
Meikang Qiu (Ed.)
LN

CS
 1

24
52

20th International Conference, ICA3PP 2020
New York City, NY, USA, October 2–4, 2020
Proceedings, Part I

Algorithms and Architectures
for Parallel Processing

Lecture Notes in Computer Science 12452

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Meikang Qiu (Ed.)

Algorithms and Architectures
for Parallel Processing
20th International Conference, ICA3PP 2020
New York City, NY, USA, October 2–4, 2020
Proceedings, Part I

123

Editor
Meikang Qiu
Columbia University
New York, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-60244-4 ISBN 978-3-030-60245-1 (eBook)
https://doi.org/10.1007/978-3-030-60245-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-1004-0140
https://doi.org/10.1007/978-3-030-60245-1

Preface

This three-volume set contains the papers presented at the 20th International Confer-
ence on Algorithms and Architectures for Parallel Processing (ICA3PP 2020), held
during October 2–4, 2020, in New York, USA.

There were 495 submissions. Each submission was reviewed by at least 3 reviewers,
and on the average 3.5 Program Committee members. The committee decided to accept
147 papers. We will separate the proceeding into three volumes: LNCS 12452, 12453,
and 12454. Yielding an acceptance rate of 29%.

ICA3PP 2020 was the 20th in this series of conferences started in 1995 that are
devoted to algorithms and architectures for parallel processing. ICA3PP is now rec-
ognized as the main regular event of the world that is covering the many dimensions of
parallel algorithms and architectures, encompassing fundamental theoretical approa-
ches, practical experimental projects, and commercial components and systems. As
applications of computing systems have permeated in every aspect of daily life, the
power of computing systems has become increasingly critical. This conference pro-
vides a forum for academics and practitioners from countries around the world to
exchange ideas for improving the efficiency, performance, reliability, security, and
interoperability of computing systems and applications.

Following the traditions of the previous successful ICA3PP conferences held in
Hangzhou, Brisbane, Singapore, Melbourne, Hong Kong, Beijing, Cyprus, Taipei,
Busan, Melbourne, Fukuoka, Vietri sul Mare, Dalian, Japan, Zhangjiajie, Granada,
Helsinki, Guangzhou, and Melbourne, ICA3PP 2020 was held in New York, USA. The
objective of ICA3PP 2020 is to bring together researchers and practitioners from
academia, industry, and governments to advance the theories and technologies in
parallel and distributed computing. ICA3PP 2020 will focus on three broad areas of
parallel and distributed computing, i.e., Parallel Architectures and Algorithms (PAA),
Parallel computing with AI and Big Data (PAB), and Parallel computing with
Cyberseucrity and Blockchain (PCB).

We would like to thank the conference sponsors: Springer LNCS, Columbia
University, North America Chinese Talents Association, and Longxiang High Tech
Group Inc.

October 2020 Meikang Qiu

Organization

Honorary Chairs

Sun-Yuan Kung Princeton University, USA
Gerard Memmi Télécom Paris, France

General Chair

Meikang Qiu Columbia University, USA

Program Chairs

Yongxin Zhu Shanghai Advanced Research Institute, China
Bhavani Thuraisingham The University of Texas at Dallas, USA
Zhongming Fei University of Kentucky, USA
Linghe Kong Shanghai Jiao Tong University, China

Local Chair

Xiangyu Gao New York University, USA

Workshop Chairs

Laizhong Cui Shenzhen University, China
Xuyun Zhang The University of Auckland, New Zealand

Publicity Chair

Peng Zhang Stony Brook SUNY, USA

Finance Chair

Hui Zhao Henan University, China

Web Chair

Han Qiu Télécom-ParisTech, France

Steering Committee

Yang Xiang (Chair) Swinburne University of Technology, Australia
Weijia Jia Shanghai Jiao Tong University, China

Yi Pan Georgia State University, USA
Laurence T. Yang St. Francis Xavier University, Canada
Wanlei Zhou University of Technology Sydney, Australia

Technical Committee

Dean Anderso Bank of America Merrill Lynch, USA
Prem Chhetri RMIT, Australia
Angus Macaulay The University of Melbourne, Australia
Paul Rad Rackspace, USA
Syed Rizvi Penn State University, USA
Wei Cai Chinese University of Hong Kong, Hong Kong, China
Abdul Razaque University of Bridgeport, USA
Katie Cover Penn State University, USA
Yongxin Zhao East China Normal University, China
Sanket Desai San Jose State University, USA
Weipeng Cao Shenzhen University, China
Suman Kumar Troy University, USA
Qiang Wang Southern University of Science and Technology, China
Wenhui Hu Peking University, China
Kan Zhang Tsinghua University, China
Mohan Muppidi UTSA, USA
Wenting Wei Xidian University, China
Younghee Park San Jose State University, USA
Sang-Yoon Chang Advanced Digital Science Center, Singapore
Jin Cheol Kim KEPCO KDN, South Korea
William de Souza University of London, UK
Malik Awan Cardiff University, UK
Mehdi Javanmard Rutgers University, USA
Allan Tomlinson University of London, UK
Weiwei Shan Southeast University, China
Tianzhu Zhang Télécom Paris, France
Chao Feng National University of Defense Technology, China
Zhong Ming Shenzhen University, China
Hiroyuki Sato The University of Tokyo, Japan
Shuangyin Ren Chinese Academy of Military Science, China
Thomas Austin San Jose State University, USA
Zehua Guo Beijing Institute of Technology, China
Wei Yu Towson University, USA
Yulin He Shenzhen University, China
Zhiqiang Lin The University of Texas at Dallas, USA
Xingfu Wu Texas A&M University, USA
Wenbo Zhu Google Inc., USA
Weidong Zou Beijing Institute of Technology, China
Hwajung Lee Radford University, USA

viii Organization

Yuxuan Jiang The Hong Kong University of Science
and Technology, Hong Kong, China

Yong Guan Iowa State University, USA
Chao-Tung Yang Tunghai University Taiwan, China
Zonghua Gu Zhejiang University, China
Gang Zeng Nagoya University, Japan
Hui Zhao Henan University, China
Yong Zhang The University of Hong Kong, Hong Kong, China
Hanpin Wang Peking University, China
Yu Hua Huazhong University of Science and Technology,

China
Yan Zhang University of Oslo, Norway
Haibo Zhang University of Otago, New Zealand
Hao Hu Nanjing University, China
Zhihui Du Tsinghua University, China
Jiahai Yang Tsinghua University, China
Fuji Ren Tokushima University, Japan
Long Fei Google Inc., USA
Tianwei Zhang Nanyang Technological University, Singapore
Ming Xu Hangzhou Dianzi University, China
Golden Richard Louisiana State University, USA
Virginia Franqueira University of Derby, UK
Haoxiang Wang Cornell University, USA
Jun Zhang Shenzhen University, China
Xinyi Huang Fujian Normal University, China
Debiao He Wuhan University, China
Vijayan Sugumaran Oakland University, USA
Ximeng Liu Singapore Management University, Singapore
Zhan Qin The University of Texas at San Antonio, USA
Dalei Wu The University of Tennessee at Chattanooga, USA
Kathryn Seigfried-Spellar Purdue University, USA
Jun Zheng New Mexico Tech, USA
Paolo Trunfio University of Calabria, Italy
Kewei Sha University of Houston - Clear Lake, USA
David Dampier The University of Texas at San Antonio, USA
Richard Hill University of Huddersfield, UK
William Glisson University of South Alabama, USA
Petr Matousek Brno University of Technology, Czech Republic
Javier Lopez University of Malaga, Spain
Dong Dai Texas Tech University, USA
Ben Martini University of South Australia, Australia
Ding Wang Peking University, China
Xu Zheng Shanghai University, China
Nhien An Le Khac University College Dublin, Ireland
Shadi Ibrahim Inria Rennes – Bretagne Atlantique, France
Neetesh Saxena Bournemouth University, UK

Organization ix

Contents – Part I

Parallel Architectures and Algorithms (PAA)

COMBS: First Open-Source Based Benchmark Suite for Multi-physics
Simulation Relevant HPC Research . 3

Anthony Dowling, Frank Swiatowicz, Yu Liu, Alexander John Tolnai,
and Fabian Herbert Engel

Efficient Sorting and Join on NVM-Based Hybrid Memory 15
Yongping Luo, Zhaole Chu, Peiquan Jin, and Shouhong Wan

Parallel SCC Detection Based on Reusing Warps and Coloring Partitions
on GPUs . 31

Junteng Hou, Shupeng Wang, Guangjun Wu, Bingnan Ma,
and Lei Zhang

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 47
Xinyi Wang, Yaobin Wang, Ling Li, Yang Yang, Deqing Bu,
and Manasah Musariri

CTA: A Critical Task Aware Scheduling Mechanism
for Dataflow Architecture. 61

Yan Ou, Chongfei Shen, Yujing Feng, Xinxin Wu, Wenming Li,
Xiaochun Ye, and Dongrui Fan

An Adaptive Thread Partitioning Approach in Speculative Multithreading . . . 78
Yuxiang Li, Zhiyong Zhang, and Bin Liu

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 92
Yunfang Zhang, Yong Dong, Juan Chen, Zhixin Ou, and Yuan Yuan

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 112
Yuxiang Li, Zhiyong Zhang, DanMei Niu, and Junchang Jing

A Multi-threaded Algorithm for Capacity Constrained Assignment
over Road Networks . 125

Abhishek Mishra, Venkata M. V. Gunturi, and Sarnath Ramnath

A Dynamic Scheduling Strategy of ADMM Sub-problem Optimization
Algorithm Based on Hierarchical Structure . 143

Jiawei Ji, Yongmei Lei, and Shenghong Jiang

An Improved Heterogeneous Dynamic List Schedule Algorithm 159
Wei Hu, Yu Gan, Yuan Wen, Xiangyu Lv, Yonghao Wang, Xiao Zeng,
and Meikang Qiu

FastThetaJoin: An Optimization on Multi-way Data Stream h-join with
Range Constraints . 174

Ziyue Hu, Xiaopeng Fan, Yang Wang, and Chengzhong Xu

A Distributed Framework for Online Stream Data Clustering 190
Jiafeng Ding, Junhua Fang, Pingfu Chao, Jiajie Xu, PengPeng Zhao,
and Lei Zhao

End-System Aware Large File Transfer Solution for Rich Media
Applications over 5G Mobile Networks . 205

Xukang Lyu and Chase Q. Wu

Broad Learning System with Proportional-Integral-Differential
Gradient Descent. 219

Weidong Zou, Yuanqing Xia, Weipeng Cao, and Zhong Ming

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 232
Ming Dun, Yunchun Li, Xin You, Qingxiao Sun, Zerong Luan,
and Hailong Yang

Typing Everywhere with an EMG Keyboard: A Novel Myo Armband-
Based HCI Tool . 247

Zongkai Fu, Huiyong Li, Zhenchao Ouyang, Xuefeng Liu,
and Jianwei Niu

Accelerating Pattern Matching on Intel Xeon Phi Processors 262
Victoria Sanz, Adrián Pousa, Marcelo Naiouf, and Armando De Giusti

Redistributing and Optimizing High-Resolution Ocean Model POP2
to Million Sunway Cores . 275

Yunhui Zeng, Li Wang, Jie Zhang, Guanghui Zhu, Yuan Zhuang,
and Qiang Guo

Performance Optimization for Feature Extraction Section of DeepChem. 290
Ke Zhan, ZhongHua Lu, and YunQuan Zhang

Principal Component Analysis for Fingerprint Positioning 305
Yang Zhang, Qianqian Ren, Jinbao Li, and Yu Pan

Priority Based Service Placement Strategy in Heterogeneous Mobile
Edge Computing . 314

Meiyan Teng, Xin Li, Xiaolin Qin, and Jie Wu

xii Contents – Part I

VTC: A Scheduling Framework Between Soft Real-Time and Hard
Real-Time on Multimedia OS . 330

Wei Hu, Hongqiang Zheng, Yonghao Wang, Yi Guo, and Jing Wu

A BSP Based Approach for NFAs Intersection . 344
Cheikh Ba and Abdoulaye Gueye

Tight Bound of Parallel Request Latency for Erasure-Coded Distributed
Storage System . 355

Xingshun Zou and Wei Li

High-Performance Simulations on GPUs Using Adaptive Time Steps 369
Marcel Köster, Julian Groß, and Antonio Krüger

Performance Modeling of Stencil Computation on SW26010 Processors 386
Yao Liu, Li Liu, Mengtao Hu, Wei Wang, Wei Xue, and Qingting Zhu

Optimizing Bþ -Tree Searches on Coupled CPU-GPU Architectures 401
Han Huang and Hua Luan

OCVM: Optimizing the Isolation of Virtual Machines
with Open-Channel SSDs. 416

Zhe Liu, Xiaojian Liao, Fei Li, Zhe Yang, Youyou Lu, and Jiwu Shu

CANRT: A Client-Active NVM-Based Radix Tree for Fast
Remote Access . 433

Yaoyao Ying, Kaixin Huang, Shengan Zheng, Yaofeng Tu,
and Linpeng Huang

Distributed and Parallel Ensemble Classification for Big Data Based
on Kullback-Leibler Random Sample Partition . 448

Chenghao Wei, Jiyong Zhang, Timur Valiullin, Weipeng Cao,
Qiang Wang, and Hao Long

SWAF: A Distributed Solar WSN Adaptive Framework. 465
Yuekun Hu, Dongchao Ma, Xiaofu Huang, Xinlu Du, and Ailing Xiao

Formalizing and Verifying Decentralized Systems with Extended
Concurrent Separation Logic . 480

Yepeng Ding and Hiroyuki Sato

PRIAG: Proximal Reweighted Incremental Aggregated Gradient
Algorithm for Distributed Optimizations . 495

Xiaoge Deng, Tao Sun, Feng Liu, and Feng Huang

Decentralized Expectation Maximization Algorithm. 512
Honghe Jin, Xiaoxiao Sun, and Liwen Xu

Contents – Part I xiii

Towards a Deep-Pipelined Architecture for Accelerating Deep GCN
on a Multi-FPGA Platform . 528

Qixuan Cheng, Mei Wen, Junzhong Shen, Deguang Wang,
and Chunyuan Zhang

Linear Scalability from Sharding and PoS . 548
Chenlong Yang, Xiangxue Li, Jingjing Li, and Haifeng Qian

Tree2tree Structural Language Modeling for Compiler Fuzzing 563
Haoran Xu, Shuhui Fan, Yongjun Wang, Zhijian Huang, Hongzuo Xu,
and Peidai Xie

Research and Design of Distribution Equipment Health Early
Warning System . 579

Lei Chen, Huihua Yu, Li Tong, Peipei Jin, Weiyan Zheng, Xu Huai,
and Yu Huang

Parallel Processing Algorithms for the Vehicle Routing Problem and Its
Variants: A Literature Review with a Look into the Future. 591

Bochra Rabbouch, Hana Rabbouch, and Foued Saâdaoui

Multi-scaled Non-local Means Parallel Filters for Medical
Image Denoising . 606

Hana Rabbouch, Othman Ben Messaoud, and Foued Saâdaoui

Optimized HybridSketch: More Efficient with Analysis and Algorithm 614
Xiaolei Zhao, Mei Wen, Minjin Tang, Qun Huang, and Chunyuan zhang

An Overlapping Community Detection Algorithm Based on Triangle
Reduction Weighted for Large-Scale Complex Network. 627

Hanning Zhang, Bo Dong, Boqin Feng, and Haiyu Wu

Parallel Belief Propagation Optimized by Coloring on GPUs 645
Junteng Hou, Chengxiang Si, Shupeng Wang, Guangjun Wu,
and Lei Zhang

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 661
Michal Andrzejczak and Kris Gaj

Effect of Evaporation on Aggregation Kinetics of Clusters: A Monte Carlo
Simulation Study . 681

Nongdie Tan, Lei Chen, Xianglin Ye, Hao Zhou, and Hailing Xiong

Processing in Memory Assisted MEC 3C Resource Allocation
for Computation Offloading . 695

Yang Yang, Xiaolin Chang, Ziye Jia, Zhu Han, and Zhen Han

xiv Contents – Part I

A Greedy Heuristic Based Beacons Selection for Localization 710
Fuhua Ma, Qianqian Ren, and Jun Li

A Periodic Variable Star Observation System with High Accuracy Based
on Star Sensors. 719

Chen Jiwei and Tang Guojian

Author Index . 729

Contents – Part I xv

Contents – Part II

Parallel Computing with AI and Big Data (PAB)

Distributing Data in Real Time Spatial Data Warehouse. 3
Wael Hamdi and Sami Faiz

Accelerating Sparse Convolutional Neural Networks Based
on Dataflow Architecture . 14

Xinxin Wu, Yi Li, Yan Ou, Wenming Li, Shibo Sun, Wenxing Xu,
and Dongrui Fan

DAFEE: A Scalable Distributed Automatic Feature Engineering Algorithm
for Relational Datasets . 32

Wenqian Zhao, Xiangxiang Li, Guoping Rong, Mufeng Lin, Chen Lin,
and Yifan Yang

Embedding Augmented Cubes into Grid Networks
for Minimum Wirelength . 47

Jingjing Xia, Yan Wang, Jianxi Fan, Weibei Fan, and Yuejuan Han

ELVMC: A Predictive Energy-Aware Algorithm for Virtual Machine
Consolidation in Cloud Computing . 62

Da-ming Zhao, Jian-tao Zhou, and Shucheng Yu

Design of a Convolutional Neural Network Instruction Set Based
on RISC-V and Its Microarchitecture Implementation 82

Qiang Jiao, Wei Hu, Yuan Wen, Yong Dong, Zhenhao Li, and Yu Gan

Optimizing Accelerator on FPGA for Deep Convolutional
Neural Networks . 97

Yong Dong, Wei Hu, Yonghao Wang, Qiang Jiao, and Shuang Chen

HpQC: A New Efficient Quantum Computing Simulator 111
Haodong Bian, Jianqiang Huang, Runting Dong, Yuluo Guo,
and Xiaoying Wang

Outsourced Privacy-Preserving Reduced SVM Among
Multiple Institutions . 126

Jun Zhang, Siu Ming Yiu, and Zoe L. Jiang

A Distributed Business-Aware Storage Execution Environment Towards
Large-Scale Applications . 142

Feng Jiang, Yongyang Cheng, Changkun Dong, Zhao Hui,
and Ruibo Yan

QoS-Aware and Fault-Tolerant Replica Placement. 157
Jingkun Hu, Zhihui Du, Sen Zhang, and David A. Bader

Neural Network Compression and Acceleration by Federated Pruning 173
Songwen Pei, Yusheng Wu, and Meikang Qiu

Scalable Aggregation Service for Satellite Remote Sensing Data 184
Jianwu Wang, Xin Huang, Jianyu Zheng, Chamara Rajapakshe,
Savio Kay, Lakshmi Kandoor, Thomas Maxwell, and Zhibo Zhang

Edge-Assisted Federated Learning: An Empirical Study from Software
Decomposition Perspective . 200

Yimin Shi, Haihan Duan, Yuanfang Chi, Keke Gai, and Wei Cai

A Dynamic Partitioning Framework for Edge-Assisted Cloud Computing. . . . 215
Zhengjia Cao, Bowen Xiao, Haihan Duan, Lei Yang, and Wei Cai

Deep Reinforcement Learning for Intelligent Migration of Fog Services
in Smart Cities . 230

Dapeng Lan, Amir Taherkordi, Frank Eliassen, Zhuang Chen,
and Lei Liu

A Novel Clustering-Based Filter Pruning Method for Efficient Deep
Neural Networks . 245

Xiaohui Wei, Xiaoxian Shen, Changbao Zhou, and Hengshan Yue

Fast Segmentation-Based Object Tracking Model
for Autonomous Vehicles. 259

Xiaoyun Dong, Jianwei Niu, Jiahe Cui, Zongkai Fu,
and Zhenchao Ouyang

A Data Augmentation-Based Defense Method Against Adversarial Attacks
in Neural Networks . 274

Yi Zeng, Han Qiu, Gerard Memmi, and Meikang Qiu

User Recruitment with Budget Redistribution in Edge-Aided
Mobile Crowdsensing . 290

Yanlin Zhang, Peng Li, and Tao Zhang

Multi-user Service Migration for Mobile Edge Computing Empowered
Connected and Autonomous Vehicles . 306

Shuxin Ge, Weixu Wang, Chaokun Zhang, Xiaobo Zhou,
and Qinglin Zhao

A Precise Telecom Customer Tariff Promotion Method Based
on Multi-route Radial Basis Kernel Fuzzy C-means Clustering 321

Chenghao Wei, Timur Valiullin, and Long Hao

xviii Contents – Part II

Clustering by Unified Principal Component Analysis and Fuzzy C-Means
with Sparsity Constraint . 337

Jikui Wang, Quanfu Shi, Zhengguo Yang, and Feiping Nie

A Hierarchical-Tree-Based Method for Generative Zero-Shot Learning 352
Xizhao Wang, Zhongwu Xie, Weipeng Cao, and Zhong Ming

Fast Computation of the Exact Number of Magic Series with an Improved
Montgomery Multiplication Algorithm. 365

Yukimasa Sugizaki and Daisuke Takahashi

I am Smartglasses, and I Can Assist Your Reading 383
Baojie Yuan, Yetong Han, Jialu Dai, Yongpan Zou, Ye Liu,
and Kaishun Wu

CHEAPS2AGA: Bounding Space Usage in Variance-Reduced
Stochastic Gradient Descent over Streaming Data and Its Asynchronous
Parallel Variants . 398

Yaqiong Peng, Haiqiang Fei, Lun Li, Zhenquan Ding, and Zhiyu Hao

A Quantum Computer Operating System . 415
Reid Honan, Trent W. Lewis, Scott Anderson, and Jake Cooke

Dynamic Knowledge Graph Completion with Jointly Structural
and Textual Dependency . 432

Wenhao Xie, Shuxin Wang, Yanzhi Wei, Yonglin Zhao, and Xianghua Fu

MEFE: A Multi-fEature Knowledge Fusion and Evaluation Method Based
on BERT . 449

Yimu Ji, Lin Hu, Shangdong Liu, Zhengyang Xu, Yanlan Liu,
Kaihang Liu, Shuning Tang, Qiang Liu, and Wan Xiao

Comparative Analysis of Three Kinds of Laser SLAM Algorithms 463
Xin Liu, Yang Lin, Hua Huang, and Meikang Qiu

Aspect-Level Sentiment Difference Feature Interaction Matching Model
Based on Multi-round Decision Mechanism . 477

Yanzhi Wei, Xianghua Fu, Shuxin Wang, Wenhao Xie, Jianwei He,
and Yonglin Zhao

Horus: An Interference-Aware Resource Manager for Deep
Learning Systems . 492

Gingfung Yeung, Damian Borowiec, Renyu Yang, Adrian Friday,
Richard Harper, and Peter Garraghan

Attribute Bagging-Based Extreme Learning Machine 509
Xuan Ye, Yulin He, and Joshua Zhexue Huang

Contents – Part II xix

A Semi-supervised Joint Entity and Relation Extraction Model Based
on Tagging Scheme and Information Gain . 523

Yonglin Zhao, Xudong Sun, Shuxin Wang, Jianwei He, Yanzhi Wei,
and Xianghua Fu

Research Progress of Zero-Shot Learning Beyond Computer Vision 538
Weipeng Cao, Cong Zhou, Yuhao Wu, Zhong Ming, Zhiwu Xu,
and Jiyong Zhang

An Optimization of Deep Sensor Fusion Based on Generalized Intersection
over Union. 552

Lianxiao Meng, Lin Yang, Gaigai Tang, Shuangyin Ren, and Wu Yang

A Hot/Cold Task Partition for Energy-Efficient Neural Network
Deployment on Heterogeneous Edge Device. 563

Jihe Wang, Jiaxiang Zhao, and Danghui Wang

Towards Energy Efficient Architecture for Spaceborne Neural
Networks Computation . 575

Shiyu Wang, Shengbing Zhang, Jihe Wang, and Xiaoping Huang

Roda: A Flexible Framework for Real-Time On-demand
Data Aggregation . 587

Jiawei Xu, Weidong Zhu, Shiyou Qian, Guangtao Xue, Jian Cao,
Yanmin Zhu, Zongyao Zhu, and Junwei Zhu

Structured Data Encoder for Neural Networks Based on Gradient Boosting
Decision Tree . 603

Wenhui Hu, Xueyang Liu, Yu Huang, Yu Wang, Minghui Zhang,
and Hui Zhao

Stochastic Model-Based Quantitative Analysis of Edge UPF
Service Dependability . 619

Haoran Zhu, Jing Bai, Xiaolin Chang, Jelena Mišić, Vojislav Mišić,
and Yang Yang

QoE Estimation of DASH-Based Mobile Video Application Using Deep
Reinforcement Learning . 633

Biao Hou and Junxing Zhang

Modeling and Analyzing for Data Durability Towards Cloud
Storage Services . 646

Feng Jiang, Yongyang Cheng, Zhao Hui, and Ruibo Yan

CC-MOEA: A Parallel Multi-objective Evolutionary Algorithm
for Recommendation Systems . 662

Guoshuai Wei and Quanwang Wu

xx Contents – Part II

CS-Dict: Accurate Indoor Localization with CSI Selective Amplitude
and Phase Based Regularized Dictionary Learning 677

Jian-guo Jiang, Shang Jiang, Bo-bai Zhao, Si-ye Wang, Meng-nan Cai,
and Yan-fang Zhang

Recommendation with Temporal Dynamics Based on Sequence
Similarity Search. 690

Guang Yang, Xiaoguang Hong, and Zhaohui Peng

A Software Stack for Composable Cloud Robotics System. 705
Yuan Xu, Tianwei Zhang, Sa Wang, and Yungang Bao

Poster Paper

An OpenMP-based Parallel Execution of Neural Networks Specified
in NNEF . 723

Nakhoon Baek and Seung-Jong Park

Author Index . 727

Contents – Part II xxi

Contents – Part III

Parallel Computing with Cybersecurity and Blockchain (PCB)

Understanding Privacy-Preserving Techniques in Digital Cryptocurrencies . . . 3
Yue Zhang, Keke Gai, Meikang Qiu, and Kai Ding

LNBFSM: A Food Safety Management System Using Blockchain
and Lightning Network . 19

Zhengkang Fang, Keke Gai, Liehuang Zhu, and Lei Xu

Reputation-Based Trustworthy Supply Chain Management
Using Smart Contract . 35

Haochen Li, Keke Gai, Liehuang Zhu, Peng Jiang, and Meikang Qiu

Content-Aware Anomaly Detection with Network
Representation Learning. 50

Zhong Li, Xiaolong Jin, Chuanzhi Zhuang, and Zhi Sun

Blockchain Based Data Integrity Verification for Cloud Storage
with T-Merkle Tree . 65

Kai He, Jiaoli Shi, Chunxiao Huang , and Xinrong Hu

IM-ACS: An Access Control Scheme Supporting Informal Non-malleable
Security in Mobile Media Sharing System . 81

Anyuan Deng, Jiaoli Shi, Kai He, and Fang Xu

Blockchain-Based Secure and Privacy-Preserving Clinical Data Sharing
and Integration . 93

Hao Jin, Chen Xu, Yan Luo, and Peilong Li

Blockchain Meets DAG: A BlockDAG Consensus Mechanism 110
Keke Gai, Ziyue Hu, Liehuang Zhu, Ruili Wang, and Zijian Zhang

Dynamic Co-located VM Detection and Membership Update for Residency
Aware Inter-VM Communication in Virtualized Clouds 126

Zhe Wang, Yi Ren, Jianbo Guan, Ziqi You, Saqing Yang,
and Yusong Tan

An Attack-Immune Trusted Architecture for Supervisory
Intelligent Terminal . 144

Dongxu Cheng, Jianwei Liu, Zhenyu Guan, and Jiale Hu

A Simulation Study on Block Generation Algorithm Based
on TPS Model . 155

Shubin Cai, Huaifeng Zhou, NingSheng Yang, and Zhong Ming

Improving iForest for Hydrological Time Series Anomaly Detection 170
Pengpeng Shao, Feng Ye, Zihao Liu, Xiwen Wang, Ming Lu,
and Yupeng Mao

Machine Learning-Based Attack Detection Method in Hadoop 184
Ningwei Li, Hang Gao, Liang Liu, and Jianfei Peng

Profiling-Based Big Data Workflow Optimization in a Cross-layer Coupled
Design Framework . 197

Qianwen Ye, Chase Q. Wu, Wuji Liu, Aiqin Hou, and Wei Shen

Detection of Loose Tracking Behavior over Trajectory Data 218
Jiawei Li, Hua Dai, Yiyang Liu, Jianqiu Xu, Jie Sun, and Geng Yang

Behavioral Fault Modelling and Analysis with BIP: A Wheel Brake System
Case Study. 231

Xudong Tang , Qiang Wang , and Weikai Miao

H2P: A Novel Model to Study the Propagation of Modern Hybrid
Worm in Hierarchical Networks . 251

Tianbo Wang and Chunhe Xia

Design of Six-Rotor Drone Based on Target Detection
for Intelligent Agriculture. 270

Chenyang Liao, Jiahao Huang, Fangkai Zhou, and Yang Lin

Consensus in Lens of Consortium Blockchain: An Empirical Study. 282
Hao Yin, Yihang Wei, Yuwen Li, Liehuang Zhu, Jiakang Shi,
and Keke Gai

Collaborative Design Service System Based on Ceramic
Cloud Service Platform . 297

Yu Nie, Yu Liu, Chao Li, Hua Huang, Fubao He, and Meikang Qiu

Towards NoC Protection of HT-Greyhole Attack . 309
Soultana Ellinidou, Gaurav Sharma, Olivier Markowitch,
Jean-Michel Dricot, and Guy Gogniat

Cross-shard Transaction Processing in Sharding Blockchains 324
Yizhong Liu, Jianwei Liu, Jiayuan Yin, Geng Li, Hui Yu,
and Qianhong Wu

xxiv Contents – Part III

Lexicon-Enhanced Transformer with Pointing for Domains Specific
Generative Question Answering . 340

Jingying Yang, Xianghua Fu, Shuxin Wang, and Wenhao Xie

Design of Smart Home System Based on Collaborative Edge Computing
and Cloud Computing . 355

Qiangfei Ma, Hua Huang, Wentao Zhang, and Meikang Qiu

Classification of Depression Based on Local Binary Pattern and Singular
Spectrum Analysis . 367

Lijuan Duan, Hongli Liu, Huifeng Duan, Yuanhua Qiao,
and Changming Wang

Cloud Allocation and Consolidation Based on a Scalability Metric 381
Tarek Menouer, Amina Khedimi, Christophe Cérin, and Congfeng Jiang

Adversarial Attacks on Deep Learning Models of Computer Vision:
A Survey . 396

Jia Ding and Zhiwu Xu

FleetChain: A Secure Scalable and Responsive Blockchain Achieving
Optimal Sharding . 409

Yizhong Liu, Jianwei Liu, Dawei Li, Hui Yu, and Qianhong Wu

DSBFT: A Delegation Based Scalable Byzantine False Tolerance
Consensus Mechanism. 426

Yuan Liu, Zhengpeng Ai, Mengmeng Tian, Guibing Guo,
and Linying Jiang

A Privacy-Preserving Approach for Continuous Data Publication 441
Mengjie Zhang, Xingsheng Zhang, Zhijun Chen, and Dunhui Yu

Web Attack Detection Based on User Behaviour Semantics 459
Yunyi Zhang, Jintian Lu, and Shuyuan Jin

A Supervised Anonymous Issuance Scheme of Central Bank Digital
Currency Based on Blockchain . 475

Wenhao Dai, Xiaozhuo Gu, and Yajun Teng

IncreAIBMF: Incremental Learning for Encrypted Mobile
Application Identification . 494

Yafei Sang, Mao Tian, Yongzheng Zhang, Peng Chang,
and Shuyuan Zhao

A Multi-level Features Fusion Network for Detecting Obstructive Sleep
Apnea Hypopnea Syndrome . 509

Xingfeng Lv and Jinbao Li

Contents – Part III xxv

BIMP: Blockchain-Based Incentive Mechanism with Privacy Preserving
in Location Proof . 520

Zhen Lin, Yuchuan Luo, Shaojing Fu, and Tao Xie

Indoor Positioning and Prediction in Smart Elderly Care: Model, System
and Applications . 537

Yufei Liu, Xuqi Fang, Fengyuan Lu, Xuxin Chen, and Xinli Huang

Research on Stylization Algorithm of Ceramic Decorative Pattern Based
on Ceramic Cloud Design Service Platform . 549

Xinxin Liu, Hua Huang, Meikang Qiu, and Meiqin Liu

Blockchain Consensus Mechanisms and Their Applications in IoT:
A Literature Survey. 564

Yujuan Wen, Fengyuan Lu, Yufei Liu, Peijin Cong, and Xinli Huang

Towards a Secure Communication of Data in IoT Networks:
A Technical Research Report . 580

Bismark Tei Asare, Kester Quist-Aphetsi, and Laurent Nana

Efficient Thermography Guided Learning for Breast Cancer Detection. 592
Vishwas Rajashekar, Ishaan Lagwankar, Durga Prasad S N,
and Rahul Nagpal

PTangle: A Parallel Detector for Unverified Blockchain Transactions 601
Ashish Christopher Victor, Akhilarka Jayanthi,
Atul Anand Gopalakrishnan, and Rahul Nagpal

DOS-GAN: A Distributed Over-Sampling Method Based on Generative
Adversarial Networks for Distributed Class-Imbalance Learning 609

Hongtao Guan, Xingkong Ma, and Siqi Shen

Effective Sentiment Analysis for Multimodal Review Data on the Web 623
Peiquan Jin, Jianchuan Li, Lin Mu, Jingren Zhou, and Jie Zhao

An Energy-Efficient AES Encryption Algorithm Based
on Memristor Switch . 639

Danghui Wang, Chen Yue, Ze Tian, Ru Han, and Lu Zhang

Digital Currency Investment Strategy Framework Based on Ranking 654
Chuangchuang Dai, Xueying Yang, Meikang Qiu, Xiaobing Guo,
Zhonghua Lu, and Beifang Niu

Authentication Study for Brain-Based Computer Interfaces
Using Music Stimulations . 663

Sukun Li and Meikang Qiu

xxvi Contents – Part III

An Ensemble Learning Approach to Detect Malwares Based
on Static Information . 676

Lin Chen, Huahui Lv, Kai Fan, Hang Yang, Xiaoyun Kuang, Aidong Xu,
and Siliang Suo

Automatic Medical Image Report Generation with Multi-view
and Multi-modal Attention Mechanism . 687

Shaokang Yang, Jianwei Niu, Jiyan Wu, and Xuefeng Liu

Poster Paper

PLRS: Personalized Literature Hybrid Recommendation System
with Paper Influence . 703

Fanghan Liu, Wenzheng Cai, and Kun Ma

Author Index . 707

Contents – Part III xxvii

Parallel Architectures and Algorithms
(PAA)

COMBS: First Open-Source Based
Benchmark Suite for Multi-physics
Simulation Relevant HPC Research

Anthony Dowling1, Frank Swiatowicz2, Yu Liu1(B), Alexander John Tolnai3,
and Fabian Herbert Engel4

1 Clarkson University, Potsdam, NY 13699, USA
{dowlinah,yuliu}@clarkson.edu

2 Vassar College, Poughkeepsie, NY 12604, USA
fxswiatowicz@vassar.edu

3 Royal Melbourne Institute of Technology, Melbourne, VIC 3000, Australia
s3540645@student.rmit.edu.au

4 Hasso Plattner Institute, 14482 Potsdam, Germany
fabian.engel@student.hpi.de

Abstract. Recent scientific computing increasingly relies on multi-scale
multi-physics simulations to enhance predictive capabilities by replacing
a suite of stand-alone simulation codes that independently simulate var-
ious physical phenomena. Inevitably, multi-physics simulation demands
high performance computing (HPC) through advanced hardware and
software accelerating due to its intensive computing workload and run-
time communication needs. Thus, its research has become a hotspot
across different disciplines. However, it is observed that most benchmarks
used in the evaluation of corresponding work are through commercial or
in-house codes. Then, the lack of accessible open-source multi-physics
benchmark suites has presented a challenge in uniformly evaluating sim-
ulation performance across related disciplines. This work proposes the
first open-source based benchmark suite with 12 selected benchmarks for
research in multi-physics simulation, the Clarkson Open-Source Multi-
physics Benchmark Suite (COMBS). Multiple metrics have been gath-
ered for these benchmarks, such as instructions per second and memory
usage. Also provided are build and benchmark scripts to improve usabil-
ity. Additionally, their source codes and installation guides are available
for downloading through a github repository built by the authors. The
selected benchmarks are from key applications of multi-physics simula-
tion and highly cited publications. It is believed that this benchmark
suite will facilitate to harness the full potential of HPC research in the
field of multi-physics simulation.

Keywords: Multi-physics simulation · High performance computing ·
Benchmark suite · Open-source

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-60245-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_1

4 A. Dowling et al.

1 Introduction

Recent trends in scientific computing increasingly rely on multi-scale multi-
physics computer simulations to enhance predictive capabilities by replacing
conventional methods that are largely empirically based with a more scientifi-
cally based methodology. Through this approach, one addresses the issue of tra-
ditionally employing a suite of stand-alone codes that independently simulate
various physical phenomena that were previously disconnected [1]. For exam-
ple, coupled multi-physics codes have been developed worldwide to address the
growing concerns of reactor performance and nuclear safety [1–5]. Also, multi-
physics simulations are helping researchers make progress in finding effective
cancer treatments through simulating and modeling the background dose of tar-
geted alpha therapy (TAT) [6–8]. Moreover, multi-physics simulation plays an
important role in semiconductor design [9] and aerospace engineering [10].

Multi-physics simulation requires capturing many physical interactions
among complex phenomena through rigorous coupling at run-time, facilitating
the need for high performance computing (HPC) through advanced hardware
and software acceleration due to its massive computing workload and fast run-
time communication needs. Thus, prior research has been done to boost the
general software and hardware HPC computing environment for multi-physics
simulations in recent years, which is briefly described in Sect. 2. However, the
authors realize that one of the research obstacles in this domain is the lack of
an open-source benchmark suite for research evaluation. The lack of accessible
open-source multi-physics benchmark suites has presented a challenge in uni-
formly evaluating simulation performance across related disciplines.

To the best of our knowledge, this work proposes the first open-source bench-
mark suite for multi-physics simulation relevant HPC research, the Clarkson
Open-Source Multi-physics Benchmark Suite (COMBS). These benchmarks have
been installed and evaluated on an Ubuntu Linux server, e.g., instructions per
second or memory usage. Also provided are build and benchmark scripts to
improve usability. Additionally, their source code and installation guides are
available for downloading through a Github repository built by the authors.
The selected 12 benchmarks are from key applications of multi-physics simula-
tions and highly cited publications, which will be detailed in Sect. 3. It is believed
that this benchmark suite will facilitate to harness the full potential of the HPC
research in the field of multi-physics simulation. The contributions of this paper
are three-fold:

– Propose the first benchmark suite for multi-physics simulation relevant HPC
research;

– Each benchmark is open-source, allowing for free access and modification as
desired;

– All benchmarks have been installed and evaluated on an Ubuntu Linux server.

The rest of the paper is organized as follows. Section 2 describes the related
work and motivation of this paper. Section 3 introduces the selected benchmarks

COMBS: First Open-Source Based Benchmark Suite 5

in detail, along with the benchmark selection criteria. The benchmark data and
website are illustrated in Sect. 4. Lastly, the authors summarize the conclusion
of this work and discuss planned future work in Sect. 6.

2 Related Work and Motivation

To satisfy the HPC needs of multi-physics simulation, many research projects
have been done to adapt simulation codes, optimize the HPC based software
framework, and explore novel computer architectures for HPC systems. One
research focus is in exploring software coupling platforms, simulation codes
(a.k.a., applications), algorithms with the objective of reaching a performance
boost through the HPC systems, exchange run-time data effectively, and cost-
effective transition. The other focus is in hardware design, e.g., investigating
multi-physics simulation aware computer architectures and HPC systems. The
objective of recent research is to improve the general software and hardware
HPC computing environment for large-scale multi-physics simulations.

Many HPC technique based code coupling platforms have been developed;
the capabilities and intended applications of each code differ, such as the Back-
bone [1], MOOSE [11], LIME [12], and SALOME [13]. The Backbone, devel-
oped at the Canadian Nuclear Laboratories (CNL), has the capability of syn-
chronizing various reactor performance and safety analysis codes, which permits
appropriate and efficient coupling at the time step level. Idaho National Labora-
tory (INL) proposed the Multi-physics Object Oriented Simulation Environment
(MOOSE) [11], and a code matching MOOSE standard can “plug and play” into
the environment. The Open Source Integration Platform for Numerical Simula-
tion (SALOME) [13], funded by the French Energy Commission (CEA), is based
on the model of distributed components as a distributed objects architecture.
The Lightweight Integrating Multi-physics Environment (LIME) toolset [12],
developed by Sandia National Laboratory (SNL), is used within the Consortium
for Advanced Simulation of Light Water Reactors (CASL) hub and also supports
coupling of multiple codes in other fields. Besides this platform based work, other
research focuses on resource allocation and load balancing to achieve an effective
run-time computing environment for multi-physics simulations [14,15].

Compared to general HPC applications, multi-physics simulations have their
own unique characteristics. For example, the simulation codes involved in a sim-
ulation may request intensive run-time data to be exchanged by them. Also,
some applications (e.g., Monte Carlo (MC)) with long consequential computing-
intensive codes may run faster on multi-core CPUs, which offer high degrees
of instruction level parallelism (ILP). Other codes (e.g., Computational Fluid
Dynamics (CFD)) might have a high degree of parallelism, which could make
use of the hundreds of simple and effective cores of general purpose GPUs.
Thus, much work has been done to satisfy these unique needs through designing
advanced computer architectures or HPC systems, such as heterogeneous design,
3D architecture, etc. [16].

However, it is observed that their evaluation is based on either commercial/in-
house simulation codes (a.k.a., applications), or limited applications in specific

6 A. Dowling et al.

areas. Research on designing a benchmark suite for multi-physics simulations is
inspired by the lack of available open-source suites that measure performance
evaluation. Some of the available benchmarks are locked behind licenses and use
in-house codes that make easy comparisons across different simulations chal-
lenging. Benchmark suites have been created to measure the performance of
multi-physics simulations but suffer from certain flaws. No open source bench-
mark suite has ever been proposed to facilitate the relevant evaluation work
specific to multi-physics simulation.

For example, COMSOL and other commercial packages provide benchmarks
to test simulations but the codes are not open-source, and require a license to
use. In [1,6,7], in-house simulation codes (e.g., Element Loss-Of-Coolant Acci-
dents (ELOCA), Canadian Algorithm for Thermalhydraulic Network Analysis
(CATHENA)) are used, which are confidential and not accessible by researchers
outside CNL. In [14], the authors only mentioned the benchmark is a MC sim-
ulation used as a bigJob, while [15] used 7 problems named P1 to P7. Both [14]
and [15] work on resource allocation algorithms for multi-physics simulations.

Since very few of these works provide detailed information regarding their
benchmarks, is it possible for us to evaluate their advantages and disad-
vantages? Is it fair if one of them declares performance improvement
over the other? In addition, general purpose open-source benchmark suites
like CORAL-2 [17] are just a collection and still require users to individually
install, build, and run each benchmark in the suite. The CORAL-2 benchmarks
also include wide variations in lines of code and other attributes like uneven
testing of CPU compared to GPU.

Thus, it is very difficult for researchers to duplicate the achievements of pre-
vious publications. In addition, evaluating performance between new proposed
systems and legacy ones is almost impossible, since the evaluations are based on
different benchmarks. Thus, the authors believe that this situation becomes an
obstacle for future research regarding multi-physics simulations. Thus, it is nec-
essary to propose an open-source based benchmark suite to address this concern.
The authors believe that the open-source nature of such a suite could guarantee
the access of benchmarks and build a general foundation for relevant research.

3 Benchmark Suite

Through the compilation of 12 benchmarks that measure performance indicative
of multiple physics algorithm designs, research in the field will benefit from an
open-source suite that is modifiable and free to use. The benchmark codes have
been tested to successfully build on an Ubuntu 18.04 server, allowing for the
codes to be ran in a stable, easily configurable environment.

3.1 Selection Criteria

In order to construct a benchmark suite that would provide adequate coverage
and measure desired performance, potential benchmarks have to meet certain
criteria, as follows:

COMBS: First Open-Source Based Benchmark Suite 7

– open-source;
– able to be built and compiled with few additional external libraries;
– written in C or C++ as to allow for the use of a single compiler;
– measures performance typical of an aspect of multi-physics simulations (e.g.,

tightly coupled codes).

Fig. 1. A pie chart showing the different multi-physics-related benchmarks that are
present in the suite. Note the relatively even distribution among selected topics.

The last point was of particular importance, as it is difficult to determine
the most salient aspects of a field with limited background experience in multi-
physics algorithm design. Upon consulting literature in the field, it was deter-
mined that finding algorithms that solve partial differential equations (PDEs)
was necessary, as multi-physics simulation solution times depend on how quickly
PDEs can be solved. Secondary characteristics used for the selection of bench-
marks included their relatedness to the field in terms of the problem they solved
or their presence in licensed benchmark suites. In this work, queries were con-
ducted primarily through GitHub.

3.2 Benchmarks

The benchmark suite proposed in this paper is named the Clarkson Open-Source
Multi-physics Benchmark Suite (COMBS). A total 12 benchmarks are divided
into 2 groups, including 8 key application/framework benchmarks, and 4 supple-
mental benchmarks. The distribution of the selected 12 benchmarks are shown
in Fig. 1.

The 8 Selected Key Application/platform Benchmarks. These 8 bench-
marks consist of 8 applications. Each benchmark is open-source, allowing for free
access and modification as desired. Each benchmark consists of algorithm(s) that

8 A. Dowling et al.

solve problems related to the field. As an example, one of the selected benchmarks
is a solver for the Kuramoto-Sivashinsky (KS) equation. The KS equation is one
of the principal equations in connecting PDEs and dynamical systems. Since
multi-physics simulations rely heavily on the tight coupling between dynamic
algorithms, this benchmark appears to be reasonable to test baseline perfor-
mance, at least on a much simpler, one dimensional problem. The KS equation
is a highly cited problem in the field dating back over 30 years and being a PDE
problem, fits directly in to multi-physics, since such systems depend on the how
quickly a PDE system can be solved [18]. Similar reasoning is given for the other
benchmarks, which are hosted on a GitHub repository.

The 8 application type benchmarks can be coupled through the distributed
code coupling platforms, such as CNL’s Backbone [1], CEA’s SALOME [13],
SNL’s LIME [12], etc. The 8 key benchmarks are described in the following.

Benchmark - 2D Heat: This benchmark compares the utility of MPI,
OpenMP, and serial implementations of the 2d-heat benchmark [19]. This work
is related to HPC applications as shown in related papers that attempt to par-
allelize the 2D heat equation to improve performance [20]. The tight coupling of
a heat distribution algorithm makes it an obvious candidate for a multi-physics
benchmark suite.

Benchmark - Advection-Diffusion Equation: Advection-diffusion equa-
tions [21] are used in the field of CFD to measure phenomena like the time
evolution of chemical or biological species in a flowing medium such as water
or air. Since such an evolution can be modeled with PDEs, an algorithm that
models a simpler, one dimensional aspect of advection-diffusion can be useful
in measuring simulation performance. This benchmark was adapted from open-
source codes at [22].

Benchmark - Fidibench: FiDiBench is a finite difference suite of codes that
can be used to benchmark hardware performance on HPC and other systems.
The code examples are small enough to be well understood, typically averag-
ing a few hundred lines of code, but are also relevant to scientific computing,
which often involves nearest neighbor communication. FiDiBench can be used
to compare the execution speed obtained by implementing a given algorithm in
different languages (e.g., C++ vs Python vs Julia). This benchmark was adapted
from open-source codes at [23].

Benchmark - High Performance Conjugate Gradient (HPCG): HPCG
[24] is a software package that performs a fixed number of multigrid precon-
ditioned (using a symmetric Gauss-Seidel smoother) conjugate gradient (PCG)
iterations using double precision floating point values. The HPCG rating is a
weighted GFLOP/s (billion floating operations per second) value that is com-
posed of the operations performed in the PCG iteration phase over the time
taken. The overhead time of problem construction and any modifications to
improve performance are divided by 500 iterations (the amortization weight)
and added to the run-time.

COMBS: First Open-Source Based Benchmark Suite 9

Benchmark - KS-PDE: The Kuramoto-Sivashinsky (KS) equation [18] is one
of the principal equations in connecting partial differential equations (PDEs) and
dynamical systems. Since multi-physics simulations rely heavily on the tight cou-
pling between dynamic algorithms, this benchmark appears to be reasonable to
test baseline performance, at least on a much simpler, one dimensional problem.
The KS equation is a highly cited problem in the field dating back over 30 years
and being a PDE problem, fits directly in to multi-physics, since such systems
depend on the how quickly a PDE system solved.

The code for this benchmark is adapted from a recent open-source work [25],
which is in an attempt to compare run-time performance between different pro-
gramming languages, with the goal of legitimizing Julia as having the potential
to be among the fastest languages if used correctly. Additionally, the benchmark
can be adapted to test the performance of just the C code.

Benchmark - 2D Lid-Driven Cavity: This is a concise finite difference
method based code for solving the Navier-Stokes equation in a 2D Lid-driven
cavity. The problem is to move fluid in a box from one corner to another, mea-
suring the fluid’s velocity. The Navier-Stokes equation is commonly used to solve
CFD relevant problems and then couple with other codes in many multi-physics
simulation scenarios.

Benchmark - Phase Retrieval: The mathematical and algorithmic aspects of
the phase retrieval problem have received considerable attention. In crystallog-
raphy, a principal application in this area, the signal to be recovered is periodic
and comprised of atomic distributions arranged homogeneously in the unit cell
of the crystal. The crystallographic problem is both the leading application and
one of the hardest forms of phase retrieval [26]. This benchmark is used to solve
phase retrieval, which uses techniques such as 3D Fourier Transforms that are
applicable to multi-physics simulation designs. This benchmark is adapted from
a recent open-source implementation at [27].

Benchmark - SOMBRERO: In physics, lattice field theory is the study of
lattice models of quantum field theory, i.e., of field theory on a spacetime that
has been discretized onto a lattice. Lattice field theory is directly applicable
to high performance computing and adjacent multi-physics simulations. This
benchmark is adapted from open-source codes at [28]. SOMBRERO runs 6 sub-
benchmarks, each representing a theory under active study by the lattice field
theory community. For the purposes of benchmarking, the models vary only in
the amount of data communicated and the number of floating point operation
required.

The 4 Supplement Benchmarks of HPC Mathematics/Algorithms.
Along with the 8 benchmarks selected from the key areas involved in the multi-
physics simulation, the authors also chose 4 benchmarks regarding general HPC
mathematics and algorithms, e.g., Monte Carlo, MPI matrix multiplication,
Gaussian Blur, Radix Sort, etc. These benchmarks are a good complement to the
key benchmarks for evaluating the basic performance and optimization of the

10 A. Dowling et al.

proposed new software and hardware systems, such as inter-node communication
latency, shared last level cache (LLC) performance, etc.

Fig. 2. HPC Techniques Coverage

3.3 HPC Coverage Analysis

Figure 2 shows the coverage of HPC techniques of the 10 key applica-
tion/framework benchmarks. It is observed that about 70% of them utilize Mes-
sage Passing Interface (MPI) [29] and OpenMP [30], which are the most popular
HPC techniques used in the field of multi-physics simulation. Although 30% of
them are based on other techniques, they can be easily coupled through the
distribution style software framework like Backbone, SALOME and LIME.

4 Benchmark Repository on Github

A Github repository has been designed to include the source codes of all bench-
marks, the installation guide (tested on Ubuntu Linux 18.04). This website is
shown in Fig. 3, and the link is at [31]. Users can download the source codes of
all benchmarks through the git utility, and then follow the guide to install the
dependencies for the benchmarks and run them.

5 Characteristics of the Benchmark Suite

By building and running the benchmark suite using the provided scripts in the
github page built by authors, it is possible and convenient to create an overview
of all the benchmarks with multiple metrics as the characteristics of this bench-
mark suite. Table 1 shows this characteristics of COMBS for selected benchmarks
when formatted as a table. This run of the benchmarks was gathered on a Dell
Precision 7920 Tower server with two Intel Xeon Silver 4110 16 3 GHz processors
and 32 GB of RAM. The server also has two GPUs: an NVIDIA NVS 310 and

COMBS: First Open-Source Based Benchmark Suite 11

Table 1. Example Output from the Benchmark Suite showing selected Benchmarks

Benchmark Time (s) Instruction count (Millions) Max memory usage (kB) MIPS

2d-heat 12.628 62091.213 10400 4917

FourierBenchmarks 85.937 288618.737 53272 3358

advection-diffusion 9.638 170011.780 10360 17640

fidibench 43.565 50.128 178028 1.151

hpcg 99.667 222584.356 971244 2233

ks-pde 24.375 174739.281 21392 7169

lid-driven-cavity 3.553 31345.988 6492 8822

matrix-mpi 8.541 46539.884 535608 5449

monte-carlo 116.524 233543.444 1506492 2004

phase-retrieval-benchmarks 4.141 26685.456 15888 6444

radix sort 4.968 37136.804 16052 7475

sombrero 59.478 8.747 22124 0.147

an NVIDIA TITAN Xp. The server is running Ubuntu 18.04.3 LTS x86 64 with
Linux kernel 5.0.0-32-generic.

These metrics were gathered using tools from the valgrind toolset, and the
timing functionality of the Linux time command [32]. First, the time command
is used to time the wall-clock execution time of the program. This gives a feel for
how long the program takes to run. Then, maximum memory usage is gathered
using the massif [33] tool in the valgrind toolchain. This measurement shows
the space complexity of the program as it is running, along with any extra
memory that might be used by the program while it is in operation. Lastly, the
callgrind [34] tool of valgrind was used to gather the instruction count of the
program. This, along with the timing information and size of a program gives a
way to see if a program may spend a lot of time in a loop, or if it is using more
complex instructions.

These metrics were chosen because they are similar to the metrics used in [35],
another research-oriented benchmark suite. Also, a comparison of the features of
COMBS with CORAL-2 [17] mentioned in Sect. 2 is given in Table 2, which indi-
cates the difference between the two open source benchmark suites. Furthermore,
as described above, they give a method for determining certain platform-specific
characteristics of a program, such as whether a long-running program simply
spends a large amount of time in loops, or if a program is compiled to use com-
plex instructions. Moreover, the memory usage measurement gives a method to

Table 2. Features of COMBS compared to CORAL-2

COMBS CORAL-2 [17]

Focus Multi-physics Simulation General Purpose

Compilation Scripts to compile all Compile each individually

Running Automatic Run Run each individually

Benchmark Size Similar Size Wide Variations

12 A. Dowling et al.

Fig. 3. Github Repository of Clarkson Open-Source Multi-physics Benchmark Suite
(COMBS).

determine if a program may be accessing memory to a large degree; as high mem-
ory use would typically indicate high memory access. The authors believe these
metrics are necessary for researchers to determine and adapt this benchmark
suite based on their research purpose in the field of multi-physics simulation.

6 Conclusion and Future Work

The lack of accessible open-source multi-physics benchmark suites has presented
a challenge in uniformly evaluating simulation performance across related dis-
ciplines. Through the compilation of 12 benchmarks that measure performance
indicative of multiple physics algorithm designs, research in the field will benefit
from an open-source suite that is modifiable and free to use. A dedicated Github
repository is setup to host this benchmark suite, where users will have access to
all documentation for each benchmark along with building scripts to facilitate
easy use of the suite. Also provided are build and benchmark scripts to automat-
ically perform the aforementioned steps. In the future, the authors would like to
have the suite build and compile with a simulated computer architecture. Also,
GPU acceleration-aware benchmarks will be selected and evaluated.

Acknowledgments. This work is partially funded by NSF Award OAC-1852102.

1 Artifact Description Appendix

A Github website [31] has been designed to include the source codes of all bench-
marks and the installation guide (tested on Ubuntu Linux 18.04). Users can

COMBS: First Open-Source Based Benchmark Suite 13

download the source codes of all benchmarks through the command below, and
then follow the installation guide of each benchmark to install and test them.

References

1. Liu, Y., Nishimura, M., Seydaliev, M., Piro, M.: Backbone: a multi-physics frame-
work for coupling nuclear codes based on CORBA and MPI. Nucl. Eng. Radiat.
Sci. (2017)

2. Gouja, I., Avramova, M., Rubin, A.: Development and optimization of coupling
interfaces between reactor core neutronics and thermal-hydraulic codes. In: The
International Conference on Advances in Reactor Physics to Power the Nuclear
Renaissance (2010)

3. Gomez-Torres, A.M., Sanchez-Espinoza, V., Ivanov, K., Macian-Juan, R.: DYN-
SUB: a high fidelity coupled code system for the evaluation of local safety
parameters-part I: development, implementation and verification. Ann. Nucl.
Energy 48, 108–122 (2012)

4. Sanchez, V., Al-Hamry, A.: Development of a coupling scheme between MCNP and
COBRA-TF for the prediction of the pin power of a PWR fuel assembly. In: The
International Conference on Mathematics, Computational Methods and Reactor
Physics (2009)

5. Chen, Z., Chen, X.-N., Rineiski, A., Zhao, P., Chen, H.: Coupling a CFD code with
neutron kinetics and pin thermal models for nuclear reactor safety analyses. Ann.
Nucl. Energy 83, 41–49 (2015)

6. Tao, X., Liu, Yu., Liu, T., Li, G., Aydemir, N.: Multiphysics modelling of back-
ground dose by systemic targeted alpha therapy. Med. Imaging Radiat. Sci. (2018).
https://doi.org/10.1016/j.jmir.2018.06.002

7. Xu, T., Liu, T., Li, G., Dugal, C., Li, Y.: Microdosimetric and biokinetic modelling
of alpha-immuno-conjugate transport in endothelial cells. J. Med. Imaging Radiat.
Sci. 50, S1–S2 (2019)

8. Xu, T., et al.: Technical note: the development of a multi-physics simulation tool
to estimate the background dose by systemic targeted alpha therapy. Med. Phys.
(2020)

9. Xiao, H.: A multi-physics approach to the co-design of 3D multi-core processors.
Ph.D. dissertation (2018)

10. Errera, M., et al.: Multi-physics coupling approaches for aerospace numerical sim-
ulations. J. Aerosp. Lab (2011)

11. Schmidt, R., Hooper, R., Belcourt, N., Pawlowski, R.: MOOSE: a parallel com-
putational framework for coupled systems of nonlinear equations. Nucl. Eng. Des.
239(10), 1768–1778 (2009)

12. Schmidt, R., Belcourt, N., Hooper, R., Pawlowski, R.: An introduction to lime
1.0 and its use in coupling codes for multiphysics simulations. Sandia Report,
SAND2011-8524 (2011)

13. SALOME official webpage (2019)
14. Ko, S.-H., Kim, N., Kim, J., Thota, A., Jha, S.: Efficient runtime environment for

coupled multi-physics simulations: dynamic resource allocation and load-balancing.
In: 10th IEEE/ACM International Conference on Cluster, Cloud and Grid Com-
puting (2010)

https://doi.org/10.1016/j.jmir.2018.06.002

14 A. Dowling et al.

15. Sfika, N., Korfiati, A., Alexakos, C., Likothanassis, S., Daloukas, K., Tsom-
panopoulou, P.: Dynamic cloud resources allocation on multidomain/multiphysics
problems. In: 3rd International Conference on Future Internet of Things and Cloud
(2015)

16. Hermann, E., Raffin, B., Faure, F., Gautier, T., Allard, J.: Multi-GPU and multi-
CPU parallelization for interactive physics simulations. In: D’Ambra, P., Guarra-
cino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 235–246. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15291-7 23

17. CORAL-2 Benchmarks (2019). https://asc.llnl.gov/coral-2-benchmarks/
18. Hyman, J.M., Nicolaenko, B.: The Kuramoto-Sivashinsky equation: a bridge

between PDE’s and dynamical systems. Physica D: Nonlinear Phenomena 18,
113–126 (1986)

19. 2D Heat Benchmark Source Codes (2011)
20. Horak, V., Gruber, P.: Multi-physics coupling approaches for aerospace numerical

simulations. Parallel Numerics (2005)
21. Hundsdorfer, W.H., Verwer, J.G.: Numerical solution of time-dependent advection-

diffusion-reaction equations. Parallel Numerics (2011)
22. Advection-Diffusion Equation Benchmark Source Codes (2017). https://github.

com/antoine-levitt/benchmark heat
23. Fidibench Benchmark Source Codes (2019). https://github.com/pletzer/fidibench
24. HPCG Benchmark Website (2019). http://www.hpcg-benchmark.org/
25. KS-PDE Benchmark Source Codes (2018). https://github.com/johnfgibson/julia-

pde-benchmark
26. TAMIR BENDORY VEIT ELSER, TI-YEN LAN. Benchmark problems for phase

retrieval (2017)
27. Phase Retrieval Benchmark Source Codes (2019). https://github.com/veitelser/

phase-retrieval-benchmarks
28. Sombrero Benchmark Source Codes (2019). https://github.com/sa2c/sombrero
29. OpenMPI (2019). https://www.open-mpi.org/
30. OpenMP (2019). https://www.openmp.org/
31. COMBS Github (2020). https://github.com/dowlinah/COMBS
32. Nethercote, N., Seward, J.: Valgrind: a framework for heavyweight dynamic binary

instrumentation. ACM SIGPLAN Not. 42(6), 89–100 (2007)
33. Massif: a heap profiler (2020). https://valgrind.org/docs/manual/ms-manual.html
34. Callgrind: a call-graph generating cache and branch prediction profiler (2020).

http://valgrind.org/docs/manual/cl-manual.html
35. Bienia, C., Kumar, S., Singh, J.P., Li, K.: The parsec benchmark suite: char-

acterization and architectural implications. In: Proceedings of the 17th Interna-
tional Conference on Parallel Architectures and Compilation Techniques, pp. 72–81
(2008)

https://doi.org/10.1007/978-3-642-15291-7_23
https://asc.llnl.gov/coral-2-benchmarks/
https://github.com/antoine-levitt/benchmark_heat
https://github.com/antoine-levitt/benchmark_heat
https://github.com/pletzer/fidibench
http://www.hpcg-benchmark.org/
https://github.com/johnfgibson/julia-pde-benchmark
https://github.com/johnfgibson/julia-pde-benchmark
https://github.com/veitelser/phase-retrieval-benchmarks
https://github.com/veitelser/phase-retrieval-benchmarks
https://github.com/sa2c/sombrero
https://www.open-mpi.org/
https://www.openmp.org/
https://github.com/dowlinah/COMBS
https://valgrind.org/docs/manual/ms-manual.html
http://valgrind.org/docs/manual/cl-manual.html

Efficient Sorting and Join on NVM-Based
Hybrid Memory

Yongping Luo1, Zhaole Chu1, Peiquan Jin1,2(B), and Shouhong Wan1,2

1 University of Science and Technology of China, Hefei 230027, Anhui, China
jpq@ustc.edu.cn

2 Key Laboratory of Electromagnetic Space Information, China Academy of Science,
Hefei 230027, Anhui, China

Abstract. Non-volatile memory (NVM) as a new kind of future memories has
a number of special properties such as non-volatility, read/write asymmetry, and
byte addressability. This makes it difficult to directly replace DRAM with NVM
in current memory hierarchy. Thus, a practical way is to construct hybrid memory
composed of both NVM and DRAM. Such hybrid memory architecture intro-
duces many new challenges for existing algorithms. In this paper, we focus on
improving sorting and join algorithms for DRAM-NVM-based hybrid memory.
In particular, we start with a theoretical study on the data placement issue in
DRAM-NVM-based hybrid memory systems and propose an optimal data place-
mentmodel to store data structures inDRAMandNVMduring the sorting process.
We present the theoretical proof to the optimal data placement model to ensure
the correctness of the model. Further, based on the optimal data placement model,
we propose a new NVM-aware sorting algorithm named NVMSort that adopts
heap structures to accelerate the sorting process. Comparedwith traditional sorting
algorithms, NVMSort is write-friendly andmore efficient on DRAM-NVM-based
hybrid memory. We further apply NVMSort into the traditional merge-sort join
algorithm to optimize merge-sort join on DRAM-NVM-based hybrid memory.
We conduct comparative experiments with existing sorting algorithms including
HeapSort and QuickSort. The results show that NVMSort is much faster than the
classical Heapsort and QuickSort. In addition, NVMSort is more NVM-friendly
as it can reducemore NVMwrites.When integrated into the traditional merge-sort
join algorithm, NVMSort also achieves the best performance.

Keywords: Non-volatile memory · Sorting · Data placement model · Sort join

1 Introduction

The performance of traditional computer systems is highly limited by the high latency
between DRAM and disks. This has been widely regarded as the “storage wall” problem
[1]. Although building in-memory systems [2] seems to be a possible solution to the
storage-wall problem, the volatility ofDRAMmakes it difficult to tackle data consistency
and durability. Recently, the advance in non-volatile memory (NVM) [3] brings new

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 15–30, 2020.
https://doi.org/10.1007/978-3-030-60245-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_2

16 Y. Luo et al.

opportunities to build NVM-based in-memory systems that can not only support in-
memory data processing but also ensure data consistency and durability. On the other
hand, traditional algorithms such as sorting algorithms and database join schemes, which
are designed either for disks or for DRAM, need to be revisited to suit for the special
properties of NVM.

NVM has some special properties [4–6]. First, differing from DRAM, it is non-
volatile, meaning that all data written into NVMwill not be lost when the host computer
is shut down. Second, differing from magnetic disks or solid-state drives (SSD) [7] that
only support block-based data accesses, NVM is byte addressable, which is similar to
DRAM. Third, NVM has a high level of density, which is comparable to SSD and higher
than NVM. To this end, NVM has the advantages of both disks and DRAM. Moreover,
NVM is more like a new kind of memory, but not a new type of disk. However, NVM
also has some limitations compared to DRAM and disks. Firstly, the read and write
latencies of NVM are not balanced. Particularly, NVM has the similar read latency as
DRAM, but its write latency is higher than that of DRAM. In addition, the endurance of
NVM is limited, meaning that after a certain number of writes (~108 at present), NVM
will become unstable. Thus, algorithms running on NVM have to be write-friendly.

Due to the special features of NVM, existing in-memory algorithms such as sorting
algorithms must be re-designed to make them efficient on NVM. However, it is not a
trivial task. There are a few challenges that need to be carefully considered. First, asNVM
has a lower write speed than DRAM, currently it is more reasonable to construct a hybrid
memory system composed of DRAM and NVM. In this hybrid-memory environment,
how to optimally place data in DRAM andNVM is a new and challenging issue. Second,
traditional external sorting algorithms like Merge Sort [8] are designed toward reducing
I/O operations on block-based disks or SSDs and are not suitable for byte-addressable
NVM. Traditional in-memory sorting algorithms [8] like Quick Sort or Heap Sort do
not consider the high-write-latency of NVM as well as the reduction of NVMwrites for
endurance. Thus, they cannot be applied to NVM. Here, the challenge is that reducing
NVM writes may lower the sorting performance of the algorithm. Therefore, we need
to devise new sorting schemes that are not only time efficient, but also write friendly.

In this paper, we focus on re-designing sorting algorithms on NVM and further
improving the sort join algorithm in database systems. We aim to devise a new sorting
algorithm that is not only time-efficient but also NVM friendly. Specially, we start with
a theoretical study on the data placement issue in DRAM-NVM-based hybrid memory
systems and propose an optimal data placement model to store data structures in DRAM
and NVM during the running of an algorithm. We present the theoretical proof to the
optimal data placement model to ensure the correctness of the model. Further, based on
the optimal data placement model, we propose a new sorting algorithm on NVM as well
as a new sort join algorithm. In summary, we make the following contributions in this
paper:

(1) We study the data placement issue on DRAM-NVM-based hybrid memory systems
and present an optimal data placement model for algorithms running on hybrid
memory. We theoretically prove that the proposed model can offer the best data
placement during the execution of algorithms.

Efficient Sorting and Join on NVM-Based Hybrid Memory 17

(2) We present a new sorting algorithm named NVMSort that is optimized for DRAM-
NVM-based hybrid memory. NVMSort is based on the optimal data placement
model and adopts heap structures to accelerate the sorting process. Compared with
traditional sorting algorithms, NVMSort is more efficient on DRAM-NVM-based
hybrid memory. In addition, NVMSort can reduce more NVM writes. We further
integrate the NVMSort algorithm into the traditional merge-sort join algorithm to
accelerate the join process on the hybrid memory.

(3) We conduct extensive experiments to verify the performance of NVMSort and
NVMSort-based join algorithm. Compared with QuickSort and HeapSort, the pro-
posed NVMSort has the best sorting performance. In addition, its NVM writes are
much fewer than that of QuickSort and HeapSort. Overall, NVMSort reaches a
better trade-off between time performance and NVM writes. When integrated into
the merge-sort join algorithm, NVMSort also shows better time performance and
is more NVM-friendly than its competitors.

2 Related Work

Recently, the big data concept leads to a special focus on the use of main memory.
However, the increasing capacity of main memory introduces many problems, such as
increasing of total costs and energy consumption [9]. Both academia and industries
are looking for new greener memory media. Emerging NVM technologies, such as
Phase Change Memory (PCM) and Resistive Memory (ReRAM), can provide faster
persistence than traditional disks and flash memory. NVMs can provide similar read
latency but higher write latency than DRAM. Like flash memory, the write endurance of
NVM is limited. Thus, reducing write operations to NVM is critical for software system
design [4–6].

NVM can provide better support for data durability than DRAM does. Further, it
differs from other media such as flash memory in that it supports byte addressability.
However, NVM has some limitations [3, 4], e.g., high write latency, limited lifecycle,
slower access speed than DRAM, etc. Therefore, it is not a feasible design to completely
replace DRAM with NVM in current computer architectures. A more exciting idea is
to use both NVM and DRAM to construct hybrid memory systems, so that we can
utilize the advantages from both media [10, 11]. NVM has the advantages of low energy
consumption and high density, and DRAM can afford nearly unlimited writes. Specially,
NVM can be used to expand the capacity of main memory, whereas DRAM can be
used as a buffer for NVM. Presently, both the architectures are hot topics in academia
and industries. Many issues need to be further explored. The biggest challenge for
DRAM-NVM-based hybridmemory systems is that we have to copewith heterogeneous
memories. In this paper, we also focus on the architecture of hybrid memory systems.

A few prior works [12, 13] have explored algorithms for asymmetric read-write costs
in emerging NVMs within the context of databases. Chen et al. [12] presented analytical
formulas for PCM latency and energy, as well as algorithms for B-trees and hash joins
that are tuned for PCM. For example, their B-tree variant does not sort the keys in a
leaf node nor repack a leaf after a deleted key, thereby avoiding the write cost of sorting
and repacking, at the expense of additional reads when searching. Similarly, Viglas [13]

18 Y. Luo et al.

traded off fewer writes for additional reads by rebalancing a B+ -tree only if the cost of
rebalancing has been amortized.

To the best of our knowledge, few studies have been focused on the improvement of
fundamental sorting and joint algorithms onNVM. In aword, there are only two previous
works that are related to this study. The first study [14] presented a write-limited sorting
algorithm but it was toward in-memory sorting. On the contrary, this study is toward
traditional disk-based sorting and join, i.e., the involved relations are initially stored in
disks. The second work [15] proposed a cost model for sorting on storage devices with
asymmetric read and write latencies. However, these related works are both towards
page-based storage devices, such as flash-memory-based SSDs. Although flash memory
also has limited write endurance and low write latency, it is much different from NVM,
because NVM can be used as main memory while flash memory can only be used as
secondary storage.

3 Data Placement Model on Hybrid Memory

In this section, we study the data placement issue on DRAM-NVM-based hybrid mem-
ory. This issue is raised because of the existence of the two heterogeneous memories in
hybrid memory systems. Thus, when a sorting algorithm is running, we have to decide
where any intermediate data should be placed. Below we first introduce the concepts
and problem definitions of the data placement issue. Then, we present the optimal data
placement model as well as its proof for hybrid memory.

3.1 Basic Concepts

Logical Data Structures (DS) need to be placed on physical memory space. In a hybrid
memory system, the memory space of a data structure can be allocated completely
from DRAM, completely from NVM or partially from the two memory devices. A data
placement model (DPM) cares only about how the physical memory allocation of data
structures affects the total memory read and write cost. If not mentioned specially, all
the memory units we refer to afterwards represent one cacheline, which is the unit of
one memory reference, typically 64 bytes in current computer systems. The read and
write time to a unit, as well as other involved symbols, are summarized in Table 1.

If one algorithm uses t data structures, which can be referred as Φ = {DSi|i =
1, 2, . . . t}. For any data structure DSi, we refer the read times of each unit of DSi to be
mi and write times to be ni. When the unit is allocated on DRAM, the total read and
write cost (memory cost) of that unit is Cd

i = mird + niwd ; when the unit is allocated
on NVM, the memory cost is Cp

i = mirp + niwp. If we swap the unit from NVM to
DRAM, the memory cost of that unit will decrease by Cp

i − Cd
i , we name it the cost

gain Cg
i of the unit, represented by (1).

Cg
i = Cp

i − Cd
i (1)

Moreover, we define the memory allocation scheme of Φ in an algorithm as a data
placement scheme. In a data placement scheme, ifDSi occupies Bd

i DRAM units and Bp
i

Efficient Sorting and Join on NVM-Based Hybrid Memory 19

Table 1. Symbols in DPM

Symbol Description

rd Latency of read a DRAM unit

wd Latency of write a DRAM unit

Cd Memory cost of a unit if placed in DRAM

rp Latency of read an NVM unit

wp Latency of write an NVM unit

Cp Memory cost of a unit if placed in NVM

Cg Memory cost gain when swap unit from NVM to DRAM

NVM units, the memory cost Ci of DSi is then Cd
i B

d
i +Cp

i B
p
i . Hence, the total memory

cost C is calculated by (2)

C =
∑t

i=1

(
Cd
i B

d
i + Cp

i B
p
i

)
(2)

3.2 Optimal Data Placement Model

Theorem 1. For ∀x, y ∈ 1, 2, . . . t that holds Cg
x > Cg

y , if the DRAM space of a hybrid
memory system cannot accommodate both DSx and DSy, then the DRAM space must
be allocated to DSx preferentially. �

Proof. Given that the total memory cost in the data placement scheme is minimal, we
assume that although Cg

x > Cg
y and DRAM is not large enough to accommodate both

DSx and DSy, DRAM is needless to allocate to DSx preferentially. Thus, there must be
some DRAM spaces that are allocated to DSy rather than DSx, i.e. B

p
x > 0 and Bd

y > 0.

Without loss of generality, we let Bp
x > Bd

y . Then, if we swap Bd
y units DSy in DRAM

with Bd
y units DSx in NVM, we will get a new data placement scheme. Let C ′ be the

new memory cost under this scheme, we have the following result.

C ′ =
∑

i=1,...t and i �=x,y

(
Cd
i B

d
i + Cp

i B
p
I

)
+ Cd

x

(
Bd
x + Bd

y

)
+ Cp

x

(
Bp
x − Bd

y

)
+ Cd

y

(
Bd
y − Bd

y

)

+Cp
y

(
Bp
y + Bd

y

)

=
∑

i=1,...t

(
Cd
i B

d
i + Cp

i B
p
I

)
+ Bd

y

(
Cd
x − Cp

x + Cp
y − Cd

y

)
= C + Bd

y

(
Cg
y − Cg

x
)
.

(3)

Since Bd
y > 0 and Cg

x > Cg
y , we can derive that Bd

y

(
Cg
y − Cg

x
)

< 0, resulting in

C
′
< C. This is in contrast with the above assumption that C is the minimal memory

cost. So, we can conclude that DRAM space must be preferentially allocated to DSx
when Cg

x > Cg
y . �

20 Y. Luo et al.

Theorem 2. Suppose that under a data placement scheme, the maximal memory cost is
denoted as Cmax. If ∀x, y ∈ 1, 2, . . . t that holds Cg

x > Cg
y and the DRAM space cannot

accommodate both DSx and DSy, the DRAM space must be preferentially allocated to
DSy. �

The proof of Theorem 2 is similar to that of Theorem 1.
We name the data placement scheme with the minimum memory cost in Theorem 1

as the optimal data placement scheme. Accordingly, the scheme defined by Theorem 2
is regarded as the worst data placement scheme. According to the two theorems, the
optimal data placement scheme allocates DRAM space to data structure with larger
Cg value with higher priority, while the worst data placement scheme exactly does the
opposite.

4 Sorting and Join with the Optimal Data Placement Model

The optimal data placement model is helpful to improve sorting and join algorithms. In
this section, we present the new sorting and join algorithms that are based on the optimal
data placement model. We first propose the NVMSort algorithm in Sect. 4.1, and then
explore the NVMSort-based sort join algorithm in Sect. 4.2.

4.1 NVMSort

The sortingproblemweconsider is the standard comparison-based sortingwithn records,
each of which contains a key. We assume that the input is an unsorted array, and the
output to be a sorted array which is sorted on their keys.

Based on the optimal data placement scheme, we propose an efficient sorting algo-
rithm on hybrid memory systems. This algorithm is motivated by the read/write property
of the classical HeapSort algorithm [8]. As Fig. 1 shows, during the execution of Heap-
Sort, most writes are focused on a few portions of heap nodes. The following part will
explain why heap structure has this read/write property and how we can leverage it to
reduce the NVM writes.

Fig. 1. Relationship between the portion of heap nodes and its percentage of total writes

Efficient Sorting and Join on NVM-Based Hybrid Memory 21

Heap is physically stored in consecutive memory space like an array, while logically
it is a binary tree with several constraints. TakingMin-heap as an example, the root node
stores the minimal value and every node contains a smaller value than its child nodes.
The HeapSort algorithm builds a heap at first; each time it replaces the root node with
the last node in the heap, heapifies the heap, and outputs the original root to the result set
until the heap goes empty. Note that every time we replace the root with new node, the
heapify process will sift-down the new root until the heap meets Min-heap properties
again. Therefore, every time the heap pops a root, the following heapify process does
a couple of read/write operations to the heap memory space. Since the heap is a binary
tree structure, if a node is close to the root, it is much likely to be read and written
frequently. In other words, the nodes near to the root will have a higher Cg value than
remote nodes. According to Theorem 1, if we place nodes close to the root into DRAM
and nodes close to leaf into NVM, the total rea/write operations occurring on NVM as
well as the total memory cost can be reduced.

Next, we want to present a more formal analysis. The time complexity of building
a heap is O(n) while HeapSort owns a time complexity of O(nlog(n)); thus, we mainly
focus on the read and write operations in the sorting process. Assume that a Min-heap
has the size of n, the distance from a node to the root is the height of the node, and l is the
max node height, we can derive that n ≈ 2l+1. Suppose x is the height of current last node
in the heap; when the node becomes the new root and is sifted down till heap property
holds again, O(x) reads and writes are done to the heap, O(1) reads and writes for each
level. In one level, each node has the same height, along with the same probability for
being moved up (which incursO(1) times of reads and writes). Since level h has about 2h

nodes, the probability of a node being moved up is 1
2h
, then the expectation of read/write

operations on each node is O
(

1
2h

)
. Therefore, after all the node is pop out, the total

expectation of the read/write operations on each node in level h can be represented by
(4).

E(h) =
∑l

i=h
O

(
1

2h

)
2i = O

(
1

2h

) ∑l

i=h
2i = O

((
2l+1 − 2h

)

2h

)
= O

(n

2h

)
(4)

That means the nodes closer to root have higher expectation of read and write. For
example, the root node has an expectation of O(n) while a leaf node has an expectation
of O(1). Using Formula (1), we can derive that the Cg node in level h, as represented by
(5).

Cg
h = O

(n

2h

)(
rp + wp) − O

(n

2h

)(
rd + wd

)
= O

(n

2h

)(
rp + wp − rd − wd

)
(5)

By leveraging the optimal data placement scheme, we can optimize HeapSort in the
follow manner: place the nodes close to the heap root into DRAM and maintain other
nodes in NVM.

Following the above idea, we devise a new sorting algorithm named NVMSort, as
shown in Algorithm 1. Like HeapSort, NVMSort is also based on a heap data struc-
ture. However, differing from the traditional HeapSort, we divide the heap nodes in
NVMSort into two parts, namely NearRoots and NearLeafs. NearRoots can fill up into

22 Y. Luo et al.

DRAM, which are placed in DRAM. Meanwhile, NearLeafs are organized in NVM
before performing a classical HeapSort procedure.

In this part, we calculate the theoretical performance of NVMSort to prove that
NVMSort outperforms the classical HeapSort in reducing both memory cost and writes
to NVM. We assume that in the memory the proportion of DRAM is ε and we need to
sort n elements. According to Formula (4), The total read-write operations of HeapSort

is
∑n

i=1 O
(

n
2h(i)

)
= n

∑n
i=1 O

(
1

2�log(i)�
)

= O(nlog(n)), where h(i) is the height of node

i, i.e., h(i) = �log(i)�. BecauseHeapSort treats the hybridmemory as a uniformmemory
space, we can assume that the read/write operations are distributed evenly among the
available memory space. Therefore, O(nlog(n)) · ε read/write operations will occur on
DRAM and O(nlog(n)) · (1 − ε) operations will occur on NVM. According to Formula
(2), the total memory cost of HeapSort can be calculated by (6):

CHeapSort =O(nlog(n)) · ε · (rd + wd) + O(nlog(n)) · (1 − ε) · (
rp + wp

)

=O(nlog(n)) · (
ε(rd + wd) + (1 − ε)

(
rp + wp

))
(6)

Algorithm 1. NVMSort
Input: an unsorted data array A
Output: a sorted array A in ascending order
1: NearRoot = DRAM space;
2:
3

NearLeaf = (A.size * Node_Size – NearRoot) NVM space;
heap_space = {NearRoot, NearLeaf};

4: // make sure Nodes close to Root reside in NearRoot space
5: heap = Build_Max_Heap(heap_space, A);
7: for i = heap.length downto 2
8:
9:

A[i] = heap[1];
heap[1] = heap[i];

10: heap.size = heap.size - 1;
11: Max_Heapify(heap);
12:
13:

end for
A[1] = heap[1];

14: return A;

While for NVMSort, the read/write operations to DRAM are all absorbed by Near-

Roots. The total number of operations is
∑n·ε

i=1 O
(

n
2h(i)

)
= n

∑n·ε
i=1 O

(
1

2�log(i)�
)

=
O(nlog(n · ε)). Similarly, the read/write operations to NVM are concentrated on Near-

Leaf , which are
∑n

i=n·ε+1O
(

n
2h(i)

)
= n

∑n
i=n·ε+1 O

(
1

2�log(i)�
)

= O
(
nlog

(1
ε

))
. Thus, we

can calculate the total memory cost of NVMSort by (7).

CNVMSort = O(nlog(n · ε))(rd + wd) + O

(
nlog

(
1

ε

))(
rp + wp

)
(7)

According to the analysis above, HeapSort incurs O(nlog(n)) writes to NVM while
NVMSort only makes O(n) NVM writes. To this end, we can see that NVMSort is

Efficient Sorting and Join on NVM-Based Hybrid Memory 23

more write-friendly to NVM. Due to the read and write asymmetry of NVM chips,
especially thewrite latencywp ofNVM is typically one order higher than the read latency
rp, the reduction of NVM writes in NVMSort can result in significant performance
improving, when compared with HeapSort.When combined reads and writes, NVMSort
can reduce the total access timeofNVMbyO

(
nlog

(
ε · n1−ε

))(
rp + wp

)
. In the following

experiments, ei demonstrate the performance of NVMSort to support the above analysis.

4.2 Sort Join with NVMSort

In this section, we discuss the applicability of NVMSort in traditional sort join. Sort
join is one of the commonly used join algorithms in modern relational DBMSs. As the
relations to be joined are supposed to be in external storage, e.g., SSDs ormagnetic disks,
traditional sort join usually employs the merge sort algorithm to sort relations residing
in disks. The basic process of the merge-sort join consists of the following steps:

(1) Read pages into the memory;
(2) Sort the tuples in the memory;
(3) Write the sorted tuples as a run into the disk;
(4) Read all the first pages in each run, merge in memory, and write out to the file.

NVMSort can be used to optimize step (2) in the merge-sort join algorithm. In the
implementation of traditional merge-join, we usually utilize QuickSort as the main-
memory sort algorithm, while in the NVM-based hybrid memory QuickSort is not
the best choice, as we have discussed before. We will experimentally demonstrate that
NVMSort is more efficient than QuickSort as well as HeapSort when applied into the
merge-sort join algorithm.

5 Performance Evaluation

In this section, we evaluate the efficiency of NVMSort by comparing it with other sort
algorithms. The competitors include two traditional sort algorithms, including HeapSort
and QuickSort [8]. We measure the total run time of each algorithm along with its total
reads and writes to DRAM and NVM. The results show that our NVMSort has the best
performance with limited writes to NVM.

5.1 Settings

All the experiments are performed on an Intel Core i5-8500 3.0 GHZ CPU. This CPU
has 6 physical cores, with a 9 MB L3 cache. Each core has a private 256 KB L2 cache
and 32 KB L1d cache and 32 KB L1i cache. The operation system is Ubuntu 18.04 with
the kernel version of 5.2.8. We use the open-source persistent memory development kit
[16] to simulate NVM on Linux. This library maps a memory region to on-disk file
and ensure the atomicity and persistency on read/write operation to that region. In order
to simulate the read-write asymmetric of mainstream NVM, we follow the lead of the

24 Y. Luo et al.

hardware community [17] and inject artificial 240 ns delays after each write operation
to that persistent region.

Each algorithm is allocated with the same amount of memory. The ratio between
DRAM and NVM space is set to same for each algorithm. However, the classical Heap-
Sort and QuickSort are unaware of the read-write asymmetric property of NVM. They
use the hybrid memory space as a uniform memory space. NVMSort treats DRAM and
NVM differently. It splits the heap structure into two parts before sorting; the formal
part is put into DRAM and the latter part is placed in NVM.

We use three datasets to test the sorting algorithms, scaling from 100k elements
(denoted as 100K below), 1 million elements (denoted as 1M) to 10 million elements
(denoted as 10M). All data elements are tuples with 8 bytes key and 8 bytes payload,
which is generated randomly and stored in the hybrid memory space.

5.2 Sorting Performance

We mainly evaluate the run time of each sorting algorithm. In addition, we measure
the write count on NVM during sorting, as reducing writes to NVM is one of the key
objectives of NVMSort. In the following text, we will present the results on the small
dataset as well as on the large dataset.

Scalability. Figure 2 shows the run time on the three datasets under different NVMwrite
latency. In this experiment, the DRAM ratio is set to 0.2. We can see that NVMSort gets
the best sorting performance when running on datasets scaling from 100K, 1M to 10M.
Averagely,NVMSort is 1.5× faster thanHeapSort andQuickSort. AsNVMwrite latency
gets higher, NVMSort exhibits more advantage than its competitors. This experiment
shows that NVMSort can well suit different sizes of datasets, showing good scalability
for real applications. Therefore, in the following experiments, we use the 1M dataset by
default.

NVM Writes. Table 2 summarizes the DRAM reads/writes and NVM reads/writes of
NVMSort, HeapSort, and QuickSort, when running on the 1M dataset with the DRAM
ratio on 0.2.We can see that NVMSort has the fewest NVMwrites among all algorithms;
thus it is more NVM friendly than the other two algorithms. As NVM has limited write
endurance, reducing writes to NVM is a critical issue in the design of NVM-aware
sorting algorithms. NVMSort also has fewer NVM reads than QuickSort and HeapSort.
The DRAM accesses of NVMSort is comparable to that of HeapSort. Although the
total DRAM reads/writes of NVMSort is a little more than QuickSort, QuickSort has
much more NVM reads/writes than NVMSort, resulting in poor time performance of
QuickSort as shown in Fig. 2. On the other hand, this study does not aim to optimize
DRAM operations.

Sensitivity to the DRAM Ratio. In this experiment, we aim to measure the perfor-
mance of NVMSort when varying the ratio of DRAM among the hybrid memory. The
1M dataset is used in this experiment. The NVM write latency is set to 300 ns. Figure 3
shows the run time of NVMSort and its two competitors, in which the DRAM ratio is
varied from0.1 to 0.4. Note that we do not increase theDRAMratio to amuch high value,

Efficient Sorting and Join on NVM-Based Hybrid Memory 25

(a) 100K dataset (b) 1M dataset

(c) 10M dataset

Fig. 2. Run time on different scales of datasets

Table 2. Comparison of DRAM read/writes and NVM read/writes

DRAM NVM

Reads (106) Writes
(106)

Reads (106) Writes
(106)

QuickSort 11 56 41 22

HeapSort 24 83 87 30

NVMSort 102 35 9 3

because NVM has higher density than DRAM. Thus, it is not likely that the DRAM size
is over the NVM size in the hybrid memory system. As shown in Fig. 3, NVMSort keeps
relatively high and stable performance when varying the DRAM ratio. This is because
NVMSort can choose optimal data placement according to the DRAM and NVM usage
during the sorting process. On the contrary, both QuickSort and HeapSort do not make
any optimizations for NVM, resulting poor time performance.

26 Y. Luo et al.

Fig. 3. Run time of three algorithms when
varying the DRAM ratio

Fig. 4. Workload-change resistance of
NVMSort, QuickSort and HeapSort

Workload-Change Resistance. In this experiment, we aim to see whether NVMSort
can perform well on different kinds of workloads. We manually vary the sorted order of
the elements in the 1M dataset and generate four kinds of workloads, which are named
RandomOrder (totally unordered), SemiOrder (50%ordered),NearOrder (80%ordered),
and Ordered (totally ordered). We then run NVMSort on these four kinds of workloads
to verify its performance. Here, the DRAM ratio is also set to 0.2 and the NVM write
latency is set to 300 ns. As Fig. 4 shows, NVMSort has stable time performance when the
workload property changes from “totally unordered” to “totally ordered”. In addition,
NVMSort has the best time performance in all workloads, indicating that NVMSort is
workload-aware due to its intrinsic optimal data placement scheme.

NVM Efficiency. NVMSort is designed for reducing both sorting time andNVMwrites.
The above experiments present detailed measurement of NVMSort with respect to dif-
ferent measures. However, as NVMSort is designed not only for high time performance
but also for reducing NVM writes, it is not apparently to see the overall performance of
NVMSort in terms of time performance and NVM friendliness.

Thus, we further propose a metric named NVM Efficiency that combines both run
time andNVMwrite reduction. TheNVMEfficiency as the overall performance is defined
as follows:

NVM Efficiency = P/WNVM , where P = 1/t (8)

Here, P represents the time performance of a sorting algorithm (t is the run time of
the algorithm), and WNVM is the NVM writes caused by a sorting algorithm. The NVM
Efficiency represents the time performance per NVM write, which implies that higher
time performance or less NVMwrites will result in high NVM efficiency. As higher time
performance and less NVM writes is actually the design goal of this study, the NVM
Efficiency is suitable for measuring the overall performance of a sorting algorithm.

Figures 5 shows the NVM efficiency on the 1M datasets. Here, the time performance
P is calculated with the time granularity of second. In this figure, we can see that as the
DRAM ratio gets higher, all the sort algorithms have better NVM Efficiency due to

Efficient Sorting and Join on NVM-Based Hybrid Memory 27

more DRAM space can reduces costly NVM writes. Particularly, when the DRAM
ratio is 0.1, the NVM Efficiency of NVMSort is 6× higher than QuickSort and 13×
than HeapSort. As the DRAM ratio goes up to 0.4, NVMSort is 12×/22× higher than
QuickSort/HeapSort in term of NVM Efficiency. That clearly shows that the proposed
NVMSort algorithms maintains the highest NVM efficiency in various DRAM ratio,
meaning that NVMSort has the best overall performance.

Fig. 5. NVM efficiency

To sum up, all the experiments show that our NVMSort is more efficient for the
DRAM-NVM-based hybrid memory system compared with traditional sorting algo-
rithms includingHeapSort andQuickSort. This ismainly due to the new structural design
in NVMSort, i.e., the heap-node organization and placement based on the optimal data
placement model.

5.3 Join Performance

In this experiment, we compare the time performance as well as NVM writes of sort
join algorithms. We implement the traditional merge-sort join algorithm and replace
the in-memory sorting algorithm with NVMSort. This improved sort join is denoted as
SMJ_NVMSort (meaning Sort-Merge-Join with NVMSort). Similarly, we get the other
two sort join algorithms, which are denoted as SMJ_QuickSort and SMJ_HeapSort. In
this experiment we also use the 1M dataset and the DRAM ratio is set to 0.2. The join
algorithm runs on two relational tables R and S. Since we allocate total 12 MB memory
(including 9.6MBNVM and 2.4MBDRAM, nearly 4:1) and assume that both relations
cannot be hold in the memory, we set the size of R to 16 MB and the size of S to
160 MB. This setting is compatible with the general assumption of join algorithms in
traditional relational database systems, in which the build relation R is smaller than the
probe relation S.

The results are shown in Fig. 6. When the NVM write latency is close to that of
DRAM, SMJ_NVMSort has similar performance with the other two algorithms. How-
ever, when the NVM write latency is set to be higher than that of DRAM, we can
see that SMJ_NVMSort outperforms SMJ_QuickSort and SMJ_HeapSort. To this end,
SMJ_NVMSort is more suitable for DRAM-NVM-based hybrid memory.

28 Y. Luo et al.

Fig. 6. Run time of three join algorithms

Table 3 shows the NVM reads/writes as well as the DRAM accesses of the three join
algorithms. SMJ_QuickSort has more than 6 times of NVMwrites than SMJ_NVMSort,
while SMJ_HeapSort has over 9 times of NVM writes. Thus, SMJ_NVMSort is more
NVM friendly than the other two algorithms. Although SMJ_NVMSort has a bit more
DRAM accesses than its competitors, this does not influence the time performance of
SMJ_NVMSort, as shown in Fig. 6. In addition, asDRAMhas unlimitedwrite endurance
and is faster than NVM, increasing DRAM accesses is not acceptable in DRAM-NVM-
based hybrid memory.

Table 3. Comparison of DRAM read/writes and NVM read/writes

DRAM NVM

Reads (106) Writes (106) Reads (106) Writes (106)

SMJ_QuickSort 141 755 468 252

SMJ_HeapSort 202 724 1093 380

SMJ_NVMSort 1178 409 117 44

6 Conclusions

NVM has become an alternative of next-generation memories. It is a trend to construct
hybrid memory systems composed of DRAM and NVM in the future. In this paper,
we studied the fundamental sorting issue on DRAM-NVM-based hybrid memory and
proposed an efficient sorting algorithm called NVMSort. NVMSort is based on the
optimal data placement model that proposes to maintain highly-written data structures
in DRAM and others in NVM. We theoretically proved the correctness and efficiency
of the optimal data placement model, based on which NVMSort was presented. We
further integrated NVMSort into the traditional merge-sort join algorithm. We conduct

Efficient Sorting and Join on NVM-Based Hybrid Memory 29

extensive experiments on various datasets with different settings. The results suggest the
high performance and NVM friendliness of NVMSort and the new sort-join scheme.

There are some future research directions that are worth further investigating. First,
it is a promising issue to consider efficient buffer management schemes to improve the
join performance on NVM-based hybrid memory [18, 19]. Second, it is valuable to
study other join algorithms such as hash join that runs on NVM-based hybrid memory
[20]. Third, the architecture of hybrid memory systems has a big impact on fundamental
algorithms. There are also other kinds of architecture for hybrid memory systems, e.g.,
the hybrid storage involving DRAM, NVM, and SSD [21]. Thus, we will investigate
sorting and join algorithms on other kinds of hybrid-storage architecture in the future.

Acknowledgement. This paper is partially supported by the National Science Foundation of
China under the grant number no. 61672479.

References

1. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database System Implementation, 2nd edn.
Prentice Hall, Upper Saddle River (2010)

2. Faerber, F., Kemper, A., Larson, P., Levandoski, J.J., Neumann, T., Pavlo, A.: Main memory
database systems. Found. Trends Databases 8(1–2), 1–130 (2017)

3. Renen,A., et al.:Managingnon-volatilememory in database systems. In: SIGMOD,pp. 1541–
1555 (2018)

4. Psaropoulos,G.,Oukid, I., Legler, T.,May,N.,Ailamaki,A.:Bridging the latency gap between
NVM and DRAM for latency-bound operations. In: DaMoN, 13:1–13:8 (2019)

5. Chen, K., Jin, P., Yue, L.: A novel page replacement algorithm for the hybrid memory archi-
tecture involving PCM and DRAM. In: Hsu, C.-H., Shi, X., Salapura, V. (eds.) NPC 2014.
LNCS, vol. 8707, pp. 108–119. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-44917-2_10

6. Zhang,D., Jin, P.,Wang,X.,Yang,C.,Yue,L.:DPHSim: aflexible simulator forDRAM/PCM-
based hybrid memory. In: Chen, L., Jensen, C.S., Shahabi, C., Yang, X., Lian, X. (eds.)
APWeb-WAIM 2017. LNCS, vol. 10367, pp. 319–323. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-63564-4_27

7. Jin, P., Yang, C., Jensen, C.S., Yang, P., Yue, L.: Read/write-optimized tree indexing for
solid-state drives. VLDB J. 25(5), 695–717 (2016)

8. Cormen,T., Leiserson,C.,Rivest,R., et al.: Introduction toAlgorithms.MITPress,Cambridge
(2009)

9. Wang, Y., Li, K., Zhang, J., Li, K.: Energy optimization for data allocation with hybrid
SRAM+NVM SPM. IEEE Trans. Circ. Syst. 65-I(1), 307–318 (2018)

10. Salkhordeh, R., Mutlu, O., Asadi, H.: An analytical model for performance and lifetime
estimation of hybrid DRAM-NVMmain memories. IEEE Trans. Comput. 68(8), 1114–1130
(2019)

11. Li, L., Jin, P., Yang, C., Wan, S., Yue, L.: XB+-tree: a novel index for PCM/DRAM-based
hybrid memory. In: Cheema,M.A., Zhang,W., Chang, L. (eds.) ADC 2016. LNCS, vol. 9877,
pp. 357–368. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46922-5_28

12. Chen, S., Gibbons, P.B., Nath, S.: Rethinking database algorithms for phase change memory.
In: CIDR (2011)

13. Viglas, S.: Adapting the B+-tree for asymmetric I/O. In: ADBIS, pp. 399–412 (2012)

https://doi.org/10.1007/978-3-662-44917-2_10
https://doi.org/10.1007/978-3-319-63564-4_27
https://doi.org/10.1007/978-3-319-46922-5_28

30 Y. Luo et al.

14. Viglas, S.: Write-limited sorts and joins for persistent memory. Proc. VLDB Endow. 7(5),
413–424 (2014)

15. Blelloch, G.E., Fineman, J.T., Gibbons, P.B., Gu, Y., Shun, J.: Sorting with asymmetric read
and write costs. In: SPAA, pp. 1–12 (2015)

16. OFTC: Persistent Memory Development Kit, 25 March 2020. https://pmem.io/pmdk/
17. Volos, H., Tack, A.J., Swift,M.M.:Mnemosyne: lightweight persistentmemory. In: ASPLOS,

pp. 91–104 (2011)
18. Wu, Z., Jin, P., Yang, C., Yue, L.: APP-LRU: a new page replacement method for

PCM/DRAM-based hybrid memory systems. In: Hsu, C.-H., Shi, X., Salapura, V. (eds.) NPC
2014. LNCS, vol. 8707, pp. 84–95. Springer, Heidelberg (2014). https://doi.org/10.1007/978-
3-662-44917-2_8

19. Ou, Y., Härder, T., Jin, P.: CFDC: a flash-aware buffer management algorithm for database
systems. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295,
pp. 435–449. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15576-5_33

20. Yang, L., Jin, P., Wan, S.: BF-join: an efficient hash join algorithm for DRAM-NVM-based
hybrid memory systems. In: ISPA, pp. 875–882 (2019)

21. Jin, P., Yang, P., Yue, L.: Optimizing B+-tree for hybrid storage systems. Distrib. Parallel
Databases 33(3), 449–475 (2015)

https://pmem.io/pmdk/
https://doi.org/10.1007/978-3-662-44917-2_8
https://doi.org/10.1007/978-3-642-15576-5_33

Parallel SCC Detection Based on Reusing
Warps and Coloring Partitions on GPUs

Junteng Hou1,2(B), Shupeng Wang1, Guangjun Wu1, Bingnan Ma3(B),
and Lei Zhang1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{houjunteng,wangshupeng,wuguangjun,zhanglei1}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing, China

mabingnan90@gmail.com

Abstract. Detecting strongly connected components (SCCs) in directed
graphs is crucial for analyzing the structure of graphs. It can accelerate
the process of large-scale graphs with applying GPUs to graph computa-
tion. However, GPU-based SCC detection still faces the challenge from
graphs, especially real-world graphs, skewing and strict synchronization
requirement. In this paper, we proposed a new paradigm of identifying
SCCs with reusing warps and coloring partitions. The scheme of reusing
warps assigns multiple vertices to each virtual warp at one time, which
greatly reduces the number of warps that are applied but assigned few
tasks. Furthermore, we proved that the partitions formed by coloring
independently contains all SCCs in them, so we use coloring to iden-
tify more partitions and parallel detect SCCs in each partition to get
more SCCs. Finally, the colored partitions are deeply combined with the
following traversal to optimize the algorithm. We conduct extensive theo-
retical and experimental analysis to demonstrate the efficiency and accu-
racy of our approach. The experimental results expose that our approach
can achieve 7.23×, 30.55×, 1.75× and 1.26× speedup for SCC detection
using NVIDIA K80 compared with algorithms of Tarjan, Barnat, Hong
and Slota respectively.

Keywords: Strongly connected components detection · GPUs ·
Reusing warps · Coloring partitions · Partitions combined with
traversal

1 Introduction

Strongly connected component (SCC) is a significant graph structure in graph
data management. In a directed graph, an SCC is a maximal subset of vertices

This work was supported by the National Natural Science Foundation of China (No.
61931019).

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 31–46, 2020.
https://doi.org/10.1007/978-3-030-60245-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_3

32 J. Hou et al.

such that every vertex has at least one directed path to other vertices. Detecting
SCCs is a fundamental graph algorithm for graph analytics [1], which is widely
used in many applications including pattern matching [4], scientific computing
[2] and model checking [3].

Most of state-of-the-art GPU-based SCC detection algorithms are improved
from Forward-Backward (FB) algorithm [20] or color algorithm [8]. Mclendon III
et al. found that there are lots of SCCs composed of one vertex (1-SCC) in most
graphs and proposed FB-Trim algorithm [15] using Trim operation to quickly
detect a large number of 1-SCCs. In real-world graphs, the scale of different
SCCs varies greatly because of power-low distribution of vertices [10]. Li et al.
[11] divided SCC detection into two stages. The great SCC containing a mass of
vertices is identified at data-level parallel stage and the numerous small SCCs
containing few vertices are identified at task-level parallel stage. Because there
will be many non-connected partitions after detecting the great SCC, Hong et al.
[12] added weakly connected component (WCC) detection to identify these par-
titions, then the SCC detection can be performed in parallel in each partition. In
addition, they extended Trim operation from only detecting SCCs formed by one
vertex to detecting SCCs formed by one or two vertices. The algorithm proposed
by Li et al. [13] divided the graph into multiple partitions before detection, and
detected SCCs in each partition in parallel, which enhanced the parallelism of
the algorithm, but it introduced workload of processing boundary vertices. Con-
sidering the power-law properties of real-world graphs, Slota et al. [14] improved
the color algorithm by using FB algorithm to detect the great SCC and then
performing color algorithm. Devshatwar et al. [10] proposed selecting the vertex
with the largest product of in-degree and out-degree as the pivot to ensure that
the SCC detected at the first stage is the great SCC, and they adjusted thread
assignment of each warp at different stages. This scheme performed well when
applied to Slota’s [14] and Hong’s [12] algorithms.

We propose a new SCC detection scheme named FBw-Pc that can make
full use of the assigned threads by reusing warps and deeply combining coloring
partitions with FB algorithm. The contributions are shown as follows:

(1) We propose the scheme of reusing warps to detect the great SCC. In this
method, we group several threads into a virtual warp, and assign multiple
vertex tasks to each virtual warp. All threads in each virtual warp pro-
cess adjacent vertices of each assigned vertex in parallel. This method can
effectively reduce the number of assigned threads, and avoid uneven thread
assignment caused by graph skewed to make full use of the assigned warps.

(2) We prove that the partitions formed by coloring independently contain all the
SCCs in them, in other words, all vertices in a certain SCC are contained
in the same partition formed by coloring. Accordingly, we identify more
partitions by coloring and detect SCC in each partition in parallel. Compared
with the method of WCC detection forming multiple partitions, the scheme
of coloring partitions can not only form more partitions, but also detect one
SCC in each partition at the same time.

Parallel SCC Detection Based on Warps and Partitions on GPUs 33

(3) We adjust the calling frequency of coloring subprocess and FB subprocess to
optimize assignment of partitioning and SCC detection. The method of col-
oring partitions can detect one SCC in each partition, but it can’t guarantee
that the maximum SCC in current partition is detected. We perform mul-
tiple FB operations after coloring operation to make full use of the formed
partitions.

The rest of this paper is organized as follows. We illustrate the background
in Sect. 2. Section 3 overviews our novel algorithm and presents the detail of our
algorithm based on reusing warps and coloring partitions. Section 4 describes the
experimental setup and results. Section 5 concludes.

2 Preliminaries

In this paper, we use G = (V,E) to denote a directed graph, where V is vertex
set and E is edge set. We consider the algorithm’s performance on both synthetic
graphs and real-world graphs. Real-world graphs are extracted from real-world
application scenarios including: web links, social networks, citation networks,
reinforcement learning, etc. [2]. Power-law distribution is the main feature of
real-world graphs [16], which means that there is a great SCC with a mass of
vertices and a large number of SCCs composed of few vertices, and the number
of SCCs obeys power-law distribution. So real-world graphs are severely skewed
by power-law distribution. Synthetic graphs are directly generated with custom
size and structure to simulate real-world graphs. Georgia Tech. Graph generator
(GTgraph) [17] is a commonly used graph generation tool, which can generate
the following three types of graphs: Random, R-MAT [18] and SSCA#2 [19].

Most early algorithms of SCC detection are sequential algorithms includeing:
Tarjan [5], Dijkstra [6], and Kosaraju [7]. Tarjan algorithm is one of the most
efficient sequential algorithms of SCC detection for it only needs to traverse
each edge once to detect all SCCs. Barnat et al. [8] summarized the parallel
algorithms of SCC detection and divided them into three types: FB algorithm,
color algorithm, Recursive OBF algorithm. Barnat et al. [9] performed compar-
ative experiments on the above three algorithms and demonstrated that parallel
algorithms, especially FB algorithm, are significantly faster than sequential algo-
rithms on large-scale graphs. FB algorithm is the basis of most state-of-the-art
parallel algorithms of SCC detection, which is based on divide and conquer
scheme proposed by Fleischer et al. [20] according to the following Theorem1.

Theorem 1. Let G = (V,E) be a directed graph with a vertex u ∈ V . Then
FWG(u)∩BWG(u) is an SCC containing u. Moreover, every other SCC in G is
contained in either FWG(u) \BWG(u), BWG(u) \ FWG(u), or V \ (FWG(u) ∪
BWG(u)).

In Theorem 1, FWG(u) or BWG(u) is the vertex set formed by forward or
backward traversal from vertex u. According to this theorem, it can get an SCC
by intersecting the two sets formed by forward and backward traversal from any

34 J. Hou et al.

vertex. And the remaining SCCs are contained in three separate partitions, so
the next SCC detection can be performed in parallel in each partition.

The color algorithm can also be used for SCC detection. First, the ID of
each vertex is treated as color value; second, the color of current vertex’s for-
ward adjacent vertices is detected. If it is less than the color of current vertex,
the current vertex’s color will be modified to the smaller one; third, the above
operations are iterated until the color value of all vertices no longer change. At
this time, the graph is divided into many partitions according to different colors;
forth, the vertex whose initial color is the same as its partition’s color is selected
as the pivot, and BFS is performed from this pivot in each partition, then the
vertices traversed by each pivot form an SCC; finally, the colors of undetected
vertices are reset to zero and the above operations are iterated until all vertices
are detected.

3 The FBw-Pc Implementation

In this section, we first show the overall process of FBw-Pc algorithm, and intro-
duce the great SCC detection algorithm optimized by reusing warps scheme. We
prove that there is no SCC crossing the partitions formed by coloring, and then
propose a new partition scheme based on coloring. Finally, our algorithm is
optimized by adjusting the parameters combining coloring partitions and FB
operations.

3.1 Overview

The rough process of FBw-Pc algorithm is shown in Algorithm 1, where each
operation represents a subprocess of the algorithm. In the two phases of the
algorithm, the great SCC is detected in the first phase and the remaining SCCs
are detected in the second phase. In addition, we also optimize Trim opera-
tion, pivot selection program, and partitioning method. In our algorithm, we
use compressed sparse row (CSR) format to save graphs. In addition to input
parameters, we also applied for two other arrays of size equal to the number of
vertices, where M is used to mark the vertex state, that is, whether the vertex
is selected as pivot, detected by Trim, traversed forward or backward, etc. And
P records partition ID of each vertex.

In Phase 1, we propose reusing warps scheme to detect the great SCC. First,
Trim1 is used to detect the SCC consisting of one vertex (1-SCC). Second,
Pivot-choose1 selects a pivot. Third, starting from the selected pivot, FBw
traverses the graph using forward and backward BFS improved by reusing warps
scheme. Finally, according to Theorem 1, it can obtain one SCC and three parti-
tions from the traversal result of each pivot. Update-state analyzes the result,
marks the vertices of obtained SCCs in VSCC , marks the vertices of obtained
partitions in P , and resets the state of undetected vertices to 0 in M . At the
beginning of Phase 2, we first determine the necessity of Trim operation. If kt is
0, it will not perform FB operation in Phase 2. The next algorithm is similar to

Parallel SCC Detection Based on Warps and Partitions on GPUs 35

color algorithm with partitions, which doesn’t require Trim operations. Other-
wise, we perform multiple trimming of 1-SCCs and one trimming of 2-SCCs (the
SCCs consisting of two vertices) in Trim. The remaining is mainly composed of
two loops. In the outer loop, Pc is based on coloring partitions scheme, which
colors adjacent vertices of all undetected vertices to generate new partitions,
and traverses the colored vertices backward to identify SCCs. In the inner loop,
Pivot-choose2 selects pivots and FB performs forward and backward BFS
from these points. Update-state analyzes the result and marks the vertices of
obtained SCCs and partitions. The detection restarts until it performs kt times
or all SCCs are detected.

The pivot selection schemes used in Phase 1 and Phase 2 are different. In
Phase 1, it needs to detect the great SCC, so Pivot-choose1 selects the vertex
with largest product of in-degree and out-degree as the pivot. The rest SCCs
are numerous but not large, so Pivot-choose2 randomly selects a vertex as
the pivot in each partition. The detection operations also take partition marks
P in account, which means that only undetected vertices in the same partition
can be detected into the same SCC. In Trim1 or Trim, the vertices with zero
in-degrees or out-degrees are detected as 1-SCCs and any two interconnected
vertices with no other incoming or outgoing edges are detected as a 2-SCC.

Algorithm 1. FBw-Pc SCC Detection Algorithm
Input: G: the input graph stored in CSR format. VSCC : An zero array with

the size equals to the number of vertices. kw: preset variable, the number of
vertices assigned to each virtual warp in reusing warps scheme. kt: preset
variable, the number of FB operations performed after coloring partitions in
Phase 2.
Output: VSCC : an array, each element records the pivot of the corresponding

vertex’s SCC, which is also the ID of SCC.
1: /* Phase 1 */
2: Trim1 (G,VSCC ,M)
3: Pivot-choose1 (G,M)
4: do in parallel
5: FBw (G,M, kw)
6: end do
7: Update-state (G,VSCC ,M, P)
8: /* Phase 2 */
9: if kt �= 0 then

10: Trim (G,VSCC ,M, P)
11: end if
12: repeat in parallel
13: Pc (G,M,P)
14: repeat in parallel
15: Pivot-choose2 (G,M,P)
16: FB (G,M,P)
17: Trim1 (G,VSCC ,M, P)
18: Update-state (G,VSCC ,M, P)

36 J. Hou et al.

19: until repeat kt times or no SCC generated
20: until no SCC generated
21: return VSCC

3.2 The Scheme of Reusing Warps

When detecting the great SCC, traditional algorithms assign one thread to each
vertex. However, most vertices of the great SCC have large in-degree and out-
degree, and it must iteratively process these vertices multiple times to complete
the detection. In response to this problem, Devshatwar et al. proposed to assign
a virtual warp including multiple threads to process each vertex. But the ratio
of tasks assigned to each thread is the same as traditional algorithms, so the
workload of each thread is still uneven caused by the skewed structure of graph.
In addition, even though only one virtual warp is working, the other virtual
warps in the same warp can’t be released until the busy virtual warp completes
its work. Although the vertices in great SCC account for a large proportion
of all vertices, there are still not many vertices to be processed in each iter-
ation. Therefore, traditional warp-based algorithms require increasing number
of threads, but most threads are soon released after assignment because their
corresponding vertices don’t need to be processed.

We propose a new method called reusing warps, which assigns multiple ver-
tices to each virtual warp. This method effectively reduces the number of assigned
threads and makes the most of assigned threads. Specifically, we preset a thresh-
old kw at the beginning to represent the number of assigned vertices in each
virtual warp. When detecting the great SCC, massive tasks of processing ver-
tices are assigned to each virtual warp. In each virtual warp, we check whether
the assigned vertices need to be processed and use all threads to process the
vertices that need to be processed in parallel.

The reusing warps method can alleviate uneven workload when detecting
the great SCC. For simplicity, suppose there are 16 threads (32 actually) in a
warp, and each virtual warp has 4 threads. As shown in the following Fig. 1, 2
and Fig. 3, the curves in rectangles represent threads in warps, and the circles
represent vertices that may be processed during forward or backward traversal,
where the gray ones represent inactive vertices that do not need to be processed,
the green ones represent active vertices, and the number in them indicate the
number of their adjacent vertices.

Traditional scheme of thread assignment is shown in Fig. 1. All threads in
a warp can’t be released until no thread is occupied, so the running time of
this warp is determined by vertex A2, which requires 32 traversals. The vir-
tual warp algorithm is shown in Fig. 3. In a certain warp, each virtual warp
can only process one vertex, and the warp is released after all virtual warps are
not occupied. Therefore, in order to process 16 vertices, it requires three addi-
tional thread rearrangements including warp application, virtual warp division,
and thread assignment. Specifically, the first task of processing vertices requires
8 traversals determined by vertex A2; the second task of processing vertices

Parallel SCC Detection Based on Warps and Partitions on GPUs 37

requires 4 traversals determined by vertex A5; the third task of processing ver-
tices requires 4 vertices determined by vertex A11; the fourth task of processing
vertices requires 2 vertices determined by vertex A16, so the virtual warp algo-
rithm requires 16 traversals and three additional thread rearrangements. Our
method is shown in Fig. 2, and it has three advantages in compared with virtual
warp scheme. First, it only needs 9 traversals determined by A2 and A4; second,
it doesn’t require additional thread rearrangement; third, the number of required
threads is a quarter of virtual warp scheme. In actual SCC detection, there is
lower proportion of vertices that need to be processed in each traversal. And our
algorithm will be better with greater and more variable vertices’ out-degree and
in-degree.

Fig. 1. Traditional method

Fig. 2. Our method
Fig. 3. Virtual warps method

We propose two schemes to accomplish reusing warps method, the straight-
forward scheme is using all threads in each virtual warp to find the vertices that
need to be processed, then each thread traverses the adjacent vertices of one
found vertex in parallel, and finally the above steps is iteratively performed. The
second scheme is that all threads in each virtual warp parallel detect whether the
vertices need to be processed, and parallel traverses the adjacent vertices of all
vertices that need to be processed. The details of the second scheme are shown in
Algorithm 2, which is the most important sub-process of FBw in Algorithm 1.
We use current thread curtThrdID to detect its corresponding vertices, and
mark the vertex that needs to be processed with ThrdMrk. The internal func-
tion syncAny is used to synchronously detect the vertex marked in ThrdMrk
in the current block, and store it in the shared memory sharedID of its cor-
responding virtual warp. shft broadcasts the vertex stored in sharedID to all
threads of each virtual warp. In visit, the threads access adjacent vertices of
the broadcasted vertices in parallel and mark them in M . The above processes
is iterated until all vertices are processed. This method can quickly skip vertices
that don’t need to be processed.

38 J. Hou et al.

Algorithm 2. Warp Reusing Algorithm
Input: V ertList: an array, the ID of vertices assigned in each warp.
V ertNum: the number of vertices assigned in each warp. AdjList: an array,
the adjacent vertices’ ID of vertices assigned in each warp. AdjNum: the
adjacent vertices’ number of vertices assigned in each warp. BlockSize: the
number of threads in each thread block. WarpSize: the number of threads in
each virtual warp. M : an array, the state of each vertex.
Output: M .

shared sharedID[BlockSize/WarpSize]
for i = 0 to V ertNum/WarpSize do

if V ertList[curtThrdID + i ∗ WarpSize] needs process then
ThrdMrk := curtThrdID + i ∗ WarpSize

end if
end for
while syncAny(ThrdMark > 1) do

sharedID[curThrdID/WarpSize] := ThrdMark
Syncthreads()
curtProcess = shft(sharedID[curtThrdID/WarpSize]
if curtProcess �= 0 then

for i = 0 to AdjNum[curtProcess]/WarpSize do
visit(AdjList[curtProcess + i ∗ WarpSize], M)

end for
end if
for i = 0 to V ertNum/WarpSize do

if V ertList[curtThrdID + i ∗ WarpSize] needs process then
ThrdMrk := curtThrdID + i ∗ WarpSize

end if
end for

end while

3.3 The Scheme of Coloring Partitions

The traditional color algorithms can’t make full use of the detected operations.
We propose the scheme of coloring partitions to accelerate SCC detection. In our
method, we take advantage of the partitions formed by coloring in each iteration
to increase SCCs generated in the next iteration. When coloring, there are many
partitions formed in each iteration, which will be released after the color values
of undetected vertices turn to zero in current iteration. It proves that the SCC
detection in each iteration can be performed in parallel in each partition formed
in previous iteration. As shown in Fig. 4, if partitions A and B are formed in a
iteration of coloring, we need to prove that the next iteration can be performed
separately in partitions A and B. It only needs to prove that there is no SCC
across partitions A and B. Proof is shown as follows, where Va → Vb means Va

can be connected to Vb by forward BFS.

Parallel SCC Detection Based on Warps and Partitions on GPUs 39

Proof. Let Pa and Pb be the pivots of partitions A and B, and their ID value
relationship is: Pa < Pb.

Assume that there is a vertex Va in partition A and a vertex Vb in partition
B, and Va and Vb belong to the same SCC.

∵ Va and Vb belong to the same SCC.
∴ Va → Vb, Vb → Va.
∵ In partition A, Pa → Va.
∴ Pa → Vb.
∴ Vb ∈ A, which does not match assumptions.
∴ There is no SCC across partitions A and B.

Fig. 4. Partitions formed in an iteration

According to the above proof, the SCC detection can be performed in parallel
in the partitions formed by coloring, which greatly increases SCCs detected in
each iteration. In traditional FB-Trim algorithm, after detecting the great SCC,
it usually executes WCC to partition before performing other detections. Because
WCC can aggregate all mutually connected vertices into the same partition,
the remaining SCC detections can be performed in parallel in each partition.
However, we have proved that the partitions formed by coloring can be used for
parallel detection. Compared with partitions formed by WCC detection, coloring
partitions scheme aggregates the vertices which the pivot can forward connect
to into the same partition. Therefore, the partitions formed by our method is
smaller. So it can form more partitions than WCC-based algorithms and detect
more SCCs in the next iteration, and our algorithm requires fewer iterations. In
addition, WCC can only be used for partitioning, but our method can detect
the same number of SCCs as generated partitions. The specific operations are as
follows: after the process of coloring partitions, the vertex whose initial color is
the same as its partition’s color can be forward connected to all vertices in the
current partition. We can select this vertex as the pivot. According to Theorem1,
we only need to perform parallel backward BFS traversal from this pivot, then all
traversed vertices form an SCC, and every other undetected SCCs are included
in the rest of each partition.

3.4 Details of Parameter Optimization

In our algorithm, we have also fully considered detailed parameters including call
frequency of coloring partition and Trim operations. In traditional algorithms,

40 J. Hou et al.

the partition operation is called only once between the first and second phases;
the reason is that although detecting more partitions can increase SCCs detected
in next iteration, it still takes time and doesn’t directly generate SCCs. However,
coloring partitions method can not only increases partitions, but also generates
the same number of SCCs as partitions, so it is recommended to call coloring par-
titions multiple times. As shown in Algorithm1, it presets an iteration threshold
kt. Coloring partitions operation is performed only on condition that detection
operations are performed kt times. Trim can detect SCCs consisting of one or
two vertices within a short time, which is only performed at the beginning of
most algorithms. Our algorithm not only performs Trim at the beginning, but
also performs Trim of 1-SCCs multiple times to detect SCCs consisting of one
vertex and Trim of 2-SCCs to detect SCCs consisting of two vertices between
Phase 1 and Phase 2, and Trim of 1-SCCs is also performed in each iteration in
Phase 2.

4 Experimental Methodology

Graphs used in our experiment include synthetic graphs and real-world graphs.
The synthetic graphs are the following three types of graphs generated by
GTgraph [17]: Random, R-MAT [18] and SSCA#2 [19]. Real-world graphs
are selected from two commonly used benchmarks [10–12,14]: SNAP database
[21] and Koblenz Network Collection database [22]. The details are shown in
Table 1.

4.1 Experiment Setup

Table 1. Details of experimental graphs

Name Vertices Edges SCC statistics

1-SCCs 2-SCCs Remains Total

soc-LiveJournal1 4,847,571 68,993,773 916,071 47,009 8,152 971,232

soc-pock 1,632,804 30,622,564 323,799 1,904 190 325,893

wiki-topcats 1,791,489 28,511,807 0 0 1 1

WikiTalk 2,394,385 5,021,410 2,281,311 529 39 2,281,879

youtube-links 1,138,499 4,942,297 602,051 8,696 2,675 613,422

baidu-internallink 3,966,925 13,820,833 1,475,852 23,433 3,719 1,503,004

synthetic-rmat 10,000,000 100,000,000 2,247,077 0 1 2,247,078

synthetic-random 10,000,000 100,000,000 876 0 1 877

synthetic-ssca 10,000,000 95,068,514 121,712 0 2,995 124,707

wikipedia-en 12,150,977 378,142,420 4,846,076 3,296 3,528 4,852,900

uk-2002 18,520,487 298,113,762 17,505,908 33,281 27,868 17,567,057

We compare six implementations including: (1) Tarjan: Tarjan’s sequential SCC
detection algorithm is a classic and representative sequential algorithm [5,9]; (2)

Parallel SCC Detection Based on Warps and Partitions on GPUs 41

Barnat: Barnat’s SCC detection method is a classical parallel algorithm, which
is compared in many state-of-the-art GPU-based algorithms [9–14]; (3) Hong:
Hong’s parallel algorithm of SCC detection with WCC partitioning method [12];
(4) wHong: Devshatwar’s improved parallel algorithm of SCC detection using
virtual warp on the basis of Hong’s algorithm [10]; (5) Slota: Slota’s optimized
color algorithm of parallel SCC detection [14]. (6) FBw-Pc: our parallel SCC
detection algorithm with coloring partitions and reusing warps. We use gcc and
nvcc with the -O3 optimization option for compilation along with -arch=sm 37
when compiling for the GPU. We execute all the benchmarks 10 times and collect
the average execution time to avoid system noise.

4.2 Performance Analysis of Reusing Warps

In order to show that our reusing warps method can accelerate detecting the
great SCC, we experimentally analyze the performance of different algorithms
in detecting the great SCC. In various of compared parallel algorithms, Slota’s
algorithm [14] uses FB method to detect the great SCC in Phase 1 and iterative
coloring to detect the remaining SCCs in Phase 2. Deshatwar et al.’s wSlota algo-
rithm improved Slota’s algorithm by adopting virtual warps method in Phase 1.
For easy comparison, we adopt the reusing warps method mentioned in Sect. 3.2
to improve Phase 1 of Slota’s algorithm and propose ReuseWarps1 and Reusing-
Warps2 corresponding to two implementations of reusing warps methods. The
running time in milliseconds of these four algorithms on different graphs is shown
in Table 2.

Table 2. Running time (ms) of different algorithms

Name Slota wSlota ReusingWarps1 ReusingWarps2

soc-LiveJournal1 215.075 221.727 200.538 192.508

soc-pock 104.735 89.440 87.065 87.938

wiki-topcats 415.820 380.122 263.125 146.377

WikiTalk 129.016 55.937 55.108 50.434

youtube-links 120.968 52.340 56.145 56.639

baidu-internallink 198.023 132.268 126.782 132.679

synthetic-rmat 346.220 379.750 385.638 345.330

synthetic-random 344.003 352.820 362.146 346.785

synthetic-ssca 967.494 4264.943 3721.599 1916.128

wikipedia-en 1977.462 2385.520 2041.199 1405.830

uk-2002 1660.969 1666.089 1709.536 1600.710

As shown in Table 2, our algorithms are better than other algorithms on
most graphs, especially on wiki-topcats, WikiTalk, and youtube-links, where

42 J. Hou et al.

the acceleration ratio are 2.84, 2.56, and 2.14. Compared with Slota algorithm,
our method takes longer time only on two synthetic graphs. This is because
our scheme mainly improves threads utilization efficiency on skewed graphs,
but the connections between vertices of synthetic graphs are randomly assigned
under a certain rule, so the in-degree and out-degree of vertices are almost uni-
form, and the structure of synthetic graphs is not particularly skewed. Compared
with wSlota algorithm improved by virtual warp method, our algorithm is only
slightly slow on youtube-links with a seven percent speed difference. So our
algorithms perform well on most graphs.

Table 3. Comparison of partitioning schemes

Name Coloring partition WCC partition

Partitions SCCs Iterations Partitions SCCs Iterations

soc-LiveJournal1 8087 8087 6 7963 0 9

soc-pock 189 189 1 189 0 1

wiki-topcats 0 0 0 0 0 0

WikiTalk 38 38 1 38 0 1

youtube-links 2668 2668 2 2668 0 3

baidu-internallink 3685 3685 4 3658 0 5

synthetic-rmat 0 0 0 0 0 0

synthetic-random 0 0 0 0 0 0

synthetic-ssca 2923 2923 5 2917 0 6

wikipedia-en 3513 3513 2 3513 0 3

uk-2002 18421 18421 1773 18421 0 1671

4.3 Performance Analysis of Partitioning Method

In order to show that our scheme can generate more partitions and detect the
same amount of SCCs as partitions, we performed comparative experiments on
different partition schemes. The comparing algorithm is Hong algorithm [10]
that adopts WCC partition method. To facilitate comparison, we use coloring
partitions scheme to replace WCC partition scheme in Hong algorithm, and
the rest of Hong algorithm are not modified. In Table 3, it shows the number
of partitions and SCCs detected in partition operation of different algorithms,
and the number of iterative detections in Phase 2 of thees algorithms. There
are some real-world and synthetic graphs that don’t require the operations in
algorithm’s Phase 2. For example, synthetic graphs of RMAT and Random only
contain one large-scale SCC and a large number of 1-SCCs. This is the reason
why most parallel algorithms accelerate faster on synthetic graphs than on real-
world graphs. For the graphs that need to be processed in the algorithm’s Phase

Parallel SCC Detection Based on Warps and Partitions on GPUs 43

2, our algorithm can not only form more partitions, but also reduce iterations of
the entire algorithm, and we can detect the same number of SCCs as partitions,
so the coloring partitions scheme can dramatically accelerate the algorithm in
Phase 2. In Fig. 5, the acceleration is also demonstrated by the overall running
time comparison of different algorithms on graphs that require multiple iterative
detection. On most graphs, our algorithm is faster that WCC-based algorithm,
especially on un-2002, the speed-up ratio is 4.12×.

Fig. 5. Comparison of running time (ms)

4.4 Performance Analysis of the Entire Algorithm

In order to verify the acceleration of our algorithm, we compare the running time
of our algorithm with other five algorithms on 11 graphs. The comparison results
are shown in Fig. 6. On most graphs, our algorithm is significantly faster than
other algorithms, and it achieves average accelerations of 7.23, 30.55, 1.75, 1.26,
and 1.10 compared with Tarjan, Barnat, Hong, Slota, and wHong, respectively.
The most obvious acceleration is on two synthetic graphs named synthetic-rmat
and synthetic-random, where all parallel algorithms have more than 10 times
acceleration compared with traditional sequential algorithm Tarjan. In these two
graphs, Barnat achieves the highest acceleration about 20-fold, which surpasses
other improved parallel algorithms. It can be seen from Table 1 that each of
these two graphs only contains a great SCC and a large number of 1-SCCs, so
it only needs to detect great SCC in Phase 1 and use Trim to detect 1-SCCs.
The improved parallel algorithms based on Barnat optimize detection of the
rest of SCCs besides the great SCC and 1-SCCs, which always introduce some
workloads and result in a speed lower than Barnat. For another synthetic graph
synthetic-ssca, the graph structure is not particularly skewed due to random
assignment of its vertices connections. Therefore, wHong and FBw-Pc based on
warps don’t achieve enough acceleration.

Graph algorithms are mainly used to process real-world graphs. It can be seen
from Fig. 6 that our algorithm performs well on all real-world graphs, especially
on soc-LiveJournal1, soc-pock, and wikipedia-en with accelerations of more than

44 J. Hou et al.

8 times. In real-world graphs, Barnat algorithm is almost slower than the tradi-
tional sequential algorithm Tarjan. Even on the two huge graphs of wikipedia-en
and uk-2002, Barnat can’t complete SCC detection. Therefore, our algorithm
has a significant advantage on real-world graphs.

Fig. 6. Algorithms acceleration on Tarjan

5 Conclusion

The GPU-based parallel algorithms of SCC detection are significantly faster
than traditional sequential algorithms when processing large-scale graphs, but
current GPU-based algorithms still face the challenge of graph skewing and strict
synchronization requirements of GPUs. This paper proposes an effective parallel
algorithm to detect SCCs based on reusing warps and coloring partitions. In
the algorithm based on virtual warps, it needs to apply for a large number
of threads and the assigned threads are not fully utilized. The reusing warps
method reduces number of applied threads and alleviates the problems of data
skewing and thread underutilization. We prove that there is no SCC crossing
partitions formed by coloring, and propose coloring partitions method to obtain
more partitions after detecting the great SCC. The following SCC detection is
directly parallel performed in partitions formed by coloring. Finally, the colored
partitions are deeply integrated with forward and backward traversal to optimize
the algorithm. The evaluations show that our algorithm outperforms state-of-
the-art GPU-based methods on most graphs.

Parallel SCC Detection Based on Warps and Partitions on GPUs 45

References

1. Zhang, Z., Yu, J.X., Qin, L., Chang, L., Lin, X.: I/O efficient: computing SCCs in
massive graphs. VLDB J.—Int. J. Very Large Data Bases 24(2), 245–270 (2015)

2. Xie, A., Beerel, P.A.: Implicit enumeration of strongly connected components and
an application to formal verification. IEEE Trans. Comput. Aided Des. Integr.
Circuits Syst. 19(10), 1225–1230 (2000)

3. Orzan, S.: On distributed verification and verified distribution, Ph.D. dissertation,
Center for Mathematics and Computer Science (2004)

4. Fan, W., Li, J., Ma, S., Wang, H., Wu, Y.: Graph homomorphism revisited for
graph matching. Proc. VLDB Endow. 3(1–2), 1161–1172 (2010)

5. Tarjan, R.: Depth-first search and linear graph algorithms. SIAM J. Comput. 1(4),
146–160 (1972)

6. Dijkstra, E.W.: A Discipline of Programming, 1st edn. Prentice Hall, Englewood
Cliffs (1976)

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press, Cambridge (2009)

8. Barnat, J., Chaloupka, J., Van De Pol, J.: Distributed algorithms for SCC decom-
position. J. Logic Comput. 21(1), 23–44 (2011)

9. Barnat, J., Bauch, P., Brim, L., Ceska, M.: Computing strongly connected compo-
nents in parallel on CUDA. In: Sussman, A., Mueller, F., Beaumont, O., Kandemir,
M.T., Nikolopoulos, D. (eds.) IPDPS 2011, pp. 544–555. IEEE (2011)

10. Devshatwar, S., Amilkanthwar, M., Nasre, R.: GPU centric extensions for parallel
strongly connected components computation. In: GPGPU@PPoPP 2016, pp. 2–11.
ACM, Barcelona (2016). https://doi.org/10.1145%2F2884045.2884048

11. Li, P., Chen, X, Shen, J., Fang, J., Tang, T., Yang, C.: High performance detection
of strongly connected components in sparse graphs on GPUs. In: PMAM@PPoPP
2017, pp. 48–57. ACM, Texas (2017)

12. Hong, S., Rodia, N.C., Olukotun, K.: On fast parallel detection of strongly con-
nected components (SCC) in small-world graphs. In: SC 2013, pp. 1–11. ACM,
Denver (2013)

13. Li, G., Zhu, Z., Cong, Z., Yang, F.: Efficient decomposition of strongly connected
components on GPUs. J. Syst. Architect. 60(1), 1–10 (2014)

14. Slota, G.M., Rajamanickam, S., Madduri, K.: BFS and coloring-based parallel algo-
rithms for strongly connected components and related problems. In: 2014 Interna-
tional Parallel and Distributed Processing Symposium, pp. 550–559. IEEE (2014)

15. Mclendon Iii, W., Hendrickson, B., Plimpton, S.J., Rauchwerger, L.: Finding
strongly connected components in distributed graphs. J. Parallel Distrib. Com-
put. 65(8), 901–910 (2005)

16. Kumar, R., Novak, J., Tomkins, A.: Structure and evolution of online social net-
works. In: Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2006, pp. 611–617. ACM, New York
(2006)

17. Bader, D.A., Madduri, K.: GTGraph: a synthetic graph generator suite, vol. 38
(2006)

18. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph min-
ing. In: Proceedings of the 2004 SIAM International Conference on Data Mining,
pp. 442–446. SIAM (2004)

https://doi.org/10.1145%2F2884045.2884048

46 J. Hou et al.

19. Bader, D.A., Madduri, K.: Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In: Bader, D.A., Parashar, M., Sridhar,
V., Prasanna, V.K. (eds.) HiPC 2005. LNCS, vol. 3769, pp. 465–476. Springer,
Heidelberg (2005). https://doi.org/10.1007/11602569 48

20. Fleischer, L.K., Hendrickson, B., Pınar, A.: On identifying strongly connected com-
ponents in parallel. In: Rolim, J. (ed.) IPDPS 2000. LNCS, vol. 1800, pp. 505–511.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45591-4 68

21. Leskovec, J., Krevl, A.: SNAP Datasets: Stanford Large Network Dataset Collec-
tion, vol. 6 (2014). http://snap.stanford.edu/data. Accessed 2 Feb 2020

22. Koblenz Network Collection. http://konect.uni-koblenz.de/. Accessed 2 Feb 2020

https://doi.org/10.1007/11602569_48
https://doi.org/10.1007/3-540-45591-4_68
http://snap.stanford.edu/data
http://konect.uni-koblenz.de/

Procedure and Loop Level Speculative
Parallelism Analysis in HPEC

Xinyi Wang1 , Yaobin Wang1(B), Ling Li1, Yang Yang2, Deqing Bu1,
and Manasah Musariri1

1 Southwest University of Science and Technology, Mianyang, China
wangxinyi 0102@163.com, wangyaobin@foxmail.com, liling82@mail.ustc.edu.cn,

dq bu@foxmail.com, mmanasah@gmail.com
2 Sichuan Institute of Computer Sciences, Chengdu, China

49799012@qq.com

Abstract. Although High Performance Embedded Computing(HPEC)
has been effectively analyzed on different platforms, there is still room for
an in-depth analysis of thread level speculation (TLS), especially at the
procedure level. This paper explores the potential parallelism of HPEC
from procedure and loop level TLS techniques, and designs the corre-
sponding analysis mechanism and data structures. Our aim is to show
the improved performance of various applications used in HPEC. Results
from our experiments demonstrate that: 1) the performance of all appli-
cations was relatively good, the best tdfir application achieves 221.8x
speedup in procedure level speculation whilst a ct application gets a 13x
speedup in loop level speculation; 2) HPEC programs can be acceler-
ated by effectively utilizing the computing resources of 16 to 32 cores; 3)
Applications, that contain multiple non-severe data-dependency proce-
dure calls, are more suitable for developing parallelism using procedure
level TLS technology.

Keywords: Thread level speculation · Multi-core · HPEC · Data
dependency · Dynamic profiling

1 Introduction

With the development of semiconductor technology, the number of cores on a
single chip is continuing to increase with the trend of Moore’s Law. Evidently, it
has brought about more on-chip computing resources [1]. Our challenge however,
emanates from how we can fully utilize these resources using our theoretical
knowledge and practical skills.

In order to achieve this, serial programs need to be parallelized. But many
applications are written on a single core, and multithreaded programs are diffi-
cult to develop and maintain [2]. To fix this problem, thread level speculation

Supported financially by the National Natural Science Foundation of China grants
61672438, Sichuan Science and Technology Plan Project 2019YJ0326, China Scholar-
ship Council Project CSC201908510040.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 47–60, 2020.
https://doi.org/10.1007/978-3-030-60245-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_4&domain=pdf
http://orcid.org/0000-0002-6105-5684
https://doi.org/10.1007/978-3-030-60245-1_4

48 X. Wang et al.

was proposed. It is an automatic parallelization technology supporting multi-core
processors [3]. TLS divides the serial code into multiple code segments, thereby
executing on multiple cores. It automatically exploits the potential parallelism
of the program, as a result improving the utilization of hardware computing
resources on the chips [4]. For serial programs that are traditionally difficult to
manually or automatically parallelize, TLS can also exploit its maximum poten-
tial parallelism. In addition, TLS allows code to be executed in parallel without
relying on previous compile-time correlation analysis and does not violate the
semantics of serial execution [5]. During speculative execution, each speculative
thread executes a different part of the serial program. There is only one non-
speculative thread which is allowed to commit the result to memory, all other
threads are speculative [6].

Early evaluations of processor performance were usually based on comparing
the number of instructions per unit of time. Its measurement standard was linear
when systematically evaluating the influence of various factors of the processor.
Therefore, the benchmark proposed in the 1980s was more recognized by the
industry. HPEC benchmark suite, developed by MIT, aims to provide a well-
defined benchmark for measuring the performance of its libraries and systems in
the fields of signal processing, communication, and information and knowledge
processing [7].Currently, it has been effectively analyzed in several studies [7–9],
but has not been thoroughly analyzed using TLS technology.

In this paper, we propose a procedure and loop level speculative execution
model for accelerating the HPEC programs. The aim of this experiment is to find
a TLS method suitable for its performance improvement. Several programs were
selected from it to analyze the impact of performance factors such as thread size
and inter-thread data dependencies on potential parallelism of the programs.
Finally, evaluating whether HPEC programs are suitable for TLS acceleration
is based on the speculative execution results, providing advice on future chip
designs.

The rest of this paper is organized as follows; related work is discussed
in Sect. 2, speculative mechanism in Sect. 3, performance influencing factors in
Sect. 4, experimental analysis in Sect. 5 and finally, we conclude in Sect. 6.

2 Related Work

In order to make better use of TLS technology, various thread speculation
schemes have been introduced. For example, Multiscalar [10] proposed a compre-
hensive study on software and hardware support of TLS technology, using fine-
grained threads. Hydra [11] adds hardware support for thread level speculation,
has a primary cache through write operations, and allows all processor cores to
monitor all writes executed. At present, by implementing TLS on the hardware-
transactional-memory in [12], some loops can achieve up to 3.8x speedup. A TLS
model for copy-on-write on cache is proposed in [13], which uses 8 and 16 specula-
tive threads to test typical benchmark tests with an average acceleration of 5.69x
and 10.04x respectively. In [14], a thread level speculation system using a virtual

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 49

memory system and implemented entirely in kernel space is introduced, and the
Cilk suite is tested with an average speedup of 7.8x. Our previous work [15] also
analyzed the thread level speculative parallelism of block encryption algorithm.
Therefore, thread level speculation technology can be effectively applied to the
parallel analysis of a variety of serial programs.

Currently, the main research on HPEC is as follows. In [8], an efficient imple-
mentation of HPEC benchmark was developed on the GPU and DSP, compar-
ing the performance and power results. DSP produced better results. Bergmann
ported several HPEC programs to VSIPL ++ and tested them in parallel. In
most cases, the acceleration results were linear or super-linear [7]. In [9], by
using HPEC to evaluate the performance of OpenSPARC processors on Virtex-
5 FPGAs, the conclusion is that replicating the floating-point units would not
cost much and can have a significant impact on the performance of floating-
point applications. However, HPEC has not been thoroughly studied by using
TLS technology, so in this paper, we will discuss this area in detail.

3 Speculative Mechanism

3.1 Speculation Execution Model

In order to ensure the correctness of the serial semantics, all speculative threads
cache the intermediate results in a separate state space, commit after the spec-
ulative execution is successful, and restart after the failure.

The loop level speculation execution model as shown in Fig. 1(a) shows a
serial execution process of a traditional program, and Fig. 1(b) shows a specu-
lative execution process. When the speculative execution begins, the main pro-
cessor signals all the idle processors (speculative processors) to load each loop
iteration by issuing a ‘Loop Start’ signal. During the speculative execution, only
the head processor can directly write to the memory. Then the head processor
completes execution and commits, the next processor will become the new head
processor and it will speculatively execute the new thread. After a processor
completely executes the last loop iteration, it will send a ‘Loop End’ signal to
the other processors to end the speculative execution of the loop structure, and
then the remaining code is executed by the main processor.

Figure 2 shows a procedure level speculative execution model. When exe-
cuting to a procedure that needs to be speculatively executed, the speculative
processor will create a new thread to execute the code. The current processor
will continue to execute using the predicted value and creates an overhead area
for comparing the predicted and return value. After the execution in the specu-
lative processor is completed, the current processor will compare the predicted
value with the return value in the speculative processor, if the comparison results
are same, the program will continue to run, otherwise the program will use the
return value of the speculative processor to correct and continue execution.

50 X. Wang et al.

Fig. 1. Speculative execution model of loops.

Fig. 2. Speculative execution model of procedures.

3.2 Profiling Mechanism

As shown in Fig. 3. First, the program is initially analyzed using the GNU Prof
tool that comes with the Linux system. The tool can roughly analyze the func-
tion call relationship, the running time ratio of each procedure during running of
the program. Combining the information obtained above, a ‘hot’ spot segment
with a program running time of 5% or more is selected as a ‘hot’ spot profil-
ing region and then, select the loops or procedures in the ‘hot’ spot region and
compile it through a cross-compiler to get the binary executable file. Finally,
the profiling tool analyzes the ‘hot’ spot area by identifying the ‘jarl’, ‘jal’ or
‘jr’ instructions and combining the candidate ‘hot’ spot area files, and the pro-
filing results are obtained after quantitative analysis based on the key factors
influencing performance.

This work disassembles the binary code file generated during profiling using
the disassembly tool objdump4pisa of the PISA instruction set. Figure 4 shows
a procedure profiling example. As can be seen from the figure, the procedure

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 51

Fig. 3. Profiling mechanism.

return address is stored in register 31, and the global variable sum is stored in
register 28. Before the operation on sum, it is loaded into register 2, and the
result is saved to register 3 at the end of the operation.

Fig. 4. Procedure profiling example.

3.3 Kernel Data Structure

Because the kernel data structure principle of procedure and loop is the same,
the procedure is taken as an example, as shown in Fig. 5. The call list structure
records each call and return time of procedure to be profiled. Each procedure
corresponds to a call list entry t structure, and each call list entry structure con-
tains n call list structures. The call list structure is used to save information
about the function being called. The Hash list structure is used to save write

52 X. Wang et al.

operations to the memory. When there are a large number of procedure calls in
the program, the call list head and call list tail traversal search in the Hash list
can quickly find a specific call of the procedure.

Fig. 5. Kernel data structure of procedure.

The program reads and writes data of the global data segments in the
last write hash list structure shown in Fig. 6. When executing the procedure
to be profiled, the subsequent code of the procedure will be intercepted by the
profiling tool when performing the read operation, and the profiling tool will get
the time of the last write operation by retrieving the last write hash list struc-
ture. If the time of last write operation is greater than current time, it will be
replaced with the current time. The system will save the running time of the
serial version. The ratio of the two times is the final speedup.

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 53

Fig. 6. Data structure of last write hash list structure.

4 Impact Factors of TLS

This work summarizes the four impact factors of TLS performance.

Thread Size. We defined the size of a subroutine call or a loop execution
instruction as thread size. If the thread size is too small, the overhead during
speculative execution will increase and will affect the parallel effect. If it is too
large, there may be an error violation, which may result in unnecessary specu-
lative thread compression.

Speculative Parallelism coverage. According to Amdahl’s law, the program
speculative parallelism coverage is higher, the program parallelism is better.

Inter-thread Control Dependency Feature. If a control dependency vio-
lence occurs, the speculative thread needs to be restarted, which affects the
performance of the speculative thread execution. Using value predict technology
can effectively resolve inter-thread control dependencies.

Inter-thread Data Dependency Feature. This is the most critical perfor-
mance factor of TLS technology. Thread level data dependency result in a series
of overheads such as dependency violation detection, synchronization, fallback,
and restart. We will explain it in detail as follows.

This work simplified the data dependency into the relationship between the
data producer and consumer. The operation of producing data is treated as a
write operation to the memory, and the operation of consuming data is regarded
as a read operation to the memory. As shown in Fig. 7. We define the produce-
distance as the number of instructions between the execution of the thread and
the last write to the memory, defining the consume-distance as the number of
instructions between the execution of the thread and the first read of the thread
to the memory. And we use α to represent consume-distance/produce-distance,
and use it to analyze the inter-thread data dependency. When α < 1, data
dependency violation occurs at this time, and the smaller the α value, the more

54 X. Wang et al.

serious the data dependency violation. When α is close to 0, the speculative
thread execution mode is similar to the serial execution mode of the program.
We defined data dependency as three categories, with 0 < α < 0.4 as severe,
0.4 < α < 1 as mild, and 1 < α as safe.

Fig. 7. Produce-distance & consume-distance.

In this paper, the average α we used is heavy data dependency as a pro-
portion of all data dependencies. The smaller the average α, the smaller the
data dependency violation. In addition, for procedure level TLS technology, the
number of procedure calls is also one of the factors that affect its performance.
The number of procedure calls in the execution process will affect the program
performance improvement potential, which will affect the program acceleration
effect.

5 Experiment Analysis

In this section, we will use the mechanism shown in Sect. 3 to analyze HPEC,
experimental results of HPEC in combination with the influencing factors of
TLS technology.

This work was done on x86-based Ubuntu 14.04. In order to make the parsing
time better adapt to the compiler overhead, the parser uses a modified and aug-
mented version of sim-fast based on the Simplescalar tool set function simulator,
which executes one instruction per period. The cross compiler is the back-end
modified gcc-2.7.2.3 provided by the Simplescalar tool set and the instruction
set is PISA. We have selected 6 representative programs from HPEC benchmark
suite, as shown in Table 1.

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 55

Table 1. Test programs.

Category Benchmarks Description

Signal Processing fdfir Basic operation of signal processing

tdfir Basic operation of signal processing

cfar Constant False Alarm Rate Detection

Communication ct Change the data storage order

Information and Knowledge Processing pm Pattern matching

ga Graph of the genetic algorithm

5.1 Results in Loop Level Speculation

The Fig. 8 shows the speedup of the programs running at different core numbers
in the loop and procedure levels. Under the loop level speculation, we choose 2,
4, 8, 16, 32, 64 and infinite cores to accelerate.

Fig. 8. Speedup of loop level.

The results of the loop level speculation as shown in Table 2. We can clearly
see from it that the parallelism coverage is over 90%. Most of the applications
in the HPEC benchmark suite have very high parallelism coverage. Therefore,
parallelism coverage is not a major factor affecting the speedup at the loop level.
The thread size of the test programs is not very large, both are about 100. And
we can observe that there are data dependency violations in programs other than
cfar. The average α values of fdfir, tdfir, and ct are large, which means that the
proportion of serious data dependency violation is small. Therefore, the speedup
of cfar is 10.2x, which is the result of the combination of high parallelism coverage
and low data dependency violation. Similar to the situation is pm, which has a
nice speedup of 5.3x.

56 X. Wang et al.

Table 2. Impacting Factors In Loop And Procedure Level Speculation.

Benchmark Parallelism coverage Thread size Average α

Loop Procedure Loop Procedure Loop Procedure

cfar 100% 100% 3.4E+01 6.9E+08 0 0

ct 100% 100% 2.5E+01 1.2E+08 1 0

pm 100% 100% 1.7E+01 1.2E+12 0.01 0

tdfir 100% 100% 2.0E+02 3.2E+12 0.5 0

fdfir 100% 100% 4.1E+01 2.0E+05 0.99 0

ga 99% 99% 2.3E+01 1.8E+09 0.01 0.04

The acceleration potential of fdfir and tdfir is affected by data dependency
violation, and their speedup is between 1.3x and 2.8x. The case of ct is quite
special. The average α value of ct is 1, and there is only heavy data dependency
in the program, but the speedup is up to 13x, We found that the purpose of
the ct program is to change the order of the data, and this operation is very
simple, so even if the data dependency violation in ct is serious, the speedup
is still high. In the ga program, the average α value is very low, only 0.01, and
its parallel coverage is higher, and the final speedup is 1.78x. In addition, the
ga program is a genetic algorithm for graphs, and some codes have parallelism.
Therefore, the maximum speedup of the program is obtained in the 2 cores
loop level speculation. For the data dependency violation in the program, we
analyze the source code of the program and find that a large number of pointer
operations are the main cause of data dependency violation.

5.2 Discussion

As shown in Fig. 9, the acceleration ratio of loop level changes at the 2 to 64
cores. The acceleration ratio of ga program hardly changes, so the 2 cores can be
fully utilized. The growth rate of the acceleration ratio of other programs slows
down as the number of cores increases, and a large performance improvement
can be achieved at 16 to 32 cores. After consideration, most of the applications
here can effectively use 16 to 32 cores in TLS to achieve significant performance
improvements.

As shown in the Fig. 10, we compared the speedup of the loop level and
the procedure level in the infinite core. As can be seen from the figure, Cfar,
ct, pm have no obvious speedup at the procedure level, while tdfir, fdfir, and
ga archive higher speedup than the loop level. Tdfir achieves procedure level
speedup of approximately 221.8x, making it particularly suitable for procedure
level speculation, while other work [8] accelerates the tdfir program through the
loop structure, and the resulting acceleration ratio is 28.88. Therefore, among
the selected programs, cfar, ct and pm are more suitable to adopt loop level TLS
technology to explore parallelism, while tdfir, fdfir and ga are more suitable to
adopt procedure level.

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 57

Fig. 9. Acceleration ratio change trend.

Fig. 10. Loop and procedure speedup comparison.

In order to understand the reason for the procedure level speedup, we will
analyze the performance influencing factors as shown in Table 2. It shows that
with the loop level, parallelism coverage is not a major performance influencing
factor. The obvious difference is that the thread size is larger than the loop level
and the average α value is almost zero. And we analyze the code and find that
the ‘hot’ procedure can get more speedup in the loop. In addition, the number of
procedure calls is also one of the performance factors of the procedure level. Most
of the HPEC programs have better procedure level speedup. The main reason is
that the number of procedure calls of the ‘hot’ procedure is high. The number
of procedure calls is inversely proportional to the number of data dependencies
between threads. There are a small number of data dependency violations in the

58 X. Wang et al.

ga can also archive better speedup. The procedure call of the pm and ct is only
1, so there is no obvious acceleration effect. We will explain the speedup of tdfir
in detail as follows.

Fig. 11. Code segment of tdfir’s ‘hot’ procedure.

The ‘hot’ procedure in tdfir is elCplxMul, as shown in Fig. 11. The procedure
is in a double-layer loop, which makes the procedure call more times. And there
is only one loop structure in the procedure. This loop operation is a simple
complex multiplication operation. In addition, as shown in Table 2, the average
α value of tdfir is 0, so there is no severe data dependency violation, and it has a
more appropriate thread size. Based on the above factors, tdfir can achieve such
a high speedup.

In summary, the combination of low average α values, high parallelism cov-
erage, and high number of procedure calls results in better speedup for most
programs.

In this paper, we compare the speedup between the loop level and the pro-
cedure level, and confirm that although the loop level is usually used as the

Procedure and Loop Level Speculative Parallelism Analysis in HPEC 59

main source of speculative parallelism, the procedure level can be used as an
additional supplement to the loop level parallelism. Sometimes the procedure
level gets more parallelism than the loop level, that is, some programs are more
suitable for procedure level to achieve parallelism.

6 Conclusion

This paper presents how to explore speculative procedure and loop parallelism in
HPEC applications, including the speculative execution model, profiling mech-
anism and performance influencing factors, etc. This paper makes the following
main contributions:

1) We explored the procedure and loop level speculative potential parallelism
for HPEC applications, and showed that most applications are suitable for
TLS.

2) In HPEC applications, TLS technology can effectively utilize 16 to 32 cores
to develop potential parallelism.

3) The procedure level can be used as an additional supplement to the loop
level parallelism. Such applications, which contain multiple non-severe data-
dependency procedure calls, are more suitable for developing parallelism
using procedure level TLS technology.

In the future work, we will modify our profiling tools to make the experiment
results more precise.

References

1. Ye, J.M., Yan, H., Hou, H., Chen, T.: Potential thread-level-parallelism exploration
with superblock reordering. Computing 96(6), 545–564 (2014). https://doi.org/10.
1007/s00607-014-0387-8

2. Luo, Q., Rosu, G.: EnforceMOP: a runtime property enforcement system for mul-
tithreaded programs. In: Pezzè, M., Harman, M. (eds.) International Symposium
on Software Testing and Analysis, ISSTA 2013, Lugano, Switzerland, 15–20 July
2013, pp. 156–166. ACM (2013)

3. Oplinger, J.T., Heine, D.L., Lam, M.S.: In search of speculative thread-level paral-
lelism. In: Proceedings of the 1999 International Conference on Parallel Architec-
tures and Compilation Techniques, Newport Beach, California, USA, 12–16 Octo-
ber 1999, pp. 303–313. IEEE Computer Society (1999)

4. Liu, B., Zhao, Y., Li, M., Liu, Y., Feng, B.: A virtual sample generation approach
for speculative multithreading using feature sets and abstract syntax trees. In:
Shen, H., Sang, Y., Li, Y., Qian, D., Zomaya, A.Y. (eds.) 13th International Con-
ference on Parallel and Distributed Computing, Applications and Technologies,
PDCAT 2012, Beijing, China, 14–16 December 2012, pp. 39–44. IEEE (2012)

5. Xekalakis, P., Ioannou, N., Cintra, M.: Combining thread level speculation helper
threads and runahead execution. In: Gschwind, M., Nicolau, A., Salapura, V., Mor-
eira, J.E. (eds.) Proceedings of the 23rd International Conference on Supercom-
puting, Yorktown Heights, NY, USA, 8–12 June 2009, pp. 410–420. ACM (2009)

https://doi.org/10.1007/s00607-014-0387-8
https://doi.org/10.1007/s00607-014-0387-8

60 X. Wang et al.

6. Wang, Y., An, H., Liu, Z., Li, L., Huang, J.: A flexible chip multiprocessor simulator
dedicated for thread level speculation. In: 2016 IEEE Trustcom/BigDataSE/ISPA,
Tianjin, China, 23–26 August 2016, pp. 2127–2132. IEEE (2016)

7. Bergmann, J., Mccoy, D.: Sourcery VSIPL++ HPEC benchmark performance, pp.
308–314 (2006)

8. Mu, S., et al.: Evaluating the potential of graphics processors for high performance
embedded computing. In: Design, Automation and Test in Europe, DATE 2011,
Grenoble, France, 14–18 March 2011, pp. 709–714. IEEE (2011)

9. Mhaidat, K.M., Baset, A., Al-Khaleel, O.: OpenSPARC processor evaluation using
Virtex-5 FPGA and high performance embedded computing (HPEC) benchmark
suite. IJERTCS 5(1), 61–74 (2014)

10. Sohi, G.S., Breach, S.E., Vijaykumar, T.N.: Multiscalar processors. In: Patterson,
D.A. (ed.) Proceedings of the 22nd Annual International Symposium on Computer
Architecture, ISCA 1995, Santa Margherita Ligure, Italy, 22–24 June 1995, pp.
414–425. ACM (1995)

11. Hammond, L., Hubbert, B.A., Siu, M., Prabhu, M.K., Chen, M.K., Olukotun, K.:
The Stanford hydra CMP. IEEE Micro 20(2), 71–84 (2000)

12. Salamanca, J., Amaral, J.N., Araujo, G.: Using hardware-transactional-memory
support to implement thread-level speculation. IEEE Trans. Parallel Distrib. Syst.
29(2), 466–480 (2018)

13. Wang, Q., Wang, J., Shen, L., Wang, Z.: A software-hardware co-designed method-
ology for efficient thread level speculation. In: 2017 IEEE International Conference
on Computer and Information Technology, CIT 2017, Helsinki, Finland, 21–23
August 2017, pp. 184–191. IEEE Computer Society (2017)

14. Hammacher, C., Streit, K., Zeller, A., Hack, S.: Thread-level speculation with
kernel support. In: Zaks, A., Hermenegildo, M.V. (eds.) Proceedings of the 25th
International Conference on Compiler Construction, CC 2016, Barcelona, Spain,
12–18 March 2016, pp. 1–11. ACM (2016)

15. Wang, Y., An, H., Liu, Z., Zhang, L., Wang, Q.: Parallelizing block cryptography
algorithms on speculative multicores. In: Wang, G., Zomaya, A., Perez, G.M., Li, K.
(eds.) ICA3PP 2015. LNCS, vol. 9528, pp. 3–15. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-27119-4 1

https://doi.org/10.1007/978-3-319-27119-4_1
https://doi.org/10.1007/978-3-319-27119-4_1

CTA: A Critical Task Aware Scheduling
Mechanism for Dataflow Architecture

Yan Ou1,2, Chongfei Shen3, Yujing Feng1, Xinxin Wu1,2, Wenming Li1,
Xiaochun Ye1,4, and Dongrui Fan1,2(B)

1 State Key Laboratory of Computer Architecture, Institute of Computing
Technology, Chinese Academy of Sciences, Beijing 100190, China

{ouyan,fengyujing,wuxinxin,liwenming,yexiaochun,fandr}@ict.ac.cn
2 School of Computer and Control Engineering,

University of Chinese Academy of Sciences, Beijing 100049, China
3 Beijing Smartchip Microelectronics Technology Company Limited,

Haidian District, Beijing 100000, China
shenchongfei@sgitg.sgcc.com.cn

4 State Key Laboratory of Mathematical Engineering and Advanced Computing,
Wuxi 214125, Jiangsu, China

Abstract. Critical tasks directly affect the overall performance of a pro-
gram, especially in dataflow architecture. The reason is that dependency
between tasks in dataflow scenarios is much more complex than those in
control-flow scenarios. However, previous works fail to sufficiently accel-
erate the critical task because most of them only applied optimization
for static critical tasks, without considering the runtime status during
execution. We propose a critical task aware (CTA) scheduling mecha-
nism for dataflow architecture. By adopting co-optimization of hardware
and software, higher execution priorities are assigned to the critical tasks
for better scheduling. The experimental results show that our mechanism
increases the computational performance by 14%–78%, and increases the
power efficiency by 11%–41%.

Keywords: Critical tasks · Dataflow architecture · Scheduling
mechanism · Execution priority · Power efficiency

1 Introduction

The critical task is one of the fundamental runtime characteristics and has a
direct impact on the final output of a program [19,21,22]. It identifies the task
with the longest execution time at a certain stage during execution while other
tasks need to wait for its result for subsequent calculations. Previous works have
been proposed to accelerate the critical tasks by adopting either hardware or
software. For the hardware optimization, some architectures [7,27] support the
simultaneous execution of multiple copies of the same program to improve the
utilization of function units. For the software optimization, some instruction
mapping algorithms [21,23,26] are used to map the tasks in critical path (static
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 61–77, 2020.
https://doi.org/10.1007/978-3-030-60245-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_5

62 Y. Ou et al.

critical tasks, SCTs) to adjacent processing elements (PEs) for reducing data
transmission delay. However, these works focus only on the static characteristics
of the critical tasks, without considering the runtime status during execution.
The execution priorities of tasks in a program may not always rely on static-
analyzed critical path, and a task in non-critical path may turn into a critical task
(dynamic critical task, DCT) because of some dynamic characteristics, such as
network congestion as well as resource competition. Therefore, the previous static
optimization for the critical tasks cannot sufficiently accelerate the program due
to the reason that dynamic features cannot statically predict.

Dataflow architecture [5] has been proved to be a promising alternative to
accelerate high performance (HPC) and artificial intelligence (AI) applications
[2,7,16,18,30], which can be reflected from the following 2 aspects. (1) Data
are directly transferred between tasks rather than through shared-memory. (2)
Any task can be executed as long as its operands are available. The state of
art ASICs[6], such as TPU [10], CGRA [1,20,24] and Eyeriss [3], have borrowed
basic ideas from dataflow execution model for exploiting both instruction level
parallelism (ILP) and data level parallelism (DLP). However, the performance
of dataflow architecture is more sensitive to the execution delay of the critical
task than that of the control-flow architecture due to frequent interaction among
tasks as well as complicated dynamic condition [9,12,15,17]. Therefore, the task
scheduling mechanism has significance and reference value for other architectures
if it can be applied to accelerating the critical tasks of dataflow architecture.

Both SCT and DCT are the important factors influencing the performance of
dataflow program. SCT is determined during dataflow graph build-time, where
the future execution environment is predicted by using the statistics collected
during the past execution. All tasks in the static critical path are regarded as
the SCTs. DCT is determined by the current state of a dataflow system. Such
network congestion, resources competition or any other dynamic feature would
turn a task in non-critical path into a critical task. As shown in Fig. 1 (a), we
assume that Task1, Task2 and Task3 are the memory access tasks while other
tasks are the computing tasks. Thus (Task0-Task1/Tasks2-Task4-Task5) is the
critical path, in which these tasks are SCTs that are assigned higher execu-
tion priorities during build-time. However, Task3 may turn into a critical task
if it is blocked by network congestion or cache missing. When this happens, the
whole dataflow graph would be blocked if the low execution priority of Task3
is not boosted. Therefore, tracking DCTs and allocating resources for them can
exploit potential performance of the program. In this work, we have counted the
number of DCTs, which are not in static critical path but the dataflow graph
is blocked by them during execution, of 7 HPC+AI workloads (further discus-
sion in EVALUATION section) in dataflow architecture. As shown in Fig. 1 (b),
statistics suggest that the DCT accounts for 16.70% of the total, which restricts
the further improvement of performance. The proportion of DCT is influenced by
dynamic runtime environment. The more complicated the runtime environment
of program is, the greater the performance penalty implied by DCTs.

CTA: A Critical Task Aware Scheduling Mechanism 63

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

Th
e

pe
rc

en
ta

ge
 o

f D
CT

DCT others

Compu ng task
Memory access task

Data dependency

Task0

Task1 Task2 Task3

Task4

Task5

(a) (b)

Fig. 1. (a) An example of a dataflow program. (b) The percentage of DCT.

In this paper, we propose a critical task aware (CTA) scheduling mechanism
for dataflow architecture, which dynamically tracks the exact critical tasks, and
efficiently assigns execution priorities for them. The experimental results show
that our mechanism increases the computational performance by 14%–78%, and
increases the power efficiency by 11%–41% compared with previous task schedul-
ing mechanisms. Our contributions are summarized as follows.

– We put forward a new concept of congested-degree, which is used for measuring
the congestion of data in a task.

– We propose an elastic handshake mechanism (EHM), which extends the tra-
ditional handshake mechanism for better exploiting ILP.

– We further propose a task scheduling mechanism (TSM) based on EHM,
which is used for tracking the critical tasks and allocating computing
resources.

The remainder of the paper is organized as follows. Section 2 introduces the
background of dataflow architecture. Section 3 analyzes the key factors affect-
ing the performance and illustrates a task scheduling algorithm. In Sect. 4, we
describe CTA to support the algorithm. In Sect. 5, we present our evaluation plat-
form and simulation results. In Sect. 6, we discuss related work, and in Sect. 7
we provide concluding remarks.

2 Dataflow Architecture

This section explains the architecture, execution model, and task format of
a general purpose dataflow process unit(DPU), which resembles TRIPS [7],
WaveScalar [24] and SPU [29].

Architecture. Figure 2 (a) illustrates the architecture of DPU, which includes
PE array, scratchpad memory (SPM) and a micro controller (MICC). PE array
consists of a grid of 16 PEs connected by 2D mesh network. SPM is responsible
for storing instruction and data. MICC is responsible for managing execution
process of DPU, including dispatching instruction, generating iteration index,
and receiving the finish signal from PE array.

64 Y. Ou et al.

Execution Model. As shown in Fig.2 (b), a dataflow program is compiled
into a dataflow graph, which is mapped into the PE array according to the
specific mapping algorithm [4]. In a dataflow graph, a node represents a task that
contains a set of instructions, and an arc represents the data dependency between
tasks. When the calculation of a node is completed, its result, which is regarded
as input for next tasks, is directly sent to subsequent nodes. MICC continuously
generates iteration index as input to the dataflow graph during execution, while
tasks of different dataflow graph depths are activated in sequence.

Task Format. Task format is the specific data structure for task, which con-
tains the basic information of this task and the data dependencies to other tasks.
Figure 2 (c) shows the basic format of dataflow task, where Opcode is the oper-
ation type. OpAddri is the address of (i)-th operand in local memory. DesAddrj
is the address of (j)-th subsequent tasks, which is jointly determined by PE loca-
tion (PEPos), task sequence number (TaskNo) and operand sequence number
(OperandNo).

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

S
P
M

DPUMICC

(a) (b)

OpCode

PEPos TaskNo OperandNo

OpAddr1 OpAddr2 DstAddr1 DstAddr2

Task0

Task1

Task3 Task4

Task6

Task2

Task5

Task3
Task5

PE1

Task6

Task0
Task1

PE0

Task2
Task4

(n+1)-th
itera�on

(n)-th
itera�on

(n+2)-th
itera�on

(n+3)-th
itera�on

(n+4)-th
itera�on

MICC

(c)

Fig. 2. (a) The architecture of DPU. (b) The execution model of DPU. (c) The basic
format of dataflow task.

3 A Critical Task Aware Scheduling Algorithm

In this section, first of all, a quantitative analysis model is established, and
the impact of some factors on the performance of dataflow execution model is
analyzed. Secondly, a new concept called congested-degree is introduced, which
is used for measuring the congestion of data in a task. Finally, we propose a
critical task aware scheduling algorithm for accelerating the critical tasks.

3.1 Performance Model of Dataflow Execution

The execution model of dataflow task scheduling mechanisms is shown in Fig. 2
(b), dataflow graph is just like a big pipeline and the critical tasks determines the
time interval of pipeline output. The performance of pipelined execution model
is calculated as follows.

Performance =
U

(MAX(t1, · · · , tN) + Δ) · (M − 1) + TF
(1)

CTA: A Critical Task Aware Scheduling Mechanism 65

tn is the execution time of (n)-th critical task. N is the number of tasks, including
SCTs and DCTs. Δ is the average wait time for the critical tasks to be scheduled.
U is the total number of computations. M is the total number of iterations of the
program. TF is the filling time of the dataflow graph, which equals the time of
the first iterations flows from the start node to the end node of dataflow graph.

For a given program, U , M and TF are constant. tn and N are variables and
are affected by the runtime environment. For example, resource competition,
data synchronization and network congestion will increase the tn and may turn
a task in non-critical path into a critical task. Δ is also a variable since numerous
tasks are mapped into the small number of PEs, where tasks are processed in
the intended order by the task scheduling mechanism. Therefore, if dataflow
execution model wants to achieve optimal performance, there are 2 aspects to
consider. (1) Dataflow graph can be executed in the pipeline model. (2) Task
scheduling mechanism can track the critical tasks and preferentially allocate
computing resources for them.

3.2 Task Scheduling Algorithm

In this section, we put forward a new concept of Congested-degree (Cd), which
is used for measuring the congestion of data in a task. Congested-degree is cal-
culated as follows.

Cd(v) = Sumr(v) · T (v) +
C(v)∑

n=1

{Max(0, (T (v) − μ · n)) · Sumur(v, n)} (2)

Cd(v) is the congested-degree of task v, with higher Cd(v) value indicating
the more congestion of data in task v, and the more likely this task is to be a
critical task. Cd is comprised of 2 parts, current execution time and potential
execution time, which represent the total processing time of iterations that is
ready and is not ready, respectively.

Sumr(v) · T (v) is the current execution time of task v, which represents
the total required execution time of iterated data that is ready but has not
been scheduled. Sumr(v) is the number of iterations that are ready. T (v) is the
expected execution time of task v (eg. 1 cycle for add operation, 6–15 cycle for
division operation). It is noted that the iteration is considered to be ready only
if all data belongs to this iteration has been received.∑C(v)

n=1 {Max(0, (T (v)−μ·n))·Sumur(v, n)} is the potential execution time of
task v. Sumur(v, n) is the number of iterations that lacks n operands for ready.
C(v) is the total number of dependent operands for calculation. μ is the average
transmission delay between two tasks. The potential execution time represents
the potential required execution time of iterated data that is not ready while
some of operands have been received. It is equal to the time of a single execution
minus data transmission time of absent operands, and its value is equals to
0 when transmission time bigger than execution time. Algorithm 1 shows the
pseudocode of the task scheduling algorithm.

66 Y. Ou et al.

Algorithm 1. A task scheduling algorithm.
Require: I-tasks of a PE, C-function units of a PE.
Ensure: M -tasks are actually selected to be executed.
1: for ∀i ∈ I do
2: Cdr(i) = The current execution time of task i
3: Cdur(i) = The potential execution time of task i
4: if Cdr(i) > 0 then
5: S+ = {i}; Cd(i) = Cdr(i) + Cdur(i)
6: end if
7: end for
8: Q = Top down Cd sort(S)
9: for ∀c ∈ C do

10: q = the task with the highest congested-degree value in sorted list Q
11: M+ = {q}; Update Cd(q)
12: end for

List I contains all tasks that are mapped into this PE. List C contains
all function units of the PE. List M contains tasks that are actually selected
to be executed. List Q and S contain the candidate tasks that can be exe-
cuted. Top down Cd sort is responsible for sorting tasks according to the Cd.
Update Cd is responsible for updating the Cd value.

The task scheduling algorithm is made up of 3 steps. Firstly, task, whose
data is ready (Cdr(i) > 0), is inserted into the candidate task list S, and its
Cd is computed. Secondly, all candidate tasks are prioritized through the func-
tion Top down Cd sort. Thirdly, the task with the highest Cd is selected to be
executed, then its available operands have changed, so its Cd value is updated
by the function Update Cd. In this algorithm, current and potential execution
time are not recalculated when a task scheduling event happens. Instead, they
are, similar to Translation Lookaside Buffer (TLB), automatically updated by
the hardware (further discussion in follow section). Then tasks with higher Cd
are assigned higher execution priorities during execution by reference to the
precomputed Cd.

4 CTA Architecture

In the previous section, we propose a task scheduling algorithm for tracking
DCTs and allocating computing resources for them. In this section, we pro-
pose CTA to support this algorithm, which is composed of elastic handshake
mechanism (EHM) and task scheduling mechanism (TSM). EHM allows multi-
ple iterations of the same dataflow graph to be executed simultaneously, which
makes DPU executing in pipeline mode. In addition, EHM also computes cur-
rent potential execution time of each task, providing congested-degree value for
task scheduling algorithm. TSM is responsible for assigning execution priorities
for tasks. Candidate tasks is ranked by TSM based congested-degree, then DCTs
are assigned higher execution priorities. Figure 3 illustrates the architecture of

CTA: A Critical Task Aware Scheduling Mechanism 67

Fig. 3. The architecture of CTA in a PE.

CTA in a PE, where EHM is composed of DataBuf and RoutingUnit, TSM is
composed of DispatchUnit and ReorderUnit.

4.1 Elastic Handshake Mechanism

In this section, we propose EHM to make up the shortage of HM. Firstly, each
task in EHM has a memory for storing the different iterated data, which elim-
inates bubbles by HM and improves the utilization of function units. Secondly,
to avoid the packet loss and network bandwidth wasted when the memory of
subsequent task is full, Counter that implies how many results can be sent to
subsequent tasks is added to task format.

EHM extends the format of the task by inserting flag (Counter) into each
DestAddr, which represents how many results can be sent to the subsequent
tasks. Each Counter in different DestAddr is independent. It decrements by
1 every time a result is sent, and increments by 1 when an acknowledgement
(further discussion in follow section) is received. The task obtains permission
to send results to DestAddrs only if all their Counters are bigger than 0. We
suppose that the initial value of Counter equals the maximum data storage
capacity of subsequent tasks.

EHM architecture consists of RoutingUnit and DataBuf. RoutingUnit is
responsible for communicating with other PEs. DataBuf is responsible for storing
operands of the task.

RoutingUnit. Figure 4 (a) shows the architecture of RoutingUnit, where ACK-
Control is responsible for sending acknowledgement to the sender. Unpack is
responsible for unpacking the network packet. Pack is responsible for packaging
the result into the network packet. TxFifo is the first-in-first-out queue that is
used to temporarily store the network packet that needs to be sent.

When a PE receives a network packet, Unpack parses the content of the
packet and extracts the feature information. For a data packet, the feature

68 Y. Ou et al.

Fig. 4. (a) The architecture of RoutingUnit. (b) The architecture of Databuf.

information, including data and TAG (further discussion in follow section) is
forwarded to DataBuf, then ACKControl sends the acknowledgement message
(ACK) to the precedent task. For an ACK packet, the feature information,
including TAG, is forwarded to TaskRAM to update the related Counter. The
network supporting the transfer of backward ACK messages has a lower signal-
ing overhead since ACK message does not need to transmit iterated data. Result
is converted to network packet by Pack and sent to relevant address after it has
been calculated.

DataBuf. Figure 4 (b) shows the architecture of DataBuf, where DataRAM is
responsible for storing the iterated data and supporting both Execution Pipeline
and RoutingUnit access. DataDistribute is responsible for distributing access
requests to RAM slices. CdTable is responsible for maintaining the congested-
degree of tasks.

EHM is a simple but reliable mechanism to ensure the execution correctness
of iterations. It provide an asynchronous communication mechanism, where tasks
communicates with each other indirectly through an intermediary (DataBuf).
Task can send results to the subsequent tasks only if the related Counter is
bigger than 0, without re-sending the redundant network packets (i.e. credit
mechanism [8,24]).

4.2 Task Scheduling Mechanism Architecture

In this section, we propose a task scheduling mechanism (TSM) based on EHM,
which is the hardware implementation for Algorithm1. There are 2 factors should
be taken into consideration. Firstly, Candidate tasks that meet the issue require-
ment are screened from the all tasks, then DCTs are assigned higher execution
priorities. Secondly, since the execution time of some tasks is uncertain (i.e.,
memory access, division, non-linear function), the (n+1)-th iteration may be
completed earlier than the (n)-th iteration. Therefore, TSM should provide a
reorder mechanism where the execution results are submitted in the correct
order. TSM is consisted of DispatchedUnit and ReorderUnit. DispatchUnit is

CTA: A Critical Task Aware Scheduling Mechanism 69

Fig. 5. (a) The architecture of DispatchUnit. (b) The architecture of ReorderUnit.

responsible for assigning execution priorities to tasks. ReorderUnit is responsi-
ble for re-ordering the execution result.

DispatchUnit. Figure 5 (a) shows the architecture of DispatchUnit, where
TaskFilter is responsible for extracting the candidate tasks from the all. TaskSort
is responsible for ranking candidate tasks according to the congested-degree,
whose result is stored in TaskQueue. TaskSelect is responsible for selecting task
to be executed. TAGDecouple is responsible for separating the TAG from iter-
ated data.

DispatchUnit is responsible for assigning priorities to tasks. The whole proce-
dure can be divided into 3 stages. (1) TaskFilter pairs tasks with their congested-
degree and filter out the tasks that is not ready (Cdr = 0), then the rest is the
candidate task. (2) Candidate tasks are sorted by congested-degree in TaskSort.
(3) Task with the highest congested-degree is selected by TaskSelect to be exe-
cuted, then its TAG is separated by TAGDecouple and sent to ReorderUnit.
As mentioned in the previous section, Task’s congested-degree is automatically
updated by CdTable and is stored in TaskQueue. Hence, InstSelect is able to
directly use the pre-computed congested-degree value whenever a task scheduling
event happens.

ReorderUnit. Figure 5 (b) shows the architecture of ReorderUnit, where
ResultBuf is responsible for storing the execution result. ResultForward is
responsible for forwarding result to RoutingUnit.

In pipeline execution model, the (n+1)-th iteration may be finished earlier
than the (n)-th of the same task since the execution time of some tasks is uncer-
tain (i.e. memory access, nonlinear function), which could result in faulty results
(i.e. Read after Write). When an iterated data has been calculated by Execution
pipeline, its results is forwarded to RoutingUnit based on the TAG received from
DispatchUnit, which ensures results are submitted in the same order as they are
dispatched by MICC.

CTA architecture is the hardware implementation of Algorithm 1, which is
composed of EHM and TSM. EHM provides an effective communication mech-

70 Y. Ou et al.

anism between tasks, where current and potential execution time of each task
are computed based on the usage of local memory space. TSM assigns execution
priorities for tasks and re-orders results in the correct order. Combining EHM
and TSM, dataflow graph can be executed in pipeline mode where DCTs are
tracked and are assigned higher execution priorities, which can exploit potential
performance of dataflow architecture.

5 Evaluation

5.1 Experimental Platform

We evaluate CTA in a dataflow processor simulator based on SimICT [28] which
is a cycle accurate, fast and flexible simulation framework for large-scale architec-
ture. The implementation of the simulator is strictly consistent with the design
in Fig. 2. The configuration of DPU is shown in Table 1. DPU consists of 64
PEs constructed in the form of 8 × 8 array. Each PE contains 4 fused multiply-
accumulate (FMACs) in double precision, 4 FMACs in single precision and 8
64-bit arithmetic logic unit (ALUs) in SIMD-4 model. In this paper, we also
compare the power efficiency of DPU with NVIDIA Titan Xp GPGPU. We have
compared the execution cycle on the simulator with RTL emulation, the results
show that the average deviation is under 3%.

Table 1. Configuration of DPU

Module Configuration

MICC ARM, 1GHz

PE 4 FMACs (single precision), 4 FMACs (double precision), 8
ALUs, SIMD4, 128 instructions, 1 GHz

2D mesh 1 cycle/hop, X-Y routing algorithm, 4 operand/memory-access
networks, 4 ACK message networks

SPM 64 Bank, 16 MB

Peak performance 512GFLOPS for FP64, 512GFLOPS for FP32

5.2 Workloads

To test the efficiency of CTA, we select 7 typical HPC+AI applications, namely
Fast Fourier Transform (FFT), Stencil2D, Stencil3D, Lattice-Boltzman Method
(LBM), Dense Matrix Multiplication (GEMM), Sum of Absolute Differences
(SAD), Convolution (CONV), where CONV is calculated in single precision
while other workloads are calculated in double precision. We choose the CONV
layers of AlexNet [11] in the Caffe model as the workload since it occupies about
85% computational time of the entire network processing [14]. These workloads
are important and representative of different types of HPC+AI applications,

CTA: A Critical Task Aware Scheduling Mechanism 71

and they also cover different computational density and memory access patterns.
The specification of workloads is shown in Table 2, FLOP is the floating-point
operations of workloads which is used for calculating performance of DPU, M is
for the million. Each application is translated into dataflow graph through the
compiler based on LLVM [13], due to the limitation of space, the detail of the
compiler are not presented in this article.

Table 2. Specification of workloads

Workload Scale FLOP

FFT 16384 32 Points 13M

Stencil2D 256 × 256 100 time steps 41M

Stencil3D 64 × 64 × 64 50 time steps 92M

LBM 1024 Points 1000 time steps 16M

GEMM 1024 × 1024 2147M

SAD 1920 × 1072 4487M

CONV The 1st convolution of AlexNet 211M

In this work, we implement and evaluate several task scheduling mechanisms
(further discussion in RELATED WORK section), including static scheduling
mechanism (Static), single graph multi flow (SGMF), credit scheduling mecha-
nism (Credit), a pipelining loop optimization method (PLO), elastic handshake
mechanism (EHM) and a critical task aware (CTA) scheduling mechanism.

5.3 Evaluation Metric

There are 2 types of calculation in DPU, namely, fix-point calculation and
floating-point calculation. Fix-point calculation is responsible for computing the
memory address and iteration index. Floating-point calculation is responsible for
computing the kernel of workloads. Therefore, we use the Giga Floating-point
Operations per Second (GFLOPS) as the performance metrics to evaluate dif-
ferent task scheduling mechanisms, which measures if the task scheduling mech-
anisms exploits sufficient parallelism and makes the best use of floating-point
units.

We also have implemented RTL of DPU and synthesized the design with Syn-
opsys Design Compiler (dc-2014.09-SP5) and TSMC 40 nm technology library,
which meets timing 1 GHz with 30% of extra margin.

5.4 Result and Discussion

Performance. Figure 6 shows the performance of DPU of 7 HPC+AI work-
loads on different task scheduling mechanisms. The performance of CTA is 1.78x,
1.19x, 1.14x, 1.37x, 1.14x higher than that in Static, SGMF4, Credit, PLO and

72 Y. Ou et al.

EHM. Stencil-like applications (Stencil2D, Stencil3D and LBM) achieve better
performance improvement than the others. The reason is that they are typ-
ical memory-intensive applications and the execution time of memory access
instruction is hard to predict, making critical tasks even more difficult to be
dynamically tracked. Thus for Stencil-like applications, accelerating the critical
tasks efficiently reduces the congestion of iterated data, which decreases execu-
tion time of a single dataflow graph. However, GEMM has been optimized not
obvious effect of other workloads to optimize effective, which can be attributed
to the 2 reasons. (1) Most of instructions in GEMM are multiply-add instruc-
tions, which are regular and there are minimal execution time difference among
them. (2) Tasks of GEMM are mapped to systolic array by using canonical map-
ping method, which effectively avoids network congestion as well as computing
resources competition.

0

128

256

384

512

FFT GEMM LBM SAD Stencil2D Stencil3D CONV average

Pe
rf

or
m

an
ce

(G
FL

O
PS

)

Sta�c SGMF4 Credit PLO EHM CTA

Fig. 6. Performance on different task scheduling mechanism.

As shown in Fig. 6, performance of Static is the lowest since only a single
iteration can be executed at the same time, where most tasks would always be
waiting, so the workload effectiveness is reduced. PLO fails to achieve high per-
formance because 3 synchronous packet handshake is adopted in PLO before data
transmission, which severely degrades the transmission efficiency between tasks.
The other 3 task scheduling mechanisms (SGMF4, Credit and EHM) achieve
relatively higher performance. SGMF4 provides enough independent dataflow
graph to be scheduled. Once a dataflow graph is blocked by critical tasks, func-
tion units are enable to select other graphs to be scheduled, which makes up for
the shortage of lacking iteration parallelism in Static. Credit offers an effective
communication mechanism between tasks, where multiple iterations of the same
dataflow graph can be executed simultaneously, just as in EHM. However, these
mechanisms are all without considering the possible influence of DCTs, which
restricts further improvement in performance.

Overhead of Area and Power. The comparison of area and power of DPU
of the different task scheduling mechanisms are shown in Fig. 7 (a) and Fig. 7
(b), respectively. CTA requires extra on-chip logic in MICC, network of chip
(NoC) and PE. The additional hardware overhead of MICC and NoC mainly

CTA: A Critical Task Aware Scheduling Mechanism 73

comes from the ACK network as well as status registers (Counter) of EHM.
The additional hardware overheads of PE comes from the data acknowledgement
of EHM and task scheduling of TSM. In total, the area of CTA is 1.30x, 1.01x,
1.03x, 1.27x and 1.03x higher than that in Static, SGMF4, Credit, PLO, EHM.
And the power of CTA is 1.26x, 1.01x, 1.01x, 1.23x and 1.04x higher than that
in these mechanisms. Considering the performance gaining, the increment of the
area and power is acceptable.

Figure 7 (c) and Fig. 7 (d) show the area and power breakdown of a single PE
of CTA, respectively. We can see that, DataBuf consumes the majority (29.66%
of PE area and 16.76% of PE power) of a single PE, since EHM provides enough
memory (DataRAM) for storing iterated data to cover the transmission delay
of handshake signal. The ACKControl, which is added hardware to support
sending ACK message, consumes 14.68% of RoutingUnit area and 11.63% of
RoutingUnit power. The area and power consumption of DispatchUnit, which
is added for implementing the adjusted issue policy, and ReorderUnit, which is
added for reordering execution results, are limited within 10% of the PE total.

(a) (b)

183.89

237.68 232.67

187.86

231.28 239.23

0

50

100

150

200

250

Static SGMF4 Credit PLO EHM CTA

Ar
ea

 o
f D

PU
(m

m
2)

MICC SPM PE NOC

11.31

14.19 14.24

11.61

13.69
14.29

0

3

6

9

12

15

Static SGMF4 Credit PLO EHM CTA

Po
w

er
 o

f D
PU

(W
at

t)

MICC SPM PE NOC

41%

4%
30%

5%

3%

17%

FunctionUnits RoutingUnit

DataBuffer DispatchUnit

ReorderUnit Other

48%

4%
17%

6%

3%
22%

FunctionUnits RoutingUnit

DataBuffer DispatchUnit

ReorderUnit Other

(c) (d)

Fig. 7. (a) Area of DPU. (b) Power of DPU. (c) Area breakdown of a single PE of
CTA. (d) Power breakdown of a single PE of CTA.

Power Efficiency. Figure 8 shows the power efficiency of the different task
scheduling mechanisms, which is measured by performance per watt that exhibits
the computational ability achieved with a unit power consumption. The power
efficiency of CTA is 1.41x, 1.18x, 1.14x, 1.11x, 1.10x higher than that in Static,
SGMF4, Credit, PLO and EHM. SGMF represents classical implementation that
sacrifices space for improving performance, thus its power efficiency is quite low
in spite of high performance. On the contrary, PLO, which merely adds hand-
shake signal between tasks, can obtain performance improvement at low hard-
ware cost. Both Credit and EHM can achieve high performance and power effi-
ciency. The similarity is that both provide an efficient handshake mechanism for
task communication, the difference is that for Credit, iterated data may be sent
repeatedly when the memory of subsequent task is full, which adds further area
and power overhead. Compared with other task scheduling mechanisms, CTA
can achieve higher performance and power efficiency, which is mainly generalized
in 2 points. (1) EHM enables multiple iterated data of the same dataflow graph
to be executed simultaneously with minimal hardware overhead. (2) TSM tracks

74 Y. Ou et al.

the critical tasks and preferentially allocates resource for them during execution,
which improves the execution efficiency of critical tasks.

Comparison with GPU. We also have compared CTA with a modern GPU
(NVIDIA Titan Xp, 12TFLOPS single-precision, 380GFLOPS double-precision,
16 nm FinFET, 250W TDP). As shown in Fig. 8, GPU can achieve high power
efficiency in GEMM as well as CONV compared with other HPC workloads.
The reason is that these GEMM and CONV are iteratively optimized by GPU
as artificial neural nets becomes the hottest top research on AI, where the pro-
gram such as resources competition and network congestion gets alleviating.
DPU shares many common characteristics with GPU, both aims at accelerating
iterated data. However, GPU runs in traditional control-flow fashion while DPU
runs in dataflow fashion, which exploits more ILP, DLP and consumes less on-
chip resources. As shown in Fig. 8, the average power efficiency of DPU is 3.23x
higher than that in GPU. Note that even though the process of DPU 40 nm
which is about three generations behind the GPU (16 nm).

0

5

10

15

20

25

30

35

FFT GEMM LBM SAD Stencil2D Stencil3D CONV average

Po
w

er
 E

ffi
cie

nc
y

(U
ni

t:
 G

FL
O

PS
/W

at
t)

GPU Static SGMF4 Dynamic PLO DBM CSRC

Fig. 8. Power efficiency of the different task scheduling mechanisms and GPU.

6 Related Work

The critical tasks directly affects the overall performance of the program, espe-
cially in dataflow architecture. The reason is that in dataflow architecture, the
interaction among tasks is more frequent and the dynamic condition is more
complicated. There are several mechanisms for task scheduling.

Static [7]. In order to prevent (n)-th iteration is overwritten by the (n+1)-th
iteration. MICC in Static is prohibited to generate new iteration index back-to-
back to dataflow graph. Thus, few tasks can be executed simultaneously while
most tasks are waiting for the data to be ready. Although SGMF [27] extends a
single graph to multiple independent graphs based on Static for improving the
utilization of function units, the problem that the performance of a single graph
is poor has not been solved.

CTA: A Critical Task Aware Scheduling Mechanism 75

Credit [8,24]. In this mechanism, each task has a RAM slice for storing the
received data. Credit uses the credit (TAG-token) to differentiate among iter-
ations. Once the RAM slice is full, task drops out the newly received iterated
data and request its precedent task to resend data again until the RAM slice
is available. Although Credit allows multiple iterations of the same graph to be
executed in parallel, it may produce lots of redundant network packet, resulting
in wasted bandwidth of network.

PLO [25]. Handshake mechanism is implemented in PLO based on Static. In
this mechanism, an ACK message will be sent to the precedent task as soon as
the data is consumed. A task is considered to be ready only if the iterated data
from the precedent task and ACK message from the subsequent task are both
ready. However, subsequent task is enable to send acknowledgement message
to precedent task only if the storage space is available, bubbles are produced
by synchronous handshake signal, which leads to the pipeline stall in dataflow
graph.

Some instruction mapping algorithms have been proposed to accelerate the
critical tasks of dataflow graph. In SPDI [15], instructions are sorted according to
their maximum depths, and the instruction with higher depth is assigned higher
execution priority. In SPS [4], routing distance among instructions is computed
by anchor points, then instructions in the critical path should be optimized for
communication while instructions in non-critical path should be optimized for
execution.

