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Abstract. Pattern matching algorithms are used in several areas such
as network security, bioinformatics and text mining. In order to provide
real-time response for large inputs, high-performance systems should be
used. However, this requires adapting the algorithm to the underlying
architecture. Intel Xeon Phi processors have attracted attention in recent
years because they offer massive parallelism, good programmability and
portability. In this paper, we present a pattern matching algorithm that
exploits the full computational power of Intel Xeon Phi processors by
using both SIMD and thread parallelism. We evaluate our algorithm on
a Xeon Phi 7230 Knights Landing processor and measure its performance
as the data size and the number of threads increase. The results reveal
that both parallelism methods provide performance gains. Also they indi-
cate that our algorithm is up to 63x faster than its serial counterpart and
behaves well as the workload is increased.

Keywords: Pattern matching · Intel Xeon Phi Knights Landing
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1 Introduction

Pattern matching algorithms locate some or all occurrences of a finite number
of patterns (pattern set or dictionary) in a text (data set). These algorithms
are key components of DNA analysis applications [1], antivirus [2], intrusion
detection systems [3,4], among others. In this context, the Aho-Corasick (AC)
algorithm [5] is widely used because it efficiently processes the text in a single
pass.

Nowadays, the amount of data that need to be processed grows very
rapidly. This has led several authors to investigate the acceleration of AC on
emerging parallel architectures. In particular, researchers have proposed differ-
ent approaches to parallelize AC on shared-memory architectures, distributed-
memory architectures (clusters), GPUs, multiple GPUs and CPU-GPU hetero-
geneous systems [6–14].
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In recent years, Intel Xeon Phi systems have attracted attention of researchers
because of their massive parallelism. These systems support multiple program-
ming languages and tools for parallel programming, thus they provide better pro-
grammability and portability than a system using GPUs. There are two genera-
tions of Xeon Phi: Knights Corner (KNC) and Knights Landing (KNL) [15,16].
The former has limitations similar to those of GPUs: it is a PCIe-connected
coprocessor with limited memory. The latter is also available as a standalone
processor, therefore it does not have the limitations of the previous model. Fur-
thermore, it is binary compatible with prior Intel processors.

In general, a Xeon Phi is composed of multiple cores. Each core has 1 or 2
vector processing units (VPUs), depending on the model. To take full advantage
of its computational power, applications must exploit thread-level and SIMD
parallelism. This is a challenge for developers since the code must be changed in
order to launch multiple parallel tasks and expose vectorization opportunities.

So far, little work has been done to accelerate Aho-Corasick on Xeon Phi.
In [17] the authors present a parallel AC algorithm and test it on a Xeon Phi
KNC coprocessor. Briefly, the algorithm consists of dividing the text among
threads, then each thread processes its segment in a vectorized way. Similarly,
in [18] the authors propose an AC algorithm for Xeon Phi coprocessors, which
uses a strategy that increases cache locality during the pattern matching process.
The strategy is based on partitioning the set of patterns into smaller subsets and
executing several independent instances of the matching procedure on the entire
text (i.e., one instance for each subset of patterns). However, this proposal does
not take advantage of the VPUs of the coprocessor.

In this paper, we present an AC algorithm that exploits the full compu-
tational power of Intel Xeon Phi processors by using both SIMD and thread
parallelism. We evaluate our algorithm on a Xeon Phi 7230 KNL processor and
show the performance gain when using SIMD instructions and threads respec-
tively. Furthermore, we measure the performance of our algorithm as the data
size and the number of threads increase, and study its behaviour. The results
reveal that both parallelism methods improve performance. Also they indicate
that our algorithm is up to 63x faster than its serial counterpart and behaves
well as the workload is increased.

Our work differs from previous studies in two ways. First, our proposed algo-
rithm is based on the Parallel Failureless Aho-Corasick (PFAC) algorithm [7],
which efficiently exploits the parallelism of AC. PFAC is suitable for many-core
architectures and it was first implemented for GPUs and multicore systems;
in the last case vectorization techniques were not applied. Second, in contrast
to previous works [17,18], we evaluate the performance and scalability of our
proposed algorithm on a Xeon Phi KNL processor.

The rest of the paper is organized as follows. Section 2 provides some back-
ground information on pattern matching algorithms and Xeon Phi processors.
Section 3 describes our parallel algorithm for pattern matching on Xeon Phi
processors. Section 4 shows our experimental results. Finally, Sect. 5 presents
the main conclusions and future research.
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2 Background

This section describes the AC and PFAC algorithms, the Intel Xeon Phi proces-
sor and how to program it.

