88.28(1.2) 86.01(3.17) 67.15(2.4) 80.58(1.5) 74.25(2.16) 86.35(0.8)

Multi-GNMF 92.05(0) 44.57(0) 69.31(0) 86.0(0) 12.74(0) 86.88(0)

CoregSC 79.35(6.05) 43.31(2.11) 65.19(2.30) 76.43(0.01) 22.55(0.59) 84.57(0.00)

DMF-MVC 73.88(0.17) 68.38(0) 23.66(0.57) 78.69(0.32) 51.04(0) 53.95(0.31)

DiMSC 38.28(1.8) 85.91(0.1) 51.84(1.4) 35.64(0.9) 70.75(0.2) 74.48(0.7)

RMSC 77.52(0.9) 87.78(1.4) 74.09(0.4) 74.49(1.9) 81.51(2.5) 89.83(0.6)

MVCF 82.53(3.7) 66.49(1.1) 79.06(1.1) 76.13(2.1) 46.08(1.4) 90.09(0.9)

MVGL 72.04(6.7) 35.35(4.3) 81.06(1.5) 79.35(2.21) 15.04(5.3) 91.30(0.8)

SwML 73.65(0) 36.21(0) 80.94(0) 80.38(0) 1.55(0) 92.07(0)

AMGL 72.15(0.02) 35.99(0.00) 87.99(1.6) 76.69(0.02) 1.45(0.00) 76.32(0.02)

DCCA 74.5(4.8) 77.21(3.5) – 70.5(3.6) 61.92(3.2) –

MVC-MAE 94.64(0.16) 93.15(0.20) 90.56(0.81) 88.46(0.25) 80.68(0.49) 96.54(0.22)

Although NMF and AE are the single-view clustering algorithms, the clustering
results of AE are better than those of NMF in all datasets. This is because AE algorithm
belongs to the deep learning algorithm, which can capture the complex hierarchical
information in data. The clustering results of AE-C are better than those of AE algorithm
inmost datasets. This demonstrates that integrating information frommultiple views can
improve the performance of MVC. The clustering results of AE-C are higher than those
ofAE-CS. This indicates that deepAE can better capture hierarchical information hidden
in multi-view data. MVC algorithms usually can achieve better clustering performance
than single-view clustering algorithms onmost datasets. On the other hand, the clustering
performance of some MVC algorithms is lower than that of the single-view clustering
algorithm, which indicates that the MVC algorithm needs further exploration.

MVC-MAE is superior to all the compared algorithms in two evaluation metrics
on most datasets. These results clearly show that the proposed algorithm is a promising
MVC algorithm. Although both DCCA and DMF-MVC are deepMVC algorithms, they
cannot achieve the desired performance. For DCCA, it cannot capture complementary
information. For DMF-MVC, although it is a deep non-negative matrix factorization
structure, the non-linear activation function is not added between layers, so it is not
able to fully capture hierarchical information in each view. And it also cannot capture
the complementary information. DiMSC can capture complementary information in the
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dataset, but it does not achieve a good result on all datasets because it is just a shallow
model and requires an extra clustering step. Multi-NMF and Multi-GNMF are proposed
based on NMF, and they show good results, but both are poor with MVC-MAE.

In all methods, RMSC can suppress a certain degree of noise, so it also obtains good
experimental results. The three methods of MVCF, MVGL, and SwML can learn the
weight of consistent information of different views. Although these algorithms have
achieved excellent results, they are all inferior to MVC-MAE. This showsMVC-MAE’s
superiority and proves the importance of complementary information inmulti-view data.

4.3 Ablation Study of the Proposed Algorithm

In this section, we present some ablation study ofMVC-MAE. Effectiveness of capturing
consistent and complementary information among views: we present Eq. (13) without
parameter γ as MVC-MAE-No-CC. From the clustering results in Tables 4, MVC-
MAE achieves better performance than MVC-MAE-No-CC, which demonstrates that
capturing consistent and complementary information among different views can improve
the clustering results.

Effectiveness of capturing the local geometric information within each view on
clustering performance: we present Eq. (13) without parameters α as MVC-MAE-No-
Local. From the clustering results in Table 4, MVC-MAE achieves better performance
than MVC-MAE-No-Local, which demonstrates that capturing the local geometrical
information in each view is an important factor.

Effectiveness of the fusion ways of the low-dimensional information on clustering
performance: After obtaining low-dimensional representations, different from the fusion
ways of the low-dimensional information of MVC-MAE, we sum all the representations
and average them to get the representations Z as to the input of CEL. We represent
this algorithm as MVC-MAE-Mean. From the clustering results in Table 4, MVC-MAE
distinctly achieves better performance than MVC-MAE-Mean, which shows that the
way of concatenating low-dimensional representations can retain more information.

Table 4. Cluster performance on Ablation study

Algorithm Accuracy (%) Normalized Mutual Information (%)

Digits BBCSport 100leaves Digits BBCSport 100leaves

MVC-MAE-No-CC 92.20(0.14) 90.43(0.62) 89.69(1.45) 86.01(0.23) 75.57(0.68) 96.33(0.36)

MVC-MAE-No-Local 92.23(0.19) 87.76(0.51) 89.92(1.22) 86.07(0.32) 69.34(0.99) 96.37(0.35)

MVC-MAE-Mean 87.45(0.89) 84.56(0.62) 85.62(0.85) 77.08(0.46) 64.67(0.36) 93.63(0.42)

MVC-MAE 94.64(0.16) 93.15(0.20) 90.56(0.81) 88.46(0.25) 80.68(0.49) 96.54(0.22)

4.4 Parameter Sensitivity

In the proposed algorithm, we will evaluate the effect of the hyper-parameters, including
three parameters: α, γ , and θ . To study the influence of each parameter change, we vary



624 G. Du et al.

oneparameter each timeandfix theothers. Theperformancevariationof these parameters
is shown in Fig. 2. We can see that the performance is relatively stable without clear
trends. This shows that our algorithm has better robustness and does not need to adjust
complex parameters.

Fig. 2. ACC and NMI of MVC-MAE on three datasets with various α, γ , θ .

5 Conclusion

In this paper, we proposed a deep multi-view clustering algorithm. Unlike many existing
MVC algorithms, which usually work in a single layer formulation, we adopt Auto-
Encoder to capture the Non-linear structure information within each view. Consistent
and complementary information among multiple views is considered in our algorithm.
Meanwhile, to maintain the local geometrical information within each view, our algo-
rithm encodes the affinity graph to preserve them. The clustering embedding layer is also
incorporated to jointly optimize the representation learning and clustering. Experiments
on three datasets verified the effectiveness of MVC-MAE compared with 13 algorithms.
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Abstract. Tang poetry is an important aspect of ancient Chinese culture. Given
that Tang poetry has unique features in text structure, how to use entity recognition,
knowledge graph and other information processing technologies to research poetry
is of great importance. However, the existing artificial neural network methods for
named entity recognition require a large number of labeled training sets, while
Chinese Tang poetry has not been labeled with a good training set. Besides, the
grammatical structure of Tang poetry is far from modern Chinese. Therefore, for
place name recognition in poetry, the existing neural network methods do not
perform well. This article studies and analyzes the metrical form of Tang poetry,
finds the metrical rules of place names, and summarizes the feature templates
based on the metrical rules. According to the feature templates of Tang poetry, a
method of combining feature templates with conditional random field is proposed.
Experimental results prove the effectiveness of the proposed method.

Keywords: Tang poetry · Place name recognition · Feature templates ·
Conditional random field

1 Introduction

The named entity recognition is an important research direction in the natural language
processing (NLP) project. It detects and labels the corpus in the text and divides it into
predetermined categories, such as time, place names, person names, institutions, etc. As
a sub-task of named entity recognition, place name recognition has becomemore mature
in English, but Chinese grammar iswell different from that of English. Inverted sentences
are more commonly used in English, while subject-predicate-object structures are more
common in Chinese, which makes the task of identifying place names in Chinese more
challenging than in English [1].

In recent years, China has attached great importance to the study of traditional
culture, and Tang poetry is a representative of Tang Dynasty culture and an important
part of the study of Chinese culture. Recognizing the place names of Tang poetry helps
us to know where the literati in Tang Dynasty tend to go, so that we can dig deeper
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into the cultural heritage of the region [1]. The grammatical structure of Tang poetry is
very different from that of modern Chinese. Tang poetry text is concise, the meaning of
words is diversified, and the requirements for structure and rhythm are extremely high,
while the structure of modern Chinese is much freer than that of Tang poetry, and the
meaning of words is relatively low. At present, there is no labeled corpus of the Tang
poetry dataset, which is not conducive to learning without human intervention.

Based on the problems above, this article performs entity recognition on place names
in Tang poetry. We chose to use conditional random field because it supports custom
feature templates and can better learn features in the absence of relevant training sets.
According to its grammatical structure and rhythm, a general feature template for Tang
poetry is proposed and combined with the conditional random field method to improve
the precision of Tang poetry place name recognition.

2 Related Work

In early period, place name recognition was a method based on rule and dictionary.
After that, with the emergence of statistical machine learning, method based on Hidden
Markov Model (HMM) and conditional random field (CRF) is applied in entity recog-
nition tasks. In recent years, the method of deep learning has broken a new path for the
problem of natural language processing and drawn wide attention from the academic
community. Getting rid of the shackles of feature engineering, deep neural network can
automatically learnword relationships through corpora and extract contextual features to
achieve the purpose of entity recognition. Wang et al. proposed a Chinese-oriented deep
learningmodelChar2Vec-Bilstm.Based on the long-short-termmemorymodel (LSTM),
a bidirectional long-short-termmemorymodel (BILSTM)was used to learn the complex
dependencies in Chinese [2]. In the sameway, Bill et al. combined the bidirectional long-
short-term memory model with conditional random field (BILSTM-CRF), and obtained
a mature named entity recognition model, which has outstanding performance [3]. The
attention mechanism can learn long-term dependencies by establishing a direct con-
nection between each character, and can better understand the semantic information in
sentences. Wu et al. combined the attention mechanism with the BILSTM-CRF model
to realize the improvement of BILSTM-CRF in Chinese named entity recognition [4].

Since the Qin period, the ancient Chinese style structure has become more unified.
The language structure of each dynasty after the Qin Dynasty was developed on the basis
of the Qin Dynasty language structure. Given that related work about Tang poetry place
name recognition has not been found yet, we focus on understanding the related work on
place name recognition in the ancient language and hope to find inspiration. On the basis
of the pre-Qin corpus, Huang et al. used conditional random field to identify the place
names of Qin Kingdom, and achieved good results [5]. Based on the marked corpus of
ancient books, Li et al. conducted place name recognition based on conditional random
field, and verified the performance of the model through cross-validation [6].
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3 Method

3.1 Preliminary Knowledge

Conditional random field (CRF) is a probability distribution model P (Y|X) given X,
which is used to solve the problem of sequence labeling. The recognition of place names
in Tang poetry is to label each word in the sequence. In the final analysis, it is the
labeling problem. CRF is an undirected graph of probability [7], the dots represent
labels, the edges between each two dots represents the weight of the path. The input of
the conditional random field is the word sequence index after the word segmentation X
(x1, x2, x3 … xn), Y (y1, y2, y3,… yn) is used as the output label sequence. For example,
the sentence “ ”, the meaning is “The old man said goodbye to the
Yellow Crane Tower in the West”, the result after word segmentation is represented by
key-value pair word_alphabet: {0: ‘ ’, 1: ‘ ’, 2: ‘ ’, 3: ‘ ’, 4: ‘ ’, 5: ‘ ’, 6: ‘ ’},
the BIO tags form used in this article is represented by key-value pairs as label_alphabet:
{0: ‘B-LOC’, 1: ‘I-LOC’, 2: ‘O’}. Based on the method above, the specific form of
the observation sequence input into the conditional random field is {0, 1, 2, 3, 4, 5,
6}, corresponding to the index in word_alphabet. The output is {2, 2, 2, 2, 0, 1, 1},
corresponding to the index in label_alphabet.

Modern Chinese has four tones, the first, the second, the third and the fourth. In Tang
poetry, in order to simplify the rhythmic style, the ancient literati used level and oblique
tones, “ ”(Ping Ze Tong) instead of four tones. “ ”(Ping) represents the first and
second tones, and “ ”(Ze) represents the third and fourth tones, “ ”(Tong) represents
any of the four tones, and the same set of tones is also called the rhyme [8]. This article
uses the BIO tags for the labeling of sequences, where B-LOC represents the first word
of the place name, I-LOC means the part after the first word of place name, O means
non-place name.

3.2 Feature Templates Selecting

Tang poetry can be divided into five character quatrains, seven character quatrains, five
character rhythms, seven character rhythms, whose rhythm is represented by “ ”
[8], as shown in Table 1:

Through understanding the metrical pattern form of Tang poetry, it is known that the
word can only be quoted from one rhyme sections, that is, a complete word is likely to
appear in the same rhyme sections [9], and the word for place name will not exceed four
words.With this rule, this article uses the unigram form to represent the feature template:
U: %x[row, col], where U represents the template form describing unigram feature, row
represents the row in the corpus, and col represents the column in the corpus. This
representation refers to the current offset row, the value of column col. For example,
“ ”, assuming the current word is “ ”, the templates we set and the
meaning of each template are shown in Table 3, and the training set using BIO tags, and
keep the part of speech, as shown in Table 2:

In Table 2, the second column in the table uses POS tags, f represents a positionword,
v represents a verb, and ns represents a place noun (ns0 represents the first word of a
place noun). From the Table 3, assuming the current position is “ ”, feature function
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Table 1. This table introduces the labeled form of the training set of this article.

Table 2. This table introduces the labeled form of the training set of this article.

“func = if(output = B-LOC and feature = “U14: ”) return 1 else return
0” produced by the template “U14: %x[−1,0]/%x[0,0]/%x[1,0]/%x[2,0]”. That is, if
the current position is labeled as “B-LOC”, the current position is “ ”, the previous
position is “ ”, the next position is “ ”, and the last two positions are “ ”, then the
output is 1, otherwise 0. The feature function output obtained at each training position
from these templates is entered into a conditional random field to adjust feature weights
(feature weights are described below), and then the purpose of improving the precision
of place name recognition during testing is achieved.

3.3 Model Generation

The previous section introduced the selection of templates based on the rhythm of Tang
poetry, and showed the conditional randomfieldmodel. In summary, the training process
of the model can be obtained, as shown in Algorithm 1:
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Table 3. This table indicates the template and the meaning of the template representation.

Algorithm 1. Save model

Input: N 
Output: model 
1. RebuildFeatures(FeatureIndex)
2. for t = 1,2,…,N do 
3. cost = Calcost(t)
4.     cost = ForwardBackward(cost)
5.     FeatureIndex = FeatureIndex + cost
6. End for 
7. model = Save(FeatureIndex) 
8. return model

In Algorithm 1, the weight set FeatureIndex is initialized by using the
RebuildFeatures function, and then the training set N is looped. At the beginning of,
the path weight is calculated for the first time according to the labeled training set.
Then, based on the feature template, a forward-backward algorithm is used to adjust
the obtained path weights. Finally, the adjusted weight cost is added to the weight set
FeatureIndex. The undirected graph obtained by labels (dots) and weights (edges) is the
conditional random field model we finally trained.
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3.4 Feature Calculation and Sequence Labeling

What affects the final path probability and result are the two features in the above prob-
ability undirected graph, the state feature and the transition feature. The state feature
is defined on nodes and indicate that a node has a certain attribute. The transition fea-
ture is defined on the edge, indicating whether two states will transit due to a certain
feature [10]. The state feature refers to attributes such as {“place”, “noun”, “time”, “in-
stitution name”}, and transfer characteristics refer to {“preposition before place name”,
“preposition before person name”} [10], etc.

By defining observation sequence X (x1, x2, x3 … xn) and the state sequence is Y
(y1, y2, y3, … yn), transition features k1 {t1, t2, t3, … tk1}and state feature k2 {s1, s2,
s3, … sk2}, when node i has feature sj, sj = 1 of xi. Otherwise, sj = 0. For example:
“ ” has state feature: {“place”, “noun”}, which can be expressed as “sl = sj(yi,
x, i) ∈ {0,1}, l = 1, 2 , .. k1, i = 1, 2, … n”. Similarly, considering the transition feature
of the preceding conjunction, this can be expressed as “tk = tk(yi−1, yi, x, i) ∈ {0, 1},
k = 1, 2, .. k2, i = 2, 3, … n”. Then we can get feature functions, the number is k =
k1 + k2 [11]. For each feature function, it has a corresponding weight. The weight here
is obtained through the function training parameter adjustment generated by the feature
template above. If we define the weight of the transition feature as λk , the weight of the
state feature is μl . Then when the result is the observation sequence X (x1, x2, x3 … xn)
and the state sequence is Y (y1, y2, y3, … yn), the sum of the features of all nodes is:

score =
∑

i,k
λk tk

(
yi−1, yi,X, i

) +
∑

i,l
μl sl

(
yi,X, i

)
(1)

For example, it can be learned from the above that the input sequence of
“ ”. The first half of the formula represents the transition feature score,
and the second half of the formula represents the state feature score. Define the transition
feature score as T[yi−1][yi] and the state score as E[xi][yi], then the score of this output
sequence is “score = ∑6

i=1 T
[
yi−1

][
yi

] + ∑6
i=1 E[xi]

[
yi

]
”. Using this feature sum to

calculate the probability of the state sequence, the higher probability becomes the opti-
mal state sequence [11]. The probability summation is performed on all possible output
sequences, and the optimal label sequence is finally output according to the probability
size (P (Y|X) takes the maximum value) as the output of the conditional random field
[11]. The overall flowchart can be shown in Fig. 1:

So far, themethod in this paper is summarized as follows: firstly input the observation
sequence X, and use the conditional random field model trained by the feature template
to get the highest probability sequence labeling, which achieves the purpose of Tang
poetry place name recognition in this paper.
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X1 X2 X3 X4 X5 X6 X7Observation Sequence:

Annotation Sequence: Y1 Y2 Y3 Y4 Y5 Y6 Y7

Probabilistic undirected 
graph(CRF):

Fig. 1. This picture shows the process of place name recognition.

4 Experiment

4.1 Data Preprocessing and Training

The data set used in this experiment is the People’s Daily Corpus. We get 58433 place
names. Based on this data set, this paper annotates 100 Tang poetry with place names by
experts, among which, five character quatrains, seven character quatrains, five character
rhythms, seven character rhythms account for 23%, 26%, 26% and 25%, a total of 2608
labeled characters, including 231 place names. Then, this paper selects 48 Tang poetry
with place names as the final test set of this experiment, among them, four types of Tang
poetry each account for 25%, a total of 1152 label characters, of which place name labels
account for 102.

For the method proposed in this paper, the feature threshold for participating in the
training was set as 3 times to avoid the influence of individual features on the training
results; the number of training iterations is set to 100, 200, 300, 400 and 500, and the
optimal model is obtained by comparing the results. The evaluation criteria for the final
experiment were evaluated using precision (P), recall (R), and F value.

4.2 Experiments and Results

We train the model by setting different number of iterations, and get the optimal model
from it. The comparison results are shown in Fig. 2:

It can be seen from the Fig. 2 that before the number of iterations is 300, because the
obtained features are gradually increasing, all three indicators show an upward trend.
When the number of iterations is 300, the performance of the model is optimal. After
more than 300 times, the performance of the model decreases due to overfitting.

Compare the results with the previous experiments, as shown in Table 4, it can be
seen that the method proposed in this paper is higher than the existing methods in terms
of precision, recall rate and F value. This means that our method can better learn the
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Fig. 2. This picture shows the model performance under different iterations.

metrical features of Tang poems, so as to better recognize place names. Therefore, the
method proposed in the text is of certain feasibility and significance for further research.

Table 4. This table shows the comparison results of the methods.

Method Precision Recall F value

LSTM-CRF 77.56% 71.35% 74.33%

BILSTM-CRF 78.92% 72.41% 75.52%

Attention-BILSTM-CRF 80.64% 74.72% 77.57%

Feature template combine CRF 84.51% 80.26% 82.33%

5 Conclusion

This paper uses a method based on the combination of feature templates and conditional
random field. We summarize feature templates through the metrical structure and gram-
matical structure of Tang poetry and use the feature functions generated by conditional
random field to label sequences. The method obtained an F value of 82.33% on the
Tang poetry testing set we constructed. Compared with other existing neural network
methods, the effect is better, but the overall precision and recall rate are still lower than
the named entity recognition tasks in other fields. We still need to find more features to
improve the performance of the model in the future.
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Investigationes 30(1), 3–26 (2007)



A Method for Place Name Recognition in Tang Poetry 635

2. Wang, Y., Xia, B., Liu, Z., Li, Y., Li, T.: Named entity recognition for Chinese telecommuni-
cations field based on Char2Vec and Bi-LSTMs. In: ISKE, pp. 1–7 (2017)

3. Lin, B.Y., Xu, F.F., Luo, Z., Zhu, K.Q.: Multi-channel BiLSTM-CRF model for emerging
named entity recognition in social media. In: NUT@EMNLP, pp. 160–165 (2017)

4. Guohua, W., Tang, G., Wang, Z.: An attention-based BiLSTM-CRF model for Chinese clinic
named entity recognition. IEEE Access 7, 113942–113949 (2019)

5. Huang, S., Wang, D., He, L.: Research on the construction of automatic recognition model
of ancient Chinese place names based on pre-qin corpus. Library Inf. Serv. 59(12), 135–140
(2015)

6. Li, N.: Construction of automatic recognition model for place names of local records and
ancient books in the library based on digital culture. Library 2018(05), 67–73 (2018)

7. Poostchi, H., Borzeshi, E.Z.: BiLSTM-CRF for Persian named-entity recognition ArmanPer-
soNERCorpus: the first entity-annotated Persian dataset. In: LREC (2018)

8. Wei, J.,: Symbiosis and reorganization of Yu Wensuo’s translation of tang poetry. Foreign
Lang. Foreign Lang. Teach. 2019(05), 126–134 + 151 (2019)

9. Chen, G.: The monument of Tang poetry: “Nine families annotate Du’s Poetry”. In: Learning
Times, 13 Sept 2019. (006)

10. Yang, F., Zhao, J., Zou, B.: CRFs-based named entity recognition incorporated with heuristic
entity list searching. In: IJCNLP 2008, pp. 171–174 (2008)

11. Das, A., Garain, U.: CRF-based named entity recognition @ICON 2013. CoRR
abs/1409.8008 (2014)



Machine Learning



MLND: A Weight-Adapting Method
for Multi-label Classification Based
on Neighbor Label Distribution

Lei Yang, Zhan Shi(B), Dan Feng, Wenxin Yang, Jiaofeng Fang, Shuo Chen,
and Fang Wang

Wuhan National Laboratory for Optoelectronics,
Huazhong University of Science and Technology, Wuhan, China

{leiyang,zshi,dfeng,ywx,shuochen,wangfang}@hust.edu.cn, fjf1227@qq.com

Abstract. In multi-label classification, each training sample is associ-
ated with a set of labels and the task is to predict the correct set of
labels for the unseen instance. Learning from the multi-label samples is
very challenging due to the tremendous number of possible label sets.
Therefore, the key to successful multi-label learning is exploiting the
label correlations effectively to facilitate the learning process. In this
paper, we analyze the limitations of existing methods that add label cor-
relations and propose MLND, a new method which extracts the label
correlations from neighbors. Specifically, we take neighbor’s label distri-
bution as new features of an instance and obtain the label’s confidence
according to the new features. Nevertheless, the neighbor information is
unreliable when the intersection of nearest neighbor samples is small, so
we use information entropy to measure the uncertainty of the neighbor
information and combine the original instance features with the new fea-
tures to perform multi-label classification. Experiments on three different
real-world multi-label datasets validate the effectiveness of our method
against other state-of-the-art methods.

Keywords: Multi-label learning · Label correlations · Neighbor label
correlation features · Label distribution

1 Introduction

With the advent of the big data era, a large amount of data has been generated
from different domains. Manual analysis, classification, and summarization will
consume a lot of manpower, which is increasingly difficult to complete. In order
to mine the potential information in the data, data mining and machine learning
have developed rapidly. Classification has become an important research focus
in the field of machine learning.

In many real-world applications, objects often have multiple semantic mean-
ings and each of them is associated with a set of labels simultaneously. For exam-
ple, in text categorization [7,15], a document may be related to many topics,
c© Springer Nature Switzerland AG 2020
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such as history, culture and even dynasty; in bioinformatics, each gene may be
associated with a number of functional classes, such as metabolism, transcription
and protein synthesis [5]; resulting in the traditional single-label classification
is insufficient while dealing with semantic diversity thus the multi-label classi-
fication has become an important research focus [2,3]. In multi-label learning,
explicitly assigning a set of category labels to each object can intuitively reflect
the multiple semantic information possessed by the ambiguous object. Formally,
the goal of learning is to find a mapping function f : x → 2y from the feature
space to the space of label sets, i.e. the power set of all labels. Therefore, the
key challenge of learning from multi-label data relies on the enormous number
of output space, i.e. the number of possible label sets grows exponentially as the
number of class labels increases. For example, for a label space with 30 labels
(q = 30), the number of possible label sets would exceed one billion (i.e. 230).

In order to cope with the challenge of exponential-sized output space, it is
essential to facilitate the multi-label classification learning process by leveraging
the correlations among different labels. For example, the probability of an article
being annotated with label sports would be high if we know it has been labeled
stadium and soccer; an image is unlikely to be labeled as river if it is related
to desert. The existence of some labels will affect the existence of other labels
to some extent. Therefore, capturing the dependency of labels in the classifica-
tion process is deemed to be crucial for the achievement of multi-label learning
techniques. However, the model complexities are usually high when the label
correlations are considered.

In this paper, we present an effective yet computational efficient way to
address the label correlations. We consider the local label dependency and
extract the label correlations from the neighboring instances. Then, we take
the label distribution extracting from the nearest neighbor instances label set as
new features and use the low-complexity and parallel single-label BR (Binary
Relevance) method to calculate the probability of the label appearance. However,
when the intersection of similar samples is small, the similarity is unreliable, so
we propose a method to measure the reliability of the neighbor information to
revise the error in neighbor-based classification result adaptively to improve the
accuracy of multi-label learning.

2 Related Work

2.1 Problem Transformation Methods

This category of algorithms tackles multi-label learning problem by transforming
it into several single-label problems or multi-class problems. The basic idea of
BR method [12] is decomposing the multi-label learning problem into several
independent binary classification problems. The computational complexity of BR
is low because each of the binary classifier can be trained in parallel while this
method ignores the relationship among labels which affect the accuracy of multi-
label classification. Read et al. proposes the CC (Classifier Chains) algorithm
and ECC (Ensembles of Classifier Chains) algorithm [9] which are high-order
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approaches with considering the correlations among labels in a random manner.
However, these methods lose the opportunity of parallel implementation due to
its chaining property. LP (Label-Powerset) [13] proposed by Tsoumakas et al.
transforms the multi-label learning problem into several multi-class classification
problems which considering a set of labels as an entirety, the label correlations
among labels is included in the classification, but the cost of the LP method
is to increase the number of entire labels, resulting in only a small number of
instances per label, while generating high computational complexity. RAKEL
(Random K-labelsets) [14] combines the LP method and integrated learning to
compensate for the shortcomings of the LP method. The RAKEL algorithm
reduces the computational complexity, resulting in a more uniform distribution
of multiple classes, avoiding the problem of too few training samples of LP, but
the classification accuracy is very random.

2.2 Algorithm Adaptation Methods

The main idea of the algorithm adaptation methods adapt the existing machine
learning techniques to deal with multi-label data directly. Cheng and Hüllermeier
proposed a novel multi-label learning algorithm IBLR (Instance-Based Learning
by Logistic Regression) [4], which combines K-nearest neighbor learning and
logistic regression to compensate for the K-nearest neighbor learning does not
take correlations between labels into account. However, the relationship between
labels is considered fixed in IBLR, and the real samples differ in the importance
of different labels and do not have a fixed impact. The Rank-SVM (Ranking
Support Vector Machine) [8] uses the relationship between two labels, which
belongs to the second-order strategy. Since the Rank-SVM only defines the mar-
gin over hyperplanes for relevant-irrelevant label pairs, it is difficult to add the
association of multiple labels to the model, thus limit its performance.

2.3 Mining Label Feature

This category of algorithms improve multi-label learning by mining label fea-
tures from the known information. In 2015, Zhan and Zhang proposed a multi-
label learning method based on specific-label features [16]. In detail, the LIF-
TACE (multi-label learning with Label-specIfic FeaTures viA Clustering Ensem-
ble) method generates the label-specific features by clustering the multi-label
training samples in a label-wise style, which ignores the utilization of label cor-
relations to improve classification performance. In 2018, Zhang et al. believes
that multi-label learning performance can be improved by enriching the labelling
information. Therefore, an algorithm called MLFE (Multi-label Learning with
Feature-induced labeling information Enrichment) [18] is proposed to enrich the
labelling information of the training set by leveraging the structural information
in feature space through sparse reconstruction of the training set.
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3 Proposed Method

In the formal definition of multi-label classification, x ∈ Rd is the input space
of the d-dimensional feature vector, Y = {1, 0}m is the value of the output
space, and the output space is the label set L = {l1, l2, l3, · · · , lm} and the set
consists of m = |L| possible labels. For a given training set D = {(xi, yi)|1 ≤
i ≤ n} , training the d-dimensional train instances xi = {xi1, xi2, · · · , xid} , the
corresponding category label is yi = {yi1, yi2, · · · , yim} , if the instance xi has
the label lm in the label set, yim takes the value 1, otherwise is 0. The task of
the multi-label classification algorithm is to learn a hypothesis f : x → 2y from
D which can assign a set of proper labels for the test instance x .

As reviewed in Sect. 2, previous approaches tackle the problem of multi-label
learning in various ways, these methods show that exploiting label correlations
in the process of multi-label learning can improve the accuracy of multi-label
classifier. However, the more relations among labels are considered, the higher
computational complexity of the model is needed. If only a part of the label
correlations is considered, the high-order dependencies will not be captured. If
all the dependencies are considered, the complex relationship of the labels is
difficult to handle. Our goal is to find a simple and efficient way to improve the
accuracy of multi-label learning by exploiting the neighbor label correlations.
Therefore, we propose a method to consider high-order label correlations with
low computational complexity. In this section, we detail the algorithm based
on neighbor label distribution, named MLND, i.e. Multi-label Learning based
on Neighbor label Distribution. The MLND algorithm design consists of two
parts. The first part presents the method for extracting label correlations from
neighboring instances as new features, and the second part presents the design
methods for combine new features and original sample features.

3.1 Algorithm of Extracting Neighbor Label Correlations

BRKNN [11] is an adaptation of the KNN (K Nearest Neighbors) algorithm that
is conceptually equivalent to using BR in conjunction with the KNN algorithm.
It considers the percentage of the k nearest neighbors that include the current
label to obtain the confidence cλ for a label. Let Yj(j = 1 · · · k) be the label sets
of the k nearest neighbors of an instance x, the calculation equation of the label
λ confidence is:

cλ =
1
k

k∑

j=1

I(Yj)(λ) (1)

Where k = N(x), N(x) denote the set of KNNs of x identified in the training
set, I(Yj) : L → {0, 1} is a function that outputs 1 if its input label λ belongs to
set Yj and 0 otherwise. The classification method is that if half or more of the
k nearest neighbors have the label λ or cλ is the largest, the instance x also has
the label λ. This method is simple and has a good classification effect. However,
the label with the largest proportion of k nearest neighbors is directly assigned
to the instance, which is too simple and easy to generate errors.
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In this paper, we consider the high-order relationship between all labels to
improve classification accuracy. For an instance x, we consider that it possesses
the same label with most of its nearest neighbors. That is, the labels of local sim-
ilar samples have correlations, wherein labels that exist simultaneously at high
frequencies are correlated. If the features of two samples are close, they tend to
be more similar, and the similar samples have a high probability of belonging to
the same type. First, we use the Euclidean metric to measure distances between
instances and get a set of similar samples. That is, the neighboring instances with
similar features to instance x can be regarded as instance clusters with similar
features. The label distribution in the cluster label set is related to the sample
label, wherein a plurality of labels that exist simultaneously in a high proportion
have the correlations. For example, pictures with similar features should have
similar content labels. Then we obtain the distributions of the related labels
according to the label distribution percentage in the cluster label set and regard
them as new features. Establishing classifier that are characterized by the new
feature vector and the objective function is whether instance x has the label lk.

Algorithm 1. calculating the new features
1: Identify the K-nearest neighbor N(xi) of xi

2: for l ∈ L do
3: sum=0
4: for j ∈ N(xi), j ∈ {0, 1, · · · , k} do
5: if l ∈ Yj then
6: I(Yj)(l) = 1
7: else
8: I(Yj)(l) = 0
9: end if

10: sum+=I(Yj)(l)
11: end for
12: cl = 1

k
× sum

13: end for
14: C = {cl1 , cl2 , cl3 , . . . , clm}
15: for l ∈ L do
16: if l ∈ yi then
17: tl = 1
18: else
19: tl = 0
20: end if
21: end for
22: T = {tl1 , tl2 , tl3 , . . . , tlm}
23: Decision tree training set is{[cl1 , cl2 , cl3 , . . . , clm ] , T}

The decision tree is used to classify the new features, because the decision
tree can preferentially select features according to the degree of influence of each
label. Measure the splitting criteria of the features and construct a topology map
of the importance of the label, forming a decision tree from top to bottom. Let the
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label set L = {l1, l2, l3, . . . , lm}, and the set consists of m = |L| labels. For a given
training sample set D = {(xi, yi)|1 ≤ i ≤ n}, the decision tree is used to predict
the label correlations. The training set is {[cl1 , cl2 , cl3 , · · · , clm ] , T}, where clm

is the percentage of the label obtained from the label set of the neighboring
instances. Calculate according to Eq. (1) to get the percentage of the label to
form the new feature vector. The corresponding output space is ti = {1, 0}. If
the sample xi has a label in the label set, the value of ti is 1, otherwise is 0. Train
the classifier to get an objective function, and then use the trained function to
make the decision. The existence probability of the label lk is obtained from the
label percentage.

3.2 Combining New Features and Sample Original Features

In this paper, the BR method is used to transform multi-labels into multiple
binary problems. Since the binary classification algorithms can solve problems in
parallel when adding high-order label correlations, which is beneficial to improve
computational efficiency. Moreover, the BR method can select different algo-
rithms, such as decision trees, random forests, SVMs, neural networks, etc.

This paper proposes a MLND multi-label classification algorithm, we combine
the new features and the original features to improve the classification accuracy.
The overall design of the algorithm is shown in Fig. 1. The BR method is used to
classify the feature dataset. First, predict the existence probability pr of the label
l based on the new features. Since the reliability of the neighbor prediction results
is different, the classification result based on the neighbor label distribution is
dynamically adjusted, and then the result based on the original feature vector
is added to the result of the new features to correct the classification result.

Fig. 1. MLND algorithm

When the classification based on the new features is unreliable, we use infor-
mation entropy to measure the reliability of neighbor information. The entropy
value is used to set a suitable weight for the neighbor-based classifier, and the
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classification result based on the neighbor label distribution is corrected. If the
reliability based on the new features classification is high, the larger weight of
neighbor-based classification part which is ω1 can help to reserve the good result
of neighbor label relationship pr. At the same time, adjust the result pf based on
the original features. However, if the reliability based on the new features clas-
sification is low, the larger weight of original features part ω2 can improve the
power of original features and help to correct more errors made by the BR based
Decision Tree classifier. Therefore, the new features and the original features
classification result can be integrated to improve the classification accuracy.

P = ω1 · pr + ω2 · pf

ω1 + ω2 = 1 (2)

For each sample x, each label l, the reliability of the nearest neighbor infor-
mation is calculated according to the probability that the neighbor prediction
label l occurs or not occur. According to the principle of maximum entropy [6],
the generalization performance of the classifier is proportional to the entropy
value [1]. Therefore, the information entropy is used to measure the amount of
information gathered from neighbors. The greater entropy means the neighbors
are more informative and leads to better performance of the classifier. Con-
versely, the smaller entropy means the neighbors contain less informative and
leads to worse performance of the classifier. The calculation equation of infor-
mation entropy is shown in (3):

H(x) = −
∑

x∈X

p(x) log p(x) (3)

For instance, predicting the label l of the unseen instance based on neighbor
information, and calculate the neighbor-based information entropy according to
the probability of the existence and non-existence probability. For each sample,
the neighbor information can be counted according to the MAP (maximum a
posteriori probability) principle, and the occurrence probability of the label l
can be obtained. The calculation equation for calculating the occurrence and
non-occurrence probability of the label l is as shown in (4):

p1(x) = P (H l
1)P (El

→
c t(l)

|H l
1)

p0(x) = P (H l
0)P (El

→
c t(l)

|H l
0) (4)

Zhang and Zhou proposed the MLKNN [17] algorithm which combines the
traditional KNN method and the Bayesian method to tackle the multi-label
classification problem. In this paper, we use the conclusions of the MLKNN [17]
algorithm to calculate the existence and non-existence probability of a label. The
process of modelling MLKNN is as follows: Given an instance x and its associated
label set Yx ∈ Y , Y is the set of all labels, the total number of labels is defined
as m, if there is a label l in Yx, then Yx(l) = 1, otherwise Yx(l) = 0. N(x) denote
the KNNs of x identified in the training set. For instance x,

→
Cx (l) counts the
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number of neighbors of x belonging to the lth class, and the membership counting
vector can be defined as:

→
Cx (l) =

∑

a∈N(x)

→
y a (l) (l ∈ Y ) (5)

For each test instance t, the K-nearest neighbor set N(t) is first identified. For
the label l, let H l

1 be the event that the instance t has label l, while H l
0 be the

event that the instance t has not label l. Furthermore let El
j(j ∈ {0, 1, · · · , k})

denote the event that, among the K-nearest neighbors of t, there are exactly
j instances which have label l. Therefore, based on the membership counting
vector

→
Ct, the Eq. (6) for whether the instance t has the label l is determined

using the MAP principle and the Bayesian principle:

→
y t (l) = arg max

b∈{0,1}
P (H l

b|El
→
c t(l)

)

= arg max
b∈{0,1}

P (Hl
b)P (El→

c t(l)
|Hl

b)

P (El→
c t(l)

)

= arg max
b∈{0,1}

P (H l
b)P (El

→
c t(l)

|H l
b) (l ∈ Y ) (6)

Where P (H l
b) represents a prior probability whether the instance t has the label

l, when b = 1, P (H l
1) is equal to the number of samples possessing the label l

divided by the total number of samples n. When b = 0, P (H l
0) is equal to the

number of samples without the label l divided by the total number of samples.

P (H l
1) =

∑n
i=1

→
y t (l)

n

P (H l
0) = 1 − P (H l

1) (7)

Thus the calculation of the posterior probability is obtained:

P (El
→
c t(l)

|H l
1) =

c[j]
∑k

p=0 c[p]

P (El
→
c t(l)

|H l
0) =

c′[j]
∑k

p=0 c′[p]
(8)

First, for each label l, calculating c[j](j = 1, 2, 3 · · · ), which represents the num-
ber of training instances with label l whose KNNs contain exactly j instances
with label l. Correspondingly, calculating c

′
[j](j = 1, 2, 3 · · · ), which represents

the number of training instances without label l whose KNNs contain exactly j
instances with label l. Moreover, the input argument s is a smoothing parameter
controlling the strength of uniform prior.

Then, we use the prior and posterior probability obtained from MLKNN
algorithm to calculate the occurrence and non-occurrence probability of the label
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Algorithm 2. Calculating the reliability of neighbor features
1: for l ∈ L do
2: P (Hl

1) = (s +
∑n

i=1

→
y xi (l))/(s × 2 + n))

3: P (Hl
0) = 1 − P (Hl

1)
4: end for
5: Identify N(xi) of xi, i ∈ {1, 2, · · · , n}
6: for l ∈ L do
7: for j ∈ {0, 1, · · · , k} do
8: c[j] = 0; c′[j] = 0
9: end for

10: for i ∈ {0, 1, · · · , n} do

11: δ=
→
Cx (l) =

∑
a∈N(x)

→
y a (l) (l ∈ Y )

12: if (
→
y xi (l) == 1) then

13: c[δ] = c[δ] + 1
14: else
15: c′[δ] = c′[δ] + 1
16: end if
17: end for
18: for j ∈ {0, 1, · · · , k} do
19: P (El

j |Hl
1) = (s + c[j])/(s × (k + 1) +

∑k
p=0 c[p])

20: P (El
j |Hl

0) = (s + c′[j])/(s × (k + 1) +
∑k

p=0 c′[p])
21: end for
22: end for
23: For instance t, calculate the K nearest neighbor sample N(t)
24: for l ∈ L do
25:

→
Ct (l) =

∑
a∈N(t)

→
y a (l)

26: p1(x) = P (Hl
1)P (El

→
c t(l)

|Hl
1)

27: p0(x) = P (Hl
0)P (El

→
c t(l)

|Hl
0)

28: ω1 = H(x) = −(p1(x) log p1(x) + p0(x) log p0(x))
29: end for

l, and information entropy is used to calculate ω1 which represents the weight
of the neighbor-based classification.

ω1 = −(p1(x) log p1(x) + p0(x) log p0(x))
ω2 = 1 − ω1 (9)

Where p1(x) and p0(x) are described in Eq. (3). As the new features and
ordinary sample features need to be combined to obtain the overall decision,
the classifier output is converted into probability, and different confidence can
be synthesized according to the weight. Combining the new features with the
original features, and get the final result:

Px = ω1 · pr + ω2 · pf (10)
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Determine whether the label l exists based on the final confidence:

yl =

⎧
⎨

⎩

+1, if Px ≥ 1
2

−1, if Px < 1
2

(11)

3.3 Algorithm Analysis

MLND algorithm reduces feature dimension in exchange for shorter execution
time and adopts the first-order strategy to tackle the label correlation features,
which can reduce execution time by using multi-core parallelism. The complexity
and time overhead of the MLND algorithm is analyzed in detail below.

In this paper, the K-D tree structure is used to solve the problem of brute
force calculating in low efficiency of K nearest neighbors. The computational
complexity is O(D×N×log N) when establishing the K-D tree on the N samples
whose feature vector is D-dimensional. When calculating the new features of the
neighboring instances, first calculate the complexity of the neighbor label set is
O(N). Then, the percentage of each label in the neighbor label set is counted,
the time complexity is O(N ×K ×|L|). The maximum a posteriori probability of
the neighbor label is calculated when calculating the reliability of the neighbor,
including two steps of statistical prior probability and posterior probability, the
total time complexity of them is 2 × O(N × K × |L|). Since the percentage
of the neighbor label set can be counted together with the prior probability,
the total time complexity of processing the new features and the reliability is
O(N)+2×O(N×K×|L|). The new features of the N instances after processing is
|L| dimensional. It can be classified into single-label classification by exploiting
pruning decision tree, and it has computational complexity of O(|L| × N ×
log N). Therefore, when adding new features, the total computational complexity
that needs to be increased is O(D × N × log N), O(N) + 2 × O(N × K × |L|),
O(|L| × N × log N) the sum of these three parts, each of which can be multi-
core multi-threaded calculation. The time complexity scales linearly with the
number of labels |L|, the number of neighbors K, the feature dimension D. And
the time complexity scales in O(n log n) relationship with the number of samples
N . Therefore, the time complexity of the algorithm is low.

4 Evaluation

4.1 Experiment Environment and Datasets

The hardware platform used in our experiments is a single machine contain-
ing 6-core 2.00 GHz Intel(R) Xeon(R) CPU E5-2620 with 4 GB memory. The
experiment program is developed in Python on the Linux platform.

In our experiment, we use three real-world datasets in the audio (Emotions),
image (Scene), and biological (Yeast) [17] domains. An overview is given in
Table 1. Emotions is a multi-label dataset for music emotional classification.
The Scene is a natural scene dataset for semantic indexing. Yeast is a gene
functional analysis dataset, each gene in the Yeast dataset is associated with a
set of functions.
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Table 1. Datasets

Dataset Samples Features Total labels Average labels Distinct subsets Domain

Emotions 593 72 6 1.868 27 Audio

Scene 2407 294 6 1.074 15 Image

Yeast 2417 103 14 4.237 198 Biological

4.2 Evaluation Metrics

We used four sample-based evaluation metrics and two label based evaluation
metrics to evaluate the multi-label learning performance in the experiments [10].

Sample-Based. For the first three metrics, the smaller the value the better
the performance of the classification method. For average precision, on the other
hand, the larger the value the better the performance.

• Hamming loss is used to measure the proportion of labels whose relevance is
predicted inaccurately.

HammingLoss =
1
p

p∑

i=1

XOR(Yij , Pij)
|L| (12)

• The Coverage evaluation is used to examine the search depth required to
cover all the relevant labels in the label ordering of instance predictions.

coverage =
1
p

p∑

i=1

max rankf(xi, y) − 1 (13)

• Ranking Loss computes the case where the unrelated labels are located before
the relevant labels in the label ordering of the sample predictions.

rloss =
1
p

p∑

i=1

1
|Yi|

∣∣Yi

∣∣ × |Ri| , where

Ri =
{

(y
′
, y

′′
)|f(xi, y

′
) ≤ f(xi, y

′′
), (y

′
, y

′′
) ∈ Yi × Yi

}
(14)

• Average precision (Ap) is used to evaluate the average fraction of relevant
labels ranked higher than a particular label.