Existing task scheduling mechanisms mainly focus on optimization of com-
munication among tasks to exploit iteration level parallelism, but they fail to
consider the impacts of the critical tasks. Existing instruction mapping algo-
rithms are unable to dynamically track the critical tasks due to they have been
almost no consideration for the possible influence of runtime environment during
execution. Therefore, neither previous task scheduling mechanism nor instruc-
tion mapping algorithm can exploit the all potential performance of the critical
tasks.

7 Conculusion

The critical tasks is the key factor affecting the performance of the program, espe-
cially in dataflow architecture. The reason is that the interaction among tasks is
more frequent and the dynamic condition is more complicated in dataflow archi-
tecture. In this paper, we first put forward a new concept of congested-degree for
measuring the congestion of data in a task. Then we propose a critical task aware
(CTA) scheduling mechanism for dataflow architecture, which is consisted of 2
parts. (1) Elastic handshake mechanism (EHM) allows multiple iterated data
of the same dataflow graph to be executed in parallel with minimal hardware
overhead. (2) A task scheduling mechanism (TSM) tracks the critical tasks and
assigns higher execution priorities for them. The effectiveness of CTA is tested
by 7 HPC+AI workloads, the experimental results show that our mechanism
increases the computational performance by 14%–78%, and increases the power

76 Y. Ou et al.

efficiency by 11%–41% compared with previous task scheduling mechanisms.
Finally, we believe that this study has use for reference meaning to other archi-
tectures which have borrowed dataflow or dynamic task scheduling ideas.

Acknowledgment. This work was supported by the project of the state grid corpo-
ration of China in 2020 “Integration technology research and prototype development
for high end controller chip” under Grant No. 5700-202041264A-0-0-00.

References

1. Akbari, O., Kamal, M., Afzali-Kusha, A., Pedram, M., Shafique, M.: PX-CGRA:
polymorphic approximate coarse-grained reconfigurable architecture. In: 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 413–
418. IEEE (2018)

2. Chen, Y.H., Krishna, T., Emer, J.S., Sze, V.: Eyeriss: an energy-efficient recon-
figurable accelerator for deep convolutional neural networks. IEEE J. Solid-State
Circ. 52(1), 127–138 (2016)

3. Chen, Y.H., Yang, T.J., Emer, J., Sze, V.: Eyeriss v2: a flexible accelerator for
emerging deep neural networks on mobile devices. IEEE J. Emerg. Sel. Top. Circ.
Syst. 9(2), 292–308 (2019)

4. Coons, K.E., Chen, X., Burger, D., McKinley, K.S., Kushwaha, S.K.: A spatial
path scheduling algorithm for edge architectures. ACM SIGOPS Oper. Syst. Rev.
40(5), 129–140 (2006)

5. Dennis, J.B.: First version of a data flow procedure language. In: Robinet, B.
(ed.) Programming Symposium. LNCS, vol. 19, pp. 362–376. Springer, Heidelberg
(1974). https://doi.org/10.1007/3-540-06859-7 145

6. Fan, D., et al.: SmarCO: an efficient many-core processor for high-throughput
applications in datacenters. In: 2018 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA), pp. 596–607. IEEE (2018)

7. Fu, H., et al.: Scaling reverse time migration performance through reconfigurable
dataflow engines. IEEE Micro 34(1), 30–40 (2013)

8. Hiraki, K., Sekiguchi, S., Shimada, T.: Efficient vector processing on a dataflow
supercomputer sigma-1. In: Supercomputing 1988: Proceedings of the 1988
ACM/IEEE Conference on Supercomputing, vol. I, pp. 374–381. IEEE (1988)

9. Hoffmann, H.: Stream algorithms and architecture. Ph.D. thesis, Massachusetts
Institute of Technology (2003)

10. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing
unit. In: Proceedings of the 44th Annual International Symposium on Computer
Architecture, pp. 1–12 (2017)

11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

12. Kyriacou, C., Evripidou, P., Trancoso, P.: Data-driven multithreading using con-
ventional microprocessors. IEEE Trans. Parallel Distrib. Syst. 17(10), 1176–1188
(2006)

13. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program analy-
sis & transformation. In: International Symposium on Code Generation and Opti-
mization, CGO 2004, pp. 75–86. IEEE (2004)

https://doi.org/10.1007/3-540-06859-7_145

CTA: A Critical Task Aware Scheduling Mechanism 77

14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

15. Nagarajan, R., Kushwaha, S.K., Burger, D., McKinley, K.S., Lin, C., Keckler, S.W.:
Static placement, dynamic issue (SPDI) scheduling for edge architectures. In: Pro-
ceedings. 13th International Conference on Parallel Architecture and Compilation
Techniques, PACT 2004, pp. 74–84. IEEE (2004)

16. Oriato, D., Tilbury, S., Marrocu, M., Pusceddu, G.: Acceleration of a meteorologi-
cal limited area model with dataflow engines. In: 2012 Symposium on Application
Accelerators in High Performance Computing, pp. 129–132. IEEE (2012)

17. Oskin, M.H., Swanson, S.J., Eggers, S.J.: Wavescalar architecture having a wave
order memory, uS Patent 7,657,882, 2 February 2010

18. Pratas, F., Oriato, D., Pell, O., Mata, R.A., Sousa, L.: Accelerating the com-
putation of induced dipoles for molecular mechanics with dataflow engines. In:
2013 IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines, pp. 177–180. IEEE (2013)

19. Rahman, M., Venugopal, S., Buyya, R.: A dynamic critical path algorithm for
scheduling scientific workflow applications on global grids. In: Third IEEE Inter-
national Conference on e-Science and Grid Computing (e-Science 2007), pp. 35–42.
IEEE (2007)

20. Sankaralingam, K., et al.: Exploiting ILP, TLP, and DLP with the polymorphous
trips architecture. In: Proceedings of the 30th Annual International Symposium
on Computer Architecture, pp. 422–433. IEEE (2003)

21. Schulz, M.: Extracting critical path graphs from MPI applications. In: 2005 IEEE
International Conference on Cluster Computing, pp. 1–10. IEEE (2005)

22. Son, J.H., Kim, J.S., Kim, M.H.: Extracting the workflow critical path from the
extended well-formed workflow schema. J. Comput. Syst. Sci. 70(1), 86–106 (2005)

23. Son, J.H., Kim, M.H.: Analyzing the critical path for the well-formed workflow
schema. In: Proceedings Seventh International Conference on Database Systems
for Advanced Applications, DASFAA 2001, pp. 146–147. IEEE (2001)

24. Swanson, S., Michelson, K., Schwerin, A., Oskin, M.: WaveScalar. In: Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-
36, pp. 291–302. IEEE (2003)

25. Tan, X., et al.: A pipelining loop optimization method for dataflow architecture.
J. Comput. Sci. Technol. 33(1), 116–130 (2018)

26. Tian, Y., Gu, Y., Ekici, E., Ozguner, F.: Dynamic critical-path task mapping
and scheduling for collaborative in-network processing in multi-hop wireless sen-
sor networks. In: 2006 International Conference on Parallel Processing Workshops
(ICPPW 2006), pp. 8-pp. IEEE (2006)

27. Voitsechov, D., Etsion, Y.: Single-graph multiple flows: energy efficient design alter-
native for GPGPUs. ACM SIGARCH Comput. Archit. News 42(3), 205–216 (2014)

28. Ye, X., Fan, D., Sun, N., Tang, S., Zhang, M., Zhang, H.: SimICT: a fast and flexible
framework for performance and power evaluation of large-scale architecture. In:
International Symposium on Low Power Electronics and Design (ISLPED), pp.
273–278. IEEE (2013)

29. Ye, X., et al.: An efficient dataflow accelerator for scientific applications. Future
Gener. Comput. Syst. 112, 580–588 (2020)

30. Ye, X., et al.: Applying CNN on a scientific application accelerator based on
dataflow architecture. CCF Trans. High Perform. Comput. 1(3–4), 177–195 (2019)

An Adaptive Thread Partitioning
Approach in Speculative Multithreading

Yuxiang Li1,2 , Zhiyong Zhang1,2(B), and Bin Liu3

1 Henan University of Science and Technology, Luoyang 471023, Henan, China
xidianzzy@126.com

2 Henan International Joint Laboratory of Cyberspace Security Applications,
Luoyang 471023, Henan, China

3 Northwest Agriculture and Forestry University, Yangling 471023, China
liubin0929@nwsuaf.edu.cn

http://www.sigdrm.org/~zzhang/

Abstract. Thread partition is a core part of Speculative Multithread-
ing (SpMT) technique. The existing thread partition approaches mostly
adopt one unique thread partitioning scheme for unknown programs,
resulting in high misspeculation ratio, restricting the programs’ speedup
improvement due to inappropriate partitioning schemes. This paper
which introduces an adaptive thread partition approach (AdapTPA),
takes the relationship between program complexity and thread partition-
ing scheme as the research entry point, and uses the irregular programs as
the research carrier, and utilizes formal analysis, probability statistics,
mathematical modeling and simulation experiments to reveal the rule
that program’s characteristics affect speedup performance, and generates
a compound thread partitioning scheme for one program, and selects and
executes the most suitable thread partitioning scheme according to the
runtime context and the program’s complexity, so to achieve the expected
maximum speedups. With the method of path statistics on one program’s
control flow graph, the program’s complexity calculation model is set up;
A candidate thread partitioning scheme set is constructed on the founda-
tion of classical thread partitioning approaches; Using expert knowledge
to guide production rules, a scheme selection mechanism that complies
with program complexity is explored. Compared to the heuristic rules-
based (HR-based) thread partitioning method, the experiment results
show that AdapTPA delivers an average 18.24% performance improve-
ment.

Keywords: Thread partition approach · Speculative multithreading ·
Expert knowledge

1 Introduction

Thread-Level Speculation (TLS), which is a speculative multi-threading tech-
nique [1,2], allows data execution between concurrent units to be aggressively
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 78–91, 2020.
https://doi.org/10.1007/978-3-030-60245-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_6&domain=pdf
http://orcid.org/0000-0002-3758-7162
https://doi.org/10.1007/978-3-030-60245-1_6

An Adaptive Thread Partitioning Approach in Speculative Multithreading 79

executed in parallel, overcoming the weakness that the traditional paralleliza-
tion methods cannot effectively eliminate thread-level fuzzy dependence. Thread
partitioning is a key step in TLS, as it takes charge of the insertion of thread
partitioning statements. It is the core of programs’ speculative parallelization,
which directly affects the speedup performance [3]. Therefore, the research on
thread partitioning approach is urgent. The existing thread partition methods
mainly include: thread partition method based on heuristic rules [4] and thread
partition methods based on machine learning [5], and et al. [6–10]. The former
determines the granularity of threads generated after the program is partitioned,
the data dependency between threads, and the spawning distance according to
heuristic rules, so as to determine the partition flags ((spawning point, sp) and
(control quasi-independent point, cqip)); The latter uses machine learning to
learn the knowledge of thread partition in the sample set, and predicts its par-
tition scheme based on the characteristics of the new input program. However,
these two types of thread partition methods consider one program as a parti-
tion unit. A unified thread partition scheme is used for the procedure in the
program. The lack of a personalized thread partition scheme for the procedures
in the program results in the incomplete parallelism of some procedures in the
program, resulting that the performance of the program after parallelization can
not be maximized. Therefore, it is of great significance to carry out thread par-
tition with the procedures in the program as the object, which can overcome the
shortcomings of traditional thread partition methods.

Based on the previous work, this paper intends to use an adaptive mechanism
to adaptively select the most suitable thread partitioning scheme based on the
program features and context, which can ensure the maximum performance of
the serialization program after parallelization, and can provide a new method
for multi-core processor design.

The remaining parts of this paper are organized as follows. In Sect. 2, we
first briefly present the motivation of AdapTPA; Sect. 3 presents the overall
framework of AdapTPA; Implementation of AdaTPA is shown in Sect. 4; Sect. 5
presents experiment and analysis; Sect. 6 shows conclusion and future work.

2 Motivation of AdapTPA

This paper brings an adaptive mechanism, proposing an adaptive thread
partition ing approach (AdapTPA) for irregular programs, aiming at achieving
the overall research goal of maximizing the speedup performance, and providing
the possibility for the wide application and healthy development of emerging
parallel technologies.

3 Overall Framework

The research framework to be adopted is shown in Fig. 1. The research frame-
work regards the irregular serial program as the input, and establishes the pro-
gram complexity calculation model, the generation of candidate thread partition

80 Y. Li et al.

scheme, and the expert knowledge-based partition scheme selection as the main
research points, and selects the most suitable thread partitioning scheme to per-
form the thread partition. The results are run on Prophet simulator to obtain
speedups and programs’ results.

Fig. 1. Overall research framework. The framework includes three main parts: gener-
ation of candidate partition schemes, building of complexity model, and selection of
partition schemes

3.1 Feature Extraction

Conventionally, compiler researchers have used fixed-length representations of
the program

′
s source code features or intermediate representations [11]. They

are extracted from programs and collected during compilation time. Afterwards,
we apply graph-based features to build WCFG for GbA. The feature graphs
are generated from profiling pass, which extracts static and dynamic features.
Figure 4 gives a simple description of feature extraction. The input programs are
Olden benchmarks [12]. Thread granularity, load balance, data dependence, and
control dependence are the main influence factors on program speedup. Hence,

An Adaptive Thread Partitioning Approach in Speculative Multithreading 81

we take dynamic instruction number, DDD, DDC, loop branch probability, and
critical path into account and regard them as program features. The specific
features and descriptions are given in Table 1.

Table 1. Extracted features and descriptions

Features Descriptions

Instruction number Actual number of instructions in a basic block

DDC Data dependence count between two basic blocks

DDD Data dependence distance between two basic blocks

Loop branch probability Probability for loop to jump to testing part of code

Branch probability Probability for control flow to pass through a branch

3.2 Knowledge Expression

A

B

C

GD E

F

H

A

B

C

GD E

F

H

1.0

0.8 0.2

1.0

1.0

1.0

0.6

0.4

A

B

GI

H

1.0

0.8 0.2

.

(a) (b) (c)

1.0
1.0 1.0

fuse(C,D,F,E)

Fig. 2. Transformation from CFG (a) to WCFG (b), and finally to SCFG (c)

Deriving from the same input, train set and validation set are divided. Firstly,
we use partition compiler (in the Prophet) to generate control flow graph (CFG)
after an intermediate pass. Then, profiled feature information generated by pro-
filing model are annotated to the CFG with a structural analysis method, so to
generate WCFG. The weights of each edge are denoted with the relative branch
probabilities. Then, a structural analysis traverses the CFGs of programs to
WCFGs and also identifies loop regions. Then, the loop regions are induced into
a super node with one entry and one exit node and WCFG traverses to super
control flow graph (SCFG), where loop region is represented as an abstract node.
Each node in the SCFG is either basic block or super basic block, which repre-
sents loop region. Figure2(a) shows a CFG. After structural analysis as well as
loop region induction, basic blocks: C, D, F and E in the dashed box of Fig. 2(b)

82 Y. Li et al.

Table 2. Heuristic rules for thread partition

1.SP can appear anywhere in programs and behind a function call instruction as far
as possible. In non-loop region, CQIP is located in the beginning of a basic block.
CQIP is located in front of loop branch instructions in the last basic block
in loop regions.

2.SP-CQIP pairs are located within the same loop or function. The number of dynamic
instructions from SP to CQIP is between THREAD LOWER LIMIT and
THREAD UPPER LIMIT.

3.Between two successive candidate threads, spawning distance is bigger than minimum
DIS LOWER LIMIT.

4.Data dependence between two consecutive candidate threads is less than threshold
DEP THRESHOLD.

5.Between SP and CQIP, the number of function call instructions is less than the
threshold CALL LOWER.

are induced into a super basic block I (shown in Fig. 2(c)). AdapTPA represents
the desired thread partition scheme with a vector H=[H1, H2, H3, H4, H5]
and the sample partition scheme with hi = [hi1, hi2, hi3, hi4, hi5](i ∈N), which
all include five thresholds: the upper limit of thread granularity (ULoTG), the
lower limit of thread granularity (LLoTG), data dependence count (DDC), the
upper limit of spawning distance (ULoSD), and lower limit of spawning distance
(LLoSD). As these five parameters determine the effectiveness of thread parti-
tion, and the partition scheme is represented by [ULoTG, LLoTG, DDC,ULoSD,
LLoSD]. For example, one partition scheme could be [50, 10, 18, 30, 20]. These
values indicate that during thread partition thread granularity is set from 10 to
50, and data dependence count is less than 18, and spawning distance ranges
from 20 to 30.

A novel research result is successful construction of samples [13]. Based on
generated samples, we obtain the partition scheme hi(i ∈N) of every sample by
means of mathematical statistics. Although we use a graph to denote every sam-
ple, the node in the graph is represented by the first part of T = {X, H }, where
X represents program features, and H denotes the optimal partition scheme,
which are composed by five partition thresholds, namely ULoTG, LLoTG, DDC,
ULoSD, LLoSD.

4 Implementation of AdapTPA

4.1 Building of Complexity Calculation Model

There are many program features that affect thread partitioning, such as data
dependency, control dependency, number of branches, number of basic blocks,
number of average dynamic instructions, nesting level of loop structure, number
of procedure calls, and so on. The values of these features reflect the complexity
of the program. Most of the existing thread partitioning methods can not fully
consider the influence of program complexity on thread partitioning. Only the

An Adaptive Thread Partitioning Approach in Speculative Multithreading 83

program features are selected as the input of the thread partitioning method. It
is easy to cause the program features selected by different thread partitioning
methods to be inconsistent, and the generated thread partitioning scheme is not
accurate enough.

In the proposed program’s complexity calculation model, the formal expres-
sion is firstly constructed, and the CFG diagram of the program is constructed
with the basic block as the analysis unit. The feature values obtained by the
program analysis are added to the CFG diagrams in the form of annotations
to form the weighted control flow (WCFG); based on probability statistics and
graph traversal, the complexity (sub-complexity) of possible paths on WCFG
is calculated; finally, the overall complexity of the program is obtained by inte-
grating sub-complexities. Figure 3 shows the flow chart for program complexity
calculation, and Table 3 shows the pseudocode of complexity calculation.

Fig. 3. Flow diagram of complexity calculation. The graph P is firstly represented by
G(P), the complexity of different part of P is separately calculated, then aggregated
into Comp

In Fig. 3, P represents the input irregular serial program, G(P) stands for
WCFG, F1∼Fn (n ∈N) stand for program features, and f1()∼fn() (n ∈ N) stand
for transfer function, Comp1()∼Compn() (n ∈ N) represent the complexity of
each path, and Comp represents the total complexity of P. In the model, first,
the unknown program P is formalized and converted into WCFG, i.e. G(P);
Secondly, feature extraction is performed on each possible path (from the head
node to the tail node) in G(P) respectively, using F1∼Fn (n ∈N); Thirdly, using
the conversion function f1()∼fn()(n ∈N) to achieve the mapping of eigenvalues
to complexity, for example, the complexity of basic blocks x is 0.01 × x, the
complexity of loops y is 0.2 × y, etc; then, the complexity Comp1()∼Compn() of
each path in G(P) is calculated separately; Finally, for each path, the complexity
is summarized to get the complexity of the program P.

84 Y. Li et al.

Table 3. Computation of complexity

Input: irregular program P

Output: Complexity of program P

G(P) = formalize(P);
Extract and express the characteristics of program

′
s the ith possible path (possibility

Pi in Fig.4) with F1∼Fn;
Set f1()∼fn() to be n transfer functions;
Set W1∼Wn to be n weight parameters for F1∼Fn;
Use function Sub complexity(f1,f2,f3,...,fn) to compute the complexity of every
possible path;
According to every Sub complexity, compute the final complexity computation with
function Comp = Complexity(Sub complexity1,Sub complexity2,...,Sub complexityn);

4.2 Building of Candidate Thread Partition Scheme Set

The candidate thread partitioning scheme set is constructed with the method of
fusing program context and program features. Firstly, the initial candidate set
is constructed based on the program features. Based on this, the program con-
text parameter values are used to filter the initial candidate thread partitioning
scheme set, so to generate the final scheme set. Figure 4 shows the construction
process of the candidate thread partitioning scheme set.

Fig. 4. Flow diagram of building candidate thread partition scheme set. The graphs of
input programs are firstly formalized, then generated into different partition schemes

In Fig. 4, P stands for an irregular serial program, F1∼Fn stand for program
feature, Formal(P) stands for formal expression of P, M1∼Mn(n ∈ N) stand for
n classical thread partitioning approaches, and Schem1∼Schemn stand for n
thread partitioning schemes. The number of thread partition method is set as fol-
lows: HR-based thread partition method (M1) is numbered 1, ML-based thread
partition method (M2) is numbered 2, and the critical path-based thread par-
tition method(M3) is numbered 3, the full path-based thread partition method
(M4) is numbered 4, the hybrid thread partition method (M5) is numbered

An Adaptive Thread Partitioning Approach in Speculative Multithreading 85

5, and so on. The path numbers are set as follows: the critical path number
is numbered 1, and the other non-critical path numbers are 2∼n. The thread
partition scheme consists of five main parameters: number of thread partition
method, path number and thread partition algorithm (the five parameters are:
Upper Limit of Spawning Distance (ULoSD), Lower Limit of Spawning Distance,
(LLoSD), Data Dependence Count (DDC), Upper Limit of Thread Granularity
(ULoTG), and Lower Limit of Thread Granularity (LLoTG)). By introducing
the context parameter δ1∼δn(n ∈ N), the thread partitioning method in this
topic is context-aware, and the candidate thread partitioning scheme set can
also capture the change of the program state.

4.3 Construction of Thread Partitioning Scheme Selection
Mechanism in Line with Program Complexity

After calculating the program complexity and constructing the candidate thread
partitioning scheme set respectively in the technical routes (1) and (2), based
on the expert knowledge, the mapping rule set of scheme selection of ”program
complexity->thread partitioning scheme” is established; according to mapping
rule and program complexity, execution context, the most suitable thread par-
titioning scheme in the candidate set is selected. Figure 5 shows the flow chart
of thread partitioning scheme selection.

Programs’ Characteristics

Complexity
Calculation Model

Complexity

Phase of Complexity Calculation

Rule Set

Candidate Partition Scheme Set

Irregular Serial Programs

Phase of Partition Scheme Selection

Adaptive Selection

Expert Knowledge Base

Partition Scheme

Is Partition Scheme Rational?

Yes

No

Fig. 5. Flow graph of thread partition scheme selection. The complexity of input pro-
gram is firstly calculated, then partition schemes are generated by using expert knowl-
edge

Rule sets are used to store expert knowledge for reasoning. In the rule set,
the expert knowledge of the thread partitioning scheme selection mechanism is
represented by a production rule (also called a mapping rule). The production

86 Y. Li et al.

rule divides the knowledge representation into two parts: premise and conclu-
sion. The general form of expert knowledge production rule representation is IF
<condition>, THEN <conclusion>, for example:

1. IF <Comp ∈ [0.8, 1.0]>, THEN <select Schem1
′
>;

2. IF <Comp ∈ [0.6, 0.8)>, THEN <select Schem2
′
>;

3. IF <Comp ∈ [0.4, 0.6)>, THEN <select Schem3
′
>;

4. IF <Comp ∈ [0.2, 0.4)>, THEN <select Schem4
′
>;

5. IF <Comp ∈ [0.0, 0.2)>, THEN <select Schem5
′
>;

where, Schem1
′∼Schem5

′
is a partitioning scheme selected by the candidate

thread partitioning scheme generated by the technical route (2), which is deter-
mined by the complexity and rules of the program. Some examples of generating
mapping rules are given above.

5 Experiment and Analysis

In this section, the experimental setup is introduced, to provide details of the
Prophet simulator as well as used benchmarks during the evaluation. In the last,
we present the results’ analysis and discussions.

5.1 Configuration of Experiment

We perform the implementation of the execution model as well as thread parti-
tion algorithm on the platform: Prophet (its module chart is shown in Fig. 6),
which is based on SUIF/MACHSUIF [14]. At the level of SUIF

′
s intermediate

representation (IR), we complete the compiler analysis. The profiling information
is produced from SUIF-IR in the form of annotation by profiler of Prophet. The
SUIF programs which are interpreted and executed by profiler provide informa-
tion, including dynamic instruction number, prediction of control flow path, and
prediction of data values. The Prophet simulator can simulate 1∼64 pipelined
mips-based R3000 processing elements (PE) and we run ProCAT with 4 PEs
or 8 PEs. This simulating process is an execution-driven simulation, which per-
forms the execution of binaries generated by Prophet compiler. Every PE fetches
and executes instructions from one thread, and orderly issues 4 instructions per
cycle. Every PE owns a private multiversioned L1 cache, which has latency of
2 cycles. Speculative results of PEs are buffered and cache communication is
performed via multiversioned L1 caches. With a snoopy bus, a write-back L2
cache is shared by the 8 PEs. The parameter configuration of simulator is shown
in Table 4.

Olden benchmarks [15] and SPEC2000 [16] are used to evaluate ProCTA. As
a popular benchmarks of studying irregular programs, Olden benchmarks process

An Adaptive Thread Partitioning Approach in Speculative Multithreading 87

Programs
SUIF

IR
Threaded
Program

MIPS
Program

Profile
Information

SUIF
IR

Repeated Estimation

Threaded
Program

Fig. 6. Module chart of prophet. Programs are firstly transformed into MIPS codes,
then partitioned into threaded programs, then run on Prophet simulator

complex control flows, pointer-intensive, as well as irregular data structures. The
benchmarks own dynamic structures, e.g., trees, lists, and DAGs, et al, which
are all difficult to get parallelized using conventional approaches.

Table 4. Configuration of prophet simulation (Per PE)

Parameters of Configuration Value
Function Units 4 int ALU (1 cycle)

4 int Mult/Div (3/12 Cycles)
4 fp ALU (2 Cycles)
4 fp Mult/Div (4/12 Cycles)

Spec. Buffer Size Fully Associative 2KB (1 Cycle)
Bandwidth for Fetch,In-order Issue 4 Instructions
and Commit Pipeline Stages Fetch/Issue/Ex/WB/Commit
Architectural Registers 32 int and 32 fp
L1-Cache(Multiversioned) 4-Way Associative 64KB (32B/Block)

Hit Latency 2
LRU Replacement

L2-Cache 4-Way Associative 2MB (64B/block)
5 hit latency, 80 cycles(miss)
LRU replacement

Spawn Overhead 5 Cycles
Validation Overhead 15 Cycles
Local Register 1 Cycle
Commit Overhead 5 Cycles

5k
5.0dlohserhTytiralimiS

AdapTPA makes use of one leave-one-out cross-validation method to perform
its results’ evaluation. It means that the program which is to be partitioned is
firstly moved from training set, and based on the left programs a prediction
model is built. The method has an advantage that the prediction model never
sees the programs to be partitioned before. The partition schemes for the left pro-
grams are built by applying the prediction model. Every program is performed
with this process in turn.

88 Y. Li et al.

The paper uses multi-version caches to solve memory dependence and uses
register files to solve register data dependence.

5.2 Experimental Configuration

In order to show the effectiveness of AdapTPA, this paper makes a comparison
between AdapTPA and HR-based thread partition. Olden benchmarks [17] which
have complex data dependence and control dependence among basic blocks, are
selected as the inputting programs. When we analyze the experimental results,
we only compare the performance of the original HR-based thread partition
approach and AdapTPA, and then we will analyze the experimental results, in
which we only select several program analysis in the Olden benchmarks.

0

0.5

1

1.5

2

2.5

3

3.5

bh em3d health perimeter voronoi treeadd power tsp mst bisort Mean

HR-based

AdapTPA

Olden benchmark

Sp
ee

du
ps

Fig. 7. Comparison diagram of speedups for olden benchmarks

The main data structure in program bh is a heterogeneous octree, which has
very complex data dependence. Its parallelisms exist in and out of loop struc-
tures. For the heuristic rules, the same partition scheme is used to partition all
the procedures in the bh program, and for the AdapTPA, the optimal partition
scheme matching with the characteristic of every procedure in the program can
be selected, and then the partition scheme is applied to the threads. However,
due to the existence of more dependence, AdapTPA gains 19.54% performance
improvement.

The main data structure of the program em3d is a single linked list, in which
the loop structure occupies most of the total, and all the parallelism of program
em3d comes mainly from the loop structure. Although AdapTPA can obtain the

An Adaptive Thread Partitioning Approach in Speculative Multithreading 89

Fig. 8. Speedup comparison diagram of olden and SPEC2000 benchmarks over different
PEs

partition scheme suitable for its own characteristics, the characteristic extrac-
tion of the loop is not enough. Finally, compared with the HR-based partition
approach, 13.17% performance improvement is achieved.

The main data structure of the program health is a two-way linked list, which
contains both loop and nonloop structure. In health, the loop structure is the
main source of parallelism, and compared with the HR-based partition approach,
you can obtain the partition scheme of health suitable for its characteristics.
During the partition of loop partition, although the loops occupy most of the
program, it has a large loop body and simple data dependence, so health gets
18.27% speedup improvement.

The main data structure of program perimeter is four fork tree, the program
primarily contains loop structure, rather than nonloop structure. The paral-
lelism of program mainly comes from the decomposition of function into multi-
threading. Because it is difficult to predict the return value of the function, the
acceleration effect of these two approaches are not good. Compared with HR-
based partition approach, AdapTPA selects the suitable partition scheme in line
with its own characteristics, and the partition scheme is not affected by loops.
The assessment models adopted by nonloops are used to find the better thread
partition boundary for the current program, so the final execution performance
improves 18.23%.

The main data structure of program treeadd is two fork tree, which is a simple
program structure. In this structure, only four procedures are included, and the
program does not contain any loop structure, so the parallelism comes from
the nonloops. AdapTPA can select the appropriate partition scheme for every
procedure, but there are many recursive function calls and data dependence in
treeadd, and finally the program achieves 21.19% performance improvement.

The main data structure of the program bisort is two fork tree. Through the
analysis of the source code, we can see that there are only three loops in the
program, and only two loops are executed, and the granularity of the loop is

90 Y. Li et al.

relatively small. Then the parallelism of program is mainly from the nonloops,
although the program has a certain number of data dependence, but mining
the potential parallelism from the application program can be performed based
on the AdapTPA in every procedure. AdapTPA selects the suitable partition
scheme for every procedure, finally obtains 27.47% performance improvement.

Figure 7 shows the speedup comparisons between HR-based and AdapTPA.
Seen from Fig. 7, the speedups obtained by AdapTPA in Olden benchmarks have
a certain improvement than the speedups gotten by using HR-based thread
partition approach. However, different programs have obvious differences in
the speedup improvement. Overall, the HR-based approach obtains an average
speedup of 1.725, while AdapTPA gets an average speedup of 2.040, so the aver-
age speedup improves by 18.24%, indicating that AdapTPA has a good effect
on the program partition. Figure 8 shows the speedups of some SPEC2000 and
Olden benchmarks on different number of cores.

6 Conclusion and Future Work

Based on the Prophet system, this paper proposes an Adaptive Thread Partition
Approach (AdapTPA), and brings an adaption mechanism into thread parti-
tion. According to programs’ characteristics, the complexity of unknown pro-
gram is calculated, candidate thread partition scheme set is built, and the most
suitable partition scheme is selected in accordance with programs’ character-
istics and running context. Finally, the program is executed on the Prophet
simulator to verify its execution performance. Thread Level Speculation has
been evolving many years, showing great advantages in making use of multicore
resources. AdapTPA is proposed to handle the issue that conventional parti-
tioning approaches can not generate the best partitioning scheme for unknown
programs. The trend of adaptive thread partition falls on two parts: 1. more
detailed candidate thread partitioning schemes are designed; 2. adaptive thread
partition is implemented on hardwares.

Acknowledgement. We thank all members of Henan Joint International Research
Laboratory of Cyberspace Security Applications for their great support, and give our
best hope to them for their collaboration. We also thank reviewers for their care-
ful comments and suggestions. The work was sponsored by National Natural Science
Foundation of China Grant No. 61972133, Project of Leading Talents in Science and
Technology Innovation for Thousands of People Plan in Henan Province Grant No.
204200510021, Henan Province Key Scientific and Technological Projects Grant No.
192102210130 and No. 202102210162, and Key Scientific Research Projects of Henan
Province Universities Grant No. 19B520008.

References

1. Estebanez, A., Llanos, D.R., Gonzalez-Escribano, A.: A survey on thread-level
speculation techniques. ACM Comput. Surv. (CSUR) 49(2), 22 (2016)

An Adaptive Thread Partitioning Approach in Speculative Multithreading 91

2. Hammacher, C., Streit, K., Zeller, A., Hack, S.: Thread-level speculation with
kernel support (2016)

3. Yu-Xiang, L.I., Zhao, Y.L., Liu, B., Shuo, J.I.: Optimization of thread partitioning
parameters in speculative multithreading based on artificial immune algorithm.
Front. Inf. Technol. Electron. Eng. 16(3), 205–216 (2015)

4. Madriles, C., et al.: Mitosis: a speculative multithreaded processor based on pre-
computation slices. IEEE Trans. Parallel Distrib. Syst. 19(7), 914–925 (2008)

5. Li, Y., Zhao, Y., Wu, Q.: GbA: a graph-based thread partition approach in spec-
ulative multithreading. Concurrency Comput. Practice Experience 29(21), e4294
(2017)

6. Qiu, M., Sha, E.H.M.: Cost minimization while satisfying hard/soft timing con-
straints for heterogeneous embedded systems. ACM Trans. Des. Autom. Electron.
Syst. 14(2), 25 (2009)

7. Qiu, M., Dai, W., Vasilakos, A.V.: Loop parallelism maximization for multimedia
data processing in mobile vehicular clouds. IEEE Trans. Cloud Comput. 7(1),
250–258 (2019)

8. Qiu, H., Noura, H., Qiu, M., Ming, Z., Memmi, G.: A user-centric data protection
method for cloud storage based on invertible DWT. IEEE Trans. Cloud Comput.
1 (2019)

9. Li, J., Ming, Z., Qiu, M., Quan, G., Qin, X., Chen, T.: Resource allocation robust-
ness in multi-core embedded systems with inaccurate information. J. Syst. Archit.
57(9), 840–849 (2011)

10. Qiu, M., Chen, Z., Niu, J., Zong, Z., Quan, G., Qin, X., Yang, L.T.: Data allocation
for hybrid memory with genetic algorithm. IEEE Trans. Emerg. Topics Comput.
3(4), 544–555 (2015)

11. Monsifrot, A., Bodin, F., Quiniou, R.: A machine learning approach to automatic
production of compiler heuristics. In: Scott, D. (ed.) AIMSA 2002. LNCS (LNAI),
vol. 2443, pp. 41–50. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
46148-5 5

12. Olden, B.: benchmark suite v (2010)
13. Li, Y., Zhao, Y., Sun, L., Shen, M.: A hybrid sample generation approach in specu-

lative multithreading. J. Supercomput. 75(8), 4193–4225 (2017). https://doi.org/
10.1007/s11227-017-2118-3

14. Wilson, R.P., et al.: SUIF: an infrastructure for research on parallelizing and opti-
mizing compilers. ACM Sigplan Notices 29(12), 31–37 (1994)

15. Rogers, A., Carlisle, M.C., Reppy, J.H., Hendren, L.J.: Supporting dynamic data
structures on distributed-memory machines. ACM Trans. Program. Lang. Syst.
(TOPLAS) 17(2), 233–263 (1995)

16. Prabhu, M.K., Olukotun, K.: Exposing speculative thread parallelism in spec2000.
In: Proceedings of the Tenth ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming, pp. 142–152. ACM (2005)

17. Carlisle, M.C.: Olden: parallelizing programs with dynamic data structures on
distributed-memory machines. Ph.D. dissertation, Princeton University (1996)

https://doi.org/10.1007/3-540-46148-5_5
https://doi.org/10.1007/3-540-46148-5_5
https://doi.org/10.1007/s11227-017-2118-3
https://doi.org/10.1007/s11227-017-2118-3

PMC-Based Dynamic Adaptive CPU
and DRAM Power Modeling

Yunfang Zhang(B) , Yong Dong, Juan Chen, Zhixin Ou, and Yuan Yuan

National University of Defense Technology, Changsha, Hunan, China
zhangyunfang1995@163.com

https://www.nudt.edu.cn/

Abstract. The problem of high power consumption has become one of
the main obstacles that affect the reliability, stability, and performance of
high-performance computers. How to get the power of CPU and memory
instantaneously and accurately is an important basis for evaluating their
power’s optimization methods. At present, much work has been done
to model CPU and memory power using the performance monitoring
counter (PMC). Most of these models are static, which fit and estimate
the power of the corresponding CPU or memory by collecting and count-
ing key performance monitoring events. However, when the performance
behavior of the application changes dramatically with time, the accu-
racy of the real-time power measurement values will decline, because
the performance monitoring values used in the power model can not fit
the power values well in a long time. In order to solve this problem, we
first analyze the changing features of application performance indicators
when CPU or memory power changes, especially the correlation between
PMC events and CPU and memory power, and then propose a dynamic
adaptive power modeling method (DAPM) based on PMC events using
dynamic adaptive technology, which is used for real-time power measure-
ment of CPU and memory. The DAPM can realize the adaptive selec-
tion/matching of the model by introducing the power measurement data
at the node level, and enhance the real-time power measurement accuracy
by dynamically expanding the model library. Besides, the running cost
of the DAPM is low. Compared with other PMC power models, DAPM
can achieve lower CPU and DRAM power error rates. The error rates
of three conventional PMC power models are Isci’s model 7%(CPU),
Singh’s 7.2%(CPU), and Bircher’s 6.7%(CPU) and 8.8%(DRAM), while
the CPU error rate of DAPM is less than 2%, and the DRAM error rate
is less than 5.5%.

Keywords: PMC · CPU power · DRAM power · Adaptive · Dynamic
modeling · Power estimation

1 Introduction

Power consumption has become a critical bottleneck to improve the computer’s
performance and an essential factor to affect the reliability and stability of
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 92–111, 2020.
https://doi.org/10.1007/978-3-030-60245-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_7&domain=pdf
http://orcid.org/0000-0001-8697-4014
https://doi.org/10.1007/978-3-030-60245-1_7

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 93

the system. CPU and memory are important components in computing nodes.
There are a lot of power optimization methods for CPU and memory [5,8–
10,17,18,21,24,28,39]. Power has become an important factor that affects the
effect of CPU and memory power optimization to provide a high-precision and
low overhead power measurement method. However, it is difficult to get the real-
time power of CPU and memory accurately. The existing power measurement
methods based on hardware and software models have problems. These prob-
lems lead to the high cost and low accuracy of the current power measurement
technology, which affects the optimization method based on power measurement.
Our work is to solve these problems by introducing a dynamic adaptive power
modeling (DAPM) method.

At present, there are many hardware-based power measurement methods.
Although these methods can obtain very accurate real-time power value, the
deployment of power measurement instruments is complicated and sometimes
limited by the actual system conditions. In general, the power monitor can be
deployed on the mainboard to measure the current and voltage related to CPU
and memory components, to obtain the real-time power value. When the monitor
is deployed on the mainboard, a unique circuit design is often needed for the
mainboard, which costs a lot. At the same time, it is difficult to use this method
to deploy power monitoring for the running system.

Due to the complexity of the actual deployment of power measurement equip-
ment in the system, some CPU manufacturers choose to provide users with some
tools to help them obtain the powers of CPU and memory in real-time. It mainly
uses some built-in power measurement interfaces to provide users with standard-
ized interfaces to obtain power values, such as Intel’s Running Average Power
Limit (RAPL) [14], AMD’s power management system [1], and so on. Although
the real-time power measurement accuracy of such tools is often high that RAPL
can get a power value every 1ms, but there is a big problem of running over-
head. Moreover, the corresponding power management system is only applicable
to the specified processor model. For example, RAPL can only be used for Intel’s
processor.

A more general approach is to model CPU and memory power. It is widely
used to build the power model of CPU and memory based on PMC events.
The real-time power value is obtained through the power model. At present, the
common power models established by using performance monitoring counter
(PMC) mainly include linear models [2,3,6,7,11,16,20,22,27], nonlinear models
[4,13,30], artificial neural network algorithm models [31,33,34] et al. Once these
models are established, the parameters are fixed without updating and adjusting,
so the accuracy of the model depends on the data samples used to build the model
to a large extent, which brings challenges to the accurate power measurement of
applications with substantial changes in features.

The diversity of program behavior and the big fluctuation of real-time
changes often significantly impact the accuracy of power measurement. Figure 1
gives a typical example. This example uses Isci’s model [16] to measure the
power of the twolf program in the SPEC test set. Figure 1(a) is the result of

94 Y. Zhang et al.

literature [16]. Figure 1(b) is on the platform Intel Xeon 2660 E5. The results
of the above two results show that the program’s behavior changes much, and
the power model is difficult to capture the large fluctuation of the performance
value accurately, so the accuracy of the power model is not high. In terms of the
measurement accuracy of several more power models, the measurement errors
of CPU power modeling obtained in [4,16,30] are all about 6% to 7%, and the
measurement error of memory power obtained in the [4] is larger, at 8%. The
measurement error of CPU power from 6% to 7% is sometimes catastrophic for
evaluating optimization methods.

Time (s)

(a) Isci’ model with 7% difference ratio

Time (s)

(b) Reproduction test with 6% difference ratio

Fig. 1. The power of twolf program in the reproduction of Isci’s model

How to make our real-time power adapt to the diversity of program behav-
ior and automatically match the large floating changes of program behavior in
real-time are the problems to be solved to improve the power measurement accu-
racy. Dynamic adaptive technology is one of the effective methods to solve this
problem. Dynamic adaptive technology has been widely used in many similar
scenes. For example, Widyawan et al. [35] proposed a dynamic template adap-
tive matching algorithm to improve the accuracy of reference picture motion
detection. Khavari et al. [19] similar proposed a real-time dynamic selection data
compression algorithm to deal with the diversity of communication data modes
between GPUs. Shiyou Qian et al. [26] similar proposed an adaptive dynamic
script matching algorithm to improve the availability and efficiency of content-
based publish/subscribe system. The above examples provide a way to solve the
problem of power measurement accuracy by using dynamic adaptive technology.
There is little research on the application of dynamic adaptive technology in
power modeling and real-time monitoring.

We apply dynamic adaptive technology to improve the accuracy of power
measurement. The basic idea is as follows: the diversity of program behavior
is reflected in the program is divided into calculation-intensive and memory
intensive. In the calculation intensive program, it is often necessary to consider
the impact of different operation instruction types on the power of CPU and

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 95

memory. However, in memory-intensive programs, the impact of cache failure
on power is far more significant than that of CPU instruction type difference.
By establishing the single models to distinguish different program types, it can
better adapt to the diversity of program behavior changes and improve the
accuracy of power measurement in the local range. Furthermore, the dynamic
adaptive method is used to achieve the automatic matching of the single models
with different program features, and improve the overall power measurement
accuracy. Based on the above basic ideas, the main steps of our method are: First,
to establish a large number of single models (mainly linear models with fewer
parameters), which are applied to single programs’ behavior features. Second,
we judge the behavior features of the current program regularly in running the
program and select the power model suitable for the features of the current
program from many single models that have been established.

There are many difficulties in the application of the dynamic adaptive algo-
rithm in power modeling. First, the program’s features are complex and diverse,
and there is no unified standard for its detailed classification. Any new program
may introduce a new program feature. Therefore, we do not have a fixed set of
models to choose from but need to build and expand the optional model library
dynamically. Second, there are no clear indicators of program features for com-
parison and matching. It is difficult to judge whether a model is suitable for
the current program features without comparing the actual power measurement
results. Finally, compared with the static power model, the dynamic adaptive
model will increase the system’s overhead to a certain extent. We need to reduce
the cost of the method to an acceptable level.

Because of the above difficulties, we propose an adaptive dynamic selection
method to achieve high-precision power measurement. The main contributions
of this paper are as follows:

– In this paper, we propose an adaptive dynamic power modeling method and
build a dynamically expandable local model library which makes the dynamic
model can contain a large number of local models suitable for different types
of program features.

– We realized the accurate matching of program behavior features and local
model by introducing node-level power data, and prove that the accuracy of
dynamic selection model is high, the average error of CPU power in HPCC
test set is within 2%, and the average error of memory power is within 5.5%
through experiments.

– We analyzed the overhead of the dynamic selection power model by exper-
iment, and it is proved that the online operation of this method has little
effect on the computer’s performance.

2 Related Work

As early as 2003, Canturk Isci and Margaret Martonosi [16] proposed a power
model based on performance counters. They take Intel Pentium 4 CPU as the

96 Y. Zhang et al.

experimental object and subdivide it into 22 more fine-grained components, such
as bus controller, all the caches, computing units, etc. They use more than ten
different PMCs to build a power model for each component and get the total CPU
power by adding up the output of all these models. In their paper, they claim
that the average error of the model is 3.5W. Considering the typical power of the
CPU in the experimental results is about 50W, the relative error is 7%. Isci’s
work only involves CPU power modeling, no memory, and other components.
Rivoire et al. [29] analyzed the trade-off between the complexity and accuracy
of PMCs based power models, as well as the limitations of various models. Their
experimental results show that the average error of the general power model is
about 5%. Karan Singh et al. [30] established a segmented CPU power model
with four kinds of PMCs. When the PMC values are small, they replace the
model’s parameters with their logarithms and give a set of different coefficients.
The error of this model is 7.2% under SPEC 2006 test set. Michael D. Powell
et al. [25] established a Common Activity-based Model for Power (CAMP) model
through eleven PMCs, with the final average error of 8%.

All of the above models are limited to the estimation of CPU power, while
the research and modeling of memory and other components are relatively few.
Bircher and John [4] built a power model for the whole computer system in their
work. They divided the computer into six parts, including CPU and memory,
and built a model for each part. They also use a dozen different PMCs. The
average error of the model is 6.67% for CPU and 8.80% for memory. Except for
this, we did not find any model to calculate the memory power directly. Some
other models analyze the power of memory, but only use it as a part of a higher-
level power monitoring system, and do not get the fine-grained power value. For
example, in the model established by Robert Basmadjian et al. [2] for servers
in the data center, power models have been established for CPU, memory, disk,
and even fan in different types of servers. These models are quite rough and
are used as part of the whole server power model, and they cannot accurately
estimate component level power.

Also, many power models are not based on PMCs. These models are often
used in large-scale computing centers, data centers, cloud servers, and others,
which are similar to the application scenarios in this paper. Guo Ming Tang et al.
[32] proposed a method to obtain the power of each server by decomposing the
total power of the data center based on the state values of each server, such as
CPU utilization, memory utilization, and other information. The claimed error
is within 5%. However, their power decomposition granularity is only at the
server level, not reach the component level. Besides, in their Blue Gene computer
system, IBM acquires power through the deployment of hardware monitoring
[40]. These methods have high costs and limited applications.

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 97

3 Methodology

3.1 Overview

In this paper, a PMC based, dynamic adaptive power modeling method (DAPM)
is proposed to measure the power of CPU and memory. The basic idea of DAPM
is to automatically select a local model that adapts to the current program
features in the process of the program running.

As shown in Fig. 2(a), the DAPM method mainly includes the following four
functional modules:

– local model library. It is used to store all alternative local models. The local
model library will update dynamically with the running of the system.

– Model Constructor. It is used to initialize the local model library, build a new
local model, and update the local model library.

– Automatic adaptive power model Matcher. It is used to determine whether
the current program features match the current model and match a new model
in the local model library if it has to be replaced.

– Hardware performance and power Collector. It is used to collect PMC and
power and provide data for model matcher and model builder.

The flow diagram of DAPM is shown in Fig. 2(b). The specific steps are as
follows:

– Step 1. When the system is running, Collector collects PMC and node power
of the system every Δt. The current local model calculates CPU and memory
power.

– Step 2. At intervals of ΔT , judge whether the current model still matches
the current program features. If not, go to Step 3. Otherwise, go back to Step
1.

– Step 3. Select the model that matches the features of the current program
in local model library. If a matching model is found, it is set as the current
power model and go back to Step 1. Otherwise, go to step 4.

– Step 4. Send program samples that cannot match the model to the model
Constructor, build a new model, and add it to the local model library. Set the
new model as the current model and go back to Step 1.

Two issues need to be addressed:

– Q1: How to build local power models and what kind of models they are, and
ensure that the local models to achieve sufficient accuracy.

– Q2: How to accurately select and match the local models when the system
runs in real-time. This is the key issue.

Because of the above problems, the specific solutions and considerations in
DAPM are as follows: We use the linear models with fewer parameters (no more
than 6) as the local models. Among them, the parameters of the models are all
from the PMCs provided by the current system. We will filter the PMCs with

98 Y. Zhang et al.

Hardware performance
and power collector

Local Model Library

PMCs, CPU and
memory power

PMCs, CPU,
memmory and
node power

Model ConstructorLocal model

Automatic Adaptive
Power ModelMatcher

Select Update

(a) The structure of DAPM.

Yes

No

Yes

Yes

No

Update
Local Model Library
by inserting new

model

Select a model from
Local Model Library,

successful?

Start

PMC, Power
collector

every t

Update current
model

No

Reach aMatcher
interval T ?

Current model
matches?

(b) Flow diagram of DAPM.

Fig. 2. The structure and process of DAPM.

the strongest correlation with the program’s power behavior to build the model.
Because the same PMC has different effects on different program features, each
local model is built with different PMCs. Specific modeling methods will be
described in Sect. 3.2. The way to filter PMCs is described in Sect. 3.4.

3.2 Build Local Models

– Step 1. Select the appropriate PMCs. The standard of PMC selection is that
they have strong linear correlation with the power of each components of the
computer, and there should be linear independence between these PMCs. The
specific selection method of PMC is described in Sect. 3.3. For CPU and mem-
ory, we select several different PMCs, which are recorded as ci,1, ci,2, ..., ci,ni

,
where ni is the number of PMCs selected for the ith component. When i is
0, it represents the whole node; when it is 1, it represents CPU; when it is 2,
it represents memory.

– Step 2. Run the sample program. During the operation of the program, the
CPU, memory and node power values and all PMCs selected in the previous
step are collected at the interval of time Δt. The number of times of data
acquisition is recorded as t, and the vector composed of t values of the sth
PMC of the ith component is recorded as Cs, i, and the power is recorded as
Pi. The node power vector is recorded as P0.

– Step 3. We use the classical least square method [36] to calculate the coeffi-
cient vector that used for calculate the ith component power by PMCs, which
is recorded as Wi:

Wi = (XT
i Xi)−1XT

i Pi (1)

where Xi = [1, C0,i, C1,i, C2,i], and 1 is the constant term vector, correspond-
ing to constant coefficient in the model. When i = 0, it is for the node power
model, and X is the matrix of all PMCs. Wi is the ni + 1-dimensional coeffi-
cient vector.

– Step 4. From the coefficient vector obtained in the previous step, we can
establish a linear model for CPU, memory and node power respectively:

Pmodel
i = XT

i Wi (2)

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 99

where Xi is the vector of the current PMC values.

3.3 Select PMC

The selection of PMCs is crucial for the establishment of the model. For each
local linear model, the higher linear correlation between PMCs and power means
a single model’s higher accuracy. At the same time, the PMCs should be rel-
atively independent. Otherwise, the two PMCs with strong correlation contain
similar information, which is not conducive to improving the accuracy of the
model but will increase the cost of calculation. In view of these considerations,
we choose PMCs as follows:

– Step 1. Run the sample program on the modeling node to collect all available
PMC, CPU, memory, and node power provided by the platform.

– Step 2. Calculate the absolute value of the Pearson correlation coefficient
[37] of all PMCs with CPU and memory power, respectively. Select all PMCs
with a correlation coefficient greater than 0.5 as the reserved PMCs for CPU
and memory.

– Step 3. Calculate the correlation coefficient between every two reserved
PMCs. For any two PMCs, whose absolute correlation coefficient is greater
than 0.5, delete the PMC whose correlation coefficient with CPU or memory
is smaller than another.

Finally, all the remaining PMCs are used as power modeling parameters. Among
them, the PMCs used to model node power is the union of the PMCs used
to model CPU and memory. We will verify and analyze the effectiveness and
availability of PMCs selected dynamically by this method in Sect. 4.3.

3.4 Dynamic Model Matching and Updating

We introduce node-level power data to match models for different programs. In
model matching, the node power model results in each local model are compared
with the measured node power to determine whether the model is suitable for
the current program. The specific steps are as follows:

– Step 1. PMC data is collected by Collector once per interval Δt. The CPU,
memory and node power are calculated by the current local power model.

– Step 2. Note that the actual measured node power is P0. The error MRE =
|Pmodel

0 −P0|/P0 between the measured P0 and the calculated Pmodel
0 . Set the

threshold value MREstd. If MRE ≤ MREstd, and the program has not run
to the given interval ΔT since the last adaptive selection of the model, then
the CPU and memory power obtained in Step 1 is the measurement result
and returns to Step 1. Otherwise, go to Step 3.

– Step 3. The average error of each model is calculated by the following for-
mula:

MREk =
1
t

t∑

j=1

|Pmodel
k,0,j − Pk,0,j |

P0,j
(3)

100 Y. Zhang et al.

where k is the serial number of each model in the local model library. t =
ΔT/Δt is the number of collected samples since the last adaptive model
selection. Pmodel

k,0,j is the node power of the jth time point calculated by the
kth model. P0,j is the measured node power at the jth time point.

– Step 4. Compare the sizes of all MREk, and select the kth model with
minimized MREk. That is to say, the current computer program is the most
similar to the kth program. If MREk ≤ MREstd, select the kth model as
the currently applicable model, and calculate the CPU and memory power
from it, and return to Step 1. Otherwise, it will be considered that there is
no suitable model in the local model library, and go to Step 5.

– Step 5. The Constructor runs the currently running program, builds a new
local model, and adds it to the local model library. The method of building a
new model is described in Sect. 3.2. Set the current applicable model as the
new model. Go back to Step 1.

3.5 Utilization of DAPM

In this section, we introduce how to use the DAPM to predict CPU and DRAM’s
power. Firstly, we add an additional node in the cluster that needs to measure
CPU and memory power, and its hardware is the same as other nodes in the clus-
ter. Secondly, we deploy tools to measure CPU and memory power consumption
on this node, such as Baseboard Management Controller (BMC) [41]. Thirdly,
we select PMCs by following the steps introduced in Sect. 3.3. Fourthly, we build
an initial local model library by following the steps introduced in Sect. 3.2. The
above operations only need to be done once. When the system runs, we collect
the selected PMCs and estimate the power of the CPU and DRAM by formula 2.
At regular intervals, we check the accuracy of the current local model, change
it with another, or build a new local model if it is not suitable for the current
system state. The details have been introduced in Sect. 3.1.

DAPM has three main advantages: First, it avoids deploying power monitor-
ing tools (like BMC) for each node in the cluster. Second, we do not need to
analyze their architectures for different CPUs to build complex power models.
Instead, we build many simple linear models automatically and dynamically.
Third, the accuracy of DAPM will be better than traditional static power mod-
els. We will verify this in the next section.

4 Experiment

In this section, we use DAPM to measure the actual power. Section 4.1 describes
the experimental platform and the test workloads used. Section 4.2 shows the
measurement results and accuracy of the DAPM method. In Sect. 4.3, we carried
out several groups of comparative experiments to verify each specific step of
DAPM. Section 4.5 evaluates the cost of DAPM.

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 101

4.1 Platform and Configuration

We experimented with DAPM on two servers with dual Intel Xeon E5 2660
CPUs on each. Each CPU has 10 cores with 2.6 GHz main frequency and 3.3 GHz
super frequency. Its summit power is 105 W [15]. Each server uses a 128G DDR4
memory. The servers run CentOS 7.4 operating system, and the Linux kernel
version is 3.10.0. We use DAPM to measure the CPU and memory powers of
one of the servers. The local model library and adaptive power model Matcher
in DAPM also run on this node. Another server is used to deploy the model
Constructor in the DAPM framework. Both servers use perf [38] to collect
PMC data. We use the running average power limit (RAPL) [14] tool provided
by Intel CPU to measure the real-time powers of CPU and DRAM noted as
Preal. We take the average relative error (MRE) between the real-time power of
the server to be tested and the measured power of DAPM PDAPM as the index
to evaluate the effect of DAPM, where:

MRE =
t∑

j=1

|Preal − PDAPM |
Preal

(4)

The RAPL data on another server is used for the modeling input of the model
builder (Pi) in the formula (1).

In the experiment, we used 5 representative programs in the HPCC test
set and 29 basic programs in the SPEC 2006 test set. Among them, HPCC is a
test set specially designed to test the performance of high-performance computer
systems [23]. We use the following 5 programs in HPCC: RandomAccess, PTRANS,
DGEMM, STREAM, and FFT.

SPEC [12] is a commonly used computer performance test set. Its basic set
includes 12 integer and 19 floating-point operation test programs. We use the
SPEC programs to build the initial local model library, and use HPCC to test
the effect of DAPM.

We use GCC v4.8.2 to compile all the DAPM code and optimize it with the
“-O3” option. We set the relevant parameters in DAPM described in Sect. 3.1
as follows:

– Time interval for dynamic matching of model ΔT . The frequency of regular
automatic adjustment does not need to be too high. We set this parameter
to 60 s.

– Sampling interval Δt. On the premise that the result is accurate enough, and
on the other hand, to make sure that reading PMC itself will not generate
much overhead, we set this parameter to 1 s.

– The node power error threshold MREstd. It is used for determining whether
the model needs to be rematched. We set the standard at 50%.

4.2 Overall Results

The SPEC programs are used to build the initial local model library, and the
HPCC programs are used as the test program. The specific process of building

102 Y. Zhang et al.

the local model library will be detailed in Sect. 4.3. We run five HPCC programs
for two loops. During the first loop, the power measurement effect of DAPM
on programs that have never run on the system is checked. During the second
loop, the effect of DAPM on the programs that have been run on the system is
checked.

The results are shown in Fig. 3. When the five programs run for the first time
(0 s, 280 s, 470 s, 1480 s, 1710 s), there will be a significant deviation between the
power measured by DAPM and the real-time power (the blue circles in the
figure). That is due to the change of program features, where the original model
is no longer suitable for the new program feature, and the process of reselecting
the model has a short lag. After that, in about 60s-90s, the deviation decreased,
but still existed (the red circles). That is because there is no model in the current
local model library suitable for the features of the current program. The model
Constructor is now building a new local model. After the new model is built
and added to the local model library, the measurement results of DAPM are
consistent with the real-time power.

When the five programs run for the second time (1900 s, 2200 s, 2370 s,
3380 s, 3620 s), the waveform of DAPM still has a significant deviation instanta-
neous value due to program feature conversion. However, the measured results
of DAPM are consistent with real-time power. There is no longer a deviation of
about 60s because the models that meet the features of the programs have been
added to the local model library. Hence, there is no need to model again. In the
whole process, the average error of CPU power is 1.74%, and the average error
of memory power is 5.16%.

HPCC CPU real and DAPMmeasured power

Time (s)

CPU_REAL
CPU_DAPM

First running Second running

(a) The modeling result of CPU power.

HPCC DRAM real and DAPM measured power

Time (s)

DRAM_REAL
DRAM_DAPM

First running Second running

(b) The modeling result of DRAM power.

Fig. 3. The result of DAPM of HPCC programs. CPU REAL refers to the power
measured by RAPL.

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 103

In order to further test the effectiveness of each step in DAPM, we test the
effect of the method of building local model in Sect. 4.3. In Sect. 4.4, by setting
different matching model intervals ΔT , the most optimal ΔT that makes the
method achieve the best effect is verified. Then, the initial local model library is
expanded to avoid the situation where DAPM needs to update the local model
library in the running process, to minimize the error in the running process of
the whole program. The accuracy in this ideal situation will be compared with
that in the general situation where the local model library needs to be updated
sometimes in this section.

The Compara�on of Sta�c and Dynamic Models (CPU)

DAPM Bircher Isci Singh

(a) CPU Power Modeling Comparison
between DAPM and other models.

The Compara�on of Sta�c and Dynamic Models (DRAM)

DAPM Bircher Isci Singh

(b) DRAM Power Modeling Comparison
between DAPM and other models.

Fig. 4. The comparation of traditional static models and DAPM. Note that Isci [16]
and Singh [30] didn’t give DRAM model.

4.3 Local Model Effect Examination (Q1)

In this section, we accurately describe the construction process of the local model
and test the effect of the local model. After running all SPEC programs continu-
ously on the model Constructor, we segment all PMCs and power data collected
in ΔT (60 s) intervals. Each segment of data is used as input to build a local
model. Each local model includes a node, CPU, and memory power models. All
SPEC programs run for about 600 min. Therefore, we get 600 local models as
our initial local model library.

First, we test the reliability of the PMCs selected by our method. In building
the models, we found that the following PMCs are the most commonly selected
that they account for 95% of all local model selection parameters:

PMCs that are most commonly used as CPU power model parameters:
uncore_imc_1/cas_count_read, uncore_imc_1/clockticks, L1-dcache-load
-misses, cpu-cycles. PMCs that are most commonly used as DRAM power
model parameters: branch-loads, cache-misses.

We analyzed the linear correlation coefficients between the six PMCs men-
tioned above and CPU, memory powers, and PMCs themselves. The results are
shown in Tables 1 and 2. The tables show that the absolute value of the correla-
tion coefficients between PMCs, CPU, and memory powers are all greater than

104 Y. Zhang et al.

0.5, which means strong correlation, and the correlation coefficients between
PMCs are all below 0.5.

To verify our local models’ validity, we compare the error between the output
of each local model and the measured power. These local models include the
models built by SPEC programs in the initial local model library, and the models
updated dynamically during the real-time running of HPCC. As shown in Fig. 5,
the minimum error of local models can reach 0.32%, and the maximum error is
not exceeding 0.8%, which shows that our local models can achieve high accuracy.

Compared with the accuracy of the local models (average error of CPU power
0.53%, DRAM 0.8%), the average error in the dynamic power monitoring pro-
cess (CPU 1.06%, DRAM 4.57%) is larger. That is because the models will be
rematched in the conversion of different program features, and the rematching
process has a short lag, which leads to a model mismatch in a short time and
increases the error. Also, if there is no model in the local model library that suit-
able for the features of the current program, the model Constructor will need
60 s to build a new model, and the measurement error in this period will be rela-
tively large. However, the time of these cases is very short in the whole process,
and the models matched at other times are correct. Therefore, the method for
model building and matching is effective.

The Average MREs o�he local models

Fig. 5. From this figure, we can see that the MREs of local modes are all smaller than
1%.

Table 1. Pearson coefficients between selected PMCs and CPU, memory powers.

Component PMC Linear coefficient

CPU cas count read1 0.77

clockticks1 −0.65

L1-dcache-load-misses 0.80

cpu-cycles −0.55

MEM branch-loads −0.91

cache-misses 0.58

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 105

Table 2. Pearson coefficients between every 2 PMCs.

PMC cr ctk Ldlm ccs bl cm

cas count read1 1.00 −0.25 0.31 −0.42 −0.44 −0.42

clockticks1 −0.25 1.00 −0.46 0.34 −0.44 −0.44

L1-dcache-load-misses 0.31 −0.46 1.00 −0.43 0.34 −0.44

cpu-cycles −0.42 0.34 −0.43 1.00 −0.54 −0.44

branch-loads −0.44 −0.44 0.34 −0.54 1.00 −0.45

cache-misses −0.42 −0.44 −0.44 −0.44 −0.45 1.00

4.4 Dynamic Model Matching Effect Examination (Q2)

By adjusting ΔT to different sizes, we carried out several experiments to verify
the best value of ΔT that makes the dynamic matching effect of DAPM opti-
mal. We set ΔT = 10 s, ΔT = 30 s, and ΔT = 120 s, respectively. The other
experimental conditions are the same as Sect. 4.2, and the running results are
shown in Fig. 6.

As can be seen from Fig. 6, when ΔT is small (10 s and 30 s, (a) (b) (c) (d)
in Fig. 6), there is a lot of jitter in DAPM measurement results, mainly con-
centrated in RandomAccess (0–280 s, 1900–2180 s), PTRANS (280–470 s, 2180–
2450 s) and STREAM (1480–1720 s, 3380–3620 s) programs operation interval.
That is because ΔT is too short, making the information used for local model
matching and modeling too little to cover the current program features, so
DAPM mistakenly believes that the program features are changing all the time,
so it constantly produces fluctuations.

When the ΔT is too large (120 s, (e) (f) in Fig. 6), compared with the result
that when ΔT = 60 s in Sect. 4.2 (CPU 1.74%, memory 5.16%), the accuracy
decreases (CPU 2.24%, memory 6.50%). Because when the model needs to be
updated, the model Constructor needs to take a longer time to construct a new
model. During this time, the measured values are biased, so the overall accuracy
decreases. Therefore, it is reasonable to use 60 s as the interval of model adaptive
matching and updating.

The effect of DAPM is closely related to the construction of the initial local
model library. It can add new models to the local model library in time through
dynamic adaptive strategy when the initial local model library is not very suf-
ficient, and achieve high accuracy of power measurement, which also shows the
adaptability and effectiveness of DAPM method. The example in Fig. 7 illus-
trates this point. At this time, the initial local model library contains enough
benchmark, and the model trained by the HPCC benchmark is already in the
initial local model library, which is called Model∗. When the real-time running
program is in HPCC, since the initial local model library already contains the
target requirements, the power measurement accuracy will be very high. At this
time, the CPU power measurement error rate is 1.36%, and the error rate of
DRAM power measurement is 4.34%. This value should be considered as the

106 Y. Zhang et al.

Time (s)

CPU_REAL
CPU_DAPM

(a) DAPM CPU Power monitoring with ΔT = 10s, Mean Relative Error=3.46%

Time (s)

DRAM_REAL
DRAM_DAPM

(b) DAPM DRAM Power monitoring with ΔT = 10s, Mean Relative Error=10.23%

Time (s)

CPU_REAL
CPU_DAPM

(c) DAPM CPU Power monitoring with ΔT = 30s, Mean Relative Error=2.71%

Time (s)

DRAM_REAL
DRAM_DAPM

(d) DAPM DRAM Power monitoring with ΔT = 30s, Mean Relative Error=7.08%

Time (s)

CPU_REAL
CPU_DAPM

(e) DAPM CPU Power monitoring with ΔT = 120s, Mean Relative Error=2.24%

Time (s)

DRAM_REAL
DRAM_DAPM

(f) DAPM DRAM Power monitoring with ΔT = 120s, Mean Relative Error=6.50%

Fig. 6. Three groups of DAPM power monitoring results with different ΔT s.

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 107

ideal value that can be found. Based on this benchmark, we will compare the
CPU and DRAM power measurements with this standard. Assuming that the
initial local model library established in the previous Sect. 4.2 is called Model0,
it can be seen that although Model0 lacks some models to be matched compared
with model∗, the dynamic update of the local model library by DAPM method
can also achieve an ideal average power measurement error rate. At this time,
the CPU power measurement error rate is 1.74%, and the DRAM power error
rate is 5.16% (Sect. 4.2). It can be seen that the error rate is quite near to that
of the ideal initial local model library (CPU 1.36%, memory 4.34%).

HPCC CPU real and DAPM measured power

Time (s)

CPU_REAL
CPU_DAPM

(a) The modeling result of CPU power in the best situation. Its Mean Relative Error is
1.36%

HPCC DRAM real and DAPM measured power

Time (s)

DRAM_REAL
DRAM_DAPM

(b) The modeling result of DRAM power in the best situation. Its Mean Relative Error
is 4.34%

Fig. 7. The result of DAPM of HPCC programs in the best situation.

4.5 DAPM Cost and Defects Analysis

In order to evaluate the effect of DAPM on node performance, we designed a
control experiment. When DAPM is used, and DAPM is not used, five programs
of HPCC test set are run on four different nodes (two Intel Xeon 2640 CPU
servers and two Intel Xeon 2660 servers) with the same data scale, and their
running time is counted. The result is shown in Fig. 8. After joining DAPM, the
running time of all programs increased by 0.2% in the worst case, while that of
some programs did not increase. The average running time increased by 0.1%.
That shows that DAPM has little effect on program performance.

The main application scenario of DAPM is a platform without hardware
power monitoring tools. We use the Intel Xeon CPU platform in our experiment

108 Y. Zhang et al.

Node 3

Node 1 Node 2

Node 4

RANDOM PTRANS DGEMM STREAM FFT RANDOM PTRANS DGEMM STREAM FFT

Fig. 8. The running times of HPCC programs on several nodes.

because its built-in RAPL tool can be used as the real-time power to calculate the
MRE of DAPM. Next, we will implement DAPM on the FT-2000+/64 platform
without hardware power monitoring tools. The DAPM method also has some
defects: (a) DAPM is not suitable for scenarios where multiple programs run
on a single node. For example, when a node runs multiple virtual machines,
each virtual machine performs different tasks, DAPM will be difficult to match
the local model accurately by the node power. (b) When the number of cluster
nodes increases, the communication between model Constructor and each node
will increase, which may reduce the performance of communication-intensive
programs. If distributed storage is used for local model library, data redundancy
and inconsistency may be caused. If the local model library is stored centrally,
the node communication overhead may be increased, like the model Constructor.
Next, we will deploy and run DAPM on multiple nodes and study methods to
optimize the DAPM communication problem.

4.6 Comparison with Static Models

As this paper is the first work of modeling component power by adaptive dynamic
method, we compare DAPM with the existed static power models. To get a bet-
ter comparison, we reimplement three classic power models [4,30] and [16] on
our platform. All of these are well-known PMC-based power-modeling works.
We have introduced the details of these three models in Sect. 2. Isci et al. [16]
used 9 PMCs to build a CPU power model, Singh [30] used 4, and Bircher [4]
used 4 to construct two models for CPU and DRAM respectively. We select
the corresponding PMCs from the set provided by our system and construct
the models the same with these three works. The error rates of three conven-
tional PMC power models are Isci’s model 7%(CPU), Singh’s 7.2%(CPU), and
Bircher’s 6.7%(CPU) and 8.8%(DRAM), while the CPU error rate of DAPM is
less than 2%, and the DRAM error rate is less than 5.5%. It can be seen that
the DAPM improves the accuracy of the static power models significantly.

5 Conclusion

By analyzing the existing CPU and memory power models, we point out the
accuracy problems of the static power models in real-time power measurement.

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 109

Based on this, a dynamic adaptive power modeling method (DAPM) based on
PMC events is proposed to measure the real-time power of CPU and memory
by analyzing the features of program performance indicators changing with the
power of CPU and memory, as well as the correlation analysis. The whole DAPM
framework mainly includes establishing the local model library, dynamic model
matching, and selection process. Compared with the traditional static power
models, the DAPM proposed reduces the CPU power’s measurement error by
7%, memory power by 3%. The error of the CPU power of DAPM range from
1.36% to 1.74% and the error of memory power is less than 5.5%. DAPM only
increases the system running cost by 0.1%, which has little impact on the pro-
gram’s running performance.

Acknowledgements. This work is supported in part by the Advanced Research
Project of China under grant number 31511010203 and the Research Program of NUDT
grant number ZK18-03-10.

References

1. AMD: BIOS and Kernel Developer’s Guide (BKDG) for AMD Family 14h Models
00h–0Fh Processors, January 2011

2. Basmadjian, R., Ali, N., Niedermeier, F., de Meer, H., Giuliani, G.: A methodology
to predict the power consumption of servers in data centres. In: Proceedings of the
2nd International Conference. e-Energy 2011. ACM, New York, May 2011

3. Bellosa, F.: The benefits of event—driven energy accounting in power-sensitive sys-
tems. In: Proceedings of the 9th Workshop on ACM SIGOPS European Workshop
(2000)

4. Bircher, W.L., John, L.: Complete system power estimation using processor per-
formance events. IEEE Trans. Comput. 61(4), 563–577 (2010)

5. Chou, C., Bhuyan, L.N., Wong, D.: μdpm: dynamic power management for the
microsecond era. In: 2019 IEEE International Symposium on High Performance
Computer Architecture (HPCA), pp. 120–132 (2019)

6. Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan, P.: Full-system power
analysis and modeling for server environments. In: Proceedings of the Workshop
on Modeling, Benchmarking, and Simulation, pp. 70–77 (2006)

7. Fan, X., Weber, W.D., Barroso, L.A.: Power provisioning for a warehouse-sized
computer (2007)

8. Feihao, W., et al.: A holistic energy-efficient approach for a processor-memory
system. Tsinghua Sci. Technol. 24(4), 468–483 (2019)

9. Gholkar, N., Mueller, F., Rountree, B., Marathe, A.: PShifter: Feedback-based
dynamic power shifting within HPC jobs for performance. In: Proceedings of the
27th International Symposium on High-Performance Parallel and Distributed Com-
puting. New York, NY, USA (2018)

10. Hanson, H., et al.: Processor-memory power shifting for multi-core systems (2012)
11. Heath, T., Diniz, B., Horizonte, B., Carrera, E.V., Bianchini, R.: Energy conserva-

tion in heterogeneous server clusters. In: Proceedings of the 10th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP 2005),
pp. 186–195. ACM (2005)

110 Y. Zhang et al.

12. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Archit. News 34(4), 1–17 (2006)

13. Wang, H., et al.: Distributed systems meet economics: pricing in the cloud. In:
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing
(2010)

14. Intel: Intel 82599 10 GbE Controller Datasheet, November 2019
15. Intel: Intel xeon processor e5–2660 v3 (2020). https://ark.intel.com/content/

www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-
60-ghz.html

16. Isci, C.: Runtime power monitoring in high-end processors: methodology and
empirical data. In: Proceedings of International Symposium on Microarchitecture
(2003)

17. Juan, C., et al.: Analyzing time-dimension communication characterizations for
representative scientific applications on supercomputer systems. Front. Comput.
Sci. 13(6), 1228–1242 (2019)

18. Khatamifard, S.K., Wang, L., Das, A., Kose, S., Karpuzcu, U.R.: Powert channels:
a novel class of covert communication exploiting power management vulnerabil-
ities. In: 2019 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 291–303 (2019)

19. Khavari Tavana, M., Sun, Y., Bohm Agostini, N., Kaeli, D.: Exploiting adaptive
data compression to improve performance and energy-efficiency of compute work-
loads in multi-GPU systems. In: 2019 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pp. 664–674 (2019)

20. Lee, B.C., Brooks, D.M.: Accurate and efficient regression modeling for microar-
chitectural performance and power prediction. ACM SIGOPS Oper. Syst. Rev.
40(5), 185

21. Lefurgy, C., Wang, X., Ware, M.: Power capping: a prelude to power shifting.
Cluster Comput. 11, 183–195 (2008)

22. Lewis, A., Ghosh, S., Tzeng, N.F.: Run-time energy consumption estimation based
on workload in server systems. In: Workshop on Power Aware Computing and
Systems, HotPower 2008, 7 December 2008, San Diego, CA, USA, Proceedings
(2008)

23. Luszczek, P.R., Bailey, D.H., Dongarra, J.J., Kepner, J., Takahashi, D.: S12-the
HPC challenge (HPCC) benchmark suite. In: Proceedings of the ACM/IEEE
SC2006 Conference on High Performance Networking and Computing, 11–17
November 2006, Tampa, FL, USA (2006)

24. Patel, T., Tiwari, D.: Perq: fair and efficient power management of power-
constrained large-scale computing systems. In: Proceedings of the 28th Interna-
tional Symposium on High-Performance Parallel and Distributed Computing. New
York, NY, USA (2019)

25. Powell, M.D., Biswas, A., Emer, J.S., Mukherjee, S.S., Yardi, S.M.: CAMP: a tech-
nique to estimate per-structure power at run-time using a few simple parameters.
In: 15th International Conference on High-Performance Computer Architecture
(HPCA), 14–18 February 2009, Raleigh, North Carolina, USA (2009)

26. Qian, S., et al.: Adjusting matching algorithm to adapt to dynamic subscriptions in
content-based publish/subscribe systems. In: 2018 IEEE International Conference
on Parallel Distributed Processing with Applications (2018)

27. Basmadjian, R., de Meer, H.: Evaluating and modeling power consumption of
multi-core processors. In: Proceedings of the 2012 3rd International Conference
on Future Energy Systems: Where Energy, Computing and Communication Meet
(2012)

https://ark.intel.com/content/www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-60-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/81706/intel-xeon-processor-e5-2660-v3-25m-cache-2-60-ghz.html

PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling 111

28. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.: No “power”
struggles: coordinated multi-level power management for the data center. In: Pro-
ceedings of the 13th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems. New York, NY, USA (2008)

29. Rivoire, S., Ranganathan, P., Kozyrakis, C.: A comparison of high-level full-system
power models. In: Workshop on Power Aware Computing and Systems, HotPower
2008, 7 December 2008, San Diego, CA, USA, Proceedings (2008)

30. Singh, K., Bhadauria, M., McKee, S.A.: Real time power estimation and thread
scheduling via performance counters. ACM SIGARCH Comput. Archit. News
37(2), 46 (2009)

31. Song, S., Su, Chunyi, C., Kirk, W.: A simplified and accurate model of power-
performance efficiency on;emergent GPU architectures, pp. 673–686 (2013)

32. Tang, G., Jiang, W., Xu, Z., Liu, F., Wu, K.: Zero-cost, fine-grained power moni-
toring of datacenters using non-intrusive power disaggregation (2015)

33. Tiwari, A., Laurenzano, M.A., Carrington, L., Snavely, A.: Modeling power and
energy usage of HPC kernels. In: IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops and Phd Forum (2012)

34. Wang, H., Cao, Y.: Predicting power consumption of GPUs with fuzzy wavelet
neural networks. Parallel Comput. 44, 18–36

35. Widyawan, Z.M.I., Nugroho, L.E.: Adaptive motion detection algorithm using
frame differences and dynamic template matching method. In: Ubiquitous Robots
and Ambient Intelligence, International Conference (2012)

36. Wikipedia: Least squares (2020). en.wikipedia.org/wiki/Leastsquares
37. Wikipedia: Pearson correlation coefficient (2020). http://en.wikipedia.org/wiki/

Pearson correlation coefficient
38. Wikipedia: Perf wiki (2020). perf.wiki.kernel.org/index.php/MainPage
39. Yong, D., Juan, C., Yuhua, T., Junjie, W., Huiquan, W., Enqiang, Z.: Lazy schedul-

ing based disk energy optimization method. Tsinghua Sci. Technol. 25(2), 203–216
(2020)

40. Yoshii, K., Iskra, K., Gupta, R., Beckman, P., Coghlan, S.: Evaluating power-
monitoring capabilities on IBM Blue Gene/P And Blue Gene/Q. In: 2012 IEEE
International Conference on Cluster Computing (CLUSTER) (2012)

41. Zhang, J., Huo, H., Fang, Q., Zhang, D.: System and method for managing base-
board management controller (2008)

http://en.wikipedia.org/wiki/Leastsquares
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://en.wikipedia.org/wiki/Pearson_correlation_coefficient
http://perf.wiki.kernel.org/index.php/MainPage

ParaCA: A Speculative Parallel Crawling
Approach on Apache Spark

Yuxiang Li1,2 , Zhiyong Zhang1,2(B), DanMei Niu1,2,3, and Junchang Jing1,2

1 Henan University of Science and Technology, Luoyang 471023, Henan, China
xidianzzy@126.com

2 Henan International Joint Laboratory of Cyberspace Security Applications,
Luoyang 471023, Henan, China

3 State key Laboratory of Networking and Switching Technology, Beijing University
of Posts and Telecommunications, Beijing, China

http://www.sigdrm.org/∼zzhang/

Abstract. The World Wide Web today is growing at a phenomenal
rate. The crawling approach is of vital importance to improve the effi-
ciency of crawling the web. The existing sequent crawling algorithms
are mostly time consuming and do not support large data well. In order
to improve parallelism and efficiency of crawler on distributed network
environments, based on the software thread-level speculation technique,
this paper raises a speculative parallel crawler approach (ParaCA) on
Apache Spark. By analyzing the process of web crawler, the ParaCA
firstly hires a function to divide a crawling process into several sub-
processes which can be implemented independently and then spawns a
number of threads to speculatively crawl in parallel. At last, the specu-
lative results are merged to form the final outcome. Comparing with the
conventional parallel approach on multicore platform, ParaCA is very
efficiency and obtains a high parallelism degree by making the best of
the resources of the cluster. Experiments show that the proposed app-
roach could achieve a significant speedup improvement with compare
to the traditional approach in average. In addition, with the growing
number of working nodes, the execution time decreases gradually, and
the speedup scales linearly. The results indicate that the crawling effi-
ciency can be significantly enhanced by adopting this speculative parallel
algorithm.

Keywords: Crawling approach · Speculative multithreading · Apache
Spark

1 Introduction

Crawlers [1] are generally used in search engines to find information that is of
interest to users quickly and efficiently from vast internet information. Crawlers
are also used to collect the research data that researchers need. For data acqui-
sition needs, Xu et al. [2] put forward the strategy of fusing different acquisition
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 112–124, 2020.
https://doi.org/10.1007/978-3-030-60245-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_8&domain=pdf
http://orcid.org/0000-0002-3758-7162
https://doi.org/10.1007/978-3-030-60245-1_8

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 113

programs, the fusion strategy can quickly and efficiently collect large amounts of
data. However, with the advent of big data and Web 2.0, all kinds of information
on multimedia social networks have exploded. The efficiency and update speed of
single crawlers have been unable to meet the needs of users. Using parallel tech-
nology for crawlers can effectively improve the efficiency of crawlers [3], in a big
data environment, parallel crawlers are implemented in a distributed architec-
ture, because distributed crawlers are more suitable for large data environments
than stand-alone multicore parallel crawlers. Xia et al. [4], used distributed web
crawler framework and techniques to collect data from social networking site
Sina Weibo to monitor public opinion and other valuable findings, overwhelm-
ing traditional web crawlers in terms of efficiency, scalability, and cost, greatly
improving the efficiency and accuracy of data collection. Su et al. [5], put forward
a web crawler model of fetching data speedily based on Hadoop distributed sys-
tem in view of a large of data, a lack of filtering and sorting. The crawler model
will transplant single-threaded or multi-threaded web crawler into a distributed
system by way of diversifying and personalizing operations of fetching data and
data storage, so that it can improve the scalability and reliability of the crawler.

A good approach to process large-scale data is to make use of enormous
computing power offered by modern distributed computing platforms (or called
big data platforms) like Apache Hadoop [6] or Apache Spark [7,8]. These popular
platforms adopt MapReduce, which is a specialization of the split-apply-combine
strategy for data analysis, as their programming model. A standard MapReduce
program is composed by pairs of Map operation (whose job is to sorting or
filtering data) and Reduce operation (whose job is to do summary of the result
by Map operations), and a high parallelism of MapReduce model is obtained by
marshalling the operation pairs and performing them in distributed servers in
parallel. The platforms that adopt MapReduce model often split the input, turn
the large scale problems into sets of problems with small-scale, and then solve the
problem sets in a parallel way. At present, many resource-intensive algorithms
are successfully implemented to these big data platforms and achieve a better
performance [9–11], and it is a good way to enhance conventional algorithms

′

efficiency. However, there exists a problem that the inherent dependence in the
conventional crawling approach affects the effect of parallelism. So, designing
and implementing a parallel crawling approach with high efficiency on Big Data
platforms becomes very essential. By this method, the crawling web data can
be split into some data blocks and then captured in parallel. After crawling
the webs, the results are validated at a certain point, the proper results would
be submitted and the improper ones would be recalculated. Even though false
parallelization may occur, it is still a good method to leverage the crawling
performance.

114 Y. Li et al.

The remaining parts of this paper are organized as follows: we first briefly
describe the execution model and related work in Sect. 2; we present Spark-
based distributed parallel crawler framework in Sect. 3; based on the framework,
experimental results and analysis are shown in Sect. 3.2.

2 Spark-Based Speculative Parallel Crawler Framework

The distributed crawler system used in this paper adopts a master-slave struc-
ture. That is, one master node controls all slave nodes to perform crawl tasks.
The master node is responsible for allocating tasks and ensures load balancing
of all slave nodes in the cluster. The used allocation algorithm is to calculate the
hash value of the host corresponding to each URL, and then divide the URL of
the same host into a partition. The purpose of this is to have the URL of the
same host crawled on one machine. Distributed crawlers can be viewed as a com-
bination of multiple centralized crawler systems. Each slave node is equivalent
to a centralized crawler system. These centralized crawler systems are controlled
and managed by a master node in a distributed crawler system.

From the diagram of distributed parallel crawler framework in Fig. 1, we can
see that the main part of the framework includes master node for task generation,
task allocation and scheduling, and the master node’s control and management
of the entire system (such as the depth of crawler, configuration of update time,
system startup and stop etc.); The crawler cluster is responsible for parallel
downloading pages; the Map/Reduce function module is responsible for parsing
pages, optimizing links, and web page updates; Message middleware is respon-
sible for communication and collaboration between master node, crawler nodes,
and clusters (e.g. log management, data exchange and maintenance between
clusters, etc.); and Distributed File System (HDFS) for data storage.

2.1 Speculative Parallel Crawling

To process large-scale data stored in HDFS in parallel, Hadoop offers a par-
allel computing framework called Map/Reduce. Spark is founded on Hadoop.
The framework effectively manages and schedules nodes in the entire cluster to
complete the programs’ parallel execution and data processing and allows every
slave node to localize calculation data on the local node as much as possible.

As can be seen from Fig. 1, the core of the entire crawler system can be
divided into three modules, including download, parsing and optimization. Every
module is an independent function module, and every module corresponds to a
Map/Reduce process.

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 115

Log management

Master node

Crawled URL libraryUncrawled URL library Original web librarySystem log

Hadoop HDFS

Message middleware

Communications Operation and Maintenance

Task
generation

Task
Assignment

Task
scheduling crawler crawler crawler

Speculative page
crawling

Page
parsing

URL
optimization

Page
update

Map/Reduce RDD

Spark

Fig. 1. Speculative crawler framework diagram

– The download module can download web pages in parallel. Specific download
is completed in the Reduce phase, and multi-threaded download is used.

– Parsing module can analyze downloaded pages in parallel, extract the link
out. The module not only needs a Map stage to complete the goal, but also
limits the type of links to prevent the extracted links to other sites through
the rules.

– The optimization module can optimize the collection of links in parallel and
filter out duplicate links.

It can be seen that the parallelism of the Web crawler system is achieved
through these three parallelizable modules, which are essentially implemented
through the parallel computing framework of Map/Reduce.

At the beginning of the Map/Reduce task, the input data is split into several
slices, with a default of 64 MB for every slice. Every piece is processed by a Map
process, a crawler can open multiple Map processes at the same time. After the
output of all Map is combined, according to the partitioning algorithm, the URL
of the same site is assigned to a partition, so that the URL of the same site can
be crawled on the same machine, the tasks of every partition are processed by a
Reduce process, several partitions have several Reduces which perform parallel
processing, while a crawler can also open multiple Reduce processes. Finally, the
results of the parallel execution are saved to HDFS.

116 Y. Li et al.

Speculative
URL_Parser
(url_urls_list)

Seeds_File.txt

sc = SparkContext(appName="LoadSeedsFile")
seed_urls = sc.textFile(Seeds_File.txt)

Speculative
URL_Download

(url_html_list)

new_urls

Y
sc = SparkContext(appName="URLDownload")

urls = sc.parallelize(new_urls)

sc = SparkContext(appName="URLParser")
urlhtml_1 = sc.parallelize(url_html_list)

Speculative
Content_Parser

(content_data)

sc = SparkContext(appName="ContentParser")
urlhtml_2 = sc.parallelize(url_html_list)

Speculative
URL_Optimization

(newurls)

sc = SparkContext(appName="URLOptimization")
url_newurls = sc.parallelize(url_urls_list)

CyVOD DB

old_urls

len(new_urls) >0

End

N

Fig. 2. Speculative parallel crawler framework diagram with spark

Figure 2 shows a parallel crawler framework diagram on Spark, in which three
critical modules are URL Download(), URL Parser(), URL Optimization().
“Seeds File.txt” is the source of URLs, which are used to the process of ini-
tial crawler. From the file of “Seeds File.txt”, one new URL is extracted and
then used to judge whether its length is larger than 0 or not. If the length
of extracted URL is greater than 0, the next step is to download its web
page. The downloaded pages need to be parsed, including URL Parser and
Content Parser. The parsed contents need to be optimized, so to filter the
improper URLs. “sc = SparkContext(appName=“URLDownload”)” and “urls
= sc.parallelize(new urls)” are used to realize the parallelization of download
process. After this process, “url html list” is generated and used for parsing
URLs and contents.

Figure 3 shows a parallel download diagram with Spark, in which three criti-
cal processes are included, i.e. judgement of urls, using SparkContext to get sc,
using parallelize() to realize parallelization.

Figure 4 presents a parallel parser diagram with Spark, in which three critical
processes are also included, i.e. URL download, using SparkContext to get sc,
using parallelize() to realize parallelization of url html list.

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 117

Similar to Fig. 3 and Fig. 4, Fig. 5 shows the process of parallelizing URL op
timization, including URL parser, obtaining sc, using parallelize(url urls list) to
realize the parallelization. The function collect() is used to obtain new url list,
and the function distinct urls is used to remove the repetitive urls.

The specific processes of parallelizing crawling can be reduced to be:

(1) Collecting a set of seeds. First, for each crawler target to collect a URL
seed as the entrance link to download data, and then the files of seeds from
the local file system upload to input folder of hadoop cluster distributed
file system, input folder always holds the URL to be crawled by the current
layer. At the same time, the setting layer which has been crawled is 0;

(2) Judge whether the list to be fetched in the input folder is empty. If yes,
skipping to (7); otherwise, executing (3);

(3) Speculatively download pages in parallel. And save the original page to the
html folder in HDFS, html folder holds raw web pages of every layer;

(4) Speculatively parse pages in parallel. Extract the eligible links from the
crawled pages in the html folder and save the results to the output folder in
HDFS. The output folder always stores the outgoing links that are parsed
at the current level;

(5) Speculatively optimize outgoing links in parallel. Filter out the crawled
URLs from all the parsed URLs in the output folder, and save the optimized
results to input folder in HDFS for the next crawl;

(6) Judge whether the number of crawled layers is less than the parameter
depth. If yes, “crawled layers” increase by 1, return (2); otherwise enter
(7);

(7) Combine the pages crawled by every layer and remove the duplicate crawled
pages. The results are still stored in the html folder;

(8) According to the webpage crawling plan, these pages with the crawling task
at the moment are added to the crawling list;

(9) Further parse webpages content. Analyze the content of the webpages in
parallel, and then parse out the required attribute information from the
merged and duplicated webpages. The attribute information required by
the system includes title, publishing time, copyright owner, text, and video
source;

(10) According to the attribute information which is parsed out, further screen-
ing is done. If the attribute information satisfies the user rules, such as the
publication date in the last 7 days and the content of the text related to the
scientific and technical information. It will upload the attribute informa-
tion that meets the conditions, including the URLs, to the server database;
Otherwise, give up.

2.2 Speculative Parallel Algorithm Based Map/reduce

Definition 1: Crawler = {c1, c2, ..., cn}: represents a collection of crawler nodes
in a cluster. ci represents the ith crawler node. The maximum number of Map
processes and the maximum number of Reduce processes which a reptile node
can open are determined by the number of processors on the node.

118 Y. Li et al.

Speculative
URL_Download
(url_html_list)

new_urls

Y
sc = SparkContext(appName="URLDownload")

urls = sc.parallelize(new_urls)

len(new_urls) >0

url_html_list = urls.flatMap(lambda x: x.split(',')).map(lambda x: (x,
get_html(x)))

Fig. 3. Speculative parallel download with spark

Definition 2: {split0, split1 ,..., splitm−1}: represents a collection of file slices.
A slice is handled by a Map process.

Definition 3: {part0, part1 ,..., partk−1}: represents a collection of file parti-
tions. A partition is handled by a Reduce process.
Assuming m = 2n, k = n, then parallel algorithm based Map/Reduce is shown
in Algorithm 1.

In Table 1, a parallel algorithm (Algorithm 1) based Map/Reduce is specifi-
cally introduced. Firstly, an input-file is splitted into m-1 parts; Then, send an
adjacent slices (split k, split k+1, where k%2==0) to c k, and split k ∼ split k+1
are all defined above; Next, map processes are performed to process these adja-
cent slices, and combine all map output to Inter-results; Then, use the parti-
tioner to partition Inter-results to part 0 ∼ part k − 1 (k ∈N); Next, send part i
to c i + 1(i ∈N), and open a process part j ⇒ partition j (j ∈N) (Fig. 6 and
Tables 2, 3, 4 and 5).

3 Experiment and Analysis

3.1 Experiment Configuration

This section will present a performance evaluation of ParaCA. Table 6 shows the
specific configuration of experiment environment.

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 119

Table 1. Algorithm 1: speculative parallel algorithm based map/reduce

Algorithm 1:Speculative Parallel algorithm based Map/Reduce

Input: Input-File
Output: Output-File
1: Begin
2: Split Input-File into m slices =>{split0, split1, ..., splitm-1};
3: send split0, split1 to c1 , open two Map processes to process this two slices;
4: and send split2, split3 to c2 , open two Map processes to process this two slices;and;
5: and send splitm-2, splitm-1 to cn , open two Map processes to process this two slices;
6: Combine all Map output => Inter-results;
7: partitioner(Inter-results) => {part0, part1, ..., partk-1};
8: send part0 to c1 , open a Reduce process to process part0 => partition 0 ;
9: and send part1 to c2, open a Reduce process to process part1 => partition 1 ;
10: and;
11: and send partk-1 to cn , open a Reduce process to process partk-1
12: => partition n-1 ; Output-File = {partition 0,partition 1,...,partition n-1};
13: End

Table 2. Algorithm 2: speculative download of URL based spark

Algorithm 2:Speculative Download of URL based Spark

def urls download(urls):
sc = SparkContext(appName=”URLDownload”);
new urls = sc.parallelize(urls);
url html list = new urls.flatMap(lambda x: x.split(’,’)).map(lambda x:
(x, get html(x)));
output = url html list.collect();
sc.stop();
print(

′
urls download: %s

′
% len(output));

return output ;

3.2 Analysis of Experimental Results

Figure 5 shows a time comparison between sequential crawling and parallel crawl-
ing. The left blue line represents the time of sequential crawling while the right
red line represents the time of parallel crawling. Figure 7 shows a comparison
of crawling websites between sequential crawling and parallel crawling. The left
orange line represents the number of sequential crawling websites while the right
orange line represents the number of parallel crawling websites. Figure 8 shows
the changing of core number.

120 Y. Li et al.

Speculative URL_Parser
(url_urls_list)

Speculative
URL_Download
(url_html_list)

sc = SparkContext(appName="URLParser")
urlhtml_1 = sc.parallelize(url_html_list)

url_urls_list = urlhtml_1.combineByKey(createCombiner, mergeVal, mergeComb)

createCombiner = (lambda el: get_newurls(el))
mergeVal = (lambda aggregated, el: aggregated + get_newurls(el))

mergeComb = (lambda agg1, agg2: agg1 + agg2)

Fig. 4. Speculative parallel parser with spark

Fig. 5. Speculative parallel optimization with spark

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 121

0
10
20
30
40
50
60
70

Seq Parallel

Time Seq Parallel

T
im

e(
s)

Item

Fig. 6. Comparison of crawling time

Table 3. Algorithm 3: speculative parallel parser of URL based spark

Algorithm 3:Speculative Parallel Parser of URL based Spark

def url parser(url html list):
sc = SparkContext(appName=”URLParser”);
url htmls = sc.parallelize(url html list);
createCombiner = (lambda el : get newurls(el));
mergeVal = (lambda aggregated, el: aggregated + get newurls(el));
mergeComb = (lambda agg1, agg2: agg1 + agg2);
new urlss = url htmls.combineByKey(createCombiner, mergeVal, mergeComb);
output = new urlss.collect(); sc.stop();
print(

′
url parser : %s %́ len(output), output);

return output ;
if name == ” main ”:
sc = SparkContext(appName=”LoadSeedsFile”);
seeds file = ”file:///home/hadoop/CyCrawler/News CyCrawler/Spider/seeds-file.txt”;
lines = sc.textFile(seeds file);
root urls = lines.flatMap(lambda x : x.split(’ ’)).distinct();
urls = root urls.collect();
sc.stop();
url html list = urls download(urls);
url parser(url html list);

122 Y. Li et al.

0

200

400

600

800

1000

1200

Seq Parallel

Number of Crawling Websites

Seq Parallel

N
um

be
r

 o
f C

ra
w

lin
g

W
eb

si
te

s

Item

Fig. 7. Comparison of crawling websites (Color figure online)

Table 4. Algorithm 4: speculative parallel content parser based spark

Algorithm 4:Speculative Parallel Content Parser based Spark

def content parser(url html list):
sc = SparkContext(appName=”ContentParser”);
url htmls = sc.parallelize(url html list);
createCombiner = (lambda el : get content(el));
mergeVal = (lambda aggregated, el: aggregated + get content(el));
mergeComb = (lambda agg1, agg2: agg1 + agg2);
new data = url htmls.combineByKey(createCombiner, mergeVal, mergeComb);
output = new data.collect();
sc.stop();
return output ;
if name == ” main ”:
old urls = [];
sc = SparkContext(appName=”LoadSeedsFile”);
seeds file = ”file:///home/hadoop/CyCrawler/News CyCrawler/Spider/video-file.txt”;
lines = sc.textFile(seeds file);
root urls = lines.flatMap(lambda x : x.split(’ ’)).distinct();
urls = root urls.collect();
print(urls);
sc.stop();
for url in urls:
old urls.append(url);
print(”======”);
print(urls);
url html list = urls download(urls);
content parser(url html list);

ParaCA: A Speculative Parallel Crawling Approach on Apache Spark 123

Fig. 8. Number of cores

Table 5. Algorithm 5: speculative parallel optimization of URL based spark

Algorithm 5:Speculative Parallel Optimization of URL based Spark

def distinct urls(links, old urls):
new urls = [];
num = 0;
for j in range(len(links));
if links[j] = None;
num = num + len(links[j]);
for url in links[j];
if url not in old urls;
if len(url)>0;
new urls.append(url);
print(

′
before url optimi : %s

′
, %num);

return list(set(new urls));
def url optimi(url urls list, old urls);
sc = SparkContext(appName=”URLOptimization”);
url urls list2 = sc.parallelize(url urls list);
new urls list = url urls list2.values();
links = new urls list.collect();
sc.stop();
urls = distinct urls(links, old urls);
print(

′
after url optimi : %s ’ % len(urls), urls);

return urls;
if name == ” main ”;
old urls = [];
sc = SparkContext(appName=”LoadSeedsFile”);
seeds file = ”file:///home/hadoop/CyCrawler/News CyCrawler/Spider/seeds-file.txt”;
lines = sc.textFile(seeds file);
root urls = lines.flatMap(lambda x : x.split(’ ’)).distinct();
urls = root urls.collect();
print(urls);
sc.stop();
for url in urls:
old urls.append(url);
url html list = urls download(urls);
url newurls list = url parser(url html list);
url optimi(url newurls list, old urls);

124 Y. Li et al.

Table 6. Configuration of experiment environment

Item Configuration

Servers Lenovo System x3850 x6 (2 sets), Lenovo SR590 (2 sets),

IBM System X3500 M4;

Number of cores 120

Operation system CentOS, Ubuntu

Parallel platform Hadoop2.7.0, Spark2.3.0

Acknowledgement. We thank all members of Henan International Joint Laboratory
of Cyberspace Security Applications for their great support, and give our best hope to
them for their collaboration. We also thank reviewers for their careful comments and
suggestions. The work was sponsored by National Natural Science Foundation of China
Grant No. 61972133, Project of Leading Talents in Science and Technology Innovation
for Thousands of People Plan in Henan Province Grant No. 204200510021, Henan
Province Key Scientific and Technological Projects Grant No. 192102210130 and No.
202102210162, and Key Scientific Research Projects of Henan Province Universities
Grant No. 19B520008.

References

1. Zhou, D.M.: Survey of high-performance web crawler. Comput. Sci. (2009)
2. Yan-Fei, X.U., Liu, Y., Wen-Peng, W.U.: Research and application of social net-

work data acquisition technology. Comput. Sci. (2017)
3. Guo, R., Wang, H., Chen, M., Li, J., Gao, H.: Parallelizing the extraction of fresh

information from online social networks. Future Gen. Comput. Syst. 59(C), 33–46
(2016)

4. Xia, J., Wan, W., Liu, R., Chen, G., Feng, Q.: Distributed web crawling: a frame-
work for crawling of micro-blog data. In: International Conference on Smart and
Sustainable City and Big Data, pp. 62–68 (2016)

5. Su, L., Wang, F.: Web crawler model of fetching data speedily based on hadoop
distributed system. In: IEEE International Conference on Software Engineering
and Service Science, pp. 927–931 (2017)

6. Honnutagi, P.S.: The hadoop distributed file system. Int. J. Comput. Sci. Inf.
Technol. (2014)

7. Shoro, A.G., Soomro, T.R.: Big data analysis: Apache spark perspective, vol. 15
(2015)

8. Zaharia, M., et al.: Apache spark: a unified engine for big data processing. Com-
mun. ACM 59(11), 56–65 (2016)

9. Qi, R.Z., Wang, Z.J., Li, S.Y.: A parallel genetic algorithm based on spark for
pairwise test suite generation. J. Comput. Sci. Technol. 31(2), 417–427 (2016)

10. Qiu, H., Gu, R., Yuan, C., Huang, Y.: YAFIM: a parallel frequent itemset mining
algorithm with spark. In: Parallel & Distributed Processing Symposium Work-
shops, pp. 1664–1671 (2014)

11. Shi, K., Denny, J., Amato, N.M.: Spark PRM: Using RRTs within PRMs to effi-
ciently explore narrow passages. In: IEEE International Conference on Robotics
and Automation, pp. 4659–4666 (2014)

A Multi-threaded Algorithm for Capacity
Constrained Assignment over Road

Networks

Abhishek Mishra1, Venkata M. V. Gunturi1(B), and Sarnath Ramnath2

1 IIT Ropar, Rupnagar, Punjab, India
{2018csm1002,gunturi}@iitrpr.ac.in

2 St. Cloud State University, St. Cloud, USA
sarnath@stcloudstate.edu

Abstract. Input to the capacity constrained assignment (CCA) prob-
lem over road networks consists of the following: (a) a road network
represented as a directed graph; (b) a set of public service units (e.g.,
flu-clinics, schools) as vertices in the graph and; (c) a set of demand
locations (e.g., people or school children) also as vertices in the graph. In
addition, each service center is also associated with a notion of capacity
and a penalty which is incurred if it gets overloaded. Given the input,
the goal of CCA problem is to determine a mapping between the set
of demand vertices and the set of service centers. The objective here is
to generate a mapping which minimizes the sum of the total distance
between demand vertices and their associated service centers, and the
total penalty incurred. CCA problem has value addition potential in the
domain of urban planning. CCA problem can be reduced to min-cost
bipartite matching. However, optimal algorithms for min-cost bipartite
matching do not scale beyond graphs of size few thousand nodes. More-
over, its non-trivial to parallelize optimal algorithms for min-cost bipar-
tite matching due to their inherent iterative nature. The current relevant
work in the area of parallel algorithms is limited to problems like finding
max-flow and maximum cardinality matching, which are fundamentally
different than min-cost bipartite matching. In this paper, we propose a
novel assignment subspace re-organization based approach (ASRAC) for
the CCA problem. ASRAC can load-balance and take full advantage of
multi-core systems to speed-up execution. Our experimental results indi-
cate that our proposed algorithm (ASRAC) can scale up to large graphs
while maintaining better solution quality over alternative approaches.

1 Introduction

Input to our problem consists of the following three things. First, a road network
represented as a directed graph G(V,E) with V being the set of vertices and E
being the set of edges. Second, a set S (S ⊂ V) of service centers (e.g. schools,
hospitals, etc.). Each service center si ∈ S is associated with an positive integer
capacity and a notion of “penalty” which denotes the “cost” that must be paid
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 125–142, 2020.
https://doi.org/10.1007/978-3-030-60245-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_9

126 A. Mishra et al.

to overload the particular service center. And, the third input to our problem
is a set D (D ⊂ V − S) of demand vertices. Given the input, the problem of
Capacity Constrained Assignment (CCA) determines an mapping between the
set of demand vertices and the set of service centers. Here, each demand node is
allotted to only one service center. The objective is to determine a mapping which
minimizes the sum of the following two terms: (1) total distance between the
demand vertices and their allotted service center and, (2) total penalty incurred
(if any) while overloading the service centers.

Problem Importance: The Capacity Constrained Assignment (CCA) prob-
lem finds its application in the area of urban planning. More specifically, we
can use CCA problem while defining the zones of operation of public service
units such as schools (refer catchment area [15]), walk-in pathogen testing cen-
ters (in case of continuous monitoring of infectious diseases such as COVID-19)
and, infectious disease clinics. The key aspect over here being that each of the
previously mentioned type of service centers is associated with a general notion
of capacity. This capacity dictates the number of people (demand) that can be
accommodated (comfortably) each day, week or during any specific duration of
time (e.g., typical duration of sickness of patients). In addition, the quality of
service at any of these service centers is expected to degrade if significantly more
number of people (beyond its capacity) are assigned to it. This aspect is modeled
as penalty. Determining the region of operation under such constraints can be
mapped to our CCA problem.

Computational Challenges of CCA Problem. An instance of the Capac-
ity Constrained Assignment (CCA) problem can be theoretically reduced to
an instance of the min-Cost bipartite matching problem [2]. However, opti-
mal algorithms for min-cost bipartite matching fail to scale up for large prob-
lem instances. For instance, our experiments revealed that, for a CCA problem
instance with just 13 service centers and around 4000 demand vertices, optimal
algorithm for min-cost bipartite matching takes around 7 h for execution and
occupies about 40 GB in RAM. From this, one can easily expect that optimal
algorithm for min-cost bipartite matching algorithm cannot scale-up to large
problem instances.

Limitations of Work Done in Parallel Algorithms: Parallel techniques for
flow related problems has been an active area of research in the high perfor-
mance computing community. Over the years, researchers have developed par-
allel techniques for maximum flow (e.g. [8,13]), maximum cardinality matching
(e.g., [1,4,9]) and perfect matching [5]. However, these works cannot be gener-
alized for our CCA problem. Note that our CCA problem reduces to min-cost
bi-partite matching problem which has a fundamentally different computational
structure due to presence of weights on edges. There has been some work [11] on
parallel algorithms for min-cost flows. However, it assumes presence of PRAM,
whereas, several modern computers only have SDRAMs.

Limitations of Work Done in Spatial Data Analytics Researchers in the
area of spatial data analytics have been studying variations of the assignment

Capacity Constrained Assignment over Road Networks 127

problem on spatial networks since long (e.g., [14,18,19]). While different works
have used different terminology, they nevertheless they share a commonality in
their problem definition. Earlier works such as [14] assume that the service cen-
ters have infinite capacity, an assumption which not suitable in many real-world
scenarios. Later works in this area [18,19] did consider the notion of capacities,
but they did not consider the concept of penalties. They perform allotments (of
demand nodes) in an iterative fashion as long as there exists a service center
with available capacity. However, this assumption is also not always desirable
in developing nation scenarios where the total demand is usually more than the
total capacity of service centers.

There have been other works (e.g., [7,10,16,17])) which considered the assign-
ment problem in different contexts. For e.g., [7,17] considered the problem in the
context of allocating data in a main memory hierarchy. [10] considered it in the
context of allocating resources in heterogeneous multi-core systems. And [16]
explored the allocation problem in V2X networks.

In our work, we address a more general problem of assignment by considering
both capacity constraints and overload penalties. In our CCA problem, we allow
the allotments to go beyond the capacities of the service centers. And after
a service center is full, it uses the overload penalties for guiding the further
allotments and load sharing.

Our Contributions: This paper makes the following contributions:

(a) Propose the novel concept of assignment subspace re-organization for the
CCA problem. The key idea to is to determine paths for re-organizing the
partially constructed solution in what we refer to as the assignment subspace
tree.

(b) Propose a novel multi-threaded algorithm called ASRAC for the CCA prob-
lem which is based on the concept of assignment subspace re-organization.

(c) ASRAC is adaptive in the sense that it can automatically distribute its
available workload among all the available threads.

(d) Evaluate ASRAC analytically via time complexity analysis.
(e) Evaluate our ASRAC algorithm experimentally using road network datasets

obtained from OpenStreetMaps and compare it with alternative approaches.

Outline. The rest of the paper is organized as follows. Section 2 discusses the
basic concepts and presents the problem formally. We present our proposed
approach in Sect. 3. Section 4 presents a detailed time complexity analysis of
our proposed ASRAC algorithm. In Sect. 5, we evaluate our proposed approach
experimentally and compare it with alternative approaches.

2 Basic Concepts and Problem Definition

Definition 1. Road Network: is modeled as weighted directed graph G(V,E)
with a set of vertices V and a set of edges E. Road intersections are modeled as
vertices and road segments (between two intersections) are modeled as directed
edges. Each edge e = (u, v) ∈ E is associated with a cost we which represents
the cost to reach vertex v from vertex u.

128 A. Mishra et al.

Definition 2. Service Center (si) is a vertex in the input road network G. It
represents a public service unit of a particular kind such as schools, clinics or
hospitals in a city.

Definition 3. Demand Vertex (di) is also a vertex in the input road network
G. Demand vertex represents the location of a unit population which is interested
in accessing the previously defined service center. For simplicity, we assume that
all the demand exists on the vertices of the graph. We can trivially generalize to
case where demand exist on edges by creating dummy vertices at that location.

Definition 4. Capacity of a service center (csi) is the prescribed amount
demand that a service center si can accommodate. Real world examples of capac-
ity include aspects such as infrastructure limitations (e.g., number of faculty and
lab facilities), number of beds in an isolation ward of the hospital, etc.

Definition 5. Penalty function of a service center: Each service center
si is associated with penalty function psi(). This function returns the “extra
cost” that must be paid for every new assignment to si after it has exhausted its
capacity csi . If the allotment is done within the capacity of si, then no penalty
needs to be paid. Examples of penalty cost in real world could be things like cost
to add additional infrastructure and/or faculty in a school.

This function takes into account the current status of si (i.e., number of
demand nodes which have been already added to si) and then returns a penalty
for the jth assignment to si beyond its capacity. psi() returns only positive values
and is monotonically increasing over the j (1 ≤ j ≤ (|D|−csi), |D| is the number
of demand nodes in the problem). The intuition behind penalty functions being
that one may have to add increasingly more resources to a school (or a hospital)
as the overloading keeps increasing.

2.1 Problem Statement

We now formally define the problem of capacity constrained assignment (CCA)
by detailing the input, output and the objective function:
Given:

– A road network represented as a directed G(V,E), where each edge e ∈ E
has a positive cost.

– A set of service centers S = {s1, ..., sns
} where S ⊂ V . Each service center si

has a capacity csi and a penalty function psi .
– A set of demand vertices D = {d1, ..., dnd

} where D ⊂ V − S.

Output: An allotment consisting of pairs < dk, sj >. Here, the demand vertex
dk has been assigned to the service center sj . A demand vertex can be assigned
to only one service center. Note that we use the terms allotment and assignment
interchangeably in this paper (Table 1).

Capacity Constrained Assignment over Road Networks 129

Objective Function:

Min

{ ∑
si∈Service
Centers

{ ∑
dj∈Demand vertices

allotted to si

SCost(dj , si)

}
+ Total Penalty across all si

}

(1)

Table 1. Notations used in the paper

Symbol used Meaning

D Input set of demand vertices

S Input set of service centers

A An allotment containing pairs
< dk, sj >. Here, demand vertex
dk is allotted to service center
sj . Note that we use the terms
allotment and assignment
interchangeably

SCost(dn, sj) Shortest distance from demand
vertex dn to service center sj

Ψ(A, s∗) Assignment subspace tree of the
allotment A. Nodes of this tree
are service centers and edges
represent transfer of demand
vertices across service centers.
Service center s∗ is root

v∗(si, sj) Best transfer-demand node
v∗(si, sj) for transfer from si to
sj

3 Proposed Approach

This section details our proposed approach and is organized as follows: Sect. 3.1
presents a brief overview of our solution. In Sect. 3.2 we formally define our
key idea of assignment subspace tree. Section 3.3 details the notion of cascades
in a assignment subspace tree. Cascades are basically potential paths for re-
organization in a partial solution. We present details of our proposed algorithm
ASRAC in Sect. 3.4.

3.1 Overview

Our proposed approach constructs the solution incrementally. And, after each
new assignment it re-organizes the partially constructed solution so as to improve
the objective function value. This way we are able to balance the trade-off

130 A. Mishra et al.

between computational efficiency and solution quality. Our approach starts by
computing the shortest distance between all pairs of demand vertices and service
centers. Following this, we determine the closest service center for each demand
vertex and put the pairs <demand vertex di – closest si> pairs into a min-heap.
This heap is ordered on the distance to the closest si. In each iteration, the
demand vertex to be processed next is determined via the extract-min opera-
tion on the previously mentioned heap. Let <di, closest sj> be the result of the
extract-min at any intermediate stage of the algorithm. di is assigned to the ser-
vice center sj . This assignment could have happened under following two cases:
Case (a) si had free space (in terms of capacity) or; Case (b) si was already
full. Case (a) is quite straightforward and no further operations are needed. Note
that in this case, we also need not pay any penalty for this assignment. How-
ever, in case(b), after assigning di to sj , the algorithm undertakes the process
of re-organizing the current solution with an intention of lowering the current
objective function value. Note that in case (b), the objective function would
increase by the quantity δ = SCost(di, sj) + Penalty(si) after the assigning di
to sj . We now briefly present our idea of re-organization at high level.

Re-organization of an Assignment: Consider Fig. 1 which illustrates a par-
tially constructed solution for a sample problem instance. Here, vertices, S1,
S2, S3 and S4 are service centers. The figure also details the total capacity and
penalty values for each of the service centers. For sake of ease of understanding,
we assume that penalty function is just an integer (instead of a monotonically
increasing function as described in Definition 5).

Fig. 1. A partially constructed assignment on a
sample input. Processed demand nodes are filled
with the same color as their respective service cen-
ter. (Best in color) (Color figure online)

In the partial assignment
shown in Fig. 1, the first few
demand vertices (A,B,D,E and
J) have already been processed.
All of these were processed
via the previously described
case(a) where the service cen-
ter of choice had free capac-
ity. Demand vertices which are
allotted a service center are
filled using the same color as
that of their allotted service
center. For e.g., demand vertices
A, B are assigned to service cen-
ter S1. Nodes which are not yet
allotted are shown without any
filling.

Capacity Constrained Assignment over Road Networks 131

Now consider the pair <C,S2> to be processed next. Here, S2 is the closest
service center for the demand vertex C, however it is already full. So, when C is
allotted to S2, the objective function value would increase by SCost(C,S2) +
penalty at S2 (3 + 15 = 18). As mentioned earlier, at this stage our algorithm
tries to re-organize the current allotment with the goal of lowering the objective
function value as much as possible. Re-organization is done by undertaking a
series of adjustments to the current solution. In each adjustment, we transfer a
demand vertex which is already assigned to a service center to another one.

For instance, consider the dotted arrows in Fig. 1. After assigning C to S2, we
first transfer J to S4 (from S2) and then, transfer E to service center S1 (from
S4). Total increase in objective function after the assignment and re-organization
process is just 9 (as compared to increase of 18 units in case of no follow-up re-
organization). Details of the change in objective function value after each step
are given below:

(Step-0 Assignment) Assign <C to S2>: SCost(C,S2) + Penalty(S2) =⇒
3 + 15 = 18
(Step-1 Transfer) Transfer <J from S2 to S4>: −Penalty(S2) − SCost(J, S2)
+ SCost(J, S4) + Penalty(S4) =⇒ −15 − 1 + 5 + 15 = 4
(Step-3 Transfer) Transfer <E from S4 to S1>: −Penalty(S4) − SCost(E,S4)
+ SCost(E,S1) + Penalty(S1) =⇒ −15 − 2 + 3 + 1 = −13
Total increase in objective function: assignment cost + re-organization cost
=⇒ 18 − 9 = 9

Recall that the penalty costs associated with any service depends on its
current total load (beyond its capacity). Thus, the penalty costs mentioned in
step 2 and step 3 previously are not independent of each other. They were added
(and subtracted) by keeping a note of the current total load on each service center
as the demand vertices were being transferred.

The sequence of transfers illustrated above was an instance of what we refer
to as a cascade in this paper. In our actual implementation of the concept, in each
iteration, we determine the best cascade for re-organization. And this cascade
is determined by exploring, what we refer to as, the assignment subspace tree
(details in Sect. 3.2). This exploration is done by using multiple threads. Note
that the notion of a cascade was originally proposed in [12]. In this paper, we
are employing the concept in a much more sophisticated manner.

3.2 Assignment Subspace Tree

A key step of the algorithm involves determining a suitable cascade for the re-
organization process after each of the assignment steps which lead to penalty.
This cascade is determined by exploring a larger space of potential adjustments
represented in an assignment subspace tree. Following is a formal definition of
the concept.

132 A. Mishra et al.

Definition 6. Assignment subspace tree Ψ(): Consider an instance of prob-
lem with service centers S = {s1, ..., sns

}. Assume any intermediate stage of the
algorithm, where a demand vertex dnew was added to service center s∗ (s∗ ∈ S).
Let A be the current allotment comprising of tuples of the form < di, sj >
(demand node di is assigned to sj). The allotment subspace tree Ψ(A, s∗) is
defined as follows:

– Nodes of the tree are the service centers in S.
– s∗ forms the root (i.e., level 0) of the tree.
– At level 1, we have a node for each of the service centers S − {s∗}. In other

words, each of the service centers in S − {s∗} is a child node of s∗.
– For any node sj at level 1, all service centers in S − {s∗, sj} would be its

children at level 2.
– Likewise, for any arbitrary node st in level k, all service centers in S−{nodes

in root to st path} would be its children at level k + 1.
– The edge between a service center si (at level t) and its child sj (at

level t + 1) corresponds to the transfer of the best transfer-demand vertex
v∗(si, sj) (Definition 7). Cost of this edge is defined as SCost(v∗(si, sj), sj)−
SCost(v∗(si, sj) , si). Here, v∗(si, sj) is a demand vertex which is currently
assigned to si in (A), but is most suitable for transfer to sj according to
Definition 7.

Definition 7. Best transfer-demand vertex v∗(si, sj) for transfer from si
to sj: Let A be the current allotment comprising of tuples of the form < di, sj >
(demand vertex di is assigned to sj). For any ordered pair of service centers
(si,sj), v∗(si, sj) is the demand vertex di (currently assigned to si) that has
the minimum value for the term SCost(di, sj) − SCost(di, si) amongst all di
currently assigned to si. The expression “SCost(di, sj) − SCost(di, si)” denotes
the cost of transferring di from si to sj.

Note that according to Definition 6, service centers are never repeated on any
root to leaf path in the assignment subspace tree. We make this particular design
decision in our proposed approach with an intention of reducing the search space.

One of the key tasks while building Ψ(A, s∗) involves determining the best
transfer-demand vertex for each of the parent-child pairs of service centers in
the tree. And computing best transfer-demand vertex for a pair (si, sj) involves
finding a minimum (refer Definition 7) over all possible transfers between service
centers si and sj . This would be an computationally intensive task if we have a
large number of service centers and/or the size of allotment is large. To this end,
we use the concept of boundary vertices to minimize the number of potential
transfers considered while determining the best transfer-demand vertex between

Capacity Constrained Assignment over Road Networks 133

any pair of service centers in Ψ(). The notion of boundary vertices was originally
proposed in [12]. We are replicating it here for sake of convenience. Definition 8
presents the notion of boundary vertices formally.

Definition 8. Boundary Vertices of a service center si (Bsi) is a set of
demand vertices assigned to the service center si such that each vertex in Bsi

has at-least one of the following three properties: (a) an outgoing edge to a vertex
allotted to a different service center sj, (b) an outgoing edge to a different service
center sj or, (c) an outgoing edge to an unprocessed demand vertex.

Using Boundary vertices while constructing Ψ(): Consider the construction of
the assignment subspace tree (Ψ(A, s∗)) after a demand vertex was just added
to the service center s∗. Let A be the current allotment and, si be an arbitrary
non-leaf service center node in (Ψ(A, s∗)). Further assume that ω number of
demand vertices are currently assigned to si in A.

Now for determining the best transfer-demand vertex to any child sj of si (in
Ψ(A, s∗)), we need to evaluate all of the ω demand nodes (currently assigned to
si) as potential candidates to be transferred to sj . Basically, we would compute
the expression “SCost(di, sj) − SCost(di, si)” (referred to as the transfer cost)
for each of the d′

is currently assigned to si and then, choose the di which has the
minimum value. However, as mentioned earlier, this could be computationally
intensive.

To this end, we propose to consider only the boundary vertices of si while
determining the best transfer-demand vertex to any of its child node sj . The
intuition behind this is that any demand vertex which is inside the “assignment
region” of si would have to travel through a boundary vertex (of si) to reach
another service. As a result, such demand vertices would have a higher value
of transfer cost than the boundary vertices. Correctness of this statement can
trivially deduced from Lemma 1 in [12]. Detailed proof is not included here due
to lack of space.

3.3 Cascades in Assignment Subspace Tree

Structure of a Cascade: Any path which starts at the root and terminates
on any node (either internal or a leaf node) in an assignment subspace tree is a
cascade. For instance, consider a cascade ci =< p, q > in an arbitrary assignment
subspace tree (Ψ(A, Sa)) which starts at service center Sa (root of Ψ(A, Sa)) and
passes through the service centers Sb and Sc. Here, p is a boundary vertex of Sa

which was chosen as the best transfer (Definition 7) to Sb. Similarly, q was the
best transfer demand vertex for transferring from Sb to Sc. Now, the total cost
of ci (Cost(ci)) is given by the following expression.

134 A. Mishra et al.

Cost(ci) = −psa − SCost(p, Sa) + SCost(p, Sb) +��psb −��psb − SCost(q, Sb)
+ SCost(q, Sc) + psc

Here, psa refers to penalty paid at Sa (similar is the case with terms psb and
psc). Note that the above expression of Cost(ci) models the case where each of
service centers Sa, Sb and Sc are overloaded by at least one. Thus, care must be
taken in this regard to get valid costs.

Beneficial Cascade: A cascade whose total cost is less than zero is termed as a
beneficial cascade. For our previous example, cascade ci is said to be a beneficial
cascade, iff Cost(ci)+ psa +SCost(dn, Sa) < psa +SCost(dn, Sa). Here, dn was
the new demand node which was assigned to Sa. The most beneficial cascade in
Ψ(A, Sa) would be the one whose cost is most negative.

3.4 ASRAC Algorithm

This section details our proposed Assignment Subspace tree Re-organization
based Approach for CCA (ASRAC) problem. As one may imagine, a trivial
approach for determining the most beneficial cascade (in each iteration) would be
to create the entire assignment subspace tree and then use a modified version of
the depth first search to determine the most beneficial cascade. In this modified
version of depth first search, we would maintain the cost of the current best
beneficial cascade seen so far. This approach, however, is not scalable to any
real world road networks. To this end, our approach makes following four design
decisions: (a) we construct the assignment subspace tree on-the-fly as we search
for most beneficial cascade. (b) We use multiple threads to help in the process. (c)
At any internal node si (including root service center) in Ψ(), we only enumerate
best α number of children of si (more details later). In other words, we limit
the breadth of search in Ψ() using parameter α. (d) we also limit the depth of
search with parameter β.

Algorithm 1 details the pseudo-code for our proposed ASRAC algorithm. The
algorithm initializes in lines 1–4. We first determine the shortest distance (on
basis of edge costs) between all pairs of demand vertices and service centers.
Following this, we determine the closest service center for each demand vertex
and build a min heap (ClosestSC) with pairs <demand-vertex, closest service
center>. ClosestSC is ordered on the distance to the closest service center of
each demand vertex.

Lines 5–33 represent the main while loop of the ASRAC algorithm. This
while loop is executed till ClosestSC heap is not empty. The demand vertex to
be processed next is obtained by extract-min operation (Line 6).

Capacity Constrained Assignment over Road Networks 135

Algorithm 1. Assignment Subspace Re-organization based Approach for CCA
Input: (a) α: allowed breadth of the search in assignment subspace tree (α ≤ |S| − 1);
(b) β: allowed length of cascade (β ≤ |S| − 1); (c) τ : Number of threads available
Output: Assignment A with objective function value Δ

1: Determine shortest distance between all pairs of demand vertices and service centers
2: For each demand vertex di ∈ D determine the closest service center
3: Initialize ClosestSC heap with all <demand vertex-closest service center> pairs
4: Initialize assignment A ← NULL
5: while ClosestSC heap is not empty do
6: < di, s∗ > ← extract-min operation on ClosestSC heap
7: Add < di, s∗ > to the current assignment A and increment Δ by SCost(di, s∗)
8: if s∗ has vacancy then
9: Decrement capacity of s∗

10: else
11: Increment Δ by penalty corresponding to s∗
12: Initialize the list of seeds Γ
13: Γ ← Determine α seeds
14: if α ≤ τ then /*allowed breadth of the search is less than #threads*/
15: Λ ← Create α threads
16: else/*allowed breadth of the search is more than threads*/
17: Λ ← Create τ threads
18: end if
19: Create a job queue JQ with seeds present in Γ . /*Each seed is a job*/
20: while JQ has unfinished jobs do
21: Assign the next unfinished job to an available thread Ti /*Ti ∈ [1, .., |Λ|] */
22: <s∗,ssc,bcost,bpath> ← unexplored seed in Γ
23: Initialize global variables TiCost = 0 and TiPath=NULL for thread Ti

24: φ ← Penalty seen at service center s∗
25: Call Algorithm 2 with parameters <s∗,ssc,bcost,bpath>, α, β, φ
26: end while
27: Barrier to ensure that all threads in Λ terminate
28: < CCost∗, BestCas >← Cascade with lowest cost amongst all cascades

determined by different threads
29: if CCost∗ < 0 then /*The best cascade was indeed beneficial */
30: Re-organize A according to BestCas and update Δ value using CCost∗
31: end if
32: end if
33: end while

Let the result of extract-min operation be a demand vertex di and its closest
service center be s∗. di is assigned to s∗ and current allotment data-structure (A)
is updated accordingly. This new assignment could fall in one of the following
two cases: (a) s∗ had the required capacity or (b) s∗ was already full. Case
(a) is trivial, we just decrement the available capacity of s∗ and increment the
objective function value by SCost(di, s∗). On the other hand, case (b) involves
re-organization of the current allotment A using the most beneficial cascade in
Ψ(A, s∗). We now detail this aspect next.

136 A. Mishra et al.

ASRAC algorithm determines the most beneficial cascade (in Ψ(A, s∗))
in lines 12–28. As mentioned earlier, ASRAC does not enumerate the entire
Ψ(A, s∗) beforehand. Rather, the enumeration and exploration happens simul-
taneously in order to achieve good performance. The algorithm first determines
the seeds (which would be expanded in parallel using threads). After the seeds
the generated, each of them become a job in the job queue. This job queue
is processed using threads. Each seed is given to a thread. Any thread which
finishes its job is assigned an unprocessed seed from the job queue.

A seed in the job queue represents a path in Ψ(A, s∗) from root (s∗) to an
internal node u. The sub-tree under u is explored (using Algorithm 2) to deter-
mine the most beneficial cascade in that particular sub-tree. Note that the cost
of this cascade would include the cost of the seed as well. Beneficial cascades
determined from each seed are compared to determine the most beneficial cas-
cade BestCas in the entire Ψ(A, s∗) (Line 28 in Algorithm1). Following this,
the current assignment A is re-organized according to the BestCas and the
objective function value is updated accordingly. We now explain our basic seed
generation process and the procedure of searching the sub-tree (under a seed)
for the beneficial cascade (Algorithm 2).

Seed Generation Process: The algorithm basically picks the α best children
of root service center s∗ in Ψ(A, s∗) as seeds. At the root level (i.e., Level 0) in
Ψ(A, s∗), the service center s∗ can theoretically have edges to all service centers
si ∈ S − {s∗}. This would be |S| − 1 number of edges. Now, we need to select
α number of edges from these. This is done as follows. We determine the best
transfer-demand vertex between s∗ and every other service center si ∈ S −{s∗}.
Then, a min heap (called as BestSeeds) is created which is ordered on the cost
of transferring the best transfer-demand vertex (refer Definition 7) from s∗ to
the respective service center. The top α items from this heap become the seeds.

Note that this approach can be trivially adapted to generate seeds accord-
ing to the number of available threads. In this adapted version, we would first
generate α best children (at level 1 of Ψ()) of root, and then proceed to gen-
erate |S| − 2 children (at level 2 of Ψ()) of these α children. We then combine
the edges enumerated to create paths of length 2 edges from s∗ in Ψ(). From
these, α(|S| − 2) candidate paths, we can select top k according to the num-
ber of threads available. Note that for any realistic problem setting, α(|S| − 2)
would come out to be in hundreds (considering α ≥ |S|/2). We did not present
a pseudo-code for seed generation algorithm to maintain simplicity and clarity
of presentation.

Searching a Sub-tree for Beneficial Cascade (Algorithm 2): ASRAC
uses Algorithm 2 to search the sub-tree under a seed. Algorithm 2 essentially
follows a recursive depth first strategy. It enumerates (portions of Ψ(A, s∗) under
a seed) and explores (for most beneficial cascade) simultaneously in order to
achieve good performance. And during the search, it maintains the lowest cost
beneficial cascade seen so far. During the search, it also keeps checking for any
free threads in the system (refer line 25 in Algorithm2). If free threads are
found, then the algorithm internally divides the search amongst the
available threads.

Capacity Constrained Assignment over Road Networks 137

Algorithm 2. Determine Most Beneficial Cascade in Sub-tree of Ψ()
Input: (a) <X service centers to ignore, next service center nsc, bcost, cpath>, (b) α:
allowed breadth of the search in assignment subspace tree (α ≤ |S| − 1), (c) β: allowed
length of cascade (β ≤ |S| − 1), (d) φ base penalty seen at root of Ψ()
Output: Returns the most beneficial cascade in the sub-tree rooted at nsc.

1: X ← X ∪ {nsc}
2: current cost of cascade ccost ← bcost + penalty at nsc (if any) - φ
3: if ccost < TiCost then
4: TiCost = ccost and TiPath = cpath
5: end if
6: if ccost > current best cascade cost TiCost then
7: Return
8: end if
9: if nsc had available capacity then

10: Return
11: end if
12: if β == 0 then
13: Return
14: end if
15: Initialize BestSucessor min heap
16: for all service center si ∈ S − X do
17: ω(nsc, si) ← Cost of transferring best transfer-demand node (v∗(nsc, si)) from

nsc to si.
18: Push the tuple < si, ω(nsc, si), v

∗(nsc, si) > into BestSucessor heap
19: end for
20: i = 1
21: while i ≤ α And BestSucessor not empty do
22: < si, ω(nsc, si), v

∗(nsc, si) > ← extract min from BestSucessor
23: nbcost ← bcost + ω(nsc, si)
24: cpath ← cpath ∪ < v∗(nsc, si), si >
25: Recursively call Algo 2 with parameters < X, si, nbcost, cpath >, α, φ, β − 1

/*If free threads are available then each recursive call in the loop can be taken
forward by different thread. */

26: Increment i
27: end while
28: Return

Enumeration Strategy: At any given internal node u in Ψ() (initially this would
be the service center node from the seed), the algorithm determines the best
children of u (Lines 15–24) to roll forward the recursion (Line 25). For deter-
mining the best children, the algorithm uses a strategy similar to that of the
seed determination algorithm discussed previously. However note that, we can
enumerate a maximum of only α children at any stage. Moreover, according to
the definition of Ψ(), no service center is allowed to repeat on any root to node
path in Ψ(). Thus, as the algorithm proceeds deep into the recursion, it would
progressively enumerate fewer children.

138 A. Mishra et al.

Termination Condition: With the intention of making the depth first search
faster, we have implemented the following three termination conditions for back-
tracking the search: (a) We reach a service center which has free space (i.e., it
not overloaded). (b) Total number of transfers already planned in this cascade
become larger than a certain threshold (parameter β in Algorithm 2). (c) The
cost of the current cascade (accumulated till now) becomes greater than cost of
the current best beneficial cascade.

4 Analytical Evaluation

We first derive the time complexity of the seed generation process and Algo-
rithm2. Following this, we detail the time complexity of ASRAC. Let the input
road network G(V,E) contain n vertices and m edges. Furthermore, assume that
S is set of service centers and D is set of demand vertices given in the input.
Typically, in any realistic problem scenario, |D| is O(n) and |S| is much less than
|D|. Thus, |S| can be considered as constant O(1).

Finding Seeds from Ψ() for Parallel Exploration: This algorithm deter-
mines α number of seeds from Ψ() for parallel exploration. As mentioned earlier,
these seeds are basically the best α children of root service center s∗ in Ψ(). The
algorithm computes the seeds in three major steps. First, it determines the best
transfer-demand vertex for all pairs <s∗,si> (∀si ∈ S−{s∗}). This would take a
maximum of O(n|S|) time. Note that this is an absolute worst-case upper bound
and it happens when s∗ has O(n) boundary vertices. Following the first step,
the algorithm prepares potential seeds using the best transfer-demand vertices
determined previously and puts them in a min-heap (BestSeeds heap). This
would take a total of O(|S|) time (if heap is constructed in a single pass). And
lastly, the algorithm performs α number of extract-min operations on BestSeeds
heap to determine the seeds. This would take O(α log |S|) time. Therefore, the
total time complexity of this process is upper bounded by O(n|S| + α log |S|)
time. Given that |S| is considered constant and α < |S|, the overall complexity
becomes O(n).

Algorithm 2: Finding Most Beneficial Cascade in a Sub-tree of Ψ():
This algorithm simultaneously enumerates and explores a sub-tree under Ψ().
During the execution at any intermediate stage, the algorithm can enumerate a
maximum of α children and no service center is allowed to repeat on any root to
node path. In worst case, α = |S|. The total number of nodes in any particular
subtree under the root in Ψ() can be computed by series: 1 + (|S| − 2) + (|S| −
2)(|S| − 3) + . . . + |S|!/(|S| ∗ (|S| − 1)), which is of the order O(|S||S|). At each
node, the algorithm selects a maximum of α best children to take forward the
recursion. This process is very similar to selecting seeds at root. Thus it can
take maximum of O(n) time. Therefore, the total running time of Algorithm2 is

Capacity Constrained Assignment over Road Networks 139

upper bounded by O(n|S||S|). Note that, though |S| is constant, the term |S||S|

is still quite significant.

Algorithm 1: ASRAC Algorithm: The ASRAC algorithm begins by com-
puting shortest path distances between all pairs of demand vertices and service
centers. This step takes O(n3) time and was done using using floyd-warshall
algorithm [3]. Note that we used floyd-warshall algorithm as a black-box, one
can replace it with any other shortest path algorithm (e.g., [6]). Following this,
the algorithm determines the closest service center for each demand node which
takes O(n|S|) time. The algorithm then prepares the ClosestSC heap (Line# 3
in Algorithm 1) which takes O(|D|) (O(n)) time.

From step 5 on wards, the algorithm enters the main while loop which has |D|
(O(n)) iterations. Following key tasks (from the perspective of time complexity)
are done in each iteration of the loop: (1) extract-min from ClosestSC heap;
(2) create α number of seeds and put them in a job queue; (3) threads use
Algorithm 2 to determine the most beneficial cascade in the sub-trees defined
by seeds in the job queue. Task (1) would take O(log n) time. Task (2) would
take O(n) time. Task (3) would take O(αn|S||S|) time as we have α jobs in
the job queue. To summarize, the total complexity of the ASRAC algorithm
would be O(n3) + O(n) + O(n|S|) + O(n log n + n2 + n2|S||S|). This would be
O(n3 + n2|S||S|).

5 Experimental Evaluation

We used the road network of New Delhi, India in our experiments. This dataset
was obtained from OpenStreetMaps [www.openstreetmap.org]. Algorithms were
implemented in Java 1.8 and Java Threads were used for creating threads in
ASRAC algorithm. Experiments were conducted on a Ubuntu machine (with 90
GB RAM) capable of 100 threads (multiple Intel Xeon E-8870 v3 CPUs).

Candidate Algorithms: Following 3 algorithms were compared in experi-
ments.

1. Our proposed ASRAC algorithm: We ran ASRAC algorithm by varying
its α. Max length of cascade was #service centers-1.

2. LoRaL algorithm [12]: We ran LoRaL (a serial algorithm) by setting its k
to the number of service centers (|S|). This means that LoRaL would explore
|S| number of potential cascades to choose the best for re-organization. Note
that this is the maximum amount of exploration that LoRaL algorithm can
perform on any CCA problem instance. In other words, the solution quality
of LoRaL reported in this section is the best that can be attained
by LoRaL. Max length of cascade is set to #service centers-1.

3. Min-Cost Bipartite Matching: Procedure given in [2]

In our experiments, we randomly chose some vertices from the graph and made
them service centers. The remaining vertices were designated as demand vertices

http://www.openstreetmap.org

140 A. Mishra et al.

(each with unit demand). The number of service centers was varied in the exper-
iments according to ratio |D| : |S|. A ratio of 600 : 1 implies that we have one
service center for every 600 demand vertices. For a given number of service cen-
ters and demand, the total capacity across all service centers is given by θ ∗ |D|.
This total capacity is distributed amongst |S| service centers randomly. For sake
of easy interpretation of results, instead of generating monotonic functions, we
assume that penalty value of a service center is a random value between 1 and
μ. In our experiments, μ = 200 or μ = 500. We pre-computed the shortest path
distances between all pairs of demand vertices and service centers.

(a) Execution time (b) Final Objective function value

Fig. 2. ASRAC vs Min-Cost Bipartite Matching algorithm. |D| : |S| was 300 : 1

Comparing ASRAC with Min-Cost Bipartite Matching: Fig. 2 illustrates
these results. Here, θ = 0.50 and μ = 200. Following conclusions were drawn
from this experiment: (a) Optimal algorithm for min-cost bipartite matching
does not scale beyond graphs containing 4000 vertices. Even its main memory
requirements grew very fast. It requires greater than 90 GB RAM for a CCA
problem instance with 4000 demand vertices and 40 service centers. (b) ASRAC
is much closer to optimal solution than LoRaL and continues to be closer to
optimal solution (than LoRaL) as the number of vertices in graph increase.

Comparing ASRAC with LoRaL Algorithm: Fig. 3 illustrates these results.
Here, the input graph had 23,000 vertices, total capacity parameter θ = 0.70 and
μ = 500. Following conclusions were drawn from this experiment: (1) ASRAC
obtains significantly lower values of objective function without spending too
much time in execution (refer third column in Fig. 3(b)). As Fig. 3(b) shows,
ASRAC’s final objective function value was lower by at least 20,000 units. (2)
Increasing α increases run-time but also improves solution quality. On graph with
65,000 vertices (|D| : |S| = 800 : 1, θ = 0.70 and μ = 500) ASRAC obtained
a objective function value which was lower (than LoRaL) by almost
125000 units. Those results are not shown due to lack of space. Runtime of
LoRaL was around 40 s in this experiment, which is less than ASRAC. However,

Capacity Constrained Assignment over Road Networks 141

(a) Execution time (b) Final Objective function value

Fig. 3. Comparing ASRAC with LoRaL algorithm. #vertices in graph 23,000.

the key thing to note is the drastic improvement in solution quality of ASRAC
over LoRaL. And the dominance increases with increase in graph size.

Conclusion: Capacity constrained assignment on road networks is a societally
important problem. CCA problem can be reduced to min-cost bipartite matching
problem. However, optimal algorithms for min-cost bipartite matching cannot
scale to large problem instances. Our proposed ASRAC algorithm is able to
scale-up while maintaining better solution quality over alternative approaches.

Acknowledgement. Microsoft Azure credits (AI for Health scheme), Mr Kapish
Malik, DST (ECR/2016/001053) and IIT Ropar.

References

1. Azad, A., Buluç, A.: Distributed-memory algorithms for maximum cardinality
matching in bipartite graphs. In: Proceedings of the IPDPS, pp. 32–42 (2016)

2. Bortnikov, E., et al.: The load-distance balancing problem. Networks 59(1), 22–29
(2012)

3. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms,
2nd edn. McGraw-Hill Higher Education, New York (2001)

4. Deveci, M., Kaya, K., Uçar, B., Çatalyürek, Ü.V.: GPU accelerated maximum
cardinality matching algorithms for bipartite graphs. In: Wolf, F., Mohr, B., an
Mey, D. (eds.) Euro-Par 2013. LNCS, vol. 8097, pp. 850–861. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40047-6 84

5. Fenner, S., Gurjar, R., Thierauf, T.: A deterministic parallel algorithm for bipartite
perfect matching. Commun. ACM 62(3), 109–115 (2019)

6. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68552-4 24

7. Hu, J., et al.: Towards energy efficient hybrid on-chip Scratch Pad Memory with
non-volatile memory. In: 2011 Design, Automation Test in Europe, pp. 1–6 (2011)

https://doi.org/10.1007/978-3-642-40047-6_84
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1007/978-3-540-68552-4_24

142 A. Mishra et al.

8. Jiang, J., Wu, L.: Two-stage distributed parallel algorithm with message passing
interface for maximum flow problem. J. Supercomputing 1–19 (2014). https://doi.
org/10.1007/s11227-014-1314-7

9. Langguth, J., et al.: On parallel push-relabel based algorithms for bipartite maxi-
mum matching. Parallel Comput. 40(7), 289–308 (2014)

10. Li, J., et al.: Resource allocation robustness in multi-core embedded systems with
inaccurate information. J. Syst. Archit. 57(9), 840–849 (2011)

11. Lingas, A., Persson, M.: A fast parallel algorithm for minimum-cost small integral
flows. In: Kaklamanis, C., Papatheodorou, T., Spirakis, P.G. (eds.) Euro-Par 2012.
LNCS, vol. 7484, pp. 688–699. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-32820-6 68

12. Mehta, A., Malik, K., Gunturi, V.M.V., Goel, A., Sethia, P., Aggarwal, A.: Load
balancing in network Voronoi diagrams under overload penalties. In: Hartmann,
S., Ma, H., Hameurlain, A., Pernul, G., Wagner, R.R. (eds.) DEXA 2018. LNCS,
vol. 11029, pp. 457–475. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-98809-2 28

13. Nagy, N., Akl, S.G.: The maximum flow problem: a real-time approach. Parallel
Comput. 29(6), 767–794 (2003)

14. Okabe, A., et al.: Generalized network Voronoi diagrams: concepts, computational
methods, and applications. Intl. J. GIS 22(9), 965–994 (2008)

15. Parsons, E., et al.: School catchments and pupil movements: a case study in
parental choice. Educ. Stud. 26(1), 33–48 (2000)

16. Qiu, H., et al.: An efficient key distribution system for data fusion in V2X hetero-
geneous networks. Inf. Fusion 50, 212–220 (2019)

17. Qiu, M., et al.: Data allocation for hybrid memory with genetic algorithm. IEEE
Trans. Emerg. Topics Comput. 3(4), 544–555 (2015)

18. Leong, H.U., et al.: Optimal matching between spatial datasets under capacity
constraints. ACM Trans. Database Syst. 35(2), 9:1–9:44 (2010)

19. Yang, K., et al.: Capacity-constrained network-Voronoi diagram. IEEE Trans.
Knowl. Data Eng. 27(11), 2919–2932 (2015)

https://doi.org/10.1007/s11227-014-1314-7
https://doi.org/10.1007/s11227-014-1314-7
https://doi.org/10.1007/978-3-642-32820-6_68
https://doi.org/10.1007/978-3-642-32820-6_68
https://doi.org/10.1007/978-3-319-98809-2_28
https://doi.org/10.1007/978-3-319-98809-2_28

A Dynamic Scheduling Strategy of ADMM
Sub-problem Optimization Algorithm Based

on Hierarchical Structure

Jiawei Ji , Yongmei Lei(B), and Shenghong Jiang

School of Computer Engineering and Science, Shanghai University, Shanghai, China
lei@shu.edu.cn

Abstract. The Alternating Direction Method of Multiplier (ADMM) is a sim-
ple algorithm to resolve decomposable convex optimization problems, especially
effective in solving large-scale problems. However, this algorithm suffers from
the straggler problem its updates have to be synchronized. Therefore, the asyn-
chronous ADMM algorithm is proposed. However, the convergence speed of the
ADMM algorithm is not very satisfactory. In this paper, we propose a dynamic
scheduling strategy for sub-problems-automatically calling different algorithms
at different iteration periods of each iteration, and combining this strategy with a
hierarchical communication structure. The experiments based on ZiQiang 4000
cluster experimental environment show that the dynamic scheduling strategy based
on hierarchical communication structure can solve the ADMM sub-problem and
effectively improve the convergence speed and communication efficiency of the
algorithm.

Keywords: ADMM · Asynchronous · Dynamic scheduling strategy ·
Hierarchical communication structure · Distributed optimization

1 Introduction

Machine learning has achieved unprecedented success in many fields, which has com-
pletely changed the development direction of artificial intelligence and triggered the
arrival of the era of big data.Oneof themost challengingproblems is solvedbydistributed
machine learning.

In general, many distributed machine learning algorithms can be attributed to the
global variable consistency optimization problems, such as Linear regression [1], Logis-
tic regression [2] and Support VectorMachine (SVM) [3], and [4] proved that these prob-
lems can be effectively solved by ADMM. ADMM algorithm is a simple way to solve
the problem of decomposable convex optimization, especially to deal with the prob-
lem of large-scale productive. The ADMM algorithm equably decomposes the objective
function into several sub-problems for solving, and then solves each sub-problem in
parallel.

Supported by the Natural Science Foundation of China under grant No. U1811461.

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 143–158, 2020.
https://doi.org/10.1007/978-3-030-60245-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_10&domain=pdf
http://orcid.org/0000-0003-2011-5668
https://doi.org/10.1007/978-3-030-60245-1_10

144 J. Ji et al.

The running time of ADMM algorithm is mainly composed of communication time
and calculation time. In the implementation of consistency problem, due to the existence
of consistency conditions, the nodes must be synchronized. In a distributed cluster,
synchronous operations between nodes mean a lot of communication. Obviously, a lot of
time will be spent on communication. Therefore, performing communication operations
at the right time and the right communication structure are key to reduce runtime.

Currently, there are generally three consistency models, namely BSP [5], ASP and
SSP [6]. In terms of the distributed implementation of ADMM algorithm, [4] solved the
global consistency problem in two distributed programming environments – MPI and
MapReduce through ADMM algorithm. [2] actually solved the regular Logistic regres-
sion problem of L2 on Hadoop by using ADMMalgorithm. However, the basic principle
of these methods are based on the algorithm implementation of BSP model. This will
undoubtedly cost a lot of time for synchronization. To alleviate this problem, [7] pro-
posed asynchronous ADMM algorithm(AD-ADMM) for global consistency problem,
and used asynchronous SSPmodel to implement ADMMalgorithm to solve the problem
of large-scale distributed global consistency optimization. Unlike the synchronous BSP
model, the asynchronous model allows the nodes to work more independently, is more
flexible in their communication strategies. The asynchronous approach is more efficient
than the synchronous one. However, most asynchronous ADMM algorithms in [8] et al.
use Master-slave mode, which is not efficient in multi-core distributed clusters. In order
to address this problem, [9] proposed a group-based ADMM (GADMM). [10] designed
a communication structure for ADMM algorithm.

In addition, the convergence speed of the algorithm has a great impact on the cal-
culation speed. From the perspective of the ADMM algorithm itself, the penalty term ρ

has a significant effect on the number of convergence times of the algorithm.We will not
discuss it in this paper. On the other hand, considering the optimization algorithm for
solving the x-subproblem of ADMM, without considering the communication, during
a single iteration of the ADMM algorithm, the computational overhead required for the
x update is the largest. If the most suitable optimization algorithm can be automatically
selected at the right time, the number of convergence times and the convergence time
of the ADMM algorithm may be improved. And there is no in-depth research on this
aspect, which is vital for algorithm speed.

In this paper,we propose a dynamic scheduling optimization algorithmbased on hier-
archical communication structure to solve the x-subproblem of ADMM. This method
improves the communication efficiency and has a faster convergence speed. The hierar-
chical communication structure improves the communication efficiency of the algorithm,
and the dynamic scheduling strategy accelerates the convergence speed of ADMM. In
this paper, the optimization algorithm is mainly selected by residuals. And this dynamic
scheduling strategy can call a suitable optimization algorithm according to different con-
vergence stages in each iteration. This paper tests the dynamic scheduling strategy on
the Shanghai University ZiQiang 4000 cluster system. The test results show the acceler-
ation effect of the dynamic scheduling strategy based on the hierarchical communication
structure.

A Dynamic Scheduling Strategy of ADMM 145

2 Problem Description and Related Work

2.1 Distributed Alternating Direction Method of Multipliers

In general, many distributed machine learning problems can be expressed as the
following global consistency optimization problems:

minf(x) = ∑N
i=1 fi(xi) (1a)

s.t. xi − z = 0, i = 1, . . . ,N (1b)

where x ∈ Rn, fi : Rn → R ∪ {+∞}, z is a consistency variable. Constraints indicate
that all local variables xi need to be equal to each other. In (1a) the objective function f
(x) is divided into N parts, so the solution of the problem can be realized in a distributed
environment with N processes.

The iterative formula for solving the problem (1) by ADMM algorithm is as follows:

xk+1
i = argmin

xi

(
fi(xi) + ykTi

(
xi − zk

) + ρ
2

∥
∥xi − zk

∥
∥2
2

)

(2)

zk+1 = argmin
z

(
fi
(
xk+1
i

)
+ ykTi

(
xk+1
i − zk

)
+ ρ

2

∥
∥xi − zk

∥
∥2
2

)

= 1
N

∑N
i=1

(
xi + 1

ρ
yi

) (3)

yk+1
i = yki + ρ

(
xk+1
i − zk+1

)
(4)

Where yi is a local Lagrangian dual variable and ρ > 0 is a penalty term parameter.
It can be found that the update of xk+1

i and yk+1
i can be performed independently

and in parallel on separate processes, and the consistency variable z needs to aggregate
the local variables to update in each iteration. Every update of the global parameter z
requires all parameters xk+1

i and yk+1
i . Therefore, the computing performance of each

Slave process in the cluster has a great impact on the overall iteration speed.
In practical applications, the global parameter update strategy of BSP is very limited.

First, the performance limitation of a node in the physical cluster may affect the overall
speed of the cluster; Secondly, the synchronized parameter update strategy causes a lot
of time. These problems in the BSP model can be alleviated by the SSP model.

2.2 Asynchronous Distributed Alternating Direction Method of Multipliers

AD-ADMM [9] use SSP’s parameter synchronization strategy for z update. That is, the
AD-ADMM algorithm is implemented in a distributed environment by means of limited
asynchronous and local updates, which not only reduces time overhead, but also ensures
convergence, and also improves fault tolerance to a certain extent.

AD-ADMM algorithm divides the processes into a Master and N Workers. The
Master does not have to wait for all Workers, but receives parameters sent by A(0
< A < N) Workers to update the global variable z. To ensure convergence, a limited
asynchronous strategy is used in AD-ADMM. The algorithm sets a clock value for each

146 J. Ji et al.

process. After each iteration of the process, the clock value is increased by one. For a
Worker whose clock value is greater than the time window τ > 0, the Master needs to
wait for the Worker to finish sending.

The update process of Master and Workers in the AD-ADMM is given in Table 1.

Table 1. Asynchronous Distributed ADMM (AD-ADMM).

where k is the clock value of theMaster and ki is the local clock value of eachWorker.
The {d1, d2 … dN } in theMaster records the clock values of the NWorkers that reached
the last time. Ak is the set of Workers that reach the Master when the Master clock value
is k, and Ac

k is the complement of Ak , that is, the set of Workers that did not reach the
Master at the k-th iteration.

2.3 Hierarchical Communication Structure

As shown in Fig. 1, the Hierarchical Communication Structure(HCS) divides the process
into two categories, Master and Worker. Since each Master needs to communicate with

A Dynamic Scheduling Strategy of ADMM 147

a part of Workers, in order to reduce the number of communication between nodes
during the Master-Worker communication process, HCS associates processes with each
node according to the Round Robin algorithm, and sets the first process of each node
as a Master, Called SubMaster. In addition, a Master process is set up in the cluster to
communicate with each SubMaster.

represent inter-node communication represent intra-node communication

Fig. 1. Hierarchical communication structure

Combining HCS structure and AD-ADMM algorithm, HAD-ADMM (AD-ADMM
based onHCS) is proposed.HAD-ADMMdivides the algorithm into three parts:Worker,
SubMaster andMaster.Worker updates yij and xij, and then passes xij and yij to SubMas-
ter of this node. The SubMaster performs decentralized updates through the parameters
passed by Worker in this node, then sends the updated parameter zki+1

i to the Master.

After the Master receives zki+1
i from each node, it aggregates them, calculates the final

global variable zk+1, and sends it to each SubMaster.
Similar to AD-ADMM, HAD-ADMM also sets a clock value for all processes. The

update process ofMaster, SubMaster andWorkers in the AD-ADMM is given in Table 2.

148 J. Ji et al.

Table 2. AD-ADMM based on HCS (HAD-ADMM)

Where Pi represents the set ofWorker processes in the i-th node. A
′
k (An ≤ A

′
k ≤ Nn)

is the set of SubMasters that reach the Master when the clock value is k. {d1′ = d2′ =
· · · dN ′} is the number of clock values from the last time that each SubMaster reached
the Master.

A Dynamic Scheduling Strategy of ADMM 149

3 Dynamic Scheduling Strategy Based on HAD-ADMM

This section discusses the influence of the optimization algorithm for solving the x-
subproblem on the convergence of the algorithm. Some simple simulation experiments
are used to illustrate the effect of different sub-problem optimization algorithms on
the number of convergences of the algorithm. Then according to the characteristics
of different optimization algorithms, a dynamic scheduling strategy based on HAD-
ADMM is proposed to improve the convergence speed of ADMM algorithm. And the
scheduling basis is introduced.

3.1 Optimization Algorithm for Solving Sub-problem

From the foregoing formulas (2), (3), and (4), it can be found that the update of x is
a problem of solving the optimal value, the update of y is a simple gradient ascent
process, and the update of z is an average process. For the optimal value problem of the
x-subproblem, it is mostly solved by other optimization algorithms. Such as gradient
descent, conjugate gradient method, Newton method or quasi-Newton method. The
common point of these algorithms is that the algorithm process is an iterative solution
process. Therefore, without considering communication, during the ADMM algorithm
iteration, the update cost of x is the largest. So the solution of the x-subproblem also
greatly affects the running time of the ADMM algorithm.

The optimization algorithms for solving sub-problems have their own characteristics.
This section uses a small two-node cluster with two processes running on each cluster.
For the same ADMM algorithm problem, the L-BFGS and conjugate gradient method
are used to solve.

This section uses a small two-node clusterwith twoprocesses running on each cluster.
For the same ADMM algorithm problem, the L-BFGS and conjugate gradient method
are used to solve.

As can be seen from Fig. 2, the effects of different optimization algorithms are
different in different convergence stages. The FRCG algorithm converges faster at the
early stage of the iteration, while the L-BFGS algorithm converges faster at the later
stage of the iteration.

Fig. 2. Algorithm iteration process of solving x-subproblem with different optimization algo-
rithms

150 J. Ji et al.

Itwas also found in the experiment that in the case of the sameoptimization algorithm,
the time required for one iteration of different processes is different. The time required
for iteration using the L-BFGS algorithm is shown in Fig. 3.

Fig. 3. The running time of solving x-subproblem for different processes in the iteration process
of L-BFGS

These running time differences may be due to different performance of different
nodes, or due to different training data on different processes. Therefore, the optimization
algorithm for solving the x-subproblem also has a great influence on the convergence
time of the ADMMalgorithm. In practical applications, if the most suitable optimization
algorithm can be automatically selected at the right time, the number of convergence
times and the convergence time of the ADMM algorithm may be improved.

3.2 Dynamic Scheduling Strategy Based on HCS

The main idea of the dynamic scheduling strategy is to use different optimization
algorithms at different periods of each iteration.

The basic idea is shown in Fig. 4. Specifically, the strategy of dynamic scheduling
optimization algorithms can be divided into the following five steps.

Submaster1

update z1

determine whether to
replace the optimization
algorithm by scheduling

basis

Worker11
update x11 by

FRCG + L-BFGS

update y11

Worker12
update x12 by

FRCG + L-BFGS

update y12

Submaster2

update z2

determine whether to
replace the optimization
algorithm by scheduling

basis

Worker21 Worker22
update x21 by

FRCG + L-BFGS
update x22 by

FRCG + L-BFGS

update y21 update y22

SubmasterNn

update zNn

determine whether to
replace the optimization
algorithm by scheduling

basis

WorkerNn1 WorkerNn2
update xNn1 by

FRCG + L-BFGS
update xNn2 by

FRCG + L-BFGS

update yNn1 update yNn2

Master

update z

 ...

 ...

node1

node2

nodeNn

Fig. 4. Dynamic scheduling strategy based on hierarchical communication structure

A Dynamic Scheduling Strategy of ADMM 151

First, divide all Worker nodes into groups. We set a node as a group and every group
contains multiple processes with each process allocated by round robin Round Robin
algorithm. And sets the first process of each group as a Master, Called SubMaster. In
addition, a Master process is set up in the cluster to communicate with each SubMaster.

Secondly, the local variable xi of each Worker process is updated with different
optimization algorithms at different times of the iteration. In this paper, we only use two
scheduling algorithms, using the FRCG algorithm early in the iteration, and using the
L-BFGS algorithm when it is close to convergence.

Subsequently, how to determine whether it is time to replace the algorithm is an
important step in this strategy. Combinedwith theHCSandAD-ADMMsynchronization
strategy, the selected process can be incorporated into the update of the SubMaster. The
SubMaster process judges whether it is time to replace the algorithm according to the
proposed decision strategy, and updates the local global variable zi.

And then the Master process receives zi from each SubMaster process to update
the global variable z, and then sends the latest global variable z to the corresponding
SubMaster process for the next iteration. Finally, each SubMaster process sends all
parameters and replacement sub-problem optimization algorithm flags to the Worker
processes in its own group.

3.3 The Dynamic Scheduling Basises

The ADMM algorithm mainly uses the primal residual rk and dual residual sk to make
convergence judgments:

∥
∥rk

∥
∥2
2 =

N∑

i=1

∥
∥xki − zk

∥
∥2
2 (5)

∥
∥sk

∥
∥2
2 = Nρ2

∥
∥zk − zk−1

∥
∥2
2

(6)

Therefore, the primal residual and dual residual can measure the degree of conver-
gence of the current variable. This paper also uses the residuals as the basis for dynamic
scheduling, and uses the residuals to determine the degree of convergence. The FRCG
algorithm is used before reaching a certain degree of convergence, and the L-BFGS
algorithm is used after reaching a certain degree of convergence. There are different
choices based on different residuals:

(1) primal residual rk : The primal residual is in the form of the sum of the squares of
the L2 norms of the differences between each sub-variable of xk and zk . Because
the dynamic scheduling process is combined with the algorithm update of the Sub-
Master part, at this time, the SubMaster has not yet performed the sending operation
to the Master, so zk is unknown. Therefore, the intermediate result zi of the local
update of z in SubMaster can be used instead of zk in the calculation formula of the
primal residual. At this time, the local primal residual calculation formula is:

∥
∥
∥rkij

∥
∥
∥
2

2
=

∥
∥
∥xkij − zki

∥
∥
∥
2

2
(7)

152 J. Ji et al.

Where, the subscript of rij indicates the j-th Worker on the i-th node. The dynamic
scheduling strategy of the SubMaster part based on the primal residual is shown in
Table 3:

Table 3. ADMM with dynamic scheduling strategy based on primal residual (DSP-ADMM).

Where Fj is the flag bit of the replacement sub-problem optimization algorithm, and
εDSP is the set threshold.When the primal residual is less than this value, it is determined
that it reaches the middle and late iterations, and L-BFGS algorithm can be used instead.

(2) dual residual sk : The main form of the dual residual is the sum of squares of the
L2 norm of the difference between the result of this iteration zk and the result of
the previous iteration zk−1. As with the previous primal residual as the basis for
decision-making, zk is unknown. At this time, zk can be replaced by the calculation
result xij of each Worker process on the same node as SubMaster. The formula for
calculating the local dual residuals is:

∥
∥
∥skij

∥
∥
∥
2

2
= Nρ2

∥
∥
∥xkij − zk−1

∥
∥
∥
2

2
(8)

The dynamic scheduling strategy of the SubMaster part based on the dual residual
is shown in Table 4:

A Dynamic Scheduling Strategy of ADMM 153

Table 4. ADMM with dynamic scheduling strategy based on dual residual (DSD-ADMM).

Where εDSD is the set threshold. When the dual residual is less than this value, it is
determined that it reaches the middle and late iterations, and L-BFGS algorithm can be
used instead.

The primal residual is the derivative of y in the augmented Lagrangian function,
so it can represent the convergence of y. The dual residual is derived from the partial
derivative of x, so it can represent the convergence of x. When the algorithm reaches
convergence, x and y converge at the same time. The above two strategies use a single
residual to make optimization algorithm decisions. Therefore, which strategy is better
needs to be verified through experiments.

In fact, a better strategy means that its corresponding variables have a greater impact
on the convergence of the ADMM algorithm. From the point of view of the ADMM
algorithm iteration stop condition, y does not participate in the calculation of the two
residuals, so from the perspective of the stop condition, x has a greater influence on the
speed of algorithm convergence than y. From the calculation formula of primal residual
and dual residual, the calculation method in the decision strategy of DSP-ADMM only
includes the parameter value in one node, while the calculation method of DSD-ADMM
takes into account the result of the previous iteration.

In addition, the algorithm of the Worker part also needs to be modified accordingly.
Workers on the same node need to determine whether they need to replace the sub-
problem optimization algorithm, so in addition to receiving the global variable zk+1, the
Worker also needs to receive the flag bit Fj of the sub-problem optimization algorithm
determined by this iteration. The Worker part of the dynamic selection optimization
strategy is shown in Table 5:

154 J. Ji et al.

Table 5. ADMM with dynamic scheduling strategy (DSP-ADMM, DSD-ADMM).

During different iterations, the Worker process uses different optimization algo-
rithms. In this paper, each Worker process uses FRCG to calculate the allocated data
fragments in the early stage of the iteration, and uses L-BFGS to calculate the data frag-
ments in the later stage of the iteration. DifferentWorkers on the same node use different
training data, but the update in the ADMM algorithm uses only one Worker’s parame-
ters at a time on each node. Therefore, in fact, each iteration of the ADMM algorithm is
equivalent to using ideas similar to the batch algorithm.

4 Experiments and Result Analysis

This section mainly conducts convergence and performance tests on different dynamic
scheduling algorithms designed based on two residuals, mainly for large-scale sparse
logistic regression problems. The data set consists of 43264 samples and a dimensional
space of 10000000. The nodes of the cluster are connected by Infiniband. Each node
has 16 cores and 64 GB of memory. A total of 16 computing nodes were used in this
experiment. The algorithm is implemented using C++ and MPICH.

The logistic regression problem can be expressed as:

min
wi

N∑

i=1

m∑

j=1
log

(
1 + exp

(
−yjxTj wi

))
(9a)

s.t.wi − z = 0, i = 1, . . . ,N (9b)

Where, wi is the model parameter to be solved, xi represents the characteristics of a
sample, yi represents the sample label, m is the sample size, and the data set is evenly
divided into N nodes. On this basis, the algorithm’s convergence stop criterion can be
expressed as:

∥
∥rk

∥
∥
2 ≤ εabs

√
m + εrelmax

{∥
∥wk

∥
∥
2,

∥
∥zk

∥
∥
2

}
(10)

A Dynamic Scheduling Strategy of ADMM 155

∥
∥sk

∥
∥
2 ≤ εabs

√
n + εrel

∥
∥yk

∥
∥
2 (11)

Where, n is the number of features in the data set, εabs means absolute error, and εrel

means relative error. In this experiment,εabs is set to 10−2 and εrel is set to 10−4. The
algorithm uses the asynchronous communication mode based on the SSP model and the
penalty parameter ρ = 1. In addition, in this experiment, εDSD is set to 1, εDSP is set to 2.

In addition toDSP-ADMMandDSD-ADMM, this section also runs theAD-ADMM
algorithm for solving sub-problems with the L-BFGS algorithm and the AD-ADMM
algorithm for solving sub-problems with the FRCG algorithm as comparative experi-
ments. In the comparative experiment using a single algorithm, the number of Work-
ers on each node is set to 2, which is consistent with the communication structure of
DSP-ADMM and DSD-ADMM.

4.1 Convergence Testing and Analysis

Figure 5 shows the variation of the dual residuals and primal residuals of the four
algorithms with the number of iterations when using eight computing nodes.

(a) primal residual (b) dual residual

Fig. 5. Comparison of primal residual and dual residual using dynamic selector sub-problem
optimization algorithm and ordinary ADMM algorithm

It can be seen from the figure that the residual rate of DSD-ADMMandDSP-ADMM
is much faster than the ADMM algorithm of a single optimization algorithm in most
cases. The residual is not just the smaller value of the iteration results of the two single
algorithms, but it is smaller than the minimum value of the iteration results of the two
single algorithms during operation. To some extent, it accelerates the convergence speed
of the ADMM algorithm.

According to the optimization algorithm that tracks the dynamically selected sub-
problems during the operation of the algorithm, the time for changing to the L-BFGS
algorithm for different processes is different. As analyzed in the previous section, this
should be related to different data allocated by different processes. From the perspective
of the overall convergence of the algorithm, L-BFGS converges faster than FRCG, but in
different iteration stages, the convergence speed of L-BFGS is not always faster. There-
fore, the strategy of dynamically selecting the sub-problem optimization algorithm can
decidewhich algorithm to use for iterative calculation according to different convergence
stages.

156 J. Ji et al.

4.2 Performance Testing and Analysis

This experiment is to test the performance of the algorithm, using a total of 16 computing
nodes. Itmainly includes two experiments: (1) compare the iteration number and iteration
time of the four algorithms under different node numbers. (2) compare the running time
of the four algorithms under different asynchronous conditions (An, τ);

The number of iterations to achieve convergence under different numbers of nodes
for 4 different algorithms is shown in Fig. 6(a). In addition to the number of iterations,
the running time of the algorithm is also an important comparison indicator. The running
time comparison of the 4 algorithms is shown in Fig. 6(b).

(a) the number of iterations (b) the running time

Fig. 6. Comparison of the number of iterations and the running time between the dynamic
selection sub-problem optimization algorithm and the ordinary ADMM algorithm

As can be seen from the Fig. 6(a), the convergence speed of DSP-ADMM and DSD-
ADMM is faster than the ADMM algorithm using a single optimization algorithm. The
convergence speed of DSP-ADMM ismore stable thanDSD-ADMM.But inmost cases,
DSD-ADMM has fewer iterations. Therefore, in terms of the number of iterations, the
dual residuals are more suitable as the basis for dynamically selecting the optimization
algorithm.

As canbe seen from theFig. 6(b), since the data set used in this section ismore suitable
for the L-BFGS algorithm, the FRCG algorithm has the most iterations, so it also has the
longest running time. Although DSD-ADMM and DSP-ADMM have more operations
than the ordinary ADMM algorithm, they do not increase the running time compared
to the ordinary ADMM algorithm due to the use of the hierarchical communication
structure(HCS). And the running time of DSP-ADMM is not much different from that
of DSD-ADMM.

The setting of the finite asynchronous condition (An, τ) of the AD-ADMM has a
certain effect on the convergence. This paper uses 8 nodes for different asynchronous
conditions for experiments, and found that DSP-ADMM is very sensitive to these param-
eters in the experiments. It is difficult to achieve convergence in a limited number of
iterations. Therefore, this paper only analyzes the experimental results of DSD-ADMM.

The Fig. 7 shows the change of primal residual and dual residual under different
asynchronous conditions (An, τ). When An = 8 or τ = 1, the asynchronous ADMM
algorithm at this time is equivalent to the synchronous ADMM algorithm. It can be seen
from the Fig. 7 that when An = 4, there is similar convergence, this is, the value of

A Dynamic Scheduling Strategy of ADMM 157

τ has little effect on convergence. This may be due to the higher performance of the
experimental environment. In addition, when τ = 8 and An has a small value, both the
dual residual and the primal residual require more iterations to reach convergence, which
may be caused by a high degree of asynchrony.

(a) primal residual (b) dual residual

Fig. 7. Under different asynchronous conditions, the primal residual and dual residual of DSD-
ADMM change with the number of iteration

5 Conclusion

This paper proposes a dynamic scheduling strategy based on a hierarchical communi-
cation structure to solve the x-subproblem of the ADMM algorithm to speed up the
convergence speed. And two dynamic scheduling strategies based on primal residual
and dual residual are designed. In addition, this paper also analyzes the convergence
and performance of the algorithm, and concludes that the dual residual is more suitable
as the dynamic scheduling basis of the optimization algorithm. Experiments conducted
in the Ziqiang 4000 cluster experiment environment show that the dynamic scheduling
strategy proposed in this paper can reduce the number of iterations and accelerate the
convergence speed of the ADMM algorithm.

And this strategy provides support for the engineering implementation of algorithm
components, can avoid the problem that the ADMM algorithm cannot converge due to
inappropriate preset optimization algorithms. Of course, this proposed method still has
many areas for improvement. For example, the timing of switching to an optimization
algorithm may also be set using the value of the objective function.

Acknowledgment. This research was supported in part by the National Natural Science Foun-
dation of China under grant No. U1811461 and ZiQiang 4000 cluster experimental environment
of Shanghai University.

References

1. Mateos,G., Bazerque, J.A., Giannakis, G.B.:Distributed sparse linear regression. IEEETrans.
Sig. Process. 58(10), 5262–5276 (2010)

158 J. Ji et al.

2. Lubell-Doughtie, P., Sondag, J.: Practical distributed classification using the Alternating
Direction Method of Multipliers algorithm. In: IEEE International Conference on Big Data,
pp. 773–776. IEEE (2013)

3. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vector
machines. J. Mach. Learn. Res. 11(3), 1663–1707 (2010)

4. Boyd, S., Parikh, N., et al.: Distributed optimization and statistical learning via the alternating
direction method of multipliers. Found. Trends Mach. Learn. (2012)

5. Valiant, L.G.: Bulk-synchrony: a bridging model for parallel computation. Commun. ACM
33(8), 103–111 (1990)

6. Ho, Q., Cipar, J., Cui, H., et al.: More effective distributedML via a stale synchronous parallel
parameter server. In: International Conference on Neural Information Processing Systems,
pp. 1223–1231. Curran Associates Inc. (2013)

7. Zhang, R., Kwok, J.T.: Asynchronous distributed ADMM for consensus optimization. In:
International Conference on International Conference on Machine Learning (2014)

8. Chang, T.H., Hong, M., Liao, W.C., et al.: Asynchronous distributed alternating direc-
tion method of multipliers: Algorithm and convergence analysis. In: IEEE International
Conference on Acoustics, Speech and Signal Processing, pp. 4781–4785. IEEE (2016)

9. Wang, H., Gao, Y., Shi, Y.,Wang, R.: Group-based alternating directionmethod of multipliers
for distributed linear classification. IEEE Trans. Cybern. 47(11), 3568–3582 (2017)

10. Fang, L., Lei, Y.M.: An asynchronous distributed ADMM algorithm and efficient com-
munication model. In: Dependable, Autonomic and Secure Computing, 14th Interna-
tional Conference on Pervasive Intelligence and Computing, 2nd International Confer-
ence on Big Data Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), 2016 IEEE 14th International Confer-
ence, pp. 136–140. IEEE, August 2016

An Improved Heterogeneous Dynamic
List Schedule Algorithm

Wei Hu1, Yu Gan1(B), Yuan Wen2(B), Xiangyu Lv1, Yonghao Wang3,
Xiao Zeng1, and Meikang Qiu4

1 Wuhan University of Science and Technology, Wuhan, China
rorchach2k@gmail.com

2 Trinity College Dublin, Dublin, Ireland
weny@tcd.ie

3 Birmingham City University, Birmingham, UK
4 Harrisburg University Science and Technology, Harrisburg, USA

Abstract. Scheduling algorithm impacts system substantially in terms
of throughput and load balance. Traditional methods rely on static cri-
teria, such as earliest finishing time, critical path, and the importance
of the nodes, to prioritise workloads towards various hardware settings.
In practice, however, a global static scheduling method often works sub-
optimally given the dependence complexity among tasks and the perfor-
mance diversity on separate hardware configurations. To cope with such
issue, in this paper, we propose an improved heterogeneous dynamic list
scheduling algorithm (IHDSA) to balance workload across heterogeneous
cores and optimize communication overhead adaptively. The proposed
algorithm performs three steps. First, it transforms the DAG task graph
into a list and marks job status. Then, it calculates the shortest com-
pletion time of three distinctive scheduling schemes and selects the best
solution among the three. Finally, it sets up thresholds for computing
units and monitors the status to balance the usage of those cores. In our
experiment, the IHDSA adaptive scheduling improves the performance
significantly over the static counterpart.

Keywords: Heterogeneous computing systems · Dynamic scheduling ·
Load balance

1 Introduction

The heterogeneous computing system (HECS) becomes an increasingly popular
platform due to its overwhelming advantage in performance and power con-
sumption. A typical system generally consists of computing units with separate
architectures integrated into the same package or connected via bus/internet
[10,16,23]. The architectural heterogeneity presents flexibility for compute-
intensive workloads of separate type to perform while increases the scheduling
complexity given a multi-task environment [2,15,21]. The capability of using

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 159–173, 2020.
https://doi.org/10.1007/978-3-030-60245-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_11

160 W. Hu et al.

resource properly and maintaining the throughput is an enduring goal for task
scheduling.

The conventional scheduling algorithms apply static heuristics to allocate
jobs to separate computing units. For simple implementations, the scheduler
migrating a task or part of it from one processor to another if the target shorts
of workloads. A more sophisticated mechanism would consider task dependency
by analyzing DAG (Directed Acyclic Graph) of the application to guarantee
a subsequent task performing on the same device it parent job does [4,9,17].
The performance is thereby maintained because of the enhanced data locality
and elimination of unnecessary communication. Some schedulers also prioritize
jobs depending on their importance and attribute to change the order of the
execution [1,22]. Such a design is common in real-time systems in which some
deadline must meet to promise the correctness of the functionality.

Though the global static method works well in many cases, the system often
suffers suboptimal in performance because of the complexity in practice. In this
paper, we propose a new method IHDSA (Improved Heterogeneous Dynamic
List Schedule Algorithm) to improve workload balance and resource utilization
adaptively. The algorithm contains three parts. It first describes the task depen-
dency in a DAG, in which nodes represent jobs while edges depict the rela-
tionship between nodes. Then, the scheduler calculates the performance of three
different schemes by traversing the DAG. Such schemes include replication-based
mapping, interval insertion, and predecessor/successor-based mapping. Finally,
a threshold is set each processing unit. The runtime, therefore, balances the
workload by monitoring the status of each processor and the preset threshold.
In our experiment, we examined the performance of our method against other
static approaches. The IHDSA outperforms those static methods continually in
a wide range of task numbers.

The paper makes the following contributions:

– It proposes a dynamic scheduling framework.
– Three adaptive scheduling methods have been examined by traversing a task

DAG.
– The workload is balanced by the combination of adaptive scheduling schemes

and hardware monitoring under preset thresholds.

2 System Model

We present the definition of models that are used in our scheduling algorithm in
the following section. The models describe the processor, application, and task
mappings.

2.1 Processor Model

We use a tuple PM = (P, Rate) to model heterogeneous processors with separate
architectures. It is a tuple with two vector elements that abstract the hardware
units and communication overhead.

An Improved Heterogeneous Dynamic List Schedule Algorithm 161

The vector P is defined as P = (p1, ..., pi, ..., pm), where i indicates the ith
processor and m represents the number of processors.

The vector Rate = (..., ratei,j , ...) describes the communication cost between
cores. It contains m2 elements. For any given ratei,j , it indicates the communi-
cation, such as data movement, taking place between processor i and j, where
the moving direction is from i to j.

The processor topology used in this paper is fully connected where any two
cores are directly linked together. We select this type of topology for the com-
plexity reason. Other topologies can be viewed as special cases of the fully con-
nected by adding extra constraints over communication cost to make some path
unreachable [18]. In this topology mode, we also define the communication cost
to be 0 if the predecessor job and its successor has been allocated to the same
core, as there are no needs for data migration.

2.2 Application Model

Applications are represented in directed acyclic graphs (DAG), in which vertices
stand for the tasks and edges between nodes describe the dependency. Data
movements follow the direction of the graph, from the source vertex to the sink.
We use a quadruple to model the application on heterogeneous platforms by
extending the DAG with hardware information. We define the quadruple as
G = (V,E,W,C), where V ,E, W and C represents vertix, edge, performance,
and communication respectively.

The vertex is defined as an n dimension vector V = (v1, ..., vi, ..., vn). It
represents an application with n tasks that can be scheduled independently. The
DAG can be updated dynamically by adding new vertices to the graph.

The vector E = (e1,2, ..., ei,j , ...) denotes the directed edges. An edge ei,j
identifies the dependency between vi and vj . To be specific, it indicates that the
output of vi is the input of vj .

W is a matrix with dimension of n×m, where n is the amount of tasks while
m is the number of hardware units. Each element wi,j in the matrix presents
the execution of task vi on processor pj .

C = {ci,j |i, j ∈ [1, n]} is also a two-dimensional matrix, where each ci,j
represents the communication overhead between vi and vj . By its definition, we
force ci,j to be 0 if task vi and vj have been allocated to the same processor,
because of no communication across cores needed.

We also defined Pre(Vi) and Suc(Vi) as the predecessor and successor of
vi, respectively. According to dependency, a successor task cannot be performed
ahead of the completion of its predecessors. The scheduler will force all tasks fol-
lowing this rule by imposing the order of the jobs and monitoring their execution
status.

Finally, we define the node with no predecessor in the DAT to be the entry
node, and we mark such a node as ventry.

162 W. Hu et al.

2.3 Dynamic Task Mapping Model

The DTMM (Dynamic Task Mapping Model) is a mapping scheme to issue tasks
to processors. It uses heuristics guided by task status to insert them to a list
from which jobs are dequeued to devices. We mark the task status by a label
that uses 1 to represent a completion task, 0 to indicate a ready state in the
waiting list, and −1 to describe a holding state that can proceed unless some
conditions satisfied.

Two queues are used in mapping the workload. The global queue is formed
from flattening the DAG. Nodes from the DAG are inserted to the queue in order.
Before scheduling, the scheduler first marks the status of the entry node as 0 to
make it ready to map while labels all the rest nodes as −1 because they have
to wait until the entry task finished. Once a task completed, its status will be
changed from 0 to 1 and all its successors status switched from −1 to 0. Then the
scheduling keeps going until all tasks are finished. A centralized global queue can
introduce unbalance among processors because all of them fetch jobs at various
speed from the queue, and the task dependency can prohibit job from going to
the idle cores. For this reason, we introduce the local queue to balance workloads
across cores. The local queue is tied up to processors. We use a threshold to limit
the number of tasks that can be allocated to a specific core. Once the number
goes beyond the threshold, the processor will stop accommodating new jobs.

3 The Proposed Algorithm

The algorithm of IHDSA consists of three parts, including establishing the task
list, adapting multi-strategy mapping, and setting up threshold boundaries for
workload balance. All there three parts are detailed in the following subsections.

3.1 Task List Establishment

The algorithm traverses the DAG to form a task list. Each vertex in the DAG
maps to a node in the task list. Every node has a label to mark its status. The
status 0 means a ready state, 1 and −1 stands for the completion and holding
state, respectively. At the beginning stage, we change the status of the entry
node from −1 to 0, and the states of all its successor nodes will be updated after
the entry task finished. Then the update of the task status keeps going until the
last one completed.

3.2 Multi-strategy Task Mapping

In this stage, each task will be assigned to the most suitable processor. The
scheduler finds out all tasks with status 0 in the task list, and calculate the
earliest completion time, then select the one with the earliest completion time.
The earliest start and finish time on core P are expressed as ESTp(Vi) and
EFTp(Vi) separately. The definition is shown in formula 1 and 2.

ESTp(Ventry) = 0 (1)

An Improved Heterogeneous Dynamic List Schedule Algorithm 163

EFTp(Vi) = max(EFTp(Vi) + E(Vi, Vj), EFTp(Vk), Avail(P)); k �= j (2)

In above equations, Vj and Vk are the predecessor nodes of Vi, and Avail(P)
represents the time available on processor P .

Hybrid Task Mapping Approach. In a heterogeneous multi-core environ-
ment, a task can experience better performance on some processing units than
the others. The table scheduling algorithm will sort the task priority according
to the order of their presence in the task list. In the process of scheduling, we
need to consider the relationship between the predecessor and successor of tasks
because of data dependence. Task replication technology adopts the key pre-
cursor technology of current tasks so that the predecessor and successor tasks
are executed on the same processing unit for reducing communication overhead.
The interval insertion technology improves the utilization by detecting the idle
time of each processing unit, then migrating the tasks from other cores to the
idle one to reduce the standby time, hence avoiding the wastage of resources.
We propose our hybrid task scheduling strategy based on task replication and
interval insertion.

Interval insertion technology finds the processing unit with idle time slots
and inserts the task into the free interval of the processing unit once satisfying
the priority requirements of the task list. We used ASTinsert(Vi, Pj) to denote
the starting time of a task Vi and EFTinsert to denote the earliest finish time
based on interval insertion technique. The Eq. 3 shows the definition.

EFTinsert(Vi) = min
0≤j≤m

{ASTinsert(Vi, Pi) + Wi,j} (3)

Task replication technology copies the predecessor tasks of the current job to
the same processing unit. It saves the communication time between the prede-
cessor and the successor tasks hence improves the utilization of the processing
unit. The Eq. 4 presents the definition.

EFTcopy(Vi) = min
0≤j≤m

{ASTcopy(Vi, Pi) + Wi,j} (4)

Fig. 1. DAG diagram based on task replication and interval insertion

164 W. Hu et al.

Table 1. Task execution time on different processors

Processing unit 1 2 3 4 5 6 7

P1 17 59 22 55 13 25 24

P2 63 40 26 28 28 17 21

Fig. 2. Scheduling graph based on task replication and interval insertion

Figure 1 shows a practical example of applying the above task mapping
method. The execution time of tasks on processor P1 and P2 is provided in
Table 1. In this example, task 3 is the precursor of task 6. It means that task
6 has to wait until task 3 finished its data transmission, then it can start to
execute.

Similarly, task 5 is the successor of task 4. It requires the communication
completion of task 4 has to come earlier than the execution of task 5.

Therefore processor P1 becomes idle after finishing task 4. At the same time,
task 5 is waiting for the data migrating from P1 to P2. In this case, we can dupli-
cate task 3 and migrate it to the P1 to take over the idle time slot. Also, since
task 3 and its successor task 6 are allocated to the same processor, the subse-
quent communication overhead has been optimized afterwards, which allows task
6 to complete on time. Figure 2 shows the task mapping and data dependencies.

Another option is interval insertion, it inserts task 6 into the free time slot on
processing unit P2, and the completion time can also be optimized. We compare
the results of task replication and interval insertion and choose the method more
suitable for the actual environment.

EFTEX = min{EFTinsert(Vi), EFTcopy, EFTp(Vi)} (5)

Predecessor-Based Task Mapping Technique. Most of the traditional
table scheduling algorithms are based on the earliest completion time, and sel-
dom consider the interaction between tasks with data dependency. As a result,
there is a significant amount of idle time in each processing unit. So our algo-
rithm aims to reduce the overall scheduling time by increasing the utilization
rate of these idle periods as much as possible in the resource-intensive multi-task
scheduling system.

In this section, we propose a task mapping strategy based on the predeces-
sor node. The current task and the predecessor task are assigned to the same
processor to avoid transferring data between the predecessor and successor, and
the communication cost is therefore eliminated. Such a model faces the risk of

An Improved Heterogeneous Dynamic List Schedule Algorithm 165

allocating all tasks to the same processor while leaving the rest cores unused.
For this reason, we introduce a constraint condition. We calculate the differ-
ence between EFTPA and EFTSA to ensure the result smaller than the average
weight W . This mechanism prevents allocating all tasks to the same core. The
Eq. 6 and 7 show the definition. EFTPA represents the earliest completion time
and Vtrans indicates the last task that has been communicated with Vi.

EFTPA(Vi) = max
0≤j≤m

{Avail(PA), AFT (Vpar, Pk) + C(Vtrans, Vi)} + W (Vi, PA)

(6)

W =
m∑

j=1

Wi,j/m (7)

Fig. 3. DAG diagram based on the earliest completion time of predecessor nodes.

Table 2. Task execution time on different processors

Processing unit 1 2 3 4 5

P1 13 50 25 30 25

P2 26 65 30 11 43

A practical example is exhibited in Fig. 3, 4 and Table 2, based on the pre-
cursor task mapping method. As shown in the figure, the execution time of task
4 on processing unit P1 is shorter than on P2. In this case, processing unit
P2 would be selected according to traditional scheduling strategies, because the
earliest completion time is sooner. But in practice, doing so results in a lot of idle
time on P2. Again, comparing the execution time of task 4 on the two processing
units, it is found that in fact, the completion time of task 4 on processing unit
P1 is only slightly shorter than that of P2, and there will not be so much idle
time for processing on P1. From the result, task 5 can be completed in advance,
but the scheduling length is shorter.

166 W. Hu et al.

Fig. 4. Scheduling chart based on the earliest completion time of predecessor nodes

Successor-Based Task Mapping Technique. Although the mapping strat-
egy based on predecessor reduces the idle time between predecessor and successor
tasks, it does not consider the impact on the successor tasks of current tasks. The
mapping method based on successor task runs on the standard processing unit.
If the current task and subsequent tasks happen to run on the most appropriate
processor core, then the communication overhead of both sides can be ignored,
and more resources can be saved for upcoming tasks. DR(Vi) denotes the time
when all the data required by Vi is ready. The standard successor node of Vi

is represented by LB(Vi). The earliest finish time obtained by successor-based
approach can be calculated by Eq. 8.

EFTSA = max{Avail(SA),DR(Vi)} + W (Vi, SA) + W (LB(Vi), SA) (8)

Fig. 5. DAG diagram based on task allocation scheme of successor nodes.

Table 3. Task execution time on different processors

Processing unit 1 2 3 4 5 6 7

P1 15 89 17 19 30 21 7

P2 60 5 24 96 17 15 29

An Improved Heterogeneous Dynamic List Schedule Algorithm 167

Fig. 6. Scheduling graph based on task allocation scheme of successor nodes.

Figure 5, 6 and Table 3 give an example based on this mapping method. When
scheduling according to the earliest completion time, it is obvious that task 6
will finish earlier on P2, so task 6 should be executed on P2, but doing so will
cause a large amount of idle time on the processor core. If task 6 is assigned to
P1, the task completion time is only slightly longer than that on processing unit
P2, but the idle time is greatly reduced. The final result is that task 7 can be
completed in advance and the overall scheduling length of task is shortened.

Final Mapping Strategy. As mentioned above, IHDSA algorithm has
three strategies: task replication-based mapping, interval insertion mapping,
predecessor-based mapping and successor-based mapping. Before task schedul-
ing, the earliest completion time of tasks is calculated by Eq. 2. Then tasks
scheduling methods based on task replication and interval insertion is calcu-
lated by Eq. 5. Tasks using a mapping strategy based on the predecessor task is
calculated by Eq. 6, and tasks mapping strategy based on the successor task is
calculated by Eq. 8. The scheme with the earliest and the shortest completion
time is then selected as the final mapping strategy.

3.3 Workload Balancing Among Processors

A workload threshold is set for each processor core. The status of processors
is collected on-the-fly, and the tasks assigned to the corresponding processor is
controlled dynamically to balance the number of tasks among distinctive pro-
cessors. The equation is show as follows. Lmax(P) represents the load limit of
the processor and N(P) indicates the current load of the processor.

N(P) =
L(P)

Lmax(P)
(9)

168 W. Hu et al.

The lower and upper limit of the processor threshold are represented by Nmin

and Nmax respectively. The equation is show as follows.

Loadstate =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

No load, N(P) = 0
Light load, N(P) ∈ (0, Nmin]
fitness load, N(P) ∈ (Nmin, Nmax)
heavy load, N(P) ≥ Nmax

(10)

According to the equation, when the processor core is in the state of heavy
load, the processor core is forbidden to accept new tasks until it recovers to the
state of light load.

4 Experiment

4.1 Performance Metrics

In the evaluation of heterogeneous multi-core dynamic task scheduling algorithm,
the completion time of tasks in each processing unit, the time complexity of the
algorithm and the load capacity between processing units should be taken into
account. Scheduling algorithm not only needs to ensure the scheduling efficiency
of the system but also needs to consider shortening the scheduling length to
reduce the communication overhead between tasks. In this paper, we choose
the schedule length ratio (SLR) and the speedup as performance evaluation
parameters.

The time from the beginning to the completion of the task is defined as the
scheduling length makespan. The calculation formula is shown in Eq. 11. Where
load(Pj) represents the processor load.

makespan(T) = max(load(Pj)) (11)

The processor load is calculated by Eq. 12. The sum of the tasks allocated to
Pj is the load of processing unit Pj . The x stands for the tasks ot Pi while the
y represents the jobs mapped to Pj .

Load(Pj) =
x∑

i=1

Ci,j +
y∑

k=1

Ck,j (12)

The SLR is defined as the minimum possible value of scheduling length
divided by the scheduling length.

SLR =
makespan∑

Vi∈CPmin

min
1≤j≤m

Wi,j
(13)

Speedup is used to measure the parallel degree of multi-core processor. It is
the ratio of task completion time on a single processing unit over task completion
time on a multi-core. The calculation is shown in Eq. 14.

Speedup =
min

1≤j≤m

∑
1≤j≤n

Wi,j

makespan
(14)

An Improved Heterogeneous Dynamic List Schedule Algorithm 169

Fig. 7. SLR comparison of different task size.

Fig. 8. SLR for varing CCR.

4.2 Result and Analysis

We use TGFF to generate DAG graphs randomly in our experiment to sim-
ulate the dependence and communication between tasks. The reason we used
random graphs is to avoid the bias from the specific applications. The results
are, therefore, more robust to various type of workloads.

The size of the workload is defined as N which has a range between 40 to
120, N = {40, 60, 80, 100, 120}.