2.1 The Aho-Corasick Algorithm

The Aho-Corasick (AC) algorithm [5] has been widely used since it is able to
locate all occurrences of user-specified patterns in a single pass of the text. The
algorithm consists of two steps: the first is to construct a finite state pattern
matching machine; the second is to process the text using the state machine
constructed in the previous step. The pattern matching machine has valid and
failure transitions. The former are used to detect all user-specified patterns. The
latter are used to backtrack the state machine, specifically to the state that
represents the longest proper suffix, in order to recognize patterns starting at
any location of the text. Certain states are designated as “output states” which
indicate that a set of patterns has been found. The AC machine works as follows:
given a current state and an input character, it tries to follow a valid transition;
if such a transition does not exist, it jumps to the state pointed by the failure
transition and processes the same character until it causes a valid transition. The
machine emits the corresponding patterns whenever an output state is found.
Figure 1 shows the AC state machine for the pattern set {he, she, his, hers}. Solid
lines represent valid transitions and dotted lines represent failure transitions.

Fig. 1. AC state machine for the pattern set {he, she, his, hers}

2.2 The Parallel Failureless Aho-Corasick Algorithm

The Parallel Failureless Aho-Corasick (PFAC) algorithm [7] efficiently exploits
the parallelism of AC and therefore is suitable for many-core architectures. PFAC
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assigns each position of the text to a particular thread. For each assigned position
start (task), the thread is responsible for identifying the pattern beginning at
that position. For that, the thread reads the text and traverses the state machine,
starting from the initial state, and terminates immediately when it cannot follow
a valid transition; at that point, the thread registers the longest match found.
Note that all threads use the same state machine. Since PFAC does not use
failure transitions, they can be removed from the state machine. Figures 2 and
3 give an example of the Failureless-AC state machine and the parallelization
strategy of PFAC, respectively. Algorithm 1 shows the PFAC code executed by
each thread for each assigned task.

Fig. 2. Failureless-AC state machine for the pattern set {he, she, his, hers}

2.3 Intel Xeon Phi Knights Landing Processor

The Intel Xeon Phi KNL processor [16,19] is composed of many tiles that are
interconnected by a cache-coherent, 2D mesh interconnect. Each tile consists of
two cores, two vector-processing units (VPUs) per core, and a 1MB L2 cache
shared between the two cores. Each core supports 4 hardware threads. Figure 4
illustrates this architecture.

Regarding the memory hierarchy, the KNL processor has two types of mem-
ory: (1) MCDRAM, a high-bandwidth memory integrated on-package, and (2)
DDR, a high-capacity memory that is external to the package. The MCDRAM
can be used as a last-level cache for the DDR (cache mode), as addressable
memory (flat mode), or as a combination of the last two modes (hybrid mode)
- i.e. using a portion of the MCDRAM as cache and the rest as standard mem-
ory. When using the flat or hybrid mode, the access to MCDRAM as memory
requires programmer intervention.

Furthermore, the KNL processor can be configured in different modes (cluster
modes) in order to optimize on-chip memory traffic.

The KNL processor supports all legacy x86 instructions, therefore it is binary-
compatible with prior Intel processors, and incorporates AVX-512 instructions.
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Fig. 3. Parallelization strategy of PFAC

Algorithm 1. PFAC code, executed by each thread for each assigned task
{start :: initial position of the task in the text}
{pos :: current position in the text}
{initial state :: initial state of the state machine}
{state :: current state of the state machine}

1: pos = start
2: state = initial state
3: while pos < text size do
4: if there is no transition for the current state and input character then
5: break
6: end if
7: state = next state for the current state and input character
8: if state is an output state then
9: store the pattern found at the position start in output[start]

10: end if
11: pos = pos + 1
12: end while

The efficient use of cores and VPUs is critical to obtain high performance. To
that end, the programmer must divide the work into parallel tasks or threads, and
organize their code to expose vectorization opportunities. Finally, vectorization
can be achieved manually, by writing assembly code or using vector intrinsics,
or automatically, relying on compiler optimizations.

Fig. 4. Intel Xeon Phi KNL processor
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3 Pattern Matching on Xeon Phi Processors

This section describes our strategy for parallelizing pattern matching on Xeon
Phi processors and some implementation details.

3.1 Parallelization Strategy

Figure 5 depicts the parallelization strategy of PFAC VEC, our pattern matching
algorithm for Xeon Phi based on PFAC. Recall that the strategy followed by
PFAC divides the input text into as many tasks as the text size; each task
involves identifying the pattern starting at a certain text position; all tasks are
equally distributed among threads and each thread follows a sequential control
flow to process its tasks. In contrast, the strategy of PFAC VEC splits the input
text into blocks of tasks; each block is composed of a fixed number of consecutive
text positions or tasks (this number is referred to as block size); all blocks are
equally distributed among threads; then each thread processes each assigned
block in a vectorized way, i.e. all its tasks are simultaneously solved.