AvePre =
1
p

p∑

i=1

1
|Yi|

∑

y∈Yi

|Pi|
rankf(xi, y)

, where

Pi =
{

y
′ |rankf(xi, y

′
) ≤ rankf(xi, y), y

′ ∈ Yi

}
(15)
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Label-Based. Based on the label evaluation [14], there are four performance
evaluation metrics for the binary classification: accuracy, precision, recall, and
harmonic mean F1-score. The category-based multi-label evaluation metrics use
the combined results of the above four metrics. The calculation of these measures
for all labels can be achieved using two averaging operations, called F1-Macro
and F1-Micro.

4.3 Result and Analysis

Results on Decision Tree. We adopts the decision tree binary classification,
and compare the accuracy of the three datasets of Scene, Yeast and Emotions in
the pruning decision tree. The number of nearest neighbors considered is set to 30
in the Scene dataset and Yeast dataset, and the number of nearest neighbors in
the Emotions is set to 10, and each evaluation metric reaches the optimal value.
The experimental results illustrate in Table 2 that after adding neighbor label
distribution features to the decision tree, there is no obvious change in Hamming
Loss. However, Ranking Loss is decreased by 29%–32% and Average Precision
is improved by 15%–22%, Coverage is declined by 30%–60%, and F1-macro and
F1-micro are increased by 1%–5%.

Table 2. Experiment results on the decision tree, random forest and neural network

Data Algorithm Ranking loss Coverage Average
percision

F1-macro F1-micro Hamming
loss

Sence DT 0.449 2.374 0.555 0.585 0.58 –

MLND-DT 0.151 0.862 0.775 0.589 0.583 –

Yeast DT 0.557 11.549 0.49 0.391 0.536 –

MLND-DT 0.234 7.699 0.683 0.408 0.577 –

Emotions DT 0.602 4.074 0.526 0.515 0.525 –

MLND-DT 0.308 2.639 0.68 0.539 0.564 –

Sence RF 0.134 0.78 0.804 0.606 0.609 –

MLND-RF 0.094 0.575 0.849 0.711 0.696 –

Yeast RF 0.227 7.582 0.714 0.342 0.594 –

MLND-RF 0.186 6.872 0.743 0.451 0.61 –

Emotions RF 0.219 2.173 0.762 0.573 0.602 –

MLND-RF 0.198 2.124 0.771 0.602 0.626 –

Sence MLP 0.08 0.498 0.855 0.728 0.718 0.099

MLND-MLP 0.076 0.478 0.863 0.751 0.744 0.088

Yeast MLP 0.201 6.875 0.735 0.427 0.611 0.223

MLND-MLP 0.183 6.668 0.743 0.424 0.641 0.206

Emotions MLP 0.424 3.366 0.556 0.088 0.243 0.375

MLND-MLP 0.386 2.946 0.582 0.185 0.259 0.369
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Results on Random Forest. The binary classification uses a random forest
to compare the accuracy of the three datasets of Scene, Yeast, and Emotions
with and without the neighbor label distribution features. When the number of
Scene nearest neighbors, the number of Yeast nearest neighbors, and the num-
ber of Emotions nearest neighbors are 30, each evaluation metric preforms the
best value. The experimental results show in Table 2 that after adding the new
features in the random forest, the three datasets have no change in the Ham-
ming Loss. Nevertheless, the Ranking loss is dropped by 2%–5% and Average
Precision is improved by 1%–4.5%, the Coverage is increased by 2%–30%, and
the F1-macro and F1-micro are increased by 1%–11%.

Results on Neural Network. The binary classification uses a neural network
to compare the accuracy of the three data sets of Scene, Yeast, and Emotions to
join neighbor features and not join neighbor features. When setting the number
of Scene neighbors, the number of Yeast neighbors, and the number of Emotions
neighbors are 10, each evaluation metric preforms the optimal value, and the
number of iterations set here is 1000. The experimental results show in Table 2
that after adding the neighbor label distribution features in the neural network,
Hamming Loss is declined by 1%–2%, Ranking Loss is decreased by 0.4%–3.8%
and Average Precision is improved by 0.8%–2.6%, Coverage is increased by 3%–
13%, F1-macro and F1-micro have increased by 2%–10%.

These results show that the new features improve the accuracy of decision
tree, random forest and neural network.

Table 3. Experiment results on different algorithms

Dataset Algorithm Hamming
loss

Coverage Ranking
loss

Average
percision

F1-Macro F1-Micro

Scene MLND 0.088 0.478 0.076 0.863 0.751 0.744

BR 0.1368 1.3345 0.2465 0.7109 0.6285 0.6194

CC 0.1444 1.3504 0.2489 0.7176 0.6126 0.6001

RAKEL 0.1368 1.0994 0.2010 0.7280 0.6285 0.6194

Yeast MLND 0.206 6.668 0.183 0.743 0.427 0.641

BR 0.2454 9.2398 0.3097 0.6216 0.3920 0.5857

CC 0.2682 8.8423 0.3238 0.6295 0.3966 0.5499

RAKEL 0.2449 9.5088 0.3300 0.6431 0.3911 0.5861

Emotions MLND 0.242 2.124 0.198 0.771 0.602 0.626

BR 0.2474 2.5507 0.2915 0.7014 0.5868 0.6020

CC 0.2550 2.5351 0.3066 0.6827 0.5760 0.5878

RAKEL 0.2474 2.5522 0.2931 0.7035 0.5868 0.6020
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Comparison of MLND Algorithm and Advanced Algorithm. In this
paper, we compare MLND with several state-of-the-art multi-label learning
methods, including BR [12] algorithm, CC [9] and RAKEL [14] algorithm. The
results are reported in Table 3, numbers in bold represent the highest accuracy
in each column. On the natural scene dataset Scene and gene function classifica-
tion dataset Yeast, the MLND algorithm in the neural network has the highest
accuracy and outperforms all other methods such as BR, CC and RAKEL. On
the music emotion classification dataset Emotions, the MLND in the random
forest is compared with the multi-label algorithm BR, CC, RAKEL. Hamming
loss, coverage, Ranking loss, Average precision, F1-Macro, F1-Micro and other
metrics are better than BR, CC and RAKEL algorithms. Besides, the efficiency
of MLND algorithm with other algorithms on the neural network are compared
in Fig. 2. The result indicates that MLND algorithm can improve the accuracy
with low computational complexity.

Fig. 2. Training time

5 Conclusion

In this paper, we propose a new algorithm MLND that extracts label correla-
tions from neighboring instances. It considers high-order label correlations in
the case of low computational complexity. The probability of label occurrence is
calculated by a single-label classification method with low complexity and par-
allelism, and the same method is used to classify the ordinary features. Then the
neighbor feature prediction results are corrected according to the reliability of
the neighbor information, combining the new features with the ordinary features
to perform multi-label learning. The experimental results indicate that the pro-
posed MLND method which considers the neighbor label ditribution can improve
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the accuracy of different algorithms. Furthermore, we compare MLND with sev-
eral advanced multi-label learning methods. The results show that MLND is
significantly superior to the compared algorithms BR, CC and RAKEL.
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4. Cheng, W., Hüllermeier, E.: Combining instance-based learning and logistic regres-
sion for multilabel classification. Mach. Learn. 76(2–3), 211–225 (2009). https://
doi.org/10.1007/s10994-009-5127-5

5. Elisseeff, A., Weston, J.: A kernel method for multi-labelled classification. In: Pro-
ceedings of the 14th International Conference on Neural Information Processing
Systems: Natural and Synthetic, NIPS 2001, pp. 681–687. MIT Press, Cambridge
(2001). http://dl.acm.org/citation.cfm?id=2980539.2980628

6. Jaynes, E.: Information theory and statistical mechanics, 106(4), 620–630 (1957)
7. Katakis, I., Tsoumakas, G., Vlahavas, I.: Multilabel text classification for auto-

mated tag suggestion. In: Proceedings of the ECML/PKDD 2008 Discovery Chal-
lenge (2008)

8. Lee, C.P., Lin, C.J.: Large-scale linear rankSVM. Neural Comput. 26(4), 781–817
(2014)

9. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. Mach. Learn. 85(3), 333 (2011). https://doi.org/10.1007/s10994-
011-5256-5

10. Schapire, R.E., Singer, Y.: Boostexter: a boosting-based system for text cat-
egorization. Mach. Learn. 39(2–3), 135–168 (2000). https://doi.org/10.1023/A:
1007649029923

11. Spyromitros, E., Tsoumakas, G., Vlahavas, I.: An empirical study of lazy multilabel
classification algorithms. In: Darzentas, J., Vouros, G.A., Vosinakis, S., Arnellos,
A. (eds.) SETN 2008. LNCS (LNAI), vol. 5138, pp. 401–406. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-87881-0 40

12. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multi-label classification of
music by emotion. EURASIP J. Audio Speech Music Process. 2011(1), 4 (2011).
https://doi.org/10.1186/1687-4722-2011-426793

13. Tsoumakas, G., Katakis, I., Vlahavas, I.: Mining multi-label data. In: Maimon, O.,
Rokach, L. (eds.) Data Mining and Knowledge Discovery Handbook, pp. 667–685.
Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09823-4 34

14. Tsoumakas, G., Vlahavas, I.: Random k -Labelsets: an ensemble method for mul-
tilabel classification. In: Kok, J.N., Koronacki, J., Mantaras, R.L., Matwin, S.,
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Abstract. Currently, semi-supervised deep learning usually combines
supervised and unsupervised way to train its model, which intends to
make good use of the information of unlabeled data. When applying semi-
supervised learning in credit prediction, the distribution of credit data
has its own characteristics. It is observed that there are multiple data-
dense divisions even for one class because credit prediction needs to be
considered from multiple perspectives. We argue that utilizing this infor-
mation can improve the performance of semi-supervised learning. In this
paper, we propose a novel multi-layer label mean based semi-supervised
deep learning for credit prediction which is called meanNet. Our multi-
layer structure approach takes into consideration class center points in
different layers. We estimate the class center points of each class and the
goal of multi-layer label mean is to maximize the distance of class center
points at each layer. In addition, we add the cost-sensitive loss function
to meanNet for the inconsistent misclassification cost between classes
of credit datasets. Experiments are conducted on two public financial
datasets and the results show that our approach can improve the credit
prediction performance compared with popular baselines.

Keywords: Credit prediction · Label mean · Cost sensitive function ·
Semi-supervised deep learning

1 Introdction

With the rapid development of the internet industry, the number of small busi-
ness has increased as well. In the face of banks’ complicated lending process,
it is difficult for small business to get loans in time, which is not conducive
to the development of small business [1,2]. Credit evaluation is the content of
long-term research in financial field [3]. Plenty of machine learning methods are
applied to credit evaluation, such as logistic regression, neural networks, support
vector machines (SVMs) and decision trees [4]. In general, an effective credit
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risk assessment model can help banks and financial institutions to reduce losses
caused by credit misjudgment.

In face of the expertise involved, collecting large amounts of labeled data is
expensive. However, it is relatively easy and cheap to get unlabeled data. Credit
prediction is also a classification problem with insufficient supervised informa-
tion [20]. Due to lack of sufficient labeled data for credit data (discussed further
in Sect. 2.1), semi-supervised methods attract researchers’ interest. Traditional
machine learning based semi-supervised methods consider estimating the labels
of unlabeled data to train their models [20–23]. Currently, semi-supervised deep
learning methods try to study more information from unlabeled data. Mainly in
the field of image [8–12], medical [25,26] and review aspect identification [27],
semi-supervised deep learning methods are better than traditional ones.

In credit prediction, there are two major problems. Firstly, corporate and
personal credit is affected by many factors, such as income, possession of assets,
etc. We have observed that credit datasets have multiple data-dense divisions
(discussed further in Sect. 3.2). The main problem is that current semi-supervised
deep learning methods do not fully utilize such information when learning from
unlabeled data. This multi-center distribution can be used to improve the per-
formance of prediction. In addition, it is worse to wrongly predict class “bad”
as class “good” (Money may be loaned to people with bad credit) than reverse
case. Thus, the other problem is to solve the inconsistent cost of positive and
negative misclassification.

In this paper, we propose a novel multi-layer label mean based semi-
supervised deep learning to effectively deal with the above problems. To best
of our knowledge, our approach is the first work which uses label mean for credit
prediction. We estimate the center points of positive and negative samples and
work by maximizing the margin between the class center points to improve accu-
racy for semi-supervised neural network. The goal of multi-layer label mean is
to maximize the difference for each class center point at each hidden layer. In
addition, we add cost-sensitive loss function in the supervised part to solve the
problem that the negative misclassification causes greater losses.

The main contributions of this paper are as follows:

(1) We investigate the predictive effectiveness of semi-supervised neural net-
works in credit prediction and consider using multi-layer label mean for
multiple data-dense divisions.

(2) We propose meanNet and combine our meanNet with cost-sensitive function
for credit prediction.

(3) We evaluate popular semi-supervised methods on real credit datasets under
different labeled rates. Compare with several popular baselines under differ-
ent evaluation indicators. The experimental results show that meanNet can
significantly improve the performance for credit prediction.

This paper is organized as follows. Section 2 introduces the related work on
semi-supervised deep learning and the applications of semi-supervised learning
in credit prediction. Section 3 discusses the main problems in credit prediction,
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Sect. 4 describes the over-all framework of our approach. Section 5 provides the
experimental setup and analyzes the results. Section 6 concludes this paper.

2 Related Work

2.1 Characteristics of Credit Data

Credit prediction is a typical classification problem. However, a significant pro-
portion of unlabeled data and the high-cost of manual labeling data in real world
lead to a serious shortage of training samples. The imbalance between positive
and negative samples is also a problem to be faced in credit prediction [5,20,23].
The misclassification cost of default is more than the cost of non-default [6].

2.2 Semi-supervised Deep Learning

Facing the lack of labeled data, an effective solution is to use semi-supervised
learning (SSL). Chapelle et al. [7] summarized the research progress of machine
learning in the field of SSL. In recent years, various SSL methods have also been
proposed, among which semi-supervised neural networks perform well. Previ-
ous methods tried to combine supervised and unsupervised loss to get more
information from unlabeled data. An example of a typical semi-supervised deep
learning method is Ladder Network [8]. Ladder Network integrated unsupervised
loss into supervised loss. Using a small amount of labeled data got accuracy close
to supervised neural networks on the Mnist dataset. Pezeski et al. [9] verified the
effectiveness of Ladder Network through a large number of comparative exper-
iments. Temporal Ensembling performed well on several semi-supervised image
classification datasets [10]. Mean Teacher is a model that averages model weights
rather than prediction of labels [11]. It used fewer labeled data than Temporal
Ensembling to improve the accuracy on the test datasets. MixMatch is a new
algorithm that unifies the advantages of the current semi-supervised deep learn-
ing methods proposed by Google [12].

The existing semi-supervised deep learning methods combine the supervised
prediction loss with the unsupervised loss, but those methods do not consider
the distribution of samples. In a specific field, the data distribution has multiple
dense divisions. The distance of class center points also has a crucial impact on
the results of classification.

2.3 Semi-supervised Learning for Credit Prediction

In the field of traditional machine learning, Li et al. [20] used a semi-supervised
SVM [21] to solve credit scoring with reject inference. Zhang et al. [22] used
semi-supervised SVM to predict the credit of small business and compared with
several machine learning methods. Kennedy et al. [23] compared semi-supervised
one-class classification (OCC) algorithms with supervised two-class classification
algorithms on low-default portfolio (LDP). The experimental results showed that
OCC algorithms can alleviate LDP problem.
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Except for meanS3VM [13], the above traditional SSL methods do not con-
sider class center issues. meanS3VM tried to transform data features to a kernel
space for estimating the class center points. However, it only used a single high
dimensional space to estimate the points.

Semi-supervised deep learning is less researched in credit prediction. We make
use of the structure of semi-supervised deep learning to fully utilize unlabeled
data by considering the multi-layer class center points.

3 Problem Formulation

In Sect. 3, we first give notations. Then, we discuss the problem of multiple
class center points in samples and how the previous approach “meanS3VM”
implements label mean in a single high-dimensional space. Based on the credit
data distribution we observed, our meanNet tries to introduce label mean [13]
into a semi-supervised neural network.

3.1 Notations

A credit dataset contains N labeled samples {(x1, y1) , (x2, y2) , . . . , (xN , yN )}
and M unlabeled samples {(xN+1) , (xN+2) , . . . , (xN+M )}. xi ∈ R

d denotes that
feature matrix of a sample is d-dimension, and yi ∈ {0, 1} is the collection of
values for data labels. When yi = 0, it means this sample is positive. and the
value of 1 means it is negative. We assume N � M in the credit dataset.

3.2 Credit Data Distribution

Traditionally, the credit of individuals or companies will be evaluated in sev-
eral viewpoints, such as assets, past credit and income, etc. Therefore, credit
datasets distribution will show multiple data-dense divisions. We normalize the
data features from 0 to 1 and use t-SNE [14] to visualize the dataset distribution
on 2-D space. The visualized result is shown in the Fig. 1. In this 2-D space, we
can observe that the two classes overlap in feature space. We will discuss the
influence of this situation on our experiments in Sect. 5.4.

3.3 Label Mean

Traditional semi-supervised SVMs [15] need to predict the labels on unlabeled
data and then retrain models. meanS3VM estimates the label means of unla-
beled data. Its classification performance is close to that of supervised SVM.
meanS3VM maps unlabeled samples separately to two points in reproducing
kernel Hilbert space (RKHS) [16]. The brief process is shown in Fig. 2. We
assume that M+ and M− denote the number of positive and negative sam-
ples in unlabeled data, respectively. m̂+ and m̂− denote the estimated center
points of samples for the true center points of samples m+ and m− on unlabeled
data, respectively.
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Fig. 1. An example of credit dataset visualization. Normalize the digitized data features
to [0,1] and use t-SNE to visualize the data. Data is reduced to 2-D space. The dataset
has two classes (1 and 2) and multiple data-dense divisions of each class.
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Fig. 2. meanS3VM uses RKHS to get the estimate class center points for label mean.

Although meanS3VM tried to use multiple kernel learning (MKL) [24] for
labeled data. It does not consider the case that the structure of a single high-
dimensional space does not satisfy the distribution of samples when estimating
the class center points of unlabeled data. Another problem is that using MKL
for labeled data will take up extra main memory. It causes meanS3VM to be not
suitable for big data applications.

Intuitively, the greater interval between two classes, the greater difference in
the distribution of two classes. In this situation, classification problems are easier
to solve. Considering that there are multiple dense divisions in data distribution,
mapping the features of data into a single high-dimensional space does not effec-
tively utilize unlabeled data. Therefore, we combine the multi-layer structure of
a neural network and label mean as meanNet to maximize the distance between
center points of samples of each class.
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4 Our meanNet

In this section, we first introduce the structure of meanNet. The semi-supervised
deep learning methods mentioned [10–12] followed Ladder Network [8] idea.
Their research is from the point of the prediction of unlabeled data to improve
the quality of semi-supervised learning and is orthogonal to us. Thus, we use
Ladder Network as the basic framework. Then we explain how to introduce
multi-layer label mean to each hidden layer of the semi-supervised deep learn-
ing method. In addition, we add cost-sensitive loss function for the inconsistent
misclassification cost of credit datasets.

4.1 The Architecture of meanNet

We briefly introduce the structure of meanNet. Consider the credit dataset has N
labeled samples and M unlabeled samples, and N � M . The main architecture
of meanNet is a deep denoising AutoEncoder (dAE) [18] and adding noise into
each hidden layer. The architecture of meanNet contains three parts (see the
Fig. 3):

x̃, z̃(1), . . . , z̃(L), h̃(1), . . . , h̃(L), ỹ ∈ Encodernoise (x) (1)

x, z(1), . . . , z(L), h(1), . . . , h(L), y ∈ Encoderclean (x) (2)

x̂, ẑ(1), . . . , ẑ(L) ∈ Decoder
(
z̃(1), . . . , z̃(L)

)
(3)

meanNet has three loss functions. cSC is the cost-sensitive cross entropy
function for supervised part, UC is the unsupervised cost function and the third
part is label mean distance. The goal of label mean is to maximize the distance
between center points of samples of two classes. In order to convert problem into
a convex optimization problem, we have modified label mean distance that will
be discussed in Eq. (11). We call the transformation form of label mean distance
as LMD. The goal of the final optimization is to minimize the weighted sum of
the three loss functions by means of gradient descent.

4.2 The Details of meanNet

Our meanNet fully utilizes of unlabeled data by mapping the feature matrix of
class center points of samples to multiple high dimensional spaces and maximiz-
ing the distance between the class center points. We combine the cost-sensitive
function with meanNet for credit datasets.

As shown in Fig. 3, x, ỹ and y are the original feature matrix of input, the
output of the layer L in the noise path and the output of the layer L in the clean
path, respectively. z̃(l) is the variable after linear transformation, Normalization
and adding noise of the layer l. z(l) defined same as z̃(l) but does not add noise.
ẑ(l) is the output of Decoder layer l. h̃(l) and h(l) are variables after activation
function. The layers corresponding to Corrupted Encoder and Decoder are con-
nected by the variable z̃ and ẑ. The loss function of meanNet consists of three
parts.
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Fig. 3. The architecture of meanNet with two layers. meanNet contains three loss
functions. cSC is the supervised cost using cross entropy and cost-sensitive function.
UC is the unsupervised cost using MSE (Mean-Square Error). Label Mean Distance is
the distance between estimated class center points which is called LMD.

The Architecture of Corrupted Encoder. In this part, the input x̃ is the
original feature matrix which adds the Gaussian noise. Each layer of the Encoder
is converted by linear transformation. Then, the followed step is batch normal-
ization. Finally, after the activation function, the output of each hidden layer is
obtained. The definitions are in Eq. (4) and (5),

z̃(l) = batchnorm
(
W (l) · h̃(l−1)

)
+ Noise (4)

h̃(l) = activation
(
γ(l)z̃(l) + β(l)

)
(5)

where W (l) is the weight matrix to get z̃(l). Noise is the Gaussian noise in
which the mean is 0 and the variance is σ

(N (
0, σ2

))
. � means element-wise

multiplication between two matrices. γ(l) and β(l) [19] are the scale and shift
before using activation function. If the noise

(N (
0, σ2

))
is removed from Eq. (4),

the structure will be clean Encoder.

The Architecture of Decoder. Each layer of the Decoder combines the vari-
able z̃(l) from the Corrupted Encoder and the variable ẑ(l+1) from the Decoder
to get ẑ(l). Detailed description refers to the following Eq. (6) and (7),
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u(l) = batchnorm
(
V (l) · ẑ(l+1)

)
(6)

ẑ(l) =
g

(
z̃(l), u(l)

) − μ(l)

σ(l)
(7)

where V (l) is the weight matrix to get u(l). The function g (·, ·) is called denoising
function. μ(l) and σ(l) are the mean and the standard deviation of layer l for the
batch, respectively. The function g (·, ·) is defined as Eq. (8),

g
(
z̃(l), u(l)

)
=

(
z̃(l) − μ

(
u(l)

))
� v

(
u(l)

)
+ μ

(
u(l)

)
(8)

μ
(
u(l)

)
= a1 � Sigmoid

(
a2 � u(l) + a3

)
+ a4 � u(l) + a5 (9)

v
(
u(l)

)
= a6 � Sigmoid

(
a7 � u(l) + a8

)
+ a9 � u(l) + a10 (10)

a1, a3−6 and a8−10 are initialized to 0. a2 and a7 are initialized to 1. The more
details can refer to [8,9].

The Loss of meanNet. It is the weighted sum of three parts. The details of
the loss is defined in Eq. (11),

Loss = −
N∑
i=1

(log (P (ỹi = y∗
i |xi, y

∗
i = 0)) + c log (P (ỹi = y∗

i |xi, y
∗
i = 1)))

+
M∑
i=1

L∑
l=0

λl

∥∥∥z
(l)
i − ẑ

(l)
i

∥∥∥
2

+
L∑

l=0

θl
1 − cos dis

(
m̂+

l , m̂−
l

)
2

(11)

where ỹ and y∗ are the prediction of labeled data and the true label of labeled
data, respectively. The first part is the cost-sensitive cross entropy function. c is
the sensitive coefficient (c � 1.0). cSC is the total cost for the supervised part. λl

and θl are the weight coefficient for UC and LMD at layer l, respectively. LMD
is the variant of cosine distance function. The function turns the maximization
problem to a minimization problem. The function cos dis is used to calculate
the cosine distance between two estimated class center points. m̂+

l and m̂−
l are

the feature matrix of estimated positive and negative center points at layer l,
respectively.
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5 Experiments

5.1 Datasets and Evaluation Measures

We collect two credit datasets (Ping-An1 and LC07-152) to demonstrate the
effectiveness of our meanNet. Table 1 is a brief introduction for the two credit
datasets, where #Number, #Ratio and #Feature are the number of samples, the
proportion of negative(default) samples in the datasets and the feature dimen-
sion, respectively.

Table 1. Description of two datasets.

Dataset #Number #Ratio(%) #Feature

Ping-An 40000 14.73 490

LC07-15 887438 17.53 150

Due to the difference in magnitude between features, we normalize the fea-
tures of the credit datasets. Finally, we retain the 46-dimensional features of
Ping-An and 38-dimensional features of LC07-15. In preliminary experiments,
we found that class imbalance impedes the performance of prediction. In particu-
lar, the models in the comparative experiments may overemphasize the majority
(non-default) class while paying insufficient attention to the minority (default)
group. In order to solve the imbalance of credit datasets, we use SMOTE [17] to
balance data.

Each experiment randomly divides train set and test set, and randomly
selects labeled data. We select 20% from datasets as test sets and assume that
the labeled data for the credit datasets is 5%, 10% and 20%. Each set of mean-
Net runs 10 times for each dataset. In our experiments, in order to ensure the
objectivity of experiments, we take the average result as the final result through
the experiments. We use the convolutional neural network as the basis network
for our approach and implement meanNet using TensorFlow. To evaluate our
approach, we compare meanNet with Ladder Network [8], Π-Model [10], Mean
Teacher [11], MixMatch [12] and meanS3VM [13].

To ensure the comparability of the methods in the comparison experiments,
we tune the mentioned semi-supervised neural networks as much as possible to
obtain better performance for each method. More importantly, for the hyper-
parameters of meanNet, we first try to tune the hyperparameters on Ladder
Network and then lock these on Ladder Network and meanNet except θ. In
other words, we only try to find θ on meanNet.

In general, most of the classification problems use accuracy [8] to evaluate
the prediction effect. Due to the characteristics of credit prediction, false positive
rate (FPR) and F1 [22] should be comprehensively considered.
1 https://www.kesci.com.
2 https://www.kaggle.com.

https://www.kesci.com
https://www.kaggle.com
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5.2 Experimental Results on Ping-An Dataset

In addition to the hyperparameters that we need to tune, we use random ini-
tialization for other parameters. The learning rate is initialized to 0.002 and
start decay to zero after 60% iteration process. The mini-batch size is set to 100.
meanNet with the sensitive coefficient c has a large space for exploration, and
we search it from 1.0 to 10.0. Finally, we get that the negative samples misclas-
sification sensitivity coefficient c is 1.3. We rummaged the Gaussian noise with
a search grid from 0.001 to 0.5. The Gaussian noise N (

0, σ2
)

is initialized to
N (0, 0.01). The filter of each layer is 3-by-3 and channel sizes are [1,2,12,12,20].
λ is [0.1, 0.01, 0.01, 0.01, 0.001] for UC. θ is [0.1, 0.01, 0.01, 0.01, 0.001] for LMD.
The average results of 10 times run are shown in Table 2.

Table 2. Test results on Ping-An dataset (Ladder Network [8], Π-Model [10], Mean
Teacher [11], MixMatch [12] and meanS3VM [13]).

Labeled Model set FPR(%) Accuracy(%) F1

5% meanS3VM 38.31(±5.74) 64.28(±2.76) 67.19(±4.15)

Π-Model 50.31(±3.71) 68.28(±3.52) 73.27(±3.16)

Mean teacher 36.39(±2.64) 68.67(±1.74) 70.22(±2.18)

MixMatch 35.39(±1.80) 69.57(±1.55) 71.03±1.94)

Supervised only (Ladder) 38.92(±4.37) 64.57(±2.38) 67.56(±2.31)

Ladder (c = 1.0) 27.61(±3.52) 76.70(±0.82) 80.26(±1.25)

Ladder (c = 1.3) 26.03(±2.96) 76.87(±1.02) 80.12(±1.52)

meanNet (c = 1.0) 25.49(±3.83) 78.19(±0.62) 80.89(±0.97)

meanNet (c = 1.3) 23.14(±2.09) 78.31(±0.36) 80.62(±1.04)

10% meanS3VM 35.61(±3.63) 67.50(±2.93) 70.58(±3.41)

Π-Model 47.41(±4.21) 70.45(±2.41) 74.95(±3.27)

Mean teacher 33.08(±3.62) 71.08(±1.67) 72.27(±2.71)

MixMatch 34.53(±2.31) 70.72(±1.97) 72.21(±2.26)

Supervised only (Ladder) 36.94(±2.93) 66.21(±1.31) 68.82(±1.75)

Ladder (c = 1.0) 25.63(±4.61) 79.29(±0.38) 82.69(±0.91)

Ladder (c = 1.3) 23.91(±2.58) 79.36(±0.27) 82.57(±0.52)

meanNet (c = 1.0) 24.23(±2.98) 80.71(±0.28) 83.45(±0.67)

meanNet (c = 1.3) 21.82(±2.37) 81.32(±0.66) 83.75(±1.10)

20% meanS3VM 32.63(±3.89) 70.69(±2.31) 73.21(±2.39)

Π-Model 46.39(±3.49) 71.17(±2.03) 75.50(±2.44)

Mean teacher 32.57(±2.48) 72.49(±1.77) 73.36(±1.09)

MixMatch 31.82(±1.73) 73.23(±1.16) 74.79(±1.39)

Supervised only (Ladder) 35.26(±3.48) 67.37(±1.75) 70.13(±2.46)

Ladder (c = 1.0) 22.91(±1.12) 80.18(±0.45) 84.62(±0.47)

Ladder (c = 1.3) 20.17(±1.72) 80.25(±0.38) 83.40(±0.55)

meanNet (c = 1.0) 22.48(±1.42) 82.97(±0.48) 85.34(±0.70)

meanNet (c = 1.3) 20.05(±1.24) 83.34(±0.55) 85.60(±0.61)
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Applying multi-layer label mean to semi-supervised deep learning, and com-
bine cost-sensitive function for the characteristic of credit prediction can improve
the performance of prediction. Obviously, meanNet has the best performance
compared to meanS3VM and other semi-supervised neural networks.

Default is more costly than non-default in the domain of credit prediction.
Therefore, FPR is a significant evaluation index for credit prediction and is lower
the better. Compared to Ladder Network, after the cost-sensitive loss function is
added to meanNet, FPR is reduced by up to 4.47%. Moreover, meanNet makes
better use of unlabeled data and the accuracy is improved by 2.79% than Lad-
der Network. Overall, our approach is up to 3.16% more accurate than Ladder
Network, with a maximum reduction of 4.47% on FPR.

As the proportion of labeled data increases, we can find that the gap between
Ladder Network and meanNet is decreasing for FPR. Especially when labeled
data is 20%, there is almost no difference between Ladder Network and meanNet
on FPR. Our meanNet uses multi-layer label mean, which performs well when
labeled data is fewer.

5.3 Experimental Results on LC07-15 Dataset

Similar Ping-An dataset, the feature matrix is retained 38-dimension. The learn-
ing rate is initialized to 0.004. c is found as 1.2 after searching. Channel sizes of
each layer are [1,2,8,12,16] and the Gaussian noise N (0, 0.001). Other hyper-
parameters are same as Sect. 5.2. The average results of 10 times run are shown
in Table 3.

In the results of LC07-15 dataset, meanNet is also better in terms of accuracy
than the other networks and meanS3VM. After combining meanNet with the
cost-sensitive loss function in the supervised part, FPR is reduced by up to
4.45% than Ladder Network. In terms of FPR and F1, the cost-sensitive loss
function can effectively reduce FPR.

It can be seen from Table 3 that the cost-sensitive loss function will reduce
the accuracy for meanNet. The cost-sensitive loss function has a penalty effect
on the misclassification of default samples. Therefore, our meanNet with the
cost-sensitive loss function has an outstanding effect on FPR, which affects the
accuracy. Whether using cost sensitive function should highly depend on specific
actual applied circumstances.
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Table 3. Test results on LC07-15 dataset (Ladder Network [8], Π-Model [10], Mean
Teacher [11], MixMatch [12] and meanS3VM [13]).

Labeled Model set FPR (%) Accuracy (%) F1

5% meanS3VM 38.53(±3.28) 63.01(±1.14) 65.88(±2.28)

Π-Model 56.98(±3.07) 63.56(±1.92) 70.26(±2.76)

Mean teacher 39.70(±1.54) 63.25(±2.75) 65.25(±2.81)

MixMatch 40.44(±2.84) 62.18(±2.16) 64.11(±2.39)

Supervised only (Ladder) 41.54(±3.79) 61.35(±2.36) 63.82(±2.58)

Ladder (c = 1.0) 32.43(±1.10) 77.60(±0.15) 80.76(±0.29)

Ladder (c = 1.2) 31.11(±1.73) 77.45(±0.20) 80.60(±0.22)

meanNet (c = 1.0) 32.44(±1.26) 78.31(±0.18) 81.27(±0.25)

meanNet (c = 1.2) 30.06(±2.56) 78.27(±0.27) 81.01(±0.43)

10% meanS3VM 36.47(±2.89) 64.14(±0.89) 66.62(±1.42)

Π-Model 54.74(±3.27) 66.06(±1.35) 72.38(±2.61)

Mean teacher 38.20(±1.73) 64.68(±2.14) 66.59(±1.79)

MixMatch 359.5(±2.61) 68.25(±1.63) 70.38(±1.94)

Supervised only (Ladder) 39.21(±3.04) 63.83(±2.71) 65.17(±2.54)

Ladder (c = 1.0) 31.93(±0.91) 78.03(±0.15) 81.10(±0.28)

Ladder (c = 1.2) 31.23(±1.75) 77.96(±0.16) 80.90(±0.45)

meanNet (c = 1.0) 30.34(±1.69) 78.79(±0.16) 81.60(±0.47)

meanNet (c = 1.2) 29.25(±1.64) 78.73(±0.13) 81.43(±0.28)

20% meanS3VM 33.94(±3.41) 64.48(±1.35) 67.56(±2.18)

Π-Model 53.24(±4.53) 68.20(±3.42) 74.28(±2.85)

Mean teacher 34.46(±3.08) 67.90(±2.11) 69.53(±2.38)

MixMatch 32.21(±1.29) 70.40(±2.12) 72.01(±1.83)

Supervised only (Ladder) 37.29(±2.09) 65.77(±1.74) 68.25(±2.67)

Ladder (c = 1.0) 31.45(±1.43) 78.36(±0.21) 81.20(±0.26)

Ladder (c = 1.2) 28.99(±1.27) 78.23(±0.18) 80.83(±0.31)

meanNet (c = 1.0) 30.60(±0.59) 79.52(±0.15) 82.17(±0.28)

meanNet (c = 1.2) 27.00(±1.02) 79.40(±0.17) 81.82(±0.30)

5.4 Discussion

We showed how meanNet used multi-layer label mean to improve the perfor-
mance of semi-supervised learning. The proposed approach is simple and easy
to implement with semi-supervised neural networks. Meanwhile, we verified the
performance of several popular methods on credit datasets. There are still some
issues to discuss:

(1) Currently, popular semi-supervised neural networks provide an idea of intro-
ducing unlabeled data into neural networks for learning. Although this can
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increase the diversity of training samples, models [8,10–12] in the experi-
ments have less consideration for data distribution.

(2) As said in Sect. 3.2, credit datasets have some hard samples. This means
that some positive and negative samples are similar in feature space. Models
[8,10–12] in the experiments were validated on image datasets and did not
consider the situation. Therefore, we consider using multi-layer label mean
to solve hard samples in credit prediction. For UC, meanNet and Ladder
Network are reconstructed from the feature perspective, that is to say, keep
the output of each layer between clean Encoder and Decoder consistent. This
sub-task does not disturb supervised learning [8,9]. Π-Model, Mean Teacher
and MixMatch define the unsupervised part from another perspective. The
unsupervised loss function is to reduce the differences between the prediction
of sub-networks for unlabeled data.

(3) Not surprisingly, the thought of multi-layer label mean may be applied to
other domains. Since the idea of meanNet is based on real data distribution,
any data with a distribution similar to credit data can try to use multi-layer
label mean to improve the performance of prediction.

(4) meanNet with a weighted loss function on each layer has a much larger
search space for exploration. And we follow Ladder Network [8] to search
hyperparameters. Meanwhile, when exploring the effect of different Gaussian
noise settings on the experiments, we found an interesting phenomenon that
Gaussian noise cannot be set as large as the other networks [8,10–12] for
credit data (Therefore we set it to N (0, 0.01) or N (0, 0.001)).

6 Conclusions and Future Work

In this paper, we propose an approach by enhancing Ladder Network for credit
prediction. Specifically, the loss function of multi-layer label mean is to maximize
the difference between positive and negative center points of samples. Meanwhile,
we use the cost-sensitive loss function to solve the inconsistent misclassification
cost between positive and negative samples in credit prediction. Experimental
results on two credit datasets show that meanNet is performing well. The pro-
posed multi-layer label mean loss effectively improves the prediction accuracy
and the cost-sensitive loss effectively reduces the FPR for credit prediction. Con-
sidering more practical situations, an obvious future line of research will therefore
be to extend our work to multi-classification problems.
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ber 19K12230.
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Abstract. Sparse inverse covariance estimation, i.e., Graphical Lasso,
can estimate the connections among a set of random variables basing
on their observations. Recent research on Graphical Lasso has been
extended to multi-task settings, where multiple graphs sharing the same
set of variables are estimated collectively to reduce variances. However,
different tasks usually involve different variables. For example, when we
want to estimate gene networks w.r.t different diseases simultaneously,
the related gene sets vary. In this paper, we study the problem of multi-
task Graphical Lasso where the tasks may involve different variable sets.
To share information across tasks, we consider the attributes of vari-
ables and assume that the structures of graphs are not only determined
by observations, but influenced by attributes. We formulate the problem
of learning multiple graphs jointly with observations and attributes, i.e.,
Multi-task Attributed Graphical Lasso (MAGL), and propose an effec-
tive algorithm to solve it. We rely on the LogDet divergence to explore
latent relations between attributes of the variables and linkage structures
among the variables. Multiple precision matrices and a projection matrix
are optimized such that the �1-penalized negative log-likelihood and the
divergence are minimized.

Keywords: Graphical lasso · Multi-task learning · LogDet divergence

1 Introduction

Gaussian Graphical Models (GGMs) [25] provide a powerful framework for
describing the dependencies among a set of variables and have been attract-
ing much attention in the fields of finance, social networks and bio-informatics,
etc.[16,28]. In these applications, some of the edges between the nodes are usu-
ally unknown and must be inferred from observations of the node activities.
It has been shown that the non-zero elements of the precision matrix, i.e., the
inverse of the covariance matrix, correspond to the edges in the underlying graph
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 670–684, 2020.
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[Task 1] 
Disease 1

[Task 2] 
Disease 2

Outputs: Estimated Gene Regulatory Networks

Observations:
Gene expression level
on patients

Attributes:
Gene pathways

Fig. 1. An illustration of multi-task attributed Graphical Lasso. The tasks are to esti-
mate gene regulatory networks for two diseases collectively to reduce the variance of
the estimates. Each gene is accompanied by its expression level on different patients as
observations, and pathways it belongs to as attributes. Similar attributes drive certain
pairs of variables to be connected (shown in red). (Color figure online)

[25]. Thus structure learning of a GGM is equivalent to estimating its precision
matrix, which can be solved via Graphical Lasso (GLasso) [7].

In some cases, multiple GLasso tasks are involved and each contains several
observations. Observations in different tasks may come from different distribu-
tions, but they are all on the same set of variables. For example, researchers
may want to estimate gene regulatory networks for cancer patients and healthy
subjects separately using their gene expression levels. Since the gene networks in
multiple tasks are highly related, we often estimate multiple precision matrices
collectively. The multi-task Graphical Lasso could borrow strength across tasks
and reduce the variance of the estimates [19]. There have been some recent work
on the multi-task Graphical Lasso [3,12,24,27], but they assume that the sets of
variables across tasks are identical and the nonzero patterns in precision matrices
are similar across multiple graphs. This is not always the case in the real world
where each task could have its own associated variable set. For instance, our
tasks are to estimate gene regulatory networks for multiple diseases collectively,
but sets of genes involved may not be identical across these diseases. We try to
consider multiple sets of variables in multiple tasks.

It is not clear how to jointly solve tasks with different variable sets, but there
is a key observation that variables are often accompanied by attributes that
might help. For example, each gene is associated with attributes, such as gene
families, pathways and related-diseases. In this paper, we study the problem
of multi-task attributed Graphical Lasso, where the goal is to simultaneously
estimate multiple graphs by exploiting the relationship between attributes and
graph structures as illustrated in Fig. 1.

Despite the significance, the multi-task attributed Graphical Lasso is highly
challenging due to:
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(a) Graphical Lasso [7]

Observations

Task 2

Task 1

1
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3

4

Similar Nonzero Patterns

Precision Matrices

Similar Structures
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34
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(b) Multi-task Graphical Lasso [3,12,24,27]

Observations Precision Matrices Corresponding Graphs

Attributes Inverse Covariance Matrices 
 of Projected Attributes

Projection LogDet Divergence Minimization

Di erent Sets of Variables

(c) Multi-task Attributed Graphical Lasso (this paper)

Fig. 2. (a) Graphical Lasso estimates a single precision matrix and the corresponding
graph from observations of variables. (b) Multi-task Graphical Lasso estimates graphs
jointly from multiple sets of observations under assumption that the nonzero patterns in
precision matrices should be similar. (c) Multi-task attributed Graphical Lasso accepts
attributes as side information and supports different sets of variables across tasks. It
assumes that the structures of graphs are related to the attributes of variables.

– Heterogeneity of Variables: Since the sets of variables are not necessarily
identical across tasks, the existing methods based on the assumption that
the similar nonzero patterns in precision matrices are no longer applicable.
It is challenging to share information across tasks with heterogeneous sets of
variables to improve the quality of estimates.

– Relations between Attributes and Graphs: Previous methods do not
utilize the attributes and infer the graphs by only using observations of vari-
ables. But in attributed graphs, connectivities between variables are also influ-
enced by their attributes. It is challenging to define the relationship between
attributes and graphs. Besides, how to inject attributes into the multi-task
framework is unclear.
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To address these issues, we present a novel method called MAGL (Multi-task
Attributed Graphical Lasso), which uses the LogDet divergence [18] to build a
connection between structures and attributes. Multiple precision matrices and a
projection matrix are simultaneously optimized so that the �1-penalized negative
log-likelihood is minimized, meanwhile the LogDet divergence between the pre-
cision matrix of graphs and the inverse covariance matrix of projected attributes
in each task is also minimized. Since the information is shared indirectly through
the projection matrix, our formulation supports heterogeneous sets of variables.

We illustrate the differences between our proposal and existing related prob-
lem settings in Fig. 2. The main contributions of our paper are as follows: (1)
We study the problem of multi-task attributed Graphical Lasso, and incorpo-
rate attributes into the framework of multi-task Graphical Lasso by using the
LogDet divergence. (2) We propose an efficient algorithm to solve MAGL using
block coordinate descent and augmented Lagrangian method. (3) The conducted
experiments illustrate the effectiveness of the proposal.

2 Problem Formulation

In this section, we briefly review some related concepts and notions. We then
formulate the problem of multi-task attributes Graphical Lasso.

• Notations: In this paper, � stands for the set of all real numbers. The space of
symmetric matrices is denoted by Sn. The cone of positive semi-definite matrices
is denoted by Sn

+, and its interior is Sn
++. ‖X‖1 =

∑
i,j |Xij | is the element-wise

�1 norm. ‖X‖2F =
∑

i,j X2
ij is the squared Frobenius norm. Tr(·) and det(·)

denote the trace and the determinant of a matrix respectively. σ(X) returns all
singular values of X. 1{condition} is the indicator function.

2.1 Preliminaries

Graphical Lasso: Assume we have a set of samples X ∈ �p×n drawn i.i.d. from
a p-variate Gaussian distribution: xj ∼ Np(0, Σ), j = 1, . . . , n, where Σ ∈ Sp

++,
and xj is the j-th column of X. A natural way to estimate the precision matrix
Θ = Σ−1 is via maximum log-likelihood estimation (MLE). The log-likelihood
function takes the form (up to a constant) l(S,Θ) = log detΘ − Tr(SΘ), where
S = 1

nXXT ∈ Sp
+ is the sample covariance matrix. However, the MLE fails

when p > n because S becomes singular. Even if p � n and S is not singular,
S−1 is usually dense. To obtain a meaningful estimate, the �1 regularization has
been employed to induce sparsity. This leads to the sparse inverse covariance
matrix estimation problem, also known as Graphical Lasso (GLasso) [7]: minΘ −
l(S,Θ) + λ‖Θ‖1, where λ > 0 is an �1 regularization parameter.

LogDet Divergence: The LogDet divergence [18] is proposed to measure the
“closeness” between two matrices X,Y ∈ Sp

++. It is defined as

Dld(X,Y ) = Tr(XY −1) − log det(XY −1) − p.
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The LogDet divergence is non-negative, and Dld(X,Y ) = 0 if and only if X = Y .
It is convex in the first argument. It has been shown [4] that the KL divergence
between two multivariate Gaussian distributions with the same mean vector,
N (μ,Θ−1) and N (μ,Ω−1), is proportional to the LogDet divergence between
the corresponding precision matrices:

KL
(N (μ,Θ−1),N (μ,Ω−1)

)
=

1
2
Dld(Θ,Ω).