The heterogeneity factor H represents the degree of difference in execution
time H = {0.1, 0.25, 0.5, 0.75, 1.0}. A higher ratio means processing time of given
task sets is more diverged across separate microprocessors.

The parallel factor α reflects the height and width of a DAG. α =
{0.5, 1.0, 2.0}.

CCR is the cost ratio of communication and computation. CCR =
{0.1, 0.5, 1.0, 5.0, 10.0}.

Figure 7 shows the impact of the number of tasks on the performance of the
scheduling algorithm. It can be seen from the figure that the SLR and hcnf algo-
rithms of IHDSA algorithm are similar when the number of tasks is small, but
still smaller than the other two algorithms. With the number of tasks increased,
the SLR of the four algorithms gradually increases accordingly. At this time, the
SLR of IHDSA algorithm is smaller than the other three algorithms. It can be
seen that the IHDSA algorithm performs outstanding scheduling in the system
with a large number of tasks and a large density of resources.

170 W. Hu et al.

Fig. 9. Speedup comparison of different task size.

Fig. 10. Speedup of processors with different number of cores.

Figure 8 presents the impacts of CCR on SLR across various algorithms.
CCR is the ratio of task communication cost and calculation cost. When the
communication cost is greater than the execution time, CCR becomes larger,
the idle time segment on each processing unit increases, and the scheduling
efficiency of the algorithm decreases, so the SLR of the four algorithms in the
figure decreases accordingly. With the increasing of CCR, there is an obvious
trend that the SLR of IHDSA algorithm is increasingly smaller than the other
three algorithms.

Figure 9 presents the impact of the task sizes across separate algorithms. In
our experiment, regardless of task sizes, the performance of IHDSA algorithm
always outperforms the other three algorithms. Such a trend become more obvi-
ous with the number of tasks increases. Due to the communication overhead
raises with the number of tasks, subsequent tasks need to wait for more for their
predecessor tasks before they can start to execute, which leads to an increasing
idle time caused by waiting on each processing unit. Since IHDSA algorithm has
the highest utilization for idle time, it has the highest efficiency among all four
algorithms.

Figure 10 shows the speedup scalability with the number of processors. In
general, more cores present higher performance; however, such an increment is
not linear with the number of cores. In our experiment, the speedup of IHDSA
algorithm is continuously higher than the other three algorithms. This demon-
strates that IHDSA algorithm has higher efficiency and better performance in
the heterogeneous multi-core environment.

An Improved Heterogeneous Dynamic List Schedule Algorithm 171

5 Related Work

The existing static heuristic table scheduling algorithm has some shortcomings
in the priority calculation and task allocation stage.

HEFT, a static heuristic scheduling algorithm [19], takes into account the exe-
cution length of backward critical path of task nodes, and has higher scheduling
efficiency. HEFT algorithm takes the earliest completion time of nodes as the
priority weight to schedule [12,14]. In the task allocation stage, interval insertion
technology [8] is used to improve the scheduling, which makes the nodes obtain
less task completion time and lower time complexity. However, the algorithm
may lead to the low priority of some key tasks, which may reduce the utilization
of the processor [19].

CPOP algorithm is also based on a priority list to assign tasks [20]. In this
algorithm, the sum of the critical path length from the entry node to the current
node and the length of the critical path between the exit node and the current
node are taken as weights, and tasks are assigned to the processor core according
to the weight. CPOP ensures that the key nodes will get priority scheduling by
giving the highest priority to critical path nodes in real-time scheduling, but
the priority of non critical path nodes will inevitably be reduced. When the
communication cost of tasks between different processors is large, the delay effect
of non critical path nodes will become more obvious, and the performance of the
algorithm will also decline accordingly [6,7].

The HCNF algorithm can also improve the scheduling efficiency by scheduling
the critical path nodes first [3]. Moreover, when the HCNF algorithm encoun-
ters the task with high communication overhead, it can effectively improve the
utilization of processor idle time and further shorten the scheduling length. How-
ever, the priority allocation standard used by HCNF algorithm in the stage of
constructing the list is the average cost of task nodes on each processor core,
which fails to give full play to the efficiency advantage of heterogeneous multi-
core processors. If there is a huge difference in the cost of task nodes on different
processor cores, the performance of the algorithm will not be very good.

This paper systematically studies the scheduling model and algorithm in het-
erogeneous multi-core environment. The research shows that the status of multi-
core processor in the field of processor research is increasing, and the excellent
performance of heterogeneous multi-core processor will make it become more and
more important to perform scheduling tasks. In the second part of this paper,
based on the above research, a dynamic task mapping model DTMM [5,11,13]
is proposed, which uses global queue and bureau force column to schedule tasks,
and sets processing threshold for each processor core to monitor the load of all
units in real time. In the third part of this paper, a new dynamic task algo-
rithm based on DTMM model is designed, which is the improved heterogeneous
dynamic list scheduling algorithm (IHDSA). In the fourth part of this paper,
experiments are designed and compared with the new IHDSA algorithm and
the three classical scheduling algorithms. It is proved that IHDSA algorithm has
higher utilization of processor idle time and better performance when executing
scheduling tasks with relatively high computing density.

172 W. Hu et al.

6 Conclusion

Based on the in-depth research of heterogeneous multi-core scheduling envi-
ronment, this paper analyzes the advantages and disadvantages of the existing
task scheduling algorithm and proposes the heterogeneous multi-core dynamic
scheduling algorithm IHDSA. The algorithm is divided into three parts: task list
building, task scheduling and scheduling optimization. In the list building part,
DAG graph is used to transform the list with status bits, which determines the
priority of tasks and represents the scheduling status of each task in the list with
status bits. In the task scheduling part, three new task mapping strategies are
adopted. The core idea is to steal the idle time of the processing unit, which
reduces the communication overhead between tasks. Finally, the load thresh-
old is set for the processing unit in the scheduling optimization part, and the
load status of each processing unit is monitored through the load threshold to
achieve load balancing. By comparing the IHDSA algorithm with three tradi-
tional scheduling algorithms, it is proved that the speedup and SLR performance
of IHDSA algorithm should be better.

Acknowledgement. This work was supported by Science Foundation Ireland grant
13/RC/2094 to Lero - The Irish Software Research Centre.

References

1. Ashouraie, M., Navimipour, N.J.: Priority-based task scheduling on heterogeneous
resources in the expert cloud. Kybernetes 44(10), 1455–1471 (2015)

2. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: a unified platform
for task scheduling on heterogeneous multicore architectures. Concurr. Comput.
Pract. Exp. 23(2), 187–198 (2011)

3. Baskiyar, S., SaiRanga, P.C.: Scheduling directed a-cyclic task graphs on heteroge-
neous network of workstations to minimize schedule length. In: Proceedings of the
2003 International Conference on Parallel Processing Workshops 2003, pp. 97–103
(2003)

4. Bittencourt, L.F., Sakellariou, R., Madeira, E.R.M.: Dag scheduling using a looka-
head variant of the heterogeneous earliest finish time algorithm. In: 2010 18th
Euromicro Conference on Parallel, Distributed and Network-based Processing, pp.
27–34 (2010)

5. Carvalho, E., Calazans, N.L.V., Moraes, F.G.: Dynamic task mapping for MPSoCs.
IEEE Des. Test Comput. 27, 26–35 (2010)

6. Castrillon, J., Tretter, A., Leupers, R., Ascheid, G.: Communication-aware map-
ping of KPN applications onto heterogeneous MPSoCs. DAC Design Automation
Conference 2012, 1262–1267 (2012)

7. Dathathri, R., et al.: Gluon: a communication-optimizing substrate for distributed
heterogeneous graph analytics. In: PLDI, pp. 752–768. ACM (2018)

8. Gao, K., Suganthan, P., Chua, T., Chong, C., Cai, T., Pan, Q.K.: A two-stage
artificial bee colony algorithm scheduling flexible job-shop scheduling problem with
new job insertion. Expert Syst. Appl. 42(21), 7653–7663 (2015). https://doi.org/
10.1016/j.eswa.2015.06.004

https://doi.org/10.1016/j.eswa.2015.06.004
https://doi.org/10.1016/j.eswa.2015.06.004

An Improved Heterogeneous Dynamic List Schedule Algorithm 173

9. Zhao, H., Sakellariou, R.: Scheduling multiple DAGs onto heterogeneous systems.
In: Proceedings 20th IEEE International Parallel Distributed Processing Sympo-
sium, p. 14 (2006)

10. Khokhar, A.A., Prasanna, V.K., Shaaban, M.E., Wang, C.: Heterogeneous com-
puting: challenges and opportunities. IEEE Comput. 26(6), 18–27 (1993)

11. Middendorf, L., Zebelein, C., Haubelt, C.: Dynamic task mapping onto multi-
core architectures through stream rewriting. In: 2013 International Confer-
ence on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS), pp. 196–204 (2013)

12. Munir, E.U., Mohsin, S., Hussain, A., Nisar, M.W., Ali, S.: SDBATs: a novel
algorithm for task scheduling in heterogeneous computing systems. In: 2013 IEEE
International Symposium on Parallel Distributed Processing, Workshops and PhD
Forum, pp. 43–53 (2013)

13. Möller, L., Indrusiak, L.S., Ost, L., Moraes, F., Glesner, M.: Comparative analysis
of dynamic task mapping heuristics in heterogeneous NoC-based MPSoCs. In: 2012
International Symposium on System on Chip (SoC), pp. 1–4 (2012)

14. Nasonov, D.A., Visheratin, A.A., Butakov, N., Shindyapina, N., Melnik, M.,
Boukhanovsky, A.: Hybrid evolutionary workflow scheduling algorithm for dynamic
heterogeneous distributed computational environment. J. Appl. Log. 24, 50–61
(2017)

15. Bajaj, R., Agrawal, D.P.: Improving scheduling of tasks in a heterogeneous envi-
ronment. IEEE Trans. Parallel Distrib. Syst. 15(2), 107–118 (2004)

16. Rogers, P.: Heterogeneous system architecture overview. In: Hot Chips Symposium,
pp. 1–41. IEEE (2013)

17. Sakellariou, R., Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous
systems. In: Proceedings of the 18th International Parallel and Distributed Pro-
cessing Symposium, 2004, p. 111 (2004)

18. Saldaña, M., Shannon, L., Chow, P.: The routability of multiprocessor network
topologies in FPGAs. In: SLIP, pp. 49–56. ACM (2006)

19. Samadi, Y., Zbakh, M., Tadonki, C.: E-HEFT: enhancement heterogeneous ear-
liest finish time algorithm for task scheduling based on load balancing in cloud
computing. In: HPCS, pp. 601–609. IEEE (2018)

20. Shekar, V., Izadi, B.: Energy aware scheduling for DAG structured applications on
heterogeneous and DVS enabled processors. In: International Conference on Green
Computing, pp. 495–502 (2010)

21. Wen, Y., O’Boyle, M.F.P.: Merge or separate?: multi-job scheduling for OpenCL
Kernels on CPU/GPU platforms. In: GPGPU@PPoPP, pp. 22–31. ACM (2017)

22. Xu, Y., Li, K., Khac, T.T., Qiu, M.: A multiple priority queueing genetic algo-
rithm for task scheduling on heterogeneous computing systems. In: 2012 IEEE
14th International Conference on High Performance Computing and Communica-
tion, 2012 IEEE 9th International Conference on Embedded Software and Systems,
pp. 639–646 (2012)

23. Zarkesh-Ha, P., Davis, J.A., Meindl, J.D.: Prediction of net-length distribution for
global interconnects in a heterogeneous system-on-a-chip. IEEE Trans. Very Large
Scale Integr. (VLSI) Syst. 8(6), 649–659 (2000)

FastThetaJoin: An Optimization
on Multi-way Data Stream θ-join

with Range Constraints

Ziyue Hu1,2, Xiaopeng Fan1, Yang Wang1(B), and Chengzhong Xu3

1 Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences,
Shenzhen, China

yang.wang1@siat.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 University of Macau, Macau, China

Abstract. In this paper, we propose FastThetaJoin, an optimization
technique for θ-join operation on multi-way data streams, which is an
essential query often used in many data analytical tasks. The θ-join
operation on multi-way data streams is notoriously difficult as it always
involves tremendous shuffle cost due to data movements between multiple
operation components, rendering it hard to be efficiently implemented
in a distributed environment. As with previous methods, FastThetaJoin
also tries to minimize the number of θ-joins, but it is distinct from oth-
ers in terms of making partitions, deleting unnecessary data items, and
performing the Cartesian product. FastThetaJoin not only effectively
minimizes the number of θ-joins, but also substantially improves the effi-
ciency of its operations in a distributed environment. We implemented
FastThetaJoin in the framework of Spark Streaming, characterized by its
efficient bucket implementation of parameterized windows. The experi-
mental results show that, compared with the existing solutions, our pro-
posed method can speed up the θ-join processing while reducing its over-
head; the specific effects of the optimization is correlated to the nature
of data streams–the greater the data difference is, the more apparent the
optimization effect is.

Keywords: θ-join · Theta join · Multi-way data streams · Data
streams · Spark streaming

1 Introduction

Data stream processing as one of the important big data technologies are often
used to perform a series of operations on a continuous stream of data for online
query service in real-time, and join is one of the key stream operations used to
detect the scenarios that satisfy certain conditions. However, due to its high cost,
the efficiency of the join operation among multiple data streams has always been
a pragmatic concern, which has drawn great attentions from both academia and
industry [16].
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 174–189, 2020.
https://doi.org/10.1007/978-3-030-60245-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_12

FastThetaJoin: An Optimization on Multi-way Data Stream 175

θ-join, denoted as S �� R (AθB), is a special kind of join operations between
data set R and data set S, wherein a new set of tuples from the generalized
Cartesian product of the two data sets is generated to satisfy certain conditions
in data analysis and processing, here A and B are attributed in data set R and
S, respectively, and θ is a join condition represented by ‘<’, ‘≤’, ‘≥’, and ‘>’. In
particular, if θ is ‘=’, it is called equivalent join.

Many previous studies have been conducted on join in general and θ-join in
particular, but they often suffer some limitations. There are some works using
the MapReduce framework to process the joins, which might cause huge I/O
overheads [4] as many iterative calculations are involved. This paper [11] can
join multiple relational tables in a single MapReduce task. However, because
intermediate results are stored on HDFS and then accessed from HDFS imme-
diately, there will be lots of I/O overheads. Many works only focus on equiva-
lent join [7,17]. Some research can support θ-join, but they need to change the
framework [12,19]. Most studies are based on static datasets, and few are used
for streaming calculations. This work [15] carefully studies the implementation
of each type of join on MapReduce. The main idea is to map the tuples of two
datasets into a matrix, then divide it according to the size of the matrix and the
number of reducers. And the components of the same region are on the same
reducer to implement the Cartesian products. However, this method does not
support θ-join of multiple tables.

Some work can solve the trouble of θ-join in multiple tables. This research [20]
proposed an algorithm based on a symmetric replication connection. The main
idea is to slice multiple relational tables, scan the tuples in each table at map
phase, and correspond to the fragment in which they are located. At the shuffle
phase, each fragment is copied to the corresponding node in a one-to-many man-
ner. The tuples that match θ condition are joined at the reduce side. However,
as the number of relational tables increases, this method will result in a large
number of unnecessary data movements.

In order to solve the tricky trouble of θ-join in multi-way data streams and
minimize data transmission overheads during the shuffle phase, we propose Fast-
ThetaJoin in this paper, an optimization method which partitions based on the
range of data value, then adopts a special filter operation before shuffle and do
Cartesian product between part of Partitions. The optimization of our method
is mainly in two aspects. On the one hand, we can filter quite many unnecessary
data without sort before data transmission. One the other hand in the shuf-
fle phrase, we need not use one-to-all ways to send partitions to all the nodes.
Because we know the size relationships between the partitions in our method,
we just send some partition to part of the nodes. With the optimization from
the above two aspects, we can achieve the least Cartesian product operation.
So the number of θ connections is greatly reduced, and the calculation speed is
improved as well. The method proposed in this paper is experimentally evaluated
on a Spark Streaming computing platform.

In summary, we make the following contributions in this paper:

176 Z. Hu et al.

1. We propose FastThetaJoin—an optimized method of multi-way
data stream’s θ-join. It can calculate not only two-way data streams but
also multi-way data streams on a distributed realtime computation system in
an efficient way.

2. We propose a specific filter strategy without sorting. Better than
the most advanced method CFS, the strategy proposed doesn’t have global
sorting time overhead, which is O(n log n). In this way, we just need O(1) to
delete the most apparently unsatisfactory data and then delete others by small
range traversal. This is because when we partition, we make the partitions
ordered and the partitions unordered. This strategy can try its best to reduce
the overhead of data transmission.

3. We propose an efficient cross product strategy for θ-join. In the
shuffle phrase, we needn’t use one-to-all ways to send partitions to all nodes.
Because we know the size relationship between partitions in our method, we
just send some partition to part of nodes. This strategy can go to a further
step to reduce the overhead of data transmission.

In the remainder of this paper, we introduce some related work in Sect. 2
and describe the detailed design of FastThetaJoin in Sect. 3. We present the
experiments in Sect. 4, and conclude the paper in the last section.

2 Related Work

In the current mainstream research, MapReduce is mainly used to handle θ-join
operation with load balancing in network as a primary consideration. When the
data set becomes large, a large number of intermediate results result in high com-
munication overhead. Especially in the iterative calculation, MapReduce stores
each intermediate result on HDFS, and the next calculation needs to read from
HDFS firstly and then recalculated, resulting in many unnecessary I/O over-
heads. In order to solve it, some techniques are optimized based on MapReduce,
using one MapReduce task as much as possible.

1-bucket-theta [15] and its derivative technologies. 1-bucket-theta is the most
common method of evaluating a single θ-join before. 1-bucket-theta algorithm is
based on the MapReduce framework. This method sorts the dataset according
to the specified attributes first. Then divide data according to fixed number k,
that is from the (0 ∗ k + 1)th to (1 ∗ k)th are divided into the same partition,
(1 ∗ k + 1)th to (2 ∗ k)th are divided into the same partition, and so on. After
that distribute partitions to the corresponding node in the cluster. Next is the
Cartesian product. Because the size relationship between partitions is unknown,
each partition in different datasets has to do Cartesian product. Finally, select
the result according to the θ condition.

Figure 1(a) takes the θ-join of two static datasets as an example. θ is ‘≥’
means to select items pair in which the first dataset is bigger than the second.
The row indicates that the specified attribute value after sorted in the first
dataset is {1, 2, 3, 4, 5, 6, 7, 8, 9}, and the column indicates that the specified
attribute value after sorted in the second dataset is {4, 5, 6, 7, 8, 9, 10, 11, 12}.

FastThetaJoin: An Optimization on Multi-way Data Stream 177

(a) 1-bucket-theta(θ:≥). (b) CFS(θ:≥). (c) FastThetaJoin(θ:≥).

Fig. 1. Algorithm comparison

According to the above rules, here we set k to 3. In the first dataset the first
to the third, i.e. {1, 2, 3}, are divided into the first partition, the forth to the
sixth, i.e. {4, 5, 6}, are divided into the second partition, and the seventh to the
ninth, i.e. {7, 8, 9}, are divided into the third partition. The second dataset is
also partitioned in the same way. Because the size relationship during partitions
is unknown, each partition has to do the Cartesian product with other partitions
in another dataset. So we can get nine parts of Cartesian product. Finally, we
have to select the final result one by one according to theta conditions in the
nine parts.

A multi-way θ-join [21], based on 1-bucket-theta, uses Hilbert curves to
achieve chained connections. Because Hilbert curves require the same size of
the dataset, they cannot be used when joining tables of different sizes. MRJs
(MapReduce Jobs) [18] decomposes the θ-join into non-equal joins and non-
equal joins. In each θ-join process, the 1-bucket-theta method is also used. Z.
Khayya proposed a θ-join method based on sorting, permuting arrays, and bit
arrays [12]. It puts the columns to be joined into the sorted array and rearranges
the tuples using the permutation array to make the order. This method requires
fundamental modifications to the parallel framework and is not convenient for
practical applications. Due to the disadvantages of MapReduce in iterative cal-
culations, some methods deal with θ-join in other frameworks, such as Storm [13]
or Spark [17], they also need to change the framework to add new features.

The latest technology is the Cross Filter Strategy (CFS) [14]. This method
is also based on 1-bucket-theta, but these two algorithms have significant dif-
ferences in two ways. On the one hand, CFS is based on the spark framework
instead of MapReduce. On the other hand, CFS deletes the items in the two
datasets that are obviously not satisfied θ-join condition after sorting. Then
Similarly, every k data are divided into the same partition, and then the data
are distributed to reducer in the cluster. The advantage of deleting some data
that is obviously not satisfied is to reduce the amount of data in the Cartesian

178 Z. Hu et al.

product connection, reduce the connection overhead, and improve the connection
efficiency. Figure 1(b) is an example of CFS.

Figure 1(b) takes the same two datasets’ θ-join as an example. And θ is also
‘≥’. Different from 1-bucket-theta, CFS has to cross filter use maximum and
minimum. The maximum in the first dataset is 9 and the minimum in the second
dataset is 4 which are marked by the color red. Because of θ is ‘≥’, it is obvious
that the items less than 4 in the first dataset and the items greater than 9 in
the second dataset do certainly not appear in the final result. So we can delete
those marked by ‘\’, and the partition strategy is the same as the 1-bucket-theta
algorithm. Here, we also set k as 3. In the first dataset, {4, 5, 6} are divided
into the second partition and {7, 8, 9} are into the third partition. The second
dataset is also partitioned in the same way. We can intuitively see from Fig. 1(a)
and Fig. 1(b) that the Cartesian product of CFS is less than 1-bucket-theta.
Using the same datasets, CFS just needs four parts.

For streams, there have been some studies in recent years. Some studies have
focused on converting batch processing to stream processing. They try to treat
static data sets as micro-batch processing, which can be approximated as stream
processing to speed up processing efficiency [1,2]. This method can also first use
the windows to collect a small batch of data items for processing, and then
iterate the next batch. As long as the window size is selected properly, it can
be treated as a stream. In fact, in some scenarios that do not require one-by-
one processing, the window mechanism is also a good choice. Continuous Query
Language, or CQL for short [5,9], gives a semantics of a sliding-window stream
join by regarding it as a relational join view over the sliding windows, each of
which contains the bag of tuples in the current window of the respective stream.

FastThetaJoin proposed in this paper has been implemented in the Spark
Streaming framework. The experimental results show that compared with the
existing solutions, the proposed method can go a further step to reduce Cartesian
product, reduce network transmission cost, reduce shuffle cost, speed up θ-join
processing, improve the performance of θ-join.

3 FastThetaJoin Design

In this section, we will describe in detail the design of FastThetaJoin. In the
front 3 parts, we will describe the case of two data streams. In the last part, we
will illustrate how to implement FastThetaJoin in multi-way data streams.

Step 1: Get the maximum and minimum of two streams respectively (line 2
in Algorithm 1).
Step 2: Get the range of each partition. One of the input parameters is par-
tition number. We can combine the maximums and minimums to calculate
the partition range. And we can estimate the average load.
Step 3: Each stream is partitioned by range (lines 3 to 6 in Algorithm1).
Step 4: Rough Filter. Use maximums and minimums do cross filter according
to θ. This step can be divided into the following four cases (lines 7 to 25 in
Algorithm 1).

FastThetaJoin: An Optimization on Multi-way Data Stream 179

1) If θ is ‘>’. The minimum of stream 2 is used as the initial filter condition
to delete the data in stream 1 that is not larger than it. The maximum of
the data stream 1 is used as the initial filter condition to delete the data
in stream 2 that is not less than it.

2) If θ is ‘<’. The maximum of stream 2 is used as the initial filter condition
to delete the data in stream 1 that is not less than it. The minimum of
the stream 1 is used as the initial filter condition to delete the data in
stream 2 that is not larger than it.

3) If θ is ‘≥’. The minimum of the data stream 2 is used as the initial filter
condition to delete the data in data stream 1 that is smaller than it. The
maximum of the data stream 1 is used as the initial filter condition to
delete the data in data stream 2 that is larger than it.

4) If θ is ‘≤’. The minimum of the data stream 2 is used as the initial filter
condition to delete the data in data stream 1 that is larger than it. The
maximum of the data stream 1 is used as the initial filter condition to
delete the data in data stream 2 that is smaller than it.

Step 5: The Cross Product phase. Because we know the range of each par-
tition. So we just need part of partitions to do the Cartesian product with
each other according to θ.
Step 6: Use θ to filter the result of step 5. Delete data that does not satisfy
the condition. The final result after θ-join is obtained.

Each stream has its own window size, the size can be set by the input param-
eters. The sliding interval of each data stream window is determined by the input
parameters. Split each stream by window size. We define the data in the current
window of the first data stream as dataset R and the data in the current window
of the second data stream as dataset S. B is one of the common attributes in
two data streams. Of course, the two streams also can contain other attributes
except for B. Since many of the existing methods are very suitable for equivalence
join, and the method proposed in this paper, FastThetaJoin, has a more obvious
advantage in non-equivalent connections. Therefore, this article only discusses
the situation that Join condition θ belongs to {‘<’, ‘≤’, ‘≥’, ‘>’}.

3.1 Filter Strategy

In Pre-process, we make the map of join attribute as the key, and make all
attributes merged as values, i.e. every element is stored by 〈key, valve〉. First,
we have to get the maximum and minimum numbers in each set. Then using

Fig. 2. Rough filter phrase. Fig. 3. Cross product.

180 Z. Hu et al.

the maximum or minimum number in each stream to filter roughly before cross
product. In the map phase, data sets R and S are mapped based on the range of
the fingerprint of B respectively. Take Fig. 2 as an example to elaborate on this
process in detail.

We assume that stream 1 contains two attributes A, B, and stream 2 contains
two attributes B, C. Dataset R is the data to be processed in stream 1, denoted
as R(A,B); dataset S is the data to be processed in the stream 2, denoted as
S(B,C), and the join condition is: R�� (R.B>S.B)S, i.e. B in R is bigger than
the B in S. The value of B in dataset R contains {4, 0, 4, 6, 9, 10, 16, 19, 18
17} (repeated number is because of different timestamp or other attribution.).
S contains {7, 10, 11, 17, 20, 23, 21}. Rmin is the minimum value in R. Rmax
is the maximum value in R. Smin is the minimum value in S. In this example,
Rmin= 0, Rmax= 19, Smin= 7 and Smax= 23. Assuming partition number is
4 here. We can partition as follows. For dataset R, the range in [0, 5) contains {0,
1, 4}; the range of [5, 10) contains {6, 9}; the range of [10,15) contains {10}; the
range of [15, 20) contains {16, 19, 18, 17}. Use the same strategy to map data
set S. Because θ is ‘≥’, for dataset R, only keep the data larger than Smin. And
for dataset S, only keep the data smaller than Rmax. Since Smin = 7 belongs
to the second partition [5, 10), we just need O(1) to find the corresponding
partition. Then all partitions which are less than the second partition in R are
directly deleted. For data belongs to partition [5, 10), delete the value which is
less than Smin. Since Rmax= 19 belongs to the third partition [15, 20), directly
delete all partitions which are bigger than the third partition in S. The time is
also just O(1). For data whose partition belongs to [15, 20), delete data smaller
than Rmax and this is just traversing one by one within a very small area. In
summary, delete the data represented by the shaded portion in Fig. 2 before the
Cartesian product phrase.

The filter strategy between two data streams proposed by this paper is shown
in Algorithm 1. Better than the most advanced method CFS, the strategy pro-
posed does not have global sorting time overhead which is O(n(log n)). We just
only use O(1) to delete great majority unnecessary data. Time of O(m) to tra-
verse one by one within a very small area and m are far less than the total
number of data sets.

3.2 Cross Product Strategy

In distributed computing, communication is costly. Therefore, overall perfor-
mance can be greatly improved by controlling the data distribution to achieve
minimal network transmission. During θ-join, reasonable partitioning is very
important. A good partitioning method allows data to be transferred to as few
nodes as possible. FastThetaJoin proposed by this paper can let each node in the
cluster process specified data by controlling the partition mode to reduce trans-
mission cost. Filter strategy above in FastThetaJoin makes partitions order, so
we can just perform Cartesian products between the specified partial partitions
instead of all data after filter. As shown in Fig. 3, we assume use two nodes to
calculate. To reduce data transmission, data in data set R with the range [5, 10),

FastThetaJoin: An Optimization on Multi-way Data Stream 181

Algorithm 1. FilterStrategy
Require: firstStream including attr. B, secondStream including attr. B, function θ,

windowSize, windowSliding.
Ensure: filtered pairs collection of firstStream PR, filtered pairs collection of

secondStream PS .
1: get data sets R and S according to windowSize;
2: get Rmin,Rmax,Smin,Smax;
3: PR ←− firstStream.map{hash(.B), .B};
4: PR ←− PR.groupbyKey;
5: PS ←− secondStream.map{hash(.B), .B};
6: PS ←− PS .groupbyKey;
7: PR ←− PR.filter{ record ⇒
8: if θ is ‘>’ or ‘≥’ then
9: record.key ≥ hash(Smin)

10: else if θ is ‘<’ or ‘≤’ then
11: record.key ≤ hash(Smax)
12: end if}
13: PR ←− PR.filter{record ⇒
14: if record.key = hash (Smin) then
15: if θ is ‘>’ then
16: record.value > Smin
17: else if θ is ‘≥’ then
18: record.value ≥ Smin
19: else if θ is ‘<’ then
20: record.value < Smax
21: else if θ is ‘≤’ then
22: record.value ≤ Smax
23: end if
24: end if}
25: PS do similar filter operations with PR;
26: return PR,PS ;

[10, 15) is sent to Node1 and data with a range of [15, 20) is sent to Node2. All
data in data set S is sent to Node2 and data in the range [5, 10), [10, 15) is sent
to Node1. In this way, it only needs 6 times in transmission of data. CFS and
1-bucket-theta needs 3 × 3 = 9 times because both of them are not sure which
partition is bigger.

Compared with the current state-of-the-art method CFS, FastThetaJoin can
reduce the transmission of data in distributed computing. And further reduces
the number of Cartesian products after filtering. The advantage is more obvious
in the massive data θ connection. FastThetaJoin can go to a further step to
reduce final filtering overhead. We will use Fig. 1(c) to elaborate.

In order to intuitively reflect the difference between FastThetaJoin and CFS,
Fig. 1(c) uses the same datasets with Fig. 1(b) and θ is also ‘≥’. FastTheta-
Join looks a little bit similar to CFS that both of them need to filter before
cross product, but they are completely different. There are two main differences:
partition method and the phrase of the cross product. FastThetaJoin gets max-

182 Z. Hu et al.

imum and minimum of two data streams respectively, then calculates the range
of every partition, divides by range later, performs cross-filtering using maxi-
mums and minimums, after that calculates Cartesian product between partial
partitions and gets result according to θ finally. After cross-filtering, CFS has to
calculate four parts of Cartesian product because the size relationship between
partitions is unknown. In FastThetaJoin, after cross-filtering, we can know the
first partition is the range [4, 6] which is smaller than the second partition of the
second stream. So we need not calculate the Cartesian product between them.
So FastThetaJoin can reduce network transmission, reduce shuffle cost, go a step
further to reduce Cartesian product count, speed up θ-join processing, improve
the performance of θ-join.

3.3 Data Skew Processing Strategy

FastThetaJoin also considers data skew. According to the rate of data flow,
window size, and partition numbers, it is easy to estimate the expected numbers
of data in every partition. Once the number of data in some partition is exceeded
estimates, we judge it is skewed. Then the skewed data will be repartitioned
to balance the load. Until the skew process is completed, execute the above
filter strategy, cross product strategy, and other operations. We use Fig. 4 as an
example to describe how to process skewed data in detail.

Fig. 4. Data skew processing (flag indicates if skew happened)

MaxSize indicates the maximum amount of data that each node can process
under best performance. MaxSize = �windowSize/partitionNumber�. Actual-
Size indicates the current actual data numbers of the node. flag is used to
judge whether skew occurs. flag = �ActualSize ∗ 1.0/MaxSize�. If flag is
greater than 0, it means skew occurs and we need to repartition data into
flag partitions. In Fig. 4, we assume that ActualSize = 700, MaxSize = 300. So
flag = �700 ∗ 1.0/300� = 3. flag > 0 indicates data skew. According to data skew
processing strategy proposed, we will repartition these data into 3 partitions
whose size is 233, 233, 234 respectively.

3.4 θ-join of Multi-way Data Streams

The method proposed in this paper is not only applicable to two-way data
streams, but also to multi-way data streams. For θ-join between multi-way data

FastThetaJoin: An Optimization on Multi-way Data Stream 183

streams, the multi-way data streams may be paired into two pairs. Then we
execute the above Step1 to Step6, and multiple pairs are concurrently executed.
The results are as the input of the next round until there is only one output.
For data that does not pair to pairs, leave it to the next round to be the input
of the next round directly. For example, when we need to calculate θ-join dur-
ing n streams, we can Calculate every two adjacent first. E.g (R1.a1 θ R2.a2) ��

(R2.a1 θ R3.a2) ��...�� (Rn-1.ai θ Rn.aj), where R1, R2 ... Rn respectively repre-
sents different streams and a1, a2 ... ai, aj respectively represents the attribute
that corresponding stream contains.

FastThetaJoin based on Four-way Data Streams is showed in Algorithm 2.

Algorithm 2. FastThetaJoin based on Four-way Data Streams
Require: firstDataStream, secondDataStream, thirdDataStream and

forthDataStream all includes attribution B, join condition θ1, θ2, θ3, windowSize,
windowSliding.

Ensure: θ-join results collection (PR.B θ1 PS .B).B θ2 (PL.B θ3 PT .B).B;
1: get data sets R, S, T, L according to windowSize;
2: PR,S = filtered R and S by FastThetaJoin;
3: PL,T = filtered L and T by FastThetaJoin;
4: P(R,S),(L,T) = filtered PR,S and PL,T by FastThetaJoin;
5: return P(R,S),(L,T);

4 Experiment Evaluation

In the experiment, we use three other methods for comparison. For θ-join
between two data streams, the compared algorithms include CrossFilterStrat-
egy(CFS), SparkSQL, DirectCrossProduct and FastThetaJoin proposed. For
multi-way θ-join, we only compare CFS with FastThetaJoin proposed and the
reason will be elaborate later. CFS is the newest algorithm in the existing liter-
ature. SparkSQL refers to use Spark functional programming API to write SQL
for θ-join [6]. DirectCrossProduct refers to do Cartesian product directly with-
out any optimization, and finally filter to achieve θ-join. In the experiment, we
use the window mechanism. After fetching data from the data source, the data is
cut into limited blocks for processing along time boundaries. These time-based
sliding-window has used widely [8,10].

4.1 Experiment Setup

All the experiments are conducted on a spark streaming cluster that consists of
11 servers. The required components versions are Spark 2.3.0, Scala 2.11, Kafka
2.11, JDK 1.8.0, and Hadoop 2.7.4. Each node is AMD Opteron (TM) Processor
6238 with 32GB of memory with installed CentOS Linux release 7.4.17.

184 Z. Hu et al.

We modify an open-source stream generator project on GitHub as the data
source [3]. The input parameters of the stream generator includes the number
of streams, window time span, window sliding interval, data distribution type
of each streaming. In fact, window time span and window sliding interval are
used to calculate the fetching rate in each streaming. Each data produced by
stream generator contains at least following attributes: topic, timestamp, a set
of attributes.

4.2 Two-Way Data Stream

Each stream is set a window to indicate items that need to be calculated cur-
rently. The major factors which affect θ-join include: 1) window size which shows
how long we need to intercept the data at one time; 2)window sliding intervals
which represent the interval of time window sliding; 3)partition number. In fact
window size and window sliding decide how much data to process in a batch.
So in this section, we take the above factors as input parameters to test the
performance of each algorithm. One of input parameters is the value of θ which
belongs to {‘<’, ‘≤’, ‘≥’, ‘>’}. Here, we assume θ is ‘>’. So we need to find out
all tuples where attribute B in the first Stream is bigger than that in the second
Stream. We have two evaluation metrics in the experiment: running time and
the cross product number.

First, we set each window to contain 1000 items and the partition num-
ber as 10. The experimental results are shown in Fig. 5. We show 8 groups of
experiments. The abscissa indicates the group of experiments. The ordinate indi-
cates the running time in ms. As shown in Fig. 5(a), DirectCrossProduct has the
longest execution time which is almost 3× than SparkSQL and far greater than
the other two methods. SparkSQL has the second longest running time and is
also far bigger than CFS and FastThetaJoin proposed in this paper. Because
the difference between CFS and FastThetaJoin is not obvious in Fig. 5(a). So
we extract their results into Fig. 5(b). As shown in Fig. 5(b), FastThetaJoin is
faster than the state-of-the-art method CFS.

It is easy to understand why the running time of DirectCrossProduct and
SparkSQL is so high. Literally, DirectCrossProduct does not have any opti-
mization. Each data item in one stream has to make a Cartesian product with
a data item belonging to other stream, which has O(nm) Cartesian products.
Although the SparkSQL framework has some optimizations, SparkSQL performs
the Cartesian product when θ condition is satisfied, each number is actually
compared with others in other streams. So SparkSQL is always faster than
DirectCrossProduct. Both the other two methods filter before the Cartesian
product phrase. They discard some elements that obviously do not satisfy the
condition, reducing the transmission overhead and the number of Cartesian prod-
uct calculations. Consequently, the running time is naturally short.

Compare with CFS, the reason why FastThetaJoin proposed in this paper is
faster is that it has no global sorting time of O(n log n). Rather, we only use O(1)
to delete the most useless data items. And the Cartesian products are calculated
between selected partitions in FastThetaJoin, instead of involving all partitions

FastThetaJoin: An Optimization on Multi-way Data Stream 185

Fig. 5. Performance test of two streams. (The abscissa represents the experiment group,
and the ordinate represents the running time)

as in CFS. From the above two aspects, FastThetaJoin can go to a further step
to reduce the filtering overhead and the execution time as well.

To explore the relationships between different window sizes and running time,
we slowly increased the window size. In the beginning, we set window size as
1000 and measured the running time with respect to this window, and made
ten experiments as a group, taking the average as the result of the group. Then
we increased the window size gradually, and counted the results of CFS and
FastThetaJoin. Since CFS and FastThetaJoin are significantly faster when the
window size is just 1000 as shown in Fig. 5(a), we only compare FastThetaJoin
with CFS when the window size is more than 1000. Figure 6 shows the rela-
tionships between the window size and the running time. The x-axis represents
different window sizes while y-axis indicates the running time in ms. The exper-
imental results show that FastThetaJoin has a shorter running time and a faster
calculation speed than CFS, especially when the window is larger, the advantage
of FastThetaJoin is more obvious.

Fig. 6. Comparison of FastThetaJoin and
CFS under different window sizes.

In fact, the window size should
be set reasonably. Not the bigger the
better. There are two main reasons.
On the one hand, if the window size
is very large, the intermediate results
will be too many to result in OOM
errors. On the other hand, in real-
time stream computing, the larger the
window, the more data need to be
processed and the processing time is
longer. This can result in data pro-
cessing time much longer than the
data generation time, the two rates do
not match, and ultimately affect per-
formance.

186 Z. Hu et al.

Fig. 7. Comparation of cross product
number under different window size.

Fig. 8. Relationship between partition
number and running time.

Figure 7 shows cross product numbers under different window sizes between
CFS and FastThetaJoin. Vertical coordinate representation cross product num-
ber. We first set window size as 1000, get the average result of a group and alter
window size. As shown in Fig. 7, when the window size is fixed, the cross product
number of FastThetaJoin is less than that of CFS. This shows that FastTheta-
Join has the least join cost. And for both CFS and FastThetaJoin, running time
increases as the window increases. This also shows that the window size should
not be too large from another aspect.

The experimental results show that, as expected, FastThetaJoin proposed in
this paper is faster than the latest method CFS. There are two main reasons.
On the one hand, there is no global sorting time so we can save O(n log n) time.
Although we need O(n) to traverse to get maximum and minimum and time
of O(m) to traverse one by one within a very small area, m is far less than
n. On the other hand in the shuffle phase, because the partitions are ordered,
not all partitions need to calculate Cartesian products with each other. From
these perspectives we can save some time of transmission and Cartesian product
cost. We believe that the θ-join result of DirectCrossProduct is correct because
it directly crosses product and then select. We compare θ-join results of every
algorithm with DirectCrossProduct. The results are the same. So all the above
experimental results are valid.

Figure 8 shows the relationship between partition number and running time.
We fix other input parameters except for partition numbers. Then we change
the partition number to observe the trend of running time. Similarly, we only
compare CFS with FastThetaJoin we proposed in this article. As we can see,
when the partition number is set as one, the speed is very slow. As the number
of partitions increases, the running time stabilizes after a steep drop. This phe-
nomenon is reasonable. When the number of partitions is small, the node load
is large, so the processing is slow. As the number of partitions increases, sev-
eral nodes execute concurrently, so the processing speed becomes faster, running
time gets small. We have an estimated minimum overhead. Therefore, below a

FastThetaJoin: An Optimization on Multi-way Data Stream 187

certain set threshold, as the number of nodes increases, other redundant nodes
do not participate in the execution, so the total execution time remains stable.

4.3 Multi-way Data Stream

Table 1. θ-join result of multi-way data
stream

θ FastThetaJoin CFS Improve ratio (%)

>, ≥, < 2480 3746 33.8

≥, >, < 2224 3592 38.1

<, >, < 2277 3536 35.6

In this section, we generate 4
streams and set every window size
is 1000 and the partition number is
10. For multi-way θ-join, we com-
pare CFS with FastThetaJoin pro-
posed. The general idea is to divide
them into pairs and execute multi-
ple pairs concurrently. The results are as the input of the next round until there
is only one output. As shown in Table 1, the elements in the first column in turn
represent the θ condition between the four streams. The second column indi-
cates the running time of the FastThetaJoin algorithm in ms. The third column
indicates that the CFS algorithm running time in ms. The last column shows
how much the efficiency of FastThetaJoin has improved than CFS. θ1 is ‘>’,
θ2 is ‘≥’, θ3 is ‘<’. In order to improve the efficiency of concurrency, speed up
the processing, we can divide the application into the following 3 blocks (PR.B
> PS .B).B ≥ (PL.B < PT .B).B. As we can see in the test result, in multi-way
θ-join queries, FastThetaJoin is also faster than CFS.

5 Conclusion

This paper proposes FastThetaJoin, an optimization technique for θ-join opera-
tion on multi-way data streams in massive streaming data analysis and process-
ing. The main idea is to filter unnecessary items before cross-product and make
fewer data to participate in the Cartesian product. We have two main innova-
tions to implement our ideas. One is the partition strategy and the other is filter
strategy. This method partitions the data according to the range of the specified
attribute to make an order between partitions, and disorder within partitions.
The filter strategy makes partial partitions participate cross product instead of
all. With this design, we can not only speed up the deletion in filtering, but
also quickly partition the stream in parallel distributed computing to further
reduce the number of Cartesian product connections. Our experimental results
show that the larger the gap between different data streams is, the better the
performance of the method proposed in this paper is. In particular, when the
data flow increases, the performance improvement is also obvious.

Acknowledgment. This work is supported in part by Key-Area Research and
Development Program of Guangdong Province (2020B010164002), Shenzhen strategic
Emerging Industry Development Funds (JCYJ20170818163026031), and also in part
by National Natural Science Foundation of China (61672513).

188 Z. Hu et al.

References

1. https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
2. https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
3. https://github.com/YongyiZhou/Multiway-Stream-Generator/blob/master/src/

main/java/DSMain.java
4. Afrati, F.N., Ullman, J.D.: Optimizing joins in a map-reduce environment. In: Pro-

ceedings of the 13th International Conference on Extending Database Technology,
pp. 99–110. ACM (2010)

5. Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: semantic
foundations and query execution. VLDB J. 15(2), 121–142 (2006)

6. Armbrust, M., et al.: Spark SQL: relational data processing in spark. In: Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data,
pp. 1383–1394. ACM (2015)

7. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A compari-
son of join algorithms for log processing in MapReduce. In: Proceedings of the 2010
ACM SIGMOD International Conference on Management of Data, pp. 975–986.
ACM (2010)

8. Carney, D., et al.: Monitoring streams: a new class of data management applica-
tions. In: Proceedings of the 28th International Conference on Very Large Data
Bases, pp. 215–226. VLDB Endowment (2002)

9. Golab, L., Özsu, M.T.: Update-pattern-aware modeling and processing of continu-
ous queries. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 658–669. ACM (2005)

10. Hammad, M.A., Aref, W.G., Elmagarmid, A.K.: Stream window join: tracking
moving objects in sensor-network databases. In: 15th International Conference on
Scientific and Statistical Database Management 2003, pp. 75–84. IEEE (2003)

11. Jiang, D., Tung, A.K., Chen, G.: MAP-JOIN-REDUCE: toward scalable and effi-
cient data analysis on large clusters. IEEE Trans. Knowl. Data Eng. 23(9), 1299–
1311 (2010)

12. Khayyat, Z., et al.: Lightning fast and space efficient inequality joins. Proc. VLDB
Endow. 8(13), 2074–2085 (2015)

13. Lin, Q., Ooi, B.C., Wang, Z., Yu, C.: Scalable distributed stream join processing. In:
Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, pp. 811–825. ACM (2015)

14. Liu, W., Li, Z., Zhou, Y.: An efficient filter strategy for theta-join query in dis-
tributed environment. In: 2017 46th International Conference on Parallel Process-
ing Workshops (ICPPW), pp. 77–84. IEEE (2017)

15. Okcan, A., Riedewald, M.: Processing theta-joins using MapReduce. In: Proceed-
ings of the 2011 ACM SIGMOD International Conference on Management of Data,
pp. 949–960. ACM (2011)

16. Olston, C., Reed, B., Srivastava, U., Kumar, R., Tomkins, A.: Pig latin: a not-so-
foreign language for data processing. In: Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, pp. 1099–1110. ACM (2008)

17. Xie, D., Li, F., Yao, B., Li, G., Zhou, L., Guo, M.: Simba: efficient in-memory spa-
tial analytics. In: Proceedings of the 2016 International Conference on Management
of Data, pp. 1071–1085. ACM (2016)

18. Yan, K., Zhu, H.: Two MRJs for multi-way theta-join in MapReduce. In: Pathan,
M., Wei, G., Fortino, G. (eds.) IDCS 2013. LNCS, vol. 8223, pp. 321–332. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-41428-2 26

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-102
https://github.com/YongyiZhou/Multiway-Stream-Generator/blob/master/src/main/java/DSMain.java
https://github.com/YongyiZhou/Multiway-Stream-Generator/blob/master/src/main/java/DSMain.java
https://doi.org/10.1007/978-3-642-41428-2_26

FastThetaJoin: An Optimization on Multi-way Data Stream 189

19. Yang, H.C., Dasdan, A., Hsiao, R.L., Parker, D.S.: Map-reduce-merge: simplified
relational data processing on large clusters. In: Proceedings of the 2007 ACM
SIGMOD International Conference on Management of Data, pp. 1029–1040 (2007)

20. Zhang, C., Li, J., Wu, L., Lin, M., Liu, W.: SEJ: an even approach to multiway
theta-joins using MapReduce. In: 2012 Second International Conference on Cloud
and Green Computing, pp. 73–80. IEEE (2012)

21. Zhang, X., Chen, L., Wang, M.: Efficient multi-way theta-join processing using
MapReduce. Proc. VLDB Endow. 5(11), 1184–1195 (2012)

A Distributed Framework for Online
Stream Data Clustering

Jiafeng Ding1, Junhua Fang1(B), Pingfu Chao2, Jiajie Xu1, PengPeng Zhao1,
and Lei Zhao1

1 Department of Computer Science and Technology,
Soochow University, Suzhou, China

20185227068@stu.suda.edu.cn, jhfang@suda.edu.cn,
{xujj,ppzhao,zhaol}@suda.edu.cn

2 The University of Queensland, Brisbane, Australia
p.chao@uq.edu.au

Abstract. The recent prevalence of positioning sensors and mobile
devices generates a massive amount of spatial-temporal data from mov-
ing objects in real-time. As one of the fundamental processes in data
analysis, the clustering on spatial-temporal data creates various applica-
tions, like event detection and travel pattern extraction. However, most
of the existing works only focus on the offline scenario, which is not
applicable to online time-sensitive applications due to their low effi-
ciency and ignorance of temporal features. In this paper, we propose
a distributed streaming framework for spatial-temporal data clustering,
which accepts various clustering algorithms while ensuring low resource
consumption and result correctness. The framework includes a dynamic
partitioning strategy for continuous load-balancing and a cluster-merging
algorithm based on convex hulls [10], which guarantees the result cor-
rectness. Extensive experiments on real dataset prove the effectiveness
of our proposed framework and its advantage over existing solutions.

Keywords: Real-time cluster analysis · Distributed stream
processing · Spatial-temporal data mining · Top-k query · Parallel
computing

1 Introduction

Recently, the ubiquity of GPS-equipped devices enables the track of users’ travel
behaviors from various sources, like mobile phones, vehicles, and other wearable
devices. With the large-scale spatial-temporal data available, many applications

This work is partially supported by NSFC (No.61802273), the Postdoctoral Science
Foundation of China under Grant (No. 2017M621813), the Postdoctoral Science Foun-
dation of Jiangsu Province of China under Grant (No. 2018K029C), and the Natural
Science Foundation for Colleges and Universities in Jiangsu Province of China under
Grant (No. 18KJB520044).

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 190–204, 2020.
https://doi.org/10.1007/978-3-030-60245-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_13

A Distributed Framework for Online Stream Data Clustering 191

focus on analyzing the user’s travel patterns or predicting the traffic flows, which
are based on the data clustering process. Data clustering has been playing a cru-
cial role in numerous applications, such as pattern recognition [20], information
retrieval [13], medical sciences [14], social network analysis [17] and image pro-
cessing [15].

Generally speaking, the timestamp attribute carried by spatial-temporal data
determines it is time-efficient, that is, the value of spatial-temporal data will
decrease with the passage of time. Furthermore, applications based on these
spatial-temporal data are naturally time sensitive, like identifying the topic
changes in social networks [5] and detecting real-time road congestion in the
transportation system [18]. Real-time data clustering is the basis operation of
many time-dependent processes in such online scenario. However, despite a sig-
nificant number of clustering algorithms proposed in the last few decades, most
of them cannot be applied to an online scenario as they fail to achieve inter-
active performance. Clustream algorithm [3] is one of the most classical stream
clustering algorithm. It use the two phase patterns, including online and offline,
to cluster the data. However, the influence of out-of-date data points cannot be
eliminated in the online clustering process, which greatly reduces the clustering
effect of the algorithm. Several other algorithms [6,12] introduced recently tar-
get at the online streaming environment with decent efficiency. However, they
either do not support sliding-window queries or cannot cluster large-scale data
sets into arbitrary-shape clusters. A fast large-scale trajectory clustering [21] has
been proposed to efficiently identify k “representative” paths in a road network,
however, it only certain k values can be found, not arbitrary values.

Traditional stream clustering solutions are either use micro-batch centralized
computing mode and optimized by attenuation factor, which is difficult to support
the increasing data volume, or use classical two-stage clustering, including online
and offline, but cannot eliminate the impact of expired points. According to our
observation, since the data stream is usually continuous, disordered, and infinite,
the main challenges in online distributed stream processing system are three-fold:

– Dynamic: The dynamic features of data stream come from two aspects: (1)
the dynamic data volume means the size of incoming data is dynamic and
unpredictable, (2) the dynamic value distribution implies the distribution of
the incoming data values may change over time. Both features require the
distributed framework to be load-adaptive and load-balancing.

– Timeliness: The in-built temporal feature of the stream data defines the
importance of real-time processing. In other words, the value of the stream
data decays quickly as time goes. Therefore, the stream processing framework
should ensure low processing latency.

– Efficiency: Efficiency requires the system to minimize resource consumption
while ensuring high throughput and low latency when dealing with dynamic
workloads. Considering the spatial feature of our clustering problem, merely
partitioning the data by their semantic features may lead to absurd physi-
cal data localization, which causes extra resource consumption. Therefore, a
smart partitioning strategy is necessary.

192 J. Ding et al.

To address the aforementioned challenges, in this paper, we propose a new
distributed framework for online clustering analysis, termed as RT-Clustering.
Different from existing works, our framework deals with real-time streaming data
as the data source to quickly calculate the maximum k clustering regions. We
eliminate the impact of expired points by filtering them in time. In addition, we
ensure the balance of data distribution by a feedback mechanism. Besides, our
framework supports real-time data clustering based on the sliding window and
we optimize our solution by a cluster-merging process to further improve the
efficiency. Overall, our contributions are listed as follows:

– We propose a distributed framework for online data clustering. The frame-
work accepts most of the existing clustering algorithms while ensuring the
load-balancing and efficiency in a large-scale distributed environment.

– We propose a rule-based adaptive clustering strategy that utilizes the his-
torical cluster results for incoming data distribution. Our proposed strategy
ensures the load-balancing and efficiency under dynamic data input.

– We propose a cluster-merging algorithm to refined the distributed clustering
results. Based on the idea of the convex hull, our cluster-merging algorithm
guarantees the result correctness while minimizes the system resource con-
sumption.

– Extensive experiments are conducted on a real data set to prove the effec-
tiveness of our proposed framework and optimization algorithms in terms of
efficiency and correctness.

The rest of the paper is organized as follows: We first formally define the
problem and introduce our proposed framework in Sect. 2, then we elaborate our
rule-based adaptive clustering strategy and the cluster-merging optimization in
detail in Sect. 4. The experiments are demonstrated in Sect. 5. We review the
related work in Sect. 6 and draw conclusion in Sect. 7.

2 Preliminaries

The main notations used throughout this paper and their respective definitions
are listed in Table 1.

Table 1. The notations.

Notations Definitions

p A point of trajectory

θ The threshold of the density cell

γ The threshold of the sparse cell

P Points of a trajectory

S Input data stream

k Number of top requested results

W Sliding window

T=< P1, P2..., Pm, ... > The trajectory consisting of indefinite points

τ =< T1, T2, ..., Tn > Data set consisting of N trajectories

A Distributed Framework for Online Stream Data Clustering 193

2.1 Clustering Algorithm

To help understand and facilitate subsequent description, we briefly introduce
DBSCAN with the example of Fig. 1. The common definitions of DBSCAN are
as follows:

– ε−Neighborhood: Consider a set P of points, the ε-neighborhood of p ∈ P,
denoted as Nε(p), is a set of the points whose distances from p are within ε,
i.e., Nε(p) = {q|d(q, p) ≤ ε, q ∈ P}. For example, in Fig. 1., the grey circle of
each point is its ε−Neighborhood, e.g, Nε(O3) ={O2, O4, O6}.

– Core Point: A point p is a core point if at least minPts point u satisfy
d(p, u) ≤ ε, where d(p, u) denotes the distance between p and u. If p is
not a core point, it may be an edge point. Consider the example in Fig. 1.,
we set minPts = 3, we can find that O3, O4 have three points within their
ε−Neighborhood. So they are considered as core objects.

– Density Reachable Point: A point p is density reachable from location
v if there exist a sequence of locations x1, x2, ..., xt(t ≥ 2) conform that (i)
x1 = p and xt = u; (ii) xi (1 ≤ i < t) are core points; and (iii) d(xi,
xi + 1) ≤ ε(1 ≤ i < t). DBSCAN utilizes the density-reachability to assemble
a large dense region by a iterative process. Specially, while t = 2, we call
it Directly Density-Reachable since they are not connected by any core
point. Considering the example data set in Fig. 1. again, O1 is directly density-
reachable from O2, but O1 is not directly density-reachable from O6 since the
distance between O1 and O6 is greater than ε, but O1 is density-reachable
from {O2, O3, O4, O5, O6}.

O1
O2

O3
O4 O5

O6
ε

dis > ε

Fig. 1. Example Of DBSCAN

2.2 Problem Description

Based on the model of stream data and its workload, we define the real-time clus-
ter mining problem, with the objectives on (i) dynamic workload among the pro-
cessing slots, (ii) perform the clustering algorithm rapidly, and (iii) ensure seman-
tic correct in the share-nothing environment. Specifically, to achieve the above

194 J. Ding et al.

goal, we formulate the description as an optimization problem: Given a time-
series data stream S, which contains trajectory set τ =< T1, T2, ..., Tn > and
each trajectory, T =< P1, P2..., Pm, ... >, contains uncertain numbers points; a
distance measure function D; a sliding window W; a user-defined parameter k,
the aim of function RT-Clustering is searching the top-k clusters which cover
the k-largest areas. The formula of real-time clustering is shown as below:

Top − kclusters = RT − Clustering(S,D, k,W)

Note that k is defined by users. Besides, we use Euclidean distance as the distance
function because of the properties of spatiotemporal data and use DBSCAN as
the clustering algorithm in this paper.

3 Solution Overview

The processing framework of RT-Clustering is shown in Fig. 2, and can be decom-
posed into the following three steps:

– Step1: We first divide the initial region into fixed cells in advance and each cell
is a processing unit. Next, as shown in step1 of Fig. 2, we get the latest cluster
results to generate a partition strategy and allocate the fixed cells according
to the strategy in each cell. Then, we mark each point in the data stream S

according to its geographic position. A key-based partition algorithm would
be implemented to assign the points to the corresponding cell. We will present
the detailed dynamic data partition in Sect. 4.1.

– Step2: each cell has received the incoming specific points. To achieve a speedy
performance, we design a coarse-grained algorithm to re-divide the cell, which
is based on a sliding window. The summary of this step is presented in step2 of
Fig. 2. We first divide the cell into fine-grained grids and determine each grid
whether it is dense. Then, we do a local classic DBSCAN on this dense grids
and implements Andrew’s monotone chain method to generate the convex
hull for each local cluster in each slot. Section 4.2 shows the concrete details.

Data
Preprocessing

RuleStream Strategy
Generation

Space
Division ...

Partition

Granularity Design

Local Clustering

Convex Hull
Generation

Local Clusters
Aggregation

Neighbour
Clusters
Search

Minimum
Distance

Computation

Local Clusters
Merging

Feedback

Dynamic Data Partition Local Clustering Based
On Sliding Window

Global Merging Based
On Convex Hull

Dispatcher

Dispatcher

Dispatcher

Step1:Real-time Space Division Step2: Speedy Clustering Step3: Lightweight Semantic Assurance

Data Flow Control Flow

Fig. 2. Overview Of RT-clustering

A Distributed Framework for Online Stream Data Clustering 195

– Step3: all the local clusters need to be merged to generate the final clusters.
Step3 of Fig. 2 shows the main procedure. We first collect all local clusters
and their convex hulls. Next, we merge the local clusters by calculating the
minimum distance mindis between convex hulls and compare with the ε. If
mindis < ε and the anti-pair is the form of point-point, they belong to the
same cluster and we merge them. We will present the details in Sect. 4.3.

4 Real-Time Distribute Clustering

4.1 Dynamic Data Partition

To maximize throughput and minimize computation latency, we need to balance
the workload of each cell. A dense area may contain several grids in RT-Clusting,
so we compute the dense area and set parameters to determine whether the range
needs to be optimized. The dense area in this paper is defined as shown below:

Definition 1 (Dense Area). At time t, for a cell c, given the clusters at time
t, we definite the dense area that

DenseArea(c, t) = Area(clusters, t) ∩ Area(c, t)

where Area(clusters,t) is the area of clusters at time t, and Area(c,t) is the area
of each cell. Based on the above definition, the density coefficient can be defined
as follows:

Definition 2 (D-cell). At time t, for a cell c, the density coefficient

D(c, t) =
DenseArea(c, t)

Area(c, t)
(1)

Algorithm 1 shows the procedure of the strategy generation algorithm. It
contains two parts: strategy generation and points partition. Our basic idea is
that using the latest cluster results to predict the current dense area and assign
more nodes to process. Then we divide them into more ranges and each range
can be seen as a cell. However, to reduce the computation, we only re-divide the
original ranges rather than re-divide the whole area. In the first stage, line 1–11
of the Algorithm 1 present that we use the Definition 2 to determine these grids.
If the area is detected as a dense area, it will be divided into several ranges.
Those sparse and transitional areas are maintained with the latest state. In the
second stage, as shown line 12–16 of the Algorithm 1, all points in the stream
do a map operation according to their location information and are distributed
into the corresponding cells by their cell id.

196 J. Ding et al.

Algorithm 1. Strategy Generation Algorithm
Input:

The data stream S;
Output:

each keyedPoint Pkeyed;
1: clusters = Feedback()
2: for each cell c in region do
3: f(c,t) = Area(c,t)∩Area(clusters,t)

Area(c,t)

4: if f(c,t) > θ then
5: cell list ← divide(c)
6: else if γ < f(c,t) < θ then
7: lcell = transitional; cell list ← c
8: else
9: lcell = sparse; cell list ← c

10: end if
11: end for
12: for each point in Stream S do
13: cid = Location(point)
14: map ← < cid, point >
15: return Pkeyed = keyedDistribution(map)
16: end for

4.2 Local Clustering Algorithm

In order to enable local tasks to detect the clusters quickly, we design a coarse-
grained algorithm to re-divide the cells here. Figure 3 shows an example of
dynamic data partition. The blue range is the Intersect area. Suppose that
θ = 0.8 and γ = 0.2, we can easily find that the C5 is dense, C2, C4, C8

may be transitional grids and C1, C3, C6, C7, C9 are sparse grids through com-
putation according to the Definition 2. Then we divide C5 into smaller cells and
use more slots to process it to improve the speed of calculation. In this example,
we divide it into C5 1, C5 2, C5 3 and C5 4. These cells are placed in slots by
a hash-based method. Finally, the points in the data stream S will be marked
with the id of their cell based on their location information. In Fig. 3., P1, P2

and P3 are the incoming points which carry coordinate information. Fig. 3.(a) is
the cluster result at last time. Figure 3.(c) is the partition strategy of Fig. 3.(a)
and Fig. 3.(d) is the partition strategy of Fig. 3.(b). After dividing, the range of
sparse and transitional grids don’t change, but the dense grids have been divided
into smaller range. In this stage, we can easily determine that P1(1, 0) belongs
to C2. P2(1.2, 1.3) is sent to C5 2 rather than C7 and P3(2, 2) is sent to C9.

After points are distributed to correlative cells, we perform the local clus-
tering algorithm in this step. To achieve a speedy performance and minimize
network traffic, as shown in Algorithm 2, we design a micro-coarse-grained par-
titioning on these cells and maintain a map to record the number of points in
micro-grids. We first divide the grid internally, and each micro-grid represents
a macro point. It should be noted that the size of the grids can be adjusted,

A Distributed Framework for Online Stream Data Clustering 197

(a):Cluster Result T = t-1

1

(b):Re-Divided(T=t)

(c):Key-Based Partition

Hash-Based Distribution

(d):Key-Based Partition

Hash-Based Distribution

Dynamic Divide
Partition Stragety

S Slot C Cell

Fig. 3. Example of dynamic data partition

and the smaller the mesh, the higher the accuracy. Then we need to determine
whether each grid is dense or sparse. There are two situations that must be
considered. The first stage is that the cell is sparse, and it maintains the latest
grids state. We only need to update the corresponding number. The other scene
is that the cell is dense, and it has been re-divided. We need to recompute the
micro-coarse-grained grids. Next, we perform a classic DBSCAN on these dense
grids. Finally, we implement Andrew’s monotone chain method to generate the
convex hull of the finite set of points of each cluster in the two-dimensional
Euclidean space.

4.3 Global Clustering Algorithm

As mentioned above, the processing slots are share-nothing. In this case, we
need to recover the state between the points for cluster merging. Algorithm 3
presents the lightweight cluster merging algorithm. We first construct a list of
all local clusters and their corresponding convex hulls from Algorithm2. Next
we traverse the list and use the rotate jam algorithm to compute the minimum
distance, which is shown as Line 8∼19 in Algorithm 3. For two convex hulls
P and Q, firstly, we calculate the minimum value of convex hull P in the y-
axis direction as yminP, and the maximum value of convex hull Q in the y-axis
direction as ymaxQ. Secondly, we establish two horizontal straight lines LP ,
LQ next to yminP, ymaxQ. Then, we take them to face different directions,
e.g., one is upwards, and another is down. At this time, they form an antipodal
pair. Thirdly, we calculate the distance of (yminP, ymaxQ) and record it as a
minimum value. Fourthly, we turn the two straight lines clockwise until one of
the edges that meet the convex hull. As long as a straight line meets an edge, we

198 J. Ding et al.

Algorithm 2. Local Clustering Algorithm
Input:

keyedPoint Pkeyed;
Output:

clusterRange
1: for each slot do
2: grids map<gid,count> = getLastStates()
3: if grids map == null then
4: grids = GranularityDesign()
5: end if
6: for each point Pkeyed in cell do
7: grids map ← updateGridsMap(Pkeyed)
8: end for
9: GridsState = updateState(grids map)

10: dense grids = getDenseGrids(�,grids)
11: list = DBSCAN(dense grids)
12: for each cluster in list do
13: covexhull = createConvexHull(cluster) /*Andrew’s monotone chain method*/

14: return clusterRange ← <cluster,covexhull>
15: end for
16: end for

need to calculate the distance between the new vertex-vertex antipodal, compare
it with the minimum, and update it. We repeat steps 3 and 4 until the two lines
return to the starting position and get the minimum distance. If the minimum
distance is less than ε, we treat them as one cluster and merge them. After this
computing procedure, we will get the list of final clusters that distance between
any two of them is greater than ε. Finally, we get the top-k largest cluster of the
list as the final result.

5 Experiment

5.1 Experimental Setup

Environment: We implement and conduct the experiment on Apache Flink1.9
[1]. The algorithm is implemented in Java, and the Flink system is deployed
on a cluster of machines, each of which runs CentOS 7 operating system and
is equipped with 32 Intel core processors (E7-8860 at 2.20 GHz) with 128 cores
and 256 GB RAM.

Data Set: We use a real-world GPS trajectory data set of Beijing Taxi, which
contains more over 13000 trajectories, to test our proposed algorithm. Each
trajectory record includes the taxi ID, the timestamp of the event and the posi-
tion(latitude and longitude).

A Distributed Framework for Online Stream Data Clustering 199

Algorithm 3. Global Merging Algorithm
Input:

clusterRange
Output:

Top-kclusters

1: initialize clusterRangeList
2: for each clusterRange do
3: clusterRangeList: add(clusterRange)
4: end for
5: for i =1 to length(clusterRangeList) do
6: ci ← clusterRangei; pointsi = getPoints(ci)
7: for j = i+1; j<length(clusterRangeList);j++ do
8: shortestDis = 0;
9: cj ← clusterRangei; pointsj = getPoints(cj)

10: ymini = getMinY(pointsi); ymaxj = getMinY(pointsj)
11: linei = buildVerticalXLine(ymini); linej = buildVerticalXLine(ymaxj)
12: while linei or linej does not back to starting point do
13: clockwiseRotate(linei); clockwiseRotate(linej)
14: if linei contains points in pointsi or linej contains points in pointsj then
15: dis = getDistance(linei,linej)
16: if dis < shortestDis then
17: shortestDis = dis
18: end if
19: end if
20: if shortestDis < ε then
21: merge(ci,cj); clusterRangeList : remove(cj)
22: end if
23: end while
24: end for
25: end for
26: return Top-k(clusterRangeList,k)

Performance Metrics: We evaluate resource utilization and system perfor-
mance through the following metrics: i)Throughput(T) is the average result num-
ber of tuples processed by the system per second. ii)Execution time (E) is the
average computation time in each window during the entire process. iii)Score(S)
is the sum of intra-cluster distance variances according to the formula:

score =
n∑

i=1

σ2
i

where n is the number of clusters and σ2
i is the variance of intra-cluster distances

of cluster ci.

Performance Parameters: We use the following parameters for comparison
experiments. i)ε is the parameter of the classic DBSCAN algorithm. ii)P is the
number of Parallelisms. iii)k is the value of Top-k that defined by users. IV)size
is the scale of the data set, which is shown in Table 2.

200 J. Ding et al.

Table 2. The DataSet

Dataset Points Size Dataset Points Size

sort200 330557 14.2 MB sort500 827239 35.4 MB

sort800 1325742 56.6 MB sort1000 1659489 70.8 MB

sort1200 1984567 84.2 MB sort1500 2329284 97.8 MB

sort2000 2868541 122 MB

(a) Parallel VS. Execution time (b) K VS. Execution time

(c) Data size VS. Execution time (d) ε VS. Execution time

Fig. 4. Performance of execution time

Performance Experiment: We observe the performance of the approach under
different parameter values. Since there are several parameters in our frame, we
change one or several of them to measure it. At the same time, we compare our
approach with the MR-DBSCAN [22] and the traditional DBSCAN algorithm.
We deploy them on Flink [1] for comparison.

5.2 Performance on Real Data

Firstly, we deploy the experiment of execution time under different parameters.
Figure 4(a). shows the execution time while the parallelism P varying from 5 to
35. We can clearly see that the execution time of the classic DBSCAN algorithm
is the longest since the P does not affect it. However, the execution time of MR-
DBSCAN and RT-Clustering is decreasing with P increasing, and our algorithm
is better than MR-DBSCAN. Figure 4(b) shows the execution time under the
parallelism K from 1 to 8. Obviously, our algorithm is almost three times better
than MR-DBSCAN and 13 times better than DBSCAN. Figure 4(c) shows the

A Distributed Framework for Online Stream Data Clustering 201

(a) Parallel VS. Throughput (b) K VS. Throughput

(c) Data size VS.Throughput (d) ε VS. Throughput

Fig. 5. Performance of throughput

effect of data set size on execution time. From the figure, we can see that as
the data set grows, so does the execution time. This is due to the larger data
set, which requires more data to be processed. The execution time of traditional
DBSCAN is exponential growth, and that of MR-DBSCAN is growing linearly.
However, our algorithm is growing smoothly, and the speed of growth is far less
than others. Figure 4(d) shows the effect of the parameter of DBSCAN-ε. The
setting of ε vars 10 m to 80 m. We can find that the time cost fluctuates as ε
grows. Overall, our algorithm, which is based on convex hull, has less execution
time and greater advantages.

Then, we evaluated the impact of each factor on throughput. We see the
impact of parallelism on throughput in Fig. 5(a). We find that the parallelism
does not affect the throughput of traditional DBSCAN since it is centralized.
The throughput of MR-DBSCAN is increasing with the growth of P . However,
it’s speed is slow, and when P > 20, the speed is down. On the contrary, the
throughput of our algorithm is always increasing. Figure 5(b) shows the impact
of K on throughput. With K growing, the throughput slightly decreases, and it
is not obvious since with K growing, it needs more computation, but it just is
a small part of the whole framework. Figure 5(c) shows the impact of the size
of data on throughput. From the figure, we can see that the throughput of all
three algorithms is decreasing while the size is increasing. This is due to that it
needs more time to compute with the bigger data size, and the throughput is
reduced. Figure 5(d) shows the impact of ε on throughput. With ε growing, the
throughput of the three algorithms is fluctuating and no significant change. The
throughput is insensitive to the settings of ε. Overall, Our algorithm has greater
throughput than others and has better cost performance.

202 J. Ding et al.

10 20 30 40 50 60 70 80
0

100
200
300
400
500
600
700
800
900

sc
or
e

RT-Clustering
DBSCAN

Fig. 6. ε VS. score

Finally, we evaluate the cluster quality of our algorithm. We compute the
sum of intra-cluster distance variances according to the formula which has been
given in Performance Metrics. The bigger the score means, the bigger the
fluctuation of clustering. The results are illustrated in Fig. 6. It is shown that
the score is insensitive to the settings of ε. Most importantly, it tends to be
steady when ε > 40. Overall, the clustering result of our algorithm has excellent
quality.

6 Related Work

Distributed Stream Processing. With the increasing number of data sources
and the increasing requirements of real-time data analysis, the processing of
stream data becomes more and more important. Decades ago, Mitch Cherniack
[8] describe scalable distributed stream processing to fit a large class of new
applications for which conventional DBMSs fall short. Tyler Akidau proposes
that a fundamental shift of approach is necessary to deal with these evolved
requirements in modern data processing [4]. Especially, several open-source dis-
tributed batch-stream processing platforms have been proposed, which provide
two different types of processing. In a tuple process, each incoming record is
processed as soon as it arrives without waiting for other records. Storm [2] and
Flink [1] support this type of processing. But not limited to this, our methods
and techniques are generic and, therefore, easily applicable to other distributed
flow processing platforms.

Distributed Cluster Analysis. Cluster analysis has received much attention
due to numerous attractive properties. In the past few decades, with the large-
scale increase in the amount of data, the traditional centralized clustering algo-
rithm gradually failed to meet the computing requirements, and a large number
of distributed clustering algorithms were proposed. SDBC [11] gives a quality
criterion to select objects as local representatives and generate global approxi-
mate DBSCAN clusters. RP-DBSCAN [19] uses a cell-based random partition-
ing scheme together with a two-level cell dictionary to find out approximate

A Distributed Framework for Online Stream Data Clustering 203

DBSCAN clusters. However, all the algorithms can not present the clustering
results dynamically.

Online Cluster Analysis. Cluster stream data methods have been proposed
in recent years. Gong [9] proposes a stream clustering algorithm EDMStream
by exploring the evolution of density mountain that is used to abstract the
data distribution. Nasir et al. [16] designed a series of randomized routing algo-
rithms to balance the workload of stream processing operators. Chen proposes
D-stream [7], which is a framework for clustering stream data using a density-
based approach. It adopts a density decaying technique to capture the dynamic
changes of a data stream, but the algorithm can not maintain the complete status
information.

7 Conclusion

In this paper, we identify and solve the real-time cluster problem. To support
the rapidly coming and massive data, we propose a real-time parallel distributed
clustering algorithm that utilizes a rule stream to assist space-based partition to
ensure workload balance. Besides, we build a convex hull for each cluster to com-
pute the minimum distance of convex hulls for merging. Moreover, we conduct
extensive experiments on real data sets to demonstrate that RT-Clustering is
much more efficient and stable. In this paper, we study the clustering of points,
but not limited to this, we would like to explore trajectory clustering in a real-
time environment in further work.

References

1. Apache Flink Project. http://flink.apache.org/
2. Apache Storm Project. http://storm.apache.org/
3. Aggarwal, C.C., Philip, S.Y., Han, J., Wang, J.: A framework for clustering evolv-

ing data streams. In: Proceedings 2003 VLDB Conference, pp. 81–92. Elsevier
(2003)

4. Akidau, T., et al.: The dataflow model: a practical approach to balancing correct-
ness, latency, and cost in massive-scale, unbounded, out-of-order data processing.
Proc. VLDB Endow. 8(12), 1792–1803 (2015)

5. Chen, H., Yin, H., Li, X., Wang, M., Chen, W., Chen, T.: People opinion topic
model: opinion based user clustering in social networks. In: Proceedings of the 26th
International Conference on World Wide Web Companion, pp. 1353–1359 (2017)

6. Chen, L., Gao, Y., Fang, Z., Miao, X., Jensen, C.S., Guo, C.: Real-time distributed
co-movement pattern detection on streaming trajectories. Proc. VLDB Endow.
12(10), 1208–1220 (2019)

7. Chen, Y., Tu, L.: Density-based clustering for real-time stream data. In: Proceed-
ings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 133–142. ACM (2007)

8. Cherniack, M., et al.: Scalable distributed stream processing. In: CIDR, vol. 3, pp.
257–268 (2003)

http://flink.apache.org/
http://storm.apache.org/

204 J. Ding et al.

9. Gong, S., Zhang, Y., Ge, Yu.: Clustering stream data by exploring the evolution
of density mountain. Proc. VLDB Endow. 11(4), 393–405 (2017)

10. Graham, R.L.: An efficient algorithm for determining the convex hull of a finite
planar set. 1(4), 132–133 (1972)

11. Januzaj, E., Kriegel, H.-P., Pfeifle, M.: Scalable density-based distributed cluster-
ing. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) PKDD
2004. LNCS (LNAI), vol. 3202, pp. 231–244. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30116-5 23

12. Lee, P., Lakshmanan, L.V., Milios, E.E.: Incremental cluster evolution tracking
from highly dynamic network data. In: 2014 IEEE 30th International Conference
on Data Engineering, pp. 3–14. IEEE (2014)

13. Liang, S., Yilmaz, E., Kanoulas, E.: Dynamic clustering of streaming short doc-
uments. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 995–1004. ACM (2016)

14. Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis:
a survey. IEEE/ACM Trans. Comput. Biol. Bioinf. (TCBB) 1(1), 24–45 (2004)

15. Naik, D., Shah, P.: A review on image segmentation clustering algorithms. Int. J.
Comput. Sci. Inform. Technol. 5(3), 3289–93 (2014)

16. Nasir, M.A.U., Morales, G.D.F., Kourtellis, N., Serafini, M.: When two choices are
not enough: balancing at scale in distributed stream processing. In: 2016 IEEE
32nd International Conference on Data Engineering (ICDE), pp. 589–600. IEEE
(2016)

17. Pham, M.C., Cao, Y., Klamma, R., Jarke, M.: A clustering approach for collabora-
tive filtering recommendation using social network analysis. J. UCS 17(4), 583–604
(2011)

18. Rempe, F., Huber, G., Bogenberger, K.: Spatio-temporal congestion patterns in
urban traffic networks. Transp. Res. Procedia 15, 513–524 (2016)

19. Song, H., Lee, J.-G. RP-DBSCAN: a superfast parallel DBSCAN algorithm based
on random partitioning. In: Proceedings of the 2018 International Conference on
Management of Data, pp. 1173–1187. ACM (2018)

20. Sturn, A., Quackenbush, J., Trajanoski, Z.: Genesis: cluster analysis of microarray
data. Bioinformatics 18(1), 207–208 (2002)

21. Wang, S., Bao, Z., Culpepper, J.S., Sellis, T., Qin, X.: Fast large-scale trajectory
clustering. Proc. VLDB Endow. 13(1), 29–42 (2019)

22. He, Y., Tan, H., Luo, W., Feng, S., Fan, J.: MR-DBSCAN: a scalable MapReduce-
based DBSCAN algorithm for heavily skewed data. Front. Comput. Sci. 8(1), 83–99
(2014)

https://doi.org/10.1007/978-3-540-30116-5_23
https://doi.org/10.1007/978-3-540-30116-5_23

End-System Aware Large File Transfer Solution
for Rich Media Applications over 5G Mobile

Networks

Xukang Lyu1(B) and Chase Q. Wu2

1 School of Computer Software, College of Intelligence and Computing, Tianjin University,
Tianjin 300354, People’s Republic of China

lvxukang@tju.edu.cn
2 Department of Computer Science, New Jersey Institute of Technology,

Newark, NJ 07103, USA
chase.wu@njit.edu

Abstract. In general, rich media applications demand high bandwidth to transfer
large files over wide-area connections. The arrival of 5G will overcome the lim-
itations of existing networks in support of these network-intensive applications
because they provide high bandwidth reaching up to multiple Gbps for large
file transfer. One of the main challenges to maximize and stabilize goodput is
explicitly managing the randomness inherent in high-speed mobile networks. The
AIMD-based TCP cannot make full utilization of bandwidth over links with high
Bandwidth Delay Product. The inefficiency of transport control protocol can not
satisfy the media applications transport requirements even over a high bandwidth
end-to-end connection. We conducted an extensive analytical study of the design
and implementation issues of high-speed data transfer methods, especially the
impact of application-level receive buffer and the background workloads on the
data transfer performance. We developed an optimized large file transfer solution
based on this analysis to achieve the maximal bottleneck goodput. We showed
that the proposed transport protocol achieves better performance compared to
state-of-the-art transport methods.

Keywords: Transport control · Big data transfer · Mobile networks · 5G

1 Introduction

Future mobile technologies enable rich media applications such as mobile virtual real-
ity/augmented reality (AR/VR), as well as 4 K/8 K and 360◦ video streaming to deliver
high quality services. Rich media applications require huge amounts of data to be trans-
ferred and shared around the world. The success of these applications relies on fast
accesses to the media content, i.e., videos 8 K or VR. The arrival of 5G will overcome
the limitations of existing networks in support of these network-intensive applications
because they provide high bandwidth reaching up to multiple Gbps for large file trans-
fer. In fact, the importance of 5G has been well recognized, and many projects are cur-
rently underway to develop such capabilities around the world. One of such initiatives
c© Springer Nature Switzerland AG 2020

M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 205–218, 2020.
https://doi.org/10.1007/978-3-030-60245-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_14

206 X. Lyu and C. Q. Wu

is Turkey’s first 5G cloud application [1]. This application tested the remote access of
AR and VR based educational content over a 5G cloud connection with Huawei. With
this work that focuses on education, this application provided low latency high quality
image transfer over 5G network on subjects such as biology, chemistry and electronics
which are especially visual and experience based. Educational content is just one of the
many use areas of 5G technology [17]. Given high-speed mobile networks, transport
protocols are the key to delivering the provisioned bandwidths to the applications.

A main challenge in high-speed mobile network is to maximize goodput1 by adapt-
ing transport parameters automatically. The AIMD-based TCP cannot make full uti-
lization of bandwidth over links with high Bandwidth Delay Product. The inefficiency
of transport control protocol can not satisfy the media applications transport require-
ments even over a high bandwidth end-to-end connection. A lot of works have been
done to solve the challenges associated with transferring data over long-haul networks.
In [7], new congestion control algorithms were proposed to improve the performance
of TCP. In order to overcome the performance limitation of TCP, researchers tried to
design application protocols based on UDP over high BDP networks. These protocols
include QUIC [10], UDT (UDP-based Data Transfer) [9], PLUT [14,20], and many oth-
ers [11,15,18,21]. The high bandwidth available in 5G mobile networks will shift the
bottleneck of end-to-end data transfer from the network to the end systems. However,
the existing transport protocols based on TCP or UDP are not optimized for handling
system dynamics like shared CPUs, network and disk I/O, memory management, etc.
Therefore, end users have not been able to see the corresponding performance improve-
ment in their applications.

Although some efforts attempt to address the issue of flow control in a bottlenecked
end system, their proposed solutions underestimate the capacity of the end system,
which generates a suboptimal feedback rate for flow control in high-speed networks.
These protocols usually employ single thread to receive packets arriving from the high-
speed network. This design cannot take advantage of modern multi-core architecture,
and leads to a waste of end system resources and a lower estimated bottleneck rate.
Therefore, it is critical to explore the adoption of mulitple UDP connections to improve
both goodput and resources utilization. On one hand, these UDP-based transport proto-
cols can obtain more aggregate CPU cycles on a shared end system with single proces-
sor to improve the application goodput by implementing a parallel receiving strategy
than a single receiving process in the presence of concurrent workloads. On the other
hand, the advance of multi-core processors make it possible to run different packet
receiving processes on different cores, which can improve the aggregate application
goodput. Thus, new transport approaches in the context of multiple parallel connec-
tions need to be developed to estimate the best rate at which the end system can con-
sume packets coming from the network. This rate which we call maximal bottleneck
rate will be sent back to the sender for source rate control.

Previous protocols with multiple connections didn’t account for the impact of the
background workloads, which vary during the data transfer period. The parallelism tun-
ing mechanism needs to be adjusted to achieve the maximal bottleneck rate by taking

1 Goodput only counts the user payload and is equivalent in value to throughput if packet dupli-
cates and protocol headers are negligible.

End-System Aware Large File Transfer Solution for Rich Media Applications 207

the varying background workloads into consideration. As shown in [16], the control the-
ory has been applied successfully in modeling systems with unpredictable workloads.

We extented our previous analysis to cover the impact of application-level receive
buffer and the background workloads on the data transfer performance. We further
refined the dynamic buffer management scheme and parallelism mechanism based on
this analysis to achieve the maximal bottleneck goodput. We evaluated the performance
of PLUT over a local 10 Gbps network connection, and showed the performance supe-
riority of PLUT over existing methods in different use cases.

2 Maximizing Transport Performance over High-Speed
Connections

The main challenge of transport control is to maximize goodput over high-speed
connections by automatically adapting different transport parameters. The estima-
tion of those parameters are impacted by both network and system dynamics. Many
UDP-based transport protocols use the manual parameter tuning in high-performance
networks. In [12,20], we proposed Peak Link Utilization Transport (PLUT) with a
performance-adaptive flow control mechanism, which regulates the activities of both
the sender and receiver in response to system dynamics and automates the rate stabi-
lization for throughput maximization using stochastic approximation methods.

2.1 Performance Model for Data Receiver

We conduct our following analysis based on Linux kernel. In [13], we illustrated the
effects of concurrent background workloads on the performance of UDP-based trans-
port protocols. We modeled the packet receiving process from socket receive buffer to
the user application as two special cases of death/birth process based on the assump-
tions on packet arrival and consumption. According to the analysis in [13] and [12], we
observed that if the data receiving rate did not match with the sending rate, it would
cause either packet loss or wasted system resources. Even though the multiple connec-
tions could further improve the goodput compared with single receiving process, the
application does not achieve optimal performance in either cases.

Application-Level Receive Buffer. Another source of packet loss occurs when the
application-level receive buffer fills up. RAID offers much better write speed with mul-
tiple written in parallel, which significantly reduces the packet loss in the application-
level buffer, than that of a single disk. To instantiate our analysis, we consider one
application-level receive buffer with one data receiving process writing data into this
buffer. But there are multiple disk write processes running in parallel to consume data
arriving from the kernel as shown in Fig. 1. In this subsection, we provide an initial
analysis of the impact of this model on the data transfer performance.

A disk write process can only handle one packet at a time and hence, it is either
in a “busy” or an “idle” state. If all disk write processes are busy upon the arrival of
a packet, the newly arriving packet is buffered, assuming that application-level receive

208 X. Lyu and C. Q. Wu

Fig. 1. Single buffer with parallel disk write process.

buffer space is available. When the packet currently in process is finished, one of the
waiting packets is selected for service according to a queueing discipline.

Assume that the packets are saved to application-level receive buffer by the data
receiving process at a mean Poisson rate of r(recv). And the packets size are fixed and
less than the Maximum Transfer Unit (MTU) with the header length HDR. We further
assume that the effective service time is exponentially distributed and its mean is 1

r(disk)
for packet processing carried out by each disk write process. Let m be the number of
disk write process which is less than the number of Disk Controllers in RAID, and M
be the application-level receive buffer size in bytes and B be the maximum number of
packets in this buffer. Thus,

B= � M
MTU −HDR

�, (1)

and B > m. We denote the quantity r(recv)
m∗r(disk) by β, i.e. β = r(recv)

m∗r(disk) and the quantity
r(recv)
r(disk) by ρ, i.e. ρ = r(recv)

r(disk) . Based on the above assumptions, this data processing flow
that employs multiple disk write processes to consume arriving data is an M/M/m/B
queuing system which can be modeled as a death birth process [4–6,8], as shown in
Fig. 2.

As to the application-level receive buffer, we represent the process states of this
model by the number of packets as n. The number of packets n in the buffer is used
to represent the corresponding states n. The state-space is finitely limited by the buffer
size.

The steady-state probability Pn of this process being in state n is given by:

Pn =

⎧
⎪⎨

⎪⎩

r(recv)n

n!r(disk)n ·P0 0 ≤ n ≤ m−1,
r(recv)n

m!mn−mr(disk)n ·P0 m ≤ n ≤ B,

0 n> B.

(2)

And, because β = r(recv)
m∗r(disk) ,

End-System Aware Large File Transfer Solution for Rich Media Applications 209

Fig. 2. M/M/m/B state transition diagram for modeling packet processing.

Pn =

⎧
⎪⎨

⎪⎩

(mβ)n
n! ·P0 0 ≤ n ≤ m−1,

βnmm

m! ·P0 m ≤ n ≤ B,
0 n> B.

(3)

Using the boundary condition:

P0 +ΣB
n=1Pn = 1, (4)

we obtain

P0 =

⎧
⎨

⎩

1

1+(1−βB−m+1)(mβ)m
m!(1−β) +∑m−1

n=1
(mβ)n
n!

β �= 1,

1

1+mm
m! (B−m+1)+∑m−1

n=1
(m)n
n!

β = 1.
(5)

The number of packets n in the queuing system is defined as the number of packets
in queue nq plus that of in service ns. The mean number of packets in the queuing
system is given by:

E[n] =
B

∑
n=1

nPn. (6)

The mean number of packets in the application-level receive buffer is given by:

E[nq] =
B

∑
n=m+1

(n−m)Pn. (7)

Because the arrivals of packets are constrained by the size of application-level
receive buffer, packets can be received only when buffer is available. The effective
packet arrival rate r̃(recv) is less than r(revc):

r̃(recv) =
B−1

∑
n=0

r(recv)Pn

= r(recv)(1−PB). (8)

And the difference r(recv)− r̃(recv) is the packet loss rate.

210 X. Lyu and C. Q. Wu

The throughput G of this queuing system is defined as the number of packets pro-
cessed per unit time.

G = r(recv)(1−PB). (9)

By Little’s law, the mean response time of this queuing system is:

R =
E[n]

r̃(recv)
.

The mean waiting time in the queue is:

Wq =
E[nq]
r̃(recv)

.

The utilization of each disk write process is:

E[U] =
r̃(recv)

m∗ r(disk)
= β(1−PB). (10)

The probability of having n or more packets in the application-level buffer is given
by:

P(≥ n packets in bu f f er) = ΣB
j=nPj

= ΣB
j=n

(1−β) ·β j

1−βB+1

=
βn −βB+1

1−βB+1 , β �= 1 (11)

Applying the similar comparative analysis in [12] on single and parallel disk write
processes, it is easy to show that parallel disk write processes have a better performance
in throughput and mean response time than single disk write process. Empirical speak-
ing, it is usually best to use two disk write processes on a machine without RAID.

Let t be the time in seconds. The time to deplete M when the disk write process runs
out of its time slice is given by:

t =
M

r(recv)
. (12)

On the other hand, the time to deplete M when the CPU time is available to write
the arriving packets into disk is given by:

t =
M

r(recv)− r(disk)
. (13)

At time t, the application-level receive buffer is not able to accept any new packets
and thus will have to drop them. The depleted buffer results in the drop of the packets
coming from the kernel. It is often the case that r(disk) is much less than r(recv). An

End-System Aware Large File Transfer Solution for Rich Media Applications 211

overly high sending rate will cause this application-level buffer to grow at a rate rela-
tive to the difference between r(recv) and r(disk). If this mismatch continues, packet
loss will inexorably occur due to finite buffer sizes. Therefore, any protocol attempt-
ing to prevent this must communicate with the sender to make sure that the sender
adjusts its sending rate ahead of overflowing this receive buffer. However, most of these
existing UDP-based transport protocols adopt a static buffer scheme, which fixes the
application-level buffer size initially negotiated by the users. Such a static buffer scheme
is problematic due to the latency involved with this type of synchronous communica-
tion. The receiver would potentially have to drop more than 80,000 packets of size 1500
bytes on a 10 Gbps link with 100 ms round-trip time. In order to accommodate this
type of synchronous communication, we adopt a dynamic buffer adaptation approach
to increase the buffer size based on the r(recv), RTT and the available free memory,
when the buffer occupancy goes beyond a predefined threshold.

2.2 Peak Link Utilization Transport

Rate Control for Data Sender. At the sender side, fixing the sending rate at a certain
value does not guarantee the optimal goodput at the receiver side considering both net-
work and host dynamics. We apply a dynamic version of Robbins-Monro method [19]
to adjust the source rate to achieve the target goodput g∗(k) at the receiver:

r̂S(k+1) = r̂S(k)−ρk[ĝR(k)− ĝ∗(k)], (14)

where the time step adjustment coefficient is given by ρk = b/kγ for 0.5 < γ <
1.0 and b > 0, a suitably chosen constant. This rate control mechanism automatically
adjusts the sending rate to match up with the maximum attainable goodput.

Automatic Parallelism Tuning Mechanism. We employ parallel UDP connections in
one single data transfer to achieve better resource utilization and throughput. However,
the aggregated throughput does not always increase along with the number m of con-
current UDP connections caused by the increased overhead on end systems. In [12], we
employ an automatic parallelism tuning mechanism to dynamically change the number
of parallel UDP connections. Let G(m) be the goodput measured at a certain interval,
and m−1 be the number of parallel UDP connections used for the previous data parti-
tion transfer, R be the sending rate for the newly established UDP connection, Rbr be the
bottleneck rate of the data receiver, and C be the link bandwidth. We take the following
steps to adjust the number of parallel UDP connections:

(a) Initialize parameters:

m ← m0,

R ← Rbr,

G(m−1) ← 0,

where m0 is set to 1 as the initial number of parallel UDP connections.

212 X. Lyu and C. Q. Wu

(b) Transfer partitions of data through each UDP channel and measure the aggregated
goodput G(m).

(c) If the following inequality is satisfied, then terminate the algorithm:

G(m)< G(m−1);

otherwise, set

R ← min(C−G(m), Rbr).

and proceed to Step (d).
(d) Increase the number of parallel UDP connections by 1, set the sending rate of the

newly added UDP channel to be R, and return to Step (b).

DG_2DQ

OP

RP

DG_1 DG_3 DG_4

DG_1 DG_2 DG_3

Serving causes the DQ to point to the next DG.

Once served, DG's are placed on OP.

Fig. 3. Initial buffer states.

DG_2

DQ

OP

RP

DG_1 DG_3

DG_4

DG_1 DG_3

Acknowledgement has been received
and DG_[1&3] have been accepted
thus they are moved to the RP.
This leaves DG_2 still outstanding.

Fig. 4. Buffer states after receiving
acknowledgements.

DG_2

DQ

OP

RP DG_5 DG_6

DG_4

DG_5 DG_6 Once the DQ depletes, the RP
reloads the DQ with DG_[5&6].

Fig. 5. Buffer states after reloading.

ACK Interval Control for Goodput Maximization. At the data receiver, we maxi-
mize the application goodput, i.e. GPT (T ∗) =max

T
GPT (T), by adjusting the ACK inter-

val T (k) = T ∗ according to Kiefer-Wolfowitz Stochastic Approximation (KWSA) and
Simultaneous Perturbation Stochastic Approximation (SPSA) methods.

In high-speed transport control, it is difficult to satisfy the requirements of SPSA
on collecting the number of measurements before adjusting the control parameters. We

End-System Aware Large File Transfer Solution for Rich Media Applications 213

maximize the goodput at the receiver by employing a special form of SPSA to T (k) as
follows:

T̂ (k+1) = T̂ (k)− sk ˆGP (T (k)), (15)

where T̂ (k) represents the acknowledge interval at time step k, ˆGP (T (k)) represents
the SP approximation to the gradient of goodput acknowledge regression GPT (.) and
sk is a constant coefficient. And sk satisfies the following property: sk → 0 as k → ∞,

∞
∑
k=1

sk = ∞ and
∞
∑
k=1

s2
k < ∞. Based on the analysis, it is asymptotically and probabilisti-

cally guaranteed for T ∗ to converge to optimal, which is independent of the underlying
probability distributions.

Dynamic Buffer Adaptation. At the data receiver, we use the level of buffer occu-
pancy as key performance indicator to assess its processing capacity. Initially at the
receiver side, PLUT allocates a buffer of datagrams statically. The merits of this
scheme are: 1) simple implementation; 2) index with random access; 3) no alloca-
tion/deallocation of heap-dynamic memory. When the disk wirte rate does not match
up with the packet arriving rate, the static buffer could be “overflowing”. When the cir-
cular buffer has no free slots for saving datagrams from the network, the receiver will
stop, hence drastically reduces the aggregated application throughput. We maximize the
PLUT throughput at the receiver by adopting a dynamic buffer management method.

To solve the above Datagram Buffer Management (DBM) problem, we proposed
a Three Tier Dynamic Queuing Buffer (3TDQB) and a dynamic buffer management
method. These three tiers of 3TDQB are one Linked Queue, and two Linked Lists,
which implement Datagram Queuing(DQ) Buffer, Outstanding Pointer (OP) Buffer, and
Reload Pointer (RP) Buffer respectively. At the start of the protocol, PLUT dynamically
allocate DQ buffer, while PLUT only save the pointers to the space in DQ buffer in
OP buffer and RP buffer. As shown in Fig. 3, the size of DQ buffer will not change
once it was created. Each datagram will travel through three tiers consecutively before
being flushed, reloaded and returned to the DQ. Datagrams waiting to be written into
the disk reside in the DQ. As shown in Fig. 3, once the datagram is served, it will be
placed in the OP buffer by being linked through a pointer. The datagram then waits for
acknowledgment from the disk writing threads. As shown in Fig. 4, the datagram will
be placed in the RP buffer for flushing of the written data and reloading of the new data
after being acknowledged. As shown in Fig. 5, after the DQ depletes of all datagrams,
the RP then reloads the DQ with an address change thus creating a new queue without
new memory allocation. The worst case scenario of the 3TDQB is that all remaining
datagrams in the DQ has been served, for some reason the OP has not yet received an
acknowledgment, and the RP is empty. This is resembling to a buffer overflow, which is
similar to the static buffer method. To deal with the overflow, the 3TDQB will continue
to allocate datagrams from the heap while waiting for acknowledgemen from the disk
writing threads. Thus the receiver never reducs the datagram receiving rate.

214 X. Lyu and C. Q. Wu

3 Implementation and Experimental Results

3.1 Protocol Implementation

We implement four types of acknowledgment packets: Next (NXT), Retransmission
(RXM), Timeout Next (TNT), and Timeout Retransmission (TMO). For each normal
ACK control period, if PLUT receives all datagrams so far in continuity, it generates
an “NXT” ACK and sends it to the sender; otherwise if some datagrams are lost (i.e.,
“holes” in the datagram checklist), the receiver generates a “RXM” ACK, and sends it
to the sender with a list of lost datagram sequence numbers. If the receiver receives no
datagram within a certain period of time, it triggers a timeout event. In this case, if the
receiver receives all datagrams so far in continuity, it sends a “TNT” ACK. Otherwise, if
there are missing parts in the datagram checklist, the receiver sends out a “TMO” ACK
with the lost datagram sequence number list. The receiver calculates the current instant
goodput for all types of ACK, and sends it to the sender as part of the acknowledg-
ment. On the sender side, PLUT applies rate control using the goodput measurements
enclosed in the acknowledgment for each incoming acknowledgment. At the send, we
implement a proportional datagram allocation mechanism for parallel transfer. Once the
number of parallel UDP connections is maximized, the rest of datagrams is divided by
the sender into several partitions, one for each connection. The size of each partition is
proportional to the goodput measurement of the related UDP channel.

PLUT Monitor provides a layer between the operating system and the transfer pro-
tocol. PLUT needs the state information from operating system for flow control. PLUT
uses LibGTop library [2] to obtain the required state information. LibGTop library reads
the virtual file system /proc which contains the current state of the kernel, and stores
the information of currently running processes. PLUT first reads the state (running or
sleeping) and PID for each process from /proc. Then PLUT checks the state of these
processes to estimate changes. If a process is always ready to run when its state is
checked, it is considered as CPU-bound. If the state of this process is different from
“running” [3], it is considered as IO-bound.

3.2 Performance Evaluation

We compare the performance of PLUT, and UDT (version 4.4) over a local 10Gbps
connection. This connection was setup between two Linux boxes with kernel 4.11.10,
each of which is equipped with one 1 GigE NIC and one 10 GigE NIC, dual quad-core
2.4 GHz Xeon(R) CPU, 24 GBytes of RAM. We use netem to emulate the link delay,
packet loss, duplication and re-ordering of high-speed networks. The packet loss rate in
optical fiber cables is very small according physical measurements. We always set the
packet loss rate to be 10−5 in our experiments.

Case A: 10 Gbps, Memory-to-Memory Transfer with Different Link Delay. We
conduct data transfer experiments by varying link RTT from 0.04 to 250 ms to explore
the impact of link RTT on the performance of PLUT. Since the network delay is not
constant, each selected RTT in the experiment varies based on a normal distribution.
The average throughput performance measurements for PLUT and UDT are plotted in
Fig. 6, where both protocol’s throughput decrease along with the increase of RTT.

End-System Aware Large File Transfer Solution for Rich Media Applications 215

0.04 25 50 75 100 125 150 175 200 250
0

500

1000

1500

2000

2500

3000

RTT (ms)

Th
ro

ug
hp

ut
 (M

bp
s)

PLUT
UDT

Fig. 6. Performance comparison over a 10 Gpbs link with different RTT.

Case B: 10 Gbps, Memory-to-Memory Transfer with Concurrent Background
Workloads. We design a CPU-bound program named Burncpu to emulate concurrent
host background workloads. In this experiment, we set the RTT to be 125 ms. And
10 s after the data transfer begins, we execute the first concurrent Burncpu process at
the data receiver, which will run 25 s. And 15 s after the data transfer begins, we exe-
cute the second concurrent Burncpu process, which will run 30 s. Figure 7 plots the
corresponding PLUT and UDT throughput measurements. These measurements clearly
shows that the performance of each transport method is significantly impacted by the
amount of concurrent background workloads. UDT also adapts to the workload changes
by adopting a more conservative rate control scheme than PLUT. UDT has a relative
unstable throughput measurement, because the packet loss rate increases when several
CPU-bound processes compete for CPU resources.

5 10 15 20 25 30 35 40 45 50 55 60
0

500

1000

1500

2000

2500

3000

3500

4000

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

PLUT
UDT

Fig. 7. Memory to memory performance comparison over 10 Gpbs link with background work-
loads.

216 X. Lyu and C. Q. Wu

Case C: 10 Gbps, Memory-to-Memory Transfer with Different Link MTU. We
used the default MTU in the above experiments. In this test case, we vary link MTU
from 3000 to 9000 bytes, and keep the other settings the same as Case B. We use each
MTU to transfer data 10 times. The througput measurements and standard deviations
for PLUT are ploted in Fig. 8, where the maximum throughput is more than 7.3 Gbps.

Fig. 8. PLUT performance over a 10 Gpbs link with different MTU sizes.

Case D: 10 Gbps,Memory-to-Memory Transfer. For paralle PLUT (Para-PLUT) per-
formance, we run Para-PLUT over the same local dedicated connection as in Case B.
In our experiment, we use netem to emulate the packet loss rate and delay. Figure 9
plots the corresponding Para-PLUT meomry-to-memory throughput measurements.
The maximum throughput of Para-PLUT reaches 3.1 Gbps, which is around 20% higher
than the maximum throughput reached by PLUT. In all cases, the Para-PLUT method
consistently outperforms than PLUT and other protocols.

End-System Aware Large File Transfer Solution for Rich Media Applications 217

5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

Time (seconds)

Th
ro

ug
hp

ut
 (M

bp
s) Para−PLUT

Fig. 9. Memory to memory performance comparison over 10 Gpbs link.

4 Conclusion

We conducted an extensive analytical study of the design and implementation issues of
high-speed data transfer methods, and develop an optimized large file transfer solution
to overcome the performance limitations of current protocols. PLUT adopts an innova-
tive flow control mechanism to automatically adjust the activities of both the data sender
and receiver and stabilizes the sending rate to maximize throughput using stochas-
tic approximation methods. We extented our previous analysis to cover the impact of
application-level receive buffer and the background workloads on the data transfer per-
formance. We further refined the dynamic buffer management scheme and parallelism
mechanism based on this analysis to achieve the maximal bottleneck goodput. The
experimental results collected over a local 10Gbps connection shows the performance
superiority of PLUT. There is still a need for considerable further research in this area.
For example, the proposed protocol needs to be further evaluated in real-life 5G mobile
networks. In the future, we will do more in-depth research on these aspects.

Ackowledgement. This work is sponsored by National Natural Science Foundation of China
under Grant No. 61402328.

References

1. https://www.huawei.com/en/press-events/news/2019/2/turk-telekom-huawei-5g-cloud-
vertical-sector-application

2. Libgtop. ftp://ftp.gnome.org/pub/GNOME/sources/libgtop/2.0
3. Beltran, M., Guzman, A.: A new CPU availability prediction model for time-shared systems.

IEEE Trans. 57(7), 865–875 (2009)
4. Bhat, U.: An Introduction to Queueing Theory. SIT. Birkhäuser Publications, Boston (2008).

https://doi.org/10.1007/978-0-8176-4725-4 9
5. Bocharov, P., D’Apice, C., Pechinkin, A., Salerno, S.: Queueing Theory. SIT. Springer, New

York (2009). https://doi.org/10.1007/978-0-387-49706-8 9
6. Bolch, G., Greiner, S., Meer, H., Trivedi, K.: Queueing Networks and Markov Chains. Wiley

(2006)

https://www.huawei.com/en/press-events/news/2019/2/turk-telekom-huawei-5g-cloud-vertical-sector-application
https://www.huawei.com/en/press-events/news/2019/2/turk-telekom-huawei-5g-cloud-vertical-sector-application
ftp://ftp.gnome.org/pub/GNOME/sources/libgtop/2.0
https://doi.org/10.1007/978-0-8176-4725-4_9
https://doi.org/10.1007/978-0-387-49706-8_9

218 X. Lyu and C. Q. Wu

7. Cardwell, N., Cheng, Y., Gunn, C., Yeganeh, S., Jacobson, V.: BBR: congestion-based con-
gestion control. In: ACM QUEUE, October 2016

8. Daigle, J.: Queueing Theory with Applications to Packet Telecommunication. SIT. Springer,
Boston (2005). https://doi.org/10.1007/0-387-22859-4 8

9. Gu, Y., Grossman, R.L.: End-to-end congestions control for high performance data transfers.
IEEE/ACM Trans. Netw. (2004)

10. Langley, A., Iyengar, J., Bailey, J.: The QUIC transport protocol: design and Internet-scale
deployment. In: Proceedings of ACM SIGCOMM, pp. 183–196, CA, USA, 21–25 August
2017

11. Liu, Q., Rao, N., Wu, Q., Yun, D., Kcttimuthu, R., Foster, I.: Measurement-based perfor-
mance profiles and dynamics of UDT over dedicated connections. In: Proceedings of Inter-
national Conference on Network Protocols, Singapore, November 2016

12. Lu, X., Wu, Q., Rao, N.S.V., Wang, Z.: On parallel UDP-based transport control over ded-
icated connections. In: Proceedings of the 2010 IEEE Global Communications Conference,
Miami, FL, 6–10 December 2010

13. Lu, X., Wu, Q., Rao, N., Wang, Z.: On performance-adaptive flow control for large data
transfer in high speed networks. In: Proceedings of the 28th IEEE International Performance
Computing and Communications Conference, AZ, 14–16 December 2009

14. Lyu, X., Wu, C.Q., Rao, N.: An integrated high-performance transport solution for big data
transfer over wide-area networks, pp. 1661–1668, June 2018

15. Nine, M., Guner, K., Huang, Z., Wang, X., Xu, J., Kosar, T.: Big data transfer optimization
based on offline knowledge discovery and adaptive sampling. In: IEEE International Confer-
ence on Big Data, MA, USA, 11–14 December 2017

16. Patrasand, P., Banchs, A., Serrano, P.: A control theoretic approach for throughput optimiza-
tion in IEEE 802.11e EDCA WLANs. Mob. Netw. Appl. 14(6), 697–708 (2009)

17. Qiu, T., Liu, X., Li, K., Hu, Q.: Community-aware data propagation with small world feature
for Internet of vehicles. IEEE Commun. Mag. 56(1), 86–91 (2018)

18. Rao, N., et al.: Experiments and analyses of data transfers over wide-area dedicated connec-
tions. In: Proceedings of the 26th International Conference on Computer Communications
and Networks, Canada, August 2017

19. Spall, J.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and
Control. Wiley Pub. (2003)

20. Wu, Q., Rao, N., Lu, X.: On transport methods for peak utilization of dedicated connec-
tions. In: Proceedings of the 6th International Conference on Broadband Communications,
Networks, and Systems, Marid, Spain, 14–17 September 2009

21. Yun, D., Wu, C., Rao, N., Settlemyer, B., Lothian, J., Vishwanath, V.: Profiling transport per-
formance for big data transfer over dedicated channels. In: Proceedings of the 2015 Interna-
tional Conference on Computing, Networking and Communications, Anaheim, USA, Febru-
ary 2015

https://doi.org/10.1007/0-387-22859-4_8

Broad Learning System
with Proportional-Integral-Differential

Gradient Descent

Weidong Zou1, Yuanqing Xia1, Weipeng Cao2(B), and Zhong Ming2

1 School of Automation, Beijing Institute of Technology, Beijing, China
2 College of Computer Science and Software Engineering, Shenzhen University,

Shenzhen, China
caoweipeng@szu.edu.cn

Abstract. Broad learning system (BLS) has attracted much attention
in recent years due to its fast training speed and good generalization
ability. Most of the existing BLS-based algorithms use the least square
method to calculate its output weights. As the size of the training data set
increases, this approach will cause the training efficiency of the model to
be seriously reduced, and the solution of the model will also be unstable.
To solve this problem, we have designed a new gradient descent method
(GD) based on the proportional-integral-differential technique (PID) to
replace the least square operation in the existing BLS algorithms, which
is called PID-GD-BLS. Extensive experimental results on four bench-
mark data sets show that PID-GD can achieve faster convergence rate
than traditional optimization algorithms such as Adam and AdaMod,
and the generalization performance and stability of the PID-GD-BLS
are much better than that of BLS and its variants. This study provides a
new direction for BLS optimization and a better solution for BLS-based
data mining.

Keywords: Broad learning system · Neural networks with random
weights · Proportional-integral-differential · Randomized algorithms ·
Optimization algorithms

1 Introduction

Broad learning system (BLS), derived from the random vector functional-link
neural network (RVFL) [3,19,25], was proposed by Chen CLP et al. in 2017
[6] to alleviate the low training efficiency of traditional deep learning models. In
essence, BLS is a typical neural network with random weights (NNRW) [4], which

This work was supported by National Key Research and Development Program
of China (2018YFB1700400), Opening Project of Shanghai Trusted Industrial Con-
trol Platform (TICPSH202003008-ZC), National Natural Science Foundation of
China (61836005, 61672358), and Guangdong Science and Technology Department
(2018B010107004).

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 219–231, 2020.
https://doi.org/10.1007/978-3-030-60245-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_15

220 W. Zou et al.

uses a non-iterative training mechanism to make the model have both extremely
fast training speed and good generalization ability [6]. Compared with other
NNRW algorithms such as RVFL, BLS adopts a feature extraction mechanism
with twice random mapping, which makes it better to transform data features
internally. In recent years, BLS has attracted much attention and various BLS-
based variants and applications have been proposed [7,10,12,23].

In BLS, there are two hidden layers in its network structure. The neurons
in the first hidden layer and the second hidden layer are called feature nodes
and enhancement nodes, respectively. All feature nodes and enhancement nodes
are fed into the output layer in a fully connected way. During model training,
input data is first randomly mapped to a high-dimensional space by the feature
nodes and then abstracted again by the enhanced nodes. The input weights of
the feature nodes and the enhancement nodes are randomly generated according
to certain rules and remain unchanged throughout the training process of the
model, while the output weights of the model are obtained analytically.

Specifically, given a BLS with p feature nodes and d enhancement nodes,
the output weights (denoted as β) of the model are generally calculated by
β = G†Y = [Zp | Hd]†Y, where G† = [Zp | Hd]† is the Moore-Penrose general-
ized inverse of the hidden layers output matrix, Y is the true labels of training
samples, Zp and Hd are the outputs of the p feature nodes and the d enhance-
ment nodes, respectively [6]. Chen CLP et al. have proved theoretically that
BLS can achieve universal approximation capability [7]. In other words, BLS
can approach any continuous target function with any precision.

From the above training mechanism of BLS, it can be known that BLS avoids
the practice of adjusting all parameters through iterative iterations (e.g., the
gradient descent [18]) adopted by traditional deep learning algorithms, thereby
making the model training efficient. Moreover, compared with other least square
methods, using the Moore-Penrose generalized inverse to solve the system of
linear matrix equations can ensure that BLS can always obtain the optimal
solution [21]. Many literatures have shown that BLS can achieve better general-
ization ability and faster training speed than traditional randomized networks
such as the back-propagation algorithm (BP [20]) in application scenarios with
relatively small data sets.

However, when the training data set is large (i.e., big data scenarios), using
BLS will face two troublesome problems: (1) it takes too much memory and
training time to calculate the Moore-Penrose generalized inverse of the hidden
layer output matrix; (2) the generalization performance of the model is extremely
sensitive to the number of hidden layer neurons. These two problems will cause
the training efficiency of BLS to be greatly reduced and the stability of the model
cannot be guaranteed.

To solve the above problems, we propose an enhanced BLS algorithm that
uses an improved gradient descent method to solve the output weights of the
model. Specifically, we combine the proportional-integral-differential technique
(PID) [16] and traditional gradient descent (GD) and propose a new optimiza-
tion algorithm called PID-GD, and then apply it to solve the output weights

Broad Learning System with Proportional-Integral-Differential 221

of BLS. We call the new algorithm PID-GD-BLS. The new training mechanism
can effectively alleviate the above-mentioned problems and make PID-GD-BLS
more suitable for big data scenarios than the existing BLS algorithms.

The contribution of this study can be summarized as follows.

(1) A novel optimization algorithm (i.e., PID-GD) was proposed. It can be used
not only for BLS, but also for other neural networks such as convolutional
neural networks (CNN) [13] and recurrent neural network (RNN) [14]. We
have experimentally proved that PID-GD has a faster convergence rate than
other popular optimization algorithms such as Adam [16]and AdaMod [9].

(2) An improved BLS algorithm called PID-GD-BLS was proposed. PID-GD-
BLS uses the above optimization algorithm to solve the output weights of
the model, which can not only make the model converge faster, especially in
big data scenarios, but also make the performance of the model more stable.
We have experimentally proved that the prediction ability and stability of
PID-GD-BLS exceed BLS and its variants.

(3) We have shown the effectiveness of PID-GD and PID-GD-BLS with exten-
sive experimental results. These two results can provide researchers with new
directions to design advanced optimization algorithms and BLS algorithms.

The rest of this paper is organized as follows. In Sect. 2, we briefly intro-
duce the training mechanisms of BLS and PID. In Sect. 3, we present the details
of the proposed optimization algorithm (i.e., PID-GD) and the improved BLS
algorithm (i.e., PID-GD-BLS). We show the experimental results and the corre-
sponding analysis in Sect. 4. In Sect. 5, we conclude this paper.

2 Preliminaries

2.1 Broad Learning System (BLS)

The network structure of BLS is shown in Fig. 1, where X and Y refer to the
input and output of the model, ae denotes the input weights between the input
layer and the feature layer, am denotes the input weights between the feature
layer and the enhancement layer, βe refers to the input weights between the
feature layer and the output layer, and βm refers to the input weights between
the enhancement layer and the output layer. zi and hj refer to the output of the
i-th feature node and the j-th enhancement node, respectively.

In traditional neural networks such as convolutional neural networks
(CNN) [5,13] and and recurrent neural networks (RNN) [14], the parameters
in the network are solved iteratively by gradient descent and its variant algo-
rithms; while in BLS, ae and am are randomly assigned and remain unchanged
throughout model training, while βe and βm are obtained analytically.

Specifically, given a training data set {X,Y} ∈ �(l+t)×N , where l is the
feature dimension of input data, t is the class number of classification problems,
and N is the number of training samples. The mathematic model of a BLS [6]

222 W. Zou et al.

Fig. 1. The network structure of BLS.

with p feature nodes and d enhancement nodes can be expressed as follows:

F(X) =
p∑

i=1

βe
i zi(a

e
i · X + bei) +

d∑

j=1

βm
j hj(am

j · Z + bmj), (1)

where bei and bmj are the thresholds of the i-th feature node and the j-th enhance-
ment node, respectively; z(·) and h(·) are the activation functions of the feature
nodes and the enhancement nodes, respectively.

The output weights of the BLS model can be obtained by using the following
equations:

Z = [z1, ..., zp],H = [h1, ...,hd], (2)

β = [βe
1 , ..., β

e
p, β

m
1 , ..., βm

d] = G†Y = [Zp | Hd]†Y, (3)

where G† = [Zp | Hd]† is the Moore-Penrose generalized inverse of the hidden
layer output matrix.

2.2 Proportional-Integral-Differential (PID)

PID is a feedback control technique commonly used in the automatic control
system [1,15], which can make the system run smoothly by dynamically adjusting
the contribution of different components of the system and its implementation
is simple and widely applicable. PID controller requires that the control action
is proportional to the current error, the integral of past errors with time, and
the error derivative representing future trends. The schematic diagram of PID
controller is shown in Fig. 2.

Given the state of controlled object ϑ(t) and reference state ϑr at time t, then
the system error can be expressed as e(t) = ϑr − ϑ(t). Suppose that the control

Broad Learning System with Proportional-Integral-Differential 223

Fig. 2. The schematic diagram of PID controller.

input of the controlled object is u(t), the mathematic model of PID controller
can be expressed as follows [15]:

u(t) = kpe(t) + ki

t∑

j=0

e(j) + kd[e(t) − e(t − 1)], (4)

where kp, ki, and kd are gain coefficients on the P (Proportional), I (Integral),
and D (Differential) terms, respectively.

It can be inferred from (4) that kp, ki, and kd control the contributions of
present, past, and future errors to the current correction, PID controller can
simultaneously adjust system errors in different periods (both long-term and
short-term), providing a direction for us to optimize the system from a global per-
spective. In the next section, we introduce how to combine PID with traditional
gradient descent algorithm to improve the convergence rate of the algorithm.

3 BLS with PID-based Gradient Descent (PID-GD-BLS)

Given a training data set {X,Y} ∈ �(l+t)×N and a BLS [6] with p feature nodes
and d enhancement nodes, the cost function of BLS can be expressed as follows:

�(X,Y) =
1
2
‖G · β − Y‖2 +

λ

2
‖β‖2, (5)

where ‖ · ‖ represents 2-Norm, λ is the regularization factor and satisfies λ > 0,
G is a N × (p + d) matrix with respect to the output of the hidden layers, β is
a (p+ d)× 1 vector with respect to the output weights of BLS, and Y is a N × t
matrix with respect to the labels of training samples.

The gradient of the cost function of BLS at time-step t can be obtained using
the following equation:

gt = �βLt(βt−1) = GT · G · βt−1 − GT · Y + λβt−1. (6)

Combining this gradient with the PID mechanism mentioned in Sect. 2.2, one
can get a new gradient representation, which we call PID-based gradient descent
method (PID-GD). The PID-GD can be expressed as follows:

ut = kpgt + ki

t∑

j=1

gj + kd(gt − gt−1). (7)

224 W. Zou et al.

Algorithm 1. PID-GD-BLS
Input: A training data set {X,Y} ∈ �(l+t)×N , the maximum number of feature
nodes and enhancement nodes (denoted as p and d respectively) and their activation
functions (denoted as φ(·) and ϕ(·) respectively) in BLS. Parameters (kp, ki, kd) in
PID, regularization factor λ, and the step size η are determined by hand.
Output: The parameters of the model.
for q = 1; q ≤ p do

Randomly assign the input weights and hidden biases of feature nodes (ae
q, b

e
q);

Calculate the output of the q-th feature node:
zq = φ(ae

q · X + beq);
end for
Calculate the output matrix of the feature nodes:
Z = [z1, ..., zp];
for k = 1; k ≤ d do

Randomly assign the parameters connecting feature nodes to enhancement nodes
(am

k , bmk);
Calculate the output of the k-th enhancement node:
hk = ϕ(am

k · Z + bmk);
end for
Calculate the output matrix of the enhancement nodes:
H = [h1, ...,hd];
Use the PID-GD to calculate the output weights of BLS: Given the maximum number
of iterations M and set β0 = 0.
for t = 1; t ≤ M do

gt = �β ft(βt−1) = GT · G · βt−1 − GT · Y + λβt−1;

ut = kpgt + ki

t∑

j=1

gj + kd(gt − gt−1);

βt = βt−1 − ηut;
end for
Set the output weights of BLS to βt

return All the parameters of the model.

Then, one can update the output weights of BLS using the following equation:

βt = βt−1 − ηut, (8)

where η is the step size.
According to the above introduction, here we summarize the PID-GD-BLS

as Algorithm 1.
From Algorithm 1, one can observe that PID-GD-BLS uses a completely dif-

ferent approach from traditional BLS to solve the output weights of the model,
that is, a PID-based gradient descent method. This method can avoid the dif-
ficulty of solving the Moore-Penrose generalized inverse in the case of big data
and provide a stable solution for the model.

Now, we analyze the computational complexity analysis of PID-GD-BLS
according to the method of [17]. For a PID-GD-BLS with p feature nodes and
d enhancement nodes, according to Algorithm 1, GT · G requires (p + d)2N

Broad Learning System with Proportional-Integral-Differential 225

multiplications, GT ·Y requires (p+ d)N multiplications, formulae (6), (7), and
(8) require 3(p + d) additions. Then, if the number of iterations is M , the total
number of multiplications and additions for training the PID-GD-BLS model is
(p + d)[(p + d)N + N + 3M].

4 Simulation Experiments and Discussions

In this section, we evaluate the convergence ability of the proposed PID-based
gradient descent method (i.e., PID-GD) and the effectiveness of using PID-GD
to solve the output weights of BLS (i.e., PID-GD-BLS).

All the experiments were conducted in PC with Intel(R) Core(TM) i7-3520M
CPU with NVIDIA NVS 5400M and 8 GB RAM. The randomized parameters
of BLS were assigned from [−1, 1]l × [−1, 1] under a uniform distribution, the
hyperbolic tangent function was chosen as the activation function of feature
nodes and enhancement nodes, and the regularization factor λ was set to 1.

4.1 Convergence Rate Comparison of PID-GD, Adam,
and AdaMod

Adam [16] and AdaMod [9] are the most commonly used optimization algorithms
in deep learning algorithms. Their convergence ability has been verified in many
algorithms [2,11,22]. Here we use Adam, AdaMod, and the proposed PID-GD
to solve the output weights of BLS respectively, and analyze the convergence
rate of these three optimization algorithms.

Our experiments were conducted on four benchmark data sets from UCI
machine learning repository1, which are Airfoil Self-Noise, Concrete Compres-
sive Strength, Geographical Original of Music, and Yacht Hydrodynamic. The
number of feature nodes and enhancement nodes in BLS was set to 150 and
100, respectively. The exponential decay rates of first moment estimate and sec-
ond raw moment estimate for Adam and AdaMod were set to β1 = 0.9 and
β2 = 0.999, and the discount factor of AdaMod was set to β3 = 0.91. The per-
turbation value of Adam and AdaMod was set to ε = 0.001. The step size for
Adam, AdaMod, and PID-GD was set to η = 0.0001. The gain coefficients of
PID-GD were set to kp = 0.052, ki = 0.00001, and kd = 0.002. Each experiment
was performed 100 times and the average 2-Norm of the first-order gradient of
the cost function for the BLS model is shown in Fig. 3.

From Fig. 3, one can observe that in most tasks (3/4), our proposed PID-GD
can achieve a faster convergence rate than Adam and AdaMod, which implies
that the method of controlling gradient descent using PID controller is feasible
and effective.

The experimental result on the data set Yacht Hydrodynamic shows that the
convergence rate of PID-GD is shower than that of other optimization algorithms.
For this phenomenon, a speculative explanation is that the number of training

1 UCI machine learning repository: http://archive.ics.uci.edu/ml/index.php.

http://archive.ics.uci.edu/ml/index.php

226 W. Zou et al.

0 50 100 150 200
Epoch

0

50

100

150

200

250

300

2-
N

or
m

 o
f f

irs
t-o

rd
er

 g
ra

di
en

t

Airfoil Self-Noise

Adam
AdaMod
PID-GD

0 50 100 150 200
Epoch

0

50

100

150

2-
N

or
m

 o
f f

irs
t-o

rd
er

 g
ra

di
en

t

Concrete Compressive Strength

Adam
AdaMod
PID-GD

0 50 100 150 200
Epoch

0

50

100

150

200

250

300

2-
N

or
m

 o
f f

irs
t-o

rd
er

 g
ra

di
en

t

Geographical Original of Music

Adam
AdaMod
PID-GD

0 50 100 150 200
Epoch

0

5

10

15

20

2-
N

or
m

 o
f f

irs
t-o

rd
er

 g
ra

di
en

t

Yacht Hydrodynamics

Adam
AdaMod
PID-GD

Fig. 3. Convergence comparison of PID-GD, Adam, and AdaMod on four benchmark
data sets.

samples in this data set is too small (only 308 instances), which makes it difficult
for PID-GD to establish the error feedback system over time, so it is difficult
for PID-GD to control the gradient efficiently. This provides an idea for us to
improve PID-GD in the future, that is, to optimize PID-GD according to the
scale of training sets.

4.2 Performance Comparison of PID-GD-BLS, BLS, and FBLS

In the section, we compare the performance of PID-GD-BLS, BLS [6], and fuzzy
BLS (FBLS) [10] on the above mentioned four benchmark data sets. Note that
FBLS is one of the most advanced BLS variants.

For FBLS, the number of fuzzy subsystems and rules in each fuzzy subsystem
were set to 50 and 2, respectively. For BLS, FBLS, and PID-GD-BLS, the number
of feature nodes was set to 50, while the number of enhancement nodes was
determined from [50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150] one by one. The
regularization factor of BLS and FBLS was set to λ = 420. The source code of
all the algorithms used in this experiment has been published to GitHub.2

In our experiments, the Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE) [8], and the Ratio of Standard Deviation (RSD) [24]

2 The source code of all the algorithms used in our experiment: https://github.com/
Wepond/PID-GD-BLS.

https://github.com/Wepond/PID-GD-BLS
https://github.com/Wepond/PID-GD-BLS

Broad Learning System with Proportional-Integral-Differential 227

were chosen as the performance indicators. They can be obtained by using the
following equations:

RMSE =

√∑m
i=1(ui − ûi)2

m
, (9)

MAPE =
1
m

m∑

i=1

| ûi − ui

ûi
| × 100%, (10)

RSD =

√∑m
i=1(ui − ũ)2∑m
i=1(ûi − ū)2

, (11)

where
ui refers to the predicted value,
ûi refers to the true value,
ũ refers to the average of the predicted values,
ū refers to the average of the true values,
and m is the number of samples.

Note that RMSE and MAPE can effectively reflect the prediction ability of
the model. The smaller the values, the better the generalization ability of the
model. RSD can reflect the stability of the model. The larger the value, the
better the stability of the model. In our experiments, the given experimental
results are the average results of ten-fold cross-validation, which are shown in
Fig. 4, 5, 6 and Fig. 7.

Taking Fig. 4 as an example, one can observe that the RMSE and MAPE of
PID-GD-BLS are much smaller than those of BLS and FBLS, which means that
the PID-GD-BLS model has better generalization ability than other models on
this data set. In terms of the RSD index, the corresponding value of the PID-
GD-BLS model is higher than that of BLS and FBLS, which implies that the
stability of the PID-GD-BLS model exceeds that of the BLS and FBLS models.
Similar experimental phenomena can also be observed from Fig. 5, 6 and Fig. 7.

The above experimental phenomena show that using the PID-GD to cal-
culate the output weights of BLS is feasible and can effectively improve the
generalization ability and stability of the model.

Remark: A speculative explanation for the effectiveness of PID-GD-BLS. The
original BLS uses the least square method to solve its output weights, which
can get a good analytical solution when the number of training samples and
the number of hidden nodes in the network structure are relatively small. How-
ever, if these two conditions cannot be satisfied in practice, this approach may
cause the instability and large errors in the solution of the linear system, which
then will seriously reduce the generalization ability of the model. The proposed
PID-GD avoids these problems. Regardless of the size of the data set and the
number of hidden nodes, it can get a relatively stable solution by iterative calcu-
lation. Therefore, PID-GD-BLS can always achieve higher prediction accuracy
and better stability than BLS in our experiments.

228 W. Zou et al.

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

10

11

12

13

14

R
M

SE BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

500

1000

1500

M
AP

E/
%

BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

0.2

0.4

0.6

R
SD

BLS
FBLS
PID-GD-BLS

Fig. 4. Performance of PID-GD-BLS, BLS, and FBLS on Yacht hydrodynamic.

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

10

11

12

13

14

R
M

SE

BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

30

40

50

M
AP

E/
%

BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

0.2

0.4

0.6

R
SD

BLS
FBLS
PID-GD-BLS

Fig. 5. Performance of PID-GD-BLS, BLS, and FBLS on concrete compressive
strength.

Broad Learning System with Proportional-Integral-Differential 229

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

6

8

10

R
M

SE

BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

4

6

8

M
AP

E/
% BLS

FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

0.4

0.6

0.8

R
SD BLS

FBLS
PID-GD-BLS

Fig. 6. Performance of PID-GD-BLS and FBLS on airfoil self-noise.

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

18

20

22

R
M

SE

BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

130

140

150

M
AP

E/
%

BLS
FBLS
PID-GD-BLS

50 60 70 80 90 100 110 120 130 140 150
Number of enhancement nodes/n

0.1

0.2

0.3

0.4

R
SD BLS

FBLS
PID-GD-BLS

Fig. 7. Performance of PID-GD-BLS, BLS, and FBLS on geographical original of music.

230 W. Zou et al.

5 Conclusions

In this study, we proposed a PID-based gradient descent optimization algorithm
called PID-GD. The experimental results on four benchmark data sets show
that PID-GD can converge faster than Adam and AdaMod, which provides a new
direction to optimize the existing optimization algorithms. Moreover, we applied
the PID-GD to solve the output weights of BLS and proposed an improved BLS
algorithm called PID-GD-BLS. Compared with the existing BLS and its variants,
PID-GD-BLS avoids the difficulty of solving the generalized inverse of hidden
layer matrix. Extensive experimental results show that the proposed PID-GD-
BLS can effectively improve the generalization ability and stability of the BLS
model. In the future, we will theoretically prove the effectiveness of the PID-
GD-BLS and apply it to solve more complex tasks such as image classification
problems.

References

1. An, W., Wang, H., Sun, Q., Xu, J., Dai, Q., Zhang, L.: A PID controller app-
roach for stochastic optimization of deep networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 8522–8531 (2018)

2. Bian, J., et al.: Unsupervised scale-consistent depth and ego-motion learning from
monocular video. In: Advances in Neural Information Processing Systems, pp. 35–
45 (2019)

3. Cao, W., Gao, J., Ming, Z., Cai, S., Zheng, H.: Impact of probability distribution
selection on RVFL performance. In: Qiu, M. (ed.) SmartCom 2017. LNCS, vol.
10699, pp. 114–124. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73830-7 12

4. Cao, W., Wang, X., Ming, Z., Gao, J.: A review on neural networks with random
weights. Neurocomputing 275, 278–287 (2018)

5. Cao, Y., Gu, Q.: Tight sample complexity of learning one-hidden-layer convolu-
tional neural networks. In: Advances in Neural Information Processing Systems,
pp. 10612–10622 (2019)

6. Chen, C.P., Liu, Z.: Broad learning system: an effective and efficient incremental
learning system without the need for deep architecture. IEEE Trans. Neural Netw.
Learn. Syst. 29(1), 10–24 (2017)

7. Chen, C.P., Liu, Z., Feng, S.: Universal approximation capability of broad learning
system and its structural variations. IEEE Trans. Neural Netw. Learn. Syst. 30(4),
1191–1204 (2018)

8. De Myttenaere, A., Golden, B., Le Grand, B., Rossi, F.: Mean absolute percentage
error for regression models. Neurocomputing 192, 38–48 (2016)

9. Ding, J., Ren, X., Luo, R., Sun, X.: An adaptive and momental bound method for
stochastic learning. arXiv preprint arXiv:1910.12249 (2019)

10. Feng, S., Chen, C.P.: Fuzzy broad learning system: a novel neuro-fuzzy model for
regression and classification. IEEE Trans. Cybern. 50(2), 414–424 (2018)

11. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. In: Advances in Neural Information Processing Sys-
tems, pp. 5767–5777 (2017)

https://doi.org/10.1007/978-3-319-73830-7_12
https://doi.org/10.1007/978-3-319-73830-7_12
http://arxiv.org/abs/1910.12249

Broad Learning System with Proportional-Integral-Differential 231

12. Guo, H., Sheng, B., Li, P., Chen, C.L.P.: Multiview high dynamic range image
synthesis using fuzzy broad learning system. IEEE Trans. Cybern. PP(99), 1–13
(2019)

13. He, Y., Liu, P., Wang, Z., Hu, Z., Yang, Y.: Filter pruning via geometric median
for deep convolutional neural networks acceleration. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2019)

14. Kerg, G., et al.: Non-normal recurrent neural network (NNRNN): learning long
time dependencies while improving expressivity with transient dynamics. In:
Advances in Neural Information Processing Systems, pp. 13591–13601 (2019)

15. Khan, A.H., Shao, Z., Li, S., Wang, Q., Guan, N.: Which is the best PID variant
for pneumatic soft robots? an experimental study. IEEE/CAA J. Autom. Sin. 7(2),
451–460 (2020)

16. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations, pp. 1–15 (2015)

17. Lai, X., Cao, J., Huang, X., Wang, T., Lin, Z.: A maximally split and relaxed
ADMM for regularized extreme learning machines. IEEE Trans. Neural Netw.
Learn. Syst. PP(99), 1–15 (2019)

18. Mandt, S., Hoffman, M.D., Blei, D.M.: Stochastic gradient descent as approximate
Bayesian inference. J. Mach. Learn. Res. 18(1), 4873–4907 (2017)

19. Pao, Y.H., Takefuji, Y.: Functional-link net computing: theory, system architecture,
and functionalities. Computer 25(5), 76–79 (1992)

20. Rumelhart, D.E., Durbin, R., Golden, R., Chauvin, Y.: Backpropagation: the basic
theory. In: Backpropagation: Theory, Architectures and Applications, pp. 1–34
(1995)

21. Tanabe, K.: Conjugate-gradient method for computing the Moore-Penrose inverse
and rank of a matrix. J. Optim. Theory Appl. 22(1), 1–23 (1977)

22. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, pp. 5998–6008 (2017)

23. Xu, M., Han, M., Chen, C.L.P., Qiu, T.: Recurrent broad learning systems for time
series prediction. IEEE Trans. Cybern. 50(4), 1405–1417 (2020)

24. Ye, G.Y., Xu, K.J., Wu, W.K.: Standard deviation based acoustic emission signal
analysis for detecting valve internal leakage. Sens. Actuators A: Phys. 283, 340–347
(2018)

25. Zhang, L., Suganthan, P.N.: A comprehensive evaluation of random vector func-
tional link networks. Inf. Sci. 367, 1094–1105 (2016)

Accelerating De Novo Assembler
WTDBG2 on Commodity Servers

Ming Dun1, Yunchun Li1,2, Xin You2, Qingxiao Sun2, Zerong Luan4,
and Hailong Yang2,3(B)

1 School of Cyber Science and Technology, Beihang University, Beijing 100191, China
2 School of Computer Science and Engineering, Beihang University,

Beijing 100191, China
hailong.yang@buaa.edu.cn

3 State Key Laboratory of Mathematical Engineering and Advanced Computing,

Beijing University of Technology, Beijing 100083, China
4 College of Life Sciences and Bioengineering, Beijing University of Technology,

Beijing 100083, China

Abstract. De novo genome assembly reconstructs the chromosomes
from massive relatively short fragmented reads and serves as funda-
mental for studying new species where there is no reference genome.
Wtdbg2 is a de novo assembler for long reads that is up to hundreds
of kilobases. It is based on fuzzy-Bruijn graph (FBG) and is ten times
faster than the cutting-edge assemblers such as Canu. However, the per-
formance of wtdbg2 still requires further improvement: 1) it requires
up to terabytes of memory to compute the assembly, which is infeasi-
ble to run on commodity server; 2) it requires tens of hours for assem-
bling on large datasets such as genomes of homo sapiens. To address
the above drawbacks, we propose several optimization techniques for
accelerating wtdbg2 on commodity server, including a memory auto-
tuning scheme, sequence alignment optimization and intermediate result
elimination in the output procedure. We compare the optimized wtdbg2
with the original implementation and two cutting-edge assemblers on
real-world datasets. The experiment results demonstrate that optimized
wtdbg2 achieves maximum and average speedup of 2.31× and 1.54×
respectively. In addition, our proposed optimization reduces the memory
usage of wtdbg2 by 39.5% without affecting the correctness.

Keywords: Genome assembly · wtdbg2 · Performance optimization ·
Computational biology · Auto-tuning · Load balance

1 Introduction

De Novo genome assembly aims to generate a new genome from DNA fragments
(named as reads) without the reference genome. It is of great significance in
bioinformatics for identifying previously uncharacterized genomes [23] and ana-
lyzing the structural genomic changes [22]. Moreover, with the prosperities and
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 232–246, 2020.
https://doi.org/10.1007/978-3-030-60245-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_16

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 233

advances of DNA sequencing technologies from Oxford Nanopore Technologies
(ONT) and Pacific Bioscience (PacBio), the length of reads has been increased
up to several hundreds of base pairs (bps). The most popular assembly meth-
ods such as de Bruijn Graph are developed for short read assembly in second-
generation DNA sequencing. However, recent research works have taken efforts
to modify the de Bruijn Graph for long and error-prone reads in next-generation
sequencing such as A-Bruijn graph in Flye [13] and fuzzy-Bruijn graph (FBG)
in wtdbg2 [22].

Wtdbg2 [22] is one of the fastest status-quo assemblers for long noisy
reads and has been adopted in Novel Sequence Insertion (NSI) tools such as
rCANID [12] in addition to analysis for genome datasets [24]. Wtdbg2 is based
on FBG that wraps each 256bp of reads into a unit named as bin and utilizes
hash lists to encode the reads. In wtdbg2, a k-bin of FBG contains K consecutive
bins. To improve the error toleration of FBG, a vertex can represent various k-
bins if aligned together in sequence alignment routine. For the algorithm details
of FBG, the readers can refer to [22].

However, to further improve the performance of wtdbg2, there are two major
challenges to be addressed. The first challenge is the prohibitive memory con-
sumption generated during the execution of wtdbg2. For instance, the wtdbg2
takes up to 1,788 GB memory on Axolotl [5], thus it is infeasible to assemble
large datasets on commodity servers that usually contains less than 512 GB
memory. The second challenge is the tremendous computation power required
by wtdbg2. For instance, the wtdbg2 takes up to tens of hours for mammalian
genome assembly on datasets such as homo sapiens.

Therefore, to alleviate the memory consumption and to further enhance the
performance of wtdbg2, we propose a memory auto-tuning scheme based on
regression model to reduce memory usage. In addition, we improve the paral-
lelization of sequence alignment routine, which is one of the major bottlenecks, by
enhancing the thread efficiency and load balance in wtdbg2. Moreover, we opti-
mize the output procedure by eliminating the redundant intermediate results.
We compare our optimization strategies with the original wtdbg2 and other two
status-quo assemblers Canu and Flye under five real-world genome datasets and
the results show that the maximum acceleration rate is of 2.31×, with the average
acceleration rate is of 1.54× and the memory cost can be reduced up to 39.5%,
without affecting the correctness. With our proposed optimizations, massive par-
allel genome assembling that is previously infeasible with wtdbg2 on commodity
server now can be run successfully.

– We perform comprehensive analysis of the performance bottlenecks in wtdbg2
and identify that the all-vs-all sequence alignment and output procedure are
the major hotspots in large genome assembly.

– We propose a memory auto-tuning scheme based on regression model to alle-
viate the memory usage of wtdbg2. In addition, we accelerate the sequence
alignment and optimize the output procedure to further improve the perfor-
mance of wtdbg2.

234 M. Dun et al.

– We evaluate our optimized wtdbg2 with five real-world genome datasets and
compare to the original wtdbg2 as well as two cutting-edge genome assem-
blers. The experiment results demonstrate our optimization strategies are
effective to reduce the memory usage in addition to improve the performance
of wtdbg2 with correctness validation.

This paper is organized as follows. In Sect. 2, we present the background of
genome assembly and wtdbg2. We present the bottleneck analysis and optimiza-
tion strategies of wtdbg2 in Sect. 3. The detailed implementations are described
in Sect. 4. Section 5 presents the evaluation results of the optimized wtdbg2.
Section 6 describes the related work. Section 7 concludes this paper.

2 Background

2.1 Genome Assembly

Genome assembly is a computational representation of a genome sequence. Since
we are not able to sequence along the whole length of DNA, genome assembly
provides a computational method to reconstruct a DNA sequence from a large
set of short reads of sequenced DNA fragments, which may be overlapped by each
other. Moreover, the de novo genome assembler is a type of assembler aiming
at assembling short reads to construct full-length sequences of DNA without
any reference template. Among the methodologies for implementing a de novo
genome assembler, De Bruijn graph is one of the most popular method, which
aligns k-mers based on k− 1 sequence conservation to create contigs. The short
k-mers allow fast hashing to decrease the computationally intensity and enhance
the overall performance.

Nowadays, a number of software such as Canu [14] and MECAT [25] is devel-
oped for de novo assembly. Most of them reported that sequence alignment pro-
cess, which includes k-mer counting and contig generation, is the major bot-
tleneck of these existing assemblers [10] and consumes large memory footprint
when parallelized on shared-memory system.

2.2 Wtdbg2

Wtdbg2 [22] is an efficient long-read genome assembler. It implements fuzzy-
Bruijn graph (FBG) which extends the basic ideas of De Bruijn graph (DBG) to
support long noisy reads on shared memory system with pthread parallelization.
Similar to DBG, a “base” in FBG is a 256bp bin and a k-mer in FBG consists
of k consecutive bins on reads. FBG is made up of vertices of k-bins and edges
between two vertices which indicates their adjacency on a read. The difference
is that a single vertex may represent different k-bins if they are aligned together
based on all-vs-all read alignment, which tolerates errors in noisy long reads.

As shown in Fig. 1, the workflow to obtain the constructed contigs of input
reads contains four steps: (a) binning and pairwise alignment, (b) graph con-
struction, (c) graph clearing and (d) consensus. In the first stage, input reads

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 235

are all loaded from files to memory and each base is encoded with 2 bits. For all-
vs-all read alignment, a Smith-Waterman-like dynamic programming is applied.
After alignment, FBG is then constructed by adding vertices according to the
obtained all-vs-all alignments and edges of two vertices if they are in the same
read. In the phase of graph clearing, wtdbg2 retains only one edge if there are
multiple edges between two k-bins. Besides, edges covered by less than 3 reads
are omitted. The resulting FBG is then consensused to obtain the final long
contigs.

In assembling, the execution of wtdbg2 is split into two phases. The first phase
is binning and pairwise alignment, whose results are written to disk as interme-
diate results. The second phase includes graph constructing, graph cleaning and
consensus, which consumes large memory footprint.

Binning & pairwise
alignment

Graph
construction

Graph
cleaning

Consensus
Contigs:

Reads:

Fig. 1. The overview of the long-read assembling process in wtdbg2.

3 Methodology

In this section, we first provide the analysis for bottleneck as well as for the
memory consumption of wtdbg2 to guide our optimization. Then we present the
strategies for reducing the memory usage and optimizing execution hotspots,
including the sequence alignment and output procedure.

3.1 Bottleneck Analysis

The reported [5] memory consumption of wtdbg2 under different datasets are
shown in Table 1. Since most of the commodity servers contain less than 256 GB
memory, the large mammalian datasets especially the genome of homo sapiens
cannot be directly assembled by wtdbg2 on the commodity servers. Though the
original wtdbg2 provides a variable kbmparts to control the memory usage, it
still requires manual tuning, and thus facing the risk of assembly failure due to
memory overflow.

We profile the execution of wtdbg2 using HPCToolkit [6]. The result of bot-
tleneck analysis is shown in Fig. 2, where the execution time for output procedure
is excluded. The description of the datasets is shown in Table 2. It is clear that
the KBM indexing is the major bottleneck of wtdbg2 under small datasets such
as E.coli and C.elegans. However, when the dataset’s genome size increases,

236 M. Dun et al.

especially in the genomes of homo sapiens, the sequence alignment process dom-
inates the execution time and becomes the bottleneck of wtdbg2. Since the large
datasets usually take hours to be processed and thus worth the efforts for accel-
eration, we focus on optimizing the sequence alignment routine to improve the
performance of wtdbg2 on large datasets.

In addition, the size of output contigs of wtdbg2 can take up to 30 GB under
dataset Human HG00733. On the other hand, it can take more than 41.3%
of entire execution time to write the contigs under dataset E.coli (e.g., 2.03 s
of the overall 4.91 s). What’s more, the performance of the output procedure
also needs to be improved to further accelerate wtdbg2. Moreover, the wtdbg2
also writes the intermediate alignment results to the hard disks, whose size is
at the same order of magnitude as the contigs. These intermediate alignment
results are redundant during the execution. Therefore, we propose to eliminate
the redundant intermediate results in order to accelerate the output procedure.

Table 1. The memory cost of wtdbg2 under different datasets.

C.elegans D.melanogaster A4

Memory cost (GB) 1.0 19.4

Human NA24385 Human HG00733

Memory cost (GB) 112.9 338.1

Fig. 2. The result of bottleneck analysis of wtdbg2. E, C, D, N and H represents
the datasets: E.coli, C.elegans, D.melanogaster A4, Human NA24385 and Human
HG00733. The time for output is excluded.

3.2 Memory Auto-Tuning

We develop an auto-tuning scheme based on linear regression model to satisfy
the memory demand of the large genome datasets. We identify that the high-
est memory usage is at the phase of sequence alignment where wtdbg2 easily

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 237

crashes due to memory shortage at large datasets. Another execution phase that
is unlikely to crash due to memory shortage is the reads collecting phase whose
memory usage approximately equals to the size of the input dataset. We also
notice that there is a parameter kbm parts in wtdbg2 to control the number of
iterations of alignment, which exhibits a negative linear relationship with mem-
ory usage in sequence alignment routine. Based on the above observations, we
develop a regression model to estimate the memory usage of sequence alignment
based on the memory measurement of reads collecting. At the reads collecting
phase, the model estimates how much sequence alignment would exceed the sys-
tem memory capacity and then adjusts the kbm parts automatically to satisfy
the memory demand. The regression model is built on the statistics collected in
previous execution of wtdbg2. Since running the regression model only requires
monitoring the system memory usage and executing a simple linear function,
the overhead of memory auto-tuning is negligible.

3.3 Sequence Alignment Optimization

Thread Efficiency. We improve the parallelization of sequence alignment rou-
tine in wtdbg2 to accelerate the major bottleneck under large datasets. In the
original wtdbg2, as shown in Fig. 3a, after processing the alignment with threads
at the granularity of a single read, the alignment results of each read are merged
into the graph in the master thread. In addition, the read assignment among
threads is also performed in the master thread. After analyzing the perfor-
mance of sequence alignment, the result merging function map2rdhit graph dom-
inates the execution time of the master thread, which increases the time delay
between two reads alignment for a thread and thus decreases the efficiency of
multi-threading. Since wtdbg2 adopts the shared-memory parallelization using
pthread, we distribute the work of result merging among threads by leveraging
the mutual exclusive locks [16] as shown in Fig. 3a, which improves the multi-
threading efficiency of the sequence alignment routine.

Sequence
Alignment

Result
Aggregation

Reads
Assignment

Multiple Threads

Main Thread

Main Thread

Sequence
Alignment

Result
Aggregation

Reads
Assignment

Multiple Threads

Multiple Threads

Main Thread

Original Parallelization Optimized Parallelization

(a) Original and optimized paral-
lelization of sequence alignment

Batch 1

Batch 2

Batch 2

Batch 1

Reads

(b) Batched read assignment scheme
in sequence alignment

Fig. 3. The illustration of optimization strategies in sequence alignment routine of
wtdbg2.

238 M. Dun et al.

Load Balance. When the sequence alignment routine analyzes a specific read
Ri in wtdbg2, it only compares Ri with reads that have larger identifiers. Hence,
as the identifier of the Ri increases, the number of reads that Ri needs to be
aligned with decreases. Since a thread only performs sequence alignment for
reads in ascending order in wtdbg2, load imbalance becomes severe as the iden-
tifier of the read increases. Moreover, reducing the number of assignments can
alleviate the load imbalance between master and slave threads. However, fewer
assignments means more reads in each assignment, which in turn increases the
load of slave threads.

To address load imbalance among threads and to mitigate the load in the
master thread, we develop a batched read assignment scheme for the sequence
alignment. The proposed allocation scheme is shown in Fig. 3b, where batchsize
is set to 4. We partition all the reads into M batches, each with N reads. For
the ith batch, the index of its reads ranges from Ni to Ni + N

2 in ascending or
descending order. Thus, the number of reads each thread needs to compare is the
same theoretically, which also decreases the number of read assignments in the
master thread. Since the solution space of M is huge and the best M is different
for various datasets, we develop a linear regression model to automatically search
for the optimal setting of M .

4 Implementation

In this section, we provide the implementation details of the optimization
methodologies proposed in Sect. 3.

4.1 Memory Auto-Tuning

The processing logic of memory auto-tuning is shown in Algorithm 1.
After the reads collecting process finishes, our implementation uses function
check meminfo to obtain the total memory MT and available memory MA of
the system from the file meminfo. Then the memory usage of reads MREAD

can be calculated by MT − MA and the highest memory usage MMAX can be
estimated by the regression model. At the end of the auto-tuning process, the
parameter kbm parts is determined using kbm parts = MMAX

MT
. The value of

kbm parts is later used in sequence alignment to avoid exceeding the system
memory constraint.

Algorithm 1. The logic of memory auto-tuning
1: Input: regression model f : MREAD → MMAX

2: Output: kbm parts
3: (MT , MA) ← check meminfo()
4: MREAD ← MT − MA

5: MMAX ← f(MREAD)

6: kbm parts ← MMAX
MT

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 239

4.2 Sequence Alignment Optimization

Thread Efficiency. As shown in Algorithm 2, for each read R in the sets of
read R, the master thread finds an idle slave thread k and then assigns the
sequence to it. The thread k first encodes its read R with a specific hash list to
get the binned sequence BSk and then performs the sequence alignment between
BSk and other binned sequences whose indices are bigger than the index of R.
After the sequence alignment, it generates the alignment results including the
cigars cigarsk and the overlapped bins with other sequences hitsk. With the
results generated, the thread k requests for the mutex lock and merges the local
results to the FBG graph. The reason for applying mutex lock is to avoid writing
conflict among multiple threads. Once the result merging finishes, the thread k
releases the lock and becomes an idle thread. Then the master thread continues
to assign remaining reads to thread k unless all reads have already been assigned.
The parallel result merging method reduces the assignment delay for the slave
threads as well as alleviating the load for the master thread.

Algorithm 2. The logic of thread efficiency optimization
1: Input: Reads R
2: Output: cigars g cigars, hits g hits
3: for each R ∈ R do
4: k = get-idle-thread-id()
5: assign R to thread k
6: BSk ← query index(R, k)
7: (cigarsk, hitsk) = kbm alignment(BSk, k) /*the new intermediate result in thread k*/
8: get-mutex lock(k)
9: (g cigars, g hits) = result-gather(cigars, hits, cigarsk, hitsk)

10: free-mutex lock(k)
11: turn-idle-thread(k)
12: end for

Load Balance. The implementation of batched read assignment is shown in
Algorithm 3. The variable batchtime is calculated by the regression model based
on the number of reads R.size, which is then used to determine the optimal
setting of batchsize. After the number of batched reads (batchsize) is determined,
the master thread computes the indices of reads that belong to a specific batch
i. Once the batch is assigned, thread k will finish the sequence alignment process
for the reads in batch i, generating the cigars as well as hits and merging them
to the graph.

4.3 Output Optimization

We use a condition parameter WITHALIGNMENT to control the out-
put of intermediate alignment results written to hard disks. Once the
WITHALIGNMENT = true, the output of intermediate results is skipped. In
addition, we use another condition parameter PRINTGRAPH to control the
output of runtime information such as that for FBG graph.

240 M. Dun et al.

Algorithm 3. The logic of load balance optimization
1: Input: all the reads R
2: Output: cigars g cigars, hits g hits
3: batchtime ← f1(R.size)
4: batchsize ← R.size/(batchtime × ncpu − 1)
5: for i ← 0 → batchtime × ncpu do
6: batchi ← get newbatch()
7: k = get-idle-thread-id()
8: BSk ← query index batch(batchi, k)
9: (cigarsk, hitsk) = kbm alignment batch(BSk, k) /*the new intermediate result in thread

k*/
10: turn-idle-thread(k)
11: end for

5 Evaluation

We implement the proposed optimizations for wtdbg2 and compare its perfor-
mance with the original wtdbg2 and two state-of-art sequence assemblers under
five real-world datasets.

5.1 Experiment Setup

Assemblers For Comparison. We choose two cutting-edge genome assemblers
Canu [14] and Flye [13] for comparison. These two assemblers use both PacBio
and Oxford Nanopore datasets as input. However, the assemble and consensus
processes are integrated in Canu and Flye, whereas they are separate in wtdbg2.
Canu is based on MinHash Alignment Process (MHAP) [8] and Celera Assem-
bler [9], whereas Flye is based on A-Bruijn Graph.

Genome Datasets. We choose five datasets to compare the performance of
different genome assemblers, including E.coli [5], C.elegans [1], D.melanogaster
ISO1 [2], Human NA24385 [4] and Human HG00733 [3]. The details of the
datasets are shown in Table 2. For convenience, we abbreviate the datasets to
E, C, DISO, NA and HG respectively.

Experiment Platform. We conduct all the experiments on a commodity server
that is memory constrained. The server has 2 Intel Xeon E5-2680v4 CPUs, each
with 14 hyper-threaded cores. The memory capacity of the server is 256 GB,
which is much smaller than the fat node with 2 TB memory used in the experi-
ment of original wtdbg2 [22].

Evaluation Criteria. We first compare the memory usage of wtdbg2 using
memory auto-tuning optimization with the original wtdbg2 to measure the effec-
tiveness of the memory auto-tuning. To evaluate the performance improvement,
we compare the optimized versions of wtdbg2 with Canu and Flye. We only
measure the execution time of assemble process in Canu and Flye. We choose
wtdbg2 applied with memory auto-tuning optimization as the baseline since the
original wtdbg2 fails to run on large datasets such as HG due to out of memory
error. For validation of correctness, we use QUAST [11] with assembly indi-
cators including N50, NGA50, genome fraction and total genome length. All
assembly indicators derived for both original and optimized wtdbg2 are based
on pre-polished assembly results.

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 241

Table 2. The genome datasets.

Dataset Dataset type Coverage Genome size

E.coli PacBio RSII 20× 4.6 MB

C.elegans PacBio RSII 80× 100 MB

D.melanogaster ISO1 Oxford Nanopore 32× 144MB

Human NA24385 PacBio CCS 28× 3GB

Human HG00733 PacBio Sequel 93× 3GB

5.2 Performance Analysis

Memory Auto-Tuning. The memory usage of the optimized wtdbg2 normal-
ized to the original wtdbg2 is shown in Fig. 4. We adopt the memory usage
of the original wtdbg2 reported from [5], which indicates the dataset HG00733
consumes 338.1 GB memory that exceeds the memory capacity of our experi-
ment server. From Fig. 4, we can see that the regression model used in the opti-
mized wtdbg2 can successfully predict the memory usage and adjust the param-
eter kbm parts accordingly so that it satisfies the memory demand from large
datasets. Specifically, for dataset HG00733, the memory auto-tuning scheme
reduces the memory demand by 39.5% compared to the original wtdbg2, and
thus enables a successful execution on this dataset.

Fig. 4. The memory usage after applying the memory-auto tuning optimization on
wtdbg2.

Performance Improvement. The performance comparison results between
the optimized wtdbg2 and two state-of-art assemblers Canu and Flye are shown
in Fig. 5. The metrics for assembly quality including N50, NGA50, genome frac-
tion and total genome length compared to the reference genome are shown in
Table 3, Table 4, Table 5 and Table 6, respectively. The missing bar in Fig. 5 and
the ‘–’ symbol in Table 3, 4, 5 and 6 indicate the execution failure due to out
of memory error or extreme long execution time (e.g., more than 7 days). From
Fig. 5, we can see that the optimized wtdbg2 with both sequence alignment and

242 M. Dun et al.

output optimizations achieves the best performance under all datasets. Based
on the results from Table 3, 4, 5 and 6, we can see that the optimized wtdbg2
achieves comparable or even better assembly quality when compared to the orig-
inal wtdbg2. The highest speedup achieved by A-wtdbg2 is 2.31× under dataset
NA and the average speedup of A-wtdbg2 is 1.54× compared to the baseline.
The reason for A-wtdbg2 to achieve the lower speedup with datasets E and C is
that the sequence alignment routine takes up a small portion of the entire exe-
cution time on these datasets, which is also described in the bottleneck analysis
in Sect. 3.1.

Table 3. The N50 (million base pairs (Mbps)) of the assembly results from different
assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2

E 4.6680 4.6371 4.6719 4.6358 4.6358 4.6341

C 2.0681 2.8587 1.9726 1.9726 1.9726 1.9718

DISO 4.2986 16.431 6.2255 6.2258 6.2259 6.2268

NA – – 15.512 15.512 15.512 15.511

HG 34.637 – – 21.293 26.354 24.699

Table 4. The NGA50 (million base pairs (Mbps)) of the assembly results compared
to reference genome from different assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2

E 0.033895 0.033539 0.033539 0.033540 0.033539 0.033935

C 0.56166 0.56513 0.558,99 0.55899 0.55899 0.55752

DISO 1.0913 1.6581 1.2923 1.2923 1.2038 1.1852

NA – – 2.0664 2.0531 2.0531 2.0714

HG 2.4485 – – 1.6464 1.9423 1.9534

Table 5. The genome fraction(%) of the assembly results compared to reference genome
from different assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2

E 73.451 73.478 72.97 72.992 73.056 72.994

C 99.685 99.647 98.662 98.66 98.662 98.686

DISO 93.516 93.273 88.361 88.35 88.322 88.411

NA – – 87.607 87.705 87.705 88.417

HG 91.726 – – 87.284 88.39 88.39

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 243

(a) Small Non-mammalian Datasets (b) Large Mammalian Datasets

Fig. 5. Performance comparison among optimized wtdbg2, Canu and Flye, where M-
wtdbg2, O-wtdbg2 and A-wtdbg2 is the original wtdbg2 applied with memory auto-
tuning optimization (baseline), both memory and output optimizations and all pro-
posed optimizations, respectively. Performance comparison among optimized wtdbg2,
Canu and Flye, where M-wtdbg2, O-wtdbg2 and A-wtdbg2 is the original wtdbg2
applied with memory auto-tuning optimization (baseline), both memory and output
optimizations and all proposed optimizations, respectively.

Table 6. The total genome length (million base pairs(Mbps)) of the assembly results
from different assemblers.

Datasets Canu Flye wtdbg2 M-wtdbg2 O-wtdbg2 A-wtdbg2

E 4.6476 4.6371 4.6358 4.6719 4.6719 4.6702

C 108.19 102.46 106.10 106.09 106.09 106.31

DISO 140.57 144.43 136.90 136.86 136.78 136.82

NA – – 2,749.3 2,752.6 2,752.4 2,774.5

HG 3,038.5 – – 2,775.5 2,804.1 2,802.3

5.3 Parameter Sensitivity Analysis

To better understand the impact of parameter batchtime described in Sect. 4.2 on
the performance of wtdbg2, we adjust the setting of batchtime within the range
of A ±16 under four different datasets, where A is the setting after applying
memory auto-tuning optimization described in Sect. 4.2. From Figure 6 we can
see that when the batchtime increases, which in turn decreases the batchsize, the
performance of wtdbg2 usually gets improved. The reason for that is a finer-
grained partitioning improves the load balance, while at the same time hardly
increases the load for threads in a single execution of alignment. Moreover, we
notice that the performance impact of batchtime varies across different datasets
and thus an auto-tuning scheme is required to search for the optimal batchtime.

6 Related Work

As genome assembly is widely used to obtain genome information, various
genome assemblers are developed to construct assembly graphs from a large set of

244 M. Dun et al.

Fig. 6. The performance impact of parameter batchtime under different datasets, where
A equals the performance when applying memory auto-tuning optimization. The results
under each dataset have been normalized by the best one.

reads, including A-Bruijn assembly graph [13] and de Bruijn graph. Among them,
de Bruijn graph (DBG) is the most commonly used method for genome assem-
bling. Among recent implementations on a single machine, IDBA-UD [19] algo-
rithm can reconstruct long contigs with higher accuracy through multi-thread
parallelism, which applies progressive relative depth, local assembly and error
correction. In addition, Canu [14] is developed for scalable and accurate long-
read assembly. It implements adaptive k-mer weighting and repetitive separation
methods, and parallelizes the overlap computation into multiple jobs and merges
these results with parallel bucket sort algorithm. On the other hand, an open-
source de novo genome assembly, MECAT [25], combines fast mapping, error
correction and de novo assembly. MECAT indices reads with hash tables and
accelerates the computation by sampling with sliding window and thus reduces
the number of searched k-mers from the degree of sampling number.

Recently, research works are proposed to scale genome assembly to multi-
ple nodes. Pan et al. [17] develop distributed memory parallel hash tables for
DNA k-mer counting and evaluate their methods on 4,096 cores of the NERSC
Cori supercomputer. In addition, Pakman [10] is one of the most recent parallel
implementations, which enables large-scale genome assembly with distributed
memory parallelism up 8K cores. In addition to parallel I/O and load-balanced
counting of k-mers, Pakman proposed a new type of graph named PakGraph for
better parallelism. Other optimizations such as dynamic memory allocation and
runtime power control [20,21] can also be applied to further accelerate genome
assembly.

Moreover, there are research works focusing on accelerating the genome
sequencing or assembly on modern GPU. Nvidia provided its own CUDA library
NVBIO [18] for sequence analysis with high throughput. To outperform NVBIO,
Ahmed et al. proposed specially designed APIs (GASAL [7]) to provide GPU
accelerated kernels for local, global and semi-global alignment routines, which
achieved notable speedup. In addition, CUDASW++ 3.0 [15] accelerates Smith-
Waterman algorithm by the use of CPU and GPU SIMD operations as well as

Accelerating De Novo Assembler WTDBG2 on Commodity Servers 245

the collaborated processing on CPU and GPU. However, the above GPU accel-
eration methods are not applicable for wtdbg2 due to its implementation with
hash list and varying read length.

7 Conclusion

In this paper, we analyze the hotspots of wtdbg2, and identify that sequence
alignment and output procedure are the two major performance bottlenecks. In
addition, we also reduce the prohibitive memory usage of the original wtdbg2.
Specifically, we propose a memory auto-tuning scheme to satisfy the memory
demand when running wtdbg2 with large datasets on commodity servers. We
also propose sequence alignment optimization to improve the multi-threading
efficiency and load balance. Moreover, we apply output optimization to elimi-
nate the redundant intermediate alignment results to further improve the per-
formance of wtdbg2. The experiment results demonstrate that the optimized
wtdbg2 achieves a maximum speedup of 2.31× and an average speedup of 1.54×.
In addition, our optimization reduces the memory usage by 39.5% without affect-
ing the correctness.

Acknowledgment. This work is supported by National Key Research and Devel-
opment Program of China (Grant No. 2016YFB1000304), National Natural Science
Foundation of China (Grant No. 61502019), and the Open Project Program of the
State Key Laboratory of Mathematical Engineering and Advanced Computing (Grant
No. 2019A12).

References

1. C.elegans genome dataset (2019). http://datasets.pacb.com.s3.amazonaws.com/
2014/c elegans

2. D.melanogaster iso1 genome dataset (2019). https://www.ebi.ac.uk/ena/data/
view/SRR6702603

3. Human hg00733 genome dataset (2019). https://www.ebi.ac.uk/ena/data/view/
SRR7615963

4. Human na24385 genome dataset (2019). https://ftp-trace.ncbi.nlm.nih.gov/giab/
ftp/data/AshkenazimTrio/HG002 NA24385 son/PacBio CCS 15kb

5. wtdbg2 (2019). https://github.com/ruanjue/wtdbg2
6. Adhianto, L., et al.: HPCTOOLKIT: tools for performance analysis of optimized

parallel programs. Concurr. Comput. Pract. Exp. 22(6), 685–701 (2010)
7. Ahmed, N., Mushtaq, H., Bertels, K., Al-Ars, Z.: GPU accelerated API for align-

ment of genomics sequencing data. In: 2017 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), pp. 510–515. IEEE (2017)

8. Berlin, K., Koren, S., Chin, C.S., Drake, J.P., Landolin, J.M., Phillippy, A.M.:
Assembling large genomes with single-molecule sequencing and locality-sensitive
hashing. Nat. Biotechnol. 33(6), 623 (2015)

9. Denisov, G., et al.: Consensus generation and variant detection by Celera assem-
bler. Bioinformatics 24(8), 1035–1040 (2008)

http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans
http://datasets.pacb.com.s3.amazonaws.com/2014/c_elegans
https://www.ebi.ac.uk/ena/data/view/SRR6702603
https://www.ebi.ac.uk/ena/data/view/SRR6702603
https://www.ebi.ac.uk/ena/data/view/SRR7615963
https://www.ebi.ac.uk/ena/data/view/SRR7615963
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb
https://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/HG002_NA24385_son/PacBio_CCS_15kb
https://github.com/ruanjue/wtdbg2

246 M. Dun et al.

10. Ghosh, P., Krishnamoorthy, S.: PaKman: scalable assembly of large genomes
on distributed memory machines. In: 2019 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS) (2019)

11. Gurevich, A., Saveliev, V., Vyahhi, N., Tesler, G.: QUAST: quality assessment tool
for genome assemblies. Bioinformatics 29(8), 1072–1075 (2013)

12. Jiang, T., Fu, Y., Liu, B., Wang, Y.: Long-read based novel sequence insertion
detection with rCANID. IEEE Trans. Nanobiosci. 18(3), 343–352 (2019)

13. Kolmogorov, M., Yuan, J., Lin, Y., Pevzner, P.A.: Assembly of long, error-prone
reads using repeat graphs. Nat. Biotechnol. 37(5), 540 (2019)

14. Koren, S., Walenz, B.P., Berlin, K., Miller, J.R., Bergman, N.H., Phillippy, A.M.:
Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and
repeat separation. Genome Res. 27(5), 722–736 (2017)

15. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating smith-waterman
protein database search by coupling CPU and GPU SIMD instructions. BMC
Bioinform. 14(1) (2013). Article number: 117. https://doi.org/10.1186/1471-2105-
14-117

16. Nichols, B., Buttlar, D., Farrell, J., Farrell, J.: Pthreads Programming: A POSIX
Standard for Better Multiprocessing. O’Reilly Media Inc., Sebastopol (1996)

17. Pan, T.C., Misra, S., Aluru, S.: Optimizing high performance distributed memory
parallel hash tables for DNA k-mer counting. In: SC 2018: International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 135–147.
IEEE (2018)

18. Pantaleoni, J., Subtil, N.: NVBIO: a library of reusable components designed by
NVIDIA corporation to accelerate bioinformatics applications using CUDA (2014).
http://nvlabs.github.io/nvbio

19. Peng, Y., Leung, H.C., Yiu, S.M., Chin, F.Y.: IDBA-UD: a de novo assembler for
single-cell and metagenomic sequencing data with highly uneven depth. Bioinfor-
matics 28(11), 1420–1428 (2012)

20. Qiu, M., et al.: Data allocation for hybrid memory with genetic algorithm. IEEE
Trans. Emerg. Top. Comput. 3(4), 544–555 (2015)

21. Qiu, M., Ming, Z., Li, J., Liu, S., Wang, B., Lu, Z.: Three-phase time-aware energy
minimization with DVFS and unrolling for chip multiprocessors. J. Syst. Archit.
58(10), 439–445 (2012)

22. Ruan, J., Li, H.: Fast and accurate long-read assembly with wtdbg2. Nat. Methods
17(2), 155–158 (2020)

23. Simpson, J.T., Durbin, R.: Efficient de novo assembly of large genomes using com-
pressed data structures. Genome Res. 22(3), 549–556 (2012)

24. Wenger, A.M., et al.: Highly-accurate long-read sequencing improves variant detec-
tion and assembly of a human genome, p. 519025. bioRxiv (2019)

25. Xiao, C.L., et al.: MECAT: fast mapping, error correction, and de novo assembly
for single-molecule sequencing reads. Nat. Methods 14(11), 1072 (2017)

https://doi.org/10.1186/1471-2105-14-117
https://doi.org/10.1186/1471-2105-14-117
http://nvlabs.github.io/nvbio

Typing Everywhere with an EMG
Keyboard: A Novel Myo Armband-Based

HCI Tool

Zongkai Fu1,2 , Huiyong Li1, Zhenchao Ouyang1,2,3,5(B) , Xuefeng Liu1,
and Jianwei Niu1,2,3,4

1 State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, Xueyuan Road #37, Haidian, Beijing 100191, China

2 Hangzhou Innovation Institution, Beihang University,
Chuanghui Street #18, Binjiang, Hangzhou 310000, Zhejiang, China

ouyangkid@buaa.edu.cn
3 Beijing Advanced Innovation Center for Big Data and Brain Computing (BDBC),

Beihang University, Xueyuan Road #37, Haidian, Beijing 100191, China
4 Zhengzhou University Research Institute of Industrial Technology,

Zhengzhou University, Zhengzhou 450001, China
5 Nanhu Laboratory, Jiaxing 314000, Zhejiang, China

Abstract. To enhance users’ experience of inputting characters on
mobile devices with small screens, this paper designed a novel virtual
keyboard used on mobile devices. In particular, we introduce a novel
virtual keyboard based on the MYO armband which is able to capture
the electromyogram (EMG) signals of users when typing on any surfaces
(such as human body or normal desktop). The actions of the three fingers
are mapped to the nine keys of the T9 keyboard. After that, the signals
of finger motions are translated into key sequences of the T9 keyboard.
However, the identification of continuous finger motions is a critical chal-
lenge. To address the challenge, we convert the EMG signals in time
domain into a 3D time-frequency map (each channel corresponds to the
EMG unit of a frequency-domain feature), and extract the convolutional
features with a 4-layer CNN (Convolutional Neural Network) module,
an im2col module of Optical Character Recognition (OCR) and a Long
Short-Term Memory (LSTM) module, and the final result is achieved as
a probability graph of finger gestures. The Connection Temporal Clas-
sification (CTC) algorithm is adopted to find the best gesture sequence
from the probability map. Experimental results show that our method
can effectively identify different key sequences at three different input
speeds with an average accuracy of 85.9%, and the integration testing
with different volunteers shows that our method can achieve an average
typing speed of 15.7 Word-Per-Minute (WPM).

Keywords: EMG · Keyboard · Deep learning · CTC · Mobile device

Supported by Hangzhou Innovation Institution, Beihang University.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 247–261, 2020.
https://doi.org/10.1007/978-3-030-60245-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_17&domain=pdf
http://orcid.org/0000-0001-8900-7863
http://orcid.org/0000-0003-1304-5366
http://orcid.org/0000-0003-3946-5107
https://doi.org/10.1007/978-3-030-60245-1_17

248 Z. Fu et al.

1 Introduction

The physical keyboard is a commonly-used device for Human-Computer Inter-
action (HCI), but it is always placed in a fixed place and too large to bring
out. In the context of Mobile HCI, the devices should have the characteristics of
small-size, easy-to-carry and the ability of computation and communication. As
a result, virtual keyboard is introduced which allows users type through different
equipment and methods. The most common virtual keyboard of the smartphone
and the pad is set in the screen of the devices, and the user enter text through
touching the corresponding screen area of the key. However, the size of these
virtual keyboards is usually small which makes the user easily touch the wrong
areas. Furthermore, the virtual keyboard needs to occupy an extra display area
which is very expensive resources in mobile devices.

Electromyogram (EMG) is a technique for evaluating and recording the elec-
trical activity from muscles. Conventionally, the EMG is used in two fields, the
medical field which diagnoses muscular disease and assists disabled people in
controlling prostheses [1,2], and the muscle computer interaction (MCI) field [3].
The previous researches demonstrated the feasibility of using EMG for MCI [4]
and many researchers have been devoted to design and implement different ges-
ture recognition to communicate with the computer [3]. In the application of
text-entry, the automatic recognition of sign language is often used to transform
the EMG signal into different words [5,6]. However, these methods require the
users to be familiar with the sign language gesture in advance, and can’t give
the users a real experience like using the keyboard. Considering that many peo-
ple are already familiar with the input habits under keyboard layout, it is also
necessary for designing keyboard layout-based input method with EMG devices.

In this paper, we present a virtual keyboard that is portable and brings
the users an experience like using the physical keyboard with common EMG
device. We map 9 finger gestures to 9 keys of the T9 keyboard, therefore the
user can enter texts/orders through performing the gesture of typing on any
surfaces. Furthermore, the proposed system is also convenient because the whole
system is based on a MYO armband and the smart device itself. The MYO
armband can measure eight channels of EMG signals and communicate with
mobile devices through Bluetooth. The most challenging part is how to recognize
accurately the finger gestures through raw flexible EMG signals. To address this
problem, we design a lightweight hybrid neural network model that combines 4-
layer convolutional neural network (CNN) module, an im2col module of optical
character recognition (OCR), and a long short-term memory (LSTM) module.
By organizing a figure gesture data set with key labels, we can train the model
in ‘end-to-end’ pattern. The output of the network is defined as probability
map of continuous gesture sequence instead of a single key to improve the input
efficiency. Evaluation resulting from several volunteers shows that the presented
system can achieve high word-per-minute (WPM) speed at 15.7.

The remainder of this paper is organized as follows. Section 2 introduces
related work in gesture recognition based on myoelectric signal and text entry
system on wearable device. Section 3 presents the overview of the EMG keyboard

Typing Everywhere with an EMG Keyboard 249

system. Section 4 describes the main principle of the gesture sequence model.
Section 5 presents the experiments’ result and analysis. Finally, Sect. 6 concludes
the paper.

2 Related Work

We review the related works from the following two aspects: the EMG signals-
based gesture classification and wearable device-based text entry system.

2.1 Gesture Recognition by EMG

Huding [7] developed a myoelectric patterns classification scheme which consisted
of segment feature extraction module, network training module and pattern clas-
sification module. He used several simple time domain features (i.e. Mean Abso-
lute Value, Zero Crossings, Slope Sign Changes and Waveform Length) as the
feature set and sent them to an artificial neural network for training and classi-
fication. His system could recognize the diverse set of the myoelectric patterns
produced by intact and amputated musculature with an average accuracy of
84%. Latter, many researches [8,9] sought to improve the accuracy of gesture
recognition through changing the classifier based on Hudgins’s scheme. Yet, it is
hard to make further progress only using the time domain features as the feature
set. Author of [10] used the wavelet based features as the feature set and send
it to the Latent Dirichlet Allocation (LDA) classifier to recognize six hand ges-
tures, and got an average accuracy of 98%. Besides, researchers [11–13] used the
combination of time domain and frequency domain features as the feature set
and send them to the different classifiers. Among them, the author [13] selected
the sixteen features (i.e. Integral of Absolute Value, Difference of Absolute Mean
Value, k-th order Zero-Crossings, Mean Frequency, WaveletMom, etc.) as fea-
ture set and got an accuracy of 99.4% to recognize nine American Sign Language
(ASL) gestures. As for the Deep Learning-based methods, CNN is the most com-
monly used model. The author of [14] built a CNN-based model to solve the
inter-user variability and proved that the features learned by CNN had a better
performance than hand-crafted features in the task of detecting target EMG pat-
terns across different users. After that, the authors of [14–16] took the problem
of gesture recognition as instantaneous EMG image classification and used the
CNN architecture to transform the signal picture into feature maps to identify.
Also, YuNan [17] used LSTM-based network to capture temporal dependencies
of EMG data, and could produce better accuracy of 84% in Ninapro database.
In general, DL-methods relieve people from signal engineering and experience,
and extract more information from the raw EMG data.

2.2 Wearable Device-Based Text Entry System

BlindType [18] is an eyes-free thumb-based text entry system which consists
of two statistical decoding algorithms (i.e., the absolute algorithm and the rel-
ative algorithm) based on the position of touch endpoints of the thumb. The

250 Z. Fu et al.

two decoding algorithms use regression to model the button touching pattern on
three kinds of statistical features, i.e., the size and location as well as the stan-
dard deviation of the touch endpoints. The whole system can offer an average
17–23 WPM depending on the related algorithms. In TipText [19], the author
presents a new text entry technique using micro thumb-tip gestures on a minia-
ture QWERTY keyboard on one of the first segment of user’s finger. The austhor
tries different keyboard layouts for optimizing the efficiency and balancing among
three aspects: layout learnability, key size and word disambiguation. The final
TipText is a 2 × 3 grid of PET film. Real-world evaluation with different partic-
ipants shows the system can achieve an average text entry speed of 11.9 WPM.
Compass [20] is a non-touch bezel-based text entry technique, it provides a solu-
tion for text entry on rotational interface (e.g., smartwatches) without using
the touchscreen. To enter text, the users rotate the bezel to select keys on the
circular keyboard and the position of each key is dynamically optimized after
each key selection according to the probability of the next key. The participants
achieve an average 12.5 WPM using this text entry technique.

As for the existing research, EOG and EMG based virtual Keyboard [21] is
the most relevant work to ours. It is a two-step keyboard that the users first gaze
the position of the desired letter on the screen, and then click the navigated letter.
Eye-gaze direction is obtained from the electrooculogram (EOG) signal and the
click action is classified by the EMG signal. Their virtual keyboard system links
the human’s bio-signal and the computer, and can be used for disabled and aged
persons. However, the users’ faces need to be connected with a lot of sensors
during operation, and the users’ WPM is not very high due to the extra effort
of the two-step selection. As a result, EOG and EMG based virtual keyboard is
not convenient to use in our daily life.

3 System Overview

In this section, we introduce the system from system architecture and keyboard
design.

3.1 System Architecture

This section presents the design of our EMG signal based virtual keyboard. The
novel system captures the continuous EMG signal from user’s arm, recognizes
the EMG signal with a neural network and then outputs the character sequence.
As shown in Fig. 1, our system consists of four main components: Data Prepro-
cessing, Feature Extraction, Gesture Recognition and KeyCode to Character.
Generally, the signal is collected by the Myo armband and sent to the data-
preprocessing module through Bluetooth. In the data-preprocessing module, the
high pass filter is first used to get the EMG signal between 10 Hz and 200 Hz, and
further extract the active segments of gestures based on the short-term energy
of the denoised signal. Then the feature extraction module splits the signal into
frames with a 500 ms-sliding window, and performs short-time Fourier transform

Typing Everywhere with an EMG Keyboard 251

(STFT) on each frame. To prevent spectrum leakage [22], we add the Handing
window on the signal and pad the length of the frame to 256 through filling the
signal with zero. After that, the gesture sequence recognition module recognizes
finger gesture and converts each gesture to the key code. Finally, the keycode
to character module finds all the possibilities of the key code sequence from the
probability graph, and print them out for the users.

Eight
channel
signal

Data
Preprocessing

Denoise

Signal
segmentation

Feature
Extraction

STFT

Sliding
Window

Uniform
Signal
Length

Gesture
Recognition

CNN+LSTM

CTC
decoder

3D Time-
frequecy

Map

Probability map

Dictionary
Tree

Search
Path

Keycode to
Character

Keycode
Sequence

Character
Sequence

Fig. 1. Architecture of the system.

3.2 Keyboard Design

The study is to design a keyboard based on the EMG signal. We need to define
the different finger gestures which can be decoded into characters. As we have
only one Myo armband, we can’t simulate standard ‘qwerty’ keyboard. In our
first opinion, we would like to refer to one-handed keyboard layout and fingering
to design the gesture. We give up because we get a bad test result with low accu-
racy. Finally, we decide to use T9 as our keyboard layout. T9 is a predictive text
technology for mobile phones, standing for text on 9 keys. Each key represents
three or four symbols and characters. We have defined nine sets of finger gestures
and each set of actions corresponds to an area in one of the T9 keyboard area.
The user needs to use three fingers when performing our defined actions, namely
the index finger, the middle finger and the ring finger. Our keyboard fingering
is described as the index finger controls left column of the keyboard, middle
finger controls the middle column of the keyboard and index finger controls the
right column of the keyboard. Each column is divided into three positions, so
our designed gestures can be interpreted as tapping in the surface with index,
middle and ring finger in three positions: extended, standardized and curled.

4 Gesture Sequence Model

4.1 Model Architecture

The input of the model is an 8-channel time-frequency map which contains an
uncertain number of gestures. As shown in Fig. 2, it is an example of time-
frequency map corresponding to the gesture sequence (T4, T8, T2, T5). There
are four darker areas in each channel of the time-frequency map corresponding

252 Z. Fu et al.

Fig. 2. An example of the eight-channel 3D time-frequency map transformed from the
continuous EMG signal. The X axis represents the time and the Y axis represents the
frequency.

to four gestures, and the image characteristics corresponding to each gesture
are different. While, the lighter area in the time-frequency map represents the
inactive segment of the signal which can be considered as the blank label. The
purpose of our model is to detect all the gesture blocks in the image and then
identify them, which is similar to the work of OCR (Optical Character Recogni-
tion) on the image. The model architecture is shown in Fig. 3. A hybrid network
is used to combine the CNN layers and the LSTM layers. The CNN layers are
used to extract the spatial features of the time-frequency map, and the LSTM
layers are used to learn the temporally local information relationships of the
feature sequence.

Fig. 3. Architecture of the hybrid network combining CNN network and LSTM net-
work.

First, we design a lightweight CNN network with reference to Lenet5 [23]
to extract spatial features on the original image. The network consists of two
convolution layers and one pooling layer. We use the 5*5 kernel and the 3*3

Typing Everywhere with an EMG Keyboard 253

kernel for convolving and use the 2*2 kernel for pooling. After the calculation of
the above three layers, the original input is transformed into the feature-map1
of size 10*16*32. As the X axis of the input represents time, the gesture area
in the time-frequency map should be identified horizontally and each column of
the feature map can be treated as a feature vector. To enhance the ability of the
feature vector expressing the feature map, we employ an im2col module using a
sliding window of size 3*3 to store all the values into the feature vector. As a
result, the size of the feature vector is increased by nine times. Finally, we flatten
the feature map of eight channels to get the feature sequence of 32*1440 size,
and we input this feature sequence into the LSTM units. The motivation of using
LSTM is to take temporally local information over several frames of sequence
into account, as the character sequence of the model output is related to its
context. In addition, the LSTM network overcomes the problems of gradient
disappearance and gradient explosion generated by the RNN network through
adding input gates, output gates, and forgetting gates on each unit. Finally, we
use the ‘softmax’ function to activate the sequence of the LSTM network output,
and get a probability graph of size 32*10, where 32 is the width of the feature-
map3, and 10 is the sum of the number of pre-defined gesture labels and blank
label.

4.2 Model Training

Our hybrid neural network is trained as frame-level classifiers in gesture sequence
recognition which requires a separate training target for every frame. However
we can’t align each frame of the sequence to each frame of the target sequence.
The CTC (Connectionist Temporal Classification) algorithm [24] solves that
problem through calculating the sequence which has the largest probability to
transform to the target sequence. To calculate the network loss, we need to
calculate p(l | x) which is the probability of output as label l for the input x.
p(l | x) can be computed by the formula as follows:

p(l | x) =
∑

B(π1:t=l1:s)

T∏

t=1

yt
πt

(1)

This formula calculates the sum of probabilities of all the path that can be
converted to the target sequence by the CTC algorithm mentioned above, where
πt represents the state of the path π at time t. The aim of the model training is
to maximize the probabilities of all the correct sequence which can transform to
the target sequence simultaneously, so we should maximize the value of p(l | x)
in our system.

4.3 Model Predict

The predict result is the path that has the highest score along the timeline from
left of the probability graph to right of the probability graph. To improve the

254 Z. Fu et al.

accuracy of finding the right path, we add the language model to the decoding
algorithm:

C = argmax(α ∗ (Pem(C | X)) + β ∗ (Plm(C | X)))) (2)

C is the final result sequence and X is the input sequence. We use the beam
search algorithm which can only select several nodes with the highest score in
each time-step.

Considering the calculation speed and the model size, we choose N-GRAM
model as the language model which is based on statistical language model. The
probability that the next letter appears is affected by the first few letters when
the first few letters are given because people have greater possibility typing a
word instead of a disordered character sequence. According to the ‘chain rule’,
we calculate the language model score as follows:

p(w1, w2...wn) =
n∏

i=2

p(wi | wi−1wi−2) (3)

The EMG model score is calculated as follows:

premg(t) =
t∏

i=1

A(i, ki) (4)

A is the probability graph mentioned above. The process to find the best path
can be concluded as calculating the score at each time step and adding the scores
to the existing path. In the search process, we select the top n paths with the
highest scores as potential paths after calculating the score for each time step
and use them for the next time step calculation. In the last step we select the
path with the highest score as the predict result.

5 Experimental Evaluation

5.1 Goals

In this section, we describe our experimental steps and results. Our goal is to
train a model which converts the continuous EMG signal into the character
sequence. Since the application in the paper is a virtual keyboard, the gestures
we preset are finger-tapping. Besides, the keyboard ensures that people can input
text in high speed which makes the interval between the gestures very short. As
a result, the model we propose should either recognize the finger gesture or
identify the gesture sequence when the user performs in high frequency.

Typing Everywhere with an EMG Keyboard 255

5.2 Procedure

The participant performs preset gestures through watching the sequence content
on the screen when collecting data. As they neither get the display of real-time
input feedback, nor are familiar with the keyboard layout and fingering, the
wrong button is often pressed resulting in the EMG signal not corresponding
to the label. To collect data accurately, we draw a virtual keyboard on the
plane, including 9 areas and convert the English characters sequence into tap
area code in advance, so that the participant can tap the correct area accurately
when performing the finger gestures. The start time and stop time of performing
gestures is controlled by the operator. The whole data collection session is divided
into collecting training data and collecting test data. The participant need to
take a break to relax the muscles after they input 50 words.

We choose ‘1-billion-word-language-modeling-benchmark-r13output’ as
dataset and select 2000 words from the dataset for experiment. 1000 of these
words are used to train the model and the rest are used to validate the model.
The experiment is divided into two levels as the character-level and the word-
level. The test data consists of 1000 words which is divided into 20 sessions
equally. The participant needs to perform gesture at different speed levels: fast,
mid and slow. The participant’s tapping speed (WPM) is between 20–25 in the
fast level, 15–20 in the mid level, and 5–15 in the slow level.

5.3 Experiment Result

We implement four models to evaluate the experimental results.

1. SVM: It combines the frequency and time domain features containing Zero-
Crossing rate, Integral of Absolute Value, AR model coefficients, Mean Fre-
quency into feature vectors and sends them to the SVM classifier. The purpose
of adding this model is to compare the differences between features extracted
by CNN and hand-crafted features.

2. CNN: The structure of this model is same as the CNN network architecture
in the hybrid network mentioned in the section IV. Instead of converting the
feature map into a feature sequence for transmission to the LSTM unit, the
CNN model flattens the feature map and sends it to the fully connected layer
for classification directly.

3. CNN+LSTM without CTC: The architecture of this model is same as the
CNN+LSTM with CTC. We just flatten the LSTM output sequence. As a
result, this model can only recognize the single gestures.

4. CNN+LSTM with CTC: It is an end-to-end model which uses the hybrid
network architecture mentioned in the section IV and the CTC algorithm to
identify the gesture sequence.

Accuracy Formula. We use the LER (label-error-rate) [24] to evaluate the
experiment result which can be calculated as follows:

LER(p, q]) =
ED(p, q)

|q| (5)

256 Z. Fu et al.

ED(p, q) is the minimum number of insertions, substitutions and deletions
required to change the input sequence p into the target sequence q. And the
final accuracy can be calculated as

Accuracy = 1 − LER (6)

(a) Character Level

(b) Word Level

Fig. 4. The experiment result of four designed models in three typing speed levels.

Character-Level Recognition. As shown in Fig. 4(a), the four models have
high accuracy over 90% to classify single character. While, the SVM model has
a slightly lower accuracy than the other three models, which can be interpreted
as the CNN networks learn better features to represent the original signal than
the hand-crafted features. Besides, the accuracy of typing at three speed levels
is stable and maintained at a high value, which shows that the four models
we implement can accurately recognize nine finger-tapping gestures at different
speed levels.

Typing Everywhere with an EMG Keyboard 257

Word-Level Recognition. As shown in Fig. 4(b), the result of the
‘CNN+LSTM with CTC’ model is better than the other three model at three
different speed levels. At the same time, the accuracy of the ‘CNN+LSTM with
CTC’ model shows stable performance, while the accuracy of the other three
models are greatly reduced as the tapping speed levels change from slow to fast.

5.4 Analysis

The chief difference between ‘CNN+LSTM with CTC’ model and the other
three is that it is an end-to-end model and does not need to align the label
of each frame, instead of extracting the active segmentations from the contin-
uous EMG signal to recognize the single gesture. We think that extracting sig-
nal inaccurately is the main factor to cause this experiment result. We try to
adjust the size of the sliding window because the energy spectrogram can rep-
resent the amount of energy at the current moment when the window becomes
smaller. Figure 5 is the result of word-level experiment using different sliding
window size in ‘CNN+LSTM’ model. It can be observed from the Fig. 5(a) that
the relationship between the accuracy of model recognition and the size of the
sliding window is not consistent at the three typing speed levels. As shown in
Fig. 5(b), the number of gesture detected by the model decreases when the size
of the sliding window enlarges. Therefore, it is difficult to select the suitable
window size, the offset threshold value and the onset threshold value to extract
the signals in different tapping speed levels accurately.

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75
 0.8

 0.85
 0.9

 0 10 20 30 40 50 60 70 80

Pr
ob

ab
ili

ty

Windows Size (ms)

slow
mid
fast

(a) Accuracy

 20
 40
 60
 80

 100
 120
 140
 160

 0 10 20 30 40 50 60 70 80

G
es

tu
re

 N
um

be
r

Windows Size (ms)

slow
mid
fast

(b) Gesture Number

Fig. 5. Effect of window size on gesture sequence recognition.

The ‘CNN+LSTM with CTC’ model makes convolution on the input and
encodes it into the sequence that computes the state of each frame in the con-
tinuous EMG signal which ensures that it does not lose any information of the
EMG signal. At the same time, we don’t need to pre-align each frame of data
when training the model which makes the dataset correct. The ‘CNN+LSTM
with CTC’ model predicts the gesture sequence as a series of spikes, seperated
by the inactive segmentation.

258 Z. Fu et al.

5.5 Add the Language Model to the Decoding Process

It is effective to add the language model to the decode process which can improve
the accuracy of experimental results. The experiment result of adding the lan-
guage model in the decoding process is shown in the Table 1. The ‘CNN+LSTM
with CTC’ model have a slight improvement in the recognition accuracy com-
paring to decoding process without the language model.