Fig. 5. Parallelization strategy of PFAC VEC

The distribution of blocks among threads is done through the OpenMP for
work-sharing construct. On the other hand, vectorization will be performed auto-
matically by the compiler. However, the code executed by each thread to process
a block of tasks must meet some requirements to be automatically vectorized [19].
Thus, it requires programmer intervention. The next section presents the imple-
mentation details of that code.

3.2 Implementation Details

Algorithm 2 shows the code executed by each thread to process a block of tasks
in a vectorized way, taking advantage of the VPUs of the core. Note that all tasks
of a block (block size in total) are solved simultaneously by applying the same
operation to multiple data items. Remember that each task involves identifying
the pattern that starts at a certain block position.

The thread first creates vectors of length block size to store the current posi-
tion in the text, the current state of the state machine and the pattern found so
far, for each task. The initialization of these vectors is vectorizable (Algorithm2,
Lines 1–5).
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Then, the thread processes the tasks until all are finished (Algorithm 2, Lines
6–15). In each iteration of the outer loop, a state transition is carried out for each
task. Specifically, the operations of reading (Algorithm2, Line 8), determining
the next state (Algorithm 2, Line 9), verifying if the reached state is an output
state (Algorithm 2, Lines 10–12), and incrementing the current position to point
to the next character (Algorithm 2, Line 13) are performed in a vectorized way.

Finally, the patterns found in this block are recorded in the output vector in
a vectorized manner (Algorithm 2, Lines 16–18).

Algorithm 2. PFAC VEC code, executed by each thread for each assigned
block

{start :: initial position of the block in the text}
{initial state :: initial state of the state machine}
{pos :: vector containing the current position in the text for each task}
{state :: vector containing the current state of the state machine for each task}
{result :: vector containing the longest match found for each task}
{For each task, set pos, state and result to their initial values}

1: for i = 0 to block size - 1 do {Vectorizable loop}
2: pos[i] = start + i
3: state[i] = initial state
4: result[i] = 0
5: end for

{Process all tasks simultaneously}
6: while there is an unfinished task in the block do

{Perform one more transition for each task}
7: for i = 0 to block size - 1 do {Vectorizable loop}
8: inputchar[i] = text[ pos[i] ]
9: state[i] = next state for state[i] and inputchar[i]

10: if state[i] is an output state then
11: store the pattern found at the position “start+i” in result[i]
12: end if
13: pos[i] = pos[i] + 1
14: end for
15: end while
16: for i = 0 to block size - 1 do {Vectorizable loop}
17: output[start + i ] = result[i]
18: end for

In order to guarantee the correct execution of the algorithm, lines 8 and 9
must not fail or have any effect when the current position in the text of task i
exceeds the size of the text (pos[i] ≥ text size) and when there is not a valid
transition for the current state and character of task i, respectively.

To solve the first problem (Line 8), an additional number of special characters
was appended to the input text. This number is equal to the length of the longest
pattern in the dictionary and represents the maximum amount of characters that
can be processed when solving a task.
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To solve the second problem (Line 9), a dead state was added to the state
machine, i.e. a nonaccepting state that goes to itself on every possible input
symbol. Also, additional transitions were added to this state from each other
state q, on all input symbols for which q has no other transition. Figure 6 shows
the Failureless-AC state machine for the pattern set {he, she, his, hers}, which
includes the dead state.

Fig. 6. Modified Failureless-AC state machine for the pattern set {he, she, his, hers}

Now, it can be said that the exit condition of the while loop in Line 6 involves
determining if there is a task that has not reached the dead state yet. This
operation is done by iterating over the vector of current states (the loop is
vectorizable).

The characteristics of the proposed algorithm enable the Intel compiler to
vectorize the code automatically. In particular, it reports an estimated potential
speedup of 10.5x, 10x and 21.3x for the loops in Lines 1, 7, and 16 respectively.
Furthermore, it shows a potential speedup of 15.3x for the exit condition of the
while loop in Line 6.

4 Experimental Results

Our experimental platform is a machine with an Intel Xeon Phi 7230 (KNL)
processor and 128 GB DDR4 RAM. This processor has 64 1.30 GHz cores and
16 GB MCDRAM. Each core supports 4 hardware threads, thus the processor
supports 256 threads in total. The processor is configured in flat mode. We use
the numactl command to place all data in MCDRAM.