2.2 Multi-task Attributed Graphical Lasso

Consider that we are given K � 2 tasks, each consisting of not only variables’
activities Xk ∈ �pk×nk , but also attributes Ak ∈ �pk×m, where the i-th row of
Ak is the i-th variable’s attributes in the k-th task. The samples within each task
Xk are identically distributed with a pk-variate Gaussian distribution with zero
mean and covariance matrix

(
Θk

)−1 ∈ Spk
++. Further we assume that the struc-

tures of graphs are influenced by the variables’ attributes. We wish to borrow
information across the K tasks to estimate the K precision matrices jointly.

For notational simplicity, we assume that pi = p and ni = n ∀i, but our
formulation and algorithm can be easily adapted to the general setting. We
formulate the problem of multi-task attributed Graphical Lasso (MAGL) as

min
Θk,U

1�k�K

K∑

k=1

[−l
(
Sk, Θk

)
+ λ1‖Θk‖1

]
+ λ2

K∑

k=1

Dld

(
Θk, Ωk

)
+

λ3

2
‖U‖2F , (2.1)

where Ωk =
(
εI + AkUUT (Ak)T

)−1, and U ∈ �m×d is a projection matrix from
a m-dimensional input space to a d-dimensional output space. λ1, λ2, λ3, ε > 0
are the model parameters. The first part in the objective function is the
sum of K GLasso problems. We view the projected attributes AkU ∈ �p×d

as d samples drawn from the Gaussian distribution Np

(
0, (Ωk)−1

)
. Ωk =

(
εI + AkUUT (Ak)T

)−1 is the estimate of the inverse of the precision matrix,
where ε is used to make it non-singular. Now, Dld(Θk, Ωk) is the KL divergence
between the two Gaussian distributions. By this means, we build a connection
between the structures of graphs and the variables’ attributes. We also use the
squared Frobenius norm of U to prevent overfitting. As illustrated in Fig. 2(c),
the Problem2.1 finds K precision matrices and a projection matrix that mini-
mize the negative log-likelihood of data, and meanwhile minimize the divergence
between the precision matrices of data and projected attributes in each task.

3 Methodology

We propose an algorithm based on block coordinate descent to alternatively
update {Θk}K

k=1 and U until convergence. Subproblems then are solved by the
Augmented Lagrangian Method (ALM).
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Algorithm 1. Multi-task Attributed Graphical Lasso (Problem 2.1)
Require: {(Sk, Ak)}K

k=1, d, λ1, λ2, λ3 > 0, ε = 0.01, ρ0 = 2, γ = 1.05
1: Randomly initialize U
2: repeat
3: Solve Problem 3.1 for {Θk}K

k=1

4: Initialize Y k = 0, ρ = ρ0

5: repeat
6: Solve Problems 3.3 and 3.4 for {Zk}K

k=1

7: Solve the linear system 3.5 for U
8: Update Y k := Y k + ρ(Zk − ÃkU)
9: Update ρ := γ · ρ

10: until convergence
11: until convergence
12: return {Θk}K

k=1, U

Update Θk: To update {Θk}K
k=1, with U fixed, we can decompose the Prob-

lem 2.1 into K independent parts (suppressing superscript k for simplicity):

argminΘ −l(S,Θ) + λ1‖Θ‖1 + λ2Dld(Θ,Ω) = argminΘ −l(S̃, Θ) +
λ1

1 + λ2
‖Θ‖1,
(3.1)

which is a Graphical Lasso problem with a scaled and shifted covariance matrix

S̃ =
1

1 + λ2

[
S + λ2

(
εI + AUUT A

)]
.

This problem can be seen as a “supervised” Graphical Lasso since the LogDet
term hopes two distributions to be similar. Since S̃ is positive semi-definite,
Problem 3.1 can be solved by most classical Graphical Lasso solvers efficiently
[2,15,21,29].

Update U : The Problem 2.1 with {Θk}K
k=1 fixed can be re-organized into

min
U

K∑

k=1

[− log det(I +
Ak

√
ε
UUT

(
Ak

√
ε

)T

) + Tr
(
(Ak)T ΘkAkUUT

)
]

+
λ3

2λ2
‖U‖2F .

(3.2)

Though Problem3.2 is not convex, we could use the Augmented Lagrangian
Method (ALM) to solve it effectively. It can then be rewritten as

min
Zk,U

1�k�K

K∑

k=1

[− log det
(
I + Zk(Zk)T

)
+ Tr

(
HkUUT

)]
+

λ3

2λ2
‖U‖2F ,

s. t. Zk = ÃkU,
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where Zk ∈ �p×d are auxiliary variables, and Hk = (Ak)T ΘkAk, Ãk = Ak√
ε
. The

augmented Lagrangian function is given by

Lρ

(
U, {Zk}, {Y k})

=
K∑

k=1

[− log det
(
I + Zk(Zk)T

)
+ Tr

(
HkUUT

)

+ Tr
(
(Y k)T (Zk − ÃkU)

)
+

ρ

2
‖Zk − ÃkU‖2F

]
+

λ3

2λ2
‖U‖2F ,

where ρ > 0 is a penalty parameter and Y k ∈ �p×d are dual variables. Solving
Problem 3.2 is equivalent to minimizing Lρ

(
U, {Zk}, {Y k})

with a sufficiently
large ρ. In practice, we minimize {Lρt

}∞
t=0 iteratively with a monotonic increasing

sequence {ρt}∞
t=0 satisfying lim

t→∞ ρt → ∞.

Given the initial U0, Z
k
0 , Y k

0 , ρ0, we do the following block coordinate updates:
Step 1: Compute optimal {Zk

t+1} with Ut and {Y k
t } fixed. The Lρt

is separable
w.r.t Zk, so minimizing Lρt

over Zk takes the form (suppressing k) of

argmin
Z

− log det(I + ZZT ) +
ρt

2
‖Z − (ÃUt − 1

ρt
Yt)‖2F . (3.3)

The above problem can be converted to a set of scalar minimization problems
using the following theorem [17]:

Theorem 1. For unitarily invariant function F (Z) = f ◦ σ(Z), assuming
the singular value decomposition of R ∈ �p×d is R = UΣRV T , ΣR =
diag({σR,i}min(p,d)

i=1 ), the optimal solution to the problem

min
Z

F (Z) +
ρ

2
‖Z − R‖2F

is Z� = UΣ�
ZV T , with Σ�

Z = diag({σ�
i }min(p,d)

i=1 ) obtained by solving scalar min-
imization problems

σ�
i = argmin

x
f(x) +

ρ

2
(x − σR,i)2, i = 1, . . . ,min(p, d). (3.4)

Since F (Z) = − log det(I+ZZT ) = −∑min(p,d)
i=1 log(1+σ2

Z,i), F (Z) is a unitarily
invariant function with f(σZ,i) = − log(1 + σ2

Z,i), where σZ,i is the i-th singular
value of Z. By checking the gradient equation of Problem3.4, we can find that
the optimal σ�

i is the non-negative root of the cubic equation:

g(x) = x3 − σix
2 + (1 − 2

ρt
)x − σi = 0,

where σi ≥ 0 is the i-th singular value of ÃUt− 1
ρt

Yt. Observe that there exists at
least one non-negative root. Besides, by checking the discriminant of the cubic
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(a) GroundTruth (b) FMGL (c) PathGLasso (d) MAGL

Fig. 3. The precision matrices learned by three comparing methods.

equation, we can find that the equation g(x) = 0 only has one real root if ρt ≥ 2
or a triple root 0 if ρt = 2 and σi = 0. Therefore, Problem3.4 has a unique
optimum if ρt ≥ 2, so does Problem 3.3.

Step 2: Compute optimal Ut+1 with {Zk
t+1}, {Y k

t } fixed. The gradient equa-
tion is

[
∑

k

(
2Hk + ρt(Ãk)T Ãk

)
+

λ3

λ2
I

]

Ut+1 =
∑

k

[
(Ãk)T (Y k

t + ρtZ
k
t+1)

]
. (3.5)

Thus the optimal Ut+1 can be solved from this linear system.
Step 3: Update the dual variables:

Y k
t+1 := Y k

t + ρt(Zk
t+1 − ÃkUt+1), ∀k.

Step 4: Update the penalty parameter ρt+1 = γ · ρt, where γ > 1.
The algorithm for MAGL is summarized in Algorithm1.

4 Experiments

4.1 Data Collection

We evaluate the proposed method on real-world datasets and synthetic datasets:

• DBLP is a subset of a bibliographical network. Following settings in [23],
we extracted 20 conferences and top-5000 authors among 4 areas from 2006 to
2015. After removing stop words in paper titles, we get 679 frequent terms as
the vocabulary to generate bag-of-words representations as authors’ activities.
Here we assume the life cycle of each author is 5 years, i.e., the length of the
PhD program. Given a year, each author is accompanied by a one-hot attribute
vector of length 5, which indicates the stage he was in. The tasks are to estimate
connections among authors in each year.

• AML contains two groups of gene expression levels of AML (acute myeloid
leukemia) studies [8,11] used in [9]. Each gene is categorized into at least one
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pathway, which is used as its attributes. Specifically, the j-th attribute of the
i-th gene Aij = 1 if the gene is in the j-th pathway, otherwise Aij = 0.

The generative method of synthetic data is as follows: given the number
of tasks K, the number of variables p, the number of observations n, and the
number of classes m, first we generate variables’ classes in two ways:

• Dataset-1 (Ordered): We assign a random integer c1i ∈ {c ∈ N| − �m/2 �
c � m} to each variable as its class in the first task. For the k-th (k > 1) task,
the i-th variable’s class is randomly picked in the set ck

i ∈ {ck−1
i , ck−1

i + 1}.

• Dataset-2 (Unordered): ck
i ∈ {c ∈ N|1 � c � m} is always randomly picked

for all tasks. The i-th variable’s attribute vector in the k-th task ak
i is a vector

of all zeros, except that the ck
i -th element is 1 if 1 � ck

i � m. The element
of a precision matrix

(
Σk

)−1

ij
is nonzero with the probability (4−t)p∑

u,v 1{δk
uv=t} if

δk
ij = t ∈ {0, 1, 2}, otherwise p∑

u,v 1{δk
uv≥3} , where δk

ij = |ck
i − ck

j |. By this means,
the number of nonzero off-diagonal elements in each precision matrix is about
10p. We calculate the sample covariance matrix Sk using n samples.

Dataset-1 simulates the case that there is a natural order among multiple
tasks, and tasks share a common set of variables, while Dataset-2 does not
assume the identical variable sets nor orderliness among tasks.

4.2 Compared Methods

To validate the effectiveness of our proposal, we test the following methods: (1)
GLasso [7] is the vanilla Graphical Lasso. We fit a GLasso model for each task
separately. (2) PathGLasso [9] takes a sample covariance matrix and a set of
pathways as input. It assumes that a pair of variables will not be connected if
they do not participate together in any pathways. We fit a PathGLasso model
independently for each task. (3) FMGL [27] jointly estimates multiple tasks
of Graphical Lasso using a sequential fused �1 penalty for adjacent precision
matrices. It requires that the tasks have a natural order. (4) JGL [3] jointly
estimates multiple tasks of Graphical Lasso under the assumption that all graphs
have similar non-zero patterns by using fused penalty or group lasso penalty. (5)
MAGL is our proposal, which makes use of attributes and jointly estimates
multiple tasks. All comparing methods have a parameter λ1 for the �1 penalty.
FMGL and JGL have an extra parameter λ2 to weight the penalty terms. MAGL
uses λ2 to weight the LogDet divergence term and λ3 for regularization.

4.3 Experiment Settings

To test whether these methods can correctly recover the nonzero patterns and
fit the data distributions, we use F1 score and Relative Log-likelihood as the
evaluation metrics. The larger the value, the better the performance.

To ensure a fair comparison, the parameter λ1 is searched using the bisection
technique to make the number of edges in the estimated graphs approximately
equal to the number of edges in the true graphs. The λ2 for FMGL, JGL and
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MAGL is determined by cross validation. Besides, for MAGL, we simply let
the dimension of the output space of projection d = 100, and the regulariza-
tion parameter λ3 = 1 throughout the experiments. Other default values for
algorithm parameters are: ε = 0.01, ρ0 = 2, γ = 1.05.

Table 1. Results on Dataset-1.

K m p F1↑ Log-likelihood (%)↑
GLasso PathGLasso FMGL JGL MAGL GLasso PathGLasso FMGL JGL MAGL

5 3 500 0.3375 0.3375 0.3408 0.3419 0.3423 1.2412 1.2412 1.2502 1.2426 1.2546

1000 0.4256 0.4321 0.4302 0.4297 0.4372 1.1843 1.2264 1.1977 1.1913 1.2268

5 500 0.3325 0.3477 0.3365 0.3321 0.3524 1.2116 1.2234 1.2222 1.2086 1.2416

1000 0.4222 0.4396 0.4286 0.4286 0.4410 1.1848 1.2020 1.1977 1.2004 1.2235

10 500 0.3248 0.3375 0.3280 0.3273 0.3345 1.2421 1.2647 1.2554 1.2517 1.2863

1000 0.4124 0.4301 0.4167 0.4138 0.4352 1.2243 1.2783 1.2348 1.2274 1.2875

10 3 500 0.3434 0.3435 0.3499 0.3499 0.3543 1.1182 1.1181 1.1430 1.1427 1.1441

1000 0.4192 0.4282 0.4264 0.4236 0.4425 1.1201 1.1465 1.1442 1.1305 1.1523

5 500 0.3381 0.3526 0.3447 0.3426 0.3521 1.1191 1.1450 1.1401 1.1330 1.1487

1000 0.4012 0.4105 0.4100 0.4081 0.4237 1.1457 1.1683 1.1732 1.1611 1.1795

10 500 0.3401 0.3532 0.3448 0.3430 0.3629 1.2343 1.2394 1.2481 1.2398 1.2450

1000 0.3877 0.3970 0.3923 0.3891 0.4075 1.2342 1.2653 1.2514 1.2410 1.2828

4.4 Experiment Results

Following the settings in literatures [3,27,28], we only show numerical results
on synthetic datasets, since ground truth in real datasets is hard to obtain. For
example, the network structure in DBLP does not correspond to its Gaussian
graphical model. Case studies on real-world datasets are conducted instead.

We first summarize our findings on synthetic data. We show the averaged
result of 5 runs with different random seeds for each experiment.

Before we show the quantitative results, we manually generate a toy example
and show the learned Θ1 in Fig. 3. Because FMGL, GLasso and JGL show the
similar patterns, we only show the result of FMGL. We can see that in the ground
truth, most non-zero elements appear on the diagonal blocks. FMGL cannot cap-
ture the block structures, and thus performs poorly. For PathGLasso, pathway
constraints are employed so that non-zeros elements on off-diagonal blocks are
not allowed. Our proposal, MAGL, learns a precision matrix that is closest to
the ground truth because block structures are revealed by finding a projection
matrix across tasks. Since MAGL does not constrain non-zero patterns, elements
on off-diagonal blocks are also successfully recovered.

Our first set of experiments are conducted on the synthetic Dataset-1. The
results are shown in Table 1. As we can see, MAGL performs well in most cases.
This is because our proposal considers the relations between attributes of vari-
ables and linkage structures among variables, and shares information across tasks
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Table 2. Results on Dataset-2.

K m p F1↑ Log-likelihood (%)↑
GLasso PathGLasso MAGL GLasso PathGLasso MAGL

5 3 500 0.3318 0.3318 0.3576 1.2449 1.3013 1.3143

1000 0.4170 0.4341 0.4346 1.1842 1.2182 1.2216

5 500 0.3300 0.3378 0.3401 1.2247 1.2348 1.2553

1000 0.4136 0.4372 0.4448 1.1704 1.2361 1.2642

10 500 0.3237 0.3306 0.3294 1.2334 1.2456 1.2877

1000 0.4073 0.4249 0.4293 1.2260 1.2774 1.2831

10 3 500 0.3404 0.3404 0.3541 1.1304 1.1414 1.1568

1000 0.4117 0.4188 0.4332 1.1217 1.1451 1.1532

5 500 0.3321 0.3391 0.3448 1.1079 1.1101 1.1200

1000 0.3986 0.4027 0.4163 1.1478 1.1698 1.1741

10 500 0.3350 0.3516 0.3606 1.2275 1.2797 1.2859

1000 0.3785 0.3999 0.4003 1.2280 1.2331 1.2453

to improve the quality of estimates. FMGL does not perform well due to the fact
that the sequential fused �1 penalty only considers the values in the adjacent pre-
cision matrices and may hardly capture the global property. Another multi-task
method, JGL, performs worse than GLasso in some cases, due to the inappropri-
ate assumption, i.e., similar non-zeros patterns across tasks. We can notice that
due to the generative methods of datasets and pathways, by excluding a large
number of impossible edges, PathGLasso gains a huge advantage when m is large
w.r.t F1. Nevertheless, as illustrated in Fig. 3, missing elements on off-diagonal
blocks lower the log-likelihood scores.

The experimental results on Dataset-2 are shown in Table 2, which reveals
the similar patterns. FMGL and JGL are not tested here because the sets of
variables are not the same in different tasks and there is no oder among them.

Fig. 4. The influence of λ2,3.



Multi-task Attributed Graphical Lasso 681

• Parameter Study: In this subsection, we test the performance of MAGL
under different λ2 and λ3. The results are shown in Fig. 4. We can see that MAGL
is robust w.r.t. λ3. The performance is also stable w.r.t. λ2 in a wide range.
Specifically, as λ2 grows, the F1 score increases as well but after some point,
the log-likelihood decreases slightly. Recall that Problem3.1 uses a scaled and
shifted covariance matrix, and hence a large λ2 may skew the data distribution
and harm the likelihood.

4.5 Case Study

We also apply MAGL to the DBLP and AML datasets. Because of lack of the
ground truth, we only show the results qualitatively.

1 2 3 4 5

1 14.49 6.19 6.42 5.26 5.71

2 8.75 4.85 4.55 4.29

3 8.71 5.37 5.26

4 6.99 5.26

5 7.90

(a) DBLP

1 2 3 4 5

1 13.66 3.41 5.85 2.93 9.76

2 5.85 6.34 4.88 5.37

3 5.85 2.93 8.78

4 6.83 5.85

5 11.71

(b) GLasso

1 2 3 4 5

1 16.97 5.46 5.27 4.27 4.60

2 10.94 4.84 4.29 3.74

3 10.56 5.23 4.39

4 7.19 4.56

5 7.71

(c) MAGL

Fig. 5. Co-author patterns on DBLP. The number in cell (i, j) indicates how often
co-author activities happened between authors in stage-i and stage-j.

For DBLP dataset, we count the number of co-author activities happened
in different stages and show them in Fig. 5(a). For example, about 14.49% co-
authors activities are between authors who are both in the Stage-1, i.e., the 1st
year of PhD. We apply MAGL and GLasso on the dataset and count the number
of edges in the learned graphs. From Figs. 5(b) and 5(c) we can see that, with the
help of authors’ attributes (i.e., life stages), MAGL reveals co-author patterns
better.

In AML dataset, since the attributes of variables (genes) are pathways, the
i-th row of U can be viewed as the latent features of the i-th pathway. We map U
into a 2-dimensional plane using t-SNE [20] and show it in Fig. 6. As we can see,
points are clustered. Take a closer look and we find that the points in bottom-
left corner correspond to pathways in which genes are involved in Signaling, and
top-left points are pathways involved in Regulation, which means MAGL could
make use of attributes properly to help it improve the performance.
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REACTOME_SIGNALING_BY_PDGF
REACTOME_SIGNALING_BY_ERBB2
REACTOME_SIGNALING_BY_EGFR_IN_CANCER
REACTOME_SIGNALING_BY_FGFR_IN_DISEASE

REACTOME_REGULATION_OF_MITOTIC_CELL_CYCLE

REACTOME_REGULATION_OF_ORNITHINE_DECARBOXYLASE_ODC

Fig. 6. Visualization of projection matrix on AML dataset.

5 Related Work

To obtain a sparse and meaningful estimate of the precision matrix, numerous
researchers have considered the �1 penalized minimum negative log-likelihood
estimation problem [1,5–7], i.e., Graphical Lasso. A bunch of algorithms
[2,15,21,29] have also been developed. However, most of these methods suffer
from intensive computation. To make Graphical Lasso applicable in large prob-
lems, [26] and [21] derived a necessary and sufficient condition that a GLasso
problem can be decomposed into several smaller sized and independent problems.
Further, pathway Graphical Lasso [9] provides an efficient framework dealing
with overlapping blocks. Based on pathway Graphical Lasso, [30] uses a related
heterogeneous information network to provide different types of “pathways” and
learn a graph with multiple types of edges.

Recently, there are some prior works on multi-task Graphical Lasso that
learn multiple precision matrices simultaneously for related tasks. These meth-
ods differ in the choice of penalty functions: [14] suggested to estimate multiple
Graphical Lasso by replacing the �1 norm with an �1,∞ norm. [10] proposed
a non-convex hierarchical penalty. [12,13,19] assumed that there are common
(sub)structures among multiple graphs. [3] estimated multiple precision matri-
ces jointly using a pairwise fused penalty or grouping penalty. [27] considered the
case that multiple tasks have a natural order and proposed a sequential fused
penalty. A necessary and sufficient condition for the graphs to be decompos-
able is also given. [22] proposed a method on the assumption that the network
differences are introduced from node perturbations. Different from the aforemen-
tioned methods that inspected the values in precision matrices, [24] utilized the
structure information directly. However, these methods all require that the sets
of variables are the same among tasks. Besides, they only focus on the variables’
observations and cannot deal with attributed graphs.

6 Conclusion

In this paper, we incorporate variables’ attributes into the framework of multi-
task Graphical Lasso, and propose Multi-task Attributed Graphical Lasso
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(MAGL). We introduce the LogDet divergence to bridge graphs structures and
attributes so that information could be shared across multiple tasks. The experi-
ments on synthetic datasets show the effectiveness of MAGL, and the case studies
demonstrated that our method can produce a meaningful result. As for future
work, we could try other ways to connect variables’ observations and attributes.
Besides, we will consider applying our proposal to more real world applications.
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Technology Development Fund No. 19511121204, No. 19DZ1200802, and the National
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Abstract. In distributed deep learning training, the synchronization
of gradients usually brings huge network communication overhead.
Although many methods have been proposed to solve the problem, lim-
ited effectiveness has been obtained, since these methods do not fully
consider the differences of diverse layers. We propose a novel hybrid layer-
based optimization approach named Hylo to reduce the communication
overhead. Two different strategies are designed for gradient compression
of two types of layers (convolution layer and fully-connected layer). For
convolution layers, only some important convolution kernels are chosen
for gradient transmission. For fully-connected layers, all gradients are
quantized to 2 bits with an adaptive gradient threshold. The experimen-
tal results show that Hylo brings obvious accelerations for distributed
deep learning systems, while with little accuracy loss. It achieves train-
ing speedups up to 1.31× compared to state-of-the-art works.

Keywords: Distributed deep learning · Communication optimization ·
Gradient · Convolution layer · Fully-connected layer

1 Introduction

With the advent of the big data era, deep learning (DL) has become a research
hotspot in academia and industry. With the continuous increase of the scale of
convolutional neural networks (CNNs) and data in DL systems, the traditional
mode of single-machine training cannot meet the requirements any more, which
results in distributed DL systems arising. Data parallelism is a major scheme for
distributed DL [1], where multiple machine nodes are used to train a network
model concurrently and each node is in charge of a part of the data-set.

There are several parameter servers (PSs) and workers [2]. Workers calcu-
late the gradient matrices locally and upload them to servers. Servers update
parameters with the aggregated gradients after collecting all the gradient matri-
ces from all workers. Data parallelism significantly improves the effectiveness of
c© Springer Nature Switzerland AG 2020
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DL on deeper and larger models [3]. However, with the increase of the number
of nodes, gradient exchange and parameter update make network bandwidth
a serious bottleneck of the distributed training, and even offset the earning of
training time savings from distributed computing.

Some efforts have been made to alleviate the communication bottleneck.
MXNET-MPI [4] proposes a generic framework supporting both PS and MPI
programming paradigms which can alleviate the communication pressure on the
server side. Poseidon [5] combines the advantages of PS and sufficient factor
broadcasting (SFB). These methods alleviate communication pressure to some
extent, but the effect is limited.

In recent years, to deploy CNNs on mobile devices, a lot of works try to reduce
the CNN model size by pruning or compressing the weights of various layers
without weakening original accuracies obviously, such as [6,7]. Similar to this
idea, some methods have been proposed to reduce traffic volume in distributed
DL through quantization or sparsification, such as [8–11]. However, these works
do not fully consider the diversification of the gradient matrices of different types
of layers and various networks.

Our proposed Hylo is a novel layer-based optimization, which takes the gra-
dient matrix characteristics of various types of layers and various networks into
account, and adopts different compression algorithms for them to reduce the
amount of gradient transmission. Hylo adaptively sparsifies and quantizes the
gradients of the convolution (CONV) layers and the fully-connected (FC) layers
with different strategies according to their different characteristics, respectively,
which can significantly reduce the DL training time with little loss of accuracy.

2 Related Work

In order to solve the communication bottleneck problem of distributed DL train-
ing, many schemes have been proposed, including various hybrid communication
strategies and methods to reduce communication traffic. The communication
traffic can be reduced by gradient sparsification and gradient quantization.

Hybrid Communication. MXNET-MPI [4] optimizes communication by
exchanging gradients with both MPI and PS. MXNET-MPI groups nodes and
synchronizes them with MPI within a group. A master is specified for each group
to communicate with the servers to update parameters, which can alleviate the
communication pressure on the server side to some extent. However, when there
is a particularly large number of training nodes, the amount of gradients needed
to be transmitted is still large.

Poseidon [5] introduces a hybrid communication strategy that combines the
advantages of PS and SFB by being aware of both the mathematical prop-
erty of DL models and the structures of computing clusters. SFB decomposes a
gradient matrix into two vectors called sufficient factors (SFs). SFs are broad-
casted to servers, which then reconstruct the gradient matrix locally. The matrix
property of CONV layer does not allow the matrix to be decomposed into two
vectors, so the gradient matrix of CONV layer can only be transmitted with PS.
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However, the gradient matrix of FC layer can be decomposed, so Poseidon
chooses the way with less communication overhead in PS and SFB to trans-
mit the gradients of FC layers.

Gradient Sparsification. Gradient sparsification reduces communication over-
head by selecting partial gradients in the gradient matrix for transmission.

Strom [10] proposes a gradient sparsification method for FC layers. Only
gradients larger than a constant threshold are transmitted to servers. However,
it is difficult for users to choose a suitable threshold, while it is not appropriate
to maintain the same threshold throughout the training. To solve this prob-
lem, Dryden et al. [12] propose a sparsification approach by setting a suitable
threshold to keep a fixed proportion of gradients to be transmitted. This tech-
nique requires to sort the entire gradient matrix for gradient selection, which is
a computationally expensive task. Only the top k% gradients are transmitted to
servers. Aji and Heafield [8] also transmit a proportion of gradients, but sample
only 0.1% to 1% of the gradients and perform top-k selection on these samples to
estimate the threshold. Positive gradients and negative gradients are treated sep-
arately. Similarly, DGC [13] uses proportion-based sampling and achieves higher
sparsification ratio. Only 0.1% of original gradients are transmitted. However,
it requires additional approaches to compensate for the loss of accuracy due to
high sparsification ratio.

Gradient Quantization. In general, the parameters of a neural network model
are represented by 32-bit floating-point numbers. Gradient quantization reduces
the space required for each gradient by sacrificing precision.

Seide et al. [9] propose a quantization scheme for gradients, which quantizes
each gradient to {0, 1}. However, it quantizes gradients column-wise over the gra-
dient matrix, so a floating-point scaler is needed for each column which increases
communication overhead. DoReFaNet [11] reduces the bit widths of gradients
and weights to 2 and 1, respectively. DoReFaNet reduces both the overhead of
gradient communication and weight communication, but it has obvious accu-
racy loss. Huilgol [14] proposes a quantization method named 2Bit, which has
been accepted by MXNet officially and integrated into the main project. 2Bit
quantizes gradients to {−1, 0, 1} through a constant threshold. However, it is not
easy to select a suitable threshold and it is inappropriate to use a fixed threshold
throughout the training process. Also using 2-bit gradients, TernGrad [15] quan-
tizes gradients to {−1, 0, 1} by making sure that the mean of the gradients before
and after quantization is unchanged. However, it takes more time to quantize
the gradients than 2Bit.

3 Hybrid Communication Optimization Based on Layer
Characteristics

Different from the previous works, our proposed Hylo takes advantage of the
characteristics of different layers and different networks to optimize gradient
sparsification and quantization.



688 W. Jiang et al.

Kernel matrix(ni ni+1 k k)
of the i-th convolution layer

hi

wi
wi+1

hi+1ni

ni+1

Mi+1
Mi

Fig. 1. The process of transforming the input feature maps into the output feature
maps

It pays main attention to build a new kernel-level sparsification approach for
CONV layers and an adaptive quantization method for FC layers according to
their characteristics, respectively. Namely, the selection of the two approaches is
decided by the type of the specified layer. For CONV layers, just some impor-
tant kernels are selected, of which the gradients are transmitted. This strategy
greatly reduces the computation time compared to sorting the whole gradient
matrix. For FC layers, all gradients are quantized to 2 bits with an automat-
ically adjustable threshold according to the values of gradients. Hylo has less
side-effect on training accuracy and no additional approaches are required to
compensate for the degradation. Benefiting from above hybrid layer-based opti-
mization, obvious better performance can be obtained.

We will discuss them in detail in the following subsections.

3.1 Kernels Selection for Convolution Layers

We sort the kernels in each CONV layer according to the means of the corre-
sponding absolute values of gradients in these kernels, which can indicate the
degrees of the importance of the kernels for the current round of update. Then
the gradients of some important kernels are transmitted.

A CONV layer consists of multiple filters, each with the same number of
CONV kernels. Through CONV operations, input feature maps are transformed
into output feature maps. As shown in Fig. 1, hi/wi is the height/width of the
input feature maps Mi. ni denotes the number of input channels for the i-th
CONV layer. The i-th CONV layer ∈ R

ni×ni+1×k×k consists of ni+1 3D filters ∈
R

ni×k×k, each of which is composed of ni 2D CONV kernels ∈ R
k×k. Each filter

generates one feature map. The i-th CONV layer transforms the input feature
maps Mi ∈ R

hi×wi×ni into the output feature maps Mi+1 ∈ R
hi+1×wi+1×ni+1 [7].

Figure 2 shows the absolute values of gradients of two CONV kernels in the
first CONV layer of Inception-BN trained on CIFAR10. K1 and K2 denote the
two CONV kernels ∈ R

3×3, respectively. It is observed that the absolute values of
gradients in the same CONV kernel are close to each other and of the same order
of magnitude, while the absolute values of gradients in different CONV kernels
may be significantly different. The similar rule also exists in other CONV layers.
Based on this observation, the importance of a CONV kernel can be represented
by the mean of all absolute values of gradients in the CONV kernel. The gradients
can then be filtered in units of CONV kernel.
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Fig. 2. The absolute values of gradients of two CONV kernels in the first CONV layer
of Inception-BN trained on CIFAR10 in the first epoch

For a CONV layer, we evaluate the importance of the gradients of each
CONV kernel by the mean of the absolute values of gradients in this CONV
kernel. The higher the mean, the greater the influence of the gradients of the
CONV kernel is. According to the importance, we sort all CONV kernels, and
only transmit gradients of the top k% CONV kernels. The rest gradients are
cached and accumulated for the next iteration to maintain the training accuracy
in high level. As for the choice of k, it will be discussed in detail later.

Figure 3 shows a concrete illustration. The white squares represent the CONV
kernels with gradients of zeros, the dark blue squares represent the most impor-
tant k% CONV kernels, and the light blue squares represent the least important
1 − k% CONV kernels. The latest gradients of each kernel are accumulated into
the corresponding kernel in the residual accumulation matrices and used to eval-
uate the importance of the kernels in this iteration. The gradients of the top k%
kernels are transmitted to the servers and used to update the weights of the
corresponding kernels. The gradients of the remaining kernels are cached in the
residual accumulation matrices for the next iteration.

3.2 Layer-Adaptive Transmission Rate for Convolution Layers

Blindly pursuing a large compression ratio is not a good idea for DL training
acceleration. When compression ratio reaches a certain degree, as the number of
gradients to be transmitted is already small, which produces little communica-
tion traffic, further increasing compression ratio can not benefit the acceleration
ratio much any more, but would lead to more accuracy loss.

In a CNN, the scales of the parameter matrices of different CONV layers
vary largely. Generally, there is an increase trend along with the serial number
of the corresponding layer increasing, as shown in Fig. 4. Moreover, the scales of
both CONV layers and FC layers of networks trained on different data-sets also
vary a lot. The Inception-BN trained on ImageNet has 33 layers, of which each
has more than one hundred thousand parameters, while Inception-BN trained
on CIFAR10 has only 5 such layers.
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Fig. 4. The scales of the parameter matrices of CONV layers of Inception-BN trained
on CIFAR10

For the layers with a small parameter matrix, generally, communication opti-
mization would not bring obvious speedup. The communication cost of these
layers is considerable low and therefore the reduced communication time by the
communication optimization can be ignored. If considering the extra calculation
cost generated by the optimization, the benefit from the optimization becomes
more unattractive, especially when training a network with a large number of lay-
ers and a small number of parameters in each layer. For example, when training
ResNet-164 on CIFAR10, there are about 500 layers requiring gradient exchange,
but only 3.8% of these layers have more than thirty thousand parameters.

Therefore, we set a threshold CommLT to filter the layers for communication
optimization. Only the layers of which the number of parameters are larger than
CommLT are optimized. In other words, the transmission rates of the other
CONV layers are 100%.

Generally, gradients are transmitted layer by layer. When selecting CONV
kernels for gradient transmission, it is unreasonable to use the same top k% for
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different layers in a network or layers in different networks. Therefore, we build
a layer-adaptive k for each layer according to the number of parameters. Our
goal is to select an appropriate k to make the number of gradients transmitted
reduced to a sufficiently small value GradTN after the CONV kernels being
selected. A further smaller k would not lead to greater acceleration. Generally,
the larger the number of parameters in the layer, the smaller k is. Suppose pi is
the number of parameters in the i-th layer. The value of ki of the i-th layer is
decided by

ki = 100GradTN/pi (1)

The values of CommLT and GradTN for different networks are decided
according to experience. These values also potentially depend on network band-
widths. In the future, we will exploit an adaptive approach to determine the
values of CommLT and GradTN .

3.3 Quantization for Fully-Connected Layers

For networks trained on small data-set, such as CIFAR10 and CIFAR100, each
usually has only one FC layer. Since the parameter scale of this FC layer is not
large, we do not optimize communication for this FC layer.

Networks trained on ImageNet often have FC layers with large parameter
scales. Therefore, we quantize these layers. Due to the large number of param-
eters in these FC layers, it is computationally expensive for sorting the corre-
sponding gradients and setting a threshold for choosing some important gra-
dients for transmission, as we do for CONV layers by applying sparsification.
Quantization becomes a better choice. We quantize each gradient of the FC
layers to three numerical {−1, 0, 1} by a specified threshold, and use two bits
to encode it. The gradients of which the absolute values are smaller than the
threshold are accumulated to a residual accumulation matrix. The residual accu-
mulation matrix is used for new gradients in the next iteration. A similar idea has
been implemented in MXNet. Different from it, our proposed approach applies
an automatically adjustable threshold instead of a fixed one.

For the threshold, we adjust it according to the variation of gradients as the
training goes on. Let g denote the gradient matrix. abs(·) returns the absolute
value of the included element. Figure 5 shows the variation trends of the means of
abs(g) of the FC layers from Inception-BN and ResNet-164 trained on CIFAR10,
respectively. Both the means of abs(g) excessively decrease as the epoch goes up.
Trainings on ImageNet follow the same rule. Therefore, changing the threshold
for quantization to meet the variation of the gradients is necessary.

Concretely, we obtain a 2-bit compressed gradient gci by

gci =

⎧
⎨

⎩

00 abs(gri) < mean(abs(gr ))
01 gri ≥ mean(abs(gr ))
11 gri ≤ −mean(abs(gr ))

(2)

where gr denotes the new residual accumulation matrix of the FC layer which
is accumulated by the latest gradients and the gradients in the residual accumu-
lation matrix of the last iteration, and gri is an element of gr ; gc denotes the
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Fig. 5. The means of abs(g) for the FC layers of Inception-BN and ResNet-164 trained
on CIFAR10

compressed matrix, and gci is an element of gc . Here, mean(·) returns the mean
of all elements, and the threshold is set to the mean of abs(gr ).

When receiving the compressed matrix gc , a server decompresses it by

gdi =

⎧
⎨

⎩

0 gci = 00
mean(abs(gr )) gci = 01

−mean(abs(gr )) gci = 11
(3)

where gdi is an element of gd that is the decompressed matrix.
Figure 6 shows an example of the process flow of gradient quantization for

a FC layer. For convenience, only a 4 × 4 gradient matrix is considered. After
quantization, a quantized gradient matrix gq is obtained. Each gradient in gq can
be represented by 2 bits. After compression, the resulting 32-bit floating-point
number gc stores all the 2-bit represented gradients. The server decompresses
each element of gc to {−threshold, 0, threshold}. Obviously, there is a deviation
between the decompressed gradients and the original gradients, which will be
stored in the residual accumulation matrix for the next iteration.

4 Evaluation

The work of this paper is implemented on MXNet, and the evaluation experi-
ments are performed on a GPU cluster. First, we investigate the convergence of
Hylo in Sect. 4.1. Second, the speedup ratios are explored in Sect. 4.2. Finally,
we explore the compression ratios of data communicated at different networks
and layers in Sect. 4.3. In all experiments, Stochastic Gradient Descent (SGD)
with momentum is adopted and the momentum is set at 0.9.

The GPU cluster for our distributed DL training tasks comprises six phys-
ical machines. The hardware configurations are shown in Table 1. All machines
are connected with an Intel Corporation I350(1GbE) switch. We compare the
convergences and speedup ratios with the baseline (MXNet without any com-
munication optimization), 2Bit [14], and TernGrad [15] on some typical models.

Three typical data-sets, CIFAR10, CIFAR100, and ImageNet, are used for
our experiments. Two networks with different characteristics are trained on each
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Fig. 6. Gradient quantization for FC layers

Table 1. Hardware configurations of machines

GPU CPU Memory Network adapter

NVIDIA Tesla P100 Intel Xeon CPU
E5-2680 v4 @ 2.40 GHz

256GB Intel Corporation
I350(1GbE)

data-set. Inception-BN trained on CIFAR10 and CIFAR100 has a small number
of layers but some layers have a relatively large number of parameters. ResNet-
164 and DFN-MR have more layers but fewer parameters per layer. ResNet-50
and Inception-BN trained on ImageNet also have a large number of layers, while
most of which have a very large number of parameters. Table 2 lists details of
some training hyperparameters.

4.1 Convergence Experiments

For CIFAR10 and CIFAR100, the aforementioned four methods are applied on
each network. Table 3 lists the Top-1 validation accuracies. It shows that Hylo
converges to the similar accuracy as the baseline does, sometimes even a lit-
tle better. 2Bit and TernGrad converge to lower accuracies. Figure 7 shows the
accuracy curves with epoch as the abscissa. The accuracy curve of Hylo basi-
cally matches the one of the baseline, while 2Bit and TernGrad have poorer
accuracies.
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Table 2. Configurations of some hyperparameters

Data-set Network Epoch Base LR Adjustment of LR

CIFAR10 Inception-BN 60 0.1 Decreased by a factor of 0.94 at
each epoch until it reaches 10−8

ResNet-164 150 0.1 Decreased by a factor of 0.1 at
100th, 130th epoches

CIFAR100 Inception-BN 60 0.05 Decreased by a factor of 0.94 at
each epoch until it reaches 10−8

DFN-MR 100 0.05 Decreased by a factor of 0.94 at
each epoch until it reaches 10−8

ImageNet Inception-BN 110 0.2 Decreased by a factor of 0.94 at
each epoch until it reaches 10−8

ResNet-50 90 0.2 Decreased by a factor of 0.1 at
30th, 60th epoches
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Fig. 7. Training results with 6 workers (validation accuracy vs. epoch)

For ImageNet, we make accuracy comparisons among Hylo, the baseline, and
2Bit. Table 4 lists the Top-1 validation accuracies. Hylo converges to the similar
accuracy as the baseline does, while 2Bit converges to lower accuracy for ResNet-
50. The experimental results show that a large number of parameters in DL
networks are redundant indeed. Ignoring the gradients with small absolute values
temporarily and delaying the transmission of them until they are accumulated
to large enough values will not have obvious side-effect on accuracy. In addition,
since large transmission rates are used for layers with small parameter scales,
the training accuracies are guaranteed.
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Table 3. Comparison of Top-1 validation accuracies on CIFAR10 and CIFAR100

Data-set Network Workers Mini-batch size Training method Top-1 validation accuracy

CIFAR10 Inception-BN 2 64 Baseline 91.78%

2Bit 91.35%

TernGrad 90.85%

Hylo 91.98% (+0.20%)

6 192 Baseline 91.92%

2Bit 90.74%

TernGrad 90.32%

Hylo 91.99% (+0.07%)

ResNet-164 2 64 Baseline 94.50%

2Bit 94.13%

TernGrad 90.77%

Hylo 94.44%

6 192 Baseline 94.35%

2Bit 93.85%

TernGrad 90.39%

Hylo 94.03%

CIFAR100 Inception-BN 2 64 Baseline 71.23%

2Bit 70.88%

TernGrad 67.69%

Hylo 71.55% (+0.32%)

6 192 Baseline 70.43%

2Bit 69.39%

TernGrad 66.90%

Hylo 70.26%

DFN-MR 2 64 Baseline 67.56%

2Bit 66.72%

TernGrad 64.36%

Hylo 67.62% (+0.06%)

6 192 Baseline 67.01%

2Bit 64.12%

TernGrad 63.72%

Hylo 67.18% (+0.17%)

Table 4. Comparison of Top-1 validation accuracies on ImageNet

Data-set Network Workers Mini-batch
size

Training
method

Top-1 validation
accuracy

ImageNet Inception-BN 6 768 Baseline 69.30%

2Bit 69.41%

Hylo 69.74% (+0.44%)

ResNet-50 6 768 Baseline 73.18%

2Bit 71.96%

Hylo 73.04%
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Table 5. Speedups of Hylo with 6 workers compared to other methods

Data-set Network Speedup compared to

Baseline 2Bit TernGrad

CIFAR10 Inception-BN 2.02× 1.18× 1.25×
ResNet-164 1.52× 1.17× 1.21×

CIFAR100 Inception-BN 2.10× 1.21× 1.22×
DFN-MR 1.42× 1.08× 1.31×

ImageNet Inception-BN 2.05× 1.08× 1.22×
ResNet-50 1.95× 0.92× 1.07×

4.2 Comparisons of Training Speedups

Table 5 shows the speedups achieved by our proposed method. The values of
CommLT and GradTN are set to be optimal according to experience.

Compared to the baseline, except for ResNet-164 and DFN-MR, our proposed
Hylo can achieve approximately 2× speedup. For ResNet-164 and DFN-MR,
suffering from the low communication-to-computation ratio, which comes from
the small scale of parameters in each layer and the extremely large number of
layers, Hylo only achieves speedups of 1.52× and 1.42×, respectively.

Compared to 2Bit, except for ResNet-50, our Hylo achieves about 1.08× to
1.21× speedup. For ResNet-50, the speedup of Hylo is slightly lower than the
one of 2Bit. The main reason is that, there are several layers with a huge number
of parameters in it. Despite of the high communication-to-computation ratios of
such layers which can bring about a relatively large acceleration ratio, the top-k
selection processes of Hylo consume considerable time. In the future, we will
consider performing the top-k kernels selection on these layers with a sampling
method similar to DGC [13].

Compared to TernGrad, our Hylo achieves about 1.07× to 1.31× speedup.
Similar to 2Bit, TernGrad achieves a compression ratio of 16×, but it takes more
time to quantize gradients.

4.3 Comparisons of Compression Ratios of Data Communicated
at Different Networks and Different Layers

Table 6 shows the comparisons of compression ratios. Unlike the fixed compres-
sion ratio of 2Bit and TernGrad, the compression ratio of Hylo varies with net-
works. For small networks, the compression ratios are very small. For example,
for some networks trained on CIFAR10 and CIFAR100, the compression ratios
of Hylo are less than 5. However, Hylo achieves higher speedups than 2Bit and
TernGrad.