Table 1. The accuracy of ‘CNN+LSTM with CTC’ using language model

Slow Mid Fast

Use language model 0.934 0.889 0.813

Dont’t use language model 0.912 0.876 0.789

5.6 Keycode to Character

We compared the speed of using the dictionary tree to find paths and traversing
the English dictionary violently to find all the possible English strings that the
key code sequence can transform. As shown in Table 2, the run time of searching
decoding result in the dictionary tree is much lower than the violent search in
the dictionary, while its load time and memory usage is much higher than the
violent search method. It is mainly due to the cost of generating the dictionary
tree for each string in the dictionary which brings high efficiency in the search at
the expense of load time and space. However, the sacrifice of load time and space
is worthwhile because the excessive delay in decoding the key code sequence will
prevent the user from converting gesture actions into text input in real time and
bring a poor user experience.

Table 2. Evaluation of two decoding algorithms running in real time

Load time Run time Ram usage

Violent search 2.80 ms 43.98 ms 856 kb

Dictionary tree search 62.91 ms 0.61 ms 91264 kb

5.7 Real Time Performance

In the end, we integrated codes of all the modules and realize them into real-time
application. The running time of each module is shown in Table 3. The sum of
the running time of all the modules is compressed with 600 ms which will bring
some delay when user performs the typing gesture to make text entry. While it

Typing Everywhere with an EMG Keyboard 259

Table 3. Evaluation of time cost

Time

Data preprocess 46 ms

CNN+LSTM 541 ms

CTC decoding 144 ms

T9 keycode transformation 6 ms

can still meet the real-time demand as the human and computer interfaces. The
participant performs the typing experience assessment in the real-time virtual
keyboard system. The evaluation process is divided into two sessions as adapting
to the keyboard and the typing speed test. In the first session, participants need
to be proficient in nine typing gestures and control the speed of performing
gestures to reduce the error of the gesture sequence recognition. The second
session is divided into eight blocks. The participant types a paragraph of text
consisting of about 300 words in each block. The participant needs to retype the
text if the gesture sequence model fails to predict the true key code sequence.
The participant’s typing speed tends to stabilize and can reach 15.7 WPM.

6 Conclusion

This paper presents the EMG keyboard, a new technology of HCI tools to entry
text into computer based on the EMG signal. We choose the T9 as the key-
board layout and design nine finger-tapping gestures which are similar to tap-
ping the T9 keyboard on the mobile phone. We evaluate four models through
the character-level experiment and the word-level experiment and finally choose
the ‘CNN+LSTM with CTC’ model to recognize the gesture sequence as it has
the stable high accuracy over 80% in three typing speed levels. Considering of
the user’s experience and the compute cost, we use the dictionary tree search
algorithm to transform T9 keyboard code into English character. We implement
the all modules into the real-time application and the participant’s typing speed
can reach 15.7WPM (word-per-minute). We also plan to change the current
keyboard layout from T9 to ‘qwerty’ to further improve the typing speed.

In general, the EMG keyboard has the same or even higher typing speed
and accuracy compared to other text-entry technologies in the previous work.
However, the EMG keyboard can’t replace the physical keyboard with ‘qwerty’
layout as the WPM of the physical keyboard can reach as high as 60. While, the
EMG keyboard can be regarded as a portable and friendly keyboard due to the
benefit of mobile, wearable and eyes-free text entry. In the future, we will change
our virtual keyboard layout from T9 to ‘qwerty’ which will improve the typing
speed ant bring a more realistic experience like typing on the physical keyboard
to users.

260 Z. Fu et al.

Acknowledgment. This work has been supported by National Natural Science Foun-
dation of China (61772060, 61976012, 61602024), Qianjiang Postdoctoral Foundation
(2020-Y4-A-001), and CERNET Innovation Project (NGII20170315).

References

1. Barry, D.T., Gordon, K.E., Hinton, G.G.: Acoustic and surface EMG diagnosis
of pediatric muscle disease. Muscle Nerve Off. J. Am. Assoc. Electrodiagn. Med.
13(4), 286–290 (1990)

2. Hernandez Arieta, A., Katoh, R., Yokoi, H., Wenwei, Y.: Development of a multi-
DOF electromyography prosthetic system using the adaptive joint mechanism.
Appl. Bionics Biomech. 3(2), 101–111 (2006)

3. Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R., Turner, J., Landay, J.A.:
Enabling always-available input with muscle-computer interfaces. In: Proceedings
of the 22nd Annual ACM Symposium on User Interface Software and Technology,
pp. 167–176. ACM (2009)

4. Saponas, T.S., Tan, D.S., Morris, D., Balakrishnan, R.: Demonstrating the feasi-
bility of using forearm electromyography for muscle-computer interfaces. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp.
515–524. ACM (2008)

5. Li, Y., Chen, X., Tian, J., Zhang, X., Wang, K., Yang, J.: Automatic recognition
of sign language subwords based on portable accelerometer and EMG sensors. In:
International Conference on Multimodal Interfaces and the Workshop on Machine
Learning for Multimodal Interaction, p. 17. ACM (2010)

6. Wu, J., Tian, Z., Sun, L., Estevez, L., Jafari, R.: Real-time American sign language
recognition using wrist-worn motion and surface EMG sensors. In: 2015 IEEE
12th International Conference on Wearable and Implantable Body Sensor Networks
(BSN), pp. 1–6. IEEE (2015)

7. Hudgins, B., Parker, P., Scott, R.N.: A new strategy for multifunction myoelectric
control. IEEE Trans. Biomed. Eng. 40(1), 82–94 (1993)

8. Farry, K.A., Walker, I.D., Baraniuk, R.G.: Myoelectric teleoperation of a complex
robotic hand. IEEE Trans. Robot. Autom. 12(5), 775–788 (1996)

9. Englehart, K., Hudgins, B., Stevenson, M., Parker, P.A.: Classification of transient
myoelectric signals using a dynamic feedforward neural network. In: Proceedings
World Congress Neural Networks (1995)

10. Englehart, K., Hudgins, B., Parker, P.A., et al.: A wavelet-based continuous clas-
sification scheme for multifunction myoelectric control. IEEE Trans. Biomed. Eng.
48(3), 302–311 (2001)

11. Phinyomark, A., Phukpattaranont, P., Limsakul, C.: Feature reduction and selec-
tion for EMG signal classification. Expert Syst. Appl. 39(8), 7420–7431 (2012)

12. Kunapipat, M., Phukpattaranont, P., Neranon, P., Thongpull, K.: Sensor-assisted
emg data recording system. In: 2018 15th International Conference on Electrical
Engineering/Electronics, Computer, Telecommunications and Information Tech-
nology (ECTI-CON), pp. 772–775. IEEE (2018)

13. Kosmidou, V.E., Hadjileontiadis, L.J., Panas, S.M.: Evaluation of surface EMG
features for the recognition of American sign language gestures. In: 2006 Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society, pp.
6197–6200. IEEE (2006)

Typing Everywhere with an EMG Keyboard 261

14. Park, K.-H., Lee, S.-W.: Movement intention decoding based on deep learning for
multiuser myoelectric interfaces. In: 2016 4th International Winter Conference on
Brain-Computer Interface (BCI), pp. 1–2. IEEE (2016)

15. Becker, V., Oldrati, P., Barrios, L., Sörös, G.: Touchsense: classifying finger touches
and measuring their force with an electromyography armband. In: Proceedings of
the 2018 ACM International Symposium on Wearable Computers, pp. 1–8. ACM
(2018)

16. Atzori, M., Cognolato, M., Müller, H.: Deep learning with convolutional neural
networks applied to electromyography data: a resource for the classification of
movements for prosthetic hands. Front. Neurorobotics 10, 9 (2016)

17. He, Y., Fukuda, O., Bu, N., Okumura, H., Yamaguchi, N.: Surface EMG pat-
tern recognition using long short-term memory combined with multilayer percep-
tron. In: 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 5636–5639. IEEE (2018)

18. Yiqin, L., Chun, Yu., Yi, X., Shi, Y., Zhao, S.: BlindType: eyes-free text entry on
handheld touchpad by leveraging thumb’s muscle memory. Proc. ACM Interact.
Mob. Wearable Ubiquit. Technol. 1(2), 18 (2017)

19. Xu, Z. et al.: TipText: eyes-free text entry on a fingertip keyboard (2019)
20. Yi, X., Yu, C., Xu, W., Bi, X., Shi, Y.: COMPASS: rotational keyboard on non-

touch smartwatches. In: Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, pp. 705–715. ACM (2017)

21. Dhillon, H.S., Singla, R., Rekhi, N.S., Jha, R.: EOG and EMG based virtual key-
board: a brain-computer interface. In: 2009 2nd IEEE International Conference on
Computer Science and Information Technology, pp. 259–262. IEEE (2009)

22. Testa, A., Gallo, D., Langella, R.: On the processing of harmonics and interhar-
monics: using Hanning window in standard framework. IEEE Trans. Power Deliv.
19(1), 28–34 (2004)

23. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

24. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning, pp.
369–376. ACM (2006)

Accelerating Pattern Matching on Intel
Xeon Phi Processors

Victoria Sanz1,2(B), Adrián Pousa1, Marcelo Naiouf1,
and Armando De Giusti1,3

1 III-LIDI, School of Computer Sciences, National University of La Plata,
La Plata, Argentina

{vsanz,apousa,mnaiouf,degiusti}@lidi.info.unlp.edu.ar
2 CIC, Buenos Aires, Argentina

3 CONICET, Buenos Aires, Argentina

Abstract. Pattern matching algorithms are used in several areas such
as network security, bioinformatics and text mining. In order to provide
real-time response for large inputs, high-performance systems should be
used. However, this requires adapting the algorithm to the underlying
architecture. Intel Xeon Phi processors have attracted attention in recent
years because they offer massive parallelism, good programmability and
portability. In this paper, we present a pattern matching algorithm that
exploits the full computational power of Intel Xeon Phi processors by
using both SIMD and thread parallelism. We evaluate our algorithm on
a Xeon Phi 7230 Knights Landing processor and measure its performance
as the data size and the number of threads increase. The results reveal
that both parallelism methods provide performance gains. Also they indi-
cate that our algorithm is up to 63x faster than its serial counterpart and
behaves well as the workload is increased.

Keywords: Pattern matching · Intel Xeon Phi Knights Landing
processor · SIMD instructions · Thread-level parallelism · Aho-Corasick

1 Introduction

Pattern matching algorithms locate some or all occurrences of a finite number
of patterns (pattern set or dictionary) in a text (data set). These algorithms
are key components of DNA analysis applications [1], antivirus [2], intrusion
detection systems [3,4], among others. In this context, the Aho-Corasick (AC)
algorithm [5] is widely used because it efficiently processes the text in a single
pass.

Nowadays, the amount of data that need to be processed grows very
rapidly. This has led several authors to investigate the acceleration of AC on
emerging parallel architectures. In particular, researchers have proposed differ-
ent approaches to parallelize AC on shared-memory architectures, distributed-
memory architectures (clusters), GPUs, multiple GPUs and CPU-GPU hetero-
geneous systems [6–14].
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 262–274, 2020.
https://doi.org/10.1007/978-3-030-60245-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_18

Accelerating Pattern Matching on Intel Xeon Phi Processors 263

In recent years, Intel Xeon Phi systems have attracted attention of researchers
because of their massive parallelism. These systems support multiple program-
ming languages and tools for parallel programming, thus they provide better pro-
grammability and portability than a system using GPUs. There are two genera-
tions of Xeon Phi: Knights Corner (KNC) and Knights Landing (KNL) [15,16].
The former has limitations similar to those of GPUs: it is a PCIe-connected
coprocessor with limited memory. The latter is also available as a standalone
processor, therefore it does not have the limitations of the previous model. Fur-
thermore, it is binary compatible with prior Intel processors.

In general, a Xeon Phi is composed of multiple cores. Each core has 1 or 2
vector processing units (VPUs), depending on the model. To take full advantage
of its computational power, applications must exploit thread-level and SIMD
parallelism. This is a challenge for developers since the code must be changed in
order to launch multiple parallel tasks and expose vectorization opportunities.

So far, little work has been done to accelerate Aho-Corasick on Xeon Phi.
In [17] the authors present a parallel AC algorithm and test it on a Xeon Phi
KNC coprocessor. Briefly, the algorithm consists of dividing the text among
threads, then each thread processes its segment in a vectorized way. Similarly,
in [18] the authors propose an AC algorithm for Xeon Phi coprocessors, which
uses a strategy that increases cache locality during the pattern matching process.
The strategy is based on partitioning the set of patterns into smaller subsets and
executing several independent instances of the matching procedure on the entire
text (i.e., one instance for each subset of patterns). However, this proposal does
not take advantage of the VPUs of the coprocessor.

In this paper, we present an AC algorithm that exploits the full compu-
tational power of Intel Xeon Phi processors by using both SIMD and thread
parallelism. We evaluate our algorithm on a Xeon Phi 7230 KNL processor and
show the performance gain when using SIMD instructions and threads respec-
tively. Furthermore, we measure the performance of our algorithm as the data
size and the number of threads increase, and study its behaviour. The results
reveal that both parallelism methods improve performance. Also they indicate
that our algorithm is up to 63x faster than its serial counterpart and behaves
well as the workload is increased.

Our work differs from previous studies in two ways. First, our proposed algo-
rithm is based on the Parallel Failureless Aho-Corasick (PFAC) algorithm [7],
which efficiently exploits the parallelism of AC. PFAC is suitable for many-core
architectures and it was first implemented for GPUs and multicore systems;
in the last case vectorization techniques were not applied. Second, in contrast
to previous works [17,18], we evaluate the performance and scalability of our
proposed algorithm on a Xeon Phi KNL processor.

The rest of the paper is organized as follows. Section 2 provides some back-
ground information on pattern matching algorithms and Xeon Phi processors.
Section 3 describes our parallel algorithm for pattern matching on Xeon Phi
processors. Section 4 shows our experimental results. Finally, Sect. 5 presents
the main conclusions and future research.

264 V. Sanz et al.

2 Background

This section describes the AC and PFAC algorithms, the Intel Xeon Phi proces-
sor and how to program it.

2.1 The Aho-Corasick Algorithm

The Aho-Corasick (AC) algorithm [5] has been widely used since it is able to
locate all occurrences of user-specified patterns in a single pass of the text. The
algorithm consists of two steps: the first is to construct a finite state pattern
matching machine; the second is to process the text using the state machine
constructed in the previous step. The pattern matching machine has valid and
failure transitions. The former are used to detect all user-specified patterns. The
latter are used to backtrack the state machine, specifically to the state that
represents the longest proper suffix, in order to recognize patterns starting at
any location of the text. Certain states are designated as “output states” which
indicate that a set of patterns has been found. The AC machine works as follows:
given a current state and an input character, it tries to follow a valid transition;
if such a transition does not exist, it jumps to the state pointed by the failure
transition and processes the same character until it causes a valid transition. The
machine emits the corresponding patterns whenever an output state is found.
Figure 1 shows the AC state machine for the pattern set {he, she, his, hers}. Solid
lines represent valid transitions and dotted lines represent failure transitions.

Fig. 1. AC state machine for the pattern set {he, she, his, hers}

2.2 The Parallel Failureless Aho-Corasick Algorithm

The Parallel Failureless Aho-Corasick (PFAC) algorithm [7] efficiently exploits
the parallelism of AC and therefore is suitable for many-core architectures. PFAC

Accelerating Pattern Matching on Intel Xeon Phi Processors 265

assigns each position of the text to a particular thread. For each assigned position
start (task), the thread is responsible for identifying the pattern beginning at
that position. For that, the thread reads the text and traverses the state machine,
starting from the initial state, and terminates immediately when it cannot follow
a valid transition; at that point, the thread registers the longest match found.
Note that all threads use the same state machine. Since PFAC does not use
failure transitions, they can be removed from the state machine. Figures 2 and
3 give an example of the Failureless-AC state machine and the parallelization
strategy of PFAC, respectively. Algorithm 1 shows the PFAC code executed by
each thread for each assigned task.

Fig. 2. Failureless-AC state machine for the pattern set {he, she, his, hers}

2.3 Intel Xeon Phi Knights Landing Processor

The Intel Xeon Phi KNL processor [16,19] is composed of many tiles that are
interconnected by a cache-coherent, 2D mesh interconnect. Each tile consists of
two cores, two vector-processing units (VPUs) per core, and a 1MB L2 cache
shared between the two cores. Each core supports 4 hardware threads. Figure 4
illustrates this architecture.

Regarding the memory hierarchy, the KNL processor has two types of mem-
ory: (1) MCDRAM, a high-bandwidth memory integrated on-package, and (2)
DDR, a high-capacity memory that is external to the package. The MCDRAM
can be used as a last-level cache for the DDR (cache mode), as addressable
memory (flat mode), or as a combination of the last two modes (hybrid mode)
- i.e. using a portion of the MCDRAM as cache and the rest as standard mem-
ory. When using the flat or hybrid mode, the access to MCDRAM as memory
requires programmer intervention.

Furthermore, the KNL processor can be configured in different modes (cluster
modes) in order to optimize on-chip memory traffic.

The KNL processor supports all legacy x86 instructions, therefore it is binary-
compatible with prior Intel processors, and incorporates AVX-512 instructions.

266 V. Sanz et al.

Fig. 3. Parallelization strategy of PFAC

Algorithm 1. PFAC code, executed by each thread for each assigned task
{start :: initial position of the task in the text}
{pos :: current position in the text}
{initial state :: initial state of the state machine}
{state :: current state of the state machine}

1: pos = start
2: state = initial state
3: while pos < text size do
4: if there is no transition for the current state and input character then
5: break
6: end if
7: state = next state for the current state and input character
8: if state is an output state then
9: store the pattern found at the position start in output[start]

10: end if
11: pos = pos + 1
12: end while

The efficient use of cores and VPUs is critical to obtain high performance. To
that end, the programmer must divide the work into parallel tasks or threads, and
organize their code to expose vectorization opportunities. Finally, vectorization
can be achieved manually, by writing assembly code or using vector intrinsics,
or automatically, relying on compiler optimizations.

Fig. 4. Intel Xeon Phi KNL processor

Accelerating Pattern Matching on Intel Xeon Phi Processors 267

3 Pattern Matching on Xeon Phi Processors

This section describes our strategy for parallelizing pattern matching on Xeon
Phi processors and some implementation details.

3.1 Parallelization Strategy

Figure 5 depicts the parallelization strategy of PFAC VEC, our pattern matching
algorithm for Xeon Phi based on PFAC. Recall that the strategy followed by
PFAC divides the input text into as many tasks as the text size; each task
involves identifying the pattern starting at a certain text position; all tasks are
equally distributed among threads and each thread follows a sequential control
flow to process its tasks. In contrast, the strategy of PFAC VEC splits the input
text into blocks of tasks; each block is composed of a fixed number of consecutive
text positions or tasks (this number is referred to as block size); all blocks are
equally distributed among threads; then each thread processes each assigned
block in a vectorized way, i.e. all its tasks are simultaneously solved.

Fig. 5. Parallelization strategy of PFAC VEC

The distribution of blocks among threads is done through the OpenMP for
work-sharing construct. On the other hand, vectorization will be performed auto-
matically by the compiler. However, the code executed by each thread to process
a block of tasks must meet some requirements to be automatically vectorized [19].
Thus, it requires programmer intervention. The next section presents the imple-
mentation details of that code.

3.2 Implementation Details

Algorithm 2 shows the code executed by each thread to process a block of tasks
in a vectorized way, taking advantage of the VPUs of the core. Note that all tasks
of a block (block size in total) are solved simultaneously by applying the same
operation to multiple data items. Remember that each task involves identifying
the pattern that starts at a certain block position.

The thread first creates vectors of length block size to store the current posi-
tion in the text, the current state of the state machine and the pattern found so
far, for each task. The initialization of these vectors is vectorizable (Algorithm2,
Lines 1–5).

268 V. Sanz et al.

Then, the thread processes the tasks until all are finished (Algorithm 2, Lines
6–15). In each iteration of the outer loop, a state transition is carried out for each
task. Specifically, the operations of reading (Algorithm2, Line 8), determining
the next state (Algorithm 2, Line 9), verifying if the reached state is an output
state (Algorithm 2, Lines 10–12), and incrementing the current position to point
to the next character (Algorithm 2, Line 13) are performed in a vectorized way.

Finally, the patterns found in this block are recorded in the output vector in
a vectorized manner (Algorithm 2, Lines 16–18).

Algorithm 2. PFAC VEC code, executed by each thread for each assigned
block

{start :: initial position of the block in the text}
{initial state :: initial state of the state machine}
{pos :: vector containing the current position in the text for each task}
{state :: vector containing the current state of the state machine for each task}
{result :: vector containing the longest match found for each task}
{For each task, set pos, state and result to their initial values}

1: for i = 0 to block size - 1 do {Vectorizable loop}
2: pos[i] = start + i
3: state[i] = initial state
4: result[i] = 0
5: end for

{Process all tasks simultaneously}
6: while there is an unfinished task in the block do

{Perform one more transition for each task}
7: for i = 0 to block size - 1 do {Vectorizable loop}
8: inputchar[i] = text[pos[i]]
9: state[i] = next state for state[i] and inputchar[i]

10: if state[i] is an output state then
11: store the pattern found at the position “start+i” in result[i]
12: end if
13: pos[i] = pos[i] + 1
14: end for
15: end while
16: for i = 0 to block size - 1 do {Vectorizable loop}
17: output[start + i] = result[i]
18: end for

In order to guarantee the correct execution of the algorithm, lines 8 and 9
must not fail or have any effect when the current position in the text of task i
exceeds the size of the text (pos[i] ≥ text size) and when there is not a valid
transition for the current state and character of task i, respectively.

To solve the first problem (Line 8), an additional number of special characters
was appended to the input text. This number is equal to the length of the longest
pattern in the dictionary and represents the maximum amount of characters that
can be processed when solving a task.

Accelerating Pattern Matching on Intel Xeon Phi Processors 269

To solve the second problem (Line 9), a dead state was added to the state
machine, i.e. a nonaccepting state that goes to itself on every possible input
symbol. Also, additional transitions were added to this state from each other
state q, on all input symbols for which q has no other transition. Figure 6 shows
the Failureless-AC state machine for the pattern set {he, she, his, hers}, which
includes the dead state.

Fig. 6. Modified Failureless-AC state machine for the pattern set {he, she, his, hers}

Now, it can be said that the exit condition of the while loop in Line 6 involves
determining if there is a task that has not reached the dead state yet. This
operation is done by iterating over the vector of current states (the loop is
vectorizable).

The characteristics of the proposed algorithm enable the Intel compiler to
vectorize the code automatically. In particular, it reports an estimated potential
speedup of 10.5x, 10x and 21.3x for the loops in Lines 1, 7, and 16 respectively.
Furthermore, it shows a potential speedup of 15.3x for the exit condition of the
while loop in Line 6.

4 Experimental Results

Our experimental platform is a machine with an Intel Xeon Phi 7230 (KNL)
processor and 128 GB DDR4 RAM. This processor has 64 1.30 GHz cores and
16 GB MCDRAM. Each core supports 4 hardware threads, thus the processor
supports 256 threads in total. The processor is configured in flat mode. We use
the numactl command to place all data in MCDRAM.

Test scenarios were generated by combining four English texts of differ-
ent sizes with four English dictionaries with different number of patterns. All
the texts were extracted from the British National Corpus [20]: text 1 is a 4-
million-word sample (21 MB); text 2 is a 50-million-word sample (268 MB); text
3 is a 100-million-word sample (544 MB); text 4 is a 200-million-word sample

270 V. Sanz et al.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4 8 16 32 64 128 256

Sp
ee

du
p

Threads

Text 1 Text 2 Text 3 Text 4

Fig. 7. Average speedup of PFAC VEC over PFAC

(1090 MB). The dictionaries include frequently used words: dictionary 1 with
3000 words; dictionary 2 with 100000 words; dictionary 3 with 178690 words;
dictionary 4 with 263533 words.

Our experiments focus on the matching step since it is the most significant
part of pattern matching algorithms. For each test scenario, we ran each imple-
mentation 100 times and averaged the execution time.

First, we ran the single-threaded non-vectorized Failureless Aho-Corasick
algorithm (SFAC), provided by Lin et al. [7], and the single-threaded vectorized
version (SFAC VEC), presented in this paper. In the last case, different values
of block size (64, 128, 256) were used. For all test scenarios, the value of block
size that produces the best result is 128. Using that value, SFAC VEC is up to
3.6x faster than SFAC, and provides an average acceleration of 3.5 for each text.
These results demonstrate that our vectorization technique provides performance
gains.

Next, we ran the multi-threaded non-vectorized code (PFAC), provided by
Lin et al. [7], and the multi-threaded vectorized code (PFAC VEC), presented
here, for different number of threads (4, 8, 16, 32, 64, 128, 256) and affinity
settings [21] (none or default, scatter, compact, balanced). The value of block
size used by PFAC VEC is 128.

Regarding the affinity settings, the compact affinity gives the worst results
for all tests. The other affinities perform similarly for different combinations
of test scenarios and number of threads, except for the largest text considered
and few threads, for which the none affinity provides the best execution times.
Therefore, from now on, the none affinity will be used.

Accelerating Pattern Matching on Intel Xeon Phi Processors 271

Afterwards, we evaluated the performance (Speedup1) of PFAC VEC over
PFAC and SFAC VEC, respectively. For each text and number of threads, the
average speedup is shown. This is because the speedup does not vary significantly
with the dictionary.

Figure 7 illustrates the average speedup of PFAC VEC over PFAC, for dif-
ferent texts and number of threads. It can be seen that the speedup ranges
between 1.05 and 3.70. Higher speedup values are obtained when using fewer
threads, and as this parameter increases the speedup decreases. However, for a
fixed number of threads, the speedup tends to increase with the size of the text.
These results reveal that our vectorization technique is also effective to reduce
parallel execution times.

Figure 8 shows the average speedup of PFAC VEC over SFAC VEC, for dif-
ferent texts and number of threads. Note that for a fixed text, the speedup
first increases with the number of threads and then decreases. However, for a
fixed number of threads the speedup always increases with the size of the text.
From these results we conclude that PFAC VEC behaves well as the workload
is increased.

Figure 9 shows the best performance (average speedup) of PFAC VEC over
SFAC VEC for each text, and the number of threads that provides this value.
As it can be observed, the number of threads that provides the best performance
depends on the text. PFAC VEC achieves an average speedup of 8.53 for text
1, 38.49 for text 2, 49.03 for text 3 and 62.88 for text 4, using 32, 64, 128 and
128 threads respectively.

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

4 8 16 32 64 128 256

Sp
ee

du
p

Threads

Text 1 Text 2 Text 3 Text 4

Fig. 8. Average speedup of PFAC VEC over SFAC VEC

1 The Speedup of B over A is defined as TA
TB

, where TA is the execution time of
Algorithm A and TB is the execution time of Algorithm B.

272 V. Sanz et al.

32 threads
8.53

64 threads
38.49

128 threads
49.03

128 threads
62.88

0,00

10,00

20,00

30,00

40,00

50,00

60,00

70,00

Text 1 Text 2 Text 3 Text 4

Sp
ee

du
p

Fig. 9. Best performance (speedup) of PFAC VEC for each text

5 Conclusions and Future Work

In this paper we presented a novel pattern matching algorithm that efficiently
exploits the full computational power of Intel Xeon Phi processors by using both
SIMD and thread parallelism. Our proposal is based on the Parallel Failureless
Aho-Corasick (PFAC) algorithm.

In summary, our algorithm distributes blocks of tasks among threads. Then,
each thread uses SIMD instructions for processing each assigned block (all its
tasks are simultaneously solved).

We ran our algorithm (PFAC VEC) on a Xeon Phi 7230 (KNL) processor
and compared its performance with that of the multi-threaded non-vectorized
(PFAC) and the single-threaded vectorized (SFAC VEC) counterparts,
respectively.

Experimental results showed that PFAC VEC outperforms PFAC, indicating
that SIMD parallelism is effective to reduce parallel execution times. Further-
more, they reveal that PFAC VEC is up to 63x faster than SFAC VEC, demon-
strating that thread parallelism is also effective to accelerate pattern matching.
Finally, we showed that PFAC VEC behaves well as the workload increases.

As for future work, we plan to compare the results presented here with those
of PFAC for GPU, PFAC for multi-GPU and PFAC for CPU-GPU heterogeneous
systems. Also, we plan to apply our proposal to solve more practical problems.

References

1. Tumeo, A., Villa, O.: Accelerating DNA analysis applications on GPU clusters.
In: IEEE 8th Symposium on Application Specific Processors (SASP), pp. 71–76.
IEEE Computer Society, Washington D.C. (2010)

Accelerating Pattern Matching on Intel Xeon Phi Processors 273

2. Clamav. http://www.clamav.net
3. Norton, M.: Optimizing pattern matching for intrusion detection. White

Paper. Sourcefire Inc. https://www.snort.org/documents/optimization-of-pattern-
matches-for-ids

4. Tumeo, A., et al.: Efficient pattern matching on GPUs for intrusion detection
systems. In: Proceedings of the 7th ACM International Conference on Computing
Frontiers, pp. 87–88. ACM, New York (2010)

5. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

6. Tumeo, A., et al.: Aho-Corasick string matching on shared and distributed-memory
parallel architectures. IEEE Trans. Parallel Distrib. Syst. 23(3), 436–443 (2012)

7. Lin, C.H., et al.: Accelerating pattern matching using a novel parallel algorithm
on GPUs. IEEE Trans. Comput. 62(10), 1906–1916 (2013)

8. Arudchutha, S., et al.: String matching with multicore CPUs: performing better
with the Aho-Corasick algorithm. In: Proceedings of the IEEE 8th International
Conference on Industrial and Information Systems, pp. 231–236. IEEE Computer
Society, Washington D.C. (2013)

9. Herath, D., et al.: Accelerating string matching for bio-computing applications
on multi-core CPUs. In: Proceedings of the IEEE 7th International Conference
on Industrial and Information Systems (ICIIS), pp. 1–6. IEEE Computer Society,
Washington D.C. (2012)

10. Lin, C.H., et al.: A novel hierarchical parallelism for accelerating NIDS using GPUs.
In: Proceedings of the 2018 IEEE International Conference on Applied System
Invention (ICASI), pp. 578–581. IEEE (2018)

11. Soroushnia, S., et al.: Heterogeneous parallelization of Aho-Corasick algorithm. In:
Proceedings of the IEEE 7th International Conference on Industrial and Informa-
tion Systems (ICIIS), pp. 1–6. IEEE Computer Society, Washington D.C. (2012)

12. Lee, C.L., et al.: A hybrid CPU/GPU pattern-matching algorithm for deep packet
inspection. PLoS ONE 10(10), 1–22 (2015)

13. Sanz, V., Pousa, A., Naiouf, M., De Giusti, A.: Accelerating pattern matching
with CPU-GPU collaborative computing. In: Vaidya, J., Li, J. (eds.) ICA3PP
2018. LNCS, vol. 11334, pp. 310–322. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-05051-1 22

14. Sanz, V., Pousa, A., Naiouf, M., De Giusti, A.: Efficient pattern matching on CPU-
GPU heterogeneous systems. In: Wen, S., Zomaya, A., Yang, L.T. (eds.) ICA3PP
2019. LNCS, vol. 11944, pp. 391–403. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-38991-8 26

15. Chrysos, G.: Intel Xeon Phi X100 family coprocessor - the architecture. The
first Intel Many Integrated Core (Intel MIC) architecture product. White
Paper. Intel Corporation (2012). https://software.intel.com/en-us/articles/intel-
xeon-phi-coprocessor-codename-knights-corner

16. Sodani, A., et al.: Knights landing: second-generation Intel Xeon Phi product.
IEEE Micro 36(2), 34–46 (2016)

17. Memeti, S., Pllana, S.: Accelerating DNA sequence analysis using Intel(R) Xeon
Phi(TM). In: Proceedings of the 2015 IEEE Trustcom/BigDataSE/ISPA, pp. 222–
227. IEEE (2015)

18. Tran, N., et al.: Cache locality-centric parallel string matching on many-core accel-
erator chips. Sci. Program. 2015(1), 937694:1–937694:20 (2015)

19. Jeffers, J., et al.: Intel Xeon Phi Processor High Performance Programming:
Knights Landing Edition, 2nd edn. Morgan Kaufmann Publishers Inc., San Fran-
cisco (2016)

http://www.clamav.net
https://www.snort.org/documents/optimization-of-pattern-matches-for-ids
https://www.snort.org/documents/optimization-of-pattern-matches-for-ids
https://doi.org/10.1007/978-3-030-05051-1_22
https://doi.org/10.1007/978-3-030-05051-1_22
https://doi.org/10.1007/978-3-030-38991-8_26
https://doi.org/10.1007/978-3-030-38991-8_26
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner
https://software.intel.com/en-us/articles/intel-xeon-phi-coprocessor-codename-knights-corner

274 V. Sanz et al.

20. The British National Corpus, version 3 (BNC XML edition). Distributed by
Bodleian Libraries, University of Oxford, on behalf of the BNC Consortium (2007).
http://www.natcorp.ox.ac.uk/

21. Vladimirov, A., et al.: Parallel Programming and Optimization with Intel Xeon
Phi Coprocessors. Handbook on the Development and Optimization of Parallel
Applications for Intel Xeon Processors and Intel Xeon Phi Coprocessors. Colfax
International, Sunnyvale (2015)

http://www.natcorp.ox.ac.uk/

Redistributing and Optimizing High-Resolution
Ocean Model POP2 to Million Sunway Cores

Yunhui Zeng1,2,3, Li Wang1,2,3, Jie Zhang1,2,3(B), Guanghui Zhu1,2,3,
Yuan Zhuang1,2,3, and Qiang Guo1,2,3

1 Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
{zengyh,wangl,zhangjie,zhugh,zhuangy,guoqiang}@sdas.org

2 Shandong Computer Science Center (National Supercomputing
Center in Jinan), Jinan 250014, China

3 Shandong Provincial Key Laboratory of Computer Networks, Jinan 250014, China

Abstract. The high-resolution CESM is widely applied in climate simulations,
while a simulation speed of 5.0 simulated years per day has traditionally been
considered the minimum necessary for long-term simulations. When Sunway Tai-
huLight supercomputer was open, the atmosphere model CAM5, one of CESM’s
major component models, was already ported. But the ocean model POP2, another
major component model, has not been fully done yet as known. In this paper, the
high-resolution POP2 coupled in CESM is fully ported to Shenwei many-core
infrastructure. Although many methods accumulated, there are still some new
challenges when it comes to POP2. If just simply translated, its performance may
not be well to support long-term simulations. In order to achieve high perfor-
mance, three stages are adopted. Firstly, the original POP2 is ported with athread
interface and fine-grained optimized to Shenwei many-core. Secondly, the grid
decomposition is redesigned, and a new slave-core partition method is proposed to
solve the problem that some two-dimension array related kernels after athreaded
may be insignificant or even false speedup under large scale processes. Then
many two-dimension array related kernels in POP2 are effectively redistributed to
slave-cores. Lastly, some case-oriented skills are intensively utilized as necessary
supplements. Some experiments show that the simulation speed of the finally opti-
mized POP2 in high-resolution CESM G-compset is over 5.5 simulated years per
day under 18,300 processes with 1,189,500 cores, compared with 1.43 simulated
years per day of the original version, and its speed-up ratio is still over 3.8.

Keywords: Ocean model · Many-core · Scalability · Slave-core partition

1 Introduction and Motivation

High-resolution global climate models have become increasingly important in recent
years as a means for understanding climate variability and projecting future climate
change. While a simulation rate of 5.0 simulated years per day (SYPD) has traditionally
been considered the minimum necessary to carry out long-term climate simulations [1].

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 275–289, 2020.
https://doi.org/10.1007/978-3-030-60245-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_19

276 Y. Zeng et al.

With the development of supercomputer, simulating global climate variability in the
past serial centuries with the high-resolution model can be implemented. The Sunway
TaihuLight system is the China’s first top one system completely based on homegrown
infrastructure with a peak performance greater than 100PFlops many-core processors.
It is based on the SW26010 processor shown in Fig. 1. The processor chip is composed
of 4 core groups, each of which includes a Management Processing Element and 64
Computing Processing Elements.

Fig. 1. A schematic illustration of the architecture of the Sunway SW26010 CPU.

The CESM model, whose development is centered at the National Center for Atmo-
spheric Research (NCAR), is one of the most widely used global climate models [2]. It
is a fully-coupled climate system model with components such as atmosphere, ocean,
sea-ice and land. In order to achieve the simulation rate of 5.0 SYPD, so it is needed to
effectively port CESM to national Shenwei many-core infrastructure. A high-resolution
CESM test is simulated 20 model-days under 44,004 Sunway MPI processes, with
atmosphere component CAM5 (Community Atmosphere Model) 29,000 processes and
ocean component POP2 (Parallel Ocean Program) 15,004 processes. The run time is
listed in Table 1, we can see the CAM5 and the POP2 are the two most time-consuming
component models.

Table 1. Run time of a high-resolution CESM B-compset test on Sunway master-core.

Component model Time cost (seconds) Simulation speed (SYPD)

Atmosphere 3151.971 1.49

Ocean 4676.214 1.01

Sea-ice 759.367 6.20

Land 241.365 19.50

River runoff 0.989 4759.27

The simulation speed of POP2 in the default high-resolution G-compset (POP2 and
CICE4 are active) of CESM under 18,300 processes is just 1.43 SYPD without output,

Redistributing and Optimizing High-Resolution Ocean Model 277

when the CESM is simply ported to Shenwei master-core. If more processes are used,
the improvement of simulation speed is fairly limited. So there is a large performance
gap to 5.0 SYPD for long-term climate simulations with CESM. In this paper, the ocean
component model POP2 of CESM is mainly focused on.

The POP is an ocean general circulation model popular for ocean and climate research
[3]. It can be run in either serial or parallel mode, and can use OpenMP thread-based
parallelism, message-passing (MPI) or a hybrid of them. Along with the widespread use
of POP model, it has become an important part of the large-scale parallel Benchmark
test program based on different machines and realized varying degrees of acceleration
[4]. On graphics processing unit (GPU), the maximum speedup ratio was more than 2.2
based on POP [5, 6]. Zhu and Zhao [7] researched the application of SIMD optimization
in POP model, and they shew that in high resolution the speedup ratio decreases to 1.17
from 1.34 while the threads increase from 1 to 8. Zhao and Lei [8] ported POP model
to the Sunway BlueLight multi-core supercomputer, their results proved that POP in
high-resolution could reach linear speedup ratio within 5,000 cores.

In order to improve the simulation speed, Dennis [11] described a new space-
filling curve, the Cinco curve. Werkhoven and Maassen [9] proposed a hierarchical
load-balancing block-partitioning scheme to take both processor load and the commu-
nication hierarchy of the target heterogenous machine into account for the POP model
code on GPUs. Hu and Huang [10] implemented a preconditioned Chebyshev-type iter-
ation method in POP2 which developed an effective block preconditioner based on the
Error Vector Propagation method (EVP) to attain a competitive convergence rate. They
demonstrated that the improved barotropic solver could result in a 5.2x speedup of the
barotropic mode in high resolution POP2 on 16,875 cores, and a corresponding 1.7x
speedup of the overall POP2 simulation.

As the China’s largest computing resource, the Sunway TaihuLight system has been
applied to many scientific applications. The CAM model in CESM was mapped to the
millions cores on the Sunway TaihuLight system and achieved a simulation speed of 3.4
SYPD [13]. The first general purpose graph processing framework ShenTu was imple-
mented with on-chip sorting, supernode routing and degree-aware messaging, which
were tightly combined to the processors and memory hierarchy and system infrastruc-
ture of Sunway TaihuLight supercomputer [14]. Duan and Gao [15] redesigned the
Molecular Dynamics (MD) tool LAMMPS on Sunway TaihuLight. Furthermore, they
improved the transcendental functions, such as pow and exp, and saved lots of space on
LDM by eliminating lookup table with a little performance cost. Hu [16] proposed the
DGDFT method with a two-level parallelization strategy that can scale up to 8,519,680
cores (131,072 core groups) on the Sunway TaihuLight supercomputer for studying elec-
tronic structures of two-dimensional (2D) metallic graphene systems that contain tens
of thousands of carbon atoms.

All the above works are very helpful for us, but they are not enough when POP2 in
high-resolution mode is focused. The difficulties of this work majorly include, a) the
diversity of POP2’s hotshot, which results that many source files need to be analyzed and
translated; b) the implementation of all of the three-dimensional tendency terms in the
baroclinic portion, which is computed on two-dimensional horizontal slices to reduce
memory use [17], while this leads to little data size at large scale for each process and

278 Y. Zeng et al.

it is just opposite to the performance of Shenwei many-core; c) the system architecture
challenges of Shenwei many-core that has many slave-cores while little local storage
LDM and limited shared memory bandwidth.

Accordingly, it is impossible to achieve 5.0 SYPD for POP2 if just with only one
simple method, and a comprehensive porting with deep optimizations from high level
algorithm design to low level coding is required. In this paper, three stages are adopted.
The first stage is to port POP2 to many-core with the athread programming interface of
Sunway TaihuLight, and optimize with some popular skills. Disappointedly, the resulted
version only got a simulation speed of about 2.6 SYPD without output. Furthermore, the
achieved performances of many two-dimension (2D) array related kernels after athreaded
are insignificant, or even negative speedup under large scale processes. So some new
methods and deep optimization are demanded. The second stage is to redesign the grid
decomposition and select the block distribution method, then effectively redistribute
many 2D-array computing kernels to slave-cores by proposing a new slave-core partition
method. After the above two stages, the performance of high-resolution POP2 is highly
improved, but there is still a gap to the aimed simulation speed. The last stage is to apply
some case-oriented techniques, which are quite effective for improving the speedup ratio.

Some contributions of this paper include:

1) The simulation speed of the finally optimized POP2 model is over 5.5 SYPD without
output, under the high-resolution G-compset of CESM. It could strongly support the
CESM to simulate long-term climate changes.

2) A new slave-core partition method is proposed, which can be regarded as a Multiple
Program Multiple Data (MPMD) programming pattern and can ensure the large
scalability of many 2D-array computing kernels in POP2. Furthermore, the flow
chart of tavg output, advection and diffusion kernels is redesigned to compute in
parallel mode, while not the original serial mode.

3) The speedup ratio of the optimized POP2 model to the original version is still over
3.8x when it is scaled up to 18,300 MPI processes, i.e., 1,189,500 cores. At 1,024
MPI processes scale, the speedup ratio is over 5.4x.

The rest of this paper is organized as follows. Section 2 lists out the test cases of
POP2. Section 3 introduces some major methods for porting and optimizing. Section 4
proposes an effective slave-core partition method which can effectively scales up the
2D computing in many-core. Section 5 reports some simulation speeds and acceleration
results.

2 High-Resolution Case of POP2 in CESM

The CESM is a fully-coupled global model that provides state-of-the-art computer sim-
ulations of the Earth’s past, present, and future climate states. As the ocean model of
the CESM, POP2 is a level-coordinate ocean general circulation model that solves the
three-dimensional primitive equations for ocean dynamics. The POP2 model can predict
and simulate the ocean state at any given moment driven by atmospheric force, which
can obtain a series of ocean phenomena at various space-time scales.

Redistributing and Optimizing High-Resolution Ocean Model 279

The flow chart of the POP2’s main program is shown in the Fig. 2, which is divided
into two major stages: initialization and calculation. In the initialization part, the codes
mainly initialize the ocean parameters and provide the initial values needed during the
model running period. The calculation part is a series of iterative executions. Each itera-
tion completes the calculation of prediction variables at a prediction time, which mainly
includes four portions: integrating baroclinic equations, solving barotropic equations,
updating the block ghost cells and updating the prediction variables. In our tests, the
second-order centered advection scheme for computing the advective term and the K-
profile parameterization (KPP) [18] for computing the vertical diffusivity (VDC in
the codes) and viscosity µ (VVC in the codes) are selected, to solve the baroclinic
primitive equations. For solving the elliptic system of barotropic equations, the Precon-
ditioned Classical Stiefel Iteration solver (PCSI) [10, 19] is chosen to gain efficiency
improvements.

The test cases are a Gedanken experiment with the initial velocity is zero, the initial
temperature and salt are interpolated from Levitus data, the forced field is calculated by
NCEP related data. The test cases use a high-resolution tripole grid at a nominal 0.1°
horizontal resolution and 62 vertical levels. The number of horizontal grids is 3600*2400.
In this G-compset, it integrates 500 steps per day and continuous integration for five
model days. The output of variables includes sea surface temperature (SST), sea surface
height (SSH), speed in all directions (UVEL, VVEL, WVEL) and some other variables.

initialize the
model run

end

data preprocessing

integrate baroclinic tracer
momentum equations

solve barotropic press elliptic
equationst=t+△t

update tracers and the ghost cell

output

update the predicted
value

ipass=Numpass？t=tend？ No

Yes

Yes

Yes

No

Fig. 2. Time-level iteration and major computations of the POP2 model.

In this paper, the G-compset cases with three different MPI process scales are set up,
Test1 with 1,024 processes, Test2 with 16,800 processes, Test3 with 18,300 processes,
and the same options for the remainder of the settings. Test1 and Test2 are applicable
for small and large scale simulations with model variables validation and computing
performance test, and Test3 is for the simulation speed test after the POP2 model is fully
redistributed and optimized.

280 Y. Zeng et al.

3 Porting and Optimizing to Many-Core

The porting of the CESM started from the Intel platform to the Sunway system. The
major work is to resolve compatibility issues on the Sunway platform and standard
Fortran compilers. With computing resources support from NSCC-Wuxi, stable runs on
Sunway TaihuLight of the POP2 started from October 1st, 2018.

The code structure of POP2 model is shown in Fig. 3. Under the timing result of
CESM, the main hotshots of the test cases are distributed in baroclinic, vertical_mix
with kpp, horizontal_mix with del4 and barotropic portions. So we much focus on
the following Fortran files to be translated into athreaded codes, such as step_mod,
POP_SolversMod, baroclinic, vertical_mix, vmix_kpp, advection, hmix_del4.

In this paper, the Athread programming interface is applied for good performance
and flexible coding, instead of using OpenACC as that in [12], which is directive-based
with a simple approach to accelerators without significant programming effort but its per-
formance is fairly limited. At the beginning, some hotshots of POP2, such as vmix_kpp,
were tested with OpenACC directives while the simulation speed of POP2 was increased
by less than 30%. The Athread interface is one of the thread-like programming inter-
faces, and it also can deliver performance portability across the popular platforms just
replaced with some thread-special functions.

For coding convenience and clarity, a three-layer code style is used. For the newly
added athreaded master function and slave function, the C programming language rather
Fortran is adopted because of its performance and addressing. So the athreaded POP2
looks like “XXX.F90 -> XXX_master.c -> XXX_slave.c”. The C language is used
here because it is possible to use the register communication interface of Taihu Light to
realize the efficient sending and receiving operations of data from each core.

New structure types are defined and new structure variables are declared to pass
parameters from master-core to slave-cores, while not directly access memory which

POP

timers

couple

io

step tools

history
couple

movie

dynamics physics

couple couple

baroclinic barotropic

couple solver

ice forcing

couple

temperature surface salt

couple

wind heat flux pressure

pre_grad vertical advection horizontial

couple couple

kpp const rich gm del4 del2 aniso

Fig. 3. Code structure of POP2 model, which contains three different parameterizations for
computing the vertical diffusivity and viscosity, and four for computing the horizontal.

Redistributing and Optimizing High-Resolution Ocean Model 281

may be fairly low performance, especially in 2D-array computing kernels. Also, the
improved transcendental functions that Duan and Gao [15] proposed are called.

Furthermore, some optimization methods on MPI communication such as that Zhao
and Lei [8] and Zhang and Zhao [4] proposed are applied. In the current version of
CESM, the routines for updating halo regions (ghost cells) using MPI calls have been
replaced by the new modules from NCAR. In addition, PIO has been applied, so the I/O
optimization is not addressed here, although it is another important issue.

Beyond the popular tips known, some other skills are also used. Such as loop fusion
and function inline, loop collapse and data tiled and register communication to stencil-
like computing.

4 Refactoring and Redistributing

4.1 Refactoring 2D-Array Computing Flow

In POP2, the baroclinic portion of the codes is the most computationally intensive, which
computes all of the three dimensional tendency terms. In order to reduce memory usage
and improve simulation performance, most tendencies are computed on two dimensional
horizontal slices [17], and they have been implemented in the current version of POP2.
Of course it may cause a decrease in communication efficiency and an increase the
probability of communication collision.

While for Shenwei many-core infrastructure, the above strategy just brings some
extra false effect to POP2, even in high-resolution mode. The slave-cores in one SW
26010 many-core processor have high computing capability, but all the 64 slave-cores
in one core-group share 4 common data buses to memory tunnels [23], so competitions
and collisions may happen when many slave-cores access some variables in master-core
simultaneously, and the whole performance may decrease suddenly. The popular idea
is to increase the ratio of computing load to memory access in two ways, one is to read
or write larger data block than 256 bytes between LDM and DRAM [14], another is to
parallel with only part of slave-cores, while the latter results in slave-cores waste.

But for POP2 in high resolution under large scale processes, especially, for 2D-
array computing kernels, the size of 2D arrays are fairly small, they are not suitable to
be distributed to many slave-cores. Otherwise, the performance of the athreaded 2D-
array computing kernels may be worse than the original codes (Fig. 4). In fact, the
2D data distributed to each process is less than 24 × 24 × 8 Bytes, the whole data
block distributed to each slave-core is less than 72 bytes. So it is a problem to distribute
2D-array computing tasks to slave-cores effectively.

After the 2D-array computing related kernels in POP2 codes carefully analyzed, a
slave-core partition-based parallel method is proposed, which can distribute different
independent 2D-array computing kernels to run at different slave-core partitions simul-
taneously. That is to say, a Multiple Program Multiple Data (MPMD) programming
pattern is implemented through spawning multiple tasks to multiple Shenwei slave-
core partitions. The original 2D-array computing kernels are independent and parallel
in essence, but they have to run serially just because of the traditional Single Program
Multiple Data (SPMD) programming restriction in Fig. 5 (left). Through this slave-core
partition method, each 2D-array kernel can be loaded to a different slave-core partition

282 Y. Zeng et al.

advu
hdiffu

Fig. 4. The athreaded 2D-array computing kernels get negative speedup to the original master-
core codes under Test2, and the performance of advu is much worse than that of hdiffu.

at the same time in Fig. 5 (right), thus the slave-cores are fully utilized, and the data
size distributed to each slave-core is not too small. In this way, it is naturally hoped to
achieve a good performance.

0

23
24

47
48

63

Kernel_
A

0

23
24

47
48

63

Kernel_
BCall Kernel_B

Call Kernel_A

Call Kernel_C

0

23
24

47
48

63

Kernel_
C

load to slave-cores

return to master core

load to slave-cores

load to slave-cores

return to master core

return to master core

main program

serial run

main program

call kernel_A

call kernel_B

call kernel_C

main program

load to slave-cores

return to master core

kernel_B

kernel_A

kernel_C

slave-core MPMD

0

23

24

47

48

63

Fig. 5. The original serial flow of a computing kernel on SW 26010 many-core (the left), and a
parallel flow of it with slave-core partition (the right).

To implement the above slave-core partition method, there are two kind of interface
functions available on Sunway TaihuLight supercomputer. One is athread_create and
athread_wait, another one is athread_spawn and athread_join, and each one has its special
advantages and disadvantages. Both of them need to redesign the different kernel codes
into one large kernel. If the kernels are located in different source files, this would bring
much extra work. For athread_create and athread_wait, tasks are distributed by calling
the athread_create function one by one in master.c (see Fig. 6(a)), which is much flexible
in coding, while its performance is limited. For athread_spawn and athread_join, tasks
are distributed by calling athread_spawn function only once in master.c, and the slave-
core needs to judge and match its own task (see Fig. 6(b)), while its performance is much
effective than that of the athread_create and athread_wait. So finally, the athread_spawn
and athread_join mode is applied.

Redistributing and Optimizing High-Resolution Ocean Model 283

master.c slave.c

Task distribution
function advuhdiffu()
{
call create (slave_par1,
 s_advu,…);
call create (slave_par2,
 s_hdiffu,…);
call wait();
return;
}

slave_par1
function s_advu()
{
…
}

slave_par2
function s_hdiffu()
{
…
}

master.c

slave.c

function advuhdiffu()
{
call spawn(adhdu,…);
call join();
return;
}

slave_par1
function s_advu()
{

}

slave_par
function s_hdiffu
()
{
…
}

Task
distribution
function adhdu()
{
if (in slave_par1)
 call s_advu();
elseif (in
slave_par2)
 call s_hdiffu();
endif
return; }

(a) athread_create + athread_wait. (b) athread_spawn + athread_join.

Fig. 6. Skeleton of the two different methods with athread programming interface to implement
slave-core partition on SW 26010 many-core.

Tavg Variables Output. These codes are centrally distributed in the subroutine baro-
clinic_driver of baroclinic.F90 and the subroutine advt of advection.F90. Most of the
tavg variables are independent and each output calls the same subroutine accumu-
late_tavg_field, so they can be written out in parallel mode with any order.

In this case, the main flow of the codes is kept. The dominant work to do is to
select a good partition with balanced number of slave-cores, especially, when there are
a lot of tavg variables to output. So different slave-core partitions can get a fairly well
load balance. The performance of the tavg variables output optimized with slave-core
partitions in subroutine baroclinic_driver is given in Fig. 7(a).

It is shown that the speedup ratios of Test1 with the optimized kernel to the original
kernel is more than 7.0x, the speedup ratios of Test2 with the optimized kernel to the
original kernel is more than 5.0x. So the speedup ratio is lessened when the processes
grows larger, while it still has positive speedup.

Right Terms Computing in the Primitive Equations. After time discretization in
POP2 model, the resulting baroclinic momentum equations also include some right
terms to be computed, such as momentum advection, horizontal friction, vertical fric-
tion and metric terms [3]. Almost each one of the right terms is implemented in an
individual subroutine, and when it comes to computing, the corresponding subroutines
are called in subroutine clinic of baroclinic.F90.

For this case, in order to apply the slave-core partition method, it almost needs to
redesign the flow chart thoroughly to spawn many subroutines at once time, which brings
a lot of extra work. Nevertheless, the total run time of these 2D-array computing kernels
gets a positive speedup in Test2 with large processes, and some kernels’ costs are hidden
by the dominant kernels.

The whole performance of advu and hdiffu optimized by the slave-core partition is
given in Fig. 7(b). It is shown that the speedup ratios of both Test1 and Test2 with the
optimized kernels to the original kernels are still more than 3.0x.

The slave-core partition is also applied for tracer computing, which includes advt,
hdifft, vdifft, etc.

284 Y. Zeng et al.

s s s s

Fig. 7. Performances of slave-core partitions on SW26010 under Test1 with 1,024 processes and
Test2 with 16,800 processes. (a) Costs of tavg variables’ output in baroclinc.F90. (b) Total costs
of advu and hdiffu with significant improvement compared with that of 2D-array based loop in
Fig. 4.

Under the above slave-core partition method, the flow chart of advection and diffusion
computing kernels in baroclinic portion is redesigned, and the corresponding F90 source
files are thoroughly refactored. So these major kernels are newly computed in parallel
mode, while not the original serial mode. The original and redesigned flow charts are
schemed in Fig. 8.

baroclinic

kpp

tracer_update

clinic

hdifft

advt

vdifft

advu

gradp

hdiffu

vdiffu

baroclinic

kpp

tracer_update

clinic

hdifft advt vdifft

advu hdiffu

vdiffugradp

Fig. 8. Original and refactored flows of some major portions in baroclinic, applied with slave-core
partitions so many 2D-array kernels are computed in parallel mode.

After the above, the scalability and simulation speed of high-resolution POP2 model
is greatly improved, but there is still a gap to the demanded simulation speed. When the
main flow chart of POP2 is focused again, it is found that there are still some optimization
ways for the high-resolution Tests under consideration. Although case-oriented, they are
effective in improving simulation speed.

Redistributing and Optimizing High-Resolution Ocean Model 285

4.2 Grid Decomposition and Block Distribution

In POP2, the full horizontal domain with size (nx_global, ny_global) is broken into
many subdomains or blocks. The mapping of blocks distributed to processes or nodes
can be performed using either a space-filling curve (SFC) distribution to try to give all
processes an equal amount of work and just compute blocks without land, or a Cartesian
distribution to ensure that the block’s north, south, east and west neighbors remain the
nearest neighbors. The SFC distribution draws a curve through the set of blocks in a way,
which maintains locality and can more effectively balance both the computation load
and the communication cost. While the SFC algorithm is supported for all resolutions,
it is particularly effective at reducing the cost of high-resolution simulations.

In our three tests, the SFC is set as the distribution method of blocks to processes
for load balancing, and different block sizes can result in different performances. If
condition ‘POP_AUTO_DECOMP = true’ is satisfied, the original version of POP2
divides the grid automatically (nxblock = 24, nyblock = 28) and the simulation speed
is just 1.43 SYPD with 18,300 processes under Test3. The active ocean blocks that
involved the solution are about 70% of the total 18,000 blocks that divided from global
grids under the nxblock = 24 and nyblock = 28, so the processor did not achieve the
maximum utilization and the simulation speed can not reach the expected performance.
After carefully analyzed, the numbers of active ocean blocks and processes are about
equal, then the processes can drive to the highest utilization possible. So the block size is
manually assigned as nxblock = 20 and nyblock = 24, the active ocean blocks is 18,285
that equal to number of processes, and the simulation speed with 18,300 processes rises
to 1.89 SYPD. This improvement may be similar to that in Dennis [11].

Moreover, there are three distribution methods of blocks to processes that can be
selected in POP2, and different distributions can be specified for the baroclinic portion
and the barotropic portion. Different distribution methods have different data distribu-
tions on processes. So this would bring an additional step to match the blocks of the
barotropic portion to the blocks of the baroclinic portion before solving the barotropic
press elliptic equation, and verse visa after the solver finished. Two parts are related with
the block distribution match, one is passing variables from the baroclinic portion to the
barotropic portion, and another is updating variables back from the barotropic portion
to the baroclinic portion after the barotropic solver has finished. At large process scale,
this is very exhaustive. Under the test case, the baroclinic distribution is the same as the
barotropic distribution, the above block distribution exchange between the barotropic
portion and the barotropic portion could be omitted.

According to the above idea, the POP_SolversMod.F90 is modified. After tested
under Test3, the time cost of barotropic portion is decreased from 116 s to only 56 s with
a 2.0x speedup ratio.

5 Speedup Ratio and Scalability

The high-resolution POP2 coupled in CESM model is ported to the Sunway TaihuLight
supercomputer. Some new changes of CESM can be found in Meehl and Yang [20].
Based on the ocean circulation model POP2 successfully ported, some speedup ratio
tests for the master-core version of POP2 are carried out.

286 Y. Zeng et al.

The test results are shown in Table 2. For different process numbers, the global
domain with 3600*2400 grids is decomposed into many blocks with different block sizes.
The simulation speeds of POP2 model in the high-resolution CESM G-compset almost
approach a linear trend within 18,300 MPI processes, in which the speedup ratio increases
as the number of processes increases.

Table 2. Test results under different cases of the original POP2 on Shenwei master-cores.

Grid size: 3600 * 2400 * 62, AUTO_DECOMP = true
time step: dt_count = 500, simulated days = 5

No. Number of processes Block size Computing time (s) Simulation speed (SYPD)

1 1024 76*52 9624.670 0.104

2 6124 28*54 1896.319 0.495

3 9196 24*54 1850.520 0.627

4 12248 34*34 1441.764 0.803

5 15004 29*29 1519.944 0.90

6 16800 28*28 898.075 1.26

7 18300 24*28 785.698 1.43

With the finally athreaded and optimized POP2 model in CESM high-resolution G-
compset running for 5 simulated days, a simulation speed of 0.57 SYPD without output
based on 1,024 Shenwei MPI processes is achieved, and the speedup ratio to the original
Shenwei master-core version of POP2 is over 5.4x.

With the finally athreaded and optimized POP2 in CESM high-resolution G-
compset for 5 simulated days, a simulation speed of 5.5 SYPD without output
based on 18,300 Shenwei processes is achieved, and the speedup ratio to the orig-
inal Shenwei master-core version of POP2 is still over 3.8. The costs of different
major kernels are shown in Fig. 9. BAROCLINIC, BAROTROPIC and STEP are the
remained three largest timing-cost parts in the finally optimized POP2. Also, the timing
costs of ADV_MOMENTUM, VMIX_E_MOMEMTUM, VMIX_I_ MOMENTUM,
HMIX_T_DEL4, VMIX_E_TRACER and VMIX_I_TRACER are hidden by slave-core
partition method.

While improving the simulation speed of POP2 model, we must guarantee the
model’s accuracy. Firstly, the values of the computed or updated variables in each com-
puting kernel are checked after it is ported or optimized, with them of the original
master-core version, to make consistent in the precision range. In fact, the variables’
values in some athreaded kernels have no difference to the original version, and most
of the relative differences of the variables’ values in the athreaded kernels are less than
10−15, and several relative differences of them are between 10−11 and 10−15.

Redistributing and Optimizing High-Resolution Ocean Model 287

250

200

150

100

50

0

Ru
n

tim
e

s

STEP

BAROCLINIC

VMIX_KPP

HMIX_T_DEL4

ADV_TRACER

VMIX_E_TRACER

ADV_MOMENTUM

HMIX_M_DEL4

VMIX_E_MOMENTUM

VMIX_I_MOMENTUM

VMIX_I_TRACER

BAROTROPIC

HALO_UPDATE

Fig. 9. Timing costs of major kernels in the original and optimized POP2 based on 18,300 MPI
processes with SW26010 many-core, for each item the left bar is the cost of the original version
of POP2 and the right bar is that of the finally ported and optimized version.

6 Conclusion and Discussions

The ocean model POP2 coupled in CESM is successfully ported to Sunway TaihuLight
supercomputer. Firstly, the POP2 full horizontal domain is broken into many blocks of
defined size and get a good load balancing performance. Moreover, by applying fine-
grained athreaded programming techniques, proposing a slave-core partition method
and redesigning the flows of some main 2D-array computing kernels, combining some
additional strategies for the underlying G-compset case, the simulation speed of the
finally optimized POP2 model can achieve 5.5 SYPD without output in high-resolution
CESM G-compset, and its speedup ratio to the original Shenwei master-core version is
more than 3.8x with 18,300 processes. It could strongly support the CESM to simulate
long-term climate changes.

There are still some chances to improve the MPI communications in the baroclinic
portion and the barotropic portion, and to readjust the PCSI solver for Shenwei many-
core. So a more larger simulation speed may be expected. Furthermore, the output scheme
of time-averaged history files can reduce the simulation speed. So optimizing the output
scheme may be another effective means.

Through the athreaded POP2 model, it shows that the athread interface is more
efficient in performance than the OpenACC interface under Shenwei many-core infras-
tructure. But the workload of coding is large and tiresome, and it is much more for mixed
computation with many different-dimension arrays and for slave-core partition. A code
auto-generation tool is important for further research, for example, similar to Muranushi
[21] and Zhu [22].

Acknowledgments. We thank the anonymous referees for their valuable comments and sugges-
tions to improve this paper. This research is supported by the Key R & D program of Ministry
of Science and Technology of China (2016YFB0201100), Shandong Province Innovative Pub-
lic Service Platform Project (2018JGX109), Major projects of Aoshan Science, Technology and
Innovation Program (2018ASKJ01) and the “Colleges and Universities 20 Terms” Foundation of
Jinan City, China (2018GXRC015).

288 Y. Zeng et al.

References

1. Dennis, J.M., Vertenstein, M., Jacob, R.: Computational performance of ultra-high-resolution
capability in the Community Earth System Model. Int. J. High Perform. Comput. Appl. 26(1),
5–16 (2012)

2. About CESM. http://www.cesm.ucar.edu/about
3. Smith, R., Gent, P., Briegleb, B., et al.: The parallel ocean program (POP) reference manual.

Technical report LAUR-10-01853. Los Alamos National Laboratory, Los Alamos (2010)
4. Zhang, L., Zhao, J., Wu, J., et al.: Parallel computing of POP ocean model on quad-core Intel

Xeon cluster. Comput. Eng. Appl. 45(5), 189–192 (2009)
5. Song, Z., Liu, H., Lei, X., et al.: The application of GPU in ocean general circulation mode

POP. Comput. Appl. Softw. 27(10), 27–29 (2010)
6. Guo, S., Dou, Y., Lei, Y.: GPU parallel optimization of the oceanic general circulation model

POP. Comput. Eng. Sci. 34(8), 147–153 (2012)
7. Zhu, R., Zhao, W., Chen, D.: The application of the SIMD optimization in ocean general cir-

culation model POP. In: International Conference on Computer Science and Service System,
Nanjing, China, pp. 1749–1753 (2012)

8. Zhao, W., Lei, X., Chen, D., et al.: Porting and application of global eddy-resolving parallel
ocean mode POP to SW supercomputer. Comput. Appl. Softw. 31(5), 42–45 (2014)

9. Werkhoven, B., Maassen, J., Kliphuis, M., et al.: A distributed computing approach to improve
the performance of the Parallel Ocean Program (v2.1). Geosci. Model Dev. 7, 267–281 (2014)

10. Hu, Y., Huang, X., Baker, A., et al.: Improving the scalability of the ocean barotropic solver
in the community earth system model. In: Proceedings of SC 2015, pp. 15–20. ACM, Austin
(2015)

11. Dennis, J.: Inverse space-filling curve partitioning of a global ocean model. In: IEEE
International Parallel & Distributed Processing Symposium, pp. 1–10. IEEE, Long Beach
(2007)

12. Fu, H., Liao, J., Xue, W., et al.: Refactoring and optimizing the community atmosphere model
(CAM) on the Sunway TaihuLight supercomputer. In: Proceedings of SC 2016. IEEE, Salt
Lake City (2016)

13. Fu, H., Liao, J., Ding, N., et al.: Redesigning CAM-SE for peta-scale climate modeling
performance and ultra-high resolution on Sunway TaihuLight. In: Proceedings of SC 2017.
ACM, Denver (2017). https://doi.org/10.1145/3126908.3126909

14. Lin, H., Zhu, X., Yu, B., et al.: ShenTu: processing multi-trillion edge graphs on millions of
cores in seconds. In: Proceedings of SC 2018. IEEE, Dallas (2018)

15. Duan, X., Gao, P., Zhang, T., et al.: Redesigning LAMMPS for peta-scale and hundred-
billion-atom simulation on Sunway TaihuLight. In: Proceedings of SC 2018. IEEE, Dallas
(2018)

16. Hu, W., et al.: High performance computing of DGDFT for tens of thousands of atoms using
millions of cores on Sunway TaihuLight. Sci. Bull. (2020). https://doi.org/10.1016/j.scib.
2020.06.025

17. Jones, P.W., Worley, P.H., Yoshida, Y., et al.: Practical performance portability in the Parallel
Ocean Program (POP). Concurr. Comput. Pract. Exp. 17, 1317–1327 (2005)

18. Large, W., McWilliams, J., Doney, S.: Oceanic vertical mixing: a review and a model with a
nonlocal boundary layer parameterization. Rev. Geophys. 32(4), 363–403 (1994)

19. Huang, X., Tang, Q., Tseng, Y., et al.: P-CSI v1.0, an accelerated barotropic solver for the
high-resolution ocean model component in the Community Earth System Model v2.0. Geosci.
Model Dev. 9(11), 4209–4225 (2016). https://doi.org/10.5194/gmd-9-4209-2016

20. Meehl, G., Yang, D., Arblaster, J., et al.: Effects of model resolution, physics, and coupling on
southern hemisphere storm tracks in CESM1.3. Geophys. Res. Lett. https://doi.org/10.1029/
2019GL084057

http://www.cesm.ucar.edu/about
https://doi.org/10.1145/3126908.3126909
https://doi.org/10.1016/j.scib.2020.06.025
https://doi.org/10.5194/gmd-9-4209-2016
https://doi.org/10.1029/2019GL084057

Redistributing and Optimizing High-Resolution Ocean Model 289

21. Muranushi, T., Hotta, H., Makino, J., et al.: Simulations of below-ground dynamics of fungi:
1.184 pflops attained by automated generation and autotuning of temporal blocking codes.
In: Proceedings of SC 2016, pp. 23–33, Salt Lake City, USA (2016)

22. Zhu, X., Zeng, Y., Wei, Y., et al.: An auto code generator for stencil on SW26010. In: IEEE 21st
International Conference on High Performance Computing and Communications, pp. 182–
190. IEEE, Zhangjiajie (2019)

23. Chen, J.: Research on algorithm design and optimization methods of molecular biology
applications for the domestic Sunway manycore system. Doctorial dissertation, University of
Science and Technology of China, Hefei, China (2019)

Performance Optimization for Feature
Extraction Section of DeepChem

Ke Zhan1, ZhongHua Lu1(B), and YunQuan Zhang2(B)

1 Computer Network Information Center, Chinese Academy of Sciences,
Beijing, China

zhankecas@gmail.com, zhlu@sccas.cn
2 State Key Laboratory of Computer Architecture,

Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
zyq@ict.ac.cn

Abstract. Based on the popular deep learning technique, the authors
at Stanford implement DeepChem as an open source methods for the
research in the fields of drug discovery, biology and so on. For the
performance problem of training process of DeepChem neural network,
this paper rebuilds the original serial feature extraction algorithm of
DeepChem and optimizes the rebuilt serial algorithm based on the mul-
tiple processes algorithm. The experiment results show that the parallel
algorithm achieves 15.38× speedup at the best compared with the serial
algorithm. For the future work, first, in addition to the multiprocessing
package, the other packages such as concurrent, subprocess and so on
could be considered to optimize the feature extraction algorithm; Sec-
ond, the serial and parallel algorithms run slower when the data block
size is 150 compared with the other block sizes, optimization of train-
ing process performance for the smaller data block size is the second
direction in future work.

Keywords: DeepChem · Feature Extraction · Multiple Processes
Algorithm

1 Introduction

Computers and humans are appropriate to different kinds of work constitution-
ally. For instance, computing the product of two large numbers is very easy
for computers, but this task is very difficult for humans; in other words, image
segmentation is a ordinary task for humans, but this segmentation task is very
difficult for computers [1]. As recently as about 10 years ago, the deep learning
algorithms make great breakthrough. Some few cases lie in our understanding of
human neural networks. The typical example is convolutional neural networks
(CNN) for image recognition [2–4]. The structure of CNN was stimulated by the
neurons organization experiment [5]. However, humans don’t understand the
biological networks completely. The fact that humans only have limited knowl-
edge of how the brain really works doesn’t affect the great progress in artificial
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 290–304, 2020.
https://doi.org/10.1007/978-3-030-60245-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_20

Performance Optimization for Feature Extraction Section of DeepChem 291

neural networks. As the increasing application of neural network in the fields
such as natural language processing, computer vision and so on, humans expect
that neural network will have higher accuracy and faster speed.

A neural network model could be regarded as a imitation of the learning
process in living organism, there is also one more direct comprehension of neu-
ral network as computational graphs. Researchers have proposed an efficient
entropy-aware I/O framework DeepIO [6] for large scale deep learning on high
performance computing system. The overall goal of this framework is to coordi-
nate the use of memory, communication and I/O resources for efficient training
of datasets. The evaluation results show that DeepIO bring better performance
than the memory-based storage systems obviously. The same team proposes
Multi-Client DeepIO [7] to support multiple clients on a single node. To support
multiple clients on a single node, the authors modify the DeepIO so that the
server on a node dispatches the elements to all read buffers and handle requests
from all clients in a round robin manner.

Deep learning is still in its preliminary stage among a whole variety of tech-
nologies used in the fields of drug discovery and design [8–10]. Because of unique
properties of deep learning, it has been applied not only in the prediction of
compound activity and toxicity, bur also in the generation of virtual compound
library. The predictive ability of deep learning has no obvious advantage com-
pared with the traditional machine learning methods. But deep learning can
extract features automatically, doesn’t require manual summarization of data
features. Deep learning is developing rapidly, and methods such as unsupervised
learning that don’t rely on a large number of labeled data are undergoing more
perfect gradually. It is expected to better assist in the development of new drugs.

Deep learning is one popular method in the fields of mining existing knowl-
edge and finding the relevance of existing knowledge in massive data [11,12].
High-throughput imaging is usually used for screening chemical compounds
based on morphologic characteristics transformation. The set of features which
include morphological shape, intensity, spatial metrics, can be used as an image-
based compound fingerprint. The compound fingerprints can group compounds
and genes based on pharmacological mechanism and functional similarity respec-
tively.

The researchers use Macac method to maps all tasks to the same latent
space. For the Oncology project, in the glucocorticoid receptor high-throughput
imaging assay, 60000 compounds are ranked, 124 compounds are submicromolar
hits, the results show that 50-fold enrichment over the initial high-throughput
screen; for the central nervous system project, 500000 image-annotated com-
pounds are used to predict activity. 289-fold enrichment over the hit rate of the
initial high-throughput screen because of 36 compounds are submicromolar hits
finally [13].

DeepChem [14] is an open source software package based on TensorFlow [15],
which aims to make the use of deep learning more popular in the fields of drug
discovery and biology. The typical applications include creating graph convolu-
tional models on the Tox21 dataset [16], building regression models for predict-

292 K. Zhan et al.

ing the Ki of ligands to a protein, using machine learning technology to model
protein-ligand affinity and so on. The molecules are usually represented as Sim-
plified Molecular-Input Line-Entry System (SMILES) [17–20] format in the field
of chemical informatics. The traditional deep learning algorithms accept fixed
length datasets as the input. To build deep learning model from SMILES for-
mat datasets, researchers must extract available information into a fixed dimen-
sional representation. These extraction processes are called featurization. Feature
extraction operations will be invoked in the early stage during the run time of
deep learning models. For the large size files, the feature extraction operations
will take a long time. This paper optimizes the feature extraction operations of
DeepChem using multiple processes algorithm. We test the performance of the
serial algorithm and the parallel algorithm using four groups experiment. The
experiment results show that when the data block size is set to 8192, the parallel
algorithm achieves 15.38× speedup at the best.

The main contributions of this paper are:

– First: we rebuild the serial algorithm of feature extraction section of
DeepChem. The nested structured class DataLoader and Python generator
statement are reconstructed to facilitate parallelization.

– Second: we optimize the rebuilt serial algorithm using multiple processes algo-
rithm. The experiment results show that the performance improves 15.38×
at the best.

– Third: two different packages of threading and multiprocessing in Python are
used to implement the parallel feature extraction algorithm in this paper,
the performance has no improvement when using threading package, but for
the multiprocessing package, the performance of parallel algorithm improves
significantly.

The following sections of this paper are organized as: The Sect. 2 introduces
the related optimized work for DeepChem and the motivation of this paper. The
Sect. 3 summarizes the rebuilt serial algorithm and the optimized parallel algo-
rithm. The Sect. 4 describes the experiment environment and the experiment
results, gives explanations to the experiment results. The Sect. 5 draws a con-
clusion and discusses the future work. The section acknowledgment expresses
gratitude.

2 Related Work and Motivation

Researchers can train bigger models and use larger datasets by using faster train-
ing methods [21]. Google brain proposes data echoing algorithm [22] to speed
up training. The data echoing paper gives two directions to make neural net-
work training faster, first, make the non-accelerator work faster; second, reduce
the amount of non-accelerator work needed to achieve the desired predictive
performance. This paper optimizes the feature extraction section of DeepChem
to speed up the training which belongs to the first direction, make the non-
accelerator work faster. We use multiple processes algorithm to divide file, every

Performance Optimization for Feature Extraction Section of DeepChem 293

process handle each section of the file independently to speed up the feature
extraction operations.

For the implementation of the parallel feature extraction algorithm, we com-
pare the performance results using the threading package [23–25] and the mul-
tiprocessing package respectively. The results show that the parallel algorithm
performance improves 15.38× when using multiprocessing package but the per-
formance has no improvement when using threading package.

3 Algorithms and Implementations

The primal serial program is from github website of DeepChem [26]. The serial
featurization algorithm is summarized as the following Algorithm1. The main
function calls the unlabelled test function firstly in the line 28. From the line 23
to the line 25 in the function of unlabelled test, reads the input data from CSV
format file. Initializes the class object featurizer and loader from the class Con-
vMolFeaturizer and CSVLoader respectively. The line 26 calls the class function
featurize with the input file as the parameter.

Algorithm 1. Serial Featurization Algorithm

Input: Large Size CSV format Data
Output: DiskDataset
1: Class DiskDataset(Dataset):
2: Initialize
3: def CreateDataset(shard generator):
4: metadataRows ← []
5: FOR shard num, (X, y, w, ids) in enumerate(shard generator)
6: metadataRowsAppend(DiskDatasetWriteDataToDisk)
7: ENDFOR
8: metadata df ← construct metadata(metadata rows)
9: save metadata(metadata df)

10: return DiskDataset(data dir)
11: Class DataLoader():
12: def featurize(shard):
13: Initialize
14: def shard generator():
15: FOR shard num, shard in enumerate()
16: X, valid inds ← self.featurize shard(shard)
17: ids ← ids[valid inds]
18: y, w ← convert df to numpy
19: yield X, y, w, ids
20: ENDFOR
21: return DiskDataSetCreateDataset(shard generator)
22: def unlabelled test():
23: inputfile ← Large Size CSV format Data
24: featurizer ← ConvMolFeaturizer()

294 K. Zhan et al.

25: loader ← data loader.CSVLoader(featurizer = featurizer)
26: loader.featurize(inputfile)
27: main()
28: unlabelled test()

From the line 12 to 21, lists the definition of featurize function. This function
performs a feature extraction operation on each data block, the data block is
represented by the shard in DeepChem. From the line 14, the shard generator
function is nested in the function featurize. And there is one yield state-
ment in the function shard generator. The yield statement represents that this
shard generator function is a generator. For the generator in Python, it is a
different function from the normal function which includes yield statement and
returns a generator iterator. The generator function is originally a function pro-
vided by Python to facilitate the use of iterator. iterable is one object which
implement the iter () method. This method will return one iterator object. For
the iterable, it is an object which returns one member at one time. Some iterable
store all the values in the memory, for example the list, some iterable don’t store
all the values in the memory, for example, the iterator. The iterator is an object
which implement the iter and the next methods. The iter method returns
the iterator object itself. And the next method includes two operations: first,
update the status of the iterator, make it point to the next item for the next
invoke; second, return the current values. These two peculiarities that nested
function and generator make it difficult to execute parallel operations for the
original serial algorithm. For the convenience of parallelization, we rebuild this
featurize function. The feature extraction results are saved in the function of
CreateDataset.

From the line 3 to 10, defines the function of CreateDataset. For every data
block, the CreateDataset function appends the generated information to the list,
constructs the metadata and saves the results data to the appointed directory.
This CreateDataset function provides the method to verify the correctness of
parallel algorithm. We check the saved results between serial algorithm and
parallel algorithm, the saved results are the same. The same results represent
the correctness of the parallel algorithm.

For the parallel feature extraction Algorithm2, from the line 44 to 46, the
algorithm initializes the class objects and variables. The variable shard size in
line 46 sets the size of data block, which represents the file line number handled
by one feature extraction operation. shard size could be set to different values.
Different size of one shard can affect the program performance. The affected
results will be discussed in the experiment Sect. 4.

The line 47 calls the function featurize to extract the feature information
from the data block. The rebuilt ParaCreateDataset function is invoked by the
function featurize in the line 42.

Performance Optimization for Feature Extraction Section of DeepChem 295

Algorithm 2. Parallel Featurization Algorithm

Input: Large Size CSV format Data
Output: DiskDataset
1: Class DiskDataSet():
2: Initialize
3: def ShardGeneratePROCESS(inputfile, shard size):
4: StartBlockId ← set the data block start id handled by current process.
5: EndBlockId ← set the end id.
6: shard num ← 0
7: FOR dataframe in pandas.read csv(intputfile, shard size)
8: IF(shard num ≥ StartBlockId and shard num ≤ EndBlockId):
9: df ← df.replace(numpy.nan, regex=True)

10: X, valid inds ← featurize smiles df(shard)
11: ids ← ids[valid inds]
12: basename ← shard-str(shard num)
13: write data to disk(base name, data dir)
14: ELSE:
15: shard num += 1
16: ENDIF
17: ENDFOR
18: return
19: def ParaCreateDataset(inputfile, ProcessNum, shard size):
20: FileNum ← length(inputfile.ReadLines)
21: IF(FileNum - 1) %the shard size == 0:
22: BlockNum ← (FileNum - 1) / shard size
23: ELSE:
24: BlockNum ← int((FileNum - 1) / shard size) + 1
25: ENDIF
26: ProcessBlockNum ← blocks number handled by every process except

the last process
27: LastProcessBlockNum ← blocks number handled by the last process
28: ShardGProcesses = []
29: FOR i in range(ProcessNum):
30: ShardGWriteP = Process(target = ShardGeneratePROCESS)
31: ShardGWriteP.start()
32: ShardGProcesses.append(ShardGWriteP)
33: ENDFOR
34: FOR process in ShardGProcesses:
35: process.join()
36: ENDFOR
37: construct metadata(metadata rows)
38: save metadata(data dir)
39: return DiskDataset(data dir)
40: def featurize():

296 K. Zhan et al.

41: Initialize
42: return ParaCreateDataset(inputfile, ProcessNum, shard size)
43: main()
44: feature ← featureloader.ConvMolFeaturizer()
45: featureloader.CSVLoader(featurizer = feature)
46: shard size ← set one number
47: loader.featurize(shard size)
48: return

From the line 19 to 39, ParaCreateDataset starts and synchronizes the mul-
tiple processes. From the line 20 to 27, compute the total file number and the
blocks number to prepare for the task partition. From the line 29 to 33, start
multiple processes, one process handle one section of the original file, several pro-
cesses handle several sections simultaneously, every process runs independently.
When the maintenance overhead of processes is less than the overhead required
for performance improvement, the performance of algorithm will improve. From
the line 34 to 36, synchronize the multiple processes to ensure that all the pro-
cesses complete their own tasks. The target function ShardGeneratePROCESS
is defined in the line 3 to 18. The line 4 to 6 set the range of data block identifier.
Every process reads the different section of the original file and extracts feature
information from each data block independently in the line 7 to 17.

For example, for the input dataset file, the parallel algorithm divides the
file according to the file size and the number of CPU cores, assigns the task
in a balanced manner. Since the parallel algorithm is constructed based on the
rebuilt serial algorithm, the parallel algorithm runs correctly.

4 Experiment

DeepChem is implemented by the language of Python. There are threading,
multiprocessing, concurrent, subprocess, sched and queue packages to support
the concurrent operations in Python language [27–29].

For the threading package, there are two methods to run a separate thread,
first, passing a callable object to the class constructor; second, overriding the run
method in a subclass. Once the main program creates a thread object, invokes the
start method to start the activity of the thread. Global Interpreter Lock (GIL)
is used in the CPython interpreter as one synchronization mechanism. The GIL
will make the interpreter run multiple threaded program more convenient, but
at the expense of parallel performance degradation at the same time. Despite
the impact of the GIL, for the I/O intensive algorithm, the threading package
could improve the performance of the Python program [23,24].

The multiprocessing package could run on cross platforms such as UNIX and
Windows. This package spans and manages processes using the API functions
similar to the threading package. There are also objects such as Pool in the mul-
tiprocessing package but the threading package have no such objects. The Pool
object provides an advantageous method to parallelize the execution of a func-
tion by the way of multiple input values. At the mean time, the multiprocessing

Performance Optimization for Feature Extraction Section of DeepChem 297

package uses subprocesses to substitute for threads which avoid the affect of the
Global Interpreter Lock.

We compare the experiment results of using the threading package and the
multiprocessing package, the results demonstrate that the performance of par-
allel algorithm has no improvement when using the threading package, even the
performance reduces. So we choose the multiprocessing package as the ultimate
package to implement the Algorithm 2: Parallel Featurization Algorithm.

We compare the intermediate results of the original serial algorithm and the
parallel algorithm, the comparison results show that the intermediate results
of the two are the same. This comparison results verify the correctness of the
parallel algorithm.

Based on the analysis of the experiment results, we find that the parallel
algorithm performance improves 15.38× at the best when the algorithm runs on
the computing node2 and the data block size is 8192 for the 885 MB File4.

4.1 Experiment Environment

We use two computing nodes as the experiment platforms. The detailed config-
ured information of the two nodes are listed in the Table 1. The main difference
between the two nodes is the number of CPU cores. The first node has 24 logical
CPU cores. The second node has 40 logical CPU cores.

Four files are used to test the performance of serial feature extraction algo-
rithm and parallel feature extraction algorithm.

The dataset file is downloaded using this program [30]. The data size of the
original file is only 708 KB, we copy the file contents to generate three larger files
to test the performance of the serial and parallel algorithms. With the addition
of the original file, we name these files as File1, File2, File3, File4 respectively.
The size of the other three generated files are 14 MB, 222 MB, 885 MB respec-
tively. For every file, we run the serial algorithm and parallel algorithm on two
computing nodes which we name these computing nodes as node1, node2 respec-
tively.

4.2 Experiment Results and Analysis

We sum up the performance experiment results as the following four groups.

First File Results
The size of the first original file is 708 KB. Serial algorithm and parallel algorithm
are run on the two computing nodes. The experiment results are listed in the
Fig. 1.

For the example of the Fig. 1, the Serial in the X axis represents the serial
algorithm. The other numbers such as 2, 4 and so on represent the processes
number when the parallel feature extraction algorithm runs. The first computing
node has 24 logical CPU cores, and the second computing node has 40 logical
CPU cores, so we set 24 processes and 40 processes at most on the first node
and second node respectively. The Y axis represents the run time of the serial

298 K. Zhan et al.

Table 1. Computing nodes configuration

Configa ComputeNodes

node1 node2

Archb x86 64 x86 64

CPUModelNamec E5-2620 E5-2640

CacheSized 15360KB 25600 KB

PhysicalCPUse 2 2

Coresf 6 10

Processorsg 24 40

Memoryh 264037876KB 264039828 KB

OSi 16.04 16.04

Kernelj 4.4.0-169 4.4.0-96
aConfig: Configure information of the two comput-
ing nodes.
bArch: Architecture of the CPU.
cCPUModelName: Intel(R) Xeon(R) CPU.
dCacheSize: Cache size of CPU.
ePhysicalCPUs: Number of physical CPUs.
fCores: Number of CPU cores.
gProcessors: Number of logical CPUs.
hMemory: Memory capacity.
iOS: Ubuntu version.
jKernel: OS Kernel version.

Fig. 1. File1 Performance Results Running On node1 and node2

Performance Optimization for Feature Extraction Section of DeepChem 299

and parallel algorithms indicated by the seconds. The sideward legend 150node1
represents the current curve stem from the experiment results when the serial
and parallel algorithms run on the node1 and the size of the data block is 150.
The other legends have the similar meaning. For the Fig. 2, 3, 4, they have the
similar signifier.

For the curve 150node2 in the Fig. 1, when the block size is 150 and the serial
algorithm runs on the computing node2, the expended time is 25.795 s which is
the maximal expended time. For the curve 8192node1 and the curve 8192node2,
whether comparing serial algorithm and parallel algorithm, or comparing the
number of different processes in parallel algorithm, there is no significant change
in performance. Because for these two curves, the size of the data block is 8192,
the size of the File1 is 10000, the algorithms use up to two processes to complete
all the tasks. Given more processes, it does not help to improve the performance
of the algorithms. For the curves of 4096node1 and 4096node2, when the num-
ber of processes is 4, the performance is improved compared to 2 processes.
When the number of processes is greater than 4, there is no significant change
in performance. The reason is similar as the curves 8192node1 and 8192node2.
For the curve 150node1, the performance continues to improve as the number
of processes increases. But for the curve 150node2, when there is 40 processes,
the performance decreases compared with the performance when the number of
processes is 24. The reason is that when the size of data block is 150, there is only
67 data blocks. But there is 40 processes, the system need to provide resources
for the processes running. The number of data blocks is small, the advantages of
multiple processes can not be exerted. So compared with the 24 processes, the
performance is lower when there are 40 processes.

Second File Results
For the Fig. 2, except the curve 150node2, the results of the other curves show
that the performance improves as the number of the processes increases. When
the number of processes is 40 and the data block size is 150, the spent time
is 101.098 s, but when there is 24 processes, the spent time is 89.788 s. The
performance reduces as the number of processes increases. At the same time, for
the computing node2, we find that the serial algorithm in which the data block
size is 150 spends more time than other serial algorithm in which the data block
size is greater than 150, and for every different processes number, the parallel
algorithm runs lower when the data block size is 150 than the other cases when
the data block size is larger than 150. These two findings are verified in the Fig. 3
and 4.

Third File Results
For the Fig. 3, there are similar results with the Fig. 2. As the number of pro-
cesses increases, the run time of the algorithm continues to decrease except for
the situation when the number of the processes is 40 on the computing node2
(1323.529 s, curve 150node2). Especially, for the curve 150node2, compare the
situation when the processes number is 40 (1323.529 s) with the situation when
the processes number is 24 (522.203 s), the difference between the two time values
is more distinctive than the difference in the same curve of the Fig. 2 (101.098 s
and 89.788 s).

300 K. Zhan et al.

Fig. 2. File2 Performance Results Running On node1 and node2

Fourth File Results
For the Fig. 4, whether for the computing node1 or the computing node2, as the
processes number increase, the algorithm run time continues to decrease except
for the curve 150node2. When the processes number is 24, the run time increases
(6135.319 s) compared with the processes number 12 situation (6019.363 s).

Experiment Results Analysis
Based on the above four groups of experiment results, we summarize the results
to the Table 2. For different files and different data block size, we calculate
the performance improvement for computing node1 and node2 respectively. For
example of the first value 7.62 in the Table 2, we compute the value based on
the Fig. 1, the serial algorithm spent 16.656 s when run on the computing node1,
for different processes number, the minimum running time of the parallel algo-
rithm is 2.187 s, based on the division between these two values, the performance
improves 7.62×. For the other files, the other data block sizes, the other com-
puting node, we compute the performance improvement using the same method.
Combining all the data in the Table 2, we find that the maximum performance
improvement is 15.38× when the block size is 8192 and implement the feature
extraction for the 885 MB File4 on the computing node2.

We implement the parallel algorithm using Python multiprocessing pack-
age. We compare the performance of parallel algorithm using similar package
such as threading, the results show that the performance improves 15.38× at
the best when using the multiprocessing package, but the performance has no
improvment when using threading package. For the other similar packages, for
example, concurrent, subprocess, we will verify the performance for the future
work.

Performance Optimization for Feature Extraction Section of DeepChem 301

Fig. 3. File3 Performance Results Running On node1 and node2

Fig. 4. File4 Performance Results Running On node1 and node2

302 K. Zhan et al.

Table 2. Performance improvement

Nodea BlockSizeb File1c File2 File3 File4

node1 150 7.62 8.08 7.54 8.57

1024 5.99 8.63 8.2 9.46

2048 3.35 8.50 8.24 9.50

4096 1.90 8.09 9.47 9.81

8192 1.02 7.22 8.97 9.65

node2 150 6.19 5.37 13.07 4.78

1024 6.11 14.19 14.88 15.08

2048 3.49 13.43 14.57 12.87

4096 1.95 12.26 14.78 13.45

8192 1.07 12.59 14.90 15.38
aNode: Computing nodes.
bBlockSize: The size of the data block. The size is
represented as the lines number.
c File1: The original file, the size is 708 KB. File2,
File3, File4 are the generated files.

5 Conclusions

This paper optimizes the performance of the feature extraction operations which
can be viewed as the making non-accelerator work faster method proposed by
Google brain. For the Python nested class structure and generator statement,
we rebuild the serial algorithm and parallelize the algorithm using Python mul-
tiprocessing package. We compare the performance of the serial algorithm and
the parallel algorithm, also the performance of the parallel algorithm when using
different processes number and different data block size, the experiment results
show that the performance improves 15.38× at the best.

We test the performance of the parallel algorithm implemented by the thread-
ing package. The experiment results show that the performance has no improve-
ment. Except the threading package and multiprocessing package, the other
Python packages such as concurrent, subprocess packages and so on, they also
could be used to parallelize the serial algorithm. Whether these packages can be
useful for the parallelization of the feature extraction algorithm will be one of
the future work.

Based on the above experiment results, we find that when the data block
size is set to 150, for the three large files Fiel2, Fiel3, Fiel4, whether the serial
algorithm or the parallel algorithm under different data block sizes, the algorithm
run slower. Optimization of training process performance for the smaller data
block size should also be considered for the future work.

Acknowledgment. We thank the platform provided by Computer Network Infor-
mation Center, Chinese Academy of Sciences. Professor ZhongHua Lu and Profes-
sor YunQuan Zhang give their great support to this paper. We thank their guidance

Performance Optimization for Feature Extraction Section of DeepChem 303

and suggestions. This paper is supported by Informatization Projects of the Chinese
Academy of Sciences, Development of Operation Management and Application Soft-
ware Environment for XiongAn (HengShui) Advanced Supercomputing Center (Grant
No. XXH13515).

References

1. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L.: DeepFace: closing the gap to
human-level performance in face verification. In: Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1701–1708 (2014)

2. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images
(2009)

3. Krizhevsky, A., Sutskever, I., Hinton, G.: ImageNet classification with deep convo-
lutional neural networks. In: Advances in Neural Information Processing Systems,
pp. 1097–1105 (2012)

4. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997 (2014)

5. Hubel, D., Wiesel, T.: Receptive fields of single neurones in the cat’s striate cortex.
J. Physiol. 148(3), 574–591 (1959)

6. Zhu, Y., et al.: Entropy-aware I/O pipelining for large-scale deep learning on HPC
systems. In: IEEE 26th International Symposium on Modeling, Analysis, and Sim-
ulation of Computer and Telecommunication Systems (MASCOTS) (2018)

7. Zhu, Y., et al.: Multi-client DeepIO for large-scale deep learning on HPC systems.
In: Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis (SC 2018) (2018). Regular Poster

8. Kitchen, D.B., Decornez, H., Furr, J.R., Bajorath, J.: Docking and scoring in vir-
tual screening for drug discovery: methods and applications. Nat. Rev. Drug Dis-
cov. 3, 935–949 (2004)

9. Schneider, G., Fechner, U.: Computer-based de novo design of drug-like molecules.
Nat. Rev. Drug Discov. 4, 649–663 (2005)

10. Cumming, J.G., Davis, A.M., Muresan, S., Haeberlein, M., Chen, H.: Chemical
predictive modelling to improve compound quality. Nat. Rev. Drug Discov. 12,
948–962 (2013)

11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

12. Goyal, P., et al.: Accurate, large minibatch SGD: training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677 (2017)

13. Simm, J., et al.: Repurposing high-throughput image assays enables biological
activity prediction for drug discovery. Cell Chem. Biol. 25, 611–618 (2018)

14. https://github.com/deepchem/deepchem/tree/master/deepchem
15. https://www.tensorflow.org/
16. https://tripod.nih.gov/tox21/challenge/
17. https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
18. Neglur, G., Grossman, R.L., Liu, B.: Assigning unique keys to chemical compounds

for data integration: some interesting counter examples. In: Ludäscher, B., Raschid,
L. (eds.) DILS 2005. LNCS, vol. 3615, pp. 145–157. Springer, Heidelberg (2005).
https://doi.org/10.1007/11530084 13

19. https://en.wikipedia.org/wiki/Simplified molecularinput line-entry system

http://arxiv.org/abs/1404.5997
http://arxiv.org/abs/1706.02677
https://github.com/deepchem/deepchem/tree/master/deepchem
https://www.tensorflow.org/
https://tripod.nih.gov/tox21/challenge/
https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html
https://doi.org/10.1007/11530084_13
https://en.wikipedia.org/wiki/Simplified_molecularinput_line-entry_system

304 K. Zhan et al.

20. Jastrzebski, S., Lesniak, D., Czarnecki, W.M.: Learning to SMILE(S). In: Interna-
tional Conference on Learning Representations (2016)

21. Li, M., Zhang, T., Chen, Y., Smola, A.J.: Efficient mini-batch training for stochas-
tic optimization. In: Proceedings of the 20th ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pp. 661–670. ACM (2014)

22. Choi, D., Passos, A., Shallue, C.J., Dahl, G.E.: Faster neural network training with
data echoing. Google Brain. arXiv Preprint. arXiv:1907.05550 (2019)

23. Zhan, K., Piao, A.H.: Optimization of Ceph reads/writes based on multi-threaded
algorithms. In: 18th IEEE International Conference on High Performance Com-
puting and Communications (2016)

24. Zhan, K., Xu, L., Yuan, Z., Zhang, W.: Performance optimization of large files
writes to Ceph based on multiple PipeLines algorithm. In: 16th IEEE International
Symposium on Parallel and Distributed Processing with Applications (2018)

25. Islam, N.S., Wasi-ur Rahman, Md., Lu, X., Panda, D.K.: High performance design
for HDFS with byte-addressability of NVM and RDMA. In: Proceedings of the
2016 International Conference on Supercomputing, p. 8. ACM (2016)

26. https://github.com/deepchem/deepchem/blob/master/deepchem/data/tests/
test data loader.py

27. https://docs.python.org/3.7/library/threading.html#modulethreading
28. https://docs.python.org/3.7/library/multiprocessing.html
29. https://docs.python.org/3.8/whatsnew/changelog.html#python380final
30. https://deepchem.io/docs/notebooks/Multitask Networks on MUV.html

http://arxiv.org/abs/1907.05550
https://github.com/deepchem/deepchem/blob/master/deepchem/data/tests/test_data_loader.py
https://github.com/deepchem/deepchem/blob/master/deepchem/data/tests/test_data_loader.py
https://docs.python.org/3.7/library/threading.html#modulethreading
https://docs.python.org/3.7/library/multiprocessing.html
https://docs.python.org/3.8/whatsnew/changelog.html#python380final
https://deepchem.io/docs/notebooks/Multitask_Networks_on_MUV.html

Principal Component Analysis for Fingerprint
Positioning

Yang Zhang1, Qianqian Ren1(B), Jinbao Li2(B), and Yu Pan1

1 Department of Computer Science and Technology, Heilongjiang University,
Harbin 150080, China

renqianqian@hlju.edu.cn
2 Shandong Artificial Intelligence Institute, Qilu University

of Technology (Shandong Academy of Science), Jinan 250014, China
lijinb@sdas.org

Abstract. Due to the universal deployment of wireless LANs and the demands of
indoor location based services,Wi-Fi fingerprinting has been investigated recently
for localization. Regarding the influence of environment factors on RSSImeasure-
ments, this paper first presents fingerprint quantizationmethod to form a quantized
fingerprint database via threshold comparison. Then,we implement principal com-
ponent analysis on the quantized fingerprint and generate dimensionality reduction
fingerprint database.Basedon thesefingerprint, target localization is implemented.
Finally, a comprehensive set of simulations are presented. We study and compare
the localization accuracy under different fingerprint databases.

Keywords: Indoor localization · Fingerprinting · PCA

1 Introduction

In recent years, indoor localization has attractedwidespread attention andmany localiza-
tion methods have been proposed [1]. However, the environment factors such as noise,
signal fluctuation and obstacles presence propose challenges for the study of indoor
localization. Among the existing localization techniques, Wi-Fi fingerprinting has been
investigated and attracted continuous attention [2–5].

Wi-Fi fingerprinting is generally consisted of two stages, that’s offline stage and
online stage. During the offline stage, reference points(RPs) collect RSSI measurements
of all the detected Wi-Fi signals emitted by access points (APs) and organized them in
the of form RSSI vectors, which are stored as fingerprint database. During online stage,
an interested target collects the vector of RSSI measurements and compares it with
fingerprints in the database with a certain similarity metric, i.e. the Euclidean distance
[1, 6]. A subset of RPs whose fingerprints are most similar with the RSSI vector of the
target are chosen to participate in localization.

In this paper, we investigate the problem of Wi-Fi fingerprint-based positioning and
proposed a principal component analysis (PCA) based positioning algorithm. In the
offline stage, we first construct a RSSI fingerprint database. Regarding the influence of

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 305–313, 2020.
https://doi.org/10.1007/978-3-030-60245-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_21

306 Y. Zhang et al.

environment factors on RSSI measurements, we quantize RSSI fingerprint using thresh-
old comparison. Based onwhich, we further implement principal component analysis on
quantized fingerprint to form PCA fingerprint database. The contributions of the paper
is as followings:

(1) We construct a network model and collect RSSI measurements to form a RSSI
fingerprint database.

(2) Considering the influence of environment factors on RSSI measurements and local-
ization results, we propose a fingerprint quantitation scheme to further form a
quantized fingerprint database.

(3) We implement PCA on quantized fingerprint and choose partial elements to form
a reduced-dimension fingerprint database. Based on which, the target localization
algorithm is implemented.

(4) We construct a simulation platform and implement the proposed algorithm, the
experimental results show the excellent performance of our algorithm. Moreover,
we compare the localization accuracy under different fingerprint databases.

This paper is organized as follows. In Sect. 2, we review the related work of local-
ization algorithms. We present in Sect. 3 the deployment of Wi-Fi fingerprint-based sys-
tems. In Sect. 4, we describe the fingerprint database formation methods for positioning
in detail. We conclude by briefly our work in Sect. 5.

2 Related Work

Since RSSI is easy to measure, no additional hardware configuration is required, and the
implementation is simple,RSSI-basedmoving target tracking andpositioning algorithms
have been widely applied in recent years.Wewill make a brief review to the work related
to this paper.

Xue et al. propose a method based on RSSI mean value to locate the target [7], which
solves the problem of signal instability existing in the traditional RSSI-based positioning
technology. However, in some cases, the selected RSSI measurement value is easily
affected by the environment, resulting in greater RSSI mean value error. A partitioning
and positioning solution based on support vectormachine (SVM) is presented in [8]. This
solution uses RSSI measurements collected in the real environment to perform multi-
classification SVM algorithm. A moving target tracking and positioning algorithm is
given in [9], which measures the RSSI values between the moving target and the fixed
sensor nodes. The algorithm selects and weights RSSI measurements according to the
strength of RSSI measurements. Moreover, a propagation model is used to convert the
RSSI measurements into distance to estimate the position of the moving target timely.

Indoor radio transmission is relatively complex, as RSSI measurements are often
noisy and fluctuant. A large number of RSSI measurements are needed to ensure local-
ization accuracy, which inevitably leads to the increasing of computation and transmis-
sion amount. In order to balance the accuracy and computation cost, RSSI quantization
based localization is proposed. Studies in [10] have found that RSSI value can be reduced
from 8 bits to 2 bits without affecting positioning accuracy. Fuzzy logic is used in [11]

Principal Component Analysis for Fingerprint Positioning 307

to divide RSSI values into four regions, which reduces the uncertainty generated by
changes in indoor environment. The method in [12] applies quantization to fingerprint
positioning and used more beacon nodes to compensate the loss of quantization accu-
racy. The localization accuracy under different RSSI quantization schemes including
global 1-bit quantization, local 1-bit quantization and global 2-bit quantization is ana-
lyzed in [13], and it is concluded that using local 1-bit quantization lead to substantial
performance over a global 1-bit quantization [13].

3 System Model

In this section, we describe the deployment of a Wi-Fi indoor positioning system. The
RSSI measurements are collected in the hall of a laboratory building without too many
obstacles, thus the radio transmission environment is relatively stable. The deployment
of APs and RPs are shown in Fig. 1. To reduce the configuration cost, the Wi-Fi APs
are not densely installed. In our experiments, eight APs are installed, six APs are on the
boundary of the monitoring area and two APs are in the middle. The signals of these APs
can cover the whole monitoring area. In the deployment, the monitoring area is further
divided into multiple cells, and there exists one RP at the center of each grid cell.

Fig. 1. A site map of a Wi-Fi indoor positioning system

4 Generating Fingerprint Database for Localization

In this section, we aim to generate three kinds of fingerprint database for localization,
the first is fingerprint database on rawRSSI vectors, the second is fingerprint database on
quantizedRSSI vectors and the third is PCAbased fingerprint database.Wi-Fi fingerprint
database formation is conducted in three phases.

(1) RSSI vectors of all the detectedWi-Fi signals fromAPs atmultipleRPs are collected
to form the original fingerprint database.

(2) A quantized fingerprint database is formed via threshold comparison.

308 Y. Zhang et al.

(3) Due to the signal contributed by each AP to RPs is different, we conduct PCA on
quantized fingerprint database and select the components with higher contribution
to generate PCA based fingerprint database.

4.1 RSSI Fingerprint Database

1 2 3 4 5

sampling point

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

R
S

S
I

rssi1

rssi2

rssi3

rssi4

rssi5

rssi6

rssi7

rssi8

Fig. 2. RSSI measurements from eight APs at five RPs

In offline phase, RSSI vectors from m APs are collected at RPs. To reduce the
influence of abnormal measurements, we sample 50 times for each AP and calculate
the average as the final RSSI measurements. We number m APs as 1, 2, 3, …, m − 1
and m, respectively. Figure 2 shows the RSSI measurements from eight APs at five RPs.
Let rssiij denote the RSSI measurement from ith AP at jth RP, then we can denote the
fingerprint database fpdb as following.

fpdbn×m =

⎧
⎪⎪⎨

⎪⎪⎩

rssi11, rssi12 . . . rssi1m
rssi21 rssi22 . . . rssi21

. . .

rssin1 rssin1 . . . rssinn

⎫
⎪⎪⎬

⎪⎪⎭

(1)

In online phase, we use the weighted k-nearest neighbors scheme to locate the target.
Given the RSSI vector T = {t1, t2, …, tm} the target sampled from APs, we compare
T with the stored fingerprint using the similarity metric of Euclidean distance, which is
defined as following:

dj =
√
√
√
√

m∑

i=1

(rssiji − ti)2 (2)

Principal Component Analysis for Fingerprint Positioning 309

Let Dk= {d1, d2, …, dk} denote the distance set of k-nearest neighbor fingerprints,
we calculate the weights of k-nearest neighbors as:

ωj =
1
/
d2
j

∑k
i=1 d

2
j

(3)

Where wj is the weight value of jth nearest neighbor. Thus, the localization result is:

(x, y) =
k∑

i=1

ωi × (xi, yi) (4)

4.2 Quantized Fingerprint Database

Traditional fingerprinting positioning is mostly based on the RSS signal vectors [1, 2].
As some environment factors such as multi-path effects may bring measurement noise,
the RSSI vectors may not illustrate the distance between the target and APs. To reduce
the influence and achieve higher accuracy, we try to quantize RSSI vectors and form
quantized fingerprinting. It can provide relatively reliable localization results.

Given a threshold Rthr , RSSI values can be quantized as 0 or 1. Let Rmin represent
the smallest RSSI value in the fingerprint database and Rmax represent the greatest RSSI
value. The quantized RSSI can be denoted as:

rssi
′
ji =

{
0, Rmin ≤ rssiji < Rthr

1, Rthr ≤ rssiji < Rmax
(5)

Based on quantized RSSI results, we further select two representative RSSI values
for the two intervals 0 and 1, denoted as R0 and R1. We use R0 and R1 to represent 0 and
1 in the quantitation result.

4.3 PCA Fingerprint Database

In the procedure of fingerprint quantitation, we quantize each RSSI value in the fin-
gerprint database in the same way, which means that the contribution of each AP to
target localization is the same. Considering the the distance from each AP to the target
is different, we can weight the contribution of each AP. In this section, we first conduct
principal component analysis on the quantized fingerprint database, and select a group
of principal components that have greater impact on localization accuracy to generate a
new fingerprint database. Then, we locate the target on the new fingerprint database.

Principal Component Analysis (PCA) is a common data set dimensionality reduction
algorithm. It aims to map the n-dimensional features onto the k-dimensional features,
and these k new features are irrelevant orthogonal features. It looks for k orthogonal
coordinate axes in the original data feature space. The first coordinate axis is the direction
that maximizes the variance when original data is projected onto the coordinate axis.
The second coordinate axis is the direction orthogonal to the first coordinate axis that

310 Y. Zhang et al.

maximizes the variance when original data is projected onto the coordinate axis, and
so on. Finally, n orthogonal coordinate axis can be obtained. We find that the first k
coordinate axes already contain most variance, so we only keep the first k coordinate
axes and ignore the others, that’s we reduce the original data from n-dimensional features
to k-dimensional features.

We observe that signal patterns in the fingerprint database are correlated, that’s
temporal or spatial correlated. Moreover partial signals overlap. Based on above obser-
vations, we try to use principal component analysis to identify several irrelevant com-
prehensive indicators to represent most values in the fingerprint database. We assume
that the quantized fingerprint database is fpdb′, then the comprehensive indexes obtained
via PCA can be denoted as:

[I1I2 . . . In] = fpdb
′
n×m ×

⎡

⎢
⎢
⎣

a11 a12 . . . a1n
a21 a22 . . . a2n

. . .

am1 am2 . . . amn

⎤

⎥
⎥
⎦ (9)

Where In denotes the coordinate value of the quantized fingerprint projected onto
the nth coordinate axis (a1n, a2n, …, a8n), that’s the nth eigenvalue. In order to represent
as much information as possible, comprehensive indexes need to satisfy the following
the conditions:

(1) n axis vectors are orthonormal basis;
(2) The variance of I1 I2 … In goes down, and it is independent of each other.

In this section, we choose the top k composite indexes with the highest contribution
in the total variance as the principal components of localization.

5 Simulations and Analysis

We construct a simulation platform in the hall of a laboratory building, where eight APs
are installed, six APs are on the boundary of the monitoring area and two APs are in
the middle. Eighty RPs are deployed in the monitoring area. We use a personal laptop
computer as a server to implement localization algorithm, running windows 8 operating
system. The simulation platform and the whole localization procedure are implemented
using Python language.

In the experiments, we first analyze the influence of parameters including k value
choosing (k-nearest neighbor) and threshold on localization accuracy. Then, we generate
the fingerprint database after dimensionality reduction. Finally,we compare the influence
of three kinds fingerprint on localization accuracy.

5.1 Impact of k on Localization Accuracy

In this section, we analyze the influence of k value on localization accuracy. We first
choose a good k value on the original fingerprint database via experience, and then we

Principal Component Analysis for Fingerprint Positioning 311

implement quantization and PCAusing this k value. Figure 3 shows the localization error
varying k from 1 to 12. It is obvious that the localization error is the greatest when k is 1
and 12, respectively. That’s because if k is too small, there is not enough information to
produce a good location estimation. As the increasing of k, localization error increases
because the algorithm will take into account much irrelevant sample information, which
makes the localization estimation deviate from the real position. According to the figure,
we can obtain the optimal localization result when k = 4.

Fig. 3. The influence of k on localization accuracy

5.2 Impact of Threshold on Localization Accuracy

In this section, we study the influence of threshold values on localization accuracy.
Figure 4 shows the localization error when the threshold changes from −85 to −55. It

Fig. 4. The influence of threshold on localization accuracy

312 Y. Zhang et al.

can be seen that the localization error is smaller when the threshold value ranges from
−77 to −68. When the threshold is −70, the localization error is the smallest.

5.3 Localization Accuracy Comparison Under Different Fingerprint Database

In this section, we implement localization algorithm under original fingerprint database,
quantized fingerprint database and PCAfingerprint database, respectively.Moreover, we
compare the localization accuracy under these fingerprint databases. It is shown in Fig. 5
that the localization error of quantized fingerprint is greater than others, that’s because
partial location information is lost in this case. We also observe that the performance of
PCA fingerprint is the best, the reason is that PCA basedmethod considers the difference
of APs’ contribution on RSSI measurements and assign different weights for them.

Fig. 5. Comparison of localization errors of three fingerprint algorithms

6 Conclusion

In this paper, we design and implement a target localization algorithm on three types of
fingerprint database. First, the algorithm collects RSSImeasurements fromRPs and form
the original fingerprint database. Considering the requirements for accurate and cost-
effective localization, we further quantize the fingerprint database and implement PCA
on it to generate dimension reduction fingerprint database. Through fully experimental
analysis, we conclude that the algorithmproposed in the paper can reduce the influence of
environment factors such as noise, signal fluctuation and presence of obstacles, improve
the localization accuracy in indoor environment.

References

1. He, S., Gary Chan, S.-H.: Wi-Fi fingerprint-based indoor positioning: recent advances and
comparisons. IEEE Commun. Surv. Tutorials 18(1), 466–490 (2016)

Principal Component Analysis for Fingerprint Positioning 313

2. Wu, C., Yang, Z., Liu, Y., Xi, W.: WILL: Wireless Indoor Localization without site survey.
IEEE Trans. Parallel Distrib. Syst. 24(4), 839–848 (2013)

3. Liu, H., et al.: Push the limit of WiFi based localization for smartphones. In: Proceedings of
ACM MobiCom, pp. 305–316, September 2012

4. Sun, W., et al.: MoLoc: on distinguishing fingerprint twins. In: Proceedings of IEEE ICDCS,
pp. 226–235, July 2013

5. Xiao, Z., et al.: Non-line-of-sight identification and mitigation using received signal strength.
IEEE Trans. Wirel. Commun. 14(3), 1689–1702 (2015)

6. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and tracking
system. In: Proceedings of IEEE INFOCOM, pp. 775–784 (2000)

7. Xue, W., Qiu, W., Hua, X., et al.: ImprovedWi-Fi RSSI measurement for indoor localization.
IEEE Sens. J. 17(7), 2224–2230 (2017)

8. Chriki, A., Touati, H., Snoussi, H.: SVM-based indoor localization in wireless sensor
networks. In: 2017 13th International Wireless Communications and Mobile Computing
Conference (IWCMC), pp. 1144–1149. IEEE (2017)

9. Barsocchi, P., Lenzi, S., Chessa, S., et al.: A novel approach to indoor RSSI localization by
automatic calibration of the wireless propagation model. In: VTC Spring 2009-IEEE 69th
Vehicular Technology Conference, pp. 1–5. IEEE (2009)

10. Gao, W., Nikolaidis, I., Harms, J.J.: RSSI quantization for indoor localization services. In:
2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio
Communications (PIMRC), pp. 1–7. IEEE (2017)

11. Hernández, N., Herranz, F., Ocaña, M., et al.: Wifi localization system based on fuzzy logic to
deal with signal variations. In: 2009 IEEE Conference on Emerging Technologies & Factory
Automation, pp. 1–6. IEEE (2009)

12. Mizmizi, M,. Reggiani, L.: Design of RSSI based fingerprinting with reduced quantization
measures2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN),
pp. 1–6. IEEE (2016)

13. Yong, A., Nikolaidis, I., Harms, J.J.: Localization sensitivity under RSSI quantization. In:
ICC 2019-2019 IEEE International Conference on Communications (ICC), pp. 1–6. IEEE
(2019)

Priority Based Service Placement
Strategy in Heterogeneous Mobile Edge

Computing

Meiyan Teng1, Xin Li1,2,3(B), Xiaolin Qin1, and Jie Wu4

1 CCST, Nanjing University of Aeronautics and Astronautics, Nanjing, China
{myteng,lics,qincs}@nuaa.edu.cn

2 State Key Laboratory for Novel Software Technology,
Nanjing University, Nanjing, China

3 Collaborative Innovation Center of Novel Software Technology
and Industrialization, Nanjing, China

4 Center for Networked Computing, Temple University, Philadelphia, USA
jiewu@temple.edu

Abstract. Mobile Edge Computing (MEC) is a promising method to
reduce service delay by computational ability at the edge nodes. How-
ever, the limited resources at the edge nodes make it hard to response
various services simultaneously. Hence, it is challenging to utilize the lim-
ited edge resources to host various service and reduce service response
time. In this paper, we investigate the service placement problem such
that the average service response time is minimized, which affects the
user experience significantly. We define the priorities for nodes and ser-
vices according to their contribution values, which indicates the influ-
ence for reducing service response time. Then, we propose a priority
placement (2P) algorithm by taking both priority properties and local
optimization into account. We conduct extensive simulations and the
experimental results show that the 2P algorithm can reduce the average
service response time by 23%–46%, which indicates the 2P algorithm has
better performance in reducing response time compared to the classical
methods.

Keywords: Heterogeneity · MEC · Service placement · Low-latency ·
Data-intensive

1 Introduction

Nowadays, the scale and functions of the Internet of Things (IoT) have increased
dramatically, heralding the arrival of the Internet of Everything. In the near
future, the global IoT will expand to tens of billions of application devices [1].
Latency-sensitive application devices are on the rise, with devices such as aug-
mented reality (AR) and driverless cars requiring real-time data processing.
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 314–329, 2020.
https://doi.org/10.1007/978-3-030-60245-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_22

Priority Based Service Placement Strategy in Heterogeneous MEC 315

Fig. 1. Overview of cloud-edge in IoT environment.

With the rapid development of IoT technology, traditional cloud is no longer
suitable for IoT applications [2].

Mobile edge computing (MEC), which places servers at the edge of the net-
work to offload cloud resources and reduce response delay, has drawn more
and more attention [3]. It allows real-time analysis, testing, optimization on
edge servers and sends data that needs to be processed centrally to the cloud
server [4]. This technology not only reduces the burden on the cloud server, but
also improves user experience. Edge computing is not a substitute for the cloud
computing paradigm [5], but adds another layer of computing where it is close
to the user.

However, a research institution predicts that by 2035, there will be 54 million
driverless cars in the world [6]. Cameras on driverless vehicles that capture road
conditions in real time generate about 1 GB of data per second [7], even boeing
787 will produce 5 GB data per second [8]. The service requests for such data-
intensive applications not only put higher demands on latency, but also take up a
lot of resources. Although the edge computing model has reduced the bandwidth
pressure in network transmission and achieved low-latency response of services,
the computing capacity and storage capacity of edge nodes are limited compared
with those of cloud. This defect causes the services of numberous applications to
be unresponsive and reduces user experience, as shown in Fig. 1. In this case, the
problem of service placement needs to take both the cloud and edge nodes into
account and makes a trade-off between them to achieve the goal of minimum
response time.

316 M. Teng et al.

In this paper, we investigate the services placement problem for service
response delay reduction in a heterogeneous MEC system, as shown in Fig. 2.
The cloud has sufficient resources to place all services, but the resources of the
edge nodes are limited, which can communicate through the WAN. The user’s
requests are responded on the edge servers through the base station (BS) [9].
The heterogeneity of MEC implies that:

– the resource capacity of nodes and the requirements of services in the system
are heterogeneous;

– the computational delays of nodes and the communication delays among them
are heterogeneous.

In MEC system, the users’ requests often change, and frequent service place-
ment will generate a lot of energy consumption. For nodes that contain many
service requests, their resources are constrained, but they have great value in
improving user experience. In response to this situation, we define priorities for
the nodes, and give priority to the placement strategy for the nodes with large
contribution values. In addition, for nodes with tight resources, it is also a prob-
lem to consider which service to place first. So, we define service priorities based
on the heterogeneous nature of services. And, we propose a priority placement
(2P) algorithm to get a placement strategy with the lower system latency. The
main contributions in this paper are as follows:

1) We make a detailed description of the research problem, construct a het-
erogeneous MEC system model, set system parameters, formulate the above
characteristics and research problem.

2) We propose a priority placement (2P) algorithm to achieve services placement
at MEC. The main idea is to set priorities based on service load distribution
and set an upper limit on the number of identical service replicas to attain
the goal of minimizing system response time.

3) We conduct extensive simulations, taking into account the priorities affected
by load factors, as well as conducting comparative experiments. The results
show that our algorithm has a significant improvement in reducing response
delay under different parameters.

The rest of the paper is organized as follows. We summarize the related
work in Sect. 2. Then, we describe the system model and formulize the service
placement problem in Sect. 3, and propose our priority placement algorithm in
Sect. 4. Next, we evaluate the performance of our algorithm in Sect. 5. Finally,
we give conclusion remarks in Sect. 6.

2 Related Work

The research on service placement has attracted a lot of attention in recent years
and there have been many research results. The most direct approach is to place
the service on the local edge server, and [10] shows that this approach is feasible.
In the case of adequate node resources, this strategy minimizes response time in

Priority Based Service Placement Strategy in Heterogeneous MEC 317

the system, but if the resources are limited, most services will only be placed in
the centralized cloud. Therefore, this strategy is obviously not the most efficient.

The authors in [11] study the scenario of overlapping node coverage and
use random rounding technology to solve the service placement method under
resource constraints. The service placement strategy studied in [12] and [13]
fails to take the limitations of node capacity, computing power and transmission
bandwidth into account, so the strict resource constraints of edge nodes cannot
be captured. In our paper, the scenario we studied is that node coverage does
not overlap and resources are limited.

Xu et al. [14] weigh the delay and cost in the homogeneity MEC environment
to obtain the placement strategy. He et al. [15] adopt greedy strategy, and the
algorithm performance is better under the condition of homogeneous service
performance. But the resource requirements for services are different and the
performance is heterogeneous in general.

The authors in [16] adopt the way of node division to select the service with
the greatest reward in a heterogeneous MEC system. This algorithm results in
multiple placements of the same service replica on the uniform node. And fre-
quent service placements increase system power consumption. And [17] adopts
the linear programming method to jointly consider the service placement and
request scheduling policies, but it is no work to consider the uneven load distri-
bution of services in the case of heterogeneous MEC systems, which will have a
great impact on the placement results.

In our paper, we define priorities for nodes and services based on the heteroge-
neous characteristics of nodes and services, then we propose a priority placement
(2P) algorithm.

3 Problem Statement

3.1 Scenario and Notation

We focus on service placement issues within the heterogeneous MEC system, as
shown in Fig. 2. The system is composed of some edge nodes and a remote cen-
tralized cloud. For the cloud, there are sufficient computing and storage resources
to place services, which will generate faster computing speed. However, due to
the distance from the data source and the limitation of communication band-
width, the communication delay is high. So, it is suitable to place large services
with insensitive latency. For edge nodes, they have limited resources to place
services, which results in a longer calculation delay, but a lower communication
delay. They are suitable to place small delay-sensitive services. The node char-
acteristics and service requirements in MEC system are different. In this part,
we use special symbols to represent the heterogeneous characteristics.

The set of nodes in the system is represented by N, and the cloud is signed
by N0. For each node n ∈ N has a special performance 〈Rn, Γn〉.

318 M. Teng et al.

Fig. 2. System model.

– Rn represents the resource capacity of node n;
– Γn represents the communication delay time between node n and the cloud

N0.

The set of services in the system is represented by S, and the performance
attributes 〈rl, Pl〉 of each service l ∈ S are different.

– rl represents the resources that service l needs to consume when the service
responds;

– Pl represents the number of replicas of service l in the system.

In addition to the above characteristics, load is also an important factor. Node
load refers to the number of users in the node. The service load refers to the
number of service requests. The load of the nodes varies in different time periods,
and the service load is unevenly distributed. For example, during working hours,
there are more users in the office region than in living and business regions, and
the number of requests for various types of services in the office region is also
higher than in other regions. In other time periods, different phenomena will
occur. In this article, we use Φ to represent service load distribution.

– Φl,n ∈ Φ represents the load of service l within the coverage of node n.

Requests of services can be scheduled among edge nodes. For example, l2 is
not placed on n3, so the users in this region send a request Rq2 for l2, which
cannot be satisfied on the local server. The request is dispatched to node n1 or
n2 in other regions through WAN. Based on the above characteristics, we set
the total response delay as T.

Priority Based Service Placement Strategy in Heterogeneous MEC 319

– T l
m,n ∈ T represents the total response delay time when the request Rql

within n region is scheduled to be served on node m.

The transmission time of the same request from n1 to n2 is the same as that
from n2 to n1, but the computing power of n1 and n2 are different. To describe
this characteristic of response time T, we set

T l
m,n = ∂l

m,n + βl
m (1)

– ∂l
m,n represents the communication delay time when the request Rql within

n region is scheduled to be served on node m, ∂l
m,n = ∂l

n,m, and ∂l
n,n = 0;

– βl
m represents the computing time of service l on node n.

According to the above description of the total response delay T, we know
that the response time of the service is related to which node the service responds
to. We measure the efficiency of various algorithms by the response time of
service requests. However, it is closely related to the service placement strategy.

3.2 Problem Formulation

We aim to minimize the service request response time according to a service
placement strategy in a heterogeneous MEC system. So, we use vector X to
represent the service placement scheme in the system. For ∀l ∈ S,m ∈ N,

xl,n =
{

1, service l placed on the node n
0, otherwise (2)

The response time of system request is represented by vector Y, which is
determined by placement scheme X. We stipulate that if there are nodes that
have placed service l, the requests for l will be scheduled to a node m with the
shortest response delay. Otherwise, it will be scheduled to the cloud. It can be
formalized as follows:

yl,n = Θ

⎛
⎝ |N |∑

m=0

xl,m = 0

⎞
⎠ × Γn + Θ

⎛
⎝ |N |∑

m=0

xl,m �= 0

⎞
⎠

× min
{
T l
m,n|xl,m = 1

}
, m, n ∈ N, l ∈ S

(3)

Where, if E is true, Θ(E) := 1; otherwise, Θ(E) := 0. yl,n represents the
response time of the request for service l within the scope of node n.

The purpose of our research is to improve the quality of service. In this
paper, our research goal is to minimize the response time of the system, which
is expressed as follows:

min
|S|∑
l=0

|N |∑
n=0

yl,n (4)

320 M. Teng et al.

s.t.
|s|∑
l=0

xl,n · rl ≤ Rn ∀n ∈ N (4.1)

xl,n ∈ {0, 1} ∀l ∈ S,∀n ∈ N (4.2)

Where the constraint (4.1) means that the services placed on each edge node
should not exceed its capacity.

From the above problem description, we learned that service placement is
really about allocating limited node resources to services. We predict that service
placement problem is an NP-hard problem [18]. Next, we will show the hardness
of this problem.

Theorem 1. The service placement in a heterogeneous MEC system is NP-
hard.

Proof. We will prove the theorem by a special case, which is constructed with the
following assumptions: 1) We set the case with one cloud and one edge node, and
2) Only one replica is placed for each service. In this case, the best strategy is to
place services on this edge node to lessen response time. However, the available
resource in edge node is limited, so we need to choose some services to occupy
the node resources such that the response delay is minimized. This problem can
be inferred from the typical knapsack problem.

The typical knapsack problem can be formalized as follows. Given a set of
items A = {ai, 0 ≤ i ≤ n}, where the weight and the value of ai is wi and vi,
respectively. The problem is to select a subset As such that the total weight does
not exceed the capacity W of knapsack and the total value is maximized. Then,
in the scenario we constructed, the set of services is S = {sl, 0 ≤ l ≤ n}, then
for each service sl, let the requirement of sl be rl, and the response time of sl
be yl. We aim to select a subset Ss of services such that the total requirement
does not exceed the resource capacity R of edge node and the response time is
minimized.

If there is a strategy to select a subset As such that
∑

ai∈As
wi ≤ W , and∑

ai∈As
vi is maximized. For each item ai ∈ As, we can select a service sl ∈ S

with rl = wi and 1
yl

= vi. The services that are selected have the lowest response
delay. In addition, if we select a subset Ss of S to minimize the total response
time, we can get the subset As to maximize the value. Because the knapsack
problem is NP-hard, we conclude that the services placement problem in MEC
system is NP-hard. �	

4 Service Placement Strategy

To approximately minimize the response time of the service, we set priorities
for all nodes and services according to the scene parameters, then determine
the placement scheme according to the priority factors, so it is called priority
placement (2P) algorithm. Firstly, the node with the highest priority is selected

Priority Based Service Placement Strategy in Heterogeneous MEC 321

Algorithm 1. Total Delay Algorithm
Input: Node set N(n ∈ N), attributes: 〈Rn, Γn〉; Service set S(l ∈ S). attributes:

〈rl, Pl〉; Schedule delay T; Service load distribution Φ; Upper limit of replicas θ.
1: Q = averageDelay(T, Φ);
2: G = nodeCandidateSet(Q);
3: L = initServiceCandidateSet(G, 1);
4: X = serviceP lacement(L,G,Q, r, R, Φ, θ);
5: for each l ∈ S do
6: Pl = getSum(X);
7: if Pl == 0 then
8: for each n ∈ N do
9: yl,n = Γn;

10: end for
11: else
12: for each n ∈ N do
13: yl,n = minResponseT ime(X,T);
14: end for
15: end if
16: end for
17: for each l ∈ S do
18: for each n ∈ N do
19: t = t + yl,n · Φl,n;
20: end for
21: end for
Output: Total delay time is t.

to study the placement strategy. Then we choose the service from the service
candidate set of the node in order of the priority to place. In the process of service
placement, we adjust the priority of nodes and services according to the deployed
situation, make a dynamic priority definition. How to define node priority and
service priority is a key point in the 2P algorithm. Next, we will introduce them
one by one.

4.1 Total Delay Algorithm

The process of finding the total delay time in the system is described in
Algorithm 1. Firstly, the input variables are defined. We set the attributes of
nodes and services as well as the upper limit of replicas θ. Through the net-
work prediction, we can get the distribution of total response time and ser-
vice load in a period of time, which is represented by the T and Φ, sepa-
rately. According to the input variables, we obtain the node priority through
the three-step method of lines 1–3 in Algorithm 1, which is introduced in detail
in Sect. 4.2. Next, taking the variables obtained from lines 1–3 as input, line 4
adopts the serviceP lacement() function to obtain the placement strategy X; see
Algorithm 2 for details.

Afterwards, based on placement scheme X, lines 5–16 calculate the response
time of the service request within the scope of each node. The number of replicas

322 M. Teng et al.

of each service in the system is calculated by the getSum() function. If Pl = 0,
the system does not have a replica of service l, so the request of service l in
each region must be responded to in the cloud, then yl,n = Γn. If Pl �= 0, it
indicates that there is at least one replica of this service in the system. Therefore,
for requests in each region, we can define the minResponseT ime() function on
the basis of Eq. 3 to get the minimum response time yl,n. Finally, lines 17–21
calculate the total response time Y for all requests.

4.2 Node Priority

Uneven load distribution will cause a phenomenon that the more load of the
node would lead to a higher value of the contribution to the research target,
but its resources are relatively tight. Our research goal is to minimize the total
response time of all services in the system (e.g. Eq. 4). Therefore, in order to
better achieve the research goal, we properly defined the node priority after
three steps of calculation.

Firstly, we assume that all requests of service l in the system are responded
to node m. According to the input variables Φ and T, we can get the average
response time of service l placed at node m, which is defined as follows:

Ql
m =

∑|N |
n=0 T l

m,n · Φl,n∑|N |
n=0 Φl,n

, l ∈ S,m, n ∈ N (5)

In the same way, we calculate the value of other services on each node. In
line 1 of Algorithm 1, we utilize the averageDelay(T,Φ) function to implement
Eq. 5 and obtain matrix Q(Ql

m ∈ Q, l ∈ S,m, n ∈ N), which is an important
factor in the 2P algorithm.

Secondly, because the average delay time of each request Rql that was sched-
uled to diverse node is different

(
Ql

m �= Ql
n, l ∈ S,m, n ∈ N

)
, we find the ideal

node set of service according to the sequence of Q, as follows:

Gl =
{

np1 , np2 · · · npi
· · · |Ql

np1
≤ Ql

np2
≤ · · · ≤ Ql

npi
≤ · · · , npi

∈ N
}

(6)

Where Gl,1 = np1 indicates that the first ideal node of service l is np1 ,
Gl,2 = np2 indicates that the second ideal node of service l is np2 , . . ., and
Gl,i = npi

indicates that the ith ideal node of service l is npi
.

In line 2 of Algorithm1, we adopt the nodeCandidateSet (Q) function to
obtain the two-dimensional matrix GS×|N|, which represents the ideal node
sequence for each service. The matrix G is composed of variables Gl,i ∈ N,
where l ∈ S, i ∈ |N|. Furthermore, we get a verdict from the two-dimensional
matrix G:

– row vector Gl,|N| shows the ideal node sequence of service l;
– column vector GS,i shows the ith ideal node of all services.

Priority Based Service Placement Strategy in Heterogeneous MEC 323

Thirdly, we use function initServiceCandidateSet() based on G to obtain
the initial service candidates set L of each node, as shown in Algorithm 1 in line
3. It is defined as follows:

Ln =
{
lp1 , lp2 , · · · lpi

· · · |Glpi,1
= n, lpi

∈ S
}

(7)

Algorithm 2. Service Priority Placement Algorithm
Input: Average delay Q; node candidate set G; service candidate set L; attributes

of nodes 〈Rn, Γn〉; attributes of services 〈rl, Pl〉; service load distribution Φ; Upper
limit of replicas θ .

1: while (! isEmpty (L)) do
2: e ← argmaxn∈N |Ln|;
3: Order Le = {lp1 , lp2 , · · · , lpk},so that Ωlpi

≥ Ωlpi+1
, ∀i < k;

4: for each lpi ∈ Le do
5: if rlpi ≤ Re then
6: xlpi ,e

= 1;
7: Re ← Re − rlpi ;
8: Plpi

+ +;
9: else

10: xlpi ,e
= 0;

11: end if
12: if Plpi

< θ then
13: e′ ←findNextNode (G, lpi , e);
14: update

(
Ωlpi

)
;

15: Le′ ← Le′ ∪ lpi ;
16: end if
17: end for
18: Clear(Le);
19: end while
Output: Service placement strategy is X.

Initially, we put all services whose ideal node is n in the set Ln, and define
them as the candidate service set of node n. The set Ln will be dynamically
adjusted according to the placement situation. The more services in the set Ln,
the higher the value of node n. So, the modulo |Ln| is defined as the value of
node n, also known as the priority.

4.3 Priority Placement Algorithm

Algorithm 2 describes the service priority placement function service
P lacement() in detail. The main idea of the algorithm is to select services in
order from the service candidate set of the node e with the highest value (prior-
ity) for placement strategy, and then add the service to the set L′

e of its sub-ideal
node e′.

324 M. Teng et al.

Firstly, for the initial service candidate set L of each node, loop lines 1–18
until the service candidate set Ln of all nodes is null. In circulation, we select
the node with the highest priority, which is marked as e, as shown in line 2 of
Algorithm 2. Then we order the services in Le based on service priority Ω. We
consider the service loads, the number of replicas, the average response time
and the response time gap with the sub-ideal node to define the variable Ω, as
follows:

Ωl,e =
ΔQl + k1 · ∑|N |

n=0 Φl,n

Ql
e + k2 · Pl

, l ∈ S, e, n ∈ N (8)

Suppose that node e is the ith ideal node of service l, Gl,i = e. So, Ql
e is the

average response time of all requests that are scheduled to node e. If Gl,i+1 = e′,
then ΔQl = Ql

e′ − Ql
e. In addition,

∑|N|
n=0 Φl,n is the total load of the service l.

Pl represents the number of replicas of service l. k1 and k2 is a parameter. In
Eq. 8, it is known that the time gap and service loads are greater, the service
priority is higher. And the greater the average delay time and the number of
replicas are, the lower the priority is.

Next, lines 5–11 implement placement in order of priority. If the remaining
resources of the node meet the requirements of the service, place it, and make
xl,e = 1. Otherwise, xl,e = 0. Then, we decide whether to continue the placement
according to the upper limit of service replicas θ on lines 12–16. If the number
of service replicas in the system does not reach the upper limit θ, it will be
added to the service candidate set Le′ of the next ideal node e′ that we use
findNextNode() function to find out. In this case, the priority of service and
node e′ will be adjusted dynamically. We update service priority Ωl,e′ and node
priority |Le′ | according to Eq. 8. Finally, through the clear() function shown in
line 18, we clean up the services in the Le set. Continue the placement process
in loops 1–18 until all nodes have zero priority.

5 Evaluation

In this section, we evaluate our algorithm. We take the greedy algorithm as the
baseline and conduct comparative experiments for two significant factors. The
basic strategy of the greedy algorithms is to place the service with the shortest
latency on each node.

A comparison algorithm studies load factors, which we call the non-loaded
algorithm. The non-loaded algorithm does not take into account the number
of service requests in each node, which changes the average delay variable and
service priority variable as follows:

Q′l
e =

∑|N|
n=0 T l

e,n

|N| (9)

Ω′
l,e =

ΔQ′
l

Q′l
e + k · Pl

(10)

Priority Based Service Placement Strategy in Heterogeneous MEC 325

Another comparison algorithm studies the service priority factor, which we
call unitary priority placement (u2P) algorithm. The u2P algorithm redefines
the service priority in Eq. 8 as opposed to the 2P algorithm, set

Ω′′
l,e = Ql

e (11)

We have carried out a detailed simulation experiment and compared the
experimental results.

5.1 Simulation Settings

There is only one cloud and N edge nodes in the simulation system, and the
resource capacity of the nodes is heterogeneous. We use the unit time (time
slots) to express the response delay time, and the communication delay between
the nodes and the cloud is set to Γn ∈ [50, 60]. The scheduling delay matrix
∂l
m,n(m �= n) is set to be within the range of [5, 15], which is a symmetric

matrix. The response delay jitter is set to βl
m ∈ [1, 5].

There are 100 services in the simulation system, and the amount of resource
block occupied by each service is set to rl ∈ [2, 14]. The loads of the services
within each node are distributed within [0, 100], which obeys the Gaussian dis-
tribution. We changed the three variables that are the number of nodes N , the
resource capacity of nodes Rn and the upper limit of replicas θ. And we carried
out three groups of comparative experiments.

In order to analyze our experimental results more clearly, we counted the
average delay of each request, which is a measure to evaluate the superiority
of the algorithms. At the same time, we calculate the reduction rate of the 2P
algorithm in average response time relative to other algorithms. Supposing that
the average response time of each request in the 2P algorithm is t0, while the
other three comparison algorithms are ti, the reduction ratio is

Υ = 1 − t0
ti

(12)

5.2 Results Comparing

In Fig. 3, we set the number of nodes as 9 and the upper limit of replicas as 2 in
the system, but the amount of node resources increases gradually. According to
Fig. 3(a), we find that the delay time of all algorithms decreases with the increase
of node resources. When the system node resources are sufficient, the response
time remains stable. In addition, we also found that the greedy algorithm has
the longest response time, the non-loaded algorithm has a smaller response time
than the u2P algorithm, and the 2P algorithm has the shortest response time.

According to Fig. 3(b), we get the response time reduction rate of the 2P
algorithm compared with other algorithms. Within the ranges of [60, 90] and
[90, 120], the response time of the 2P algorithm is about 46% lower than that
of the greedy algorithm. Compared with the non-loaded algorithm, the response

326 M. Teng et al.

time was reduced by about 23%. Compared with the u2P algorithm, the response
time is reduced by 37%. However, within the range of [1, 30] and [150, 180], the
time reduction rate of the 2P algorithm is relatively low. This is mainly because
resources are at two extremes (too scarce or too abundant).

In Fig. 4, we set the node resource to be within [50, 100] and the upper limit of
replicas as 2 in the system. We infer that the 2P algorithm performs significantly
better than the other three algorithms from Fig. 4(a). The response time of
the non-loaded algorithm is lower than that of the u2P algorithm, indicating
that the service load distribution variable has a greater impact on the response
time. When the number of nodes increases gradually, the response time of all
algorithms will decline significantly. The response time of the 2P algorithm is
always the lowest.

In Fig. 4(b), we know that when there are two nodes in the system, the
response time of the 2P algorithm decreases less than that of the comparison
algorithm. This is mainly because the number of nodes is too small, resulting in
an excessive shortage of system resources, which is consistent with the conclusion
in Fig. 3(b). However, with the increase of system resources, the reduction rate
of the 2P algorithm increases gradually.

In Fig. 5, we set the system to 12 nodes with each resource capacity in the
[50, 100] range and change the upper limit of replicas. From Fig. 5(a), the 2P
algorithm has the shortest response time and the best performance based on
stability. The greedy algorithm has the highest response time and the lowest
performance. The delay time of the non-loaded algorithm and the u2P algorithm
is larger than that of the 2P algorithm, but less than that of the greedy algorithm.

From Fig. 5(b), we see that when the upper limit of the replica is 1, the
reduction rate of the 2P algorithm is less than 10%. This is because the resource
is very sufficient and is a limit state, which is consistent with the conclusion of
Fig. 3(b). When the upper limit of replicas is in the range of [2, 6], the response
time reduction rate of the 2P algorithm is about 50% relative to the greedy algo-

Fig. 3. Change the node capacity Rn, where N = 9 and θ = 2

Priority Based Service Placement Strategy in Heterogeneous MEC 327

Fig. 4. Change the number of system nodes N, where θ = 2 and Rn ∈ [50, 100]

rithm. Compared with the non-loaded algorithm, the response time is reduced
by about 23%. Compared with the u2P algorithm, the response time is reduced
by about 24%.

Fig. 5. Change the upper limit of service replicas θ, where N= 12 and Rn ∈ [50, 100]

6 Conclusion

In this paper, we investigate the service placement for response delay reduction
in a heterogeneous MEC system. We set priorities for the nodes and services,
which can be adjusted dynamically according to the placed state. To model the
priority, we analyzed several factors such as service load distribution or delay
time, obtained the service placement strategy in order of priority. We conduct

328 M. Teng et al.

extensive simulations, and the results show that our 2P algorithm has significant
performance improvement on response delay reduction.

Acknowledgment. This work is supported in part by the National Key R&D Pro-
gram of China under Grant 2019YFB2102002, in part by the National Natural Science
Foundation of China under Grant 61802182.

References

1. Yu, R., Kilari, V.T., Xue, G., Yang, D.: Load balancing for interdependent IoT
microservices. In: IEEE INFOCOM 2019 - IEEE Conference on Computer Com-
munications, pp. 298–306 (2019)

2. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE IoT J. 3(5), 637–646 (2016)

3. Li, Y., Wang, S.: An energy-aware edge server placement algorithm in mobile edge
computing. In: 2018 IEEE International Conference on Edge Computing (EDGE),
pp. 66–73 (2018)

4. Ali, S.S.D., Ping Zhao, H., Kim, H.: Mobile edge computing: a promising paradigm
for future communication systems. In: TENCON 2018–2018 IEEE Region 10 Con-
ference, pp. 1183–1187 (2018)

5. Reiter, A., Prünster, B., Zefferer, T.: Hybrid mobile edge computing: unleashing
the full potential of edge computing in mobile device use cases. In: 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGRID), pp. 935–944 (2017)

6. Perera, C., Qin, Y., Estrella, J.C., Reiff-Marganiec, S., Vasilakos, A.V.: Fog com-
puting for sustainable smart cities: a survey. ACM Comput. Surv. 50(3), 1–43
(2017)

7. De Cristofaro, E., Soriente, C.: Participatory privacy: enabling privacy in partici-
patory sensing. IEEE Netw. 27(1), 32–36 (2013)

8. Taleb, T., Dutta, S., Ksentini, A., Iqbal, M., Flinck, H.: Mobile edge computing
potential in making cities smarter. IEEE Commun. Mag. 55(3), 38–43 (2017)

9. Qiu, J., Li, X., Qin, X., Wang, H., Cheng, Y.: Utility-aware edge server deployment
in mobile edge computing. In: Wen, S., Zomaya, A., Yang, L.T. (eds.) ICA3PP
2019. LNCS, vol. 11944, pp. 359–372. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-38991-8 24

10. Ha, K., et al.: Adaptive VM handoff across cloudlets. Technical report CMU-CS-
15-113 (2015)

11. Poularakis, K., Llorca, J., Tulino, A.M., Taylor, I., Tassiulas, L.: Joint service
placement and request routing in multi-cell mobile edge computing networks. In:
IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pp. 10–
18 (2019)

12. Wang, S., Zafer, M., Leung, K.K.: Online placement of multi-component applica-
tions in edge computing environments. IEEE Access 5, 2514–2533 (2017)

13. Wang, L., Jiao, L., He, T., Li, J., Mühlhäuser, M.: Service entity placement for
social virtual reality applications in edge computing. In: IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, pp. 468–476 (2018)

14. Xu, J., Chen, L., Zhou, P.: Joint service caching and task offloading for mobile
edge computing in dense networks. In: IEEE INFOCOM 2018 - IEEE Conference
on Computer Communications, pp. 207–215 (2018)

https://doi.org/10.1007/978-3-030-38991-8_24
https://doi.org/10.1007/978-3-030-38991-8_24

Priority Based Service Placement Strategy in Heterogeneous MEC 329

15. He, T., Khamfroush, H., Wang, S., La Porta, T., Stein, S.: It’s hard to share: joint
service placement and request scheduling in edge clouds with sharable and non-
sharable resources. In: 2018 IEEE 38th International Conference on Distributed
Computing Systems (ICDCS), pp. 365–375 (2018)

16. Pasteris, S., Wang, S., Herbster, M., He, T.: Service placement with provable guar-
antees in heterogeneous edge computing systems. In: IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pp. 514–522 (2019)

17. Farhadi, V., et al.: Service placement and request scheduling for data-intensive
applications in edge clouds. In: IEEE INFOCOM 2019 - IEEE Conference on Com-
puter Communications, pp. 1279–1287 (2019)

18. Li, X., Lian, Z., Qin, X., Abawajyz, J.: Delay-aware resource allocation for data
analysis in cloud-edge system, pp. 816–823 (2018)

VTC: A Scheduling Framework Between Soft
Real-Time and Hard Real-Time on Multimedia

OS

Wei Hu1,2, Hongqiang Zheng1,2(B), Yonghao Wang3, Yi Guo1,2, and Jing Wu1,2

1 The College of Computer Science and Technology, Wuhan
University of Science and Technology, Wuhan, China

zhengzhq@wust.edu.cn
2 Hubei Province Key Laboratory of Intelligent Information Processing and Real-Time

Industrial System, Wuhan, China
3 The Digital Media Technology Lab, Birmingham City University, Birmingham, UK

Abstract. With the rapid development of real-time multimedia interactive appli-
cations, the traditional universal scheduling framework has limitation when using
in the scheduling of multimedia tasks. Multimedia tasks are soft real-time tasks
and requiring to be completed as many as possible. With the increasingly strict
requirements of multimedia scheduling, the QoS of original scheduling model dis-
satisfy such requirements. This paper proposes a new multimedia system schedul-
ing framework between hard real-time and soft real-time, which called the “virtual
task supplementary scheduling framework” (VTC), a multimedia task processing
for real-time systems. The new scheduling framework extends the traditional peri-
odic task scheduling, and on this basis, it has timing determinism and scheduling
predictability. The simulation results show that it can achieve more stable, no
packet loss, non-disruptive real-time performance, and can meet the extremely
strict requirements of professional multimedia.

Keywords: QoS · Scheduling framework · Multimedia tasks · VTC

1 Introduction

With the widespread use of digital music processing technology in music processing and
live, the delay of audio signals has become a common problem in digital systems, such
as online games, live broadcasts, video conferences and so on. Generally, the industry
think that multimedia tasks are periodic tasks on soft real-time system and it usually
characterized by high load in streams. The user experience is related to the task delay,
so the Real-time audio/video transmission delays have exceptionally high requirements
[1]. Some scheduling frameworks adopt “best-effort” strategies for media tasks currently
[2]. Although the delay has been reduced, it is not enough [3]. The existing scheduling
frameworks not make good use of the periodic of the tasks to reduce the delay further.

This work was sponsored by Key Project of Hubei Provincial Department of Education under
Granted No. D20181103.

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 330–343, 2020.
https://doi.org/10.1007/978-3-030-60245-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_23

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 331

For the past decades, audio signal processing has used cutting-edge research tech-
niques for multi-channel feature extraction in machine learning, artificial intelligence,
sound psychology and physiological models [4]. The use of multi-tasking-based gen-
eral computers and networks as an audio processing platform has become inevitable.
Research shows that modern multi-core computers and general-purpose multitasking
operating systems deal with low latency in high-load, multi-tasking situations [6]. How-
ever, the existing computer hardware and software architecture has uncertainty in dealing
with low-latency tasks such as multimedia tasks [5]. The problem of “how to make the
computer architecture better support the stability and certainty of low latency” becomes
the focus of research and breakthrough.

Currently, the scheduling framework that customize for multimedia task scheduling
is dissatisfied. According to the characteristics of multimedia tasks, this paper proposes
a new multimedia task scheduling framework titled as the virtual task supplementary
scheduling framework (VTC). Periodic real-time tasks and non-periodic tasks reduced
the period of the task set by supplementing the virtual tasks, thereby reducing the delay
and solving the packet loss phenomenon, and satisfying the time certainty. The rest of
this paper is organized as follows. The second part introduce the periodical tasks and
the scheduling algorithm. The third part proposes the scheduling theory and task model.
The fourth part describes VTC. Finally is the results of experiment and performances.

2 Related Work

Real-time scheduling refers to determining when and on which processor for a series
of tasks under the limited system resources (such as CPU), and allocating the resources
required for the task to run to ensure its time constraint (it also is named deadline) [7].
According to the different focuses of real-time systems, real-time scheduling has multiple
classifications. The importance of real-time requirements for tasks can be divided into
hard real-time scheduling and soft real-time scheduling. In soft real-time scheduling,
when the system is overloaded, the task is allowed to miss the deadline [8]. For hard
real-time scheduling, the task must be executed within its deadline, otherwise the task
failed.

Compared with the general-purpose operating system, the real-time operating system
is optimized in the worst case, while pursuing the logical correctness and time correctness
of the calculation [9]. In real-time operating systems, the correctness of the calculation
depends not only on the logical result of the calculation, but also on the time at which the
calculation results are generated [10]. The task scheduling framework is an important
means to ensure real-time system time constraints.

Real-time scheduling research and application has been a long time, and it has
achieved a lot in real-time system [11]. For example, hard real-time applications require
time requirements to be fully met, otherwise it will cause major safety accidents and even
cause major loss of life and property and ecological damage, such as in the system of
aerospace, military, nuclear industry and other key industries [12]. While soft real-time
tasks such as system monitoring and information acquiring present time requirements,

332 W. Hu et al.

occasional violations of such requirements by real-time tasks do not have a serious
impact on system operation and the run-time environment.

Traditionally, multimedia systems have been attributed to soft real-time scheduling.
We believe that in the real-time multimedia field, it is neither hard real-time scheduling
nor soft real-time scheduling, but both. We do not want any tasks with negative effects
to be lost in real-time audio and video signal transmission, while reducing the delay as
much as possible within the limits acceptable to the human ear.

Real-time scheduling has important characteristics such as time constraints, pre-
dictability, and reliability. Real-time tasks have time constraints (task execution dead-
lines), which have been characterized in hard real-time and soft real-time. Predictability
means that the system can judge the execution time of real-time tasks and determine
whether the time limit of the tasks can be met. Because of the rigor of time constraint for
real-time scheduling, predictability is an important performance requirement for real-
time systems. Most real-time systems require high reliability, requiring the system to
work properly or avoid losses in the worst case (such as high CPU usage).

Most of the real-time task models are based on the periodic task model proposed
by Layland and the sporadic task model proposed by Mok. However, both scheduling
models are difficult to accurately describe the soft real-time characteristics of multimedia
tasks, and it is difficult to meet the high requirements of current users for multimedia
scheduling.

Rate-Monotonic Scheduling (RMS) was proposed by Liu and Layland in 1973 to
apply a static priority scheduling framework for preemptive hard real-time periodic tasks.
The RMS scheduling strategy is that the priority of the task is assigned by task period.
It determines the scheduling priority according to the length of the task’s execution
cycle. The tasks with small period and higher priority; otherwise, the tasks with longer
period and the priority is lower. However, the time to obtain data from the outside is
uncertain in multimedia tasks, such as compression and decompression of video streams.
If each frame is decompressed and displayed as one job, then the operation is not strictly
compressed. The RMS scheduling model is difficult to obtain the characteristics of task.
But the sporadic task model is also difficult to describe the characteristics of task, because
task has no statistical regularity in the long time execute.

Periodic tasks (including periodic real-time tasks and aperiodic tasks) have strict
deadlines in real-time multimedia tasks, while non-periodic tasks have lower response
time requirements. Therefore, how to balance these two tasks is the key. This paper
proposes a VTC scheduling model that distinguishes between periodic real-time tasks
and non-periodic tasks. Within an acceptable delay range, it not only ensures that the
periodic real-time tasks are not lost, but also performs the execution of the aperiodic
tasks.

3 Literature Review

3.1 Scheduling Model

After the RMS scheduling framework was proposed, researchers studied many excellent
scheduling frameworks based on RMS scheduling ideas and strategies. The following
is a monotonic task model for audio scheduling.

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 333

In real-time system, a task consists with a sequence of jobs. For rate monotonic tasks,
we have τ = {τ1, τ2, τ3, · · · τn}, where τ is a task set that contains n different tasks. Each
task can be defined as τi = {Ci,Ti,Di,Pi}, the Ci is worst-case execution time, the Ti
is the period of τi, the Di is the deadline of τi, the Pi is the priority of τi. For each task
the CPU utilization is Ui = Ci/Ti, so the total utilization is

U =
∑∞

i=1
Ui (1)

Normally, the Di = Ti. The rate monotonic scheduling (RMS) framework assigns the
task priority according to the task period. Task with shorter period has higher priority.
Liu and Layland proved that the sufficient condition of scheduling of RMS is

U ≤ n
(

21 /n − 1
)

→ 0.6931 (2)

where n is the number of tasks. This condition is sufficient but not necessary based
on the tasks are preemptible. Lehoczky 1989 shows the sufficient and necessary condi-
tion of schedulability of RMS with less upper limit CPU utilization but more complex
schedulability test formula.

Lehoczky et al. conducted a more in-depth study based on the research of Liu
and Layland. In 1989, the necessary and sufficient conditions for the schedulability
determination of RMS scheduling framework were proposed.

For the task set τ = {τ1, τ2, τ3, · · · τn}, we have:

Wi(t) =
∑i

j=1
Cjt /Ti (3)

Represents the cumulative demand for the CPU for the first i tasks of the task between
time periods [0, t], where time 0 is the critical time (assuming i tasks are ready at the
same time before the time). Then:

Li(t) = Wi(t)/t (4)

Li = min{0<t≤Ti}Li(t) (5)

L = max{1≤i≤n}Li (6)

The above definitions give the necessary and sufficient conditions for the RMS
scheduling framework.

3.2 TDCS Scheduling Theory

Time deterministic cyclic scheduling is a new design of multimedia real-time scheduling
mechanism which is called TDCS, and it mainly for live multimedia tasks processing.
The multimedia task includes periodic tasks and aperiodic tasks. For periodic tasks, it
adopts a time division method, which is divided by the least common multiple of all task
periods, and all tasks are rearranged in each segment after segmentation. The idle time

334 W. Hu et al.

in each segment after the split is performed could execute the non-periodic tasks. The
advantage of TDCS is that the delay and schedulability in the scheduling process can be
estimated in advance. However, the time division method tends to cause the segmentation
length to be very large and impractical, resulting in a very unsatisfactory delay in the
scheduling process. The scheduling framework proposed in this paper solves the high
delay phenomenon in TDCS and has the advantages of TDCS time determinism.

4 Proposed Scheduling Framework

Virtual task supplementary scheduling framework (VTC) is sourced from traditional
periodic scheduling theory. It uses the monotonic task model mentioned in Sect. 3.1.
VTC tiers multimedia tasks: periodic soft real-time tasks and acyclic tasks. It follows
the RMS priority policy in the scheduling priority of periodic tasks, and uses idle time to
complete scheduling for non-periodic tasks, so that system resources are used as much
as possible.

4.1 The Principle of VTC

The basic principle of the timing correctness of VTC is to divide the time according to
the ARINC 653 standard. In the ARINC 653 standard, the operating system is classified
as a separate hypercycle segment or a time domain master cycle driven by a precise
underlying system timer. In VTC, we chose to define this period as TC. In theory, time
segmentation can be the least common multiple (LCM) of different task cycles, but this
can be very large and impractical. In our design, time segmentation is the cycle of the task
of the largest cycle in the task set, the periodic task will go through two buffer systems,
one input “mapping buffer” and one output “de-jitter buffer”, the previous buffer is used
to convert to any length time period you want, The second buffer is to render the task as
its own source code rate.

Fig. 1. The process of VTC

The time division mentioned above for VTC is divided by the period of the task
with the longest task concentration period. In the entire data processing process, it is
scheduled in units of time-divided time segments. That is, during the task set input
process, a buffer area is passed. When the length of the cached task reaches the length of
the splitting period, the cached time period task is released and passed to the processor
for processing. After the processor scheduling is completed, the output is processed.
The data is shown in Fig. 1. The entire input task, cache task, release task, scheduled

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 335

task, and output task are all layered simultaneously, except that the time segment of the
first period needs to wait for data buffering, and the subsequent system scheduling is
synchronized.

4.2 The Framework of VTC

We define the least common multiple for all task periods as the single scheduling period
(also named TL) and divided the TL with the short period (TC), which is the maximus
period in the tasks set. We define the following formula:

TL = LCM {Ti} (7)

Tc = max{Ti} (8)

fi = TL
Ti

(9)

fCi =
⌈
TC
Ti

⌉
(10)

N = TL
TC

(11)

fCi is the frequency of τi in the ideal case of TC. In actual task scheduling, the
frequency of tasks that may exist in each TC does not reach the ideal situation. In this
case, virtual tasks need to be used to make up. We define fVi as the number of τi needs
to be filled in the entire task set period, specifically defining the following formula:

fVi = fCi × N − fi (12)

According to the formula (12), we can know that when fVi is 0, the task set can
convert the period of the task set to Tc without adding virtual tasks. When fVi is not 0,
the task set needs to convert its period to Tc by adding the method area of the virtual
task. Therefore, it can be divided into the following two cases:

• Need to add virtual tasks
According to the formula (9), (10) and (11), fVi cannot be zero only when Tc is not
an integer multiple of Ti, that is, the period of Ti cannot be divided by Tc. Here is a
practical example to test: there are 3 tasks, the period is {10, 15, 25}, so TL = 150,
TC = 25, fi = {15, 10, 6}, fCi = {3, 2, 1}, N = 6, we then can find fVi = {3, 2,
0}.In this case, we can add 3 virtual task1, 2 virtual task2. The method of specifically
calculating the virtual task position within a TL period is as follows:
Let n be the index of the TC, nji is the number of virtual tasks that task i needs to add
in the jth TC, then:

a. First, calculate the number of τi in the first nth Tc: Nn
i , Pi is to determine whether

the nth TCs are multiples of Ti. If Pi is greater than 0, according to (10), I need to
add an extra one when calculating Nn

i .

336 W. Hu et al.

Pi = (Tc × n) mod Ti (13)

Nn
i =

{
(Tc × n)/Ti + 1 Pi > 0
(Tc × n)/T Pi = 0

(14)

b. Second, calculate the number of τi in the first (n−1)th TC: Nn−1
i .Qi is to determine

whether the (n−1) TCs in front are multiples of Ti. If Qi is greater than 0, according
to (10), I need to add an extra one when calculating Nn−1

i .

Qi = (Tc × (n − 1)) mod Ti (15)

Nn−1
i =

{
(Tc × (n − 1))/Ti + 1 Qi > 0
(Tc × (n − 1))/T Qi = 0

(16)

c. Third, get the number of τi in the nth TC:
(
Nn
i − Nn−1

i

)
.

d. fourth, get the number of virtual tasks that τi needs to add in the jth TC: nji.

nji = fCi −
(
Nn
i − Nn−1

i

)
(17)

• No need to add virtual tasks
Only when Tc is an integer multiple of Ti, fVi is zero, that is, Tc is divisible by the
period of Ti. For example, there are 3 tasks, the period is {10, 15, 30}, so TL = 30,
TC = 30, fVi = {0, 0, 0}. So, we can come up with a supplementary location for each
virtual task in this example, as shown in the following Table 1:

Table 1. The position of the complement task

Task/position 1 2 3 4 5 6

Task1 0 1 0 1 0 1

Task2 0 0 1 0 0 1

Task3 0 0 0 0 0 0

After the addition of the virtual task, the long-period TL was divided into the same
six components, so the period of the task set TL could be shortened to the TC.

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 337

4.3 The Process of Scheduling

In the VTC scheduling process, the task set is scheduled in cycles. On the timeline,
after a TC buffer is completed, the data of the entire TC is released and then scheduled.
Figure 2 is a scheduling diagram. Task1, task2 and task3 named T1, T2 and T3. The
width of task represents the execution time of task. The task appears only once with
period. The period of task3 is the buffer period, and the virtual tasks are complemented
in the scheduling process. Each TC is allocated with the RMS small-cycle priority policy,
so that the scheduling is orderly and regular.

Fig. 2. The process of scheduling

338 W. Hu et al.

4.4 Feasibility

Just like the traditional RMS, EDF and other scheduling framework, VTC also has its
scheduling limits. The difference is that the scheduling limits of VTC fluctuate according
to the number of virtual tasks. When the number of virtual tasks is 0, the CPU occupancy
rate can reach 100%. At this time, the VTC can still be scheduled; when the number of
virtual tasks is not 0, the CPU occupancy rate is less than 100%, and the task scheduling
has a limit. The bounding formula is as follows:

Let C be the total execution time of the real-time task set, we have:

C =
∑

Ci × fCi (18)

When C < TC, the task set is schedulable.

5 Experiments and Analysis

It is necessary to compare the VTC scheduling framework with the traditional fixed
priority scheduling framework. We compare the VTC with the non-preemptive RMS
and RMS, and simulate it with the TORSCHE toolkit on MTALAB.

5.1 Schedulability Simulation

In simulation experiment, we defined three different sets of tasks. the Table 2 describes
the set of tasks used for the experiment. The first task set is the normal CPU occupancy
rate, the second task set is the high CPU occupancy rate, and the third task set is the case
where the VTC does not need to complement the task.

Table 2. Simulation tasks set and CPU utilization

Task set Details Utilization Task supplement VTC utilization

Set1 Task1 = {2, 2, 10}
Task2 = {4, 4, 15}
Task3 = {7, 7, 25}

76.67% Yes 84%

Set2 Task1 = {3, 3, 12}
Task2 = {6, 6, 24}
Task3 = {15, 15, 36}

91.67% Yes 100%

Set3 Task1 = {5, 5, 15}
Task2 = {7, 7, 30}
Task3 = {19, 19, 60}

88.33% No 88.33%

The CPU occupancy rate of the first task set is 74.67%. After the virtual task is
supplemented by VTC scheduling, the CPU occupancy rate is 84%. The simulation
results are shown in Fig. 3. In the first subgraph, the three original real-time tasks of
Set1 and the background task AF are displayed, and the second one shows the task

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 339

scheduling of the RMS, which appears during the scheduling process. Interrupts and
delays, but can be completed within the deadline. The third sub-picture shows the NP-
RMS task schedule. Although there is no task interruption, even the highest priority
task1 has some delay. The last sub-picture shows the task scheduling of VTC. It uses
the scheduling scheme of “low priority period is the cache period”, and the red part is
the virtual supplementary task. It takes the CPU as a real-time task and sacrifices part
of the CPU. The occupancy rate makes the task set cycle become the cycle of Task3,
which reduces the delay of the task, and there is no interruption in the process of task
scheduling.

Fig. 3. Simulation result for Set1 (Color figure online)

Figure 4 shows that the CPU share of the task set is 91.67%. After the virtual task
is supplemented by VTC scheduling, the CPU occupancy rate is 100%. The simulation
results show that the RMS can complete the scheduling, but there is an interruption,
NP-RMS can also complete the scheduling, but will exceed the deadline, there is no
interruption in the VTC scheduling process, the task is scheduled in advance, and does
not exceed the deadline.

The CPU occupation rate of task set 3 is 88.33%. The virtual task is not needed in
the VTC scheduling process. Therefore, the CPU occupancy rate after VTC scheduling
is still 88.33%, which is a special case of VTC scheduling. The simulation results are
shown in Fig. 5. The RMS can be scheduled, but as always there are a lot of interrupts.
NP-RMS can’t complete scheduling, and there is a packet loss phenomenon, which will
cause some important tasks to be completed. VTC can still complete the scheduling
stably. At this time, the scheduling advantage of VTC is initially displayed.

340 W. Hu et al.

Fig. 4. Simulation result for Set2

Fig. 5. Simulation result for Set3

5.2 The Comparison of Delay

We compared the delays of Set1 to RMS, NP-RMS, and VTC scheduling framework.
The comparison is the delay between the initial task time and the actual execution time
of the task.

Figure 6 shows the delay comparison of Task1 of Set1. It can be seen that the highest
priority task has no delay after RMS scheduling, and both NP-RMS and VTC have small
delays. Figure 7 shows the delay comparison of task2. The three scheduling frameworks
have very small delays. Figure 8 shows the delay comparison of task3. The RMS and

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 341

NP-RMS delays are within 5 ms, and the VTC delay is within 10 ms. Acceptable delay.
Based on the comparison of the above three, it can be found that VTC is comparable to
RMS and NP-RMS in terms of delay.

Fig. 6. Delay of Task1 Fig. 7. Delay of Task2 Fig. 8. Delay of Task3

5.3 Delay Rate

The VTC adopts a pre-scheduled method, and the scheduling is not started until the
entire task set period is cached. We believe that the task is in the scheduling process, if it
is executed before the initial execution time of the task, it has a positive meaning to the
scheduling system, and the delay to start execution has a negative impact. We propose
the concept of delay rate, which is the percentage of the number of tasks that are delayed
to execute in a task set cycle as a percentage of the total number of tasks. The formula
for calculating the delay rate is as follows:

P =
∑n

1 f
delay
i∑n
1 fi

× 100% (19)

In formula (19), f delayi is the number of delays of the task i, and P is the delay rate.
In order to more intuitively reflect the low latency of the VTC model, we randomly
generated 100 sets of data sets, and their CPU occupancy increased gradually from 30%
to 90%. The test results are shown in Fig. 9.

We can see that with the increase of CPU occupancy, the delay rate of NP-RMS
transmission mode begins to increase more and more, and the delay rate of RMS and
VTC models is relatively stable, but the overall delay rate of RMS. Higher than the
VTC model, this shows that the VTC scheduling model has significant advantages in
scheduling delay.

5.4 Scheduling Complexity

Interrupts are a feature of the RMS scheduling framework that cannot be eliminated.
However, due to the non-preemptive nature of the scheduling process, the NP-RMS
scheduling framework often leads to high latency or even loss of tasks. Therefore, com-
paring VTC with RMS and NP-RMS for interrupts and losses is not fair enough for
RMS and NP-RMS. After all, RMS and NP-RMS are not framework for multimedia
scheduling. The above comparison is only to show that VTC will not be interrupted and

342 W. Hu et al.

Fig. 9. The rate of delay

lost during the scheduling process. In terms of delay, VTC is comparable to RMS and
NP-RMS. After all, in the field of multimedia scheduling, interruption, loss, and delay
are very influential in multimedia effects.

VTC is a scheduling framework for audio/video multimedia. We need a way to judge
multimedia scheduling. We propose the concept of scheduling complexity. In the system
scheduling process, after the multimedia data is input, the data needs to be cached and
then processed. When the CPU processes this data, we think that the difficulty of CPU
scheduling is different for different scheduling framework. For example, when the same
set of data is cached, the general scheduling framework RMS and NP-RMS cache holds
the period TL, while the VTC caches a small period TC, which causes the amount of
data to be different when the CPU processes. Interrupt, loss, and unstable delays can
make system hardware scheduling more difficult when the CPU processes tasks for each
cycle. In the scheduling process of VTC, the delay is stable, no interruption, no loss,
which will greatly reduce the scheduling complexity of the system.

5.5 Advantages and Disadvantages of VTC

VTC has advantages in scheduling multimedia tasks such as audio/video, especially in
real-time processing extensions or hybrid critical systems in general-purpose operating
systems. (1). Real-time tasks can complement virtual tasks, and non-real-time tasks
can be scheduled in idle time, resulting in extremely high CPU occupancy. (2). Timing
determinism of multimedia cycle tasks, delay can be calculated in advance. (3). Simple
schedulability judgment, so that schedulability can be judged before scheduling. (4).
The flexible virtual task complement scheme reduces the cycle of the task set from TL
to TC, which greatly reduces the delay. (5). Multimedia tasks can be driven by low-level
system timers instead of software interrupts, reducing small delays.

VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time 343

Similar to RMS and EDF, VTC relies on the correct worst-case execution time of
the task. If the worst-case execution time is inaccurate, it will affect the schedulability
of the overall task, which is a disadvantage of VTC.

6 Conclusions

In this paper, we propose a scheduling framework for the multimedia field for low-latency
audio and video processing. In the traditional concept of round-robin scheduling, VTC
flexibly redistributes real-time tasks by adding virtual tasks, which makes the task set
have a lower cycle, and the system can be scheduled for high CPU task sets. Finally,
the experimental simulation shows that VTC has the advantages of non-interruption, no
packet loss, and delay similar to the traditional scheduling framework even for high CPU
occupancy task scheduling, and the scheduling complexity is lower than the traditional
RMS and NP-RMS scheduling framework.

References

1. Tullimas, S., Nguyen, T., Sen-Ching, C.: Multimedia streaming using multiple TCP connec-
tions. In: Proceedings of 24th IEEE International Conference on Performance, Computing,
and Communications, pp. 215–223 (2005)

2. Koodli, R., Puuskari, M.: Supporting packet-data QoS in next-generation cellular networks.
IEEE Commun. Mag. 39, 180–188 (2001)

3. Tu, W., Jia, W.: Adaptive playout buffer for wireless streaming media. In: Proceedings on
12th IEEE International Conference Networks, pp. 19 l–195 (2004)

4. Steinbach, E.G.: Adaptive playout for low latency video streaming. In: Proceedings of the
International Conference on Image Processing, Thessaloniki, Greece (200 l)

5. Wang, Y., Grant, J., Foss, J.: Flexilink: a unified low latency network architecture for mul-
tichannel live audio. In: Audio Engineering Society Convention 133. Audio Engineering
Society (2012)

6. Song, Y., Wang, Y., Bull, P., Reiss, J.D.: Performance evaluation of a new flexible time division
multiplexing protocol on mixed traffic types. In: 2017 IEEE 31st International Conference on
Advanced Information Networking and Applications (AINA), pp. 23–30. IEEE (2017)

7. Laoutaris, N., Stavrakakis, I.: Adaptive playout strategies for packet video receivers with
finite buffer capacity. In: Proceedings of IEEE ICC 2001, Helsinki, Finland, June 200 l

8. Sha, L., Abdelzaher, T., Aerzean, K.-E., et al.: Real time scheduling theory: a historical
perspective. Real-Time Syst. 28(3), 101–155 (2004)

9. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real time
environment. In: Readings in Hardware/Software Co-Design. Kluwer Academic Publishers
(2001)

10. Park, M.: Non-preemptive fixed priority scheduling of hard real-time periodic tasks. In: Shi,
Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4490, pp. 881–
888. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72590-9_134

11. Nasri, M., Brandenburg, B.B.: Offline equivalence: a non-preemptive scheduling technique for
resource-constrained embedded real-time systems. In: Real-Time and Embedded Technology
and Applications Symposium. IEEE (2017)

12. Ma, T., Wang, Y., Hu, W.: Evaluation of flexilink as unified real-time protocol for industrial
networks. In: IEEE International Conference on Big Data Science and Engineering. IEEE
(2018)

https://doi.org/10.1007/978-3-540-72590-9_134

A BSP Based Approach for NFAs
Intersection

Cheikh Ba(B) and Abdoulaye Gueye

LANI - Université Gaston Berger, Saint-Louis, Senegal
cheikh2.ba@ugb.edu.sn, ablayesat@gmail.com

Abstract. Large NFAs are automata that cannot fit in a single com-
puter, or the computations would not fit within the computer RAM, or
may take a long time. We describe and implement a BSP solution of
such large NFAs intersection. Our method avoids producing unreachable
states of the product automaton, contrary to previous solutions. These
solutions, based on MapReduce for instance, process all the Cartesian
product of inputs NFAs. A running example is provided with execu-
tion details. Finally, complexity analysis is given. This work will help in
bringing out relevant programming artifacts for our long term goal that
consists of a high level distributed graph language.

Keywords: BSP · MapReduce · Large NFAs intersection · Complexity

1 Introduction

Nondeterministic Finite-state Automata (NFAs) are simple, yet powerful devices
that model a plethora of computationally oriented phenomena. They are ubiq-
uitous in computer science, and have been studied since the 1950s. Applications
include pattern matching, natural language processing, speech recognition, token
passing networks, compilers, web services composition, among others domains.

Some of the problems related to NFA that have been studied in the liter-
ature are intersection, determinization and minimization. For instance, one of
the main issues for the NFA intersection problem is that the size of the output
NFA is the product of the size of all inputs NFAs, mainly when the NFAs can-
not fit in a single computer, or the large computations would not normally fit
within the computer RAM. So, in the case of very large automata or graphs,
distributed approach such as disk-based parallel algorithm, MapReduce parallel
programming model and memory based distributed system are used.

In this paper we investigate the novel use of BSP [17] (bulk synchronous
parallel) abstract computer to implement large NFAs intersection. Contrary to
previous and classic approaches for NFAs intersection, we don’t need to process
the product of the size of all inputs NFAs. Indeed, testing for emptiness of the
intersection of a set languages represented by NFAs is known to be PSPACE-
complete [11]. The reason is that the most commonly used algorithm is the
Cartesian construct. If there are m input NFAs each having n states, the product
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 344–354, 2020.
https://doi.org/10.1007/978-3-030-60245-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_24&domain=pdf
http://orcid.org/0000-0002-4515-5044
http://orcid.org/0000-0001-5107-1851
https://doi.org/10.1007/978-3-030-60245-1_24

A BSP Based Approach for NFAs Intersection 345

NFA will have nm states. It therefore would be important to come up with good
distributed algorithms, that avoid at best processing useless product states.

Note that this work is one of the first steps of a long term goal, that aims
a high level language for graph-like structure processing, a kind of distributed
graph language that hides, the most, the distributed aspect.

The rest of this paper is organized as follows: Sect. 2 gives some related
works and Sect. 3 presents technical definitions, namely Finite State Machines,
MapReduce paradigm and BSP model. In Sect. 4 we describe our proposition
and it analysis is given in Sect. 5. Conclusions are drawn in Sect. 6.

2 Related Works

Big data are data sets that are too large or complex to be dealt with by tra-
ditional data-processing application software. It’s about data storage, analysis,
sharing, visualization, querying and so on. A common solution requires the use
of a large number of computers for a distributed storage and parallel processing.

This section will point out the existence of two families of solutions. The
first one concerns from-scratch solutions in which, for each need, one have to
become distributed systems expert to build the infrastructure to handle it. The
second one is related to solutions with a higher level of abstraction that hides
machines coordination complexity to create building blocks for programmers
who just happen to have lots of data to store, or lots of data to analyze, or
lots of machines to coordinate, and who don’t have the time, the skill, or the
inclination to program low level tasks. We place our present work in the second
family.

One of the most important algorithms for automata processing is the min-
imization of a deterministic finite automaton (DFA). Some parallel algorithms
consider shared memory machines [14,16]. These algorithms are applicable for
tightly coupled parallel machines with shared RAM with heavy use of random
access. In addition, work in [14] used a 512-processor CM-5 supercomputer to
minimize a DFA with 525,000 states. In the case when the DFA considered is
very large, a disk storage may be needed. In this context, [15] exhibits a parallel
disk-based algorithm that uses a cluster of 29 commodity computers to pro-
duce an intermediate DFA with almost two billion states and then continues by
producing the corresponding unique minimal DFA with less than 800,000 states.

The aforementioned propositions belong to the first family of solutions.
Recently, Google introduced Hadoop distributed platform [2], which has

become the de facto standard for processing big data, and its MapReduce
paradigm as a parallel programming model [4]. Its goal is to simplify parallel
processing by offering two simple interfaces: map and reduce. It achieves data
parallel computation by partitioning the data randomly to machines and exe-
cuting the map and reduce functions on these partitions in parallel. Hadoop
works by connecting many different computers, hiding the complexity from the
user, as if it works with one giant computer. Since then, several MapReduce
solutions for general graph problems has emerged [3,8,9,12]. In the case of large

346 C. Ba and A. Gueye

automata, works in [8,9] offer algorithms for intersection and minimization with
MapReduce.

Although MapReduce is able to express many common graph algorithms, it
has been recognized that it is not suitable for graph algorithms that are iterative,
due to excessive I/O with HDFS (Hadoop distributed file system) and data shuf-
fling at every iteration. Since the MapReduce model does not provide natural
support for iteration, this can only be reproduced by scheduling several consecu-
tive jobs, resulting in significant overhead. That is why several in-memory graph
processing frameworks such as Google’s Pregel [13], Spark/GraphX [7], and Pow-
erGraph [6] are proposed to speed up the execution of iterative graph algo-
rithms. Most of these frameworks follow a vertex-centric programming model.
For instance, in frameworks such as Google’s Pregel, based on BSP model [17],
each vertex receives messages from its incoming neighbors, updates its state, and
then sends messages to outgoing neighbors in each iteration.

However, these frameworks are not yet exploited for the case of automata.
We then propose the novel use of BSP model for large NFAs intersection. Even
though [9] proposes a one-iteration MapReduce solution (which is not the case
for most of graph algorithms, such as DFA minimization [8]), they process the
product of the size of all inputs NFAs, including potential useless product states.

3 Terminology and Background

3.1 Finite State Automata

In this section we introduce two kinds of Finite State Automata (FSA), namely
Deterministic (DFA) and Non-deterministic (NFA) Finite state Automaton.

A DFA consists of a finite set of states with labelled and directed edges
between pairs of states. For each state, there is at most one outgoing edge labeled
by a given letter from the alphabet (determinism). The DFA accepts a word if
the letters of the word determine transitions from the initial state to a final or
accepting state. Formally, a DFA is a 5-tuple A = (Σ,Q, i, δ, F) where Σ is the
input alphabet, Q is the set of states, i ∈ Q is the initial state, and F ⊆ Q is
the final states. δ : Q × Σ → Q is the transition function, which decides which
state the control will move to from the current state upon consuming a symbol.

An NFA is similar except that, for a given state, there may be more than
one choice for outgoing edges with the same label (non-determinism). The NFA
accepts a word if there exists a choice of transitions from the initial state to some
final state. Formally, the only difference from a DFA is that δ : Q × Σ → 2Q.

The language accepted by a FSA A, denoted L(A), is the set of words
accepted by A. NFAs and DFAs are equivalent and a language is regular if and
only if it is accepted by some FSA. Figure 1 shows two FSAs on Σ = {a, b}: a
DFA which accepts words containing an even number of symbols (Fig. 1-a), and
an NFA which accepts words starting with “a” and ending with “b” (Fig. 1-b).

It is well known that regular languages are closed under several operations.
In particular, given NFAs A1 = (Σ,Q1, i1, δ1, F1) and A2 = (Σ,Q2, i2, δ2, F2),

A BSP Based Approach for NFAs Intersection 347

1 20 0 1 2

(a) DFA (b) NFA

a, b

a, b

a, b

a

a, b

b

Fig. 1. An example of two FSA.

an intersection NFA A, such that the language L(A) is L(A1) ∩ L(A2), can be
computed by the Cartesian construct A = A1⊗A2 = (Σ,Q1×Q2, δ, (i1, i2), F1×
F2) where δ : (Q1 × Q2) × Σ → 2Q1×Q2 , with (q1, q2) ∈ δ((p1, p2), σ) if and only
if, for a given σ ∈ Σ, q1 ∈ δ1(p1, σ) and q2 ∈ δ2(p2, σ).

3.2 MapReduce and NFAs Intersection

We assume familiarity with the MapReduce model. Nevertheless we recall some
important concepts. Google’s MapReduce programming model [4] is based on
two functions map and reduce that the programmer is required to implement.
Their signatures are map: 〈K1, V1〉 → {〈K2, V2〉} and reduce: 〈K2, {V2}〉 →
{〈K3, V3〉}. The initial data is stored on HDFS, and each mapper is responsible
for a chunk of the input. In a round of MapReduce, the mappers emit a list
of key-value pairs 〈K,V 〉. This list is partitioned by the MapReduce framework
depending on the values of K. All pairs having the same value of K belong to
the same group 〈K, [V1, · · · , Vl]〉, and this group will be sent to the same reducer.

Works in [8,9] are the only propositions we know that use high level dis-
tributed platform for problems related to automata. In the case of NFAs inter-
section A1 ⊗ · · · ⊗ Am, works in [9] present three variants of a solution using the
Cartesian construct. For instance, considering the mapping based on symbols, we
have one reducer for each of the alphabet symbols. From transition (pi, σ, qi) of
NFA Ai, the mapper will generate the key-value pair 〈σ, (pi, σ, qi)〉. In this way,
after having received inputs {(pi, σ, qi)} for i = 1, · · · ,m, each corresponding
reducer will output transitions {((p1, · · · , pm), σ, (q1, · · · , qm))}.

However, this way of doing is costly since if we have m input NFAs, each
having n states, their method will produce an NFA with nm states, especially
as many of these states may be useless. A useless state is a state that cannot
be reached from the initial state, or a state from which a final state cannot be
reached (dead state). By the way, authors planned in future work to “investigate
reducing the number of states in the product automaton, either by eliminating
all or part of the useless states or by determinizing and minimizing the automa-
ton” [9]. This goal is likely to be costly or difficult to implement with MapReduce
programming model.

3.3 BSP Model

Bulk Synchronous Parallel [17] is a parallel programming model with a message
passing interface, developed to address the problem of parallelizing jobs across

348 C. Ba and A. Gueye

multiple workers for scalability. The BSP model is defined as the combination
of the following three attributes: (i) a number of components for performing
computations, (ii) a router for delivering messages between components, and
(iii) supersteps for synchronizing the computations performed by components.

Pregel [13] is one of the first BSP implementations that provides a native
API specifically for programming graph algorithms, while abstracting away the
details of underlying communication. The computing paradigm can be charac-
terized as “think like a vertex”. Graph computations are specified in terms of
what each vertex has to compute; edges are communication channels from one
vertex to another. In each superstep, a vertex can execute a user-defined function
called compute(), send or receive messages to any other vertex with a known
ID, and change its state from active to inactive. Synchronization barrier ensures
that a message issued in superstep S will be available at its destination ver-
tex in superstep S + 1. A vertex may vote to halt in any superstep (if it calls
voteToHalt()) and is woken up when it receives a message. Pregel terminates
once all vertices are inactive and no further messages are to be passed.

Note that Google’s implementation of Pregel is not publicly available, but
there exist several open source alternatives, such as Apache Giraph [1].

4 Solution for NFAs Intersection

Given m NFAs, Algorithm 1 gives the compute() function of our proposition to
process product automaton A = A1 ⊗· · ·⊗ Am. We recall that this function will
be executed by every active vertex during the system run. Since we are dealing
with automata, states and transitions are respectively represented by Pregel’s
vertices and edges. A vertex can represent a simple state qi (a state that belongs
to input automaton Ai), or a product state ⊗p = (p1, · · · , pm) of the product
or output automaton A. Algorithm 1 consists of an alternating of two kinds of
supersteps, namely PRODUCTION SUPERSTEP (even) and FEED SUPERSTEP (odd).
It is in even supersteps that new product states will be created, as well as
their incoming transitions. In order to create the following product states, two
superteps later, a new product state ⊗p = (p1, · · · , pm) needs to ask for data
(transitions) from each of its component states pi, to be provided in the next
(thus odd) superstep. In fact, FEED SUPERSTEPs are devoted to sending data from
simple states pi to requesting product states ⊗pj .

In the first superstep (line 3), all (simple) states are active, but only ini-
tial ones will execute code before voting to halt (lines from 4 to 9). The
first product state is then created (line 7), that is, the initial product state
⊗p0 = (i1, · · · , im), with no outgoing transition yet. In fact, in order to create
outgoing transitions and corresponding target states, ⊗p0 needs information from
each of its component (ik). For this purpose, and according to the BSP model
(Sect. 3.3), ⊗p0 has to ask for information from each ik first (line 8). Then, this
request will be received and processed by each ik in the following superstep
(FEED SUPERSTEP). Finally, ⊗p0 will receive requested data in the next superstep
(PRODUCTION SUPERSTEP), that is, two supersteps later from the present one.

A BSP Based Approach for NFAs Intersection 349

Apart from the first superstep, only “fed” product states ⊗pi will execute code
(from line 12 to line 27) in a PRODUCTION SUPERSTEP. A “fed” product state is
a state that requested data, two supersteps earlier, from each of its component
simple states, and that just receives them (line 15). Then, state ⊗p checks if there
is a common outgoing transition (symbol) from each of its component states pi
(line 16); in other words, if ⊗Σ 	= ∅. In such a case, there is a creation of a new
transition, with the common symbol, from ⊗p to each new product state ⊗q that
matches (line 22). Thus, state ⊗q is a new destination vertex (line 21), if it is
not previously created. Finally, as for the initial product state (line 8), state ⊗q
will ask for information from its component states (line 23), in order create, two
supersteps later, its potential output transitions and target states.

At last, as said earlier, FEED SUPERSTEPs are devoted to sending data from
simple states pi to requesting product states ⊗pj (line 32). In fact, only simple
states that receive requests (from product states) are active in odd supersteps.

0,1

1,0

0,2

2,0

1,2

0,0

1,1

2,2

2,1
b

a

b

a

a, b

a, b a

ba, b

· · · Not reachable from initial state.

−− Cannot reach final state.

Fig. 2. Product automaton of FSA in Fig. 1.

Example 1. Let us consider the two FSA in Fig. 1, namely DFA A1 and NFA
A2. The intersection or product automaton A = A1 ⊗ A2 is depicted in Fig. 2.
The solution in [9], described in Sect. 3.2, would produce all the nine product
states: useful states as well as useless ones. Useful states are darkened, except
the last one. Useless states are those that are not reachable from the initial state
(dotted line), and one dead state (dashed line), namely state (1, 2).

In contrast, our solution produces only darkened states, including a single
useless one. Table 1 gives some details of the execution. Only even supersteps
(PRODUCTION SUPERSTEP) are represented. However, we give some information
related to the two first supersteps. In superstep 0, each of the two actives initial
states 0A1 and 0A2 asks for the creation of the initial product state ⊗p0 = (0, 0)
(line 7). Then, ⊗p requests information from 0A1 and 0A2 (line 8). In this way, in
superstep 1 (FEED SUPERSTEP), only states 0A1 and 0A2 are active. Both received
request from ⊗p (line 31) and they, in turn, send information to ⊗p (line 32): 0A1

sends “(0, {a, b}, 1)” and 0A2 sends “(0, {a}, 1)”. �

350 C. Ba and A. Gueye

Algorithm 1. compute(vertex ,messages)
1: if (PRODUCTION SUPERSTEP) then
2: {Even superstep}
3: if (superstep = 0) then
4: if (vertex.isInitialSimpleState()) then
5: {vertex represents simple state i1 or i2 · · · or im}
6: Let ⊗p0 ← (i1, · · · , im); {Initial product state.}
7: createV ertex(⊗p0); {Idempotent operation.}
8: sendMessage(⊗p0.ID, ik) {Asks for data from each ik.}
9: end if

10: else
11: {vertex represents a product state ⊗p}
12: if (message �= ∅ ∧ !vertex.isV isited()) then
13: {⊗p receives data it asked for, 2 supersteps earlier.}
14: Let ⊗p ← (p1, · · · , pm);
15: Let δi ← getEdges(pi.ID, messages) {Gets out-transitions for each pi}
16: Let ⊗Σ ←

⋂

i

{
σ ∈ Σ | ∃qi ∈ Qi : qi ∈ δi(pi, σ)

}
;

17: {⊗Σ is the common outgoing-transition symbols from pi. }
18: for each σ ∈ ⊗Σ do
19: for each tuple (q1, · · · , qn) such that qi ∈ δi(pi, σ) do
20: Let ⊗q ← (q1, · · · , qm);
21: createV ertex(⊗q); {No effect if ⊗q already exists. }
22: createEdge(⊗p, σ, ⊗q); {(⊗p, σ, ⊗q) is a new transition of A. }
23: sendMessage(⊗q.ID, qi); {Asks for data from each qi.}
24: end for
25: end for
26: vertex.setV isited(TRUE);
27: end if
28: end if
29: else
30: {FEED SUPERSTEP. Odd superstep. vertex represents a simple state}
31: for each ⊗p.ID in messages do
32: sendMessage(vertex.getEdges(), ⊗p.ID) {Sends message to requesting ⊗p}
33: end for
34: end if
35: vertex.voteToHalt();

5 Analysis

In this section, we attempt to give state complexity as well as computational one.
State complexity concerns the number of states that will be generated by our
solution, no matter they are useful or not. Computational complexity concerns
the numbers of iterations and message exchanges between processes. We have
implemented our method with Giraph [1] and tested it with several inputs.

A BSP Based Approach for NFAs Intersection 351

Table 1. Execution of Algorithm 1 for the intesection of the two FSA in Fig. 1.

Superstep 0 Superstep 2 Superstep 4 Superstep 6 Superstep 8 END

Active vertices All simple

states of A1
and A2

(0, 0) (1, 1) (2, 1), (2, 2) (1, 1), (1, 2) ∅

⊗Σ − {a} {a, b} {a, b} ∅ −
New states (0, 0) (1, 1) (2, 1), (2, 2) (1, 2) ∅ −
New transitions − 1 new:

(0, 0)
a−→ (1, 1)

3 new:

(1, 1)
a,b−→ (2, 1)

(1, 1)
b−→ (2, 2)

3 new:

(2, 1)
a,b−→ (1, 1)

(2, 1)
b−→ (1, 2)

∅ −

5.1 State Complexity

Our main contribution in relation to the MapReduce solution (Sect. 3.2) is the
state complexity. Intrinsically, our solution cannot produce a state that is not
reachable from the initial one, since it starts by the initial state (i1, · · · , im) and
moves forward to the future new state only if a common symbol can be read.
We can clearly characterize these unreachable states in Example 1: if we regard
the intersection A as a 3 × 3 matrix, then all states in the first row and in the
first column are unreachable from (0, 0).

However, our solution may produce some states from which we cannot reach
the final state. It is presently the case in Example 1 with the single dead state
(1, 2). We could easily remove a dead state that is at the end of a dead path. The
state just has to remove itself if it is not final and has no outgoing transition,
as for state (1, 2). But we may have dead states that have outgoing transitions
to some others dead states. For this case, the solution for deleting these states
is likely to make Algorithm 1 confused and may lead to many more supersteps.

More generally, our method can be especially efficient in the case of multiple
intersection. We recall that if there are m input NFAs each having n states, the
product NFA will have nm states, even if this product is empty. For instance,
let us consider automaton A3, having n states and whose accepted words don’t
start with symbol “a”. Obviously, the language L(A1 ⊗ A2 ⊗ A3) is empty. Our
solution will stop at third superstep instead of producing 3×3×n useless states.

Formally, several works give study of state complexity of regular language
intersections. For instance, [10] investigate a tight bound for intersection of finite
languages and stipulate that, given two minimal DFAs A and B, mn − 3(m +
n) + 12 states are necessary and sufficient in the worst case for the intersection
of L(A) and L(B), where A and B have respectively m and n states. Later, [5]
improves this upper bound by first computing a lower bound on the number of
unreachable states. Nevertheless, these works concern minimal DFAs while our
work is more general, and a direct adaptation may not be evident. That’s why
a similar formal study should be done for NFAs in our distributed context.