Test scenarios were generated by combining four English texts of differ-
ent sizes with four English dictionaries with different number of patterns. All
the texts were extracted from the British National Corpus [20]: text 1 is a 4-
million-word sample (21 MB); text 2 is a 50-million-word sample (268 MB); text
3 is a 100-million-word sample (544 MB); text 4 is a 200-million-word sample
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Fig. 7. Average speedup of PFAC VEC over PFAC

(1090 MB). The dictionaries include frequently used words: dictionary 1 with
3000 words; dictionary 2 with 100000 words; dictionary 3 with 178690 words;
dictionary 4 with 263533 words.

Our experiments focus on the matching step since it is the most significant
part of pattern matching algorithms. For each test scenario, we ran each imple-
mentation 100 times and averaged the execution time.

First, we ran the single-threaded non-vectorized Failureless Aho-Corasick
algorithm (SFAC), provided by Lin et al. [7], and the single-threaded vectorized
version (SFAC VEC), presented in this paper. In the last case, different values
of block size (64, 128, 256) were used. For all test scenarios, the value of block
size that produces the best result is 128. Using that value, SFAC VEC is up to
3.6x faster than SFAC, and provides an average acceleration of 3.5 for each text.
These results demonstrate that our vectorization technique provides performance
gains.

Next, we ran the multi-threaded non-vectorized code (PFAC), provided by
Lin et al. [7], and the multi-threaded vectorized code (PFAC VEC), presented
here, for different number of threads (4, 8, 16, 32, 64, 128, 256) and affinity
settings [21] (none or default, scatter, compact, balanced). The value of block
size used by PFAC VEC is 128.

Regarding the affinity settings, the compact affinity gives the worst results
for all tests. The other affinities perform similarly for different combinations
of test scenarios and number of threads, except for the largest text considered
and few threads, for which the none affinity provides the best execution times.
Therefore, from now on, the none affinity will be used.
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Afterwards, we evaluated the performance (Speedup1) of PFAC VEC over
PFAC and SFAC VEC, respectively. For each text and number of threads, the
average speedup is shown. This is because the speedup does not vary significantly
with the dictionary.

Figure 7 illustrates the average speedup of PFAC VEC over PFAC, for dif-
ferent texts and number of threads. It can be seen that the speedup ranges
between 1.05 and 3.70. Higher speedup values are obtained when using fewer
threads, and as this parameter increases the speedup decreases. However, for a
fixed number of threads, the speedup tends to increase with the size of the text.
These results reveal that our vectorization technique is also effective to reduce
parallel execution times.

Figure 8 shows the average speedup of PFAC VEC over SFAC VEC, for dif-
ferent texts and number of threads. Note that for a fixed text, the speedup
first increases with the number of threads and then decreases. However, for a
fixed number of threads the speedup always increases with the size of the text.
From these results we conclude that PFAC VEC behaves well as the workload
is increased.

Figure 9 shows the best performance (average speedup) of PFAC VEC over
SFAC VEC for each text, and the number of threads that provides this value.
As it can be observed, the number of threads that provides the best performance
depends on the text. PFAC VEC achieves an average speedup of 8.53 for text
1, 38.49 for text 2, 49.03 for text 3 and 62.88 for text 4, using 32, 64, 128 and
128 threads respectively.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

4 8 16 32 64 128 256

Sp
ee

du
p

Threads

Text 1 Text 2 Text 3 Text 4

Fig. 8. Average speedup of PFAC VEC over SFAC VEC

1 The Speedup of B over A is defined as TA
TB

, where TA is the execution time of
Algorithm A and TB is the execution time of Algorithm B.
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5 Conclusions and Future Work

In this paper we presented a novel pattern matching algorithm that efficiently
exploits the full computational power of Intel Xeon Phi processors by using both
SIMD and thread parallelism. Our proposal is based on the Parallel Failureless
Aho-Corasick (PFAC) algorithm.

In summary, our algorithm distributes blocks of tasks among threads. Then,
each thread uses SIMD instructions for processing each assigned block (all its
tasks are simultaneously solved).

We ran our algorithm (PFAC VEC) on a Xeon Phi 7230 (KNL) processor
and compared its performance with that of the multi-threaded non-vectorized
(PFAC) and the single-threaded vectorized (SFAC VEC) counterparts,
respectively.

Experimental results showed that PFAC VEC outperforms PFAC, indicating
that SIMD parallelism is effective to reduce parallel execution times. Further-
more, they reveal that PFAC VEC is up to 63x faster than SFAC VEC, demon-
strating that thread parallelism is also effective to accelerate pattern matching.
Finally, we showed that PFAC VEC behaves well as the workload increases.

As for future work, we plan to compare the results presented here with those
of PFAC for GPU, PFAC for multi-GPU and PFAC for CPU-GPU heterogeneous
systems. Also, we plan to apply our proposal to solve more practical problems.
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