In fact, larger compression ratios can be applied to diverse networks with
little accuracy loss by Hylo. As shown in Table 7, CommLT and GradTN are
set to different values to change the compression ratios. With the increase of
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Table 6. Compression ratios of 2Bit, TernGrad, and Hylo

Data-set Network Compression ratio

2Bit TernGrad Hylo

CIFAR10 Inception-BN 16× 16× 6.42×
ResNet-164 16× 16× 1.42×

CIFAR100 Inception-BN 16× 16× 3.85×
DFN-MR 16× 16× 2.50×

ImageNet Inception-BN 16× 16× 7.78×
ResNet-50 16× 16× 16.96×

Table 7. Training results of 2Bit and Hylo with different CommLT and GradTN

Network Data-set Training
method

CommLT GradTN Compression Speedup Top-1
accuracy

Inception-BN CIFAR10 2Bit – – 16× 1.71× 90.74%

Hylo 50000 30000 3.78× 2.01× 91.94%

50000 10000 6.42× 2.02× 91.99%

50000 2500 8.70× 1.99× 91.85%

20000 5000 12.71× 1.93× 91.91%

20000 2500 16.53× 1.97× 91.77%

10000 2500 26.92× 1.91× 91.82%

ImageNet 2Bit – – 16× 1.89× 69.41%

Hylo 50000 20000 7.78× 2.05× 69.74%

50000 10000 12.52× 2.04× 69.55%

50000 5000 18.01× 2.05× 69.37%

30000 5000 21.41× 2.05× 69.11%

the compression ratio, the speedup of Hylo even decreases to some extent (on
CIFAR10) or keeps stable, while the accuracy of Hylo keeps relatively stable.
This indicates that higher compression ratio is not always better. We find that
for the layers with relatively small scales, it is unnecessary to compress them
too much because the numbers of parameters in these layers are already small,
and thus more compression can not save the communication time more. On the
contrary, it may incur extra calculation overhead. Therefore, we do not optimize
such layers. For example, for ResNet-164, we only make a compression ratio
of 1.42×, while can get 1.17× speedup compared to 2Bit and 1.21× speedup
compared to TernGrad. For networks trained on the large data-set ImageNet,
due to their large parameter scales, we apply large compression ratios to them.

As aforementioned, the compression ratio of our proposed Hylo is layer-
adaptive according to the number of parameters of the corresponding layer.
Figure 8 shows how the compression ratio changes. We enumerate the numbers
of parameters and corresponding compression ratios of some CONV layers of
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Fig. 8. The compression ratios and the numbers of parameters of some layers
(Inception-BN trained on ImageNet)

Inception-BN trained on ImageNet. As shown, the more parameters of a layer,
the greater the compression ratio Hylo assigns, while 2Bit and TernGrad always
maintain a compression ratio of 16×. This strategy benefits the speedup more.

5 Conclusion

We propose a novel hybrid layer-based optimization approach named Hylo to
reduce the communication overhead of distributed DL systems. By distinguish-
ing and analyzing the difference of gradient matrices of different types of layers,
we apply differentiated communication optimization strategies for them, respec-
tively. For CONV layers, only some important CONV kernels are selected for
gradient transmission. For FC layers, an adaptive layer-based quantization strat-
egy is applied to the gradients. Moreover, an adaptive mechanism for deciding
transmission rate according to the scales of the layers is designed for all layers to
pursue high comprehensive performance. Experimental results show that Hylo
achieves up to 1.31× speedup and higher accuracy compared to TernGrad. In
fact, the learning curves of Hylo can match that of the baseline very well. In the
future, we will consider adaptive adjustment for transmission rate based on the
variation of communication bandwidth, and take model pruning into account for
higher comprehensive performance of DL systems.
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Abstract. Event information is of great value, but the exploitation of
it generally relies on not only extracting events from the text, but also
figuring out the relations among events and organizing them accordingly.
In this paper, based on a more flexible and practical type of event rela-
tion called the plot relation, we study the method of automatic event
relation recognition. Specifically, we propose a local prediction method
by using diversified linguistic and temporal features. Furthermore, we
design a joint reasoning framework, in which we leverage the informa-
tion of participants and locations, and add global constraints to further
improve the performance. Finally, we transform the proposed model into
integer linear programming (ILP) to obtain the global optimum. Our
experiments demonstrate that our method significantly outperforms all
the existing methods.

Keywords: Plot relation · Joint reasoning · Integer linear
programming

1 Introduction

There exists a massive amount of event information in news, interviews and
other verbal documents, recording various kinds of things about certain people
or topics that happen at certain times and places. This information is of great
value, as it can be used in public opinion monitoring, information analysis, emer-
gency early-warning and more promising applications. Many of these real-world
applications require the streams of events as the input, which indicates that in
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addition to extracting events from the text, figuring out the relations among
events and organizing them accordingly are also indispensable.

There are several types of relation that can be used to depict the relations
between a pair of events. Temporal relation means the order in time (i.e. before
and after), organizing events by which leads to a timeline model [9,10,17,18].
However, the sole rule is incapable to represent the complicated event relations.
Causal relation [8,11,12,14] labels one event as the cause and the other as the
effect, but an explicit causal relation does not always exist between every two
events. In addition, since causal relation has no absolute connection with the
event development process, the event streams ordered by causal relation do not
guarantee the accordance with the event development process. In a word, tem-
poral relation and causal relation seem inadequate to depict the complex event
relations in our natural languages and weak to adapt to our needs in the diverse
applications.

In order to solve these problems, a novel relation type called plot relation
has been proposed [19]. It regards events as plots of a story, and describes the
changes between two plots with rising and falling. The value of the plot relation is
determined by not only direct structural relations such as temporal relation and
causal relation, but also other indirect relations such as co-occurrences, making
this type of relation more general and flexible, capable to express more complex
relations than the former two. Besides, its idea to link events into stories is nat-
urally in accordance with the way human understand and organize information,
thus more reasonable and practical for the various real-world applications. The
plot relation between events is also named as PLOT LINK [2], and organizing
events by it leads to the storyline model, which can further facilitates event pre-
diction, public opinion monitoring and more high-level applications. The whole
process of storyline extraction includes 8 subtasks [2],1 and in this paper, we
mainly focus on one of the key parts, namely plot relation recognition.

Specifically, plot relation recognition aims to predict whether there is a
PLOT LINK between two event mentions as well as its type (if exists). There are
two types of PLOT LINKs, namely PRECONDITION and FALLING ACTION.
Consider two event mentions e1, e2 ∈ Me, where Me is the set of event mentions,
the direction of the PLOT LINK between them accords with their order in text,
i.e. from the former to the latter. If e1 is circumstantial to cause or enable
e2, then a PLOT LINK of type PRECONDITION holds from e1 to e2; if e1
is the (anticipated) outcome or the effect of e2, then a PLOT LINK of type
FALLING ACTION holds from e1 to e2 [3]. Note that although the plot rela-
tion is somewhat similar to the causal relation by definition, the former expresses
weak causal relation in linguistics, and is the enhanced version of the latter in
descriptive capability [1]. See the following example, where the bold words are
the event mentions.

1 The eight subtasks: relevant sentence selection, event detection, timex detection and
normalization, event participant detection, event coreference resolution, temporal
relation detection, plot relation recognition and climax event identification.
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A reporter doing interview was killed when the rioters protesting
against the government threw petrol bombs at the city hall.

We graphically illustrate the PLOT LINKs among the event mentions in
Fig. 1 with solid arrows. Take the pair (killed, threw) as an example: since killed
is the outcome of threw, the type of the PLOT LINK is FALLING ACTION.
Consider the PLOT LINK of type PRECONDITION from interview to killed :
There is no explicit causal relation between them, but the plot relation still
models it, because interview evolves to killed and this pair is valuable in event
organization. This illustrates its difference from the ordinary causal relation.

killed
(event)

protesting
(event)

threw
(event)

interview
(event)

reporter
(participant)

rioters
(participant)

city hall
(location)

FALLING_ACTION

PRECONDITION

PRECONDITION

Fig. 1. A PLOT LINK example, where solid arrows denote PLOT LINKs and dashed
lines denote associations between events and participants/locations.

Note that we also show locations participants in Fig. 1. Intuitively, the asso-
ciations between event mentions and locations/participants may help the plot
relation recognition. For example, protesting and threw share a common partici-
pant rioters, killed and threw share a common location city hall, then it is likely
that PLOT LINKs exist in the two pairs.

Inspired by this observation, in this paper, we propose a novel method of
joint reasoning to improve plot relation recognition. Our contributions include:

– We propose a local prediction method for plot relation recognition, which
leverages diversified linguistic and temporal features (Sect. 3).

– We propose a joint reasoning framework to resolve the conflicts in local pre-
diction and leverage participants and locations associated with events. We
design various constraints and convert them into integer linear programming
(ILP) to achieve the global optimum (Sect. 4).

– Our experiments on the benchmark dataset, ESC, demonstrate that the pro-
posed method significantly outperforms the baseline methods. The ablation
study shows that all the defined constraints are contributory to the perfor-
mance improvement (Sect. 5).

2 Related Work

Since the plot relation is proposed in [19], many efforts have been taken to
improve the recognition task. Caselli and Vossen build the ESC v0.9 dataset for
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evaluation of the subtasks, which contains news documents on 22 topics, and each
topic describes one certain news. They also propose 3 baseline models for plot
relation recognition. Caselli and Inel define PLOT LINK as weak causal relation
rather than strict one in linguistics, and propose a crowdsourcing method to
annotate the causal relations under their definition [1]. Besides, by comparing the
results annotated by experts and crowds, they find that under the circumstance
where the optimum threshold is adopted, the F1-scores just exceed 40%, which
indicates that the task is very complicated even for humans. Different from [1]
that uses crowdsourcing, our work does not need any manual intervention.

The current state-of-the-art performance comes from a recently proposed
method in [7]. It adds various of constraints and uses ILP for global optimiza-
tion just like ours. However, their method does not conduct joint reasoning with
other elements, while our method implements joint reasoning with participants
and locations and leverage them to further improve the performance. In addi-
tion, their method can only conduct PLOT LINK detection, i.e. predicting if a
PLOT LINK holds between two events, while our method can further conduct
PLOT LINK classification, i.e. predicting the type of the PLOT LINK, which,
according to our experiments, is much more difficult than the former one.

Except from plot relation recognition, many works concentrates on recogni-
tion of other relations, and share some common techniques with ours. Chambers
et al. propose CAEVO to recognize the temporal relations [4]. They design a
global optimization framework to aggregate results from multiple classifiers while
ensuring the transitivity rule. CATENA [13] extends the sieve-based architec-
ture from CAEVO to identify temporal and causal relations between events.
Some works consider the relation of different elements and propose joint reason-
ing frameworks to co-optimize multiple tasks. For example, Do et al. proposes a
timeline construction method that predicts not only the temporal relations but
also the event-interval relations, and adopts ILP to conduct joint reasoning [6].
Ning et al. design a joint framework for temporal and causal reasoning (TCR)
[15,16], which refines the temporal and causal consistency by setting a number
of constraints. Our method is greatly inspired by these existing methods, as we
also adopt the idea of joint reasoning and ILP, but as far as we know, we are
the first to introduce participant and location information into joint reasoning
for event relation extraction.

3 Local Prediction

In this section, we introduce the local prediction method, in which we only
make use of simple local information. Specifically, given a set of documents on
the same topic, we process one document each time, and for each pair of event
mentions in this document, we predict the PLOT LINK type. We denote all the
possible cases for a PLOT LINK by Rplot = {PRECONDITION,FALLING
ACTION,NONE}, where NONE means no PLOT LINK holds for the pair. If a
PLOT LINK rplot ∈ Rplot holds from e1 to e2, where e1, e2 ∈ Me and Me is the
set of event mentions, we write it as (e1, e2) �→ rplot. The task can be modeled as
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a three-class classification problem. The local features that we use include two
types: linguistic features and temporal features.

Linguistic Features. Following the previous work CATENA [13], we adopt
the same nine features including sentence distance, entity distance, WordNet
similarity, part-of-speech (PoS), phrase chunk, same PoS, dependency path, is
main verb and event type. Readers may refer to [13] for more details. Besides,
let Qe be the set of event mentions coreferent with event mention e, and by
definition e ∈ Qe. Given e1, e2 ∈ Me which are the pair we want to predict, we
design two extra features as follows:

– Intra-doc co-occurrence: whether there exist e′
1 ∈ Qe1 and e′

2 ∈ Qe2 that
appear in the same sentence, where e′

1 and e′
2 are both from the current

document (which e1 and e2 belong to).
– Cross-doc co-occurrence: whether there exist e′

1 ∈ Qe1 and e′
2 ∈ Qe2 that

appear in the same sentence, where e′
1 and e′

2 are both from documents except
for the current one.

Since the co-occurrence of two events within one sentence generally indicates
a higher possibility that some relations hold between them, these co-occurrence
features should strengthen our model ability to mine the event relations.

Temporal Features. Generally, the plot relation implies the temporal relation,
thus the temporal features should also be helpful. The ESC dataset defines 13
types of temporal links (abbr. TLINKs) that describe the temporal relations
between events. However, under this fine-grained definition, for some types there
are only a few instances. Thus, we recategorize them into six general types,
namely before, after, include, is included, simultaneous and vague, by merging
some semantically similar ones.2 We denote them by Rtemp = {b, a, i, ii, s, v}. If
a TLINK rtemp ∈ Rtemp holds from e1 to e2, we denote it by (e1, e2) �→ rtemp.

To further reduce the sparsity of TLINKs, we carry out a simple reasoning to
supplement instances. Given e1, e2, e3 ∈ Me, the reasoning rules are as follows:

1. Reciprocity rule. If (e1, e2) �→ rtemp, then (e2, e1) �→ rtemp. Semantically,
we have a = b, i = ii, s and v are both reflexive.

2. Transitivity rule. If (e1, e2) �→ rtemp, and (e2, e3) �→ rtemp, then (e1, e3) �→
rtemp.

After the preprocessing, we extract the following temporal features:

– TLINK type: the type of the TLINK between the pair of event mentions.

2 {BEFORE, BEFORE OVERLAP, BEGINS ON, ENDS ON}�→ before, {AFTER,
AFTER OVERLAP, BEGUN ON, ENDED ON}�→ after, {CONTAINS}�→ include,
{IS CONTAINED}�→ is included,{OVERLAP, SIMULTANEOUS}�→ simultaneous,
{VAGUE}�→ vague.
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– Anchor mention: whether the pair of event mentions share an anchor mention.
Given e1, e2, e3 ∈ Me, we call e3 an anchor mention for the pair of event
mentions (e1, e2) when there exists (e3, e1) �→ rtemp and (e3, e2) �→ rtemp.
For each rtemp ∈ Rtemp, we use one bit to present the existence of the anchor
mention. This feature serves as the additional information, especially for those
with no direct or indirect temporal relations.

We represent all the features with one-hot vectors, concatenate the vectors
into a long binary vector and feed it into a softmax classifier to obtain the
prediction result. The reason why we choose the softmax classifier is based on
our experiment in Sect. 5.3.

4 Joint Reasoning

In local prediction, we find the following two limitations:

– Since each PLOT LINK is predicted separately, conflicts may occur. For
example, given e1, e2 ∈ Me, e′

1 ∈ Qe1 and e′
2 ∈ Qe2 , there may be

(e1, e2) �→ rplot1 and (e′
1, e

′
2) �→ rplot2 coexisting in the prediction results,

where rplot1, rplot2 ∈ Rplot but rplot1 �= rplot2.
– As mentioned before, the event-participant associations and the event-

location associations may be helpful for plot relation recognition, but they
have not been exploited in local prediction.

To deal with the first limitation, we add several constraints to optimize
the local prediction results for achieving global consistency. For the second
limitation, we propose extra constraints to model the associations between
events, participants and locations. We name the associations between events
and participants (locations) as EP LINKs (EL LINKs), and denote them by
rptcp (rloc). The possible cases are Rptcp = Rloc = {RELATED,UNRELATED}.
If a EP LINK rptcp holds between event mention e and participant mention p,
we denote it by (e, p) �→ rptcp. And it is similar for EL LINKs.

Fig. 2. Joint reasoning framework.

Figure 2 shows our joint reasoning framework. For each event mentions pair
in every document, we first conduct local prediction of PLOT LINKs, EP LINKs
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and EL LINKs. Then, we conduct joint reasoning to optimize the results. One
point worth mentioning is that, in this paper, we concentrate on improving
PLOT LINK recognition and the participant/location information is merely aux-
iliary, thus we directly adopt the local prediction method on EP LINK/EL LINK
similar to that of PLOT LINK. We skip the details here and focus on the joint
reasoning part.

4.1 Scoring Functions

In local prediction, for any e1, e2 ∈ Me, we already have their predicted
PLOT LINK with its local probability. We define the probability function
Prplot(rplot | e1, e2) as

Prplot(rplot | e1, e2) =

{
local probability for rplot if (e1, e2) �→ rplot

0 otherwise
. (1)

Then, we define the scoring function for rplot as follows:

φplot

(
(e1, e2) �→ rplot

)
= max

e′
1∈Qe1 ,e

′
2∈Qe2

Prplot(rplot | e′
1, e

′
2). (2)

Let Mp and Ml denote the sets of participant mentions and location men-
tions respectively. Likewise, we define the scoring functions for EP LINKs and
EL LINKs:

φptcp

(
(e, p) �→ rptcp

)
= max

e′∈Qe,p′∈Qp

Prptcp(rptcp | e′, p′),

φloc

(
(e, l) �→ rloc

)
= max

e′∈Qe,l′∈Ql

Prloc(rloc | e′, l′),
(3)

where p ∈ Mp, l ∈ Ml, Qp and Ql are the sets of coreferent participant men-
tions and location mentions respectively. The probability functions Prptcp(·) and
Prloc(·) are similar to Prplot(·) in Eq. (1).

4.2 Objective Function

We define the following objective function, which obtains the global optimum
by maximizing the sum of PLOT LINK, EP LINK and EL LINK scores:

max
∑

e1∈Me

∑
e2∈Me

e1 �=e2

∑
rplot∈R+

plot

x(e1, e2, rplot) · φplot

(
(e1, e2) �→ rplot

)

+
∑
e∈Me

∑
p∈Mp

y(e, p,RELATED) · φptcp

(
(e, p) �→ RELATED

)

+
∑
e∈Me

∑
l∈Ml

z(e, l,RELATED) · φloc

(
(e, l) �→ RELATED

)
,

s.t. x, y, z ∈ {0, 1},

(4)

where R+
plot = {PRECONDITION,FALLING ACTION}. x, y, z are indicator

variables, e.g. x(e1, e2, rplot) = 1 when (e1, e2) �→ rplot.
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4.3 Constraints

In this subsection, we introduce the constraints for optimization. Two motiva-
tions of adding these constraints include: (i) The constraints ensure that the pre-
diction results conform to the plot relation definition and the real-world rules. For
example, a PLOT LINK cannot be PRECONDITION and FALLING ACTION
at the same time, and the type of the PLOT LINK between a pair of events must
be consistent regardless of the sentences they are situated in, etc. (ii) The solu-
tion space would be too large to solve if we did not limit the possible situations.
Here, we introduce three groups of constraints:

PLOT LINK Constraints. We define four basic constraints for PLOT
LINKs:

– Equivalence. (e1, e2) �→ PRECONDITION is equivalent to (e2, e1) �→
FALLING ACTION.

– Coreference consistency. If (e1, e2) �→ rplot, and e′
1 ∈ Qe1 , e

′
2 ∈ Qe2 , then

(e′
1, e

′
2) �→ rplot.

– Uniqueness. There must be either no PLOT LINK or only one PLOT LINK
for a pair of event mentions.

– Temporal consistency. PLOT LINK sequence should not conflict with
TLINK sequence.

Moreover, we define a new constraint to avoid superfluous PLOT LINK pre-
dictions. See the following example:

He initially was imprisoned on February 1979 on three 10-year sen-
tences for rape of a child, aggravated rape of a child, and burglary.

There exist two PLOT LINKs in this sentence: (imprisoned, sentences) �→
FALLING ACTION and (sentence, rape) �→ FALLING ACTION, due to the
immediate cause of the man’s imprisonment (sentence) is sentence (rape). As
for the PLOT LINK (imprisoned, rape) �→ FALLING ACTION, since that the
man got imprisoned is due to a sentence on him for rape, the former two imply
this one, thus it is unnecessary to predict it. Based on this, the constraint is

– Anti-transitivity. Within a certain distance, there should be no transitive
PLOT LINKs.

Formally, if there are two directed paths (also consider the aforementioned
equivalence constraint): e1 → e2 and e1 → · · · → ei → ej → · · · → e2 with a
length of d, then the two paths cannot coexist. Let ri,jplot be the PLOT LINK
from e1 to e2. The constraint is

x(e1, e2, r
1,2
plot) + 1

( ∧
(ei,ej ,r

i,j
plot)∈path

(
x(ei, ej , r

i,j
plot) = 1

)) ≤ 1,

∀path ∈ PATHS(e1, e2, d), ∀r1,2plot, r
i,j
plot ∈ R+

plot,

(5)
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where 1(·) is the indicator function whose value equals to 1 when the condition
inside the parentheses is satisfied or 0 otherwise, and PATHS(e1, e2, d) represents
the set of paths from e1 to e2, whose length is at most d. In this paper, the length
threshold is set to 4 based on our empirical experience.

EP LINK and EL LINK Constraints. For EP LINKs and EL LINKs, we
define two basic constraints:

– Coreference consistency: If (e, p) �→ rptcp, and e′ ∈ Qe, p′ ∈ Qp, then
(e′, p′) �→ rptcp. And it is similar for EL LINKs.

– Quantity constraints. In most cases, there are no more than two different
participants (agent and recipient) and one location in an event mention. For
the sake of computation, we limit their amounts:

ptcp(e) =
∑

e∈M′
e

∑

p∈M′
p

y(e, p,RELATED), loc(e) =
∑

e∈M′
e

∑

l∈M′
l

z(e, l,RELATED),

ptcp ∈ {0, 1, 2},&loc ∈ {0, 1}. (6)

where M ′
e, M ′

p, M ′
l are the sets of event, participant, location mentions

after coreference resolution, respectively. The functions ptcp(e) and loc(e) are
used to calculate the number of participant mentions and location mentions
associated with event mention e after coreference resolution.

Joint Reasoning Constraint. Furthermore, based on the aforementioned
observation that a PLOT LINK usually exists between event mentions which
share common participants and/or location, we propose a joint reasoning con-
straint. For any e1, e2 ∈ Me, if (e1, e2) �→ rplot, then at least one of the two
conditions should be satisfied: (i) e1 and e2 share common participants, or at
least one of them has no related participant; or (ii) e1 and e2 share a com-
mon location, or at least one of them has no related location. We formalize this
constraint as follows:

x(e1, e2, rplot)

≤ 1
([

ptcp(e1) = 0 ∨ ptcp(e2) = 0 ∨
∑
p∈Mp

u(e1, e2, p) ≥ 1
]

∨ [
loc(e1) = 0 ∨ loc(e2) = 0 ∨

∑
l∈Ml

v(e1, e2, l) ≥ 1
])

,

(7)

where

u(e1, e2, p) = 1
(
y(e1, p,RELATED) ≥ 1 ∧ y(e2, p,RELATED) ≥ 1

)
,

v(e1, e2, l) = 1
(
z(e1, l,RELATED) ≥ 1 ∧ z(e2, l,RELATED) ≥ 1

)
.

(8)
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4.4 Converting Constraints into ILP

We rewrite the constraints into ILP and use the off-the-shelf optimization tools
to solve it. Due to the space limitation, we only show some of the conversions.
For example, the anti-transitivity constraint in Eq. (5) is converted to

x(e1, e2, r
1,2
plot) +

∑
(ei,ej ,r

i,j
plot)∈path

x(ei, ej , r
i,j
plot) ≤

∑
(ei,ej ,r

i,j
plot)∈path

1,

∀path ∈ PATHS(e1, e2, d), ∀r1,2plot, r
i,j
plot ∈ R+

plot.

(9)

As a more complex case, for the joint reasoning constraint, u, v in Eq. (8)
are rewritten as:

2 · u(e1, e2, p) ≤ y(e1, p,RELATED) + y(e2, p,RELATED),
u(e1, e2, p) ≥ y(e1, p,RELATED) + y(e2, p,RELATED) − 1,

2 · v(e1, e2, l) ≤ z(e1, l,RELATED) + z(e2, l,RELATED),
v(e1, e2, l) ≥ z(e1, l,RELATED) + z(e2, l,RELATED) − 1.

(10)

Then, we use two decision variables, xptcp and xloc, to represent the two cases
in Eq. (7). Then we have:

xptcp(e1, e2) ≤ 1
(
ptcp(e1) = 0 ∨ ptcp(e2) = 0 ∨ ( ∑

p∈Mp

u(e1, e2, p)
) ≥ 1

)
,

xloc(e1, e2) ≤ 1
(
loc(e1) = 0 ∨ loc(e2) = 0 ∨ ( ∑

l∈Ml

v(e1, e2, l)
) ≥ 1

)
.

(11)

Notice that ptcp ∈ {0, 1, 2}. In order to meet the requirement of ILP, we define
ptcp′ as 1(ptcp ≥ 1) to transform ptcp into a binary variable. Then, we have
ptcp′ ∈ {0, 1} and ptcp′ ≤ ptcp ≤ 2 · ptcp′. The above equations can be further
written into ILP as:

xptcp(e1, e2) ≤ 2 − ptcp′(e1) − ptcp′(e2) +
∑
p∈Mp

u(e1, e2, p),

xloc(e1, e2) ≤ 2 − loc(e1) − loc(e2) +
∑
l∈Ml

v(e1, e2, l).
(12)

Finally, the joint reasoning constraint is

x(e1, e2, rplot) ≤ xptcp(e1, e2) + xloc(e1, e2). (13)

5 Experiments and Results

5.1 Dataset

We conduct experiments on the ESC v0.9 dataset [3], which contains the same
documents of 22 topics as the ones in ECB+ corpus [5]. The content is about
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calamity events such as natural disasters and crimes. The documents on one
topic describe the same series of news events, e.g. documents in topic 30 describe
“Seacom operations fully restored”. The dataset provides gold event mentions,
participant mentions, location mentions, temporal relations and PLOT LINKs.
We also leverage some necessary annotations such as event coreferences from
ECB+ that are not contained in ESC. In addition, since ESC lacks associations
between participant, location and event mentions, which are required for joint
reasoning, we invite three senior master students in the NLP area to manually
annotate them and adopt the majority decisions for each item to reduce the
annotation errors. The statistics of our annotated dataset are shown in Table 1.
For comparison with the baseline methods, we use the same data split3 [3].

Table 1. Statistics of the annotated dataset.

Training set Test set Total

Articles 64 189 253

Avg. articles/topic 10.7 11.8 11.5

PLOT LINKs 1,598 4,027 5,625

EP LINKs 7,199 12,189 19,388

EL LINKs 825 3,888 4,713

Table 2. Results of local prediction on different classification models.

PLOT LINK detection PLOT LINK classification EP LINK prediction EL LINK prediction

P R F1 P R F1 P R F1 P R F1

Softmax regr 30.9 75.0 42.5 16.6 40.1 22.6 - - - - - -

Logistic regr 31.3 68.1 41.5 16.0 35.5 21.5 38.0 88.6 51.1 44.0 85.7 56.7

Decision tree 33.0 27.2 28.6 19.5 16.6 17.3 42.5 64.5 49.8 45.9 66.8 52.6

SVM 52.4 21.4 28.4 23.1 10.7 14.1 24.7 94.2 37.3 44.1 77.6 54.6

“-” denotes “not applicable”.

5.2 Experiment Setting

We set up two tasks for the proposed method as follows:

PLOT LINK prediction. This task contains two subtasks: (i) PLOT LINK
detection: Predict the existence of PLOT LINKs. In other words, predict
whether rplot ∈ R+

plot. (ii) PLOT LINK classification: In addition to detection,
it further predicts the type of PLOT LINK.

EP LINK & EL LINK prediction. Predict the types of EP LINKs and
EL LINKs, i.e. RELATED or UNRELATED.

3 Training set: T5, T7, T8, T32, T33, T35. Test set: T1, T3, T4, T12, T13, T14, T16,
T18, T19, T20, T22, T23, T24, T30, T37, T41.
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Table 3. Comparison with the existing methods.

PLOT LINK detection PLOT LINK classification EP LINK prediction EL LINK prediction

P R F1 P R F1 P R F1 P R F1

OP 15.6 98.8 26.5 7.0 97.0 14.0 24.7 100.0 37.6 28.3 100.0 41.6

PPMI-base 13.7 17.4 13.7 6.5 9.8 6.8 - - - - - -

PPMI-contains 22.7 9.1 12.1 11.4 5.0 6.4 - - - - - -

PPMI-internal - - - - - - 34.0 67.8 40.6 33.6 43.1 34.4

DCS 36.2 49.5 41.9 - - - - - - - - -

Local prediction 30.9 75.0 42.5 16.6 40.1 22.6 38.1 88.6 51.1 44.0 85.7 56.7

Joint reasoning 34.2 72.4 45.1 20.0 41.0 26.1 42.7 81.4 54.1 49.5 76.7 59.0

We use the PuLP modeler and the Cbc (Coin-or branch and cut) ILP solver4

to implement the proposed method. During our experiments, the ILP solver can
always return the result without timeout (even if on ESC, the current largest
dataset for this task), and the computation process takes about 9 min at most.
Following the previous work [3], we report average precision (P), recall (R) and
F1-score (F1) over all topics in the test set.

5.3 Model Selection for Local Prediction

First of all, we evaluate several classification models for local prediction, includ-
ing softmax regression, logistic regression, decision tree and SVM. All the models
are implemented with scikit-learn, and the parameters are set to: class weight =
“balanced”, penalty = l2, max iter = 500. The results are shown in Table 2.

We choose the softmax regression model for PLOT LINK local prediction, as
it achieves the best recalls and F1-scores. For EP LINK & EL LINK prediction,
since they are two-class classification, softmax regression is degraded to logistic
regression. We take logistic regression also due to its optimal performance.

5.4 Comparison with Existing Methods

For PLOT LINK prediction, we compare our method with three baseline meth-
ods proposed in [3] and a state-of-the-art method proposed in [7] as listed below.
We directly use their reported results.

– OP, which exhaustively picks event mention pairs in terms of the textual
order, and labels them as PRECONDITION.

– PPMI-base, which measures event mention pairs using positive pointwise
mutual information (PPMI) obtained from a set of selected seed pairs and
the manually-annotated pairs from the training set. The value of PPMI is
normalized to [0, 1] for each topic.

– PPMI-contains, which uses the results from PPMI-base as candidates but
restricts the event mentions to share common temporal anchor mentions (see
Sect. 3).

4 https://github.com/coin-or.

https://github.com/coin-or
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– DCS [7], which detects PLOT LINKs at sentence-level and document-level by
modeling global and fine-grained aspects of document-level causal structures
and conducting optimization with ILP. However, it does not conduct joint
reasoning with participants and locations like our method, and can only detect
PLOT LINKs, while our method can further classify PLOT LINKs.

For EP LINK and EL LINK prediction, due to the lack of related work, we
designed two alternative methods for comparison:

– OP, which chooses event-participant and event-location mention pairs in
terms of the textual order of presentation.

– PPMI-internal, which is similar to the PPMI-base method in PLOT LINK
prediction, but the frequencies are obtained only from the internal corpus,
while the frequencies in PPMI-base are from Google bigrams. According
to the averages and standard deviations, the thresholds for EP LINKs and
EL LINKs are set to 0.319 and 0.365, respectively.

Table 3 shows the comparison results. As we can observe, our local predic-
tion method outperforms all the baseline models on all the tasks, and our joint
reasoning method further achieves the highest precisions and F1-scores, while
OP obtains the best recalls due to it contains almost all possible results. This
demonstrates the superiority of our method.

Specifically, on the PLOT LINK prediction task, we can see that the F1
scores of PLOT LINK classification are much lower than those of PLOT LINK
detection for all methods, which indicates that the PLOT LINK classification
subtask is much more difficult than the other. In addition, all the PPMI-base/
contains/internal methods perform poorly, because they only utilize very limited
information, and thus can hardly capture the characteristics of PLOT LINKs.
Furthermore, although the precisions of PPMI-contains increase compared to
PPMI-base due to the common temporal anchor mentions, the recalls signifi-
cantly decreased. Our local prediction method significantly outperform first four
methods (p < 0.05), because it exploits more linguistic and temporal features.
And we cannot calculate the significance with DCS because its code is not pro-
vided. Furthermore, since we couple local prediction with participant/location
information and various constraints, the joint reasoning method even performs
better than local prediction.

On EP LINK & EL LINK prediction, PPMI-internal obtained comparable
results with OP, because this task is not as hard as PLOT LINK prediction
and internal corpus is appropriate for PPMI. Still, the local prediction method
exceeds the two baselines, and the joint reasoning method achieves the best.

5.5 Ablation Study

To assess the newly-proposed constraints in this work, we conduct an ablation
study. For abbreviation, the constraints are numbered below:

– C1: PLOT LINK anti-transitivity constraint.
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Table 4. Results of ablation study.

PLOT LINK detectionPLOT LINK classificationEP LINK prediction EL LINK prediction

P R F1 P R F1 P R F1 P R F1

Joint reasoning 34.2 72.4 45.1 20.0 41.0 26.1 42.7 81.4 54.149.5 76.7 59.0

Joint reasoning w/o C130.2 81.0 42.6 17.3 45.6 24.4 - - - - - -

Joint reasoning w/o C234.2 72.4 45.1 18.3 37.7 23.8 24.7 92.8 37.2 41.5 88.5 54.8

Joint reasoning w/o C334.2 72.4 45.1 19.0 39.1 24.7 42.5 80.7 53.8 50.2 73.0 58.5

– C2: EP LINK and EL LINK constraints.
– C3: Joint reasoning constraint.

As we can observe from Table 4, these constraints all contributed to the
performance improvement. Specifically, on the PLOT LINK detection subtask,
C1 is the key factor as it significantly improves the precision, while the other two
constraints have little impact on the results. On the PLOT LINK classification
subtask, C1, C2 and C3 all improve the results to varied degrees. Also, removing
C1 leads to an increase in recall, indicating that C1 is not always satisfied.

Table 5. Constraint satisfaction ratios on the test set.

PLOT LINKs EP LINKs EL LINKs

C1 80.9% - -

C2 - 94.7% 93.2%

C3 98.0% 96.7% 97.1%

Similarly, we can observe that the F1-scores of EP LINK & EL LINK pre-
diction largely decreases after removing C2, even lower than those of local pre-
diction. According to the results, C2 has a great influence on this task.

Let us further analyze the causes of errors and discuss the difficulties in
terms of the constraints. Table 5 shows the constraint satisfaction ratios on the
test set: ratios of the number of event mention pairs that satisfy the constraints
(according to the gold standard) over the number of all event mentions on the
test set. As we can see, C1 is the most dissatisfied constraint, and the reasons
may be: (i) since each conflict caused by C1 involves several PLOT LINKs,
according to our calculation, these PLOT LINKs are all judged as not meeting
the constraint; and (ii) C1 is based on a strong assumption that may not always
be satisfied. As for C2, we would like to use the following example to explain:

“There’s a lot of anger here”: Riot breaks out in Brooklyn following
candlelight vigil for 16-year-old shot by cops. ... Anger over the death
of a Brooklyn teenager shot and killed by police fueled a riot on the
streets of East Flatbush Monday.

We can find that riot has two EL LINKs with Brooklyn and East Flatbush,
respectively, which violates C2 (the quantity constraints in C2 restrict that one
event can only have one location). But obviously this is not an annotation fault,
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because East Flatbush is a residential area in Brooklyn, which means the two
EL LINKs can coexist. According to our statistics, most of the cases that violates
the constraints are due to the same reason. Therefore, spatial reasoning is a
challenging problem that need to be considered in the future.

6 Conclusion

In this paper, we study the problem of plot relation recognition between events.
We firstly propose a PLOT LINK local prediction method by using diversified
linguistic and temporal features. Our experimental results show that this method
outperforms the baselines including the state-of-the-art method. Furthermore,
taking the associations between events, participants and locations into consider-
ation, we present a joint reasoning framework, which gains the global optimum
by leveraging various constraints and converting them into ILP. Our experiments
show that joint reasoning significantly improves the performance.

In the future, we will (i) add more external knowledge to further improve the
performance of plot relation recognition, and (ii) design methods with human
involvement to help the model refine the prediction results.
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Abstract. Federated learning has made an important contribution to
data privacy-preserving. Many previous works are based on the assump-
tion that the data are independently identically distributed (IID). As
a result, the model performance on non-identically independently dis-
tributed (non-IID) data is beyond expectation, which is the concrete
situation. Some existing methods of ensuring the model robustness on
non-IID data, like the data-sharing strategy or pre-training, may lead
to privacy leaking. In addition, there exist some participants who try to
poison the model with low-quality data. In this paper, a performance-
based parameter return method for optimization is introduced, we term it
FederatedSmart (FedSmart). It optimizes different model for each client
through sharing global gradients, and it extracts the data from each
client as a local validation set, and the accuracy that model achieves
in round t determines the weights of the next round. The experiment
results show that FedSmart enables the participants to allocate a greater
weight to the ones with similar data distribution.

Keywords: Federated learning · Federated optimization · Distributed
machine learning · Privacy preserving

1 Introduction

Securing high-quality machine learning models while working with different data
owners is a challenge with user data security and confidentiality [15]. In the past,
there have been many attempts to address user privacy issues when exchang-
ing data. For example, Apple recommends using Differential Privacy (DP) to
respond these concerns [3]. The basic idea is to add appropriately calibrated
noise to data in order to eliminate the identity of any individual but still retain
the statistical characteristics [2]. However, DP can only prevent user information
leakage to a certain extent. In addition, it is lossy in machine learning frame-
work because the model built with noise is injected, which can lower the model
performance.

Federated Learning (FL) is a cross-distributed data modelling method pro-
posed by [10,11]. It can establish a global model without exchanging original
data among parties. Due to the exponential growth of participated data, the
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X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 716–724, 2020.
https://doi.org/10.1007/978-3-030-60259-8_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60259-8_52&domain=pdf
http://orcid.org/0000-0003-4848-0325
http://orcid.org/0000-0002-9237-4231
http://orcid.org/0000-0001-6563-7668
https://doi.org/10.1007/978-3-030-60259-8_52


FedSmart: An Auto Updating Federated Learning Optimization Mechanism 717

model naturally performs better global robustness and superiority over individ-
ual modelling.

Subsequently, [1] proposed the concept of vertical FL to update it suitable
for more realistic scenarios. Since then, many scholars have started to study
the application of real FL scenarios and proposed some new algorithms and
frameworks, such as SplitNN [13].

[4] reveals the problem of multi-distribution between different data islands
through joint clustering and FL. Through five model structure experiments on
four different data-sets, [10] demonstrated that the iterative average model can
be robust under both IID and non-IID data distribution patterns. However, the
iterative approach is not as perfect as imagined. On non-IID data, it requires
more rounds to iterate to sufficient convergence, and the final model perfor-
mance trained with the same optimal parameters always slightly inferior to that
obtained under IID distribution.

Almost all FL optimization algorithms are aimed at training a global model.
However, in the real scenario, there exist clients who want to train a personalized
model by absorbing useful information from others with similar data property.
In addition, there are some dishonest participants trying to cheat with useless
data to gain a high-qualified model.

Motivated by these real demands, we design a performance-based optimiza-
tion algorithm, FedSmart, which is automatically updated. Our main contribu-
tions are as follows:

1. Demonstrate the impact and performance of using non-IID data on both FL
frameworks and local training.

2. Adopt independent validation sets in each side instead of shared data sets to
improve the model performance on non-IID data.

3. Propose a new parameter joint method FedSmart to make the multi-party
joint value of the stochastic gradient descent close to the unbiased estimate
of the complete gradient.

2 Related Work

In some cases, due to the advanced nature of some existing machine learning algo-
rithm, the training results based on the non-IID data are still good. However,
for some application scenarios, training with non-IID data will have unexpected
negative effects based on existing frameworks, such as low model accuracy and
convergence efficiency. Because the data on each device is generated indepen-
dently by the device/user itself, the heterogeneous data of different devices/users
have different distribution characteristics and the training data learned by each
device during local learning are non-IID. Therefore, how to improve the learning
efficiency of non-IID data is of great significance for FL.

2.1 Average-Based Optimization Algorithm

To improve the performance of FL and reduce the communication cost [10],
a deep network algorithm FederatedAveraging (FedAvg) based on iterative
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model average is proposed for non-IID FL, which can be applied to real scenar-
ios. Theoretical analysis and experimental results show that FedAvg is robust
to unbalanced and non-IID data, and it also has a low communication cost.
Compared with baseline algorithm FedSGD, FedAvg has better practicability and
effectiveness. [9] theoretically clarifies the convergence of FedAvg on non-IID
data. Furthermore, FedMA is aimed at settling the heterogeneity problem [14].

2.2 Performance-Based Optimization Algorithm

The proposal of FedAvg method has a great inspiration for the follow-up
researches [15]. [16] proposes a data-sharing FL strategy to improve the training
of non-IID Data by creating a small portion of the data globally shared between
all client devices on a central server.

Local client computational complexity, communication cost, and test accu-
racy are three important issues addressed by [5]. It proposes a loss-based
AdaBoost federated machine learning algorithm (LoAdaBoost), which further
optimizes the local model with high cross-entropy loss before averaging the gra-
dients on the central server.

FedProx, proposed by [12], lowers the potential damage to the model caused
by non-IID data. It adds a near-end item to optimize the local iteration times.
Similarly, SCAFFOLD introduces a new variable combined with gradients, decreas-
ing the variance of local iteration [8].

3 Approach

In FL researches, the scholars usually focus on the algorithm framework or the
improvement of the global model accuracy. However, we generally do not know
the data distribution or data quality of other participants, the heterogeneous
data may result in worse performance when added to the global training.

With these motivations, we propose FedSmart, a new parameter return
method. In this mechanism, the FL participant is smart enough to gain informa-
tion from others who have similar data property. In another aspect, FedSmart
can be used to test whether the model from other clients is useful to every
client’s side. Furthermore, FedSmart can be treated as a kind of latent incentive
mechanism, the selfish sides who provide unrealistic or unqualified data will be
naturally filtered out via decreasing the weight, only the ones who provide their
valuable data can benefit from the group with the similar distributions.

3.1 The Information Transfer Framework

The framework of FL is adopted. There typically exists a server, which controls
and publishes the model and jointly deals with the parameters provided by
participants. The participants who contribute parameters by doing local model
training are called clients.
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Fig. 1. Parameter update framework

All clients do the training respectively using local data. After the model is
updated, each client sends the local model information to the server. Clients
send the gradient training with their local data to the server; the server packs
these changes and sends back, i.e. ΔΘt(Δθt1,Δθt2, ...,Δθtn) (see Fig. 1).

3.2 The Local Model Updating Mechanism

The local model updating mechanism considers the mutual predicting ability of
non-IID data. If all clients train only one global model, it will inevitably lead to
distribution or sample size discrimination. FedSmart is designed to update the
local model in the form of weights, which makes the model prefer to its self-side
data. This approach actually optimizes the server model with the data from each
client.

At the time of initialization, the server initializes the model. When all clients
receive the initial model, they will conduct a batch-size training and then launch
the information transfer as mentioned above.

3.3 Performance-Based Weight Allocation

The weight of the next moment is on the basis of the equation shown below.
The performance of all the clients is taken into consideration, the principle, in
brief, is that the weight of model will be smartly adjusted to the accuracy of
each client.

||wt
i || = ||wt−1

i + η(accti − acctmedian)||1 (1)

where accti represents the accuracy of Client i on local validation set in round
t on the validation set, acctmedian is the median of the set of accuracy, and η is
the learning rate. The weight in round t is allocated according to the weight in
the previous round and the change of accuracy in this round. The validation set
is extracted from each client with a proportion of α ∈ [0, 1], and only serves for
this client.
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In FedSmart, we update the model according to the performance on val-
idation set, which makes the model adaptive to self-side data. To conclude,
FedSmart actually optimizes model of each client with valuable data from
others.

Algorithm 1. FederatedSmart (FedSmart)
Input: θt

i : i-th client’s model parameters at time step t;
Δθt

i : i-th client’s model updates at time step t
Output: θt+1

i : i-th client’s model parameters at time step t + 1

1: for i = 1 to n do
2: aggregate updates for validation: θt

i = θt
i + aggregate(Δθt

1, Δθt
2, ..., Δθt

n)
3: compute model validation accuracy: accti = evaluate(θt

i)
4: end for
5: for i = 1 to n do
6: obtain performance-based weight: wt

i = weight(acct1, acct2, ..., acctn)
7: calculate model parameter update: Δθt

i = update(acct1, acct2, ..., acctn)
8: end for
9: for i = 1 to n do

10: output new model parameters: θt+1
i = θt

i +
∑n

i=1 wt
i · Δθt

i

11: end for

4 Experiment

The experiment settings will be described step by step, including how to deal
with the dataset and the experimental settings of FedSmart. Also, we will explain
the impact of different parameters on the model performance and demonstrate
the mechanism of using validation set.

4.1 Implementation Details

The data that concerned with the performance evaluation is the simulated
datasets of MIMIC-III database [6,7], which contains the health information
for critical care patients at a large tertiary care hospital in the U.S. The data
cleansing process is following [5].

The experimental data structure is shown in Table 1.

4.2 Experiment Settings

To illustrate the limited performance of FL on non-IID data, the data are con-
structed as a collective form of six heterogeneous data sets. In detail, Client1
and Client4, Client2 and Client5, Client3 and Client6 in pairs share a similar
data distribution respectively.

The validation set proportion α is set to 0.25 in default all through the
experiment.
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Table 1. Summary of experiment dataset

Feature Representation Count

SUBJECTIDa IDs ranging from 2 to 99,999 21000 selected from
38962

GENDERb 0: female 1: male 9900/12000

AGEb 0: age less than or equal to 65
1: age greater than 65

9903/11997

MORTALITY c 0: survive 1: death 10785/11115

DRUGSd 0: not prescribed to patients
1: prescribed

8 dimensions

aSUBJECTID is the primary key.
bGENDER and AGE indicate basic information about the patients.
cMORTALITY indicates survival status. The original distribution of MORTAL-
ITY is biased, it is three-times up-sampled.
dDRUGS represents each patient’s usage of the particular drugs during the first
48 hours in the ICU.