5.2 Computational Complexity

The cost of our solution is the number S of required supersteps multiplied by
the cost of a superstep.

352 C. Ba and A. Gueye

Number of Supersteps. A PRODUCTION SUPERSTEP of our proposition corre-
sponds exactly to an iteration of the well-known Breadth-First Search (BFS)
algorithm for traversing or searching tree or graph data structures. The time
complexity of BSF is O(|V | + |E|) since all vertices (|V | in number) and all
edges (|E| in number) will be explored in the worst case. Then, the number S
of required supersteps is bounded by the double of the number of states of the
largest input automaton plus one. In other words, S ≤ 2 ∗ (max

i
|Qi| + 1). This

is due to the nature of automata intersection and the way Algorithm reffunct-
compute moves forward to search next product states with alternating super-
steps.

Cost of a Superstep. The cost of a superstep is determined as the sum of three
terms; the cost of the longest running local computation, the cost of maximum
communication between processors, and the cost of the barrier synchronization.
The costs are computed in terms of abstract parameters which model the number
of processors p, the cost of barrier synchronization l, the cost of the running local
computation wi, the number hi of messages send or received by process pi, and g
the ability of a communication network to deliver data, defined such that it takes
time hig for a process pi to deliver hi messages. Thus, the cost of one superstep
for p processors is maxp

i=1(wi) + maxp
i=1(hig) + l. Note that it is more common

for the expression to be written as w + hg + l where w and h are maximums.
In our case, if we consider the intersection of m automata Ai, with a fixed

symbol alphabet Σ, and the automaton outdegree equal to k (k is the num-
ber of transitions outgoing from each state), w and h are respectively O(km+1)
and O(mkm+1). In fact, for each common symbol σ (line 16), individual tran-
sitions are combined (line 19) to find product transitions. After that, each new
product state ⊗q will ask for information (outgoing transitions) from each of its
component states qi for following supersteps (line 23).

6 Concluding Remarks

In this work, we have proposed and implemented a novel use of BSP (Bulk
Synchronous Parallel) abstract computer for large NFAs intersection. The inter-
section problem has been widely studied, with distributed solutions using either
disk-based parallel algorithms, or MapReduce programming model. Contrary to
these previous and classic approaches, we don’t need to process the product of
the size of all inputs NFAs. In fact, we avoid producing unreachable states of the
product automaton. Our Pregel algorithm is accompanied by a running exam-
ple, with some execution details. Finally, we have given an analysis of state and
computational complexities.

Our model would benefit from (i) being more deeply studied in order to
have tighter upper bounds for product automaton size and number of required
supersteps, depending on input automata, (ii) more accurate complexity and
(iii) experimental validation. However, one important thing for future works is

A BSP Based Approach for NFAs Intersection 353

to see how to bring out relevant programming artifacts, or building blocks, for
a high level distributed graph language that hides the most distributed aspects.

References

1. The Apache Software Foundation: Apache giraph. https://giraph.apache.org/
2. The Apache Software Foundation: Apache hadoop. https://hadoop.apache.org/
3. Aridhi, S., Lacomme, P., Ren, L., Vincent, B.: A mapreduce-based approach for

shortest path problem in large-scale networks. Eng. Appl. Artif. Intell. 41, 151–165
(2015)

4. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

5. Gandhi, A., Khoussainov, B., Liu, J.: On state complexity of finite word and tree
languages. In: Yen, H.-C., Ibarra, O.H. (eds.) DLT 2012. LNCS, vol. 7410, pp.
392–403. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31653-
1 35

6. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: Dis-
tributed graph-parallel computation on natural graphs. In: Thekkath, C., Vahdat,
A. (eds.) 10th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2012, Hollywood, CA, USA, 8–10 October, pp. 17–30 (2012)

7. Gonzalez, J.E., Xin, R.S., Dave, A., Crankshaw, D., Franklin, M.J., Stoica, I.:
Graphx: graph processing in a distributed dataflow framework. In: Flinn, J., Levy,
H. (eds.) 11th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2014, Broomfield, CO, USA, 6–8 October, pp. 599–613 (2014)

8. Grahne, G., Harrafi, S., Hedayati, I., Moallemi, A.: DFA minimization in map-
reduce. In: Afrati, F.N., Sroka, J., Hidders, J. (eds.) Proceedings of the 3rd ACM
SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond,
BeyondMR@SIGMOD 2016, San Francisco, CA, USA, 1 July 2016, p. 4. ACM
(2016)

9. Grahne, G., Harrafi, S., Moallemi, A., Onet, A.: Computing NFA intersections in
map-reduce. In: Fischer, P.M., Alonso, G., Arenas, M., Geerts, F. (eds.) Proceed-
ings of the Workshops of the EDBT/ICDT 2015 Joint Conference (EDBT/ICDT),
Brussels, Belgium, 27th March 2015. CEUR Workshop Proceedings, vol. 1330, pp.
42–45. CEUR-WS.org (2015)

10. Han, Y.-S., Salomaa, K.: State complexity of union and intersection of finite lan-
guages. In: Harju, T., Karhumäki, J., Lepistö, A. (eds.) DLT 2007. LNCS, vol.
4588, pp. 217–228. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-73208-2 22

11. Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th
Annual Symposium on Foundations of Computer Science SFCS 1977, pp. 254–266.
IEEE Computer Society, USA (1977)

12. Lattanzi, S., Mirrokni, V.S.: Distributed graph algorithmics: theory and practice.
In: WSDM, pp. 419–420 (2015). http://dl.acm.org/citation.cfm?id=2697043

13. Malewicz, G., et al.: Pregel: a system for large-scale graph processing. In: Pro-
ceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2010, Indianapolis, Indiana, USA, 6–10 June, pp. 135–146. ACM (2010)

14. Ravikumar, B., Xiong, X.: A parallel algorithm for minimization of finite automata.
In: Proceedings of IPPS 1996, The 10th International Parallel Processing Sympo-
sium, 15–19 April, Honolulu, USA, pp. 187–191. IEEE Computer Society (1996)

https://giraph.apache.org/
https://hadoop.apache.org/
https://doi.org/10.1007/978-3-642-31653-1_35
https://doi.org/10.1007/978-3-642-31653-1_35
https://doi.org/10.1007/978-3-540-73208-2_22
https://doi.org/10.1007/978-3-540-73208-2_22
http://dl.acm.org/citation.cfm?id=2697043

354 C. Ba and A. Gueye

15. Slavici, V., Kunkle, D., Cooperman, G., Linton, S.: Finding the minimal DFA of
very large finite state automata with an application to token passing networks.
CoRR abs/1103.5736 (2011)

16. Tewari, A., Srivastava, U., Gupta, P.: A parallel DFA minimization algorithm. In:
Sahni, S., Prasanna, V.K., Shukla, U. (eds.) HiPC 2002. LNCS, vol. 2552, pp.
34–40. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36265-7 4

17. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8),
103–111 (1990)

https://doi.org/10.1007/3-540-36265-7_4

Tight Bound of Parallel Request Latency
for Erasure-Coded Distributed Storage

System

Xingshun Zou and Wei Li(B)

Shandong University, Jinan, China
zouxingshun@foxmail.com, wli1@sdu.edu.cn

Abstract. With big data analysis and cloud storage improving at an
astonishing rate in recent years, more and more parallel computing and
data analysis techniques are invented and applied to accessing data
from a distributed storage system, which has noticeable differences with
accessing data from a separate dedicated storage system. The first and
the last processes of a data analysis task in a shared filesystem may have
a remarkable gap in latency. The latency of parallel file requests from
these processes, however, lacks analytical model especially when erasure
code is employed as storage strategy. The main contribution of this work
is development of a tight bound of parallel file request latency to give
a theoretical upper bound of lantency. Additionally, an exact batch file
chunk request analytical model in distributed systems adopting erasure
code is studied by the technique of two embedded Markov chains, perfor-
mance measures such as queue length distribution, waiting time distri-
bution, etc. are derived in closed form. Experimental evaluation verifies
accuracy of the theoretical upper bound on latency.

Keywords: Parallel file requests · Distributed storage system ·
Erasure code · Queueing theory · Latency · Embedded Markov chain

1 Introduction

Recently, erasure code has been widely used in various distributed storage sys-
tems such as GFS, HDFS or QFS [8,9,20]. These storage systems encode files
into chunks and store file chunks spreading over all of the storage nodes rather
than full file replication. Comparing to traditional method, erasure code reduces
space of storage by 50% [11] and achieves the tantamount reliability because of
its matrix algorithm. For instance, while distributed storage system uses a (d, k)
MDS code to encode a file into d equal-size file chunks and randomly store them
in the system, any subset of k(k < d) chunks is enough to reconstruct the orig-
inal file. Gathering k distinct file chunks, though, from different storage nodes
to reconstruct the file leads to a severe latency problem. Due to randomness of
file chunks distribution and difference of service capabilities of various nodes,
chunk request times from different nodes possibly have a considerable gap, and
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 355–368, 2020.
https://doi.org/10.1007/978-3-030-60245-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_25&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_25

356 X. Zou and W. Li

the file reconstructing time is determined by the slowest storage node. In other
words, the request of the file in erasure code distributed system has to wait even
if other k−1 distinct chunk requests are completed. Waiting for kth chunk leads
to latency. It is significant to reduce latency in distributed storage system, since
Google and Amazon show that every 500 ms delay means a 1.2% user loss [18].

Latency may be tolerated for request of single file. It is, however, necessary
to optimise the latency of parallel requests of multiple files from the parallel
processes or threads. More and more parallel computing and data analysis tech-
niques [4,15] are applied to domain of accessing data from distributed storage
systems. These techniques manage multiple parallel processes and parallel file
requests generated by these processes. The parallel file requests may be gener-
ated by various applications, such as Hadoop MapReduce applications [7,23] and
MPI [5], etc. Some researchers have optimised the system load balance of parallel
data access by employing the method of Opass [12]. It is noticeable, accessing
files with parallel strategies [15] has less latency in traditional individual stor-
age system than distributed storage system. To the best of our knowledge, the
latency optimisation of parallel file requests in distributed system using erasure
code is still an open problem.

An exposition is undertaken on the data access latency in distributed storage
system using erasure code. Previous works devoted to provide bounds on mean
waiting latency [6,13,22] or find upper bound of weighted latency tail proba-
bility (WLTP) for file request of distributed storage system [1,2]. A queueing
architecture that leverages the coding redundancy inherent is proposed by Chen
et al. [6] to improve data accessing latency performance. Xiang et al. [21,22] pro-
vided a sophisticated upper bound on the mean service delay of heterogeneous
files under predetermined probability with arbitrary service time distribution
and derived a Joint Latency-Cost Minimization (JLCM) to minimise latency
and achieved lowest storage cost. Besides, V. Aggarwal et al. focused on inves-
tigating tail latency and expressed the tail latency bound with general file size
distribution [1] and Pareto file size distribution [2] respectively. However, none
of them has considered the latency analysis of the simultaneous arrival of file
requests. The simultaneity of file requests arriving is vital for modelling parallel
file requests. Most of the existing strategies based on quantifying and optimising
single file request latency of the distributed storage system can not be directly
applied to obtain parallel accessing latency of multiple files.

In this paper, an efficient and accurate analytical performance model is pro-
posed to quantify parallel file request latency in distributed storage system
employing erasure code. To describe the process of parallel file requests arriving
at the distributed storage system and being served in a storage node, Fig. 1 illus-
trates the process of parallel requests arriving and being served at distributed
storage system in which 7 storage nodes are included and 4 files are stored using
(4, 2) erasure code. Let task T be a certain set of requests, say file requests 1
and 4. A batch file requests T arrive at the storage system in an instant. The
main server node denoted as S, which is similar to “NameNode” in Hadoop (i.e.,
Introducer in Tahoe), responds to distribute chunk requests. For instance, chunk

Tight Bound of Parallel Request Latency 357

Fig. 1. Parallel file requests arrive at distributed storage system which has 7 storage
nodes and stores 4 files using (4, 2) erasure code

requests of file 1 and 4 in the Fig. 1 arrive at nodes 3 and 5 at the same time, the
slowest node decides the latency of task T. Therefore, batch process is considered
to describe this chunk arriving process on each storage node in this distributed
system. Finally, we analyse each storage node to obtain the system measures
of batch arrival, such as the first two moments of chunk request time and the
chunk requests queue length distribution. These measures are used to derive the
upper bound of latency of parallel file requests in the distributed system.

The remaining of the paper is organised as follows. Section 2 describes the
system model and the batch chunk request arriving process of a storage node
in this distributed storage system. Section 3 and 4 analyses the batch queueing
model and derives the tight upper bound of parallel file request latency, respec-
tively. Section 5 presents our experimental evaluation and Sect. 6 concludes the
work and proposes further work.

2 System Model

Consider a distributed storage system with m heterogeneous storage nodes,
denoted by M = {1, 2, ...,m}. To distributively store a set of R files, indexed by
i = 1, ..., R, each file i is partitioned into k fixed-size chunks and then encoded
with a (d, k) MDS erasure code to generate d same size distinct chunks of file
i. There is rj chunks of different file stored on storage nodej, rj < R. These
encoded chunks are stored on and assigned to d distinct storage node-set Si,
where Si ⊆ M, so at most one file chunk could be attributed to the same node.
Employing (d, k) MDS erasure code allows files to be reconstructed from any
subset of k-out-of-d chunks. Thus, upon arrival of each file request, a batch of k
distinct chunks from a group of nodes Ai, Ai ⊆ Si are selected by the scheduler
and retrieved to reconstruct the desired file i. Furthermore, while a batch of n file

358 X. Zou and W. Li

……

Storage Node
(a) Poisson arrival process

time

Storage Node

……

time

……

……

12

12

34

3456

n

nn+1

n+1

(b) A more realistic scenario of arrival process

1-σ1-σ
σ σσσ

Fig. 2. Chunk requests arrival process on the storage node

requests arrives into the distributed data storage system at the same time, the
total number of n · k chunk requests arrives at all storage nodes simultaneously.
In this distributed storage system, if a batch of n file requests including a set of
file requests from task T arrives, k chunk requests of each file i of these n files
appropriate a group of nodes Ai and all chunk requests from task T appropriate
a group of nodes ∪i⊆T Ai. Task T is served completely after all nodes belonging
to the group of nodes service are completed. In other words, the parallel file
request latency of task T is determined by the slowest one of the group of nodes.

To investigate parallel file request latency with arbitrarily set of file for dis-
tributed storage system with erasure code, we consider the probabilistic schedul-
ing policy as follows: 1) client dispatches all chunk requests which correspond to
a file request to appropriate a set of nodes; 2) each node buffers chunk requests
in a local queue and processes them in order (FIFS). If a random file i request
arrives, the probability of chunk from this file stored on node j is rj

R since each
storage manages different file chunk group. The probability (denoted by δj) of
reconstructing file i with a chunk from node j is decided by

δj =

(
k−1
d−1

)

(
k
d

) · rj

R
(1)

where rj is the number of file chunks stored on node j, and R is the amount
of files stored all over the system, k, d are two parameters of erasure code. In
order to avoid the indeterminacy of scheduling in different distributed systems
and achieve a general parallel file request latency, k/d is set as the probability
of scheduler chooses node j as a node of Ai in our model. Knowing the average
arrival rate of file requests Λ, it is feasible to obtain arrival rate of chunk requests
on node j with λj = Λδj .

Tight Bound of Parallel Request Latency 359

Most existing works use M/G/1 or M/G/1/K queue to model the storage
node queue and then provide an evaluation on approximating M/G/1 using
M/M/1 [1,2,19,22]. Figure 2 (a) shows the Poisson process of the chunk requests
arriving at a storage while it does not describe the situation of multiple chunk
request arriving at a storage node simultaneously. Figure 2 (b) exhibits a chunk
request arrival process more suitable for the real situation, in which more than
one chunk requests are allowed to arrive at a storage node at the same time. Let
σ denote the probability that consecutive chunk requests belongs to the same
batch. The arrival process is specified as a Poisson process under the condition
of σ = 0.

On account of the situation of chunk requests arriving at storage node j
simultaneously, batch Poisson arrival [17] is used to model the arrival process.
The interval between batches is distributed as aj(t) = σjλje−σjλjt, t > 0, and
chunk batch size distribution is specified as bj(n) = (1 − σj)n−1σj , n = 1, 2, ...,
where λjt is the average number of chunk requests arriving during t and the
model is stable when the file requests arrival rate Λ satisfying

k · Λ =
∑

j∈M
λj <

∑

j∈M
μj (2)

where μj is chunk service rate of storage node j.

3 Queueing Model and Performance Analysis with Batch
Poisson Arrival

With unprecedented development of parallel processing technology, part of stor-
age nodes in the distributed system have the ability of parallel reading which can
process multiple chunk requests at the same time and others still handle each
chunk request serially. The storage node is modeled by batch Poisson arrival
process and service process with Poisson, batch Poisson and shifted Poisson.

3.1 Queueing Model Analysis with Batch Poisson Service Processes

Batch Poisson is proposed by [17] and it is easy to know that batch Poisson is a
generalisation of Poisson process. Here each storage node in distributed storage
system can be considered as an MGeo/MGeo/1 queueing system, service counting
function of batch Poisson process is

g(s, t) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

e−τμt

s = 0
s∑

�=1

(
s−1
�−1

)
(1 − τ)s−�τ � (τμt)�

�! e−τμt

s = 1, 2...

(3)

Equation (3) is derived by considering the probability density function of
exactly s chunk requests depart during the interval of duration t in the local

360 X. Zou and W. Li

queue of on a node, where μ is the service rate of the node, and τ is a geomet-
rically distributed service chunk size parameter. The distribution of the number
of chunk request waiting for service in the local queue of the node at any time,
p(n), is given by

p(0) =
τ(μ − λ)

τμ + σλ(1 − τ)
(4)

p(n) =
τ(μ − λ)

τμ + σλ(1 − τ)
· σλ(τ + σ − τσ)

τμ + σλ(1 − τ)
·
{

σλ + τμ(1 − σ)

τμ + σλ(1 − τ)

}n−1

n = 1, 2...

(5)

From (4) and (5) the mean queue length (MQL) on node j is calculated as
following

MQL = E(n) =
∞∑

n=1

n · p(n) (6)

=
τ(μ − λ)

τμ + σλ(1 − τ)
· σλ(τ + σ − τσ)

τμ + σλ(1 − τ)
·

∞∑

n=1

n ·
{

σλ + τμ(1 − σ)
τμ + σλ(1 − τ)

}n−1

(7)

=
τ(μ − λ)

τμ + σλ(1 − τ)
· σλ(τ + σ − τσ)

τμ + σλ(1 − τ)
·
{

τμ + σλ(1 − τ)
τσ(μ − λ)

}2

(8)

Hence, applying Little’s law to (6) yield

E(w) = W =
E(n)

λ
(9)

where W is mean waiting time of a chunk request spends on the node. Similarly,
by generalisation of Little’s law, of course, the second moment of waiting time
of a chunk request is given by

E(w2) =
E[n(n − 1)]

λ2
(10)

And

E[n(n − 1)] =
∞∑

n=1

n(n − 1) · p(n) (11)

= Y ·
{ ∞∑

n=1

n2Zn−1 −
∞∑

n=1

nZn−1

}

(12)

= 2Y · Z

(1 − Z)3
(13)

where Y and Z are substitutions of τ(μ−λ)
τμ+σλ(1−τ) · σλ(τ+σ−τσ)

τμ+σλ(1−τ) and σλ+τμ(1−σ)
τμ+σλ(1−τ)

respectively.

Tight Bound of Parallel Request Latency 361

3.2 Queueing Model Analysis with Poisson Service Processes

Chunk requests are assumed to be served one by one in this model. To quantify
the model on these nodes, service process is described by Poisson process which
g(s, t) = (μt)s

s! e−μt, t > 0. Now by Eq. (6) and (10), let τ = 1, for an MGeo/M/1
system on one node with Poisson service process, the first and second moments
of w are given, respectively, by

E(w) =
1

σ(μ − λ)
(14)

E(w2) =
2σ(μ − λ)

λμ2
· X

(1 − X)3
(15)

where X = σλ+μ(1−σ)
μ .

3.3 Queueing Model Analysis with Shifted Poisson Service Process

Taking account of our Tahoe experiments and Amazon S3 experiments [6], The
service process could be considered as Poisson process with a shifted exponential
distribution, denoted by sM . Let the service time density function is specified
as

f(x) =

⎧
⎨

⎩

αe−α(t−D) t ≥ D

0 t < D
(16)

Equation (16) is generalization of exponential distribution. The counting
function [10] of this service process derived by Eq. (16) is

g(s, t) =
αs(t − sD)s

s!
e−α(t−sD) s = 0, 1, 2... (17)

By Eq. (17) and the solution of GIG/G/1 queue using two embedded Markov
Chains, the z-transform of queue length distribution of MGeo/sM/1 is given by

P [z] =
z(α + σλ) − αe−σλD − σλz + αz(1 − e−σλD)

z(α + σλ) − αe−σλD − σλzB[z]
· p(0) (18)

where B[z] is z-transform of chunk batch size probability mass function b(n).
Taking z = 1 the probability of system being empty is specified as

p(0) =
αe−σλD − σλ

αe−σλD
(19)

Therefore, the first and second moments of w can be derived with properties of
z-transform and Little’s law as following

E(w) =
P ′[1]

λ
(20)

E(w2) =
P ′′[1]
λ2

(21)

362 X. Zou and W. Li

4 Bound of Parallel File Request Latency

Now we consider the arbitrary parallel file requests latency of task F and N is
the number of file requests. All files requested by task F are encoded into file
chunks with erasure code. These file chunks are stored on a set of nodes ψf and
|ψf | is the number of elements. Let Qj be the sojourn time random variable of
chunk requests from task F in the local queue of node j and node j is a node of
ψf . The probability of a chunk request of task F arriving at node j is considered
as

P =
d

|ψf | ·
(
k−1
d−1

)

(
k
d

) (22)

The probability of x chunk requests arriving at an arbitrary node is C(x) =(
x
N

)
P x(1 − P)N−x. The average number of chunk requests arriving at node j is

N · P and it satisfies
∑

j∈ψf
N · P = N · d to guarantee access to enough chunks

for successful file retrieval. Also, because of chunks are all of the same size,
group this x chunk requests into a super chunk request for obtaining the first
and second moments of this super chunk request time on node j. The service
times of all chunk requests are identically and independently distributed and
the mean waiting time of this super chunk request can be calculated by setting
service capacity of node j to μj

x .
As done in [22], the expected parallel file requests latency of task F , S̄f is

the maximum chunk request time of ψf under our probability scheduling policy,
expressed as

S̄f = Eψf

(
max
j∈ψf

{Qj}
)

(23)

where maxj∈ψf
{Qj} is the maximum batch chunk request time of all nodes in a

certain set of ψf , Qmax = max{Qj , j ∈ ψf}. Use the Theorem 1 and Proposition
1 proposed in [3] to obtain the bound of parallel file request latency. The upper
bound of Qmax using arbitrary constant z ∈ R is derived as

Qmax = z + (Qmax − z) ≤ z +
∑

j∈ψf

[Qj − z]+ (24)

where [Qj − z]+ = Qj − z if Qj − z > 0, otherwise [Qj − o]+ = 0. Next, it is easy
to obtain the equation as following

[Qj − z]+ =
1
2
(Qj − z + |Qj − z|) (25)

Taking expectations and by the Cauchy−Schwarz inequality, it yields

E[Qj − z]+ =
1
2
(E[Qj − z] + E|Qj − z|)

≤ 1
2
(E[Qj] − z +

√
(E[Qj] − z)2 + V ar[Qj])

(26)

Hence, by Eq. (24), (25) and (26), the expected parallel file request latency
of task F is bounded by

Tight Bound of Parallel Request Latency 363

S̄f ≤ min
z∈R

{
z +

∑

j∈ψf

N∑

x=1

C(x)
2

(E[Qx
j] − z)

+
∑

j∈ψf

N∑

x=1

C(x)
2

(√
(E[Qx

j] − z)2 + V ar[Qx
j]

)}
(27)

where Qx
j is waiting time for all x chunk requests of task F arriving together

on the local queue of node j. E[Qx
j] and V ar[Qx

j] are mean and variance of Qx
j

respectively, can be calculated from E(w) and E(w2) with super chunk request
in this queue system.

Furthermore, it is easy to verify the bound is tight since it is attained [3] by
the distribution Qj = z ± √

(E[Qj] − z)2 + D[Qj] with probabilities

P =
1
2

(
1 +

E[Qj] − z
√

E([Qj] − z)2 + V ar[Qj]

)
(28)

1 − P =
1
2

(
1 − E[Qj] − z

√
E([Qj] − z)2 + V ar[Qj]

)
(29)

5 Implementation and Evaluation

To evaluate accuracy of our proposed request latency bound in a erasure-coded
supporting distributed filesystem under diverse workload scenarios, we imple-
ment the model in Tahoe [16]. 10 Tahoe storage servers and 4 Tahoe clients
are deployed as typical medium-sized virtual machine instances in our data cen-
ter. The average round-trip time (RTT) between clients and servers measured
by Tahoe statistic JSON file is 0.05 ms, which has little impact on latency in
our evaluation. Each Tahoe storage server attaches a 100 GB SSD disk stores
erasure-coded shares and offers storage for the external client. These servers
and clients are introduced via Tahoe Introducer Node. Tahoe client can issue
upload/download requests simultaneously and connect to storage server through
the Tahoe-LAFS storage protocol over SSL. The workloads are generated by
issuing download requests to the data center, and each client can process four
download requests concurrently based on multithread. Each instance in our data
center monopolizes 2 VCPUs, 2 GB of RAM, and runs Ubuntu 14.04.

In the experiment, the probability of the aiming file is stored at a particular
storage node is k/d, which could be modified in the Tahoe configuration file.
8000 files are distributively stored on the 10 nodes with (7, 3) erasure code (file
sizes range from 5 MB to 50 MB). In particular, the latency of small size file is
susceptible to the phase of metadata read, and our model has not taken into
account the effect of reading metadata on boundary latency. Therefore, smaller
file size set in [19] is not choosen in our experiment. The average file size around
10 MB (much bigger than metadata) is consider to prevent the phase of reading
metadata to affect our latency bound.

364 X. Zou and W. Li

Fig. 3. The cumulative distribution function of node service time.

To obtain the genuine service process in our data center, we run an exper-
iment to analyse service time distribution of these storage nodes and acquire
each actual service rate of those 10 storage nodes. Thus, by uploading other 800
files using (7, 3) erasure code into the system and recording the chunk service
time, all files are 15 MB, each chunk size is 15/3 MB. The cumulative distribu-
tion function of the chunk service time is described in Fig. 3. Moreover, using
the sample mean service time and variance derived from experimental results,
other two exponential distribution curves with the identical mean and variance
as experimental results are depicted. Specially, the result is similar to Xiang’s
Tahoe experiment in [22], which uploaded 50 MB files using (7, 4) erasure code in
their experiment environment. Therefore, 1) The chunk service process can not
be described precisely by exponential distribution; 2) shifted exponential distri-
bution may be used to approximate the actual service process. Consequently, the
accuracy of the approximation is acceptable according to the same service pro-
cess assumption in Tahoe distributed storage system [1] and our later evaluation
in this section. The average service rate on each node is obtained by running the
simulation.

These service rates are used in our model to calculate upper bound on the
latency. For comparison purpose, two upper bounds in [14] and [22] are compared
with our bound (named Zou’s bound). In the [14], a modified (n, k) fork-join
queue with Poisson arrival process is proposed. Further, after each request is
divided and arrive at n servers, which are occupied with processing those n
chunk requests, moreover, the n − k chunks will be abandoned immediately if
the first k chunks are served. In the reference [22], the M/G/1 queueing model
is empirically applied to describe the storage node queue in order to obtain the
latency bound. Our work uses MGeo and sM to model the arrival process and

Tight Bound of Parallel Request Latency 365

0

10

20

30

40

50

60

0.8 1.05 1.3 1.55 1.8 2.05

Bound of [22]

Zou's Bound

Bound of [14]

La
te

nc
y

(S
ec

)

File Arrival Rate

Fig. 4. Comparison of Zou’s bound with Bound in [22] and [14]

service process of chunk request. For a fair comparison, (7, 3) erasure code is
used in those three models, besides, the service capability shown in Table. The
parameter σ of our model is set to 0.5 for describing the bursty arrival rate
in reality. Three superlinear curves are illustrated in Fig. 4. The Xiang’s bound
proposed in [22] is the tightest bound under any arrival rate. Also, Xiang’s bound
has the similar growing trend with Zou’s with λ rising. Joshi’s bound proposed
in [14] is outperformed our bound if chunk arrival rate is less than 1.15 but the
growing slope becomes sharp after that point.

Nonetheless, that is what we have expected in Eqs. (14) and (27). The batch
arrival and shifted service process are employed to preferably approximate the
actual parallel arrivals. Both increase the expectation and variance of chunk
request time, the Zou’s bound (27) is consequently growing with these two mea-
sures.

We compare two upper bounds proposed with Poisson and shifted Poisson
service process to the Xiang’s bound in [22]. The statistical average latency
observed in this experiment is also compared with the theoretical results. In
this comparison experiment, we generate the workload in which average arrival
rate increases every five minutes lasting one hour and keeps the arrival process
bursty in order to approximate the actual arrival process. Figure 5 shows the
two bounds derived in this paper. Both have more accurate predictions and
significantly outperforms the bound in [22] under this situation. It demonstrates
that using batch arrival process to describe the chunk arrival on the storage
server is more accurate. On the other hand, the bound using shifted Poisson
service process is closer to the real experimental data than the Poisson process
at λ = 1.1, 1.3, 1.4, 1.7, 1.8 and 2.

366 X. Zou and W. Li

0

2

4

6

8

10

12

14

16

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Xiang‘s Bound in [22]

Zou’s Bound (Poisson Service Process)

Average Latency

Zou‘s Bound (Shifted Poisson Service Process)

La
te

nc
y

(S
ec

)

File Arrival Rate

Fig. 5. Comparison and evaluation of Zou’s bound with two service processes, Xiang’s
bound in [22] and Average latency in the experiment.

6 Conclusions and Future Work

In this paper, the problem of batch latency of parallel file requests for distributed
storage system employed erasure code is studied. A mathematical model is devel-
oped to quantify and analyse the performance of storage nodes and batch latency
bound in distributed storage system. In this experiment, a typical distributed
storage system is set to verify the analytical model. By applying the analytical
model, parallel file request latency bound can be obtained and optimised by
setting model parameters on each storage node.

Most of the published work focus on individual requests to each particu-
lar file. That leads to the difficulty of dealing with multiple simultaneous file
requests within one task. A novel analytical model is developed to solve the
existing problem of multiple simultaneous file requests within the distributed
storage system. The queueing model proposed by our previous work is employed
and improved to model each storage node, assuming batch size distribution of file
requests arrival is specified as geometric distribution and three kinds of service
processes. For a generalisation purpose, more general arrival batch size distribu-
tions, such as GGeo (generalised Geometric distribution) is to be proposed, and
more general service process can be considered. To find more general model to
describe the file request process and quantify the parallel latency on the storage
node of the distributed system, Besides, the processing time of metadata read
is not considered in this paper due to the time constraint. To avoid this devi-
ation, we use the 10M file in this paper, so the larger value of N is not set in
this experiment. Our future work will concentrate on a more general model in
erasure-coded distributed systems.

Tight Bound of Parallel Request Latency 367

References

1. Aggarwal, V., Fan, J., Lan, T.: Taming tail latency for erasure-coded, distribu-
tee storage systems. In: IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. pp. 1–9. IEEE (2017)

2. Aggarwal, V., Lan, T.: Tail index for a distributed storage system with pareto file
size distribution. arXiv preprint arXiv:1607.06044 (2016)

3. Bertsimas, D., Natarajan, K., Teo, C.P.: Tight bounds on expected order statistics.
Probab. Eng. Inf. Sci. 20(4), 667–686 (2006)

4. Cannataro, M., Talia, D., Srimani, P.K.: Parallel data intensive computing in sci-
entific and commercial applications. Parallel Comput. 28(5), 673–704 (2002)

5. Chao, L., Li, C., Liang, F., Lu, X., Xu, Z.: Accelerating apache hive with MPI
for data warehouse systems. In: 2015 IEEE 35th International Conference on Dis-
tributed Computing Systems, pp. 664–673. IEEE (2015)

6. Chen, S., et al.: When queueing meets coding: optimal-latency data retrieving
scheme in storage clouds. In: IEEE INFOCOM 2014-IEEE Conference on Com-
puter Communications, pp. 1042–1050. IEEE (2014)

7. Dao, T.C., Chiba, S.: HPC-reuse: efficient process creation for running MPI and
hadoop MapReduce on supercomputers. In: 2016 16th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), pp. 342–345. IEEE
(2016)

8. Ghemawat, S., Gobioff, H., Leung, S.T.: The google file system (2003)
9. hadoop.apache.org: https://hadoop.apache.org/docs/r3.0.3/

10. https://stats.stackexchange.com/users/10479/yves , Y.: Variance of arrival process
with shifted exponential distribution. Cross Validated https://stats.stackexchange.
com/q/87287. Accessed 29 Dec 2014

11. Huang, C., et al.: Erasure coding in windows azure storage. In: Presented as Part
of the 2012 Annual Technical Conference, pp. 15–26 (2012)

12. Huang, D., et al.: Achieving load balance for parallel data access on distributed
file systems. IEEE Trans. Comput. 67(3), 388–402 (2018)

13. Huang, L., Pawar, S., Zhang, H., Ramchandran, K.: Codes can reduce queueing
delay in data centers. In: 2012 IEEE International Symposium on Information
Theory Proceedings, pp. 2766–2770. IEEE (2012)

14. Joshi, G., Liu, Y., Soljanin, E.: On the delay-storage trade-off in content download
from coded distributed storage systems. IEEE J. Sel. Areas Commun. 32(5), 989–
997 (2014)

15. Kumar, V., Grama, A., Gupta, A., Karypis, G.: Introduction to Parallel Com-
puting: Design and Analysis of Algorithms Benjamin. Cummings, Redwood City
(1994)

16. tahoe lafs.org: Tahoe-lafs docs, January 2019. https://tahoe-lafs.readthedocs.io/
en/tahoe-lafs-1.12.1

17. Li, W.: An investigation into batch renewal process and batch markovian arrival
process and batch markovian arrival process and their performance impact on
queueing models. Ph.D. thesis, University of Bradford, UK (2007)

18. Schurman, E., Brutlag, J.: The user and business impact of server delays, addi-
tional bytes, and http chunking in web search. In: Velocity Web Performance and
Operations Conference (2009)

19. Su, Y., Feng, D., Hua, Y., Shi, Z.: Predicting response latency percentiles for
cloud object storage systems. In: 2017 46th International Conference On Parallel
Processing (ICPP), pp. 241–250. Proceedings of the International Conference on
Parallel Processing (2017)

http://arxiv.org/abs/1607.06044
https://hadoop.apache.org/docs/r3.0.3/
https://stats.stackexchange.com/users/10479/yves
https://stats.stackexchange.com/q/87287
https://stats.stackexchange.com/q/87287
https://tahoe-lafs.readthedocs.io/en/tahoe-lafs-1.12.1
https://tahoe-lafs.readthedocs.io/en/tahoe-lafs-1.12.1

368 X. Zou and W. Li

20. Weatherspoon, H., Kubiatowicz, J.D.: Erasure coding vs. replication: a quantita-
tive comparison. In: Druschel, P., Kaashoek, F., Rowstron, A. (eds.) IPTPS 2002.
LNCS, vol. 2429, pp. 328–337. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45748-8 31

21. Xiang, Y., Lan, T., Aggarwal, V., Chen, Y.F.R.: Multi-tenant latency optimization
in erasure-coded storage with differentiated services. In: 2015 IEEE 35th Interna-
tional Conference on Distributed Computing Systems, pp. 790–791. IEEE (2015)

22. Xiang, Y., et al.: Joint latency and cost optimization for erasure-coded data center
storage. IEEE/ACM Trans. Netw. (TON) 24(4), 2443–2457 (2016)

23. Yu, X., Li, W.: Performance modelling and analysis of MapReduce/Hadoop work-
loads. In: The 21st IEEE International Workshop on Local and Metropolitan Area
Networks, pp. 1–6. IEEE (2015)

https://doi.org/10.1007/3-540-45748-8_31
https://doi.org/10.1007/3-540-45748-8_31

High-Performance Simulations on GPUs
Using Adaptive Time Steps

Marcel Köster(B), Julian Groß, and Antonio Krüger

Saarland Informatics Campus, Campus D3.2, 66123 Saarbrücken, Germany
{marcel.koester,julian.gross,antonio.krueger}@dfki.de

Abstract. Graphics Processing Units (GPUs) are widely spread nowa-
days due to their parallel processing capabilities. Leveraging these hard-
ware features is particularly important for computationally expensive
tasks and workloads. Prominent use cases are optimization problems
and simulations that can be parallelized and tuned for these architec-
tures. In the general domain of simulations (numerical and discrete), the
overall logic is split into several components that are executed one after
another. These components need step-size information which determines
the number of steps (e.g. the elapsed time) they have to perform. Small
step sizes are often required to ensure a valid simulation result with
respect to precision and constraint correctness. Unfortunately, they are
often the main bottleneck of the simulation. In this paper, we introduce
a new and generic way of realizing high-performance simulations with
multiple components using adaptive time steps on GPUs. Our method
relies on a code-analysis phase that resolves data dependencies between
different components. This knowledge is used to generate specially-tuned
execution kernels that encapsulate the underlying component logic. An
evaluation on our simulation benchmarks shows that we are able to con-
siderably improve runtime performance compared to prior work.

Keywords: Simulations · Parallel computing · Adaptive time steps ·
Graphics processing units · GPUs

1 Introduction

There have been many distinct time-step adaption methods for completely dif-
ferent domain-specific problems. Such adaption techniques are particularly well
investigated in the field of fluid and/or particle-based simulations. Prominent
examples are SPH (Smoothed Particle Hydrodynamics) [10,21,22] and Position
Based Dynamics (PBD) [23] simulations. Even sophisticated optimization prob-
lems are often modeled with the help of underlying rule-based and simulation
like programs or code fragments [11–13]. Regardless of the use case and the
domain, a simulation always consist of several phases that have to be evaluated

This work was supported by the SINTEG-project DESIGNETZ funded by the German
Federal Ministry of Economic Affairs and Energy (BMWi) under the grant 03SIN222.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 369–385, 2020.
https://doi.org/10.1007/978-3-030-60245-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_26

370 M. Köster et al.

one after another1. Executing those parts in an iterative manner yields the final
simulation result in the end [16,24]. An essentially required piece of information
in this context is the actual time-step size which is used to execute each simu-
lation step. Choosing this step size is very important with respect to simulation
correctness and performance at the same time: Small time-step sizes often yield
the best precision but are much more expensive since the simulation has to exe-
cute more steps until it reaches a final state. Since many parts of a simulation
step have to be executed sequentially, the time-step size is often considered to
be the primary performance-critical part.

Today, the mentioned simulations are often run on GPUs to benefit from
their parallel computation capabilities. This allows to realize large-scale simula-
tions which are even well suited for real-time applications [17,19]. In order to use
these massive processing features, algorithms (as well as their surrounding appli-
cations) have to be specifically tuned for these architectures. From a high-level
point-of-view, each simulation consists of a set of components which describe a
specific module of the whole simulation logic.

In this paper, we present a new method to realize component-based simula-
tions on GPUs using adaptive time steps. Our method is generic in respect of the
application domain, as it does not rely on specific knowledge about the internal
structure of the components. Instead, we use a static program analysis to deter-
mine a data-dependency graph. Based on this graph, we are able to compute the
next adaptive step size. In this scope, we also allow developers to include their
domain-specific knowledge with respect to time-step constraints. Our concept is
based on the well-known idea to interpolate certain values at specific points in
time [3]. We use this principle to simulate an intermediate component execution
that has not happened in order to reduce the overall runtime of the simulation.
Using our approach yields speedups between 12% (a smaller gravity-like simula-
tion) and 22% (a larger PBD-like simulation) on our non-optimistic evaluation
scenarios. Furthermore, we do not suffer from slowdowns in comparison to more
conservative time-stepping approaches. This makes it a perfect extension for
modern GPU-based simulation systems.

The remainder of this paper, summarizes and discusses related work from the
fields of adaptive (fluid/particle) simulations to improve performance. We give a
high-level introduction into the modeling of simulations in Sect. 3. This section also
describes the major challenges in terms of adaptive time steps that we can solve
using our new approach. Section 4 presents our generic concept and gives in-depth
information about all design considerations and implementation details on GPUs.
The evaluation section covers twodesignedbenchmark scenarios.They are inspired
by real-world simulation models to measure realistic performance numbers.

2 Related Work

From a theoretical point-of-view, using interpolation functions to adapt time
steps is a well known concept [2,3,9,27]. There have been many different
approaches from the field of numerics (solving partial differential equations, for
1 A single simulation iteration is commonly referred to as a simulation step.

High-Performance Simulations on GPUs Using Adaptive Time Steps 371

example). They also leverage interpolation functions to resolve intermediate val-
ues. This contribution has a different view on adaptive time steps without having
explicit domain knowledge about the components. As outlined above, we focus
on practical and pragmatic aspects of realizing fast and efficient simulations (see
Sect. 5). To the best of our knowledge, we consider the following papers to be
related to this subject.

Adams et al. [1] present an adaption approach for particle-based fluids. They
define a domain-specific criterion to decide which region of the fluid simulation
is more important and needs more computational resources. In contrast to our
method, they are not adapting the actual time-step sizes, but focus on adaptive
particle sizes to reduce the computational complexity.

Predictive-Corrective Incompressible SPH (PCISPH) [29] is a well known
fluid-computation model that essentially predicts forces to enable larger time
steps in order to overcome the severe time-step restrictions of previous papers.
Ihmsen et al. [8] add support for adaptively computed time steps in the con-
text of PCISPH. They use domain-specific properties of the underlying PCISPH
algorithm and combine them with knowledge about maximum time-step restric-
tions of these simulations. Further adaptive fluid simulations are the ones by
Hong et al. [6] and Zhang et al. [30]. They basically split and merge particles
in order to reduce the number of elements to process. The split- and merge-
criteria are based on a set of scenario-dependent properties. It is regrettable
that these methods essentially modify the underlying data to be evaluated by
several components. This requires domain-specific knowledge about the underly-
ing structure of the problem and its associated optimization possibilities which
cannot be easily generalized to work with black-box components.

Solenthaler et al. [28] and Horvath et al. [7] use a custom solution to enable
adaptive computations in the scope of fluid simulations. They are achieving this
purpose by coupling a set of differently scaled simulations. This avoids splitting
and merging of particles. As before, these methods are limited to their particular
field of application and cannot be applied to generic components.

Macklin et al. [18] use a PBD-based algorithm and add support for density
constraints in order to model fluids. Since PBD simulations are very robust,
they relax time-step restrictions of previous approaches significantly. Koester et
al. [14] present an adaption scheme for these simulations. Like Macklin et al. [18],
they are using an iterative constraint solver to move particles into the right
positions to satisfy a fluid-density constraint. During solving, some particles can
be considered less important than others. The more important a particle is, the
more particle-position adjustments will be performed in upcoming iterations of
the constraint solver. This significantly reduces the overall computational effort,
since less important particles will not be considered in further solver iterations.
This idea is similar to our high-level concept of interpolated values at certain time
steps: Some values loaded from memory are not available at particular points in
time and can be reconstructed using interpolation functions. In contrast to the
original paper by Koester et al., we can provide intermediate values at specific
time steps, whereas the related algorithm uses out-dated information without
interpolation.

372 M. Köster et al.

Garcia et al. [4] describe an adaptive time-stepping method that computes
common step sizes using global reduction kernels. They estimate the time-step
size in each iteration and synchronize the resolved time-step value with the
CPU part of the application. We follow their approach by applying all time-step
estimation methods of all components prior to the execution part of each com-
ponent: We still rely on a synchronization step with the CPU side to exchange
information about the computed time-step size.

Mayr et al. [20] leverage an iterative computation of the time-step size based
on certain error calculations in the field of fluid-interaction solvers. From a
high level point-of-view, this is closely related to our method: We compute the
time-step size for each component and search for a compatible step size that is
acceptable for all components. However, their adaption method relies on specific
domain knowledge (which is tightly coupled to their application domain) that
cannot be reused in a generic and portable way.

3 Component-Based Simulations on GPUs

This section covers a brief introduction into the general modeling of simulations
on GPUs consisting of several components C0 to Cn−1. Every component real-
izes a certain part of a simulation loop and is supposed to compute a separate
piece of the overall puzzle that we want to put together. Figure 1 shows a sample
simulation loop consisting of several components. Note that the overall execu-
tion order is usually determined by the domain expert/application programmer
that has to take all data dependencies into account. Moreover, many simulations
leverage the concept of double buffering to simplify data dependencies. Double
buffering allows to read the same source data in each component while writing
simulation updates into a separate target buffer. This ensures that each compo-
nent is able to work on a consistent state without having to worry about possible
changes by other components. Alternatively, some applications work on a single
buffer only. This exposes all value updates to the components executed after-
wards. The developers have to take special care to create a consistent logical
component model that is compliant with the actual buffering approach used.

Fig. 1. A simple simulation loop with five components C0 to C4 in a sequential order.
The back edge from C4 to C0 models the jump to the initial component C0 of the next
simulation step. Furthermore, it visualizes the data dependency between two steps.

Each component is applied to a set of items (e.g. particles or other data ele-
ments) from a set of source buffers. A state in memory thereby consists of all items
in all buffers that the components can operate on. To implement this functionality
on a GPU, each component C needs to have a separate GPU kernel that iterates

High-Performance Simulations on GPUs Using Adaptive Time Steps 373

Algorithm 1. Simple application kernel algorithm for component C

/* Perform a grid-stride loop over the padded value range of C */

1 for i := global index; i < range(C); i += grid size * group size do
/* Initialize component by loading relevant information */

2 c := C.Init(i);
/* Evaluate component */

3 c.Evaluate(Δt);

4 end

over all items (referred to as the range of C). Algorithm 1 shows a straight-forward
kernel implementation for an arbitrary C. It uses grid-stride loops to realize an
efficient way to iterate over all items in the range of C. However, depending on
the computational complexity and the performance characteristics of C, it can be
beneficial to apply loop unrolling at this point [15].

Applying components in the presence of adaptive time steps means that
need to retrieve information about the potential step size of each component.
The estimated step sizes also include domain-specific time-step constraints to
satisfy correctness/stability requirements. Figure 2 shows the high-level differ-
ence between a workflow using fixed vs. adaptively computed time steps. In
the adaptive setting, all components estimate their intended time-step size they
could potentially, assuming that all necessary information is available (optimistic
assumption). Afterwards, the minimum time step of all potential time steps (from
the first phase) can be used safely (sound assumption). Finally, the computed
step size from the previous phase can be used for all components in the actual
simulation step. Consequently, we need to create additional kernels that compute
the possible number of steps to execute all components.

Although this approach is perfectly sound with respect to time-step con-
straints, it does not solve all performance issues. The time-step computation
kernels require an additional iteration over all items in the state which causes
an overhead compared to the fixed-step version. The latter can only be outper-
formed by the adaptive one if it is possible to skip many simulations steps. From
now on, we consider a step size of 1 as the reference and default fixed step size
that satisfies all constraints. Since we have to use the minimum common step
size, the overall probability that we have to perform a simulation step of size 1 is
P = 1−pn, where p is the probability that a single component needs to perform
a step of 1 and n is the number of components. Even in small examples, P can
easily become close to 1. This in turn can also lead to a performance degradation
(see Sect. 5).

4 Our Method

Figure 3 visualizes our high-level concept to determine intermediate item values.
Formally, we apply a component Ci (i ∈ [0, . . . , num components − 1]) to the
current state S. More precisely, the component works on a part of the state Si.

374 M. Köster et al.

Fig. 2. A visualization of five components C0 to C4 and their executed step sizes (black
arrows). A fixed step size that is uniform across all components (left, 1). A two-phase
approach to compute a compatible step size (the minimum of all possible step sizes)
across all components (right, 2). Grey arrows indicate the intended step sizes which
could not be used for an actual simulation step.

Fig. 3. Two components C0 and C1, where C1 has a data dependency to the items in
B0. C0 performs a large time step while reading from its source buffer and writing into
its target buffer B0. Our idea is to enable C1 to do the same large time step, even if its
dependencies only allow two small steps. This requires an interpolation of the values
in B0 (gray arrow) at the intermediate time step of C1.

Taking the current simulation time T and the next time step of size Δt into
account yields a new state at time step T + Δt that is given by

Si(T + Δt) = Ci (Si(T),Δt) . (1)

We then use a problem- and domain-specific interpolation function I (see
Sect. 5) to approximate the state S at time T + Δk in the future using

Si(T + Δk) ≈ IΔk (Si(T), Si(T + Δt)) ,Δk ∈ [0, . . . Δt], (2)

where Δk is a limited time offset that has to be smaller or equal to Δt. Consider
a case in which a component Cj accesses interpolated information provided by
another component Ci, where i �= j (for example in Fig. 3). Further, let us assume
that we have to perform two small steps Δl > 0 and Δo > 0 that sum up to the
intended step size Δt = Δl + Δo. This can be formally expressed via

Sj(T + Δl) = Cj (Si(T), Sj(T),Δl) , (3)
Sj(T + Δt) = Cj (Si(T + Δl), Sj(T + Δl),Δo) (4)

= Cj (IΔl (Si(T), Si(T + Δt)) , Sj(T + Δl),Δo) . (5)

High-Performance Simulations on GPUs Using Adaptive Time Steps 375

These equations demonstrate that a single use of an interpolation function can
cause a simulation deviation that easily propagates to all other components.
However, potential differences in terms of the simulation results depend on a
huge variety of different factors. For instance, the actual interpolation being
used, the number of components that can access interpolated information and
even the application scenario. In comparison to related approaches, this is not a
novel limitation that only applies to our method. Other methods rely on domain-
specific time-step computations that also introduce simulation deviations. We
support domain- and even scenario-specific time-step computations to model
the required knowledge in the scope of our method (see also Sect. 4.2).

In order to apply interpolation properly to the right buffers, we have to
identify locations that allow us to interpolate between items in the source and
items in the target buffer. Therefore, we conceptually always rely on the idea of
double buffering. However, if we execute a component an even number of times,
while others have been executed an odd number of times, the items in the source
and target buffers are mixed with respect to the different iteration steps. This
issue is visualized in Fig. 4: Since component C1 is executed an even number of
times, its originally used source buffer contains the finally written information.
To circumvent this problem, C1’s kernel has to copy the contents of the memory
buffers into its intended target buffer to make C1’s updates visible to all other
components. Unfortunately, the problem is even worse: If another component
needs to interpolate the values written by C1, we need its original source-buffer
data. Consequently, we have to copy all items that can potentially be used for
interpolation into a separate memory buffer at the beginning of the simulation
step.

Fig. 4. Component C1 from Fig. 3 performing two small steps in order to reach C0’s
larger time step. First, C1 performs its initial step and writes its computed items into
its associated target buffer (1). Afterwards, C1 is applied again and performs the next
step. In this case, C1 reads its source values from the originally intended target buffer
and writes into its original source buffer (2). To ensure that the finally written values
will end up in the correct target buffer, we have to copy the updated items from the
source into the target after execution of the second step (3).

Finding locations to safely apply interpolation to already computed items
is based on a static program analysis. It essentially resolves a data-dependency
graph induced by view accesses in the program (see Fig. 5). Note that the decision
on the back-edge dependency (or in other words: the first component in the
schedule) is usually done by a domain expert. He or she is conceptually able to
split the resolved dependency graph into semantically separate simulation steps.
Although it is possible to use topological sorting of this graph to determine
an execution order, it can happen that we encounter multiple possibilities to

376 M. Köster et al.

Fig. 5. A set of components C0 to C4 (from Fig. 1) along with some imaginary read
and write dependencies to intermediate buffers B0 to B3. The read dependency of
component C0 from buffer B3 is highlighted in purple, since it is also implicitly given by
the back edge of the simulation loop. Note that it is possible to automatically compute
a component schedule by applying topological sorting. In this example, this could yield
the schedule C0, C1, C2, C3, C4. Note further that the back-edge dependency of C0

to buffer B3 separates multiple simulation steps from each other, since C0 is the first
component is this schedule.

Fig. 6. Our approach to compute the next time-step size for components C0 to C4

from Fig. 5. Imagine that we perform an initial step estimation (1, the minimum step
size is denoted by a dotted line). Consider further that we use the maximum possible
step size of C2 to be the next step size for all components (2). Although this seems
to be feasible at first sight, we have to take all data dependencies into account. This
reveals that we cannot interpolate an intermediate value for C0, since it depends on
buffer information from the previous iteration. Therefore, the maximum step size is
computed using all components that are directly reachable via back edges (3).

schedule a component. These cases require domain knowledge to decide on the
actual component order.

Once the actual schedule is available and the component dependencies have
been resolved, we can focus on the adaptive time-step size computation (see
Fig. 6). First, we perform a step estimation by querying all components (using
ComputeNumSteps from Listing 1.1) that depend on immediate buffer informa-
tion from a previous iteration (components that are reachable via back edges). In
the case of multiple components that are reachable by following all back edges,
we have to compute the minimum step size of all of them. Based on the actual
domain, our approach is applied to, it may be totally fine to use the maximum

High-Performance Simulations on GPUs Using Adaptive Time Steps 377

possible time-step size from all components without explicit data dependencies.
Note that we must always have access to the source item values at the beginning
of the time step in order to interpolate between the source and target values.
If the application does not use double buffering by default, we have to copy
all relevant values that have to be considered during interpolation into separate
global-memory buffers.

4.1 Leveraging Shared-Memory Caches

Depending on the computational load induced by an interpolation function, it
can be advantageous to cache already interpolated values in shared memory.
This frees up resources in terms of required bandwidth and ALUs and makes
them available to the underlying component implementation. This can reduce
the overhead of our method in the case of expensive interpolations (see Sect. 5).
Without explicit modeling of such a cache, the GPU will have to recompute the
interpolation function for each item access (see Fig. 7). Furthermore, this will
trigger two additional loads from global memory for each item access. In this
scope, L1 and L2 caches help to reduce the actual number of global-memory
transfers automatically on modern GPUs [26] (see also Sect. 5).

Figure 8 visualizes several access patterns of an imaginary component in the
scope of a single thread group. In our implementation, each thread just caches
its associated item value(s) that will be accessed in the scope of the component
in shared memory (1-to-1 thread-item mapping). Components in our scope are
already programmedwhile havingGPU-like architectures inmind.Therefore, they
typically perform coherent memory accesses that are very close in global memory
with respect to the current thread index (local access window). These cases can be
covered by our shared-memory cache without the need for sophisticated program
transformations. Unfortunately, we have to check that a certain access to a par-
ticular item is included in our cache (via an if-branch), which imposes additional
runtime overhead. More advanced static program analyses can help to determine
the actual access pattern(s) in order to realize more efficient caches in the future.
This can even help to avoid on-the-fly cache-boundary checks that can be expen-
sive with respect to thread divergences and register usage.

Fig. 7. An imaginary thread group of 8 threads accesses items from a buffer B0 in global
memory (left). Using an interpolation function triggers two loads from global memory
(from the source and target buffers respectively) for each access (right). Furthermore,
the loaded values need to be interpolated to get the actual item value at a specific
point in time.

378 M. Köster et al.

Fig. 8. Different access patterns for an imaginary thread group of 8 threads. Coherent
memory accesses with respect to each thread while accessing a shared-memory cache
(top). Random memory accesses that are not coherent (bottom). The vertical bars
indicate the boundaries of the shared-memory cache. Accesses that cross these bound-
aries will be cache misses and have to be resolved via expensive global-memory loads
and interpolation-function applications.

4.2 Hiding Different Access Patterns Using Views

From a practical point-of-view, every component can be modeled as a spe-
cific object-oriented class that implements a particular interface. An abstract
pseudo-code interface definition we use for our components is shown in List-
ing 1.1 to get a better understanding about the general functions a component
needs to provide. We propose this generic interface definition that distinguishes
between component-data and item-data views. This allows us to clearly sepa-
rate component-specific (uniform for each component type C) and item-specific
(varies from item to item) information. Since the functions ComputeNumSteps
and Evaluation work on abstract data views, it is easily possible to replace an
item access with an interpolated value (that is even cached in shared memory)
without touching the component implementation. Another advantage of having
separate views is the improvement of static-program-analysis results with respect
to potential aliases. This is due to the fact that each view has a very limited
scope that is it only accessible within a single function. We do not allow storing
views of any kind within member fields of a component to reduce the risk of
bugs and to limit potential aliases in practice.

Listing 1.1. An abstract component interface definition used in our implementations
in pseudo C# code. Generics in C# (or templates in C++) allow us to hide the actual
data-view implementation from each component realization.

1 interface IComponent <TComponentImplementation >
2 where TComponentImplementation :
3 IComponent <TComponentImplementation >
4 {
5 // Initializes internal fields by loading data from global memory.
6 static TComponentImplementation Init(int index , ComponentView source);
7

8 // Computes the number of steps that this component can perform.
9 // Required information is loaded from the provided source data view.

10 int ComputeNumSteps <TDataView >(TDataView source);
11

12 // Evaluates this component by applying the given number of simulation
steps.

13 // Computes results are written to the provided target data view.
14 void Evaluate <TDataView >(TDataView target , int numSteps);
15 }

High-Performance Simulations on GPUs Using Adaptive Time Steps 379

4.3 Algorithm

The main kernel that wraps the actual functionality of a component C is
shown in Algorithm 2. It is designed to be specialized by a compiler (via meta-
programming techniques or code generation) to generate an individually instanti-
ated GPU program. The first lines allocate all required shared-memory resources
based on knowledge from the dependency graph. Afterwards, we perform a
padded grid-stride loop (to avoid thread divergences) over the whole range of
C. The body of the outer loop is another loop that performs the required small
steps in the scope of a larger Δt time step. Important to mention is the group-
wide computation of the next step size that will be applied to all threads in the
group. This is required since all threads can access our shared-memory caches
and need to have access to consistent interpolated information. If the presented
shared-memory caches are not suitable for the application scenario, several parts
of the algorithm are not required (like the lines 1–3 and 10). This even affects
the computation of the upcoming local step-size consisting of several reductions
and group barriers. These operations will be no longer required in such a case.
Further optimizations (like loop unrolling, multiple components per kernel or
even thread compaction) can be applied based on the actual component imple-
mentation to increase occupancy and to improve runtime performance.

4.4 Implementation Details

We have implemented our algorithm in C# using the ILGPU2 compiler for all
GPU kernels. Regarding code generation, we used a custom pre-compilation
step to gather all data dependencies between all components. Afterwards, we
generate all required C# kernels for each component and the whole adaptive-
time-stepping driver code to execute all components in a specialized simulation
loop. Each component will be wrapped in a particularly specialized time-stepping
algorithm based on Algorithm2. This includes the generation and allocation of
shared-memory caches and inlining of all interpolation functions. The adaptive
time-step sizes for each component are realized with the help of specialized ker-
nels using efficient warp reductions and atomic operations [25,26].

5 Evaluation

The evaluation section covers two different application scenarios inspired by
particle-based simulations. Each scenario is described with the help of a com-
ponent dependency graph to give detailed insights into the modeled simulation
structure. In order to avoid hard-to-reproduce benchmarks, we use component
implementations that are based on matrix-matrix multiplications to generate
computational load per item. Moreover, memory-accesses to neighboring par-
ticles (that are often accessed in SPH-based simulations [5]) always consider
9 neighboring items. We used two different interpolation functions (linear and
2 www.ilgpu.net.

www.ilgpu.net

380 M. Köster et al.

Algorithm 2. Our adaptive time-stepping algorithm for component C
Input: maxNumSteps, source, originalSource, target

1 nextStepSize := shared memory int[1];
/* Shared memory allocations for all intermediate values */

2 sharedMemoryCache0 = shared memory Type0[group size];
/* ... */

/* Perform a grid-stride loop over the padded value range of C */

3 for i := global index; i < padded range(C); i += grid size * group size do
/* Optional: synchronize group members to improve the memory access

pattern on some GPU architectures */

/* group barrier */

4 localSource, localTarget := source, target;

5 numPerformedIterations := 0;
6 for stepIdx := 0; stepIdx < maxNumSteps; do

7 view := new CachedDataView<Interpolation Function>(
8 localSource, localTarget, originalSource, i,
9 maxNumSteps / (stepIdx + 1) as float,

/* References to shared memory allocations */

10 sharedMemoryCache0, . . .);
/* Wait for all cached values to be available and initialize the

next maximum step size */

11 if is first thread of group then
12 nextStepSize := maxNumSteps - stepIdx;
13 end

14 group barrier;
/* Check component precondition for the current value */

15 instanceStepSize := max(int);
16 C c := ⊥;

/* Compute next common step size for all group threads */

17 if i < range(C) then
18 c := C.Init(i);

19 instanceStepSize := c.ComputeNumSteps(view);
20 warpWideStepSize := warp reduce min(instanceStepSize);

21 if is first lane of warp then
22 atomic min nextStepSize, warpWideStepSize;
23 end

24 end

25 group barrier;
26 stepSize := nextStepSize;

/* Apply component with the next common step size */

27 if i < range(C) then
28 c.Evaluate(view, stepSize);

29 end
/* Advance step index and wait for all threads */

30 stepIdx += stepSize;

31 numPerformedIterations++;
32 Swap localSource, localTarget;

33 group barrier;

34 end

35 if numPerformedIterations is even then
36 Perform a parallel group-wide copy operation of affected information from

source to target buffers;

37 end

38 end

High-Performance Simulations on GPUs Using Adaptive Time Steps 381

cubic-spline) to emulate less- and more-expensive interpolation computations.
Similarly, we used a varying number of items |R| (the range, particles in these
scenarios) to analyze the scaling behavior of our adaptive time-stepping app-
roach. Most important for the evaluation are the number of steps we can adap-
tively perform. In order to be close to application scenarios, we vary the number
of steps continuously (computed using a uniform random distribution) for all
components from the intervals [1, . . . 3]. We have not included larger intervals to
show realistic performance measurements that do not assume optimistic prop-
erties of the underlying simulation. This emulates common scenarios in which
we can sometimes perform larger steps, while other situations require small step
sizes to satisfy all domain-specific simulation constraints.

We measured four different algorithms: Simple (fixed step size of 1), Trad.
Adaptive (adaptive time stepping based on prior work, see Sect. 3), HIP-NoCache
(our method without shared-memory caches) and HIP (our method with caches
enabled). Every setup has been evaluated using two GPUs from NVIDIA for all
benchmarks (a GeForce GTX 980 Ti and a GeForce GTX 1080 Ti). Furthermore,
every performance measurement is the median execution time of 100 simulation
runs, each performing a maximum number 100 simulation steps (when using a
time-step size of 1). All execution times are measured in milliseconds (ms).

5.1 Gravity-Like Simulation

This evaluation scenario covers a gravity-like simulation that leverages three
components C0, C1 and C2 (see Fig. 9). The first component conceptually com-
putes particle-specific information, whereas the second one iterates over neigh-
boring particles in memory and prepares accumulated results for C2. The last
component accesses neighboring information from B0 and B1 and computes item
updates.

Fig. 9. Component dependency-graph of the first evaluation scenario.

Table 1 shows the performance measurements for the discussed configura-
tions. In the presence of a small range |R|, the traditional method cannot improve
performance significantly. It can only improve performance of about 4.5% to 7%
in the case of 64k items. Using our approach allows us to increase the perfor-
mance approx. 12% to 17% in comparison to the traditional adaption approach.
Adding shared-memory caches does not hurt in most cases and is able to improve
the runtime by approximately 2% on average using cubic-spline interpolation.
However, modern GPU architectures do not seem to benefit from the explicit
caching method in the case of simple linear interpolation functions.

382 M. Köster et al.

Table 1. Performance measurements of the first evaluation scenario.

|R| I Algorithm 980 Ti σ 1080 Ti σ

16384 – Simple 136.36 18.21 83.45 9.24

* – Trad. Adaptive 135.49 4.14 82.67 1.16

* Linear HIP-NoCache 118.02 5.44 72.32 3.62

* Spline2 * 121.63 5.14 74.02 3.21

* Linear HIP 116.48 4.22 72.16 2.91

* Spline2 * 117.25 6.60 72.97 2.53

65536 – Simple 399.47 13.62 245.88 0.68

* – Trad. Adaptive 381.34 23.13 229.36 0.51

* Linear HIP-NoCache 340.04 1.74 203.84 0.12

* Spline2 * 342.30 3.87 209.74 0.03

* Linear HIP 332.88 1.65 204.35 0.09

* Spline2 * 335.36 4.16 205.74 0.12

5.2 PBD-like Simulation

This evaluation scenario is inspired by a PBD-like simulation that involves seven
different components. C0 computes basic information per particle. This can be
seen as a more expensive position-prediction step derived from PBD. As before,
C1 prepares accumulated neighborhood information that is used for an imaginary
collision-detection step in C2. C3 and C4 use SPH-based calculations across all
neighboring particles to simulate a reasonable workload per item. Afterwards,
C5 iterates over all neighbors while accessing items in B4 and B3. C6 computes
final item updates using B5 (Fig. 10).

Fig. 10. Component dependency-graph of the second evaluation scenario.

Table 2 depicts the performance numbers for the discussed evaluation con-
figurations. In all cases, the traditional adaption approach performs slower than
the non-adapted version. This is due to the fact that the probability is lower
than in the previous scenario to execute a larger time step (see also Sect. 3) as
we are using more components. However, we are able to improve the perfor-
mance approx. 16% to 22% in comparison to the non-adapted version. Again,
shared-memory caches can help to improve the runtime (in this scope of up to
6%) on older GPU architectures.

High-Performance Simulations on GPUs Using Adaptive Time Steps 383

Table 2. Performance measurements of the second evaluation scenario.

|R| I Algorithm 980 Ti σ 1080 Ti σ

16384 – Simple 327.50 82.33 200.95 11.43

* – Trad. Adaptive 346.83 11.32 212.75 6.59

* Linear HIP-NoCache 282.70 26.43 171.10 3.78

* Spline * 293.63 16.05 175.12 13.57

* Linear HIP 282.88 19.57 172.27 10.72

* Spline * 284.50 12.92 178.05 18.46

65536 – Simple 1006.99 85.99 602.42 2.49

* – Trad. Adaptive 1016.65 0.23 615.63 8.23

* Linear HIP-NoCache 826.18 16.77 503.14 2.94

* Spline * 878.80 18.51 516.66 0.50

* Linear HIP 825.83 18.62 504.14 0.19

* Spline * 827.86 19.63 510.84 3.24

6 Conclusion

We present a new approach to realize generic and domain-independent time-step
adaptive GPU-based simulations. Our concept is based on several components
that define the actual simulation loop. A static program analysis resolves data
dependencies between read/write accesses of all components. The determined
dependency graph is then used to generate specialized kernels that access inter-
polated values at intermediate time steps. In this scope, our generic compo-
nent model allows to hide the actual memory-access implementation logic. This
enables us to integrate our shared-memory-based caching concept and domain-
specific interpolation functions touching the component implementations.

Our approach scales perfectly with the complexity of the underlying simu-
lation model. Even in non-optimal use cases consisting of a few components,
our approach was able to outperform fixed step sizes and the traditionally used
conservative step-adaption method. However, our integrated caching concept is
only beneficial if the simulation uses computationally expensive interpolation
functions. This should not be necessary on modern GPUs when using linear or
cubic-spline value-estimation methods. In case of more sophisticated simulations,
we were able to significantly improve performance in comparison to prior work
of up to 22% on non-optimistic benchmarks for our idea. If we assume more opti-
mistic scenarios, we will be able to achieve impressive performance speedups in
particular on large-scale simulations involving many different components. This
makes our method a perfect extension to every modern GPU-based simulation
that wants to benefit from adaptive time steps.

Probably the primary downside of our approach is the fact that we might
introduce simulation errors with respect to adaptively adjusted time steps. As in
all related papers, the actual time-step size calibration itself is tightly coupled to

384 M. Köster et al.

the domain and is usually adjusted by a domain expert. Therefore, we argue that
this is not a disadvantage that has been introduced by our method. Furthermore,
we have the ability to express domain-specific criteria to limit the step size.

In the future, we would like to extend the concept to support more advanced
program analyses. This would allow us to simplify shared-memory-cache accesses
considerably. In addition, we want to experiment with different caching concepts
that even works on the warp-level in register space and in shared memory.

Acknowledgments. The authors would like to thank T. Schmeyer, A. Bosch and
J. Bayer for their feedback on the paper, even in the scope of very challenging and
stressful times.

References

1. Adams, B., Pauly, M., Keiser, R., Guibas, L.J.: Adaptively sampled particle fluids.
ACM Trans. Graph. (2007)

2. Carey, V., Estep, D., Johansson, A., Larson, M., Tavener, S.: Blockwise adaptivity
for time dependent problems based on coarse scale adjoint solutions. SIAM J. Sci.
Comput. 32, 2121–2145 (2010)

3. Gander, M., Halpern, L.: Techniques for locally adaptive time stepping developed
over the last two decades. In: Bank, R., Holst, M., Widlund, O., Xu, J. (eds.)
Domain Decomposition Methods in Science and Engineering XX. Lecture Notes in
Computational Science and Engineering, vol. 91, pp. 377–385. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35275-1 44

4. Garcia, V.M., Liberos, A., Climent, A.M., Vidal, A., Millet, J., González, A.: An
adaptive step size GPU ODE solver for simulating the electric cardiac activity. In:
2011 Computing in Cardiology (2011)

5. Groß, J., Köster, M., Krüger, A.: Fast and efficient nearest neighbor search for
particle simulations. In: Eurographics Proceedings (2019)

6. Hong, W., House, D.H., Keyser, J.: An adaptive sampling approach to incompress-
ible particle-based fluid. In: Theory and Practice of Computer Graphics (2009)

7. Horvath, C.J., Solenthaler, B.: Mass preserving multi-scale SPH. Pixar Technical
Memo 13–04, Pixar Animation Studios (2013)

8. Ihmsen, M., Akinci, N., Gissler, M., Teschner, M.: Boundary handling and adaptive
time-stepping for PCISPH (2010)

9. Kay, D., Gresho, P., Griffiths, D., Silvester, D.: Adaptive time-stepping for incom-
pressible flow part II: Navier-Stokes equations. SIAM J. Sci. Comput. 32, 111–128
(2010)

10. Kelager, M.: Lagrangian fluid dynamics using smoothed particle hydrodynamics
(2006)

11. Köster, M., Groß, J., Krüger, A.: Massively parallel rule-based interpreter execu-
tion on GPUs using thread Compaction. Int. J. Parallel Program. 48, 675–691
(2020). https://doi.org/10.1007/s10766-020-00670-2

12. Köster, M., Groß, J., Krüger, A.: FANG: fast and efficient successor-state genera-
tion for heuristic optimization on GPUs. In: Wen, S., Zomaya, A., Yang, L.T. (eds.)
ICA3PP 2019. LNCS, vol. 11944, pp. 223–241. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-38991-8 15

https://doi.org/10.1007/978-3-642-35275-1_44
https://doi.org/10.1007/s10766-020-00670-2
https://doi.org/10.1007/978-3-030-38991-8_15
https://doi.org/10.1007/978-3-030-38991-8_15

High-Performance Simulations on GPUs Using Adaptive Time Steps 385

13. Köster, M., Groß, J., Krüger, A.: Parallel tracking and reconstruction of states in
heuristic optimization systems on GPUs. In: Parallel and Distributed Computing,
Applications and Technologies (PDCAT-2019) (2019)

14. Köster, M., Krüger, A.: Adaptive position-based fluids: improving performance of
fluid simulations for real-time applications. Int. J. Comput. Graph. Anim. (2016)

15. Köster, M., Leißa, R., Hack, S., Membarth, R., Slusallek, P.: Code refinement of
stencil codes. Parallel Process. Lett. (PPL) 24, 1441003 (2014)

16. Köster, M., Schmitz, M., Gehring, S.: Gravity games - a framework for interactive
space physics on media facades. In: Proceedings of the International Symposium
on Pervasive Displays (2015)

17. Köster, M., Krüger, A.: Screen space particle selection. In: Eurographics Proceed-
ings (2018)

18. Macklin, M., Müller, M.: Position based fluids. ACM Trans. Graph. 32, 1–12 (2013)
19. Macklin, M., Müller, M., Chentanez, N., Kim, T.Y.: Unified particle physics for

real-time applications. ACM Trans. Graph. 33, 1–12 (2014)
20. Mayr, M., Wall, W., Gee, M.: Adaptive time stepping for fluid-structure interaction

solvers. Finite Elem. Anal. Design 141, 55–69 (2018)
21. Monaghan, J.J.: Smoothed particle hydrodynamics. In: Annual Review of Astron-

omy and Astrophysics (1992)
22. Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive

applications. In: Symposium on Computer Animation (2003)
23. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics. J.

Vis. Commun. Image Represent. 18, 109–118 (2007)
24. Müller, M., Solenthaler, B., Keiser, R., Gross, M.H.: Particle-based fluid-fluid inter-

action. In: Symposium on Computer Animation (2005)
25. NVIDIA: Faster Parallel Reductions on Kepler (2014)
26. NVIDIA: CUDA C Programming Guide v10 (2019)
27. Pounders, J., Boffie, J.: Analysis of an adaptive time step scheme for the transient

diffusion equation (2015)
28. Solenthaler, B., Gross, M.: Two-scale particle simulation. In: ACM Siggraph (2011)
29. Solenthaler, B., Pajarola, R.: Predictive-corrective incompressible SPH. In: ACM

Siggraph (2009)
30. Zhang, Y., Solenthaler, B., Pajarola, R.: Adaptive sampling and rendering of fluids

on the GPU. In: Eurographics Proceedings (2008)

Performance Modeling of Stencil
Computation on SW26010 Processors

Yao Liu1, Li Liu1, Mengtao Hu1, Wei Wang1, Wei Xue2, and Qingting Zhu1(B)

1 School of Data Science and Engineering, East China Normal University,
Shanghai, China

{liuyao,qtzhu}@cc.ecnu.edu.cn, bran96@163.com, izrail@163.com,

wwang@dase.ecnu.edu.cn
2 Department of Computer Science and Technology, Tsinghua University,

Beijing, China
xuewei@tsinghua.edu.cn

Abstract. Stencil computation is a basic part in a large variety of scien-
tific computing programs, especially for those containing partial differen-
tial equations. Due to the limited memory bandwidth, it is a challenge to
improve the parallel efficiency of stencil computation on modern super-
computers. Performance modeling is the most common method of perfor-
mance analysis. In this paper, we propose the generic performance model
based on Sunway TaihuLight which is powered by SW26010 heteroge-
neous many-core processors. The generic model indicates the interaction
between the programs and the computing platform from the architecture
perspective, and points out the performance bottlenecks of the programs
from the optimization perspective. Furthermore, we propose the specific
performance model of stencil computation on SW26010 processors, and
optimize the performance of stencil computation under the guidance of
the model. The experimental results show that the performance mod-
els proposed in this paper are effective—the average error ratio of the
predicted performance is less than 7%. Guided by the specific model,
the optimized stencil computation achieves better performance than the
unoptimized many-core version by 154.71% on 4096 cores.

Keywords: Stencil computation · Performance modeling · Sunway
TaihuLight · Heterogeneous many-core processors

1 Introduction

Large-scale scientific computing programs such as materials science [24], atmo-
spheric modeling [7], seismic prediction [4], molecular dynamics [9], play impor-
tant roles in the national core science and technology fields. Stencil computation
is an essential part of many scientific computing programs, especially in the
programs containing a large number of partial differential equations [14]. Due
to the particularity and importance of stencil computation, how to improve its
computing efficiency has been widely concerned.
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 386–400, 2020.
https://doi.org/10.1007/978-3-030-60245-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_27

Performance Modeling of Stencil Computation on SW26010 Processors 387

Considering the complexity and high time consumption of stencil computa-
tion, high-performance computing platforms are used to accelerate computing.
However, with the increase of computing resources, the parallel efficiency of the
programs is often unsatisfactory. One of the key reasons is that the computing
capability of modern microprocessors is not fully utilized because of their com-
plicated architecture. Therefore, improving the match between the platform and
the program, analyzing and tuning the program design, and exploring the poten-
tial concurrency have become the main methods to improve the performance of
the program.

Sunway TaihuLight supercomputer reached the peak performance of more
than 100 PFLOPS in 2016, which provides a favorable guarantee for large-scale
scientific computing [11]. Nonhydrostatic atmospheric dynamics simulation on
the Sunway TaihuLight system won the Gordon Bell Award [21]. However, Sun-
way TaihuLight has unique architecture and programming features, it’s a big
challenge to make full use of its high computing capability. Generally speak-
ing, it takes a lot of time and effort to transplant scientific computing programs
to Sunway TaihuLight. The factors that affect the performance of a program
include the program’s computing scale, computing intensity, and programming
habits. Analysis of the program performance could point out the performance
bottlenecks of the programs, improve the match between the platform and the
program, and achieve the purpose of performance optimization.

Performance modeling is one of the most commonly used methods for perfor-
mance analysis [6]. It abstracts the various behaviors and running characteristics
of the program through mathematical formulas, and can effectively identify the
bottlenecks. The performance model can also be used to predict the scalability
of the performance, providing the guidance for performance optimization. There
have been some research on performance modeling on the GPU and Intel plat-
forms [5,13,17,22]. How to design the performance model on Sunway TaihuLight
has gradually become a research hotspot. Ao et al. [1] proposed atmospheric
model performance modeling, which mainly focused on the optimization meth-
ods and the scalability of stencil computation. Zhang et al. [23] addressed 3D
stencil performance modeling on GPU, which gave the best data blocking scheme
on multiple levels of storage. However, these studies rarely involve quantitative
modeling, and the model parameters are not rich enough to fully indicate the
features of the algorithms and architecture.

In this paper, based on the architecture features of SW26010, we propose the
generic performance model of scientific computing program on Sunway Taihu-
Light, which provides guidance for optimizing the performance of scientific com-
puting programs. Using this generic model, we propose the performance model
of stencil computation on SW26010 processors, which considers the features of
architecture and program. The model quantitatively analyzes the characteristics
of the program and the running status of each program part, which provides a
favorable guidance for the performance optimization of the stencil computation
on Sunway TaihuLight. Additionally, the model can predict the performance of

388 Y. Liu et al.

the program under different blocking and optimizing schemes. In summary, this
paper makes the following contributions.

– Facing the challenges of heterogeneous architecture and hybrid programing
models, we propose the generic performance model on Sunway TaihuLight
which provides guidance for modeling and optimizing scientific computing
programs.

– We propose the stencil computation performance model on SW26010 pro-
cessors. The model quantitatively analyzes the performance under different
blocking schemes. The average error ratio of the predicted performance is less
than 7%.

– Under the optimization guidance provided by the performance model, the
stencil computation could be optimized significantly on Sunway TaihuLight.
The optimized stencil computation achieves better performance than the
unoptimized many-core version by 154.71% on 4096 cores.

The paper is organized as follows. Section 2 presents related work about per-
formance modeling and stencil computation. Section 3 illustrates the details of
performance modeling on SW26010 processors. Section 4 presents the experi-
mental results and analysis. Finally, Sect. 5 concludes this paper and points out
the future work.

2 Related Work

2.1 Performance Modeling

Scientific computing programs include two parts: the computation part and the
communication part. For the computing part, Samuel Williams et al. [19] pro-
posed the Roofline Model, which is a basic performance model. It is simple and
easy to measure, but the performance events are coarse-grained. Barnes et al.
[2] use formula to fit model. They use performance tools to directly measure
the performance of parallel programs, and perform linear or nonlinear fitting.
Martin et al. [3] proposed PerfExpert, to analyze the performance bottlenecks
of program comprehensively.

For the communication part, Torsten et al. [12] established an analytical
communication model for the communication part of the MILC program. They
divided the communication behavior into point-to-point communication and col-
lective communication. The analytical communication model is complete, but
the cost is high, and the process of modeling requires domain expert knowledge.
Other communication models such as PRAM, BSP, Hockney model and LogP
family are classic communication models [8].

2.2 Stencil Computation

Stencil computation is a kind of computing kernels that updates the value in
a certain way by steps. For example, solving the heat conduction equation in

Performance Modeling of Stencil Computation on SW26010 Processors 389

a uniform anisotropic heat-conducting medium, we usually use a regular grid
to represent the temperature distributed in three-dimensional space, and the
temperature of each grid point will change by steps. Then the temperature of a
point at the current moment is computing from the temperature of several points
around the point at the previous moment. If it depends on the temperature of 7
or 27 nearby points, it is considered as a 7-point or 27-point stencil computation
problem, as shown in Fig. 1.

X
Y

Z

(a) 7-point

Z
Y

X

(b) 27-point

Fig. 1. Visualization of the 3D stencil.

2.3 Blocking Schemes

Due to the limitation of on-chip storage, for the GPU platform, the input data
are divided into multiple small blocks, which are allocated to threads in order to
optimize the stencil computation. The current work shows that there are three
typical spatial blocking schemes, namely: 2D, 2.5D, and 3D blocking, as shown
in Fig. 2. Vizitiu et al. [18] addressed that the effect of 3D blocking is better than
the other two methods. However, the blocking schemes are flexible and should be
considered in fact. Performance model proposed in this paper combines above
blocking schemes, and analyzes the performance of stencil computation using
different blocking schemes on Sunway TaihuLight.

(a) 2D Blocking (b) 2.5D Blocking (c) 3D Blocking

Fig. 2. Blocking schemes.

390 Y. Liu et al.

3 Performance Modeling on SW26010 Processors

3.1 Overview of Sunway TaihuLight

Sunway TaihuLight system, a supercomputer independently developed by China,
is the first supercomputer with a peak performance of over 125 PFlops in the
world [16]. It consists of 40960 SW26010 heterogeneous many-core processors.
The general architecture of the processor is shown in Fig. 3. Each processor
contains 4 core groups (CGs) connected via the network on chip (NoC). Each
CG includes one management processing element (MPE) and one cluster of
8× 8 computing processing elements (CPEs). Sunway TaihuLight supports three
major programming models, namely: MPI, MPI+OpenACC, MPI+Athread [1].
Hybrid programing model—MPI+Athread is most used by researchers. Athread
is a light-weight effective thread library that is used to exploit the parallelism
of CPEs. The heterogeneous architecture of the processor and the hybrid pro-
graming model increase the difficulty of performance modeling, that is, how to
integrate the architecture and the hybrid programming model in the performance
model.

8*8 CPE
Cluster

MPE

PPU

MC

CG 0

Off-chip Memory

8*8 CPE
Cluster

PPU

MC

Off-chip Memory

NoC

8*8 CPE
Cluster

PPU

MC

CG 2

Off-chip Memory

8*8 CPE
Cluster

PPU

MC

CG 3

Off-chip Memory

0 1 2 … 7

8 9 10 … 15

16 17 18 … 23

… … … …

56 57 58 … 63

Computing
CoreSPM

Col
Buffer

Row BufferColumn
Communication
Bus

Row Communication Bus

MPE

CG 1

MPE MPE

Fig. 3. Architecture of SW26010.

3.2 Generic Performance Model on Sunway TaihuLight

Most scientific computing programs use a master-slave accelerated parallel
method on Sunway TaihuLight. Computing tasks are assigned to each core group.
MPE (one process per MPE) is responsible for data communication between core
groups, a small part of serial computation, I/O, etc., and CPEs (one thread per
CPE) are responsible for computing.

Performance Modeling of Stencil Computation on SW26010 Processors 391

We conclude from Sect. 2 that most scientific computing programs consist of
two basic phases, computation phase and communication phase [8]. The compu-
tation phase consists of computations and memory accesses. The total time the
program runs can be indicated as Eq. 1, where Tcomp means the computation
time, Tmem for the memory accesses time, Tcomm for the communication time
and Tothers for the rest time (almost negligible) such as program initialization.
Actually, the computation phase and the communication phase could be hidden
from each other. Furthermore, in the computation phase, the computations and
memory accesses could be hidden from each other. We use RF, RC to represent
the hidden ratio, respectively.

Tmodel = (Tcomp + RF · Tmem) + RC · Tcomm + Tothers (1)

Computation Phase Modeling. According to the heterogeneous architec-
ture, we extend the computation phase model. The model is indicated as Eq. 2.
Each model item represents the behavior of MPE and CPEs in the computation
phase.

Tcomp + RF · Tmem = TMPE comp + RFMPE · Tmem MPE

+ TCPE comp + RFCPE · Tmem CPE

(2)

Since the floating-point computation performance of CPEs is about 32× of
MPE in one CG [11], all the computing tasks are assigned to CPEs in this section.
We focus on performance modeling of CPEs computation, the performance mod-
eling of MPE computation is the same as CPEs. The CPEs computation model
is defined as Eq. 3, where Dsize means the amount of computed data, P for the
number of MPE, tcomp for minimum computation unit overhead.

Tcomp CPE =
Dsize

P
· tcomp (3)

We can use timing functions to measure tcomp [8]. According to different
types of scientific computing programs, we could choose a loop or a function as
a minimum computation unit.

The speed of CPEs accessing its local device memory (LDM) is very fast, and
the access delay is only 4 cycles [15]. However, due to the limited size of LDM
(64 KB), CPE is required to continuously copy data from the main memory to its
LDM, compute and copy the results back to the main memory finally. Although
all CPEs independently complete their assigned computing tasks, the CPEs have
to compete for the limited bandwidth between the main memory and LDMs. Due
to the memory bound, memory access optimization is the effective method of
performance optimization on SW26010 processors. Since the computing tasks
are assigned in CPEs, memory access time of CPEs Tmem CPE becomes an key
component of the performance model. The SW26010 processor provides two ways
for CPEs to access the main memory. The CPEs can directly access the main
memory through the gld/gst method discretely, or can access the main memory
in batches through the DMA method, and there are also mixed use methods.

392 Y. Liu et al.

Tmem CPE can be indicated as Eq. 4, where Tgld/gst means time consumed by
gld/gst, TDMA for time consumed by DMA.

Tmem CPE = Tgld/gst + TDMA (4)

The delay of one gld/gst is about 220 cycles [10], while the delay of one DMA
is only 25 cycles [15]. We should avoid using gld/gst as much as possible in prac-
tical applications. In general, CPEs use DMA to access the main memory. When
modeling performance of memory access, we mainly focus on DMA performance
modeling. The modeling method of gld/gst is the same as DMA.

For one CPE, TDMA can be defined as Eq. 5, where countDMA represents
the number of DMA requests, tDMA means time consumed by each DMA.

TDMA = countDMA · tDMA (5)

tDMA is closely related to the data size required for each DMA—DsizeDMA

because DsizeDMA determines the DMA bandwidth. Therefore, we introduce
the effective DMA bandwidth effBWDMA to represent the actual bandwidth
used. tDMA can be indicated as Eq. 6, where countCPE means the number of
CPEs participating in the computation, which is another main factor that affects
DMA bandwidth [10]. effBWDMA can be found in [15,16,20].

tDMA =
countCPE · DsizeDMA

effBWDMA
(6)

In the computation phase, there are cases where computations and memory
accesses are hidden from each other, and how to hide them from each other
as much as possible is the key to improving performance of programs. RF is
related to the programmer’s programming ability, the computation and memory
characteristics of different problems and the system’s own optimization. RF = 0
proves that computations and memory accesses have reached perfect hiding, and
RF = 1 means that computations and memory accesses are not hidden from each
other.

In summary, the computation phase performance model Mcomp can be rep-
resented as Eq. 7.

Mcomp =
Dsize

P
· tcomp + RFCPE · (countDMA · countCPE · DsizeDMA

effBWDMA
) (7)

Communication Phase Modeling. Programs such as partial differential
equation solving usually assign grid computing tasks to each CG. When the
updating of grid points require adjacent data, it needs to communicate with
the surrounding grid points, so there is a need for data communication between
MPEs. The communication phase can usually be divided into collective com-
munication and point-to-point communication [8]. Communication time can be
defined as Eq. 8, where Tcol means time spent on collective communication, tp2p
for time consumed by point-to-point communication.

Tcomm = Tcol + Tp2p (8)

Performance Modeling of Stencil Computation on SW26010 Processors 393

We take collective communication as an example, assuming that the global
reduction uses the k-tree reduction method. P means the number of MPEs, n
means the number of the communication starts, Csize is total communication
data, tcomm means minimum communication unit overhead, Tcol can be repre-
sented as Eq. 9.

Tcol = n · logk(P) +
Csize

P
· tcomm (9)

In practical applications, we often use point-to-point communication, there-
fore communication model can be defined as Eq. 10, where tstart means com-
munication start time. We can also measure tstart and tcomm using the timing
function.

Tcomm = n · tstart +
Csize

P
· tcomm (10)

In general, we purpose the generic performance model on Sunway TaihuLight.
The model provides a useful guide for the performance modeling of programs on
Sunway TaihuLight.

3.3 Performance Modeling of Stencil Computation

When we have the generic performance model, we only need to extend the model
according to the characteristics of the target programs to achieve rapid modeling.

Stencil Computation Description. Stencil computation includes computa-
tion phase and communication phase introduced in Sect. 2.2. When stencil com-
putation runs on SW26010 processors by steps, the phases in this process include
updating halo, fetching data to LDM, computing stencil, and writing data back
to main memory.

Computation Phase Modeling. From the description, we found that stencil
computation has a large number of memory access operations. Since LDM size
is only 64 KB, it is impossible to fetch data to CPEs at once, so the memory
accesses become more frequent. We use the 3D 7-point stencil computation as an
example. When updating a grid point, it needs to use its top, bottom, front, back,
left and right grid points as shown in Fig. 1. In this process, there is a lot of data
redundancy. A lot of data are read repeatedly, so how to improve data utilization
becomes the focus of the computation phase. Blocking is an effective method
to improve the efficiency of memory access. Redundant memory accessing can
be defined as Eq. 11, where blocky means length of y-axis after blocking, blockz
means length of z-axis after blocking. The larger r is, the less redundant memory
access.

r =
blocky · blockz

countDMA
(11)

Since LDM size is fixed, DsizeDMA is inversely related to countDMA. If the
halo size is 1, countDMA can be defined as Eq. 12. If we take a 2.5D or 3D
blocking scheme, r becomes larger, but DsizeDMA becomes smaller. Therefore,

394 Y. Liu et al.

balancing these two indicators is the key to improving performance during the
computation phase.

countDMA = (blocky + 2) · (blockz + 2) (12)

Communication Phase Modeling. Csize is a key factor affecting Tcomm.
From the description we found that the stencil computation requires swapping
the halo data of the grid. For 3D stencil computation, the stencil computation
intensity (5-point,7-point,27-point, etc.) determines Csize. Csize can be defined
as Eq. 13, where μ, ν are the flags that represent intensity, N for the data gird
size, H for the halo size. Appropriate blocking scheme can effectively reduce
Csize. We integrate the blocking scheme into the communication model. Csize
can be calculated by Eq. 14, where Px, Py, Pz mean the number of divisions on
the x, y, z axis, and β1, β2, β3 are the flags of the blocking schemes, as shown
in Table 1.

Table 1. Blocking schemes

β1 β2 β3 Blocking schemes

1 0 0 2D Blocking, split z-axis

1 1 0 2.5D Blocking, split y, z-axis

1 1 1 3D Blocking split x, y, z-axis

Csize3D = 6 · H · N2 + μ · 8 · H3 + ν · 12 · N · H2 (13)

Csize3D = 2 · H · (β1 · N2

Px · Py
+ β2 · N2

Px · Pz
+ β3 · N2

Py · Pz
)

+ μ · 8 · H3 + ν · 4 · (β1 · N

Px
+ β2 · N

Py
+ β3 · N

Pz
) · H2

(14)

For example, Csize of 3D 7-point stencil computation with halo size of 1 can
calculated by Eq. 15. Different process blocking schemes will make the sending
data discontinuous. Therefore, we need to pack and unpack the data in the com-
munication phase, and the amount of discontinuous sending data determines the
time consumed by the data packing and unpacking. In summary, the communi-
cation model of stencil computation can be defined as Eq. 16, where tpackunpack
means time spent on data packing and unpacking.

Csize3D7p = 2 · (β1 · N2

Px · Py
+ β2 · N2

Px · Pz
+ β3 · N2

Py · Pz
) (15)

Tcomm = n · tstart + tpackunpack

+ 2 · (β1 · N2

Px · Py
+ β2 · N2

Px · Pz
+ β3 · N2

Py · Pz
) · tcomm

(16)

Performance Modeling of Stencil Computation on SW26010 Processors 395

4 Experiments

In this section, we evaluate the proposed performance model from the perspective
of model accuracy and performance optimization.

4.1 Experimental Setup and Metrics

We use standard MPI+Athread programming model to implement the par-
allelization of stencil computation on Sunway TaihuLight. The data sets are
named in the form of N -STENCIL-P -STEPS, where N means the grid size,
STENCIL for the computation intensity, P for the number of processes, and
STEPS for the iteration number of stencil. To match the grid size, different
numbers of processes are used. The four data sets used in the experiments have
their own features, such as different N and STEPS. The grid data is placed in
order of x-y-z, where x is the innermost direction.

Error Ratio. The model error ratio is used to evaluate the accuracy of the
model. The smaller the model error ratio, the higher the model accuracy. Let
Res e be the average model result obtained from multiple experiments, and
Res m be the model results predicted by the performance model proposed in
this paper, model error ratio can be defined as

Rerr = |1 − Resm
Rese

| × 100% (17)

Speedup. The experiments use speedup to evaluate the acceleration effect of
model-guided optimization. Let Tmpe be the running time of multi-process stencil
computation, and Tmanycore be the running time after model-guided optimiza-
tion, then speedup can be defined as

speedup =
Tmpe

Tmanycore
(18)

4.2 Error Ratio of Models

The experiments evaluate Rerr of the computation model, the communication
model, the computation model based on the blocking schemes, and the commu-
nication model based on the blocking schemes, respectively.

For input items of the model, some of them are obtained through multiple
measurements, for example, tcomm, tcomp, some are obtained by reviewing the
paper [15,16,20], such as effBWDMA, and the rest are obtained by calcula-
tion, such as countDMA. We use the proposed performance model to predict the
results, meanwhile the results of the experiment is obtained by instrumenting.

396 Y. Liu et al.

Evaluation of Computation Model. In this experiment, to utilize the DMA
bandwidth, CPE take 650 double to LDM each time. Figure 4(a) shows the
predicted results are basically consistent with the experimental results. With
the increase of computation intensity, the proportion of Tcomp in the total time
increases. Rerr is less than 5%, which proves the proposed computation model
is effective.

Evaluation of CommunicationModel. The experiments use MPI Sendrecv
as the communication functions. In this experiment, we divide the grid along the
z-axis, and the number of divisions is the number of processes. The results are
shown in Fig. 4(b). CSize is the key factor that determines pure communica-
tion time Tcomm(pure), and when STEPS increases, Tcomm also increases. The
average Rerr is satisfactory, only 6.08%.

Evaluation of Computation Model Based on Blocking Schemes. We
take 512-7-16-48 as an example for the experiment. Figure 4(c) shows the block-
ing schemes change Tmem obviously, because the schemes effect countDMA and
effBWDMA. The improvement of effBWDMA plays a key role in reducing
Tmem, and countDMA is inversely related to effBWDMA. The bigger and square
yz-plane, the larger r. The Rerr is about 5%, and the performance is obviously
improved when effBWDMA and r are both large.

Evaluation of Communication Model Based on Blocking Schemes. We
take 512-7-16-48 and 768-7-64-64 as examples for the experiment. Figure 4(d)
shows 2.5D and 3D blocking schemes could effectively decrease Csize, and
Tcomm(pure) decreases accordingly. However, the advantage brought by the
decrease of Csize is reduced due to the increase of tpackunpack. The average
Rerr is desirable, which is 5.09%. We found that in the case of several processes,
the 2D blocking scheme along the z-axis is better because tpackunpack can be
omitted. In the case of a larger number of processes, the 2.5D blocking scheme
is outstanding, especially the scheme with square yz-plane and more continuous
dimensions. As for the 3D blocking scheme, it is unsatisfactory because of the
massive data packing and unpacking.

4.3 Model-Guided Performance Optimization

Process-Level Parallelism (PP). The computation tasks are assigned to each
MPE, and each MPE is responsible for computation and communication.

Multi-level Parallelism (MP). The computation tasks on each MPE are
assigned to CPEs. CPEs are responsible for computation and each MPE is
responsible for communication. Mutli-level parallelism is the most common par-
allel version of many-core on SW26010 processors.

Performance Modeling of Stencil Computation on SW26010 Processors 397

0

0.2

0.4

0.6

0.8

1

1.2

1.4

512-7-16-48 512-27-16-16 768-7-64-64 768-27-64-16

Ti
m

e(
s)

T_mem T_comp Res_e Res_m

data sets

(a) CompModel

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

512-7-16-48 512-27-16-16 768-7-64-64 768-27-64-16

Ti
m

e(
s)

T_start T_comm(pure) Res_e Res_m

data sets

(b) CommModel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

64*8*8 128*2*2 128*4*4 256*2*2 256*4*4

Ti
m

e(
s)

T_mem T_comp Res_e Res_m r

block size at thread-level(512-7-16-48)

(c) CompModel based on blocking

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1*1*16 1*2*8 1*4*4 1*8*2 2*2*4 1*8*8 1*16*4 4*4*4

Ti
m

e(
s)

512-7-16-48 768-7-64-64blocking schemes
2D 2.5D 2.5D 2.5D 3D 2.5D 2.5D 3D

1*1*64 1*4*16
 2D 2.5D

T_start T_packunpack T_comm(pure) Res_e Res_m

(d) CommModel based on blocking

Fig. 4. Evaluation of the model.

0

2

4

6

8

10

12

PP MP +BG +MSA +VEC

Ti
m

e(
s)

512-7-16-48

Time axis scale down 5X
1.00X

8.39X

12.30X

14.96X 14.96X

(a) Speedup of 512-7-16-48

0

2

4

6

8

10

12

14

PP MP +BG +MSA +VEC

Ti
m

e(
s)

512-27-16-16

 axis scale down 10X1.00X Time

14.15X

21.34X
23.25X

33.21X

(b) Speedup of 512-27-16-16

0

2

4

6

8

10

12

14

PP MP +BG +MSA +VEC

Ti
m

e(
s)

768-7-64-64

Time axis scale down 5X

8.05X

11.50X

15.47X 15.47X

1.00X

(c) Speedup of 768-7-64-64

0

2

4

6

8

10

12

PP MP +BG +MSA +VEC

Ti
m

e(
s)

768-27-64-16

Time axis scale down 10X

12.74X

18.38X

22.98X

32.44X

1.00X

(d) Speedup of 768-27-64-16

Fig. 5. Speedup by the model-guided optimization.

398 Y. Liu et al.

Blocking Guidance (BG). We use the proposed blocking-based model and
experimental results to select the best blocking scheme. At the process level, the
2D blocking scheme is recommend for 16 processes, and the 2.5D blocking scheme
is recommend for 64 processes. At the thread level, under the premise of ensuring
the full utilization of LDM, the blocking scheme with larger effBWDMA and r
is selected. From the results predicted by the model, we found that the memory
access is time-consuming. Therefore, the i-th layer is being computed while the
i + 2 layer is being fetched under the blocking schemes, so that the computations
and memory accesses could be hidden from each other.

Master-Slave Asynchronous (MSA). Under the guidance of the model,
the computation phase and the communication phase could be hidden from
each other. Considering the features of stencil computation that internal data
do not participate in communication, we use CPEs to perform internal data
computation while MPEs perform halo data communication.

Vectorization (VEC). When the computation intensity is high, we could use
vectorization additionally to shorten the computing time.

The optimization results are shown in the Fig. 5. The maximum speedup of
the experiments reaches 14.96×, 33.21× on 1024 cores and 15.47×, 32.44× on
4096 cores, respectively, which means model-guided optimization has achieved
excellent results. Blocking guidance is significant for the performance improve-
ment of the stencil computation on SW26010. Besides, vectorization is sensitive
to the computation intensity, which notably reduces the cost of 27-point stencil
as shown in Fig. 5(b) and Fig. 5(d). Guided by our model, the optimized sten-
cil computation achieves better performance than the unoptimized many-core
version by 78.24%, 134.74% on 1024 cores and 92.22%, 154.71% on 4096 cores,
respectively.

5 Conclusion

In this paper, we propose the generic performance model of scientific comput-
ing program according to features of architecture and programming models on
Sunway TaihuLight, which provides guidance for modeling and optimizing the
performance of scientific computing programs. Especially, for the stencil com-
putation, we propose the specific performance model according to the charac-
teristics of SW26010 and the algorithm. The performance model quantitatively
analyzes the cost of each program part, which provides a favorable guidance for
the performance optimization of the stencil computation on Sunway Taihulight.
The experimental results demonstrate that the proposed performance model has
high accuracy and could effectively predict the performance of the program. The
average error ratio predicted by the model is less than 7%. In addition, the per-
formance optimization of the program guided by the model is also satisfactory.
The optimized stencil computation achieves better performance than the unop-
timized many-core version by 154.71% on 4096 cores.

Performance Modeling of Stencil Computation on SW26010 Processors 399

In the future, we intend to conduct research on automatic performance mod-
eling, and apply the performance model to larger scientific computing programs,
which have higher computing scale and more computing kernels.

Acknowledgement. This work is supported by the Ministry of Education’s
University-Industry Collaborative Education Program (No. 201902146019)

References

1. Ao, Y., et al.: 26 PFLOPS stencil computations for atmospheric modeling on Sun-
way TaihuLight. In: 2017 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 535–544. IEEE (2017)

2. Barnes, B.J., Rountree, B., Lowenthal, D.K., Reeves, J., De Supinski, B., Schulz,
M.: A regression-based approach to scalability prediction. In: Proceedings of the
22nd Annual International Conference on Supercomputing, pp. 368–377 (2008)

3. Burtscher, M., Kim, B.D., Diamond, J., McCalpin, J., Koesterke, L., Browne, J.:
Perfexpert: an easy-to-use performance diagnosis tool for HPC applications. In:
SC 2010: Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–11. IEEE (2010)

4. Chen, B., et al.: Simulating the Wenchuan earthquake with accurate surface topog-
raphy on Sunway TaihuLight. In: SC18: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 517–528. IEEE (2018)

5. Chen, G., Wu, B., Li, D., Shen, X.: Porple: an extensible optimizer for portable data
placement on GPU. In: 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 88–100. IEEE (2014)

6. Datta, K., Kamil, S., Williams, S., Oliker, L., Shalf, J., Yelick, K.: Optimization
and performance modeling of stencil computations on modern microprocessors.
SIAM Rev. 51(1), 129–159 (2009)

7. Dennis, J.M., et al.: Cam-se: a scalable spectral element dynamical core for the
community atmosphere model. Int. J. High Perform. Comput. Appl. 26(1), 74–89
(2012)

8. Ding, N., Xu, S., Song, Z., Zhang, B., Li, J., Zheng, Z.: Using hardware counter-
based performance model to diagnose scaling issues of HPC applications. Neu-
ral Comput. Appl. 31(5), 1563–1575 (2019). https://doi.org/10.1007/s00521-018-
3496-z

9. Dong, W., Li, K., Kang, L., Quan, Z., Li, K.: Implementing molecular dynam-
ics simulation on the Sunway TaihuLight system with heterogeneous many-core
processors. Concurr. Comput.: Pract. Exp. 30(16), e4468 (2018)

10. Fu, H., et al.: Refactoring and optimizing the community atmosphere model (CAM)
on the Sunway TaihuLight supercomputer. In: SC 2016: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 969–980. IEEE (2016)

11. Fu, H., et al.: The Sunway TaihuLight supercomputer: system and applications. Sci.
China Inf. Sci. 59(7), 072001 (2016). https://doi.org/10.1007/s11432-016-5588-7

12. Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for system-
atic performance tuning. In: SC 2011: Proceedings of 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, pp. 1–12.
IEEE (2011)

https://doi.org/10.1007/s00521-018-3496-z
https://doi.org/10.1007/s00521-018-3496-z
https://doi.org/10.1007/s11432-016-5588-7

400 Y. Liu et al.

13. Hong, S., Kim, H.: An analytical model for a GPU architecture with memory-
level and thread-level parallelism awareness. In: Proceedings of the 36th Annual
International Symposium on Computer Architecture, pp. 152–163 (2009)

14. Langtangen, H.P.: Computational Partial Differential Equations: Numerical Meth-
ods and Diffpack Programming, vol. 2. Springer, Berlin (1999). https://doi.org/
10.1007/978-3-662-01170-6

15. Li, L., et al.: swCaffe: a parallel framework for accelerating deep learning applica-
tions on Sunway TaihuLight. In: 2018 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 413–422. IEEE (2018)

16. Liu, Y., Liao, Q., Sun, J., Hu, M., Liu, L., Zheng, L.: A heterogeneous parallel
genetic algorithm based on sw26010 processors. In: 2019 IEEE 21st International
Conference on High Performance Computing and Communications; IEEE 17th
International Conference on Smart City; IEEE 5th International Conference on
Data Science and Systems (HPCC/SmartCity/DSS), pp. 54–61. IEEE (2019)

17. Shirako, J., et al.: Analytical bounds for optimal tile size selection. In: O’Boyle,
Michael (ed.) CC 2012. LNCS, vol. 7210, pp. 101–121. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-28652-0 6

18. Vizitiu, A., Itu, L., Niţă, C., Suciu, C.: Optimized three-dimensional stencil com-
putation on Fermi and Kepler GPUs. In: 2014 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–6. IEEE (2014)

19. Williams, S., Waterman, A., Patterson, D.: Roofline: an insightful visual perfor-
mance model for multicore architectures. Commun. ACM 52(4), 65–76 (2009)

20. Xu, Z., Lin, J., Matsuoka, S.: Benchmarking sw26010 many-core processor. In: 2017
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 743–752. IEEE (2017)

21. Yang, C., et al.: 10m-core scalable fully-implicit solver for nonhydrostatic atmo-
spheric dynamics. In: SC 2016: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, pp. 57–68. IEEE
(2016)

22. You, Y., et al.: Accelerating the 3D elastic wave forward modeling on GPU and
MIC. In: 2013 IEEE International Symposium on Parallel & Distributed Process-
ing, Workshops and Phd Forum, pp. 1088–1096. IEEE (2013)

23. Zhang, G., Zhao, Y.: Modeling the performance of 2.5 d blocking of 3D stencil code
on GPUs. In: IEEE High Performance Extreme Computing Conference, HPEC
(2016)

24. Zhang, J., et al.: Extreme-scale phase field simulations of coarsening dynamics
on the Sunway TaihuLight supercomputer. In: SC 2016: Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 34–45. IEEE (2016)

https://doi.org/10.1007/978-3-662-01170-6
https://doi.org/10.1007/978-3-662-01170-6
https://doi.org/10.1007/978-3-642-28652-0_6

Optimizing B+-Tree Searches on Coupled
CPU-GPU Architectures

Han Huang and Hua Luan(B)

Beijing Normal University, Beijing, China
huanghan@mail.bnu.edu.cn, luanhua@bnu.edu.cn

Abstract. The B+-tree is an important index in the fields of data ware-
housing and database management systems. With the development of
new hardware technologies, the B+-tree needs to be revisited to fully
take advantage of hardware resources. In this paper, we focus on opti-
mization techniques to increase the searching performance of B+-trees
on the coupled CPU-GPU architecture. First, we propose a hierarchical
searching approach on the single coupled GPU to efficiently deal with leaf
nodes of B+-trees. It adopts a flexible strategy to determine the number
of work items in a work group to search one key in order to reduce irreg-
ular memory accesses and divergent branches in the work group. Second,
we present a co-processing pipeline method on the coupled architecture.
The CPU and the integrated GPU process the sorting and searching
tasks simultaneously to hide sorting and partial searching latencies. A
distribution model is designed to support the workload balance strat-
egy based on real-time performance. Our performance study shows that
the hierarchical searching scheme provides an improvement up to 36%
on the GPU compared to the baseline algorithm with fixed number of
work items and the co-processing pipeline method further increases the
throughput by a factor of 1.8. To the best of our knowledge, this paper
is the first study to consider both the CPU and the coupled GPU to
optimize B+-trees searches.

Keywords: B+-trees · The coupled architecture · Integrated GPU ·
Co-processing

1 Introduction

The B+-tree [3] as a fundamental index is an important data structure and
widely used in many applications. Due to the high throughput, large capacity
and self-balance characteristics, it is efficient to use B+-trees to deal with large-
scale data [7]. However, with the Internet breakout and the rapidly expanding
data size, data systems need to store very huge volumes of data and deal with
numerous queries at the same time. The B+-tree, as a traditional database index,

Supported by the National Key R&D Program of China (No. 2017YFC0804004), and
a grant from the Capital Science and Technology Innovation Vouchers of China.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 401–415, 2020.
https://doi.org/10.1007/978-3-030-60245-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_28&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_28

402 H. Huang and H. Luan

is confronted with new performance challenges. It is necessary to explore novel
techniques to increase the query throughput and eliminate the search latency of
B+-trees in the big data era.

In recent years, graphics processing units (GPUs) have been used to help
improve B+-trees for better search performance. The GPU contains more com-
pute units compared with the CPU, and is able to execute instructions in a
parallel way. These features provide an opportunity to accelerate B+-trees oper-
ations. However, in the traditional discrete GPU architecture, data are stored in
the main memory and must be transferred from memory to the discrete GPU
with the PCIe bus before queries are executed on the GPU, which becomes the
bottlenecks of many applications and limits the benefits brought by using high-
performance GPUs [13,19]. Recently a new processor architecture, known as the
coupled or fused CPU-GPU architecture, has been provided by mainstream pro-
cessor vendors, such as Intel and AMD. On this kind of architecture, the CPU
and the coupled GPU share the same main memory and even the last level cache,
thus data transmission through the PCIe bus is eliminated which could avoid
transfer overhead [20].

In this paper, we aim at optimizing the search performance of B+-trees using
both the CPU and the coupled GPU in the fused architecture. To the best of our
knowledge, this paper is the first effort to exploit both the CPU and the coupled
GPU simultaneously to accelerate B+-trees searches. In our study, we found that
using a fixed work item number in a work group to search a key does not match
with the features of GPUs and therefore the GPU is not being efficiently and
properly utilized. Based on this observation, we present a hierarchical searching
way to reduce irregular memory accesses and work item divergence in a work
group. Compared with the coarse-grained parallel method, proposed by Daga
et al. [4], with a fixed number of search keys processed by a work group, our
hierarchical scheme is able to achieve a performance improvement up to 36%.
Then, on the base of this optimization on a single coupled GPU, we further
probe into B+-tree search techniques using both the CPU and the coupled GPU.
We present a co-processing pipeline search design which could hide sorting and
partial searching latencies and adopt a workload assignment method based on
real-time performance. The detailed experimental studies demonstrate that the
co-processing pipeline strategy provides a throughput 40% higher than our single
GPU method in the best case and outperforms the coarse-grained parallel GPU
method by a factor of 1.8.

Our contributions in this work are as follows:

1. A hierarchical searching scheme is proposed to match the characteristics of
the single coupled GPU. Different strategies are adopted when searching inner
nodes and leaf nodes of B+-trees.

2. The compute power of both the CPU and the coupled GPU is utilized to
improve the performance of B+-tree searches.
(a) A pipeline searching algorithm is presented to keep the CPU and the

coupled GPU busy in the searching process.

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 403

(b) Suitable tasks are assigned to the CPU and the coupled GPU based on
their hardware differences and real-time performance.

3. An extensive performance evaluation is conducted under a wide range of
scenarios to verify the effectiveness of the proposed methods.

In the rest of this paper, Sect. 2 provides preliminaries of B+-trees, the cou-
pled architecture and OpenCL. Section 3 explains our optimization techniques
which contain a kind of search strategy on the single coupled GPU and a co-
processing method for the CPU and the coupled GPU on the same die. Section 4
provides the experimental results and performance analysis. Section 5 describes
the related work. We conclude our work in Sect. 6.

2 Preliminaries

In this section, we first describe the B+-tree index structure. Then, we introduce
the main features of the coupled CPU-GPU architecture. Finally, we describe
the OpenCL programming standard, which is uesd in our implementations.

2.1 B+-Tree

The B+-tree is a self-balance data structure, which is widely used as an index
in data warehouses, database management systems [14], file systems [12], etc. In
B+-trees all keys and values are stored in the last level leaf nodes. Inner nodes
above leaf nodes store keys and references to the next level nodes. The maximal
number of references stored in the inner node is called fanout. An inner node
is able to store up to fanout child references, and fanout − 1 keys to identify
child references. A leaf node can store fanout − 1 keys and their corresponding
values. Some space left in a leaf node stores the reference to the next leaf node,
which forms a linked list to allow range queries.

Searching a key in B+-trees starts from the root and traverses the tree until
a leaf node is reached. In an inner node, the process needs to compare stored
keys with the key to be searched. If the maximal key which is not bigger than
the key to be searched is found, the corresponding child reference to the next
level node is obtained. When searching a leaf node, keys stored in the node are
also compared with the search key and the corresponding value is fetched if keys
are equal.

2.2 Coupled CPU-GPU Architectures

The coupled CPU and GPU architecture places a multi-core CPU and a GPU on
one same chip, which forms Heterogeneous System Architecture and becomes
increasingly common in current processors. AMD first released its coupled archi-
tecture named accelerated processing units (APUs). Intel also introduced the
integrated GPU into the CPU since Ivy Bridge and Haswell processors. On this
architecture, coupled GPUs are less powerful than discrete GPUs, but it shares

404 H. Huang and H. Luan

the last level cache and physical system memory with the CPU. This feature
makes the GPU not need to wait for data transfer by PCIe bus which occurs
for the discrete GPU. Moreover, the emergence of the shared virtual memory
(SVM) technology allows sharing virtual address space between the CPU and
the coupled GPU, which makes it much easier to effectively leverage the power
of both CPUs and coupled GPUs.

2.3 OpenCL

The OpenCL [17] is an open standard for parallel programming on heteroge-
neous platforms, proposed by Khronos Group. The OpenCL describes a frame-
work that allows applications to use devices across various compute platforms
by the same portable C-like language. Many hardware vendors provide drivers
and programming tools to support OpenCL implementations. We used C and
OpenCL in our study. Processors on the same chip can share the global memory
in the same context in OpenCL program model, which helps us to implement
the co-processing method in integrated CPU-GPU architectures.

3 Optimization Techniques

In this section, we first optimize the B+-tree search operation on the single
coupled GPU by proposing a hierarchical scheme which distinguishes inner nodes
and leaf nodes of B+-trees. Then, in order to further improve B+-tree search
performance in the coupled architecture, we present a pipeline searching method
to use the computing power of both processors.

3.1 Hierarchical Searching on the Coupled GPU

We first analyze the GPU parallel execution behavior. On GPUs, kernel instances
are organized into work groups, and each work group contains the same number
of work items. A work group is assigned to run on a single compute unit. All
the work items in a work group are executed in a single instruction multiple
thread (SIMT) manner. It is efficient for work items to access coalesced memory
since the data may be fetched in one operation. In addition, if there exist branch
instructions in a work group, that is, work items execute different branches, some
work items will wait until the others finish their jobs. When these work items
begin to work, the others stop again. Thus, keeping all work items executing the
same instructions helps to efficiently utilize the parallel ability of GPUs.

In order to match with this feature, previous studies [4,18] proposed the solu-
tion way that one key is searched by one or several work items in a work group.
If the data was not ordered, there would exist a number of divergent branches
as well as irregular memory accesses, which are the main factors damaging the
overall performance. Thus keys should be sorted in advance of the searching
phase to increase the probability that keys in the charge of one work group are
located in fewer nodes. However, in B+-trees, the key range in a node of different

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 405

Fig. 1. In the root, stored keys that are not bigger than keys to be searched are located
at the first and second positions. Work items in the work group only need to access two
keys at most to fetch the child references to go to the next level. The total step is 2.

Fig. 2. In the leaf, ordered search keys are located at two leaf nodes with different
positions. The work group visits two different leaf nodes. Each work item had different
searching steps. The total step of is 4 and all the other work items should wait for the
fourth work item to finish.

levels is not the same. The number of nodes in the lower level becomes larger.
Sorted keys belonging to a work group may also be scattered among multiple
nodes, which happens more often for lower level nodes, especially leaf nodes.
Thus, it may bring more benefits to distinguish inner nodes and leaf nodes in
the searching design.

Figures 1 and 2 show an example where a work group with 4 work items
searches 4 sorted keys: 1, 3, 6 and 8 in a two-level B+-tree. Every work item
in the work group is responsible for one key. As Fig. 1 shows, in the root, the
total step number of this work group is two, because at most work items need to
access the first and second keys to fetch child references. But, in the leaf nodes
in Fig. 2, search keys are distributed among different nodes. The work group
needs to visit two leaf nodes and each work item in the work group has different
steps to visit the keys. Until the work item has found the key 8, the whole work
group finishes its job. During this period, the other three work items in the same
work group need to wait for the fourth work item to find its key. Even if search
keys have been sorted, there still exist irregular memory accesses and work item
divergence problems.

We present a hierarchical searching method to optimize the search perfor-
mance. We separate the B+-tree into two parts, inner nodes and leaf notes. In
an inner node, one work item is in charge of searching one key, and the work
group size is set to the maximal number of keys that could be stored in a node,
i.e., fanout−1. This will lead to the high parallelism in the node. Because there

406 H. Huang and H. Luan

are relative fewer inner nodes compared to leaf nodes, only one or a few nodes
will be involved in the searching process, which means less memory accesses and
divergence. Looking for more keys in a node by a work group helps to increase
the overall throughput. In a leaf node, the number of keys to be searched in one
work group is reduced and several work items are used to find the same search
key. The reason is that we want to decrease the possibility that one work group
will visit multiple different leaf nodes. In the work group, work items are sep-
arated into several subgroups. When work items in each subgroup process one
key, they compare different keys stored at the corresponding positions in the leaf
node with the search key simultaneously, which could also utilize the parallelism
of GPUs.

Our method takes into consideration the features of both GPUs and B+-
trees. A fixed number of keys to be searched in a work group is not suitable for
nodes on different levels. In our experiments, we assign four work items to look
for one key in leaf nodes.

3.2 Co-processing on Coupled CPU-GPU Architectures

To further optimize B+-tree searches on coupled CPU-GPU architectures, we
propose a co-processing pipeline method to make use of the CPU and the inte-
grated GPU. The principle is to keep both processors always busy and produce
a higher throughput.

Fig. 3. The radix sorting time on CPU and GPU with various data sizes.

CPU-GPU Co-processing Pipeline. The architectures of CPUs and coupled
GPUs are different. GPUs have more computing cores compared with CPUs,
which can hide the memory latency by setting a wide range of work group size.
While CPUs have relatively large caches, and are more suitable on programs

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 407

with good locality [20]. Thus, it is necessary to carefully consider and assign
appropriate tasks for CPUs and the coupled GPUs to make full use of their
advantages.

Figure 3 shows the performance comparison of radix sorting on CPUs and
coupled GPUs with different data sizes. Our implementation is based on an
OpenCL radix-sort provided by Helluy et al. [10]. It could be found that the
gap between the sorting times on the CPU and the coupled GPU is huge, and
the CPU is much faster than the coupled GPU with all data sizes. So, we assign
the task to sort the search keys using radix sorting to the CPU. As for as the
GPU, the hierarchical searching method described in the previous subsection is
exploited to retrieve keys. This forms an initial co-processing pipeline way, in
which all the search keys are divided into batches. The CPU sorts the first batch
of keys. Then the coupled GPU begins to search keys in the batch in the B+-
tree, and in the meantime the CPU starts to sort the second batch prepared for
the GPU. Within OpenCL programming standard, the CPU and the coupled
GPU have their own task queues, and processors do their individual jobs in
separate ways. We use clWaitForEvent() to synchronize the sort task and the
search task on the CPU and the GPU in a batch size. Data do not need to be
transferred from the CPU to the GPU with PCIe bus, which reduces the delay
of data transmission. Therefore, the sorting time occupied by the CPU can be
efficiently hidden by the GPU searching phase.

Fig. 4. The time breakdown on CPU and GPU with different batch sizes, when the
tree size is fixed at 226. The total time is divided into the sorting time and the search
time.

We further explore whether there is optimization room in the above simple
pipeline strategy. We compare the performance of a single CPU and a coupled
GPU when each processor sorts and searches the same keys. The results are
shown in Fig. 4. It could be found that the sorting time required by the CPU is
much less than the searching time occupied by the CPU or the coupled GPU.

408 H. Huang and H. Luan

Fig. 5. The co-processing pipeline method.

Thus, when the CPU finishes the sorting task, it becomes idle to wait for the
GPU. The performance could be increased further if the CPU always stays busy.
Therefore, we propose a novel pipeline algorithm where part of the searching task
is also distributed to the CPU besides the sorting task. A work item is responsible
for searching one key on the CPU since its execution model is not similar to that
of the GPU with the SIMT paradigm. The pipeline process is illustrated in Fig. 5.
In most cases, the sorting and searching operations performed by the CPU are
overlapped with the searching task belonging to the GPU, which will improve
the overall query efficiency.

Algorithm 1. The co-processing pipeline algorithm
Input: Batch0,1,...,N−1

1: sort(CPU, Batch0);
2: collect the running information
3: for i = 0 to N − 2 do
4: compute workload ratios to get wgpu and wcpu

5: enqueue(search, GPU, wgpu)
6: enqueue(search, CPU, wcpu)
7: enqueue(sort, CPU, Batchi+1)
8: clWaitForEvent(GPU)
9: clWaitForEvent(CPU)

10: compute workload ratios to get wgpu and wcpu

11: enqueue(search, GPU, wgpu)
12: enqueue(search, CPU, wcpu)
13: clWaitForEvent(GPU)
14: clWaitForEvent(CPU)

Algorithm 1 gives the implementation framework. In the algorithm, we first
sort a batch of keys by the CPU (Line 1), and in the meantime start to collect
the running times (Line 2) which will be explained in the next subsection. Then
the algorithm iterates through N − 1 batches (Line 3), where the parameter

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 409

N refers to the number of batches needed to be searched. For each batch, the
workload assigned to the GPU wgpu and the CPU wcpu is obtained (Line 4) and
the searching tasks are enqueued into the GPU and the CPU (Line 5 and Line
6). The sorting task for the next batch is also enqueued into the CPU (Line
7). In order to synchronize CPU tasks and GPU tasks, clWaitForEvent(GPU)
and clWaitForEvent(CPU) are used sequentially in the end of each loop (Line
8 and Line 9). Lines 10–14 process the last batch of keys and finish the searching
algorithm.

Workload Assignment Based on Real-Time Performance. In order to
assign appropriate workload between CPUs and coupled GPUs, we adopt a work-
load balance method based on real-time performance. Batches are further divided
into blocks. The first batch and the first few blocks are processed respectively by
the single CPU and GPU in order to collect the running time of the CPU sorting,
CPU searching and GPU searching. Based on the information, we design a dis-
tribution model to partition the workload between processors. The distribution
model is described as follows.

workloadGPU =min

(
searchCPU

searchGPU+searchCPU
∗
(
total +

test block

searchCPU
∗sort

)
, total

)

workloadCPU = total − workloadGPU

total: the whole searching workload to be assigned
workloadGPU/CPU : the workload ratio assigned to GPU/CPU.
searchGPU/CPU : the average GPU/CPU searching time for one block
test block: the block size
sort: the CPU sorting time for one batch

During the phase of information collection, the CPU and the coupled GPU
deal with a few small blocks in parallel to simulate the real running mode and
save the profiling cost. The statistics are used to determine the distribution of
the left workload. By use of the real-time performance, this method could avoid
the estimated error caused by the data distribution, data sizes and hardware
processors. In our study, we divide a batch into 128 blocks and use four blocks
to measure the execution time. The effects will be verified by testing ratios
ranging from 0% to 100% in the experiments.

4 Performance Evaluation

In this section, we first explain the experiment environment. Then we show the
performance of the hierarchical searching method compared with the coarse-
grained parallelism searching method. Lastly, the overall evaluation related to
the co-processing pipeline strategy is conducted.

410 H. Huang and H. Luan

4.1 Experimental Setup

Intel i7-8700, an Intel Coffee Lake series processor, is used in our experiments.
The CPU on this architecture contains 6 cores, running at a base clock of 3.2
GHz. A coupled GPU named Intel UHD Graphics 630 is supported, which has
24 execution units and runs at a base clock of 350 MHz. The machine we used
for our experiments is equipped with a 16 GB DDR4 memory and using 64-bit
Windows 10 as the operating system. An overview of hardware parameters is
presented in Table 1. Our codes were implemented by C and OpenCL 2.0 which
supports share virtual memory. All the methods are executed 3 times and average
values are used.

In the experiments, we use 32-bit integer keys and values. All the data is
generated by the Mersenne Twister pseudo-random number generator using the
uniform distribution [4]. We create B+-trees with different sizes and the number
of keys in trees is 223, 224, 225 and 226. B+-trees are built by the CPU in the
memory before the searching process. The keys to be searched are divided into
eight batches and every batch size is varied and set to 218, 219, 220 and 221.
Nodes in B+-trees contain 32 keys at most.

Table 1. Hardware parameters

Processor Intel i7-8700

Type CPU GPU

Name N/A Intel UHD Graphics 630

Basic units Core EU

Number of units 6 24

Base Clock Rate 3.2 GHz 350 MHz

TDP 65 W

LLC 12 MB

4.2 Performance of the Hierarchical Searching Scheme

Figure 6 and Fig. 7 show the performance of our hierarchical searching method
on a single coupled GPU when batch sizes and tree sizes are varied. The baseline
approach uses a coarse-grained parallelism searching strategy, in which leaf nodes
are treated as inner nodes and a work item searches one key. The keys to be
searched are sorted in advance, while the sorting time is not included in the
experimental results since two methods could use the same sorting strategy.

We can find that the hierarchical method always outperforms the coarse-
grained parallelism searching with various batch sizes and tree sizes. Both meth-
ods occupy more time if the batch size or the tree size is increased. In Fig. 6
where the tree size is set to 226, when the batch size is increased to 221, the

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 411

Fig. 6. The searching time with different
search batch sizes, when the tree size is
fixed at 226.

Fig. 7. The searching time with different
tree sizes, when the search batch size is
fixed at 221.

hierarchical searching method runs 27% faster than the baseline method. There
also exists 7% performance improvement if the batch size is 218. The advantage
of our strategy is more obvious on larger batches. When the batch size is fixed
at 221 and the tree size is increased from 223 to 226 as shown in Fig. 7, the
hierarchical searching scheme can achieve 23%–36% performance improvement
compared with the coarse-grained parallelism searching method.

The total searching time is broken down into two parts: the inner node search-
ing time and the leaf node searching time. From two figures, we can find that
accessing leaf nodes is more time-consuming, which is about 2X–3X as fast as
traversing inner nodes. It is meaningful to carefully design the searching scheme
in the leaf level. The experimental results also demonstrate that the overall per-
formance benefits from the special treatment of leaf nodes in our method.

4.3 Performance of the Co-processing Pipeline Searching

Figure 8 and Fig. 9 show the throughput of four searching methods with the tree
size set at 226 and the batch size 221 respectively. We use “Pipeline CPU sort
CPU-GPU search” to represent our co-processing pipeline method. “Pipeline
CPU sort GPU search” means the initial pipeline strategy that we take into
account. “CPU sort GPU Hierarchical search” and “CPU sort CPU search”
denote two non-pipeline solutions. The former refers to the proposed hierarchical
searching strategy on the coupled GPU plus the CPU sorting operation, while
the latter is the complete CPU version for comparison.

On the whole, our novel co-processing pipeline searching algorithm provides
the highest throughput in all cases. This pipeline scheme can hide the sorting and
partial searching time contributed by the CPU, thus an expected performance
improvement is achieved. The initial pipeline method where the CPU sorting
is overlapped with the GPU searching outperforms the other two non-pipeline

412 H. Huang and H. Luan

Fig. 8. The throughput with different
search batch sizes, when the tree size is
fixed at 226.

Fig. 9. The throughput with different
tree sizes, when the search batch size is
fixed at 221.

approaches. When the tree size is set to 223 and the batch size 221, the optimized
pipeline scheme could complete 141.4 million queries per second (MQPS) and
127 MQPS for the initial pipeline solution. Our hierarchical searching method on
a coupled GPU shows better performance than the CPU algorithm, while the
pipeline method further enhances the performance by 20%–40%. If compared
with the baseline approach which has been studied in the previous subsection,
our optimized pipeline method could increase the throughput by a factor of
1.8. All the four methods can introduce a larger throughput when the batch
becomes bigger in size. Although it needs more time to finish the searching
operation for larger batches, the overall throughput is increased because more
keys are processed. The throughput is better when the tree size is small, which
is reasonable since a larger tree means more nodes are involved leading to more
memory accesses.

We examine the performance of the co-processing pipeline searching method
when the GPU workload ratio α is varied from 0% to 100% and the remaining
workload radio (1 − α) is assigned to the CPU. From Fig. 10 and Fig. 11, two
conclusions could be drawn. First, the optimal workload ratio is not fixed, which
should be determined dynamically. The optimal ratio α falls between 0.6 and 0.8,
that is, the coupled GPU should be assigned more tasks in terms of searching
jobs. Second, the used ratios which are calculated based on the real-time per-
formance are close to the optimal ones and the error is below 5%, which shows
that the workload distribution strategy is efficient and works well with different
tree sizes and batch sizes.

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 413

Fig. 10. The searching performance
under various GPU workload ratios with
different batch sizes, when the tree size is
fixed at 226.

Fig. 11. The searching performance
under various GPU workload ratios with
different tree sizes, when the batch size
is fixed at 221.

5 Related Work

There are many research studies focusing on multi-core CPUs, discrete GPUs or
both processors. Sewall et al. [15] presented an architecture-friendly latch-free
B+-tree called PALM. Multiple concurrent queries and modifies in the multi-core
CPU were performed by using the bulk synchronous parallel model. Fix et al. [6]
used CUDA in a discrete GPU to speed up braided B+-trees searches with GPU
parallelism. Kaczmarski [11] created a B+-tree on the discrete GPU which could
benefit from GPU compute power to search and insert keys quickly. Yan et al.
[18] aimed to bridge the gap between B+-trees and discrete GPUs. They designed
a high-performance B+-tree structure called Harmonia which separates the node
into key region and child region. The key region stores nodes in a breadth-first
order, while the child region stores the first child index in the prefix-sum array.
Awad et al. [1] considered the implementation of high-performance concurrent
insertions, searches and deletions under the traditional B-tree data structure.
They designed a GPU B-Tree for batch search and update performance with a
warp cooperative work-sharing strategy. Shahvarani et al. [16] proposed HB+-
tree to jointly leverage the heterogeneous computing power of the CPU and the
discrete GPU and utilize both of their memories to achieve a higher bandwidth
over a high volumes of data.

There have existed some studies on the coupled CPU-GPU architecture or
integrated GPUs. Luan et al. [13] conducted an extensive experimental study
to evaluate analytical queries on CPUs and coupled GPUs. Hash joins [8,9],
MapReduce programs [2] and breadth-first searches [5] were studied to leverage

414 H. Huang and H. Luan

the power on integrated architectures. Daga et al. [4] presented a B+-tree struc-
ture in the heterogeneous platform APU. They implemented coarse-grained par-
allel searches by sorting keys before assigning them to work-items on the coupled
GPU, which we used as our baseline method in this paper. Besides an optimized
single GPU algorithm, we proposed a co-processing method to make the most
use of the CPU and the coupled GPU.

6 Conclusion

The coupled GPU can be used to improve the searching performance of B+-trees.
But characteristics of both GPUs and B+-trees need to be considered carefully.
We found that the number of leaf nodes in B+-trees is larger than that of inner
nodes involved in searches and accessing leaf nodes occupies more time than
traversing inner nodes. Thus, we proposed a hierarchical searching scheme to
distinguish inner and leaf nodes. In inner nodes, a work group is responsible for
a relatively large number of keys to leverage the advantage of the instruction
parallelism in GPUs, while in leaf nodes, the number of keys in a work group
is reduced to lower irregular memory accesses and divergent branches in a work
group. Our hierarchical scheme is able to achieve a performance improvement
up to 36% compared with the method with a fixed number of search keys in all
levels.

Furthermore, we investigated how to use the computing resources of both
the CPU and the coupled GPU to search keys in B+-trees. A co-processing
pipeline method was presented which assigns the sorting task to the CPU and
the searching task to the CPU and the coupled GPU. Real-time performance
including the sorting time and the searching time was utilized to distribute
the workload and a distribution model was proposed to calculate the workload
ratios belonging to the processors. A performance evaluation was conducted to
demonstrate the effectiveness of the optimization techniques. In the future, we
would like to accelerate more operations on B+-trees like insertions, updates and
deletions.

References

1. Awad, M.A., Ashkiani, S., Johnson, R., Farach-Colton, M., Owens, J.D.: Engineer-
ing a high-performance GPU B-Tree. In: Proceedings of the 24th Symposium on
Principles and Practice of Parallel Programming, pp. 145–157. ACM (2019)

2. Chen, L., Huo, X., Agrawal, G.: Accelerating mapreduce on a coupled CPU-GPU
architecture. In: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 25:1–25:11. IEEE (2012)

3. Comer, D.: The ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979)
4. Daga, M., Nutter, M.: Exploiting coarse-grained parallelism in B+ tree searches

on an APU. In: 2012 SC Companion: High Performance Computing, Networking
Storage and Analysis, pp. 240–247. IEEE (2012)

Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures 415

5. Daga, M., Nutter, M., Meswani, M.: Efficient breadth-first search on a heteroge-
neous processor. In: 2014 IEEE International Conference on Big Data, pp. 373–382.
IEEE (2015)

6. Fix, J., Wilkes, A., Skadron, K.: Accelerating braided B+ tree searches on a GPU
with CUDA. In: Proceedings of the 2nd Workshop on Applications for Multi and
Many Core Processors: Analysis, Implementation, and Performance (2011)

7. Graefe, G., Kuno, H.: Modern B-tree techniques. In: 2011 IEEE 27th International
Conference on Data Engineering, pp. 1370–1373. IEEE (2011)

8. He, J., Lu, M., He, B.: Revisiting co-processing for hash joins on the coupled
CPU-GPU architecture. Proc. VLDB Endow. 6(10), 889–900 (2013)

9. He, J., Zhang, S., He, B.: In-cache query co-processing on coupled CPU-GPU
architectures. Proc. VLDB Endow. 8(4), 329–340 (2014)

10. Helluy, P.: A portable implementation of the radix sort algorithm in OpenCL
(2011). https://hal.archives-ouvertes.fr/hal-00596730

11. Kaczmarski, K.: Experimental B+-tree for GPU. In: Proceedings II of the 15th
East-European Conference on Advances in Databases and Information Systems,
pp. 232–241 (2011)

12. Levandoski, J.J., Lomet, D.B., Sengupta, S.: The Bw-tree: a B-tree for new hard-
ware platforms. In: 2013 IEEE 29th International Conference on Data Engineering,
pp. 302–313. IEEE (2013)

13. Luan, H., Chang, L.: An evaluation of analytical queries on CPUs and coupled
GPUs. Concurr. Comput.: Pract. Exp. 29(5), e3982 (2017)

14. Ramakrishnan, R., Gehrke, J.: Database Management Systems, 3rd edn. McGraw-
Hill, London (2002)

15. Sewall, J., Chhugani, J., Kim, C., Satish, N., Dubey, P.: PALM: parallel
architecture-friendly latch-free modifications to B+ trees on many-core processors.
Proc. VLDB Endow. 4(11), 795–806 (2011)

16. Shahvarani, A., Jacobsen, H.A.: A hybrid B+-tree as solution for in-memory index-
ing on CPU-GPU heterogeneous computing platforms. In: Proceedings of the 2016
International Conference on Management of Data, pp. 1523–1538. ACM (2016)

17. Stone, J.E., Gohara, D., Shi, G.: OpenCL: a parallel programming standard for
heterogeneous computing systems. Comput. Sci. Eng. 12(3), 66–73 (2010)

18. Yan, Z., Lin, Y., Peng, L., Zhang, W.: Harmonia: a high throughput B+tree for
GPUs. In: Proceedings of the 24th Symposium on Principles and Practice of Par-
allel Programming, pp. 133–144. ACM (2019)

19. Yuan, Y., Lee, R., Zhang, X.: The yin and yang of processing data warehousing
queries on GPU devices. Proc. VLDB Endow. 6(10), 817–828 (2013)

20. Zhang, F., Zhai, J., He, B., Zhang, S., Chen, W.: Understanding co-running behav-
iors on integrated CPU/GPU architectures. IEEE Trans. Parallel Distrib. Syst.
28(3), 905–918 (2017)

https://hal.archives-ouvertes.fr/hal-00596730

OCVM: Optimizing the Isolation
of Virtual Machines with Open-Channel

SSDs

Zhe Liu, Xiaojian Liao, Fei Li, Zhe Yang, Youyou Lu, and Jiwu Shu(B)

Tsinghua University, Beijing, China
shujw@tsinghua.edu.cn

Abstract. A longstanding goal of virtual machines (VMs) isolation run-
ning on commercial Solid State Drives (SSDs) is to avoid performance
degradation which could be quite severe in certain cases. However, it has
been a challenge due to the limitations of the traditional flash transla-
tion layer (FTL). We propose OCVM, a novel storage stack that opti-
mizes the isolation of VMs in a multiple VMs environment. By providing
channel-granular and block-granular isolation for VMs, OCVM signifi-
cantly reduces storage internal resource conflicts and eases the pressure
of garbage collection (GC). To achieve good VM isolation as well as hard-
ware utilization, OCVM applies a dynamic allocation mechanism for the
underlying storage resources of the open-channel SSD (OCSSD). The
evaluation results demonstrate that the average execution time of data-
intensive applications on OCVM shortens by 28%, compared to those on
a baseline system. In addition, OCVM achieves better GC efficiency by
reducing the frequency of data migration.

Keywords: Open-Channel SSD · Isolation · Virtual machine · Flash
channel · Flash memory

1 Introduction

The virtual machine (VM) has been the infrastructure of cloud service for recent
years. Since it provides CPU and memory isolation for multiple tenants, it is used
to increase the computing utilization by sharing resources. Nevertheless, it does
not efficiently isolate underlying storage due to the complex management of the
modern SSD’s controller [1]. However, there are several issues to achieve strong
isolation and efficient resource sharing at the same time when multiple VMs
share the same SSD.

This work is supported by Special Topics of Major Scientific and Technological Projects
in Sichuan Province (Grant No. 2018GZDZX0049), Research and Development Plan in
Key field of Guangdong Province (Grant No. 2018B010109002), the National Natural
Science Foundation of China (Grant No. 61832011), and Research Program of ZTE
Corporation Limited (Grant No. 20182002008).

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 416–432, 2020.
https://doi.org/10.1007/978-3-030-60245-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_29

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 417

Firstly, multiple VMs introduce noisy neighbor problems. To enhance per-
formance, SSDs exploit internal parallelism [2,3]. However, VMs cannot directly
leverage flash parallelism for isolation, because FTLs hide the parallelism.
Since multiple VMs and host share one SSD, the interference among VMs I/O
executions introduces many storage recourse conflicts [1,4]. For example, the
bandwidth-aggressive VMs may occupy more flash channels and block the I/O
requests of neighbors. Since in flash memory the write latency is about several
times of the read latency, the latency-sensitive VMs read performance would
suffer from the bandwidth-aggressive VMs writes.

Secondly, the garbage collection (GC) of SSD impedes the I/O requests of
VMs. Due to the no-overwrite property of flash memory, SSD leverages garbage
collection operations to reclaim free space for incoming data pages. Unfortu-
nately, because of the application-unawareness of commercial SSDs in the mul-
tiple VMs environment [5], data pages (e.g., 4 KB) of different VMs requests
may belong to the same flash block (e.g., 2 MB). Since it is necessary to migrate
the valid data before erasing the flash memory block, the flash memory blocks
which involve data pages of different VMs’ requests slow down the GC, and
further impede the following VMs’ requests.

Thirdly, strong isolation contradicts with the demands of high resource uti-
lization. A straightforward approach to achieve high isolation is running VMs
atop dedicated flash channels, as the partition method proposed by Huang et
al. [1] and Kwon et al. [4]. However, these approaches run at a sacrifice of flex-
ibility and resource utilization. As flexibility and resource utilization are vital
considerations of the cloud environment, the cloud storage stack should achieve
high resource utilization while providing tenant-desired isolation.

Today, a new architecture of SSD, i.e., the Open-Channel SSD (OCSSD), has
been introduced to bridge the semantic gap between the host and flash devices. It
exports the device geometry and further allows the host side software to directly
manage the storage for better performance [1,6].

To address the aforementioned challenges, we propose OCVM, an OCSSD-
based VM storage stack for multi-VMs systems. The key idea of OCVM is
combining the channel-granular and block-granular isolation, and dynamically
adjusting storage resource at runtime.

Specifically, OCVM divides the data space into multiple regions. Each VM
has a private set of regions and a set of pool regions is shared by throughput-
intensive VMs. The channel-granular isolation assigns a set of dedicated flash
channels to each private set of regions under the “pay-as-you-go” [7] model
in the cloud. VMs should specify the desired bandwidth. The block-granular
isolation groups the data blocks of a VM to dedicated flash memory blocks.
OCVM leverages the hybrid isolation scheme to allocate private sets of channels
at startup and dynamically re-balances the shared flash channels at runtime.

We have implemented the prototype with a set of modifications to F2FS [8]
in a real OCSSD. We demonstrate the effectiveness of our proposed mecha-
nism through a variety of workloads against the baseline (i.e., Qemu [9] atop
F2FS [8]) and a recently proposed file system designed for OCSSD (i.e., Qemu

418 Z. Liu et al.

atop ParaFS [6]). The evaluation results demonstrate that data-intensive appli-
cations on OCVM exhibit 28% shorter execution time compared to the baseline.
The multiple VMs achieve much more stable performance on OCVM and OCVM
improves endurance and utilization of the SSD.

The rest of the paper is organized as follows. Section 2 introduces the back-
ground and motivation of the research work. Section 3 describes the design of
OCVM. Section 4 presents our evaluation results. Section 5 discusses related
work. Section 6 concludes this paper.

2 Background

Software

Hardware

File System Cache
File System

FTL

Flash Chip Flash Chip

SSD

···
Channel Channel

Read/Write

(a) Traditional SSD Architecture

Software

Hardware

File System Cache
File System

Flash Chip Flash Chip···
Channel Channel

Read/Write /Erase

(b) Open-Channel SSD Architecture

Open-Channel SSD Driver

Raw flash device

Fig. 1. The difference between traditional SSD architecture and Open-Channel SSD
architecture. [6,10]

Open-Channel SSD Architecture. Commercial SSDs usually use FTL [11]
to handle data accesses [12], as Fig. 1(a) shows. Since the flash chip, which con-
tains many flash memory blocks, has the ability to execute I/O operations inde-
pendently, FTL implements multi-channel technology to increase the data trans-
mission speed [2]. Although the file system could read and write data using the
interfaces provided by FTL, the location of the data in the underlying flash device
is determined by FTL. What’s more. since flash blocks must be erased before
they can be reused for new data [13], FTL applies out-place-update operations.
Because of the semantic gap between the file system and the SSD, data with
different update frequencies may be stored in the same flash block. The frag-
mented underlying flash media cause write amplification when the FTL tries to
reclaim free space to store new data. Although researchers have improved data
location performance by modifying the FTL [5,14], it does not have desired VM
compatibility.

OCSSD architecture [10,15] is a recently proposed architecture that software
directly manages underlying flash memory, as shown in Fig. 1(b). It redesigns
the internal management mechanism of the SSD. The OCSSD driver provides
read/write/erase interfaces and the device geometry information to the host-
side systems, such as file systems, database systems. The file system can flexibly

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 419

control the data access process and directly manage the data layout of the under-
lying flash device. On the basis of it, we propose OCVM to optimize the isolation
performance when VMs share the same OCSSD.

Storage Isolation of VMs. VMs require storage isolation to guarantee the
storage service level agreements (SLAs) in the multiple VMs environment [16].
However, the commercial SSDs could not provide excellent storage isolation for
VMs. Because of the standard block device interface and internal mechanism
of the commercial SSDs, the semantics of VMs isolation in the host file system
cannot be directly conveyed to SSDs [6]. Since FTLs manage the data layout and
does not distinguish I/O requests from different VMs, different VMs may access
the same physical storage resource (e.g. flash channel) in the meantime, which
causes I/O collisions on the physical media and degrades the I/O performance
of VMs. The interference among multiple VMs in a single SSD makes the VMs
I/O operation latencies unpredictable. Furthermore, If the GC is triggered by
a VM, it causes more severe degradation to the storage performance of other
VMs [17]. These issues need to be addressed.

Under the management of VM monitor (e.g. KVM [18]), the data accesses
of VMs can be converted to the I/O requests of VM image files by the VM
emulator. Therefore, we can provide a storage isolation mechanism for VMs at
the host file system level [19].

3 Design

Device Driver
READ/WRITE/ERASE

Rm+1 RnChannel
Granular
Isolation

R0 Ri Ri+1 Rm

Open-Channel
SSD

V1 V2

···

Shared Flash Channels

C
h 0

C
h i

C
h i+

1

C
h m C
h n

Alloc. Head1
Block
Granular
Isolation

OCVM

···

VM 1 VM 2

··· ···

··· ···

···

Pool regions

Namespace

Image File I/O

···

Dynamic allocation module
of VM SSD resources

VM SSD resource usage
monitoring module

Set1 Set2

Alloc. Head2

INFO

Fig. 2. The OCVM architecture.

420 Z. Liu et al.

The OCVM Architecture. OCVM aims to improve both the storage isolation
of VMs and the utilization of SSD in the multiple VMs environment. It features
three key techniques: channel-granular isolation, block-granular isolation, and
dynamic allocation of pool resources. As shown in Fig. 2, with the geometry
information provided by the OCSSD driver, OCVM can allocate and recycle
space that aligned to the underlying flash memory device. We divide the data
space into regions that match flash channels one to one. A region consists of
many data segments. The address and size of a data segment are aligned to
a flash memory block. Each data segment contains 512 data blocks which are
aligned to the flash pages. OCVM maintains a data group for each VM which
is assigned numerous free data segments. An allocator head pointing to the VM
data group allocates free data blocks to the VM which generates write requests.

OCVM writes VM data pages in a log-structured way because of out-place-
update feature of the flash memory. Since the entire VM is encapsulated in a
VM image file, OCVM manages data allocation and I/O requests scheduling of
multiple VMs on the host file system level based on the inode information of
the VM image files. The VM SSD resource monitoring module handles the data
write of each VM, and the dynamic allocation module allocates regions to VMs.
To provide channel-granular isolation of VMs, OCVM assigns a private set of
regions (e.g. set1 or set2 in Fig. 2) for each VM to avoid the interference of VM
I/O operations. Since the internal parallelism provided by each private set of
regions is lower than that of the whole device, we reserve a set of regions as pool
regions sharing by throughput-intensive VMs to guarantee the QoS in terms of
throughput. OCVM leverages channel-granular and block-granular isolation of
VMs to reduce interference and improve data locality. According to the VMs
runtime information, OCVM can improve the utilization of storage resources
by dynamically allocating the pool resources, and meet the throughput require-
ments of VMs.

3.1 Channel-Granular Isolation

(1)Split write request

(2)Stripe data
distribute

Write RequestVM1

Block
…

Channel 0

···

0 i1 … …

Block
…

···

Block
…

···

Channel 1 Channel i

…
0 1 i

Write RequestVM2

Block
…

Channel i+1

···

0 i1 … …

Block
…

···

Block
…

···

Channel i+2 Channel 2i

…
0 1 i

Fig. 3. Two VMs writing process with channel-granular isolation.

Figure 3 shows the writing process when OCVM isolates VMs with flash chan-
nel granularity. To provide I/O isolation of VMs in the multiple VMs environ-
ment, OCVM issues I/O requests of each VM to specific flash channels in the

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 421

device. Since the flash controller connects flash chips through flash channels in
the underlying device, OCVM can better utilize the flash internal parallelism
by distributing VM I/O requests to different flash channels. Specifically, as in
Fig. 3, OCVM first splits the write requests of VMs into 4 KB pages, and then
stripes these pages over the exclusive regions allocated to VMs. Since each region
in OCVM is an abstraction of a specific physical flash channel in OCSSD. the
striped write requests of VMs are sent to a dedicated set of flash channels for
parallel execution. In this way, OCVM isolates the data access paths of VMs on
the channel-level.

The channel-granular isolation also avoids the interference caused by VMs’
valid data pages migration during garbage collection. The valid data pages of a
VM are only migrated to the flash channels allocated to the VM during garbage
collection. As a result, the valid data pages migration of VMs does not conflict
with the normal read/write operations of other VMs.

By executing I/O operations of one VM in exclusive physical flash channels,
channel-granular isolation provides stable I/O performance for VMs. Because
I/O requests that emanate from multiple VMs would not collide when reaching
the physical flash media. In this view, OCVM provides predictable delay and
bandwidth for VMs by reducing the interference of neighbors.

3.2 Block-Granular Isolation

Write RequestVM1

blockChannel 0

···

(1)Split write request

···

Write Request VM2

···

Channel n

(2)Stripe data
distribute n1 … …0 n1 … …0

··· ······block

······ ······blockblock n n

0 0

Fig. 4. The VMs writing process with block-granular isolation.

For VMs that can tolerate some interference, such as the VMs running the
non-premium cloud database offerings [1], we propose a more fine-grained VM
storage isolation mechanism based on the OCSSD architecture. As Fig. 4 shows,
when multiple VMs share flash channels, we store the data from different VMs
in separate physical flash memory blocks to isolate VMs with block granularity.

Considering that multiple VMs share multiple flash channels, to improve the
degree of internal parallelism, OCVM divides the write requests of each VM into
data pages, and then stripes them over assigned regions. As mentioned above,
OCVM writes data pages in a log-structured way. When a VM write request
is sent to a region, the VM specific allocator head allocates a free page from a

422 Z. Liu et al.

log-structured segment to the write request. Since the data segments are aligned
to the underlying flash memory blocks, the write requests from different VMs
are stored in separate flash memory blocks.

With block-granular isolation, OCVM reduces the write amplification caused
by the mixed write of VMs. In general, the data access patterns of different VMs
vary. For examples, some VMs’ workloads may be update-intensive, and others
may be read-intensive. Being unaware of the access patterns of VMs, the FTL
of commercial SSDs stores different VMs’ data in the same flash memory block
(see Fig. 5(a)), which damages the data locality.

(a)Traditional SSD (b) Flash channel isolation (c) Flash block isolation
Channel 0

···

Block 0

Block 1
···

···

Channel m

···

Block 0

Block 1
···

···
···

Channel 0
···

Block 0

Block 1
···

···

Channel m

···
Block 0

Block 1
···

···
···

Channel 0

···

Block 0

Block 1
···

···

Channel m

···

Block 0

Block 1
···

···
···

VM1 Page VM2 Page Free Page

Fig. 5. Data layout of two VMs in SSD.

The VMs data layout of traditional SSDs leads to two undesired results: on
one hand, each flash block contains a similar number of invalid data pages, which
increases the cost in selecting victim flash blocks. On the other hand, the victim
flash block contains more valid data pages that need to be migrated. If the data
update operations of a VM triggers the garbage collection, the selected victim
flash block contains valid data pages of other VMs. Since all accesses to this
victim flash block are blocked during the garbage collection process, there is a
long delay if other VMs access these data.

In contrast, as in Fig. 5(b), (c), OCVM places the data of different VMs in
separate flash memory blocks. The data pages in a flash memory block have
similar hotness. OCVM facilitates the selection of victim blocks and reduces
data migration during garbage collection, because the victim flash blocks only
contain the data pages belonging to one VM. By relieving the costs of garbage
collection and reducing the adverse impact of garbage collection triggered by
other VMs, OCVM prevents the storage performance of VMs from degradation
caused by garbage collection to some extent.

3.3 Dynamic Allocation of Pool Resources

To improve the utilization of SSD resources and meet the storage performance
requirements of throughput-intensive VMs, OCVM adopts a dynamic allocation
method for the OCSSD. OCVM reserve several regions as pool regions shared

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 423

by throughput-intensive VMs. Since a region in OCVM matches a flash channel,
there are several corresponding flash channels in flash memory as pool resources
shared by throughput-intensive VMs. To provide more stable write bandwidth
and improve the data locality, OCVM provides both channel-granular and block-
granular isolation for VMs in the pool regions.

We design a VM resource monitoring module and a dynamic allocation mod-
ule in OCVM, as Fig. 6 shows. The monitoring module monitors the amount of
data written by the throughput-intensive VMs periodically. The dynamic allo-
cation module uses the information from the monitor module to predict the
amount of data written by the VM and adjusts the pool flash channels alloca-
tion in the next monitoring period. The period length can be set according to
the characteristics of the VMs’ applications.

Open-Channel
SSD

V1 V2 Vn

···

Shared flash channels

OCVM
Dynamic allocation module

of VM SSD resources
VM SSD resource usage

monitoring module

C
h0 C
h 1

C
h 2

C
h 3

C
h 4

C
h 5

C
h 6 C
h i

C
h i

+1

Ch
n

··· C
h i

+2

C
h i

+3

VM 1
···The disk image

VM 2 VM n
The disk imageThe disk image

Fig. 6. Dynamically allocate pool resources of VMs.

Our hypothesis is then that the tenants know storage requirements in
advance. One flash channel represents a unit of SSD resources. We use Li to
denote the minimum SSD resources required by each VM, and m to indicate the
number of throughput-intensive VMs. Assume that there are n flash channels in
the OCSSD. These variables should satisfy the constraints of formula (1).

n∑

k=0

Li ≤ n (1)

If the number of flash channels is less than the minimum storage resource
requirements of all VMs, we should reduce the number of VM instances or
increase the flash memory hardware devices.

The dynamic allocation method is as follows:
1. Pre-allocate Li flash channels for each throughput-intensive VM.
2. The monitoring module records the amount of data written by each VM in a

period of time t, which we use Bt
i to denote.

Ct+1
i = Li + �(n −

m∑

k=0

Li) × Bt
i∑m

i=0 B
t
i

� (2)

424 Z. Liu et al.

3. Based on the formula (2), the dynamic allocation module allocates Ct+1
i flash

channels to the VM in the period of time t+ 1, which contain two parts: the
pre-allocated part, and the part allocated from the pool resources.

4. Repeat steps 2 and 3.

Since the proportion of data written in the whole device by a VM in a time
period represents the degree of demand for resources of this VM, OCVM first
monitors and counts the proportion of data writes of a VM in the whole device
in a time period and then allocates the same proportion of pool resources to the
VM in the next time period.

By reallocating pool resources to the VMs, which are in urgent need of
resources, OCVM improves the overall utilization of OCSSD in a more flexible
way. The pre-allocated flash channels guarantee the necessary storage service
quality of the VM. The pool resources dynamic allocation method improves the
peak throughput of VMs.

4 Evaluation

In this section, we evaluate OCVM in the multiple VMs environment to answer
the following questions:

1. What is the performance of data-intensive VMs on OCVM?
2. What are the respective benefits of the proposed optimizations in OCVM?

4.1 Experimental Setup

We prepare a real customized Open-Channel SSD in an X86 architecture server.
Table 1 lists the parameters of the VM environment. In this evaluation, we use
QEMU [9] to generate the VM image files and run the operating system of the
VM. We take advantage of KVM to accelerate VMs and choose the writethrough
cache mode to ensure data consistency.

Table 1. Important parameters of our system and device.

Host Guest

CPU Intel Xeon E5-2620 2.10 GHz QEMU 2.1.0

Main memory 16G Virtual memory 2G

Linux Kernel 2.6.32 OS Ubuntu 16.04

Open-Channel SSD

Number of flash channel 32

Host interface PCIe 2.0x8 NAND type 25 nm MLC

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 425

Tools and Workloads. We have selected 4 tools and workloads: (1) Flexible
I/O Tester (FIO v2.0.7) [20], which is a tool that does a particular type of
I/O action as specified by the user. We use FIO to simulate the different read
and write operations. We set a O DIRECT flag for all evaluations to bypass
page caches. (2) Fileserver [21], which is one of the predefined workloads in
Filebench (v1.5-alpha3), from which we can emulate the I/O behavior of the
VM which running file services. (3) ab [22], which is a tool for benchmarking
Apache HTTP server. We used ab to test the latency of accessing local web
pages when the VM runs the Apache service. (4) three workloads from the Yahoo
Cloud Serving Benchmarks (YCSB) [23]. YCSB-A, YCSB-B, and YCSB-C are
used for the evaluation. Their I/O patterns are 50%/50% read/updata, 95%/5%
read/updata, and 100% read respectively. The workloads run directly on MySQL
database in the VM system. There are 12 million records in the database. We
set the operation count of each workload to 10 thousand.

As comparison objects of OCVM, we run F2FS [8] and ParaFS [6] as the
host file system respectively. F2FS is a flash friendly log-structure file system
that requires the support of FTL. ParaFS is a host file system based on OCSSD
architecture, which exploits internal parallelism to improve performance.

YCSB-A YCSB-B YCSB-C
0

20
40
60
80

100
F2FS-VM ParaFS-VM OCVM

Ex
ec

ut
io

n
Ti

m
e

(s
)

(a) Execution time of YCSB workloads.

YCSB-A YCSB-B YCSB-C
0.0
0.2
0.4
0.6
0.8
1.0
F2FS-VM ParaFS-VM OCVM

Th
ro

ug
hp

ut
N

or
m

al
iz

ed

(b) The throughput-intensive VM’s write
throughput when VMs running together.

Fig. 7. Overall performance analysis.

4.2 Overall Performance

In this section, we test the overall performance of VMs on OCVM. In our evalua-
tions, we co-run a data-intensive VM and a throughput-intensive VM together to
simulate a real-world multiple VMs environment. We start two VMs on OCSSD,
F2FS, ParaFS, respectively. VM1 is a data-intensive VM that runs the YCSB
workloads, and VM2 is a throughput-intensive VM that uses FIO to emulate
bursty writes. On OCVM, we pre-allocate 13 flash channels for each VM, and
the rest 6 flash channels are as pool resources sharing by throughput-intensive
VMs. Figure 7(a) shows the execution time by co-running YCSB workloads with
bursty writes in VM2. Compared to the execution times on F2FS, OCVM short-
ens the execution times of YCSB-A, YCSB-B, and YCSB-C by 35%, 33%, and

426 Z. Liu et al.

18%, respectively. Since write requests from VM2 are sent to every flash chan-
nel in F2FS and ParaFS, these requests compete with the requests of YCSB
workloads and degrade the performance. Since OCVM allocates I/O requests
from different VMs to different flash channels for execution, which avoids inter-
nal resource conflicts, severe performance degradation of VM1 on OCVM is not
occurring.

Even though the number of channels that VM2 could use on OCVM would be
lower than that of F2FS, the write throughput of VM2 show negligible difference
(see Fig. 7(b)). It is because VM2 could use the pool resources, and VM2’s writes
can be buffered by the host-side memory.

4.3 The Impact of Channel-Granular Isolation on VMs

Eliminating Disturbing Neighbors. We first perform the evaluation by the
scenario of Facebook-like workloads [24] (sustained reads with bursty writes). We
enable FIO applications in three VMs and issue sustained random reads in VM1.
To show the level of I/O interference between VMs, we enable bursty writes in
the other two VMs for every 30 s. Figure 8 shows the level of I/O determinism
in terms of random read latency. Compared with the F2FS, OCVM makes the
random read latency in VM1 more stable. As OCVM partitions the underlying
flash channels for different VMs, it avoids the I/O conflicts of VMs by isolating
the storage paths of different VMs and protect read-intensive VM from the
interference of neighbor’s bursty writes.

0 20 40 60 80 100
200
400
600
800

1000
1200

VM 2

Time(s)

F2FS-VM OCVM

Writes in

Writes in
VM 2&3

R
ea

d
La

te
nc

y(
us

)

Fig. 8. Read latency with bursty writes.

0
1
2
3
4
5

Fig. 9. Latency of Apache service.

Then, we test the quality of service improvement when the VM runs read-
latency sensitive services. We run the Apache service in VM1 and the fileserver
service in VM2. Figure 9 shows the time it takes the Apache service to read
a local web page when the two services are co-running. Compared with F2FS
and ParaFS, OCVM ensures that the Apache service is not disturbed by the
applications of the other VMs, thereby providing better storage isolation for
VMs. We also observed similar experimental results when using FIO to issue
heavy writes in VM2.

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 427

Isolation Effect of VM Image File I/O Requests. We compare OCVM
with F2FS and ParaFS to test the read-write interference of two VM image files
on the host file system level. We store two VM image files on OCSSD. Each of
them uses half of the flash channels of OCSSD on OCVM, respectively. We use
FIO to read the VM1 image file and use another FIO to write the VM2 image
file in the meantime.

4K 16K 64K 256K 1M
0.0
0.1
0.2
0.3
0.4
0.5
0.6

Th
ro

ug
hp

ut
Lo

ss

F2FS-VM ParaFS-VM OCVM

(a) Random write throughput loss.

4K 16K 64K 256K 1M
0.0
0.2
0.4
0.6
0.8

Th
ro

ug
hp

ut
Lo

ss

F2FS-VM ParaFS-VM OCVM

(b) Random read throughput loss.

Fig. 10. The I/O throughput loss when writing to the VM2 image file under heavy load.
(Throughput Loss = 1− Throughputt/Throughputa, Throughputt is the throughput
when running together, and Throughputa is the throughput when running alone. The
x-axis coordinates are different random read block sizes.)

We first test the isolation effect of reads with heavy writes. We set the ran-
dom write block size to 2 MB to simulate heavy write behavior, and change the
random read block size (from 4 KB to 1 MB) to emulate different read behav-
ior. We record the throughput when reading and writing at the same time, and
compare it with the throughput of each separate operation. Figure 10 shows the
throughput losses. As we can see in Fig. 10(b), on F2FS and ParaFS, when the
read load is light, the read throughput loss is large. In the flash device, a typical
write operation takes more time than a read operation. Once the write request
in the flash channel executes before the read request, the read request has a long
delay.

Then we test the isolation effect of writes with heavy reads. We set the
random read block size to 2 MB to emulate heavy read behavior, and change
the random write block size to emulate different write behavior. From Fig. 11,
we find that, on F2FS and ParaFS, under the heavy random read, the random
write throughput loss is higher, while the random read throughput loss is lower.
It shows that the read operation on the flash memory has more advantages
than the write operation. The execution of read requests is completed faster and
preempts the execution resources of write requests. It is also a manifestation of
the uneven reading and writing of flash memory.

428 Z. Liu et al.

4K 16K 64K 256K 1M
0.0
0.2
0.4
0.6
0.8

Th
ro

ug
hp

ut
Lo

ss
F2FS-VM ParaFS-VM OCVM

(a) Random write throughput loss.

4K 16K 64K 256K 1M
0.00
0.05
0.10
0.15
0.20
0.25

Th
ro

ug
hp

ut
Lo

ss

F2FS-VM ParaFS-VM OCVM

(b) Random read throughput loss.

Fig. 11. The I/O throughput loss when reading the VM1 image file under heavy load.
(Throughput Loss = 1− Throughputt/Throughputa, Throughputt is the throughput
when running together, and Throughputa is the throughput when running alone. The
x-axis coordinates are different random write block sizes.)

What’s more, from Fig. 10 and 11, we can find that the I/O throughput loss
is less than 10% on OCVM. Nevertheless, on F2FS, the throughput loss caused
by mutual interference reaches 70% in the worst case. This shows that channel-
granular isolation can avoid the interference between I/O requests to different
VM image files.

4.4 The Impact of Block-Granular Isolation on Garbage Collection

We perform an experiment to study the impact of block-granular isolation on
flash garbage collection. We set the OCSSD capacity to 40 GB to trigger garbage
collection faster and create two VMs (VM1 and VM2) that are stored in the clean
OCSSD. Each VM image file size is 15 GB. We use FIO to write 5GB data in
each VM concurrently and then write 5GB data in turn.

Erase Blocks Move Pages
0.0
0.2
0.4
0.6
0.8
1.0

N
um

be
rs

F2FS ParaFS OCVM

N
or

m
al

iz
ed

(a) Normalized number of erase blocks and
move pages.

0.0
0.2
0.4
0.6
0.8
1.0

OCVMParaFS-VM
F2FS VM

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

Normal During GC

F2FS-VM
(b) Impact of the GC on VM throughput.

Fig. 12. Improvement of SSD garbage collection.

Figure 12(a) shows the number of flash block erases and the number of flash
page migrations in the device when using different host file systems. OCVM

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 429

has the lowest garbage collection overheads. In our experimental scenario, the
number of recycled blocks and migrated pages decrease by 44% and 86%, respec-
tively, compared with those on F2FS. Although both OCVM and ParaFS com-
plete the data migration during garbage collection on the host file system level,
the data locality of VMs on OCVM is better, which improves the garbage col-
lection efficiency. The data of different VMs have diverse update frequencies.
Because OCVM isolates the VMs’ data with flash block granularity, hot data
are gathered in a few underlying flash blocks. It reduces the pressure of the
garbage collection from the erase of flash memory blocks and the migration of
valid pages. By alleviating the write amplification problem, OCVM extends the
lifetime of SSD running in the VM environment.

Besides, the benefits of the GC improvement also result in higher performance
of VMs. Figure 12(b) represents the average write throughput of the VM when
the last 5 GB file is written. Since OCVM reduces data migration, the device
can focus on performing I/O operation requests of VMs. It is beneficial to both
the performance of VMs and the durability of SSD.

4.5 The Effect of Dynamically Allocating Pool Resources

In this section, we study the effect of dynamically allocating pool resources
through experiments. We enable FIO applications in three VMs and issue ran-
dom writes to emulate throughput-intensive applications. To distinguish between
VMs, we set the minimum storage resources required by the three VMs to 8,
4, and 4. OCSSD includes 32 flash channels and half of them compose the pool
resources. To observe the changes of VMs throughput, we set the running time
of FIO in three VMs to 100 s, 120 s, and 180 s and dynamical reallocate the pool
resources in every 5 s.

0 30 60 90 120 150 180

20

30

40

50

Th
ro

ug
hp

ut
(M

B/
s)

Time (s)

VM1
VM2
VM3

(a) Throughput of VMs when running the
same heavy workload in each VM.

0 30 60 90 120 150 180
10
15
20
25
30

Th
ro

ug
hp

ut
(M

B/
s)

Time (s)

VM1
VM2
VM3

(b) Throughput of VMs when running the
different heavy workloads in each VM.

Fig. 13. Throughput of three VMs during the experiment.

We first set the write block size to 2 MB in each VM to observe the write
bandwidth that each VM can obtain. Figure 13(a) shows that the throughput of
VM1 is higher than that of the other two VMs. It is due to two reasons. First, the

430 Z. Liu et al.

flash channel resources pre-allocated to VM1 are more than those pre-allocated
to the other VMs. Second, under the same heavy workload, the amount of data
that VM1 can write in a monitoring period is more than that of the other VMs
so that it gets more flash channels from the pool resources in the next period.
The tenants that require more SSD resources need to pay higher fees. Since the
tenant of VM1 pays more, it has advantages in allocating pool resources. After
the workload of VM1 stops working, other VMs occupy the resources originally
allocated to VM1. It improves the utilization of the device.

Then we set the write block size to 256 KB in VM1 and 512 KB in other VMs
to emulate different heavy workloads in each VM. As we can see in Fig. 13(b),
Since the workloads of VM2 and VM3 is heavier than that of VM1, OCVM
allocates more flash channels to VM2 and VM3 from the pool resources. In the
meantime, OCVM reduces the number of flash channels allocated to VM1. After
a period of adjustment, the allocation of pool resources is balanced among the
VMs. The write throughput of each VM is stable. It proves that the dynamic
allocation mechanism can improve the utilization of SSD when VMs are isolated
by channel-granular, and it is the balance between the isolation of VMs and the
utilization of SSD.

5 Related Work

With more researches on SSD in recent years, the problems brought by FTL
are exposed. Lu et al. [10] proposed OCSSD architecture to eliminate functional
redundancy. Based on OCSSD architecture, Zhang et al. [6] implemented a file
system to exploit the internal parallelism of flash devices. Lightnvm [15] imple-
mented OCSSD in Linux kernel. Based on it, applications get an abstraction of
OCSSD in user space and access data directly. These studies show the flexibility
of OCSSD and provide new ideas for the use of flash devices in the multiple VMs
environment.

Some research has focused on how to make multiple VMs or containers bet-
ter share SSDs. Kwon et al. [4] implemented the isolation of multiple containers
sharing SSD in terms of software and hardware. Huang et al. [1] designed a
virtual SSD architecture for tenants to use the storage area specified in SSD.
Gonzalez et al. [25] proposed LUN-granular isolation for multi-tenant by modi-
fying kernel drivers. Kim et al. [26] reduced the garbage collection overheads to
meet VMs service level objectives by using the over-provisioning space of SSD.
Kang et al. [5] proposed a multi-stream interface to improves throughput and
latency QoS by modifying the FTL. In similar, FStream [14] reduces garbage col-
lection overheads by storing metadata and journal of the file system in different
streams. Kim et al. [27] proposed a method to improve the utilization of SSDs
for different tenants by using the parallelism of chip level in SSDs. S-CAVE [28]
manages a shared SSD cache based on VMs and SSD runtime information to
improve the utilization of the device.

The difference between our work and the above works is that we focus on
the OCSSD host file system to optimize the performance of VM isolation and

OCVM: Optimizing the Isolation of Virtual Machines with OCSSD 431

dynamic allocate storage resources. Without modifying the VM operating system
and VM emulator, it provides better compatibility and flexibility for the multiple
VMs environment.

6 Conclusion

Based on OCSSD architecture, we propose OCVM to improve storage isola-
tion for the VMs sharing the same SSD. OCVM is an OCSSD-based VM storage
stack and does not require any modification to VM emulator or guest OS. Experi-
ments show that OCVM controls the performance loss caused by the interference
between VMs within 10% and shortens the data-intensive applications by 28%,
on average, compared to those on a baseline host file system. What’s more, by
reducing garbage collection overhead and dynamically allocating pool resources,
it enhances the storage lifetime and improves the utilization of the device in
the multiple VMs environment. In the future, we wish to expand OCVM in two
directions. First, we would like to investigate how to integrate with VM emula-
tor to improve VMs storage performance. Second, we would like to explore the
integration method with the distributed data center to guarantee cloud storage
SLAs for tenants.

References

1. Huang, J., et al.: Flashblox: achieving both performance isolation and uniform
lifetime for virtualized SSDs. In: 15th USENIX Conference on File and Storage
Technologies (FAST 17), vol. 375 (2017)

2. Park, S., Seo, E., Shin, J., Maeng, S., Lee, J.: Exploiting internal parallelism of
flash-based SSDs. IEEE Comput. Archit. Lett. 9, 9–12 (2010)

3. Hu, Y., Jiang, H., Feng, D., Tian, L., Luo, H., Ren, C.: Exploring and exploiting
the multilevel parallelism inside SSDs for improved performance and endurance.
IEEE Trans. Comput. 62, 1141–1155 (2012)

4. Kwon, M., Gouk, D., Lee, C., Kim, B., Hwang, J., Jung, M.: DC-store: eliminating
noisy neighbor containers using deterministic I/O performance and resource isola-
tion. In: 18th USENIX Conference on File and Storage Technologies (FAST 20),
vol. 183 (2020)

5. Kang, J., Hyun, J., Maeng, H., Cho, S.: The multi-streamed solid-state drive. In:
6th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage
14) (2014)

6. Zhang, J., Shu, J., Lu, Y.: ParaFS: a log-structured file system to exploit the
internal parallelism of flash devices. In: 2016 USENIX Annual Technical Conference
(USENIXATC 16), vol. 87 (2016)

7. PAYG cloud computing. https://searchstorage.techtarget.com/definition/pay-as-
you-go-cloud-computing-PAYG-cloud-computing. Accessed 30 Mar 2015

8. Lee, C., Sim, D., Hwang, J., Cho, S.: F2FS: a new file system for flash storage. In:
13th USENIX Conference on File and Storage Technologies (FAST 15), vol. 273
(2015)

9. QEMU. https://www.qemu.org. Accessed 28 Apr 2020

https://searchstorage.techtarget.com/definition/pay-as-you-go-cloud-computing-PAYG-cloud-computing
https://searchstorage.techtarget.com/definition/pay-as-you-go-cloud-computing-PAYG-cloud-computing
https://www.qemu.org

432 Z. Liu et al.

10. Lu, Y., Shu, J., Zheng, W.: Extending the lifetime of flash-based storage through
reducing write amplification from file systems. In: Presented as part of the 11th
USENIX Conference on File and Storage Technologies (FAST 13), vol. 257 (2013)

11. Shin, J., et al.: FTL design exploration in reconfigurable high-performance SSD
for server applications. In: Proceedings of the 23rd International Conference on
Supercomputing, vol. 338 (2009)

12. Zhe, Y., Lu, Y., Xu, E., Shu, J.: CoinPurse: a device-assisted file system with dual
interfaces. In: the 56th Annual Design Automation Conference (DAC) (2020)

13. Agrawal, N., Prabhakaran, V., Wobber, T., Davis, J.D., Manasse, M.S., Panigrahy,
R.: Design tradeoffs for SSD performance. In: USENIX Annual Technical Confer-
ence, vol. 8, p. 57 (2008)

14. Rho, E., et al.: FStream: managing flash streams in the file system. In: 16th
USENIX Conference on File and Storage Technologies (FAST 18), vol. 257 (2018)

15. Bjørling, M., González, J., Bonnet, P.: Lightnvm: the linux open-channel SSD
subsystem. In: 15th USENIX Conference on File and Storage Technologies (FAST
17), vol. 359 (2017)

16. Park, H., Yoo, S., Hong, C.-H., Yoo, C.: Storage SLA guarantee with novel SSD
I/O scheduler in virtualized data centers. IEEE Trans. Parallel Distrib. Syst. 27,
2422–2434 (2015)

17. Kim, J., Lee, D., Noh, S.H.: Towards SLO complying SSDs through OPS isolation.
In: 13th USENIX Conference on File and Storage Technologies (FAST 15), pp.
183–189 (2015)

18. Kernel Virtual Machine. https://linux-kvm.org. Accessed 30 Apr 2020
19. Li, S., Lu, Y., Shu, J., Hu, Y., Li, T.: Locofs: a loosely-coupled metadata service for

distributed file systems. In: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12 (2017)

20. Fio: Flexible I/O Tester. https://github.com/axboe/fio. Accessed 30 Apr 2020
21. Filebench. https://github.com/filebench/filebench/eiki. Accessed 30 Apr 2020
22. Apache Bench. https://httpd.apache.org/docs/2.4/programs/ab.html. Accessed

30 Apr 2020
23. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking

cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, vol. 143 (2010)

24. Petersen, C., Zhang, W., Naberezhnov, A.: Enabling NVMe I/O determinism at
scale. In: The 12th annual Flash Memory Summit (2018)

25. González, J., Bjørling, M.: Multi-tenant I/O isolation with open-channel SSDs. In:
Nonvolatile Memory Workshop (NVMW) (2017)

26. Kim, J., Lee, D., Noh, S.H.: Towards SLO complying SSDs through OPS isolation.
In: 13th USENIX Conference on File and Storage Technologies (FAST 15), vol.
183 (2015)

27. Kim, B.S.: Utilitarian performance isolation in shared SSDs. In: 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage 18) (2018)

28. Luo, T., Ma, S., Lee, R., Zhang, X., Liu, D., Zhou, L.: S-cave: effective SSD caching
to improve virtual machine storage performance. In: Proceedings of the 22nd Inter-
national Conference on Parallel Architectures and Compilation Techniques, vol.
103. IEEE (2013)

https://linux-kvm.org
https://github.com/axboe/fio
https://github.com/filebench/filebench/eiki
https://httpd.apache.org/docs/2.4/programs/ab.html

CANRT: A Client-Active NVM-Based
Radix Tree for Fast Remote Access

Yaoyao Ying1, Kaixin Huang1, Shengan Zheng2, Yaofeng Tu3,
and Linpeng Huang1(B)

1 Shanghai Jiaotong University, Shanghai, China
{yingyy77,Kaixinhuang,Lphuang}@sjtu.edu.cn

2 Tsinghua University, Beijing, China
venero@tsinghua.edu.cn

3 ZTE Corporation, Nanjing, China
tu.yaofeng@zte.com.cn

Abstract. This paper presents the first study of building a remote-
accessible persistent radix tree, named CANRT. Unlike prior works that
only focus on designing single-node tree structure for non-volatile mem-
ory, we focus on optimizing remote access performance for a persistent
radix tree while minimizing the persistence overhead. Simply adopt-
ing server-reply paradigm will incur heavy server CPU consumption
and hence lead to high operation latency under concurrent workloads.
Therefore, we design a low-latency node-oriented read mechanism and
a fine-grained lock-based write mechanism to minimize the server CPU
involvement in the critical path. We also devise a non-blocking resizing
scheme in CANRT. The extensive experimental results on commercial
Intel Optane DC Persistent Memory platform show that CANRT out-
performs the state-of-art server-centric persistent radix trees by 1.19x–
1.22x and 1.67x–1.72x in read and write latency, respectively. CANRT
also gains improvement of 7.44x–11.15x in terms of concurrent through-
put under YCSB workloads.

Keywords: Radix tree · Non-volatile memory · RDMA · Data
consistency · Concurrent access

1 Introduction

Emerging storage and networking technologies such as non-volatile mem-
ory(NVM) and Remote Direct Memory Access (RDMA) technology are poised
to reshape conventional data storage and memory systems in data centers, bring-
ing new opportunities to achieve efficient remote data storage and access. Non-
volatile memory technologies such as PCM [17], STT-RAM [16] and the recently
released Intel Optane DC Persistent Memory [8] promise non-volatility, byte-
addressability and DRAM-comparable latency. RDMA technology makes it pos-
sible for clients to access remote memory region while bypassing server CPU and
kernel, which contributes to high bandwidth and low latency.
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 433–447, 2020.
https://doi.org/10.1007/978-3-030-60245-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_30&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_30

434 Y. Ying et al.

To further exploit the advantages of NVM and RDMA technology, indexing
data structures and algorithms are required to be carefully redesigned to promise
both data consistency and data concurrency for higher scalability. In recent
years, a large number of tree-based indexing structures are proposed for non-
volatile memory. Most of these works focus on the design of persistent B+-
tree, [1,7,14,19]. They achieve considerable performance by reducing the number
of expensive memory fencing and cache line flush operations.

Lee et al. [12] propose three radix tree variants (i.e., WORT, WOART,
ART+CoW), and demonstrate that radix tree is more appropriate for persistent
memory than B+-tree variants due to its unique features. For instance, the radix
tree does not demand tree rebalancing operations and each insertion or deletion
only results in a single atomic update operation to the tree, which is perfect for
NVM [12]. However, whether the B+-tree variants or the radix tree variants in
existing papers are designed for NVM in a single machine environment instead
of distributed systems. Therefore, when deployed in distributed system environ-
ment such as data centers, they may suffer from high access latency and poor
throughput scalability. Even though they can be equipped with RDMA server-
reply paradigm [2,5,9,13], where both reads and writes are processed by the
server and requires replies to the clients, the limited server CPU resource will
become the bottleneck for highly-concurrent remote requests and impair the
overall performance. The server-bypass merits of RDMA cannot be exploited
with such designs.

In this paper, we propose a client-active NVM-based radix tree for fast remote
access with server-bypass paradigm using RDMA. In the server side, we decouple
the radix tree into two parts: data nodes that store actual key-value pairs with
the same prefix, and prefix nodes that locate the target data nodes. Each data
node contains an 8-byte metadata, which is used to resolve concurrent write
collisions. Specifically, prefix nodes are also stored in all clients to support server-
bypass remote data access. Our contributions can be summarized as follows.

• We propose CANRT, a client-active and NVM-optimized radix tree that lever-
ages RDMA technology to speed up remote data access. To the best of our
knowledge, CANRT is the first persistent radix tree that is optimized for fast
remote access.

• We decouple the radix tree nodes into prefix nodes and data nodes to enable
server-bypass remote data access and utilize a bitmap-assisted strategy for
all types of writes to efficiently guarantee data consistency while resolving
concurrent write collisions.

• We design a node-oriented remote read mechanism and a fine-grained lock-
based remote write mechanism to support low-latency and high-concurrency
remote access to the persistent radix tree. We also propose a non-blocking
resizing scheme for CANRT to boost its performance during tree reconstruc-
tion.

• We conduct extensive experiments for CANRT. The results show that
CANRT outperforms the server-centric persistent radix trees by 1.19x-1.22x
for remote reads, 1.67x–1.72x for remote writes and 3.10x–3.83x for range

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 435

query in terms of latency. For concurrent throughput, CANRT outperforms
the counterparts by up to 11.15x under write-intensive workloads.

Organization. The rest of this paper is organized as follows. Section 2 intro-
duces the background and motivation of our work. Section 3 describes the design
and implementation of CANRT. Section 4 presents experimental results and we
conclude this paper in Sect. 5.

2 Background and Motivation

2.1 Non-Volatile Memory

Emerging memory technologies such as phase change memory(PCM) [17], spin-
transfer torque RAM (STT-RAM) [16] and the recently released Intel Optane
DC Persistent Memory [8], can be directly accessed through the memory bus via
processor loads and stores, delivering DRAM-like performance while providing
persistent data storage [3,15]. NVM provides potential to design efficient persis-
tent index structures [1,7,12,14,19], storage systems [2,3,11,15,18] and etc, with
leveraging its non-volatility, byte-addressability and DRAM-comparable latency.
Data consistency is a significant issue for NVM as there may be partial writes
and reordering writes during system crash, which will lead to inconsistent data
state and unexpected system error. The mainstream solutions are using logging
or copy-on-write techniques to guarantee data consistency [3,11,15]. The per-
sistence ordering is maintained by using clflush/clwb/clflushopt and mfence
instructions.

2.2 Remote Direct Memory Access

Remote direct memory access (RDMA) is a new networking technology that sup-
ports low-latency, high-bandwidth, zero-copy and kernel-bypass access to remote
memory region. Since Reliable Connection (RC) provides full support for RDMA
semantics, in this paper, we mainly focus on the RC mode of using RDMA.

Normally, there are two types of RDMA semantics: message semantics and
memory semantics. Message semantics employ SEND/RECV verbs for user-
level message exchange. Due to the requirement of the matching RECV request
posted at the server side, these verbs are generally referred as two-sided RDMA
operations. Memory semantics, on the other hand, are one-sided semantics.
These semantics utilize READ/WRITE verbs and are proved to achieve higher
throughput and lower latency than message semantics [10]. Adopting these
semantics is attractive in that they free server from sending requested data
to clients, replying acknowledge information or coordinate collisions, as well as
continuously polling for the incoming requests [5,6,9,13].

Apart from above semantics, RDMA also support one-sided atomic oper-
ations, including FETCH_AND_ADD (FAA) and COMPARE_AND_SWAP
(CAS). Both of these verbs operate on data with 64 bits and are atomic opera-
tions relative to other operations on the same NIC. This paper utilizes FAA to
support concurrent remote write operations to the radix tree.

436 Y. Ying et al.

Fig. 1. Remote access mechanisms for current tree-based indexing structures

2.3 RDMA-enabled Index Structure

A few recent researches have used RDMA technology in key-value stores to accel-
erate the remote data access [2,5,6,9,13]. However, in these designs, the funda-
mental indexing structures are all hash tables. In fact, few researches have been
proposed to optimize the current tree-based indexing structures using RDMA
to fit in distributed environment for efficient remote data access. This can be
attributed to three challenges.

First, unawareness of data location. Since traversing through an indexing
tree means the retrieval of data at multiple memory addresses, it is relatively
harder to locate the target data than hash tables. Second, data consistency. The
employment of NVM raises consistency issues. While tree structure is often more
complicated compared to hash table, it demands more careful design to avoid
such problems. Third, concurrent write collision. Since the write operations to a
tree tend to affect multiple nodes, concurrent writes are easy to conflict, which
as a result can harm the concurrent performance.

2.4 Persistent Radix Tree

Most of the previous proposed persistent trees are variants of B+-tree, such as
NVTree [19], wB+tree [1], FPTree [14] and FAST&FAIR [7]. Lee et al. [12] pro-
posed three variants of a radix tree: WORT, WOART and ART+CoW. It is
pointed out that radix tree is actually more appropriate for NVM compared to
B+-tree variants. For instance, key comparisons in a radix tree are no longer
required since the radix tree structure is decided only by each character of the
inserted keys. Furthermore, updates in node granularity and expensive tree rebal-
ancing operations are also avoided. The experimental results of [12] show that
the radix tree variants outperform most of the current B+-tree variants(i.e.,
NVTree, wB+Tree and FPTree).

Although WORT has already improved the indexing performance on NVM,
it cannot be directly deployed in an RDMA-enabled distributed system environ-
ment since it is designed for a single machine environment. Fortunately, similar

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 437

to previous hashtable-based key-value stores [5,9,13], we can apply the server-
reply paradigm as a general RPC mechanism for WORT to support remote
read and write requests. However, there are two performance limitations: 1)
high server CPU overhead/high latency. Since data access through a radix tree
means the traversing of the tree, clients require the server to coordinate and
process requests to access target data. Taking read request as an example, there
are two methods to execute it which are illustrated in Fig. 1. One method is to
let the server collect all the requested keys and send back to the client (shown
in Fig. 1(a)). Although it can be performed in 1 RTT, the server CPU overhead
will be quite high for concurrent access and thus incurs high operation latency.
The other is to allow the server to only reply addresses to the client and it is the
client’s responsibility to complete the reads using one-sided READ verb (shown
in Fig. 1(b)). It is almost impossible for clients to directly access data in the
server side within 2 RTTs, which also leads to high operation latency and heavy
bandwidth consumption. As a result, either significant server CPU overhead or
high operation latency will be incurred. 2) poor concurrency. Concurrent access
is demanded in most distributed database systems or key-value store systems.
Unfortunately, WORT does not support concurrent access requests, which is
harmful to both system throughput and latency performance.

Fig. 2. CANRT storage architecture

3 CANRT

3.1 CANRT Data Structures

Figure 2 depicts the server-side storage architecture of CANRT. Basically,
CANRT is composed of two major parts:

438 Y. Ying et al.

Prefix nodes, which exist in both the server and clients, are organized in a
pointer-less format. In CANRT, all the prefix nodes are pre-allocated in a con-
secutive memory space in the server, and will be sent to each client when the
tree is reorganized. Figure 3 (a) and Fig. 3 (b) illustrate the layouts of prefix
nodes. CANRT does not store explicit keys in its prefix nodes. Instead, a prefix
node consists of an array of characters, each of which represents one character of
the inserted keys. Additionally, each prefix node contain an nChars field, which
records the number of valid characters stored in that node.

Data nodes, which exist only in the server and contain actual key-value pairs,
can be accessed through the node ID stored in the last level of the prefix nodes.
Each key-value pair in the data node is encapsulated in a DataItem entry and
the DataItems in each data node are kept unsorted. As depicted in Fig. 3(c) and
Fig. 3(d), to both accelerate data access and enable high write concurrency, an
8-byte metadata structure is adopted in the data node. The metadata contains
a bitmap and a write lock.

In CANRT, only the first k characters of the inserted keys will be stored in
the prefix nodes, which we call the prefix of the key. Here, k also denotes the
height of the prefix nodes. Figure 2 shows an example of a CANRT with k = 3.
Taking the key ATCD as an example, the prefix is ATC, and each character of
the prefix (i.e., A, T, C) is stored in each level of the prefix nodes. Particularly, in
the last level of the prefix nodes, apart from the character array, there is another
array (denoted as NodeID array) storing the corresponding data node ID (i.e.,
C is stored in the third level of the prefix nodes, and a data node ID 7 is stored
in the corresponding position of the NodeID array which means that keys with
the prefix of ATC are stored in the eighth data node).

Fig. 3. CANRT node layout

3.2 Locating Target Data Node

Both read and write operations in CANRT need to find the target data node
first. In CANRT, the position of each prefix node is fixed and the node ID of

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 439

each prefix node increases sequentially from zero. Hence it can be used to locate
the target prefix node in each level and finally find the target data node ID.

Generally, the ith (i < k) character of the search key will be used to probe
the target node in (i + 1)th level, and the kth character will finally locate the
data node which contains the search key. For instance, with each prefix node
contains m characters, the ith level of prefix nodes contains mi−1 nodes and the
base node ID in (i+ 1)th level (denoted as bi+1) can be calculated by

bi+1 = bi +mi−1 (1)

where bi is the base node ID in ith level. Based on the recursive relations in (1),
we can calculate the value of bi by the following equation:

bi =
mi−1 − 1
m − 1

(2)

Now we can locate the target node ID in (i+1)th level (denoted as Itarget) using
the equation below:

Itarget = bi+1 + (Icur − bi) ∗ m+ p (3)

where Icur denotes the node ID of the current node in ith level and p is the
position of the ith character of the search key in the character array of the
current node. When i = k, the current node is in the last level of prefix nodes,
and the data node ID can be directly obtained from the NodeID array of current
node with the position p.

In the cases when the ith character of the request key does not exist in the
corresponding character array, the search process will be terminated and the
target data node ID will be set as the node ID of the last data node. Once the
target data node ID is obtained, the address of the target data node can be
calculated based on the memory address of the first data node and the size of
each data node.

3.3 Fine-Grained Lock-Based Remote Write

To support high-concurrency remote writes, we design a fine-grained lock-based
remote write mechanism. It employs server-bypass paradigm using one-sided
RDMA verbs and makes append-only updates to the server’s persistent region
in order to avoid any data corruption. There are three phases in remote write
procedure, all of which are client-active: locking phase, checking phase and writ-
ing phase. The whole remote write procedure is provided in Algorithm 1.