4.3 Results

The essence of centralized training is to aggregate the data of all parties together
to improve the accuracy of the model by increasing the amount of data, so the
results of centralized training are often higher than the results of each client
training on their datasets alone. However, when the data are non-IID, centralized
training will be hard to balance the results. The model tends to favor the groups
with large samples or with simple distributions, so the established global model
is undoubtedly unfair to other groups.

FedSmart v.s. Local Training. The model trained with FedSmart outper-
forms the local six ones (see Fig. 2), which is in the expectation that all FL
participants will gain a better model within the information sharing framework
than only using their own data. Because compared to the individual, working in
a team, sharing the information of data, i.e. in the framework of FL, everyone
tends to gain something as a contributor.

FedSmart v.s. FedAvg v.s. LoAdaBoost. To illustrate the effectiveness of
FedSmart, we will do a comparison among FedSmart, FedAvg and LoAdaBoost. In
FedAvg, the server only receives the model parameters and returns the updated
model parameters, and there is no interactive updating mechanism in FedAvg.
LoAdaBoost receives the loss and parameters of the model, and combines the
information of the two to update the weight of the previous iteration [5]. FedS-
mart adopts different parameter combinations to update the model to make it
approximate to the unbiased estimate of the complete gradient. The result is
shown in Fig. 3.



722 A. He et al.

0 5 10 15 20
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

w
ei

gh
t

Client1
Client2
Client3
Client4
Client5
Client6
FedSmart

Fig. 2. FedSmart v.s. Local Training

0 5 10 15 20
Iteration

0.4

0.5

0.6

0.7

0.8

0.9

1

w
ei

gh
t

IID FedSmart
Non IID FedSmart
IID FedAvg
Non IID FedAvg
IID LoAdaboost
Non IID LoAdaboost

Fig. 3. FedSmart v.s. FedAvg v.s.
LoAdaBoost

It can be seen that no matter what FL optimization algorithm, the perfor-
mance on IID data always outperforms non-IID ones. One of the most important
incentives of FL optimization algorithm is to decrease the influence of data dis-
tribution, i.e. the performance reduction on non-IID data. Also, FedSmart uses
the accuracy of the validation set to measure the similarity of the distribution,
establishes multiple models by adjusting the weights of different client models,
and establishes multiple models on multiple clients only through the encrypted
parameter exchange. The result shows that model performance is significantly
better than FedAvg, and moderately better than LoAdaBoost.

FedSmart. FedSmart considers one party’s distribution without repeatedly
making compromises on multiple distributions. To further explain the working
mechanism and performance of FedSmart, the process of the parameter joint
weight changing during the training process is shown as in Fig. 4. The weight
appears to change in pairs: Client1 and Client4, Client2 and Client5, Client3
and Client6, which is in accordance with our experimental settings, indicating
that FedSmart is figuring out good data.

We can observe that in the FL, there still exists the unbalanced performance
improvement on some sides due to the difference in distributions. Because nor-
mally we only have one global model to be established, to reduce the global
loss and improve the accuracy, there is inevitably a decrease in the performance
improvement caused by the fact that one of the distributions is ignored to some
extent. As long as there is only one global model, attend to one thing and lose
sight of another must occur. Therefore, for the non-IID data, it is necessary to
consider how to create multiple models suitable for different distributions, and
then make FL more universal.
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(a) Client1 (b) Client2 (c) Client3

(d) Client4 (e) Client5 (f) Client6

Fig. 4. The Process of Weight Allocation. The weight appears to change in pairs:
Client1 and Client4, Client2 and Client5, Client3 and Client6.

5 Conclusion

Federated Learning is raising attention in both academics and industry, as it is a
way to solve the isolated island problem and a solution to privacy-preserving. We
propose a performance-based parameter return method FedSmart. It is different
from the general idea that FL shares one global model. Instead, FedSmart estab-
lishes multiple models by treating each client as a server to make its own model
perform the best. We use the simulated MIMIC-III data and separate it into six
non-IID data-sets to do the FL. The experimental result shows that FedSmart
can have better performance than FedAvg and even centralized training method.
FedSmart can be extended to the industries’ data training scenarios.

In the continuation of our study, to compensate for this shortcoming and
minimize the leakage of privacy caused by model delivery, FedSmart can use the
drop-out-like mechanism to make it difficult for training participants to obtain
effective information from the changes of the model. Also, we will improve and
explore the FedSmart algorithm to make it to be generally stable and adapt-
able for both IID and Non-IID datasets, to tackle the root of problems for FL
frameworks.

Acknowledgements. This paper is supported by National Key Research and Devel-
opment Program of China under grant No.2018YFB1003500, No.2018YFB0204400 and
No.2017YFB1401202.
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Abstract. Traditional Chinese Medicine (TCM) with diagnosis scales
is a holistic way for diagnosing Parkinson’s Disease, where symptoms
can be represented as multiple labels. To solve this problem, multi-label
learning provides a framework for handling such task and has exhib-
ited excellent performance. Besides, it is a challenging issue of how to
effectively utilize label correlations in multi-label learning. In this paper,
we propose a novel algorithm named Discriminative Multi-label Model
Reuse (DMLMR) for multi-label learning, which exploits label correla-
tions with model reuse, instance distribution adaptation and label dis-
tribution adaptation. Experiments on real-world dataset of Parkinson’s
disease demonstrate the superiority of DMLMR for diagnosing PD. To
prove the effectiveness of the proposed DMLMR, extensive experiments
on four benchmark multi-label datasets show that DMLMR significantly
outperforms other state-of-the-art multi-label learning algorithms.

Keywords: Parkinson’s disease · Multi-label learning · Label
correlations · Model reuse · Distribution adaptation

1 Introduction

Tradition Chinese Medicine (TCM) is a new way for PD [13]. For one thing, TCM
scales includes tongue phase as well as four traditional methods of diagnosis:
observation, listening, interrogation and pulse-taking. For another, syndrome
types of PD in TCM can be divided into following 5 categories: (1) stirring wind
due to phlegma-heat, (2) stirring wind due to blood heat, (3) deficiency of both
qi and blood, (4) insufficiency of the liver and kidney, (5) deficiency of both yin
and yang. Moreover, each TCM syndrome type can be subdivided into primary
and secondary syndrome types.

TCM scholars are supposed to collect disease information of patients, and
categorize a patient into one or more syndrome types based on TCM theory and
rich experience. This diagnostic process requires doctors equipped with exten-
sive experience of Syndrome Differentiation at the time of treatment. Due to
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 725–739, 2020.
https://doi.org/10.1007/978-3-030-60259-8_53
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the essential characteristic of TCM, TCM scales appear to be overwhelmingly
dependent on personal experience of doctors. The problems of diagnosing PD
in TCM lie in two aspects: specialists of PD are in short supply and diagnostic
levels of doctors are inconsistent. Consequently, the diagnosis of PD might be
subjective, which violates the original intention of effectiveness. Therefore, it is
desired to design a semi-automatic mechanism for diagnosing PD in TCM.

In this paper, we formalize the problem of diagnosing Parkinson’s disease
in TCM into a multi-label learning problem, where we treat TCM scales as
features and treat syndrome types as multiple labels. In multi-label learning [21],
each instance can be represented by multiple labels simultaneously. For example,
an image may be annotated with both sea and beach. The task of multi-label
learning is to learn a classification model which can predict all the relevant
labels for unseen instances. Nowadays, multi-label learning has been applied to
various application scenarios, such as text classification [9], image annotation
[11], video annotation [14], social networks [17], music emotion categorization
[18]. In addition, the exploration of label correlations has been accepted as a key
component of effective multi-label learning approaches [6,23].

The main contributions of this paper include:

– Real-world Parkinson’s disease diagnosis in Traditional Chines Medicine is
investigated and assessed.

– We formalize the problem of diagnosing PD in TCM as a multi-label learning
problem, by treating TCM scales as features while treating syndrome types
as multiple labels. Meanwhile, we apply multi-label classification technology
to diagnose PD in TCM.

– We propose a novel Discriminative Multi-label Model Reuse (DMLMR) algo-
rithm to deal with multi-label learning problem, which perform excellently
in handling diagnosis of Parkinson’s disease in TCM. Extensive experiments
on four benchmark multi-label datasets show that DMLMR algorithm signif-
icantly outperforms the state-of-the-art multi-label learning algorithms.

The remainder of the paper is organized as follows. Section 2 briefly reviews
some related work of multi-label learning. Section 3 presents formulation of the
problem and our proposed DMLMR algorithm. Section 4 reports the experimen-
tal results, followed by the conclusion in Sect. 5.

2 Related Work

Generally, multi-label learning algorithms can be categorized into following three
strategies based on the order of label correlations considered by the system.

First-order strategy copes with multi-label learning problem in a label-by-
label manner. Binary Relevance (BR) [1] takes each label independently and
decomposes it into multiple binary classification tasks. However, BR neglects
the relationship among labels.

Second-order strategy introduces pairwise relations among multiple labels,
such as the ranking between the relevant and irrelevant labels [5]. Calibrated
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Label Ranking (CLR) [4] firstly transforms the multi-label learning problem into
label ranking problem by introducing the pairwise comparison. Recently, LLSF
[7] performs joint label-specific feature selection and take the label correlation
matrix as prior knowledge.

High-order strategy builds more complex relations among labels for multi-
label learning. Classifier Chain (CC) [15] transforms the multi-label classifica-
tion problem into a chain of binary classification problems, where the quality is
dependent on the label order in the chain. Ensemble Classifier Chains (ECC)
[16] constructs multiple CCs by using different random label orders. Multi-modal
Classifier Chains (MCC) [22] release the reliance of label order by combining pre-
dicted labels as a new modality. Multi-label k-nearest neighbour (MLkNN) [20]
builds a Bayesian model by using the k-nearest neighbour method to obtain
the prior and likelihood. In addition, there are also some high-order approaches
that exploit label correlations on the hypothesis space. For example, a boosting
approach Multi-label Hypothesis Reuse (MLHR) [8] is proposed to exploit label
correlations with a hypothesis reuse mechanism. Latent Semantic Aware Multi-
view Multi-label Learning (LSA-MML) [19] implicitly encodes the label corre-
lations by the common representation based on the uncovering latent seman-
tic bases and the relations among them. Considering the potential association
between paired labels, Dual-Set Multi-Label Learning (DSML) [10] exploits pair-
wise inter-set label relationships for assisting multi-label learning. Most of the
existing approaches take label correlations as prior knowledge, which may not
correctly characterize the real relationships among labels. And then, Collabo-
ration based Multi-Label Learning (CAMEL) [3] is proposed to learn the label
correlations via sparse reconstruction in the label space.

3 Methodology

This section mainly gives the detail description of Discriminative Multi-label
Model Reuse (DMLMR) algorithm after a preliminary notation explanation.

3.1 Preliminaries and Problem Formulation

Before describing the problem formulation, we begin with some notations and
preliminaries.

Let X = R
d denote the d dimensional feature space, and Y = {−1, 1}L

denote the label space with L labels.
Given the training dataset D = {(xi,yi)}N

i=1 with N instances, the task of
multi-label learning is to learn a mapping function H : X → Y, which maps
from feature space to label space. The i-th instance (xi,yi) contains a feature
vector xi = [x1, x2, . . . , xd] ∈ X and a label vector yi = [y1, y2, · · · , yL] ∈ Y,
where yk = 1 indicating xi is associated with the k-th label, yk = −1
otherwise. T = {(xi,yi)}M

i=1 denotes testing dataset. In addition, H(·) =
[H1(·),H2(·), . . . , HL(·)] can be used to predict labels for unseen instances in
T , where Hk(·) denotes the classifier of the k-th label.
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For simplicity, we denote X = [x1,x2, · · · ,xN ]T ∈ R
N×d as the instance

matrix, and Y = [y1,y2, · · · ,yN ]T ∈ R
N×L as the label matrix. The original

training dataset can be alternatively represented by D = {(X,Y )}.
With analysis in Sect. 1, the problem of diagnosing Parkinson’s disease can

be modeled as multi-label learning problem.
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Fig. 1. The overall flowchart of DMLMR algorithm. Cylinder shadowed with orange
denotes label distribution, while cylinder shadowed with blue denotes instance
distribution.

3.2 Discriminative Multi-label Model Reuse

In this subsection, we introduce Discriminative Multi-label Model Reuse
(DMLMR) algorithm in detail. The pseudo code of DMLMR is presented in
Algorithm 1.

At first, we train on the original dataset D with a base multi-label algorithm
(here we adopt CC algorithm) and get F (·) = [F 1(·), · · · , F k(·), · · · , FL(·)],
where F k(·) represents the original classifier for the k-th label. τ = [τ1, · · · , τT ]
denotes chain of selected labels, where T denotes number of boosting round.
DMLMR maintains one label distribution WLt = [WL1

t , · · · ,WLk
t , · · · ,WLL

t ],
where WLk

t is the weight of the k-th label at t-th boosting round. Initially, τ = ∅
and WLk

1 = 1
L , which means WL1 = [ 1L , · · · , 1

L ].
Figure 1 illustrates an overview of our proposed DMLMR algorithm. At t-th

boosting round, there are following 5 steps.

Label Sampling. We sample one label a according to the label distribution
WLt, where a ∈ {1, 2, · · · , L}. And then we update τ by concatenating τ and
a, i.e., τ = [τ , a].

Instance Distribution Adaptation. After getting one sampled label a, we
transform the original dataset D into two dataset Da = {(X,Ya)} and D−a =
{(X,Y−a)}.
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Algorithm 1. The DMLMR algorithm
Input:

D = {(X , Y )}: original training dataset
λintra: intra-set reweight parameter
λinter: inter-set reweight parameter
T : number of boosting round

Output:
H(·): classifiers of all labels
Initialize: τ = ∅, W L1 = [ 1

L
, · · · , 1

L
]

Train on D
for t = 1 : T do

Sample one label a according to W Lt

Update τ = [τ , a]
Compute W D1 and W D2 with Eq. 1
Sample D1 from D according to W D1

Sample D2 from D according to W D2

Train G1, G2 and G3 with bipartite model reuse
ft(·) = G3(·)
Update W Lt+1 with Eq. 6

end for
for k = 1 : L do

Compute Hk(·) with Eq. 7
end for
return H(·)

Here Ya and Y−a are label vectors associated with instance matrix X, which
is shown in Fig. 2. More specifically, Ya ∈ R

N denotes the a-th column vector
of the matrix Y (versus yi ∈ R

L for the i-th row vector of Y ), and Y−a =
[Y1, · · · ,Ya−1,Ya+1, · · · ,YL] ∈ R

N×(L−1) represents the matrix that excludes
the a-th column vector of the matrix Y .

And then we get Fa(·) and F−a(·), where Fa(·) = F a(·) denotes the original
classifier of Ya and F−a = [F 1(·), · · · , F a−1(·), F a+1(·), · · · , FL(·)] denotes the
original classifiers of Y−a, where Ya = {−1, 1} denotes label space of the a-th
label and Y−a = {−1, 1}L−1 denotes label space of all the labels exclude the
a-th label.

In order to exploit label correlations, we maintain two instance distributions
WD1 and WD2 adapted by Eq. 1, where WDi

1 and WDi
2 are the weight for

the i-th instance with respect to Ya and Y−a, respectively.

WDi
1 =

1
N

· λ
I(Fa(xi) �=yi,a)
intra · λ

I(F−a(xi) �=yi,−a)
inter

WDi
2 =

1
N

· λ
I(F−a(xi) �=yi,−a)
intra · λ

I(Fa(xi) �=yi,a)
inter

(1)

where I(·) denotes the indicator function which outputs 1 if · is true, 0 otherwise.
Additionally, yi,a denotes ground truth of a-th label associated with xi and
yi,−a denotes ground truth of all the labels excludes a-th label associated with
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Fig. 2. Illustration of label vector Ya and Y−a in Y . In the left part, matrix shadowed
with orange represents Ya. In the right part, matrix shadowed with orange repre-
sents Y−a.

xi. λintra is the intra-set reweight parameter and λinter is the inter-set reweight
parameter. Take WDi

1 as an example, item λ
I(Fa(xi) �=yi,a)
intra considers the mistake

made by label in Ya, i.e, a model that has made mistake will be emphasized by
assigning a higher weight. Item λ

I(F−a(xi) �=yi,−a)
inter considers inter-set relationship

between Ya and Y−a, i.e., the weight of an instance on Ya will be increased when
misclassified on Y−a. Meaning of items in WDi

2 is similar to that in WDi
1.

At the end of the training process, we normalize WD1 and WD2 to form a
valid distribution.

Instance Sampling. We decompose the original problem into two depen-
dent sub-problems.

And then we sample two datasets D1 = {(X1,Ya)} and D2 = {(X2,Y−a)}
i.i.d. according to instance distributions WD1 and WD2 respectively, where
X1 ∈ R

N×d, Ya ∈ R
N×1, X2 ∈ R

N×d, Y−a ∈ R
N×(L−1).

Bipartite Model Reuse We train on two datasets D1 and D2 with model
reuse and get 3 models G1, G2 and G3.

– Firstly, we train on the dataset D2 with basic multi-label learning algorithm
(here we adopt CC algorithm), and then we get model G1 : X → Y−a.

– Secondly, we reuse model G1 on D1 and get predicted label vector G1(xi).
And then, we concatenate feature vector with predicted label vector, i.e,
[xi,G1(xi)]. Training on dataset D1, we get model G2 : X + Y−a → Ya.

– Thirdly, we reuse model G2 on D2 and get predicted label vector G2(xi). And
then, we concatenate xi with predicted label vector, i.e, [xi,G2([xi,G1(xi)])].
Training on dataset D2, we get model G3 : X + Ya → Y−a.

It is notable that G2 reuses model G1, so G3 reuses two models G1 and
G2. Model trained on one dataset is reused on the other dataset, which provides
additional help for the final classification. Furthermore, we provide theoretical
analysis for bipartite model reuse. ha(·) = G2(·) and h−a(·) = G3(·) in the
following analysis.
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Definition 1. Generalization error of hypothesis h(·) mapping from X to Y
based on HammingLoss:

R(h) = E
(x,y)∼D

[ 1
L

L∑
k=1

I(h(x) �= yk)
]

(2)

where yk is the ground-truth of the k-th label.

Definition 2. Empirical error of hypothesis h(·):

R̂(h) =
1
m

m∑
i=1

( 1
L

L∑
k=1

I(h(x) �= yk)
)

(3)

Lemma 1. R(h) ≤ max{R(ha), R(h−a)}, where h(·) is composed of ha(·) and
h−a(·).

Proof.

R(h) = E
(x,y)∼D

[ 1
L

L∑
k=1

I(h(x) �= yk)
]

=
1
L

E
(x,y)∼D

[
I(ha(x) �= ya)

]

+
1
L

E
(x,y)∼D

[ L∑
k=1,k �=a

I(h−a(x) �= yk)
]

=
1
L

(
R(ha) + (L − 1)R(h−a)

)

≤ 1
Lmax{R(ha), R(h−a)}(1 + L − 1)}

= max{R(ha), R(h−a)}
��

Lemma 2. R(h−a) ≤ max{R(hk)}L
k=1,k �=a

Proof.

R(h−a) = E
(x,y)∼D

[ 1
L − 1

L∑
k=1,k �=a

I(hk(x) �= yk)
]

=
1

L − 1 E
(x,y)∼D

[ L∑
k=1,k �=a

I(hk(x) �= yk)
]

=
1

L − 1 E
(x,y)∼D

[ L∑
k=1,k �=a

R(hk)
]

≤ 1
L − 1

(L − 1)max{R(hk)}L
k=1,k �=a = R(hm)

��
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where h−a(·) = [h1(·), · · · , ha−1(·), ha+1(·), · · · , hL(·)], and for simplicity, we
denote max{R(hk)}L

k=1,k �=a as R(hm).

Theorem 31. In mono-label case, let H ⊂ R
X×Y be a hypothesis set. Fix ρ > 0.

Assume there exists r > 0 such that k(x,x) ≤ r2 for all x ∈ X . For any δ > 0,
with probability at least 1 − δ, the following holds for all h ∈ H. [12]

R(h) ≤ R̂ρ(h) + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m
(4)

Combine Lemma 1, Lemma 2 and Theorem 31, we have:

Proof.

R(h) ≤ max{R(ha), R(h−a)

≤ max
{
R̂ρ(ha) + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m
,

R̂ρ(hm) + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m

}

≤ max{R̂ρ(ha), R̂ρ(hm)} + 2

√
r2 ∧2 /ρ2

m
+ 3

√
log(2/δ)

m

��

The convergence rate of generalization error is standard as O( 1√
m

), which
validates the effect of bipartite model reuse.

Label Distribution Adaptation. In order to select most discriminative label
for bipartite model reuse, we are supposed to adapt label distribution according
to the models trained by bipartite model reuse. We get prediction ft(·) = G3(·),
and ft(·) = [f1

t (·), · · · , fa−1
t (·), fa+1

t (·), · · · , fL
t (·)] where fk

t (·) denotes the clas-
sifier of the k-th label. And then we test on dataset T with ft(·) and F−a(·)
respectively. We get importance rate of the a-th label for other labels as follows:

αt =
SubAcc(ft)

SubAcc(F−a)
(5)

where SubsetAcct(ft) = 1
M

∑M
i=1 I

(
ft(xi) = yi,−a

)
and SubsetAcct(F−a) =

1
M

∑M
i=1 I

(
F−a(xi) = yi,−a

)
.

On the other hand, we will increase the weight of the a-th label if αt > 1, i.e,
the a-th label has a positive effect to other labels with bipartite model reuse. The
weight of other labels exclude the a-th label remain unchanged. And then we
adapt label distribution WLt+1 = [WL1

t+1, · · · ,WLk
t+1, · · · ,WLL

t+1] for next
boosting round.

WLk
t+1 = WLk

t · α
I(k=a)
t (6)

where I(·) is an indicator function and k = {1, · · · , L}. Similar to WD1 and
WD2, we then normalize WLt+1.
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Above all, Overall Model Reuse is adopted. As is shown in Fig. 1, we get
f1(·),f2(·), · · · ,fT (·) after T number of boosting round. Finally we integrate
all models together and get H(·) = [H1(·), · · · ,Hk(·), · · · ,HL(·)], where Hk(·)
denotes final classifier of the k-th label. In the testing phase, labels are predicted
for instance x according to:

Hk(x) = argmax
l

T∑
t=1,k �=τt

αt · I(fk
t (x) = l) (7)

where l ∈ {−1, 1}, k = {1, · · · , L}.

4 Experiments

In this section, we validate the effectiveness of our proposed DMLMR algorithm
on real-world dataset of Parkinson’s disease and various benchmark multi-label
datasets.

4.1 Dataset Description

Firstly, we manually collect real-world dataset of Parkinson’s disease in Tradi-
tional Chinese Medicine (TCM). Furthermore, we will briefly present the feature
and label generation procedure for Parkinson’s disease diagnosis.

Both Parkinson-P and Parkinson have 91 TCM scales as features. However,
Parkinson-P has 5 primary symptoms. Parkinson has 10 syndrome types: 5
primary syndrome types and 5 secondary syndrome types. More details with
regard to syndrome types can be found in Sect. 1.

It is notable that DMLMR is designed for diagnosing Parkinson’s disease, it
is also a general multi-label learning algorithm. For comprehensive performance
evaluation, we collect 4 benchmark multi-label datasets.

– ML2000 : is an image dataset from [20], including 2000 images from 5 cate-
gories.

– Scene: has 2407 images and 6 possible labels [1].
– Emotions: is a set of 593 songs with 6 clusters of music emotions [16].
– Genbase: consists of 662 proteins with known structure families that belong

in 27 labels [2].

Table 1 summarizes the detailed characteristics of all datasets, Given a multi-
label dataset D = {(X,Y )}, we use |D|, dim(D), L(D), LCard(D), LDen(D)
and F (D) to represent number of instances, feature dimension, number of pos-
sible labels, label cardinality, label density and feature type, respectively.

– LCard(D) = 1
N

∑N
i=1 |yi| measures the average number of labels per instance.

– LDen(D) = LCard(D)
L(D) normalizes LCard(D) by the number of possible labels.
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Table 1. Characteristics of datasets.

Dataset |D| dim(D) L(D) LCard(D) LDen(D) F(D)

Parkinson-P 401 91 5 1.262 0.126 Nominal

Parkinson 401 91 10 0.798 0.160 Nominal

ML2000 2000 2000 5 1.236 0.247 Numeric

Scene 2407 294 6 1.074 0.179 Numeric

Emotions 593 72 6 1.869 0.311 Numeric

Genbase 662 1185 27 1.252 0.046 Nominal

4.2 Evaluation Metrics

To have a fair comparison, we employ five widely-used evaluation metrics, includ-
ing: HammingLoss, SubsetAcc, MacroF1, MicroF1, ExampleF1 [21].

4.3 Comparing Algorithms

We compare our proposed DMLMR algorithm with six state-of-the-art multi-
label algorithms, listed as follows:

– BR [1]: first-order algorithm which transforms the multi-label learning task
into multiple binary classification tasks

– CC [15]: a novel chaining method that considers the relativity between labels
– ECC [15]: state-of-the-art supervised ensemble multi-label learning method
– MLKNN [20]: is a kNN style multi-label classification algorithm, and outper-

forms some existing algorithms
– LLSF [7]: second-order algorithm which exploits different feature sets for the

discrimination of different labels
– CAMEL [3]: a novel method to learn the label correlations via sparse recon-

struction in the label space.

4.4 Experimental Results

For all these algorithms, we report the best results of the optimal parameters in
terms of classification performance. 10-fold cross validation (CV) is performed
on each dataset. To better characterize the comparison, we take the mean metric
value as well as the standard deviation of each algorithm. Note that for all the
employed multi-label evaluation metrics, their values vary within the interval
[0,1]. The larger the value of them, the better the performance of the classifier
for all of these evaluation metrics except HammingLoss.

Experimental results of our proposed DMLMR and other comparing algo-
rithms on real-world dataset of Parkinson’s disease and four benchmark multi-
label datasets are listed in Table 2 and Table 3 respectively. From the results,
it is obvious that DMLMR algorithm can achieve best or at least comparable
performance on all datasets with different evaluation metrics, which reveals that
DMLMR algorithm is a high-competitive multi-label learning algorithm.



Discriminative Multi-label Model Reuse for Multi-label Learning 735

Table 2. Performance comparison on Parkinson-P and Parkinson dataset. ↑ / ↓ indi-
cates that the larger/smaller the better of a criterion. The best results are in bold.

4.5 Influence of Parameters

More experiments are conducted on one real-world Parkinson-P dataset and one
benchmark multi-label Scene dataset to explore parameter sensitivity.

Inter-set Reweight Parameter. λinter is used for exploring the inter-set
relationship between Ya and Y−a. For Parkinson-P dataset, we fix λintra = 1.5,
T = 3, and then we set λinter between 1.0 and 1.5 with an interval of 0.1. For
Scene dataset, we fix λintra = 2, T = 3, and then we set λinter between 1.0 and
1.5 with an interval of 0.1.

As shown in Table 4, the performance of λinter > 1.0 is better than others
when λinter = 1.0 in most cases, which validates the effectiveness of exploit-
ing inter-set label relationship. In addition, we get optimal performance when
λinter = 1.7 on Parkinson-P dataset and λinter = 1.3 on Scene dataset.

Intra-set Reweight Parameter. λintra is used for exploring the intra-set
relationship on Ya (or Y−a). Based on the above discussion of inter-set reweight
parameter λinter, for Parkinson-P dataset, we fix λintra = 1.7, T = 3, and then
we set λinter between 1.0 and 3 with an interval of 0.5. For Scene dataset, we fix
λintra = 1.3, T = 3, and then we set λinter between 1.0 and 3 with an interval
of 0.5. In Table 5, we find that λintra = 1.25 or λintra = 1.5 for Parkinson-P
dataset may be a relatively proper setting, while λintra = 2.0 or λintra = 2.5 for
Scene dataset.

Boosting RoundT . We fix λinter = 1.7, λintra = 1.25 for Parkinson-P dataset
and fix λinter = 1.3, λintra = 2.0 for Scene dataset. With λinter and λintra fixed,
we get the optimal results when T = 8 on Parkinson-P dataset. Similarly, we
get the optimal results when T = 7 on Scene dataset.

For one thing, increasing number of boosting rounds will make classifier
overly complex and may lead to overfitting. We can see from Fig. 3(a) that when
boosting round T = 10, all evaluation metrics decline slightly, which accords
with our intuition since DMLMR is an approach with a boosting framework.
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Table 3. Performance comparison on four benchmark multi-label datasets. ↑ / ↓ indi-
cates that the larger/smaller the better of a criterion. The best results are in bold.

2 3 4 5 6 7 8 9 10
Boosting round

0.30

0.35

0.40

0.45
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0.55

0.60

Macro F1
Micro F1
Example F1
Subset Accuracy

(a) Parkinson-P

1 2 3 4 5 6 7 8 9 10 11
Boosting round

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.80

0.81

Macro F1
Micro F1
Example F1
Subset Accuracy

(b) Scene

Fig. 3. Performance of changes made by the number of boosting rounds T on
Parkinson-P and Scene dataset, with λinter and λintra fixed.

For another, classifier should have low training error and a small number
of boosting rounds in order to achieve good performance. As is shown in Fig. 3,
with λinter and λintra fixed, the performance of DMLMR is unstable in the initial
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Table 4. Performance comparison on Parkinson-P and Scene dataset when λinter

increases with λintra and T fixed. ↑ / ↓ indicates that the larger/smaller the better of
a criterion. The best results are in bold.

Table 5. Performance comparison on Parkinson-P and Scene dataset when λintra

increases from 1.0 to 3.0 with λinter and T fixed. ↑ / ↓ indicates that the larger/smaller
the better of a criterion. The best results are in bold.

increasing phase of T . After that, DMLMR improves remarkably. Eventually, as
the number of boosting round T increases, all curves tend to be smoother, which
show convergence when T > 6 for Parkinson-P and T > 7 for Scene dataset.

5 Conclusion

Traditional Chinese Medicine (TCM) is a new way for diagnosing Parkinson’s
disease (PD). In this paper, we apply multi-label classification technology to
diagnose PD in TCM, where we treat TCM scales as features and treat syndrome
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types as multiple labels. Furthermore, we propose a novel Discriminative Multi-
label Model Reuse (DMLMR) algorithm to advance diagnosing PD in TCM.
DMLMR exploits label correlations by selecting discriminative label with label
distribution adaptation, and then trains with model reuse. An assessment on the
real-world dataset of PD shows that DMLMR obtains remarkable results in terms
of various evaluation metrics, and DMLMR validates its ability of diagnosing PD
in TCM. Extensive experiments on multi-label benchmark datasets show that
DMLMR outperforms the state-of-the-art counterparts. In the future, how to
extend to scenario with partial labels is a very interesting work.
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Abstract. Few-shot fine-grained image recognition aims to classify fine-
grained images with limited training samples. Nowadays exist in a major-
ity of few-shot fine-grained image classification methods the following
problems: local information loss and ignoring pivotal parts. To solve the
above problems, this paper proposes a new embedding module, called
GLAE. The author designs a hierarchical structure and combines the
first-order and second-order information to reduce the local information
loss. Besides, this paper proposes an attention mechanism to obtain the
vital parts by the attention mask. On the StanfordCars dataset, GLAE
achieves an accuracy of 91.18% which is the best result in the field of
few-shot fine-grained image recognition.

Keywords: Fine-grained imgae recognition · Few-shot learning ·
Attention mechanism · First-order and Second-order information

1 Introduction

Traditional deep neural networks (DNN) rely on large training sets to generate
a possible mapping relationship through a huge amount of training. But such an
approach is inefficient and leads to significant data waste. Humans, by contrast,
typically need only a quite small sample of data to learn something new. Besides,
with the increasingly stringent requirements of classification, the difficulty of
sample collection increases. In the real environment, the number of data samples
available is usually very limited [1]. Moreover, fine-grained image recognition
is different from traditional image recognition tasks. There are some problems
occurs in fine-grained image recognition, such as how to depart large intra-class
difference from tiny inter-class difference. Therefore, it is necessary to solve the
structure of fine-grained image recognition to pay more attention to the tiny
but vital parts. Therefore, the traditional deep learning method is difficult to
deal with the fine-grained classification problem due to the limited training set
samples and strict classification requirements.

In recent years, few-shot learning has attracted extensive attention [6]. The
core idea of few-shot learning is that image recognition tasks can be completed
c© Springer Nature Switzerland AG 2020
X. Wang et al. (Eds.): APWeb-WAIM 2020, LNCS 12317, pp. 740–747, 2020.
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with only a few numbers of training samples just like humans. Compared with
the traditional deep learning algorithm, few-shot learning is more intelligent and
more in line with the idea of machine learning. Although few-shot learning shines
brilliantly in the field of traditional image recognition, it is troublesome for tra-
ditional few-shot learning to recognize a fine-grained image because fine-grained
image recognition requires tiny but important local information. At present, a
few works focus on introducing few-shot learning into the field of fine-grained
recognition, but they have the following two problems: they fail to pay attention
to the local representative features and lose the local information.

The rest of this paper is organized as follows. Section 2 introduces the research
progress of few-shot learning and fine-grained image recognition. Section 2.1
presents the proposed global and local attention embedding module. Experimen-
tal results and discussions are presented in Sect. 3. The conclusion is described
in Sect. 4.

2 The Proposed Method

At present, the main few-shot fine-grained Classification methods rarely con-
sider the effect of global and local features on classification effect. In addition,
the current mainstream methods do not take into account the effect of attention
mechanism on classification results. To solve the above problems, we proposed a
network architecture based on the DenseNet structure, and used bilinear archi-
tecture to obtain the second-order information of the image and fuse it with the
first-order information, to obtain the global and local features of the image. To
reduce the loss of image in the pooling process, Global Average pooling (GAP)
is employed instead of the traditional Global Maximum Pooling (GMP). The
author adopts a new attention mask to pay more attention to the important
parts to improve the results of classification.

The specific structure of this part is as follows: First, we introduce the defi-
nition of the few-shot learning problem. Next, the author explains the proposed
structure in detail. The Fig. 1 illustrates the proposed method visually.

2.1 Global and Local Information

Hierarchical Structure. Most few-shot fine-grained image classification meth-
ods do not pay attention to local features with characteristics. Inspired by the
DenseNet method, we propose a new feature extraction network consisting of
three convolution blocks, as Fig. 1 shows, each of which is composed of two con-
volution layers, two pooling layers, and two Batch Normalization layers. This is
the first time that both global and local features of an image have been consid-
ered in the few-shot fine-grained classification domain.

Assuming that the input can be expressed as X, then the result of the
first convolution layer of the convolution block is Φ1(X). The result is then
passed through a Global Maximum Pooling (GMP) layer GMP and the Batch
Normalization layer BN1 to the next convolutional layer Φ2, represented as
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Fig. 1. Explanation of the proposed Global and Local Attention Embedding (GLAE in
short) based structure for a 5-way-1-shot few shot fine-grained task on CubBird-200–
2011 dataset. As shown, the proposed structure consists of a Hierarchical structure in
order to reduce the information loss and an Attention Module to figure out the tiny
but vital parts.

R1 = BN1(GMP (Φ1(X))). Finally, via a Global Average Pooling (GAP) layer
GAP and a Batch Normalization layer BN2, The result can be showed as
Out1 = BN2(GAP (Φ2(R1))).

Global Average Pooling. Here we use GAP instead of GMP. In the field
of Saliency Detection, the idea of using GAP at the last layer was proposed
[7]. GMP loses more image information than the GAP. However, in the process
of transmission, peripheral details will be lost, leading to limited information
and affecting the classification results. Although the use of GAP increases some
computational complexity, the surrounding details are taken into account during
the pooling process, so that these details can be further passed on, and the local
features obtained from the shallow layer can be better preserved.

2.2 The Fusion of First Order and Second Order Information

Compared with traditional classification tasks, fine-grained classification requires
more attention to tiny but vital parts. Second-order information can be obtained
by using the network structure of the bilinear network, which can better obtain
the tiny parts and improve the accuracy of fine-grained classification. How-
ever, the bilinear network structure will lose spatial information when obtaining.
Meanwhile, although the first-order information does not work well when dealing
with fine-grained problems, it can retain spatial information well [4]. Therefore,
to better cope with few-shot fine-grained recognition, this paper fuses the first-
order information and the second-order information to improve the accuracy of
the final classification.
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Recently, [8] has proposed a method called Bilinear pooling, which gives a
sum pooling of second-order features from the outer product. The process of
Bilinear pooling can be represented by a quadruple shown as Eq. (1).

HBilinear = (τ1, τ2, fb, C),

τ : F 1
ij �−→ H ∈ Rd×(h×w),

fb(F 1
ij , τ1, τ2) =

1
hw

hw∑

ij=1

τ1(F 1
ij) · τ2(F 1

ij)
T .

(1)

The first-order information obtained by the convolution block will be abbre-
viated as as Out in the rest of the paper. The information is then put into the
bilinear structure to obtain the second-order information, which can be abbre-
viate to HBi. According to [4], the fusion of the first-order and second order
information is shown as V ec(Out,HBi), which means the concat result between
the first-order and second-order information.

2.3 Attention Mask

The difficulty of fine-grained classification lies in the dispersion within classes
and compactness between classes. To better perform fine-grained classification
tasks, fine-grained image recognition relies on tiny but important local parts to
classification and recognition. While considering the limited amount of training
data, it has trouble for the computer in learning how to find the key areas, so we
hope to make the network pay attention to the key areas through the attention
mechanism itself.

When humans learn about a picture, they usually divide it into the important
parts that are helpful and the unimportant parts. Analogous to the cognitive
process of human beings, we use the Sigmoid function to divide the acquired
image features into important regions and unimportant regions. For a pixel Outa
in the image represented by the convolution block. Then the probability of the
pixel p(Outa) which means the importance of the image classification. The larger
the value, the more important the region is to the classification.

At the same time, it should be noted that the proposed method preserves
spatial relationships between pixels. And no extra parameters are introduced in
the process, so it’s easy to implement.

2.4 GLAE Method

In this section, we specifically introduce how to apply the proposed GLAE
method in practical applications. Assume that the input X, the results of each
block can be shown as Out1, Out2 and Out3. After a 1×1 convolution layer, the
attention mask Xattention is then applied to the obtained image representation,
which can be noted as Eq. (2).
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Xattention = Sigmoid(Conv(Out)),

=
1

1 + exp−Conv(Out)
.

(2)

According to the Eq. (3), Hi
Bi represents the bilinear result of each block.

Hi
Bi = Xi

attention(Outi · OutTi ) i ∈ {1, 3}. (3)

After that, with the help of the hierarchical structure, the fusion of the first-
order and second-order information is achieved as Eq. (4) shows. α, β and γ are
the hyper parameters.

HResult = α · V ec(Out1,H
1
Bi) + β · V ec(Out2,H

2
Bi) + γ · V ec(Out3,H

3
Bi). (4)

As Eq. (5) shows, the corresponding category of elements in the query set
is determined by calculating the cosine distance between the elements in the
support set denoted by HS

Result and the elements in the query set denoted by
HQ

Result. The cosine distance is presented by Eq. (6).

similarity =
i∑

m

j∑

n

cos(Hsm
Result,H

qn
Result), (5)

cos(Hsm
Result,H

qn
Result) =

Hsm
Result

T · Hqn
Result

‖Hsm
Result‖2 · ‖Hqn

Result‖2
. (6)

3 Experiments and Analysis

In this part, we first introduce the database of commonly used in fine-grained
classification, then introduce the experimental settings and analyze the experi-
mental results, and finally carried out ablation study on the proposed GLAE.

3.1 Experiment Settings

To meet the task requirements of few-shot learning, we arrange both 5-way-1-
shot and 5-way-5-shot classification experiment in the above datasets. Specif-
ically, in a 5-way-1-shot classification experiments, in the training process, we
randomly extract five categories from the training set as a support set, and ran-
domly extract one picture from each category. In the query set, we randomly
extract 15 images from the five previously specified categories without joining
into support sets. In the testing process, like the training process, we randomly
select five categories from the test set or the validation set, and randomly extract
one picture as the support set. Meanwhile, for the query set, we extract 15 images
that are not in the support set from the same category as support set. The 5-
way-5-shot experiment is basically the same as the 5-way-1-shot experiment. In
addition to the production of the query set, we extract 10 pictures from each
category. In the experiments, the hyper-parameters α, β and γ are set to 0.4,
0.2 and 0.4.
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3.2 Few-Shot Fine-Grained Image Classification Results

Through the Table 1, we can figure that the proposed GLAE has achieved
significant success in the few-shot fine-grained image classification. The pro-
posed GLAE method carried out 5-way-5-shot experiments on CubBird-200–
2011 dataset, StanfordCars dataset, and StanfordDogs dataset. The proposed
method improved by 6.8%, 1.58%, and 6.21%, respectively, over the previous
method. In the StanfordCars dataset, GLAE’s accuracy reached 91.18%, which
is the best result of the few-shot fine-grained image classification on this dataset.

Because GLAE reduces information loss and mines image information as
much as possible, it is more suitable for fine-grained image recognition tasks
in a few-shot learning environment. In the 5-way 1-shot experiments, GLAE
improves the accuracy of CubBird-200–2011 dataset, StanfordCars dataset, and
StanfordDogs dataset by 7.98%, 10.19%, and 13.82%, respectively, compared
with the previous best results. The experimental results on the 5-way-1-shot
proves that GLAE can still achieve excellent results with the limited training
samples.

Table 1. The mean accuracies of both 5-way-1-shot and 5-way-5-shot tasks on three
benchmark fine grained datasets, with 95% confidence intervals. For each setting, the
best and the second best results are highlighted.

Method Stanford Dogs Stanford Cars CUB Birds

5way1shot 5way5shot 5way1shot 5way5shot 5way1shot 5way5shot

Piecewise [9] 42.10 62.48 28.78 46.92 29.63 52.28

Matching Net [10] 35.80 47.50 34.80 44.70 45.30 59.50

Prototype Net [2] 37.59 48.19 40.90 52.93 37.36 45.28

GNN [11] 46.98 62.27 55.85 71.25 51.83 63.69

Relation Net [3] 44.75 58.36 56.02 66.93 59.82 71.83

DN4 [5] 45.73 66.33 61.51 89.60 53.15 81.90

Ours (GLAE) 54.96 73.13 71.70 91.18 73.64 88.11

3.3 Ablation Study

Attention Mask. In this paper, we use an attention mechanism based on Sig-
moid. The input image area is divided into sections related to classification and
sections unrelated to classification. After the training, the network will pay more
attention to the important parts of classification, so as to improve the accuracy
of classification. Table 2 verifes the hypothesis. In this process, no additional
parameters are introduced, so the method we proposed is more suitable for cop-
ing with the few-shot fine-grained classification.

Hierarchical Structure. Relation Net introduces the convolutional layer as
an encoder to map the image information to another space through a series of
convolutional layers to determine the similarity between the support image and
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Table 2. The effect of attention mechanism on experiment results.

Attention mask Task Accuracy

Without mask CubBird 5-way-5-shot 85.14%

With mask CubBird 5-way-5-shot 88.11%

query image. Relation Net uses a four layers network structure. However, we
believe that it is difficult to extract more global information from the four layers
network structure, which will lead to the loss of the information extracted from
shallow layers, so we discussed the effect of encoder hierarchy on the final result.
Inspired by DenseNet, this paper adopts a hierarchical structure to make full use
of features gained from both shallow layers and deep layers, thus reducing infor-
mation loss. On the basis of Table 3, it is obvious that the proposed hierarchical
structure improves the final classification accuracy.

Table 3. Comparison of the encoder structures.

Encoder structure Task Accuracy

Convolutional structure StanfordCars 5-way-5-shot 90.60%

Hierarchical structure StanfordCars 5-way-5-shot 91.18%

Pooling Layers. In general, to better reduce the image size of the convolutional
layer output, the GMP pooling method is usually used. However, because the
few-shot fine-grained image classification requires tiny but significant local infor-
mation, such a maximized pooling method is likely to ignore these minute local
information, thus reducing the classification accuracy. According to Table 4, it
is intuitive that the GAP network architecture instead of GMP achieves better
accuracy results in few-shot fine-grained classification tasks.

Table 4. The effect of the pooling layer on the results.

Pooling layer Task Accuracy

GMP CubBird 5-way-5-shot 85.45%

GAP CubBird 5-way-5-shot 88.11%

4 Conclusion

In this paper, firstly, we pointed out two common problems that few-shot fine-
grained image classification methods mainly exist: local information loss and
the overlook of critical parts. To better adapt to few-shot fine-grained image
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classification, we use the hierarchical structure to reduce the lack of informa-
tion, combines first-order information with second-order information, and puts
forward a new but effcient attention mechanism. Experiments prove that our
method outperforms the mainstream few-shot fine-grained image classification
methods.
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Abstract. Traditional Chinese Medicine (TCM) plays an important
role in the comprehensive treatment of lung cancer. However the quality
of the prescriptions from TCM doctors depends on the doctor’s personal
experience, which leads to the TCM prescriptions are the lack of stan-
dardization. We apply the original clinical TCM prescriptions data to
train a standardized prescription generating model for TCM therapy.
Our model adopts the Bayes Classifier Chain (BCC) algorithm to solve
the label correlation problem, whose basic classifier is cost-sensitive SVM
targeted to the class imbalance of the label. The results of experiments
on the prescription dataset demonstrated the effectiveness and practica-
bility of the proposed model for a prescription generation.
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1 Introduction

As one of the most common malignant tumors, lung cancer is a leading cause of
cancer-related death worldwide [15]. TCM is considered as an important comple-
mentary therapy with beneficial effects for lung cancer patients by reducing toxic
effects, improving the quality of life [8]. It can be observed that traditional Chi-
nese medicine has become an important part of the comprehensive treatment
system for lung cancer. However, different from the normalized diagnosis and
treatment standard in modern medicine, traditional Chinese medicine is more
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individualized in the treatment of patients, and the treatment effect is closely
linked to the doctor’s level of clinical experience. For example, the prescription
made by TCM doctors, which consists of a set of herbs, may be different from
different doctors. Therefore, it is a very meaningful task to integrate the clinical
prescriptions of different TCM doctors, analyze the rules, and then standardize
the prescribing process. In relevant research about the TCM standardization, the
prescription data were mostly from the TCM classics and pharmacopeia. There
is just an obvious problem with these datasets that the prescriptions of TCM
medical books are too old and simple to suit the up-to-date medical demand.
Fortunately, our collaboration hospital has provided over 10000 prescriptions of
TCM therapy aimed at lung cancer and we applied these data in our experiment.

Table 1 shows an example of TCM prescription excerpted from an electronic
medical record. The first row is the set of symptom descriptions. The practi-
tioner prescribes herbs shown in the second row based on the symptoms and
diagnosis. In this paper, we construct a multi-label classifier, whose input is a
set of symptoms and the output is a group of herbs.

Table 1. An example for a TCM prescription of lung cancer

In our early experiment, we found two critical problems with the prescription
dataset. The first problem is the correlation between each herb label, for example,
each prescription has a fundamental prescription targeted to a specific symptom
comprised of several fixed herbs. These herbs often appear together in a certain
prescription. The second is the class imbalance of every label interior. In our total
dataset, there are 357 herb labels, 189 symptom features, and 10000+ samples.
However, there are 255 labels in total whose the number of positive samples
only accounts for less than 3.3% in total samples. It can be seen in Fig. 1 that
the number of positive samples with most of the labels is much less than the
negative samples.

In multi-label classification algorithms, the Binary Relevance (BR) [3] is the
basic algorithm, which converts the multi-label classification to single-label clas-
sification to solve. BR algorithm is simple and doesn’t consider the label corre-
lation, but the reality is complicated. Aimed to the label correlation, the label
power-set approach [16] transforms the multidimensional problem into a single-
class scenario by defining a new compound class variable whose possible values
are all of the possible combinations of values of the original classes. It is the obvi-
ous disadvantage of this method that the computational complexity will increases
exponentially with the number of labels. Based on BR, Classifier Chains (CC)
algorithm [12] constructs a chain structure on labels and determines the pres-
ence/absence of the current label under the condition of previously determined
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Fig. 1. We have 357 labels in our prescription dataset and we classify this label accord-
ing to the percentage of the number of positive samples in the total sample. The height
of every bar is the actual quantity of each category

labels. There are some problems with CC methods such as how to decide the
order of the labels in the chain, and not all labels exist the correlation between
each other.

Zaragoza [14] proposed a more effective method, Bayes Classifier Chain
(BCC), which establishes a directed acyclic graph of the label set based on the
correlation between each label. Then they train each classifier starting from the
top node, the results of the parent node classifier will be added into the input
feature set of the children node classifier. In our work, we built a DAG for the
herb label set according to the special attribute of the prescription dataset refer
to the BCC method to solve the labels correlation problem.

The solution to cope with the class imbalance can roughly be grouped into
two general categories. The first is to address the problem from the respect
of sampling, that is to say changing the distribution of the sample, by adopt-
ing resampling techniques such as oversampling, undersampling and synthetic
sampling with data generation [1,4,6]. In our previous experiment, the perfor-
mance after altering the sampling strategy was dissatisfactory because of the
abnormally high false positive. Therefore we adopt the second category solution
in this paper. This method is called cost-sensitive learning using different cost
matrices that describe the costs for misclassifying any particular data example.
In our research, we selected the SVM as the basic classifier of CC method and
modified the SVM by cost-sensitive means.

We refer to the work of Masnadi-Shirazi et al. [10], in which they proposed
a new cost-sensitive SVM. This new model not only can deal with the class
imbalance problem but also implemented the cost-sensitive Bayes decision rule
and made the model risk approximate the cost-sensitive Bayes risk. The experi-
ment result showed that the performance of this SVM is better than others. In
the following sections, we call this SVM as CS-SVM (cost-sensitive SVM). The
contributions of our work are as follows:

– We improve the BCC method targeted to the unique feature about the TCM
prescriptions dataset. In our BCC classifier, the DAG construction approach
exhibits the fine interpretability of TCM prescriptions.
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– We combine the multi-label learning algorithm with the cost-sensitive SVM
and compare its performance with other different SVM algorithm. This CS-
SVM exhibits excellent performance in dealing with a class imbalance of label
interior in multi-label classification problems.

– We apply our multi-label classification model on the TCM prescription predic-
tion problem and achieve better performance, which was approved by TCM
doctors.

2 Related Work

2.1 TCM Knowledge Discovery

With the development of artificial intelligence, more researches pay attention to
the TCM data mining using AI. The topic model has been widely applied in
the analysis of the prescriptions, such as Jialin Ma et al. [9], Liang Yao et al.
[19]. The graph theory model also plays an important role in TCM research.
Chunyang Ruan et al. [13] adopted the graph model to find the rule between
symptoms and herbs in TCM. With the development of deep learning, more and
more researchers tried to adapt the neural network method into biomedical to
deal with medical problems. Wei Li et al. [7] proposed a seq2seq model based
on RNN to generate the herbs, which refer to the machine translation model
in NLP. Qiang Xu et al. [18] chose chronic obstructive pulmonary disease as an
example of investigating syndrome differentiation for TCM based on artificial
neural networks.

2.2 Classifier Chain

Read et al. [12] first introduced chain classifiers as an alternative method for
multi-label classification that incorporates class dependencies, while keeping the
computational efficiency of the binary relevance approach. Based on the fun-
damental CC method, researchers have done many improvements. Dembczyn-
ski proposed [5] Probabilistic Chain Classifier (PCC) algorithm, which mainly
applies a probability frame in CC. Although PCC can better consider the rel-
ativity between labels, it has very high time complexity. Goncalves et al. [14]
referred to the genetic algorithm and then put forward the GACC algorithm, the
purpose is to optimize the CC forecast order chain by the heuristic algorithm.
J. Read et al. [11] presented the classifier trellis (CT) method for scalable multi-
label classification. In recent work, we can see that many researchers pay close
attention to the label order by searching for the correlation between the labels.

2.3 Cost Sensitive SVM

SVMs are based on a very solid learning-theoretic foundation and have been suc-
cessfully applied to many classification problems. The cost-sensitive modification
on the basic SVM algorithm can cope with the class imbalance problem and there
two primary cost-sensitive modifications on SVM. The first was known as the
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biased penalties SVM (BP-SVM) [2,17], whose mechanism consists of applying
different penalty factors C1 and C−1 for the positive and negative SVM slack
variables during training. It is implemented by transforming the primal SVM
problem into

arg min
w,b,ξ

1
2
||w||2 + C

⎡
⎣C1

∑
{i|yi=1}

ξi + C−1

∑
{i|yi=−1}

ξi

⎤
⎦ (1)

s.t. yi(wT x + b) ≥ 1 − ξi

The BP-SVM suffers from an obvious flaw, which has limited ability to carry
out a cost-sensitive strategy when the training data are separable. In the pro-
cess of parametric optimization, the model intends to select large slack penalty
C rather than adjust the cost-sensitive penalty C1 and C−1 and then the slack
variable ξ is zero-valued and the optimization degenerates into that of the stan-
dard SVM, where the separating hyperplane is placed midway between the two
classes (rather than assigning a larger margin to one of them). The second is a
cost-sensitive SVM model proposed by [10] and in this paper, we call it CS-SVM
for simplicity. They modified the hinge loss function directly by the cost-sensitive
way rather than only added penalty terms. We will elaborate on it in the follow-
ing section.

3 Methodology

Our prescription predicting can be regarded as a multi-label classification mis-
sion. In the following, we use the boldface to represent a vector and the normal
font is the scalar or a component of a vector. Every train sample consists of a
symptom set and a herb set, which can be represented as (Xi,Yi). Xi is the
input vector and Yi is the output vector, in our problem, they are deemed as
symptom vector and herb vector respectively. For every Xi = [x1, x2, · · · , xM ] ∈
{−1, 1}M ,Yi = [y1, y2, · · · , yL] ∈ {−1, 1}L, the M and L are the dimension of
the input vector and output vector severally. In our task, M is the number of
total symptoms and the L is the number of total herbs. If the symptom set of one
sample contains a symptom sj , (j = 1, · · · ,M), the jth component of the vector,
xj , will be 1, otherwise will be -1 and the herb set is like the symptom set. Our
task is training a multi-label classifier F (·) satisfied the functional relationship
Y = F (X) on the basis of training sample.

Fig. 2. The framework of our BCC training procedure
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3.1 Bayes Classifier Chain Algorithm

Algorithm 1 and Fig. 2 are the framework of our BCC algorithm. The BCC in
this research has two parts:

1. Constructing the order of the classifier chain, the directed acyclic graph,
2. Training the BCC classifier according to the DAG and this part is elaborated

in Algorithm 3.

Construct the Directed Acyclic Graph(DAG). Ordinarily, constructing a
Bayes network is an NP-hard problem. However, we can simplify this process
based on the dataset feature in our prescriptions generation task.

Firstly, we count the occurrence number of every herb label in total 10000+
sample, and then sort all the labels by their occurrence numbers from large to
small. We find that if a herb’s occurrence frequency is higher, it will be more
important and common use when doctors make a prescription. TCM doctors
always consider the common herbs at first and then judge whether to use rare
herbs. This fact means that we can set the direction of the herb network from
the high-frequency herbs to low-frequency herbs and the most common herbs are
start nodes in this network. In label sample matrix H, where H ∈ {−1,+1}N×L,
the column vector yi are arranged by the herb frequency order above.

Secondly, we compute the Pearson correlation coefficient matrix P (L × L)
between every herbs label based on the label sample matrix H. Every element
pi,j ∈ [0, 1] in P , after consultation with the doctor, we select the correlation
coefficient threshold: 0.2 after many experiments, if |pi,j | > 0.2, we regard the
herb yi and yj exist correlation, and then pi,j = 1 ortherwise pi,j = 0 (Fig. 3).

(a) Original DAG of herb labels (b) DAG after network pruning by DFS

Fig. 3. The node-set of these two networks consists of the top 15 highest occurrence
frequency herb labels in the total sample. The previous node in the topological sorting
order of the network has a higher frequency than the later node.

Thirdly, we construct a DAG G =< V,E >, where V is the node set and
every node vi corresponding to a herb label yi. We stipulate that if pi,j = 1 and
i > j, then the directed edge< yi, yj >∈ E. At last, this DAG exists a problem
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Algorithm 1. Framework of BCC training for our system.
Input: The sample matrix of symptom features S, where S ∈ {−1, +1}N×M . The

sample matrix of herb labels H, where H ∈ {−1, +1}N×L.;
Output: The BCC classifier F ;
1: Compute the Pearson correlation coefficient matrix of each label P ,where P ∈

{−1, +1}L×L according to S;
2: Select the threshold t, ∀pi,j ∈ P , if |pi,j | > t, pi,j ← 1 else pi,j ← 0. Then get the

adjacent matrix G based on P .
3: Apply the Algorithm 2, input the DAG adjacent matrix G, get simplified DAG

adjacent matrix G′.
4: Use the DAG: G′ =< V, E′ > as the classifier chain order of BCC algorithm, then

call Algorithm 3.

that if there is a path ri,j from vi to vj , we can find there are many directed
edge < vk, vj >, where {vk|vk ∈ ri,j}. Targeted to this problem, we apply deep
first search(DFS) algorithm to remove redundant edge, which is explained in
Algorithm 2.

Bayes Classifier Chain. If the DAG has been established, the training process
is following Algorithm 3. We chose some special options for general training pro-
cedures. Firstly, in the training process, if we want to train a classifier for label
yi, we select the actual class value of the ancestor label node about the yi given
in the original training set instead of the prediction value in training, which will
tend to produce more accurate classifiers. Secondly, we use all ancestor nodes of
the label that will be training as the additional input features besides the symp-
toms, because this scheme conforms to the general way of thinking for TCM
doctors.

Algorithm 3 shows the training procedure in detail. This algorithm references
the DFS algorithm and makes some modification. We ensure that if a label node
will be training, all of its ancestor nodes have been ended their training process.
When we train along one path and counter a node that has more than one in-
degree, we will add the additional feature of this node’s parent node in the path
and decrease this node’s in-degree by one. Then we start from other paths until
this node’s in-degree equal zero. If so, we can continue from this node.

3.2 Cost Sensitve SVM

The BCC can solve the label correlation problem in our prescription generation
task to some degree. But there still exists the class imbalance problem, so we
will improve our model in the aspect of the basic classifier. We selected the
cost-sensitive SVM [10] as the basic classifier for BCC algorithm.

Bayes Consistent of Standard Binary Classifier. For binary-classify task,
the goal is to predict an ubobserve value y ∈ {+1,−1} based on an observed
input vector x. This requires us to train a functional relationship y = h(x) from
a set of example pairs of (x, y). From a statistical viewpoint, the feature vectors
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Algorithm 2. Simplify the DAG of herb labels node.
Input: The adjacent matrix D of the original DAG: G =< V, E >,

Sign array Signlist = {0}num(V ), where num(V ) is the vertex number of V ,
The different connected component flag, Sign = 0,
The matrix D′ = {0}num(V )×num(V ).

Output: The adjacent matrix D′ of the simplified DAG: G′ =< V, E′ >;
1: function DFS(i, num(V )) :
2: For j = i + 1; j < num(V ); j + + do
3: if D[i][j] = 1 and Signlist[j]! = Sign then
4: D′[i][j] ← 1 // Add directed edge e =< i, j > to E′

5: Signlist[j] ← Sign
6: DFS(j, num(V ))
7: end if
8: return
9: end function

10:
11: For i = 0; i < num(V ); i + + do
12: Sign ← Sign + 1
13: DFS(i, num(V ))
14: retrun D′

and class labels can be regarded as random variable possessing probability dis-
tributions PX(x) and PY (y) respectively. We write the classifier function as the
form that h(x) = sign[p(x)], where the function p : X → R. A non-negative func-
tion L(p(x), y) be deemed as the loss function for each (p(x), y) pair. The classi-
fier is considered optimal if it minimizes the expected loss R = EX,Y [L(p(x), y)],
also known as the expected risk. Minimizing the expected loss also equivalent to
minimizing the conditional risk

EY |X[L(p(x), y)|X = x] = PY |X(1|x)L(p(x), 1) + (1 − PY |X(1|x))L(p(x),−1)
(2)

To make it easier to understand this formula in probability way, we can write the
predictor function p(x) as a composition of two functions p(x) = f(η(x)), where
η(x) = PY |X(1|x) is the posterior probability. f : [0, 1] → R is called the link
function in this paper, which establishes a connection to Bayes decision rule by
this means. The Bayes error rate of the data distribution is the probability that
an instance is misclassified by a classifier which knows the true class probabilities
given the predictors. We hope minimized conditional risk closed to the Bayes
error. Assuming the true probability distribution has been known, if we want to
minimize the conditional risk, we can select the suited link function f when the
loss function L is fixed.

The φ is the concrete form of the loss function L, such as the hinge loss in
SVM φ(yf) = �1 − yf�+,where �x� = max(0, x). The f is the function of η, but
for simplicity, we omit the η. Because the loss function φ may be different in
a false positive and false negative, these cost-sensitive loss function can also be
written as a unified form
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Algorithm 3. Training BCC based on DAG.
Input: The adjacent matrix D′ of the simplified DAG: G′ =< V, E′ >;

The array of sum about every node in-degree, Sum in;
The additional feature sets of all herb label nodes, T0, T1, T2, · · · = ∅;
The basic classifier f(·);
The symptom feature set X.

Output: The BCC classifier F ;
1: for k = 0;k < num(V );k + + do
2: Sumin[k] ← sum(D[·][k])// compute the indegree of each node
3:
4: function Training(i, num(V ), T ′) :
5: Sum in[i] ← Sum in[i] − 1;
6: if Sum in[i]! = 0 then
7: return
8: else
9: The eventual input set X ′

i for fi(·): X ′ ← X ∪ Ti

10: Use the sample in input feature set X ′ and target set yi train fi(·)
11: for j = i + 1; j < num(V ); j + + do
12: Ti ← Ti ∪ T ′;
13: Training(j, num(V ), Ti)
14: return
15: end if
16: end function
17:
18: do
19: for u = 0;u < num(V );u + + do
20: if Sum in[u] = 0 then
21: Training(u, num(V ), Tu)
22: break
23: end if
24: while u! = num(V ) − 1
25: return BCC classifier F (·) =

[
f0, f1, f2, . . . , fnum(v)−1

]

Lφ,C1,C−1 = φC1,C−1(yf) =

{
φ1(f), if y = 1;
φ−1(f), if y = −1.

(3)

We get the cost-sensitive conditional risk from (2) and (3)

Cφ,C1,C−1(η, f) = ηφ1(f) + (1 − η)φ−1(−f) (4)

There exists a suitable link function f∗
φ(η) and it can minimized the conditional

risk Cφ,C1,C−1 .

Cost Sensitive SVM Loss Function. In this section, we will expand the
hinge loss function to cost-sensitive version. The loss function of standard SVM
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is hinge loss, φ(yf) = �1 − yf�+,where �x� = max(0, x). Refer to [20] , the
optimal link function for standard SVM is

f∗
φ(η) = sign(2η − 1) (5)

and the minimum conditional risk is

C∗
φ(η) = 1 − −2|2η − 1| (6)

= η�1 − sign(2η − 1)�+ + (1 − η)�1 + sign(2η − 1)�+
We modify the optimal link function of standard SVM by cost-sensitive param-
eter naturally

f∗
φ,C1,C−1

(η) = sign((C1 + C−1)η − C−1) (7)

Like the conditional risk of standard SVM C∗
φ(η), we get the cost-sensitive coun-

terpart

C∗
φ,C1,C−1

(η) =η�e − d · sign((C1 + C−1)η − C−1)�+ + (8)

(1 − η)�b + a · sign((C1 + C−1)η − C−1)�+
where

d ≥ e, a ≥ b,
C−1

C1
=

a + b

d + e
(9)

and the a, b, d, e are positive number. Then we can easily find that

sign((C−1 + C1)η − C−1) =

⎧
⎪⎨
⎪⎩

1, if η ≥ γ

0, if η = γ

−1, if η ≤ γ

(10)

where γ = C−1
C1+C−1

. If η < γ, the risk is

C∗
φ,C1,C−1

(η) = η�e + d�+ + (1 − η)�b − a�+ (11)

At last, like the form of the hinge loss about standard SVM, the loss function of
cost-sensitive SVM can be deduced

φC1,C−1(yf) =

{
�e − df�+, if y = 1;
�b + af�+, if y = −1;

(12)

There are four freedom degrees in this hinge loss function, which control the
margin and slope of two class respectively. The positive class divide by margin
e
d and slope d of hinge loss and the negative class divide by margin b

a and slope
a of hinge loss.
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(a) Hinge loss function of standard SVM
and BP-SVM

(b) Hinge loss function of CS-SVM

Fig. 4. The (a) is the hinge loss of standard SVM and BP-SVM, φ(yf) = max(0, 1 −
yf). The (b) is the hinge loss of CS-SVM, where C+1 = 6, C−1 = 2.5, λ = 2C−1 − 1 =
4,positive loss is φ+1(yf) = max(0, 6−6yf), negative loss is φ−1(yf) = max(0, 1+4yf).

Cost Sensitive SVM Algorithm. In the previous section, the loss function
of cost-sensitive SVM have four freedom degree but in fact, there are only two
freedom degree in conditional risk function C∗

φ,C1,C−1
. We can find that we

only need the proportional relation between the two class slope, e
d and b

a . So
we suppose that the positive class weight is more important, which requires the
slope and margin of positive class is higher than the counterpart of negative
class,

e

d
≥ b

a
d ≥ a (13)

and then fix the e
d = 1 and set e = d = C1 in order to specify the postive

class margin. In a similar way, we only need the proportional relation between
the a and b. The b can be set at 1, the accord to the third folumation of (9),
a = 2C−1 − 1. At last, we bring the value of a, b, d, e into (8) and obtain the
resulting cost sensitive SVM minimal conditional risk is

C∗
φ,C1,C−1

(η) =η�C1 − C1 · sign((C1 + C−1)η − C−1)�+ + (14)

(1 − η)�1 + (2C−1 − 1) · sign((C1 + C−1)η − C−1)�+
with C−1 ≥ 1,C1 ≥ 2C−1−1 in order to satisfy (13). The intuitional explanation
is that the positive class has a larger margin that can make the separating
hyperplane deviated to negative class and have a higher slope can increase the
cost risk when occurring misclassification.

There the standard SVM risk can be modified by the cost-sensitive method:

arg min
w,b

∑
{i|yi=1}

�C1 − C1(wT xi + b)�+ (15)

+
∑

{i|yi=−1}
�1 + (2C−1 − 1)(wT xi + b)�+ + μ||w||2
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then deduce to a primer optimization problem

arg min
w,b,ξ

1
2
||w||2 + C

⎡
⎣β

∑
{i|yi=1}

ξi + λ
∑

{i|yi=−1}
ξi

⎤
⎦ (16)

s.t. yi(wT x + b) ≥ 1 − ξi, yi = 1

yi(wT x + b) ≥ κ − ξi, yi = −1

with
β = C1 λ = 2C−1 − 1 κ =

1
2C−1 − 1

(17)

In this quadratic programming problem, the cost-sensitivity is controlled
by the three parameters β, γ, κ. The β, γ decide the relative weights of margin
violations and pay more attention to positive class on the constraint that C−1 ≥
1,C1 ≥ 2C−1 − 1. When the data are separated, the BP-SVM(1) has a defect
that the optimization procedure tends to select larger the parameter C in BM-
SVM(1), in that circumstances, the cost-sensitive parameter C1, C−1 will be
ineffective and degenerate into standard SVM. But in this model, the κ can
shrink to narrow the margin rather than increase the common slack penalty C.
The Fig. 4 shows that the distinction of loss function between standard SVM, BP-
SVM, and CS-SVM. The SVM’s margin is the X-intercept and the X-intercept
of BP-SVM is 1 and −1, but the negative loss X-intercept’s absolute value of
CS-SVM is smaller than 1.

4 Experiment

In this section, we conduct several experiments to compare the performance of
CS-SVM with BP-SVM and standard SVM with BR and BCC algorithm. We
implement our method by the SVM library libsvm1.

Table 2. The prescription dataset

Quantity of total sample Input feature Output labels

10052 189 357

4.1 Dataset

Our dataset consists of 10000+ TCM prescriptions targeted to lung cancer,
which were provided by the cooperative hospital. Our prescription dataset D
has been shown in Table 2. The quantity of the total sample is 10052, in which
the dimension of input feature(the symptom) is 189 and the number of the
output labels(the herbs) is 357. The proportion of training set to test set is 9:1.
The data will be upload our github2.
1 https://www.csie.ntu.edu.tw/cjlin/libsvm/.
2 https://github.com/xbybshd/TCM-prescription-dataset.

https://www.csie.ntu.edu.tw/cjlin/libsvm/
https://github.com/xbybshd/TCM-prescription-dataset
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(a) The F1-score comparsion (b) The precision comparsion

(c) The recall comparsion (d) The number of practical correct predici-
tion labels

Fig. 5. The multi-label evaluation of the samples which are classified by the degree
of imbalance of every label, we applied BR+standard SVM, BCC+standard SVM,
BR+BP−SVM, BR+CS−SVM, BCC+CS−SVM and a Seq2seq RNN model.

4.2 Multi-label Classifiy Evaluation Index

To test these three SVM models on class imbalance data, we classify these labels
according to the percentage of the number of positive samples in the total sample.
The percentage of a label is more deviate 50%, the data in this label are more
imbalance. The evaluation indexes we adopt are the common metrics in multi-
label classification, such as precision, recall, specificity, F1-score, and G-means.
To test the performance in the practical application more clearly, we statistics
the raw number of the label in prediction set, validation set and the intersection
of prediction and validation. Besides, the total cost is also be applied to evaluate
the cost sensitivity of the model, which is also the cost-sensitive zero-one risk.
The Totalcost = P1C1PFN + P−1C−1PFP , where P1 and P−1 are the class
priors probability and PFN and PFP are the false negative and false positive
rates respectively.

4.3 Result in Prescription Dataset

Table 3 is the global evaluation of three SVM methods on our test dataset and
we can find that the BCC+CS−SVM exhibits the best on F1-score. Although
the precision is lower than standard BR+standard SVM, it is the tradeoff for
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expanding the prediction scale to obtain more correct labels. We also applied a
recent deep-learning model proposed by Wei Li [7] on our data, which is based on
the RNN seq2seq model for a prescription generation. But the total evaluation
of the RNN seq2seq model is lower than the SVM models.

Figure 5 is the comparison between five SVM methods and the Seq2seq RNN
model on the labels classified by different degrees of imbalance. The 357 labels
are classified by the percentage of themselves a positive sample in the total
sample. Each part in the Fig. 5 doesn’t have the inclusion relation, for example,
that the ¿53.3% represents the part of ¡83.3% and ¿53.3%.

Table 3. The evaluation of the total sample

F1-score Precision Recall G-means Total cost

BR+Standard-SVM 0.591 0.644 0.545 0.734 null

BCC+Standard-SVM 0.604 0.641 0.57 0.748 null

BR+BP-SVM 0.606 0.534 0.701 0.821 16.575

BR+CS-SVM 0.618 0.538 0.723 0.834 15.878

BCC+CS-SVM 0.638 0.551 0.757 0.853 15.743

Seq2seq model based RNN 0.533 0.551 0.516 0.711 null

In two standard SVM model, we can find the model used BCC algorithm is
slightly better than the BR algorithm in Fig. 5, and the BCC model(green line)
also have higher total F1-score in Table 3. The Similar situation also appears in
three cost-sensitive SVM model. These phenomena prove that our BCC algo-
rithm can improve the performance of the prescription generation model. When
the doctor makes a prescription, the BCC method can consider the correlation
between the herbs compared with the BR method, such as the classical rule that
“The eighteen incompatible medicaments, the nineteen medicaments of mutual
restraint”.

In the three BR algorithm model, although the precision of BR+standard
SVM is higher than others in Table 3, the BP-SVM and CS-SVM have higher
recall and F1-score. It is a critical problem that the evaluation index on the total
sample of the standard SVM is slightly lower than BP-SVM and CS-SVM, but if
we consider the imbalance degree of every labels, in Fig. 5(a)(c)(d), we can find
the three evaluation on standard SVM, the F1-score, recall and the number of
practical correct prediction labels, are obviously less than counterparts of BP-
SVM and CS-SVM. This phenomenon is more serious if the data of certain labels
are more imbalance, which confirms the previous analysis that the standard SVM
will push the separating hyperplane to the minority class and results in a few
predictions. In practical application, doctors hope the model to pay attention to
the minority label rather than omit them simply.

As for the comparison between BP-SVM and CS-SVM, the fifth column
of Table 3 is the comparison of the total cost between the BP-SVM and CS-
SVM and the cost of CS-SVM is less than BP-SVM. The total cost is also the
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expectable risk of the model, the lower risk indicates the error rate of this model
is more close to the Bayes error rate. In other evaluation indexes, such as F1-
score, the CS-SVM is also higher than the BP-SVM.

The performance of the RNN Seq2seq model is similar to the three SVM
models in some class balance labels but the evaluation becomes lower and lower
with the increase of the label unbalancedness, which performs worse than the
standard SVM. We believe this result is because the deep learning model relies
on mass data, but the number of the most unbalanced label positive sample often
less than 100. In the training process, the small quantity of the sample makes
the deep model overfit. But it is impossible that there is an enormous quantity
of the single-disease prescriptions in the practical clinical situation so the deep
learning can’t exert its advantage in this situation.

5 Conclusion

TCM is one of the most significant complementary and alternative medicine and
it plays an important role in the therapy of lung cancer. However, the therapeutic
process of TCM lacks standardization like modern medical. Targeted to the
herb correlation and class imbalance problem in clinical TCM prescription, we
combined the Bayes classifier chain algorithm (BCC) and cost-sensitive SVM to
process the firsthand clinical TCM prescription and construct a simple TCM
prescription generating model. In detail, the BCC method was modified based
on the feature of TCM prescriptions and the cost-sensitive modifications were
added on standard SVM, such as bias penalty and amending the hinge loss. These
modifications have obtained better performance in our clinical TCM dataset. But
this model still has some room for improvement, for example, the correlations
between the herbs are complex, and maybe we can try other better methods to
mine these relationships to make our model adapt the more real complex clinical
situation.
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Abstract. With the growing prosperity of the Web service ecosystem,
high-quality service classification has become an essential requirement.
Web service description documents are semantic definitions of services,
which is edited by service developers to include not only usage scenarios
and functions of services but also a lot of prior knowledge and jargons.
However, at present, existing deep learning models cannot fully extract
the heterogeneous features of service description documents, resulting
in unsatisfactory service classification results. In this paper, we pro-
pose a novel deep neural network which integrates the Graph Convolu-
tional Network (GCN) with Bidirectional Long Short-Term Memory (Bi-
LSTM) network to automatically extract the features of function descrip-
tion documents for Web services. Specifically, we first utilize a two-layer
GCN to extract global spatial structure features of Web services, which
serves as a pre-training word embedding process. Afterwards, the sequen-
tial features of Web services learned from the Bi-LSTM model are inte-
grated for joint training of parameters. Experimental results demonstrate
that our proposed method outperforms various state-of-the-art methods
in classification performance.

Keywords: Web service classification · Graph convolutional network ·
Bidirectional-LSTM

1 Introduction

Web service is a new paradigm in software technology that reduces software
development costs through service reuse.Web services provide application pro-
gramming interfaces for Web applications to implement storage services, infor-
mation services, computing services and other functions. Various assets, data and
services of the enterprise can be accessed by users through the Internet, which
c© Springer Nature Switzerland AG 2020
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creates huge economic benefits. In the era of big data, Web service is a kind of
service resource with great value-added potential. It has become a common and
central interest in both academia and industry. ProgrammableWeb is the largest
online Web service registry, which includes more than 22,000 Web services by
November 1, 2019. As Web services become the backbone of the Web, mobile,
cloud, and software development, Web service ecosystem is emerging and grow-
ing rapidly [15]. In recent years, the Web service ecosystem has accumulated a
wealth of resources that can be used to provide rich application interfaces, accel-
erate the software development process, search and integrate multiple services
to meet software requirements.

The foundation for achieving high-quality service reuse is the accurate clas-
sification of Web services so that software developers can find the Web services
they need for their specific development goals [16]. The keyword-based method is
an efficient method for service discovery. Unfortunately, with the rapid growth of
the Web service ecosystem, a large number of Web services have been developed
and submitted to online Web service registries for sharing by service developers.
The vocabulary gap between developers leads to a lack of uniform specifica-
tions for Web service descriptions and keyword representations. As a result, it
is difficult for service users to efficiently find the services they need in a short
time.

In recent years, researchers in the field of Web services have made significant
efforts to address this issue. Existing works can be roughly divided into two cat-
egories. The first category is to use conventional machine learning methods with
high-quality feature engineering to predict service categories [1,5,6,11,12,17].
Various methods such as Support Vector Machines (SVM), Naive Bayes, Random
Forest (RF), AdaBoost, Topic Modeling and different features such as texts, top-
ics and internal invocation relationships are employed to enhance the accuracy
of service classification. The second category is to use various deep learning tech-
nologies to obtain representations automatically [3,8,10,19,21,22]. For example,
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), also
their variants and combinations (LSTM, GRU, Bi-LSTM, C-LSTM, RCNN)
are used to improve classification performance. In general, most conventional
machine learning based methods heavily depends on high-quality feature engi-
neering. However, the selection of features is inherently subjective and limited,
and often cannot be extended to other datasets. Meanwhile, manual feature engi-
neering is often time-consuming, labor-intensive and costly. In addition, existing
Web service classification methods based on single deep learning architecture
cannot fully exploit the service information. For example, CNN focuses on cap-
turing local spatial features of adjacent entities, while RNN only focuses on
capturing sequential features. Given the large amount of heterogeneous graph
structural data accumulated in the Web service ecosystem, it is difficult to take
full advantage of them. For example, the implicit co-invocation relationships
between Mashups (service composition) and APIs (services) in invocation his-
tory are difficult to be extracted and utilized by the general deep learning models.

In this paper, we propose a novel classification framework based on Graph
Convolutional Network (GCN) and Bidirectional Long Short-Term Memory
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(Bi-LSTM) Network for Web service classification on 50 categories without any
manual feature engineering and extra knowledge. Firstly, we construct a large
heterogeneous graph with Web service function description documents. Then, we
utilize a two-layer GCN model to capture global word co-occurrence informa-
tion and document-word relationships. Finally, we integrate the spatial structure
features captured by GCN (as a pre-training step) with the sequential features
captured by Bi-LSTM network for joint training of parameters. This method
takes full account of the spatial and sequential features of Web service descrip-
tions, and achieves robust classification performance.

The main contributions of this paper can be summarized as follows:

– We have proposed a GCN and Bi-LSTM based Web service classification
method by capturing service function description information. To the best
of our knowledge, this is the first study that GCN is used (as a way of pre-
training) to classify Web services.

– Our proposed method can effectively integrate global spatial feature with
a single sequential feature, providing a new idea for comprehensive feature
extraction of service description documents.

– Through comprehensive experiments on real-world data, it is proven that our
proposed method can achieve more accurate classification results than various
state-of-the-art methods in Top-N accuracy and F1-macro.

The rest of the paper is structured as follows. Section II provides some back-
grounds on the technologies used and analysis of Web service classification based
on function description documents. Section III presents the details about our
proposed method. Section IV demonstrates the experimental results. Section V
reviews some recent studies. Finally, Section VI summarizes our work and point
out future research directions.

2 Preliminaries

2.1 Graph Convolutional Network

Graph Convolutional Network (GCN) [9] operates directly on a graph, and
obtains embedding vectors of nodes according to the adjacent features of nodes,
so as to effectively learn and represent the graph structural data. Generally
speaking, we define an undirected graph G = (V,E), where V (|V | = N) is the
set of N nodes and E is the set of edges. We respectively use A ∈ R

N×N and D
to represent the adjacency matrix and degree matrix of G, where Dii =

∑
j Aij.

Every node is assumed to be self-connected, so we set matrix A = A + I
(I ∈ R

N×N is the identity matrix). X ∈ R
N×M is a matrix of node feature

vectors Xi, where M is the dimension of the feature vectors. A multilayer GCN
has the following propagation rules:

L(l+1) = ρ
(
D− 1

2 AD− 1
2 L(l)W (l)

)
(1)
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Where l denotes the layer number and L(0) = X. Here, W (l) is the trainable
weight matrix of the lth layer. ρ(.) is an activation function, such as a ReLU
ρ(.) = max(0, x).

Figure 1 gives a simple schematic of GCN for feature learning of texts, which
includes document entities, word entities as well as relationships among them.
Through the semi-supervised learning by GCN, the entire corpus maps from the
input channel (C) to the feature embedding (F ). Labels are denoted by Labeli.

Fig. 1. A sample schema of GCN for entire corpus. Nodes begin with ‘W’ are word
nodes, others are document nodes. Relationships between documents and words are
connected with solid black lines, and word co-occurrence information is connected with
solid orange lines. E(x) means the embedded representation of x. Different colors for
documents indicate different categories.

2.2 Long Short-Term Memory Network

Long Short-Term Memory (LSTM) [7] network is proposed to solve the gradient
disappearance problem in the structure of recurrent neural networks. LSTM
eliminates or adds information to the cell state through a carefully designed
gate structure (input gate Γi, forget gate Γf , and output gate Γo), enabling
LSTM to remember long-term information, forget unimportant information, and
effectively avoid long-term dependencies. In terms of details, the update steps of
LSTM network are defined by the following equations:

C̃(t) = tanh(Wch ∗ H(t−1) + Wcy ∗ Y (t) + bc) (2)

Γ
(t)
i = σ(Wih ∗ H(t−1) + Wiy ∗ Y (t) + bi) (3)

Γ
(t)
f = σ(Wfh ∗ H(t−1) + Wfy ∗ Y (t) + bf ) (4)

Γ (t)
o = σ(Woh ∗ H(t−1) + Woy ∗ Y (t) + bo) (5)

C(t) = Γ
(t)
f � C(t−1) + Γ

(t)
i � C̃(t) (6)

H(t) = Γ (t)
o � tanh(C(t)) (7)

Here, Γi,Γf ,Γo correspond to input gate, forget gate and output gate, respec-
tively. C and H each refer to the memory cell and hidden state during network
update process, where C̃ is the candidate memory of C. � denotes element-
wise multiplication, all W are weight matrixs, and all b are learned biases. Y is
calculated as the input of LSTM layer at each time step t.
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2.3 Problem Analysis

Function description documents of Web services are written and submitted by
service developers to summarize the main functions, usage scenarios and pre-
cautions of services. The style of the service description documents are different
from news, reviews, and Wikipedia entries. The following issues of the service
description documents make service classification challenging:

– Domain Semantics. Service description documents often contain jargons
and abstract concepts that only programmers can understand. For example,
the document “The Flickr API supports many protocols including REST,
SOAP, XML-RPC. Responses can be formatted in XML, XML-RPC, JSON
and PHP.” contains many terms REST, SOAP, XML, XML-RPC, JSON,
PHP. The document “The API uses GET requests over HTTPS and JSON
for requests/returns” contains the abstract concept GET.

– Variable Length. The length of service description document can vary
widely, ranging from several words like “For Windows Vista sidebar.”, to
long sentences like “It’s about The Concepts The BeliefNetworks service is
about discovering...” including more than 1400 words. This variable-length
text feature in service description document makes it difficult to achieve sat-
isfactory classification results by using single feature extraction method.

– Polysemy. Polysemy is common in sentence expressions, and which is often
accompanied by domain knowledge in service description document. such as
libraries, windows in sentences mentioned above.

– Abbreviation. The diversity and complexity of the Web service ecosys-
tem lead to a lack of uniform services description specifications, which make
service providers often use abbreviations in description documents such as
ads(advertisements), geo(geographical), and DP(Developer Platform), etc.

These four characteristics exhibited in service description documents make
single feature extraction method hard to work. Extracting potential features of
different aspects in service descriptions through a combination of different feature
extractors is a promising solution to address challenges mentioned above.

In this paper, given the service description documents, we first distinguish
document-word relationships and word-word relationships in the entire corpus,
then we construct a huge heterogeneous graph to describe intrinsic associations.
Next, we utilize a two-layer GCN to extract global spatial structure informa-
tion of Web services which is regarded as a pre-training step. Afterwards, we
integrate the global spatial structure information with the sequential features
learned from the Bi-LSTM model using pre-trained word embeddings for joint
training of parameters. Finally, the classification result is obtained through a
softmax classifier.

3 Proposed Method

In this section, we will present the details of our proposed method. The overall
framework is shown in Fig. 2.



A Spatial and Sequential Combined Method for Web Service Classification 769

Input1
Embedding

Bi-LSTM

Input2

GCN
GCN 2Layers

Concatenation
ReLU

ReLU
ReLU

Softmax
Prediction

Spatial Feature ExtractorSequential Feature Extractor
One-hot Matrix

Bi-LSTM
tanh2Layers

Fig. 2. A visualized architecture of our model. On the left is a sequential feature
extractor that learns the sequential features through a two-layer Bi-LSTM model. On
the right is a spatial feature extractor that learns global word co-occurrence information
and document-word association through a two-layer GCN. “One-hot matrix” means
that we use one-hot vectors to represent documents and unique words.

3.1 Spatial Feature Extractor

We use function description documents of all Web services to construct a huge
heterogeneous graph. The number of nodes in the text graph is the sum of the
number of documents and the number of unique words. At the beginning, we
use the one-hot vector to represent each word or document. In a nutshell, we
initialize the feature matrix X = I (identity matrix) as the input to the GCN.
We create edges for nodes in the graph based on the occurrence of words in the
document and the relationship between words in the whole corpus. The weight
of the edge between a word node and a document node is defined according
to the term frequency-inverse document frequency (TF-IDF) value. According
to the term frequency (TF) indicator, a word is more important in principle
if it appears more frequently in the document. Meanwhile, if a word appears
frequently in various documents, its ability to distinguish different documents
will be weakened. To this end, an inverse document frequency (IDF) indicator is
introduced to measure the contribution of a word to a document in the corpus.
We use a fixed-size sliding window (20 words by default) on all documents to get
the word co-occurrence information. We utilize point-wise mutual information
(PMI) indicator to get the weight of the association between two word nodes
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only with positive PMI values. Specifically, the association weight between node
i and node j is driven by the following formula:

Aij =

⎧
⎪⎪⎨

⎪⎪⎩

TF-IDFij i is document, j is word
PMI(i, j) i, j are words, PMI(i, j) > 0
1 i = j
0 otherwise

(8)

The two-layer GCN allows information to be passed in two steps, although
there is no direct document-document edges in the graph, information can be
exchanged between document nodes. We pre-calculate Â = D− 1

2 AD− 1
2 , then the

forward propagation process of GCN model is driven by the following equation:

Z = f(X,A) = softmax
(
Â ReLU(ÂXW (0))W (1)

)
(9)

The cross-entropy error of all labeled service descriptions is driven by the
following equation:

Loss = −
∑

d∈TD

Fdim∑

f=1

Tdf ln Zdf (10)

The weight parameters W (0) and W (1) are trained using gradient descent. Specif-
ically, TD denotes the set of document indices which have labels. Fdim stands for
embedded dimension of the output features, which is consistent with the number
of categories. T is the label indicator matrix.

3.2 Sequential Feature Extractor

LSTM network as a variant of recurrent neural networks is designed to learn
the long-term dependencies of time series data. Different from using GCN to
learn the spatial association between entities in the entire corpus, we use the
LSTM network to learn the potential document representation of a single service
description. In this paper, we use a two-layer bidirectional LSTM (Bi-LSTM)
network to extract the sequential features of the service descriptions. A Bi-LSTM
network can combine a forward LSTM layer and a backward LSTM layer in order
to learn information from preceding as well as following tokens comprehensively.
For the Web service classification task, we take the output of the hidden state
of the last time step of the Bi-LSTM as its document feature representation.

Compared with GCN, recurrent neural networks generally need to use pre-
trained word embeddings via the Embedding layer, which embeds words into
computer-processable numeric vectors. Global Vectors for Word Representation
(GloVe) [14] is a general technique for mapping words to vector representations
in the field of natural language processing (NLP). We use Glove6B to build the
embedding layer fe, which is a neural network pre-trained with 6 billion words
from Wikipedia and Gigaword. We choose the pre-trained Glove6B with 200-
dimensions word vectors in the embedding layer, which converts each word into
a 200-dimension vector. We fix weight values of the embedding layer and do not
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participate in the training. We assume that y is a Web service description and
the embedding layer can be defined as:

e = fe(y) (11)

To obtain high-level features, global long-term dependencies in the description
documents should be considered. Therefore, we introduce a two-layer Bi-LSTM
network fblstm to obtain the forward and backward sequential features of the
description documents. The output h of a two-layer Bi-LSTM network is :

h = fblstm(fblstm(e)) (12)

3.3 Learning the Proposed Model

After the above two extractors, we obtain two types of features (spatial fea-
tures and sequential features) of service descriptions. Then we concatenate these
two types of features and create a fully connected layer (ffc) for joint training
of parameters. Next, classification results of Web services are obtained by a
softmax classifier. As shown in Fig. 2, the dotted box on the left is the sequen-
tial feature extractor, the input (input1) is the service description document, and
the dotted box on the right is the spatial feature extractor, taking the pre-trained
spatial features as input (input2). The joint training mode of the parameters is
driven by the following equation:

prediction = softmax(ffc(con( ˆinput1, input2))) (13)

Where con refers to concatenating two vectors together. ˆinput1 is the high-level
feature vector of input1 processed by an embedding layer and a two-layer Bi-
LSTM network . The cross-entropy loss function is still used to measure the
errors.

4 Experiment

In this section, we conduct comprehensive experiments aiming to answer the
following two questions:

1. Q1: Whether our model of using both sequential feature extractor and spatial
feature extractor performs better than models using only one of them?

2. Q2: What is the performance of our proposed method in comparison with the
state-of-the-art methods in Web service classification?

4.1 Dataset Description

In our experiments, we use the dataset provided by [19], which is collected from
the largest API sharing platform (ProgrammableWeb) using a Web crawler.
For the fairness of comparison, we employ the data preprocessing same as [19].
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Specifically, we clean up empty services and make dataset more balance by elim-
inating the one-shot, small size categories and keep big size categories. Finally,
the service dataset contains 10184 services with 50 categories.