In the locking phase (lines 1 to 9), the client first calculates the target data
node ID with locally-buffered prefix nodes. Then it uses a FETCH_AND_ADD
verb to obtain the 8-byte metadata of the target data node from the server,
while atomically adding 1 to the lock field of metadata. If the fetched lock value
is greater than 0, it means that the target data node has been locked by another
client or the server itself. In such cases, the client will wait for random backoff

440 Y. Ying et al.

Algorithm 1. remote_write(key, value)
1: /* locking phase: fetch the metadata of target data node */
2: node_id ← findDataNode(key);
3: raddr ← data_base + datanode_size * node_id + shadow_meta_off;
4: len ← 8;
5: post_rdma_fetch_and_add(raddr, len, laddr)
6: meta ← laddr;
7: if meta.lock > 0 then
8: retry from step 5 after random backoff;
9: end if

10: /* checking phase: find a free bit in the bitmap */
11: for bit in meta.bitmap do
12: if bit == 0 then
13: /* writing phase: write a new DataItem to the target node */
14: generateDataItem(OPFLAG, key, value, 1);
15: raddr ← raddr+meta_size+bit_index * dataitem_size;
16: len ← dataitem_size; imm ← (node_id << 8 | bit_index);
17: post_rdma_write_with_imm(raddr, len, laddr, imm);
18: return
19: end if
20: end for
21: imm ← (node_id << 8 | RESIZE_FLAG);
22: post_send_with_imm(imm);
23: retry from step 1 after being notified a resizing accomplishment;

time (e.g., 1 us), after which the lock operation will be replayed. Otherwise,
current client successfully locks target node and enters the checking phase.

In the checking phase (lines 10 to 12 and 19 to 23), the client will verify if
there are free bits (i.e., 0-bit) in the bitmap field. If there is one or more free
bits, the client proceeds to the writing phase. Otherwise, it indicates that the
target node is full (i.e., there is no free DataItem slot), the client will inform the
server to resize the prefix nodes (see Sect. 3.5) and resending the request after
the server informs the accomplishment of resizing.

In the writing phase (lines 13 to 18), the DataItem location corresponding to
the first free bit in the bitmap will be regarded as the target location to append a
new write. For all types of remote write operations, including insert, delete and
update, the write steps in the client side are almost the same, except the opflag
value in each packed DataItem to be appended. The opflag indicates the specific
operation type. For example, insert, delete and update can be represented by 1, 2
and 3, respectively. The client then immediately transmits the newly-generated
DataItem to the target location in the server using a WRITE_WITH_IMM
verb. The carried 32-byte immediate informs the server of both the node ID of
the target data node and the specific location of the newly inserted DataItem
in the data node. From the perspective of clients, a remote write operation is
completed once the WRITE_WITH_IMM request has been successfully posted,
which incurs no server CPU involvement in the critical path.

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 441

Algorithm 2. remote_read(key, find_value)
1: /* fetch both metadata and data*/
2: node_id ← findDataNode(key);
3: raddr ← data_base + datanode_size * node_id;
4: len ← datanode_size;
5: post_rdma_read(raddr, len, laddr);
6: datanode ← laddr;
7: (meta, data) ← datanode;
8: /* local search */
9: find_value ← NULL ;

10: for i ← 0, i < dataitem_num, i++ do
11: if meta.bitmap[i] == 1 && data[i].key == key then
12: find_value ← data[i].value;
13: return find_value;
14: end if
15: end for
16: return NULL;

In the server side, a background thread will process the appending messages
from clients, which is out of the critical path of client request execution. When
polling a work completion (WC), it will first locate the newly inserted DataItem
according to the immediate data, and then checks the opflag field to determine
the write operation type. For insert or delete operation, the server simply atom-
ically modifies the metadata of the data node by changing the corresponding bit
(i.e., 0 to 1 for insert and 1 to 0 for delete) in the bitmap and resetting the lock
field to 0. For update operation, the server will mark the old DataItem as invalid
and validate the newly inserted DataItem at the same time with two bit flips. For
all types of write operations, the server will set the valid field in the DataItem
to 0 once the metadata update completes. To maintain persistence ordering for
data consistency, we utilize clwb and mfence primitives accordingly.

Notice that a remote write operation is only visible after the correspond-
ing metadata in the server is modified, which avoids data inconsistency dur-
ing system crash. Since the modification of the metadata is an 8-byte atomic
write operation, the expensive logging or copy-on-write is unnecessary. The fine-
grained lock-based remote write mechanism of CANRT has two merits: 1) it
enables clients to write data without the involvement of the server CPU, which
considerably reduces the server processing overhead in the critical path; 2) it
allows DataItems in each data node to be unsorted and no data shift is required,
hence reducing extra writes to NVM.

3.4 Node-Oriented Remote Read

Instead of simply accessing one DataItem, CANRT fetches an entire node from
the server-side for each single read. Remote Read operations also start with
locating the target data node. As introduced in Sect. 3.2, the target node locating
can be conducted in the client directly. After obtaining the target data node ID,

442 Y. Ying et al.

Fig. 4. Non-blocking resizing

the client posts a READ request to fetch the target data node in the server
radix tree. Algorithm2 illustrates the remote read mechanism of CANRT. Since
only one RDMA operation is posted, the total network overhead is only 1 RTT.
After fetching the required data node to local buffer, the client then checks the
bitmap entry in the metadata field and scans the valid DataItems to retrieve the
matched DataItem.

Although the unsorted DataItems increase the searching time inside the data
node, the searching performance is still acceptable since the number of DataItems
inside a data node is limited (see Sect. 4). Thanks to the bitmap-assisted strategy,
the read operations will never be blocked by any concurrent write operation since
the search process will only check the DataItems whose bit value is one in the
bitmap.

3.5 Non-blocking Resizing

As the size of each data node is fixed, when one data node is full, the server need
to allocate more space to hold more keys. As such, existing keys in the tree may
be reorganized and migrated to newly-generated data nodes. This procedure is
called radix tree resizing. The resizing can be triggered either by the server itself
or the notification of a client, as lines 21–22 in Algorithm1 indicate.

We propose a non-blocking resizing scheme for CANRT. That is, even during
data migration, the radix tree in the server can still be accessed by remote
clients. The key idea is using a tick-tock design (see Fig. 4) inspired by Redis
dictionary [20] to avoid any modifications to current tree structure during data
migration. Specifically, CANRT maintains two versions of radix tree, one version
as the valid tree and the other as the shadow tree. Any read or write operation
is performed on the valid tree and the shadow tree is exclusively designed for
resizing.

In CANRT, there are two types of resizing: addWidth and addHeight. When
the last data node is full, addWidth resizing is performed to store more characters
in each level of prefix nodes. Otherwise, the resizing procedure is launched in the
addHeight manner. Both addWidth and addHeight will not affect the old data

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 443

nodes, the newly generated data nodes will simply be appended to the end of
old data nodes and the DataItem migration will be reflected by the metadata.

With the shadow tree, the resizing scheme in CANRT is non-blocking for read
operations, and only a portion of write operations will be blocked due to locking
failure to the full data nodes. Compared to read and write operations, the resizing
procedure seems time-consuming in large CANRT, but the frequency of resizing
can be significantly dropped with more and more prefixes inserted into the prefix
nodes (6.20% when inserting one thousand keys and 1.47% when inserting one
million keys). We believe that such overhead is acceptable.

3.6 Crash Recovery

Inconsistency may occur when system crashes during remote write operations or
resizing procedure and thus recovery is required. The recover procedure starts
with detecting the locked data nodes and then checks the valid field of each
DataItem in those data nodes. The valid field is the last bit of each DataItem
and indicates both the integrity of the DataItem and whether the server side
process for that DataItem is completed. If the valid value is 1, which means the
DataItem is not processed, the server will simply execute server side metadata
update, as discussed in Sect. 3.3. If the valid value is 0, it means current DataItem
1) has already been processed by the server or 2) is an incomplete write from
the client. In either case, the server-side data state is consistent.

After fixing the remote write inconsistency, the server will then check the
resizing consistency. We use two state flags (i.e., pxflag and dtflag) to mark
the completion of prefix nodes reconstruction and data migration, respectively.
Only when the two flags are both marked, the system crash does not occur during
resizing procedure. Otherwise, the recover procedure should be performed. When
pxflag is unmarked, it means that the resize procedure just starts, and the
server will simply replay the whole resizing procedure. When pxflag is marked
and dtflag is unmarked, it means that system crashes after the reconstruction
of the prefix nodes but before the completion of data migration. In such cases,
the server will perform the data migration recovery. The procedure ends with
atomically marking the dtflag which transforms the shadow tree to the new
valid tree.

4 Evaluation

4.1 Experimental Setup

Different from previous works that leverage a DRAM-based PM performance
emulator (e.g., Intel PMEP/Quartz) to emulate PM latency [1,7,12,14], we
conduct our experiments on a small cluster of three machines, which are all
equipped with commercial Intel Optane DC Persistent Memory, and Intel
Xeon(R) 2.60GHz CPU (32KB/1MB/24MB L1/L2/L3 cache). Our experi-
ments are performed in the AppDirect mode of AEP, which exposes a separate

444 Y. Ying et al.

Fig. 5. Remote read and write performance comparisons

persistent memory device. As for RDMA hardware configuration, all of these
machines are equipped with Mellanox ConnectX-5 InfiniBand NIC and run on
Ubuntu 18.04 (kernel version 4.18.04). For each experiment, we use one machine
as server, while the remaining two machines work as clients. Since 16-byte key
has been broadly adopted in current key-value stores [18], we set the key and
value in CANRT to be 16 bytes and 15 bytes, respectively.

For comparison, we implement both WORT and WOART by adding RDMA
mechanism to it. To accelerate remote access, similar to previous RDMA-enabled
hash works [5,9], we design a ring buffer mechanism for both WORT and
WOART. That is, for each client, the server keeps a request ring buffer and
for both remote read and write procedure, clients only need to write requests
to the ring buffer using a WRITE_WITH_IMM verb. The server dedicatedly
checks the corresponding client ring buffer and makes processing once a request
is found. Afterwards, the server will inform the client using a SEND verb. The
procedure ends once the client receives the server’s reply message. We evaluate
the operation latency with random String workload and test throughput with
the widely-used YCSB [4] benchmark. Each result is averaged for 10 runs.

4.2 Remote Write Latency

Figure 5(a) shows the comparison of remote write performance among CANRT
and the other two radix tree variants under random and sequential workloads.
For random workloads, CANRT is roughly 1.7x faster than the other two trees.
Although it seems that CANRT requires more RTTs (i.e., about 1.5 RTTs)
in one remote write operation, it is steady and little affected by the server’s
CPU usage. For WORT and WOART, apart from 1 RTT (i.e., 0.5 RTT for
client’s WRITE and 0.5 RTT for server’s SEND), waiting for the server’s reply
also incurs heavy time consumption, including request polling, key locating,
data persistence, and posting reply message. All these processing steps are in
the critical path of request execution. Since each operation requires interaction
between the client and the server, the latency is more unstable compared with
CANRT. Although WOART has better local write performance than WORT,
the relatively much higher network overhead makes this difference no longer
noticeable. For sequential workloads, the performance of CANRT is dropped by
7.94% compared with random workloads. This is because sequential workloads
contribute to a higher probability of data node access conflict.

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 445

Fig. 6. Throughput and scalability comparisons under YCSB workloads

4.3 Remote Read Latency

Figure 5(b) compares the remote write latency of three radix trees. We observe
that CANRT outperforms its counterparts by 1.19x-1.22x. It is also noticed that
the read latency of CANRT is slightly higher than the write latency shown
in Fig. 5(a). Although each remote read operation of CANRT only consumes
one RTT, the size of the data transferred per operation is larger compared
with write operations. For WORT and WOART, the server-reply mechanism
incurs higher latency than CANRT due to the processing overhead in the criti-
cal path. For sequential workloads, the latency of WORT and WOART is lower
than the latency under random workloads. The reduction of server side cache
misses under sequential workloads contributes to the improvement of WORT and
WOART. Although there is almost no performance improvement for CANRT
under sequential workloads, the total latency of CANRT remote read operations
is still lower than WORT and WOART.

4.4 Range Query Latency

Since DataItems with same prefix are stored in the same data node in CANRT,
we integrate consecutive requests for the same data node into one request, which
significantly improves the range query performance. For WORT and WOART,
due to the structure limitation, the remote range query functions are simply
implemented by calling a remote read request for each key. We collect the range
query performance by querying 10000 and 100000 keys respectively, and the
results shown in Fig. 5(c) demonstrate that CANRT achieves much better per-
formance for range query. When querying 10000 keys, CANRT is roughly 3.1x
faster compared with WORT or WOART. When querying 100000 keys, CANRT
is 3.71x faster than WORT and 3.82x faster than WOART.

4.5 Concurrent Throughput

In the experiments shown in Fig. 6(a), we evaluate the concurrent throughput
under four types of YCSB workloads: Write-Only (100% update), Write-Heavy
(50% read + 50% update), Read-Heavy (95% read + 5% update) and Read-
Only (100% read). The experiments are conducted using 16 threads. We can
observe that CANRT consistently outperforms the other two radix trees due

446 Y. Ying et al.

to its server-bypass remote access mechanism. For WORT and WOART, since
each operation requires the server’s process, the server CPU becomes the bot-
tleneck of the remote access. For CANRT, write-only workload performs best
among the four YCSB workloads, and read-only workload performs worst. This
is because write operations consume less bandwidth. In CANRT, each write
operation only transfers one 8-byte metadata and one DataItem while the read
operations require fetching the whole data node. However, since each remote
read operation only requires one RTT and the number of DataItems in one data
node is limited, the remote read throughput is still acceptable.

Figure 6(b) and Fig. 6(c) show the scalability performance of three radix
trees under write-heavy and read-heavy workloads, respectively. Due to the
server CPU limitation, WORT and WOART exhibit poor scalability and they
are unable to saturate the network bandwidth. By contrast, the throughput of
CANRT increases with the number of client threads. For Write-Heavy work-
loads, Fig. 6(b) shows that when the number of threads increases from 2 to
16, the throughput of CANRT is increased by 10.88x, which almost increases
proportionally to the number of threads. However, for read-heavy workload,
the experimental results in Fig. 6(c) show that the performance of CANRT is
increased by a factor of 7.93, when the number of threads increases from 2 to 16,
which increases proportionally to the number of threads only when the number
of threads is less than 8. The reason is that when the number of client threads
reaches 16, the network bandwidth becomes the bottleneck of remote access.
Notice that remote read operations carries larger packet each time than remote
write and hence the read throughput bottleneck is reached earlier.

5 Conclusion

In this paper, we propose CANRT, a client-active NVM-based radix tree for
fast remote access using RDMA technology. We decouple the radix tree nodes
into data nodes and prefix nodes to exert the full potential of both NVM and
RDMA. We design a node-oriented read mechanism for low-latency remote reads
and a fine-grained lock-based write mechanism for fast remote writes. The exper-
imental results show that CANRT performs better than server-centric persistent
radix trees in terms of both remote access latency and throughput.

Acknowledgements. This work is supported by the National Key Research and
Development Program of China (No. 2018YFB1003302), SJTU-Huawei Innovation
Research Lab Funding, and the China Scholarship Council (No. 201906230180).

References

1. Chen, S., Jin, Q.: Persistent b+-trees in non-volatile main memory. Proc. VLDB
Endow. 8(7), 786–797 (2015)

2. Chen, Y., Lu, Y., Yang, F., Wang, Q., Wang, Y., Shu, J.: Flatstore: an efficient log-
structured key-value storage engine for persistent memory. In: Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems, pp. 1077–1091 (2020)

CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access 447

3. Coburn, J., et al.: Nv-heaps: making persistent objects fast and safe with next-
generation, non-volatile memories. ACM SIGARCH Comput. Archit. News 39(1),
105–118 (2011)

4. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM symposium on
Cloud computing, pp. 143–154 (2010)

5. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: Farm: fast remote memory.
In: 11th {USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 14), pp. 401–414 (2014)

6. Huang, H., Huang, K., You, L., Huang, L.: Forca: fast and atomic remote direct
access to persistent memory, pp. 246–249 (2018). https://doi.org/10.1109/ICCD.
2018.00045

7. Hwang, D., Kim, W.H., Won, Y., Nam, B.: Endurable transient inconsistency in
byte-addressable persistent b+-tree. In: 16th {USENIX} Conference on File and
Storage Technologies ({FAST} 18), pp. 187–200 (2018)

8. Intel: Intel optane dc persistent memory (2019). https://newsroom.intel.com/
news-releases/intel-data-centric-launch/

9. Kalia, A., Kaminsky, M., Andersen, D.G.: Using rdma efficiently for key-value
services. In: ACM SIGCOMM Computer Communication Review, vol. 44, pp. 295–
306. ACM (2014)

10. Kalia, A., Kaminsky, M., Andersen, D.G.: Design guidelines for high perfor-
mance {RDMA} systems. In: 2016 {USENIX} Annual Technical Conference
({USENIX}{ATC} 16), pp. 437–450 (2016)

11. Kim, W.H., Kim, J., Baek, W., Nam, B., Won, Y.: NVWAL: Exploiting NVRAM
in write-ahead logging. ACM SIGPLAN Not. 51(4), 385–398 (2016)

12. Lee, S.K., Lim, K.H., Song, H., Nam, B., Noh, S.H.: {WORT}: Write optimal radix
tree for persistent memory storage systems. In: 15th {USENIX} Conference on File
and Storage Technologies ({FAST} 17), pp. 257–270 (2017)

13. Mitchell, C., Geng, Y., Li, J.: Using one-sided {RDMA} reads to build a fast,
CPU-efficient key-value store. In: Presented as part of the 2013 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 13), pp. 103–114 (2013)

14. Oukid, I., Lasperas, J., Nica, A., Willhalm, T., Lehner, W.: FPTree: a hybrid SCM-
dram persistent and concurrent b-tree for storage class memory. In: Proceedings
of the 2016 International Conference on Management of Data, pp. 371–386. ACM
(2016)

15. Volos, H., Tack, A.J., Swift, M.M.: Mnemosyne: lightweight persistent memory.
ACM SIGARCH Comput. Archit. News 39(1), 91–104 (2011)

16. Wang, K., Alzate, J., Amiri, P.K.: Low-power non-volatile spintronic memory:
STT-RAM and beyond. J. Phys. D Appl. Phys. 46(7), 074003 (2013)

17. Wong, H.S.P., et al.: Phase change memory. Proc. IEEE 98(12), 2201–2227 (2010)
18. Xia, F., Jiang, D., Xiong, J., Sun, N.: Hikv: a hybrid index key-value store for

dram-nvm memory systems. In: 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17), pp. 349–362 (2017)

19. Yang, J., Wei, Q., Chen, C., Wang, C., Yong, K.L., He, B.: Nv-tree: reducing
consistency cost for nvm-based single level systems. In: 13th {USENIX} Conference
on File and Storage Technologies ({FAST} 15), pp. 167–181 (2015)

20. Zawodny, J.: Redis: lightweight key/value store that goes the extra mile. Linux
Mag. 79(8), 1–10 (2009)

https://doi.org/10.1109/ICCD.2018.00045
https://doi.org/10.1109/ICCD.2018.00045
https://newsroom.intel.com/news-releases/intel-data-centric-launch/
https://newsroom.intel.com/news-releases/intel-data-centric-launch/

Distributed and Parallel Ensemble
Classification for Big Data Based

on Kullback-Leibler Random
Sample Partition

Chenghao Wei1, Jiyong Zhang2, Timur Valiullin1, Weipeng Cao1(B),
Qiang Wang3(B), and Hao Long1

1 Big Data Institute, College of Computer Science and Software Engineering,
Shenzhen Univresity, Shenzhen 518000, China

caoweipeng@szu.edu.cn
2 School of Automation, Hangzhou Dianzi University, Hangzhou 311305, China

3 SUSTech Academy for Advanced Interdisciplinary Studies,
Southern University of Science and Technology, Shenzhen 518055, China

wangq8@sustech.edu.cn

Abstract. In this article, we use a Kullback-Leibler random sample par-
tition data model to generate a set of disjoint data blocks, where each
block is a good representation of the entire data set. Every random sam-
ple partition (RSP) block has a sample distribution function similar to
the entire data set. To obtain the statistical measure between them, Ker-
nel Density Estimation (KDE) with a dual-tree recursion data structure
is firstly applied to fast estimate the probability density of each block.
Then, based on the Kullback-Leibler (KL) divergence measure, we can
obtain the statistical similarity between a randomly selected RSP data
block and other RSP data blocks. We rank the RSP data blocks according
to their divergence values in descending order and choose the first ten for
an ensemble classification learning. The classification models are estab-
lished in parallel for the selected RSP data blocks and the final ensemble
classification model is obtained by the weighted voting ensemble strat-
egy. The experiments were conducted by building XGboost model based
on those ten blocks in parallel, and we incrementally ensemble them
according to their KL values. The testing classification results show that
our method can increase the generalization capability of the ensemble
classification model. It could reduce the model building time in paral-
lel computation environment by using less than 15% of the entire data,
which could also solve the memory constraints of big data analysis.

Keywords: Big data analysis · Approximate computing · Random
sample partition · Ensemble classification · Parallel distributed
computing

This work was supported by National Natural Science Foundation of China
(61836005), and the Opening Project of Shanghai Trusted Industrial Control Platform
(TICPSH202003008-ZC).
C. Wei and J. Zhang—Joint first authors.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 448–464, 2020.
https://doi.org/10.1007/978-3-030-60245-1_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_31&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_31

Distributed and Parallel Ensemble Classification for Big Data 449

1 Introduction

One of the biggest challenges of big data analysis is how to perform complex
computation tasks under certain computing resources and within an acceptable
time range. Divide and conquer is the main strategy to deal with big data com-
puting, that is to divide big data into several small data partitions and store
them on cluster nodes for analysis [1]. The Hadoop Distributed File System
(HDFS) is a distributed file system designed to run on distributed computation
nodes, which is highly fault-tolerant and can be deployed on low-cost hardware
[2]. For big data computing, MapReduce [3] is a programming model, where users
can specify a map function that processes a key/value pair to generate a set of
intermediate key/value pairs, and a reduce function that merges all intermediate
values [4]. However, MapReduce programs will result in high I/O cost, it reads
input data from disk, maps a function across the data, reduces the results of
the map function, and stores reduction results on disk. Spark [5] and its RDDs
were developed in 2012 in response to limitations of the MapReduce. The RDDs
function as a working set for distributed programs offers a restricted form of dis-
tributed shared memory. In such a way, memory structure can be used to read
big data into node memory for calculation, which avoids the repeated read and
write disk operations in MapReduce. Although Spark provides many optimized
upper-level libraries, e.g., Sparks MLlib for machine learning, GraphX for graph
analysis, Spark Streaming for stream processing and Spark SQL for structured
data processing [6], the execution efficiency of spark algorithm will be greatly
reduced by iterative operation, especially when the size of the data is heavily
over the memory of cluster [7]. As a result, memory resources become a big data
analysis problem.

Can we use sampling techniques for big data analysis in order to avoid the
bottleneck of memory resources? In the application of data mining, it is unnec-
essary to use the entire big dataset for analysis. A big dataset is an N ∗ d
matrix that contains N observations with d variables. N is extremely high, while
d may be high or not, depending on the context from which the big data origi-
nate. A good sampling technique needs to be designed for the big data analysis
with consideration of cluster storage, I/O costs and manageable size for process-
ing [8]. Current mainstream cluster computing frameworks and engines, such as
Apache Hadoop1, Apache Spark2 and Apache MapReduce3, were implemented
by a shared-nothing architecture, where each node is independent in terms of
both data and resources. The MapReduce and Spark computing models are
adapted to the distributed HDFS data blocks. With such architecture, Record-
Level Sampling (RLS) from an HDFS file becomes time-consuming because
selecting records with equal probability requires scanning the entire data. Instead
of sampling the big data records, Salman proposed the random sample partition
(RSP) storage strategy as an alternative, which enables block-level sampling to

1 Available: http://hadoop.apache.org/.
2 Available: https://spark.apache.org/.
3 Available: http://hadoop.apache.org/docs/current/hadoop-mapreduce-client.

http://hadoop.apache.org/
https://spark.apache.org/
http://hadoop.apache.org/docs/current/hadoop-mapreduce-client

450 C. Wei et al.

speed up big data analysis and it can be also used to estimate the statistical
properties of the entire big data [9].

By increasing the diversity of base classifiers in terms of data disturbance and
attribute disturbance, ensemble learning [10] is to combine several weak train-
ing models to get a better and more comprehensive model for data analysis.
Based on the idea of “good but different”, the generalization performance of the
combined learner is greatly improved. Several research works of ensemble learn-
ing have been done for big data analysis. Ensemble composed of the decision
tree, the gradient boosted trees and the random forest has been proposed for
multi-step forecasting of big data time series [11]. An ensemble learning based
approach towards big data Bayesian network was provided in [12]. A label-aware
distributed ensemble learning strategy was proposed for large scale dataset in
[13]. A low-latency multi-threaded ensemble learning method was proposed for
dynamic big data streams [14]. However, most of them are based on the imple-
mentation of the ensemble algorithm in parallel and few of them consider the
reduction of the computational costs. From the view of big data computation,
neither Bagging nor Boosting can avoid the bottleneck of memory resources due
to the inevitable usage of the entire big dataset. Although an asymptotic ensem-
ble learning framework based on RSP block for big data analysis was proposed
for reduction of processing data [15], the learning framework lacked considera-
tion of the statistical difference between the generated partitions. Meanwhile, it
did not answer the question of how many blocks should we use in the analysis
task. Selective ensemble learning is mainly based on some criteria, and it selects
some of the existing base classifiers to speed up the prediction and classifica-
tion as well as reduce the storage space requirements. It is better to ensem-
ble well selected base learners instead of all of the learners at hand [16] that
could decrease the demands of computer memories and I/O costs. The selective
ensemble learning algorithm can be classified into three types, which are clus-
tering based, ranking based and optimized based algorithms. Clustering based
ensemble learning algorithms usually define a distance to measure the similarity
between based learners for searching those learners with consistent results [17].
In ranking ensemble learning algorithms, base classifiers are sorted based on a
certain index, e.g., weighted training error [18], attribute subset [19], degree of
the signature vector [20] and out-of-bag degree [21], a certain number of base
classifiers are then selected by appropriate stopping criteria. The ensemble learn-
ing algorithm based on optimization strategy gives weight to based classifiers in
the process of base learners merging. It selects the best classifier by sparsity
constraint and optimization algorithm [16,22]. However, most of those selective
ensemble strategies are based on iterative calculation and unavoidable to access
the entire data repeatedly. Compared to the high utilization of memory comput-
ing resources, additional usage of hard disk storage resources can be a trade-off
strategy for solving memory bottleneck. Random sample partition data block
[9], which has the same sample distribution of the entire dataset, were used
for analysis. In this paper, we first use the Kernel Density Estimation (KDE)
method to estimate the probability density function of the generated RSP block

Distributed and Parallel Ensemble Classification for Big Data 451

[9], and then Kullback−Leibler (KL) divergence is applied to the measure sim-
ilarity between RSP blocks, which is a key factor for choosing the data blocks
and ensure the data diversity during ensemble learning.

In Sect. 2, data storage in HDFS and Spark framework are introduced addi-
tionally, sampling method for big data is presented. Then, KDE and KL diver-
gence measures are discussed. Section 3 contains the mathematical definition of
KL-RSP data storage model, and relevant proof of distribution consistency is
provided. Section 4, we introduce the ensemble classification for KL-RSP learn-
ing model for approximate big data analysis and discuss its performance and
extensions. In Sect. 5, we provide the our experiment results. The final conclu-
sion is presented in the Sect. 6.

2 Preliminaries

2.1 Data Storage in HDFS and Spark

A big data set is sequentially chunked into small data blocks, they are distributed
saved on the nodes of a cluster by HDFS [2]. For big data analysis, all the
data blocks belonging to the same big data file will be processed in parallel on
the cluster. By integrating the intermediate results from the local data blocks
processed on local nodes, the final analysis results are obtained for the entire
data set. An HDFS file has a fixed size for each small data block, e.g., 64 MB
or 128 MB. For data safety, three copies of the same data block are usually
stored on three different nodes. The resilient distributed data set (RDD) [6]
is introduced by Apache Spark for providing processing-level distributed data
abstractions. It is held in memory to facilitate the data processing and analysis.
The RDDs APIs are provided to import HDFS files or other data files to Spark
RDD, it controls RDD partitioning and manipulates RDD using a rich set of
operators. Different partitioning methods such as hash partitioner can be used
for the obtained RDD. However, both HDFS data blocks and Spark RDD do not
well cover the statistical characteristics of the entire big data. So, the data blocks
in HDFS files and Spark RDDs cannot directly use in approximate analysis due
to their statistical deviation.

2.2 Sampling Method for Big Data

Sampling is the basis of statistics theory, which extracts one part from all the
respondents according to a certain procedure and do estimation for the origi-
nal data. The evaluation of the obtained samples is mainly carried out in two
aspects. The first one is the value coverage of the sample. We need to obtain the
value range of each attribute in the sample, and then compare it with the corre-
sponding attribute value range in the original data. According to the compari-
son results, we can get the coverage rate of the obtained sample data. Secondly,
the distribution of sample data, which is quite important for machine learning
model. If the strategy is random sampling, it is expected that the distribution

452 C. Wei et al.

Table 1. Common sampling methods

Bernoulli sampling [23,24] Extract data item with equal
probability and random sample size

Simple random sampling [25,26] Extract data item with equal
probability and fix sample size

Stratified random sampling [27] Population was divided into several
layers and samples were extracted
from each layer by simple random
sampling

Boostrapping [28] Extract data items with replacement

of sample data is similar to that of population data. Table 1 summarizes all the
common sampling methods. Bernoulli sampling method [23] operates without
replacement and the sample size is random and not fixed, which is difficult to
estimate the processing latency. Simple random sampling [25] performed with
replacement, which allows each data item to appear one time at most. However,
simple random sampling does not ensure that each group in the original data is
considered fairly in the sample. Compared to simple random sampling, strati-
fied sampling [27] provides higher statistical precision and reduces the sampling
error. Boostrap [28] uses multiple samples with replacement from the observed
dataset, but it requires high computational and I/O costs as it depends on repeat-
edly drawing samples of sizes comparable to the original dataset. Unlike those
sampling strategies without consideration of cluster computation capability, the
RSP model uses additional storage for saving big data with HDFS blocks, whose
distribution is quite similar to that of the entire data set. Figure 1 shows the
distribution of each block after RSP data transformation process. There are two
advantages by using RSP blocks. Firstly, the distribution of the big data itself is
hard to obtained and will cost an extra high amount of computation. RSP blocks
can be used to approximately estimate the density distribution of the big data
and build ensemble models without computing the entire data set. Secondly,
block based sampling can avoid repeatedly scanning big data process caused
by record sampling. Obviously, there exist statistical differences between data
blocks, without consideration of such issues, low generalization of the ensemble
model could be caused indeed.

2.3 Kernel Density Estimation and Kullback−Leibler Measure

In this section, KDE is introduced for RSP block density estimation. KDE was
proposed by Murray Rosenblatt [29] and Emanuel Parzen [30]. It does not intro-
duce a priori assumption of data distribution, only obtains the data distribution
characteristics from the sample itself. It can be used to estimate the density func-
tion of arbitrary shape. It has obvious advantages over the traditional parameter
estimation method and semi-parameter estimation method.

Distributed and Parallel Ensemble Classification for Big Data 453

Fig. 1. Random sample partition storage model [9]

Let D = x1, x2, . . . , xn be a univariate independent and identically dis-
tributed sample drawn from a distribution with an unknown density F . The
kernel density estimator can be achieved by using the followers.

∼
F (x) =

1
n

n∑

i=1

Kh(x − xi) =
1

nh

n∑

i=1

K(
x − xi

h
) (1)

where h is the window width. The kernel function should always satisfy the
following condition: ∫ +∞

−∞
K(u)du = 1 (2)

Let D = X1,X2, . . . , Xn, and Xi is a d-dimensional random variate. The
kernel density estimator of multi-dimension variate can be achieved by using the
followers.

∼
F (x;H) =

1
n

n∑

i=1

KH(X − Xi) (3)

The crucial tuning parameter is the bandwidth H, also called the window width
matrix. It is a symmetric, positive definite, d ∗ d matrix of smoothing parameters.
It is a local weighted averaging estimator with a given observer point X, and
for a data point Xi, the probability mass is smoothed in the local neighborhood

454 C. Wei et al.

according to the scaled kernel to represent the unobserved data points. The most
widely used multidimensional variate kernel function is the normal kernel.

K(X) = (2π)−d/2 exp(−1/2 ∗ XT X) (4)

which is the standard d-dimension variate normal density function. The scaled
normal kernel is

K(X − Xi) = (2π)−d/2|H|T exp(−1/2(X − Xi)T H−1(X − Xi)) (5)

Fig. 2. Left: A KD-tree partitions two dimensional samples. Each node in the kd-tree
records the bounding box for the subset of the dataset it contains (highlighted in blue
color). Right: The center point of different leaf nodes. (Color figure online)

But there are two problems during KDE application for big data computa-
tion. Firstly, using the data indiscriminately and intensively makes the algorithm
have a high time complexity. Selecting the optimal window width needs extra
computing overhead. If the data contains m test samples and n observe samples,
the time complexity of KDE calculation is O(mn), and it will increase with the
data dimension d. Secondly, for KDE calculation of any test sample subject to
the same distribution, all training data need to reside in memory, so that the
spatial complexity of the algorithm is proportional to the capacity of the training
set. When the training set contains massive data, e.g., TB-level data, the task
of reading the data is not feasible. In order to solve this problem, the orthogonal
forward regression was applied to KDE calculation, which has a fast calculation
speed and good calculation accuracy [31]. We applied the Dual-tree recursion to
reduce the computation cost using Eq. (5). We first use a variant of KD-trees [32]
to form hierarchical groupings of points based on their locations using the recur-
sive procedure shown in the following Algorithm 1. After a recursive call of the
dual-tree implementation, it has the following task, for xq ∈ Qnode compute
the contribution to xq’s summed weights that are due to all points in Dnode.
We use simple rectangle geometry to compute the shortest and furthest possible
distances between any (xq, xd) pair. This bounds the minimum and maximum
possible values of Kw(xq - xd). If these bounds are tight enough, we prune by
simply distributing the midpoint weight to all the points in Qnode as shown in
the above figure’s right part [33] (Fig. 2).

Distributed and Parallel Ensemble Classification for Big Data 455

Algorithm 1. KD-BUILD algorithm
Input: Dataset:D = {x1 , x2, · · · , xN} , xi ∈ RD

Output: Sparse tree: T
1: Generate a tree with empty node.
2: Obtain the number of samples TreeN .P
3: Set the left child Node TreeN

L as null.
4: Set the right child Node TreeN

R as null.
5: for d ∈ [1, D] do :
6: Calculate the N.b[d].u by min

x∈p
x[d]

7: Calculate the N.b[d].l by max
x∈p

x[d]

8: end for
9: if |T | is above the leaf threshold then

10: Obtained the N.sd by arg max
1<d<D

N.b[d].u − N.b[d].l

11: Obtained the N.sc by N.b[N.sd].l−N.b[N.sd].u
2

12: Obtained the PL by x ∈ {x ∈ P |x[N.sd] ≤ N.sc}
13: Obtained the PR by x ∈ {x ∈ P |x[N.sd] ≥ N.sc}
14: Obtained the TL by KD-BUILD(PL)
15: Obtained the TR by KD-BUILD(PR)
16: end if
17: Return T

Kullback−Leibler divergence, also called relative entropy, is the difference
measure between two probability distributions [34]. Applications include char-
acterizing the relative Shannon entropy in information systems, randomness in
continuous time-series, and information gain when comparing statistical models
of inference. For discrete probability distributions U and V defined on the same
probability space, χ, the Kullback−Leibler divergence from U to V is defined to
be:

DKL(U ||V) =
∑

x∈χ

U(x) log(
U(x)
V (x)

) (6)

If U and V are distribution of a continuous random variable, the KL divergence
is defined to be the integral form.

DKL(U ||V) =
∫ +∞

−∞
u(x) log(

u(x)
v(x)

)dx (7)

where the u(x) and v(x) denote the obtained RSP probability densities of U
and V. Based on the KDE results, we can use KL measurements to compare the
similarity of distribution between RSP blocks.

3 KL-RSP Data Storage Model

To enable HDFS distributed data blocks to be used as random samples for esti-
mation and analysis of the entire big data set, we use the KL-RSP model to

456 C. Wei et al.

generate a data block for representing big data, which ensures that each data
block is a random sample of the big data set. The main properties of the RSP
model are given in the followers. Let D = {x1 , x2, · · · , xN} be a data set
containing N objects. Let OP be an operation which divides D into a family of
subsets T = {D1, D2, · · · , DK}, where T is called a partition of data set D. It
should satisfy the following two conditions. The first one is all the union of all

sub data sets should be equal to the original big data, which means
K⋃

k=1

Dk = D.

The second one is, for any given two blocks, there is no joint data set between
blocks, which is Di ∩ Dj = ∅, when i, j ∈ {1, 2, · · · ,K} and i �= j. An HDFS file
is a partition of data set D where data blocks {D1, D2, · · · , DK} are generated
by sequentially cutting the big data. Unfortunately, these data blocks in HDFS
files do not have similar distribution properties as the input big data file. The
data blocks in the RSP as defined below can be used as random samples of the
big data set.

Definition 1 (Kullback-Leibler Random Sample Partition): Suppose
D = {x1 , x2, · · · , xN} be a big data set, which is a random sample of a pop-
ulation. F (x) to be the sample distribution function (s.d.f.) of D. Let OP be a
partition operation on D and D =

{
PKL0
1 ,PKL1

2 , · · · , PKLQ−1
Q

}
be a partition

of data set D accordingly. PKLQ−1
Q is called a Kullback−Leibler Random Sample

Partition of D if

E[F̃ (PKLq
q (x))] = F (x), q = 1, 2, · · · , Q, and,KL1 > KL2 > > KLQ−1 (8)

where F̃ (PKLq
q (x)) denotes the sample distribution function of Pq and E[F̃q(x)]

denotes its expectation.

Corollary 1. Let {D1 , D2, · · · , DQ} denote the above Q small blocks. Each
Dk is an RSP data block of D.

Proof: Set Dk =
{

x(k)
1 , x(k)

2 , · · · , x(k)
Nk

}
, k ∈ {1, 2, · · · , Q} and Nk is the

number of objects in Dk. It is obvious that

P
{

Dk =
{

xs1 , xs2 , · · · , xsNk

}}
=

1
CNk

N

, (9)

where xs1 , xs2 , · · · , xsNk
are sNk

objects selected arbitrarily from D. Assume
F (x) is the s.d.f. of D. On one hand, for each real number x ∈ R1, the number of
samples whose values are not greater than x is F (x) · N . On the other hand, for
each data block Dk and object xi ∈ D, P{xi ∈ Dk} = CNk−1

N−1 · 1

C
Nk
N

= Nk

N .

Thus the number of objects in Dk whose values are not greater than x is
F (x) · N · Nk

N = F (x) · Nk. We therefore obtain that the expectation of the
s.d.f. of Dk is 1

Nk
· F (x) · Nk = F (x). According to the definition, Dk is an RSP

data block of D.

Distributed and Parallel Ensemble Classification for Big Data 457

Theorem 1. Let D = {D1, D2, · · · ,DK} . Suppose K = 2 , then D1 and D2 be
two big data sets of D with N1 and N2 objects respectively. By OP operation to
D = {P1, P2, · · ·Pi,Pi+1, · · ·Pj ,Pj+1, · · ·PQ} , i < j < Q. Assume that Pi with
ni objects is an RSP data block of D1 and Pj with nj objects is an RSP data
block of D2. Then, Pi

⋃
Pj is an RSP data block of D1

⋃
D2 under the condition

that ni

nj
= N1

N2
.

Proof: Let F1(x) and F2(x) denote the s.d.f.s of D1 and D2 respectively. Assume
that the s.d.f.s of Pi and Pj are F̃i(x) and F̃j(x), respectively. According to
Definition 2, we have E[F̃1(x)] = F1(x), E[F̃2(x)] = F2(x). For any real number
x, the number of objects in Pi

⋃
Pj whose values are not greater than x is

niF̃i(x) + njF̃j(x). Therefore, the s.d.f. of Di

⋃
Dj is:

F̃ (x) =
niF̃i(x) + njF̃j(x)

ni + nj
.

Similarly, the s.d.f. of D1

⋃
D2 is:

F (x) =
N1F1(x) + N2F2(x)

N1 + N2
.

The expectation of F̃ (x) is

E[F̃ (x)] = E[
niF̃i(x) + njF̃j(x)

ni + nj
] =

niE[F̃i(x)] + njE[F̃j(x)]
ni + nj

=
N1F1(x) + N2F2(x)

N1 + N2

= F (x).

Remark: With a subtle modification, the proof of Corollary 1 can be extended
to data in multiple dimensions and the proof of Theorem 1 can also be extended
to the multiple dimensions and more than two data sets.

Let D = {x1, x2, · · · , xN} be a data set with N objects and M features. To
generate RSP data blocks (i.e., random samples) from D, if N is not big, we can
easily use the following algorithm to convert D into Q RSP data blocks.

4 Ensemble Classification for KL-RSP Data Model

Bagging often considers homogeneous weak learners, learns them independently
from each other in parallel and combines them following a deterministic averag-
ing process. In order to fit several independent models and average their predic-
tions for obtaining a model with a lower variance, users need to create multiple
bootstrap samples so that each new bootstrap sample would act as another pos-
sible independent data set drawn from the true distribution. This method is

458 C. Wei et al.

Algorithm 2. KL-RSP algorithm
Input: Dataset:D = {x1 , x2, · · · , xN}
Output: Dataset:Dp =

{
PKL0

1 ,PKL1
2 , · · · , P

KLQ−1
Q

}

1: Generate N unique random integer numbers for N objects from a uniform distri-
bution;

2: Sort N objects on the random numbers to reorganize D;
3: Sequentially cut N reordered objects into Q small data blocks, each with N/Q

objects.
4: Obtain random sample partition blocks Dp =

{
P+

1 ,P+
2 , · · · , P+

Q

}
5: Calculate the density estimation function with kernel density estimation for gen-

erating F̃ (P1(x)), F̃ (P2(x)), . . . , F̃ (Pq(x))
6: Random selected data block with estimated function F̃ (Pq(x))
7: Calculate the KL measures between the selected data block and the rest block

F̃ (Pq(x)) to generated KL1,KL2,....,KLQ−1

based on the assumption of the data itself is relevant small size. However, in
practice of big data, fit fully independent models is not easy because the data
set itself is big enough. As an offline operation, RSP model generates ready-
to-use disjoint data blocks, which aims to achieve Write-Once-Use-Many-Times
(WOUM) strategy. By considering the statistical difference of RSP blocks, we
proposed a weighted ensemble strategy for classification by using the obtained
the KL measure vector KL = [KL1,KL2,,KLn−1], where n is the number of
RSP block. The final ensemble output Π is given by the following equations.

Π = Sigmoid(
1
q

q∑

i=1

(Π0 +
KLi

i∑
k=1

KLk

∗ Πi) − 0.5),where, q ≤ n, (10)

where Π0 indicates the probability output of the selected base model, KLi is the
i-th KL values and Πi is the i-th output of model. A detail description is shown
in Fig. 3, the first stage is partition of big file to number of small blocks using
random sample partition, and then the RSP block is applied for calculation of
KL parameters. Then, the above equation is used for obtaining the final output
with outputs of selected base models.

5 Experiment Results

A Spark cluster of eight computational nodes was used for the evaluation of the
proposed method. In the cluster, each node has 24 cores, 128 GB RAM, 20 TB
total disk storage, 1 TB total memory, 160 execution containers, Hadoop ver-
sion CDH 5.13.3 and Spark version 2.4.0. Firstly, we tested the RSP generation
algorithm performance in contrast to Bootstrap algorithm. Then, we discussed
about the performance of our ensemble classification strategy using RSP blocks.

Distributed and Parallel Ensemble Classification for Big Data 459

Fig. 3. The procedure of the proposed method

5.1 Sampling Time Efficiency Comparison

In this section, we have done sampling experiments on datasets in Table 2.
Figure 4 shows that the partitioning time of RSP transformation increases almost
linearly with the increase of the data size. In this example, the number of records
in each block is 100000. Compared with records level sampling strategy, RSP
block level sampling strategy greatly saves computational time. On a computing
cluster, an RSP operation OP is saved as an RSP file with metadata, which
contains the storing RSP block information including the size, location and ref-
erence. Selecting the distributed RSP blocks directly as random samples save a
lot of sampling time, especially when many samples are required. For instance,
it takes 10 s−20 s on average to select 10 RSP blocks from 150 GB data and load
them locally using Apache Spark. The Write-Once-Use-Many-Times (WOUM)
strategy enables the success of RSP. To get a record-level sample from an HDFS
file, all the data should be loaded for the selection of records with equal prob-
ability. We show the sampling time of 100000 record samples which is the size
of RSP block without replacement. It is normally done by Boostrap sampling.
These results were produced with Apache Spark by repeating the sample trans-
formation function. When the data size is small, the time costs are generally the
same. However, when the data records increased, the RLS time will be further
increased dramatically. The results illustrate the computational advantage of
generating an RSP from big data and using RSP blocks as random samples.

460 C. Wei et al.

Table 2. Simulated dataset

Data Data size Records Features Data Data size Records Features

SD01 150 GB 150,000,000 100 SD06 400 GB 400,000,000 100

SD02 200 GB 200,000,000 100 SD07 440 GB 450,000,000 100

SD03 250 GB 250,000,000 100 SD08 500 GB 500,000,000 100

SD04 300 GB 300,000,000 100 SD09 550 GB 550,000,000 100

SD05 350 GB 350,000,000 100 SD10 600 GB 600,000,000 100

SD11 650 GB 650,000,000 100 SD12 700 GB 700,000,000 100

SD13 750 GB 750,000,000 100 SD14 800 GB 800,000,000 100

SD15 900 GB 900,000,000 100 SD16 95 GB 950,000,000 100

SD17 1 TB 1,000,000,000 100

Fig. 4. RSP transformation algorithm execution time with different data size

5.2 Ensemble Learning Results

Table 3 illustrates three storage format of HIGGS4. Sixty blocks are used for saving
HIGGS dataset by HDFS. HIGGS RSP1 and HIGGS RSP2 were obtained by the
RSP transformation algorithm with the default HIGGS HDFS file. We randomly
sample 20 blocks from HIGGS default, HIGGS RSP1 and HIGGS RSP2 for the
ensemble classification, dual-treeKDEalgorithmwas applied to 20 of them for den-
sity estimation and then KL measurement is applied to them. The first 10 blocks
with large KL values were used for training strong base classifiers with XGboost5

algorithm, 5 RSP blocks data were used for validation and the rest 5 RSP blocks
data were applied to testing. We set the parameter objective as binaryLogistic for
bi-classification during training. Other parameters of XGboost model are obtained

4 Available: http://archive.ics.uci.edu/ml/datasets/HIGGS.
5 Available: https://xgboost.readthedocs.io/en/latest/.

http://archive.ics.uci.edu/ml/datasets/HIGGS
https://xgboost.readthedocs.io/en/latest/

Distributed and Parallel Ensemble Classification for Big Data 461

Table 3. HIGGS dataset

Data Records per each block Block number

HIGGS HDFS 180000 60

HIGGS RSP1 55000 200

HIGGS RSP2 27500 400

by grid searching method during training. We set the range of maxDepth as [3, 10]
and eta as [0.1, 0.3]. According to the proposed ensemble strategy, we increase the
base model for calculating the final classification accuracy.

Fig. 5. Ensemble classification results with different number of ensemble models

Figure 5 shows the change of the classification accuracy over the number of
ensemble models. The figure shows that all the classification accuracy increases
as the increase of the ensemble models. But, the model built on traditional
HDFS blocks shows a decrease when the number of ensemble model reaches
to eight. This is due to the fact that each HDFS block cannot represent the
entire big data. By using such data block, the base learning model will cause low
generalization. Compared with model using the HDFS RSP1, HDFS RSP2 shows
a high classification accuracy. And less than 15% of the entire data is enough for
building a stable model. We agree that the bigger number of records in each RSP
block will lead to a high classification results finally. Figure 6 shows the time costs
of kernel density estimation and model training. The time costs include three
main parts, which are the Spark task computation time, job scheduling time
and job communication time. As can be seen from the figure, we can conclude
that the original HDFS blocks still need to chunk into small ones under the
iterative computation task. Due to fewer records, the HDFS RSP2 shows a low
computation cost compared to that of HDFS RSP1.

462 C. Wei et al.

Fig. 6. Left: Time cost of XGboost training in parallel. Right: Time cost of Duel-Tree
KDE in parallel

6 Conclusion

In this paper, we use a random sample partition (RSP) data model to generate
a set of disjoint data blocks file. Each RSP block has a sample distribution func-
tion, which is similar to the entire data set. Kernel Density Estimation (KDE)
with a dual-tree recursion data structure is applied to estimate the probability
density of each block. Based on the Kullback−Leibler (KL) divergence mea-
sure, we test the density function similarity between a random RSP block and
the others, and similarity orders of all blocks are obtained for further ensemble
classification learning. We select ten data blocks with KL descending order for
the implementation of the ensemble classification model with XGboost based
learners in parallel. The experiment results show that our method can increase
the generalization capability of the ensemble classification model. By using less
than 15% of the entire data, the model building time in parallel computation
environment is reduced. With small data blocks, the memory constraints of big
data analysis are solved.

References

1. Chen, B.W., Wen, J., Seungmin, R.: Divide-and-conquer signal processing, feature
extraction, and machine learning for big data. Neurocomputing 174, 383 (2016)

2. Shvachko, K., Kuang, H., Radia, S., Chansler, R.: The hadoop distributed file
system. In: IEEE 26th Symposium on Mass Storage Systems and Technologies,
pp. 1–10 (2010)

3. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM. 51(1), 107–13 (2008)

4. Elteir M., Lin H., Feng W.C.: Enhancing mapreduce via asynchronous data pro-
cessing. In: IEEE International Conference on Parallel and Distributed Systems,
pp. 397–405 (2010)

5. Zaharia M., Chowdhury M., Franklin M.J., Shenker S., Stoica I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd USENIX Conference on
Hot Topics in Cloud Computing, pp. 10 (2010)

Distributed and Parallel Ensemble Classification for Big Data 463

6. Salloum, S., Dautov, R., Chen, X., Peng, P.X., Huang, J.Z.: Big data analytics on
apache spark. Int. J. Data Sci. Anal. 1, 145–164 (2016)

7. Lei G., Huan L.: Memory or time: performance evaluation for iterative operation on
hadoop and spark. In: IEEE 10th International Conference on High Performance
Computing and Communications, pp. 721–727 (2013)

8. Wu, X., Zhu, X., Wu, G.Q., Ding, W.: Data mining with big data. IEEE Trans.
Knowl. Data Eng. 26(1), 97–107 (2014)

9. Salloum, S., Huang, J.Z., He, Y.L.: Random sample partition: a distributed data
model for big data analysis. IEEE Trans. Ind. Inform. 15(11), 5846–5854 (2019)

10. Dong, X., Yu, Z., Cao, W., Shi, Y., Ma, Q.: A survey on ensemble learning. Front.
Comput. Sci. 14(2), 241–258 (2020)

11. Galicia, A., Talavera, L.R., Troncoso, A., Koprinska, I., Martnez, A.F.: Multi-step
forecasting for big data time series based on ensemble learning. Knowl. Base Syst.
163, 830–841 (2018)

12. Tang Y., Wang Y., Cooper K.M.L., Li L.: Towards big data Bayesian network
learning - an ensemble learning based approach. In: IEEE International Congress
on Big Data, pp. 355–357 (2014)

13. Shadi, K., Patrick, M., Rebecca, Y.: Label-aware distributed ensemble learning: a
simplified distributed classifier training model for big data. Big Data Res. 15, 1–11
(2019)

14. Diego, M., Eduard, A., Jose, R. Herrero, R.J., Bifet, A.: Low-latency multi-
threaded ensemble learning for dynamic big data streams. In: IEEE International
Conference on Big Data, pp. 223–232 (2017)

15. Salman, S., Joshua, Z.X.H., He, Y.L., Chen, X.J.: An asymptotic ensemble learning
framework for big data analysis. IEEE Access 7, 3675–3693 (2019)

16. Zhou, Z.H., Wu, J.X., Tang, W.: Ensembling neural networks: many could be better
than all. AI 137(1–2), 239–263 (2002)

17. Giancinto, G., Roli, F.: An approach to the automatic design of multiple classifier
ensembles. Pattern Recogn. Lett. 22(1), 25–33 (2001)

18. Cheng X.Y., Guo H.L.: The technology of selective multiple classifiers ensemble
based on kernel clustering. In: International Symposium on Intelligent Information
Technology Application, pp. 146–150 (2008)

19. Martinez, M.G., Suarez, A.: Using boosting to prune bagging ensembles. Pattern
Recogn. Lett. 28(1), 156–165 (2007)

20. Martinez M.G., Suarez A.: Pruning in ordered bagging ensembles. In: Proceedings
of the 23rd International Conference on Machine Learning, pp. 609–368 (2006)

21. Breiman, L.: Out-of-bag estimation. Statistics deparment in university of Califor-
nia, Technical Report (1996)

22. Zhang, L., Zhou, W.D.: Sparse ensembles using weighted combination methods
based on linear programming. Pattern Recogn. Lett. 44(1), 97–106 (2011)

23. Fan, C.T., Muller, M.E., Rezucha, I.: Development of sampling plans by using
sequential (item by item) selection techniques and digital computers. J. Am. Stat.
Assoc. 57(298), 387–402 (1962)

24. Haas, P.J.: Data-stream sampling: basic techniques and results. Data Stream Man-
agement. DSA, pp. 13–44. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-540-28608-0 2

25. Oliphant, T.E.: SciPy: open source scientific tools for python. Comput. Sci. Eng.
9(3), 10–20 (2007)

26. Swami, A., Jain, R.: Scikit-learn: machine learning in python. J. Mach. Learn Res.
12(10), 2825–2830 (2013)

https://doi.org/10.1007/978-3-540-28608-0_2
https://doi.org/10.1007/978-3-540-28608-0_2

464 C. Wei et al.

27. Podgurski, A., Yang, C.: Partition testing, stratified sampling, and cluster analysis.
ACM SIGSOFT Softw. Eng. Notes 18(5), 169–181 (1993)

28. Kleiner A., Talwalkar A., Sarkar P., Jordan M.I.: The big data bootstrap. In:
Proceedings of the 29th International Conference on Machine Learning, pp. 1787–
1794 (2012)

29. Rosenblatt, M.: Remarks on some nonparametric estimates of a density function.
Ann. Math. Stat. 27, 832–837 (1956)

30. Parzen, E.: On the estimation of probability density functions and mode. Ann.
Math. Stat. 33, 1065–1076 (1962)

31. Chen, S., Hong, X., Harris, C.J.: Sparse kernel density construction using orthogo-
nal forward regression with leave-one-out test score and local regularization. IEEE
Trans. Syst. Man Cybern. Part B Cybern. 34(4), 1708–1717 (2004)

32. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

33. Gray, A.G., Moore, A.W.: ‘N-Body’ problems in statistical learning. In: Advances
in Neural Information Processing Systems, vol. 4, no. 1, pp. 521–527 (2001)

34. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1),
79–86 (1951)

SWAF: A Distributed Solar WSN Adaptive
Framework

Yuekun Hu1, Dongchao Ma2(B), Xiaofu Huang2, Xinlu Du2, and Ailing Xiao2

1 Beijing University of Posts and Telecommunications, Beijing, China
16151010124@mail.ncut.edu.cn

2 North China University of Technology, Beijing, China
madongchao1980@wo.cn

Abstract. This article comes from a solar WSN air monitoring system deployed
outdoors. We find that two issues have not been properly resolved: 1, The actual
deployment environment of the node has a part time shadow, resulting in a sig-
nificant reduction in the accuracy of solar prediction algorithms. 2, The length of
solar prediction and the topology adjustment period have a great influence on the
network lifetime. According to the above, this paper proposes a distributed Solar
WSN Adaptive Framework (SWAF), designs a distributed method to distinguish
the shadow time of nodes and a dynamic method to select the charging prediction
period, which can effectively integrate the existing charging prediction algorithm
and energy aware routing algorithm. The experimental results show that SWAF
can reduce node mortality, and thus improve network lifetime. Compared with the
case of simply using the existing prediction model and the routing algorithm, the
SWAF can increase the network lifetime by 5%–27%.

Keywords: Energy harvesting wireless sensor networks · Maximum lifetime ·
Charging prediction algorithm · Energy aware routing · Micro-solar power
system · Prediction period

1 Introduction

Considering the cost of photovoltaic panels, lithium-ion capacitors and other charging
and energy storage devices, the application of solar WSN needs effective solar charging
prediction (SCP) algorithm [1, 2, 6, 11, 12] and energy aware routing strategy [3, 4, 13].
Although some “permanent” experimental systems are proposed [5], research in this
field is actually not sufficient. Based on such existing research, we have tried to make
a WSN prototype system (based on solar energy) for air monitoring in the education
and scientific research project, which is used to collect the basic air indexes such as
CO2, nitrogen oxide, temperature and humidity in Shijingshan District (Shougang old
Industrial Zone) in Beijing. However, during the trial operation of the system, we found
that its working status was unsatisfactory. For example, the node mortality rate was high,
and the network lifetime and other indicators were lower than expected. After a simple
analysis of the data, we find the following two reasons: First, the accuracy of the SCP is

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 465–479, 2020.
https://doi.org/10.1007/978-3-030-60245-1_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_32&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_32

466 Y. Hu et al.

significantly lower than expected [1, 2, 11]. Secondly, it is difficult to set the charging
prediction period. The following is a brief analysis of these two issues.

First of all, the existing SCP can indeed achieve a high accuracy rate in the open area
and fixed orientation scenes [1, 2, 6, 11, 12]. But in the actual deployment practice in the
city, the size of the node is very small, and the deployment environment is also different.
During the effective lighting time (for example, 8AM–5PM in winter), some nodes are
seriously shaded, andmay even reachmore than half of the time. In these shadow scenes,
the accuracy of SCPs is greatly affected. In this case, the prediction result is used as an
input for energy aware routing, which causes some hotspot nodes to run out of power.
Secondly, there are some difficulties in setting the prediction period. If the setting is too
large, it may lead to the repeated death and resurrection of the node; if the setting is too
small and ignores long-term weather changes, the short-sighted adjustment of routing
will also lead to the early end of network lifetime.

The above two aspects are the reasons for the poor operation of the environmen-
tal collection system we deployed. In conclusion, we believe that the accuracy of the
existing algorithms and the optimal effect of the routing algorithm basically meet the
requirements. However, how to effectively integrate these new technologies and apply
them to “field system” needs to solve the following two problems: 1. The shadow in the
complex deployment environment of small nodes. 2. When to predict the solar energy
and adjust the network topology.

The main motivation of this paper is to propose a distributed Solar WSN Adaptive
Framework for the above problems, and integrate some recent research programs to
focus on solving the adaptation problems. See Sect. 3 for details.

This paper makes the following contributions:

1. For the first time, a set of Solar WSN Adaptive Framework (SWAF) is proposed,
including three main levels of charging prediction, individual feature adaptation,
energy aware routing and scheduling.

2. Aiming at the adaptation problem between the SCP and the individual environment,
a distributed node shadow judgement algorithm is given in the SWAF adaptation
layer, which effectively improves the accuracy of the SCP in complex deployment
environments and effectively reduce computing costs.

3. Aiming at the problem of prediction and topology adjustment period selection, a
dynamic selection algorithm is presented. Prediction can be performed only when
necessary, and the node mortality is reduced with low computational cost.

The rest of the paper is organized as follows: Sect. 2 analyzes the research status
of the SCP and energy aware routing, and shows the research motivation of the SWAF;
Sect. 3 gives the distributed Solar WSN Adaptive Algorithm (SWA). Section 4 analyzes
the optimization effect and the required cost through experiments.

2 Related Work and Problem Analysis

The following describes the relevant research and problem analysis from three aspects,
including the applicability of the SCP in the complex individual environment where

SWAF: A Distributed Solar WSN Adaptive Framework 467

small nodes are located, the impact of the prediction period on network lifetime and
node mortality, and energy aware routing algorithms.

2.1 SCP and Applicability

The routing adjustment considered solar prediction is more profitable for the WSN
lifetime than that based only on the remaining power [9]. SCPs can generally be divided
into machine learning-based and statistics-based.

In machine learning, Bao Y [1] proposed a combined prediction model ANN-Linear
combining artificial neural network and linear model. The algorithm can select different
models for prediction according to the length of the period. Rodriguez [11] and others
proposed an artificial neural network model (ANN) to predict the amount of solar power
generated by photovoltaic generators in the next 10 min and verified the correctness of
the results. The difference between the predicted energy and the actual energy produced
is about 0.5–9%, indicating that the model can be applied to systems with integrated
solar generators.

To predict energy, the statistical model uses different statistical data, such as average,
moving average, standard deviation, and variance.Muhammad [2] proposed a statistical-
based prediction model Ipro-Energy, which has a significant improvement in short-
term and medium-term prediction accuracy. In addition, Ahmed et al. [12] proposed a
lightweight linear energy prediction model LINE-P for sensor network nodes based on
abstract approximation theory, and achieved high prediction accuracy for both solar and
wind energy.

Whether it is a SCP based on machine learning or statistics, it already has more than
80% accuracy, and has actual conditions of use. However, due to the differences in the
environment of large-scale photovoltaic power plants and the small rechargeable nodes,
the SCP cannot be directly copied. Existing SCPs ignore the features of small nodes that
are sensitive to precise locations (such as buildings, tree shadow, orientation, etc.), and
mostly only use atmospheric temperature, wind speed, cloudiness, and historical power
generation data of sensor nodes as input variables of the model to make predictions.
This is not suitable for nodes that are actually deployed outdoors rather than ideally
placed. We find that the light intensity under shadow has a certain rule through actual
measurements. When the node is inside the shadow, its charging power is approximately
constant (about 1.14 W/m2). Therefore, it is proposed to introduce a shadow judgement
method based on geographical and geometric knowledge to calculate the time of nodes
in the shadow. Integrated with the existing high-precision SCP, it can effectively solve
the charging prediction problem of smaller nodes in the messy individual environment.

2.2 Influence of Prediction Period on Network Lifetime

The data collection system of theWSNwe made is used to collect the main indicators in
the air such as CO2, nitrogen oxides and temperature of Shijingshan District (Shougang
Old Industrial Zone). After a period of actual operation, we found that the mortality
rate of the node was high. And no matter whether the prediction period is increased
or decreased, the problem still exists. This problem will be more obvious in the period
when the data collection frequency is high or the solar condition is bad. By carefully

468 Y. Hu et al.

analyzing all the records of the system, we found that the length of the prediction period
will significantly affect the lifetime of the network.

The essential reason is that considering the calculation cost, the granularity of the
prediction period cannot be too small, the fixed-period approach may encounter two
situations: some nodes have less remaining energy, but subsequent charging is fast; some
nodes have sufficient remaining energy, but subsequent charging is slow. Therefore, the
prediction period needs to be dynamically adjusted according to theweather and network
status in order to reduce the risk of node death and extend the lifetime of the network.

2.3 Energy-Aware Routing Strategies

According to its technical characteristics, the existing energy aware routing algo-
rithms can be divided into two categories: energy-efficient routing schedule and data
compression transmission.

The technical characteristic of energy aware routing scheduling is to schedule some
nodes to enter the sleep state, and to distribute the data traffic to the nodes with sufficient
residual power depending on the routing strategy. Lu [3] proposed an energy-efficient
data sensing and routing scheme (EEDSRS), so that the EH-WSN can use the harvested
energy wisely for data sensing and transmission according to current available energy
to maximize network utility and route all the collected data to the sink along energy-
efficient paths. Lv [4] proposed a sparsity feedback-based compressive data gathering
algorithm. The algorithm first estimates the sparsity accurately, then adaptively adjusts
the number of measurements for accurate reconstruction. The algorithm solves the prob-
lem of balancing energy balance amongst sensor nodes. Zhang [13] studied the problem
of allocating sensor energy, sensor data rates, and data routing in an energy harvesting
sensor network for a given monitoring period T, such that the utility sum of temporally
correlated sensing data collected during the period T is max- imized.

The research of data compression transmission is to reduce the times of data trans-
mission by means of cache forwarding or compression in the data collection process.
Tan et al. [14] gave an upper bound on WSN lifetime optimization and proposed a
method for generating a distributed data aggregation tree that increases the lifetime of
the network. This method can support continuous optimization in the process of nodes
continuously joining and exiting. Similar research also includes the heuristic algorithm
recently proposed by Lin [15] et al. Its characteristic is the introduction of transmitting
power parameters that can be adjusted with the communication distance.

3 Solar WSN Adaptive Algorithm (SWA)

This section proposes a distributed SolarWSNAdaptive Framework and integrates some
recent research programs to focus on solving the adaptation problems.

As Fig. 1, the top-level SCP can obtain important parameters for network operation,
which is the consensus of such research [1, 2, 11]. Existing SCP research is relatively
sufficient, and it is considered to be introduced into this framework in an integratedmode.
Later in the experimental part, we try to introduce a variety of SCPs. In addition, the
underlying energy-aware routing algorithm also has a wealth of options for integration

SWAF: A Distributed Solar WSN Adaptive Framework 469

into the framework. For example, the EEDSRS [3]model integrates node scheduling and
routing algorithms, attaches importance to predicted charge as an input parameter, and is
suitable for the application scenario of this article. For another example, the DLEX-DAG
[4] model can compress the data according to the sparseness of the collected data, and
then balance the remaining energy of each node, which is suitable for a network where
nodes are densely deployed. The EEDSRS model is integrated into the system of this
paper as representative of energy-aware routing algorithm.

Individual Adapta�on Layer

Loca�on-dependent
Shadow Jundgment

Periodic Dynamic
Adjustment

Evalua�ng
Indicators

Node
Mortality

Maximum
Throughput

Network
Latency

Network
Energy

Consump�on

...

Node Death Risk
Judgment

SCP Layer (Replaceable Algorithm)

Sta�s�cal Models Machine Learning
Based Models Stochas�c Models...

Energy-aware Rou�ng Layer

Energy
Measurement

Energy-efficient
Rou�ng

Node
Scheduling

Data
Compression...

Fig. 1. Solar WSN adaptive framework (SWAF)

As shown in the middle layer of Fig. 1, this paper mainly focuses on the applicability
of the SCP in the complex environment (shadow occlusion) of small nodes, described
in Sect. 2.1, and the reasonable selection of the prediction period described in Sect. 2.2,
adding the individual node feature adaptation layer (Fig. 1). These include shadow judge-
ment algorithms, dynamic period adjustment strategies, and node death risk judgement
methods, which specifically solve several key adaptive problems in the integration of
existing technologies, thereby improving network lifetime. In addition, considering the
scalability problem of the centralized computing burden as the node scale increases, the
distributed computing under the “full power” state of the node is introduced to reduce
the server’s computing burden.

In this section, we first introduce the node death risk judgment method and shadow
judgment method, and give the SWA algorithm in Sect. 3.3. Specific parameters are
shown in Table 1:

3.1 Judging the Risk of Node Death

In order to facilitate the description, this section first gives a method for judging whether
a node has a risk of death in the case of accurately predicting the future charging.

Theorem 1. If (i). The current charging power Pc of the node is equal to the minimum
value of the charging power in the next n collection cycles, and (ii). During this nT time,
there is Er+Ec

nT > Pe. These two conditions ensure that the node has no risk of death
during this nT time. (Ec < Ef)

470 Y. Hu et al.

Table 1. Variable description

Parameters Meaning

V Set of nodes

T Collection cycle

Ei
r Current remaining capacity of node i

Pif
Charging power prediction of node i

Pic Current charging power of node i

step Prediction period

Ei
c Ei

c = Pic × step

Ei
f Ei

f = Pif × step

Pie Power consumption of node i

Proof: If theminimumvaluePc is taken as the average charging power in then collection
cycles, and the current remaining power of the node plus the amount of charge during
this period is greater than the power consumption, i.e. Er + Pc × nT > Pe × nT ,
equivalent to Er +Ec

nT > Pe, therefore, the node can be guaranteed to survive in this nT
time.

Theorem 2. If (i). The current charging power of the node is not less than the aver-
age charging power in the next n collection cycles, i.e. Ec ≥ Ef , (ii). Let Pi denote
the average charging power of the ith collection cycle in this nT time, then there is x
∈ [0, n], which satisfies P1,P2,P3, . . . ,Px ≥ Pf , Px+1,Px+2, . . . ,Pn ≤ Pf , (iii).

Meet
Er+Ef
nT > Pe in the future nT time. These three conditions ensure that the node

has no risk of death during this nT time.

Proof: It is easy to obtain by analysis, and the condition for the node to survive in the
ith collection cycle is:

Er +
i∑

j=1

Pj × T ≥ i × Pe × T (1)

If m ∈ [1, x], by P1,P2,P3, . . . ,Pm ≥ Pf , there is P1 + P2 + . . . + Pm ≥ mPf ,

Er +
m∑
j=1

Pj × T ≥Er + Pf × mT . According to condition c, Er + Pf × nT >

Pe × nT , then m
n Er + Pf × mT > Pe × mT .

By m < n, Er + Pf × mT > m
n Er + Pf × mT , i.e. Er +

m∑
j=1

Pj × T >Pe ×mT .

Therefore, The node has no risk of death within [0, xT].

SWAF: A Distributed Solar WSN Adaptive Framework 471

If m ∈ [x + 1, n], then

Er +
m∑
j=1

Pj × T = Er + Pf × nT − Pn − Pn−1 − . . . − Pm+1

= Er + Pf × mT + Pf × (n − m)T − Pn − Pn−1 − . . . − Pm+1

≥ Er + Pf × mT > m
n Er + Pf × mT > Pe × mT

(2)

Therefore, the node also has no risk of death in [(x + 1)T, nT], i.e. the node can be
guaranteed to survive in this nT time.

In summary, when the prediction period is ‘step’, if certain conditions are met and

Er + min
(
Ec,Ef

)

step
> Pe (3)

The node can be considered to have no risk of death.

3.2 Judgement Method of Shadow

This section presents a simple way to calculate whether a building shadowwill occlude a
node at a particularmoment. The purpose of thismethod is to improve the accuracy of the
SCPs and reduce the prediction overhead. We have learned through a lot of experiments
that when a node is blocked by the shadow of a nearby building, its charging power
tends to approach a fixed value Pin_shade (about 1.14 W/m2), which has little to do with
weather and other factors. Therefore, if it is known that the node will be shadowed by
nearby buildings in a certain period in the future, the charging power of the node in this
period can be directly set to the constant Pin_shade. This significantly reduces the number
of times the SCP is run and reduces the computational burden. Many literatures have
given low-cost three-dimensional map collection methods [7]. Therefore, this paper uses
these three-dimensional maps and the basic knowledge of geography and geometry, only
taking the coordinates of the nodes as input, can simply calculate the time range of nodes
being shaded.

As Fig. 2a, a three-dimensional Cartesian coordinate system is established, and the
rectangular parallelepiped A-H represents the vertices of the building. Figure 2b shows
the projection of the building on the ground plane. It is assumed that the plane composed
of xOy is the ground plane, the node is at the origin O, the y-axis direction is the north
direction, the building is a rectangular parallelepiped, and its bottom surface is a rectangle
ABCD. The regulations are as follows:

1. In the figure at the bottom of the building, the point closest to the southwest is point
A, and its coordinate is (a, b).

2. The solar elevation angle is HA and the azimuth is A [8].
3. The angle between the extension of the line segment AD and the east-west direction

(x-axis) is θ (0° ≤ θ < 90°).
4. The building length AD is l, the building width AB is d, and the building height AE

is h.

472 Y. Hu et al.

0(Node) x

y

A B
C

North
E F

G
z

0(Node) x

A
B

C
D

North

a) b)

Fig. 2. Building and building floor.

When the sun’s rays hit the building from different angles, one of the following 4
cases will occur: Case 1. Cut to the edge FE and edge HE; Case 2. Cut to the edge EF
and edge GF; Case 3. Cut to the edge FG and edge HG; Case 4. Cut to the side EH and
edge GH. The conditions for determining the node being obscured by the shadow of the
building in Case 1 are given below.

− cot A(a + d sin θ) + b + d cos θ ≥ 0 and − a cot A + b ≤ 0 and

cot θ

(
−a + h sin A

tan HA

)
+ b − h cos A

tan HA
≥ 0 and − a cot θ + b ≤ 0

or

− a cot A + b ≥ 0 and − cot A(a + l cos θ) + b − l sin θ ≤ 0 and

a tan θ + b ≥ 0 and tan θ

(
a − h sinA

tanHA

)
+ b − h cosA

tan HA
≤ 0 (4)

The shadow judgement process in the other three cases is similar to that in case 1,
so it is omitted here.

3.3 SWA Algorithm

This section gives the SWA algorithm. The main purpose of the algorithm is to solve
the applicability of the SCP in the complex environment (shadow occlusion) of small
nodes and the selection of the prediction period. In addition, considering the scalability
problem of the centralized computing burden as the node size increases, the distributed
computing under the “full power” state of the node is introduced to reduce the computing
burden on the server. Details are as follows: if the server is used to centrally calculate
the shadow judgement algorithm, when the number of nodes is large, the computational
cost will increase approximately linearly. According to an actual measurement, when
the server undertakes 20,000 nodes, it takes about 10 min to run the shadow judgement
algorithm each time. In the morning or afternoon, due to the low sun height, the nodes
are easily blocked by building shadows. The SWA algorithm may be triggered multiple
times in a short period of time, significantly increasing the server’s computational burden.
Considering that distributed computing has good applications in many aspects [16–20],
this article introduces it to reduce the computing burden of the server. After actual
measurement, the running time of the shadow judgement algorithm on the node with

SWAF: A Distributed Solar WSN Adaptive Framework 473

capacitance 124 J only takes 2ms, and consumes about 0.6mJ (accounting for 0.00048%
of the node capacitance). In terms of computing energy consumption, considering that
the node is often in a “full power” state for some time, allowing the node in the full
power state to run this algorithm can effectively reduce the burden on the server.

Figure 3 shows the main process of the algorithm. Among them, the reason for
performing the second step ‘Adjusting the ‘step’ by the shadow’ is as follows: As shown
in Fig. 4a and Fig. 4b, the node charging power does not satisfy the conditions described
in Theorem 1 (i) and Theorem 2 (ii) due to the decrease and rise. The main reason is
that the node is occluded. Therefore, the prediction period should be properly adjusted
according to the shaded time of the nodes to ensure that the node charging power satisfies
the two theorems in the prediction period.

Fig. 3. The basic flow of SWA algorithm.

gnigrahc po
w

er

T 2T0

Pf

Pc

nT... �me
...

gnigrahc
r e

wop

T 2T0

Pf
Pc

nT... �me
...

a) b)

Fig. 4. Case 1 and case 2.

474 Y. Hu et al.

The SWA algorithm is as follows:

SWAF: A Distributed Solar WSN Adaptive Framework 475

Table 2. Parameter settings

Configuration Value

Number of nodes 20~200

Communication radius 8 m

Initial power of the node 40 mWh

Deployment density (even) 0.625/m2

Default collecting cycle 1/s

Sink location Center of the circle

Photovoltaic panel area 110 * 80 (mm2)

Photovoltaic panel conversion efficiency 18%

Energy consumption (sending) 0.268 J/time

Energy consumption (receiving) 0.161 J/time

Unit time 5 min

4 Experimental

This section simulates the SWA algorithm for the following purposes. 1) According to
the SWA algorithm in Sect. 3, verify the effectiveness of the existing SCPs, including
ANN linear [1], Ipro energy [2], and a routing algorithm named EEDSRS [3] combined
with the SWA algorithm, and integrating them into SWAF. The main purpose is to
verify the reduction of power consumption and the improvement of network lifetime
compared with the original algorithms without SWA algorithm (NO-SWA). 2) Analyze
the cost of topological reorganizations and time complexity in the SWA algorithm.
Detailed parameters are shown in Table 2. Among them, the conversion efficiency of
photovoltaic panels is determined by actual measurements. The energy consumption of
the data transmission is used the high-accuracy power monitor (Monsoon FTA22) on
the TI CC 2538 node.

The solar data required for the experiment came from the actual data of Denver, USA
in January 2018, published by the US Renewable Energy Laboratory. The ANN-linear,
Ipro-energy, EEDSRS and SWA algorithm are implemented, the resulting of prediction
period length and harvested energy are used as input to the EEDSRS. The EEDSRS is
implemented in PyCharm, the network energy consumption and node residual energy
are transmitted back to the SWA algorithm.

First, the Denver solar irradiance data from January 2 to 31, 2019 was used to
verify the prediction accuracy improvement and prediction cost reduction brought by
the judgement method of shadow. Three predictionmodels, ANN-linear [1], Ipro-energy
[2], and ANN [11], are tested here. As described in Sect. 3.2, it is assumed here that the
angle θ is 0, the building is 50 m long, 30 m wide, and 100 m high, and the point A
coordinate is (0,−40). Therefore, by running the shadow judgement algorithm, it can be
obtained that the node is blocked by the building shadow every day in the time period of
about 7:30–12:00. Figure 5 shows the solar irradiance prediction error of the prediction

476 Y. Hu et al.

period of 1 h. Since it is impossible to train each node one by one in actual use, the
training set uses solar irradiance data without shadow. We use two commonly used error
evaluation indicators, MAE and RMSE, focusing on the prediction error value. From
Fig. 5, after adding the shadow judgement algorithm, the prediction error of the prediction
algorithm under the two prediction error indicators has decreased significantly. It can be
seen that the shadow judgement is of great practical significance. In addition, there is
no need to use a more complicated SCP for prediction during the time when the node is
shaded, which also reduces the computational cost.

Fig. 5. Comparison of forecast errors under 1 h prediction period.

It can be seen from Fig. 6a that under the LST1, in the case of ANN-linear and
Ipro-energy using SWA algorithm, nodes harvest 7~25 J and 2~16 J of energy in a time
unit. In the case of NO-SWA (120 min), the nodes consume an average of 60–103 J
and 65–95 J of energy in a time unit. This is because the core idea of the EEDSRS is to
reduce the workload of nodes with less residual energy at the expense of increasing hops.
In this situation, the total energy consumption of the network becomes greater, and we
call this “Expand Hops”. Compared with the NO-SWA algorithm, the SWA can capture
some nodes with less residual energy at the moment but more harvest energy in the
future. Since there are more solar charges for such nodes subsequently, they will not die.
Therefore, letting such nodes continue to work can effectively avoid the phenomenon of
“Expand Hops” and significantly reduce the average energy consumption of the entire
network. From Fig. 6b, under the life standard of death of 50% node death (hereinafter
referred to LST2) [10], the nodes using SWA have more energy harvested in a time
unit than LST1, reaching 6 to 40 and 9 to 28 J. However, based on the NO-SWA, the
nodes consume 27 to 98 and 34 to 58 J in a time unit. This is because the LST2 has
a looser requirement for network death, the SWA effect is more significant, and the
average energy consumption of the node is lower than that under the LST1.

From Fig. 7a, under the LST1, the ANN-linear and the Ipro-energy based on SWA
have a lifetime increase of 5% to 7% compared to theNO-SWAalgorithm. Because LST1
defines the network death more severely, SWA has less advantages. From Fig. 7b, under

SWAF: A Distributed Solar WSN Adaptive Framework 477

Fig. 6. Average energy change of nodes in a unit time.

the LST2, the SWA has a network life increase of 23% to 27% compared to NO-SWA.
Figure 8a and Fig. 8b show the network lifetimes under LST1 and LST2 in the form of
CDF indicators.

Fig. 7. Network lifetime.

Fig. 8. Network lifetime CDF.

In this simulation experiment, we deployed the nodes in a complex environment,
including buildings, trees, shadows, and cloudy conditions. Therefore, the frequency of
SWAis faster. It can be seen fromFig. 9a that the number of network topologyoscillations
based on the SWA is 1.5 to 1.8 times of NO-SWA. In the case of frequently changing
charging conditions, we extend network life at the cost of increasing the number of
topological oscillations.

478 Y. Hu et al.

Fig. 9. Topology oscillation and calculation times.

From Fig. 9b, the time complexity of the SWA algorithm is between the two NO-
SWAs (25 min, 120 min). This is because the longer the prediction period, the fewer the
number of predictions and vice versa. Compared to NO-SWA with a prediction period
of 120 min, the SWA algorithm exchanges approximately 25% lifetime extension with
approximately 46% time overhead.

5 Conclusion and Prospect

In order to avoid the problem of node death caused by the prediction period, the SWA is
proposed by judging the death risk and the shadow of the individual position difference
of the node. The experimental results show that the SWA improves the network lifetime
by 7% (LST1) and 25% (LST2) compared with NO-SWA.

We intend to introduce a variety of environmental characteristics (humidity,
temperature, wind speed) as parameters, and further study the SCPs to improve accuracy.

Acknowledgments. This work was supported in part by the National Key Research and Develop-
ment Program of China under Grant 2018YFB1800302, in part by the Natural Science Foundation
of China under Grant 61702013, in part by the Beijing Natural Science Foundation under Grant
KZ201810009011,Grant 4202020, andGrant 19L2021, and in part by the Science andTechnology
Innovation Project of North China University of Technology under Grant 19XN108.

References

1. Bao, Y., et al.: Solar radiation prediction and energy allocation for energy harvesting base
stations. In: ICC 2014 - 2014 IEEE International Conference on Communications. IEEE
(2014)

2. Muhammad, K.Q.H., Umber, S., et al.: Harvested energy prediction schemes for wireless
sensor networks: performance evaluation and enhancements. Wirel. Commun.Mob. Comput.
2017, 1–14 (2017)

3. Lu, T., Liu, G., Chang, S.: Energy-efficient data sensing and routing in unreliable energy-
harvesting wireless sensor network. Wirel. Netw. 24(3), 1–15 (2016)

4. Cuicui, L., et al.: A sparsity feedback-based data gathering algorithm for wireless sensor
networks. Comput. Netw. 141, 145–156 (2018)

SWAF: A Distributed Solar WSN Adaptive Framework 479

5. Xin, J., Liu, W., Zhang, C.: An energy conserving and transmission radius adaptive scheme
to optimize performance of energy harvesting sensor networks. Sensors 18, 2885 (2018)

6. Lv, C., Zhang, T., Ma, F., Yue, D.: A very short-term online forecasting model for photo-
voltaic power based on two-stage resource allocation network. In: 2018 International Joint
Conference on Neural Networks (IJCNN 2018) (2018)

7. He, Y., Zheng, Y.: Making series of achievements for building entity measured by terrestrial
laser scanning. In: 20164th InternationalWorkshoponEarthObservation andRemoteSensing
Applications (EORSA). IEEE (2016)

8. Walraven, R.: Calculating the position of the sun. Solar Energy 20(5), 393–397 (1978)
9. Adu-Manu, K.S., Adam, N.: Energy-harvesting wireless sensor networks (EH-WSNs): a

review. ACM Trans. Sensor Netw. 14(2), 1–50 (2018). Article 10
10. Isabel, D., Falko, D.: On the lifetime of wireless sensor networks. ACM Trans. Sensor Netw.

5(1), 1–39 (2009)
11. Rodriguez, F., et al.: Predicting solar energy generation through artificial neural networks

using weather forecasts for microgrid control. Renew. Energy 126, 855–864 (2018)
12. Ahmed, F., Tamberg, G., Le Moullec, Y., Annus, P.: Dual-source linear energy prediction

(LINE-P) model in the context of WSNs. Sensors 7, 1666 (2017)
13. Zhang, R., et al.: Utility maximization of temporally correlated sensing data in energy

harvesting sensor networks. IEEE Internet Things J. 6(3), 5411–5422 (2019)
14. Tan, H.O., Korpeoglu, I., Stojmenovi, I.: Computing localized power-efficient data aggre-

gation trees for sensor networks. IEEE Trans. Parallel Distrib. Syst. 22(3), 489–500
(2011)

15. Lin, H.C., Chen, W.Y.: An approximation algorithm for the maximum-lifetime data aggrega-
tion tree problem in wireless sensor networks. IEEE Trans. Wirel. Commun. 16(6), 2017, PP
(99) 1–1 (2017)

16. Qiu, H., et al.: A user-centric data protection method for cloud storage based on invertible
DWT. IEEE Trans. Cloud Comput. 1 (2019)

17. Qiu, M., Ming, Z., Li, J., Liu, S., Wang, B., Lu, Z.: Three-phase time-aware energy mini-
mization with DVFS and unrolling for chip multiprocessors. J. Syst. Archit. 58(10), 439–445
(2012)

18. Tian, Z., et al.: Block-DEF: a secure digital evidence framework using blockchain. Inf. Sci.
491, 151–165 (2019)

19. Qiu, M., Dai, W., Vasilakos, A.V.: Loop parallelism maximization for multimedia data
processing in mobile vehicular clouds. Cloud Comput. IEEE Trans. 7(1), 250–258 (2019)

20. Qiu, M., et al.: Online optimization for scheduling preemptable tasks on IaaS cloud systems.
J. Parallel Distrib. Comput. 72(5), 666–677 (2012)

Formalizing and Verifying Decentralized
Systems with Extended Concurrent

Separation Logic

Yepeng Ding(B) and Hiroyuki Sato

The University of Tokyo, Tokyo, Japan
{youhoutei,schuko}@satolab.itc.u-tokyo.ac.jp

Abstract. Decentralized techniques are becoming crucial and ubiqui-
tous with the rapid advancement of distributed ledger technologies such
as the blockchain. Numerous decentralized systems have been developed
to address security and privacy issues with great dependability and reli-
ability via these techniques. Meanwhile, formalization and verification of
the decentralized systems is the key to ensuring correctness of the design
and security properties of the implementation. In this paper, we pro-
pose a novel method of formalizing and verifying decentralized systems
with a kind of extended concurrent separation logic. Our logic extends
the standard concurrent separation logic with new features including
communication encapsulation, environment perception, and node-level
reasoning, which enhances modularity and expressiveness. Besides, we
develop our logic with unitarity and compatibility to facilitate imple-
mentation. Furthermore, we demonstrate the effectiveness and versatil-
ity of our method by applying our logic to formalize and verify critical
techniques in decentralized systems including the consensus mechanism
and the smart contract.

Keywords: Decentralized system · Extended concurrent separation
logic · Formal methods · Consensus · Smart contract

1 Introduction

Nowadays, decentralized technology has evolved into a new stage with the
advancement of many kinds of decentralized techniques such as the consensus
mechanism, smart contract. Based on these decentralized techniques, numerous
solutions have been proposed to circumvent security and privacy issues widely
existing in centralized systems such as unauthorized disclosure, deception, dis-
ruption, and usurpation, which is attracting a huge amount of attention from
both academy and industry. These solutions have been developed as decentral-
ized systems and applied to a wide range of fields such as economics [7], the

This research was partially supported by KAKENHI (Grants-in-Aid for Scientific
Research) (C) 19K11958 and (B) 19H04098.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 480–494, 2020.
https://doi.org/10.1007/978-3-030-60245-1_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_33&domain=pdf
http://orcid.org/0000-0002-6996-9333
http://orcid.org/0000-0002-2891-3835
https://doi.org/10.1007/978-3-030-60245-1_33

Formalizing and Verifying Decentralized Systems with Extended CSL 481

Internet of things [11], smart health [13], and infrastructures [12]. However, it is
challenging to ensure the correctness and properties of decentralized techniques
and systems due to the high complexity of the design and intricate factors.

Formal methods play an important role in verifying complex systems by
specifying systems with rigorous mathematical syntax and semantics to elimi-
nate imprecision and ambiguity of the design and implementation. Significant
contributions have been made to verify distributed systems with two main-
stream techniques of formal methods including model checking and automated
theorem proving. Model-checking techniques [15,22,33] prove to be effective to
check safety and liveness properties of distributed system design and algorithms.
However, it is noteworthy that these model checking techniques suffer from the
state-space explosion problem, which leads to the ineffectiveness of complicated
realistic systems, though many model-checking tools such as SPIN [19], NuSMV
[9], Cubicle [10] provide space-efficient and on-the-fly algorithm to optimize the
methods. Meanwhile, theorem proving techniques [17,27,31] provide a deductive
method to prove the correctness and properties of distributed systems in a math-
ematical style without the requirement of the exploration of the state space. To
date, the proof assistant is the main tool for the development of formal proofs
with the collaboration of humans and machines such as Coq [35] and Isabelle
[20]. These formal methods make it possible to locate design flaws and imple-
mentation pitfalls and ensure correctness and properties. Particularly, sound
logic is imperative in formal reasoning about program correctness. Concurrent
separation logic (CSL) [25] has been widely used to reason about concurrent sys-
tems such as cryptographic implementation [2], the concurrent operating system
kernels [38]. As the extension of separation logic [21,23], CSL enhances the mod-
ularity to reason about resources locally, which makes it capable of formalizing
the disjoint concurrency and inter-process interactions.

Admittedly, it is natural that decentralized technology highly requires the
guarantee of correctness and system properties since there is no central entity to
supervise and monitor network and system behaviors, especially in untrustwor-
thy environments. Nevertheless, formal reasoning about decentralized systems
with the standard CSL is restrictive.

– CSL lacks encapsulated components to reason about the communication that
is the basic and non-negligible component in the specification of decentralized
systems to formalize interactions.

– CSL has restrictive expressiveness of reasoning about the environment factor
and temporal conditions that can facilitate formalizing complex protocols of
decentralized systems.

– CSL focuses on reasoning about low-level programs such as memory man-
agement and resource relationship. It is restrictive for CSL to reason about
high-level systems such as nodes in decentralized systems.

Hence, it is still a significant challenge to reason about decentralized systems
with an effective logic with rich expressiveness and high modularity.

In this paper, we propose a method of formalizing and verifying decentralized
systems with an extended concurrent separation logic with three novel features:

482 Y. Ding and H. Sato

communication encapsulation, environment perception, and node-level reason-
ing. These features are developed to bridge the gulf of reasoning about decen-
tralized systems with CSL. We encapsulate the formalization of communications
as the basic specification and proof component. Besides, our logic enriches the
expressiveness of CSL with the capability of environment perception. The envi-
ronment perception also extends CSL into two-dimension reasoning including
both spatial and temporal reasoning. Moreover, we introduce the node-level rea-
soning to enable our logic to formalize high-level decentralized systems, which
enhances the modularity to specify and verify systems at different levels.

We summarize our main contributions as follows:

1. We propose a novel method of formalizing and verifying decentralized systems
with a kind of extended concurrent separation logic. Our logic addresses the
issues of CSL while reasoning about decentralized systems with novel features
including communication encapsulation, environment perception, and node-
level reasoning.

2. We formalize a consensus mechanism with our method to prove the effective-
ness of reasoning about complex protocols in decentralized systems with our
logic. Our logic simplifies high-level reasoning with great modularity and rich
expressiveness. It also presents unitarity while reasoning about systems at
different abstraction levels.

3. We also demonstrate our work by applying our logic to the specification
and verification of smart contracts. We locate the design flaw of a typical
smart contract with vulnerability to prove the effectiveness of formalizing
and verifying decentralized applications.

The remainder of this paper is organized as follows. We give a short introduc-
tion to the related work in Sect. 2. We then illustrate our logic that is the core of
our method in Sect. 3. Subsequently, we describe the method of the application
of our logic in a consensus algorithm and a smart contract in Sect. 4. We discuss
our work in Sect. 5, followed by the conclusion in Sect. 6.

2 Related Work

Prior work has made significant contributions to the formalization and verifica-
tion of distributed systems such as [1,15,31,33]. Model checking and theorem
proving are two main methods in these works with the support of typical tools
such as HOL4 [16], TLC model checker [39], NuSMV [9]. In addition, reasoning
about distributed systems with Hoare-style logic has also proved effective. Iron-
Fleet [17] was proposed to build practical and provably correct distributed sys-
tems based on the blend of TLA-style state-machine refinement and Hoare-logic
verification. DISEL [32] provided a framework for implementation and compo-
sitional verification of distributed systems and clients based on the distributed
separation logic. Particularly, our logic improves the work [14] to make it prac-
tical to formalize and verify the decentralized systems.

Formalizing and Verifying Decentralized Systems with Extended CSL 483

In the meanwhile, the decentralized technology has been rapidly developed to
address the common issues in centralized distributed systems since Bitcoin [29].
Due to the lack of supervision from central entities, ensuring the correctness and
properties of decentralized systems during the development is imperative. For-
mal verification provides a mathematical approach to analyze the decentralized
system in a rigorous manner. However, the specific research of the formaliza-
tion and verification of decentralized systems just gets started with the boost of
decentralized technology.

As one of the critical techniques in decentralized systems, the consensus
algorithm has been applied with formal methods to ensure the correctness in
the distributed environment. The agreement safety property of the PBFT [8]
was proved in [28]. Besides, the Raft [24] state replication library was formally
verified by Verdi [37], a framework for formal verification of distributed systems
implemented in Coq.

In recent years, formal verification of smart contracts has been an attractive
topic since TheDAO attack [3] that brought great damage to the cryptocurrency
market and successfully transferred about $50M worth of Ether into the control
of the attacker by exploiting the reentrancy vulnerability. In the prompt work
[6], they proposed a method to translate smart contracts implemented in Solidity
to F* [34] and decompile Ethereum virtual machine (EVM) bytecode into F*
for formal verification. Later, model-checking-based approaches were proposed
for formal verification of smart contracts. In the work [4], SPIN has been used
to verify the correctness and properties of a smart contract template to reduce
the potential errors.

The EVM that supports the execution of smart contracts has also been for-
mally specified and verified. In [18], the formal specification of the EVM bytecode
named KEVM was developed with K framework [30], which provides the founda-
tions for the verification. A deductive verifier was constructed in [26] to precisely
reason about possible behaviors of the EVM bytecode with KEVM.

3 Our Logic

The standard CSL has great significance in reasoning about concurrent programs
with preeminent expressiveness. It is noteworthy that the standard CSL and
typical variants can well support the formalization of parallel systems at the
thread level or process level about memory management and resources. Our
logic is compatible with CSL and inherits the capability of formalizing low-level
systems. Based on that, we extend the standard CSL into formalizing high-level
decentralized systems with better modularity and richer expressiveness.

3.1 Communication Encapsulation

In a decentralized system, communications among nodes are indispensable. It is
hard for CSL to formalize the complex interactions among programs in an elegant

484 Y. Ding and H. Sato

manner. Hence, we simplify the formalization by encapsulating communications
as the basic component.

Our logic defines a minimal program unit over (Var,Ch) in (1).

P � (L,A, E , ↪→, L0, g0) (1)

Here, V ar is a set of typed variables and Ch is a set of channels. L is a
set of locations and A is a set of actions. E denotes the effect function A ×
�V ar� �→ �V ar�. The notation ↪→ ⊆ L×‖V ar‖×A×L represents the conditional
transition relation. L0 ⊆ L and g0 ∈ ‖V ar‖ denotes a set of initial locations and
the initial condition respectively. �V ar� denotes the set of variable evaluations.
‖V ar‖ denotes the set of Boolean conditions over V ar.

For convenience, we use the notation l
g:α

↪−−→ l′ as shorthand for (l, g, α, l′) ∈↪→
where l ∈ L and α ∈ A, meaning that the program P goes from location l to l′

when the current variable evaluation η |= g. We connect the program unit with
CSL by specifying l

g:α
↪−−→ l′ as {g} α {g′}, where E(α, η) |= g′.

Let c!s denote sending signal s via channel c and c?v denote receiving a
signal from channel c and assign the signal to variable v. A communication π ∈
Π = {c!s, c?v} is an action where c ∈ Ch, s ∈ Dom(c), v ∈ V ar with Dom(v) ⊇
Dom(c).

In a practical communication scenario, the finite asynchronous channel is
commonly used. The essence of a finite asynchronous channel is a buffer with a
capacity Cap(c) ∈ N

+ and a domain Dom(c). In this manner, a communication
c!s produces signal s into the buffer whereas a communication c?v consumes a
signal from the buffer while assigning it to variable v.

For example, two parallel programs c!s and c?v can be specified at a high
specification level in (2).

{s �→ −} c!s ‖ c?v {�v� = �s�} (2)

We can give a proof outline of this parallel system containing the communi-
cation between two parallel programs in Fig. 1.

Fig. 1. Proof outline of {s �→ −} c!s ‖ c?v {�v� = �s�}.

Formalizing and Verifying Decentralized Systems with Extended CSL 485

Since we encapsulate the formalization of communications as the basic com-
ponent, we have Π ⊆ A. The specification of communications can be automati-
cally verified in the manner of Fig. 1.

3.2 Environment Perception

Our logic has the capability of perceiving the environment factors including
foreign factor and native factor, which means that we can formulate specifications
with both internal (native) and external (foreign) temporal conditions.

In our logic, we follow the style of Hoare triples as (3).

{Γ, γ ∧ P} α {Γ, γ′ ∧ P ′} (3)

Here, Γ is used to specify the foreign pre-conditions and post-conditions while
γ and γ′ are used to specify the native pre-conditions and post-conditions. P
and P ′ are assertions with the same semantics of the standard CSL. α ∈ A is
the action to change the state of programs.

Before illustrating the structure of the environment factor, we firstly intro-
duce a partially ordered relation � defined in (4).

a � a′ ⇐⇒ a = Pred(a′) (4)

Here, a, a′ ∈ Á and Pred(a) denotes the predecessor action set of a. Á is the
set of occurred actions derived from a partial function A ⇀ Á.

We use the notation a � a′ as shorthand for (a, a′) ∈ �. Intuitively, a � a′

means that action a happens before action a′. Furthermore, the relation � has
transitivity that is a � a′ � a′′ =⇒ a � a′′. With this ordered relation, we define
a finite action path
 as a finite action sequence a0a1...an such that ∀i ∈ [0, n) :
(ai, ai+1) ∈ �, where n ≥ 1 if the length of the sequence is greater than 1.

Here, we use the finite action path as the atomic proposition that can be
formulated as the environment factor to express that the occurrence of actions
in the path must be true. In fact, the environment factor can be formulated in
any temporal logic such as linear temporal logic (LTL) to formalize temporal
properties as conditions.

We consider a simple network consisting of two parallel programs. One pro-
gram sends a signal s through channel c while another program receives a signal
from channel c.

The sending program specified in (5) does not need to perceive the environ-
ment factor, meaning that it can send s at any time.

{, ∧ s �→ −}
c!s

{, c!s}
(5)

486 Y. Ding and H. Sato

The receiving program can only execute the receiving action after perceiving
that the signal has been sent, which is specified in (6).

{, v �→ −}
{c!s, v �→ −}

c?v
{c!s, c?v ∧ �v� = �s�}

(6)

To give the proof for environment extension, we introduce Environment
Composition Rule in (7).

{Γ0, Υ0} α0 {Γ0, Υ
′
0} ... {Γn, Υn} αn {Γn, Υ ′

n}
{�n

i=0Υi} α0 ‖ ... ‖ αn {�n
i=0Υ

′
i}

(Environment Composition Rule)
(7)

For brevity, we use Υ to denote the conjunction of γ and P . The big star
notation �n

i denotes consecutive separating conjunction from index i to n.
It is notable that the inference in Environment Composition Rule elim-

inates the foreign environment naturally if we regard the proved parallel system
as the highest level of specification.

In the example above, we can specify two programs locally and combine the
local specifications to produce a high-level specification in Fig. 2. The verification
can be done with Environment Composition Rule.

Fig. 2. Specification of the network in Sect. 3.2.

The capability of the environment perception enhances the expressiveness
and extends the standard CSL into temporal formalization. The new proof rule
also preserves the modularity to formalize a complex system with environment
factors by permitting reasoning about programs locally.

3.3 Node-Level Reasoning

In decentralized systems, nodes are distributed in the network and interact with
each other under specific protocols including communication protocols and exe-
cution protocols. Each node in the network perceives states of others by commu-
nication protocols regularizing the way of passing information in the network.
With the information perceived from communication protocols and local states,
a node enforces execution protocols with corresponding parameters. According

Formalizing and Verifying Decentralized Systems with Extended CSL 487

to the scope of communication and execution protocols, it is reasonable to regard
the enforcement of communication protocols as the foreign environment while
the enforcement of execution protocols being the native environment.

In node-level reasoning, communications from programs on the same node
and on other nodes can be distinguished with the introduction of node-level
parallelism. Besides, the temporal conditions imposed by other nodes can be
used as the environment factors while specifying a parallel system on a node.
For instance, to do action c!s1, the sending program on node N needs to satisfy
that another program on node N has received a signal s0 from another node
N ′ through channel c and assigned s0 to variable v, which can be specified as
{c!s0@N ′ � c?v@N, s1 �→ −} c!s1 {, c!s1}.

To facilitate formalizing and verifying the node and the interactions among
nodes, we extend the CSL with the support of the node parallel. We introduce
Node Environment Composition Rule in (8) and Node Composition
Rule in (9).

{Γ0, Υ0} α0@N {Γ0, Υ
′
0} ... {Γn, Υn} αn@N {Γn, Υ ′

n}
{Γ̂ ,�n

i=0Υi} α0@N ‖ ... ‖ αn@N {Γ̂ ,�n
i=0Υ

′
i}

(Node Environment Composition Rule)
(8)

{Γ0, Υ0} α0@N0 {Γ0, Υ
′
0}...{Γn, Υn} αn@Nn {Γn, Υ ′

n}
{�n

i=0Υi} α0@N0 ‖N ... ‖N αn@Nn {�n
i=0Υ

′
i}

(Node Composition Rule)
(9)

Here, N denote a set of nodes. We have N0, .., Nn ∈ N. @ is the ownership
relation between action and node. (α,N) ∈ @ denotes action α happens at node
N , meaning that node N has the ownership of action α. We use the notation
α@N as shorthand for (α,N) ∈ @. ‖N is the notation for node-level parallel to
distinguish with program-level parallel ‖. For a node N , the foreign environment
Γ includes the temporal conditions imposed by other programs on N and the
temporal conditions imposed by other nodes. Γ̂ denotes the foreign environment
without the temporal conditions imposed by other programs on N .

In Node Environment Composition Rule, the foreign environment fac-
tors on node N are composite in the inference with the persistence of the tempo-
ral conditions imposed by other nodes and the elimination of conditions imposed
by other programs on N . Local specifications on different nodes can be combined
to make a high-level specification with Node Composition Rule.

4 Application

In this section, we present two practical applications to show how our method
works with our logic including a consensus mechanism and a smart contract.
These are two critical decentralized techniques widely used in decentralized sys-
tems. By formalizing and verifying them, it proves the effectiveness of our method
applied in decentralized systems.

488 Y. Ding and H. Sato

4.1 Consensus Mechanism

We use our logic to formalize the consensus mechanism, a critical role in decen-
tralized techniques. Hashgraph [5] is a recently developed consensus algorithm,
which adopts a directed acyclic graph (DAG) structure and proves effective in
permissioned blockchain.

Let us recall the data structures in Hashgraph. An event e is a tuple defined
in (10).

e � 〈TS,TX,SH,OH 〉 (10)

Here, TS denotes a timestamp signed by the creator. TX is a set of transac-
tions embedded into the event. SH and OH denote pointers pointing to a self-
parent and an other-parent respectively. In this manner, all events associated
with a set of transactions compose a DAG.

For a node N , we consider an immutable transaction list T to persist trans-
actions accepted in the network. T is used to simplify the DAG structure. The
acceptance is the alternative of round received. There is a set of events E asso-
ciated with a set of transactions TX on N . Each event is either accepted by N
or rejected by N . For brevity, we introduce two notations � and ⊕ to denote
acceptance and rejection. Formally, we have definitions in (11).

�e � t ∈ e.TX =⇒ t /∈ T

⊕e � t ∈ e.TX =⇒ t ∈ T

�E � ∀e ∈ E : t ∈ e.TX =⇒ t /∈ T

⊕E � ∃e ∈ E : t ∈ e.TX =⇒ t ∈ T

(11)

In this paper, we consider a small network to illustrate our methodology of
reasoning about the Hashgraph mechanism in an outline. With the support of
modular reasoning, our logic can reason about nodes and programs on nodes
separately.

There are four nodes N0, N1, N2, N3 in the network. Each node is deployed
with programs enforcing the Hashgraph consensus mechanism. Generally, there
must be at least one program for broadcasting events to other nodes and one
program for receiving events from other nodes. All programs run in a concurrent
manner.

We specify the outline of the consensus mechanism for a set of transactions
TX in Fig. 3, where # denotes the occurred action that receives transactions
from a client. Ei is a set of events created on node Ni. Let ei

j denotes the jth
event on node Ni where j ∈ N, we have ∀ei

j ∈ Ei \{ei
0} : ei

j .SH = H(ei
j−1) where

H is the hash function. P (Ni)′ is the post-condition of node Ni, which specifies
the termination condition of the consensus on TX. For instance, we have P (N0)′

as follows:

Formalizing and Verifying Decentralized Systems with Extended CSL 489

P (N0)′ = {♦RR(E0)@N1∧♦RR(E0)@N2∧♦RR(E0)@N3),♦RR(E0)@N0 ∧
�E0� = ⊕E0},

where RR(E) denotes the action round received, meaning that an event e ∈ E
is accepted in some round. In this application, we use LTL to formulate the
environment factor. Here, ♦ is a temporal modality denoting eventually.

Fig. 3. Specification of the event consensus in Hashgraph network.

This is a high-level specification of the whole network to verify that all nodes
will eventually get the consistent T. With the support of Node Composition
Rule, we can break down the specification and focus on specifying and verifying
programs on nodes separately. On each node, there is a parallel system containing
a set of programs, which can also be formalized separately.

Besides, We can combine several highly coupled programs as a module. For
instance, famous witness election is a critical module to make the Hashgraph
algorithm converge. Recall the concept of witness in Hashgraph that is the first
event a node creates in each round. Each node will decide its witness events after
executing action round created. The election is for witnesses to vote on a witness
before the current round to determine whether it is famous. In fact, the vote is
virtual, which means that there is not an actual vote based on communications
formed in the network. The voting process is enforced on the local environment.
Here, for a vote function, we can specify it as (12).

{,♦See(e, e′) ∧ IsWitness(e) ∧ IsWitness(e′)} Vote(e, e′) {, IsFamous(e, e′)}
(12)

Here, the specification has the meaning that if a witness e can see another
witness e′, then e votes e′ as a famous witness and the ballot is signed with e.

Besides, vote collection is also enforced on the local environment in the round
after voting. Each node can make the election by itself without synchronous
interactions with others based on a directed acyclic graph that is a data structure
that can be trivially formalized in the standard CSL.

In this manner, our logic can effectively formalize such a module with mod-
ular reasoning and other critical modules such as see and strongly see with the
support of environment perception.

490 Y. Ding and H. Sato

Listing 1.1. Pseudocode of Malicious contract

1 cont rac t Mal i c i ous {
2 . . .
3 func t i on Drain () {
4 myBank . Deposit . va lue (amount) ;
5 myBank . Withdraw . value (amount) ;
6 }
7
8 func t i on () {
9 myBank . Withdraw . value (amount) ;

10 }
11 . . .
12 }

4.2 Smart Contract

We follow the unitarity principle to unify the specification and verification of
decentralized systems at different abstraction levels with our logic. Besides com-
plex protocols such as consensus mechanisms, our logic can also specify and
verify the decentralized applications developed by smart contracts.

We take a simple example of the smart contract slightly modified from
[6], which is similar to the behavior of TheDAO attack. It defines a contract
named MyBank with three functions Deposit() for depositing money, With-
draw(amount::Integer) for withdrawing money, and Balance() for looking up
the balance. Another contract named Malicious behaves maliciously with two
evil functions Drain() to trigger the malicious behavior and a fallback method,
which is shown in Listing 1.1.

With our logic, we can specify the contract MyBank in Listing 1.2.
Then, we consider a concurrent specification and introduce a resource invari-

ant RIb where resource b is the balance. We have RIb � b ≥ 0. The function
Withdraw is specified in (13) from a high-level while Deposit is specified in the
same manner.

{c?msg ∧ c?a,RIb ∧ �b� = n}
Withdraw(a)′

{,RIb ∧ �b� = n − a}
(13)

The function msg.sender.call.value in Listing 1.2 transfers control back to
contract Malicious by invoking the fallback method. In the fallback method, a
reentrant call Withdraw() is triggered in another thread or process of MyBank′

as the shadow of MyBank, which can be specified in Fig. 4.

Formalizing and Verifying Decentralized Systems with Extended CSL 491

Listing 1.2. Pseudocode of MyBank contract

1 cont rac t MyBank {
2 . . .
3 {c?msg, balances[msg.sender] �→ −}
4 func t i on Deposit () {
5 {�, �balances[msg.sender]� = n}
6 ba lances [msg . sender] += msg . va lue ;
7 {�, �balances[msg.sender]� = n + msg.value}
8 }
9 {�, �balances[msg.sender]� = n + msg.value}

10
11 {c?msg ∧ c?amount, balances[msg.sender] �→ −}
12 func t i on Withdraw (amount : : I n t ege r) {
13 {�, �balances[msg.sender]� = n ∧ n ≥ amount}
14 i f (ba lances [msg . sender] ≥ amount) {
15 msg . sender . c a l l . va lue (amount) ;
16 ba lances [msg . sender] −= amount ;
17 }
18 {�, �balances[msg.sender]� = n − amount]}
19 }
20 {�, �balances[msg.sender]� = n − amount]}
21 . . .
22 }

Fig. 4. Specification of the parallel smart contract system.

We can obtain that the specification of this parallel smart contract system
cannot be proved in any inference rules while preserving the resource invari-
ant and satisfying the post-condition if both MyBank contract program and its
shadow program MyBank′ are verified separately. Therefore, the design flaw is
located. In this manner, our logic can prove the correctness of smart contracts
and assist in finding design flaws in decentralized applications.

5 Discussion

The core of our method of formalizing and verifying decentralized systems is our
extended concurrent separation logic. Our logic presents rich expressiveness with
the encapsulation of communication formalization and the capability of environ-
ment perception. It also has great modularity with the node-level reasoning
feature to enable formalizing decentralized systems from memory level to node

492 Y. Ding and H. Sato

level. Furthermore, the formalization and application at different abstraction
levels present unitarity with unified forms.

In the meanwhile, our logic has compatibility, which allows the interpretation
from our logic to the standard CSL. We have proved the soundness of our logic by
the general structure of [36]. We have also mechanized our logic by an interpreter
together with a mechanized CSL prover implemented in the Coq proof assistant
to implement the applications in Sect. 4. However, it is not dependable to reduce
our logic to the CSL for automated reasoning by the interpreter. We plan to
mechanize our logic directly with the proof assistant.

We do not address formulating temporal properties as temporal conditions in
the environment factors in this paper. However, it is straightforward to formulate
them in temporal logic. For instance, we can express temporal properties with
LTL formulae such as {φ,} α {,} to add the constraint for the occurrence
of α with the LTL formula φ.

6 Conclusion

Reasoning about decentralized systems during the development is indispensable
to ensure the correctness and system properties since it is a significant challenge
to establish trust without central entities in untrustworthy distributed envi-
ronments. In this paper, we have proposed a novel method of formalizing and
verifying decentralized systems with an extended concurrent separation logic
enhanced by three novel features: communication encapsulation, environment
perception, and node-level reasoning. Besides, we have applied our method to
reason about the consensus mechanism to prove the effectiveness of reasoning
about complex protocols with the support of new features. Furthermore, we have
demonstrated the capability of formalizing and verifying smart contracts with an
instance to locate the design flaw. Particularly, we follow the unitarity principle
and compatibility principle to facilitate the implementation. We plan to optimize
the mechanization of our logic directly with the proof assistant. Formalizing and
verifying a more complicated decentralized system such as a blockchain platform
is also on our schedule.

References

1. Aminof, B., Rubin, S., Stoilkovska, I., Widder, J., Zuleger, F.: Parameterized
model checking of synchronous distributed algorithms by abstraction. VMCAI
2018. LNCS, vol. 10747, pp. 1–24. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73721-8 1

2. Appel, A.W.: Verification of a cryptographic primitive: SHA-256. ACM Trans.
Program. Lang. Syst. (TOPLAS) 37(2), 1–31 (2015). ISBN 0164-0925 Publisher:
ACM New York, NY, USA

3. Atzei, N., Bartoletti, M., Cimoli, T.: A Survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp. 164–
186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-6 8

4. Bai, X., Cheng, Z., Duan, Z., Hu, K.: Formal modeling and verification of smart
contracts. In: Proceedings of the 2018 7th International Conference on Software
and Computer Applications, pp. 322–326 (2018)

https://doi.org/10.1007/978-3-319-73721-8_1
https://doi.org/10.1007/978-3-319-73721-8_1
https://doi.org/10.1007/978-3-662-54455-6_8

Formalizing and Verifying Decentralized Systems with Extended CSL 493

5. Baird, L.: The swirlds hashgraph consensus algorithm: Fair, fast, byzantine fault
tolerance. Swirlds, Inc., Technical Report SWIRLDS-TR-2016 1 (2016)

6. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96 (2016)

7. Böhme, R., Christin, N., Edelman, B., Moore, T.: Bitcoin: Economics, technology,
and governance. J. Econ. Perspect. 29(2), 213–38 (2015). ISBN 0895-3309

8. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: OSDI, vol. 99, no.
1999, pp. 173–186 (1999)

9. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

10. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

11. Ding, Y., Sato, H.: Bloccess: towards fine-grained access control using blockchain
in a distributed untrustworthy environment. In: 2020 8th IEEE International Con-
ference on Mobile Cloud Computing, Services, and Engineering (MobileCloud), pp.
17–22. IEEE (2020)

12. Ding, Y., Sato, H.: Dagbase: a decentralized database platform Using DAG-based
consensus. In: 2020 IEEE 44rd Annual Computer Software and Applications Con-
ference (COMPSAC). IEEE (2020). To appear

13. Ding, Y., Sato, H.: Derepo: a distributed privacy-preserving data repository with
decentralized access control for smart health. In: 2020 7th IEEE International
Conference on Cyber Security and Cloud Computing (CSCloud)/2020 6th IEEE
International Conference on Edge Computing and Scalable Cloud (EdgeCom), pp.
29–35. IEEE (2020)

14. Ding, Y., Sato, H.: Extending concurrent separation logic to enhance modular
formalization. arXiv preprint arXiv:2007.13685 (2020)

15. Fatkina, A., Iakushkin, O., Selivanov, D., Korkhov, V.: Methods of formal software
verification in the context of distributed systems. In: Misra, S., et al. (eds.) ICCSA
2019. LNCS, vol. 11620, pp. 546–555. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-24296-1 43

16. Gordon, M.J., Melham, T.F.: Introduction to HOL: A Theorem Proving Environ-
ment for Higher Order Logic. Cambridge University Press, Cambridge (1993)

17. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles, pp. 1–17
(2015)

18. Hildenbrandt, E., et al.: Kevm: A complete formal semantics of the ethereum
virtual machine. In: 2018 IEEE 31st Computer Security Foundations Symposium
(CSF), pp. 204–217. IEEE (2018)

19. Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23(5), 279–295
(1997). ISBN 0098-5589 Publisher: IEEE

20. Isabelle. https://isabelle.in.tum.de/
21. Ishtiaq, S.S., O’hearn, P.W.: BI as an assertion language for mutable data struc-

tures. In: Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 14–26 (2001)

22. Konnov, I., Veith, H., Widder, J.: On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. Inf. Comput. 252, 95–109
(2017). ISBN 0890-5401 Publisher: Elsevier

https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-31424-7_55
http://arxiv.org/abs/2007.13685
https://doi.org/10.1007/978-3-030-24296-1_43
https://doi.org/10.1007/978-3-030-24296-1_43
https://isabelle.in.tum.de/

494 Y. Ding and H. Sato

23. O’Hearn, P.W., Pym, D.J.: The logic of bunched implications. Bull. Symbol. Logic
5(2), 215–244 (1999). ISBN 1079-8986 Publisher: Cambridge University Press

24. Ongaro, D., Ousterhout, J.: In search of an understandable consensus algorithm.
In: Proceedings of the 2014 USENIX Conference on USENIX Annual Technical
Conference, pp. 305–320 (2014)

25. O’hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007). ISBN 0304-3975 Publisher: Elsevier

26. Park, D., Zhang, Y., Saxena, M., Daian, P., Roşu, G.: A formal verification tool for
ethereum VM bytecode. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, pp. 912–915 (2018)

27. Rahli, V., Guaspari, D., Bickford, M., Constable, R.L.: Formal specification, ver-
ification, and implementation of fault-tolerant systems using EventML. Electron.
Commun. EASST 72 (2015)

28. Rahli, V., Vukotic, I., Völp, M., Esteves-Verissimo, P.: Velisarios: byzantine fault-
tolerant protocols powered by Coq. In: Ahmed, A. (ed.) ESOP 2018. LNCS, vol.
10801, pp. 619–650. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
89884-1 22

29. Raval, S.: Decentralized Applications: Harnessing Bitcoin’s Blockchain Technology.
O’Reilly Media Inc, Newton (2016)

30. Rosu, G., Serbănută, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010). ISBN 1567-8326 Publisher: Elsevier

31. Sardar, M.U., Hasan, O., Shafique, M., Henkel, J.: Theorem proving based for-
mal verification of distributed dynamic thermal management schemes. J. Parallel
Distrib. Comput. 100, 157–171 (2017). ISBN 0743-7315 Publisher: Elsevier

32. Sergey, I., Wilcox, J.R., Tatlock, Z.: Programming and proving with distributed
protocols. Proc. ACM Program. Lang. 2(POPL), 1–30 (2017). ISBN 2475-1421
Publisher: ACM New York, NY, USA

33. Souri, A., Rahmani, A.M., Navimipour, N.J., Rezaei, R.: A symbolic model check-
ing approach in formal verification of distributed systems. Hum.-Centric Comput.
Inf. Sci. 9(1), 4 (2019). https://doi.org/10.1186/s13673-019-0165-x, ISBN 2192-
1962 Publisher: Springer

34. Swamy, N., et al.: Dependent types and multi-monadic effects in F. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 256–270 (2016)

35. Welcome! — The Coq Proof Assistant. https://coq.inria.fr/
36. Vafeiadis, V.: Concurrent separation logic and operational semantics. Electron.

Notes Theor. Comput. Sci. 276, 335–351 (2011). ISBN 1571-0661 Publisher: Else-
vier

37. Wilcox, J.R., et al.: Verdi: a framework for implementing and formally verifying
distributed systems. In: Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. pp. 357–368 (2015)

38. Xu, F., Fu, M., Feng, X., Zhang, X., Zhang, H., Li, Z.: A practical verification
framework for preemptive OS kernels. In: Chaudhuri, S., Farzan, A. (eds.) CAV
2016. LNCS, vol. 9780, pp. 59–79. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-41540-6 4

39. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 54–66. Springer, Hei-
delberg (1999). https://doi.org/10.1007/3-540-48153-2 6

https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1007/978-3-319-89884-1_22
https://doi.org/10.1186/s13673-019-0165-x
https://coq.inria.fr/
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/978-3-319-41540-6_4
https://doi.org/10.1007/3-540-48153-2_6

PRIAG: Proximal Reweighted
Incremental Aggregated Gradient

Algorithm for Distributed Optimizations

Xiaoge Deng , Tao Sun(B), Feng Liu, and Feng Huang

National Laboratory for Parallel and Distributed Processing (PDL), College
of Computer, National University of Defense Technology, Changsha 410073, China

{nudtxgdeng,nudtsuntao}@163.com,
{richardlf,fhuang}@nudt.edu.cn

Abstract. Large-scale machine learning problems are nowadays tack-
led by distributed optimization algorithms, i.e., algorithms that lever-
age multiple workers for training. However, collecting the information
from all workers in every iteration is sometimes expensive or even pro-
hibitive. In this paper, we propose an iterative algorithm called proxi-
mal reweighted incremental aggregated gradient (PRIAG) for solving a
class of nonconvex and nonsmooth problems, which are ubiquitous in
machine learning tasks and distributed optimization problems. In each
iteration, this algorithm just needs the information from one worker due
to the incremental aggregated method. Combined with the reweighted
technique, we only require an easy-to-calculate proximal operator to deal
with the nonconvex and nonsmooth properties. Using the Lyapunov func-
tion analysis method, we prove that the PRIAG algorithm is convergent
under some mild assumptions. We apply this approach to nonconvex non-
smooth problems and distributed optimization tasks. Numerical exper-
iments on both synthetic and real data sets show that our algorithm
can achieve comparative learning performance, but more efficiently, com-
pared with previous nonconvex solvers.

Keywords: Distributed optimization · Incremental method · Proximal
operator · Nonconvex optimization · Iteratively reweighted algorithm

1 Introduction

In recent years, nonconvex and nonsmooth models have been attracting increas-
ing attention for its efficiency in distributed data processing and machine learn-
ing research. Among them, a great class can be presented as

min
x∈Rn

{
Φ(x) := F (x) + H(x)

}
(1)

where F (x) :=
∑M

i=1 fi(x) usually represents the loss function from M workers
and H(x) models the regularization term. Additionally, we assume each compo-
nent function fi : Rn → R is continuously differentiable, while the regularization
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 495–511, 2020.
https://doi.org/10.1007/978-3-030-60245-1_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_34&domain=pdf
http://orcid.org/0000-0003-0622-1202
https://doi.org/10.1007/978-3-030-60245-1_34

496 X. Deng et al.

function H : Rn → R is not necessarily differentiable. Notable examples include
constrained and regularized least squares problems that arise in various machine
learning applications [10,29], distributed optimization problems that arise in
wireless sensor network [12,23,31] as well as smart grid applications [15,17],
constrained optimization of separable problems [3,25], communication systems
and signal processing [6,11,13].

1.1 Related Work

The well-known method to solve (1) is the proximal gradient (PG) method pro-
posed in [8], which uses the functions F and H separately at every iteration.
When ∇F is Lipschitz continuous and function Φ is convex, this method can
be shown to converge with the sublinear rate with a proper step-size. The PG
method is also proved convergent for the nonconvex case but with a smaller step-
size than the convex one [1]. However, the PG method requires a self-explanatory
assumption that the proximal map of H (see detailed definition in Sect. 3) is easy
to calculate, which may be broken in various nonconvex tasks. Typical exam-
ples in machine learning and computer vision [2,16,18,39] can be formulated as a
class of nonconvex structured composite minimizations, in which H(x) = h(g(x))
with h(y) being a nonnegative concave function while g(x) being a nonnegative
coordinate-wise convex mapping.

To solve the previously mentioned structured nonconvex composite minimiza-
tion problems, the proximal iteratively reweighted (PIRE) algorithm is developed
and studied in [20,33], which uses the linearization techniques to both losses and
regularized parts. The PIRE is also extended to the matrix form [21,22,32] and
constrained minimizations [34,35].

Besides the regularized part, the loss part also poses difficulties in using
PIRE or PG. Two main reasons are : (a). if the number of workers M is huge,
calculating the full gradient of F is sometimes expensive or even prohibitive; (b).
when (fi)1≤i≤M is stored in different machines (like a network), we cannot read
any fi as wished. Consequently, it is impossible to get the full gradient of F in
some iteration. These two reasons motivate us to employ the incremental method
proposed in [4], which exploits the additive structure of the problem and updates
the decision vector using one component function at a time. Instead of calculating
the full gradient for the loss function F , the proximal incremental aggregated
gradient (PIAG) method proposed in [36,37] uses an aggregated gradient which
calculates the gradient of one component function in one iteration. Thus, we
consider recruiting the gradient updating strategy to design a novel iteratively
reweighted algorithm.

1.2 Our Contributions

This paper proposes an iterative algorithm called proximal reweighted incremen-
tal aggregated gradient (PRIAG) algorithm, which selects a component function
to update the gradient of F and reweight the nonconvex nonsmooth part H to
get a more appropriate estimation of the surrogate functions. Our algorithm

PRIAG Algorithm for Distributed Optimizations 497

only needs to calculate the gradient of one component function and an easy-to-
calculate proximal operator for each iteration. Using the Lyapunov function anal-
ysis, we prove that the PRIAG algorithm is convergent, provided that the step-
size keeps smaller than some positive constant. This method is applied to solve
nonconvex nonsmooth problems and distributed optimization tasks. Numerical
experiments on both synthetic and real data sets demonstrate that our methods
outperform previous nonconvex solvers.

2 Set Up

In this section, We will describe the optimization model in detail and give some
examples. Then we will show how to solve the problem (2) by our PRIAG algo-
rithm.

2.1 Nonconvex and Nonsmooth Model

This paper is devoted to the following nonconvex and nonsmooth minimizations

min
x

⎧
⎨
⎩Φ(x) = F (x) +

n∑
j=1

h (g (xj))

⎫
⎬
⎭ (2)

where F (x) :=
∑M

i=1 fi(x), x = (x1, x2, . . . , xn)� ∈ R
n, and functions fi, h and

g satisfy the following assumptions:

(a) Function fi : R
n → R is differentiable and the gradient function of fi,

namely, ∇fi : R
n → R

n, is Lipschitz continuous with Lipschitz constant
Li > 0, i.e.

‖∇fi(w) − ∇fi(w)‖2 ≤ Li‖w − w‖2 (3)

where {w,w} ⊂ R
n.

(b) Function h : Im(g) → R is a differentiable concave function.
(c) Function g : R → R is a convex function.

We highlight that in model (2), function F can be nonconvex. Although
both F and h are differentiable, Φ may still be a nonsmooth and nonconvex
function. Functions g and h are usually determined by the penalties that model
the priors known about the desired solution (such as sparsity). Although with
several assumptions on the structure and functions involved, model (2) is quite
common. To demonstrate this claim, three application examples are presented
in the next subsection.

498 X. Deng et al.

2.2 Some Examples

This section contains several examples of model (2), in which the Assumptions
(a), (b), and (c) can all be satisfied.

Example 1 (�q-norm linear regression). This example considers the classical �q-
norm linear regression, which is widely studied in the sparse coding community
[5,7].

min
x

⎧
⎨
⎩

1
2

M∑
i=1

‖Aix − bi‖22 + λ

n∑
j=1

(|xj | + ε)q

⎫
⎬
⎭ (4)

where Ai ∈ R
m×n, bi ∈ R

m, x ∈ R
n, ε, λ > 0, and 0 < q < 1. In this example,

fi(x) = 1
2‖Aix − bi‖22, h(t) = λ(t + ε)q, and g(t) = |t|. Notice that Im(g) = R

+,
and λ(t + ε)q is concave on R

+.

Example 2 (Smoothed �q-norm linear regression). This example aims to solve
the smoothed �q-norm linear regression [19]

min
x

⎧
⎨
⎩

1
2

M∑
i=1

‖Aix − bi‖22 + λ
n∑

j=1

(
xj

2 + ε
) q

2

⎫
⎬
⎭ (5)

where Ai ∈ R
m×n, bi ∈ R

m, x ∈ R
n, ε, λ > 0, and 0 < q < 1. To fit the general

model, we can use fi(x) = 1
2‖Aix − bi‖22, h(t) = λ(t + ε)

q
2 , and g(t) = t2. We

can see that λ(t + ε)
q
2 is concave when constrained on Im(g) = R

+.

Example 3 (Logistic regularized linear regression). This example is devoted to
the minimization of the following problem [14,38]

min
x

⎧
⎨
⎩

1
2

M∑
i=1

‖Aix − bi‖22 + λ
n∑

j=1

log
(|xi| + ε

ε

)⎫⎬
⎭ (6)

where Ai ∈ R
m×n, bi ∈ R

m, x ∈ R
n, ε, λ > 0, and 0 < q < 1. We set that

fi(x) = 1
2‖Aix − bi‖22, h(t) = λ log

(
t+ε
ε

)
, and g(t) = |t|.

2.3 The PRIAG Algorithm

Let xk denote the k-th iteration. The proximal reweighted incremental aggre-
gated gradient (PRIAG) algorithm performs as

{
vk =

∑M
i=1 ∇fi(xk−τi,k),

xk+1 = proxγwk·g̃(xk − γvk),
(7)

where τi,k is the delay associated with fi in the k-th iteration, γ is a parameter,
wk := (h′(g(xk

1)), . . . , h
′(g(xk

n))) is a reweighted vector, g̃ = (g(x1), . . . , g(xn))�,
and wk · g̃ =

∑n
i=1 h′(g(xk

i))g(xi).

PRIAG Algorithm for Distributed Optimizations 499

The first equation in (7) indicates that vk is an approximation of the full
gradient ∇F (xk). The delays τi,k come from the data selection style to implement
the algorithm. In this paper, we assume it is bounded, which means all ∇fi will
be visited in a window. This is quite reasonable otherwise some information must
be missed, and the iteration will not find the ground truth. A typical form is the
cyclic selection method, in which

τi,k+1 =
{

0, if i ≡ k mod M,
τi,k + 1, if else. (8)

Implementing PRIAG under cyclic selection rule is also very easy: we use a
space to storage the gradients {φ1, φ2, . . . , φM}. In the k-th iteration, selecting
i = ik = (k mod M), computing ∇fi(xk) and update the data as

{
v ← v − φi + ∇fi(xk),
φi ← ∇fi(xk). (9)

The iteration is completed by using vk ← v in the second iteration of (7).
Due to that wk · g̃ is splittable, the updating of xk+1 is also

xk+1
i = proxγh′(g(xk

i))g
(xk

i − γvi), i ∈ {1, 2, . . . , n}. (10)

The iteration is fast if the proximal operator of g is readily available. Luck-
ily, in various applications (like the examples), g = | · |, and calculating this
proximal operator is very easy. In each iteration, PRIAG requires much fewer
computations than the full gradient as it calculates the gradient of one function
rather than all. Thus, it is possible to implement in the case that M is huge. On
the other hand, the PRIAG algorithm can solve several distributed optimization
problems. Assume that data {fi}M

i=1 are stored in different nodes connected by a
graph but do not communicate with each other for privacy. We first fix a routine
across all nodes (some nodes may be visited more than once) and then employ a
token that contains {φ1, φ2, . . . , φM}. After the token reaches node i, it will send
xk to the node and the node tells the token ∇fi(xk). After receiving ∇fi(xk),
the token performs PRIAG. In this way, we still solve the distributed leaning
problem with keeping privacy.

In the following, we further elaborate on the principle of the PRIAG algo-
rithm. Use the definition (16), we have

xk+1 = argmin
x∈Rn

{
γwk · g̃(x) +

1
2
‖x − (xk − γvk)‖22

}

= argmin
x∈Rn

{
1
2γ

‖(x − xk) + γvk)‖22 + wk · g̃(x)
}

= argmin
x∈Rn

{γ

2
‖vk‖22 +

〈
vk, x − xk

〉
+

1
2γ

‖x − xk‖22 + wk · g̃(x)
}

= argmin
x∈Rn

{
H(xk) + wk · (g̃(x) − g̃(xk)) + F (xk) +

〈
vk, x − xk

〉

+
1
2γ

‖x − xk‖22
}

,

(11)

500 X. Deng et al.

Algorithm 1. PRIAG Algorithm.
Input: MaxIter: K; Step-size: γ. Initialize x1 = 0.
1: for k = 1, 2, · · · ,K do
2: Choose the delay τi,k, (e.g., (8));
3: Update vk =

∑M
i=1 ∇fi(xk−τi,k);

4: Update xk+1 = proxγwk·g̃(xk − γvk);
5: if Convergence is achieved then
6: Break;
7: end if
8: end for

Output: x

where H(x) :=
∑n

j=1 h (g (xj)). In the last step, we change the item γ
2 ‖vk‖22 to

F (xk) and add H(xk) − wk · g̃(xk), because these items are independent of the
argument x. On the other hand, noticing that h(y) is concave, we have

H(x) ≤ H(xk) + wk · (g̃(x) − g̃(xk)). (12)

The loss function F (x), which has L-Lipschitz gradient, enjoys the following
property

F (x) ≤ F (xk) +
〈∇F (xk), x − xk

〉
+

L

2
‖x − xk‖22. (13)

That is, instead of minimizing Φ(x) in (1) directly, the PRIAG algorithm
update xk+1 by minimizing the sum of two surrogate functions (12) and (13),
which correspond to two terms of Φ(x), respectively. The PRIAG algorithm is
summarized in Algorithm 1.

3 Convergence Analysis

This section will present some preliminaries, including several definitions, as well
as useful properties for analysis. In the following, we will show the key lemma
and the main result.

3.1 Preliminaries

Definition 1 (Subdifferentials). Let J : Rn → (−∞,+∞] be a proper and
lower semicontinuous function.

(a) For a given x ∈ dom(J), the Fréchet subdifferential of J at x, written ∂̂J(x),
is the set of all vectors u ∈ R

n that satisfy

lim
y �=x

inf
y→x

{
J(y) − J(x) − 〈u, y − x〉

‖y − x‖2 ≥ 0
}

, (14)

PRIAG Algorithm for Distributed Optimizations 501

where dom(J) := {x ∈ R
n : J(x) < +∞}, when x /∈ dom(J), we set ∂̂J(x) =

∅.
(b) The (limiting) subdifferential, or simply the subdifferential, of J at x ∈ R

n,
written ∂J(x), is defined through the following closure process:

∂J(x) :=
{
u ∈ R

n : ∃xk → x, J(xk) → J(x)anduk ∈ ∂̂J(xk) → uask → ∞
}

(15)

The definition of subdifferential plays a central role in convex optimization.
The details can be found in [24,30].

Definition 2 (Proximal Operator). The proximal operator proxf : Rn →
R

n of f is defined by

proxf (v) = argmin
x∈Rn

{
f(x) +

1
2
‖x − v‖22

}
(16)

where ‖ · ‖2 is the usual Euclidean norm.

The proximal operator is an essential tool that well-suited to solve many
modern optimization problems, particularly those involving nonsmooth regular-
ization terms, modern computing, and distributed computing frameworks [26].

Our convergence analysis is heavily based on the following Lyapunov func-
tion, which is constructed by a delicate embedding of growth-type conditions
into descent-type lemmas.

Γk(ξ) :=
L

2ξ

k−1∑
d=k−τ

(d − (k − τ) + 1)
∥∥xd+1 − xd

∥∥2
2

+ Φ
(
xk
)− min Φ (17)

where ξ is parameter to be determined by step-size γ and τ (the bound for τi,k).
We highlight that in definition (17), Γk(ξ) > 0 for any k ∈ N.

3.2 Key Result

Lemma 1. Let F be a function (may be nonconvex) with L-Lipschitz gradient,
h and g are concave and convex functions, respectively. Let {xk}k=1,2,... be the
sequence generated by PRIAG algorithm, and maxi,k{τi,k} ≤ τ < +∞. Choose
the step-size

γk ≡ γ =
2c

(2τ + 1)L
, (18)

for arbitrary fixed 0 < c < 1. Then we can choose ξ > 0 to obtain

Γk(ξ) − Γk+1(ξ) ≥ 1
4

(
1
γ

− L

2
− τL

)∥∥xk+1 − xk
∥∥2
2

(19)

Consequently, we have
lim

k→∞
∥∥xk+1 − xk

∥∥
2

= 0 (20)

502 X. Deng et al.

and

min
1≤i≤k

∥∥xi+1 − xi
∥∥
2

= o

(
1√
k

)
. (21)

The proof is given in the appendix. Lemma 1 provides the sufficient descent
of the Lyapunov function. Here, τ < +∞ is necessary; otherwise, we get γ = 0.
For the cyclic rule, it is easy to see τ = M , and the step-size requirement is then
smaller than 2

(2M+1)L . With the Lipschitz continuity of F , we are prepared to
present the main result.

Theorem 1. Assume the conditions of Lemma 1 hold and {xk}k=1,2,... is gen-
erated by PRIAG, then we have the following results:

lim
k→∞

dist
(
0, ∂Φ

(
xk
))

= 0 (22)

and

min
1≤i≤k

{
dist

(
0, ∂Φ

(
xi
))}

= o

(
1√
k

)
. (23)

Assume x∗ is any stationary point of {xk}k=0,1,2,.... The results of Theorem
1 directly indicate that dist (0, ∂Φ (x∗)) = 0, which is actually 0 ∈ ∂Φ(x∗). That
is to say any stationary point of {xk}k=0,1,2,... is a critical point of Φ.

4 Applications

This section will contain the applications as well as some numerical experi-
ments to demonstrate the effectiveness of the proposed PRIAG algorithm. All
the numerical experiments are implemented by Matlab on a PC with 16 GB of
RAM and Intel Core i7-7700.

4.1 Application to the Distributed Optimization

To illustrate that our algorithm can be used in distributed optimization prob-
lems, we first describe the implementation process of the algorithm in detail.
Given the initial point x1, we first compute v1 =

∑M
i=1 ∇fi(x1). Then for k ≥ 1,

do

xk+1 = proxγwk·g̃(x
k − γvk),

vk+1 =
{

vk + ∇fk+1(xk+1) − ∇fk+1(x1), k < M
vk + ∇f(k+1)M (xk+1) − ∇f(k+1)M (xk+1−M), k ≥ M

(24)

where (k)M represents the modulo operation of k to M .
The key feature of the PRIAG method that makes it suitable for distributed

optimization such as wireless sensor network applications is that it can be imple-
mented in a distributed manner. Consider a distributed system of M processors
enumerated over 1, 2, · · · ,M , each of which can be access to one of the functions

PRIAG Algorithm for Distributed Optimizations 503

0 10 20 30 40
Epoch

103

104

105

106
O

bj
ec

t f
un

ct
io

n
va

lu
e

PIRE
PIAG
PRIAG

(a)

0 25 50
Epoch

104

105

106

O
bj

ec
t f

un
ct

io
n

va
lu

e

PIRE
PIAG
PRIAG

(b)

Fig. 1. Epoch v.s. Objective function value on the synthetic data. (a): �q minimization,
(b): Logistic minimization.

fi(x). The calculation process (24) (also called as token) begins with x1 at pro-
cessor 1. Then, processor 1 sets v1 =

∑M
i=1 ∇fi(x1) and transmits x1 and v1 to

processor 2. Upon receiving xk−1 and vk−1 from processor k−1, processor k cal-
culates xk and vk according to (24) and transmits them to processor k+1. There-
fore, after M − 1 iterations we obtain x1, · · · , xM and vM =

∑M
i=1 ∇fi(xi). In

that way, the algorithm progresses in a cyclic manner. Upon receiving xk−1 and
vk−1 from processor (k − 1)M , processor (k)M computes xk and vk according to
(24), and transmits them to processor (k+1)M . Note that ∇f(k)M (xk−M) is avail-
able at processor (k)M , since it was the last gradient computed at that processor.
Therefore, the only gradient computation at processor (k)M is ∇f(k)M (xk). At
no phase of the algorithm do the processors share information regarding the
component function fi(x) or its gradient ∇fi(x).

There are two motivations to use the PRIAG method: (a) reduced computa-
tional burden due to the evaluation of a single gradient per iteration compared
to M gradients required for the PIRE method, and (b) the possibility of a dis-
tributed implementation of the method in which each component has access to
one of the functions fi(x). The second item is very useful in the literature of
wireless sensor networks [27,28]. Wireless sensor networks provide a means for
efficient large scale monitoring of large areas. Often the ultimate goal is to esti-
mate certain parameters based on measurements that the sensors collect, giving
rise to an optimization problem. If measurements from distinct sensors are mod-
eled as statistically independent, the estimation problem takes the form of (1),
where fi(x) is indexed by the measurements available at the sensor i. When
transmitting the complete set of data to a central processor is impractical due
to bandwidth and power constraints, the PRIAG method can be implemented
in a distributed manner as described above.

4.2 Application to the Nonconvex and Nonsmooth Problem

This section applies our algorithm to solve the optimization problem of noncon-
vex nonsmooth object functions. We compare our proposed PRIAG algorithm

504 X. Deng et al.

with PIRE and PIAG for solving the �q-norm linear regression (4) and Logistic
regularized linear regression (6) problems.

We first consider a synthetic data set. Each Ai ∈ R
m×n is a Gaussian random

matrix generated by Matlab command randn. The parameter is set to λ =
0.01, ε = 0.01, q = 0.5 for test in this experiment. We consider M = 100 workers
and use 0 ∈ R

n as the initialization. The algorithm are stopped when
∥∥xk − xk+1

∥∥
2

‖xk‖2
≤ 10−8. (25)

Noticed that the PIRE algorithm calculates M gradients and one proximal
operator for each iteration, while the PRIAG and PIAG algorithms only need to
calculate one gradient and one proximal operator once per iteration. Moreover,
the numerical results show that the time to calculate a proximal operator is
much less than the time to calculate a gradient. Therefore, we can consider the
M iterations of the PRIAG and PIAG algorithms as an epoch. We plot the epoch
v.s. objective function value on the synthetic data sets in Fig. 1, from which we
can see that our algorithm can get the same solution as PIRE and PIAG, but
with fewer epochs. This fact means that our algorithm is more efficient.

10-3 10-2 10-1 100

Running time

30

35

40

45

50

O
bj

ec
t f

un
ct

io
n

va
lu

e

PIRE
PIAG
PRIAG

(a)

10-3 10-2 10-1 100

Running time

30

35

40

45

O
bj

ec
t f

un
ct

io
n

va
lu

e

PIRE
PIAG
PRIAG

(b)

Fig. 2. Running time v.s. Objective function value on MNIST data sets. (a): �q mini-
mization, (b): Logistic minimization.

We also plot the running time v.s. objective function value on MNIST data in
Fig. 2 for minimizing the �q and logistic problems. We record the time required
for each iteration and the value of the objective function to plot these figures. It
can be seen that our algorithm completes the first iteration faster than PIRE and
PIAG algorithm. In fact, the numerical results indicate that the calculation of
our algorithm is faster in every iteration. In a nutshell, our algorithm decreases
the objective function value faster when we get the same result.

The next experiment examined the recovery performance of sparse signals
by our PRIAG method. The sparse signal x is generated by Matlab command

PRIAG Algorithm for Distributed Optimizations 505

sprandn(n, 1, 0.1). The response b = Ax + 0.001e, where e is a Gaussian
random vector. Given A and b, we can get the signal x∗ by minimizing the
�q problem by different methods. We use the recovery error ‖x∗ − x‖2/‖x‖2 to
measure the recovery performance. As can be seen in Fig. 3 our method can
achieve better recovery performance.

0 10 20 30
Epoch

10-5

10-3

10-1

101

R
ec

ov
er

y
er

ro
r PIRE

PIAG
PRIAG

(a)

0 0.2 0.4 0.6 0.8
Running time

10-6

10-4

10-2

100

R
ec

ov
er

y
er

ro
r PIRE

PIAG
PRIAG

(b)

Fig. 3. �q minimization. (a): Epoch v.s. Recovery error, (b): Running time v.s. Objec-
tive function value.

The experiments on both synthetic and real data sets demonstrate that our
methods achieve comparative performance but more efficient than previous non-
convex solvers. Next, we will compare and analyze these algorithms in detail.

Compared with the PIAG algorithm, numerical experiments have shown that
our algorithm converges faster. More importantly, in some nonconvex and non-
smooth optimization models, the proximal operator of function H is difficult
to calculate, and usually without explicit solutions. For this case, it takes more
time to calculate the proximal operator in PIAG. In our algorithm, we calculate
the proximal operator of g rather than H, which has a more straightforward
form. In this way, we simplify calculations and programming to speed up the
time required for optimization.

Compared with the PIRE algorithm, our algorithm only needs to calculate
the gradient from one worker in each iteration. When dealing with the large-scale
distributed tasks, it is difficult to calculate the gradient from all workers in every
iteration, and then our algorithm will be more advantageous. Furthermore, we
can flexibly select a component function to update the gradient in each iteration,
and then apply our algorithm to distributed optimization.

506 X. Deng et al.

5 Conclusion

In this paper, we propose the proximal reweighted incremental aggregated gradi-
ent algorithm for a class of nonconvex and nonsmooth problems. The algorithm
only requires a single gradient evaluation and an easy-to-calculate proximal oper-
ator per iteration. We describe in detail how to apply our algorithm to the dis-
tributed optimization and related problems. Furthermore, the efficiency of the
algorithm is demonstrated by several numerical tests.

Acknowledgement. This research was funded in part by the Core Electronic
Devices, High-end Generic Chips, and Basic Software Major Special Projects (No.
2018ZX01028101), and in part by the National Natural Science Foundation of China
(No. 61907034, No. 61932001, and No. 61906200).

Appendix

Proof of Lemma 1

Note that xk+1 is obtained by (7), combining with the Definition 1 and 2 we
have

xk − xk+1

γ
− vk ∈ ∂wk · g̃

(
xk+1

)
. (26)

With the convexity of g, we have

wk · (g̃
(
xk+1

)− g̃
(
xk
)
) ≤

〈
xk − xk+1

γ
− vk, xk+1 − xk

〉
. (27)

The assumption (b) implies that the sum function F is differentiable with L-
continues gradient, i.e.,

‖∇F (w) − ∇F (w)‖2 ≤ L‖w − w‖2, (28)

where L =
∑m

i=1 Li. We can further get

F
(
xk+1

)− F
(
xk
) ≤ 〈∇F

(
xk
)
, xk+1 − xk

〉
+

L

2

∥∥xk+1 − xk
∥∥2
2
. (29)

PRIAG Algorithm for Distributed Optimizations 507

Then we have

Φ(xk+1) − Φ(xk) = F
(
xk+1

)− F
(
xk
)

+
n∑

j=1

h
(
g
(
xk+1

j

))− h
(
g
(
xk

j

))

≤ 〈∇F
(
xk
)
, xk+1 − xk

〉
+

L

2

∥∥xk+1 − xk
∥∥2
2

+
n∑

j=1

h
(
g
(
xk+1

j

))− h
(
g
(
xk

j

))

≤ 〈∇F
(
xk
)
, xk+1 − xk

〉
+

L

2

∥∥xk+1 − xk
∥∥2
2

+
n∑

j=1

wk
j

(
g
(
xk+1

j

)− g
(
xk

j

))

=
〈∇F

(
xk
)
, xk+1 − xk

〉
+

L

2

∥∥xk+1 − xk
∥∥2
2

+ wk · (g̃ (xk+1
)− g̃

(
xk
))

≤ 〈∇F
(
xk
)
, xk+1 − xk

〉
+

L

2

∥∥xk+1 − xk
∥∥2
2

+
〈

xk+1 − xk

γ
+ vk,−xk+1 − xk

〉

=
〈∇F

(
xk
)− vk, xk+1 − xk

〉
︸ ︷︷ ︸

I

+
(

L

2
− 1

γ

)∥∥xk+1 − xk
∥∥2
2
,

(30)
where wk

j := (h′(g(xk
j)) and g̃ = (g(x1), g(x2), . . . , g(xN))�. The first inequality

uses (29). The second inequality uses the concavity of h. The third inequal-
ity uses (27). In the following, we will give the bound of I. First, notice that
maxi,k{τi,k} ≤ τ , then

∥∥xk − xk−τi,k
∥∥
2

≤
k−1∑

d=k−τi,k

∥∥xd+1 − xd
∥∥
2

≤
k−1∑

d=k−τ

∥∥xd+1 − xd
∥∥
2
. (31)

Combining with (7), we have

I =
〈∇F

(
xk
)− vk, xk+1 − xk

〉

=

〈
m∑

i=1

(∇fi

(
xk
)− ∇fi

(
xk−τi,k

))
, xk+1 − xk

〉

≤
m∑

i=1

Li

∥∥xk − xk−τi,k
∥∥
2

· ∥∥xk+1 − xk
∥∥
2

≤
m∑

i=1

Li

(
k−1∑

d=k−τ

∥∥xd+1 − xd
∥∥
2

)
· ∥∥xk+1 − xk

∥∥
2

= L

k−1∑
d=k−τ

∥∥xd+1 − xd
∥∥
2

· ∥∥xk+1 − xk
∥∥
2
.

(32)

The first inequality uses the Lipschitz continuity of ∇fi. The second inequality
uses (31). Meanwhile, for any ξ > 0, we have the following Cauchy’s inequality

∥∥xd+1 − xd
∥∥
2

· ∥∥xk+1 − xk
∥∥
2

≤ 1
2ξ

∥∥xd+1 − xd
∥∥2
2

+
ξ

2

∥∥xk+1 − xk
∥∥2
2
. (33)

508 X. Deng et al.

Then we have

I ≤ L

2ξ

k−1∑
d=k−τ

∥∥xd+1 − xd
∥∥2
2

+
τξL

2

∥∥xk+1 − xk
∥∥2
2
. (34)

Combining (30), (34), we have

Φ(xk+1) − Φ(xk) ≤ L

2ξ

k−1∑
d=k−τ

∥∥xd+1 − xd
∥∥2
2

+
[
(τξ + 1)L

2
− 1

γ

] ∥∥xk+1 − xk
∥∥2
2
.

(35)
If 0 < γ < 2

(2τ+1)L , we can choose ξ > 0, such that

ξ +
1
ξ

= 1 +
1
τ

(
1

γL
− 1

2

)
. (36)

Then, with direct calculations and substitutions, we have

Γk(ξ) − Γk+1(ξ)

= Φ
(
xk
)− Φ

(
xk+1

)
+

L

2ξ

k−1∑
d=k−τ

(d − (k − τ) + 1)
∥∥xd+1 − xd

∥∥2
2

− L

2ξ

k∑
d=k+1−τ

(d − (k − τ))
∥∥xd+1 − xd

∥∥2
2

= Φ
(
xk
)− Φ

(
xk+1

)
+

L

2ξ

k−1∑
d=k−τ

(d − (k − τ) + 1)
∥∥xd+1 − xd

∥∥2
2

− L

2ξ

k−1∑
d=k−τ

(d − (k − τ))
∥∥xd+1 − xd

∥∥2
2

− L

2ξ
τ
∥∥xk+1 − xk

∥∥2
2

= Φ
(
xk
)− Φ

(
xk+1

)
+

L

2ξ

k−1∑
d=k−τ

∥∥xd+1 − xd
∥∥2
2

− L

2ξ
τ
∥∥xk+1 − xk

∥∥2
2

≥ (
1
γ

− (τξ + 1)L
2

− L

2ξ
τ)
∥∥xk+1 − xk

∥∥2
2

=
1
4

(
1
γ

− L

2
− τL

)∥∥xk+1 − xk
∥∥2
2
.

(37)

The first inequality uses (35). The last equation uses (36). We then prove the
first result. By summing the inequality (37), we have:

∞∑
k=1

∥∥xk+1 − xk
∥∥2
2

< ∞. (38)

PRIAG Algorithm for Distributed Optimizations 509

The second then obviously holds. Using [Lemma 3, [9]], we are then led to

min
1≤i≤k

∥∥xi+1 − xi
∥∥2
2

= o

(
1
k

)
, (39)

which directly derives the third one.

Proof of Theorem 1

By the definition of subdifferential, we have

xk − xk+1

γ
− vk ∈ ∂wkg̃

(
xk+1

)
. (40)

That means

xk − xk+1

γ
+ ∇F

(
xk+1

)− vk ∈ ∇F
(
xk+1

)
+ ∂H

(
xk+1

)
= ∂Φ

(
xk+1

)
, (41)

where H(x) :=
∑n

j=1 h (g (xj)). Thus we have

dist2
(
0, ∂Φ

(
xk+1

))
= ‖xk − xk+1

γ
+ ∇F

(
xk+1

)− vk‖22

≤ 2
∥∥xk+1 − xk

∥∥2
2

γ2
+ 2L2τ

k∑
d=k−τ

∥∥xd+1 − xd
∥∥2
2
.

(42)

Combining with Lemma 1,
∑

k

dist2
(
0, ∂Φ

(
xk+1

))
< +∞. (43)

Still using [Lemma 3, [9]], the result can be proved.

References

1. Attouch, H., Bolte, J., Svaiter, B.F.: Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward-backward splitting,
and regularized Gauss-Seidel methods. Math. Program. 137(1–2), 91–129 (2013)

2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear
inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

3. Bertsekas, D.P.: Incremental gradient, subgradient, and proximal methods for con-
vex optimization: a survey. Optim. Mach. Learn. 2010(1–38), 3 (2011)

4. Blatt, D., Hero, A.O., Gauchman, H.: A convergent incremental gradient method
with a constant step size. SIAM J. Optim. 18(1), 29–51 (2007)

5. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing.
In: 2008 IEEE International Conference on Acoustics, Speech and Signal Process-
ing, pp. 3869–3872. IEEE (2008)

510 X. Deng et al.

6. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit.
SIAM Rev. 43(1), 129–159 (2001)

7. Chen, X., Ng, M.K., Zhang, C.: Non-lipschitz �p-regularization and box constrained
model for image restoration. IEEE Trans. Image Process. 21(12), 4709–4721 (2012)

8. Combettes, P.L., Wajs, V.R.: Signal recovery by proximal forward-backward split-
ting. Multiscale Model. Simul. 4(4), 1168–1200 (2005)

9. Davis, D., Yin, W.: Convergence rate analysis of several splitting schemes. In:
Glowinski, R., Osher, S.J., Yin, W. (eds.) Splitting Methods in Communica-
tion, Imaging, Science, and Engineering. SC, pp. 115–163. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-41589-5 4

10. Defazio, A., Bach, F., Lacoste-Julien, S.: SAGA: a fast incremental gradient
method with support for non-strongly convex composite objectives. In: Advances
in Neural Information Processing Systems, pp. 1646–1654 (2014)

11. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306
(2006)

12. Duchi, J.C., Agarwal, A., Wainwright, M.J.: Dual averaging for distributed opti-
mization: convergence analysis and network scaling. IEEE Trans. Autom. control
57(3), 592–606 (2011)

13. Figueiredo, M.A., Nowak, R.D., Wright, S.J.: Gradient projection for sparse recon-
struction: application to compressed sensing and other inverse problems. IEEE J.
Sel. Top. Signal Process. 1(4), 586–597 (2007)

14. Gasso, G., Rakotomamonjy, A., Canu, S.: Recovering sparse signals with a certain
family of nonconvex penalties and DC programming. IEEE Trans. Signal Process.
57(12), 4686–4698 (2009)

15. Giannakis, G.B., Kekatos, V., Gatsis, N., Kim, S.J., Zhu, H., Wollenberg, B.F.:
Monitoring and optimization for power grids: a signal processing perspective. IEEE
Signal Process. Mag. 30(5), 107–128 (2013)

16. Gong, P., Ye, J., Zhang, C.: Robust multi-task feature learning. In: Proceedings
of the 18th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 895–903 (2012)

17. Guo, F., Wen, C., Mao, J., Song, Y.D.: Distributed economic dispatch for smart
grids with random wind power. IEEE Trans. Smart Grid 7(3), 1572–1583 (2015)

18. Jacob, L., Obozinski, G., Vert, J.P.: Group lasso with overlap and graph lasso. In:
Proceedings of the 26th Annual International Conference on Machine Learning,
pp. 433–440 (2009)

19. Lai, M.J., Xu, Y., Yin, W.: Improved iteratively reweighted least squares for uncon-
strained smoothed �q minimization. SIAM J. Numeric. Anal. 51(2), 927–957 (2013)

20. Lu, C., Wei, Y., Lin, Z., Yan, S.: Proximal iteratively reweighted algorithm with
multiple splitting for nonconvex sparsity optimization. In: Twenty-Eighth AAAI
Conference on Artificial Intelligence (2014)

21. Lu, C., Zhu, C., Xu, C., Yan, S., Lin, Z.: Generalized singular value thresholding.
In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

22. Lu, Z., Zhang, Y.: Schatten-p quasi-norm regularized matrix optimization via itera-
tive reweighted singular value minimization. arXiv preprint arXiv:1401.0869 (2015)

23. Mateos, G., Bazerque, J.A., Giannakis, G.B.: Distributed sparse linear regression.
IEEE Trans. Signal Process. 58(10), 5262–5276 (2010)

24. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I: Basic
Theory, vol. 330. Springer, Heidelberg (2006)

25. Padakandla, A., Sundaresan, R.: Separable convex optimization problems with
linear ascending constraints. SIAM J. Optim. 20(3), 1185–1204 (2010)

https://doi.org/10.1007/978-3-319-41589-5_4
http://arxiv.org/abs/1401.0869

PRIAG Algorithm for Distributed Optimizations 511

26. Parikh, N., Boyd, S., et al.: Proximal algorithms. Found. Trends R© Optim. 1(3),
127–239 (2014)

27. Rabbat, M., Nowak, R.: Distributed optimization in sensor networks. In: Pro-
ceedings of the 3rd International Symposium on Information Processing in Sensor
Networks, pp. 20–27 (2004)

28. Rabbat, M.G., Nowak, R.D.: Decentralized source localization and tracking [wire-
less sensor networks]. In: 2004 IEEE International Conference on Acoustics, Speech,
and Signal Processing. vol. 3, pp. iii–921. IEEE (2004)

29. Recht, B., Re, C., Wright, S., Niu, F.: Hogwild: a lock-free approach to paralleliz-
ing stochastic gradient descent. In: Advances in Neural Information Processing
Systems, pp. 693–701 (2011)

30. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis, vol. 317. Springer, Heidelberg
(2009)

31. Shi, W., Ling, Q., Wu, G., Yin, W.: A proximal gradient algorithm for decentralized
composite optimization. IEEE Trans. Signal Process. 63(22), 6013–6023 (2015)

32. Sun, T., Jiang, H., Cheng, L.: Convergence of proximal iteratively reweighted
nuclear norm algorithm for image processing. IEEE Trans. Image Process. 26(12),
5632–5644 (2017)

33. Sun, T., Jiang, H., Cheng, L.: Global convergence of proximal iteratively reweighted
algorithm. J. Global Optim. 68(4), 815–826 (2017). https://doi.org/10.1007/
s10898-017-0507-z

34. Sun, T., Jiang, H., Cheng, L., Zhu, W.: Iteratively linearized reweighted alternating
direction method of multipliers for a class of nonconvex problems. IEEE Trans.
Signal Process. 66(20), 5380–5391 (2018)

35. Sun, T., Li, D., Jiang, H., Quan, Z.: Iteratively reweighted penalty alternating
minimization methods with continuation for image deblurring. In: ICASSP 2019–
2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 3757–3761. IEEE (2019)

36. Sun, T., Sun, Y., Li, D., Liao, Q.: General proximal incremental aggregated gra-
dient algorithms: Better and novel results under general scheme. In: Advances in
Neural Information Processing Systems, pp. 994–1004 (2019)

37. Vanli, N.D., Gurbuzbalaban, M., Ozdaglar, A.: Global convergence rate of proxi-
mal incremental aggregated gradient methods. SIAM J. Optim. 28(2), 1282–1300
(2018)

38. Weston, J., Elisseeff, A., Schölkopf, B., Tipping, M.: Use of the zero-norm with
linear models and kernel methods. J. Mach. Learn. Res. 3(Mar), 1439–1461 (2003)

39. Wright, J., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition
via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227
(2008)

https://doi.org/10.1007/s10898-017-0507-z
https://doi.org/10.1007/s10898-017-0507-z

Decentralized Expectation Maximization
Algorithm

Honghe Jin1, Xiaoxiao Sun2(B), and Liwen Xu3

1 University of Georgia, Athens, GA 30605, USA
hj49351@uga.edu

2 University of Arizona, Tucson, AZ 85724, USA
xiaosun@arizona.edu

3 North China University of Technology, Beijing 100144, China
xulw@ncut.edu.cn

Abstract. As a promising paradigm that does not require a central
node, decentralized computing provides better network load balance and
has advantages over centralized computing in terms of data protection.
Although decentralized algorithms such as decentralized gradient descent
algorithms have been extensively studied, there is no such research on the
expectation maximization (EM) algorithm, which includes the expecta-
tion step (E-step) and the maximization step (M-step) and is a popular
iterative method for missing data studies and latent variable models. In
this paper, we propose decentralized EM algorithms under different com-
munication and network topology settings such as synchronous commu-
nication and dynamic networks. Convergence analysis of the proposed
algorithms is provided in the synchronous scenario. Empirical studies
show that our proposed algorithms have numerical advantages over the
EM algorithms based on local data or full data only, especially when
there is no closed-form maximization in the M-step.

Keywords: Decentralized computing · EM algorithm · Asynchronous
optimization · Dynamic network · Mixture model

1 Introduction

Decentralized optimization over a network, a paradigm to obtain optimal dis-
tributed decisions without a fusion center, has been implemented in a broad
range of applications. Examples include distributed agreement problems [28],
online learning [11,12,26], matrix completion [16,32], decentralized control [5,6],
and distributed learning [10,17]. Compared to centralized computing, decentral-
ized computing does not require a central server, i.e., fusion center, and thus can
keep data safe and private [15,20,29]. The difference between centralized and
decentralized topology is illustrated in Fig. 1. Existing work on decentralized
optimization usually focuses on consensus optimization problems [1,4], aiming
to obtain a global solution. For such a problem, decentralized gradient-based

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 512–527, 2020.
https://doi.org/10.1007/978-3-030-60245-1_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_35&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_35

Decentralized Expectation Maximization Algorithm 513

algorithms and the subgradient variants have been proposed [9,22,31]. These
algorithms assume that the problem is convex or strongly convex. The local
solution to their problems converges to the exact global solution or the neigh-
borhood of the global solution.

While decentralized gradient-based algorithms have been studied extensively,
the expectation maximization (EM) algorithms in the context of decentralized
computing are shown in the control community. Most of the methods for the
distributed EM are designed for the centralized computing framework [23,30].
These methods require a central server communicating with all nodes. Therefore,
the central server has information stored in each node. However, such a network
topology is not feasible in some scenarios where data are stored/collected by
each local node and are only shared with neighboring nodes due to the privacy
concern and communication bandwidth constraint [33].

Centralized Topology Decentralized Topology

Fig. 1. A centralized topology versus a decentral-
ized topology.

The EM algorithm sequen-
tially iterates two steps: the
expectation step (E-step), which
calculates the expectation of
the log-likelihood given cur-
rent parameter estimates, and
the maximization step (M-
step), which updates param-
eters based on the expected
log-likelihood. Due to the com-
plexity of the problem, there
are several difficulties associ-
ated with the theoretical anal-
ysis and implementation of the
decentralized EM algorithm
under the consensus optimiza-
tion framework. First, the negative log-likelihood function usually is not convex.
Most of the works on consensus optimization focus on the convex or strictly
convex problems. Thus, it is difficult to adapt the existing theoretical results to
our problem. Second, in many situations, the closed-form maximization cannot
be obtained in the M-step, which makes the direct calculation of local estimate
averages challenging [13,25].

In this paper, we develop decentralized EM algorithms under different net-
work topology settings. In particular, our main contributions are:

1. We propose a general framework of decentralized EM algorithms which can
be implemented in applications without a closed-form M-step.

2. We propose an asynchronous version of the decentralized EM algorithm and
a decentralized EM algorithm in dynamic networks.

3. The convergence rate of our algorithm is shown as O
(
1
T + 1√

MT

)
, where T is

the number of iteration, and M is the number of nodes in a network.

514 H. Jin et al.

The rest of the paper is organized as follows. Section 2 presents the back-
ground of EM algorithm and the decentralized optimization. Details of the pro-
posed algorithms and the theoretical results are shown in Sect. 3. In Sect. 4, we
present the experimental evaluation of the proposed algorithms.

2 Background

2.1 The EM Algorithm

As a popular statistical tool, the EM algorithm [8] has broad applicability in
many problems, such as clustering [18,21], hidden Markov models [19], and topic
models [3]. In the context of latent variable models, we consider a pair of random
variables (X,Z), where X is the observed part with a density function kθ(x) for
some parameters θ ∈ R

p, and Z is a latent variable. Then the stochastic log-
likelihood function is given by

L(θ;x) = log kθ(x).

We further let gθ(x, z) and hθ(z|x) be the joint density function of (X,Z) and the
conditional density of Z given X = x respectively. The stochastic log-likelihood
function satisfies

L(θ;x) = log(gθ(x, z)) − log(hθ(z|x)).

Taking conditional expectation on Z given X = x at θ′ on both sides, we have

L(θ;x) = Q(θ|θ′;x) − H(θ|θ′;x),

where the stochastic auxiliary function Q(θ|θ′;x) := Eθ′ [log gθ(x,Z)|x] and
H(θ|θ′;x) := Eθ′ [log hθ(Z|x)|x]. In practice, we can only compute the sample
auxiliary function

Q(θ|θ′; {xk}) :=
1
n

n∑

k=1

Q(θ|θ′;xk),

where {xk}n
k=1 are realizations of X. The sample auxiliary function is the empir-

ical mean of the stochastic auxiliary function.
In a standard EM algorithm, we compute the sample auxiliary function in the

E-step and maximize the function Q(θ|θ′; {xk}) in the M-step. More specifically,
on the (t + 1)th iteration, E- and M-steps are written as,

– E-step: Compute the sample auxiliary function Q(θ|θ(t); {xk}).
– M-step: Choose θ(t+1) that maximizes Q(θ|θ(t); {xk}), i.e.,

θ(t+1) = arg max
θ∈Rp

Q(θ|θ(t); {xk}).

Decentralized Expectation Maximization Algorithm 515

When the data set is large, that is, n is large, maximizing the auxiliary
may be too expensive. Instead of maximizing the auxiliary function, the first-
order EM algorithm operates by taking a gradient step in the M-step. For this
algorithm, on the (t+1)th iteration, parameters are updated by: θ(t+1) = θ(t) +
α∇Q(θ|θ(t); {xk}), where α > 0 is an appropriately chosen step size. To further
reduce the computational cost, one random sample can be selected to calculate
the stochastic gradient. For the algorithm, the stochastic auxiliary functional,
Q(θ|θ′;X) := Eθ′ [log gθ(X,Z)|X] is needed to study its theoretical properties
[27]. The stochastic log-likelihood functional L(θ;X) can be similarly defined.

2.2 The Decentralized Algorithm

In the decentralized algorithm, we consider a decentralized network with M
nodes, each of which contains a local data set {xk,m}nm

k=1, m = 1, ...,M , where
xk,m ∈ R

d. Then, the consensus optimization problem is given by

max
θ∈Rp

L(θ) =
1
M

M∑

m=1

Lm(θ), (1)

where Lm(θ) := ELm(θ; {Xk,m}) is the population log-likelihood function in the
mth node, and Lm(θ; {Xk,m}) is the empirical log-likelihood functional based
on the stochastic log-likelihood functional L(θ;X). Without loss of generality,
we select n random samples, {Xk,m}n

k=1, from local data in each node at each
iteration. If we set n = 1, the stochastic gradient algorithm is implemented.
Particularly, the following updates are considered in the mth node,

θ(t+1)
m =

M∑

j=1

wmjθ
(t)
j + α∇Lm(θ(t)m ; {Xk,m}),

where wmj ’s are elements of a doubly stochastic mixing matrix W = (wmj) ∈
R

M×M . The mixing matrix models the connectivity of the network. For instance,
wmj �= 0 if and only if the nodes m and j are directly connected. Since W is a
doubly stochastic matrix, each row and column of W sums to one. In addition, all
of its eigenvalues are real, and 1 = λ1(W) ≥ · · · ≥ λM (W) ≥ −1, where λi(W)
denotes the ith largest eigenvalue of W . Let ρ := max{|λ2(W)|, |λM (W)|} be the
second largest eigenvalues of W . 1−ρ is referred to as the spectral gap measuring
the level of connectivity in a network. For instance, zero spectral gaps indicate
that there is no communication among nodes.

3 The Decentralized EM Algorithm

3.1 Algorithm Description

The Synchronous Algorithm. Throughout the paper, we focus on one sce-
nario, in which all data are partitioned into M nodes, and the local data follow

516 H. Jin et al.

Algorithm 1. Decentralized EM algorithm

input: Initial values of parameters θ
(0)
1 = ... = θ

(0)
M , tolerance ε, and a doubly stochastic

matrix W ∈ R
M×M .

for t = 1, ..., T , do:

1. E-step: Compute the local auxiliary function for each node m:

Qm(θ|θ(t)
m ; {Xk,m}) =

1

nm

nm∑

k=1

E
θ
(t)
m

[log gθ(Xk,m, Z)|Xk,m]

2. M-step: Update parameters in the mth node by

θ(t+1)
m =

M∑

j=1

wmjθ
(t)
j +

α∇Qm(θ(t)
m |θ(t)

m ; {Xk,m})

if ‖θ
(t+1)
m − θ

(t)
m ‖ < ε for any m, break

end for
output: θ

(t+1)
m , m = 1, ..., M .

the predefined identical distribution. Due to the additivity of expectation, the
E-step operates locally. Thus, in the E-step, we compute the local auxiliary
function for each node individually. Based on four different communication and
network settings, the M-step is modified to update local parameters. In Algo-
rithm 1, we incorporate the decentralized gradient descent method with the EM
algorithm and perform the one-step decentralized gradient descent method in
the M-step using the fixed step size.

If one random sample is selected to compute the gradient in the M-step,
the decentralized stochastic gradient descent is implemented. This decentral-
ized algorithm updates local parameters of each node to the weighted aver-
age of parameter estimates from its neighbors. As the input of Algorithm 1,
the mixing matrix W provides weights for the update. More details about the
decentralized stochastic gradient descent algorithm are shown in [15]. In the
M-step of Algorithm 1, we can also find a consensus maximizer of Q(θ|θ(t)) =
1
M

∑M
m=1 Qm(θ|θ(t); {xk,m}) through the decentralized gradient descent method

in [31]. All observations of each node are utilized in the M-step for the decen-
tralized gradient descent method.

The Asynchronous Algorithm. In some networks, the computing power of
nodes may be different. Therefore, it is beneficial to decide when to perform
updates for each agent independently. Such an update scheme is the asyn-
chronous update, which may require much less communication cost and syn-
chronization than its synchronous counterpart. Based on the workload and avail-

Decentralized Expectation Maximization Algorithm 517

ability of the network, we propose an asynchronous version of the decentralized
EM algorithm. The major difference between the asynchronous and synchronous
algorithms is that the former updates parameters independently in each node
without waiting for its neighbors to finish the previous updates. In particular,
the parameters in the mth node for the M-step are updated by

θ(tm+1)
m =

M∑

j=1

wmjθ
(tm)
j +

α∇Qm(θ(tm)
m |θ(tm)

m ; {Xk,m}).

The Algorithm in Dynamic Networks. For a dynamic network, the connec-
tivity of the network is changing over time. The network topology is determined
by its current mixing matrix W (t). In the proposed algorithm for dynamic net-
works, the agents only broadcast local data to their current neighbors based
on the mixing matrix W (t) in the M-step. The same E-step and stopping rule,
as shown in Algorithm 1, shall be applied to the dynamic decentralized EM
algorithm.

3.2 Convergence Analysis

In this paper, we focus on analyzing the convergence rate of the decentralized
first-order EM algorithm in Algorithm 1. The following assumptions are required
for our convergence analysis.

1. All functions Lm(·)’s are with �-Lipschitz continuous gradients.
2. Given the symmetric doubly stochastic matrix W , ρ2 < 1.
3. There exist constants σ and τ such that

E ‖∇Lm(θ; {Xk,m}) − ∇Lm(θ)‖2 ≤ σ2,

for any m and θ, and

E ‖∇Lm(θ) − ∇L(θ)‖2 ≤ τ2,

for any θ, where ∇L(·) denotes the gradient of a function L, and m is uni-
formly sampled from {1, · · · ,M}.

Assumption 1 is essential to ensure the convergence of many gradient-based
algorithms. Note that this assumption does not assume the convexity of Lm. If
Assumption 2 is violated, there is no communication among nodes in a network,
which indicates the mixing matrix is an identity matrix. In Assumption 3, we
assume that the variance of the stochastic gradient is bounded.

To show our convergence results, we define the concatenation of all local
parameters θ(t) :=

(
θ
(t)
1 , · · · , θ

(t)
M

)
. Without loss of generality, we further assume

that θ(0) = 0 and n = 1. Under these assumptions, we have the following
convergence rate for Algorithm 1.

518 H. Jin et al.

Theorem 1. If the step size α is set to 1/(2�+σ
√

T/M), we have the following
convergence rate

∑T−1
t=0 E

∥
∥
∥∇L

(
θ(t)1M

M

)∥∥
∥
2

T
≤

8�(L(0) − L∗)
T

+
(4L(0) − 4L∗ + 2�)σ√

TM
,

for sufficient large T , where 1M is the column vector with all elements equal to
one, and L∗ denotes the optimal value of (1).

The proof of Theorem 1 can be found in the Appendix. Theorem 1 implies that
the convergence rate of Algorithm 1 is O

(
1
T + 1√

TM

)
. Same convergence rate

for the decentralized stochastic gradient descent algorithm can be found in [15].
Our proof can be viewed as extending this proof for one-stage decentralized
algorithms to the two-stage ones. We also conclude that the decentralized first-
order EM algorithm can achieve an ε-approximation solution, which is defined
as

∑T−1
t=0 E

∥
∥
∥∇L

(
θ(t)1M

M

)∥∥
∥
2

T
≤ ε.

If T is large enough, the second term, 1√
TM

, in O
(
1
T + 1√

TM

)
will dominate. The

convergence rate becomes O(1√
TM

) for Algorithm 1. Then, each node shares the
computational complexity of O(1

Mε2), which is referred to as the linear speedup.

4 Experiments

4.1 Mixture Gamma Distribution

We considered a connected network with M = 15 nodes and 20 edges. The
data in each node were generated from a mixture Gamma distribution with the
density function f(x) =

∑K
k=1 πkfk(x), where K = 2 was the number of clusters,

πk > 0 was the mixture weight and
∑

πk = 1, and fk was the density of the kth
cluster with the shape parameter γk and the scale parameter βk. The density
function

fk(x) =
xγk−1e−x/βk

Γ (γk)βγk

k

,

where Γ (·) is the Gamma function. There is no closed-form maximization in the
M-step. In our experiments, we set π1 = 0.3, π2 = 0.7 for two scenarios below,

1. γ1 = 10, γ2 = 15, β1 = 5, β2 = 10.
2. γ1 = 8, γ2 = 9, β1 = 10, β2 = 12.

In Scenario 1, two clusters were well separated, whereas they were mixed in
Scenario 2. In our setting, each node was able to perform local computation and
broadcast local information only to its neighbors based on the mixing matrix.

Decentralized Expectation Maximization Algorithm 519

Fig. 2. Misclassification rates in balanced networks for Scenario 1 (a) and Scenario 2
(b). Misclassification rates in imbalanced networks for Scenario 1 (c) and Scenario 2
(d). The MSE between true parameters and estimated ones versus (e) iteration steps
for different step sizes; (f) step sizes for different sample sizes; (g) the number of nodes
with fixed total sample size; (h) the number of nodes with fixed sample sizes in each
node.

We compared the performance of Algorithm 1, denoted as Decentralized, with
that of an EM algorithm performed locally, denoted as Single. We also applied
the EM algorithm to the full data, denoted as Combine, as the benchmark. Each
setting was repeated 50 times. In addition, 1, 000 samples were generated as the
testing data set to evaluate the misclassification rate of clustering results. In
Fig. 2, we showed misclassification rates of Decentralized, Single, and Combine
for Scenario 1 in panel (a) and for Scenario 2 in panel (b) respectively. The step
size was set to 0.02, and the number of observations in each node increased from
30 to 300 for Scenario 1 and increased from 1,000 to 10,000 for Scenario 2. In
addition, we tested the performance of the proposed algorithms for an imbal-
anced network, in which the sample sizes on different nodes were varied. The
local sample sizes for nine nodes were the same as the balanced ones, while the
other six nodes contained twice as many. The results were shown in panels (c)
and (d) of Fig. 2. All methods in comparison have better performance as the
number of observations in each node increases. The proposed algorithms usu-
ally perform better than Single since our algorithms borrow information from
neighbors. When there are enough observations in each node, the misclassifica-
tion rate of the decentralized EM algorithms approximately achieves that of the
centralized EM algorithm though the latter is not feasible in the decentralized
setting.

To evaluate how the step size, α, affected the performance of the decentralized
EM algorithm, we presented mean square errors (MSE) between true parameters
and estimated ones for different step and sample sizes in panels (e) and (f) of
Fig. 2. For results shown in the panel (e) of Fig. 2, the sample size was fixed to
100 for each node, and we let the step size change from 0.1 to 0.01. A smaller

520 H. Jin et al.

(a) (b)

0.0

2.5

5.0

7.5

100 200 300
Sample Size

Method

AsynDecentralized
Decentralized
Single

0.03

0.04

0.05

0.06

100 200 300
Sample Size

M
is

cl
as

si
fi

ca
ti

o
n

 R
at

e

R
u

n
n

in
g

 T
im

e

Method

Combine
Decentralized
Single

Fig. 3. (a) Running time comparison between synchronous and asynchronous algo-
rithms. (b) Misclassification rates of the decentralized EM algorithm for a dynamic
network under varying sample sizes.

step size α tends to reduce the convergence speed of the proposed algorithms,
while it usually provides better numerical performance in terms of MSE. For
the varying step sizes, the more samples in each node, the better performance
we obtain, as is shown in panel (f) of Fig. 2. Under Scenario 2, we studied how
the number of nodes affected the performance of our algorithm in two different
ways. First, we fixed the total sample size to 15, 000 and varied the number of
nodes from 10 to 150. The results were shown in panel (g) of Fig. 2. As the
number of nodes increases, the number of observations in each node decreases.
Thus, the MSE increases as the number of nodes grows. Second, we showed the
MSE for different numbers of nodes with 1, 000 samples in each node in panel
(h) of Fig. 2. The MSE decreases as the number of nodes increases, which has
been proved in Theorem 1.

We also conducted numerical studies to compare synchronous algorithms
with asynchronous ones in terms of running time. In this study, we generated
local data sets with different sample sizes using settings in Scenario 1. Ten nodes
contained 30 to 300 observations, while five nodes had 60 to 600 observations.
The step size was set to 0.02. The misclassification rate of the asynchronous ver-
sion is similar to that of the synchronous counterpart, with the misclassification
rate |Decentralized−AsynDecentralized|

max(Decentralized,AsynDecentralized) < 0.1 for all settings. However, in terms
of running time, the asynchronous algorithm yielded a fast convergence rate by
avoiding synchronization, as was reported in panel (a) of Fig. 3. To verify the
performance of the decentralized EM algorithm in a dynamic network, we built
a network with M = 16 nodes, which changed the position over time in a two-
dimensional Cartesian coordinate system. In particular, the initial locations of
the 16 agents were set on (0, 0), (0, 1), ..., (3, 3). Suppose all the agents moved to a
random direction with the moving length following random uniform distribution
U(−0.5, 0.5). We let every edge (i, j), with j �= i, be a part of the communication
graph if the distance between two agents was smaller than 2. The network made

Decentralized Expectation Maximization Algorithm 521

such a move randomly at each iteration. Based on the setting in Scenario 1, we
generated 50 to 500 observations for each agent. The misclassification rates were
presented in the panel (b) of Fig. 3, in which we denoted the decentralized EM
algorithm for a dynamic network topology as DynDecentralized. The proposed
algorithm DynDecentralized has a lower misclassification rate than Single and
gradually achieves the performance of Combine as the sample size in each node
increases.

4.2 Hidden Markov Models with Mixtures as Emission Distribution

Hidden Markov model (HMM) is widely used in speech recognition [19], com-
putational biology [14], data compression [7], and pattern recognition [2]. In
HMM, the neighborhood structure is modeled via a Markov dependency among
unobserved labels, whereas the distribution of observations is ruled by an emis-
sion distribution. In many applications, the emission distribution is pre-specified
by a given distribution, such as Gaussian and Gamma distributions, or a mix-
ture distribution. We apply the proposed decentralized EM algorithms in HMM
with a mixture emission distribution and utilize the same notations as those in
[24]. Denote {Si}n

i=1 as a D-state homogeneous Markov chain with the transi-
tion matrix Π. Assume that Xi follows an emission distribution ψd, d = 1, ...,D
conditional on the hidden state Si,

Xi|Si = d ∼ ψd.

Then, an EM algorithm is developed to estimate probabilities and parameters
of each hidden state.

In the experiment, we considered a four-state HMM. For different transition
matrices, we assumed P (Si = d|Si−1 = d) = a with a = 0.25, 0.5, 0.75, 0.9, and
P (Si = d′|Si−1 = d) = (1 − a)/3 when d′ �= d. We used the same static network
topology as that used in mixture Gamma distribution setting, with the sample
size in each node varying from 100 to 1, 000. Each setting was repeated 50 times.
The criterion to evaluate the performance was the MSE between the true τid and
the estimated one, where τid = P (Si = d|X). We compared the performance of
Single, Combine, and Decentralized. Results for different transition matrices, i.e.,
different a’s, were shown in four subplots of Fig. 4 respectively. Since a larger a
means a data point is more likely to keep its current state, all methods have a
lower MSE for a larger a. For any fixed a, the proposed methods have better
performance than Single and gradually achieve the performance of Combine as
the sample size increases.

522 H. Jin et al.

Fig. 4. The MSE between true parameters and the estimated ones for four different
transition matrices.

5 Conclusion

In this paper, we propose a framework for the decentralized EM algorithm. A
convergence rate has been studied for the synchronous version. Extensive numer-
ical studies reveal that the proposed algorithms outperform the algorithms in
comparison under different communication and network settings. The potential
limitation of the proposed algorithms is a lack of global convergence analysis.
We will leave this direction for future work.

Decentralized Expectation Maximization Algorithm 523

Appendix

Proof of Theorem 3.1

To facilitate our proof, we define the following notations,

θ(t) :=
(
θ
(t)
1 , · · · , θ

(t)
M

)
,

X(t) :=
(
{X

(t)
k,1}, · · · , {X

(t)
k,M}

)
,

∇Q(θ(t)|θ(t);X(t)) :=
(∇Q1(θ

(t)
1 |θ(t)1 ; {X

(t)
k,1}), · · · ,∇QM (θ(t)M |θ(t)M ; {X

(t)
k,M})

)
,

∇L(θ(t);X(t)) :=
(∇L1(θ

(t)
1 ; {X

(t)
k,1}), · · · ,∇LM (θ(t)M ; {X

(t)
k,M})

)
, and

∇L(θ(t)) :=
(∇L1(θ

(t)
1), · · · ,∇LM (θ(t)M)

)
.

In our proof, we minimize the negative log-likelihood function. Throughout the
proof, Lm and Qm are negative log-likelihood function and negative auxiliary
function respectively. Then, the (t+1)th iteration of Algorithm 1 can be rewritten
as

θ
(t+1)
m =

M∑

j=1

wmjθ
(t)
j −α∇Qm(θ

(t)
m |θ(t)m ; {Xk,m}) =

M∑

j=1

wmjθ
(t)
j −α∇Lm(θ

(t)
m ; {Xk,m}), (2)

where the last equation comes from the fact that

[∇H(θm|θ(t)m ; {Xk,m})]
θm=θ

(t)
m

= 0. (3)

To see this, we show that for any θm,

H(θm|θ(t)m ; {Xk,m}) − H(θ
(t)
m |θ(t)m ; {Xk,m}) = E

θ
(t)
m

[log{hθm (Z|Xk)/h
θ
(t)
m

(Z|Xk)}|Xk]

≤ log[E
θ
(t)
m

{hθm (Z|Xk)/h
θ
(t)
m

(Z|Xk)}|Xk]

= 0,

where the inequality, which implies (3), is a consequence of Jensen’s inequality.
Then, (2) can be viewed as the following update

θ(t+1) = θ(t)W − α∇Q(θ(t)|θ(t);X(t))

= θ(t)W − α∇L(θ(t);X(t)).

For the function L satisfying the Lipschitzian gradient condition, we have the
following inequality

L(y) ≤ L(x) + ∇L(x)T (y − x) +
�

2
‖y − x‖2 .

524 H. Jin et al.

Based on the inequality, we have

EL
(θ(t+1)1M

M

)
= EL

(θ(t)W1M

M
− α

∇L(θ(t);X(t))1M

M

)

= EL
(θ(t)1M

M
− α

∇L(θ(t);X(t))1M

M

)

≤ EL
(θ(t)1M

M

)
− αE

〈
∇L

(θ(t)1M

M

)
,
∇L(θ(t))1M

M

〉

+
α2�

2
E

∥
∥
∥
∥
∥

∑M
m=1 ∇Lm(θ(t)m ; {X

(t)
k,m})

M

∥
∥
∥
∥
∥

2

.

(4)

It is easy to see that

E

∥∥∥∥∥∥

∑M
m=1 ∇Lm(θ

(t)
m ; {X

(t)
k,m})

M

∥∥∥∥∥∥

2

= E

∥∥∥∥∥∥

∑M
m=1 ∇Lm(θ

(t)
m ; {X

(t)
k,m}) − ∑M

m=1 ∇Lm(θ
(t)
m)

M

∥∥∥∥∥∥

2

+ E

∥∥∥∥∥

∑M
m=1 ∇Lm(θ

(t)
m)

M

∥∥∥∥∥

2

.

Then, it follows from (4)

EL
(θ(t+1)1M

M

)
≤ EL

(θ(t)1M

M

)
− αE

〈
∇L

(θ(t)1M

M

)
,
∇L(θ(t))1M

M

〉

+
α2�

2
E

∥∥∥∥∥∥

∑M
m=1 ∇Lm(θ

(t)
m ; {X

(t)
k,m}) − ∑M

m=1 ∇Lm(θ
(t)
m)

M

∥∥∥∥∥∥

2

+
α2�

2
E

∥∥∥∥∥

∑M
m=1 ∇Lm(θ

(t)
m)

M

∥∥∥∥∥

2

= EL
(θ(t)1M

M

)
− α − α2�

2
E

∥∥∥∥∥
∇L(θ(t))1M

M

∥∥∥∥∥

2

− α

2
E

∥∥∥∥∥∇L
(θ(t)1M

M

)∥∥∥∥∥

2

+
α

2
E

∥∥∥∥∥∇L
(θ(t)1M

M

)
− ∇L(θ(t))1M

M

∥∥∥∥∥

2

︸ ︷︷ ︸
:=T1

+
α2�

2
E

∥∥∥∥∥∥

∑M
m=1 ∇Lm(θ

(t)
m ; {X

(t)
k,m}) − ∑M

m=1 ∇Lm(θ
(t)
m)

M

∥∥∥∥∥∥

2

︸ ︷︷ ︸
:=T2

,

where the last equation is resulting from 2〈a, b〉 = ‖a‖2 + ‖b‖2 − ‖a − b‖2. Fol-
lowing Assumption 1,

T1 ≤ �2

M

M∑

m=1

E

∥
∥
∥
∥
∥

∑M
m′=1 θ

(t)
m′

M
− θ(t)m

∥
∥
∥
∥
∥

2

︸ ︷︷ ︸
D

(t)
m

.

Decentralized Expectation Maximization Algorithm 525

Based on Theorem 1 in [15], we have

ET1 ≤ �2EMk,

where EMk := (E
∑M

m=1 D
(t)
m)/M . Following Assumption 3,

T2 ≤ σ2

M
.

Then,

EL
(θ(t+1)1M

M

)
≤ EL

(θ(t)1M

M

)
− α − α2�

2
E

∥∥∥∥∥
∇L(θ(t))1M

M

∥∥∥∥∥

2

− α

2
E

∥∥∥∥∥∇L
(θ(t)1M

M

)∥∥∥∥∥

2

+
α

2
�2EMk +

α2�

2M
σ2.

We set step-size to 1/(2� + σ
√

T/M) and sum the above inequality from t = 0
to t = T − 1. Given Corollary 2 in [15] and rearranging the inequality, we have

∑T−1
t=1 E

∥
∥
∥∇L(θ(t)1M

M)
∥
∥
∥
2

4T
≤ 2(L(0) − L∗)�

T
+

(L(0) − L∗ + �/2)σ√
TM

+
2�2M

(σ
√

T/M)2

(σ2

1 − ρ
+

9τ2

(1 − √
ρ)2

)
.

(5)

For sufficiently large T , i.e.,

T ≥ 4�4M5

σ6(L(0) − L∗ + �)2
(σ2

1 − ρ
+

9τ2

(1 − √
ρ)2

)
,

the last term in (5) is bounded by the second term.