As the service dataset is relatively small and unbalanced, randomly partition
the dataset cannot ensure the training set and testing set to follow the same
distribution in small categories. After randomly selecting data by category, the
dataset has been split into 8123 training and 2061 testing service description
documents. In the GCN model, we delete low-frequency words that appear less
than 5 times. In the LSTM model, we unify the length of the text to 100 (average
length is 67). The excess part is discarded and the missing part is filled by zeros.
We remove the common and meaningless words using the stopword list in the
NLTK toolkit. We employ the lemmatizer packaged in the NLTK toolkit to
reduce all words to their root forms. The visualized category distribution of
Web services is shown in Fig. 3.

Fig. 3. A visualized distribution of 50 Web service categories, where x-axis is the
number of services contained in a category and y-axis is the name of each category.

4.2 Evaluation Methods

In this section, we compare our proposed method with multiple state-of-the-art
classification methods on the same dataset using Top-N accuracy, F1-macro:
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Method Based on Conventional Machine Learning

– Naive-Bayes: A typical statistical learning method which models joint prob-
ability distribution based on bayesian inference.

– RF: Random forest is an algorithm that integrates multiple trees through
comprehensive learning. Its basic unit is the decision tree.

– LDA-L-SVM [12]: A classification method integrated LDA (Latent Dirichlet
Allocation) and Linear-SVM for feature extraction.

Methods Based on Deep Learning

– CNN [8]: At the word level, we use 1-D convolution to extract features of
Web API description documents.

– LSTM [7]: The LSTM model uses the last hidden state as the representation
of the whole text. We also use it with pre-trained word embeddings.

– RCNN [10]: This is a neural network that combines a recurrent neural net-
work with a convolutional neural network to capture sequential and local
features.

– C-LSTM [22]: A neural network structure stacks the one-dimensional (1-D)
convolution layers with LSTM layers for capturing local spatial and sequential
features.

– Bi-LSTM: A neural network combines forward and backward LSTM layers
in order to learn information from preceding as well as following tokens.

– ServeNet [19]: A neural network which can automatically abstract low-level
representations to high-level features through the stacked 2-D CNN and Bi-
LSTM.

– Text GCN [20]: A novel text classification model using a two-layer GCN to
capture global word co-occurrence information and document-word informa-
tion without any external word embeddings or knowledge.

Table 1. Top-1 accuracy, Top-5 accuracy and F1-macro of our method compared with
others

Model Top-1 Accuracy Top-5 Accuracy F1-macro

Naive-Bayes 47.79 (+46.6%) 77.63 (+18.7%) 37.58 (+74.7%)

RF 52.61 (+33.1%) 77.88 (+18.3%) 50.13 (+31.0%)

LDA-L-SVM 55.75 (+25.7%) 84.71 (+8.8%) 53.78 (+22.1%)

CNN 59.74 (+17.3%) 86.09 (+7.0%) 56.83 (+15.5%)

LSTM 56.15 (+24.8%) 83.53 (+10.3%) 51.76 (+26.8%)

RCNN 60.08 (+16.6%) 85.64 (+7.6%) 57.00 (+15.2%)

C-LSTM 61.05 (+14.7%) 86.59 (+6.4%) 57.21 (+14.8%)

Bi-LSTM 58.70 (+19.3%) 84.56 (+9.0%) 54.75 (+19.9%)

ServeNet 62.21 (+12.6%) 88.37 (+4.3%) 59.21 (+10.9%)

Text GCN 52.75 (+32.8%) 79.01 (+16.6%) 49.58 (+32.4%)

Ours 70.05 92.15 65.65
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4.3 Parameters and Experimental Environment

The hidden state of LSTM layers are both 64-dimension vectors. The task layer
of sequential feature extractor contains 50 hidden nodes same as the dimension of
input2, which takes into account the same importance for sequential features and
spatial features. Two layers of GCN contain 512 hidden nodes and 256 hidden
nodes respectively. The Adam optimizer algorithm with a learning rate of 0.001
is used in both feature extractions. To avoid overfitting, we add a dropout layer
with drop probability of 0.7 between every two layers. In baseline models, we use
the sklearn library to implement traditional machine learning algorithms with
default parameters. We use Glove6B with 200-dimensions word vectors for all
deep learning models that require pretrained word vectors. All experiments are
run on a Linux system with 64GB memory and a GTX1080 GPU, implemented
by leveraging the deep learning library PyTorch and conducted based on the
model depicted in Fig. 2.

4.4 Experimental Results and Discussions

Top-N accuracy metric is often used in classification tasks. Specifically, in our
dataset, there is only one primary category for each service, so we use the Top-1
accuracy to evaluate the precision of our model. While in the multi-category clas-
sification task (50 categories in the dataset), Top-5 accuracy is used to evaluate
the accuracy of the Top-5 categories containing the actual results. In addition, we
evaluate the performance of models by F1-macro, which is a harmonic mean of
precision and recall. The experimental results of Top-1 accuracy, Top-5 accuracy
and F1-macro are given in Table 1.

Analyses of Experimental Results for Q1. The LSTM model reaches
56.15% for Top-1 accuracy, 83.53% for Top-5 accuracy and 51.76% for F1-macro
on the testing dataset. The Bi-LSTM network can learn feature information from
preceding as well as following tokens. In our experiments, Bi-LSTM model has a
slight performance improvement compared with the unidirectional LSTM model,
reaching 58.70% for Top-1 accuracy, 84.56% for Top-5 accuracy and 54.75% for
F1-macro. GCN has received increasing attention recently, which can capture
larger neighborhoods information [4,13]. However, in the actual application of
Web service classification, Text GCN model is not as robust as expected and
it is even worse than various baseline models. This shows that it is insuffi-
cient to use the spatial feature information of the service descriptions alone
for Web service classification. Our model integrates the advantages of Bi-LSTM
and GCN by capturing both sequential features and spatial features of Web
service descriptions obtaining the best classification performance. Specifically,
our model improves Bi-LSTM by about 19.3% in Top-1 accuracy, 9.0% in Top-5
accuracy and 19.9% in F1-macro. Compared with the GCN model, our method
improves the accuracy of Top-1 and Top-5 by 32.8% and 16.6%, respectively.
Answer for RQ1: our method using both sequential features and spatial features
can achieve better performance comparing with models using only one of them.
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Analyses of Experimental Results for Q2. From Table 1, we can see that
the performance of service classification is very diverse with different mod-
els. According to the experimental results, Naive Bayes is a simple but well-
performed and robust method. As an emerging and highly flexible machine learn-
ing algorithm, Random Forest performs well on Web service classification tasks,
and it achieves extremely competitive performance. Linear-SVM achieves opti-
mal performance for Web service classification in all traditional machine learning
algorithms and its performance significantly exceeds Naive-Bayes and RF.

For deep learning models, CNN model which considers the local feature
between adjacent words has the competitive testing accuracy of 59.74% for Top-
1 accuracy, 86.09% for Top-5 accuracy and 56.83%, better than either LSTM
model or Bi-LSTM model. When the sequential model is combined with the 1-D
CNN, the classification performance has been improved. Recurrent-CNN and
C-LSTM extract the sequential and neighborhood features of service description
documents and achieve superior performance than standalone CNN and LSTM
models. It is evident that combining sequential features and spatial features
helps to enhance service classification performance. ServeNet [19], which is a
neural network stacked with 2-D CNNs and Bi-LSTM networks, can learn bidi-
rectional sequential features and more local features in small 2-D regions inside
of words. It reaches 62.21% for Top-1 accuracy, 88.37% for Top-5 accuracy and
59.21% for F1-macro. Text GCN [20] can capture global word co-occurrence
and document-word information, but it ignores the order of words. In the ser-
vice classification task, the service description documents are usually short texts
with sparse features. Not surprisingly, Text GCN model only reaches 52.75% for
Top-1 accuracy, 79.01% for Top-5 accuracy and 49.58% for F1-macro which are
lower than some neural network models extracting sequential features.

Finally, our proposed method combined GCN and Bi-LSTM models (with
GCN as a pre-training component) can successfully capture spatial and sequen-
tial features for Web service description documents, and achieve the highest
testing accuracy of 70.05% for Top-1 accuracy, 92.15% for Top-5 accuracy and
65.65% for F1-macro. As shown in Table 1, the performance gains of our method
compared with others reach at least 12.6% for Top-1 accuracy, 4.3% for Top-5
accuracy and 10.9%. With our method, the context information in a single service
description is successfully extracted by the Bi-LSTM component. Meanwhile, it
effectively utilizes the global word co-occurrence information and document-word
relationships by a two-layer GCN component.

5 Related Work

Web service has been an active research area for many years [2,11,18]. In gen-
eral, existing work can be roughly divided into two categories, one focuses on text
classification based on service description documents, and the other focuses on
using the various elements accumulated in the Web service ecosystem for clas-
sification. In addition, we also separately summarize the service classification
methods based on different deep learning technologies.
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5.1 Classification Based on Description Documents

As for the first category, Crasso et al. [5] proposed a Web service classification
method based on text description vectors. The Web services are then classi-
fied using Rocchio, k-nn (k-nearest neighbor) and Naive Bayes, respectively.
Bai et al. [1] proposed a naive Bayesian classification algorithm for Web service
classification, which assigns more weight to each title term to reflect different
degrees of importance. Wang et al. [17] proposed a Maximum entropy classifi-
cation method and compared it with Naive Bayes and Support Vector Machine
(SVM). The results showed that Maximum entropy has better classification per-
formance than SVM in sparse data classification. Due to the validity of SVM in
Web service classification, Liu et al. [12] utilized it as the base classifier. They
also combined the probabilistic topic model to solve the sparsity problem in the
generation process of service description, and reduced the dimensions to improve
the efficiency.

5.2 Classification Based on Different Types of Elements

Regarding the second category, various elements and their relationships accumu-
lated in the Web API ecosystem are used to improve classification performance.
Liang et al. [11] built a heterogeneous network with multi-type relationships and
employed a RWR (Random Walk with Restart) model to capture global rela-
tionships between all types of entities. Elgazzar et al. [6] selected a different set
of Web service features including WSDL contents, types, messages, and ports,
and obtained high precision and recall values. Boujarwah et al. [2] adopted an
unsupervised machine learning technique by using concept graphs to build func-
tional domains and divide Web services into these domains. Terms in WSDL are
treated as concept nodes in a concept graph. These terms are extracted from
elements, including port type, service name, operation name, and so on.

5.3 Classification Based on Deep Learning Technologies

Some emerging classification methods exploit deep learning technologies as sup-
port. For example, Yang et al. [19] presented a deep neural network ServeNet
which integrates 2-D CNN and Bi-LSTM for Web service classification and
obtained good accuracy. Cao et al. [3] proposed a topical attention based Bi-
LSTM model for Web service classification. They combined feature represen-
tations of Web services using Bi-LSTM model with the topic features trained
offline. They used attention mechanism to perform the topic attention strength-
ening processing to obtain the importance or weights of different words for Web
service classification. Ye et al. [21] proposed a Web service classification method
based on Wide & Bi-LSTM model. They exploit a wide learning model and a
Bi-LSTM model to make breadth prediction and depth prediction of Web service
description documents, respectively. Finally, the breadth and depth prediction
results are combined by the linear regression algorithm to obtain the final results.
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Compared with the existing work, our proposed method belongs to the classi-
fication of Web service descriptions using deep learning technologies. We propose
a novel and effective framework to extract both spatial and sequential features
of service descriptions in the Web service ecosystem, The experimental results
demonstrate that our method can achieve the best classification accuracy com-
pared with a variety of state-of-the-art models.

6 Conclusion

In this paper, we have proposed a novel method for Web service classification by
integrating GCN and Bi-LSTM network. Specifically, considering the differences
between the two methods, we use a two-layer GCN to extract the global spatial
features of the Web service descriptions, which is seen as a pre-training step with-
out any external word embeddings or prior knowledge. Next, we integrate them
with the sequential features learned from the Bi-LSTM model using pre-trained
word embeddings for joint training of parameters. Comprehensive experimental
results based on real-world dataset demonstrated that our proposed method can
achieve better classification performance compared with other SATD methods.
In addition, we believe that this two-stage feature ecxtraction method can be
flexibly extended to general text classification tasks, not just for Web service
classification.

In the future, we plan to introduce more elements (such as invocation rela-
tionships between Mashups and APIs) of the Web service ecosystem to further
improve the classification accuracy. In addition, we will try to extend our feature
extraction method on other tasks.
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Abstract. Crowdsourcing can solve many challenging problems for
machines. The ability and knowledge background of employees on the
Internet are unknown and different, the answers collected from the
crowd are ambiguous. The choice of employee quality control strategy is
really important to ensure the crowdsourcing results. In previous works,
Expectation-Maximization (EM) was mainly used to estimate the real
answer and quality of workers. Unfortunately, EM provides a local opti-
mal solution, and the estimation results are often affected by the initial
parameters. In this paper, an iterative optimization method based on
EM local optimal results is designed to improve the quality estimation of
workers for crowdsourcing micro-tasks (which has binary answers). The
iterative search method works on the dominance ordering model (DOM)
we proposed, which prunes the dominated task-response sequences while
preserving the dominating ones, to iteratively search for the approximate
global optimal estimation in a reduced space. We evaluate the proposed
approach through extensive experiments on both simulated and real-
world datasets, the experimental results illustrate that this strategy has
higher performence than EM-based algorithm.

Keywords: Crowdsourcing · Quality management · Optimization
strategy · Maximum likelihood estimation

1 Introduction

Crowdsourcing can help solve tasks that too hard for computers by leveraging
the intelligence of a large group of people. Currently, there are many successful
crowdsourcing platforms, such as Upwork, Crowdflow and Amazon Mechani-
cal Turk(AMT). Requesters can publish tasks on crowdsourcingplatforms.
Workers then accept and answer the tasks, and submit answers back to the
platform. Crowdsourcing tasks can be divided into macro-tasks (e.g. text trans-
lation) and micro-tasks (e.g. image annotation tasks). Micro-tasks are usually
simple and can be completed in seconds, while macro-tasks can take hours.
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This paper only focuses on micro-tasks(each is a binary task with yes/on
choices), which have important application value in crowdsourcing. For example,
in a query such as “Do the two videos belong to the same theme?”, the expected
answers of the form “yes/no” where yes is denoted by 1 and no is denoted by
0. The platforms collect responses from multiple workers on such a question and
integrates them to estimate the true answer. As workers have different levels of
expertise, they may provide wrong responses for tasks.

Quality management is a crucial problem for crowdsourcing platform to
obtain correct answers. Based on analyzing worker responses to a set of tasks, we
estimate the true answers to the tasks, as well as the quality of workers. Previous
research on this problem primarily provides a local optimal solution rather than
a global one. EM algorithm is a classic and effective method for estimating the
true values of unknown variables. In crowdsourcing, the existing work mainly
uses EM algorithm to iteratively update the parameters of worker model and
the true answers of tasks until convergence. However, two limitations of EM
hinder its effectiveness in this application scenario: EM-based algorithms are
highly dependent on initialization parameters; Using EM to estimate the maxi-
mum likelihood can only get the local optimal results, which often get stuck in
undesirable local optima [2].

Global optimization is the most ideal result, but there are difficulties in its
implementation. The most intuitive method to obtain the global optimal result is
to find the global maximum likelihood values of all possible mappings from tasks
to answers, so as to find the most likely true answers. However, considering the
large-scale operation in the context of crowdsourcing, the number of calculations
required increases exponentially with the increase of tasks and workers. There-
fore, it is often intractable to obtain these global optimal quality management
technologies.

In this paper, we propose an iterative optimization method to obtain the
approximate global optimal solution, this method is based on the dominance
ordering model (DOM), which is obtained by pruning the responses of all work-
ers to the tasks. The overall procedure of the proposed optimization method is
illustrated in Fig. 1. Based on the collected worker responses to the tasks, the
basic EM algorithm is used to obtain the local optimal results of task answers
and worker quality. Then workers are ranked into different quality categories
according to the estimation of their quality. After that, according to the known
worker classification and worker response (i.e. task-response sequence), a dom-
inance ordering model is constructed to prune the response with lower prob-
ability, which narrows the search scope and reduces the mapping space. Then
a Cut-point neighbour detection algorithm is designed to iteratively search the
response with the maximum likelihood based on our model until convergence.

To sum up, the main contributions of this paper include the following three
points:

(1) We propose a pruning strategy-based dominance ordering model
(DOM), which is composed of worker responses and worker categories
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(i.e. task-response sequence), and reduces the space of potential task-
response sequence while retaining the dominant sequence;

(2) We propose a Cut-point neighbour detection algorithm to find the task-
response sequence with the maximum likelihood within dominance ordering
model (DOM) by iterative search;

(3) We perform extensive experiments to compare our algorithm with the EM
algorithm on a variety of metrics. The experimental results show that our
algorithm significantly outperforms EM-based algorithms in both simulated
data and real-world data.

The remains of this paper is organized as follows. Section 2 discusses the related
works. Section 3 describes our concept definitions and illustrates some symbols
with an example. We describe the iterative optimization method in Sect. 4, and
present our experimental results in Sect. 5. Finally, we conclude our work in
Sect. 6.

Requesters

Microtasks

assign

Workers

publish

1e0e

Basic EM Algorithm

.... .... .... ........

...... ....
Cut-point

= 1

= 0

Stop Iteration until Convergence(i.e. the difference
of the final likelihood value of two iterations is 0 or
below a predefned threshold)

All Responses collected
and Initialization of Worker
Quality(i.e.      =     = 0.5 )

Locally optimal results
for task answers and

worker quality

DOM Construction Based on Pruning Strategy

Approximate
Global Optimal

Results

Fig. 1. Overall procedure of the proposed approach

2 Related Work

In order to guarantee the quality of the task results, existing research has pro-
posed a variety of techniques to evaluate the true answers of tasks by managing
workers’ quality.

The general method is majority voting [1,9]. In addition, Wang [19] proposed
a worker quality-aware model which uses workers’ quality values to weigh the
relative importance given to their answers. Ma [12] proposed a fine grained truth
discover model to estimate both worker topical expertise and the true answers.
Before the worker answers the task, the worker is required to answer the test
questions with known correct answers. This method is used to evaluate the
relevant ability of the worker. This can detect and eliminate some fraudsters
and workers who do not have the relevant capabilities before workers answer
the task. Test questions can also be randomly mixed into common tasks to test
the quality of workers, so that the actual ability of workers can be more truly
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understood [4,8]. Liu [11] obtained the accuracy of workers’ answers to tasks by
adding test questions, and then used Bayesian theory to obtain the true answers
of the final tasks according to the quality of the workers and the answers to the
tasks.

The existing crowdsourcing quality control methods mainly use the method
based on EM [9,13,15,16,20,23] to estimate the true answers of workers’ quality
and tasks. The EM is primarily used to make up for the lack of data through
the iterative calculation of the maximum likelihood estimation of incomplete
data [5]. Each iteration of the algorithm includes two steps: Expectation step
and Maximization step. In crowdsourcing, the unknown variables are the task
true answer and workers’ quality, and incomplete data are workers’ responses to
tasks. Workers’ quality is characterized by a worker model. The most commonly
used is the static worker model, that is, the workers’ quality is characterized by
a single probability value [6] or a confusion matrix [7,14]. Set initial parameters
for the unknown variable as input, and then iteratively update the parameters of
the worker model and the true answers of tasks until convergence. The method
proposed by Dawid [3] used the confusion matrix for the first time to model
worker quality. Ipeirotis, P.G. [7] used EM algorithm in AMT crowdsourcing
platform, and at the same time estimated the correct answer of the task and
the quality of workers characterized by the confusion matrix. The effects of
other factors are considered in more complex worker models. Whitehill, J. [21]
considered the impact of task difficulty on the reliability of workers’ answers
when establishing worker quality models. Afterwards, A. Kurve [10] utilized
the EM to calculate the task answers and workers quality with four latented
variables: the true answer of task, skills of workers, workers’ intentions (i.e. being
honest or dishonest) and task difficulty.

Using EM to estimate the maximum likelihood can only get the local optimal
solution. Das Sarma [2] proposed a technique for global optimal quality manage-
ment, finding the maximum likelihood item ratings and worker quality estimates.
They made two limiting assumptions: (1) all workers have the same quality; (2)
the number of workers answering each question is fixed. These assumptions are
too restrictive in reality. Snow, R. [17] used MAP to estimate parameters. Tang,
W. [18] used the control problem to improve the maximum likelihood estima-
tion. This is achieved by semi supervised learning based on the real answer of
the control problem to improve the parameter estimation in DS method. Zhang,
Y. [22] used the spectral method to initialize EM to search the real answer of
the task and the optimal result of the estimation of the confusion matrix of the
workers.

3 Problem Description

We start with the introduction of some symbols, and then combined with an
example of image annotation to make a specific description of some symbols
(Table 1).
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Table 1. Notation table

Symbol Explanation

t Task

w Worker

rwt Responses from worker w to task t

zt The true answer of task

L Overall likelihood

DOM Dominance ordering model

DOG Dominance ordering graph

dn∗ Distance between the nth class worker and the best worker

Task Question and Option. Consider a group of tasks {t}n with a total
number of n. These tasks are completed by a group of workers {w}m with a
total number of m. Work w completes task t with k options {1, 2, 3, . . . , k}. Each
worker can answer multiple different tasks, and each task can be accomplished
by multiple different workers. Each task has a correct answer zt (that is, one of
the k options is the true answer).

Task Response. rwt as the response of worker w to task t. For the binary
problem studied in this paper, each rwt has a value of 0 or 1.

Worker Response Probability Matrix. For the binary problem studied in

this paper, a worker response probability matrix of p =
[
p11 p12
p21 p22

]
is considered.

p11 and p21 respectively represent the probability that rwt = 0 and rwt = 1 when
the real answer of the task is 0. p12 and p22 respectively represent the probability
that rwt = 0 and rwt = 1 when the real answer of the task is 1. The whole matrix
is described by a pair of values (e0,e1), in which e0 is worker false positive (FP)
rates (i.e. p21value) and e1 is false negative (FN) rates (i.e. p12 value).

Overall Likelihood. Assuming that each worker answers the question inde-
pendently. The likelihood value of t1 is the product of the probability that the
worker who answers the task t1 makes the correct response. L is the overall like-
lihood value of a set of tasks. It is the product of the likelihood value of each
task in the task set. Its calculation formula is L = L(t1) × L(t2) × . . . × L(tn).

Task-Response Sequence. Task-response sequence is constructed by the com-
bination of workers response and workers category. Worker’s positive answer to
binary task is 1, which is expressed by Y , and similarly, the negative answer to
binary task is 0, which is expressed by N .

Distance. We calculate the distance between workers in plane rectangular coor-
dinate system. The quality of workers is represented by his/her error rate (e0,
e1), which is a point in the coordinate system. The distance between workers is
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expressed by the Euclidean distance between two points in a two-dimensional
plane. The best worker quality is (0,0), which is the origin.

Table 2. Example of workers responses to t1 and t2

Task Task responses Task-answer
sequence

First class workers Second class workers Third class workers

t1 rw1
t1

= 1, rw3
t1

= 1 \ \ Y1Y1

rw2
t1

= 1 rw2
t1

= 1 \ Y1Y2

rw1
t1

= 1 \ rw8
t1

= 1 Y1Y3

\ rw5
t1

= 1 rw9
t1

= 1 Y2Y3

\ rw6
t1

= 1 rw10
t1

= 0 Y2N3

\ \ rw8
t1

= 1, rw10
t1

= 1 Y3Y3

rw1
t1

= 1, rw2
t1

= 0 \ \ Y1N1

t2 \ rw4
t2

= 1, rw7
t2

= 0 \ Y2N2

rw3
t2

= 0 rw5
t2

= 1 \ Y2N1

\ rw6
t2

= 0 rw9
t2

= 1 Y3N2

\ \ rw8
t2

= 0, rw9
t2

= 0 N3N3

\ rw7
t2

= 0 rw10
t2

= 0 N2N3

rw1
t2

= 0 \ rw8
t2

= 0 N1N3

rw2
t2

= 0 rw4
t2

= 0 \ N1N2

Example 1. In this example, there are a group of image annotation tasks{t1, t2,
. . . , tn}. All of which are binary task problems with two options {0, 1}. We take
t1, t2 as an example to illustrate, we assume that zt1 = 1, zt2 = 0. A group of
10 workers{w1, w2, w3, . . . , w10} respond to these tasks, and the error rates of 10
workers is (0.1, 0.3), (0.2, 0.2), (0.3, 0.2), (0.3, 0.6), (0.4, 0.4), (0.5, 0.5), (0.6, 0.4),
(0.7, 0.7), (0.8, 0.6), (0.9, 0.5). We determine the category to which each worker
belongs based on the distance between the worker and the origin. In this example,
We classify workers into 3 categories, which are characterized by numbers 1, 2
and 3 respectively. The workers who have high quality rank in the front. We
divide the distance between the worst worker (that is, the error rate (1,1)) and
the origin on average into three intervals. The distance between the first class
workers and the origin is within [0,

√
2/3] (that is d1∗ ∈ [0,

√
2/3]). Similarly, d2∗

∈ [
√

2/3,2
√

2/3] and d3∗ ∈ [2
√

2/3,1]. According to the calculation, we determine
the category to which each worker belongs. Workers choose tasks to answer, and
different tasks will receive different numbers of answers. Here t1 and t2 receive
2 responses. The Table 2 shows several workers’ responses received by t1,t2.

We take the task-response sequence of t1 as Y 1N1 and task-response
sequence of t2 as Y 2N2 for example to calculate the likelihood value. From
Table 2, w1 and w3 answer t1, their error rate is (0.1, 0.3) and (0.2, 0.2) respec-
tively, so their probability of answering the t1 correctly is 0.7 and 0.8 respectively.
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So we can get L(t1) = 0.7 × 0.8 = 5.6 × 10−1. Similarly, we can get L(t2) =
0.7 × 0.4 = 2.8 × 10−1. If n = 2 in task set, only t1 and t2 are included, then the
overall likelihood of L = L(t1) × L(t2) = 1.568 × 10−1.

4 Optimization Strategy

Overview. We first estimate the true answers for the tasks and worker quality
using EM with different prior models. We can rank workers into different quality
categories according to the estimates of their quality. After that, we propose a
dominance ordering model (DOM) on the basis of known worker categorizations.
We then design a Cut-point neighbour detection algorithm to search for the
task-response sequence with the maximum likelihood in our model and prune
the task-response sequence where the probability is low. The results of our search
algorithm is then used as a new input to update worker categorizations and the
dominance ordering model until convergence.

4.1 The Dominance Ordering Model (DOM)

We classify workers into c categories firstly, the classification method is the same
as mentioned in Example 1.

After worker classification, we can construct the dominance ordering model.
In this paper, we focus on the binary problem. Workers’ responses are in the form
of Y/N . In this way, Y 1 denotes that a worker in the first category answered
yes to a task; and N1 denotes that a worker in the first category answered no
to the task. We observe that response sets are in dominance ordering. For the
tasks with same number of responses, we sort the response sets by the level of
expertise of workers. For example, there are two tasks t1 and t2, each with 3
responses of yes. Responses of t1 are from workers belonging to the first, third
and fourth categories; whereas responses of t2 are from workers belonging to the
first, third and fifth categories. Then, the response set of t1 is ordered higher
than that of t2, Y 1Y 3Y 4 dominates Y 1Y 3Y 5 (i.e. Y 1Y 3Y 4− > Y 1Y 3Y 5).

Definition 1 (Dominance Ordering). The response set for each vertex contains
one or several elements from {Y 1...Y c,Nc...N1}. Vertex v1 dominates vertex v2
if and only if one of the following conditions is satisfied:

(1) v1 and v2 contain the same number of ‘1’ and ‘0’ responses in total, and at
least one response of ‘1’ in v1 is answered by a worker with higher quality
than any worker answering ‘1’ in v2; or at least one response of ‘0’ in v1
is answered by a worker with lower quality than any worker answering ‘0’
in v2.

(2) v1 contains more ‘1’ responses and fewer ‘0’ responses than v2.

For tasks receiving the same number of responses, the response sets of them
exist in the same dominance ordering graph (DAG). In addition, in order to
handle the problem that tasks receive different number of responses at the same
time. We integrate the DAG with different number of responses. For the DAG
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where tasks receive even number of responses, we set up a central layer where
response set of vertices are characterized by the same number and worker classes
to responses yes and no (e.g. Y 1Y 2N1N2). However, for the DAG where tasks
receive odd number of responses, we set a virtual center layer, which is composed
of the edges equal to the starting point and the end point. We integrate each DAG
into our model through the central layer and the vertices with the same distance
from the central layer have similar dominance. Figure 2 shows an example of
our model. In this example, workers are divided into 3 categories, with three
workers answering tasks. DAG (a), (b) and (c) represent that tasks receiving 1,
2 and 3 responses, respectively. The red dashed line represents all the stratifed
situations. As shown in the Fig. 2, the central layer exists in DAG (b), while (a)
and (c) only contain a synthetic central layer.

Algorithm 1. Cut-point Neighbour Detection
Input: data; f ;
Output: new L(new likelihood); new f(mapping corresponding to new L);

new q(Worker quality corresponding to new f);

1: Construct V ; E = Dominance Ordering Model(DOM);
2: function MAIN(f , data)
3: s ← 1;
4: while (s < γ) do
5: new L ← V ertexSelection(s, DOM, L);
6: if new L > L then
7: f ← new f ; L ← new L; s ← 1;
8: else
9: s + +;

10: end if
11: end while
12: return new L; new f ; new q;
13: function VertexSelection(s, DOM, L)
14: if (s = 0) then
15: calculate new L:
16: return new L;
17: else
18: for vertex in vertexset do
19: change answer of tasks in vertex;
20: if (answer = 1) then
21: answer ← 0;
22: else
23: answer ← 1;
24: end if
25: new L ← VertexSelection(s − 1, DOM, L)
26: if new L > L then
27: return new L;
28: end if
29: end for
30: end if
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Fig. 2. An example of our model with
a maximum of 3 workers

Fig. 3. An example of the proposed Cut-
point neighbour detection

4.2 Cut-Point Neighbour Detection Algorithm

In this section, we describe the process of Cut-point neighbour detection as
illustrated in Algorithm1.

Definition 2 (Cut-point). In our model, the probability that the answer to a
question is 1 (Y es) decreases from top to bottom. Here, we define the Cut-point
as a mapping which divides the vertices in our model into two partitions. The
vertices above the Cut-point are mapped to 1, and those below the Cut-point are
mapped to 0.

After constructing the dominance ordering model (DOM), we search for the
maximum likelihood mapping. The search begins from the starting Cut-point
which is generated by the EM algorithm. We will constantly adjust the position of
Cut-point to find sequence with maximum likelihood. First, we find the vertices
closest to the Cut-point and put them into a vertex-set. We then replace the
answers of the vertices in this set (that is, vertices whose answers are 1 will be
changed to 0 and vice versa). In the first round of replacement, we replace the
answers of the vertices one by one. Then, recalculate the overall likelihood of the
task-response sequence. If the likelihood increases, the changes are retained, and
these vertices are removed from the vertex-set. Otherwise, restore the answers of
vertices to before the replacement operation. In the second round of replacement,
we replace answers of any two vertices in the vertex set. In round s, any vertices
in the vertex set are replaced. Here, we set a stop value γ for the rounds s in
order to control the number of computations. This process is illustrated by the
example in Fig. 3.
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Iteration of Cut-Point Neighbour Detection. Our Cut-point neighbour
detection algorithm eventually produces a new task-response sequence and the
quality of the workers. We utilize the results as input to update the workers’
classification and the position of the tasks in our model. Then, further search
is performed until convergence (i.e. the difference of the final likelihood value of
two iterations is 0 or below a predefined threshold). This process is illustrated
in Algorithm 2. In each iteration, we increase the number of worker categories
to make tasks at the same vertex more similar. In this way, we can find task-
response sequence with higher likelihood effectively.

Algorithm 2. Iteration of Cut-point Neighbour Detection
Input: data, f (from EM Algorithm)
Output: L∗(maximum of likelihood); f∗(mappings corresponding to likelihood*);
q∗(Worker quality corresponding to f*);

1: while not converged do
2: update c, DOM ;
3: (new L, new f, new q) ← MAIN(f, data)
4: end while
5: return L∗; f∗; q∗

5 Experiments

In this section, we evaluate the performance of our iterative optimization strategy
(labelled as IOS EM) on synthetic and real rating data, and compare it against
the basic EM algorithm (labelled as BAS EM). Here, we discuss two experiments,
one based on simulative data and another based on real-world data, and analyze
the results to draw conclusions.

5.1 Experiment 1: Synthetic Data Experiments

In this section, we describe our experiments based on synthetic data. Here, we
choose the estimation prior model of worker quality modeled by a confusion
matrix. We generate the data based on this model, and compare our method
against the EM algorithm in terms of overall likelihood, accuracy of answer
predictions and accuracy of worker quality predictions.

Dataset. To generate the ground truth answers for a set of tasks, given a fixed
selectivity u, we assign a ground truth value of 1 with a probability of u, and 0
with a probability of (1−u) for each task. Then, we generate a distinct worker
response probability matrix for each worker, with the only constraint that most
of workers (more than 90%) are better than random (workers’ error rate e0 and
e1 are < 0.5). We then generate worker responses based on these matrices.
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Experimental Process and Result. We compare our algorithm with the
basic EM algorithm which is also settling maximum likelihood problem. BAS EM
takes an initial estimate or guess for worker error rates as a parameter. Here, we
experiment with initialization of e0 and e1 = 0.5. We set task number m = 500,
and we vary the selectivity u, and the number of worker responses per task k.

We perform experiments under three data settings: Setting 1, each task
receives k responses and m = k (m is the total number of workers); Setting
2, each task receives k responses and m > k; Setting 3, each task receives a
different number of responses and m > k.

(a) (b) (c)

Fig. 4. Synthetic data experiment. Overall likelihood: (a) Setting 1; (b) Setting 2; and
(c) Setting 3.

Overall Likelihood. Figure 4 show the likelihoods of task-response sequence
returned by our algorithm and BAS EM instances on a varied number of work-
ers, for three data settings. The y-axis is in log scale, with a higher value being
more desirable. In Fig. 4(a), there are 3–10 workers in each data and each worker
has completed all tasks (500 tasks), and in Fig. 4(b), there are 10 workers in each
data and each task receives different number of responses (x-axis), so each worker
completed 150–500 tasks. Contrast this to Fig. 4(c), here, each task receives dif-
ferent responses (less than workers) and the total number of workers (x-axis) is
varying in each data. We observe that our strategy has a significant improvement
in likelihood values when the information given to BAS EM is sparser.

(a) (b) (c)

Fig. 5. Synthetic data experiment. Accuracy of answer predictions: (a) Setting 1; (b)
Setting 2; and (c) Setting 3.
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Accuracy of Answer Predictions. In Fig. 5, We plot the error rate (ER) of task
ground truth estimations each of the algorithms estimate task answer incorrectly
(a lower score is better). Here, again, our strategy estimates true values of tasks
with a higher accuracy than BAS EM.

(a) (b) (c)

Fig. 6. Synthetic data experiment. Accuracy of worker quality predictions: (a) Setting
1; (b) Setting 2; and (c) Setting 3.

Accuracy of Worker Quality Predictions. To evaluate the estimated worker qual-
ity against the actual one, we plot the Average Euclidean Distance (AED)
between our estimated matrix and the actual one (a lower score is better) in
Fig. 6. We observe that our strategy’s estimations are closer to the actual prob-
ability matrix than all the BAS EM.

Summary. For all metrics, our strategy outperforms BAS EM. It should be
noted that our algorithm has more obvious advantages in the third case and is
closer to the actual situation. The third set-up (i.e. each task receives a different
number of responses) is common in real crowdsourcing markets.

5.2 Experiment 2: Real-World Data Experiments

In this section, we describe our results on a real-world dataset. We evaluate
our method with two different estimation prior models: (a) workers’ quality
represented by a confusion matrix, (b) workers’ quality represented by a binary
parameter, and compare our method versus the BAS EM in terms of overall
likelihood and ground truth of task estimations.

Dataset. Our dataset is a sentiment analysis dataset, which corresponds to a
collection of more than ten thousand sentences extracted from the movie review
website RottenTomatoes. It contains a set of 5, 000 tasks responded by 203
workers. From this collection, a random subset of 5000 sentences were selected
and published on Amazon Mechanical Turk for annotation. Given the sentences,
the workers were asked to provide the sentiment polarity (positive or negative).
We have ground truth yes/no answers for each task, but we do not know the
real worker quality.
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Experimental Process and Result. To evaluate the performance of our strat-
egy based on EM(IOS EM), we vary size of data by randomly selecting a fixed
number of labels from all the data, and compare the estimates of the answer
(the yes/no answers) with the given ground truth.

(a) (b)

Fig. 7. Real data experiment. Likelihood and error rate of answer prediction for (a)
and (b).

Overall Likelihood. Figure 7(a) and 7(b) show the likelihoods of task-response
sequence returned by IOS EM and different BAS EM on a varied number of
labels. The y-axis is on log scale, with a higher value being more desirable. And
Table 3 show the difference between our method and different BAS EM in terms
of likelihood and error rate of ground truth estimations. In Fig. 7(a) and 7(b),
we observe that our method can significantly improve the likelihood value with
the three different estimation prior model.

Accuracy of Answer Predictions. In Fig. 7(a), and (b), we also compare error
rate(ER) of label estimations with BAS EM. We plot the error rate of task true
answer estimations of each algorithm. Here, again, our method improves the
accuracy of the answer estimations while improving the likelihood value.

Table 3. Difference of likelihood and error rate for (a) and (b)

Label number D-likelihood(a) D-ER(a) D-likelihood(b) D-ER(b)

10000 +138.168 −0.679% +233.171 −1.116%

12000 +281.449 −1.200% +247.675 −1.095%

15000 +269.892 −1.099% +207.998 −0.753%

17000 +289.584 −0.987% +231.146 −0.826%

20000 +297.262 −0.901% +407.979 −1.022%

22000 +308.145 −0.880% +205.360 −0.500%

25000 +57.137 −0.140% +9.194 −0.040%

27000 +235.244 −0.600% +59.636 −0.160%
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6 Conclusion

This paper presents a method based on pruning and searching. A Cut-point
neighborhood detection algorithm is designed to improve the estimation and
work quality of the task true answers by increasing the overall likelihood value.
In this paper, a dominance ordering model (DOM) is proposed as the platform
of the algorithm. We greatly reduce the space of potential mappings to be con-
sidered. Furthermore, the validity of the model is verified by experiments, and
the computation results is tractable. Experimental results show that the perfor-
mance of this algorithm is better than that of EM based algorithm in different
data settings.

This paper focuses on focus on the binary problems in microtasks. Now there
are more and more multiple problems and open-ended crowdsourcing problems.
In future research, we will further propose better crowdsourcing quality control
research work for multiple problems and open-ended problems.
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Abstract. Intent classification and slot filling are two classical prob-
lems for spoken language understanding and dialog systems. The existing
works, either accomplishing intent classification or slot filling separately
or using a joint model, are all human-designed models with trial and
error. In order to explore the variety of network architecture and to find
whether there exist possible network architectures with better results,
we proposed the D-GHNAS (Deep deterministic policy gradient based
Graph Hypernetwork Neural Architecture Search) to accomplish intent
classification and slot filling via a NAS (Neural Architecture Search)
method. NAS based techniques can automatically search for network
architectures without experts’ trial and error. Different from early NAS
methods with hundreds of GPU days to find an ideal neural architecture
that takes too much computation resource, in this work, hypernetwork is
used to decrease the computation cost. Experimental results demonstrate
that our model improves intent classification and slot filling results on
public benchmark datasets ATIS and SNIPS compared with other joint
models for these tasks.

Keywords: Intent classification · Slot filling · Neural architecture
search · Hyper network · Auto machine learning

1 Introduction

Spoken language understanding (SLU) system aims to automatically understand
the text typed by the user or transcribed by the user voice in order to take the
next proper action to satisfy user’s demand. SLU is a hot research topic in
natural language processing field which plays an important role in many areas
like automatic customer service, automatic question answering, voice assistants,
etc. Intent classification is part of NLU tasks which is to predict intent (only one
label) from every input sentence. After the user intent is identified by an intent
classifier, the system can make an accurate response to the user request.

The key of intent classification and slot filling lies in feature representation.
Deep neural networks can learn text representations automatically without man-
ually taking features and have achieved remarkable results in a wide range of
SLU and NLP tasks. Different network structures have been explored to extract
a meaningful semantic representation of the text for intent classification.
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Convolution Neural Networks (CNN), Recurrent Neural Network (RNN),
and the combination of CNN and RNN have been widely used since they can
capture temporal and semantic features. In order to achieve better performance,
many complex structures have been applied, such as attention-based CNN [1],
hierarchical attention networks [2], adversarial multi-task learning [3]. Due to the
consistency of the application scenario and input text, a joint model for intent
detection and slot filling [4,5] is proposed that the feature representation of one
task can be shared in the other task to simplify the model and promote each
other. The neural network like CNN [3], RNN [6], Long Short-Term Memory
(LSTM) [7], attention-based BiRNN [4], and slot-gated attention-based model
[8].

As these currently proposed models are manually designed by researchers,
which is a time-consuming procedure, attention goes to NAS, which is becoming
one of the hottest interests in the neural network field. Compared with conven-
tionally manually designed architectures, NAS methods have outperformed on
a lot of tasks, such as image classification [9,10] and object detection [11,12].
It will find an architecture from all possible architectures in search space by
following a search strategy that will maximize the performance, usually accu-
racy. Early NAS approaches adopted nested optimization, which caused these
search methods resource-hungry, especially for large dataset. A new paradigm
was proposed recently [13] to reduce the computational complexity via a graph
hypernetwork, with which NAS becomes more efficient and flexible.

For the reason to achieve better result, we proposed D-GHNAS for intent
classification and slot filling task. The goal of this work is to exploit the powerful
feature learning mechanism enabled by NAS and apply it to spoken language
understanding tasks. The main idea is to utilize NAS technology to design good
neural network architectures automatically. The main contributions of this work
are as follows:

(1) We apply the reinforcement learning based GHNAS method to intent clas-
sification and slot filling task. To the best of our knowledge, it is the first
study to use graph hypernetwork NAS method to deal with these problems.
Experiments on the benchmark datasets demonstrate that our method show
competitive results compared with other model.

(2) We proposed the DDPG search strategy to explore the search space. It takes
in the network embedding as input to find next network and its network will
update after numbers of searches for better searching.

(3) In order to search network effectively, We applied the cell structured network
and the hypernetwork to generate weights directly.

2 Related Work

Intent Classification and Slot Filling: Accurate intent classifier helps search
engines and dialog systems return a concise answer to the user’s query. Intent
classification is a fine-grained text classification which is a fundamental task in
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natural language processing. The key of text classification lies on feature rep-
resentation. Deep neural networks can learn text representations automatically
without human-designed features and have achieved remarkable results in a wide
range of SLU and NLP tasks.

It has been a long time since the first spoken dialog understanding task
merged [14]. Early approaches often use machine learning models to deal with
intent classification task [15] like SVM [16] and Adaboost [17]. After that,
approaches based on neural architecture have shown good performance on intent
classification tasks like deep belief network (DBN) [18]. Another application
is RNN [19]. RNN keeps sequence ordering information, which is beneficial
to capture the long-term contextual information and correlation between non-
consecutive words effectively.

For slot filling tasks, early explorations are based on Conditional Random
Fields (CRF) architecture [20]. Recently, neural networks showed a great perfor-
mance and outperformed CRF models. [21] used standard RNN to take in words
and predict the slot labels. [22] introduced LSTM on this task and outperform
RNN result. [23] applied attention-based encoder-decoder on the slot filling task
without LSTM.

Recent works focus on the joint model for intent classification and slot filling
tasks that user’s intent and the slot labels are supposed to share features with
each other. [6] applied RNN for the joint training of intent classification and slot
filling task. Besides, LSTM, which is an improved variant of RNN, is applied to
the joint model training and performs well [24]. LSTM can capture semantics
of long sentence but the information of previous contexts will gradually lose.
Attention mechanism can address this problem effectively [4]. Last year, a new
language representation model BERT (Bidirectional Encoder Representations
from Transformers) has created state-of-the-art models for a wide variety of
natural language processing tasks after simple fine-tuning. It also showed a good
performance on intent classification and slot filling task [25]. Besides, another
work adopt a joint model that can use the intent information as the slot filling
input through Stack-Propagation [26].

Graph Embedding: Graph embedding or network embedding is based on the
idea of GNN to preserve both network topology structure and node content
information, which attracts great attentions [27]. A graph neural network [28]
can be described by a set of nodes and edges. Edges can be either directed or
undirected, depending on whether there exist directional dependencies between
nodes. Graph Neural Network is a type of Neural Network which directly oper-
ates on the graph structure. The target of GNN is to learn a state embedding
hv ∈ Rs which contains the information of neighborhood for each node. The state
embedding hv is an s-dimension vector of node v and can be used to produce an
output ov such as the node label. Let f be a parametric function, called local
transition function, that is shared among all nodes and updates the node state
according to the input neighborhood. And let g be the local output function that
describes how the output is produced. Then, hv can be defined as follows:

hv = f(xv, xco[v], hne[v], xne[v]) (1)
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Where xv, xco[v], hne[v], xne[v] are the features of v, the edge features, states and
features of v’s neighborhood nodes. There are some other methods like matrix
factorization [29,30] and random walks [31].

Neural Architecture Search: Neural architecture search is a method of
automating architecture engineering that neural network architectures can be
designed automatically. It comes to deal with the rising demand of architecture
engineering and has outperformed manually designed models on some of the
tasks like image classification [32], object detection [33] and semantic segmen-
tation [34]. Moreover, neural architecture search can be a part of AutoML and
it has overlap with other field like meta-learning and hyperparameter optimiza-
tion. There are three main directions for the development of NAS, search space,
search strategy and performance estimation strategy.

Search space defines which architectures can be represented in principle
including the layer number, operation type, hyperparameters, etc. Different from
early chain-structure models, recent works like [35,36] introduced some hand-
crafted architectures like skip connections that allow to build more complex mod-
els with multi-branches structure. Since 2016, motivated by some hand-crafted
architectures, some structures like motifs and blocks appeared.

Search strategy defines the method to find a neural network architecture from
the search space, including random search, Bayesian optimization, reinforcement
learning [37,38] and evolutionary methods [39]. An appropriate search strategy
should be able to search the architecture from the search space while keeping
the exploration.

Performance estimation strategy is the method to estimate the every step
sampled architecture and the methods include lower fidelity estimates [40], learn-
ing curve extrapolation [41], network morphisms [42] and one-shot models [35].
It is important that an appropriate estimation strategy can greatly reduce the
computation cost of the search procedure.

3 Graph Neural Network for Neural Architecture Search

3.1 Model Design

In order to apply NAS method on SLU task in an efficient way, we proposed a
joint model of a graph hypernetwork based NAS method. Our model consists of
a hypernetwork and a Deep Deterministic Policy Gradient (DDPG) [43].

Since NAS technique has been applied to many tasks, it shows a great per-
formance on many tasks that it can go through the search space to pick the
best architecture automatically, but it is based on the great cost of computation
resource. In order to solve this problem, based on recent researches, hypernet-
work is applied. A hypernetwork is a small network who can generate weights
for large network that there is no need of training from scratched. Much time
can be saved.

In our model, as shown in Fig. 1, a neural network will take in the text
embedding and produce the result. The network architecture is selected from a
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Fig. 1. D-GHNAS search procedure. First, the neural network architecture will be
transformed into a directed acyclic graph embedding. Nodes represent the operations
in the network and edges represent the direction of tensors. Then a hyper network will
use the graph embedding as the input and produce the weights for the neural network.
The record of every search result performance will be saved to train the DDPG network,
which will decide the child network for the next search step.

predefined search space. In each step, a different architecture will be selected
from the search space by a specific search strategy, DDPG. After selection, the
architecture will be transformed to a graph embedding. A full trained hypernet-
work will take in the network graph embedding and generate the weights. Then
the accuracy on the validation set can be calculated through the combination of
the network and generated weights. Then a step of architecture search is finished.

After steps of searching, a number of network architectures with top accuracy
on the validation set will be selected to train until converge. The best model will
be searched after comparisons between models on the validation set.

3.2 Architecture Embedding

The neural network architecture can be represented as a cyclic directed graph
G = (V,E), where each node v represents an computation operator in the neural
network parameterized with weight wv. The edges in the graph can represent
tensor’s flowing direction so we have edge eab = (a, b) ∈ E stands for tensor’s
direction from node a to node b. So we can calculate the output activation tensor
of node b by:

xb =
∑

eab∈E

fv(xa, wb),∀v ∈ V (2)
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3.3 Parameters Generation

A hypernetwork is used to get the weights. After transformation, a graph embed-
ding is used to describe the neural network. Then the nodes are embedded to
one-hot vectors to represent the node’s computational operator and the hyper-
network will take in the network embedding to generate node weights. We define
hb as the embedding of node b and let H be the weight function. The weights
generation can be described:

wb = H(hb, δ) (3)

Where wb is the parameter of node b and δ is the hypernet parameter.

3.4 Search Space

The search space has to be large and representative enough or some interesting
candidate architectures might be omitted. Meanwhile, the accuracy achieved by
the NAS architecture on validation set should be higher than the one achieved by
standalone methods. Of course, the NAS architecture must to be simple enough
for training on limited memory and time.

Ai = f(a), a ∈ A∗ (4)

Early search spaces for NAS are usually a chain-structure or multi-branches
structure. These search spaces are designed by experience. The chain-structure
is a single path structure that former layer’s output serves as the input of the
next layer. The weak point is that this structure is simple that some features
may lost in the forward passing. Multi-branches structure is a more complicated
structure that it contains many paths between input and output. Besides, there
are many paths between layers. The main feature of the structure is that the
search space size has been explosively increased. On the one hand, this search
space should contain the structures with affordable results. On the other hand,
such a large search space makes it hard to find the best model. Most of the
searches are useless while many real world tasks have constraints especially for
the computation cost.

Ci ≤ Cmax (5)

Instead, based on the idea of architecture motifs that the network can be seen
as repeatedly stacking of small cells, the search space can be limited to a small
cell.

In the experiment, the search space is reduced to a small cell {Ai}Ni=1. A
cell contains many operations and each operation can be one of the predefined
operator. In this experiment, the operator set consists of 7 operators, 1 × 3
convolution, 1 × 5 convolution, 1 × 7 convolution, 1 × 3 convolution dilated,
1 × 5 convolution dilated, 1 × 7 convolution dilated and identity operator. A
number of predefined operators will be selected to build a cell. As described
before, the selected neural network will be transformed to a graph embedding.
The architecture is constructed by repeatedly stacking the constructed cell.
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3.5 Search Strategy

After the search space is designed where the candidate framework can be
selected, the next step is to decide the search strategy to select the network
architecture at each step. Some classical search policies are random search, grid
search, Bayesian optimization, Reinforcement learning, Evolutionary Algorithm,
etc. In order to search efficiently for a neural network with best accuracy, we use
the DDPG for model selection. Compared with other network search strategy
like random search or evolution algorithms, this method is efficient and stable
that random search’s result is not stable and convincible. On the other hand,
evolution algorithms often take too much time on the selection of individuals.

In DDPG [43], the network search process can be considered as a continuous
task. The network structure can be defined as the state S and each batch of
input can be defined as the environment E. In the search of step n, network
Sn takes in the validation dataset and get a reward rn−1. The set of current
network structure Sn, action an−1, reward rn−1 and last network structure Sn−1

is recorded in the memory pool as (sn−1, an−1, rn−1, sn). A critic network σ is
used to decide the next action for the neural network. In each step, the weights of
the critic network will be updated by taking a batch of records from the memory
pool. The function can be described as bellow:

Lc = argmin
1
N

∑
i
(yi − f(si, a|θQ))2 (6)

Where Lc denotes as the loss of critic network C, yi denotes as the target value
and θQ is the weights of the network. It is usually a multi-layer perceptron. Then
an action distribution θµ is updated:

θµ
∗

= τθµ + (1 − τ)θµ
∗

(7)

The network structure is updated by sampled action a from θµ:

ai = μ(si|θµ∗
) + ξi (8)

Where ξi is added noise to keep the exploration of the model. The size of the
memory pool equals to half of the total steps that new record will replace the old-
est record in order. The network architecture will be updated based on previous
architecture and the action a from μ(si|θµ∗

):

An+1 = An + an (9)

3.6 Learning

The training part can be divided into two parts. The first part is to train the
hypernetworks. At the beginning, a small set of architectures will be randomly
chosen as the input to train the hypernetworks and the DDPG model doesn’t
take part in this procedure. The hypernetwork will be trained until the archi-
tectures converge.
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The next part is to find the best architecture. At step N , an architecture will
be selected based on action and N − 1 step architecture. The critic network will
be updated by sampling a batch of records from the memory pool and the critic
network will update the action distribution. The weights of the architecture are
generated by the hypernetwork:

{
E = Yt − (

∑
wixi + bi)

w = h(A;φ) (10)

Where Yt denotes as the standard label, E denotes as the difference between
predicted result and the label. The next step architecture SN+1 can be presented
as current architecture SN with an action a:

SN+1 = SN + a, a ∈ ϕ(a) (11)

4 Experiments

In this section, the graph hypernetwork is applied to intent classification and
slot filling task that two datasets are selected, Airline Travel Information System
(ATIS) dataset and SNIPS dataset.

4.1 Dataset Details

Table 1. Dataset details for ATIS dataset and SNIPS dataset.

Dataset Train utterances Valid utterances Test utterances Intent types

ATIS 4478 500 893 22
SNIPS 13084 700 700 7

ATIS contains audio recordings of people making flight reservations. As
shown in Table 1, the training, valid and test sets contain 4,478, 500 and 893
utterances, respectively. There are 120 slot labels and 22 intent types for the
training set. SNIPS is collected from the SNIPS personal voice assistant. The
training, valid and test sets contain 13,084, 700 and 700 utterances, respectively.
There are 7 intent types for the training set.

4.2 Baselines

Our model is compared with following baselines:

RNN-LSTM: [7] proposed a RNN-LSTM architecture for joint modeling of slot
filling, intent determination and domain classification. This model is available
for multi-task deep learning where each domain’s data can reinforce each other.
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Attention-BiRNN: Attention-BiRNN [4] introduced a RNN based encoder
decoder model, which uses attention mechanism on intent classification and slot
filling tasks. Different strategies have been used to incorporate alignment infor-
mation to the encoder-decoder framework. Besides, attention is introduced to
the alignment-based RNN models.

Slot-Gated: Slot-Gated model [8] applied a slot gate mechanism on LSTM to
improve the performance, in which the slot filling can be conditioned on the
learned intent result in order to achieve better result on the joint task. For the
reason that the slot-intent relations are stronger and easily modeled, the slot-
gated model is more useful for a simple understanding task.

Capsule-NLU: Capsule-NLU [44] proposed a capsule based neural network
model which accomplished slot filling and intent detection task via a dynamic
routing-by-agreement schema. This schema can further synergize the slot filling
performance by using the intent representation.

SF-ID Network: SF-ID network [45] proposed a novel bi-directional interre-
lated model for intent detection and slot filling. The SF-ID network can establish
direct connections between these two tasks to help promote each other. Besides,
an new iteration mechanism in SF-ID network can enhance the bi-directional
interrelated connections.

Joint Bert: [25] introduced a Bert (Bidirectional Encoder Representations from
Transformers) based model for intent classification and slot filling tasks. The
model architecture of BERT is a multi-layer bidirectional transformer encoder
based on the original transformer model.

4.3 Training Details

Search Space: Based on the idea of module stacking, our model searches for a
cell rather than the entire network. In each cell, 7 operations are available for a
single node as the maximum node number. The limit cell number for the entire
network is 7. For DDPG, the memory pool size is half of the total steps. The
critic networks node number is set 16. The learning rate starts at 0.01 and ends
at 0.0001. The decay starts when the memory pool is full. The output of critic
network is the distribution of action a, which follows the normal distribution. In
order to keep the variety, a little noise has been added.

Training: A standard GRU is used as the GNN module with hidden size 32
and 2 layer multi layer perceptron. The shared hypernetwork H(;φ) is a 2 layer
multi layer perceptron. 10 random sampled architectures are used to train the
hypernetwork until these networks converge or reach a preset value. ADAM
optimizer is chosen.

Evaluation: At the beginning, 10 random architectures are chosen as the input
for hypernetworks. The hypernetwork are trained to convergence. Then DDPG
is applied to the search strategy. The total architecture number is 1000 and the
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memory pool size is 500. In each step, a batch of 5 records will be sampled to
update the critic network. The action distribution begins at uniform distribu-
tion and ends at normal distribution. The weights of selected architecture are
generated by the hypernetwork. At last, 10 architectures with best accuracy will
be stored.

Table 2. Comparison of intent classification and slot filling tasks on ATIS and SNIPS
dataset.

Model ATIS SNIPS
Intent (Acc)Slot (F1) Intent (Acc)Slot (F1)

RNN-LSTM (Hakkani-Tür) 92.6 94.3 96.9 87.3
Attention-BiRNN (Liu, Bing) 91.1 94.2 96.7 87.8
Slot-Gated (Goo, Chih-Wen) 94.1 95.2 97.0 88.8
CAPSULE-NLU (Zhang, Chenwei) 95.0 94.8 97.3 91.8
SF-ID Network (Haihong, E) 97.1 94.9 96.6 90.9
Joint Bert (Q Chen) 97.5 96.8 97.6 96.7
D-GHNAS 97.6 96.3 97.8 94.5

4.4 Results

The results is showed in Table 2. In our experiment, 1000 architectures are
selected in the searching procedure. These architectures are ranked by accuracy.
Then 10 architectures with top accuracy are selected and trained to converge.
The final network is found by the second ranking in these 10 architectures. As
we can find that the graph hypernetwork shows a very competitive result on the
intent classification task. For intent classification task, it reaches 97.6% on ATIS
and 97.8% on SNIPS which is better than other baseline models. For slot filling
task, it reaches is 96.3% on ATIS and 94.5% on SNIPS, less than Joint Bert on
both datasets.

The main reason is the trade off problem that all NAS methods should face
between the search cost and performance. The search space is designed to search
effectively that results in a lower result compared with other NAS methods
with larger search space and search cost. The selected model is constructed by
convolution operations which limit the result on this task. Another point is the
network evaluation strategy. In the experiment, all networks with parameters are
ordered by the accuracy and only 10 networks are selected for the consideration
of efficiency. So the result should be improved if more networks can be selected.
Besides, the different word embedding methods also affect the result.

Hyperparameters: In our model, the basic search unit is a cell and the archi-
tecture is constructed by stacking a number of cells. The cell structure is different
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Fig. 2. The effect of cell number and filter number variation on the result.

in each search procedure. As described before, a cell can have 7 kinds of oper-
ators at most. Cells play such a significant role in our experiment that another
experiment is conducted to explore the relationship between cost and the result
on intent detection and slot filling with a fixed number of filters. As shown in
Fig. 2, in this experiment, the cell number increases from 5 to 30 while the intent
and slot results decrease from 95.9% and 94.8% to 80.7% and 81.8%. Besides,
another experiment about the filter number is also conducted. As showed, the
intent accuracy decreases around 2% and the clot result nearly keeps when the
filter number increases from 20 to 120.

Impact of Search Strategy: In order to evaluate the performance for DDPG
search strategy, another experiment has been made with different search strate-
gies. We compared DDPG with random search and grid search. The total num-
ber of sampled architectures is 1000. The time limit is set 200 GPU hours and
DDPG reaches 95.6% with much less when compared with other two other search
strategies. It shows that random search method can reach a high accuracy but
the performance is not stable after numbers of test. Grid search depends on the
size of search space that all architectures will be sampled in order. With the
increase size of search space, the computation cost also increases. It’s not afford-
able to apply grid search on large search space and dataset. Apart from these
methods, DDPG can learn from experience that critic network and action. It
can be found from the result that DDPG can find a better network in less time.

Impact of Search Space: The search space is another important factor that
affects the search result, so different search spaces are compared in this experi-
ment. We picked chain-structure, multi-branches structure and cell/block struc-
ture. The max time cost is also set 200 GPU hours and the Cell/Block structure
can reach 95.9% with much less time. Chain-structure is simple and has the van-
ishing gradient problem when depth increases. Multi-branches structure applies
the skip connection and is complicated which let the search space exponentially
grow up. Besides, the accuracy may increase a little. Compared with multi-
branches structure, the cell/block structure is a computation saving structure
that most searching cost is limited with the cell. The search space is based on cell
and the search procedure can speed with hyper. From the result, it can be found
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that the most benefit of cell/block structure is it took the least computation cost
to find the best network compared with other search spaces.

5 Conclusion

In this study, we proposed a DDPG based graph hypernetwork NAS model. It
can generate the weights for architecture based on its graph embedding through
a hypernetwork. DDPG is used as the search strategy to search the architecture
from the search space. In the experiment, it reaches competitive results on ATIS
and SNIPS datasets within a few GPU hours, which shows that the network
search method can outperform some of the best manually designed architectures.
Besides, another two experiments are conducted to compare other search space
and search strategy that our model can accelerate the search procedure. In the
future, we will keep on research of NAS application on NLP tasks.

Acknowledgements. This paper is supported by National Key Research and Devel-
opment Program of China under grant No. 2018YFB1003500, No. 2018YFB0204400
and No.2017YFB-1401202.
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Abstract. State Machine Replication is a fundamental approach to
designing web services with fault tolerance. However, its requirement
for the deterministic execution of transactions often results in single-
threaded replicas, which cannot fully exploit the multicore capabilities
of today’s processors. Therefore, parallel SMR has become a hot topic of
recent research. The basic idea behind it is that independent transactions
can be executed in parallel, while dependent transactions must be exe-
cuted in their relative order to ensure consistency among replicas. The
dependency detection of existing parallel SMR methods is mainly based
on pairwise transaction comparison or batch comparison. These meth-
ods cannot simultaneously guarantee both effective detection and con-
current execution. Moreover, the scheduling process cannot execute con-
currently, which introduces extra scheduling overhead as well. In order to
further reduce scheduling overhead and ensure the parallel execution of
transactions, we propose an efficient scheduler based on a specific index
structure. The index is composed of a Bloom Filter and the associated
transaction queues, which provides an efficient dependency detection and
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1 Introduction

Many large scale web applications need to ensure high availability and high
efficiency of the services. State Machine Replication (SMR) [13] based on various
consensus protocols, such as Paxos [9] and PBFT [3], is a common approach to
designing fault-tolerate online service systems, eg. Google’s Chubby and Apache
Zookeeper. According to SMR model, even some of the replicas fail, the services
will be kept available with the avaliable consistent replicas. SMR achieves strong
consistency by regulating every replica executing the same transactions in the
same order.

SMR is mainly designed to improve the system’s availability rather than its
performance [4]. The requirement of the sequential execution of transactions
makes it difficult to take full advantage of multi-core servers. It cannot directly
execute transactions concurrently because the uncertainty of thread scheduling
and lock competition would result in the undeterministic execution. However,
the sequential execution is not a necessary requirement for consistency [13]. In
short, dependent transactions(access the same records) must be handled in the
same relative order on each replica to keep consistency, while independent trans-
actions(access the different records) can be executed in parallel, which can fully
utilize the processor’s multi-core processing ability. Thus, basing on transaction
semantics, how to use the transaction independence to improve the performance
of SMR has become a hot research direction [1,2,7,8,11,12].

For example, CBASE [8] is a classic parallel replication framework proposed
to enhance the performance of PBFT algorithm. It sets up a scheduler for every
replica which constructs a dependency graph by finding the dependencies pair-
wise among transactions in their total order. Based on the dependency graph,
the scheduler dispatches transactions to idle threads in the thread pool for exe-
cution. Once a transaction is executed by one thread, the scheduler removes it
from the graph and responds to clients. The scheduler of CBASE maximizes
concurrency among executions while ensuring replica consistency.

However, recent research [12] has shown that, under the conditions of high
workload, determining dependencies among transactions by pairwise compar-
isons, is a performance bottleneck. To overcome this problem, batchCBASE [12]
determine the dependencies by batch comparison rather than a single transac-
tion comparison once a time. However, it increases the possibility of inter-batch
dependencies, and as transactions in each batch are executed sequentially, it
loses some of the parallelism for those transactions within a batch. Moreover,
in order to promise replica consistence and operation safety, the scheduling pro-
cess of CBASE and batchCBASE are in single-threaded mode, which means the
scheduler and worker threads cannot access the dependency graph at the same
time, it introduce more overhead to the system.

In summary, parallel SMR schedulers now face four challenges: 1) faster
detection of transaction dependencies; 2) not sacrificing any parallelism of the
execution; 3) concurrent scheduling process; and 4) ensuring correctness. In this
paper, we propose an efficient scheduler based on a specific index structure to
address the above challenges. It consists of a special Bloom filter and corre-
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sponding transaction queues for each filter element, with the Bloom filter, the
dependencies among transactions can be detected within a constant time. Trans-
action queues can maintain the total order relations of the transactions and
also simplify the representation of the transaction dependency graph. Moreover,
the proposed scheduler supports record-granularity and command-granularity
locks with the help of the above mentioned index structure, thereby support-
ing the concurrent scheduling process (specifically the insert, remove, and get
operations) of transactions. In summary, the proposed method can efficiently
solve the performance loss problem caused by the heavy scheduling overhead
from the dependency graph based comparisons, and it can guarantee the exe-
cution parallelism under various workloads with different dependency rates. To
show the proposed model’s advantages in throughput, scalability and robustness
in comparison with CBASE and batchCBASE, experiments are conducted and
analyzed on a database prototype. Furthermore, the consistency among replicas
and other scheduling safety propositions are proved formally.

2 System Model

We assume a general distributed service system model of SMR, which is com-
posed of an unbounded client sets C = {c1, c2, ...} and a bounded server set
S = {s1, s2, ..., sn}. All servers in S are replicas of each other and work together
to provide highly available services to the clients where the Paxos protocol is
used to ensure consistency. The message transmission among distributed repli-
cas is in asynchronous mode, which allows arbitrary message loss and delay. We
assume that replicas follow the fail-stop model and never encounter a Byzantine
error, which means the state of each replica is either correct or crash, and hence
the system with 2f + 1 replicas can tolerate f replicas crashing simultaneously.

The system ensures that if a request message m is sent without failing, all
the unfaulty replicas will receive it, and eventually m will be decided in the
consensus instance i, which is called that the replica accepts (i,m). The Paxos
protocol can promise that at least half of the replicas will accept (i,m), and
no replica will accept (i, m̂) or (̂i,m), where m �= m̂ and i �= î. Intuitively, all

Fig. 1. Standard versus parallel state machine replication
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messages exist in most replicas or in none of them. If the messages exist, the
order of messages on each replica is exactly the same, ie., total order.

In our system, the request messages are about transaction requests. Accord-
ing to the Paxos protocol, each transaction has two states in a replica committed
and applied (see Fig. 1). The committed state represents that the transaction has
been consistent with most of replicas but is not executed, and the state applied
represents that it has been executed in this replica.

3 Parallel SMR

With the development of high-speed networks and efficient consensus protocols
(eg., [10]), the CPU processing efficiency has becomes the next major perfor-
mance bottleneck of SMR. It is manifested by the fact that the speed of applied
is much slower than that of committed. There have been some attempts (e.g.
[2,8,12]) so far to boost SMR with parallel execution by exploiting transaction
dependencies. In this section, CBASE [8] and batchCBASE [12] are discussed,
and conclusion of the motivation for our methods is presented in the end. More
details about other related work can be found in Sect. 6.

To parallelize the execution of transactions, CBASE (see Fig. 1(b)) sets up
a scheduler for each replica. The core of the scheduler is a dependency graph,
which takes transactions as vertexes and the dependencies among transactions
as directed edges. It keeps the partial order relationship between transactions.
While accepting a transaction, the scheduler inserts it into the dependency
graph. Based on the dependency graph, the scheduler dispatches free transac-
tions to those idle threads in the thread pool for execution. Once a transaction
ti has been executed by a thread, the corresponding vertex and edges should be
removed from the graph. Thus other transactions without predecessor depen-
dencies can be executed next.

Fig. 2. CBASE and batchCBASE dependency graphs. (a) the dependency graph of
CBASE. (b) and (c) show how batchCBASE works, i.e., t1t2 becomes batch B1, so
they has to be executed sequentially though they are parallelizable; t2 and t3 have to
be executed sequentially just because t1 are conflict with t4; Finally, all of them have
to be executed sequentially as (c) where solid lines represents batch dependencies, and
dotted lines represents execution trace.
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Figure 2(a) shows how CBASE maintains the partial order of transactions
based on the dependency graph. These transactions are agreed at each replica
in a total order sequence [t1t2t3t4t5t6]. Among them, t1t4t6, t3t5 and t2t6 are
dependent subsequences. For transactions in each such dependent subsequence,
their position on the dependent graph path is determined by their relative order
in the total order. Eg., t1 → t4 → t6 represents t6 depends on t4, and t4 depends
on t1, because t1 arrives committed first, then t4, and finally t6. New trans-
actions need to be compared to all transactions in the graph to determine the
dependencies.

Intuitively, the overhead of building a dependent graph is related to the num-
ber of nodes in the graph. Specifically, the time complexity is O(n2). Experiments
in batchCBASE [12] confirm that detecting conflicts (dependencies) between
transactions is time consuming in heavy workloads. Therefore, batchCBASE
is designed to reduce the number of comparisons by packing transactions into
batches, as the example shown in Fig. 2(b). It allocates a bitmap of 1,000Kbit
for each batch. If the intersection of two bitmaps is not empty, then it can be
determined that the two batches have dependencies. Therefore, the time com-
plexity of batchCBASE dependency detection is O(l(n/m)2), where l is a con-
stant representing the time complexity of bit comparison using bitmap, n is the
number of transactions, and m is the size of the batch. However, such batch-
based method has a higher conflict probability between two batches. In theory,
the conflict probability between two random transactions is 1/n, while the con-
flict probability between two batches is p =

∑m
i=1

(
n
i

)
( i
n )m(n−i

n )m. Thus, when
the batch-based method is applied, the conflict probability has an exponential
increase with respect to the batch size m.

Since transactions within each batch of batchCBASE is executed sequen-
tially, the parallelism between transactions is reduced. In addition, if any two
conflicting transactions from each batches conflict with each, the two batches
have to be executed sequentially as well because the two batches of transactions
are considered to be conflicted in this case. As shown in Fig. 2(b), when the
batch size is 2, it will degenerate into a sequential execution as Fig. 2(c).

Moreover, since the scheduler operations of CBASE and batchCBASE, i.e.
the insert, remove, and get, are mutually exclusive, the call to any of these oper-
ations will lock the whole dependency graph until it is finished. From this view,
the scheduler runs in a single-threaded mode, which introduces extra overhead.

To sum up, (i) CBASE has a greater overhead of detecting dependency;
in addition (ii) batchCBASE increases the conflict probability which makes it
highly likely to degenerate into sequential execution, (iii)running mode of their
scheduler operations is single-threaded. In next section we will describe more
efficient ways to solve these problems.

4 Index-Based Scheduler Model

Our proposed method in this section dedicate to improving the performance
of scheduler by designing a specific index structure and devising an elaborated
concurrent scheduling scheme accordingly.
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4.1 Overall Idea

The basic idea of the scheduler is as follows:

– The main part of the index structure is a simplified Bloom filter con-
structed from a single HashMap. Each key of the HashMap represents one
record accessed by the transactions. Hence, without actually constructing and
traversing the dependency graph, it can determine the dependency between
transactions when they fall into the same Bloom filter bit by one hash.

– The value corresponding to each key of the HashMap is a FIFO queue contain-
ing all the transactions accessing the record of the key. Hence, any different
transactions at the heads of all transaction queues of the HashMap can be
executed concurrently.

– Based on the above index structure, it is easy to make the scheduler concur-
rently perform scheduling operations (i.e., insert, remove, get) with record-
granularity and transaction-granularity lock, which can guarantee safety and
correctness as well.

Transactions and Records: Transaction ti is composed of one or couples of
commands and records. We denote the total order of transaction OT as (T,<T )
where T = {ti|i = 1, 2...} and <T represents the total order between two transac-
tions. Let the transaction ti’s record set Rti = {rj |rj is one of the record accessed
by ti’s commands} and the transaction set accessing the common record rj as
Trj = {ti|rj is one of the records accessed by ti’s commands}.

Bloom Filter: The Bloom filter is constructed from a single HashMap.
Although a Bloom filter is usually composed of more than one hash functions,
the only one hash used here is the one of the HashMap. The reason is that our
Bloom filter is used not only for testing the existence of dependencies but also for
indexing transaction queues according to the record accessed. This is achieved
by letting record r be the key to be hashed and all the transactions in Tr be the
corresponding value mapped. Thus, for a transaction ti, the time complexity of
finding all dependent transactions related to record r is O(1).

Transaction Queue: In order to provide efficient dependency detection and
concurrent execution, all transactions in Tr is organized in a FIFO (First In First
Out) queue as the value part of our Bloom filter corresponding to the key r. The
transaction queue TQr of record r is actually a relative order OTr

= (Tr, <T ) ⊆
OT . Thus, for a record r, the time complexity of inserting a transaction at the
end of or removing a transaction from the head of the queue is O(1). Note that
a transaction may exist in different transaction queue because it usually operate
on multiple records.

Simplified Dependency Graph: All transaction queues together can form a
simplified dependency graph which is consistent in order <T but much simpler
in structure compared with the original complete dependency graph. Since the
dependency relation and relative order between transactions are all transitive, it
is not necessary to explicitly establish a complete total order through pairwise
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Fig. 3. Example of index structure and simplified dependency graph. (a) The index
structure with four transactions having the same records x in the same FIFO transac-
tion queue. (b) The transaction queue in (a) only keeps necessary total order between
every two adjacent transactions, eg. the edge t4 to t7, t4 to t8 and others in the origin
dependency graph are omitted naturally.

comparison within the transactions. Therefore, the proposed index structure can
effectively reduce the overhead of detection and scheduling. Figure 3 exemplifies
the basic idea of dependency graph simplifying.

Free Transaction: In our scheduler, after a transaction ti is inserted into sched-
uler, it is said to be free, iff ∀rj ∈ Rti , TQrj .head = ti. If a transaction is free, it
can be scheduled to be executed. If a transaction is still in transaction queue, it
means that the transaction is under execution or not yet executed, in one word,
unfinished.

Fine-Grained Lock: Two kinds of locks are set: queue lock and transaction
lock. Queue lock is used for inserting and deleting transactions by the scheduler,
because these two operations will modify the transaction queue. It means that
when the scheduler operates transaction ti on the above index structure, the
scheduler will only lock those transaction queues corresponding to the records of
Rti . The transaction lock represents the lock held by each transaction, which is
only used when detecting whether the transaction can be executed. Operations
in the same location (i.e. transaction queue) of HashMap are mutually exclusive,
while operations in different locations are concurrent.

4.2 Detailed Algorithm of Implemention

Algorithm 1 shows how our scheduler works in detail. When the system starts,
procedure Initialization() initializes a HashMap (line 7), and then initializes N
worker threads for waiting to execute transactions (lines 8–10). The length of
HashMap does can be less than the number of records. In this case, there will
be a certain probability that the hash function maps two different records to the
same position. Fortunately, such false positives do not violate the consistency
because those transactions that incorrectly fall into the same transaction queue
will be safely executed sequentially.
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Algorithm 1. Index-based scheduler
1: data structures and variables
2: Transaction t {transaction}
3: int N {number of worker threads}
4: TQueue TQ {transaction queue}
5: HashMap HM {HashMap}
6: procedure Initialization()

7: initialize HM
8: N ← desired number of worker threads
9: for id = 1 . . . N do {initialize every worker thread}
10: create and start a worker thread thrid

11: The scheduler executes as follows:
12: while accept(ti ∈ T ) do {accept ti from T}
13: ti.run = true {used for ti executed exactly once}
14: dgInsertAndGet(ti) {scheduler inserts ti}
15: function bool: free(ti)

16: for r ∈ Rti do
17: TQr = HM(r) {Bloom Filter used as index}
18: if ti! = TQr.head then

19: return false
return true

20: procedure dgInsertAndGet(ti)
21: for r ∈ Rti do

22: TQr = HM(r)
23: Lock(TQr)

24: TQr.insert(ti)
25: if r == Rti .last then

26: Lock(ti)

27: if ti.run ∧ free(ti) then

28: ti.run = false
29: notify worker threads to execute ti

30: Unlock(ti)

31: Unlock(TQr)

32: procedure dgRemoveAndGet(ti)
33: for r ∈ Rti do
34: TQr = HM(r) {Bloom Filter used as index}
35: Lock(TQr)

36: TQr. remove(ti)
37: Unlock(TQr)

38: tj = TQr.head {candidate next to be executed}
39: Lock(ti)

40: if ti.run ∧ free(tj) then

41: ti.run = false
42: notify working threads to execute tj

43: Unlock(ti)

44: Each worker thread executes as follows:
45: while ti ← notification from the scheduler do

46: execute transaction ti
47: dgRemoveAndGet(ti)
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Once the scheduler accepts transactions, it will insert them into the index
according to their total order (lines 12–14). As stated earlier, a transaction can
be scheduled to be executed, if it does not depend on any other transactions,
i.e., being free. There are two situations. (i) For a newly accepted transaction,
if there is no dependency detected, it can be executed directly; (ii) For a trans-
action in the transaction queue that has not been executed yet, it must be
dependent and cannot be executed until its dependent transactions are all exe-
cuted and removed. Therefore unlike CBASE and batchCBASE, our scheduler
does not require a separate get operation, but combines it with the insert oper-
ation and the remove operation to be dgInsertAndGet and dgRemoveAndGet
respectively. They are detailed as follows:

dgInsertAndGet: The operation first inserts ti into transaction queues that
correspond to each record r ∈ Rti (lines 21–24), and then determines whether ti
can be executed (lines 25–29) now. If ti appears at the head of all corresponding
transaction queues after insertion, it must be free and can be executed imme-
diately. Otherwise, ti can not be executed directly. Thus it will be scheduled
to worker threads in dgRemoveAndGet(tj). Only one transaction queue corre-
sponding to each record in Rti is locked at a time. The process of detecting only
needs to obtain it’s own transaction lock(line 26 and 30) (through transaction
lock table). If the transaction can be executed, it’s flag run(line 28) will be set
to false, and the detection process of dgRemoveAndGet will fail.

dgRemoveAndGet: Remove a finished transaction ti from the index may also
need to operate on multiple transaction queues. With the help of HashMap in our
index, those transaction queues that correspond to each record r ∈ Rti can be
easily obtained (line 34). In our scheduler, transactions to be executed or finished
transactions to be removed are kept at the head of corresponding transaction
queues, which makes the remove operation more efficient. Transactions at the
head of each TQr is checked for free after removing finished transaction ti.
Only the transaction lock (line 39 and 43) of itself needs to be obtained in the
process of detecting, which can ensure that the executable transaction can be
detected only once. Both dgInsertAndGet and dgRemoveAndGet achieve the
goal of not having to lock all transaction queues. The operations of index-based
scheduler have the maximum concurrency when it is measured by the number
and granularity of the lock.

4.3 Correctness

The key to the design of the scheduler is to ensure the security of scheduling
operations and the consistency of the state of the transaction execution results
between replicas. In addition to a large number of tests in practice, here we
highlight the validity of replica consistency and the operation safety theoretically.

Replica Consistency : conflicting transactions are processed in total order, which
is guaranteed by following:
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1) Safety 1 (preserve total orders of conflict transactions): All transactions are
inserted into the transaction queue in the order <T they arrive (lines 12 to
14). When inserting a new transaction, all of it’s conflicting transactions in
the index will be calculated by hash, and it will be inserted into the tail of
transaction queues. The inner sequence of queue encodes the conflicts between
transactions, all transaction queues are equivalent to a DAG.

2) Safety 2 (preserve total order of transactions when getting transactions from
the index): a transaction can only be scheduled when it is in the head of
all corresponding transaction queues, that is, it can only be scheduled when
there is no dependency edge in the DAG (lines 15 to 19). Because each edge E
represents a dependency relation, no transaction will be executed regardless
of the total order of the conflicting transactions.

3) Deadlock free: the first transaction does not depend on any other transactions
and can be executed freely. When the executed transaction ti is deleted, and
all outgoing edges of node ti in DAG are deleted (lines 36). Because the
transaction only depends on the previous transaction, then tj , ti <T tj will
delete the last edge of the incoming dependency with the deletion of ti, and
it can execute freely: there is always the lowest (free) node in the graph.

4) Exactly once: all transactions will be executed and only once. Since the trans-
action ti has <T order in the DAG and there is no deadlock, ti will eventually
be processed. When a transaction is detected to be executed in the process of
dgInsertandGet and dgRemoveandGet, there will be competition of trans-
action lock. If ti is first preempted by dgInsertandGet after inserting into
the graph, then the flag ti.run will be set to false, and dgRemoveandGet will
not be able to detect the execution. Similarly, if the latter acquires the lock,
the former will not be able to detect, so it can be guaranteed that ti will only
be executed once.

Consistency of all Replicas: All replicas deliver the same total order <T , run
the same algorithm, which can guarantee the order of conflicting transactions
without considering the relative speed of different replicas. This is achieved by
follows: Replicas may process at different speeds, so there may be different sets
of transactions waiting to be executed. When transaction ti is delivered as the
same <T in two replicas Ra and Rb, ti may belong to the pending batch in Ra,
but not in Rb. In this case, Rb executes it in total order, while in Ra, if there
are conflicts, it will be executed in total order, and concurrently otherwise. In
any case, the total order between conflicting transactions can be guaranteed.

5 Experiments

5.1 System Prototype and Environment

To evaluate the performance of our index-based scheduler, called fastCBASE, we
deployed it on a database in C/S service model, as well as CBASE/batchCBASE
whose implementation follows [12]. All source code of them are published online
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[5]. The whole system runs on a cluster of four HP nodes. Three of them work as
servers, playing the role of proposer and acceptor in Paxos protocol, and each has
2 E5-2620 CPU, 2.10 GHz, a total of 24 threads, and 256G memory. The client
is deployed in the other HP node with four-way E7-4820 CPU, 2.0 GHz, 8 cores
per channel, a total of 64 threads. The clients send large number of transactions
to make the servers fully loaded. All applications are implemented by go1.12.1.
All communication goes through ER3200G2, a gigabit network switch.

5.2 Goals and Methods

Since our scheduler is proposed to ensure the maximum concurrency among
transactions with a lower scheduler load, the main experimental purposes are:

– the speed-up achieved compared to state-of-art
– the scalability with a growing number of worker threads
– the impacts of scheduling overhead
– the false positive introduced by Bloom filter
– the impacts of conflicts on performance of scheduler

For the first point, in order to observe the most obvious speed-up ability of
our scheduler and other schedulers, we evaluate each scheduler’s performance
under conflict-free workloads, and compare the performance under the same
number of worker threads with CBASE and batchCBASE.

For the second point, we evaluate the performance improvement of our sched-
uler with an increasing number of threads under the conflict-free workloads, and
compare it with CBASE and batchBASE.

For the third point, we can analyze with the above experimental results.
For the fourth point, since batchCBASE uses two bitmaps bitwise comparison

methods in conflict detection and our scheduler uses Bloom Filter, all of them will
introduce false positive conflict. We compare the false positive rate introduced
by these two scheduler models under different bitmap (HashMap) sizes.

For the fifth points, we compare the performance changes of our scheduler
and batchCBASE under different conflict rate workloads.

5.3 Speed-Up Analysis

Figure 4 shows the system throughput of CBASE, batchCBASE and our
fastCBASE without conflict. The performance of different batch sizes are tested
since the batch size of batchCBASE has a significant impact on it.

It can be seen that the traditional CBASE has a very low performance,
because the scheduler has a large overhead in the dependency detection, which
severely limits the throughput of the whole system. As the number of worker
threads increases, its performance does not increase significantly. With 16
threads, it only achieves a throughput of about 1000 Trans/S. Even though many
worker threads are available, the scheduler cannot fully utilize them.
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Fig. 4. Threads scalability for contention-free workloads

To improve the performance of the system, batchCBASE sacrifices schedul-
ing freedom (transaction sequential execution within batch) for a lower number
of comparisons. It can be seen that the performance of batchCBASE is more
significantly improved than that of CBASE, and the performance of it increases
linearly with the increase of the number of threads in 1, 2, 4, but it does not
increase with batch size, which indicates that the scheduler is not a performance
bottleneck, throughput is limited by the number of available worker threads.

The larger the batch of batchCBASE is, the lower the scheduler workload and
the better the performance will be. The speedup of its performance gradually
stabilizes gradually as the batch increases, as shown in Fig. 4. By the start of 8
threads, the performance no longer increases linearly with the number of threads
in every batch. This is because although the number of comparisons is reduced
by batch, the load scheduling is still relatively high compared to our scheduler.

Because of our elaborate concurrent scheduling process based on the special
index structure, although our scheduler needs to manage each transaction, it is
still even more efficient than batchCBASE. Figure 4 shows that the throughput of
our scheduler in 8 and 16 threads is much higher than batchCBASE. And unlike
batchCBASE, the performance of our method improves much near linearly with
the increase of the number of threads, so it has strong scalability.

5.4 Conflict Rate Analysis

In this section, we compare the conflict rate generated by our fastCBASE sched-
uler with Bloom filter and compare the rate generated by batchCBASE with the
bitmap of each batch through simulation.

In the simulation, unfinished transactions in the scheduler are stored in the
execution queue which represents the transactions are being processed. If the new
transaction conflicts with all transactions, the conflict rate is 100%. If it does
not conflict with any transactions, the conflict rate is 0. Therefore, the conflict
rate can be defined as: the conflict proportion of the new transaction and the
unfinished transactions in the queue at a given period of time or at a specific
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length of the queue. In our simulation, we use a fixed length of execution queue to
calculate conflict rate. For batchCBASE, if at least one common bitmap position
is set as 1 in both bitmaps of the two batches, then a conflict is computed.

In our simulation, a transaction contains only one record without loss of gen-
erality. We randomly generate 108 records. Thus the probability of generating the
same record twice in the simulation is almost zero (10−8), which means conflict
rate generated is mainly caused by false positive. In our scheduler, the impact
on the conflict rate mainly comes from the size of HashMap. The conflict rate of
batchCBASE is also affected by the size of bitmap and batch. We conducted 106

times simulation, the length of the execution queue is set to 10,000, ie., there
are average 10,000 unfinished transactions in the scheduler. The corresponding
batchCBASE has a graph size of 50 nodes when the batch size is 200, and a
graph size of 25 nodes when the batch size is 400. And we set up the HashMap
and bitmap size to 100 K and 1M respectively. The experimental results are show
in Table 1.

Table 1. Conflict rate

HashMap size fastCBASE
conlict rate

batchCBASE conlict
rate, batch= 200

batchCBASE conlict
rate, batch= 400

102400 0.000984% 32.558% 79.332%

1024000 0.0000975% 3.844% 14.796%

It can be seen from Table 1 that under the same configuration, the con-
flict rate of batchCBASE is nearly 10,000 times of the rate of fastCBASE. As
the size of HashMap or bitmap increases, the conflict rate of fastCBASE and
batchCBASE will decrease, but batchCBase will amplify the conflict rate due
to batch, which will also increase the false positive rate. Therefore, in reality,
even if the conflict rate is very low, batchCBASE will still be greatly affected,
while the false positive rate brought by our scheduler would hardly affect the
performance.

5.5 Speed-Up Analysis for Conflict-Prone Workloads

Figure 5 shows that the throughput of our scheduler decreases with the increase
of conflict rate. When the conflict rate is 10%, only the throughput of 16 threads
decreases. This is because with the increase of the conflict rate, the parallelism of
transaction execution decreases, consequently the utilization of multi-threading
is reduced. For the same reason, when the conflict rate is 20%, the throughput of
8 threads begins to decrease. And as the conflict rate continuous to increase, the
performance gain caused by the increase of the threads’ number is significantly
reduced. When the conflict rate is more than 50%, i.e. more than half of the
transactions cannot be executed in parallel, the redundant threads cannot be
utilized, and the performance on different threads is approximately equal.
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Based on the results of Fig. 5, it can be known that our scheduler can allow a
maximum parallelism among transactions. When the conflict rate reaches 20%,
there is still similar performance to the batchCBASE under conflict-free work-
load. With the conflict rate increasing, our scheduler is more robust.

Fig. 5. Throughput under different conflict rate workloads

6 Related Work

Different from CBASE, an early schedule system model (scheduler not in replica)
is proposed by [11]. By setting up a client proxy, all client transactions are
grouped according to transaction’s semantic. Independent transactions can be
allocated to different groups, and dependent transactions must be allocated to
the same group. Each group of transactions is sent to all servers by atomic
broadcast. Serve-side proxy maps groups to specific threads. A transaction may
conflict with transactions in multiple groups. Therefore, synchronization among
groups is required to ensure that the transaction is executed only once. To opti-
mize the process of thread scheduling in [11], a multi-objective programming
model [2] is proposed to maximize parallelism and minimize execution time. To
achieve the optimal scheduling results, high time complexity is required either.
Therefore, the existence (or absence) of an optimization model that combines
early scheduling and concurrency is still an open question.

Rex [4], an execute-agree-follow model, in which a primary machine is free to
execute transactions concurrently at first, and uncertain decisions are recorded
in a partial order trace, and then other secondary machines will receive the
trace and executes the same trace concurrently, which keeps consistency with the
primary. Eve [7] implements deterministic parallelism through a scheduler called
mixer, and replicas execute transactions in parallel in a speculative manner. After
the execution, the validity of the replica status is checked during the validation
phase. If too many replicas are inconsistent, the replica will roll back to the
previous validated state and re-execute the command sequentially. Unlike Eve,
Storyboard [6] enhances SMR through a prediction mechanism that predicts the
order of locks across replicas. When the prediction is correct, the transactions
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can be executed in parallel. If the prediction does not match the execution path
of the transactions, the replica must establish a deterministic execution sequence
with other replicas through consensus protocol. In this case, Storyboard stops the
current execution and repredicts the execution path. All replicas will re-execute
the transactions based on the new path.

7 Conclusion

To promise a high performance, the parallel state machine replication, often used
in online web services, requires an elaborated design to execute independent
transactions in parallel while the dependent sequentially. To achieve this goal,
efficient and correct dependency detection and scheduling strategies are needed.
The existing models cannot make a good balance in these aspects, whose advan-
tages also lead to their weakness, so their scheduler is inclined to become the
performance bottleneck of the system. In this paper, an efficient scheduler based
on a specific index structure is designed to detect dependency, express partial
order relations and to schedule transactions, which can ensure the maximum
parallelism of the execution between transactions to fully exploit the advantages
of multi-core processors, and also can keep consistency among replicas. To fur-
ther improve the space utilization, in the future work we will try some space
compression methods to cover the situation where a transaction may be inserted
to multiple queues.
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