References

1. Aysal, T.C., Yildiz, M.E., Sarwate, A.D., Scaglione, A.: Broadcast gossip algo-
rithms for consensus. IEEE Trans. Signal Process. 57(7), 2748–2761 (2009)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

3. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

4. Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Gossip algorithms: design, analysis
and applications. In: Proceedings IEEE 24th Annual Joint Conference of the IEEE
Computer and Communications Societies, vol. 3, pp. 1653–1664. IEEE (2005)

5. Bullo, F., Cortes, J., Martinez, S.: Distributed control of robotic networks: a math-
ematical approach to motion coordination algorithms, vol. 27. Princeton University
Press (2009)

6. Cao, Y., Yu, W., Ren, W., Chen, G.: An overview of recent progress in the study
of distributed multi-agent coordination. IEEE Trans. Ind. Inform. 9(1), 427–438
(2012)

526 H. Jin et al.

7. Crouse, M., Nowak, R.D., Baraniuk, R.G.: Wavelet-based statistical signal pro-
cessing using hidden Markov models. IEEE Trans. Signal Process. 46(4), 886–902
(1998)

8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Series B 1–38 (1977)

9. Eisen, M., Mokhtari, A., Ribeiro, A.: Decentralized quasi-newton methods. IEEE
Trans. Signal Process. 65(10), 2613–2628 (2017)

10. Forero, P.A., Cano, A., Giannakis, G.B.: Consensus-based distributed support vec-
tor machines. J. Mach. Learn. Res. 11(May), 1663–1707 (2010)

11. Gai, Y., Krishnamachari, B.: Decentralized online learning algorithms for oppor-
tunistic spectrum access. In: 2011 IEEE Global Telecommunications Conference-
GLOBECOM 2011, pp. 1–6. IEEE (2011)

12. Koppel, A., Paternain, S., Richard, C., Ribeiro, A.: Decentralized online learning
with kernels. IEEE Trans. Signal Process. 66(12), 3240–3255 (2018)

13. Kowalczyk, W., Vlassis, N.: Newscast EM. In: Advances in Neural Information
Processing Systems, pp. 713–720 (2005)

14. Krogh, A., Brown, M., Mian, I.S., Sjölander, K., Haussler, D.: Hidden Markov
models in computational biology: applications to protein modeling. J. Mol. Biol.
235(5), 1501–1531 (1994)

15. Lian, X., Zhang, C., Zhang, H., Hsieh, C.J., Zhang, W., Liu, J.: Can decentralized
algorithms outperform centralized algorithms? A case study for decentralized par-
allel stochastic gradient descent. In: Advances in Neural Information Processing
Systems, pp. 5330–5340 (2017)

16. Ling, Q., Xu, Y., Yin, W., Wen, Z.: Decentralized low-rank matrix completion. In:
2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 2925–2928. IEEE (2012)

17. Liu, K., Zhao, Q.: Distributed learning in multi-armed bandit with multiple players.
IEEE Trans. Signal Process. 58(11), 5667–5681 (2010)

18. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
19. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in

speech recognition. Proc. IEEE 77(2), 257–286 (1989)
20. Ram, S.S., Nedić, A., Veeravalli, V.V.: Asynchronous gossip algorithms for stochas-

tic optimization. In: Proceedings of the 48h IEEE Conference on Decision and Con-
trol (CDC) held jointly with 2009 28th Chinese Control Conference, pp. 3581–3586.
IEEE (2009)

21. Redner, R.A., Walker, H.F.: Mixture densities, maximum likelihood and the EM
algorithm. SIAM Rev. 26(2), 195–239 (1984)

22. Shi, W., Ling, Q., Wu, G., Yin, W.: Extra: an exact first-order algorithm for
decentralized consensus optimization. SIAM J. Optim. 25(2), 944–966 (2015)

23. Srivastava, S., DePalma, G., Liu, C.: An asynchronous distributed expectation
maximization algorithm for massive data: the DEM algorithm. J. Comput. Graph.
Stat. 28(2), 233–243 (2019)

24. Volant, S., Bérard, C., Martin-Magniette, M.L., Robin, S.: Hidden Markov models
with mixtures as emission distributions. Stat. Comput. 24(4), 493–504 (2014)

25. Whipps, G., Ertin, E., Moses, R.: A consensus-based decentralized EM for a mix-
ture of factor analyzers. In: 24th IEEE International Workshop on Machine Learn-
ing for Signal Processing (MLSP) (2014)

26. Wiley, D.A., Edwards, E.K.: Online self-organizing social systems: the decentral-
ized future of online learning. Q. Rev. Distance Educ. 3(1), 33–46 (2002)

27. Wu, C., Yang, C., Zhao, H., Zhu, J.: On the convergence of the EM algorithm: a
data-adaptive analysis. arXiv preprint arXiv:1611.00519 (2016)

http://arxiv.org/abs/1611.00519

Decentralized Expectation Maximization Algorithm 527

28. Xiao, L., Boyd, S., Kim, S.J.: Distributed average consensus with least-mean-square
deviation. J. Parallel Distrib. Comput. 67(1), 33–46 (2007)

29. Yan, F., Sundaram, S., Vishwanathan, S., Qi, Y.: Distributed autonomous online
learning: regrets and intrinsic privacy-preserving properties. IEEE Trans. Knowl.
Data Eng. 25(11), 2483–2493 (2012)

30. Yin, J., Zhang, Y., Gao, L.: Accelerating distributed expectation-maximization
algorithms with frequent updates. J. Parallel Distrib. Comput. 111, 65–75 (2018)

31. Yuan, K., Ling, Q., Yin, W.: On the convergence of decentralized gradient descent.
SIAM J. Optim. 26(3), 1835–1854 (2016)

32. Yun, H., Yu, H.F., Hsieh, C.J., Vishwanathan, S., Dhillon, I.: Nomad: Non-locking,
stochastic multi-machine algorithm for asynchronous and decentralized matrix
completion. P. VLDB Endowment 7(11), 975–986 (2014)

33. Zhao, L., Song, W.Z., Shi, L., Ye, X.: Decentralised seismic tomography computing
in cyber-physical sensor systems. Cyber-Phys. Syst. 1(2–4), 91–112 (2015)

Towards a Deep-Pipelined Architecture
for Accelerating Deep GCN
on a Multi-FPGA Platform

Qixuan Cheng, Mei Wen(B), Junzhong Shen, Deguang Wang,
and Chunyuan Zhang

School of Computer Science, National University of Defense Technology,
Changsha, Hunan, China
wenmei@nudt.edu.cn

https://www.nudt.edu.cn/

Abstract. CNN (convolutional neural networks) have achieved great
success in learning features from Euclidean-structured data. While lots
of learning tasks require dealing with graph data. In these application
scenarios where CNN cannot operate, GCN (graph neural networks) have
shown appealing performance and increasing attention in recent years.
However, according to our research, the computational complexity and
storage overhead of the network also increase, making it a challenge to
accelerate on a single FPGA. Accordingly, in this work, we focus on
accelerating a deep GCN (DAGCN) on a CPU-multi FPGA platform
by proposing a deep-pipelined acceleration scheme. To fully explore the
parallelism that exists in DAGCN, we propose a graph convolutional
neural accelerator (GCNAR) characterized by integration of a multiple
1-D systolic array. In addition, we also adopt an existing CSR algorithm-
based partitioning scheme for large-scale matrix-vector multiplication in
the design of our GCNAR, which effectively improves the computational
efficiency of GCNAR. Moreover, we develop performance and resource
evaluation models to help us determine the optimal design parameters for
maximizing the accelerator throughput. Evaluation on real-world graph
datasets demonstrates that our FPGA-based solution can achieve com-
parable performance to state-of-the-art GCN accelerations. In addition,
compared to CPU and GPU solutions, our accelerator can achieve 196
times and 115 times the improvement for graph classification respectively
in terms of processing latency.

Keywords: Deep Graph Neural Network (GCN) · CPU-multi-FPGA ·
Systolic array

Supported by Supported by organization National Natural Science Foundation of
China (NSFC) project 61802420 and National Program on Key Basic Research Project
2016YFB1000401 and 2016YFB1000403.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 528–547, 2020.
https://doi.org/10.1007/978-3-030-60245-1_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_36&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_36

Accelerating Deep GCN on an FPGA Platform 529

1 Introduction

Due to the rapid development of CNNs in the applications of deep learning
and data mining, increasing attention has been paid to the related work, and
good performance in voice, image, video and network information retrieval has
been achieved. However, non-Euclidean structure data mainly refers to graph
data capable of representing most applications in the real world, which has a
number of advantages. Compared with Euclidean structure data, graphic data
can express richer semantics. This greatly enriches the expression of nodes, and
thus enables applications such as chemical equations, bibliographies, and social
networks to be represented and computed by convolutional neural networks. In
addition, graph convolutional neural networks can also be used for a variety of
applications including, graph classification, edge classification and node classifi-
cation.

Graph convolutional neural network algorithms are one of the most popular
algorithms at present. While there is a lot of related research work emerging,
only a small proportion of it is hardware-related. Current accelerators work
for shallow, simple connected networks. However, at present, there are some
new trends developing in the sphere of graph convolutional neural networks.
The algorithm begins to evolve from simple to complex, and from the initial
shallow connection network to the deep network. Although most existing GCNs
have two or three layers, the current trend shows that GCNs are becoming
deeper (as occurred with CNNs). A GCN network with 152 layers has recently
been proposed, and its efficiency in cloud semantic segmentation tasks has been
demonstrated [1]. Our research shows that the training accuracy increases as the
number of network layers also increases. At the same time, network computing
and memory complexity are far more than the computing power of a single FPGA
chip, so multi-chip acceleration is needed. In addition, similar to [3], we find that
A is quite sparse (sparsity ≥99%). For the most of datasets, the distribution of
input features for the first layer X1 is also very sparse (sparsity ≥90%).

To address these issues, this paper promotes accelerations for the inference of
deep GCN on a CPU-multi-FPGA platform. Our design goal is to fully utilize the
computational power of the multi-FPGA platform and explore the parallelism
in DAGCN. The two distinct advantages of this approach are as follows:

(1) We propose a graph convolutional neural accelerator (GCNAR) character-
ized by the integration of a multiple 1-D systolic array. With the help of
GCNAR, we are able to build accelerators for GCN in only a short time.

(2) In order to make good use of the system properties of the matrix, we also
incorporate an existing CSR algorithm-based partitioning scheme for large-
scale matrix-vector multiplication into the design of GCNAR, which effec-
tively improves the computational efficiency of our proposed model.

(3) Based on the on-chip resources, we designed the model and calculated the
optimal design parameters in order to maximize the throughput of the accel-
erator. Comparing the experimental data reveals that, our FPGA-based
solution can achieve performance comparable to the most advanced GCN

530 Q. Cheng et al.

acceleration. The test results also show that the throughput reaches 196
times of CPU and 115 times of GPU.

2 Related Works

GCN accelerator. To accelerate GCN training, the work in [3] proposes paral-
lelization techniques for a multi-core platform. It partitions features to increase
the cache-hit of each core. This proposes a GCN acceleration platform based on
FPGA, which is mainly aimed at load balancing. [13] proposes an acceleration
algorithm based on a subgraph, which results in partial information loss. [11]
propose a hardware design with two efficient processing engines to alleviate the
irregularity of the Aggregation phase and leverage the regularity of the Combi-
nation phase. These accelerators are mainly aimed at shallow GCN, and they use
a single chip to accelerate the computation process, which is unable to realize
the acceleration of deep GCN.

Scale-out accelerations for DNNs. Various FPGA-based accelerators [4–
6,9,14] have been proposed to train CNNs. The work in [14] proposes a modular
design based on layer operation types, and improves performance via recon-
figuration. The work in [4] proposes a scalable framework for training CNNs
on multi-FPGA clusters. Its partitioning and mapping strategy ensures load-
balance. The works in [5,6] accelerate training by means of model compression.
The reduced model size alleviates the burden on BRAM and thus improves
resource utilization. Although GCNs are an extension of CNNs to graphs, the
challenges associates with accelerating GCNs are significantly different. GCNs
require both sparse and dense matrix operations. In addition to intensive com-
putation, GCN accelerators need to address issues including irregular memory
access and load-balance.

On the other hand, the development of the graph convolutional neural net-
work algorithm has led to the emergence of some variant algorithms, which has
in turn led to increases in the computational and storage complexity of the algo-
rithm. Due to the large amount of computation involved, FPGA has a natural
advantage in this field; accordingly, we try to apply distributed parallel accel-
eration FPGA to solve this problem. At present, [3,13] uses single-node FPGA
to calculate GCN. [3] propose an architecture design called Ultra-Workload-
Balanced-GCN (UWB-GCN) to accelerate the graph convolutional network
inference. They tackle the major performance bottleneck of workload imbal-
ance by proposing two techniques: dynamic local sharing and dynamic remote
switching, both of which rely on hardware flexibility to achieve performance
auto-tuning with negligible area or delay overhead. [13] design a novel accelera-
tor for training GCNs on CPU-FPGA heterogeneous systems, which operates by
incorporating multiple algorithm-architecture co-optimizations. They first ana-
lyze the computation and communication characteristics of various GCN train-
ing algorithms, then select a subgraph-based algorithm that is well suited for
hardware execution. Moreover, to accelerate the weight update in GCN layers,
these authors propose a systolic array-based design for efficient parallelization.

Accelerating Deep GCN on an FPGA Platform 531

All of these works focus only on traditional GCN with a small number of layers
(2–3 layers in general) on a single FPGA- or ASIC-based platform; therefore,
their designs are unable to meet the acceleration requirements of deep GCN. To
the best of our knowledge, we are the first article to propose hardware parallel
acceleration GCN.

3 Background

In this section, we will introduce the DAGCN algorithm, then analyze the spar-
sity of GCN’s commonly-used network matrix, along with the corresponding
compression strategies and methods.

3.1 Traditional GCN Algorithm

In this paper, we focus on spectral-based graph convolutional networks, as these
are among the most fundamental and widely used GCN structures. A GCN
algorithm is generally a multi-layer graph convolutional neural network, each
of which transmits and processes the eigenvalues of neighboring nodes among
the nodes. By superimposing several convolutional layers, information transfer
between nodes in the distance can be realized. Information transfer shown as
the Eq. (1):

H(l + 1) = σ
(
D̃

−1
2 ÃD̃

−1
2 H(l)W (l)

)
(1)

In Eq. (1), σ is the activation function, A is the adjacent matrix, and D is the
degree matrix; that is, the diagonal matrix whose diagonal elements are the sum
of one row of the matrix A. H denotes the matrix of features, where H0 = X.
Finally, W is the weight matrix. As mentioned earlier, since each iteration of
the traditional GCN algorithm can only obtain the key information from the
previous iteration, over-smoothing will occur after many iterations, and many
feature information of the graph will be lost. To address this issue, several GCN
modules are developed, e.g. DAGCN and DSP-GCN [12].

3.2 Deep GCN Algorithm

In this section, we will introduce and analyze the advantages of DAGCN.

Overview of DAGCN. In Fig. 1, the basic process of DAGCN is introduced.
The result of each convolutional layer is added to the graph input as the input of
the next convolutional layer, after which the final result is weighted and output.
Unlike the traditional graph convolution layer, the results of K hops in the
AGC layer are aggregated according to specific weight relations, instead of just
carrying out simple linear transmission. Such connection relations ensure that
the final result covers more information for each hop, so that a better feature
extraction effect can be attained.

532 Q. Cheng et al.

Fig. 1. DAGCN algorithm process

Analysis of DAGCN. We carried out several experiments to determine the
characteristics of DAGCN. Note that the datasets used in the experiments is
Cora and the results are obtained on a Nvidia GTX1080 GPU; moreover, the
number of AGC layers in DAGCN is 1 for all experiments and the number of
hops is 12.

Table 1. Time distribution of the computation layers in DAGCN

Layer AGC FC Pooling

Proportion 96.85% 1.42% 1.73%

Firstly, Table 1 presents the timing distribution of AGC, FC and the pooling
layers. It can be observed that the AGC layers account for the highest compu-
tation cost (up to 90%), while the FC and pooling layers only account for 1.4%
and 1.7%. Therefore, we focus on the acceleration of AGC layer in this work.

We further carried out experiments to test the relationship between the depth
of DAGCN and its accuracy. Note that the datasets used in the experiments is
Cora and the results are obtained on a Nvidia GTX1080 GPU. As can be seen

Accelerating Deep GCN on an FPGA Platform 533

from Fig. 2, the training accuracy of DAGCN increases from 72.3% to 85.2%
when we increase the number of hops from 3 to 21, respectively. Therefore, to
achieve a higher accuracy for deep GCNs, it’s required to necessary the depth
of the networks.

0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

3 6 9 12 15 18 21

Ac
cu

ra
cy

Number of hops in DAGCN

Fig. 2. The relationship between DAGCN depth and accuracy

Although we can improve the training accuracy of DAGCN by increasing the
network’s depth, the computational complexity and storage overhead of DAGCN
will increase accordingly. We further carried out experiments to evaluate the
computation and storage overhead of the DAGCN network. As shown in Fig. 3,
when the number of graph convolution layers is increased from 3 to 12, the
operations increased threefold, while the storage space required is increased by
nearly 1.5 times. According to [10], the state-of-the-art Xilinx XVCU9P FPGA
contains 6840 DSPs and 77.8 MB of on-chip storage. When the number of hops is
three per chip, the storage requirements are in the tens of gigabytes. It is obvious
that a single chip cannot bear the acceleration of a deep network; accordingly,
we focus on accelerating deep DAGCN on a multi-FPGA platform.

3.3 Partitioning Scheme for Large-Scale Sparse MV

Geng et al. [3] revealed that the adjacent matrix and input features for the first
layer in GCNs have a high degree of sparsity (over 90%). A similar conclusion
is drawn for deep GCN (or DAGCN) in the present work. As we can be seen
in Table 2, the data sparsity of GCN common networks is extremely large; in
particular, for the adjacent matrix A, the sparsity exceeds 99%, which indicates
that there are a large number of zero-multiplication operations in the hardware
computation.

Similar to the general GCN algorithm, the DAGCN computing model is
a large-scale sparse matrix-matrix multiplication. For large-scale problems, as
noted above, the storage and computation costs arising from a large-scale matrix

534 Q. Cheng et al.

1500

2000

2500

3000

3500

4000

4500

5000

15000

16000

17000

18000

19000

20000

21000

22000

23000

24000

25000

3 6 9 12

O
pe

ra
�o

ns
Go

psnoit p
musnoC yro

m e
M

M
b

Number of hops in DAGCN

memory

opear�on

Fig. 3. Changes in computation and storage

multiplication algorithm cannot be borne by a single chip; thus, we adopt the
block algorithm mentioned in Dou [2] to reduce the storage resource pressure on
the chip. Regarding the sparsity problem, moreover, the adjacency matrix in the
convolutional layer is not only large in size but also of high sparsity. On the one
hand, this results in a high storage cost; on the other hand, many unnecessary
computations are introduced into the matrix multiplication algorithm. There-
fore, it is to reduce the number of zero value in the matrix in order to accelerate
the matrix multiplication and balance the load.

Table 2. Sparsity and dimensions of matrices in a two-layer GCN for the three most
widely evaluated GCN graph datasets.

CORA CITESEER PUBMED

Dense

A 0.18% 0.12% 0.028%

W 100% 100% 100%

X1 1.26% 0.86% 10.0%

X2 77.8% 89.3% 77.6%

Dim

Node 2708 3327 19717

Edge 5429 4732 44338

Class 7 6 3

3.4 Blocking Compression Scheduling Algorithm

As for the matrix sparsity, we apply the Sparstition [8] algorithm to preprocess
the matrix. As shown in Fig. 4, this algorithm first divides the matrix needing to

Accelerating Deep GCN on an FPGA Platform 535

Fig. 4. Block compression scheduling algorithm

be preprocessed into blocks, then builds a vector for each sub-block, where each
component of the vector is the order in which the “1” of the sub-block appears
in the corresponding row. The “1” in the first line is row zero; all-zero rows are
labeled −1. Next, referring to this vector, we obtain the matrix A’, this matrix
is reordered by rows and all zero rows are removed, which greatly reduces the
algorithm calculation and storage overhead.

Because the matrix multiplication algorithm requires corresponding elements
in A’s row and B by accumulator, the first step disrupts the order of the elements
in A’s row, so the algorithm of the second step is to arrange the elements in the
matrix B. The rearrangement process is carried out in accordance with the IM
recorded in the value; as shown in Fig. 4, the algorithm first deletes the x element
in the x3 and x4 elements. Finally, all the blocks of matrix A are multiplied by
their corresponding B vectors following transformation to obtain the final result.

4 Deep-Pipelined Acceleration Scheme for DAGCN

In this section, we will introduce the details of our proposed mapping scheme for
mapping the entire DAGCN onto a CPU-multi-FPGA platform. This includes
the system architecture, the computation engine for the graph convolutional
layer, and the dataflow among the entire system.

4.1 System Design

An overview of the hybrid CPU-multi-FPGA system used in this work is presents
in Fig. 5. It can be seen from the figure our system compares a host CPU, a main
memory and multiple FPGA nodes. Both the CPU and FPGA nodes can access
the main memory via the PCI-E bus. Due to resource limitations on the FPGA
nodes, the source graph data and final results are stored in the main memory,

536 Q. Cheng et al.

while the FPGA nodes will fetch the source data from the main memory to their
external memory (i.e. DDR) when they begin their computation tasks. It can also
be seen from the figure that only adjacent FPGA nodes are connected directly;
more specifically, all FPGA nodes are organized as a deep-pipelined architecture.
The communication protocol used among FPGA nodes is the classical Aurora
protocol, while the theoretical bandwidth of the physical link between FPGA
nodes is up to 100 Gbps.

CPU Main Memory

FPGA FPGA FPGA

PCI E

100GB Aurora Protocol Connec�on

Fig. 5. Overview of the CPU-multi-FPGA system

4.2 Neural Network Mapping Scheme

First of all, we roughly divide the DAGCN network layers into specific groups
according to their coarseness; these layers include the pooling layer, the fully-
connected layer, and the large calculated amount layer, AGC layer. In order
to accelerate the computation of the AGC layer and increase the parallelism,
the CPU is used to process the fully connected layer and the pooling layer, the
preprocess of the adjacent matrix A, and the computation of the pooling. Since
the computation amount is relatively small and there is no good parallelism,
CPU is a highly appropriate option for processing the layers, as it can ensure
the normal operation of the pipeline.

The process of pooling and matrix preprocessing has been described above. In
this section, we will focus on the rules of mapping AGC layers on to FPGA nodes.
The most direct mapping scheme involves evenly distributing the calculated
load of K layers of graph convolution to FPGA nodes; i.e., each FPGA node
is allocated K/N graph convolutional layers, which ensures that the processing
time of each FPGA node is relatively balanced. In the next step, we only need
to ensure that the computation time of each FPGA node is basically the same,
as this will ensure the normal operation of the pipeline.

Accelerating Deep GCN on an FPGA Platform 537

4.3 GCN Accelerator

As shown in Fig. 6, we organize a graph convolutional neural accelerator on each
of the FPGA nodes. Its basic components include: storage controller, several
graph convolutional neural accelerators (GCNAR), data cache, data reorgani-
zation and network interface module. The storage controller is mainly used to
load/write back input/output data onto/off the chip. The graph convolutional
neural computing engine is responsible for the acceleration of a GCN layer. The
number of graph convolutional layer computation engines is determined by the
network mapping scheme. The data cache is responsible for storing data between
hops of the network. Moreover, the data reorganization module will reorganize
the inter-layer data and provide feature data for the next convolutional layer
computation engine, while the network interface module will be used to send
the intermediate network layer data generated by the local FPGA node to the
neighbor node. We will discuss the role of each module in detail in the following
sections.

We prefetch the value of the adjacent matrix A into the FPGA node, while
the value of the feature matrix X will transmit with the direction of the data
stream. First, we use all the computation engines to calculate the XW of the
first hop; this is mainly because the XW of the first hop has a large amount of
computation and will become a warp level. After the computation is complete,
all nodes will pass the result back to the off-chip, with this results being regarded
as the input of the first hop to conduct the pipeline computation.

The PE chain of each computation engine calculates XW, then performs
the computation after dividing X into blocks. The computation result should be
stored in the Buffer, as the computation result of this step is required in the later
process of A(XW). We use adjustable PE, so that in the two-step computation
process, dense and sparse matrix computations can be performed to speed up
the computation. Subsequently, the block computation results, A(XW) of each
step are passed to the next computation engine for computation.

We will discuss the role of each module in more detail in the following
sections.

Fig. 6. The structure of the proposed GCN accelerator

538 Q. Cheng et al.

GCN Computation Engine. The GCN computation engine is the core func-
tional unit of our GCN accelerator. As shown in Fig. 6, it is composed of several
1-D systolic arrays, each of which contains several basic processing units (PE);
thus, we refer to it as the PE link.

Fig. 7. Block diagram of the PE module

As shown in Fig. 7, PE stores input data from two sets of data registers,
while three FIFOs (first-in first-out) are used to transfer data (FMAC) between
PEs. The configuration stream is implemented so that the results calculated in
the first step can be used directly in the second step. All PEs are configurable,
so that they can support the computation of sparse and dense matrix-matrix
multiplications. When used to perform dense matrix-matrix multiplication, the
workflow can be described as follows:

(1) The prefetch stage: the block of matrix A is prefetched to PE, and then
stored in a local register Ra.

(2) The computing stage: PE reads column K + 1 of the matrix A subblock and
row K of the matrix B subblock at the same time, then passes data through
FIFO A and FIFO B to the adjacent PE. After Rb is updated, the data of
matrix B is multiplied and accumulated with the data in Ra. According to
the passed data Step, judge whether the last step has been reached. If it does
not finish, return Mc to wait for the next result to continue accumulation.
Ra is updated after the data of matrix A is passed in.

(3) The write-back stage: The results of the new computation are written back
to the memory Mc. When the last hop is calculated, the result is directly
written to the on-chip cache.

When sparse matrix multiplication is performed, since the matrix A has been
processed on the host side, we send the non-zero data to all PEs in the data
prefetch stage, and each PE receives the corresponding amount of block A data

Accelerating Deep GCN on an FPGA Platform 539

according to the value in the register. In this way, the data flow of the matrix
A subblock is eliminated, and only the prefetch process of the reconstituted
matrix B subblock is available. At the end of the prefetch process, the state
control needs to be carried out according to the number of data in the register.
Once the threshold value is reached, this indicates that the non-zero element has
been calculated and the computation result can be returned.

Data Reorganization Module. During the computation, the adjacency
matrix A and the feature matrix X are characterized by great sparsity. There-
fore, we compress them before computation; according to our data compression
format, A and XW need to be compressed and reorganized before computation.
The processing of the A matrix is done in the CPU, while the XW matrix results
are generated during the computation process; thus we need to reorganize the
XW matrix. The function of the data reorganization module is to reorganize the
data before XW passes back to the GCN computing engine in order to prepare
for the next step of matrix product computation with A.

Network Interface Module. The main function of the network interface mod-
ule is to help the FPGA nodes to achieve high bandwidth transmission. As illus-
trated in Fig. 6, the network interface module is connected to the last GCN
computing engine and immediately passes to the next FPGA node after receiv-
ing the sub-block data of the feature matrix. To simplify the design, we used the
Aurora IP core provided by Xilinx as the basis for the network interface module
design.

4.4 Data Flow

The matrix multiplication data flow is presented in Fig. 8. It introduces the
flow process of computation; each computation engine contains 8 PE links. Xij
represents the j-th matrix X block data of the i-th convolution layer, while Ak
represents the k-th block of the adjacency matrix A. First of all, due to the large
calculating amount of X1W, it becomes a bottleneck and seriously lengthens
the time delay of the pipeline. Therefore, we first distribute X1 and W to all
FPGA nodes for block computation. After the results are returned to the off-
chip and regrouping, they become the first input node. The result of XW is
transferred to the Rb of the PE of the first GCNAR by row, while the column
components of the adjacency matrix A are multiplied and accumulated when
they are transferred to Ra. The result of each block is passed as a block of X2
to the second GCNAR, multiplied by W. In this way, provided that there are
enough A blocks, the establishment time of the assembly line can be ignored.
The parallel between the first node and the second node is realized.

After each block result is generated, it can be transmitted directly to the
next GCNAR to calculate the corresponding block, which enables the pipeline
processing of the entire computation process to be achieved. Subsequently, the
result of XW will be directly cached to the chips, and the result of A (XW) will
be transmitted to the next hop computation.

540 Q. Cheng et al.

Fig. 8. Accelerator pipeline structure diagram

5 Performance and Resource Modeling

In this chapter, we will introduce the mapping relationship of the model to
the FPGA. Firstly, we parameterize the model, summarize the DAG (Database
Availability Group) of the data in the experiment; next, we introduce the map-
ping relationship between parameters and FPGA, ascertain how to determine
each of the parameter indicators, and finally, build models featuring constraint
conditions such as bandwidth, computing power, and storage capacity.

In order to find better resource utilization parameters, we build a model
that estimates the effect of selecting each parameter on the FPGA. Due to
the limitations of on-chip storage resources, we store the initial data on DDR
(double data rate), and further need to consider factors such as computing time,
computing power, and inter-chip bandwidth.

The computation time of the i-th hop is shown in Eq. (2), where freq is the
accelerator operating frequency,

TEx =
L × S × {(K + 1) × Sj + Stagef}

freq
(2)

The overall time required for computation is slightly longer than the time
outlined in Eq. (2); since on-chip resources are limited, we need to obtain the
data off-chip. However, we can calculate while taking data, so we can temporarily
ignore the time for taking data.

In the next part, the computing power of the FPGA will be considered. We
will constrain the setting of our parameters with reference to the DSP (digital
signal processing) usage limits and average handling capacity.

The DSP required for each FPGA computation is outlined in Eq. (3).

DSP = Cor ×L × S × x (3)

Accelerating Deep GCN on an FPGA Platform 541

Increasing the average handling capacity is also one of the significant criteria
for improving computing performance. The average handling capacity of the
distributed system is presents in Eq. (4),

TP =
hop × (

OPXW + OPA(XW)

)
(TDE + (Stage − 1) × TStage) × 109

(4)

Here, the hop is the iteration times of the entire network, Op denotes the
operation times of XW and AXW, TDE is the delay time, and T is the bottleneck
time. In order to make the model optimal, we need to maximize the average
handling capacity.

BRAM is organized into distributed memory blocks. The memory capacity
of each block of our target FPGA board is 18 Kb. The input, output, and weight
buffers are made up of various BRAM blocks, which store tiled input/output
feature maps and weights. A single BRAM block has two ports (a read port and
a write port), supports concurrent read and write, and can stored 512 32-bit or
1024 16-bit words. The usage of BRAM is expressed as Eq. (5), which represents
the BRAM used by the storage controller.

BRAM =
⌈

2 × K × Sj

1024

⌉
+ 3 × Cor ×L × S + BRAMCM (5)

After calculating these conditions, we will establish the constraints of the
model. Firstly, in terms of hardware resources, the DSP is less than 6840 and
BRAM is limited to 4320. Secondly, the total time should be greater than the
computation time, while also less than the sum of the computation time and the
transmission time.

TEX < TTatol < TEX + TTrans (6)

Equation (7) represents the bandwidth limitation; the bandwidth of the
engine needs to be greater than the data transmission, and BW represents the
maximum bandwidth between nodes.

BW >
L × S × {(K + 1) × Sj + Stagef}

TTrans
(7)

According to the above constraints, we build a model and calculate the opti-
mal case of PE chain number and PE number of each chain in the engine. The
specific situation will be explained in the experiment section.

6 Experiments

We evaluate our model and compare it to other GCN models with the same
GCN networks, including Cora, Citeseer, and Pubmed [7], on CPU and GPU.

542 Q. Cheng et al.

6.1 Experiment Settings

The experimental platform comprises a server, a PCI-E hub and six VCU118
FPGA development boards. We implement the accelerator solution on the Xil-
inx VCU118 development board. The pipelined accelerator is described in verilog
language. Finally, we use Xilinx Vivado (2017.4) for system synthesis, imple-
mentation and binary code generation purposes. The chip uses Dual 4×28 Gbps
QSFP28 cages for communication. VCU118 FPGA can provide 6840 x usable
with the DSPs and 76 Mb of BRAMs.

In order to contrast with the FPGA platform, we conduct experiments on
the CPU and GPU platforms. We implement the GCN networks in Pytorch on
CPU Intel Xeon ES-2660 and GPU GTX1080. We use 32-bit floating-point data
precision for the input/output data and weights. The datasets used for evaluation
are Cora, Citeseer and Pubmed, which are the most popular networks in GCN
training.

6.2 Experiment Evaluation

Resource Utilization. In the experiment, we test the usage of DSPs, BRAMs
and other hardware resources on different datasets with different hop numbers
and compare them with the operation UWB-GCN.

Table 3. Resource utilization on an FPGA node

Resource DSP BRAM LUT Flip-Flop

Available 6840 4320 1182K 2364K

Usage 5386 65.6% 330K 756K

Percentage 78.7% 73.7% 28% 32%

In the test, we utilized the Cora data set. In the network, we set the hop
number to 12, and the PE chain number to 8, while each PE chain uses 84 PE.
From Table 3, we can see that when the utilization rate of DSP exceeds 78%,
the utilization rate of BRAM will approach 75%. The average number of hops
assigned to each node will be used as the number of computing engines in the
node; that is, each engine calculates a hop operation. The length of the PE chain
of each engine is determined by the number of engines at each node.

Scalability. We tested the scalability of the mapping scheme by changing the
number of FPGA nodes. Since we have only six VCU118 FPGA boards, we only
vary the number of FPGA nodes from 2 to 6 in the experiments. In addition,
Pubmed is used as the target datasets, and the number of hops of DAGCN is
fixed to 12.

Accelerating Deep GCN on an FPGA Platform 543

Table 4. Hardware setup under different number of FPGA nodes

Number of FPGA nodes 2 3 4 5 6

Number of GCNAR 6 4 3 2 3 2

Number of PE links per GCNAR 4 6 7 8 7 8

Number of PE per PE link 56 56 64 84 64 84

0

500

1000

1500

2000

2500

3000

2 3 4 5 6

Th
ro

ug
hp

ut
(G

flo
ps

)

FPGA

Actual performance Theore�cal performance

Fig. 9. Cora (Color figure online)

0

500

1000

1500

2000

2500

3000

2 3 4 5 6

Th
ro

ug
hp

ut
(G

flo
ps

)

FPGA

Actual performance Theore�cal performance

Fig. 10. Citeseer (Color figure online)

As shown in Table 4, we integrated the hardware resources on the chip, then
determined the PE chain number and the most reasonable PE number on a
single chain through calculation.

Figure 9, 10 and 11 present the sustained (blue dot line) and theoretical
system throughput (red dot line) for Cora, Citeseer and Pubmed respectively
under different numbers of FPGA nodes. It can be seen that the sustained system
throughput for all datasets is very close to the theoretical throughput, which
demonstrates that our system has good scalability. When the number of nodes
is 5, there is a certain gap in the calculation amount between nodes, which

544 Q. Cheng et al.

0

500

1000

1500

2000

2500

3000

2 3 4 5 6

Th
ro

ug
hp

ut
(G

flo
ps

)

FPGA

Actual performance Theore�cal performance

Fig. 11. Pubmed (Color figure online)

results in a slight drop in model throughput. Later we can consider assigning
the computation of a single hop to different nodes in order to solve this problem.

Comparison with the State-of-the-Art. At present, the research into neu-
ral network FPGA accelerators is still in the initial stage; thus, we selected
only two representative works for comparison. Table 5 presents the results of the
comparison. Since the work [13] focuses primarily on the GCN training process,
we mainly compare it with the work [3]. To ensure fairness, moreover, we only
calculated the performance of a single FPGA node in the table. On the same
platform, we integrated the more PE unit, but the utilization rate of PE (93% to
90%) and single chip computing throughput (524 GFLOPS of 460.8 GFLOPS)
were below that of [3]. The main reason for this has two aspects: one is that we
are faced with high network complexity, which leads to our design than their
high complexity, establish a performance than we long linear accelerator, and
our working accelerator frequency (without optimization) than their job is much
lower, it is not as good as their main reason led to the performance of the single
chip microcomputer. The second reason is that they proposed two load-balancing
scheduling schemes to ensure the computational efficiency of all PEs. However,
our work did not optimize the load balance between PE, with the result that
load imbalance exists between PEs in the same PE chain. Therefore, as far as
the PE utilization rate is concerned, our accelerators are not effective and need
to be further improved.

If the influence of the accelerator frequency is not considered, our accelerator
performs better than that under the GFLOP/freq measurement [3]. Considering
that we are dealing with a more complex depth-mapped convolutional neural
network, and that our solution is deployed on a more complex CPU+FPGA
distributed platform, we believe that our work is somewhat advanced.

Accelerating Deep GCN on an FPGA Platform 545

Table 5. Calculation throughput comparison

Work [3] [13] Ours

Platform Xilinx VCU118 Xilinx Alveo U200 Xilinx VCU118x6

Frequency (MHz) 275 200 200

Number of PE 1024 576 1280 * 6

PE utilization 93% ∼ 90%

Throughput (GFLOPS) 524 ∼ 460.8 (single)

AGC FC Pooling
FPGA+CPU 0.47 1.08 1.31
GPU+CPU 32.02 1.08 1.31
CPU 73.45 1.08 1.31

0 10 20 30 40 50 60 70 80

FPGA+CPU

GPU+CPU

CPU

AGC FC Pooling

CPU:73.45s(1.0x)

CPU+GPU:43.09s(1.7x)

CPU+FPGA:0.38s(196.0x)

s

Fig. 12. The breakdown of processing latency of DAGCN on different platforms

Cross-Platform Comparison. As shown in Figure 12, we tested the Cora data
set. When the hop number is set to 12, the time occupied by AGC, FC and the
pooling layers in the three platforms. We can conclude that, in the CPU+FPGA,
CPU+GPU and CPU platforms, the AGC layer accounts for the proportion of
time in the whole DAGCN. The CPU platform takes 75.8 s, while the AGC layer
takes 74.85 s. The computing time of the AGC layer on GPU+CPU platform was
43.9 s, while the computation time of the AGC layer of FPGA+CPU platform
was 0.38 s. It is not difficult to observe that we mainly accelerate the AGC layer,
while the acceleration of GCNAR shortens the time for CPU by 196 times and
that of CPU+GPU by 115 times.

7 Conclusion and Future Work

In this paper, we implement an FPGA-based parallel acceleration program
designing for deep graphic convolutional neural networks. The acceleration sys-
tem is composed of distributed FPGA, which can realize DAGCN in parallel.

546 Q. Cheng et al.

In order to meet the requirements of hardware storage and computing power,
we compress the matrix by the Sparstition algorithm, and use the blocking
method to streamline the entire computation process, saving hardware stor-
age and computation overhead. And we can dynamically divide the hardware
resources according to the user’s hardware resources and computation accuracy
requirements. According to the number of user’s FPGA nodes, the hop num-
ber, FPGA resources can be dynamically adjusted. For the application of graph
convolutional neural network, this paper is the first article for FPGA hardware
acceleration of complex and multi-chip connection. In future study, we will study
more deep graph convolutional neural network models and improve the train-
ing speed and accuracy through the distributed parallel acceleration system and
parallelism.

References

1. Aliyun: Ali FPGA cloud service. https://www.aliyun.com/product/ecs/fpga
2. Dou, Y., Vassiliadis, S., Kuzmanov, G.K., Gaydadjiev, G.N.: 64-bit floating-point

FPGA matrix multiplication. In: Proceedings of the 2005 ACM/SIGDA 13th Inter-
national Symposium on Field-Programmable Gate Arrays, pp. 86–95. ACM, New
York (2005)

3. Geng, T., et al.: UWB-GCN: hardware acceleration of graph-convolution-network
through runtime workload rebalancing. arXiv preprint arXiv:1908.10834 (2019)

4. Geng, T., et al.: FPDeep: acceleration and load balancing of CNN training on
FPGA clusters. In: 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 81–84. IEEE (2018)

5. Guo, K., et al.: Compressed CNN training with FPGA-based accelerator.
In: Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pp. 189–189. ACM (2019)

6. Nakahara, H., Jinguji, A., Shimoda, M., Sato, S.: An FPGA-based fine tuning
accelerator for a sparse CNN. In: Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, pp. 186–186. ACM (2019)

7. Prithviraj, S., Galileo, N., Mustafa, B., Lise, G.: Collective classification in net-
work data. Technical report CS-TR-4905 and UMIACS-TR-2008-04, University of
Maryland, College Park, Washington, USA (2008)

8. Sigurbergsson, B., Hogervorst, T., Qiu, T.D., Nane, R.: Sparstition: a partitioning
scheme for large-scale sparse matrix vector multiplication on FPGA. In: 2019 IEEE
30th International Conference on Application-Specific Systems, Architectures and
Processors (ASAP), vol. 2160, pp. 51–58. IEEE (2019)

9. Venkataramanaiah, S.K., et al.: Automatic compiler based FPGA accelerator for
CNN training. In: 2019 29th International Conference on Field Programmable
Logic and Applications (FPL), pp. 166–172. IEEE (2019)

10. XILINX: Xilinx virtex ultrascale+ FPGA VCU118 evaluation kit. https://www.
xilinx.com/products/boards-and-kits/vcu118.html#hardware

https://www.aliyun.com/product/ecs/fpga
http://arxiv.org/abs/1908.10834
https://www.xilinx.com/products/boards-and-kits/vcu118.html#hardware
https://www.xilinx.com/products/boards-and-kits/vcu118.html#hardware

Accelerating Deep GCN on an FPGA Platform 547

11. Yan, M., et al.: HyGCN: a GCN accelerator with hybrid architecture. In: 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
pp. 15–29. IEEE (2020)

12. Yang, L., Chen, Z., Gu, J., Guo, Y.: Dual self-paced graph convolutional network:
towards reducing attribute distortions induced by topology. In: Proceedings of the
Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-
2019), pp. 4062–4069 (2019)

13. Zeng, H., Prasanna, V.: GraphACT: accelerating GCN training on CPU-FPGA
heterogeneous platforms. In: The 2020 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 255–265 (2020)

14. Zhao, W., et al.: F-CNN: an FPGA-based framework for training convolutional
neural networks. In: 2016 IEEE 27th International Conference on Application-
Specific Systems, Architectures and Processors (ASAP), pp. 107–114 (2016)

Linear Scalability from Sharding and PoS

Chenlong Yang1, Xiangxue Li1,2,3(B), Jingjing Li1,4, and Haifeng Qian1(B)

1 School of Software Engineering, East China Normal University, Shanghai, China
{xxli,hfqian}@cs.ecnu.edu.cn

2 Shanghai Key Laboratory of Trustworthy Computing, Shanghai, China
3 Westone Cryptologic Research Center, Beijing, China

4 WanXiang Blockchain Lab, Shanghai, China

Abstract. Scalability is one of the most important problems in
blockchain and has been the focus of both industry practitioners and
academic researchers since Bitcoin was born. The blockchain has insuf-
ficient ability in handling large-scale concurrent transactions. The more
transactions that are processed in the network, the more scalability prob-
lems appear in the network. Compared to the transaction throughput
achieved by the electronic payment channels of mature development, the
limitation is magnified. In this paper, we propose a novel consensus mech-
anism from sharding and Proof-of-Stake (PoS)—a scalable blockchain
model that supports high concurrency, and achieve the linear expansion
of transaction processing scale while ensuring security in order to prove
the feasibility of the proposal. The proposal views the blocks in the net-
work as two levels, namely, intermediate transition blocks (i.e., middle
blocks) and final confirmation blocks (i.e., final blocks), and takes epoch
as the basic unit of the consensus mechanism operation cycle. An epoch
is a recursive process for each cycle of the consensus mechanism oper-
ation. Each epoch is equipped with four types of interactions, namely,
node sharding, transaction sharding, internal consensus, and final block
generation, and thereby determines the network status via main chain
and shard chains. Given n nodes in the network, we construct one Valid-
ity group and p− 1 Regular groups (each one contains n/p nodes). The
regular groups create transition blocks according to the transaction pool;
the validity group extracts information from the transition blocks cre-
ated by the regular groups, generates and sends final confirmation blocks
to the main chain. PoS consensus is exploited to ensure that adversaries
are not able to launch attacks on specific shards (neither transaction nor
node shards). We also describe how to re-group the nodes in and add
new node to the network. We provide the security analysis under several
standard attack models.

Keywords: Blockchain · Linear scalability · Proof-of-stake ·
Sharding · Regular group · Validity group · Leader node

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 548–562, 2020.
https://doi.org/10.1007/978-3-030-60245-1_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_37&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_37

Linear Scalability from Sharding and PoS 549

1 Introduction

Blockchain technology, originated from the Bitcoin system proposed by Satoshi
in 2008 [1], truly implements a digital payment system that does not rely on
a trusted third party in an open peer-to-peer network. The decentralized char-
acteristic is greatly different from existing payment systems, and improves the
security and trust model in the existing systems [4,31]. In the trust model of
Bitcoin, the trust relationship between users ordinates from the entire system,
instead of a trusted third party. The bitcoin network maintains a public ledger
that aims to reach a consensus on transactions confirmed by miners heretofore
on the network. Provided that the attacker does not control too large a fraction
of the computational resources on the network (i.e., the majority of the comput-
ing power on the network is honest), he can not undo or alter any transaction
already accepted by the system (with a high-probability guarantee). This makes
the system able to prevent double-spending (i.e., the risk that a digital currency
token may be copied and spent more than once).

There are several methods of reaching consensus on blockchain networks
including the proof-of-work algorithm (PoW), the proof-of-stake algorithm
(PoS), etc. The best-known method of reaching consensus in a blockchain is
the PoW scheme, which is used by Bitcoin. PoW uses a hash function to create
conditions under which one single participant is permitted to announce the proof
about the submitted information. The proof can then be independently verified
by all other system participants .

Consider the Bitcoin system more specifically. The participant that verifies
publicly the information on behalf of the network is in turn rewarded with newly
created bitcoins (which is extremely overpriced in terms of energy cost and com-
puting resources in practice) for its participation . The process of searching for
valid nonce (solutions to the hash function) is called mining. Yet one has to
concede the fact that it is really tremendous waste of energy when participants
mine blocks. To circumvent the restriction of PoW, the community presents PoS
algorithm in an effort to offering a more efficient and environment-friendly alter-
native. In contrast to PoW, PoS leverages virtual resources (such as the stake
of a node) to perform leader election and maintain consensus on the network.
Since the mining resources are virtual, PoS-based consensus process is instant
and gives rise to a minuscule amount of costs.

One of the prominent issues facing the application of blockchain technology
in practical scenarios (such as Internet of Things [2,3], supply chains [5], etc.) is
the scalability of blockchain. As the most popular blockchain projects, Bitcoin
and Ethereum also face the shortcoming of throughput. For instance, the max
throughput of Bitcoin in theory is 6 transactions per second, when it comes to
Ethereum, the throughput is 10. Compared to traditional payment channels such
as VISA and MasterCard [6], the cryptocurrencies basing on blockchain tech-
nology still have shortcomings. As one can see, blockchain scalability becomes
an essential research area.

Obviously, the change of some key values of blocks may work. For instance,
if we reduce the transaction verification time by reducing the difficulty of

550 C. Yang et al.

proof-of-work, or maybe more simply, reducing the data size of transactions,
we may increase the transaction throughput to a limited extent. However, the
possibility of forks and vicious attacks cannot be ignored. Consequently, we need
to surpass the underlying structure of the blockchain to achieve the purpose of
improving transaction throughput. Currently, there are various blockchain scal-
ability solutions in academia, e.g., sharding [30], directed acyclic graph [26],
lightning network [27], sidechain [28,29], etc. In addition, there are improved
solutions based on consensus mechanisms that are recognized by researchers (for
example, Bitcoin-NG [7]).

In this paper, we propose a novel consensus mechanism from blockchain
sharding and PoS—a scalable blockchain model that supports high concurrency,
and achieve the linear expansion of transaction processing scale while ensuring
security in order to prove the feasible of the proposal. The proposal views the
blocks in the network as two levels, namely intermediate transition blocks (i.e.,
middle blocks) and final confirmation blocks (i.e., final blocks), and takes Epoch
as the basic unit of the consensus mechanism operation cycle. Given n nodes in
the network, we construct one Validity group and p−1 Regular groups (each one
contains n/p nodes). The regular groups create transition blocks according to
the transaction pool; the validity group extracts information from the transition
blocks created by the regular groups, generate and sends a confirmation block to
the main chain. An epoch is a recursive process for each cycle of the consensus
mechanism operation. Each epoch is equipped with four types of interactions,
namely, node sharding, transaction sharding, internal consensus, and final block
generation. PoS consensus is exploited to ensure that adversaries are not able
to launch attacks on specific shards (neither transaction nor node shards). We
also describe how to re-group the nodes in and add new node to the network.
We provide the security analysis under several standard attack models.

2 Preliminaries

2.1 Proof-of-Stake

Proof-of-stake (PoS) is a widely-used consensus mechanism [8]. In 2012, the devel-
oper of Peercoin [9] invented the consensus protocol of PoS. This encrypted cur-
rency uses the PoS mechanism to issue new coins and maintain network security.
Peercoin is the first application of the proof-of-stake mechanism in the area of cryp-
tocurrencies. The core idea of PoS is to avoid competition for computing power by
miners (in the speed of obtaining the value ofNonce). Different fromproof-of-work,
the allocation of block generation rights in the proof of equity is determined by the
number ofCoin ages ownedby the participants [10]. The higher the age of the coins,
the greater the probability of winning the competition. As the name suggests, the
coin age is calculated as the product of the amount of cryptocurrency owned by
a node and the time it is owned (for example, if a node has owned 100 coins for
100 days, its coin age is 10,000). The coin age of nodes determines the probability
of successfully obtaining the accounting right under the PoS mechanism. In other
words, in a PoS competition, the coin age (as a weight) affects the probability of
winning the right of accouting transactions.

Linear Scalability from Sharding and PoS 551

The most representative application of the PoS mechanism is Ethereum. The
consensus protocol of Ethereum is a mix of PoW and PoS. In Ethereum, the coin
age of nodes can be converted into computing power to a certain extent. Though
the miners still have to solve the hash puzzle by calculating, the higher the coin
ages they own, the larger the target value of the PoW puzzle that is needed
to calculate; and the lower the cost of the calculation time actually required.
Therefore, the larger the probability of successful block generation has. Also,
it can be seen that the Target value corresponding to each node is different,
depending on the coin age. In contrast, in the pure PoW consensus protocol
represented by Bitcoin, all the nodes need to face an identical Target value.

In addition, PoS has the following advantages [11].

1. It is not necessary to consume extra resources (such as mining machines and
electricity) to ensure the security of the main chain in PoS. If a node has
a tendency to launch an attack, the node needs to have sufficient equity on
the chain at first to ensure that the probability of winning the bookkeeping
right becomes larger; however, the high cost of preparing a attack and the
low profit of a successful attack ensures that miners do not have the motive
for evil interests;

2. The PoS can be used to ensure that cryptocurrencies will retain their market
value. Since PoS avoids high consumption of real economic costs, the system
does not need to frequently “mint” coins (compared to Bitcoin) in order to
maintain the enthusiasm of participants in the network;

3. The PoS can reduce the crisis of centralization [12]. In the PoW, the miners
are assembled into node clusters under the driving of interests, it is extremely
difficult for individual node mining to obtain block rights. Miners participate
in the mining pool and then make dividends according to the computing
power provided by themselves. This makes the growing mining pool violate
the core idea of the Bitcoin blockchain design-the original intention of decen-
tralization. However, in PoS, the concept of the mining cluster is abandoned,
and Ethereum returned the mining right to each individual miner, which is a
huge improvement of the decentralized system.

Compared with PoW, PoS cannot be simply used in reaching consensus
among nodes in the network. In fact, PoS needs improvements to make it more
applicable to the actual situation [13]. In fact, there exist some explict limitations
in PoS including the following.

1. PoS does not fully fulfill the disadvantages of traditional consensus proto-
cols [14]. For instance, the nodes in Ethereum still need to solve the hash
problem by PoW mechanism (though the difficulty of finding the nonce is
lower than that in Bitcoin) [15];

2. The overmuch usage of PoS may cause the centralization in some extreme
cases. As described above, the nodes with more coin ages are more probably
to get the right of generating blocks; therefore, they may have a greater right
to speak for the entire network; in contrast, nodes with less coin ages cannot
pose a threat to the overall network.

552 C. Yang et al.

3. In addition, the longer the PoS protocol runs, the easier it is for nodes with
more coin ages to get rewards, thereby increasing the gap between the rich
and the poor nodes [16].

In this paper, we propose a novel consensus protocol that solves the problems of
pure PoS by introducing the sharding method. Moreover, we increase the average
throughput of transactions of the proposal.

Shard M Shard N

A. 500 coins B. 100 coins

B1

B2

B3

Main Chain
M1

Receipt:A pays 100 coins
to B;

ID:45984233245263

A. 400 coins

A. 400 coins

B4

Establish the Receipt

ID:7897127418526

B. 100 coins

Transaction Success

ID:2481568912912

B. 200 coins

Receipt
ID1:7897127418526
ID2:4598423345263

M2

M3

N1

N2

N3

Fig. 1. An example of sharding blockchains

2.2 Blockchain Sharding

The concept of sharding technology was proposed much earlier than the
blockchain, and is mainly used to improve the storage of databases, especially the
access performance optimization of enterprise-level large databases. The ordinary
distributed ledger is a single chain, and all the nodes in the peer-to-peer network
have to issue transactions and generate blocks on a specific chain (i.e., the main
chain) [17]. Meanwhile, the probability of the appearance of forks is high, which
is not conducive to improving the speed of block processing and transaction ver-
ification. When the idea of sharding is applied to the blockchain technology, the
blockchain network with a large number of nodes can be divided into different
sub-networks—each sub-network (that is, the sharding of network) [18] owns a
part of nodes, and each shard handles corresponding transaction sub-pool.

Linear Scalability from Sharding and PoS 553

The core idea of sharding blockchain is divided into three steps:

1. Network Sharding: method for dividing all nodes in the entire network into
different shards;

2. Transaction Sharding: method for dividing all transactions in the entire
transaction pool into different shards;

3. Status Sharding: method for the nodes only being responsible for verifying
transactions within their respective shards, without affecting the security and
efficiency of the entire blockchain system.

In the model of sharding blockchains, a shard chain is responsible for transaction
accounting in the corresponding shard transaction pool, and the main chain is
responsible for packaging the sub-blocks sent by shard chains [19]. Different from
traditional blockchains, the miners are replaced by collators. As the computing
power of the entire network linearly increases (i.e., the number of nodes dynam-
ically increases), the transaction throughput of blockchain also increases, which
improves the scalability of blockchain system [20]. A typical example of shard-
ing blockchain is shown in Fig. 1. The following describes the typical scenario of
computations and interactions in the model.

1. There is a node A creates a pre-payment transaction, which is packaged in
the collating block M1 in shard M. The transaction is verified by the collator
and sent to the main chain (the same below);

2. Node B also creates a pre-payment transaction at the same time, which is
packaged in the segment K into the proofreading block N1;

3. Node A continues to create a receipt transaction with the content of “A pays
100 coins to B” and generates a receipt ID. The transaction is packaged into
the collating block M2, and at this time, the balance of node A is changed;

4. Node B then creates a consumption receipt and generates another receipt ID,
which is packaged into the collating block N2.

Similar to traditional blockchains, there also exists the problem of forks in
the fragmented multi-chain structure. If a fork occurs, we compare the length of
the main chain at first, and then the length of the shard chains. The longer fork
is recognized by the entire network as the winner of main chain [21].

3 The Proposed Framework

In this section, we describe the proposed scalable sharding platform, including
the consensus protocol and the reward mechanism. The core idea of the proposal
is to simplify the generation process of blocks and emphasize the role of proof-
of-stake. Similar to the sharding blockchain model proposed above, the blocks
in the proposal are also divided into two levels, namely intermediate transition
blocks (i.e., middle blocks) and final confirmation blocks (i.e., final blocks), and
the basic unit of the consensus mechanism operation cycle is called the Epoch.

554 C. Yang et al.

3.1 Consensus Protocol

We assume that there is a peer-to-peer network with a total number of n nodes.
All the nodes are randomly divided into p groups (i.e., the shards), and there are
n/p nodes in each group; a specific group ci is selected as the Validity Group,
and the remaining p−1 groups are named as the Regular Groups. The regular
groups create transition blocks according to the transaction pool allocated to
each group (represented as b); the validity group extracts information from the
transition blocks created by the regular groups, generates a confirmation block
(denoted as B), and sends it to the main chain. An epoch is a recursive process
for each cycle of the consensus mechanism operation. Each epoch is divided into
the following steps.

3.1.1 Node Sharding
Let the first ρ bit of the public key of a node θ be converted into a decimal
number γ, and the node traverses γ blocks forward according to the value of
γ in the final confirmation block where the last intermediate transition block
created by itself is located to get the block Bγ (if the node has not generated a
block, Bγ is the genesis block on the main chain). After that, the node θ needs
to perform a single-layer SHA256 PoW calculation, as shown below:

H(Bγ) = SHA256(TimeStamp(n),
MerkleRoot(Bγ),H(Bγ−1), Nonce).

(1)

Herein, the notations are listed below:

– H(Bγ) denotes the hash value of the block;
– TimeStamp(n) is the timestamp of the current calculation time;
– MerkleRoot(Bγ) is the Merkle tree root of Bγ ;
– H(Bγ−1) denotes the hash value of the previous parent block;
– Nonce is a random number, which satisfies

H(Bγ) < Target,

where Target is the PoW target value, and the system can change the value
of Target during each Epoch.

It should be noted that, all the collator nodes need to complete the calculation
process mentioned above. After the calculation is completed, the nodes sharding
process is implemented. According to the different Nonce values, the system
divides the nodes into different shards (depending on the preamble of Nonce),
and randomly selects a node group as the validity group and the rest are regular
groups. Then, each node group randomly selects a leader node, and the rest
nodes in the group send their public keys to the leader node; after that, the
leader node is responsible for collecting and generating the identity list of all
nodes in the group, and broadcasting the list to the leaders of other groups.
This reduces the complexity of the main chain communication from O(n2) to
O(p), and the complexity of the shard chain communication is O(n/p).

Linear Scalability from Sharding and PoS 555

3.1.2 Transaction Sharding
The sharding process of transactions sorts by the timestamp of them. Let the
set of mining pool shards be

T = {T1, T2...Tn},

where Tn belongs to the validity group, the rest of shards are regular groups.
The transactions in the entire mining pool are sorted according to the timestamp
sequence, and let the set be

Tx = {Tx1, Tx2...Txr}.

Each transaction is mapped to the corresponding shard in turn, and the set of
mapping results is

U1 = {Tx1 → T1, Tx2 → T2...Txn → Tn}.

When the process encounters the validity group, it needs to skip to the next
group and continue to allocate. After the cycle has been executed once, the
leader node of Tn broadcasts the set U1 to the leader nodes of other groups.
After that, Tn will continue to randomly select the next leader node and set the
result of the next round of mapping

U2 = {Txn−1 → T1, Txn → T2...Txr → Tr−n}
broadcasts to the leader nodes of each shard. If the node sharding process has
ended to Tn−1, return to T1 to continue mapping. The purpose of this design is
to enable the nodes of each shard to receive transactions of newly added shards
in time, and to avoid verifying transactions that are not related to their own
node group.

3.1.3 Internal Consensus
Each regular node group is randomly assigned to a shard of the total transaction
pool (Transaction Pool Shard), and PoS consensus is run within the group. Take
T1 as an example, and the corresponding mining pool shard is set to TP1 as
follows:

1. The leader node of T1 receives the mapping set Ut broadcast by the leader
node of Tn, and identifies the transactions corresponding to this group, then
adds it to the mining pool shard;

2. All the nodes of T1 can package transactions in TP1 into blocks and complete
a two-layer SHA256 calculation:

H(bω) = SHA256(SHA256(TimeStamp(n),
MerkleRoot(bω),H(bω − 1), Nonce))

(2)

which should satisfy the following requirement:

H(bω) < Target × min[CoinAge(ω),MaxCoinAge] (3)

556 C. Yang et al.

Fig. 2. An example of an epoch in the proposal

where CoinAge(ω) is the coin age held by the node ω that created the block,
and MaxCoinAge is the maximum available coin age specified by the system.

The current coin ages of the nodes are distributed as a transcript, and all
the nodes in the group will store a transcript of the current coin age of the
group. After the block created by ω (denoted by B1

1)has been broadcast to
the group, the coin age of ω is changed as follows (let NewCoinAge(ω) be
the node’s new coin age):

NewCoinAge(ω) ={
CoinAge(ω) − MaxCoinAge, if CoinAge(ω) > MaxCoinAge,

0, else.

In other words, the node actually consumes a certain amount of coin age, but
keeps the unused coin age.

3. The leader of T1 is responsible for sending B1
1 to the leader of Tn. Meanwhile,

it can receive extra mapping sets at the same time.
4. During the period of this epoch, the nodes in T1 can also repeat the process

of generating blocks such as B2
1 , B3

1 and so on till the epoch ends. However,
each time a leader of a regular group receives a new mapping set, the node
can only send one block to the leader of Tn.

3.1.4 Final Blocks
The leader node of Tn collects all the transition blocks sent by each shard in the
epoch, and broadcasts the blocks to the nodes in Tn. The nodes in Tn should
complete the verification below:

1. the transactions in the transition block should correspond to the right node
group;

Linear Scalability from Sharding and PoS 557

2. there do not exist double-spending problems in the transactions.

After that, Tn also runs the consensus within the group to generate the final
block. The nodes in this group need to store the hash values of all transition
blocks as leaf nodes of a Merkle tree, and calculate the value of the Merkle tree
root:

H(Bσ) = SHA256(SHA256(TimeStamp(n),
MerkleRoot(Bσ), Nonce))

(4)

Similarly, the node σ needs to continuously increase the value of Nonce to
satisfy the condition:

H(Bσ) < Target × min[CoinAge(σ),MaxCoinAge] (5)

The node σ that has successfully wined the final block generation right broad-
casts the block to the entire network and adds it to the main chain, and its coin
age will be consumed in the same way mentioned above.

3.1.5 Regrouping
After the protocol runs for r cycles, the system regroups all nodes, the grouping
rules remain unchanged, and the process mentioned above continues to cycle.
r is a variable, and its value depends on the system’s efficiency in verifying
transactions. Before regrouping, the leader of Tn firstly sends a ShardRequest
message to the leaders of other groups with the format

<ShardRequest, EpochID, T imestamp>,

where EpochID is the serial number of the current epoch. The purpose of design
is to help the receiver to confirm that the message corresponds to the current
epoch, preventing the messages from being received late due to network delays.
After the leader of a regular group receives the message, it sends a ShardPrepare
message to the leader of the validity group in the format

<ShardPrepare, ShardID, T imestamp,CoinAgeList>,

where CoinAgeList refers to the coin age list of nodes in the shard. The leader
of validity group merges the coin age lists and broadcasts them to all the nodes
in the entire network for the usage in the next round of grouping. An example
of an epoch is shown in Fig. 2.

When a new node applies for joining the network, it should firstly broadcast
an application message to the entire network in the format of

<Apply, PubKey, T imestamp,Hash>,

where PubKey is the public key of the node, and Hash is the hash value of
message calculated by SHA256. Then, before the start of the next round of
epoch, the node needs to perform PoW calculation to obtain identity access.
Since the node has not generated a block, the block that originally needs to be
traversed can be a genesis block, and then according to Nonce for subsequent
sharding of nodes.

558 C. Yang et al.

3.2 Reward Mechanism

In the traditional PoW mechanism, miners add Coinbase transactions to the
block and set the receiver’s address as their own address, so that each mining
of blocks can get a certain number of mining rewards, as well as additional
transactions Handling Fee [22]. In the design of our proposal, we need to
realize the reward for collators through interest. When a collator generates a
block and the block is approved by the validity group, the coin age of the collator
will be consumed by a certain amount. Therefore, we consider that if

– a node holds ε coin age,
– every time α coin age is cleared,
– β coin interest will be obtained in the block,

then the interest that can be obtained is

ε × β/α

coins. The value of ε, α and β depends on the market value of the token. Obvi-
ously, the nodes that pay more coin ages, the higher the rewards obtained
through the protocol, that is, relying on holding tokens and converting them
into computing power to make a profit [23].

4 Security Analysis

In this section, we provide the security analysis of the proposal. In this model, we
mainly focus on two standard attack methods: Sybil Attack and 51% Attack.

The Sybil Attack refers to a type of malicious actions that the attackers
create a huge number of pseudonymous identities and use them to gain a dispro-
portionately large influence. In peer-to-peer networks, the identities are used as
the abstractions, in order that a remote entity can be aware of identities without
necessarily finding the relationship between identities and entities in reality. In
theory, we think that each identity corresponds to a specific entities in reality;
however in fact, different identities may correspond to the same entity in real-
ity. The malicious nodes may create pseudonymous identities that are controlled
by themselves. Those identities (obviously dishonest) may launch the attack by
changing the result of votes.

51% attack (also called the Double-spending Attack) [24] is also widely dis-
cussed in Bitcoin communities. When a group of miners control more than 50%
of the hash power of entire network (computing power), a 51% attack may occur.
The malicious attackers may launch the attack by generating new blocks without
verification and confirmation, revoke the completed transactions on the current
block, or initiate a large number of double-spending transactions on the network.

Linear Scalability from Sharding and PoS 559

4.1 Sybil Attack

As is mentioned above, the consensus protocol designed by this paper operates
on the Epoch as the basic period cycle, before the beginning of each cycle, all
the nodes in the entire network need to complete a simple PoW calculation [25].
According to the value of the first few digits of the node’s public key converted
into a decimal number, the nodes calculates a hash value that satisfies the target
value (according to the current timestamp), and traverses several blocks toward
the final confirmation block where the last intermediate transition block created
by itself. Therefore, the sharding of nodes can be performed by a random number
that meets the conditions. In this design, it is not feasible for a malicious attacker
to launch the attack by controlling a certain shard. Due to the characteristics of
hash functions, a malicious attacker cannot predict which node shard a malicious
node will be mapped to, nor can it predict which part of a transaction will be
verified by a specific node shard. Meanwhile, at the end of each epoch, the node
still needs to complete a single PoW calculation as the identity admission for the
next epoch period. Even if the attacker intends to advance the PoW process by
controlling its intentional delay in creating blocks, it cannot control the time and
order of the honest nodes to send the blocks in the main chain before. Therefore,
it is computationally infeasible for attackers to control a certain node shard by
creating a large number of malicious nodes or to create a large number of empty
transactions to reduce the verification efficiency of the entire network. Therefore,
the proposal can resist Sybil attacks.

4.2 51% Attack

A PoW-based 51% attack requires the attacker to control at least “50%+1” of
the computing power of the entire network. In the PoS mechanism, launching
a 51% attack requires the attacker to occupy at least 50%+1 of the coin age
of the entire network. Therefore, the attacker needs to hold a large amount of
tokens for a long time before the attack. Compared with PoW, mining coins can
theoretically control 50%+1 of the computing power of the entire network. How-
ever, since there is no coinage mechanism in traditional PoS, the total amount
of cryptocurrencies is fully preset at the beginning of developing. Stakes can
only be acquired from existing users and cannot be invested outside the system.
Therefore, the cost of launching a 51% attack on a PoS-based blockchain is equal
to the cost of purchasing stake from the market. Thus there are no economic
benefits for the attackers.

The solution of the proposal is setting a maximum limit value when per-
forming PoS coin age statistics, and the coin ages that exceed the limit are not
counted (that is, as mentioned above, a threshold MaxCoinAge is set so that
all the nodes have an upper limit of difficulty when doing calculations). Even if
the attacker’s coin age reaches more than 51% of the entire network, it does not
mean that the probability of the attacker winning in the PoS operation reaches
more than 51%, that is, there will be no absolute advantage, and when the size
of the shard is large enough, the attacker launches a 51% attack Probability is

560 C. Yang et al.

also negligible. In addition, suppose that an attacker launches a 51% attack in
order to cause a malicious fork, and hopes that the fork will continue to exist so
that the main chain will be replaced. However, members of the validity group are
constantly changing with the cycle of epochs, and the coin age of the collators
who have win the right of generating blocks in the main chain will be consumed
or cleared. Therefore, the attacker needs to control a large number of sequences
with high coin ages, and to ensure that the validity group of each epoch has the
ability to launch malicious attacks, and the malicious attacks will win in each
round of PoS competition. The probability of them can be negligible.

In summary, the 51% attack launched by malicious attackers has no economic
benefits, and even if the adversary abandons the economic benefits, it is not
feasible to simply launch the attack, hence there is no motive for 51% attacks.

5 Conclusion and Future Work

We mainly focus on how to ensure the that the malicious nodes will not launch
the attack on specific node shards. In this paper, we propose a novel scalable
blockchain framework based on the sharding technology and Proos-of-Stake con-
census protocol. The model has the advantages of dynamic random grouping
(both nodes and transactions), independent and internal consensus, and linear
scalability. Improved dynamic random grouping based on proof-of-work calcu-
lation can ensure that each node cannot predict its sharding situation, so that
malicious attackers cannot control specific shards to launch a Sybil attack or a
51% attack.

In future work, we will proceed blockchain scalability and analyze the applica-
tions of blockchain projects, including cross-chain communication of side chains,
path finding algorithms for off-chain transaction networks, and incentive mech-
anisms for blockchain sharding. Blockchain scalability provides a credible data
mechanism for dealing with high-traffic transactions in decentralized scenarios.
However, there are still many problems and challenges, i.e., how to put research
results into well-operated landing projects.

Acknowledgement. The work was supported by the National Natural Science Foun-
dation of China (Grant Nos. 61971192, 6191101004) and the National Cryptography
Development Fund (Grant No. MMJJ20180106).

References

1. Nakamoto, S., Bitcoin, A.: A peer-to-peer electronic cash system (2008)
2. Fernández-Caramés, T.M., Fraga-Lamas, P.: A review on the use of blockchain for

the Internet of things. IEEE Access 6, 32979–33001 (2018)
3. Shao, Z., Xue, C., Zhuge, Q., Qiu, M., Xiao, B., Sha, E.H.-M.: Security protection

and checking for embedded system integration against buffer overflow attacks via
hardware/software. IEEE Trans. Comput. 55(4), 443–453 (2006)

4. Tian, Z., Li, M., Qiu, M., Sun, Y., Shen, Su: Block-DEF: a secure digital evidence
framework using blockchain. Inf. Sci. 491, 151–165 (2019)

Linear Scalability from Sharding and PoS 561

5. Bocek, T., Rodrigues, B.B., Strasser, T., Stiller, B.: Blockchains everywhere–a
use-case of blockchains in the pharma supply-chain. In: Proceeding of IFIP/IEEE
Symposium on Integrated Network Service Manage. (IM), pp. 772–777, May 2017

6. Murdoch, J.S., Anderson, J.: Verified by visa and mastercard securecode: or, how
not to design authentication. In: Financial Cryptography, pp. 336–342 (2010)

7. Eyal, I., Gencer, A.E., Renesse, R.V.: Bitcoin-NG: a scalable blockchain protocol.
In: Usenix Conference on Networked Systems Design & Implementation, pp. 45–59
(2016)

8. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure
proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017.
LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-63688-7 12

9. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake. Self–
published Paper, 19 August 2012

10. Tosh, D., et al.: CloudPoS: a proof-of-stake consensus design for blockchain
integrated cloud. In: IEEE 11th International Conference on Cloud Computing
(CLOUD), pp. 302–309 (2018)

11. Bentov, I., Gabizon, A., Mizrahi, A.: Cryptocurrencies without proof of work. In:
Clark, J., Meiklejohn, S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.)
FC 2016. LNCS, vol. 9604, pp. 142–157. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-662-53357-4 10

12. Peifang, N., Hongda, L., Meng, X., Pan, D.: UniqueChain: a fast, provably secure
proof-of-stake based blockchain protocol in the open setting. IACR Cryptol. ePrint
Arch. 2019, 456 (2019)

13. Bartoletti, M., Lande, S., Podda, A.S.: A proof-of-stake protocol for consensus on
bitcoin subchains. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp.
568–584. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0 36

14. Chepurnoy, A., Duong, T., Fan, L., Zhou, H.: TwinsCoin: a cryptocurrency via
proof-of-work and proof-of-stake. IACR Cryptol. ePrint Arch. 2017, 232 (2017)

15. Badertscher, C., Gazi, P., Kiayias, A., Russell, A., Zikas, V., Ouroboros genesis:
composable proof-of-stake blockchains with dynamic availability. In: ACM Confer-
ence on Computer and Communications Security, pp. 913–930 (2018)

16. Gazi, P., Kiayias, A., Russell, A.: Stake-bleeding attacks on proof-of-stake
blockchains. In: CVCBT, pp. 85–92 (2018)

17. Luu, L., et al.: A secure sharding protocol for open blockchains. In: ACM Sigsac
Conference on Computer & Communications Security, pp. 17–30 (2016)

18. Fidelman, Z.: A generic sharding scheme for blockchain protocols. CoRR
abs/1909.01162 (2019)

19. Dang, H., Dinh, T., Loghin, D., Chang, E., Lin, Q., Ooi, B.: Towards scaling
blockchain systems via sharding. In: SIGMOD Conference, pp. 123–140 (2019)

20. Tong, W., Dong, X., Shen, Y., Jiang, X.: A hierarchical sharding protocol for
multi-domain IoT blockchains. In: ICC, pp. 1–6 (2019)

21. Croman, K., et al.: On scaling decentralized blockchains. In: Clark, J., Meiklejohn,
S., Ryan, P.Y.A., Wallach, D., Brenner, M., Rohloff, K. (eds.) FC 2016. LNCS,
vol. 9604, pp. 106–125. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-53357-4 8

22. Vaidya, K.: Decoding the enigma of Bitcoin Mining - Part I: Mechanism.
https://medium.com/all-things-ledger/decoding-the-enigma-of-bitcoin-mining-
f8b2697bc4e2/

23. Buterin, V.: A Proof of Stake Design Philosophy. https://medium.com/
@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51/

https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-662-53357-4_10
https://doi.org/10.1007/978-3-319-70278-0_36
https://doi.org/10.1007/978-3-662-53357-4_8
https://doi.org/10.1007/978-3-662-53357-4_8
https://medium.com/all-things-ledger/decoding-the-enigma-of-bitcoin-mining-f8b2697bc4e2/
https://medium.com/all-things-ledger/decoding-the-enigma-of-bitcoin-mining-f8b2697bc4e2/
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51/
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51/

562 C. Yang et al.

24. Lam, W.: Attack-prevention and damage-control investments in cybersecurity. Inf.
Econ. Policy 37, 42–51 (2016)

25. Asfia, U., Kamuni, V., Sutavani, S., Sheikh, A., Wagh, S., Singh, N.M.: A
blockchain construct for energy trading against sybil attacks. In: MED, pp. 422–427
(2019)

26. Andy, W.: Directed Acyclic Graph: the Future of Blockchain Development. https://
www.coinspeaker.com/directed-acyclic-graph-blockchain/

27. Khan, N., State, R.: International Congress on Blockchain and Applications. Light-
ning Network: A Comparative Review of Transaction Fees and Data Analysis, pp.
11–18. Springer, Berlin (2019)

28. Guo, J., Gai, K., Zhu, L., Zhang, Z.: An approach of secure two-way-pegged multi-
sidechain. In: Wen, S., Zomaya, A., Yang, L.T. (eds.) ICA3PP 2019. LNCS, vol.
11945, pp. 551–564. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
38961-1 47

29. Back, A., et al.: Enabling blockchain innovations with pegged sidechains. http://
www.opensciencereview.com/papers/123/enablingblockchain-innovations-with-
pegged-sidechains

30. Luu, L., et al.: A secure sharding protocol for open blockchains. In: ACM Confer-
ence on Computer and Communications Security, pp. 17–30 (2016)

31. Qiu, H., Noura, H., Qiu, M., Ming, Z., Memmi, G.: A user-centric data protection
method for cloud storage based on invertible DWT. IEEE Trans. Cloud Comput.
1–12 (2019). https://doi.org/10.1109/TCC.2019.2911679

https://www.coinspeaker.com/directed-acyclic-graph-blockchain/
https://www.coinspeaker.com/directed-acyclic-graph-blockchain/
https://doi.org/10.1007/978-3-030-38961-1_47
https://doi.org/10.1007/978-3-030-38961-1_47
http://www.opensciencereview.com/papers/ 123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/ 123/enablingblockchain-innovations-with-pegged-sidechains
http://www.opensciencereview.com/papers/ 123/enablingblockchain-innovations-with-pegged-sidechains
https://doi.org/10.1109/TCC.2019.2911679

Tree2tree Structural Language Modeling
for Compiler Fuzzing

Haoran Xu1, Shuhui Fan1, Yongjun Wang1(B), Zhijian Huang2, Hongzuo Xu1,
and Peidai Xie1

1 College of Computer, National University of Defense Technology, Changsha, China
{xuhaoran12,fanshuhui18,wangyongjun,xuhongzuo13}@nudt.edu.cn,

xpd2002@126.com
2 National Key Laboratory of Science and Technology on Information System

Security, Institute of System Engineering, Chinese Academy of Military Science,
Beijing, China

zjhuang@nudt.edu.cn

Abstract. Compiler fuzzing requires well-formed test cases. Only syn-
tactically correct programs can pass the parsing stage of a compiler.
Recently, advanced compiler fuzzers produce test cases by learning a gen-
erative language model of regular programs. They treat programs as nat-
ural language texts without leveraging any syntactic structure, making
them hard to produce syntactically correct programs when programs get
long. In this paper, we propose a novel tree-to-tree (tree2tree) model to
leverage the structural information for a robust test case generation. We
adopt an encoder-decoder architecture to map a partial abstract syntax
tree (AST) to a complete AST. We introduce a C compiler fuzzing frame-
work, named TSmith. Specifically, TSmith employs a tree-based encoder
to encode the input partial AST to capture the hierarchical structure
information. It then adopts a tree decoder to generate a complete AST
by expanding the non-terminals in a top-down manner. Finally, the out-
put ASTs are converted into corresponding test programs. Experimental
results show that our generation strategies have a maximum parsing pass
rate of 83%, which is about 21% higher than sequential models. Besides,
TSmith significantly improves the code coverage of the compiler. Ben-
efiting from the high pass rate and broad code coverage, TSmith has
found 14 new bugs in GCC.

Keywords: Fuzzing · Compiler · Tree2tree · Neural network ·
Generation

1 Introduction

Compilers are among the most fundamental tools in software development. Vari-
ous techniques have been used to improve the correctness and reliability of com-
pilers. Fuzzing has been proven to be a highly successful technique to uncover

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 563–578, 2020.
https://doi.org/10.1007/978-3-030-60245-1_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_38&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_38

564 H. Xu et al.

bugs in compilers by feeding a large number of test programs to the target com-
piler. Effective compiler fuzzing requires well-formed test cases. Only programs
with correct lexicons and syntax could pass the parsing stage of a compiler,
after which the most complex and vulnerable functionalities can be tested. Tra-
ditional grammar-based fuzzing methods [19] produce test cases based on the
given grammars and specifications. However, researchers point out that provid-
ing such specifications is a time-consuming and laborious task.

Deep neural networks have been introduced to tackle this problem in recent
studies. Recent works show that approaches in natural language processing can
be applied to test program generation. In these methods, programs are treated
as natural language texts. The state-of-the-art methods in this field adopt the
sequence-to-sequence (seq2seq) model [10] which builds a generative language
model for code sequence generation. However, programming languages have
strict grammars and are not tolerant to syntax errors. Besides, the generation
approaches in sequential models are based on prefix sequences. Therefore, it will
lose global information which is out of the scope of conditional sequences. It has
been demonstrated that it is hard for the seq2seq model to produce syntactically
correct programs when the lengths grow large [9].

In this work, we observe that programs naturally contain rich and explicit
structural information, which means that program generation is a structured
prediction problem. For program generation problems, a useful property is that
each program corresponds to a parse tree. Rather than modeling the program
as a sequence of chars or tokens, we consider the problem as generating parse
trees. Recently, tree-based methods have shown successes on various semantic
parsing [5,13] and software engineering tasks [3,20]. Following previous works,
we propose a novel tree2tree model to generate syntactically correct test cases.
The key idea of our work is to leverage the syntactic structures and global
information in source code to learn a structural code model.

We focus on generating test programs in a context in this paper. Specifically,
we generate new test programs by completing the input partial programs. Our
model employs the Abstract Syntax Tree (AST). An AST is a tree representation
of the abstract syntactic structure of source code. Compared to a concrete syntax
tree which represents every syntax detail in a program, an AST is more refined
because it just contains structural or content-related details. Most programming
languages are accompanied with a well-developed parser, which could be used
for the conversion between ASTs and programs. Recent studies [1,17,18] have
shown that modeling source code with AST can obtain better representation
than traditional natural language processing methods. We combine AST and
a tree encoder to capture both the lexical (i.e., leaf nodes such as identifiers)
and syntactical (i.e., non-leaf nodes like grammar construct Decl) information
in programs. ASTs are used for both the input and output of our model. Given
a partial AST, our goal is to complete it to get a new AST. The generated AST
can then be deterministically converted into the corresponding program.

To the best of our knowledge, it is the first work to employ AST-based deep
neural networks for fuzzing input generation. We implement a prototype of the

Tree2tree Structural Language Modeling for Compiler Fuzzing 565

proposed methods in a tool called TSmith. Firstly, TSmith employs a tree-based
encoder to encode the input AST in order to capture the hierarchical structure
information and global context of the partial program. Secondly, it adopts a
tree decoder to generate a complete AST by expanding the non-terminals in
a top-down manner. Rather than only accessing a fixed encoding, we use an
attention-based representation of the input AST. The flexibility of the AST-
based model makes it readily applicable for completion tasks. Compared with
sequential models, it is easier to design diverse generation strategies for a tree
model. To make better use of the learned model, we have designed five generation
strategies to produce various new test programs.

To demonstrate the effectiveness of TSmith, we adopt TSmith for C compiler
fuzzing. Extensive experiments show that the parsing pass rate of programs
generated by TSmith is higher than the previous methods. The highest pass
rate of our generation strategies reaches 83%, which is about 21% higher than
the sequential model. Even the average pass rate of our five generation strategies
has 7% improvements against the highest pass rate of the sequential model. In
addition, combined with sampling methods, TSmith significantly improves the
code coverage of target compilers.

In summary, in this paper we make the following contributions:

– We propose a tree2tree model to leverage the structural information for com-
piler fuzzing input generation. AST is leveraged to capture both the lexical
and syntactical information in programs. Experiments show that programs
generated by our model are more well-formed than previous methods. Further,
tree-based structural language modeling supports more generation strategies
to produce diverse test programs.

– We present TSmith, a novel compiler fuzzing framework. We design five gen-
eration strategies in TSmith to produce various test cases. TSmith has been
applied to the fuzz testing of GCC on all currently supported versions. We
have found and reported 14 bugs to the development team.

2 Problem Statement

Given a seed program Ps, our task is to generate new test programs. We attack
this problem by constructing a new AST Tt given the context information of a
partial AST Ts. This simplifies the test program generation problem to a AST
completion problem. Ps can be converted into an AST T . Based on the normal
AST, we can construct the partial AST Ts by removing nodes or inserting nodes.
We define a structural probabilistic grammar model of generating a complete
AST Tt given Ts: p(Tt|Ts). The most likely target AST Tt

∗ is then given by

Tt
∗ = arg max

Tt

p(Tt|Ts) (1)

Tt
∗ can then be converted into the corresponding program Pt.

566 H. Xu et al.

3 TSmith

In this section, we provide an overview on the overall design and implementation
details of TSmith.

3.1 Design Overview

We show the workflow of TSmith in Fig. 1. There are three main components
in TSmith: learning module, generation module and fuzzing module. Learning
module learns the tree2tree model from a corpus of code samples. Programs have
been converted into ASTs before being sent to the model. After training, the
generation module produces new test programs according to the five proposed
generation strategies. We use code samples from dataset as seed programs during
applying generation strategies. Finally, the fuzzing module checks whether new
test cases trigger unexpected behaviors (e.g., a crash, a freeze) in compilers.

Fig. 1. Workflow of TSmith

3.2 Tree2tree Neural Network

To tackle the test program generation task presented in previous section, we
design the tree2tree network. Our model follows an encoder-decoder architecture.
The encoder encodes the input partial AST to an embedding. Then the decoder
decodes the embedding into a complete AST. Rather than only accessing a fixed
encoding, the decoder uses an attention mechanism to locate the corresponding
source sub-tree when expanding a node. The structure of an AST is consistent
with the syntax structure of the program which can facilitate the learning of the
grammar.

When training the tree2tree model, we remove nodes from a normal AST and
use the remaining partial tree as input Ts. The normal AST is used as target
Tt. Any node in the ASTs except the root can be removed. When removing a
node, we remove the entire sub-tree rooted at the node. The removed sub-tree

Tree2tree Structural Language Modeling for Compiler Fuzzing 567

may correspond to a single token(e.g., identifiers), an expression(e.g., grammar
construct like BinaryOp node), or a full statement(e.g., grammar construct like
Decl node), etc. It has been demonstrated that encoder and decoder for binary
trees could be more effective [3]. Thus, we convert both Ts and Tt into binary
trees. For this conversion, we use the Left-Child Right-Sibling representation.

The binary tree encoder employs a Tree-LSTM [15] to encode the input tree
from the bottom up. Specifically, for a node N with value v, there are two
children NL and NR, which denotes its left child and right child respectively.
The LSTM state of N is computed as

(h, c) = LSTM(([hL;hR], [cL; cR]), x) (2)

where (hL, cL) and (hR, cR) denote the LSTM state of NL and NR respectively,
and x denotes the embedding of v. By encoding the partial tree, we can capture
the global context of the seed program.

After encoding, the decoder uses the LSTM state of the root node and all
the encoder outputs to produce the target tree with a top-down manner. To
leverage the global context of source tree, we use the hidden state of the root
node of source tree as the state of starting root in the target tree. The decoder
maintains a queue of nodes to be expanded. During decoding process, new nodes
are generated and appended to the queue. The decoder expands nodes in the
queue one by one until the queue is empty.

The decoder first predict the value of the expanding node. It computes the
embedding of the expanding node N with attention. When the depth of input
partial AST grows large, it is hard for the decoder to complete it only depending
on a fixed-length vector representation. Attention mechanism is used to locate
the corresponding sub-tree in the input AST when expanding a non-terminal.
The decoder uses this information to guide the node expansion. We calculate
the alignment scores using the decoder hidden state and encoder hidden states:

score(hs, ht) = hs
�
Waht (3)

where hs denotes each encoder hidden state, and ht denotes the decoder hidden
state. We then compute the probability of that Ns is sub-tree in the source AST
corresponding to Nt in the target AST. We calculate it as:

Pt(s) ∝ exp(score(hs, ht)) (4)

After that, We calculate the expectation of the hidden state value across all Ns

conditioned on Nt.
es = E[hs|Nt] =

∑

s′
hs′Pt(s′) (5)

We use this embedding vector and the decoder hidden state to produce an atten-
tional embedding:

h̃t = tanh(Wbes + Wcht) (6)

Lastly, the attentional embedding is fed into a softmax network to predict the
node value.

v = argmax softmax(Wh̃t) (7)

568 H. Xu et al.

The value of a node could be a non-terminal, a terminal, or a EOS token. All
leaf nodes are EOS nodes. The decoder only generates child nodes for terminals
and non-terminals. We employ two LSTMs [8] for the two child nodes. The
LSTM states of child nodes are computed as:

(hl, cl) = LSTML(([h, c], Ev) (8)
(hr, cr) = LSTMR(([h, c], Ev) (9)

where E denotes a word embedding matrix.
In experiments, we set the probability of removing each node to one-

twentieth. The number of layers of the Tree-LSTM and LSTMs is 1, and the
hidden size and embedding size are set to 256. Batch size is set to 20. We apply
gradient clipping to prevent gradients from becoming too large. We choose Adam
as our optimizer, and the initial learning rate is set to 0.001.

3.3 Generating New Test Programs

RNN-based models generate code sequence with the given conditional token
sequences. However, without grammar rules and structural information, it is a
complex task for sequential models to select conditional inputs from seed pro-
grams and construct new programs from the generated token sequences. Previ-
ous works mainly use the methods of cutting and inserting to construct new test
programs. Generally the units of cutting and inserting are code lines.

In contrast, the basic unit of AST is node. It is more flexible to construct a
new tree at the node level. With the learned structural code model, TSmith can
map a partial AST to a complete one. We send partial ASTs to the model and
ask the model to produce complete ones. The generated ASTs are then converted
into surface programs. During this process, how to prepare the partial ASTs and
how to sample from the prediction results are crucial.

Generation Strategy. Our goal is to produce diverse test programs. To make
better use of the learned model, we propose five generation strategies: AST com-
pletion after removing nodes, guided declaration statement generation, guided
conditional branch generation, guided function call statement generation, and
guided function definition generation.

AST Completion After Removing Nodes. We randomly remove nodes from
the seed ASTs with a certain probability, and take the remaining part of the AST
as the input of our model. Nodes that may be removed include terminals and
non-terminals. If the removed node is a leaf node of the seed AST, the newly
generated code in the completion process may account for a low proportion of the
entire program. In this case, the generated AST is more likely to conform to the
grammar specification, and thus passes through the parsing stage of compilers. If
the removed node is a non-leaf node, the newly generated code may account for
a significant proportion of the entire program. On the one hand, the generated

Tree2tree Structural Language Modeling for Compiler Fuzzing 569

programs are prone to syntax errors. On the other hand, it gives the model a
large room for creativity.

Guided Declaration Statement Generation. This strategy refers inserting
Decl node to the seed ASTs. Decl node is a non-terminal. This insertion guide
the model to complete sub-tree rooted at the Decl node. Many important AST
nodes derive from Decl (e.g., TypeDecl and FuncDecl). It is worth noting that
this way of inserting non-terminals to induce the model to generate relevant code
is not supported by sequential models.

Guided Conditional Branch Generation. We insert If node to the seed
ASTs. If node is a non-terminal. This insertion guide the model to complete
sub-tree rooted at the If node. This will guide the model to produce a condi-
tional statement, thereby introducing new conditional branches and scopes for
the program.

Guided Function Call Statement Generation. We insert FuncCall node
to the seed ASTs. This insertion leads the model to generate a statement for the
function call.

Guided Function Definition Generation. We insert FuncDef node to the
seed ASTs. This will guide the model to generate a function definition, thereby
introducing new scopes for the program.

Benefiting from the structural language model, we can insert various types
of nodes into the seed AST to induce the generation of specific statements or
expressions. In this work, we mainly test the five aforementioned strategies.

Sampling Method. We sample the node value from the probability distribu-
tion of decoder outputs with two sampling methods. The first one is greedy sam-
pling, which always selects the node value with the greatest possibility. Programs
produced by this approach is well-formed. However, the generated programs lack
variety. The second one is sampling from a multinomial distribution. Compared
with completely random sampling which randomly selects a node value based on
the probability distribution, stochastic sampling from a multinomial distribution
is a more reasonable way. When sampling from the multinomial distribution, the
output with the greatest probability can be selected with high probability. More-
over, there is a certain probability to explore other outputs. We use temperature
to control the randomness of the stochastic sampling process. A lower tempera-
ture value controls the sampling process to be more conservative. Therefore the
generated programs are more likely to be well-formed. A high temperature value
makes the sampling more aggressive. The outputs are more error-prone, but it
will also bring more variety.

4 Experiments and Evaluation

In this section we evaluate TSmith via empirical analysis. Then we demonstrate
its effectiveness in fuzzing real-world compilers.

570 H. Xu et al.

4.1 Dataset and Preprocessing

We collect well-formed programs from the test suites in compiler source releases
as the original dataset. We remove all the comments, and expand all macros.
Considering that the inclusion of header files will introduce a number of duplicate
standard library headers, we remove programs that contain inclusion of header
files.

Due to the flexibility of identifier naming, source code vocabulary can be
significantly large. Large vocabularies severely affect code models, degrading
their performance and rendering them unable to scale. To facilitate the model
to learn the syntax of C programming language, we further process the code
samples in the dataset, trying to reduce the size of the vocabulary. First, we
rename all the user-declared identifiers in each program using an consistent pat-
tern. For example, based on the order of declaration, we rename function names
in each program according to the pattern of {sub 0, sub 1, sub 2,...}. For
variable names, we rename them according to the pattern of {var 0, var 1,
var 2,...}. Renamed identifiers also include the parameter name, structure
name, etc. This naming convention will not modify the program behavior. Sec-
ond, we unify the value of literals. We rename all the character literals to a
same value of "C", string literals to a same value of "STRING", and floating point
literals to a fixed number of 1.0. Changing the value of literals may change the
control flow and data flow of the original program. We think it is a trade off to
reduce the vocabulary.

4.2 Evaluation Metrics

We evaluate TSmith via three metrics: pass rate of the generated test programs,
the code coverage improvements of the target compiler, and the number of bugs
found in main stream compilers.

The pass rate of generated programs indicates how well our model learns the
syntax of the programming languages. It reflects the proportion of the syntac-
tically correct programs in all the generated programs. It is critical to produce
syntactically correct inputs when fuzzing compilers. Only syntactically correct
programs could pass the legitimacy check (i.e., lexical analysis and syntax anal-
ysis) in compiler parsing stage. After that, the most complex and vulnerable
parts of compilers (i.e., middle-end and back-end) could be tested [19].

We select the code coverage improvements as a metric. Code coverage infor-
mation is widely used by fuzzers to find interesting inputs. Coverage-guided
fuzzers [2,7,11,14,21] mutate the same input file to increase the code coverage
and thus get closer to new paths where a crash could happen. While TSmith
is not coverage-guided, coverage information can helps us analyse the fuzzing
process. We use gcov1 to collect coverage information.

We apply TSmith to the fuzzing of main stream C compilers, and use the
number of found bugs as one indicator of the effectiveness of our methods. Com-
pilers like GCC and LLVM have defined a special kind of error called “internal
1 https://gcc.gnu.org/onlinedocs/gcc/Gcov.html.

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html

Tree2tree Structural Language Modeling for Compiler Fuzzing 571

Fig. 2. Pass rate of different strategies in TSmith

compiler error”. An internal compiler error is an error that occurs not due to
erroneous source code, but rather due to a bug in the compiler itself.

4.3 Pass Rate

In this part, we will analyze how the pass rate varies with different generation
strategies, and how the sampling methods affect the compilation pass rate of
generated programs. As long as no error occur during compilation, we assume
that the test program has pass the parsing stage.

Fig. 3. Pass rate between models. The pass rate of seq2seq model is the highest pass
rate of generation strategies in that model. The pass rate of TSmith is the average pass
rate of five generation strategies in TSmith.

572 H. Xu et al.

Comparison Between Different Models and Generation Strategies.
Compared with sequential models, our tree model supports more generation
strategies. In this work, the five proposed generation strategies cannot be imple-
mented in the sequential model. Therefore, we cannot compare our tree model
with the sequential models item by item based on the generation strategy. In
our evaluation, we first compare the pass rates of the five proposed generation
strategies. Then we will compare the average pass rate of our model with the
highest pass rate of previous methods to show our model’s effectiveness to gen-
erate well-formed programs.

To compare the pass rates between different generation strategies, we use
TSmith to produce 10000 test programs under different generation strategies,
and compared the pass rates of these programs. We use the seq2seq approach
in DeepFuzz [10] as a baseline. They build the sequential model at character
level which requires a lot of effort in dealing with the token-level syntax. In
order to further enhance the performance of the model and make a meaningful
comparison, we implement the token-level seq2seq model as a baseline based
on the same dataset and preprocessing method we proposed. We use greedy
sampling to perform this comparison.

The results are shown in the Fig. 2. Overall, the test program generated by
strategy 2 has the highest pass rate. This means that it is easier to insert well-
formed declaration statements into a program. The test program generated by
strategy 1 also has a high pass rate. This means that our model makes good use
of global information to expand non-terminals, thus completing the program.
The test program generated by strategy 5 has the lowest pass rate. One possible
explanation is that syntax errors are more likely to occur because more new code
is generated when adding new function definitions.

The generation strategy with the highest pass rate in the sequential models is
to insert lines of code into the program. This is because the way of code insertion
does not remove code from the seed program, so it is less disruptive, making it
easier to produce syntactically compliant programs. We construct new programs
by intercepting lines of code from the token sequence output from the seq2seq
model and inserting them back into the seed program. The results are shown in
Fig. 3. Even the generation strategy with the highest pass rate in the sequential
model is lower than the average pass rate of our tree model.

Comparison Between Different Sampling Temperatures. Sampling
brings diverse outputs. However, because of sampling, the generated programs
are not always guaranteed to be well-formed. To analyze the influence of tem-
perature value on the pass rate during stochastic sampling, we select 4 different
temperature values of 0.5, 0.75, 1.0, and 1.25, to compare the pass rate of the
programs generated by TSmith with each generation strategy.

The results are shown in Fig. 4. In summary, for all generation strategies, the
pass rate continues to decline as the sampling temperature increases. It is because
the generative model becomes more aggressive as temperature rise. This may
bring unexpected but useful test inputs to trigger compiler bugs. For strategy

Tree2tree Structural Language Modeling for Compiler Fuzzing 573

1, when the temperature gets 0.5, the pass rate is reduced by 5% compared to
greedy sampling. When the temperature gets 1.0, the pass rate is reduced by
17%.

Fig. 4. Pass rate of different sampling temperatures

4.4 Code Coverage

In this part, we evaluate TSmith’s impact on the code coverage of the target
compiler. We select 5000 programs as seed programs and use the code coverage
for compiling these programs as baseline. Then TSmith is used to produce 5000
new programs with each generation strategy based on these seed programs. For
large software like compilers, the compilation options at build time will affect
the total amount of code of the compiler. Besides, the code coverage will also be
influenced by the compilation options when using the compiler to compile test
programs. To make a meaningful comparison, we collect the increment of three
kinds of coverage information during our analysis: the number of covered lines,
the number of covered functions, and the number of covered branches.

Comparison Between Generation Strategies. We use GCC-7 for coverage
collection, with the compilation option -S, which means compile only, do not
assemble or link. We choose greedy sampling for this comparison. The coverage
improvements with each generation strategy are shown in Table 1.

Overall, with each generation strategy, TSmith significantly improves the
code coverage. Strategy 3 achieves the best effect in all the 3 kinds of coverage
metrics. It brings 1973-line improvement for line coverage, 100 new functions in
function coverage, and 1636 new branches in branch coverage.

574 H. Xu et al.

Table 1. Improvements of compiler code coverage

Improvements Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5

Line 1627 1620 1973 1737 1595

Function 75 81 100 75 66

Branch 1522 1278 1636 1409 1331

Comparison Between Different Sampling Temperatures. To analyze how
sampling temperatures influence the coverage improvements, we take strategy 2
as an example to record the coverage improvement brought by generating and
compiling the same number of test programs at different sampling temperatures.

Table 2. Improvements of compiler code coverage

Improvements Greedy sampling 0.5 0.75 1.0 1.25

Line 1620 2606 2500 2741 3198

Function 81 155 154 166 177

Branch 1278 1808 1831 2263 2515

Table 2 demonstrates the impact of different sampling temperatures on code
coverage improvements. As the sampling temperature rises, our model becomes
more aggressive. At the same time, code coverage is gradually increasing. Com-
pared with greedy sampling, when the sampling temperature reaches 1.25, the
increased coverage almost doubles. This experiment shows the usefulness of sam-
pling from model outputs. The results are also shown in Fig. 5.

(a) Improvement of Line
Numbers

(b) Improvement of Function
Numbers

(c) Improvement of Branch
Numbers

Fig. 5. Improvements of compiler code coverage

4.5 New Bugs

TSmith is applied to the fuzz testing of GCC. We test three GCC versions that
are still supported by the GCC development team. They are GCC-8, GCC-9 and

Tree2tree Structural Language Modeling for Compiler Fuzzing 575

GCC-10. In addition, we test GCC-11, which is currently under development and
will be released soon. In our experiments, TSmith has found 14 new bugs. The
bug numbers and the affected versions are shown in Table 3. All bugs information
has been submitted to the GCC development team.

Table 3. New bugs.

ID Affected versions

bug-95161 10/11

bug-95145 10/11

bug-95124 10

bug-94968 10/11

bug-94966 10

bug-94903 8/9

bug-94902 8/9/10

bug-94842 8/9

bug-94780 8/9

bug-94755 9/10/11

bug-94731 8/9/10/11

bug-94730 8/9/10/11

bug-94726 10/11

bug-94705 10

We elaborate on three test programs which successfully triggered bugs in
GCC with more details to further illustrate the effectiveness of TSmith.

Bug-94755. The test case is generated by strategy 1. Raw seed program does
not trigger any bug. When cropping the seed AST, we remove a FuncCall node.
The value of its original ID child node is builtin infl. Then the partial AST
is sent to the tree2tree model. The model generates a new FuncCall node, and
the value of its ID child node is builtin speculation safe value. This new
test program finally triggers the internal compiler error, and it has been added
to the latest test suite in GCC (pr94755.c) after our reporting. This example
shows the effectiveness of strategy 1.

1 extern void foo (void) ;

2 void bar (double x)

3 {

4 - if (x == __builtin_infl ())

5 + if (x == __builtin_speculation_safe_value ())

6 foo () ;

7 }

576 H. Xu et al.

Bug-94730. This bug exists in the code that deals with types determined from
array initializers. The test input is generated by strategy 2. Raw seed program
does not trigger any bug. We insert a Decl node to the AST of the seed program.
The model then complete the sub-tree rooted at the Decl, and produce line 12.
The introduction of the array declaration leads to the crash. The bug affected
all GCC supported versions, including GCC-11. This example proves valuable
for strategy 2.

1 int x , y ;

2

3 int foo ()

4 {

5 x = 0 ;

6 y = 0 ;

7 if (x != 0)

8 y ++ ;

9 else

10 x ++ ;

11 }

12 + int x [] = { 0 } ;

Bug-94968. This test case is generated by strategy 3. We add a If node to
the function foo. This guides the model to expand this non-terminal. After
generation, a new conditional branch is produced. The addition of these two new
lines eventually lead to an internal compiler error. This example demonstrates
the usefulness of strategy 3.

1 extern void abort (void);

2

3 int foo() {

4 if (__SLASS (0x112233 , 4) != 0x1122330)

5 abort () ;

6

7 + if (__builtin_speculation_safe_value (1 , x))

8 + abort () ;

9 }

5 Related Work

Generation-Based Fuzzing. Fuzzing has become a standard method for soft-
ware testing and bug finding. For complex input formats like programming
languages, generation-based approaches prevent generated inputs from being
rejected immediately by the target. CSmith [19] randomly generates new pro-
grams guided by a probabilistic grammar which covers a subset of the C pro-
gramming language. It randomly selects an allowable rule from the grammar

Tree2tree Structural Language Modeling for Compiler Fuzzing 577

to generate C programs avoiding undefined and unspecified behaviors. However,
several works have mentioned the difficulties of preparing grammar specifications
of programming languages for fuzzers [16,19].

Learning Grammars for Generation-Based Fuzzing. Various efforts have
been invested to learn grammars from existing examples. Patra et al. [12] propose
to combine learned probabilistic language models of structured data with fuzz
testing. Though TreeFuzz does not require prior knowledge of the input format,
complex model extractors have been designed to infer the generative model from
a given corpus of examples.

More recently, deep learning has been successfully applied to fuzzing input
generation. Compared with traditional methods, deep learning requires less
human engineering and is capable of capturing complex features. Learn&Fuzz [6]
presents learning a generative language over the set of PDF object characters
with a seq2seq network. The learned model is then used for PDF parser’s fuzzing.
Learn&Fuzz generate new PDF object as a sequence of chars. DeepSmith [4]
learns a generative language model of OpenCL programming language with
LSTM neural network. The learned model is used for OpenCL compiler test-
ing. However, these works treat fuzzing inputs as a sequence of chars or tokens
without leveraging any structural information.

Compiler fuzzing requires well-formed input programs. In this work, we focus
on representing code as a tree to further learn the code model with structural
information. AST has been used in various code generation tasks to leverage the
available syntactic structure information and constrain the search space, ensur-
ing generation of well-formed code. Rabinovich et al. [13] introduce abstract
syntax networks utilizing a modular decoder whose submodels are composed to
generate ASTs in a top-down manner. Their model outperforms previous seq2seq
methods in code generation and semantic parsing tasks. To parse natural lan-
guage descriptions into source code, Yin et al. [20] define a model that trans-
duces an natural language description into an AST for the target programming
language.

6 Conclusion

In this paper, we present TSmith, a prototype for effective compiler fuzzing.
The core idea is to learn code models with the syntactic structure information.
We implement a tree2tree neural network which maps a partial AST to a com-
plete one. Based on the tree2tree model, TSmith supports an extensible set of
generation strategies, enabling it to produce diverse test cases. Our evaluation
shows that TSmith significantly improves the parsing pass rate of generated pro-
grams. After applying TSmith to the testing of the currently supported versions
of GCC, we have found and reported 14 bugs.

Acknowledgments. This work is supported by National Key Research and Devel-
opment Program of China (No. 2018YFB0204301), and the National Natural Science
Foundation of China (No. 61472439).

578 H. Xu et al.

References

1. Chakraborty, S., Allamanis, M., Ray, B.: Tree2tree neural translation model for
learning source code changes. arXiv preprint arXiv:1810.00314 (2018)

2. Chen, P., Chen, H.: Angora: efficient fuzzing by principled search. In: 2018 IEEE
Symposium on Security and Privacy (SP), pp. 711–725. IEEE (2018)

3. Chen, X., Liu, C., Song, D.: Tree-to-tree neural networks for program translation.
In: Advances in Neural Information Processing Systems, pp. 2547–2557 (2018)

4. Cummins, C., Petoumenos, P., Murray, A., Leather, H.: Compiler fuzzing through
deep learning. In: Proceedings of the 27th ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, pp. 95–105. ACM (2018)

5. Dong, L., Lapata, M.: Language to logical form with neural attention. arXiv
preprint arXiv:1601.01280 (2016)

6. Godefroid, P., Peleg, H., Singh, R.: Learn&fuzz: machine learning for input fuzzing.
In: Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pp. 50–59. IEEE Press (2017)

7. Google: Honggfuzz (2016). https://github.com/google/honggfuzz
8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),

1735–1780 (1997)
9. Karpathy, A., Johnson, J., Fei-Fei, L.: Visualizing and understanding recurrent

networks. arXiv preprint arXiv:1506.02078 (2015)
10. Liu, X., Li, X., Prajapati, R., Wu, D.: Deepfuzz: automatic generation of syntax

valid c programs for fuzz testing. In: Proceedings of the AAAI Conference on
Artificial Intelligence (2019)

11. LLVM: libfuzzer: a library for coverage-guided fuzz testing (2017). https://llvm.
org/docs/LibFuzzer.html

12. Patra, J., Pradel, M.: Learning to fuzz: Application-independent fuzz testing with
probabilistic, generative models of input data. TU Darmstadt, Department of Com-
puter Science, Technical report, TUD-CS-2016-14664 (2016)

13. Rabinovich, M., Stern, M., Klein, D.: Abstract syntax networks for code generation
and semantic parsing. arXiv preprint arXiv:1704.07535 (2017)

14. Rawat, S., Jain, V., Kumar, A., Cojocar, L., Giuffrida, C., Bos, H.: Vuzzer:
application-aware evolutionary fuzzing. In: NDSS, vol. 17, pp. 1–14 (2017)

15. Tai, K.S., Socher, R., Manning, C.D.: Improved semantic representations from
tree-structured long short-term memory networks. arXiv preprint arXiv:1503.00075
(2015)

16. Wang, J., Chen, B., Wei, L., Liu, Y.: Skyfire: data-driven seed generation for
fuzzing. In: 2017 IEEE Symposium on Security and Privacy (SP), pp. 579–594.
IEEE (2017)

17. Wei, H., Li, M.: Supervised deep features for software functional clone detection
by exploiting lexical and syntactical information in source code. In: IJCAI, pp.
3034–3040 (2017)

18. White, M., Tufano, M., Vendome, C., Poshyvanyk, D.: Deep learning code frag-
ments for code clone detection. In: 2016 31st IEEE/ACM International Conference
on Automated Software Engineering (ASE), pp. 87–98. IEEE (2016)

19. Yang, X., Chen, Y., Eide, E., Regehr, J.: Finding and understanding bugs in c com-
pilers. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp. 283–294 (2011)

20. Yin, P., Neubig, G.: A syntactic neural model for general-purpose code generation.
arXiv preprint arXiv:1704.01696 (2017)

21. Zalewski, M.: American fuzzy lop (2017). http://lcamtuf.coredump.cx/afl/

http://arxiv.org/abs/1810.00314
http://arxiv.org/abs/1601.01280
https://github.com/google/honggfuzz
http://arxiv.org/abs/1506.02078
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
http://arxiv.org/abs/1704.07535
http://arxiv.org/abs/1503.00075
http://arxiv.org/abs/1704.01696
http://lcamtuf.coredump.cx/afl/

Research and Design of Distribution Equipment
Health Early Warning System

Lei Chen1, Huihua Yu2, Li Tong3, Peipei Jin4(B), Weiyan Zheng5, Xu Huai4,
and Yu Huang4(B)

1 State Grid Zhejiang Electric Power Co., LTE., Hangzhou, China
chenlei3909@163.com

2 State Grid Zhejiang Hangzhou Fuyang District Power Supply Co., Ltd., Hangzhou, China
yuhuihua@126.com

3 State Grid Zhejiang Electric Power Research Institute, Hangzhou, China
tonyhust@126.com

4 Peking University, Beijing, China
{ppj,xubad,hy}@pku.edu.cn

5 State Grid Hangzhou Power Supply Company, Hangzhou, China
zhweiyan@foxmail.com

Abstract. Load forecasting and health early warning of distribution equipment
is a very active research field and an important aspect, which can guarantee the
system stability under large disturbances and optimize the distribution of energy
resources in the smart grid. Therefore, it is of great significance to design and
develop a distribution equipment health earlywarning systembased on the demand
of staff for monitoring and early warning of distribution equipment. In this paper,
the analysis and design of distribution transformer health early warning system
are carried out, and the goal of early warning system is defined. The whole frame
and deployment architecture of system are presented. Moreover, the design flow
of the system core function modules and the design pattern and the framework for
system development are given. The system monitors and forewarns the operation
status of the distribution network equipment, and sends the abnormal situation of
the early warning result to the staff, which can save the manpower and material
resources wasted due to manual troubleshooting.

Keywords: Smart grid · Distribution equipment · Health early warning · Load
forecasting · System framework

1 Introduction

In recent years, the frequent occurrence of extreme natural weather such as rainstorm
and hurricane has posed a great threat to the safe operation of power grid [1, 2]. As

This work is supported by the project of State Grid (No. 5400-201919144A-0-0-00): Research and
Application on Key Technologies of Virtual Agent for Power Supply Service Command Based on
Artificial Intelligence.

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 579–590, 2020.
https://doi.org/10.1007/978-3-030-60245-1_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_39&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_39

580 L. Chen et al.

an important public infrastructure, electric power equipment is an important foundation
to ensure people’s livelihood and promote economic and social development [3]. The
health status of distribution equipment directly determines the stable operation of power.
The real-time monitoring and early warning of distribution equipment health status will
have a very positive significance for the health detection and maintenance of distribu-
tion network, and also provide a strong guidance and guarantee for the good operation
of the whole power system [4–6]. Distribution transformer is the important equipment
to transfer AC energy by exchanging voltage and current according to electromagnetic
induction law in distribution network, which canmeet the different requirements of users
by changing the AC voltage. In addition, the distribution transformer is a power trans-
former that supplies power directly to users, and its health status directly determines the
stable operation of power. Thus, it is very important to analyze and warn the health status
of the distribution transformer in time [7–9]. Scientific, timely and accurate analysis of
the potential risks in the distribution transformer and the corresponding risk response
plan will provide strong support for the safe and stable operation of the power grid sys-
tem, which is essential to improve the reliability and stability of the whole power grid
operation [10, 11].

In order to realize the comprehensive early warning and decision support of power
grid, researchers in different countries are actively carrying out relevant research work.
The research on condition monitoring and fault diagnosis technology of transformer
equipment started earlier abroad [12]. J.Fuhr and other scholars think that transformer
conditionmonitoring, fault earlywarning and healthmanagement technology involve the
integration of computer technology, detection technology, power technology and online
diagnosis, the core of which is online monitoring, analysis diagnosis and early warning
technology [13, 14]. The American Electric Power Research Institute has invested in
the research and development of on-line monitoring system of oil immersed power
transformer for a long time. The transformer on-line monitoring technology proposed
by GE company is recognized as the earliest power transformer fault monitoring method
by IEEEstandard [15].With the rapid development of artificial intelligence andother new
technologies, power grid health early warning technology has beenwidely used. In 1980,
Smeets R.P.P. scholars proposed the fault diagnosis technology of power transformer
based on artificial neural network [16]. In 1986, the expert system was first used in the
TOGA system published by Riese. Then, S.I.gallant took the lead in combining expert
system with artificial neural network to form an intelligent system [17]. In addition,
Japan, Europe and other developed countries and regions have also invested a lot of
human and material resources, focusing on the transformer online monitoring system
and its application to the actual power system.

In recent years, a series of researches have been carried out on the monitoring and
early warning system of distribution network in China, and the relevant systems have
been gradually applied. Data protection and forecasting become an important issue
in today’s Cloud environments [18, 19]. Reference [20] proposes a fault early-warning
method of smart meter based on data mining technology and builds a fault early-warning
system through VS 2016 platform. The improvement plan of intelligent and hierarchical
alarm is proposed and the necessity of setting up intelligent alarm system of power grid
dispatch in power system is expounded in [21]. Online early warning methods based on

Research and Design of Distribution Equipment 581

historical data probability distribution is designed in [22], which effectively eliminates
the influence of the external environment on the transformer. A power transformer status
evaluation and warning model is established based on the fuzzy comprehensive evalua-
tion and Bayes discrimination in [23]. A design scheme of system of on-line monitoring,
fault diagnosis and earlywarning for insulation ofmine-used dry-type transformer is also
proposed, which introduced general structure of the system and fault diagnosis method,
and built a fault type library of turn-to-turn insulation of dry-type transformer. What’s
more, a new heterogeneous scratchpad memory architecture and secure digital evidence
framework using blockchain are proposed in [24, 25] and the secure call instructions
is designed in [26], which is used to save the operation data of distribution network
equipment and send warning signal.

Since distribution transformer is the important equipment in smart distribution
network, the early warning of its operating status is of great significance.

The structure of this paper is organized as follows: we first introduce the whole
design scheme of the distribution equipment health early warning system and give the
whole frame diagram and deployment architecture diagram (Sect. 2). Then we design
the flow of the system core functionmodule including data preprocessingmodule, model
prediction module, early warning module and model update module (Sect. 3). Finally,
the system development technology is given in Sect. 4.

2 Design of Distribution Equipment Health Early Waring System

2.1 System Requirements Analysis

The distribution transformer health early warning system designed in the paper can
monitor and accurately judge the transformer in real time, based on the operation sta-
tus of distribution transformer. The early warning system receives the load power and
additional information sent from the remote end of each distribution transformer in real
time. Through the processing, prediction and analysis of the load power and additional
information, it can predict the future health status of each distribution transformer, so
as to provide reference for the further adjustment of staff. The early warning system
helps dispatchers to judge the operation status of distribution transformer, coordinate all
aspects of personnel to make scheduling and planning, and also provides information
for maintenance personnel to make timely preventive measures.

Firstly, the system stores and preprocesses the real-time data sent by each device
terminal to form the input sequence required by the model. Then, the corresponding
future load prediction value, hot spot temperature prediction value and life loss prediction
value are obtained throughmodel prediction. Finally, through the analysis of distribution
transformer health status to make a judgment, to make an early warning of abnormal
situation in time. Finally, through the analysis of distribution transformer health status,
we can make a timely warning of abnormal conditions.

2.2 System Architecture Description

The system supports the receiving of real-time data, the analysis, monitoring, early
warning and the visual display of distribution transformer health status. The system
architecture diagram is given (see Fig. 1).

582 L. Chen et al.

Data Interaction layer

Data acquisition system of
distribution transformer

Data acquisition system of
Meteorological Station

Storage layer

Model data Load data

Support layer

Model update Data
preprocessing

System
operation

and
maintenance
management
component

System
security

component

Temperature
data

Visual display

Application layer

Life loss forecastingHot spot temperature
forecasting

Operation data monitor Early warning
information send

System display

Real-time data Health status

Load
forecasting Data export Data query

Fig. 1. The health early warning system architecture diagram.

The real-time data obtained by the system includes the real-time power value of
distribution transformer and the real-time temperature value of meteorological station.
The data interface integrates the real-time information and delivers it to the system
storage layer. The storage layer of the system completes the standardized storage of
real-time load power data, temperature data and model parameters, which is used for
data prediction. The support layer provides model updating, data preprocessing, and
visualization of the prediction results to support the upper functions. The application
layer mainly includes load forecasting, hot spot temperature forecasting, life loss fore-
casting and other major health status analysis modules. At the same time, it also realizes
the functions of operation data monitoring, data query and early warning information
export. The display layer mainly displays the real-time running data and health status
analysis results. What’s more, the whole system is guaranteed by system operation and
maintenance management components and system security components.

The advantages of the framework in the paper are the characteristics of loose cou-
pling of each layer, which is convenient for the planning and adjustment of each layer

Research and Design of Distribution Equipment 583

and the separation of system display layer and application layer, which provides great
convenience for system maintenance.

2.3 System Deployment Architecture

In order to ensure data security, data storage, data preprocessing, model prediction,
health status analysis, model update, data query and export, running data monitoring are
deployed on the intranet server. First, the real-time data is stored in intranet database
after passing through firewall through Internet. Then, the health status that is analyzed
by application server is fed back to the workbench of the dispatching center in real time.
If there is an early warning signal, it will be sent to the front-line staffs’ smart phones
in time through the SMS service center. The system deployment architecture diagram is
as follows (see Fig. 2).

Mobile phoneDispatching center
workbench

Power distribution station
workbench

Internet

Firewall

Scheduling
employees

Database server

Application server

SMS service
center

Fig. 2. The system deployment architecture diagram.

3 Design of the System Core Function Module

In this paper, the modular system structure design idea is used to analyze the system
from top to bottom, which is conducive to the overall grasp of the system design process,
greatly reduces the development difficulty and has the advantages of easy maintenance
and high reliability. The design process of the closely related modules of the distribution
equipment health warning system is as follows.

3.1 Data Preprocessing Module

The function of the data preprocessing module is to standardize the data received in real
time and organize it into the input form required by the prediction model. The flow chart
of data preprocessing module is shown in Fig. 3.

584 L. Chen et al.

Start

Read

Abnormal data

Yes

Exponential smoothing

Save to load system table
of databaseNo

Single heat code splicing

End

Fig. 3. The flow chart of data preprocessing module.

Data from distribution transformer is stored in database. Read the original data from
database, and then judge whether it is null, zero, the same value and other abnormal
conditions. The abnormal data is processed by exponential smoothing method and then
written into the load factor table of the database. Finally, the load coefficients processed
at the same time in different periods are spliced with a unique heat code with distribution
transformer number and location and is transmitted to the prediction model as input.

3.2 Model Prediction Module

The main function of the model prediction module is to receive the input from the
preprocessing module and then complete the load power, winding hot spot temperature
and life loss prediction of each distribution transformer at the next moment. The flow
chart of model prediction module is shown in Fig. 4.

Firstly, receive the data processed by the data prediction module and carry out load
prediction. And then, set the variable value in the prediction formula of hot spot tem-
perature and life loss according to the time information of the data on the day. Finally,
the remaining life of distribution transformer is obtained by using the prediction value
of hot spot temperature and life loss.

3.3 Early Warning Module

The main function of the early warning module is to analyze the prediction results and
send the early warning information to relevant personnel in time. At the same time,
according to the specific threshold value, the estimated load value, hot spot temperature
value and remaining life value are divided into different security levels, and the specific

Research and Design of Distribution Equipment 585

Forecast Load

Receive the input

Start

Start time of the day

Set the initial value of
prediction formula

Calculate variables by
prediction formula

YesNo

Calculate life loss

Calculate hot spot
temperature

Calculate remaining life

End

Fig. 4. The flow chart of model prediction module.

value is fed back to the dispatching center workbench. If there is a possible alarm, the
early warning information is sent to the front-line maintenance personnel in time. The
flow chart of early warning module is shown in Fig. 5.

3.4 Model Update Module

The main function of the model update module is to automatically update the model, so
as to further improve the accuracy of prediction. The selection of system update time

586 L. Chen et al.

Set threshold value and
security levels

Start

Yes No

Send alert information

End

Send message to dispatching
center workbench

Security level out
of limit

Fig. 5. The flow chart of early warning module.

and update mode is determined by the amount of new data obtained by the current sys-
tem. When the data is accumulated to a quarter, the model will be updated by migration
learning, which retains the sub model parameters used to extract the pattern characteris-
tics of change rule, and retrains the second stage fusion network. After one year of data
accumulation, the model will be retrained. For the two updating methods, the training
set and verification set are constructed according to the ratio of 4:1, that is to say, 20%
data is set aside to supervise the effect of model training. The flow chart of model update
module is shown in Fig. 6.

4 System Development Technology

Based on the design idea of model view controller (MVC), the distribution transformer
health early warning system is developed and implemented by using the flask framework
and python language.

4.1 VC Design Pattern

The significant feature of MVC pattern is to separate the data model from the display
interface and link them through the business logic of the controller. MVC mode can
be divided into three levels: model, view and controller. The coupling degree between
layers is low, which is very conducive to the parallel development of applications and
greatly improves the development efficiency.

The model layer mainly implements the data logic of the system, including data
access and processing operations, which encapsulates the data processing functions
necessary for the realization of business logic to maximize code reuse. The view layer
mainly realizes the display function of the system, and provides the interface for the
interaction between the system and the user, which not only transmit the user request
information to the controller, but also receive the state response data sent by the model
and the view selection information sent by the controller. Therefore, it realizes the
information display to the user. The controller mainly realizes the business logic of the
system and completes the data transfer between the model and the view. After receiving

Research and Design of Distribution Equipment 587

Start

System run a year

No

Yes

Train and update model

End

System run
three months

Yes

Update by migration
learning

Construct training set and
verification set

Retrain the model

No

Fig. 6. The flow chart of model update module.

the user’s request information, the controller processes the model to realize the business
logic of the system, and sends the view selection information to the view. The pattern
diagram of MVC is shown in Fig. 7.

4.2 Flask Framework

Flask is a portable web development micro framework, the development language of
which is python. The core components of flask are Werkzeug and Jinja2, which are
respectively responsible for web routing and template rendering. The Werkzeug routing
system can match the URL and the endpoint, generate the URL for the endpoint and
capture the variables in the URL, and its response object can wrap other WSGI applica-
tions and process the flow data. HTTP utilities can handle entity tags, cache control, user
agents and cookies, and test clients can impersonate HTTP requests without running the
server.

Jinja2 is one of the most commonly used Python template engines with full Unicode
support, which has a wide range of functions. It can convert template code into Python

588 L. Chen et al.

View layer

Controller

Model Database

Feedback results

Send request

Select view

Status response

Invoke logic

Interactive

Fig. 7. The pattern diagram of MVC.

bytecode immediately, with high performance and easy debugging. It supports template
inheritance, which enables all templates to use the same or similar layout, and supports
sandbox execution mode, which makes it possible to execute untrusted templates safely.
Its automatic HTML transfer function is powerful, which can prevent cross site scripting.

The distribution transformer health warning system is developed based on MVC
mode in the framework of flask. In this mode, the model part is responsible for the data
logic of the system, the template part is responsible for the display function of users,
and the view part is responsible for the business logic of the system.

The overall framework and core functions of the system have been designed. In the
future, we will further communicate and optimize the system requirements with domain
experts and then develop the system.

5 Conclusion

This paper focuses on one of the difficult problems in distribution network, which is
how to effectively monitor the health status of distribution transformer in real time
and give early warning in time. On the basis of monitoring and early warning demand
analysis of distribution network equipment, the whole design scheme of the distribution
equipment health early warning system is proposed in this paper. First of all, the goal
of the early warning system is defined. Then, the whole frame structure of the system
is determined based on the core business process and functional requirements. What’s
more, the core function module design including the data preprocessing module, model
prediction module, early warning module and model update module is completed. The
health warning system of distribution transformer obtains the load condition, hot spot
temperature and remaining life of distribution transformer in time, which provides a
reference for the maintenance of staff and saves the manpower and material resources
wasted due to manual troubleshooting.

References

1. Peng, K., Chen, X.Y., Li, B., Liao, Y.C., Yu, K.: Analysis of the impact factors of
meteorological environment on power load. Power Demand SideManage. 18(1), 8–13 (2016)

Research and Design of Distribution Equipment 589

2. Rahman,A., Liu,X., Kong, F.: A survey on geographic load balancing based data center power
management in the smart grid environment. IEEE Commun. Surv. Tutorial 16(1), 214–233
(2014)

3. Liu, P.C., Li, X.L.: Fault- section location of distribution network containing distributed
generation based on the multiple- population genetic algorithm. Power Syst. Prot. Control
44(2), 36–41 (2016)

4. Liu, S., Feng, J.Q., Chen, Y.H.: Two dimensional simulation analysis of winding temperature
field of oil-immersed power transformer. Transformer 46(9), 35–38 (2001)

5. Su, W., Eichi, H., Zeng, W., et al.: A survey on the electrification of transportation in a smart
grid environment. IEEE Trans. Ind. Inform. 8(1), 1–10 (2012)

6. Liu,G., Jin,Y.J.,Ma,Y.Q., Sun, L.P., Chi, C.:Numerical analysis of fluid field and temperature
field of oil-immersed transformer. Transformer 54(5), 22–26 (2017)

7. Huang, J.H., Quan, L.S.: Current status and development of condition-based maintenance of
high-voltage electric power equipment in substation. Autom. Electr. Power Syst. 16, 56–61
(2001)

8. Wang, H.B., Du, S.Y., Dai, J.Z., Ren, M., Dong, M.: Condition pre-warning method of power
transformer based on load time series model. High Voltage Apparatus 53(8), 204–210 (2017)

9. Li, C.Y., Liu, L., Zhang, L.Y.: Research on fault diagnosis of transformer in 10 kV substation
based on infrared thermal image. Northeast. Electr. Power Technol. 39(2), 43–46 (2018)

10. Qingbo, Z.: State grid contributes to clean energy development. Electr. 21(3), 48–50 (2010)
11. Yimin,W., Jianhui,W., Xuzhu, D., Pengwei, D., et al.: Guest editorial smart grid technologies

and development in China. IEEE Trans. Smart Grid. 7(1), 379–380 (2016)
12. Wang, L., Wang, P.: On-line monitoring and condition-based maintenance technology of

electric power equipment. Mod. Electr. Power 50, 40–45 (2002)
13. Chiang, J.H., Yuan, J.: Optimal maintenance policy for a Markovian system under periodic

inspection. Reliab. Eng. Syst. Saf. 71(2), 165–172 (2001)
14. Fuhr, J., Aschwanden, T.: Experience with diagnostic tools for condition assessment of large

power transformers. In: IEEE International Symposium on Electrical Insulation, pp. 508–511
(2004)

15. Dual, M.: New techniques for dissolved gas-oil analysis. IEEE Electr. Insul. Mag. 19(2), 6–15
(2003)

16. Smeets, R.P.P., Kertesz, V.: Evaluation of high-voltage circuit breaker performance with
validated are model. IEEE Proc. Gener. Transm. Distrib. 147(2), 121–125 (2000)

17. Wang, M., Vandermaar, A.J., Srivas, K.D.: Review of condition assessment of power
transformers in service. IEEE Electr. Insul. Mag. 18(6), 122–125 (2002)

18. Qiu, H., Noura, H., Qiu, M., Ming, Z., Memmi, G.: A user-centric data protection method for
cloud storage based on invertible DWT. In: IEEE Transactions on Cloud Computing (2019)

19. Qiu, H., Qiu, M., Lu, Z., Memmi, G.: An efficient key distribution system for data fusion in
V2X heterogeneous networks. Inf. Fusion 50, 212–220 (2019)

20. Zhang, Y., Fan, Y.F., Liu, Q.J.: Design and development of fault early-warning system for
smart meter. Electrical Measurement & Instrumentation, pp. 1–7 (2020)

21. Liang, T.: Discussion on intelligent alarm of power grid dispatching automation system.
Guangdong Electr. Power 18(5), 41–44 (2005)

22. Zang, L.C., Tian, P., Li, B.: Research on Online Warning Based on Probability Distribution
of Historical Data. Yunnan Electric power 43(6), 48–50 (2015)

23. Shi, S.W., Wang, K., Chen, L., Yang, F., Liu, P., Tao, D., Lu, G.F.: Power transformer status
evaluation and warning based on fuzzy comprehensive evaluation and Bayes discrimination.
Electr. Power Autom. Equipment 36(9), 60–66 (2016)

24. Qiu, M., Chen, Z., Niu, J., et al.: Data allocation for hybrid memory with genetic algorithm.
IEEE Trans. Emerg. Top. Comput. 3(4), 544–555 (2015)

590 L. Chen et al.

25. Tian, Z., Li, M., Qiu, M., et al.: Block-DEF: a secure digital evidence framework using
blockchain. Inf. Sci. 491, 151–165 (2019)

26. Shao, Z., Xue, C., Zhuge, Q., Qiu, M., Xiao, B., Sha, E.M.: Security protection and checking
for embedded system integration against buffer overflow attacks via hardware/software. IEEE
Trans. Comput. 55(4), 443–453 (2006)

Parallel Processing Algorithms
for the Vehicle Routing Problem

and Its Variants: A Literature Review
with a Look into the Future

Bochra Rabbouch1,2, Hana Rabbouch2, and Foued Saâdaoui2,3(B)

1 LEONI Wiring Systems, Zone Industrielle Manzel Hayet, 5033 Monastir, Tunisia
bochra.rabbouch@gmail.com

2 Lab: LR18ES15 Algèbre, Théorie de Nombres et Analyse Non-linéaire,
Faculté des Sciences, University of Monastir, 5019 Monastir, Tunisia

hana.rabbouch@gmail.com
3 Department of Statistics, Faculty of Sciences, King Abdulaziz University,

P.O BOX 80203, Jeddah 21589, Saudi Arabia
foued.saadaoui@isgs.rnu.tn

Abstract. Vehicle Routing Problems (VRPs) are well-know combinato-
rial optimization problems used to design an optimal route for a fleet of
vehicles to service a set of customers under a number of constraints. Due
to their NP-hard complexity, a number of purely computational tech-
niques have been proposed in recent years in order to solve them. Among
these techniques, nature-inspired algorithms have proven their effective-
ness in terms of accuracy and convergence speed. Some of these methods
are also designed in such a way to decompose the basic problem into a
number of sub-problems which are subsequently solved in parallel com-
puting environments. It is therefore the purpose of this paper to review
the fresh corpus of the literature dealing with the main approaches pro-
posed over the past few years to solve combinatorial optimization prob-
lems in general and, in particular, the VRP and its different variants.
Bibliometric and review studies are conducted with a special attention
paid to metaheuristic strategies involving procedures with parallel archi-
tectures. The obtained results show an expansion of the use of parallel
algorithms for solving various VRPs. Nevertheless, the regression in the
number of citations in this framework proves that the interest of the
research community has declined somewhat in recent years. This decline
may be explained by the lack of rigorous mathematical results and prac-
tical interfaces under famous calculation softwares.

Keywords: Combinatorial optimization · Vehicle Routing Problem ·
Metaheuristics · Nature-inspired algorithms · Parallel computing

1 Introduction

Determining optimal solutions subject to a number of imposed constraints is the
main objective of a mathematical optimization problem. This objective is often
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 591–605, 2020.
https://doi.org/10.1007/978-3-030-60245-1_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_40&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_40

592 B. Rabbouch et al.

exactly intractable for many complicated optimization problems. In practice,
especially for large-scaled problems, operation researchers are commonly satisfied
with approximate solutions found by nature-inspired algorithms. Among these
algorithms, meta-heuristics [31–34] continue to draw attention as a promising
techniques for approximating the global optimum of a given function in a fairly
reasonable computation time. They especially include evolutionary algorithms,
greedy search procedures, and the simulated annealing. However, in order to
make metaheuristic methods more efficient, many extensions involving parallel
computing strategies have appeared in the last few years. The main principle of
parallel processing is to accelerate computation by decomposing the main task
among numerous processors. From an algorithmic side, pure parallel computing
methodologies employ the partial order of algorithms (i.e., the groups of oper-
ations that may be run concurrently in time while keeping the same solving
method and the final obtained solution) and thus correspond to the natural par-
allelism present in the algorithm. The partial order of algorithms provides two
main sources of parallelism: data and functional parallelism [9].

One of the most studied combinatorial optimization problems is the Vehi-
cle Routing Problem (VRP). A VRP addresses the problem of delivering goods
ordered optimally by visiting customers at their locations and using a fleet of
vehicles with respecting required constraints. Different parameters are needed
to successfully ensure this operation. Parameters that characterize VRPs are
first the road network, which describes the connectivity between customers and
depot. Then, the vehicles that transport the delivery among customers, depot
in the road network, and the customers that request services, place orders and
receive goods. Auxiliary constraints may possibly be added to those four main
parameters added to the obtained solution and the objective function to be opti-
mized [31]. Nowadays, in various sectors of the real world, these models are used
to optimize problems whose structure can be similar to that of a graph, such as
electrical networks, roads, sewers, etc. However, the nature of the problem as well
as its size can be decisive factors in the complexity of the problem to be solved.
Therefore, the proper design and treatment of the problem with appropriate
resolution tools is a very important fact.

In the literature, multitude of methods and strategies have been proposed
for solving the VRP and its different variants, with varying degrees of success.
Except exact methods, which have proven their limits for tackling this kind
of problems, several nature-inspired methods have shown their effectiveness in
this area. This survey paper aims to elucidate the complexity of the available
approaches, with a special focus on the pros and cons of the individual methods.
A short technical background on the VRP with the review of its main drawbacks
and reasons to extend it into a parallel version are put forth in Sect. 2. In an
attempt to define the popularity of the VRP and the various parallel computing
approaches used for solving it, in Sect. 3, we provide an outline of the existing
literature including a bibliometric study based on the Web of Science, Scopus
and Google Scholar databases, and a brief summary of the review/survey pub-
lications on this topic. Then, in Sect. 4, we look back over the last three years

Parallel Processing Algorithms for the Vehicle Routing Problem 593

of VRP, combinatorial optimization and parallel meta-heuristics, in an attempt
to better understand the rapidly growing literature. In particular, we propose a
comparisons between the different studies, stress the importance of parallel pro-
cessing for VRPs, and highlight some recent trends. Finally, in the last section,
we look ahead and indicate directions VRP, and combinatorial optimization in
general, will or should take in the next few years.

2 General Background

The VRP is a widespread studied combinatorial optimization problem and has
become, since its appearance by Dantzig and Ramser [13] in 1959, one of the
most investigated research topics. VRPs deal with how to deliver goods ordered
optimally by visiting customers at their locations and using a fleet of vehicles
with respecting required constraints. The traveling salesman problem (TSP)
formulation of Danzig et al. [12] has been generalized to form the two index flow
for the VRP:

min
∑

i∈A

∑

j∈A

αijxij (1)

subject to: ∑

i∈A

xij = 1 ∀j ∈ A\ {0} (2)

∑

j∈A

xij = 1 ∀i ∈ A\ {0} (3)

∑

i∈A

xi0 = K (4)

∑

j∈A

x0j = K (5)

∑

i/∈S

∑

j∈S

xij ≥ γ(S) ∀S ⊆ A\ {0} , S �= ∅ (6)

xij ∈ {0, 1} ∀i, j ∈ A (7)

In this system, αij represents the cost of moving from i to j, xij is a binary
variable which returns 1 if the arc going from i to j is part of the solution, and
0 otherwise, K is the size of the fleet and γ(S) corresponds to the minimum
number of vehicles required to serve a customer set S. Constraints (2) and (3)
mean that exactly an arc enters and exactly one leaves each vertex associated
with a customer, respectively. Constraints (4) and (5) indicate that the number
of vehicles leaving the depot and the number of vehicles entering are equal.
Constraint (6) is the capacity cut-off constraint, which requires that the routes
must be connected and that the demand on each route must not exceed the
capacity of the vehicle. Finally, Constraint (7) defines the domain of constants.
It is therefore on this formulation that all VRP variants arise.

594 B. Rabbouch et al.

Nevertheless, finding optimal solutions for the VRP is a hard task.
Even mathematical algorithms and optimization models for solving large-scale
instances under VRP are still limited. Therefore, several metaheuristic optimiza-
tion algorithms have been applied with varying degrees of success. Although
metaheuristics provide fairly effective strategies for finding approximate solu-
tions to combinatorial optimization problems, the computation time associated
with exploring the solution space can be very significant. With the proliferation
of parallel computers, powerful workstations and fast communication networks,
parallel implementations of metaheuristics quite naturally appear as an alterna-
tive to accelerate the search for approximating solutions [6,11,17,25,39]. They
also allow to find more accurate solutions in comparison with their sequential
counterparts, due to the partitioning of the research space and more possibilities
for the intensification and diversification of the research. Therefore, parallelism
is a way not only to reduce the operating time of metaheuristics, but also to
improve their efficiency and robustness. These are likely to be the most impor-
tant contribution of parallelism to metaheuristics [19]. The last few years have
seen the emergence of a large number of parallel IT architectures. Almost all
desktop or laptop computers, and even mobile phones, have multiple integrated
processor cores.

Parallel and distributed computing can be used in the design and the imple-
mentation of metaheuristics for the main following reasons: 1. Accelerating the
research procedure: One of the main objectives of parallelizing metaheuristics
is to reduce the research time. This allows to design interactive and real-time
optimization methods. 2. Improving robustness: Parallel metaheuristics can be
more robust when solving different optimization problems and different instances
of a given problem. Robustness can also be measured in terms of the sensitiv-
ity of metaheuristics to their parameters. 3. Improving the quality of obtained
solutions: The exchange of information between cooperative metaheuristics will
modify their behavior in terms of research in the space associated with the prob-
lem. Better convergence and reduced search time may occur. Noteworthy that
a parallel model for metaheuristics can be more efficient than sequential models
even on a single processor. 4. Solve large-scale problems: Parallel metaheuris-
tics are used to solve large-scale instances for complex optimization problems.
The challenge is then to solve very large instances that cannot be resolved by
a sequential machine. Another similar challenge is to solve more precise mathe-
matical models associated with different optimization problems. Improving the
accuracy of mathematical models generally increases the size of the problems
associated with solving. In addition, some optimization issues require the han-
dling of huge databases such as data mining problems.

3 Bibliometric Analysis of VRP and Parallel
Metaheuristics

In any research area, the best-known method to learn about a new field is to
perform a literature query using one or some acknowledged databases, such as

Parallel Processing Algorithms for the Vehicle Routing Problem 595

Web of Science, Scopus, etc., and find the ‘hotest’ topics, highly cited papers,
and new publishing trends. To help a new reader to the field of VRP and paral-
lel metaheuristics, we have firstly performed a short bibliometric analysis. The
statistics reported below are essentially based on the three following databases:
Google Scholar, Web of Science and Scopus. The objective of this section is
mainly, to better know the field of VRP, in particular, where is this field posi-
tioned between the different disciplines, in which regions of the world has it been
the most developed in recent years, and which are the main publishers where
VRPs have grown the most. In this same context, we also focus on parallel-
computing-based meta-heuristic approaches that have been developed in recent
years for solving these problems.

In this part, we firstly focus on the VRP relative bibliometrics over the past
three years. Preliminary research on the Web of Science database reveals that
the total number of documents dealing with the problem and published over
the same period is 1,469. Table 1 reports the distribution of the number (and
percentage) of journal articles according to their discipline. A total of 10 research
areas is chosen, which represents the research areas where VRP is most present.
We can, for example, notice the absence of important sciences such as economics
and mathematics among these fields, which is somewhat unexpected. On the
other hand, it is clear and obvious that fields like operations research (OR)
and computer science are the two disciplines where publications on VRPs are
the most abundant. In Table 2, the distribution of publications indexed by Web
of Science is rather made according to the country of origin of the research
team. Taking into account the demographic factor, we note the dominance of
the countries of Latin Europe and Canada. It is also surprising to notice that
a considerable part of the total number of publications is held by a developing
country like Iran.

In Fig. 1, we present a bibliometric analysis of the main scientific resources
dealing with the VRP topic on both theoretical and applied levels. We can clearly
notice that the Dutch-British giant dominates the fields of publication on VRPs
with more than 1,700 documents published between 2018 and 2020, followed by
Springer Publishers. Noteworthy also that journal articles represent the major-
ity of documents dealing with the subject, followed by conference papers. At
the bottom of Fig. 1, we outline the list of the 15 Scopus-indexed journals most
contributing to the VRP area. As mentioned above, the majority of these jour-
nals belong to Elsevier, with the prestigious European Journal of Operations
Research (EJOR) at the top of the list. Below, in Fig. 2 we focus instead on the
contribution of parallel computing methods to the field of combinatorial opti-
mization and VRP. The bibliometric analysis here is rather based on the Google
Scholar database, where the number of documents dealing with each research
topic between 2010 and 2019 is reported as a time series. This allows to spec-
ulate evolution of each theme in the future. The first remark to make is about
the growing and monotonous trend during the last ten years of work on meta-
heuristic methods in combinatorial optimization as in VRP. This is however not
the case for parallel metaheuristics, which have grown for a few years but have

596 B. Rabbouch et al.

known a certain stationarity for the past few years. This may be due to the com-
plexity of generalization and implementation of such mechanisms. On the other
hand, if we read the results of Fig. 3, describing the number of Scholar Google
citations since 2009, we will in fact understand that the interest of the research
community to the VRP has decreased in recent years. This decrease was a little
less serious for parallel calculation methods. The interpretation of such statistics
is that, rather non-researcher practitioners who continue to be most interested
to these two techniques. The cause of this recession may also be due to the lack
of pure mathematical results concerning the theory of VRPs. In the near future,
it would therefore be interesting to better orient research activities towards new
theoretical axes. Besides, to better familiarize users with parallel approaches, it
is recommended to better explain the different interfaces for solving this type of
problems and make them easier to use, especially in the real world.

Table 1. Distribution of the number of journal articles dealing with VRP published on
Web of Science between 2018 and 2020 according to their categories. The total number
of documents published over the same period is 1,469.

Web of science category Record count Percentage of 1,496

Operations Research Management
Science

535 35.762%

Computer Science Artificial Intelligence 236 15.775%

Engineering Industrial 217 14.505%

Computer Science Interdisciplinary
Applications

210 14.037%

Transportation Science Technology 193 12.901 %

Engineering Electrical Electronic 174 11.631%

Management 164 10.963%

Computer Science Theory Methods 150 10.027%

Transportation 126 8.422%

Computer Science Information Systems 110 7.353%

4 Major Review and Survey Publications

There are many advantages of employing parallel processing for nature-inspired
optimization algorithms. Implementing them into numerical or metaheuristic
algorithms can accelerate the process of optimal solution finding. Parallel pro-
cessing can also contribute to improving the quality of the obtained solutions,
robustness, and dissolution of large-scale problems [39]. The objective of this
section is to review the literature of recent research works having exploited par-
allel computing techniques for the improvement of the different schemes used for

Parallel Processing Algorithms for the Vehicle Routing Problem 597

Table 2. Distribution of the number of journal articles dealing with VRP published
on Web of Science between 2018 and 2020 according to the country/region. The total
number of documents published over the same period is 1,469.

Country Record count Percentage of 1,496

China 395 26.404%

USA 180 12.032%

France 107 7.152%

Italy 96 6.417%

Iran 86 5.749%

Canada 83 5.548%

Germany 83 5.548%

Turkey 68 4.545%

Spain 67 4.479%

India 56 3.743%

solving the VRP or its variants. The survey also includes references dealing with
some parallel processing techniques which have been successfully applied to other
combinatorial optimization problems, but can also be implemented for different
VRP models. As it can be noted below, the criticism that can be made to the
literature is that the majority of the evaluations of new proposed approaches
were based on benchmarking instances and simulations. The lack of publicly
accessible interface devoted to practitioners and real-world applications is also
a major drawback. This may explain the decline of the influence of this area in
recent years.

Let us start with some prominent early work on the implementation of
parallel computing in the field of optimization in general, and VRP in par-
ticular. Crainic et al. [8] have shown that cooperative parallelization allows to
obtain solutions of quality equivalent to sequential algorithms for similar com-
putational efforts, but in reduced computational time. It also allows greater
robustness in comparison with situations when different processes use different
solving methods, different parameters, and different starting solutions. Several
published reviews also exist on parallel optimization for particular technologies,
problems, applications, methodologies and research disciplines [37]. Reviews of
parallelization for certain optimization problems were especially performed for
vehicle routing problems (VRPs) [10], non-linear optimization [24], mixed integer
programming [28] and multi-objective optimization [27]. Many reviews have, for
instance, focused on parallel optimization schemes applied to several well-known
methodologies such us the simulated annealing (SA) [2], variable neighborhood
search (VNS) [30], swarm intelligence algorithms [40], particle swarm optimiza-
tion algorithms [41], and different types of evolutionary algorithms, including
genetic algorithms (GAs) and ant colony optimization algorithms [27,29].

598 B. Rabbouch et al.

Elsevier Springer Routledge Wiley IEEE
0

200

400

600

800

1000

1200

1400

1600

1800

2000

N
um

be
r o

f j
ou

rn
al

 a
rti

cl
es

(a) Main companies dealing with VRP

Article Conference Conf. Review Book Chapter Review
0

200

400

600

800

1000

1200

N
im

be
r o

f S
co

pu
s-

in
de

xe
d

do
cu

m
en

ts

(b) VRP publication types

0 20 40 60 80 100 120 140 160 180 200
Number of journal articles

European Journal of OR

Computers & Indus. Eng.

Computers & OR

Transportation Res. Part E

J. of Cleaner Production

Expert Systems with App.

Annals of OR

I.J. of Production Research

Applied Soft Computing

Transportation Res. Part B

International Transaction in OR

Operational Research

Journal of the OR Society

Networks

IEEE Access

(c) Top 15 journals dealing with VRP

Fig. 1. Bibliometric analysis of VRP journal articles between 2018 and 2020 using two
well-established and generally acknowledged databases: Web of Science and Scopus.

In recent years, VRP models have also evolved to be more flexible, which
led to the growth of their computational complexity. For example, optimizing
route networks for transportation companies not only amounts to performing
complex computations, but also doing that in the shortest possible amounts of
time. It has therefore become essential to find the appropriate means to simplify
the calculation tasks. It was then proposed to parallelize this type of problem
given that Graphics Processing Units (GPUs) afford huge computation when
needed operations are correctly parallelized. Cordeau et al. [7] offered a par-
allel iterated tabu search heuristic for solving four different routing problems:
classical VRP, multi-depot VRP, periodic VRP, and site-dependent VRP. Their
approach have been also proved valuable for time-window constrained variant of
these problems. Jagiello et al. [21] underlined the value of using parallel Tabu

Parallel Processing Algorithms for the Vehicle Routing Problem 599

2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (years)

0

1000

2000

3000

4000

5000

6000

G
oo

gl
e

Sc
ho

la
r r

es
ul

ts

(a) Docs CO and metaheuristics

2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (years)

0

50

100

150

G
oo

gl
e

Sc
ho

la
r r

es
ul

ts

(b) Docs CO and parallel metaheuristics

2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (years)

0

500

1000

1500

2000

2500

3000

G
oo

gl
e

Sc
ho

la
r r

es
ul

ts

(c) Docs VRP and metaheuristics

2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (year)

0

10

20

30

40

50

60

G
oo

gl
e

Sc
ho

la
r r

es
ul

ts

(d) Docs VRP and parallel metaheuristics

Fig. 2. Google Scholar bibliometric analysis (# documents) of parallel processing meth-
ods applied to Combinatorial Optimization (CO) and vehicle routing problems between
2010 and 2019.

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (years)

0

200

400

600

800

1000

1200

G
oo

gl
e

Sc
ho

la
r c

ita
tio

ns

(a) Citations of VRP

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Time (years)

0

1

2

3

4

5

6

7

8

9

G
oo

gl
e

Sc
ho

la
r c

ita
tio

ns

(b) Citations of parallel metaheuristics

Fig. 3. Google Scholar bibliometric analysis (# citations) of VRP and parallel process-
ing methods between 2009 and 2019.

600 B. Rabbouch et al.

Search (TS) algorithm over sequential TS algorithm and its application to multi-
criteria discrete optimization of Distance-constrained VRP. Fanlei [18] proposed
an autonomous vehicle routing problem solution algorithm (VRPS) with par-
allel ant colony optimization (ACO) taking into account the driver satisfaction
to solve the problem of traditional autonomous vehicle routing, such as quality
service is affected by the pilot’s longer flight time to overemphasize cost factors
and ignore delivery times.

Other works have also focused on the contribution of the parallel comput-
ing area to other combinatorial optimization and integer programming prob-
lems. Jialong et al. [20] proposed a Parallel Elite Biased (PEB) framework to
design the parallel variants of trajectory-based metaheuristics. The PEB frame-
work applies a distributed topology and an asynchronous communication scheme.
More importantly, the PEB framework exercise a new cooperative method, which
is different from the widely-used cooperative methods including the restart-based
method and the path-relinking method. Shi and Zhang [36] proposed a PEB
framework for parallel trajectory-based metaheuristics. In this PEB framework,
multiple search processes are executed concurrently. Using the PEB framework,
they also developed a parallel variant of Guided Local Search (GLS) called
PEBGLS. The experimental results showed that PEBGLS is a competitive par-
allel metaheuristic for the TSP. Rios et al. [35] proposed a Distributed Variable
Neighborhood Descent under CPU and multi-GPU environments for solving
the Minimum Latency Problem (PLP). In order to better exploit the platform
resources, hybrid metaheuristic algorithm combining good quality initial solu-
tions with a flexible and powerful refinement procedure, inside the scope of an
Iterated Local Search was considered. Their approach was finally compared to a
set of classic local search algorithms, producing results that outperformed well-
known state-of-the-art sequential algorithms. Nevertheless, despite their great
interest as innovations in the area of combinatorial optimization, these works
unfortunately have very little use in real fields.

Other recent contributions were rather in the context of state-of-the-art lit-
erature reviews, and sometimes also making attempts towards new extensions.
Lopes Silva et al. [25] conducted a state-of-the-art study to determine the desir-
able features of a framework for metaheuristic algorithms and identify existing
gaps, especially those related to the hybridization of metaheuristics. The com-
bination of cooperation and parallelism, widely used in the context, was also
analyzed. Other similar works have also focused on reviewing recent parallel
and cooperative metaheuristic search approaches, as well as the areas to which
these parallel versions can be applied [6,11,17]. Zhang et al. [42] developed
a multi-objective optimization problem called a vehicle routing problem with
route balancing (VERB) which is enhanced by using parallel computations on
GPU devices. A set of experiments conducted on benchmark instances showed
their efficacy and effectiveness. Kalatzantonakis et al. [22] presented a literature
review with recent successful parallel implementations of variable neighborhood
search applied to different variants of VRP. They also proposed three paral-
lelization strategies that coordinate the communication of the multiple proces-

Parallel Processing Algorithms for the Vehicle Routing Problem 601

sors. Obtained results constituted a first proof-of-concept for the benefits of this
new self-adaptive parameterized cooperative approach, especially for computa-
tionally hard instances. In their survey paper, Dokeroglu et al. [14] distinguish
fourteen innovative metaheuristics that appeared over the two last decades. The
metaheuristics are selected according to their efficient performance, high number
of citations, and other efficiency criteria. Recent trends, open problems, advances
in parallel metaheuristics and new research opportunities were also investigated
in their study. For solving the vehicle routing problem with time windows, Mari-
nakis et al. [26] proposed a multi-adaptive particle swarm optimization with a
number of adaptive strategies to find the most effective set of parameters. Liu et
al. [23] proposed a fast decomposition and reconstruction framework to solve the
pickup and delivery problem with time windows run under different processors
of multi-core CPU in parallel.

The most recent methodological contributions on combinatorial optimiza-
tion and parallel processing are also the few references described below, which
in fact, such as those above-mentioned, were often limited to evaluations based
upon benchmark instances and simulations. Bach et al. [4] developed a GPU
parallelization-based Adaptive Large Neighborhood Search (ALNS) for the much
studied Distance Constrained Capacitated Vehicle Routing Problem (DCVRP)
and compared it with a state-of-the-art methods. While it proved hard to imple-
ment certain commonly used mechanisms efficiently on the GPU, experiments
showed that their approach yields highly competitive performance. In a litera-
ture paper, Schryen [37] suggested a universally applicable framework for parallel
optimization in operations research, which can be used by academia to system-
atically describe their parallelization studies and position these in the landscape
of parallel optimization. Abdelhafez et al. [1] presented two expanded studies to
the solution goodness, execution time and energy consumption for a number of
different metaheuristics (SA, GA and VNS) and their distributed counterparts.
They also examined the effectiveness of parallel execution of the metaheuris-
tics when implemented under new computing environments. To outperform the
issues of premature convergence, stagnation prevention, and other numerical
problems, Dokeroglu et al. [15] introduced hybrid artificial bee colony algorithms
combined with teaching learning-based optimization metaheuristic and investi-
gated their performances for real-parameter optimization functions. They also
designed island parallel versions of their hybrid algorithms and showed that they
can give better results than that of their sequential versions. Blocho [5] reviewed
the most important parallelization techniques and cooperative search strategies
for solving different variants of the Vehicle Routing Problems. Starzec et al. [38]
designed a parallel and distributed ant colony optimization to be capable of effi-
ciently leveraging the available HPC infrastructure. Their approach could be also
exploited to solve various VRP models. Azzoug and Boukra [3] redraw the his-
toric development of all vehicular ad-hoc network routing problems that concern
either directly related routing tasks or targeting a set of diverse routing-related
techniques with the aid of the nature-inspired algorithms including parallelized

602 B. Rabbouch et al.

ones. Finally, a recapitulation of the main references published between 2018
and 2020 and cited above is set out in Table 3.

Table 3. Recapitulative table outlining the main references published between 2018
and 2020 on combinatorial optimization and parallel processing.

Reference Year Contribution

[6] 2018 Review

[18] 2018 Parallel Ant Colony Optimization

[20] 2018 Parallel Elite Biased (PEB) Framework

[25] 2018 Review

[35] 2018 Parallel Multi-GPU Local Search

[36] 2018 PEB Framework for Guided Local Search

[4] 2019 GPU-based Adaptive Large Neighborhood Search

[11] 2019 Review

[17] 2019 Review

[16] 2019 Review

[22] 2019 Parallel Variable Neighborhood Search Strategies

[23] 2019 Fast Decomposition and Reconstruction Framework

[26] 2019 Multi-Adaptive Particle Swarm Optimization Algorithm

[42] 2019 GPU-based Multiobjective Memetic Algorithms

[1] 2020 Parallel Optimization Algorithm with Multi-Core System

[3] 2020 Review

[5] 2020 Review

[15] 2020 Parallel Hybrid Artificial Bee Colony Algorithm

[37] 2020 Review

[38] 2020 Distributed Ant Colony Optimization Algorithm

5 Conclusion

Optimization algorithms have emerged in many fields, where complicated prob-
lems need to be solved. In these situations, exact search techniques cannot give
good solutions for most of the real-life problems in a reasonable time. Meta-
heuristics have proved to be efficient alternatives for such problems. Despite
this, however, these techniques may require large time to reach their optimum
solutions. Parallelization is a hopeful approach for overcoming time consumption
values of these process. Although recent approaches are running metaheuristics
in parallel, the organization still lacks for novel investigation comparing the opti-
mization techniques being running in parallel. On the other hand, the vehicle

Parallel Processing Algorithms for the Vehicle Routing Problem 603

routing problem is a combinatorial optimization problem which continues to
draw attention of practitioners and academia due to its importance especially in
transportation, logistics, supply chain management, and commerce. This model,
which is very widespread in the real world of management, has also benefited
from the principle of parallel calculation. In this paper, a look over recent publica-
tions dealing with various parallel-processing meta-heuristics proposed to tackle
the VRP and its main variants is carried out. For this aim, we have conducted
both a bibliometric analysis and a critical review of the state-of-the-art/survey
publications that are out there since 2018. Studies have shown that interest in
these methods has not stopped growing, with applications in various fields of the
contemporary world. The extrapolation of obtained results in the future shows
an upward dynamics regarding the continuation of exploitation and develop-
ment of parallel computing tools for solving various VRP approaches. On the
other hand, the reduction in the number of citations on works dealing with VRP
and parallel metaheuristics shows that the interest of the research community
has somewhat declined in the last few years. This may be due not only to the
deficiency of rigorous mathematical results, but also to the lack of easy inter-
faces under famous calculus softwares, such as Matlab and R. It would therefore
be advisable in the future to push for more fundamental research paths and
practical software packages.

References

1. Abdelhafez, A., Luque, G., Alba, E.: Parallel execution combinatorics with meta-
heuristics: comparative study. Swarm Evol. Comput. 55, 100692 (2020)

2. Aydin, M.E., Yigit, V.: Parallel simulated annealing Chapter 12, pp. 267–287.
Wiley, Hoboken (2005)

3. Azzoug, Y., Boukra, A.: Bio-inspired VANET routing optimization: an overview.
Artif. Intell. Rev., 1–58 (2020). https://doi.org/10.1007/s10462-020-09868-9

4. Bach, L., Hasle, G., Schulz, C.: Adaptive large neighborhood search on the graphics
processing unit. Eur. J. Oper. Res. 275(1), 53–66 (2019)

5. Blocho, M.: Parallel algorithms for solving rich vehicle routing problems. In: Smart
Delivery Systems, pp. 185–201 (2020)

6. Codognet, P., Munera, D., Diaz, D., Abreu, S.: Parallel Local Search. In: Hamadi,
Y., Sais, L. (eds.) Handbook of Parallel Constraint Reasoning, pp. 381–417.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3 10

7. Cordeau, J.F., Maischberger, M.: A parallel iterated tabu search heuristic for vehi-
cle routing problems. Comput. Oper. Res. 39(9), 2033–2050 (2012)

8. Crainic, T.G., Toulouse, M., Gendreau, M.: Towards a taxonomy of parallel tabu
search algorithms. INFORMS J. Comput. 9(1), 61–72 (1997)

9. Crainic, T.G., Toulouse, M.: Parallel strategies for meta-heuristics. In: Glover, F.,
Kochenberger, G.A. (eds.) Handbook of Metaheuristics. ISOR, vol. 57, pp. 475–
513. Springer, Boston (2003). https://doi.org/10.1007/0-306-48056-5 17

10. Crainic, T.G.: Parallel solution methods for vehicle routing problems. In: Golden,
B., Raghavan, S., Wasil, E. (eds.) The Vehicle Routing Problem: Latest Advances
and New Challenges. ORCS, vol. 43, pp. 171–198. Springer, Boston (2008). https://
doi.org/10.1007/978-0-387-77778-8 8

https://doi.org/10.1007/s10462-020-09868-9
https://doi.org/10.1007/978-3-319-63516-3_10
https://doi.org/10.1007/0-306-48056-5_17
https://doi.org/10.1007/978-0-387-77778-8_8
https://doi.org/10.1007/978-0-387-77778-8_8

604 B. Rabbouch et al.

11. Crainic, T.: Parallel metaheuristics and cooperative search. In: Gendreau, M.,
Potvin, J.-Y. (eds.) Handbook of Metaheuristics. ISORMS, vol. 272, pp. 419–451.
Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91086-4 13

12. Dantzig, G.B., Fulkerson, R., Johnson, S.M.: Solution of a large-scale traveling
salesman problem. Oper. Res. 2(4), 393–410 (1954)

13. Dantzig, G., Ramser, J.: The truck dispatching problem. Manag. Sci. 6(1), 80–91
(1959)

14. Dokeroglu, T., Sevinc, E., Kucukyilmaz, T., Cosar, A.: A survey on new generation
metaheuristic algorithms. Comput. Ind. Eng. 137, 106040 (2019)

15. Dokeroglu, T., Pehlivan, S., Avenoglu, B.: Robust parallel hybrid artificial bee
colony algorithms for the multi-dimensional numerical optimization. J. Supercom-
put. 76(9), 7026–7046 (2020). https://doi.org/10.1007/s11227-019-03127-7

16. Eskandarpour, M., Ouelhadj, D., Fletcher, G.: Decision making using metaheuristic
optimization methods in sustainable transportation. In: Sustainable Transporta-
tion & Smart Logistics, pp. 285–304 (2019)

17. Essaid, M., Idoumghar, L., Lepagnot, J., Brévilliers, M.: GPU parallelization
strategies for metaheuristics: a survey. Int. J. Parallel Emergent Distrib. Syst.
34(5), 497–522 (2019)

18. Fanlei, Y.: Autonomous vehicle routing problem solution based on artificial poten-
tial field with parallel ant colony optimization (ACO) algorithm. Pattern Recogn.
Lett. 116, 195–199 (2018)

19. Grid, M.: Bee life Parallèle sur GPU pour résoudre le problème dynamique de
tournées de véhicules avec une contrainte de capacité. Université Mohamed Khider
Biskra, Algérie, Thèse de Docorat (2018)

20. Jialong, S., Qingfu, Z.: A new cooperative framework for parallel trajectory-based
metaheuristics. Appl. Soft Comput. 65, 374–386 (2018)

21. Jagiello, S., Zelazny, D.: Solving multi-criteria vehicle routing problem by parallel
tabu search on GPU. Procedia Comput. Sci. 18, 2529–2532 (2013)

22. Kalatzantonakis, P., Sifaleras, A., Samaras, N.: Cooperative versus non-cooperative
parallel variable neighborhood search strategies: a case study on the capacitated
vehicle routing problem. J. Global Optim. (9), 1–22 (2019). https://doi.org/10.
1007/s10898-019-00866-y

23. Liu, F., Gui, M., Yi, C., Lan, Y.: A fast decomposition and reconstruction frame-
work for the pickup and delivery problem with time windows and LIFO loading.
IEEE Access 7, 71813–71826 (2019)

24. Lootsma, F.A., Ragsdell, K.M.: State-of-the-art in parallel nonlinear optimization.
Parallel Comput. 6, 133–155 (1988)

25. Lopes Silva, M.A., De Souza, S.R., Freitas Souza, M.J., De Franca Filho, M.F.:
Hybrid metaheuristics and multi-agent systems for solving optimization problems:
a review of frameworks and a comparative analysis. Appl. Soft Comput. 71, 433–
459 (2018)

26. Marinakis, Y., Marinaki, M., Migdalas, A.: A multi-adaptive particle swarm opti-
mization for the vehicle routing problem with time windows. Inf. Sci. 481, 311–329
(2019)

27. Nebro, A.J., Luna, F., Talbi, E.G., Alba, E.: Parallel multiobjective optimization
Chapter 16, pp. 371–394. Wiley, Hoboken (2005)

28. Nwana, V., Mitra, V.: Parallel mixed integer programming: a status review. Tech-
nical report, Department of Mathematical Sciences, Brunel University (2000)

29. Pedemonte, M., Nesmachnow, S., Cancela, H.: A survey on parallel ant colony
optimization. Appl. Soft Comput. 11, 5181–5197 (2011)

https://doi.org/10.1007/978-3-319-91086-4_13
https://doi.org/10.1007/s11227-019-03127-7
https://doi.org/10.1007/s10898-019-00866-y
https://doi.org/10.1007/s10898-019-00866-y

Parallel Processing Algorithms for the Vehicle Routing Problem 605

30. Prez, J.A.M., Hansen, P., Mladenovi, N.: Parallel variable neighborhood search
Chapter 11, pp. 247–266. Wiley, Hoboken (2005)

31. Rabbouch, B., Mraihi, R., Saâdaoui, F.: A recent brief survey for the multi
depot heterogenous vehicle routing problem with time windows. In: Abraham,
A., Muhuri, P.K., Muda, A.K., Gandhi, N. (eds.) HIS 2017. AISC, vol. 734, pp.
147–157. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76351-4 15

32. Rabbouch, B., Saâdaoui, F., Mraihi, R.: Empirical-type simulated annealing for
solving the capacitated vehicle routing problem. J. Exp. Theor. Artif. Intell. 32(3),
437–452 (2020)

33. Rabbouch, B., Saâdaoui, F., Mraihi, R.: Efficient implementation of the genetic
algorithm to solve rich vehicle routing problems. Oper. Res.: Int. J. https://doi.
org/10.1007/s12351-019-00521-0

34. Rabbouch, B., Saâdaoui, F., Mraihi, R.: Constraint programming based algorithm
for solving large-scale vehicle routing problems. In: Pérez Garćıa, H., Sánchez
González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodŕıguez, E.
(eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 526–539. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29859-3 45

35. Rios, E., Ochi, L.S., Boeres, C., Coelho, V.N., Coelho, I.M., Farias, R.: Exploring
parallel multi-GPU local search strategies in a metaheuristic framework. J. Parallel
Distrib. Comput. 111, 39–55 (2018)

36. Shi, J., Zhang, Q.: A new cooperative framework for parallel trajectory-based meta-
heuristics. Appl. Soft Comput. 65, 374–386 (2018)

37. Schryen, G.: Parallel computational optimization in operations research: a new
integrative framework, literature review and research directions. Eur. J. Oper. Res.
287(1), 1–18 (2020)

38. Starzec, M., Starzec, G., Byrski, A., Turek, W., Piȩtak, K.: Desynchronization in
distributed ant colony optimization in HPC environment. Future Gener. Comput.
Syst. 109, 125–133 (2020)

39. Talbi, E.G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken
(2009)

40. Tan, Y., Ding, K.: A survey on GPU-based implementation of swarm intelligence
algorithms. IEEE Trans. Cybern. 46, 2028–2041 (2016)

41. Zhang, Y., Wang, S., Ji, G.: A comprehensive survey on particle swarm optimiza-
tion algorithm and its applications. Math. Problems Eng. 2015, 1–38 (2015)

42. Zhang, Z., Sun, Y., Xie, H., Teng, Y., Wang, J.: GMMA: GPU-based multiobjective
memetic algorithms for vehicle routing problem with route balancing. Appl. Intell.
49(1), 63–78 (2018). https://doi.org/10.1007/s10489-018-1210-6

https://doi.org/10.1007/978-3-319-76351-4_15
https://doi.org/10.1007/s12351-019-00521-0
https://doi.org/10.1007/s12351-019-00521-0
https://doi.org/10.1007/978-3-030-29859-3_45
https://doi.org/10.1007/s10489-018-1210-6

Multi-scaled Non-local Means Parallel
Filters for Medical Image Denoising

Hana Rabbouch1, Othman Ben Messaoud1,2, and Foued Saâdaoui1,3(B)

1 Lab: LR18ES15 Algèbre, Théorie de Nombres et Analyse Non-linéaire,
Faculté des Sciences, 5019 Monastir, Tunisia

hana.rabbouch@gmail.com
2 Compagnie des Phosphates de Gafsa (CPG), Cité Bayech, 2100 Gafsa, Tunisia

bmo.stat@gmail.com
3 King Abdulaziz University, P.O BOX 80203, Jeddah 21589, Saudi Arabia

foued.saadaoui@isgs.rnu.tn

Abstract. In recent years, there has been an increased interest in
denoising techniques that are applicable in various medical imaging
fields. The extraordinary development of the denoising area is no doubt
due to the ever expanding and successful computing technology, but also
to the emergence of the multi-resolution analysis (MRA) on both mathe-
matical and algorithmic levels. However, many denoising techniques still
remain ineffective in dealing with certain types of noise. Other meth-
ods can be too expensive, given their nested and complicated structure.
Therefore, in this paper, A new multi-scale parallel denoising paradigm
is defined and tested. A comparative study is conducted between the two
best-known MRA-based decomposition techniques: the Empirical Mode
Decomposition (EMD) and the Discrete Wavelet Transform (DWT).
The comparison is carried out in this framework of multi-scaled parallel
denoising, where a Non-Local Means (NLM) filter is implemented and
adjusted scale-by-scale to a sample of X-ray benchmark images. Some
state-of-the-art denoising methods were also used in the evaluation. The
numerical results proved the effectiveness of the multi-scaled parallel
denoising in terms of accuracy and speed of convergence, especially when
the NLM filtering is coupled with the EMD. This shows a bright future
for their medical use in the next few years.

Keywords: Medical imaging · Non-local means · Multi-scaled
denoising · Empirical mode decomposition · Wavelets

1 Introduction

Image de-noising is a fundamental task in signal processing, which still plays a
vital role in the field of medical imaging, especially in ultrasound imaging, X-ray
imaging, Computer Tomography (CT) and Magnetic Reasoning Imaging (MRI)
[1–4]. The main aim of image de-noising is to reduce the noise as well as preserve
the important features such as edges, textures, boundaries, and sharp structures.
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 606–613, 2020.
https://doi.org/10.1007/978-3-030-60245-1_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_41&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_41

Multi-scaled Non-local Means Parallel Filter 607

This field has seen much research and encouraging advance the last few decades.
Despite this, image de-noising is still drawing attention of researchers as image
de-noising can cause blurring and introduce artifacts. That is why some adaptive
multi-resolution decomposition approaches have recently been used to perform a
joint space-spatial frequency de-noising [2]. The most common examples of this
kind of image processing tools are the Empirical Mode Decomposition (EMD) [5]
and the wavelet transform [6], which gained great interest in biomedical images
de-noising [3,7,8].

The main idea behind the principle of multi-scaled NLM parallel denoising
is that it firstly establishes a Multi-Resolution Analysis (MRA) -based decom-
position of the image. Then, coarser components (approximation coefficients)
are slightly NLM-filtered in order to preserve the gray-scale intensity of the
image. High-frequency subband components are also filtered but more aggres-
sively, before being joined to processed approximations. The last step consists
in recombining smoothed approximation and detail coefficient by performing an
adequate inverse transform. The aim of this paper is therefore to define and for-
malize a new family of adaptive parallel filters which are inspired by the principle
of multi-scaled denoising. The two main variants addressed in this framework
are those coupling two among the most practical MRA-decomposition methods
(EMD and wavelets) with the NLM technique. Although the second category
exists in the literature [3], the EMD-based approach is new and has not yet been
used. It is also noteworthy that a comparison between EMD and wavelets in
this context of parallel denoising has not yet been addressed in the literature.
That is why a set of experiments is finally conducted in order to compare the
two strategies in a real framework of medical images denoising.

The paper is structured as follows. Section 2 and 3 provide illustrations of
algorithmic formulations of the EMD and the wavelet transform. The multi-
scaled parallel denoising algorithm is presented in Sect. 4. The experimental
setup and numerical results are finally described and discussed in Sect. 5.

2 Empirical Mode Decomposition (EMD)

The Empirical Mode Decomposition (EMD) [5] of an information represents a
decomposition technique by which almost any signal zs,t, ∀ s, t ∈ Ω ⊂ Z

2 could
be disaggregated into a finite number of mono-component subsignals, called
Intrinsic Mode Functions (IMFs), plus a residual. The EMD assumes that the
data, depending on its complexity, may have many different coexisting modes of
oscillations at the same time. The EMD’s IMFs satisfy the following two con-
ditions: (i) Over the entire length of the data (signal or image), the number of
local extremums and the number of zero-crossings must either be equal or differ
at most by one; (ii) At each pixel of our image (s, t), the average of the poly-
gon connecting local maximums and the polygon connecting local minimums is
zero. The IMFs are extracted through a sifting process, whose algorithm can be
described in Table 1.

The Cauchy convergence test is commonly used as stopping criterion. This
criterion is defined as a normalized squared difference between two successive

608 H. Rabbouch et al.

Table 1. Empirical Mode Decomposition (EMD).

Algorithm: EMD

1. Using splines, identify extremums of the signal zs,t, ∀ s, t ∈ Ω ⊂ Z
2

2. Interpolate maxima (minima), ending up with a polygon emax(s, t) (emin(s, t))

3. Calculate the midpoints ms,t = [emax(s, t) + emin(s, t)]/2

4. Extract the detail hs,t = zs,t − ms,t. hs,t should satisfy the definition of IMF

5. Treat hs,t as input and repeat steps (1.) to (4.) k times until the polygons are

symmetric with respect to zero. After k cycles, if h
(k)
s,t is IMF, take h

(k)
s,t as the ith

IMF (denoted IMF
(i)
s,t), and replace zs,t with ri(s, t) = zs,t − h

(k)
s,t

6. Repeat steps (1.) to (5.) by sifting the residual until it satisfies a predefined
stopping criterion. After finishing the whole sifting process, we have a residual and
a collection of several IMFs, denoted as IMF

(i)
s,t (i = 1, 2, . . . , M)

sifting operations, i.e.: σk =
∑S

s=0

∑T
t=0{|h(k−1)

s,t − h
(k)
s,t |2/(hk−1

s,t)2}, where hk
s,t

is the kth extracted signal through the sifting, and k is the iteration number. If
σk is smaller than the predetermined value ε, the sifting process will be stopped.
Moreover, the original zs,t can be exactly reconstructed by a simple summation:

zs,t = rM (s, t) +
∑M

i=1 IMF(i)
s,t, (1)

where ri(t) = ri−1(t) − IMF(i)
t , rM (t) is the residual component, which is gener-

ally a constant or a monotonic function representing the trend of the time series.
EMD performs thus a scale-by-scale analysis that is totally data-driven and that
can be applied to all oscillatory time series, including non stationary and locally
stationary ones and those generated by a nonlinear system. It is noticeable that
this last point represents the superiority of the EMD method in comparison with
wavelets.

3 Wavelet Transform

Wavelets are oscillatory and compact functions that have zero-mean and limit
width in both the time and frequency domains. The minimum requirements
imposed on such functions to qualify for being wavelets are that Ψ : R2 → R

with Ψ ∈ L2(R2)1 and also fulfill a technical condition, usually referred to as
the admissibility condition, which reads as

∫
(R+)2

| Ψ̂(ξ) |2 / | ξ |2 dξ < +∞,

where Ψ̂(ξ) denotes the adequate Fourier transform of Ψ(X) for X ∈ R
2. Let us

consider the ordinary monodimensional wavelet transform with ψ(s) and ϕ(s)
its respective mother and father functions [3]. The product of the two functions
allow us to define a bi-dimensional father function:

Φ(s, t) = ϕ(s)ϕ(t), (2)
1 A function f(X) is square-integrable if it satisfies

∫
R2 f2(X)dX < ∞.

Multi-scaled Non-local Means Parallel Filter 609

whereas the following products: ψh(s, t) = ψ(s)ϕ(t), ψv(s, t) = ϕ(s)ψ(t) and
ψd(s, t) = ψ(s)ψ(t) yield the three principal 2-dimensional wavelet details func-
tions, where the superscripts h, v and d respectively correspond to horizontal,
vertical and diagonal direction details. In this basis, we can define

Φl,k1,k2(s, t) = 2l/2Φ(2ls − k1, 2lt − k2) (3)

as the coarse component, whereas

Ψl,k1,k2(s, t) = 2l/2ψdir(2ls − k1, 2lt − k2), dir = {h, v, d} (4)

are the details components.
The bi-dimensional discrete wavelet transform (2D-DWT) of a function z(s,t)

of dimension S × T is written as:

TΦ(l0, k1, k2) = 1√
ST

∑S−1
s=0

∑T−1
t=0 z(s,t)Φl0,k1,k2(s, t), (5)

T dir
Ψ (l0, k1, k2) = 1√

ST

∑S−1
s=0

∑T−1
t=0 z(s,t)Ψ

dir
l0,k1,k2

(s, t), (6)

where dir = {h, v, d}, with an arbitrary start resolution l0 and a scale parameter
L. We usually choose l0 = 0 and N = M = 2L to have l = 0, 1, . . . , L − 1 and
m,n = 0, 1, . . . , 2l − 1.

A 2D-DWT algorithm is used to decompose I according to the following
recursive way:

zl+1[m,n] =
∑

k1,k2∈Z
h[k1]h[k2]zl[2m − k1, 2n − k2] (7)

Wh
l+1[m,n] =

∑
k1,k2∈Z

g[k1]h[k2]zl[2m − k1, 2n − k2] (8)

W v
l+1[m,n] =

∑
k1,k2∈Z

h[k1]g[k2]zl[2m − k1, 2n − k2] (9)

W d
l+1[m,n] =

∑
k1,k2∈Z

g[k1]g[k2]zl[2m − k1, 2n − k2] (10)

where h(.) and g(.) are respectively, low-pass and high-pass filter coefficients,
h̄[n] = h[−n], n ∈ Z is the reversed version of h. The signal zl+1 is an approxi-
mation of zl at a lower resolution. This approximation is computed from zl by
low-pass filtering and decimating by 2 along its rows and columns. The signals
Wl+1 contain the detail of zl.

4 Multiscaled NLM-Denoising

The multi-scaled parallel denoising is based upon the simple principle of filtering
EMD or wavelet sub-components by the MLM method before reassembling them.
Let p = (xi, yj) be a pixel of a bi-dimensional sub-band I. This component
represents a noisy discrete signal defined on a domain Ω ⊂ Z

2. The non-local
means (NLM) filter can be formulated as follows:

NLM [I](p) =
∑

q∈Ω

ω(p, q)I(q), (11)

610 H. Rabbouch et al.

where the ω’s are weights satisfying 0 < ω(p, q) < 1 and
∑

q ω(p, q) = 1. Accord-
ingly, an adjusted pixel NLM [I](p) is a weighted average of all pixels in the
image. The weights are based on the similarity between the neighborhoods of
pixels p and q. In other words, ω(p, q) depends on a distance δ(p, q) between
observed gray level vectors at pixels p and q.

Given an odd number n and a pixel p ∈ Ω, we define the patch I(Np) of width
n centered at p as the n2-dimensional vector whose coordinates are gray values of
the pixels in a square neighborhood of p with side n: I(Np) = I(p + j)||j||∞≤n−1

2

Therefore, we have: δ(p, q) = ||I(Np)− I(Nq)||22,σ, where || . ||2,a is an Euclidean
norm weighted by σ > 0, the standard deviation of the Gaussian filter on the
neighborhood. This measure is so much more adapted to any additive white
noise such that a noise alters the distance between windows in a uniform way.
Indeed,

E||I(Np) − I(Nq)||22,σ = ||J(Np) − J(Nq)||22,σ + 2�, (12)

where J and I are, respectively, the original and noisy image components and
� is the noise variance. This equality shows that, in expectation, the Euclidean
distance preserves the order of similarity between pixels. So the most similar
pixels to p in I also are expected to be the most similar pixels to p in J [1,3].
The NLM weights can be expressed as

ω(p, q) =
Δ(p, q, h)

∑
q Δ(p, q, h)

, (13)

where Δ(p, q, h) = exp −δ(p,q)
h2 with h controlling the decay of the exponential

function, and therefore the decay of the weights, as a function of the Euclidean
distances. Once AMR-subcomponents are appropriately filtered (one by one in
parallel), a reconstruction of the image is carried out using the adequate inverse
transform. It is noticeable that the choice of filtering parameters at each resolu-
tion level is purely empirical. At this stage, well-known deviation criteria, such
as the mean square error or the signal-to-noise ratio can be used. A diagram
summarizing the proposed approach is given in Fig. 1.

5 Numerical Results

In this numerical study, the proposed approach is compared to a set of similar de-
noising techniques. The two benchmark images of Fig. 2 are first noised, then de-
noised using each of the compared techniques. The benchmark images represent
X-ray scans of coronary arteries and a left-side shoulder (see [4,9]). The images
are corrupted by Additive White Gaussian Noise (AWGN) and Multiplicative
Speckle Noise (MSN) the standard deviations of which are gradually increased.

The first experiment is conducted on the left-side image (coronary arteries)
and its results are reported in Table 2. Generated noises are denoted as follows:
G(a), a AWGN with variance V ara = a × 10−3, and, S(b), a MSN with variance
V arb = b × 10−3. The table reports the improvements of the Peak Signal-to-
Noise Ratio (PSNR) for the image de-noising. In this experiment, the three used

Multi-scaled Non-local Means Parallel Filter 611

Fig. 1. Multi-scaled NLM parallel de-noising principle.

(a) Coronary angiogram [9] (b) Shoulder X-ray [4]

Fig. 2. Original noise-free X-ray images.

methods are the non-local means (NLM), the wavelet-based NLM (W-NLM),
and the EMD-based NLM (EMD-NLM). The results show the effectiveness of the
EMD-NLM method, especially when the noise is of a relatively high intensity. On
the other hand, the wavelet-based method proves its ability to remove low level

612 H. Rabbouch et al.

Table 2. PSNR (dB) improvements for coronary arteries X-ray image de-noising using
NLM, W-NLM, and EMD-NLM approaches.

Noise NLM W-NLM EMD-NLM Noise NLM W-NLM EMD-NLM

G(1) 30.02 31.56 31.80 S(1) 35.02 35.09 33.29

G(2) 27.01 28.60 29.20 S(2) 32.04 33.20 32.64

G(3) 25.24 26.76 27.27 S(3) 30.26 31.69 31.80

G(4) 23.99 25.49 25.84 S(4) 29.03 30.53 30.86

G(5) 23.04 24.49 24.80 S(5) 28.07 29.60 30.02

noises. In this experiment, we also note the superiority of the two multiscaled
approaches compared to the ordinary NLM method.

In a second experiment, the same methods are compared with other de-
noising algorithms from the literature. The compared methods are evaluated
based on de-noising tasks applied to the right-side image of Fig. 2 (shoulder
X-ray). The five benchmark methods used in the comparison are: Gaussian
Smoothing [10], Total variation [11], and three approaches based on the Local
Polynomial Approximation (LPA) and Relative Intersection of Confidence Inter-
vals (RICI) rules [4]. In the three LPA-RICI variants, averaging pixels is carried
out on quadrilateral regions, octagonal regions, and Hexadecagonal regions, that
why we respectively denote them LPA-RICI4, LPA-RICI8, LPA-RICI16. Table 3
reports PSNR results, as well as the main benchmark methods. The results of
this second experiment prove again the superiority of the principle of multiscaled
denoising and in particular, that based on the EMD technique. In future works,
further evaluation of the multi-scaled parallel denoising should be carried out,
especially in other areas of medical imaging, such as those related to tomogra-
phy [3] and magnetic resonance [12,13]. It would also be interesting to study the
effectiveness of these approaches for X-ray chest images of patients with severe
acute respiratory syndrome corona virus of type 2 (SARS-CoV-2). Encouraging
results in this direction will mean that rapid and effective scanner-based tests
could be easily developed.

Table 3. PSNR (dB) improvements for the shoulder X-ray image denoised using the
EMD-NLM approach and a number of state-of-the-art methods.

Method Reference PSNR (dB) Method Reference PSNR (dB)

EMD-NLM 39.52 LPA-RICI8 [4] 39.37

W-NLM [3] 35.56 LPA-RICI16 [4] 33.61

NLM [1] 33.94 Gauss. Smooth [10] 34.69

LPA-RICI4 [4] 38.73 Tot. Variation [11] 35.02

Multi-scaled Non-local Means Parallel Filter 613

6 Conclusion

The results of numerical experiments carried out on the basis of medical images
from X-ray scanners prove the interest of the multi-scaled de-noising, especially
when it is based on NLM filters. In this framework, the comparison between
EMD and wavelet decompositions shows the superiority of EMD in terms of accu-
racy and speed of convergence. Nevertheless, the EMD-based denoising approach
deserves to be tested in other areas of medical imaging, such as those related
to tomography [3], magnetic resonance [13], and chest X-ray in patients with
COVID-19 [14]. The various algorithms also deserve to be tested on 3D images,
where cost-effectiveness criteria are used for comparison.

References

1. Buades, A., Coll, B., Morel, J.-M.: A non-local algorithm for image denoising.
IEEE CVPR 2, 60–65 (2005)

2. Lahmiri, S.: Denoising techniques in adaptive multi-resolution domains with appli-
cations to biomedical images. Healthc. Technol. Lett. 4(1), 25–29 (2017)

3. Rabbouch, H., Saâdaoui, F.: A wavelet-assisted subband denoising for tomographic
image reconstruction. J. Vis. Commun. Image R. 55, 115–130 (2018)

4. Mandić, I., Peić, H., Lerga, J., S̆tajduhar, I.: Denoising of X-ray images using the
adaptive algorithm based on the LPA-RICI algorithm. J. Imaging 4(2), 34 (2018)

5. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q.: The empirical
mode decomposition and the Hilbert spectrum for nonlinear and nonstationary
time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 454(1971), pp.
903–995 (1998)

6. Fowler, J.: The redundant discrete wavelet transform and additive noise. IEEE
Signal Process. Lett. 12(9), 629–632 (2005)

7. Arfia, F.B., Sabri, A., Messaoud, M.B., Abid, M.: The bidimensional empirical
mode decomposition with 2D-DWT for gaussian image denoising, In: Proceedings
of 17th International Conference on DSP, pp. 1–5 (2011)

8. Flandrin, P., Goncalves, P., Rilling, G.: Detrending and denoising with empirical
mode decomposition. In: Proceedings of the 12th EUSIPCO, pp. 1581–1584 (2004)

9. Koc̆ka, V.: The coronary angiography-an old-timer in great shape. Cor et Vasa,
57(6), e419–e424 (2015)

10. Kopparapu, S.K., Satish, M.: Identifying optimal Gaussian filter for Gaussian noise
removal. 3rd NCVPRIPG, pp. 126–129 (2011)

11. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal
algorithms. Phys. D 60(1–4), 259–268 (1992)

12. Benameur, N., et al.: Left ventricular MRI wall motion assessment by monogenic
signal amplitude image computation. Magn. Reson. Imaging 54, 109–118 (2018)

13. Chang, L., Bang, G.C., Xi, Y.: A MRI denoising method based on 3D nonlocal
means and multidimensional PCA. Comput. Math. Method. M., Art. No. 232389,
p. 11 (2015)

14. Jacobi, A., Chung, M., Bernheim, A., Eber, C.: Portable chest X-ray in coronavirus
disease-19 (COVID-19): a pictorial review. Clin. Imag. 64, 35–42 (2020)

Optimized HybridSketch: More Efficient
with Analysis and Algorithm

Xiaolei Zhao1(B), Mei Wen1, Minjin Tang1, Qun Huang2,
and Chunyuan zhang1

1 School of Computer Science, National University of Defense Technology,
Changsha, China

zhaoxiaolei14@nudt.edu.cn
2 Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China

Abstract. The sketch structure is widely applied in the network mea-
surement field due to its limited memory usage and simple operation.
However, When the less memory space the system occupied, the accu-
racy decreases. However, as the flow rate rapidly increases, the on-chip
memory will become a system bottleneck. HybridSketch provides a meth-
ods to save memory and maintain the accuracy of the measurement sys-
tem. We apply analysis and new algorithms to make it more efficient.
We analyze the error bound of the system and observed that the sketch
part of the system will lose the precision of the information along with
less memory inevitably. So we propose the data augmentation algorithm
based on our analysis. We apply it and propose the optimized HybridS-
ketch. We evaluate the performance and present a comparison with the
origin algorithm. The results show that optimized HybridSketch provides
an 80% precision rate compared to the original one which occupied 10×
the memory size.

Keywords: Sketch · Network measurement · Algorithm

1 Introduction

Network measurement is deployed in data center networks widely to obtain useful
information of the traffic as regards Heavy Hitter detection [18], Flow Frequency
Estimation [19], Entropy [20], etc. Structure and algorithms based on sketch
are preferred by many researchers due to its limited memory usage and simple
operation. As a results of the rapid development of network bandwidth, precise
measurement methods are unsuitable for deployment in high-speed networks
because of the high memory usage and bandwidth utilization required. Accord-
ingly, some sketch algorithms [1–3,7,9] have been proposed. However, with the
development of sketch algorithm, more structures expended more memory space
on some auxiliary process which aimed to achieve better results. And the con-
sumption caused that the sketch algorithm needs more extra memory space to
fulfill a measurement task.
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 614–626, 2020.
https://doi.org/10.1007/978-3-030-60245-1_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_42&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_42

Optimized HybridSketch: More Efficient with Analysis and Algorithm 615

An algorithm focus on memory usage is proposed, HybridSketch, which
focuses on the memory and precision of the system; this is accomplished through
the mixing of two measurement methods by quantitatively analyzing, modeling
and allocating appropriate memory space to each method and achieve better
results. But we found that the algorithm does not consider the boundary of the
data plane. And lower memory usage for the sketch part inevitably leads to the
increase of fitting deviation of the distribution formed by the data in sketch
structure. Less data in the sketch part influences the distribution of record keys,
which are used to recovery the results of some applications.

Accordingly, the contributions of this paper are as follows:

– We analyze the boundary of the top-k part and sketch part of HybridSketch,
certify the error rate of two parts of the system.

– We propose the Data Augmentation Algorithm and optimized HybridSketch
algorithm, solve the fitting deviation of the distribution result from less mem-
ory.

– We evaluate the performance and present a comparison with the origin algo-
rithm. The results show that optimal HybridSketch provides an 80% precision
rate compared to the original with 10× the memory size.

2 Background and Motivations

HybridSketch is designed by mixing the top-k and sketch algorithms. Through
allocating memory precisely to each algorithm, the system can achieve better
results with less memory space.

It combines the advantages of the both algorithms, and saves more memory
usage to achieve the same effect. In the top-k part, it applies the Hashpipe [5]
algorithm to extract the heavy hitters, then the flows expelled by the top-k
part will be enter into the sketch part. It applies SketchLearn [1] algorithm to
maintain the bit level counter groups.

It extracts heavy hitters through top-k part, record the bit-level distribution
through sketch part, overcomes the shortage that some large flows cannot be
extracted by the sketch part due to less counters.

But top-k part occupies the 1
4 of all the memory of data plane. Less memory

for the sketch part means less counters to record the flows. When the counters
is not enough, the accuracy of bit level distribution of the flowkey will decrease.

By focusing on this, we analyze the bound of the system and propose the
optimal algorithm for overcoming the recorded data shortages.

One of the challenges of our work is how to analyze the two part of the system.
Because the structures are different, we cannot use one way to analyze the two
part. We use two different methods to analyze the error bound of the two part,
and get a specific quantitative range; The other challenge is how to do data
expansion and data recovery to overcome the drawback that caused by data
shortage. We propose a data augmentation algorithm based on the statistical
regularity, supply 10× data size, maintain the accuracy of bit level distribution.

616 X. Zhao et al.

3 Boundary Analysis

In this section, we analyze the top-k part bound and sketch part bound of
HybridSketch, which certifies the superiority of the system. Through this proving
process, we can clearly identify the theoretical support for the design. We can
prove that the top-k part of the system can extract at least 48.99% of the traffic,
and the flow which occupies more than 0.1% of the traffic would be identified as
a large flow. Moreover, we can obtain the error rate of the sketch part based on
the features of the data set.

3.1 Top-K Part Bound Analysis

In order to prove the upper bound, we introduce Zipf’law, which is close to the
distribution of the most flows. It is an empirical law formulated using mathe-
matical statistics. It is notable that many types of data studied in the physical
and social sciences can be approximated with a Zipfian distribution, which is
one of a family of related discrete power law probability distributions. Formally,
let:

– N : the number of elements;
– k: their rank;
– s: the value of the exponent characterizing the distribution.

Zipf’s law then predicts that out of a population of N elements, the frequency
of elements of rank k, f(k; s,N), is as follows:

f(k; s,N) =
1/ks

∑N
n=1(1/ns)

(1)

For most flows, the exponent characterizing the distribution s is between
1 ∼ 2.

Next, we introduce the Riemann Zeta Function to compute the denominator
of f(k; s,N);

ζ(s) =
∞∑

n=1

(1/ns) (2)

When s = 1, ζ(1) = ∞. We next introduce the finite partial sums of the diverging
harmonic series Hn:

Hn(N) =
N∑

n=1

(1/n) (3)

We then have:
N∑

n=1

1
n

= ln N + γ + εN (4)

where γ is the Euler–Mascheroni constant and εN ∼

1
2N which approaches 0 as

N goes to infinity.

Optimized HybridSketch: More Efficient with Analysis and Algorithm 617

We next focus on f(k; 1, N):

f(k; 1, N) =
1

k(ln N + γ + εN)
(5)

Generally, we set k = 200, N > 200000, f(200; 1, 200000) < 0.001. This
means that the flow that ranks 200th occupies less than 0.1% of all traffic.
Moreover, the larger the value of s, the smaller the function value.

Next, we calculate the percentage of the top K flows:

F (k; 1, N) =
K∑

k=1

f(k; 1, N)

= [
K∑

k=1

(
1
k

)]
1

(ln N + γ + εN)

=
(ln K + γ + εK)
(ln N + γ + εN)

(6)

We can thus determine that the top 200 flows occupy 48.99% of the traffic.
When s = 2, ζ(2) = π2/6:

f(k; 2, N) � 6
π2k2

(7)

We use the same parameters, f(200; 2, 200000) < 1.6×10−5; the flow behind
is smaller compared with the situation where s = 1. Under these circumstances,
we can tell that top 200 flows are larger.

Accordingly, the top-k part in the system can extract flows that amount to
more than 48.99% of the traffic.

3.2 Sketch Part Bound Analysis

Before analyzing the bound of the sketch part, we first need to declare the initial
condition. The sketch part obtains the final results by recovering the data using
the information of the distribution which generated by the data in the sketch.
What we want to know is how much data is required to form an acceptable
normal distribution.

The sketch part maps every flow to a specific space through the use of a hash
algorithm. For the space of every bit, the data located there forms an approx-
imate normal distribution, while later operations area based on the features of
the distribution. The amount of data apparently has a significant impact on the
results.

For the sketch part, we analysis its bound using statistics. Since the sketch
structure is in fact a kind of statistical structure, we analyze the data and com-
pute its distribution; subsequently, we obtain the information we want by com-
puting its features. Accordingly, in order to determine the effect that can be
obtained by the sketch part, we introduce the minimum sample size calculation
method. Let:

618 X. Zhao et al.

– T : The number of the sample;
– σ2: Sample variance;
– E: Sampling error;
– Zα/2: Confidence of the sample.

T ≈ (Zα/2
2σ2)

E2
(8)

It is worth noting that the equation is designed based on the standard normal
distribution. That means σ2 < 1. When Z = 1.64, E = 10%, σ2 = 0.25, we can
get T = 67. The parameter c in the sketch part is same as the number of the
sample T . Thus, the sketch part can obtain the error E with the equation above.

In order to compute the error rate, we need to normalize the original dis-
tribution to a normal distribution. Moreover, we also need to that we have 104
bits for flowkey, and each of these bits is related to a normal distribution. When
these error rates overlap, we need to decrease the every error rate to a specific
level to obtain an acceptable result. However, when the error rate we require is
less than 1%, we need more than 100 × T , which is calculated when E = 10%.
We then need to expand the sketch part, which is the parameter c. Thus, we
need that allows us to obtain enough data when space is lacking.

4 Data Augmentation Algorithm

In this section, we introduce the data augmentation algorithm that is imple-
mented in order to save resources and maintain the approximate results with
the original system in the control plane.

We find that the distribution of flows in the sketch part is approximate to
the Normal Distribution. On this basis, we decide to use a small scale of data to
construct a larger scale of data through using the Data Augmentation Algorithm.

There are many solutions for expanding the scale of a dataset, and many
papers have proposed efficient new algorithms to solve this challenge in the
machine learning area. These methods deal with multidimensional data before
the training set is trained; however, what we are dealing with is simple one-
dimensional data, where the only feature is the statistical parameters. We do
not need such complex methods because expanding the dataset based on the
distribution is precisely our focus.

4.1 Ideal Preliminary Algorithm

We consider the situation in which the data in the sketch part strictly follows
the normal distribution. We use the standard normal distribution to reconstruct
the data. First, we build a set that follows standard normal distribution N(0, 1),
S0 = {X|X ∼ N(0, 1)}. Second, we can obtain the set of the small-scale data
in the sketch part, S1 = {X|X ∼ N(μ, σ)}. Moreover, in the sketch part, the
parameter c is related to the standard deviation of the data. When the data scale

Optimized HybridSketch: More Efficient with Analysis and Algorithm 619

expands, the standard deviation is inversely proportional to it. Accordingly, we
use τ to denote the times that we expand. Let S2 = φ. Next, for every X ∈ S0,
X ′ = (σ/τ)X + μ/τ , S2 = S2 ∪ {X ′}. We posit that S2 is a Reasonable Normal
Expansion of S1. What we simulate is the traffic being hashed to the τc boxes
while keeping the distribution, as the system really provides τc boxes for every
bit recorded.

However, if our input data set does not form an approximate normal distri-
bution, some flows will influence the feature and cause bumps and depressions
on the curve of the data. This method would not extract them, but will rather
the errors and disperse them to a larger scale of the dataset; this makes it diffi-
cult to eliminate the effects of errors. In light of this, we need to preprocess the
dataset and make sure that the set can form a smooth normal curve.

Algorithm 1. Ideal preliminary algorithm.
Require: The set of origin data S1, The scale of data sum;
Ensure: The set of expanded data, S2;
1: Generate a set S0 that has sum elements and follows standard normal distribution

and an empty set S2;
2: Calculate the amount of data sum′, average value μ and standard variance σ of

set S1;
3: For ∀x ∈ S0, x′ = (sum′σ/sum)x + sum′μ/sum, S2 = S2 ∪ {x′};
4: return S2.

4.2 Preprocessing of the Dataset

The purpose of preprocessing the dataset is to decrease the adverse effects caused
by a few dissonant flows. The target is a dataset can form a smooth distribution
curve. One of the parameters of the data that deviates from the distribution
is the Standard Deviation. We first obtain the mean and standard deviation
through fitting the origin data, then check the departure of data values from the
fitting curve. Next, we decrease this record to the normal level by setting the
threshold λ. At the same time, we note the reduced value in another residual
sketch, which we call the excluded sketch. After that, we conduct the fitting
again, repeating the above steps until the data meets the threshold requirement.

Finally, we obtain a dataset that can form a relatively smooth distribution
and an excluded sketch. The set will be input into the Algorithm 1 for expan-
sion. We next deal with the excluded sketch to recover the information that we
cut.

For the excluded sketch, most of the space is filled by zeroes. Because of the
characteristic of SketchLearn structure, we can recover the flowkey by checking
the same location of all bits: if the location of the specific bit is zero, we set
this bit to 0, and set it to 1 otherwise, after which we obtain a flowkey f . We
then hash it and check whether the value fits the location: if it fits, we extract

620 X. Zhao et al.

the flow with the smallest of all the l records; otherwise, we set the bit related
to the smallest 0 and repeat the operations, until the excluded sketch is filled
completely with zeroes.

Algorithm 2. Preprocessing of data set.
Require: The residual sketch r[l][c] , the threshold λ, the range of definition R ;
Ensure: The optimal residual sketch, r′[l][c], The excluded flow list Le;

for 0 � i < l, compute the mean value μ[i] and standard deviation σ[i] of r[i] ;
for 0 � j < c; predict the probability of the value for that location p[i][j];
for 0 � j < c; if the quantity of the data in the scale (r[i][j] − R) − (r[i][j] + R)
which is Q[i][j] > λp[i][j] × c, remove it to the excluded sketch the same location
E[i][j].
extract the flows from the excluded sketch and merge them into the excluded flow
list Le;
return r′[l][c], Le.

5 Implementation of Optimized HybridSketch

We implement the data plane of Optimized HybridSketch in P4 code, the control
plane in C code. In the data plane, we combine the top-k part and sketch part
using Hashpipe and SketchLearn. In the control plane, we collect the results of
the two parts in order to produce the large flow list and the flow distribution.
As for the distribution, we deal with it using the data augmentation algorithm.
We then try to run applications to evaluate the system.

We set a bit of status for every packet: the bit equals 0 when the packet
enters into the system, while if the packet is expelled by the top-k part, we set
it to 1, and let the packet enter into the sketch part. This process is illustrated
in Algorithm 3.

Algorithm 3. The data plane framework of Optimized HybridSketch.
Require: The set of packets, Pn;
Ensure: The set of large flows, Ln ; Bit-level counter distributions N{p, σ};
1: For Pi ∈ Pn, insert Pi into the first stage of the top-k part;
2: Track the minimum flows and expel fmin;
3: Insert fmin into the sketch part;
4: Hash for fmin and update counters according to the flowID of fmin;
5: Collect the large flow in the top-k part fi, Ln = fi ∪ Ln;
6: Extract large flow fj and maintain the normal distribution in the sketch part;
7: Ln=fj ∪ Ln and compute bit-level counter distributions N{p, σ}
8: return Ln and N{p, σ}.

For the control plane, moreover, we combine the large flows in the top-k part
with those extracted by the sketch part. The flow contribution is computed by

Optimized HybridSketch: More Efficient with Analysis and Algorithm 621

the data in the residual sketch. Then we process the data by data augmenta-
tion algorithm to obtain a lager scale of data to analysis the feature which the
applications need. This process is illustrated in Algorithm 4.

Algorithm 4. The control plane framework of Optimized HybridSketch.
Require: The residual sketch r[l][c], the threshold λ, the range of definition R, the

expansion rate β;
Ensure: The optimal residual sketch, r′[l][βc], the excluded flow list Le;
1: Preprocessing of data set r[l][c], get the optimal residual sketch, r′[l][c] and the

excluded flow list Le;
2: for 0 � i < l, expand the dataset r′[i] through the ideal preliminary algorithm, get

the final dataset r′[l][βc];
3: return r′[l][βc] and Le.

6 Performance Evaluation of the System

In this section, we present our experimental results on a real-world dataset. We
evaluate the accuracy of the frequency estimation queries maintained by Opti-
mized HybridSketch. Moreover, we also compared it with the origin simple ver-
sion, which does not apply the data augmentation algorithm, and SketchLearn,
which applies enough memory on the data plane.

6.1 Experimental Setup

Dataset: We use an hour IP-packet trace in CAIDA 2018[13] to evaluate
the system. The IP-packet has 20.55k flows and 1563570347 IPv4 packets with
1398437622398 bytes. This dataset is similar to a Zipf distribution of skew 1.0.

Parameter Settings: We fix the total memory M at 64KB: 16KB for the
top-k part Mk and 48KB for the sketch part Ms. We set k = 200, c′ = 120
for z = 1.0. For the solutions, we choose SketchLearn in 64KB (SL-64KB),
original HybridSketch in 64KB (HS-64KB), original HybridSketch in 640KB
(HS-640KB) and optimal HybridSketch in 64KB (HS-optimized-64KB). We also
set the threshold λ = 1.2, the range of definition R = 8, the expansion rate β =
10 in optimal HybridSketch. This allows us to clearly observe the improvements
brought about by the optimal algorithm.

Queries: We evaluate the frequency estimation queries: in short, given a data
item, we estimate its frequency. The queries are different from those in [4], which
were obtained by sampling the data items based on their frequencies; instead, we
estimate every flow once in the specific trace. We also perform an evaluation of
the top-k frequent items query: this involves determining the top-k most frequent
items, where k is given by the top-k part.

Metrics: We consider the following metrics:

622 X. Zhao et al.

– Recall: the ratio of true instances reported;
– Precision: the ratio of reported true instances;
– Average relative error (ARE): 1

n

∑n−1
i=0

|v̂i−vi|
vi

, where vi is the true value of i
and v̂i is the estimate of i[1].

Fig. 1. The RE of FE under the differ-
ent solutions.

Fig. 2. The RE of Cardinality under
the different solutions.

Fig. 3. The MRD of Flow Size Distri-
bution under the different solutions.

Fig. 4. The RE of Entropy under the
different solutions.

6.2 Performance Evaluation of Optimal System

In this part, we compare the performance of the original and optimal systems
through the use of applications based on the residual sketch, in order to prove
the effect of data augmentation algorithm.

Optimized HybridSketch: More Efficient with Analysis and Algorithm 623

Specifically, we estimate the FlowEstimate, Cardinality and Entropy of
the system; this is done in order to complete the applications based on the
information in the residual sketch. In addition to those mentioned above, we
also consider the MRD of the Flow size distribution.

Figure 1 presents the ARE of Flow Estimation for the four solutions, HS
is more effective than SL under the same memory size conditions, while the
HS-optimized-64KB exhibited better performance than HS-64KB, achieving an
error rate nearly 1% higher than HS-640KB. In short, it has basically achieved
the function of optimization.

Figure 2, 3 and 4 also illustrate that the HS-optimized-64KB achieved better
results than HS-64KB, close to HS-640KB.

We can therefore conclude that HS-64KB is more effective than SL-64KB; at
the same time, along with the 10× improvement in memory relative to the orig-
inal HybridSketch (HS-640KB), it provided 30%− 50% promotion. The optimal
system (HS-optimized-64KB) achieves about 80% of the effect of HS-640KB. In
essence, it has achieved the same effect as original HS using around 10x the
memory size.

7 Related Work

SketchVisor [2], Elastic Sketch [3] and ASketch [4] choose two algorithms to
implement the measurement functions, making the system running more accu-
rately and efficiently. While they mixed the algorithms for different goals, they
did not discuss the method to optimized the system, which is the main goal of
our work.

The SketchVisor [2] specially designed a fast path for the quick processing of
the trace. Its goal is to improve the throughput of the system. The flow entering
the fast path can use the statistics of the fast top-k algorithm to improve the
speed. In the normal path, it deploys sketch algorithms. The SketchVisor is a
hybrid architecture, but the problem is that not all packets will come into the
fast path. Moreover, although the fast path can achieve higher packet rate, it is
less precise than the normal path, meaning that accuracy degrades significantly
when the majority of packets go to the fast path [6]. This approach has a certain
universality, but does not propose a systematic hybrid method and resource
allocation scheme, and also does not put forward certain requirements on the
system; instead, it only adds extra 8KB for the fast path while maintaining the
memory size that the normal path deployed [2]. By contrast, our system is hybrid
under certain storage conditions to reduce the memory consumption.

The Elastic Sketch [3] system is divided into a light part and a heavy part, the
heavy part uses a voting algorithm, while the light part adopts the structure of
the CM sketch. The main goal is to improve the bandwidth of the system. From
a general point of view, this is a combination of the two algorithms; however,
the paper did not mention the ideas of mixing the methods, but instead simply
uses the voting mechanism to filter out flows, making it more like an auxiliary
method. Furthermore, CM sketch is a kind of structure that consumes more

624 X. Zhao et al.

memory. The method of compression was specifically mentioned in the paper [3],
and was detailed in the proof. However, the compression operation will affect
the quantitative precision, which is inevitable; in addition, when the elephant
flows conflicts in the voting process, there will be a large loss of precision. By
contrast, our system does not suffer from problems like compression and stream
conflict.

ASketch [4] adds a filter on the basis of the CM sketch that filters the elephant
flows and conducts flow updates in the CM sketch. It focus on the precision of
the system. The filter is a similar top-k algorithm, so it is also a kind of the
combination of top-k and the sketch; however, although these authors’ key point
was to improve the throughput and accuracy of the whole system, they did
not come up with a specific limit for storage requirements. Moreover, the basis
of ASketch is the CM sketch, and as the precision of the CM sketch is not
particularly outstanding, the ASketch only improved the accuracy on the basis
of the CM sketch. However, the accuracy of SketchLearn used in our system is
higher than most of the sketch structures, and the improvement effect will be
better on this basis.

In summary, these solutions mixed measurement algorithms for different
goals, they did not propose the idea on the memory space. Therefore, they are
all not memory-saved.

8 Conclusion

In this paper, we present Optimized HybridSketch, which is an optimized algo-
rithm to apply in flow measurement. By combining the top-k and sketch meth-
ods, analyzing the characteristics of the trace, modeling and formalizing the
allocation in question and designing the method of allocation for the two parts,
HybridSketch can achieve better results than similar systems (e.g. [2–4]) while
using less memory and supporting more applications (e.g. entropy and flow distri-
butions). We present an algorithm that is optimized for achieving better results
than the original one, attaining performance basically equal to that of HS when
using 10× the memory size without any optimization. In addition, we also evalu-
ate the system performance; our results demonstrate that, compared with other
methods, Optimized HybridSketch is more precise and more memory-saved. The
analysis and algorithms we propose make the system more efficient.

References

1. Huang, Q., Lee, P. P., Bao, Y.: Sketchlearn: relieving user burdens in approximate
measurement with automated statistical inference. In Proceedings of the 2018 Con-
ference of the ACM Special Interest Group on Data Communication (SIGCOMM
’18). ACM, New York, NY, USA, pp. 576–590. ACM (2018)

2. Huang, Q., et al.: SketchVisor: robust network measurement for software packet
processing. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). ACM, New York, NY, USA, pp. 113–126.
ACM (2017)

Optimized HybridSketch: More Efficient with Analysis and Algorithm 625

3. Yang, T., et al.: Elastic sketch: adaptive and fast network-wide measurements. In
Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’18). ACM, New York, NY, USA, pp. 561–575. ACM
(2018)

4. Roy, P., Khan, A., Alonso, G.: Augmented sketch: faster and more accurate stream
processing. In Proceedings of the 2016 International Conference on Management
of Data (SIGMOD ’16). ACM, New York, NY, USA, 1449–1463. ACM (2016)

5. Sivaraman, V., Narayana, S., Rottenstreich, O., Muthukrishnan, S., Rexford, J.:
Heavy-hitter detection entirely in the data plane. In Proceedings of the Symposium
on SDN Research (SOSR ’17). ACM, New York, NY, USA, 164–176. ACM (2017)

6. Liu, Z., et al.: Nitrosketch: robust and general sketch-based monitoring in software
switches. In Proceedings of the ACM Special Interest Group on Data Communi-
cation (SIGCOMM ’19). Association for Computing Machinery, New York, NY,
USA, pp. 334–350. ACM (2019)

7. Li, Y., Miao, R., Kim, C., Yu, M.: Flowradar: a better netflow for data centers.
In Proceedings of the 13th Usenix Conference on Networked Systems Design and
Implementation (NSDI’16). USENIX Association, Berkeley, CA, USA, pp. 311–
324. ACM (2016.)

8. Cormode, G., Muthukrishnan, S.: An improved data stream summary: the count-
min sketch and its applications. J. Algorithms. 55(1), 58–75 (2005)

9. Zhang, Y., Zhu, H., Bao, N., Zhang, L.: Comparative analysis of different sketch
methods in practical use. In 2018 Sixth International Conference on Advanced
Cloud and Big Data (CBD), Lanzhou, pp. 124–129 (2018)

10. Yang, T., Gao, S., Sun, Z., Wang, Y., Shen, Y., Li, X.: Diamond sketch: accurate
per-flow measurement for big streaming data. IEEE Trans. Parallel Distrib. Syst.
30(12), 2650–2662 (2019)

11. Liu, Z., Manousis, A., Vorsanger, G., Sekar, V., Braverman, V.: One sketch to
rule them all: rethinking network flow monitoring with univmon. In: Proceedings
of the2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New York, NY,
USA, pp. 101–114. ACM (2016)

12. Yang, T., et al.: HeavyKeeper: an accurate algorithm for finding top-k elephant
flows. IEEE/ACM Trans. Netw. 27(5), 1845–1858 (2019)

13. Caida Anonymized Internet Traces 2018 Dataset, (2019). http://www.caida.org/
data/passive/passive dataset.xml

14. Canini, M., Fay, D., Miller, D.J., Moore, A.W., Bolla, R.: Per flow packet sampling
for high-speed network monitoring: first international communication systems and
networks and workshops. Bangalore 2009, 1–10 (2009)

15. Kandula, S., Mahajan, R.: Sampling biases in network path measurements and
what to do about it. In: Proceedings of the 9th ACM SIGCOMM conference on
Internet measurement (IMC ’09). ACM, New York, NY, USA, pp. 156–169. ACM
(2009)

16. Ben Basat, R., Einziger, G., Friedman, R., Luizelli, M.C., Waisbard, E.: Constant
time updates in hierarchical heavy hitters. In: Proceedings of the Conference of
the ACM Special Interest Group on Data Communication (SIGCOMM ’17). ACM,
New York, NY, USA, pp. 127–140. ACM (2017)

17. Metwally, A., Agrawal, D., El Abbadi, A.: Efficient computation of frequent and
top-k elements in data streams. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS,
vol. 3363, pp. 398–412. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-30570-5 27

http://www.caida.org/data/passive/passive_dataset.xml
http://www.caida.org/data/passive/passive_dataset.xml
https://doi.org/10.1007/978-3-540-30570-5_27
https://doi.org/10.1007/978-3-540-30570-5_27

626 X. Zhao et al.

18. Manku, G.S., Motwani, R.: Approximate frequency counts over data streams. In:
Proceedings of the 28th international conference on Very Large Data Bases (VLDB
’02), VLDB Endowment, pp. 346–357 (2002)

19. Kumar, A., Sung, M., Xu, J., Wang, J.: Data streaming algorithms for efficient
and accurate estimation of flow size distribution. ACM SIGMETRICS Perform.
Eval. Rev. 32(1), 177–188 (2004)

20. Harvey, N.J., Nelson, J., Onak, K.: Sketching and streaming entropy via approx-
imation theory. In: 2008 49th Annual IEEE Symposium on Foundations of Com-
puter Science, pp. 489–498. IEEE (2008)

An Overlapping Community Detection
Algorithm Based on Triangle Reduction

Weighted for Large-Scale Complex
Network

Hanning Zhang1,2,5 , Bo Dong3,4,5(B) , Boqin Feng1,5 , and Haiyu Wu1,5

1 School of Computer Science and Technology, Xi’an Jiaotong University,
Xi’an 710049, China

zhanghn@stu.xjtu.edu.cn
2 Shaanxi Province Key Laboratory of Satellite and Terrestrial Network Technology

Research and Development, Xi’an Jiaotong University, Xi’an 710049, China
3 School of Continuing Education, Xi’an Jiaotong University, Xi’an 710049, China

dong.bo@xjtu.edu.cn
4 National Engineering Lab for Big Data Analytics Xi’an Jiaotong University,

Xi’an 710049, China
5 Xi’an Network Computing Data Technology Co., Ltd., Xi’an 710049, China

Abstract. In this digital age, dramatically developed internet makes the
data of complex networks appear an explosive growth, which aggrandizes
the importance of multilevel community detection used in large-scale
complex networks. Nowadays, there are so many community detection
algorithms that could perform well on accuracy. However, none of them
has an expected function to handle the time increasing problem which
is caused by the inflated network scale. Hence, we propose An Over-
lapping Community Detection Algorithm based on Triangle Reduction
Weighted for Large-scale Complex Network (TRWLPA). It consists of
two main steps: 1) Transforming the original network to a small-scale
triangle reduction network. This network could not only dramatically
reduce the running time of community detection, but recover the origi-
nal network structure by the inverse transformation. Moreover, the scale
of the triangle reduction network could be controlled by setting the itera-
tion times. 2) Doing the multi-label propagation on the reduced networks
where the weight of each node is the number of initial nodes it contains.
The experiments illustrate that the TRWLPA algorithm significantly
reduces the running time of community detection on Youtube, DBLP,
and LiveJournal datasets. Particularly, comparing with the MOSES algo-
rithm, it achieves 98.1% running time reduction on the Youtube dataset.
Furthermore, our algorithm performs well on both modularity and Nor-
malized Mutual Information measure (NMI).

Keywords: Triangle reduction · Multi-label propagation · Complex
networks · Community detection

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 627–644, 2020.
https://doi.org/10.1007/978-3-030-60245-1_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_43&domain=pdf
http://orcid.org/0000-0003-3321-5027
http://orcid.org/0000-0001-7695-9072
http://orcid.org/0000-0002-4879-6090
http://orcid.org/0000-0002-0070-9058
https://doi.org/10.1007/978-3-030-60245-1_43

628 H. Zhang et al.

1 Introduction

With the fast development of the internet, the data of complex networks increases
rapidly. Community detection in large-scale complex networks has become a req-
uisite process during network data mining. Therefore, how to efficiently discover
overlapping communities in the large-scale complex network has become the
current research hotspot.

As the scale of networks inflated, the increased running time of the algorithm
cannot fit the time requirement on application. Due to this issue, we propose
the TRWLPA algorithm. Firstly, the triangle reduction network is proposed.
On the premise of guaranteeing the quality of the original network community
structure, the reduction of network scale is carried out. Then the multi-label
overlapping communities with weight are found on the reduced network. Finally,
the inverse reduction is carried out to restore the community structure to the
original network, Fig. 1 illustrates the overall processes.

Fig. 1. The structure of TRWLPA algorithm, where white hexagons represent the
processes of reduction and colored hexagons stand for the processes of inverse reduction.
Moreover, community detection is implemented when the network reaches the defined
sizes.

The experimental results show that TRWLPA could keep a higher accuracy
while using less running time.

The structure of this paper is: Sect. 1 introduces the research background;
Sect. 2 introduces related algorithms and metrics; Sect. 3 introduces the theory,
algorithm, and analyses of triangle reduction network; Sect. 4 introduces the
details of TRWLPA, which includes setting the weights of nodes, the processes
of the algorithm, and analyses of the complexity of algorithm; Sect. 5 introduces
the datasets and platform of our experiment, and analyses of the experimental
results; Sect. 6 conclusions.

TRWLPA 629

2 Related Work

2.1 Overlapping Community Detection

Generally, each node is attributed only to one community. However, nodes lying
at the boundary between communities may make it be difficult to assign to
one community or another, based on their connection with other nodes. In this
situation, it is rational to consider these nodes as belonging to more communi-
ties, so-called overlapping communities. Detecting these overlapped communities
could give us more characteristics of the network. Furthermore, it could help us
to predict the evolution of the community.

2.2 Modularity and NMI

Modularity [12] measures the goodness of the division of the network with respect
to the whole network. Higher modularity indicates better partitioning of the
network. The function of moudularity Qov is given as:

Qov =
1

2m

∑

ij

(Aij − didj
2m

)δ(Ci, Cj) (1)

where A is the adjacency matrix, m is the total number of edges, di is the
degree of the node i, and δ(Ci, Cj) = 1 if node i and node j belong to the same
community, otherwise δ(Ci, Cj) = 0.

NMI is a measure of similarity between the partitions based on the informa-
tion theory.

NMI(A,B) =
−2

∑CA

i=1

∑CB

j=1 Nij log(NijN
NisNjs

)
∑CA

i=1 Nis log(Nis

N) +
∑CB

j=1 Njs log(Njs

N)
(2)

where N is the confusion matrix in which rows correspond to the ‘real’ com-
munities and columns correspond to the ‘observed’ communities. CA and CB

represent the number of real communities and observed communities, respec-
tively. Nij is the number of nodes in the real community i that appear in the
observed community j. Nis and Njs represent the sum over the ith row of matrix
N and jth column of the matrix N , respectively. The value of NMI is from 0 to 1.
Specifically, NMI equals to 1 if the estimated community matches the reference
community and 0 in the opposite case.

2.3 Label Propagation Algorithm

Depend upon the main idea of different community detection algorithms, there
are five strategies: graph partition [6,11], agglomerative clustering [2,12,16],
genetic algorithm [9,13,14], label propagation, and semantic partition [1,3,24].
In these, label propagation is one of the most widely used because of its near-
linear time complexity and high-accuracy community classification. In the begin-
ning, it adds a community label for each node in the network. In the process of

630 H. Zhang et al.

propagation, the node obtains the most frequent label from its neighbor nodes,
and finally divides the nodes with the same label into the same community.
[15] first proposed Label Propagation Algorithm (LPA). In the beginning, each
vertex is initialized with a unique label. Subsequently, the algorithm progresses
from one iteration to another and at every iteration, each node updates its cur-
rent label according to a given protocol until no nodes change any more. The
time complexity of each iteration is O(m), where m is the number of edges.

[19] extended LPA to the field of overlapping community detection by intro-
ducing the mechanism of multiple labels, and proposed Speaker-listener Label
Propagation Algorithm (SLPA). The time complexity of SLPA is O(Tn), where
T represents the number of label propagation iterations set in advance by the
user, and n represents the total number of nodes. Based on SLPA, [5] proposed
Weighted Label Propagation Algorithm.

[4] improved the LPA algorithm and the proposed Community Overlap Prop-
agation Algorithm (COPRA). [20] algorithm uses the Markov clustering algo-
rithm to improve the LPA algorithm. The time complexity of the improved
algorithm is O(m), where m represents the number of edges. [18] improved the
Labelrank algorithm which can not only deal with the weighted graph but also
the directed graph. At the same time, this algorithm can solve the commu-
nity detection problem of dynamic complex networks. [17] proposed a balanced
multi-label propagation algorithm to find overlapping communities in complex
networks. The time complexity of each iteration is O(nlogn), where n is the
number of nodes.

3 Triangle Reduction Network

The main idea of the triangle reduction network is that, in an undirected net-
work, three nodes connected with each other constitute a triangle, and we fuse
the three nodes forming a triangle into a composite node. Through repeated iter-
ative fusion, a large-scale network will be transformed into a small-scale triangle
reduction network.

3.1 Triangle Reduction Network Structure

We find that triangle topology has strong community nature; Most networks are
rich in triangle topology; the Triangle reduction process is sustainable. These
three factors are the basis for constructing a triangle reduction network structure.

3.2 Triangle Topology Has Strong Community Nature

The three nodes in the triangle topological structure can reach each other and
are a fully connected structure. Therefore, it is in line with the requirements of
community definition to partition them into the same community. The SCP
algorithm proposed by [7]. When k is equal to 3, the formed k-cliques and

TRWLPA 631

k-clique communities are the triangular topological structure, so the triangu-
lar topological structure has strong community nature, and the fusion of three
nodes in the triangular topological structure can maintain the structure of the
initial network.

3.3 Most Networks Are Rich in Triangle Topology

[22] studied 230 complex networks in the real world, including social networks,
collaborative networks, and information networks, etc. in this paper, a triangle
participation ratio (TPR) index is proposed to measure the quality of community
structure. Its calculation formula is as follows:

f(S) =
|u : u ∈ S, (v, w) : v, w ∈ S, (u, v) ∈ E, (u,w) ∈ E, (v, w) ∈ E �= ∅|

ns
(3)

where S represents a set of nodes, representing the nodes of the community
which needs to be evaluated; E represents the set of all edges in the network;
ns = |S| indicates the number of nodes in set S; f(S) indicates the proportion of
nodes in triangle topology is set S to the total nodes. This research shows that
the TPR index accounts for a high proportion of the community structure of the
real-world network, which fully shows that there are a lot of triangle topological
structures in the community structure of the network. [23] directly pointed out
that in more than 85% of social information networks, the number of triangle
topologies is at least equal to the number of edges.

Fig. 2. Result of using triangle reduction once on polygon network, where C1s are the
edges before reduction, C2 is the edge after reduction process.

3.4 Triangle Reduction Process Is Sustainable

In the process of triangle reduction, with the increase of the number of itera-
tions, the polygons in the initial network will gradually move towards the triangle

632 H. Zhang et al.

topology, providing a new reduction source for the subsequent iterative reduc-
tion, so the triangle reduction process is sustainable, which also ensures that the
large-scale network can be transformed into a smaller network. An example of
triangle reduction network is shown in Fig. 2. The bold edges in the figure repre-
sent the newly generated edges after reduction. In community 1 before reduction,
nodes 1, 2, 3, 6 and 7 form a Pentagon. When nodes 1, 2 and 4 form a triangle
topology structure and are reduced to node 1, two sides of the original Pen-
tagon become a new one, and the Pentagon becomes a quadrilateral. Similarly,
the quadrilateral formed by nodes 8, 9, 10 and 11 in community 2 becomes a
triangle.

3.5 Triangle Reduction Algorithm

Triangle reduction is an iterative process. In each iteration, it traverses the tri-
angle topology of the network, and merges the three nodes in each triangle into
a composite node. The reduced network is the input of the next iteration, and
its reduction algorithm is shown as follows:

Algorithm 1. The algorithm of the triangle reduction

1: Input: G=(V,E):large-scale network; Tr: the iteration number of reduction
2: Begin
3: for t = 1 : Tr do
4: NodeSort = Nodes.sortDegree();
5: for i = 1 : n and F (i) == true; do
6: Nebrsi = NodeSort(i).getNbs();
7: for j = 1 : Nebrsi.len and F (j) == true do
8: Nebrsj = NodeSort(j).getNbs();
9: if ∃k ∈ Nebrsi.len and F (k) == true then

10: s = Min(i, j, k)
11: for each u ∈ {i, j, k} and u �= s do
12: F (u) = false
13: UpdateMergeList(L, i, j, k);
14: break;
15: end for
16: end if
17: end for
18: Update(NodeSort);
19: end for
20: Update(Nodes);
21: end for

where F [n] represents the presence flag bit of n nodes, F (i) represents the
flag bit of node i, and the flag bit of each node is initialized to true, indicating
that the node exists in the current network and has not been fused. In triangle

TRWLPA 633

reduction, once a node is fused into other nodes, its flag position is false, which
means that the node has been removed from the current network. The function
of setting flag bit is to distinguish nodes in different states during reduction. L is
a list array, and each list in the array represents a collection of nodes fused into
a composite node; SortDegree() indicates that nodes in the network are sorted
in ascending order according to their degrees, so that nodes appearing in fewer
triangle topologies can be fused in priority; getnbs() indicates the collection of
neighbor nodes of corresponding nodes; Updatemergelist(L, i, j, k) indicates that
the information fused by i, j and k is updated to the list array L; Update(Nodes)
indicates that the network represented by Nodes is updated according to the
information of flag bit F [n], and the main function is to transfer the neighbor
node of the disappeared node to the neighbor node of its corresponding composite
node.

3.6 Complexity Analysis of Triangle Reduction

Spatial Complexity Analysis. Triangle reduction process uses adjacency
matrix storage network, where the spatial complexity is O(ndavg) represents
the average degree of nodes; The space occupied by list array L is O(n); The
spatial complexity of other variables involved in the process is O(1), thus the
spatial complexity of triangle reduction process is O(ndavg).

Time Complexity Analysis. In the initial stage of triangle reduction, the
time complexity is O(1); in the reduction stage, the outer loop iterates Tr times.
The inner loop traverses all nodes every time, and the operation on each node
is a constant time complexity, so the time complexity of the reduction stage is
O(nTr). The time complexity of triangle reduction process is O(nTr).

4 TRWLPA Algorithm for Reduction Network

Based on the triangle reduction network proposed in Sect. 2, we use the weighted
multi-label propagation method to detect overlapping communities, and propose
the TRWLPA community detection algorithm. The algorithm includes two steps:
node weight calculation and community detection.

4.1 Node Weight Calculation

The reason why node weight is introduced is that there are composite nodes
with different fusion degrees in the reduction network. For example, there are
three nodes u, v and w in the network, where u is not a composite node, v is a
composite node with three nodes, w is a composite node with five nodes. The
higher the degree of integration of nodes, the larger the scale of the community
which represents the internal nodes meaning that the greater the influence of this
node in the process of tag propagation. Therefore, the labels of nodes with high

634 H. Zhang et al.

fusion degree should have a large weight in the process of label propagation. In
this paper, the weights of nodes in the reduction network are defined as follows:

w(v) =
{

1 v is not a composite node
x otherwise

(4)

where w(v) represents the weight of node v and x is initial number of network
nodes included in v. We can get:

N ′∑

v=1

w(v) = N (5)

where N stands for the total number of nodes in the initial network, N ’ is the
total number of nodes in the reduction network.

Fig. 3. In the initial stage of the figure, the weights of all nodes are 1. After a triangle
reduction, nodes 2 and 6 become composite nodes, and the weights become 3. After
the second triangle reduction, nodes 1, 2 and 3 are fused into composite node 1, and
the weight becomes 5.

4.2 Community Detection

The specific steps of TRWLPA algorithm are shown in Algorithm 2, where Step
3.2 could be explained as follows: Define A as the community label set of all
neighboring nodes received by the current node, that is, A = {a1, a2, L, ak}. Nj

is defined as the set of neighbor nodes of all aj labels, that is, Nj = {i|ci = aj},
where ci represents the community labels from neighbor nodes i. Define function
f(j) as follows:

f(j) =
∑

i∈Nj

wi (6)

where wi represents the weight of node i. We could get the maximum value J
of f(j) by using:

J = argmax(f(j)) (7)

So that in this iteration, the community label selected by the current node is aj .

TRWLPA 635

Algorithm 2. The algorithm of the triangle reduction

step 1 Calculate the weights of nodes in the reduction network according to
formula 4

step 2 Initialize a unique community label for every node in the reduction net-
work

step 3 Traverse all nodes, and manipulate them as follows:
step 3.1 Receive the most frequent community labels in the commu-

nity label list from each neighboring node. If there are multiple
cases, select one randomly

step 3.2 For all received community labels, calculating the weight sum
of the adjacent nodes corresponding to each label, then storing
the weight and the largest community label in the community
label list of this node. If there are multiple cases, select on as
the label this iteration randomly.

step 4 If arrive the setting propagation iterations Tp, step into Step 5, otherwise
Step 3

step 5 Traverse the community label list of each node, and remove the labels
whose frequency is less than the label filtering threshold

step 6 According to the fusion node list array generated by triangle reduction,
the community label is assigned to each node in the initial network

Step 2, in the above steps, is to initialize the community label. Step 3 and
Step 4 constitute the community label propagation process. When the number
of label propagation iterations is reached, label filtering is performed, that is,
Step 5. Step 6 is an inverse reduction process.

TRWLPA algorithm is shown in Algorithm 3. Moreover, in order to make it
easier to understand, the explanations of labels and methods are: W [n] represents
the weight of n nodes, W (v) represents the weight of node v; minNode() method
represents the node with the smallest number in the node list; map stores the
tuple composed of community label and node weight; getNbs() method repre-
sents the set of neighbor nodes; mostlabel() method represents the label with the
most times in the node label set; map.find(lm) indicates whether there is a tuple
labeled lm in the map; map.add(lm,W (n)) means to add the tuple consisting of
the weight of label lm and node n to the map; map.labelWithMaxWeight() is
the community label with the largest weight in the map; Mem.add() respresents
the community label that is added to the label set of the corresponding node.

636 H. Zhang et al.

11: end for
12: Stage 3: evolution
13: for T = 1 : Tp do
14: Nodes.ShuffleOrder();
15: Map < Label, Weight > map = ∅;
16: for i = 1 : n do
17: Nebrs = Nodes(i).getNbs();
18: for j = 1 : Nebrs.len do
19: lm = Nebrs(j).mostLabel();
20: if map.find(lm) == true then
21: map(lm)+ = W (Nebrs(j));
22: else
23: map.add(lm,W (Nebrs(j)));
24: end if
25: lt = map.labelWithMaxWeight();
26: Nodes(i).Mem.add(lt);
27: end for
28: end for
29: end for
30: Stage 4: post-processing
31: for i = 1 : n do
32: remove Nodes(i) labels seen with probility < α;
33: end for
34: Stage 5: inversing reduction
35: for i = 1 : L.len do
36: m = L(i).minNode();
37: for j = 1 : L(i).len do
38: L(i)(j).label = m.label;
39: end for
40: end for
41: End
42: Output: Labeli(i = 1, 2, . . . , n): label of all nodes

Algorithm 3 MLPA Algorithm

1:
Input:Gr: reduced network of G; L: merged list of triangle reduction;

Tp: the iteration number of propagation; α: label filtering threshold
Begin

2: [n, Nodes] = loadnetwork();
3: Stage 1: weight initialization
4: W [n] = 1;
5: for i = 1 : L.len do
6: W (L(i).minNode()) = L(i).len;
7: end for
8: Stage 2: label initialization
9: for i = 1 : n do

10: Nodes(i).Mem = i;

TRWLPA 637

Fig. 4. It shows the way to store the labels during running the MLPA algorithm, where
ws are the weights of each node, Ls are the labels stored in each node.

4.3 Complexity Analyses

Spatial Complexity Analysis The label storage structure of TRWLPA is
shown in Fig. 4. Because of the need to store the community labels of the Tp

iteration process, the spatial complexity of TRWLPA is O(nTp).

Time Complexity Analysis. In the stage of weight initialization, we need to
traverse the merged list L generated by triangle reduction, so the time complexity
is O(L.len), where L.len is less than n; In the stage of label initialization, we need
to traverse all nodes in the reduction network, so the time complexity is O(n);
In the stage of label propagation, the outer loop needs to iterateTp The time
complexity is O(nTp); In the label filtering stage, it is necessary to traverse each
label on each node, so the time complexity is O(nTp); In the inverse reduction
stage, we need to traverse every node in the merge list L, and the worst-case
time complexity is O(n). The time complexity of the TRWLPA algorithm for
reduction network is O(n).

5 Experimental Analyses

5.1 Datasets and Platform

This section will introduce the datasets and experimental platform of algorithm
experiment. As shown in Table 1, three SNAP datasets are used in the experi-
ment. Among them, com-DBLP is the academic cooperation network of internal
medicine researchers in the field of computer science. Com-YouTube is a social
network established through video sharing based on YouTube website, and com-
LiveJournal is the social network data based on a comprehensive social network

638 H. Zhang et al.

Table 1. Datasets

Dataset Type #Node #Edge #Community

com-DBLP Undirected, Communities 317,080 1,049,866 13,477

com-Youtube Undirected, Communities 1,134,890 2,987,624 8,385

com-LiveJournal Undirected, Communities 3,997,962 34,681,189 287,512

Table 2. Plateform

Hardware and Software Version and Information

Operating system Ubuntu 16.04.2 LTS 64bit

CPU Intel Xeon X5650 2.67GHz

Memories 40GB

Hard drive 1TB

g++ 5.4.0

JDK 1.8.0 161

in Russia. All three datasets are undirected networks, and the community struc-
ture after deleting the communities with less than three nodes is given.

The type of dataset files in Table 1 are .txt. Each row is the edge represented
by the source node and the target node. The source node and the target node
are separated by the tab key. The hardware and software configuration of the
experimental platform in this section is shown in Table 2.

5.2 Comparative Experiment and Parameter Setting

For the TRWLPA algorithm, we select SLPA [19], COPRA [4], MOSES [10]
and GCE [8] to do comparative experiments. SLPA and CPPRA algorithms
are based on the idea of label propagation. The difference is that, in COPRA
algorithm, the maximum overlap should be preset, that is, a node belongs to
several communities at most. Furthermore, each label on the node has a sub-
ordination coefficient, which is used to indicate how likely this node belongs to
this community. SLPA algorithm does not limit the maximum overlap of nodes
but selects nodes through the label filtering stage. MOSES algorithm is based on
the idea of modularity optimization. It selects the seed node first, and then opti-
mizes the global objective function by trying to add other nodes to the current
community until the global objective function can no longer be optimized. GCE
algorithm selects the largest group as the seed node, and partition overlapping
communities by maximizing fitness function. In this paper, the module degree of
partition result, NMI value of partition result, and actual community structure
and algorithm running time are selected for comparative analysis.

Due to the different values of various parameters in the experiment have a
great influence on the experimental results, this paper sets the parameters of the

TRWLPA 639

comparison algorithm according to the recommendations of relevant literature
[4,8,21], and the specific parameters are shown in Table 1.

Among the algorithms involved in this experiment, TRWLPA, SLPA, GCE
and MOSES are all implemented in the C++ language, and COPRA is imple-
mented in Java language. There are three parameters to be set in the TRWLPA
algorithm, which are triangle reduction iterations Tr, label propagation itera-
tions Tp and label filtering threshold α. In addition, the number of iterations of
label propagation Tp and the threshold value of label filtering α is set the same
as that of the SLPA algorithm, taking 30 and 0.30 respectively. In this paper,
the influence of parameter Tr on the modular Qov and NMI of TRWLPA algo-
rithm is analyzed through experiments, so as to determine Tr. The experimental
results on three datasets are shown in Fig. 5.

Fig. 5. It shows the influence of the different number of iterations (Tr) on the effect of
the algorithm a) The value of modularity on three datasets as the Tr increased b) The
value of NMI on three datasets as the Tr increased

As shown in Fig. 5, when Tr = 2, Qov and NMI are relatively large on all three
data sets. With the increase of Tr, the reduction degree of the network becomes
higher, the community structure in the initial network will be covered, and Qov

and NMI will also decline. Therefore, in the following comparative experiment,
the parameter Tr of the TRWLPA algorithm is 2.

5.3 Analyses of Experimental Results

In this section, modularity, NMI and running time are selected to compare the
performance of the algorithm. The experimental results are as follows (Table 3).

Modularity. Modularity is an important indicator to measure community par-
tition results. In this section, the TRWLPA algorithm and comparison algorithms
are tested on three datasets. The experimental results are shown in Fig. 6.

640 H. Zhang et al.

Table 3. Setting the value of parameters

Algorithm Parameter Value

SLPA Iteration number 30

Label filter parameter 0.30

COPRA Max number of communities per node 8

Max number of iteration 30

GCE Minimum clique size 3

Minimum community distance 0.6

Scaling parameter 1.0

Fig. 6. This chart illustrates the experimental results of the modularity (Qov) of SLPA,
COPRA, MOSES, GCE, and our algorithm running on DBLP, Youtube, and LiveJour-
nal datasets

According to Fig. 6, regarding the results of the SLPA algorithm as the base-
line, the modularity of the TRWLPA algorithm decreases by 0.16%, increases
by 6.62%, and increases by 2.45% on three datasets respectively. On the whole,
when TRWLPA algorithm is used for community discovery, the partition result
has better modularity than the comparison algorithm.

NMI. This section uses NMI to measure the similarity between the actual
community structure and the divided community structure, so as to measure the
accuracy of the division results. The experimental results are shown in Fig. 7.

From Fig. 7, the results illustrate the NMI value of TRWLPA algorithm is
increased by 1.59%, increased by 3.91% and decreased by 0.67% on three datasets
compared with the results of SLAP algorithm, that is to say, the communities
divided by TRWLPA algorithm are closer to the actual situation.

TRWLPA 641

Fig. 7. This chart illustrates the experimental results of the NMI of five different
algorithms running on three datasets

Fig. 8. This chart illustrates the experimental results of the running time of five dif-
ferent algorithms running on three datasets

Running Time. The running time of the community partition algorithm can
reflect the running speed of the algorithm. The experimental results about the
running time of the algorithm in this section are shown in Fig. 8.

In order to show the difference between the data clearly, the log 10 is used
as the vertical coordinate in Fig. 8. It can be seen from the figure that the
running time of the MOSES algorithm is the longest on three datasets, and
that of other algorithms is relatively close. The running time of the TRWLPA
algorithm proposed in this paper is the shortest on three datasets. The decreasing

642 H. Zhang et al.

Table 4. Reduction proportion of running time

Dataset SLPA COPRA MOSES GCE

DBLP 57.8% 70.8% 92.7% 75.6%

Youtube 44.3% 16.3% 98.1% 55.8%

LiveJournal 32.9% 36.3% 96.8% 54.8%

percentages of running time compared with the other four algorithms are shown
in Table 4.

From Table 4, it illustrates that the running time of TRWLPA algorithm is
reduced by 92.7% at most and 57.8% at least compared with the comparison
algorithm in DBLP dataset; 98.1% at most and 16.3% at least in YouTube
dataset; 96.8% at most and 32.9% at least in LiveJournal dataset.

Combined with the above three indicators, the TRWLPA algorithm is better
than other algorithms in terms of modularity and NMI. In terms of running time,
the TRWLPA algorithm has greater advantages and can complete overlapping
community partition in a short time.

6 Conclusion

With the explosive growth of complex networks, the traditional community dis-
covery algorithm cannot meet the requirements of high precision and short exe-
cution time. To solve this problem, we propose the TRWLPA algorithm based
on the triangle reduction strategy. The core idea of the triangle reduction net-
work is that in the undirected network, three nodes connected with each other
constitute a triangle. We fuse the three nodes forming a triangle into a com-
posite node. By repeated iterative fusion, we can achieve the goal of reducing
the network scale. In order to verify the performance of TRWLPA, we test it on
the same datasets with SLPA, COPRA, MOSES and GCE. It is found that the
average running time of our network on the three datasets decreases by 95.9%
at the most and 35.7% at the least. Especially decreasing 98.1% on YouTube
compared with the MOSES algorithm. Moreover, our algorithm outperforms
other networks in modularity and NMI. In general, compared with the tradi-
tional algorithm, TRWLPA perfectly meets the requirements of high precision
and short execution time. Looking forward to better performance of TRWLPA
in the application.

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn.
Res. 3(Jan), 993–1022 (2003)

2. Chen, J., Yuan, B.: Detecting functional modules in the yeast protein-protein inter-
action network. Bioinform. 22(18), 2283–2290 (2006)

TRWLPA 643

3. Erétéo, G., Gandon, F., Buffa, M.: Semtagp: semantic community detection in
folksonomies. In: 2011 IEEE/WIC/ACM International Conferences on Web Intel-
ligence and Intelligent Agent Technology. 1, pp. 324–331. IEEE (2011)

4. Gregory, S.: Finding overlapping communities in networks by label propagation.
New J. Phys. 12(10), 103018 (2010)

5. Hu, W.: Finding statistically significant communities in networks with weighted
label propagation (2013)

6. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs.
Bell Syst. Tech. J. 49(2), 291–307 (1970)

7. Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast
clique percolation. Phys. Rev. E 78(2), 026109 (2008)

8. Lee, C., Reid, F., McDaid, A., Hurley, N.: Detecting highly overlapping community
structure by greedy clique expansion. arXiv preprint arXiv:1002.1827 (2010)

9. Liu, X., Li, D., Wang, S., Tao, Z.: Effective algorithm for detecting community
structure in complex networks based on GA and clustering. In: Shi, Y., van Albada,
G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007. LNCS, vol. 4488, pp. 657–664.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72586-2 95

10. McDaid, A., Hurley, N.: Detecting highly overlapping communities with model-
based overlapping seed expansion. In: 2010 International Conference on Advances
in Social Networks Analysis and Mining, pp. 112–119. IEEE (2010)

11. Newman, M.E.: Fast algorithm for detecting community structure in networks.
Phys. Rev. E 69(6), 066133 (2004)

12. Newman, M.E., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E 69(2), 026113 (2004)

13. Pizzuti, C.: GA-Net: a genetic algorithm for community detection in social net-
works. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN
2008. LNCS, vol. 5199, pp. 1081–1090. Springer, Heidelberg (2008). https://doi.
org/10.1007/978-3-540-87700-4 107

14. Pizzuti, C.: A multiobjective genetic algorithm to find communities in complex
networks. IEEE Trans. Evol. Comput. 16(3), 418–430 (2011)

15. Raghavan, U.N., Albert, R., Kumara, S.: Near linear time algorithm to detect
community structures in large-scale networks. Phys. Rev. E 76(3), 036106 (2007)

16. Rattigan, M.J., Maier, M., Jensen, D.: Graph clustering with network structure
indices. In: Proceedings of the 24th international conference on Machine learning,
pp. 783–790 (2007)

17. Wu, Z.H., Lin, Y.F., Gregory, S., Wan, H.Y., Tian, S.F.: Balanced multi-label
propagation for overlapping community detection in social networks. J. Comput.
Sci. Technol. 27(3), 468–479 (2012)

18. Xie, J., Chen, M., Szymanski, B.K.: Labelrankt: incremental community detection
in dynamic networks via label propagation. In: Proceedings of the Workshop on
Dynamic Networks Management and Mining, pp. 25–32 (2013)

19. Xie, J., Szymanski, B.K.: Towards linear time overlapping community detection
in social networks. In: Tan, P.N., Chawla, S., Ho, C.K., Bailey, J. (eds.) PAKDD
2012. LNCS (LNAI), vol. 7302, pp. 25–36. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-30220-6 3

20. Xie, J., Szymanski, B.K.: Labelrank: A stabilized label propagation algorithm for
community detection in networks. In: 2013 IEEE 2nd Network Science Workshop
(NSW), pp. 138–143. IEEE (2013)

21. Xie, J., Szymanski, B.K., Liu, X.: Slpa: uncovering overlapping communities in
social networks via a speaker-listener interaction dynamic process. In: 2011 ieee
11th international conference on data mining workshops, pp. 344–349. IEEE (2011)

http://arxiv.org/abs/1002.1827
https://doi.org/10.1007/978-3-540-72586-2_95
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1007/978-3-540-87700-4_107
https://doi.org/10.1007/978-3-642-30220-6_3
https://doi.org/10.1007/978-3-642-30220-6_3

644 H. Zhang et al.

22. Yang, J., Leskovec, J.: Defining and evaluating network communities based on
ground-truth. Knowl. Inf. Syst. 42(1), 181–213 (2013). https://doi.org/10.1007/
s10115-013-0693-z

23. Ying, K., Gu, X., Bo, Y., et al.: A multilevel community detection algorithm for
large-scale social information networks. Chin. J. Comput. 1, 169–182 (2016)

24. Yu, X., Yang, J., Xie, Z.Q.: A semantic overlapping community detection algorithm
based on field sampling. Expert Syst. Appl. 42(1), 366–375 (2015)

https://doi.org/10.1007/s10115-013-0693-z
https://doi.org/10.1007/s10115-013-0693-z

Parallel Belief Propagation Optimized
by Coloring on GPUs

Junteng Hou1,2(B), Chengxiang Si3, Shupeng Wang1(B), Guangjun Wu1,
and Lei Zhang1

1 Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China
{houjunteng,wangshupeng,wuguangjun,zhanglei1}@iie.ac.cn

2 School of Cyber Security, University of Chinese Academy of Sciences,
Beijing, China

3 National Computer Network Emergency Response Technical Team/Coordination
Center of China, Beijing, China
sichengxiang@cert.org.cn

Abstract. Belief propagation (BP) is a message passing algorithm that
infers over probabilistic graphical models. Its main computational work-
load, messages update, is suitable for GPU’s massively parallel architec-
ture. However, the efficiency of fully parallel BP is low, and traditional
algorithms implemented on GPUs occupy amount of computing and
memory resources. In this paper, we propose several GPU-friendly BP
algorithms optimized by coloring. Color Wave (CW) algorithm performs
multi-step coloring on residuals of non-convergent vertices to quickly
obtain multiple disjoint partitions and vertices with the largest residu-
als in each partition, and then updates batches of messages in a fixed
order. These operations are all suitable for parallelization and require lit-
tle additional memory. To save time in each iteration, the Color Extract
(CE) algorithm only update messages on edges with the largest residuals
among all adjacent edges. The Random Drop (RD) algorithm steadily
increases the convergence degree by progressively reducing the mes-
sages update ratio of non-convergent edges. The experiments on different
GPUs show that our algorithms perform well throughout the calcula-
tion process. Compared with state-of-the-art algorithms, CW algorithm
converged most of the messages in previous iterations. The convergence
degree of CE is higher than all other algorithms in most calculation pro-
cesses. RD converges fast and always has a high degree of convergence.

Keywords: Belief propagation · GPUs · Parallel optimization ·
Coloring operations · Progressively reducing update ratio

1 Introduction

Belief propagation (BP) is a message-passing algorithm that approximatively
infers over probabilistic graphical models (PGMs). It is a basic algorithm in

This work was supported by the National Natural Science Foundation of China
(No. 61931019).

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 645–660, 2020.
https://doi.org/10.1007/978-3-030-60245-1_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_44&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_44

646 J. Hou et al.

many important fields, including polar codes [1], Low-Density Parity-Check
(LDPC) codes [2,3], computer vision [4], and protein-folding [5]. In computer
vision, many “pixel-labeling” applications such as stereo matching and image
denoising can be mapped to maximum a posteriori (MAP) problems [16], which
are successfully solved by Max-Product belief propagation (BP). For example,
stereo matching sweeps to find matching pixels from a pair of stereo images
and statistically infer depth based on their pixel-wise horizontal displacement,
which is inversely proportional to depth [17]. BP decoding performances itera-
tive message-passing over the encoding factor graph in polar codes. The factor
graph has multiple stages including basic processing elements(PEs). Each node
within one PE is associated with two categories of log-likelihood ratio messages.
The decoding result is obtained through continuous updating of this messages.
General-purpose Graphical Processing Unit (GPU) has been widely used in par-
allel graph computing [6–8] in recent years. Messages update calculation account
for most of the workload in BP algorithm, which is suitable for massive parallel
architecture of GPUs.

In early researches, serial BP algorithms are the main implementation meth-
ods, which optimize algorithm efficiency by adjusting update order of messages.
Residual belief propagation (RBP) [9] only updates messages with the largest
residuals in each iteration. Compared with randomly updating messages, RBP
efficiently speeds up convergence. Parallel BP algorithms gradually increase with
the development of multi-core CPUs. Loopy BP (LBP) [10,13] is the most
straightforward parallel scheme, which updates all non-convergent messages in
each iteration. But Joseph et al. [11] demonstrated that the natural, fully syn-
chronous parallelization of BP is highly inefficient. They generalized the laws
found in chain graphical models to ordinary graphical models, and proposed
Residual Splash (RS) algorithm that achieved high efficiency on CPUs. How-
ever, new characters may appear in GPU-based calculation of BP algorithm.
By analyzing RBP and RS algorithms implemented on GPUs, Mark et al. [12]
concluded that BP can obtain less convergence but faster speed as algorithm par-
allelism increases. According to this, they propose Random Belief Propagation
(RnBP) algorithm, which randomly updates a part of non-convergent messages
to tradeoff between algorithm speed and convergence. We analyze multiple par-
allel BP algorithms including RS, RnBP, and LBP. It is proved that the message
update sequence in RS can also accelerate GPU-based BP algorithm, but the
vertex sorting and stack operations in RS are not suitable for parallel architec-
ture of GPUs. At the same time, like the GPU-based RS algorithm implemented
by Mark [12], it requires a large amount of memory to record the vertices tra-
versed in each step. We propose multiple BP algorithms according to hardware
architecture characteristics of GPUs and algorithm characteristics of belief prop-
agation. These algorithms perform well in the entire calculation process, and are
superior to state-of-the-art algorithms in their applicable calculation phases.

Parallel Belief Propagation Optimized by Coloring on GPUs 647

(1) We propose Color Wave (CW) algorithm that divides non-convergent ver-
tices into multiple partitions using coloring operations and takes a vertex
with the largest residual in each partition as the pivot. It updates messages
on edges from the farthest vertices to pivot and from pivot to the farthest
vertices in each partition. This method can quickly converge messages as
many as possible.

(2) We propose Color Extract (CE) algorithm that directly colorizes all edges
in PGMs. It efficiently reduces the calculation workload by only updating
messages on edges with the largest residuals among their adjacent edges, so
that CE algorithm maintains a high convergence speed in each calculation
stage.

(3) It is found that whenever the update proportion of non-convergent mes-
sages reduces, the convergence degree will have a clear upward trend. Ran-
dom Drop (RD) algorithm gradually reduces the update proportion of non-
convergent messages to maintain a high convergence speed and have a high
convergence degree when stabilizing. RD algorithm also avoids the conver-
gence and speed being affected by preset low parallelism parameters men-
tioned in RnBP.

We have organized the remainder of this paper as follows: Sect. 2 provides the
definition of belief propagation and related knowledge. Section 3 shows detailed
implementation of our proposed BP algorithms. In Sect. 4, we evaluate our meth-
ods and compare them with other algorithms. Section 5 concludes this work.

2 Preliminaries

Belief propagation is a message-passing algorithm that approximatively infers
over probabilistic graphical models (PGMs). Markov random fields (MRFs) are
the most representative PGMs. In this paper, we mainly research BP algo-
rithm on discrete pairwise MRFs. Among various of BP algorithms, we take
Sum-Product BP as a model, and expect that the Sum-Product BP over
discrete paired MRFs can be extended to other BP algorithms over various
PGMs. A discrete pairwise MRF is an undirected graph based on many dis-
crete random variables. Suppose there are n random variables included in set
X = {X1,X2, ...,Xn} taking on values Xi ∈ Ai, where Ai is a label set. MRF
can be expressed as G = (V,E) where the vertex vi ∈ V takes a discrete ran-
dom variable corresponding to Xi ∈ X , and each edge (vi, vj) ∈ E corresponds
to the probabilistic relations between variables on vertices vi and vj . for a cer-
tain random variable xi ∈ Xi, its corresponding unary potential functions is
{ψi : Ai → R

+|i ∈ V }, so the possible relationship between variables can be
expressed as {ψi,j : Ai × Aj → R

+|(i, j) ∈ E}, which is the set of binary poten-
tial functions for each edge. And the joint distribution over X on MRFs is shown
in formula (1). The ultimate goal of belief propagation is to obtain the “belief”

648 J. Hou et al.

of vertices, which can be calculated by marginal distribution P (xi) as shown in
formula (2).

P (x1, x2, ..., xn) ∝
∏

i∈V

ψi(xi)
∏

{i,j}∈E

ψi,j(xi, xj) (1)

P (Xi = xi) ≈ bi(xi) ∝ ψi(xi)
∏

k∈Γi

mk→i(xi) (2)

where Γi indicates the neighbors of vi, mk→i represents a message from vertex
vk to vertex vi. It can be seen that the marginal distribution of a certain vertex
will converge if the messages no longer changes on all edges that end with this
vertex. It often takes many iterations to ensure that all messages are invariable
for PGMs in tree structure. And for PGMs containing loops, there are always
some changing messages, but the number of such messages gradually stabilizes
after many iterations. According to the different starting vertices, there are two
messages in each edge. The message mi→j on edge (i, j) ∈ E can be calculated
as follows:

mi→j ∝
∑

xi∈Ai

ψi,j(xi, xj)ψi(xi)
∏

k∈Γi\j

mk→i(xi) (3)

Assuming that the message mi→j becomes mt
i→j after t iterations of calculation,

then the message difference on edge (i, j) of the t-th BP calculation is shown in
formula (4). In literatures [9,11,12], r(mt

i→j) is defined as the residual of message
mi→j , and it is the basis for judging algorithm convergence.

r(mt
i→j) = ||mt

i→j − mt−1
i→j || (4)

In this paper, we define coloring operation as: assuming that the color value of
vertices on edge (Vi, Vj) are C(Vi) and C(Vj), if Vi colors Vj along edge (Vi, Vj),
the value of C(Vj) is changed to C(Vi).

3 The BP Implementation Based on GPUs

The main processes of BP algorithm include updating messages on edges and
updating marginal distributions on vertices. BP always requires multiple itera-
tive calculations because updating a certain message will cause their adjacent
messages to be recalculated. We can update messages multiple times until they
no longer change, then calculate marginal distributions according to formula
(3). So messages updating is the main calculation workload. Although updating
messages on edges will affect message calculations of their adjacent edges, as
long as all messages are buffered and the messages of their adjacent edges are
read from the buffer memory, all non-convergent messages can be easily updated

Parallel Belief Propagation Optimized by Coloring on GPUs 649

in parallel. But it is proved that the natural, fully synchronous parallelization
of belief propagation is highly inefficient whether on GPUs [12] or CPUs [11].
The update order of edges or vertices corresponding to non-convergent messages
directly affects convergence speed and convergence degree. We have designed dif-
ferent BP algorithm implementations according to different algorithm require-
ments. The main difference between these algorithms is characteristic and update
order of messages in each iteration, which makes the algorithms show optimal
performance at different algorithm stages.

3.1 The Color Wave Algorithm

Gonzalez et al. [11] took the chain MRFs with n vertices as an example to
explain the inefficiency of updating all messages simultaneously. They explained
that using two processors in parallel can achieve the same running time n − 1
as using 2(n − 1) processors. The two processors processed messages following
the order of forward (m1→2, ...,mn−1→n) and backward (mn→n−1, ...,m2→1).
They proposed Residual Splash (RS) algorithm extending this theory to ordinary
MGFs. In RS algorithm, it presets a step parameter h. For each processor, it
selects a vertex with the largest residual to perform breadth-first search (BFS)
h times, and records the traversed order of each vertex. Then messages are
updated in the order of their corresponding vertices traversed from large to
small and from small to large. This algorithm converges well on CPUs in parallel.
However, it is not suitable for parallel processing on GPUs. The first reason is
that stack and sorting operations used in RS algorithm are not suitable for
the large-scale parallel architecture of GPUs. Secondly, like the GPU-based RS
algorithm implemented by Mark et al. [12], it requires a frontier with the same
size as vertices to record the order of traversing each vertex in each forward
traversal. As step h increases, it takes lots of memory. Although Mark et al.
performed some optimizations when implementing RS algorithm on GPUs [12]
according to existing methods [14,15], its efficiency is much lower than RnBP
algorithm.

Although the vertex update sequence in [11] is inspirational, there are many
differences between the parallel architecture of GPUs and CPUs. Color Wave
(CW) algorithm is a BP algorithm specially designed for GPUs as shown in
Algorithm 1. It consists of two main processes: color process and wave process.
The color process quickly detects multiple partitions on PGMs, and selects a
pivot in each partition whose residual is greater than other vertices. The wave
process updates messages according to the order of wave value from large to
small and from small to large.

650 J. Hou et al.

Algorithm 1. Color Wave belief propagation Algorithm
Input: G(V,E): the PGMs with vertex set V and edge set E. h: color steps, a

preset parameter. ξ: residual error threshold. V color: the color value of each
vertex. V wave: the wave value of each vertex. Ewave: the wave value of each
eage. M : the message on each edge. R: the message residual on each vertex.
Output: B: the marginal distribution of each vertex.
1: V color, V wave,Ewave ← Initialize(V color, V wave,Ewave)
2: R ← Residual calculate(G,M)
3: while ∃rx > ξ, rx ∈ R do
4: /* Color */
5: for i ∈ [1, ..., h] do
6: V wave,Ewave ← Color(G,R, V color, V wave,Ewave, ξ)
7: end for
8: Ewave ← Clean color(Ewave, V color)
9: /* Wave */

10: for stepi ∈ [h, ..., 1] do
11: M ← Wave(G,R,Ewave, stepi)
12: end for
13: for stepi ∈ [1, ..., h] do
14: M ← WaveR(G,R,Ewave, stepi)
15: end for
16: R ← Residual calculate(G,M)
17: V color, V wave,Ewave ← Initialize(V color, V wave,Ewave)
18: end while
19: B ← Belief calculate(G,M)

In the detailed processes of CW algorithm, all operations are parallelizable
to fully utilize the massive parallel architecture of GPUs. In order to reduce
memory consumption, it only applies for three additional arrays to record the
color or wave values of vertices and edges. In the input data, G(V,E) represents
the graph structure and probabilistic graphical model, where the vertex set V
contains different labels of variables and their corresponding potential functions,
and the edge set E contains connections between all vertices and potential func-
tions of transitions between different labels. h is a preset parameter recording
the execution times of color process, which is also the distance from pivot to fur-
thest vertices in the same partition. ξ is residual error threshold. V color records
color value of each vertex. Vertices with the same color value belong to the same
partition, and the color value is the ID of pivot. V wave and Ewave record wave
values of vertices and edges, respectively. They represent the distance between
current vertices or edges and their pivot. M records messages calculated in each
iteration. R is the message residual on each vertex. It outputs marginal distri-
butions on B.

Parallel Belief Propagation Optimized by Coloring on GPUs 651

CW algorithm initializes color and wave values at the beginning. Initialize
initializes the color values of vertices to their ID, and initializes the wave values
to 0. Residual calculate calculates residuals of vertices. It calculates messages
in parallel according to formula (3), and the difference of messages between two
consecutive calculations is the message residual on edge. The vertex residual in
R is the maximum value of message residuals on edges that end with this vertex.
As long as there is a residual in R greater than ξ, the algorithm will continue to
perform color and wave operations.

Color performs color operation on PGMs to obtain wave values. The oper-
ation process of Color is shown in Algorithm 2. For a certain non-convergent
vertex vx, if there is a vertex vy in its adjacent vertices, whose residual is greater
than vx’s residual, vx will be colored with the color value of Ncolor(vy). There-
fore, if vx and vy belong to the same partition colored by the vertex with ID of
Ncolor(vy), and the distance from vy to vertex Ncolor(vy) is Nwave(vy), then
the distance from vertex vx to vertex Ncolor(vy) is Nwave(vy) + 1. Because
messages are updated on edges, in order to facilitate wave operations, the wave
values are recorded to Ewave(vy, vx). Clean color is used to reduce unnecessary
operations in wave phase. After multiple color operations, if vertex Ncolor(vx)
is colored by other vertex, vx belongs to an incomplete partition. Then the wave
values of edges connected to vertex vx will be set to 0.

Algorithm 2. Color process of CW Algorithm
Input: G(V,E): the PGMs with vertex set V and edge set E. V color: the

color value of each vertex. ξ: residual error threshold. V wave: the wave value of
each vertex. Ewave: the wave value of each eage. R: the message residual on
each vertex.
Output: V wave,Ewave.
1: for vx ∈ V do
2: if R(vx) > ξ then
3: while (vy, vx) ∈ adjacent eages of vx do
4: if R(vy) > R(vx) then
5: V color(vx) ← V color(vy)
6: V wave(vx) ← V wave(vy) + 1
7: Ewave(vy, vx) ← V wave(vx)
8: end if
9: end while

10: end if
11: end for

In wave phase, CW algorithm calculates messages in a specific order. Wave
only updates messages on edges whose wave values are step i. And WaveR
updates messages on edges opposite to Wave, that is, if Wave updates the

652 J. Hou et al.

message on edge (va, vb), WaveR will update the message on edge (vb, va).
After wave operations, Residual calculate recalculates message residuals on
vertices. Initialize initializes color and wave values. The operations continue
iteratively. Finally, Belief calculates calculates marginal distributions accord-
ing to formula (2).

In CW algorithm, there is no stack and sorting operations that are not suit-
able for GPUs’ architecture. Color operations guarantee that the message resid-
ual on selected pivot is greater than other vertices in the same partition, and
the distance between pivot and other vertices does not exceed h, which allows
both forward and reverse wave operations to be completed in h iterations. There
is no intersection of different partitions, so that it will not conflict to update
messages in different partitions. Therefore, it doesn’t need to apply for memory
for “fronter” of each coloring, and Ewave can record the update order of all
messages. CW algorithm converge most vertices in a short time.

3.2 The Color Extract Algorithm

CW algorithm has a high convergence degree at the beginning, which is benefited
from updating messages in a strict sequence centered on vertices with the largest
residuals. But as calculation continues, its convergence speed is not fast. Because
CW algorithm needs color operations to determine the update order of edges
in each iteration, and performs wave operations 2 ∗ h times. Although such a
message update sequence is conducive to messages convergence, it is so time
consuming that it reduces the convergence speed. We propose Color Extract
(CE) algorithm that quickly select the messages to be updated in each iteration.
It is mentioned in [9,11] that updating messages with the largest residuals in
each iteration can effectively reduce the computational complexity. But sorting
operation is not suitable for parallel architecture of GPUs. For parallel messages
updating, we only need to determine which messages need to be updated, and
don’t need to know the accurate sorting results of all messages. Therefore, we
still use color operations to select messages with the largest residuals in small
partitions. Color Extract algorithm is simplified from Color Wave algorithm,
which can ensure that messages with the largest residuals within local ranges
are updated quickly in each iteration.

Parallel Belief Propagation Optimized by Coloring on GPUs 653

Algorithm 3. Color Extract belief propagation Algorithm
Input: G(V,E): the PGMs with vertex set V and edge set E. ξ: residual error

threshold. M : the message on each edge. R: the message residual on each edge.
Ecolor: the color value of each edge.
Output: B: the marginal distribution of each vertex.
1: Ecolor ← Initialize(Ecolor)
2: R ← Residual calculate(G,M)
3: while ∃rx > ξ, rx ∈ R do
4: /* Color */
5: for ei(va, vb) ∈ E do
6: if R(ei) > ξ then
7: for ej ∈EdgeSetStarting(vb) or ej ∈EdgeSetEnding(va) do
8: if R(ej) > R(ei) then
9: Ecolor(ei) ← Ecolor(ej)

10: end if
11: end for
12: end if
13: end for
14: /* Calculate */
15: for ei ∈ E do
16: if Ecolor(ei) = ei then
17: M ← Message calculate(G,M, ei)
18: end if
19: end for
20: R ← Residual calculate(G,M)
21: Ecolor ← Initialize(Ecolor)
22: end while
23: B ← Belief calculate(G,M)

Most of input parameters in Algorithm3 are the same as Algorithm 1, except
that Ecolor and R record color values and message residuals on edges, respec-
tively. At the beginning of CE algorithm, Initialize initializes color values of
edges to their ID, and Residual calculation calculates message residual on each
edge like Algorithm 1. CE algorithm also consists of two main phases. In color
phase, ei(va, vb) represents a edge ei starting with vertex va and ending with
vb, EdgeSetStarting(vb) and EdgeSetEnding(va) represent edge sets formed by
edges starting with vb and ending with va, respectively. If there is an edge ej with
residual greater than ei in these sets, ej is used to color ei. In calculation phase,
only the messages on edges whose color values are the same as their own ID are
updated. Message calculate(G,M, ei) updates message on edge ei. After recal-
culating residuals and initializing color values, the algorithm iteratively calculates
until all messages converge. Finally, Belief calculate calculates marginal distri-
butions according to formula (2). Although CE algorithm does not strictly restrict
the update order of messages as CW algorithm to converge messages as many as
possible in each iteration, it can quickly select messages with the largest residuals
in local partitions and quickly update messages in each iteration. Therefore, CE
converges quickly during the entire calculation process.

654 J. Hou et al.

3.3 The Random Drop Algorithm

Randomized Belief Propagation (RnBP) algorithm [12] sets different parallelism
parameters to tradeoff algorithm speed and convergence. The parallelism param-
eter is the proportion of messages updated in each iteration to all non-convergent
messages. It is found that the algorithm with high parallelism parameter con-
verges quickly, but its convergence degree is low, and low parallelism is the oppo-
site. Therefore, in RnBP algorithm, all non-convergent messages are updated if
messages converge rapidly, otherwise only a part of non-convergent messages are
updated according to the preset low parallelism parameter. When it updates all
non-convergent messages, the algorithm has the highest parallelism, which can
quickly converge messages that are close to convergence. However, as shown in
formula (3), the calculation of each message is related to its adjacent messages.
It will not converge if the adjacent messages of a certain message change greatly
in each iteration. If there is only a part of non-convergent messages updated
and the rest remains unchanged, there will be more convergent messages. So
the algorithm with low parallelism parameter has high convergence degree. An
extreme example is that it only updates one message at a time in serial belief
propagation algorithm. Figure 1 shows the variation of convergence degree with
different parallelism parameters in 100 iterations, where Ising(N ∗N) represents
an Ising graph with N ∗ N vertices. In Fig. 1(a), all non-convergent messages
are updated, but ten percent of them are updated after 20 iterations. On the
contrary, in Fig. 1(b), ten percent of non-convergent messages are updated, but
all non-convergent messages are updated after 20 iterations. It can be seen that
when parallelism decreases, convergence degree increase noticeably, while if par-
allelism increases, convergence degree decreases significantly before increasing.
According to these analyses, we propose Random Drop (RD) algorithm based
on RnBP algorithm. RD algorithm gradually reduces the parallelism, so that it
further improves convergence speed on the basis of original convergence speed
in each iteration. And when the number of non-convergent messages is stable,
RD algorithm has a particularly high degree of convergence.

(a) Parallelism decrease (b) Parallelism increase

Fig. 1. The variation of convergence degree in different parallelism parameters

Parallel Belief Propagation Optimized by Coloring on GPUs 655

4 Experimental Methodology

4.1 Experimental Setup

Datasets: we use Ising dataset as our experiment PGMs, which is a standard
benchmark for message propagation used in BP algorithms [9,12]. The graph
model of Ising is a regular N ∗N grids of binary variables. The potential function
ψi of variable on vertices is a random value selected in [0, 1]. The potential
function ψi,j is set to eλC when xi = xj and e−λC otherwise. λ is sampled from
[−0.5, 0.5] to make potential function ψi,j take random values within a certain
range. By setting a larger C, the range of potential function values will be larger,
and inference will be more difficult.

In each analysis experiment, we verify the universal performance of algo-
rithms by performing belief propagation on different hardwares over Ising graph
model with different parameters. The experiment graph is named as Ising N C
to represent an Ising graph with N ∗N vertices and parameter C, and it is given
in figure titles.

Baselines and Hardware Platforms: we compare six implementations
including: (1) LBP: Murphy’s BP algorithm [10] for parallel updating all non-
convergent messages implemented on the GPU. (2) RnBP1: Der’s algorithm [12]
that updates only a part of non-convergent messages on GPUs. (3) RnBP2:
Der’s algorithm [12] that optimizes RnBP1 by changing parallelism. (4) CW:
Our Color Wave algorithm. (5) CE: Our Color Extract algorithm. (6) RD: Our
Random Drop algorithm. We use gcc and nvcc with the −O3 optimization option
for compilation along with −arch = sm 37 on two NVIDIA GPUs including Tesla
K80 and GeForce 1050ti(notebooks).

4.2 Performance Analysis of Color Wave Algorithm

The following sections analyze experimental performance of different algorithms.
Figure 2(a) shows the change in the number of non-convergent messages with
iterations in 100 s. The step parameter h is in parenthesis. It is obvious that
more than half of messages converge in previous iterations, and as h increases,
the number of messages converged in previous iterations significantly increases,
except that the convergence degree of CW algorithm with a step of 3 is surpassed
by CW algorithm with a step of 2 after the 21st iteration. Therefore, it is the main
advantage of CW algorithm that most messages converge in a short time, and
the CW algorithm with a larger step converges more messages in each iteration.
But there is a disadvantage that each iteration of calculation takes plenty of time
with the increase of h. Within a 100-second runtime, CW algorithm with a step of
2 can perform 133 iterations of calculation, while CW algorithm with a step of 8
only performs 45 iterations. This can also be seen from the change in the number
of non-convergent messages with time in Fig. 2(b). The RnBP1 algorithm only
updates a part of non-convergent messages, and the updated percentage is in
parentheses. LBP updates all non-convergent messages. As shown in Fig. 2(b),

656 J. Hou et al.

CW algorithm has obvious advantages in the first 20 s, but its convergence degree
in subsequent processes is lower than other algorithms, and the convergence
degree is similar to others when it is stable.

(a) Performance on different h
(Ising 1250 3)

(b) Comparison with other algorithms
(Ising 1500 3)

Fig. 2. Performance analysis of CW algorithm

4.3 Performance Analysis of Color Extract Algorithm

In view of the disadvantages of CW algorithm, we propose CE algorithm with
performance shown in Fig. 3. Figure 3(a) compares the performance of CE algo-
rithm and several CW algorithms with different steps in the first 50 iterations of
calculation. CW algorithm strictly stipulates the update order of non-convergent
messages, so there is more messages convergence in each iteration. In the first 50
iterations, the convergence degree of CE algorithm can hardly surpass various
CW algorithms, except for the CW algorithm with a step of 3 after the 42nd
iteration. However, the purpose of designing CE algorithm is reducing calcula-
tion time in each iteration to guarantee higher convergence speed in the entire
process. From the change in the number of non-convergent messages with time
in Fig. 3(b), it can be seen that although CE algorithm has a much lower degree
of convergence in the first 17 s than CW algorithm, it has a high convergence
speed since then. And the convergence degree is far better than RnBP1 and LBP
algorithms before stabilization. There is a similiar phenomenon in Fig. 3(c). It
means that CE algorithm has a higher convergence speed and convergence degree
in the entire process.

Parallel Belief Propagation Optimized by Coloring on GPUs 657

(a) Comparison with CW
(Ising 1500 3)

(b) Comparison with other
algorithms (Ising 1500 3)

(c) Comparison with other
algorithms (Ising 1000 3)

Fig. 3. Performance analysis of CE algorithm

4.4 Performance Analysis of Random Drop Algorithm

The experiment result of random algorithms with different parallelism is shown
in Fig. 4(a). Although there is a opposite phenomenon in the first 25 iterations,
the algorithms’ most iterative processes are in accordance with Der et al.’s propo-
sition [12]. In Fig. 4(b)(c), we analyze the performance comparison between RD
algorithm and the algorithms of changing parallelism proposed by Der et al.
(RnBP2) and the algorithm that only randomly updates a part of non-convergent
messages (RnBP1). In the first 90 iterations of RD algorithm, the proportion of
randomly updated non-convergent messages gradually decreases from 100% to
10% and then it stabilizes at 10%. According to Fig. 4 (b)(c), the result curve
of RnBP2 almost coincides with RnBP1, so the acceleration of algorithm using
two parallel degrees is not obvious. Our algorithm surpasses all other algorithms
except in previous iterations. Therefore, RD algorithm keeps a fast convergence
speed in almost the entire calculation process, and it has a high convergence
degree when stable.

(a) Performance for dif-
ferent update ratios
(Ising 1500 2.5)

(b) Comparison with other
algorithms (Ising 1500 3)

(c) Comparison with other
algorithms (Ising 1500 2)

Fig. 4. Performance analysis of PD algorithm

658 J. Hou et al.

4.5 Performance Analysis of All Algorithms

Figure 5 is on the basis of comprehensive analysis of all the algorithms mentioned
above, where various algorithms have the same convergence trend on different
hardware, except they converge faster on Tesla K80 and the curves of algorithm
RnBP2(10%) and LBP coincide on Tesla K80. It is obvious that no matter what
value the step h takes, the convergence degree of CW algorithm in the first 20
s (for GeForce 1050ti) or 10 seconds (for Tesla K80) is much greater than any
other algorithms, and when the algorithms are stable, the convergence degree
of CW algorithm is also close to others. Therefore, CW algorithm is very suit-
able for the requirement of converging more messages in a short time. Before
CE algorithm stabilizes, its convergence degree is greater than other algorithms
except CW algorithm, and within a period after 20 (GeForce 1050ti) or 10 (Tesla
K80) s, the convergence degree of CE algorithm also exceeds that of CW algo-
rithm. Therefore, CE algorithm is suitable for the requirement of high conver-
gence degree before stabilization. For RD algorithm, although its convergence
degree is less than that of CW and CE algorithms in most of the time, it has
a higher degree of convergence than algorithms that randomly update a part
of non-convergent messages and update all non-convergent messages during the
entire running time. And RD algorithm has a high convergence degree when it is
stable. Therefore, RD algorithm is suitable for the needs of always having high
convergence speed and convergence degree. Moreover, RD algorithm avoids the
algorithm performance being affected by preset parallel parameters.

(a) Performance analysis on GeForce
1050ti (Ising 1500 3)

(b) Performance analysis on Tesla K80
(Ising 1500 3)

Fig. 5. Performance analysis of all algorithms

5 Conclusion

Belief propagation is a message passing algorithm over probabilistic graphical
models, which is widely used in many fields including machine learning and error-
correcting. The main operations of BP algorithm are very suitable for computing

Parallel Belief Propagation Optimized by Coloring on GPUs 659

on the massive parallel architecture of GPUs. But updating all non-convergent
messages in parallel does not always perform well. we implement different algo-
rithms to optimize different algorithm stages. CW algorithm can quickly divide
non-convergent vertices into multiple partitions, and select vertices with the
largest residuals as pivots in all partitions. It updates messages in a fixed order
to ensure that most vertices converge in a short time. CE algorithm selects edges
with the largest residuals in local partitions by edge-centered color operations.
It reduces calculation complexity of each iteration by only updating messages on
the selected edges. RD algorithm steadily increases the convergence degree by
progressively reducing the update ratio of non-convergent messages. These algo-
rithms show high performance throughout the entire calculation process, and
are superior to state-of-the-art algorithms in their applicable calculation stages.
In the future, we will explore more common BP algorithms on multiple types of
PGMs.

References

1. Liu, Z., Liu, R., Yan, Z., Zhao, L.: GPU-based implementation of belief propagation
decoding for polar codes. In: International Conference on Acoustics Speech and
Signal Processing (ICASSP 2019), pp. 1513–1517. IEEE, Brighton (2019)

2. Shan, B., Fang, Y.: GPU accelerated parallel algorithm of sliding-window belief
propagation for LDPC codes. Int. J. Parallel Prog. 48(3), 566–579 (2020)

3. Romero, D.L., Chang, N.B.: Sequential decoding of non-binary LDPC codes on
graphics processing units. In: Asilomar Conference on Signals, Systems and Com-
puters (ACSCC 2012), pp. 1267–1271. IEEE, Pacific Grove (2012)

4. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision.
In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2004),
pp. 261–268. IEEE, Washington (2004)

5. Yanover, C., Weiss, Y.: Approximate inference and protein-folding. In: Neural
Information Processing Systems (NIPS 2002), pp. 1481–1488. Vancouver (2002)

6. Wang, H., Geng, L., Lee, R., Hou, K., Zhang, Y., Zhang, X.: SEP-graph: finding
shortest execution paths for graph processing under a hybrid framework on GPU.
In: ACM Sigplan Symposium on Principles and Practice of Parallel Programming
(PPoPP 2019), pp. 38–52. ACM, Washington (2019)

7. Segura, A., Arnau, J.-M., González, A.: SCU: a GPU stream compaction unit for
graph processing. In: International Symposium on Computer Architecture (ISCA
2019), pp. 424–435. IEEE, Phoenix (2019)

8. Alabandi, G., Powers, E., Burtscher, M.: Increasing the parallelism of graph col-
oring via shortcutting. In: ACM Sigplan Symposium on Principles and Practice of
Parallel Programming (PPoPP 2020), pp. 262–275. ACM, San Diego (2020)

9. Elidan, G., McGraw, I., Koller, D.: Residual belief Propagation: informed schedul-
ing for asynchronous message passing. In: Uncertainty in Artificial Intelligence
(UAI 2006), Cambridge, pp. 165–173 (2006)

10. Murphy, K., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate
inference: an empirical study. In: Uncertainty in Artificial Intelligence (UAI 1999),
Stockholm, pp. 467–475 (1999)

11. Gonzalez, J., Low, Y., Guestrin, C.: Residual splash for optimally paralleliz-
ing belief propagation. In: International Conference on Artificial Intelligence and
Statistics (AISTATS 2009), Clearwater Beach, pp. 177–184 (2009)

660 J. Hou et al.

12. Der Merwe, M.V., Joseph, V., Gopalakrishnan, G.: Message scheduling for perfor-
mant, many-core belief propagation. In: IEEE High Performance Extreme Com-
puting Conference (HPEC 2019), pp. 1–7. IEEE, Waltham (2019)

13. Mooij, J.M., Kappen, H.J.: Sufficient conditions for convergence of the sum-product
algorithm. IEEE Trans. Inf. Theory 53(12), 4422–4437 (2007)

14. Wang, Y., et al.: Gunrock: GPU graph analytics. ACM Trans. Parallel Comput.
4(1), 1–49 (2017)

15. Pingali, K., et al.: The tao of parallelism in algorithms. In: SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2011), pp. 12–25.
ACM, San Jose (2011)

16. Szeliski, R., et al.: A comparative study of energy minimization methods for markov
random fields with smoothness-based priors. IEEE Trans. Pattern Anal. Mach.
Intell. 30(6), 1068–1080 (2008)

17. Choi, J., Patil, A.D., Rutenbar, R.A., Shanbhag, N.R.: Analysis of error resiliency
of belief propagation in computer vision. In: International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2016), pp. 1060–1064. IEEE, Shanghai
(2016)

A Multiplatform Parallel Approach
for Lattice Sieving Algorithms

Michal Andrzejczak1(B) and Kris Gaj2

1 Military University of Technology, Warsaw, Poland
michal.andrzejczak@wat.edu.pl

2 George Mason University, Fairfax, VA, USA
kgaj@gmu.edu

Abstract. Lattice sieving is currently the leading class of algorithms for
solving the shortest vector problem over lattices. The computational dif-
ficulty of this problem is the basis for constructing secure post-quantum
public-key cryptosystems based on lattices. In this paper, we present a
novel massively parallel approach for solving the shortest vector prob-
lem using lattice sieving and hardware acceleration. We combine previ-
ously reported algorithms with a proper caching strategy and develop
hardware architecture. The main advantage of the proposed approach
is eliminating the overhead of the data transfer between a CPU and
a hardware accelerator. The authors believe that this is the first such
architecture reported in the literature to date and predict to achieve
up to 8 times higher throughput when compared to a multi-core high-
performance CPU. Presented methods can be adapted for other sieving
algorithms hard to implement in FPGAs due to the communication and
memory bottleneck.

Keywords: Lattice sieving · Hardware acceleration · Cryptography ·
Multi-platform parallel approach · Parallel algorithms

1 Introduction

Over the last decade, post-quantum cryptography (PQC) has emerged as one of
the most important topics in the area of theoretical and applied cryptography.
This new branch of cryptology is considered an answer to the threat of quantum
computers. A full-scale quantum computer will be able to break popular public-
key cryptosystems, such as RSA and ECDSA, using Shor’s algorithm.

In 2016, the United States National Institute of Standards and Technology
(NIST) announced the Post-Quantum Cryptography Standardization Process
(NIST PQC), aimed at developing new cryptographic standards resistant to
attacks involving quantum computers. In January 2019, 26 of these candidates
(including results of a few mergers) advanced to Round 2.

The biggest group of submissions were lattice-based algorithms. The difficulty
of breaking these cryptosystems relies on the complexity of some well-known and
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 661–680, 2020.
https://doi.org/10.1007/978-3-030-60245-1_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_45&domain=pdf
http://orcid.org/0000-0003-1766-3831
https://doi.org/10.1007/978-3-030-60245-1_45

662 M. Andrzejczak and K. Gaj

computationally-hard problems regarding mathematical objects called lattices.
One of these problems is the Shortest Vector Problem (SVP). Lattice sieving,
which is a subject of this paper, is a family of algorithms that can be used to
solve SVP (at least for relatively small to medium dimensions of lattices).

Recently, significant progress in lattice sieving has been made, especially
due to Albrecht et al. [4]. Although multiple types of lattice sieving algorithms
emerged in recent years, all of them share a single fundamental operation called
vector reduction. As a result, an efficient acceleration of vector reduction is likely
to work with most of the sieves and give them a significant boost in performance.

Sieving is a popular technique in cryptography. It was used previously, for
example, for factoring large integers. However, it is a memory-intense method,
so there exists a data transfer bottleneck disrupting any potential hardware
acceleration, which is the biggest problem.

1.1 Contribution

To take full advantage of modern hardware parallel capabilities, we propose a
modified approach to lattice sieving algorithms and present a massively paral-
lel FPGA sieving accelerator. In the modified sieving algorithm, due to proper
caching techniques on the hardware side, there is no data transfer bottleneck.
Thus, the accelerator works with full performance, and a significant speed-up is
achieved. In the end, the cost comparison for solving SVP instances with Amazon
AWS is presented.

2 Mathematical Background

A lattice L is a discrete additive group generated by n linearly independent
vectors b1,b2, . . .,bn ∈ R

m

L(b1,b2, . . . ,bn) =
{∑

xibi | xi ∈ Z

}
(1)

The vectors b1, . . . ,bn are called a basis of the lattice, and we define B as a
m × n matrix consisting of basis vectors as columns. In this paper, we consider
only the case of m = n.

The lattice, understood as a set of vectors, can be written as

L(B) = {xB | x ∈ Z
n} (2)

We define the length of a vector as the Euclidean norm ‖x‖ =
√∑

x2
i . The

Shortest Vector Problem (SVP) aims at finding a linear combination of basis
vectors with the shortest length possible. For a given basis B ∈ Z

n×m, the
shortest vector v ∈ L(B) is a vector for which

∀x ∈ Z
n ‖v‖ ≤ ‖xB‖ (3)

The shortest vector in a lattice is also called the first successive minimum and
is denoted λ1(L). There are known estimates on boundaries of the length of the

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 663

shortest vector in a given lattice. For the most well-known SVP Challenge [1], a
found vector v should be shorter than

‖v‖ ≤ 1.05 · (Γ (n/2 + 1))1/n√
π

· (det L)1/n, (4)

where Γ is Euler’s gamma function, and det is determinant of the basis B gen-
erating the lattice L.

If two different vectors v, u ∈ L(B) satisfy ‖v ± u‖ ≥ max(‖v‖, ‖u‖), then
v,u are called Gauss-reduced. If every pair of two vectors (v,u) from the set
A ∈ L(B) is Gauss-reduced, then the set A is called pairwise-reduced.

In this paper, we denote vectors as bold lowercase letters. Matrices are
denoted as bold uppercase letters. Lattice points and vectors are used alter-
natively.

3 Lattice Sieving

SVP is one of the best-known problems involving lattices. Due to its compu-
tational complexity, it can be used as a basis for the security of lattice-based
cryptosystems. Lattice sieving is one of several approaches to solve SVP. It is
not a single algorithm, but rather a class of algorithms. These algorithms are
similar to one another and rely on a similar basic operation, but differ in terms
of their time and space complexity.

The term “lattice sieving” was proposed in the pioneering work of Ajtai–
Kumar–Sivakumar [2,3]. In 2001, these authors introduced a new randomized
way for finding the shortest vector in an n-dimensional lattice by sieving sampled
vectors.

The main idea was to sample a long list L = {w1, . . . ,wN} of random lat-
tice points, and compute all possible differences among points from this list L.
As the algorithm progresses, during reduction, shorter and shorter vectors are
discovered. By repeating this step many times, the shortest vector in the lattice
is being found as a result of subtracting two vectors vi − vj .

The method proposed by Ajtai et al. is the main element of lattice sieving
algorithms. Other algorithms differ mostly in the way of handling lattice vectors,
grouping them, or using some techniques of prediction. However, the main idea
is still to sample new random vectors and reduce them using those already
accumulated.

3.1 The GaussSieve

In 2010, Micciancio and Voulgaris [11] presented two new algorithms: List-
Sieve with the time complexity 23.199n and the space complexity 21.325n, and
GaussSieve, able to find a solution in the running time 20.52n, using memory
space in the range of 20.2n. The GaussSieve is shown below as Algorithm 1.
The key idea is taken from Ataji’s work and is based mostly on pairwise vector
reduction. The GaussSieve starts with an empty list of lattice points L and an

664 M. Andrzejczak and K. Gaj

Algorithm 1: GaussSieve(B) — algorithm that can compute the short-
est vector. The .pop() operation returns the first vector from a given
queue. KleinSampler() is a method for random sampling of new vectors.
GaussReduce reduces vector by other vectors from the set L.
Data: B - lattice basis, c - maximum number of collisions, λ1(B)- targeted

norm
Result: t : t ∈ L(B) ∧ ‖t‖ ≤ λ1(B)

1 begin
2 L ←− ∅, S ←− ∅, i ←− 0, t ←− KleinSampler(B)
3 while i < c and ‖t‖ > λ1(B) do
4 if S �= ∅ then
5 vnew ← S.pop()
6 else
7 vnew ← KleinSampler(B)
8 end if
9 vnew ← GaussReduce(vnew, L, S)

10 if ‖vnew‖ = 0 then
11 i ← i + 1
12 else
13 L ← L ∪ {vnew}
14 if ‖vnew‖ < ‖t‖ then
15 t ← vnew

16 end if

17 end if

18 end while
19 return t

20 end

empty stack S. The stack is the first source of points to be processed in the next
iteration of reduction. In the case of an empty stack, a new point is sampled
using Klein’s method for sampling random lattice points [9], with modifications
and extensions from [7].

Next, a sampled lattice point v is pairwise reduced by every vector from the
list L. The reduction method called GaussReduce returns vectors u,v satisfying
max(‖u‖, ‖v‖) ≤ ‖u ± v‖. This method is shown below as Algorithm 2. Thus,
the list L is always Gauss reduced, so in the case of reducing a vector already
on the list, the vector is moved to the stack. If the vector v is non-zero after
reducing by the whole list, it is added to L. Otherwise, the number of collisions
i is incremented. A collision occurs when the point is reduced to zero, which
means that the same point has been sampled before. The algorithm stops when
the number of collisions exceeds the given boundary c, or the shortest vector
already found is at least as short as the targeted estimate.

By analyzing Algorithm 1 and Algorithm 2, the number of Reduce() calls can
be approximated as k2 for the case of k vectors.

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 665

Algorithm 2: GaussReduce(p, L, S)
Data: p - lattice vector, L - list of already reduced vectors, S - list of vectors to

reduce
Result: p - reduced vector

1 begin
2 for vi ∈ L do
3 Reduce(p,vi)
4 end for
5 for vi ∈ L do
6 if Reduce(vi,p) then
7 L ← L\{vi}
8 S.push(vi − p)

9 end if

10 end for
11 return p

12 end

There have been many papers improving the complexity of presented algo-
rithm and proposing modifications that speed up the computations by several
orders of magnitude by applying additional techniques. However, the GaussSieve
is still a part of newer methods and the vector reduction step is crucial for every
lattice sieving algorithm.

3.2 Parallel Sieves

There have been several papers devoted to developing a parallel version of a
lattice sieve. In addition to the gsieve and fplll libraries, Milde and Schneider
[12] proposed a parallel version of the GaussSieve algorithm. Their main idea was
to use several instances of the algorithm connected in a circular fashion. Each
instance has its own queue Q, list L, and stack S. When a vector is reduced by
one instance, it is moved to another one. The stacks contain vectors that were
reduced in a given instance and need to pass the instance’s list once more. During
the algorithm, vectors in the instances lists are not always Gauss reduced.

Ishiguro et al. [8] modified the idea of the parallel execution of the GaussSieve
algorithm. The stack is only one, global for all instances (threads). The execution
of the algorithm is divided into three parts. In the first part, sampled vectors in
the set V (new or from the stack) are reduced by vectors in the local instance
lists. After reduction, the reduced vectors are compared. If any vector is different
than before the reduction step, it is moved to the global stack. In the next step,
sampled vectors are reduced by themselves. In the last step, vectors from the
local lists are reduced by the sampled vectors. The procedure ends with moving
vectors from the set V to local lists in instances. A new batch of vectors is
sampled, and the procedure starts from the beginning. The advantage of this
approach for parallel execution is that vectors in local lists are always pairwise
reduced.

666 M. Andrzejczak and K. Gaj

In [5], Bos et al. combined ideas from [12] and [8]. As in Milde and Schneider,
each node maintains its own local list, but the rounds are synchronized between
nodes. During synchronization, the vectors are ensured to be pairwise reduced
as in the Ishiguro et al. approach.

Yang et al. [13] proposed a parallel architecture for GaussSieve on GPUs. A
single GPU executes a parallel approach proposed by Ishiguro et al. Commu-
nication and data flow between multiple GPUs is performed by adopting ideas
from Bos et al.

Every paper listed above targeted a multi-thread or multi-device implemen-
tation, but due to FPGAs structure, some ideas might be also adapted to hard-
ware.

As for FPGAs, there is no publicly available paper about hardware imple-
mentation of lattice sieving. FPGAs have been used for solving SVP, but using
a class of enumeration algorithms. In 2010, Detrey et al. proposed an FPGA
accelerator for the Kannan-Fincke-Pohst enumeration algorithm (KFP) [6]. For
a 64-dimensional lattice, they obtained an implementation faster by a factor of
2.12, compared to a multi-core CPU, using an FPGA device with a compara-
ble cost (Intel Core 2 Quad Q9550 vs. Xilinx Virtex-5 SXT 35). For a software
implementation, the fplll library was used.

4 Hardware Acceleration of Vector Reduction

Lattices used in cryptography are usually high-dimensional. The hardest problem
solved in the SVP Challenge, as of April 2020, is for a 157-dimensional lattice [1].
This dimension is still significantly smaller than dimensions of lattices used in
the post-quantum cryptography public-key encryption schemes submitted to the
NIST Standardization Process. However, it is still a challenge, similar to RSA-
Challenge, to solve an as big problem as possible. Thus, a hardware acceleration
might help to find solutions for higher dimensions in a shorter time.

Algorithm 3 describes a common way of implementing the Reduce function
in software. This method is dependant on the lattice dimension, which affects
the dot product computation and the update of the vector’s value. The number
of multiplications increases proportionally to the dimension. A standard modern
CPU requires more time to perform the computations as the lattice dimension
increases. However, both affected operations are highly parallelizable. Almost all
multiplications can be performed concurrently by utilizing low-level parallelism.
Thus, specialized hardware can be competitive even for modern CPUs capable
of performing vectorized instructions and can offer a higher level of parallelism.

In this section, we present a new hardware architecture for lattice vector
reduction. The analysis is performed step by step, line by line, and the corre-
sponding hardware is proposed.

4.1 Computing a Vector Product

Computing the product of two vectors and an update of the vector’s value are the
two most time-consuming operations during reduction, but there is a chance for

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 667

Algorithm 3: Reduce(v, u) – vector reduction. The return value is true
or false, depending on whether reduction occurs or not.
Data: v,u - lattice vectors
Result: true or false

1 begin
2 dot =

∑
vi · ui

3 if 2 · |dot| ≤ ‖u‖2 then
4 return false
5 else

6 q =
⌊

dot
‖u‖2

⌉

7 for i = 0; i < n; i + + do
8 vi− = q · ui

9 end for
10 ‖v‖2+ = q2 · ‖u‖2 − 2 · q · dot
11 return true

12 end if

13 end

FPGAs to accelerate these computations with massive parallelism. The proposed
hardware circuit for obtaining a vector product is shown in Fig. 1. The first step
is a multiplication of corresponding coefficients. This multiplication is performed
in one clock cycle, even for a very large lattice. After executing the multiplication
step, the results are moved to an addition tree, consisting of �log2(n)	 addition
layers. For the majority of FPGAs, the critical path for addition is shorter than
for multiplication. Thus, it is possible to perform more than one addition in a
single clock cycle without negatively affecting the maximum clock frequency. Let
β denote the number of additions performed in one clock cycle, with a shorter
latency path than multiplication. This parameter depends on an FPGA vendor
and device family. For our target device, β = 4 addition layers are executed in
one clock cycle, and the latency of the addition tree for an n-dimensional vector
is �log2(n)/β	 clock cycles.

The proposed design also offers an option for the pipelined execution. It is
possible to feed new vectors to registers v and u in each clock cycle, reaching
the highest possible performance for a given set of vectors. The total latency
required for computing the vector product is 1 + �log2(n)/β	 cycles. Using this
approach, the maximum level of parallelism is achieved.

4.2 Division with Rounding to the Nearest Integer

The next operation performed in the proposed accelerator for the Reduce func-
tion is a division with rounding to the nearest integer. The division involves the
computed vector product, dot, and the square of the norm of the second vector
‖u‖2. Instead of performing normal division, we take advantage of the fact that
the result of the division is rounded to the nearest integer in a limited range,

668 M. Andrzejczak and K. Gaj

Fig. 1. Hardware module for the pipelined vector product computation. v and u are
input vectors stored in registers.

so several conditions can be checked instead of performing a real division. The
comparisons being made are listed in Table 1 and are easily executed in hardware
by using simple shifts, additions, and subtractions.

Table 1. Conditions checked for the rounded division with the restricted result range

Division result Value Condition

<0; 0.5) 0 2 · |dot| < ‖u‖2

<0.5; 1.5) 1 ‖u‖2 ≤ 2 · |dot| < 3 · ‖u‖2

<1.5; 2.5) 2 3 · ‖u‖2 ≤ 2 · |dot| < 5 · ‖u‖2

<2.5; 3.5) 3 5 · ‖u‖2 ≤ 2 · |dot| < 7 · ‖u‖2

<3.5; 4.5) 4 7 · ‖u‖2 ≤ 2 · |dot| < 9 · ‖u‖2

The full range of possible results is not covered. The selection of the results
range is based on statistical data and the chosen assumption. Assuming that
sampled vectors provided to the sieving algorithm are no longer than x times
the approximate shortest vector, the rounded division will never generate a result
bigger than x. Based on experiments, x = 4 is sufficient to accept all sampled
vectors. The division in the selected range is necessary to make the comparison
with CPU implementations more accurate and avoid rare events when the vector
is required to be reduced again, which may lead to data desynchronization in
the accelerator.

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 669

4.3 Update of Vector Values

Having all the necessary values, it is possible to update the reduced vector ele-
ment and its norm. These two operations can be performed in parallel.

The element update function simply subtracts the product q ·u from v. This
operation can also be executed in parallel. In the first step, the products q · ui

are calculated. They are then subtracted from vi in the second step. Each step
is executed in a separate clock cycle to decrease the critical path’s length and
obtain a higher maximum clock frequency.

In hardware, the norm update function is executed in three steps, taking
one clock cycle each. At first, 2 · dot and q · ‖u‖ are computed. Secondly, the
multiplication by q is applied to both partial results. At the end, the subtraction
and addition operations are performed.

4.4 Reduce Module

The described above parts were used to develop the entire Reduce algorithm.
The hardware block diagram combining previously discussed steps is shown in
Fig. 2.

With additional shift registers required to store data for further steps of the
algorithm, it is possible to start computations for a new vector pair in each
clock cycle, utilizing pipeline properties of used building blocks, and increasing
the total performance.

The latency for one pair of vectors depends only on the dimension of a lattice.
For an n-dimensional lattice, the latency fcl(n) equals exactly

fcl(n) =
⌈

log2(n)
β

⌉
+ 5 (5)

clock cycles. This is also the number of pairs of vectors being processed in
the module concurrently. Therefore, for 200 MHz clock frequency, the pipelined
version can perform up to 200,000,000 vector reductions per second, and the
branched version can perform twice as many reductions. This calculation does
not include the communication overhead, so the practical performance for a
standard approach will be lower.

5 Caching Approach to Lattice Sieving for Multi-platform
Environment

In the previous section, the hardware accelerator for the vector reduction was
introduced. The next step is to develop a way of using this accelerator to increase
the performance of any sieve. Due to the communication overhead, a simple call
to the accelerator for every occurrence of the reduce operation will not give any
speedup. The data transfer takes almost 90% of the total execution time, and the
performance is lower than on standard CPU. Moreover, it is not possible to run
the entire algorithm on an FPGA due to its lack of sufficiently large memory to

670 M. Andrzejczak and K. Gaj

Fig. 2. The architecture of the reduce accelerator with pipelining and branching. The
shaded part denotes logic implemented in the branched version and omitted in the
standard implementation.

perform standalone sieving on FPGAs. Thus, in this section, a caching approach
for lattice sieving algorithms in a multi-platform environment is presented. Our
modification allows eliminating the communication delays, omitting the mem-
ory limitations, and fully utilizing the proposed parallel architecture for lattice
sieving by combining previously reported methods with caching techniques. The
proposed techniques will also work for other kinds of sieves.

A software/hardware approach is considered, where only a part of compu-
tations is performed in FPGAs, the rest of an algorithm is executed on CPU,
and the majority of necessary data is stored on CPU. Currently, there are sev-
eral approaches to combining CPUs with FPGAs. Thus, the calculations are not
focused on any particular solution, but rather on a universal approach, applicable
to each practical realization of the system combining both device types.

5.1 Data Transfer Costs

The biggest issue with current algorithms is the data transfer cost. Even the
largest FPGAs are not able to store all required data to run sieving standalone
for currently attacked dimensions. Thus, only a hybrid solution is considered.
However, with only a part of the algorithm being executed on the FPGA side,
some data is required to be exchanged between both sides. In lattice sieving,
the transferred data will consist mostly of lattice points. For a simple vector
expressing the lattice point, its size depends on the dimension of the lattice.

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 671

In the presented accelerator, each vector element is stored in 16 bits. It can
be extended to 32 bits if needed, but due to our experiments on reduced lattices,
16 bits is sufficient. Additionally, the squared value of a vector length is also
stored in another 32 bits. Thus, the number of bits fnb(n) required for a simple
n-dimensional vector is expressed as:

fnb(n) = n · 16 + 32 = (n + 2) · 16 (6)

This number also matches the number of bits required for one vector transfer
in any direction between CPU and FPGA. The communication time depends on
the size of data and on the width of a data bus. The commonly used data buses
are w = {32, 64, 128, 256}-bits wide and are able to deliver a new data in every
FPGA clock cycle. The data transfer latency ftl for one vector is expressed as
the number of clock cycles and can be obtained from the equation:

ftl(n,w) =
⌈

fnb(n)
w

⌉
=

⌈
(n + 2) · 16

w

⌉
(7)

5.2 Reducing Newly Sampled Vectors by a Set

In large lattice dimensions, the total required memory is significantly larger than
the memory available in any FPGA device. For dimensions larger than 85, the
accelerator must cooperate with CPU during the reduction of the newly sampled
vectors due to memory limitations. The vectors will be processed in smaller sets,
and an efficient way to manage the data transfer is required.

In this approach, every new vector is used for reduction at least 2 · |L| times.
Assuming that the set L is going to be divided into smaller sets Li, capable of
fitting in FPGA memory, the data transfer costs may reduce or even eliminate
the acquired acceleration.

In the most basic approach, the newly sampled vector vn is reduced by the
set Li that fits FPGA’s memory. In the first step, vn is reduced sequentially by
elements from Li, while the reduction of elements from Li by vn in the second
step is executed in parallel. Elements used in the first step of the reduction are
replaced by other elements from L. This approach is not efficient due to the
data transfer requirements, and several changes must be made to achieve the
best performance.

5.3 On-the-Fly Reduction

It is not necessary to wait until all data is available on the FPGA side. The
designed algorithm should take advantage of the fact that reductions may start
right after sending the first two vectors. Every new vector will be reduced by
those transferred so far, and the communication will happen in the background.
This approach will allow to reduce the combined time of computations and data
transfers.

The gains from the on-the-fly reduction depend on the approach for sieving.
Applying ideas from Bos et al. [5] or Milde and Schneider [12] will require a

672 M. Andrzejczak and K. Gaj

different data transfer schedule and will be affected differently by the continuous
memory transfer. The ideal algorithm should allow avoiding any data transfer
costs.

5.4 Maximizing Performance with the Proper Schedule
of Operations

To efficiently accelerate any sieving with FPGAs (or any other devices), the
aforementioned elements must be included in the algorithm’s design.

Taking ideas from literature for parallel sieve, let us divide the GaussSieve
execution into three parts, as proposed by Ishiguro et al. [8] and extend it to
meet our requirements.

The algorithm will operate on a set S of newly sampled vectors, instead of
only one vector. The first part is the reduction of the set S by already reduced
vectors in the list L. A data transfer latency for one lattice vector depends on
the lattice dimensions and the data bus width w, as shown in Eq. 7. Thus, to
avoid the data transfer overhead, one reduced lattice vector should be processed
during the exact time required for a new one to be transferred. This can be
done by extending the size of the set S from one to k = ftl(n,w). Then, taking
into account the pipelining capabilities of the reduce function accelerator, during
the first reduction, after k clock cycles, the accelerator should be able to start
processing a new vector. The algorithm can take advantage of the pipelined
execution of instructions due to the lack of any data dependency between vectors
from the set S and an already used vector from the list L. The state of registers
during the first step of sieving is visualized in Fig. 3, 4 and 5. The number of
reductions in the first step is equal to k · |L|, and this is also the number of
clock cycles spent on computations. The communication cost will include only
sending first k+1 vectors, where the remaining vectors will be transferred during
computations. The FPGA latency will be then:

fp1
el (n,w) = k2 + k · |L| + fcl(n) (8)

In the second step, elements from the set S are reduced by themselves. The
set is already in FPGA memory, so there is no transfer overhead. The accelera-
tor is going to execute the normal GaussSieve algorithm. Without the transfer
overhead, the latency of computations is

fp2
el =

k2

2
· fcl(n) +

k2

2
+ fcl(n) (9)

During the second stage computations, a new batch S′ of sampled vectors
can be transferred to FPGA. The number of clock cycles required to transfer a
new data consisting of k vectors is expressed as k · ftl(n,w) = ftl(n,w)2 = k2,
and is smaller than the computational latency of the second step.

In the last step, all vectors from the list L are reduced by vectors from
the set S, which is already in the FPGA memory. Each vector v ∈ L is
going to be reduced by k vectors, and reductions may be performed in parallel.

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 673

Again, there is no communication overhead. If any reduction occurs, the lattice
vector is transferred back to CPU in the background. Otherwise if no reduction
happens, there is no need for moving a given vector back to CPU. The latency
of the third step is then

fp3
el = k · |L| + fcl(n) (10)

Fig. 3. The state of the accelerator and registers after the first clock cycle. The first
part of the next vector u′ is loaded, while the remaining parts of the SIPO unit contain
parts of the previously loaded u. The first vector v0 from the internal set is delivered
to the reduce module to be reduced by the vector u. FIFO contains k −1 elements and
is smaller by one element than the SIPO unit.

Fig. 4. The state of the accelerator and registers after z = fcl(n) clock cycles. The
reduction of the first vector is finished and the vector v0 is going to be put in the FIFO
queue. In every part of the reduce module, the same vector u is used for reduction.
Only z parts from k parts of the new vector u′ had been transferred so far. The FIFO
queue contains k − z elements.

By adding all the three steps together, it is possible to compute the latency
of adding k new vectors to the list L of already Gauss-reduced vectors. The
latency for the first execution will be then

fel(n,w) = k2 + 2 · k · |L| +
k2

2
· fcl(n) + k2 + 3 · fcl(n) (11)

674 M. Andrzejczak and K. Gaj

Fig. 5. The state of the accelerator and registers after k clock cycles. The entire new
vector u′ is on the FPGA side and will be used in the next run. Only vi remaining in
the reduce module had not been reduced by u so far and will be reduced in the next
z clock cycles.

As the new batch S′ of sampled vectors is transferred during the second step,
for every next execution, the cost of data transfer can be omitted and then the
final latency becomes:

fel(n,w) = k2 + 2 · k · |L| +
k2

2
· fcl(n) + 3 · fcl(n) (12)

Compared to CPU, the expected acceleration can be computed as

A =
2 · |L| + k

PCPU (n)
· H

k + 2 · |L| + k
2 · fcl(n) +

3 · fcl(n)
k

(13)

where the PCPU (n) is the performance of CPU for n dimensional lattice,
expressed as the maximum number of reduce operations per second, and H is
the maximum clock frequency of the hardware accelerator.

To determine the acceleration for the targeted platforms, we first measured
the performance of software implementation. We took advantage of the fplll
library, that was used as a basis of g6k code for computing the best result in the
TU Darmstadt SVP Challenge (as of July 2020, dimensions from 153 to 170).
Thus, the sieving operations implemented in fplll were used for constructing
experiments aimed at measuring performance of software sieving.

In the designed experiment, a large set of vectors is sampled and pairwise
reduced. Only the reduction time is measured. The size of the set is large enough
to exceed the processor’s cache memory, which allows us to measure the perfor-
mance in a real scenario.

For the experiments, an Amazon Web Service c5n.18xlarge instance
equipped with 72-core, a 3.0 GHz Intel Xeon Platinum processor was used.

In Fig. 6, an expected acceleration for the targeted lattice dimensions is pre-
sented, as the combined visualisation of Eq. 13 and obtained experimental data.
For dimensions being currently considered in the SVP challenge (dimensions
between 155 and 160), the expected acceleration from the proposed FPGA accel-
erator, compared to one CPU core, is around 30x. As for FPGA, clock frequency

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 675

was set to 200 MHz, and in our algorithm, there is no visible difference between
the considered data bus widths. The number of elements in L was set to 10,000.

The accelerator almost always performs the pipelined vector reduction. Only
in a small part of the second stage, the reductions are not pipelined. The com-
munication bottleneck has been completely eliminated. Almost the maximum
theoretical performance of the proposed accelerator (i.e., the performance with-
out taking into account the communication overhead) has been achieved with
this approach. Moreover, the accelerator can be adapted to other parallel sieves
and work with other devices. It is possible to use the proposed accelerator in the
parallel implementation of g6k as one of the devices performing the basic step
of sieving, a vector reduction.

Fig. 6. Expected acceleration offered by one accelerator deployed on FPGA.

Some of the algorithms (e.g., [5]) allow immediately reducing both processed
vectors (v−u and u−v) in the next consecutive steps. In that case, a branched
version of the accelerator can be used. Then, the third scenario changes, reducing
the execution only to the two first steps. In the branched version, the first and
the last steps are computed at a time. Thus, the total acceleration can increase
by around 1.5 times.

6 Multiple Parallel Instances of the Accelerator in One
FPGA

During the second stage, a new batch of sampled vectors is transferred to
an FPGA. However, communication requires less time than the computations
during the second stage. After all k vectors are transmitted, the data bus
waits unused until the third stage of the algorithm. The clock latency for the
data transfer CT (n) is k2 cycles, whereas the computational latency CC(n) is
k2 · fcl(n) + k2 + fcl(n)) cycles. Then, the ratio CC(n)

CT (n) indicates how many times

676 M. Andrzejczak and K. Gaj

the computations are longer. A difference between the two times can be used to
send several other sets S to other accelerators implemented in the same FPGA.
The maximum number of accelerators working in parallel is expressed then as:

CC(n)
CT (n)

=
k2 · fcl(n) + k2 + fcl(n)

k2

= fcl(n) + 1 +
fcl(n)

k2

≈ fcl(n) + 1

(14)

The term fcl(n)
k2 for large dimensions is always lower than 1 and can be omit-

ted. Then, for the targeted dimensions, n > 64, the computations are fcl(n) + 1
times longer than the communication. This number is also the maximum number
of accelerators working in parallel with the full performance each. It is possible
to connect more accelerator instances, but some of them will have to wait until
all new sets S′ are transferred. The other way to maximize the performance and
avoid data transfer bottlenecks is to extend the computation latency fcl.

In Fig. 7, a schedule representing the execution of the algorithm using sev-
eral accelerators working in parallel is presented. The number of accelerators is
denoted as σ, and every accelerator is denoted as Ai. The execution of the first
and the second stage starts at the same time in every accelerator. Vectors used
for reduction are everywhere the same. The last stage differs. Every next accel-
erator starts sieving k + fcl(n) clock cycles after the previous one and takes as
an input an output vector from the previous unit. The k+fcl(n) clock cycles are
required for processing the first vector by an accelerator and pushing it further.
The last accelerator starts working (σ − 1) · (k + fcl(n)) clock cycles after the
first one. This approach is different from the first stage because the reduction
vi − uj is performed instead of uj − vi, where vectors vi are loaded from CPU.

The inbound transmission is divided into two parts. In the first and the last
stage, the previously reduced vectors, marked by small rectangles, are transferred
to FPGA. In the second stage, a new batch of sampled vectors divided into σ
sets, marked as a bigger rectangle, is transferred.

The outbound transmission starts in the third stage and can proceed until
the end of the second stage. At first, the Gauss-reduced sets Si of vectors from
the second stage are sent back to CPU. As for results from the third stage, only
shortened vectors are pushed back to CPU. It is hard to estimate the number
of shortened vectors. To avoid data loses, the output FIFO queue should have
a large enough memory available. Fortunately, there is only one FIFO queue,
receiving data from the last accelerator.

The performance of multiple accelerators, implemented in one FPGA, scales
with their number. For σ accelerators, the performance will be ≈ σ times higher
compared to a single one. The acceleration is not exactly σ times better due to
the (σ−1) · (k+fcl(n)) clock cycles delay for the last module and proportionally
less for other modules in the third step.

After the entire vector is transferred, this vector may be saved to one of
the internal FIFO queues, currently not used by the reduce module, or directly

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 677

Fig. 7. The activity diagram for multiple accelerators in one FPGA. Ai denotes an i-th
instance of the accelerator in FPGA, and σ is the number of accelerators. k is the size
of sampled vectors sets S and S′. S is currently used, where S′ will be used in the next
run. fcl(n) is a function representing the reduction latency for n-dimensional vectors.

provided as one of the input vectors for reduction. Vectors from CPU are saved
in queues only in the second stage of the algorithm. When the reduction is
applied, there are two options. In the first and the second stage, vectors are
always written back to the currently used internal queue. In the second and the
third stage, vectors that were shortened during the reduction are placed in the
output FIFO queue. In the second step, all vectors are transferred back to CPU,
but in the third stage, only the reduced vectors are moved back. If vectors stay
the same (i.e., there was no reduction), then they are overwritten in FPGA.

A multi-core version consists of several instances connected into a chain of
accelerators. An output from one element is connected to the input of the next
element. The last instance is responsible for the data transfer back to CPU.

6.1 Final Results

To measure the highest possible acceleration, we tried to fit as many instances
as possible in one FPGA. The final number for 160-dimensional lattices is 20
accelerators working in parallel. This number is bigger than the boundary in
Eq. 14, so we extended the fcl latency to 12 to achieve higher clock frequency
(150 MHz) and this way mitigated the second stage data transfer bottleneck.
The design was described in the VHDL language and verified in simulation.
Our code passes all stages of the FPGA design process. However, the actual run
would be too long to be attempted with the current equipment and algorithm for
a 160-dimensional lattice. Then, we used a proposed in the literature method for
comparing cross-platform implementations [10], and we cost-compared our esti-
mated results using two Amazon AWS instances: f1.2xlarge equipped with Xilinx
FPGAs and c5.18xlarge aforementioned Intel Xeon. The results are presented
in Table 2. The FPGA-based AWS instance can solve an equivalent problem for
only 6% of the CPU-based instance price.

678 M. Andrzejczak and K. Gaj

Table 2. The normalized cost comparison for GaussSieve executed on CPU and
FPGAs. The performance of one core is used as a reference value to compute the accel-
eration for multiple cores. The total acceleration refers to the acceleration obtained by
fully utilizing a device, and it denotes a number of cores multiplied by their acceleration,
which is equivalent to the number of CPU cores that matches the same performance.
The normalized acceleration compares FPGA designs to a multi-core CPU. The price
per acceleration is in row E. This price is compared to the price for CPU in row F.

No Device CPU FPGA

A # of cores 72 20

B Acceleration per core 1 30

C Total acceleration (A · B) 72 600

D Normalized acceleration 1 8.32

E AWS price ($/h) 3.05 1.65

F Price per acceleration (E/D) 3.05 0.20

G Compared to CPU (F/F.CPU) 1 0.06

6.2 Comparison to Other Results

It is hard to compare cross-platform implementations. Looking only at the per-
formance, the presented implementation achieves more than 8x speed-up com-
pared to a 72-core CPU for a 160-dimensional lattice, so the implementation has
the performance of around 576 CPU cores. The [13] achieved 21.5x acceleration
for a 96-dimensional lattice when compared to [8] (2x CPUs with 8 cores), so it
has the performance of around 344 cores (in a lower dimension). And the cost of
power consumption will be very likely probably lower for FPGA when compared
to GPU.

7 Conclusions

This paper introduces a new approach to lattice sieving by using a massively
parallel FPGA design to accelerate the most common operation in every lattice
sieving algorithm – vector reduction. As an example, the GaussSieve algorithm
was accelerated. The acceleration is possible only with the proposed modification
to parallel versions of sieving algorithms. The modification is devoted to elimi-
nating the communication overhead between the specialized circuit, implemented
in FPGA, and the CPU, running the rest of the algorithm, by using a caching
strategy. The acceleration depends on the lattice dimension and increases lin-
early as a function of that dimension. For the targeted 160-dimensional lattice,
the proposed solution is estimated to achieve 8.32 better performance compared
to CPU. The results were obtained from FPGA simulation and CPU experi-
ments. Comparing the cost of solving the SVP problem in AWS, the presented
architecture will require only 6% of the CPU-based costs. Our project is also
the first attempt reported to date to accelerate lattice sieving with specialized
hardware.

A Multiplatform Parallel Approach for Lattice Sieving Algorithms 679

The proposed hardware accelerator can be used directly for almost any lattice
sieve performing a vector reduction operation. In this paper, the GaussSieve algo-
rithm was investigated as an example algorithm. The parallel hardware archi-
tecture with the proposed caching strategy can be adapted to other GaussSieve
modifications reported in the literature [5,8,12], as well as for other lattice siev-
ing algorithms with a better complexity. As a part of future work, the adoption
of the presented solution to algorithms other than GaussSieve will be explored.
Additionally, an application of the proposed solution to other algorithms hard
to implement in FPGAs due to the communication and memory bottleneck will
be investigated.

References

1. SVP Challenge. https://www.latticechallenge.org/svp-challenge/
2. Ajtai, M., Kumar, R., Sivakumar, D.: An overview of the sieve algorithm for the

shortest lattice vector problem. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol.
2146, pp. 1–3. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44670-
2 1

3. Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice
vector problem. In: Proceedings of the Thirty-Third Annual ACM Symposium
on Theory of Computing, STOC 2001, pp. 601–610. ACM Press (2001). https://
doi.org/10.1145/380752.380857. http://portal.acm.org/citation.cfm?doid=380752.
380857

4. Albrecht, M.R., Ducas, L., Herold, G., Kirshanova, E., Postlethwaite, E.W.,
Stevens, M.: The general sieve kernel and new records in lattice reduction. In:
Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 717–746.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3 25

5. Bos, J.W., Naehrig, M., van de Pol, J.: Sieving for shortest vectors in ideal lattices:
a practical perspective. Int. J. Appl. Cryptol. 3(4), 313–329 (2017). https://doi.
org/10.1504/IJACT.2017.089353

6. Detrey, J., Hanrot, G., Pujol, X., Stehlé, D.: Accelerating lattice reduction with
FPGAs. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS,
vol. 6212, pp. 124–143. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-14712-8 8

7. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new
cryptographic constructions. In: Proceedings of the Fourtieth Annual ACM Sym-
posium on Theory of Computing, STOC 2008, p. 197. ACM Press (2008). https://
doi.org/10.1145/1374376.1374407. http://dl.acm.org/citation.cfm?doid=1374376.
1374407

8. Ishiguro, T., Kiyomoto, S., Miyake, Y., Takagi, T.: Parallel gauss sieve algorithm:
solving the SVP challenge over a 128-dimensional ideal lattice. In: Krawczyk,
H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 411–428. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-642-54631-0 24

9. Klein, P.: Finding the closest lattice vector when it’s unusually close. In: Pro-
ceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2000, pp. 937–941. Society for Industrial and Applied Mathematics, USA
(2000)

https://www.latticechallenge.org/svp-challenge/
https://doi.org/10.1007/3-540-44670-2_1
https://doi.org/10.1007/3-540-44670-2_1
https://doi.org/10.1145/380752.380857
https://doi.org/10.1145/380752.380857
http://portal.acm.org/citation.cfm?doid=380752.380857
http://portal.acm.org/citation.cfm?doid=380752.380857
https://doi.org/10.1007/978-3-030-17656-3_25
https://doi.org/10.1504/IJACT.2017.089353
https://doi.org/10.1504/IJACT.2017.089353
https://doi.org/10.1007/978-3-642-14712-8_8
https://doi.org/10.1007/978-3-642-14712-8_8
https://doi.org/10.1145/1374376.1374407
https://doi.org/10.1145/1374376.1374407
http://dl.acm.org/citation.cfm?doid=1374376.1374407
http://dl.acm.org/citation.cfm?doid=1374376.1374407
https://doi.org/10.1007/978-3-642-54631-0_24

680 M. Andrzejczak and K. Gaj

10. Kuo, P.-C., et al.: Extreme enumeration on GPU and in clouds. In: Preneel, B.,
Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 176–191. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-23951-9 12

11. Micciancio, D., Voulgaris, P.: Faster exponential time algorithms for the shortest
vector problem. In: Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1468–1480. Society for Industrial and Applied
Mathematics. https://epubs.siam.org/doi/10.1137/1.9781611973075.119

12. Milde, B., Schneider, M.: A parallel implementation of GaussSieve for the shortest
vector problem in lattices. In: Malyshkin, V. (ed.) PaCT 2011. LNCS, vol. 6873, pp.
452–458. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23178-
0 40

13. Yang, S.-Y., Kuo, P.-C., Yang, B.-Y., Cheng, C.-M.: Gauss Sieve algorithm on
GPUs. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 39–57.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4 3

https://doi.org/10.1007/978-3-642-23951-9_12
https://epubs.siam.org/doi/10.1137/1.9781611973075.119
https://doi.org/10.1007/978-3-642-23178-0_40
https://doi.org/10.1007/978-3-642-23178-0_40
https://doi.org/10.1007/978-3-319-52153-4_3

Effect of Evaporation on Aggregation
Kinetics of Clusters: A Monte Carlo

Simulation Study

Nongdie Tan1, Lei Chen1, Xianglin Ye1, Hao Zhou1, and Hailing Xiong1,2(B)

1 College of Computer and Information Science, Southwest University,
Chongqing 400715, China

xionghl@swu.edu.cn
2 Business College, Southwest University, Chongqing 402460, China

Abstract. In this paper, an aggregation model suitable for an evapo-
ration system was constructed based on the cluster-cluster aggregation
model. Evaporation affects not only the diffusion and aggregation proba-
bility of clusters, but also the rate of the whole aggregation process. The
analysis of the aggregation model and the evaporation properties in an
open system shows that the rate of colloidal aggregation usually depends
on the diffusion probability and the aggregation probability in the diffu-
sion process. The diffusion model and aggregation model of the colloid
was derived from the electric double-layer theory and the properties of
the evaporation system. The evaporation model was constructed to sim-
ulate the movement of the colloid in the evaporation process. The cluster
distribution was analyzed using the cluster weight average. The influence
of monomer aggregation on the aggregation process was also analyzed.
The results show that the cluster dominated by Brownian diffusion has
a decreasing effect on the aggregation as the simulation progresses. With
slow evaporation, the aggregation process is almost the same as that of
the basic aggregation model, whereas with fast evaporation, the evapo-
ration accelerates the aggregation process.

Keywords: Sticking model · Collision probability · Aggregation
probability · Aggregation kinetics · Monte Carlo simulation

1 Introduction

Evaporation is a common phenomenon in nature and has been widely studied in
many fields. In the field of colloidal chemistry, evaporation has been most widely
studied in connection with the preparation of thin films. The evaporation system
is a typical open system: for example, droplet evaporation [1], thin film growth
[2,3], and nanofilm preparation [4,5]. In the drying process of colloidal suspen-
sions such as nanofluids, the particles distributed in the fluid can self-assemble to
form various complex structures [1] (e.g., branched structures [6]). Researchers
have mostly focused on the self-assembly properties of dispersed particles during
c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 681–694, 2020.
https://doi.org/10.1007/978-3-030-60245-1_46

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_46&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_46

682 N. Tan et al.

evaporation and the branching structure pattern after drying [1]. For example,
Yuki et al. [7] used the lattice-gas model to study the preparation of nanofilms
by evaporation. The state of the lattice is determined by calculating the energy
change of each lattice. Studies have shown that, at high Pclet numbers, dense
clusters are easily obtained by evaporation. Zigelman et al. [8] studied the evap-
oration of droplets with volatile suspensions. They found that the rate of liquid
evaporation and the local aggregation rate of particles determine the geometry of
the sediment. The evaporation rate affects the stability of the solution in which
the particles are located, which in turn affects the aggregation properties of the
particles and the final aggregation structure. Semenov et al. [9] studied the pro-
cess of droplet diffusion and evaporation in the solid mechanism in the case of
complete wetting and partial wetting at the same time. The results showed that
diffusion and evaporation dominated in different stages of the process. Li et al.
[10] studied the evaporation characteristics of immobilized nanofluid droplets.
Their results showed that the volume percentage of nanoparticles and surface
wettability affects their diffusion behavior.

The influence of evaporation on the motion properties of particles deter-
mines the structure of clusters. Previous studies have mostly been based on the
molecular-dynamics method, which calculates the interaction potential between
particles at each step. In evaporation experiments, advanced measuring instru-
ments or high-precision analysis technology are needed to obtain the microstruc-
ture parameters of clusters: for example, particle size, density, and porosity. This
method is lengthy and expensive. Moreover, it is difficult to find the law underly-
ing the random phenomenon by ordinary experimental methods, and the method
ignores the evolution of particle morphology in the process of aggregation. Monte
Carlo simulation is a recently developed computer-simulation method that can
be used to study the interaction of colloidal clusters. It transforms the complex
forces between particles into corresponding probability models and reduces the
amount of calculation required. Moreover, it is suitable for large-scale particle
simulation and can be used to simulate the thermodynamic properties, dynamic
properties, structural properties, and morphological characteristics of colloids
[11]. It is therefore of benefit to summarize the characteristics of evaporation
systems and use Monte Carlo simulation to establish an evaporation model that
reflects the dynamic process of particle aggregation [12].

Based on the clusterCcluster aggregation (CCA) model, this paper proposes
an evaporation model using Monte Carlo simulation to study the diffusion and
aggregation of cluster particles in an evaporation system. In the evaporation
system, a large number of colloidal particles are distributed in the systems initial
state, and water evaporates at a constant rate. As time passes, the amount
of solvent in the system decreases, and the stability of the dispersion in the
system is affected by the solvent evaporation. solvent evaporations Its influence
is mainly reflected in the following aspects: (1) the decrease of water content
in the system leads to an increase of electrolyte concentration, a change in the
electric double-layer interaction between particles in the colloidal dispersion, and
a change in the particle aggregation probability; (2) the decrease of solvent and
the constant number of particles lead to an increase in particle concentration

A Monte Carlo Simulation Study 683

and the probability of collision between particles; (3) evaporation causes the
liquid level to drop, which reduces the number of clusters on the surface of
the body and affects their movement. Evaporation therefore not only affects
the diffusion and aggregation probability of clusters, but also affects the rate
of the whole aggregation process. The analysis of the open-system aggregation
model and evaporation properties shows that the rate of colloidal aggregation
usually depends on the collision probability and the aggregation probability in
the collision process. This paper defines the collision probability and adhesion
probability of colloids according to the characteristics of the evaporation system.
The evaporation model is then constructed.

This paper is structured as follow: By referring to the idea of evaporation
process of the CCA model, the diffuse model and aggregation model proposed in
Sect. 2.1 and 2.2. Section 3.1 demonstrated effect of evaporation rate on aggre-
gation results. Section 3.2 analyzed effect of evaporation rate on weight average
of system. Section 3.3 demonstrated Cluster distribution under the conditions
of rapid evaporation and slow evaporation. Section 3.4 analyzed Influence of
monomer aggregation probability on aggregation process.

2 Construction of Evaporation Model

2.1 Construction of Diffuse Model

For the evaporation system, it is assumed that the cube with height L acts as
the container of colloidal dispersion, and a large number of colloidal particles are
distributed. All evaporation takes place on the liquid surface, the evaporation is
carried out at a stable rate, and the surface area of the liquid remains stable.
When the surface water evaporates at a specified rate, the surface of the suspen-
sion will drop, and the particles and clusters on the surface of the suspension
will drop together. In the process of falling, the particles will collide with the
particles below the liquid surface. Similar to the collisions caused by the Brow-
nian motion of particles, these collisions may lead to aggregations. The height
H(T) of the suspension can be expressed as:

H(t) = L − Ve (1)

where Ve is the evaporation rate and t is the current time. The corresponding
unit time t can be expressed as [13]:

Δt =
l2B

6M1(0)
(2)

where lB is the step length of Brownian motion and M1(0) is the diffusion
coefficient of elementary particles at the initial time (t = 0).

According to the Einstein relation, the diffusion coefficient M1(t) of a single
particle can be expressed as [13]:

M1(t) =
kBT

6πη(t)R
(3)

684 N. Tan et al.

where KB is the Boltzmann constant, T is the absolute temperature, η(t) is the
solution viscosity, and R is the radius of the colloidal particles.

The solution viscosity η(t) is related to the volume fraction C(t) of the dis-
persion (i.e., the aggregation of the dispersion). Therefore, η(t) can be expressed
as [14]:

η(t) = η0 ∗ (1 + 2.5C(t)) (4)

where η0 is the viscosity of the pure solution. The volume fraction C(t) of the dis-
persion is determined by the number of dispersions and the size of the simulation
system:

C(t) = N(t)/Vs(t) (5)

where N(t) is the number of dispersions in the current system. If aggregation
is considered in the open system without considering the occurrence of cluster
dispersion, then small clusters will aggregate to form larger clusters, and the
number of dispersions in the system will decrease.

The volume of the floating liquid, which decreases with the evaporation, can
be expressed as:

Vs(t) = L2 ∗ H(t) (6)

Additionally, according to formulas (1) and (6), the expression of Di(t) is as
follows:

Di(t) =
kBT

6πη0r
[1 − 2.5N(t)

L2(L − vet) + 2.5N(t)
] ∗ Sr (7)

2.2 Construction of Aggregation Model

The stability of colloids can be quantified by the stability ratio W , which is
the ratio of the number of collisions between particles to the effective number
of collisions after the collision between particles [15]. The larger the W , the
more stable the system is, and the less likely the particles in the system are
to aggregate. Therefore, assuming that the particle-bonding probability P1 is in
opposition to the system stability rate W , P1 can be expressed as:

P1 = 1/W (8)

The Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is used to describe
the stability of charged colloidal particle aggregation and the interaction between
particles, which is applicable to the charged colloidal solution theory without
considering chemical adsorption [16]. When the solution in the system is a strong
electrolyte solution–that is, the electrolyte can be completely ionized [17]–the
stability of the system can be related to the electrolyte concentration CE by
using DLVO theory. When particles move in the electrolyte solution, the parti-
cles move close to one another, which can produce several forces. The classical
forces are van der Waals attraction and electrostatic repulsion. The relationship
between van der Waals gravity UA, electrostatic repulsion UR, and the total
potential energy U is shown in Fig. 1. Different electrolyte solutions have differ-
ent U curves. The repulsion or attraction between particles can be judged by
the total potential energy U between them.

A Monte Carlo Simulation Study 685

Fig. 1. Variation curves of gravitational potential energy UA, repulsion potential energy
UR, and comprehensive total potential energy U by distance between particles [18]

As shown in Fig. 1, when a larger barrier peak Umax appears on the total
potential energy curve, repulsion is dominant. If particles are to aggregate, they
must cross this barrier. Therefore, the size of the repulsion barrier is the key
to the stability of colloids. It has been shown that W is almost completely
dependent on the barrier.

W ≈ exp(Umax/kBT) (9)

where Umax is the maximum barrier and kB is the Boltzmann constant. The
logarithm of W can be expressed as follows:

ln(W) ≈ Umax/kBT (10)

Umax can be expressed as [19]:

Umax =
C1

k
− C2 (11)

where C1 and C2 are the surface charge constants of ions, which depend on the
type of solution; and k is the Debye–Huckel change. Its reciprocal is often used
to characterize the thickness of the electric double layer. The expression is [19]:

k−1 =
√

ε0εrT/2000F 2I (12)

where ε0 and ε1 denote the relevant dielectric constants, F is the Faraday con-
stant, and I is the ionic strength. Formula (13) can be further simplified as
follows:

k−1 = C3/
√

I (13)

686 N. Tan et al.

where C3 is a constant related to surface charge, and its value can be expressed
as:

C3 =
√

ε0ε0T/2000F 2 (14)

The ionic strength can be expressed as:

I =
1
2 Σ

B
Z2

B/2 (15)

where MB is the ion concentration in the system and ZB is the ionic valence
number. Since strong electrolyte solutions can be completely ionized, there is a
positive correlation between ionic strength and electrolyte concentration. There-
fore, the ionic strength I can be expressed as:

I = C4 ∗ CE (16)

where C4 is a constant related to the type of electrolyte solution, which can be
expressed as: can be expressed as:

C4 = Σ
B

Z2
B/2 (17)

CE is the electrolyte concentration of the system. Combining equations (9) and
(17), the aggregation probability can be expressed as:

P1 = e
K1√
CE /ek2 (18)

Taking into account the evaporation of solvent, the CE concentration of elec-
trolyte varies with time [20]:

CE(t) =
L

L − vet
C0 (19)

where C0 is the initial electrolyte concentration. The expression of Pij(T) can
be obtained by synthesizing formulas (5), (19), and (20):

Pij(t) =
e
K1

√
L−vet
LC0

eK2
∗ (i ∗ j)σ (20)

The solution presented above was used to determine the influence of solvent
evaporation on the diffusion coefficient and aggregation probability. This was
then combined with the CCA model to simulate the evaporation of an open
system.

3 Experiment and Analysis

3.1 Effect of Evaporation Rate on Aggregation Results

The simulation was carried out in a three-dimensional lattice simulation sys-
tem with side lengths of 100 cm. The initial cluster concentration was 0.01, and

A Monte Carlo Simulation Study 687

1,000 particles were randomly distributed in the system. In this study, the initial
aggregation probability P1 is set to 0.1. The final results of cluster aggregation
at different evaporation rates obtained after water evaporation of the system
are shown in Fig. 2. The evaporation rates VE were set to 0.001 dΔt−1, 0.01
dΔt−1, 0.1 dΔt−1, and 1 dΔt−1, where d is the diameter of the particle. The
side length is the length of the lattice unit. To distinguish clusters, the simulation
program identifies each cluster using different colors. To distinguish clusters, the
simulation program identifies each cluster using different colors.

Fig. 2. The final state diagram of cluster aggregation at different evaporation rates

Evaporation mainly affects the water on the surface of the system. With the
increase of the evaporation rate, therefore, the clusters on the surface of the
system are susceptible to the drop in the liquid level and move continuously
downward. In the downward movement, a cluster may collide with other clus-
ters and aggregate, and so the whole process and the final cluster structure are
susceptible to evaporation.

688 N. Tan et al.

When the evaporation rate is low, the particles or clusters in the system are
mainly affected by Brownian motion and there is a large probability of random
diffusion, which leads to collision between particles and clusters and aggrega-
tion growth, resulting in the final open and loose formation of the aggregate.
For example, the diffusion-limited aggregation model taking into account only
Brownian motion results in the formation of branching clusters centered on the
root node [21]. However, with the increase of evaporation rate, the downward
movement of surface clusters occurs earlier, and the free diffusion of surface
clusters is limited. At the same time, the number of particles colliding with
the surface clusters increases gradually, and the surface clusters become larger.
Moreover, the newly formed large clusters will further affect the movement of
the clusters below, and more clusters and particles will combine with the sur-
face clusters rather than grow freely. With the increase of the evaporation rate,
therefore, the final cluster surface becomes flatter.

When the evaporation rate is high, the aggregation of clusters due to random
collision of Brownian motion is relatively weak. Under these conditions, there are
more single particles or small clusters in the system. On the one hand, clusters
formed by the aggregation of small clusters are usually denser than those formed
by the aggregation of large clusters. On the other hand, when the surface clusters
move downward due to the drop of the liquid surface, they may collide with the
clusters below. Compared with large clusters, small clusters more easily enter the
upper clusters and fill the pores of large clusters. As a result, the final clusters are
denser. As the evaporation rate increases, therefore, the clusters become denser.

There is a competitive relationship between surface evaporation and Brow-
nian action. Under the condition of a low evaporation rate, the clusters mainly
behave according to Brownian motion. Brownian motion makes clusters disperse,
and the resulting aggregates are generally anisotropic. Evaporation makes the
surface clusters move downward, and the lower clusters move downward together,
which can reduce the anisotropy of the cluster structure. This conclusion is con-
sistent with the simulation experiment of droplet evaporation. Evaporation and
particle diffusion dominate at different stages, and evaporation affects diffusion
[9,22].

3.2 Effect of Evaporation Rate on Weight Average of System

To study the mass distribution of clusters in the evaporation process, the con-
cept of the mass weight average (referred to as weight average) of clusters is
introduced [13]. The change in weight average can reflect the growth rate of
clusters in the system.

S(t) = Σs2ns(t)/Σsns(t) (21)

where ns(t) is the cluster concentration with mass s at time t. In the actual
simulation, the number of clusters is used to express the quality of clusters, and
so ns(t) can be understood as the number of clusters with the size s at time t,
as shown in Fig. 3.

A Monte Carlo Simulation Study 689

Fig. 3. Time dependence of cluster weight at different evaporation rates

In the simulation process, the cluster weight changes with time under different
evaporation rates, as shown in Fig. 3. It was found that the average weight of
clusters in the system changes very slowly initially, but after a long period of
time, the average weight begins to increase rapidly and reaches the maximum
value in a short time. This is because, in the beginning, the system consists of
single particles or small clusters, and the cluster motion is mainly affected by
Brownian action. As the simulation progresses, a layer of clusters gradually forms
on the surface, which continuously sweep the lower clusters during the process
of falling, and the clusters collide with one another to form larger clusters. The
weight of the system increases rapidly and reaches the maximum value in a
short time. In addition, with the increase of the evaporation rate, the liquid
level drops faster, and the surface clusters accumulate faster, which makes the
weight average increase faster.

3.3 Cluster Distribution Under the Conditions of Rapid
Evaporation and Slow Evaporation

Figure 4 shows the time-dependence of clusters of different sizes in the system
at evaporation rates of 0.001 dΔt−1 (slow evaporation) and 1 dΔt−1 (rapid
evaporation). Given that the trend in the concentration change of clusters of sizes
other than those marked in the graph is similar to that of six-particle clusters,
this paper examines only the changes from single-particle to six-particle clusters
and total clusters. It can be seen from Fig. 4 and Fig. 5 that the total number of
clusters and the number of single particles decrease as the simulation progresses,
and the number of clusters of other sizes increase first and then decrease.

690 N. Tan et al.

Fig. 4. Time-dependence of cluster numbers in the system at evaporation rate of
0.001dΔt−1

As shown in Fig. 4, when the solvent is evaporated to dryness, only one
cluster remains in the final simulation system. Because there is little difference
between the aggregation at a low evaporation rate and the aggregation under
Brownian motion. The cluster has enough time for random motion, collision and
aggregation, and finally aggregation into a cluster. In Fig. 5, when the solvent
is evaporated to dryness, many clusters are still left in the system. Due to the
aggregation at a high evaporation rate, the frequency of downward movement of
clusters is higher. The collision aggregation caused by Brownian motion is fre-
quently interrupted, and the aggregation process is weakened. When the system
is evaporated to dryness, some clusters still exist at the bottom. This situation
is similar to the cluster state in Fig. 2. In addition, in terms of simulation time,
a high evaporation rate takes less time to simulate than a low evaporation rate.
This phenomenon is also reflected in the change diagram of cluster weight aver-
age. In other words, evaporation accelerates the aggregation process and affects
the final cluster structure.

A Monte Carlo Simulation Study 691

Fig. 5. Time-dependence of cluster numbers in the system at evaporation rate of
0.1dΔt−1

3.4 Influence of Monomer Aggregation Probability on Aggregation
Process

According to the evaporation model, in addition to the evaporation rate,
monomer aggregation probability is an important factor affecting the evapo-
ration process. According to the different probabilities of particle aggregation,
the classical CCA model can be divided into reaction–limited colloid aggrega-
tion (RLCA) and diffusion–limited colloid aggregation (DLCA) models. These
two models correspond to slow aggregation and fast aggregation, respectively.
The particle aggregation probability P1 is set to 0.01 and 1, respectively, and
the evaporation rate is fixed at 0.01 dΔt−1. The termination condition of the
simulation is still the complete evaporation of water from the system. The clus-
ter state diagram is shown in Fig. 5. This paper presents the state diagrams of
intermediate clusters with liquid surface heights of 80 D, 40 D, and 0 D under
two kinds of aggregation probabilities.

Figure 6 (a), (c), and (e) represent slow aggregation (P1 = 0.01). The aggrega-
tion mainly occurs on the surface of the system. The surface cluster aggregation
is caused by the drop of the liquid level. The final clusters are dense, which is
consistent with the characteristics of RLCA (slow speed and high fractal dimen-
sion). Figure 6 (b), (d), and (f) represent fast aggregation. Although there is
growth in surface clusters due to the drop of the liquid level in the system, other
clusters far from the surface layer have a high probability of aggregating with
other clusters before being affected by the surface clusters, which leads to the
formation of clusters with many branches. Figure 6 (e), (c), and (f) represent the

692 N. Tan et al.

Fig. 6. Cluster aggregation snapshot in the intermediate state of fast aggregation and
slow aggregation at evaporation rate of 0.01dΔt−1

final clusters when the aggregation probability is 0.01, 0.1, and 1, respectively.
As the aggregation probability increases, the structure of clusters becomes more
open. This is consistent with the conclusion in the classic CCA model [23].

A Monte Carlo Simulation Study 693

4 Conclusion

In this paper, an evaporation aggregation model was established by analyzing
the characteristics of an evaporation system and the CCA aggregation model.
This study also examined the particle motion in the cubic lattice simulation
space. As there are too many free variables involved in the model, the aggrega-
tion probability P1 is set as a constant. Additionally, the paper discussed the
effects of evaporation rate and monomer aggregation probability on the aggre-
gation process, and it analyzed the final state of cluster aggregation, the number
of clusters at all levels, and the weight average of clusters. The results show that
evaporation leads to the formation of dense clusters on the surface of the system
and drives the clusters below to move downward, which accelerates the aggrega-
tion process. In addition, to a certain extent, the increase of the evaporation rate
limits the free diffusion of clusters, resulting in the formation of denser clusters.

Acknowledgements. This work was financially supported by the National Natural
Science Foundation of China (41271292), the Key Project of Chongqing Science and
Technology Bureau (cstc2019jscx-gksbX0103), the Fundamental Research Funds for
the Central Universities of China (SWU2009107) and the Key Project of Education
Department of Anhui Province of China (KJ2019A0864).

References

1. Rabani, E., et al.: Drying-mediated self-assembly of nanoparticles, 14(4), 1449–
1454 (2012)

2. Crivoi, A., Duan, F.: Evaporation-induced formation of fractal-like structures from
nanofluids. Physical Chem. Chemical Phys. 426(6964), 271–274 (2016)

3. Crivoi, A., Duan, F.: Evaporation-induced branched structures from sessile
nanofluid droplets. J. Phys. Chem. C. 117(15), 7835–7843 (2013)

4. Yosef, G., Rabani, E.: Self-assembly of nanoparticles into rings: a lattice-gas model.
J. Phys. Chem. B. 110(42), 20965–20972 (2006)

5. Wasik, P., et al.: Hierarchical surface patterns upon evaporation of a ZnO nanofluid
droplet: effect of particle morphology. Langmuir 34(4), 1645–1645 (2018)

6. Zhang, H., et al.: Modeling the self-assembly of nanoparticles into branched aggre-
gates from a sessile nanofluid droplet. Appl. Therm. Eng. 94, 650–656 (2016)

7. Kameya, Y.: Kinetic Monte Carlo simulation of nanoparticle film formation
viananocolloid drying. J. Nanopart. Res. 19(6), 214 (2017)

8. Zigelman, A., Manor, O.: Simulations of the dynamic deposition of colloidal par-
ticles from a volatile sessile drop. J. Colloid Interface Sci. 525, 282–290 (2018)

9. Semenov, S., et al.: Simultaneous spreading and evaporation: recent developments.
Adv. Colloid Interface Sci. 206, 382–398 (2014)

10. Li, Y., et al.: Nanoparticle-tuned spreading behavior of nanofluid droplets on the
solid substrate. Microfluid. Nanofluid. 18(1), 111–120 (2015)

11. Xiong, H.-L., Yang, Z.-M., Li, H.: Coupling effects of diffusive model and sticking
model on aggregation kinetics of colloidal particlesA Monte Carlo simulation study.
Acta Phys. -Chim. Sin. 30(3), 413–422 (2014)

12. Hai-Ling, X., Yong-Zhi, Y., Hang, L., Hua-Ling, Z., Xian-Jun, J.: Computer sim-
ulation of colloidal aggregation induced by directionalism of long range van der
waals forces. Acta Phys. -Chim. Sin. 23(08), 1241–1246 (2007)

694 N. Tan et al.

13. Leone, R., et al.: Coupled aggregation and sedimentation processes: three-
dimensional off-lattice simulations. Eur. Phys. J. E. 7(2), 153–161 (2002)

14. Yuan, X., et al.: Cluster formation and rheology of photoreactive nanoparticle
dispersions. Langmuir 24(10), 5299–5305 (2008)

15. Mellema, M., van Opheusden, J.H.J., van Vliet, T.: Relating colloidal particle
interactions to gel structure using brownian dynamic simulations and the fuchs
stability ratio. J. Chem. Phys. 111(13), 6129 (1999)

16. Vincent, B.: Early (pre-DLVO) studies of particle aggregation. Adv. Colloid Inter-
face Sci. 170(1), 56–67 (2012)

17. Sun, G., Yi, Z., Ngai, T.: Particle-stabilized interfaces and their interactions at
interfaces. Acta Phys. Chim. Sin. 36(10), 1910005 (2020)

18. Zhen, Z., Li, N.: Molecular Force and Colloidal Stability and Sedimentation. Higher
Education Press, Beijing (1995)

19. Kim, S., et al.: Three-dimensional off-lattice Monte Carlo simulations on a direct
relation between experimental process parameters and fractal dimension of col-
loidal aggregates. J. Colloid Interface Sci. 344(2), 353–361 (2010)

20. Xiong, H., et al.: Application of the ClusterCCluster Aggregation model to an open
system. J. Colloid Interface Sci. 344(1), 37–43 (2010)

21. Alves, S.G., Ferreira, S.C., Martins, M.L.: Strategies for optimize off-lattice aggre-
gate simulations. Braz. J. Phys. 38(1), 81–86 (2008)

22. Li, Y., et al.: Nanoparticle-tuned spreading behavior of nanofluid droplets on the
solid substrate. Microfluid. Nanofluid. 18(1), 111–120 (2015)

23. Li, C., Xiong, H.: 3D simulation of the ClusterCCluster Aggregation model. Com-
put. Phys. Commun. 185(12), 3424–3429 (2014)

Processing in Memory Assisted MEC 3C
Resource Allocation for Computation

Offloading

Yang Yang1(B), Xiaolin Chang1, Ziye Jia2, Zhu Han3, and Zhen Han1

1 Beijing Key Laboratory of Security and Privacy in Intelligent Transportation,
Beijing Jiaotong University, Beijing, China
{16112082,xlchang,zhan}@bjtu.edu.cn

2 State Key Laboratory of ISN, Information Science Institute, Xidian University,
Xi’an, China

ziyejia@stu.xidian.edu.cn
3 Department of Electrical and Computer Engineering, University of Houston,

Houston, TX, USA
hanzhu22@gmail.com

Abstract. The improvement of Internet of Things (IoT) applications
has led to a substantial increase in the number of multiple resources
of computation, communication, and caching (3C). The fifth genera-
tion (5G) and multi-access edge computing (MEC) are promising to
enhance the computation offloading of IoT applications with high per-
formance and reliability. According to resource-consuming preferences,
IoT applications can be divided into computation-hungry applications
and memory-hungry applications. To deal with the computation-hungry
applications, Graphics Processing Units (GPUs) are increasingly used to
process simple computation tasks. Meanwhile, the running of memory-
hungry applications is accompanied by massive data transfers between
processing core and memory. These transfers can result in significant
energy and performance costs. Processing in memory (PIM) is a com-
puting paradigm that avoids most data movement costs by performing
a part of the computations directly in the memory. In this paper, we
focus on offloading computation tasks in MEC that require 3C resources
with high efficiency and low energy consumption considering latency and
resilience constraints in a PIM-assisted multi-core (PAMC) architecture
of physical machines (PMs). We formulate an optimization problem to
minimize the total weighted resource costs and energy consumption. We
also present an algorithm based on the column generation to solve the
problem. Simulation results demonstrate that the proposed PAMC archi-
tecture can achieve good results in terms of energy consumption and
resources utilization in comparison with the traditional PMs’ architec-
ture with the same resources.

Keywords: Column generation · Computation offloading · GPU ·
Multi-access edge computing · Processing in memory

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 695–709, 2020.
https://doi.org/10.1007/978-3-030-60245-1_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_47&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_47

696 Y. Yang et al.

1 Introduction

The Internet of Things (IoT) is invaluable due to its ability to connect every-
thing in the physical world with wireless communications [1]. The improvement
of the IoT applications has led to a substantial increase in the number of multiple
resources of computation, communication, and caching (3C). The fifth genera-
tion (5G) is regarded as the most promising technology to provide efficient and
flexible support for IoT applications. 5G providers superior performance and
quality of experience for applications that consume more resources and are also
timing and resilience sensitive [2]. To guarantee the quality of service (QoS), it is
critical to design an efficient and reliable computation offloading mechanism due
to the limited battery capacity and computing ability of mobile terminal devices
(MTDs) [3]. Transferring some compute-intensive processes from an MTD to a
multi-access edge computing (MEC) host enables an acceleration of the appli-
cation on the various types of mobile devices [4]. Besides, electrical energy con-
sumption is one of the major operating costs of MEC. With the unprecedented
growth in MEC, reducing energy consumption is a primary challenge for service
providers (SPs). Computation offloading is a complex task and it may result in
high energy consumption if it is not addressed effectively [5].

According to the resource-consuming preferences, the IoT applications can be
divided into two types, computation-hungry applications, and memory-hungry
applications, respectively. To deal with the computation-hungry applications,
Graphics Processing Unit (GPU) which features high-performance parallel com-
puting is increasingly used to proceed simple computation tasks in conjunction
with CPU. IoT workloads such as big data analytic, machine learning, and arti-
ficial intelligence (AI), require highly parallel computing that the CPU is not
specialized at. A group of GPU cores can execute hundreds of threads in parallel,
where cores running the same instructions can have divergent control flows [6]. In
cloud computing scenarios, GPUs have been used for AI and high-performance
computing (HPC) by IBM [7]. Reference [8] studied the problem of how to con-
struct a runtime target device between GPU and CPU, which also should be
considered in the MEC computation offloading.

Data transfer overhead between computing cores and memory hierarchy has
been a persistent issue for von Neumann architectures and the problem has
only become more challenging with the emergence of multi-core systems [9]. The
energy and performance costs to move this data between the memory subsystem
and the processing cores now dominate the total costs of computation. Processing
in memory (PIM) is a computing paradigm that avoids most data movement
costs by doing a part of computations directly in the memory [10]. Both CPU and
GPU architectures and applications, where main memory bandwidth is a critical
bottleneck can benefit from the use of PIM. Authors in [11] proposed designs
that enable PIM in the three major memory technologies. A survey [12] has been
studied in which the authors present an analysis of various dynamic random
access memory (DRAM) designs and PIM systems to reduce memory access
time. In [13], a task-offloading condition and GPU-based PIM configurations are

Processing in Memory Assisted MEC 3C Resource Allocation 697

Fig. 1. PAMC PMs’ architecture in
MEC.

Fig. 2. Traditional PMs’ architecture
in MEC.

proposed while focusing on energy efficiency. But they didn’t apply it in 5G and
MEC computation offloading scenario.

The computation offloading problem is usually defined as integer linear pro-
gramming (ILP) and the total solution set is exponential. General exhaustive
searching is impossible with a large number of IoT devices. The column genera-
tion is an efficient method for large-scale ILP problems which have been widely
used in scheduling problems [14–16].

Driven by the above considerations, this paper aims to explore an effective
and efficient 3C resource allocation approach for computation offloading in MEC.
The approach can auto-select offloading destinations according to services type
to minimize energy consumption (defined later in (2)) and SP’s long-term cost
(defined later in (3)) considering latency and resilience constraints. We design
a PIM-assisted multi-core (PAMC) architecture for physical servers in MEC to
help improving the performance of computation offloading. Then we formulate
the problem as an ILP and propose a column generation-based computation
offloading algorithm which named CGBA to solve it. A comprehensive com-
parative study is made between the PAMC and traditional topology with the
same amount of resources using CGBA. To the best of our knowledge, no per-
formance evaluation of these two architectures has been carried out in the study
of 3C computation offloading.

The remainder of this paper is organized as follows. In Sect. 2, the system
model is presented. Section 3 presents the proposed CGBA algorithm. Section 4
provides the results for performance evaluation. Finally, we conclude the paper
in Sect. 5.

2 System Model

This section presents the system model of the computation offloading problem.
Firstly, we introduce the structures of PAMC. Next we describe the architec-
tures of substrate topologies and computation tasks. Finally, we provide the
corresponding problem formulations for the computation offloading problem.

Figure 1 and Fig. 2 show the PAMC and the traditional architecture of a
physical machine, respectively. The most significant difference from the tradi-
tional architecture is the PMAC addition of an virtual arithmetic logic unit

698 Y. Yang et al.

Fig. 3. MTD-BS-AP-MEC system.

(ALU) layer at the lowest level of the memory. A small amount of computation
resources is deployed on the virtual ALU layer to support the simple calculations
of memory-hungry services. This operation avoids the frequent transferring of
data between processing cores and memory. The second difference is adding a set
of GPUs which feature parallel computing next to CPU. These GPUs can help
to process some auxiliary, simple computation tasks. To this end, an application
can be properly partitioned and scheduled to execute on either CPU, GPU or
memory according to its service type.

Figure 3 describes the MTD-BS-AP-MEC system. The MTD-BS-AP-MEC
system consists of four components: mobile terminal devices (MTDs), base sta-
tions (BS), an aggregation point (AP), and MEC. Application mobility is a
unique feature of the MEC system. To keep the services active during the com-
putation offloading, multiple BSs are located close together. An AP is located
between BSs and MEC to serve several BSs [4]. In this system, MTDs and BSs
communicate by orthogonal frequency division multiplexing (OFDM) while BSs
and the AP, the AP and MEC are both connected by fiber-optic networks. MTDs
generate several computation tasks, such as payment requests, video, chatting,
etc. These computation tasks cannot all be processed by MTDs due to the lim-
ited battery capacity and computing ability. Computation offloading can help
with this situation by distributing computation tasks to MEC.

A tenant can use “virtual requests” as a means of specifying their resource
requirements to SP. This paper defines a virtual request to represent a virtual
network (including virtual nodes, which represent different types of service, and
virtual links) allocated to an MTD. Each component of the virtual requests has
its own physical resource demands [5]. Computation offloading can be completed
in three steps: uplink data transmission, data processing, and results fetching
[17]. Here is the computation offloading procedure of virtual requests. Firstly,
the virtual requests generated from MTDs are transmitted to a BS over OFDM.

Processing in Memory Assisted MEC 3C Resource Allocation 699

Fig. 4. Virtual requests.

Then, the BS will transmit the complete requests to the AP. In the AP, the
virtual nodes will be transmitted to different destinations through physical links
according to the proposed offloading strategy. Then, after being processed by
offloading destinations, the processing results will be transmitted back to devices
through the AP and BS. We only discuss the communication between the AP
and MEC in this paper.

To express the computation resources of processing core better and reduce
the calculation complexity, we use U to represent a data unit that need to be
processed. Since the computing capability of a processing core is related to its
frequency, we assume that it takes Q cycles to process a unit (U bit) data. The
AP-MEC topology can be modeled as weighted graphs, denoted by GP (NP , EP).
The physical nodes in MEC are denoted by NS while nAP represents the AP.
Thus, nP ∈ NP = nAP ∪NS . Each physical node nS ∈ NS in MEC is associated
with processing core frequency (including CPU frequency and GPU frequency)
and memory. Each link eP (nAP , nS) ∈ EP between nAP and a physical node nS

is associated with bandwidth capacity. All the physical resources (e.g. comput-
ing capability of processing core, memory and bandwidth) in GP (NP , EP) are
limited.

Since virtual nodes in an original virtual request generated from MTDs rep-
resents different services of an application, we add a virtual aggregation point
(VAP) for each virtual request to manage it better. This operation can be done
in the AP, which is shown in Fig. 4. The star topology is suitable for host-
ing many types of applications. By doing this, we can model virtual requests
as weighted graphs denoted by GV (NV , EV), nV ∈ NV , eV ∈ EV . Each vir-
tual node nV ∈ NV has different requirements of workload w(nV), memory
m(nV) and also, resilience constraint R(nV). A virtual node with resilience con-
straint means that it has a higher requirement for the running environment. It
should be processed in a safe and secure environment to protect it from being
attacked. Referring to some resiliency measures which have already been in com-
mercial use, we try to satisfy the resilience constraints by pre-installing virtual
firewalls on some physical servers. Virtual nodes with resilience constraints can
only be offloaded to the physical servers on which a virtual firewall have been pre-
installed. Virtual links eV (nAP , nV) ∈ EV between VAP and virtual nodes nV

are used to communicate between different services. Bandwidth requirements

700 Y. Yang et al.

Table 1. Variable definition.

Term Definitions

f(u) Frequency of physical node u associated with CPU or GPU
used to process data according to service types of virtual
nodes. u ∈ NS

Am(u) Available memory of physical node u. u ∈ NS

Ab(e
P (nAP , u)) Available bandwidth of links between the AP and physical

node u. u ∈ NS

R(u) A binary variable. u ∈ NS . Denote whether a physical node u
has by pre-installed virtual firewall. 1 means installed;
otherwise 0

w(v) Workload need to be processed of virtual node v. v ∈ NV

m(v) Memory request of virtual node v. v ∈ NV

b(eV (nV P , v)) Bandwidth requirement between the VAP and virtual node v.
v ∈ NV

R(v) A binary variable. v ∈ NV . Denote whether a virtual node has
resilience constraint. 1 means has; otherwise 0

Tmax Latency constraint of a virtual request

b(eV) should to be satisfied. All the bandwidth used by virtual links cannot
exceed the total available bandwidth of the physical links. Besides, each vir-
tual request should be completed within given latency constraint Tmax. Table 1
defines the variables used in the following.

Assume that MTDs generate K active virtual requests in interval T . Equation
(1) defines the revenue of serving the kth virtual request GV k.

R(GV k) =
∑

v∈NV k

αw · w(v) +
∑

v∈NV k

αm · m(v) +
∑

eV ∈EV k

αbb(eV). (1)

Here, αw, αm, and αb are the weighted parameters to determine the relative
importance of physical resources.

Assume that the energy consumption of MEC is related to the power required
to maintain the operation of the servers. When calculating the total energy con-
sumption, we can only consider the physical servers which are power on. What’s
more, energy consumption is independent of the number of services running on
the server. That means when a virtual node is offloaded to a newly powered
physical server, the energy consumption increases. To evaluate the performance
of the proposed computation offloading strategy more intuitively, we only con-
sider the energy change on arriving time of virtual requests in interval T . That
means the energy consumption changing happens after a computation offloading
decision has been made. We define E(GV k) to represent the energy consumption
for serving the GV k as

E(GV k) =
∑

u∈NP

ω · (yu − xu). (2)

Processing in Memory Assisted MEC 3C Resource Allocation 701

Here, ω represents the power consumption of physical node u in interval T . xu

and yu are both binary variables to denote whether a physical node is active or
not before and after offloading. 1 means active; otherwise 0. Equation (3) defines
the cost of serving GV k in terms of the consumed physical computing resources,
memory and bandwidth resources.

C(GV k) = ηw · ∑
v∈NV k

w(v) + ηm · ∑
v∈NV k

m(v) + ηe · ∑
eV ∈EV k

b(eV). (3)

Here ηw, ηm and ηe are weighted parameters.
The total latency L(GV k) of virtual request GV k consists of three time inter-

vals: uplink transmission time Lt from the AP to offloading destinations, pro-
cessing time Lp on offloading destinations and results fetching time Lr from
offloading destinations to the AP. Since the virtual nodes are transmitted by
the same physical link in both uplink transmission and results fetching steps, we
assume that Lt and Lr are the same. The total latency of GV k can be calculated
by

L(GV k) = max
v∈NV k

{Lt(v) + Lp(v) + Lr(v)}. (4)

Each latency interval can be calculated by (5), (6) and (7), respectively. Here,
dv represents the offloading destination of virtual node v. We have

Lt(v) =
Uw(v)

b(eP (nAP , dv))
, (5)

Lp(v) =
Qw(v)
f(dv)

, (6)

Lr(v) = Lt(v). (7)

To satisfy the resilience constraints of virtual nodes, we pack virtual firewalls
as virtual machines and pre-install them on several physical servers. A virtual
firewall can protect the services running on a physical server from being attacked.
If a physical node u ∈ NS has been pre-installed a virtual firewall, we set R(u) =
1; otherwise, R(u) = 0.

3 The Proposed Computation Offloading Approach

In this section, we first formulate the optimization problem as ILP. Then we
decompose the problem to a master problem and a set of pricing problems to
fit the column generation algorithm. Thirdly, we propose the CGBA algorithm
based on column generation and give the algorithm described in detail.

3.1 Overview

The objective of the proposed approach is to minimize energy consumption
(defined in (2)) and SP’s long-term cost (defined in (3)) under constraints. The
objective function can be defined as

702 Y. Yang et al.

Table 2. Variable definition

Term Definitions

λc A binary decision variable. Its value is 1 if configuration c is used in
offloading; otherwise, set to 0. c ∈ C

av
c A binary decision variable. Its value is 1 if configuration c serves virtual node

v; otherwise, set to 0. v ∈ NV . c ∈ C

zc The physical node associated with configuration c. c ∈ C

EC(GV) = C(GV) + ρ · E(GV)
= ηw · ∑

v∈NV

w(v) + ηm · ∑
v∈NV

m(v) + ηe · ∑
eV ∈EV

b(eV) + ηρ · ∑
u∈NP

yu.

(8)
The computation offloading problem is ILP and the total solution set is

exponential. General exhaustive searching is impossible with a large number of
IoT devices. In this paper, we use a column generation-based algorithm CGBA
to solve it. According to the principle of the column generation algorithm, the
computation offloading problem can be decomposed into a master problem and
a set of pricing problems. In both the master problem and pricing problems,
the resource constraints of substrate topology should be guaranteed. We denote
computation offloading configurations (COCs) as resource allocation strategies
for physical nodes. That means a COC c can provide a resource allocation strat-
egy to demonstrate whether virtual node v ∈ nV is offloaded in physical node
u ∈ nS . C is the set of all possible COCs. c ∈ C. We also denote COSTc to
calculate the cost of configuration c. Table 2 defines the variables used in the
following.

3.2 Master Problem

The purpose of the master problem is to choose a maximum of |NS | configura-
tions among COCs to minimize the total energy consumption and cost. Since it
is hard to consider all the COCs in the calculations, the master problem should
be restricted to a restricted master problem in column generation algorithm.
By solving the restricted master problem, we can get an relaxed approximate
optimal solution of the master problem. Equation (9) defines the objective func-
tion of the restricted master problem associated with λc. As listed in Table 2,
the binary decision variable λc is to determine whether COC c is used in the
offloading.

f(GV) =
∑
c∈C

COSTcλc + ρ
∑
c∈C

λc

=
∑
c∈C

(COSTc + ρ)λc

=
∑
c∈C

∑
v∈NV

av
c (w(v) + m(v) + b(eV (nV A, v)))λc + ρ

∑
c∈C

λc.

(9)

Processing in Memory Assisted MEC 3C Resource Allocation 703

ρ is weighted parameter. The formulations of the restricted master problem are
following.

min
λc∈{0,1}

f(GV) (10)

s.t. ∑

v∈NV

λca
v
cw(v)Q ≤ f(zc)Tmax,∀c ∈ C (11)

∑

v∈NV

λca
v
cm(v) ≤ Am(zc),∀c ∈ C (12)

∑
v∈NV

λca
v
cb(eV (nV A, v)) ≤ Ab(eP (nAP , zc)),∀c ∈ C (13)

∑

c∈C

λca
v
c = 1,∀v ∈ NV (14)

∑

c∈C

λc ≤ |NS |. (15)

Constraint set (11) enforces the computing ability of physical nodes. Constraint
set (12) enforces the memory bounds of physical nodes. Constraint set (13)
enforces the capacity bounds of physical bandwidth. Constraint set (14) makes
sure that all the virtual nodes should be offloaded. Constraint set (15) means
that each physical node can not be associated with more than one configuration.

3.3 Pricing Problem

As mentioned above, the pricing problem is to generate additional COCs. The
newly generated COC should satisfy all the constraints of virtual requests.
According to the steps of column generation algorithm, we can get the dual
variables associated with constraints (11), (12), (13) (14), and (15) by solving
the dual problem of the restricted master problem. We denote them with γ, η,
φ, ϕ, and δ, respectively. Then the reduced cost function can be written as

RC(GV) =
∑
c∈C

(COSTc + ρ)

+ γ · ∑
c∈C

∑
v∈NV

av
cw(v)Q + η · ∑

c∈C

∑
v∈NV

av
cm(nV)

+φ · ∑
c∈C

∑
v∈NV

av
cb(eV (nV A, v)) − ψ · ∑

v∈NV

av
c + δ.

(16)

The formulations of the pricing problem are presented as follows, which is also
ILP. The objective function is defined in (17). By solving the pricing problem,
we can get a newly generated COC. By checking the minimum value of reduced
cost, we can determine whether the newly generated COC can be added to the
restricted master problem.

min
av
c∈{0,1}

RC(GV) (17)

704 Y. Yang et al.

Table 3. Steps of CGBA

Algorithm

Input: (GP , GV)

Output: The offloading solution of GV

Step 1: Restrict the master problem to the restricted master problem. Set
initial columns of the restricted master problem which make sure
the solution of λc is feasible

Step 2: Solve the dual problem of the linear relaxation of the restricted
master problem and generate the dual multipliers γ, η, φ, ϕ, and δ

Step 3: Pass the values of dual multipliers to the reduced cost function
(defined in (16)), solve the pricing problem to get the minimum
reduced cost value

Step 4: Check the solution of the pricing problem. If the minimum
reduced cost value is negative, this newly generated configuration
can be added to the restricted master problem, then go to Step 2

Step 5: Otherwise, stop solving the pricing problem. Solve the linear
relaxation of restricted master problem directly

Step 6: Return solution of the restricted master problem. If the solution is
not an integer, we round it up and get the final solution

s.t. ∑

v∈NV

av
cw(v)Q ≤ f(zc)Tmax, (18)

∑

v∈NV

av
cm(v) ≤ Am(zc), (19)

∑

v∈NV

av
cb(eV (nV A, v)) ≤ Ab(eP (nAP , zc)), (20)

max
v∈NV

{
2Uw(v)av

c

b(eP (nAP , zc))
+

Qw(v)av
c

f(zc)

}
≤ Tmax, (21)

R(v)av
c = R(zc),∀v ∈ NV (22)
∑

v∈NV

av
c >= 1. (23)

Constraint sets (18), (19), and (20) enforce the capacity bounds of physical
resources. Constraint sets (21) and (22) guarantee that the latency and resilience
constraints are satisfied. Constraint set (23) means that at least one feasible COC
should be host at least one virtual node.

Processing in Memory Assisted MEC 3C Resource Allocation 705

3.4 Details of CGBA

To clearly describe the flow of CGBA, we give the algorithm described in detail.
Firstly, the master problem needs to be restricted to a restricted master problem
which has a smaller scale. By this operation, we can start the iteration in a
small searching area to reduce the complexity. To solve the linear relaxation of
the restricted master problem, it is necessary to set initial columns that can
make sure the solution of λc is feasible. Secondly, solving the dual problem of
linear relaxation of the restricted master problem to yield the dual multipliers
of λc. γ, η, φ, ϕ, and δ are dual variables associated with constraints (11), (12),
(13), (14), and (15), respectively. Thirdly, passing the values of γ, η, φ, ϕ, and
δ to the reduced cost function (defined in (16)). Solving the pricing problem to
get a new COC and the minimum reduced cost value of the newly generated
COC. Finally, checking the minimum reduced cost value we achieved in the
last step. If it is negative, we add the newly generated COC to the restricted
master problem. Then the next iteration begins to solve the linear relaxation of
restricted master problem. Otherwise, we stop solving the pricing problem and
solve the linear relaxation of restricted master problem directly. Notice that, the
solution returned by the restricted master problem may not be an integer. We
round it up and get the final solution. Table 3 shows the key steps of the CGBA.

4 Performance Evaluation

We carry out experimental assessments using CPLEX. Simulations are con-
ducted by evaluating the performance of different numbers of virtual requests
in PAMC and traditional PM’s architecture. These two settings have the same
amount of resources. Firstly, the scenario parameters used in the simulations are
set. Then, we present the simulation results and discussions.

4.1 Simulation Environment Configurations

The physical network topologies and virtual requests are both generated by
using the GT-ITM tool. To simplify the expression, we assume that the num-
ber of cores of a physical node is equivalent to CPU/GPU frequency. In MEC
with the PAMC architecture, the substrate topology contains 20 physical servers
with 8 CPU cores, 32 GPU cores, and 256G memory. Bandwidth between the
AP and MEC is set to 1Gbps. In MEC with traditional architecture, the sub-
strate topology contains 100 physical servers with 8 CPU cores and 256G mem-
ory. Bandwidth between the AP and MEC is set to 1Gbps. Virtual firewalls
are pre-installed randomly on these physical nodes. Virtual nodes are defined
to represent different services. To simplify the calculation, in this paper we
define three types of services. Table 4 shows the details of their resource require-
ments. The total number of virtual nodes in interval T generated from MTDs is
increasing from 3 to 60. Resilience constraints are generated randomly accompa-
nied by the virtual nodes. The latency constraint of a virtual request is 1,000 s.
The metrics considered in simulations include:

706 Y. Yang et al.

Table 4. Resource requirements of virtual nodes

Service type CPU requirements GPU requirements Memory requirements

Type 1 4 cores 0 32G

Type 2 0 8 cores 32G

Type 3 0 0 48G

– Active node number which measures the energy consumption of the sub-
strate topology.

– Relaxation gap of active node number which demonstrates the gap
between the real active node number and the rounding up result.

– Computing resource utilization and Memory utilization which mea-
sure the utilization of physical resources.

To compare the metrics under the same network state, we control all virtual
nodes to be successfully offloaded in the simulation. That means the acceptance
rate of virtual requests is 100 and the offloading revenues in PAMC and tradi-
tional architecture are the same. All the weights defined in Section II are set to 1.
Simulation runs 10 times in each scenario. The simulations are done in CentOS
5.4 running in VMware workstation virtual machine. The PC configuration is
Intel Core i7-10710 CPU and 16 GB memory.

4.2 Simulation Result Analysis

The simulations aim to compare the numbers of physical nodes that are powered
on, defined as active node number in this paper, and resource utilization in MEC
with different topology. Fig. 5 and Fig. 6 describe the results about active node
number. The results in Fig. 5 shows that with the enlarging of virtual nodes,
the number of active nodes in PAMC increases significantly slower than that
in traditional architecture. This is because GPU can help CPU process some
computation-hungry services on the same PM. Meanwhile, PIM shares the pres-
sure of the CPU to process memory-hungry services, so that the CPU can free up
computing power to process other computation-hungry services. This strategy
improves the throughput of the processing cores and helps reduce the number
of active nodes. The results in Fig. 6 shows the relaxation gap between real
active node number and round up results. We get the solutions of computation
offloading problems using the column generation algorithm by solving the linear
relaxation of the restricted master problem. According to the actual physical
meaning, we round up the results which are not integers to get the final results.
In some cases, the resources of the relaxation gap are idle. The results in Fig. 6
show that the PAMC has a higher resource idle rate than that in traditional
architecture, which means the performance can be improved further. Figure 7
and Fig. 8 describe the results of computing resources utilization and memory
utilization, respectively. PAMC has higher computing resources utilization and
lower memory utilization than that of traditional architecture. That is because

Processing in Memory Assisted MEC 3C Resource Allocation 707

Fig. 5. Results of active node number. Fig. 6. Relaxation gap between real
active node number and round up
results.

Fig. 7. Computing resource utilization. Fig. 8. Memory utilization.

PAMC always keeps a higher processing cores throughput during computation
offloading. At the same time, PIM reduces frequent data transferring between
processing cores and memory. This operation helps the memory-hungry services
to be completed in a shorter time. Memory can be freed up earlier so that the
memory utilization is lower.

CGBA used in this paper can get the approximate optimal solutions by
considering all kinds of configurations and selecting the most reasonable one
among them. This strategy leaves room for the computation offloading of future
virtual nodes to improve resource utilization. The scale of MEC is small, we
can get the solution in a short time. Large scale networks can highlight the
advantages of CGBA which can narrow down the searching fields more quickly
than heuristic algorithms.

5 Conclusions

This paper has studied the 3C resource allocation for computation offloading in
MEC. A memory assisted multi-core architecture for physical servers in MEC

708 Y. Yang et al.

has been proposed to help to improve the performance of computation offload-
ing. Besides, an effective and efficient approach has been proposed to auto-select
offloading destinations according to services type while minimizing energy con-
sumption and SP’s long-term cost considering latency and resilience constraints.
Simulation results have validated that our proposed PAMC architecture can
achieve good solutions than that in traditional architecture with CGBA. To
support the PAMC, other issues should be considered just like how to deal with
the electricity cost for air conditioning to prevent the servers from overheating.
We leave them for future work.

Acknowledge. This research was supported by the National Natural Science Foun-
dation of China under Grant U1836105.

References

1. Liu, M., Song, T., Gui, G.: Deep cognitive perspective: resource allocation for
NOMA-based heterogeneous IoT with imperfect SIC. IEEE Internet Things J.
6(2), 2885–2894 (2019)

2. Chettri, L., Bera, R.: A comprehensive survey on internet of things (IoT) toward
5G wireless systems. IEEE Internet Things J. 7(1), 16–32 (2020)

3. Yang, Y., Chang, X., Han, Z., Li, L.: Delay-aware secure computa-
tion offloading mechanism in a fog-cloud framework. In: IEEE Interna-
tional Conference on Parallel & Distributed Processing with Applications,
Ubiquitous Computing & Communications, Big Data & Cloud Computing,
Social Computing & Networking, Sustainable Computing & Communications
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), pp. 346–353. Australia, Dec,
Melbourne (2018)

4. Kekki, S., Featherstone, W., Fang, Y., et al.: MEC in 5G networks. ETSI White
Paper, No. 28 (2018)

5. Yang, Y., Chang, X., Liu, J., Li, L.: Towards robust green virtual cloud data center
provisioning. IEEE Trans. Cloud Comput. 5(2), 168–181 (2017)

6. Liu, S., Wei, Y., Chi, J., Shezan, F.H., Tian, Y.: Side channel attacks in compu-
tation offloading systems with GPU virtualization. In: IEEE Security and Privacy
Workshops (SPW), San Francisco, CA, pp. 156–161, May 2019

7. IBM Cloud GPU Solutions for AI and HPC Workloads. https://www.ibm.com/
downloads/cas/RDPDBJ3X

8. Chikin, A., Amaral, J.N., Ali, K., Tiotto, E.: Toward an analytical performance
model to select between GPU and CPU execution. In: IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), Rio de Janeiro,
Brazil, pp. 353–362, May 2019

9. Pattnaik, A., et al.: Opportunistic computing in GPU architectures. In:
ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA), Phoenix, AZ, pp. 210–223, June 2019

10. Ghose, S., Boroumand, A., Kim, J., G R©mez-Luna, J., Mutlu, O.: A Workload and
Programming Ease Driven Perspective of Processing-in-Memory, arXiv.org (2019).
http://search.proquest.com/docview/2267321794/

11. Gupta, S., Imani, M., Rosing, T.: Exploring processing in-memory for different
technologies. In: Proceedings of the 2019 on Great Lakes Symposium on VLSI
(GLSVLSI 19), New York, NY, May 2019, pp. 201–206 (2019)

https://www.ibm.com/downloads/cas/RDPDBJ3X
https://www.ibm.com/downloads/cas/RDPDBJ3X
http://arxiv.org/abs/org
http://search.proquest.com/docview/2267321794/

Processing in Memory Assisted MEC 3C Resource Allocation 709

12. Hazarika, A., Poddar, S., Rahaman, H.: Survey on memory management tech-
niques in heterogeneous computing systems. IET Comput. Digit. Tech. 14(2), 47–
60 (2019)

13. Kim, B., Lim, E.C., Rhee, C.E.: Exploration of a PIM design configuration for
energy-efficient task offloading. In: IEEE International Symposium on Circuits and
Systems (ISCAS). Sapporo, Japan, May 2019

14. Kohni, M., Janacek, J.: Acceleration strategies of the column generation method
for the crew scheduling problem. In: IEEE International Conference on Service
Operations and Logistics, and Informatics (SOLI), Italy, Bari, pp. 54–57, Septem-
ber 2017

15. Pakpoom, P., Charnsethikul, P.: A column generation approach for personnel
scheduling with discrete uncertain requirements. In: 2nd International Conference
on Informatics and Computational Sciences (ICICoS), Semarang, Indonesia, Octo-
ber 2018

16. Riazi, S., Wigstrom, O., Bengtsson, K., Lennartson, B.: A column generation-
based gossip algorithm for home healthcare routing and scheduling problems. IEEE
Trans. Autom. Sci. Eng. 16(1), 127–137 (2019)

17. Sheng, M., Wang, Y., Wang, X., Li, J.: Energy-efficient multiuser partial compu-
tation offloading with collaboration of terminals, radio access network, and edge
server. IEEE Trans. Commun. 68(3), 1524–1537 (2020)

A Greedy Heuristic Based Beacons Selection
for Localization

Fuhua Ma1, Qianqian Ren1(B), and Jun Li2(B)

1 Department of Computer Science and Technology, Heilongjiang University,
Harbin 150080, China

renqianqian@hlju.edu.cn
2 China Industrial Control Systems Cyber Emergency Response Team, Beijing, China

lijun@cics-cert.org.cn

Abstract. Wi-Fi based localization technology is a hot issue in recent indoor
localization research. Due to the exist of obstacles and signal fluctuation in indoor
environment, RSSI measurements from beacons are often noisy. To solve this
problem, this paper first proposes a greedy heuristic algorithm to choose optimal
beacons involved in localization. During the localization process, the reference
points in the area covered by the selected beacons form triangles. The gravity
centers of the triangles jointly determine the target’s location. Finally, a com-
prehensive set of simulations are provided to invalidate the performance of the
proposed algorithm.

Keywords: Localization · Beacon · Greedy heuristic

1 Introduction

In wireless sensor networks, mobile target tracking and localization is a basic func-
tion, which plays an important role in many location service based applications, such as
intelligent traffic monitoring, human health monitoring, battlefield monitoring, disaster
prediction, etc. [1–3]. However, the limits of sensor networks and environmental fac-
tors make the research on localization still face many challenges [4]. In this paper, the
indoor localization technology in wireless sensor networks is studied and an effective
localization algorithm is proposed.

The presence of obstacles in indoor environment leads to multipath effect and signal
fluctuation, which makes the indoor environment complex. Moreover, considering the
limits of GPS in indoor environment, many other signals are used for indoor position-
ing, such as Wi-Fi, Bluetooth, magnetic field, ultrasonic wave, etc. [5–8]. Due to the
extensive deployment of wireless local area network (WLAN) and the universal use
of mobile devices, Wi-Fi localization technique has attracted attention. In the scheme,
the location of the interested target can be characterized by a series of detected signal
(e.g., RSSIs from different beacons). However, RSSI is often influenced by obstacles in
indoor environment, thus sampled values are often noisy, which reduces the localization
accuracy. To address this issue and release the influence of noisy data on localization

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 710–718, 2020.
https://doi.org/10.1007/978-3-030-60245-1_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_48&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_48

A Greedy Heuristic Based Beacons Selection for Localization 711

results, this paper aims to choose optimal beacons involved in localization procedure.
The contributions of the paper is as following:

1) A grid based networkmodel is given, which are the basis of the proposed localization
algorithm.

2) A greedy heuristic based beacons selection algorithm is introduced to select optimal
beacons that participate in localization.

3) An overlapping grids based localization method is presented to determine the area
that the target appears. Moreover, the accurate location of the target is specified via
calculating gravity centers of triangles cover by selected beacons.

4) An experimental simulation platform is constructed to verify the performance of the
proposed algorithm in the paper.

This paper is organized as follows. In Sect. 2, we give some work related to this
paper. In Sect. 3, we present the network model; In Sect. 4, a beacon selection algorithm
is proposed; In Sect. 5, we propose the localization algorithm; In Sect. 6, the simulation
results and analysis are presented. The conclusion is given in the last section. Table 1
gives the notations definition used in this paper.

Table 1. Notations definition

Notations Definitions

M Number of beacons

N Number of reference points

m Number of beacons that detect the target

BN The set of beacons

DB The set of beacons that detect the target

DB′ The sorted DB by income function in ascending order

DB′′ The set of chosen beacons

RP The set of reference points

RP′ The set of reference points that locate within the area covered by beacons in DB′′

VR Variance vector of RP

2 Related Work

In this section, we will briefly review the work related to this paper, including Wi-Fi
based localization.

Xiao et al. propose a regression supported deep learning structure and classification
support vector machine (SVM) to directly output the estimated position from the mea-
sured fingerprints [9]. Mizmizi et al. present a KNN based localization method [10],

712 F. Ma et al.

which is simple and easy to implement. However it is at the price of high time complex,
especially when the number of features is very large. Chen et al. study the influence
of environmental changes, devices orientation and different devices response factors on
RSSI measurement [11]. Due to the fluctuation of Wi-Fi signal in indoor environment, it
is easy to introduce extra localization error. To solve this problem, a triple loss function
is designed to measure the rank difference of RSSI distance and position distance [11],
which reduces the influence of signal fluctuation on localization efficiently. Hou et al.
propose a fingerprint selection and location estimation algorithm [12], which filters those
access points affected by environmental changes. Peng et al. introduce a BPNN (back
propagation neural network) method to carry out three-dimensional indoor position-
ing [13], which can improve the positioning accuracy effectively. Wang et al. propose
the APIT algorithm [14], its principle is to select three beacons randomly around the
unknown node to form a triangular region, and use RSSI values to judge whether the
unknown node is within it. Several overlapping regions of triangles are used to estimate
the area of the target. Our localization algorithm is proposed based on this idea.

Inspired by the above research methods, considering that RSSI values are easily
influenced by the environment, this paper proposes a beacons selection algorithm based
on greedy heuristic. According to the fluctuation of RSSI values, a subset of optimal
beacons are selected to locate the target accurately.

3 Network Model

We assume that the monitoring area of the sensor network is a rectangular area of L1
× L2, which is divided into N = a × b grids. M beacons are deployed uniformly in
the area, which is denoted as BN = {b1, b2, · · · , bM }. We further assume that the
sensing area and transmitting area of each beacon is a disk with radius of l. There is one
reference node at the center of each grid. We use RP = {rp1, rp2, · · · , rpN } to denote
the reference points set, the number of reference points is N. Figure 1 shows an example
of the network model.

4 Beacons Selection Algorithm

In real applications, RSSI is often influenced by obstacles in the environment, thus
sampled values are often noisy, which reduces the localization accuracy. To address this
issue and release the influence of noisy data on localization results, we aim to choose
the beacons with lower interference and better quality participating in localization.

When the target appears in the monitoring area, it can be detected by multiple bea-
cons. These beacons collect RSSI values. Each beacon samples RSSI measurements s
times, the measurements set of dbi is denoted as Ri = {

ri1, ri2, · · · , ris
}
, and the aver-

age value is denoted as R̄i =
∑s

j=1 r
i
j

s . The variance of RSSI measurements from dbi at

a reference point is denoted as vir =
∑s

j=1

(
rij−R̄i

)2

s , and the variance set is represented
as VR = {v1r , v2r , . . . , vmr }, m is the number of beacons that detect the target. We fur-
ther denote the RSSI vector sampled by the target as T = {T̄ 1, T̄ 2, . . . , T̄m}, and its
corresponding variance is denoted as VT = {v1t , v2t , . . . , vmt }.

A Greedy Heuristic Based Beacons Selection for Localization 713

Fig. 1. An example of the network model. Black nodes are beacons, brown nodes are reference
points and blue star is the target to be located. (Color figure online)

In this section, we give a greedy heuristic based beacons selection algorithm, which
chooses beacons incrementally from DB. We define an income function g, the greedy
heuristic algorithm selects the beacons that maximize the income function g each time.
Given beacons set BN = {b1,b2,…,bM}, for the problems solved in this section, the
income function g is defined as follows:

g(bi) = T
i

vit
(2)

where T̄ i represents the RSSI measurement from bi sampled by the target, and vit repre-
sents variance from bi. The greedy heuristic based beacon selection algorithm consists
of three stages:

(1) Initiation. Given RSSI vector T sampled by the target and BN, calculate g(bi). For
each bi, if g(bi) > 0, then bi can detect the target and put bi into DB.

(2) Sorting. Sort DB by income function in ascending order and get the sorted set
DB′ = {db′

1, db
′
2, . . . , db

′
m}.

(3) Iteration. For each time,we choose the beacons fromDB′ thatmaximizes the income
function and its residue energy is greater than a given threshold. The chosen beacons
set is denoted as DB′′ = {db′′

1, db
′′
2, . . . , db

′′
k }. k is the number of chosen beacons,

which is decided by the user or the localization algorithm.

5 Target Localization Algorithm

This section describes the target localization algorithm in detail. When the target enters
the monitoring area, beacons can detect it. According to the previous beacons selection
algorithm, a subset beacons are chosen to participate in localization, the overlapping of
sensing disks of these beacons form the area that the target appears, as shown in Fig. 2

714 F. Ma et al.

(a). Let RP′ = {rp′
1, rp

′
2, . . . , rp

′
v} represent the reference points that locate in the area

jointly covered by beacons in DB′′, v is the number of reference points. To shrink the
appearing area and improve the localization accuracy, we choose three points from RP′
each time, if these three points can form a triangle, we further check whether the target
is within the triangle and locate the target correspondingly.

(a)

(b) (c)

Fig. 2. An example of localization algorithm. The green point is the center of a triangle, and the
star is the target to be located. (Color figure online)

The localization algorithm consists of five phases.

(1) We choose three RPs from RP′, that’s rpi, rpj and rps, these RPs form a triangle.
We say that the target is in the triangle, if the following condition is satisfied:

|rpi,L| + |rpj,L| + |rps,L| < Hij + |rpi, rpj| + cons. (3)

A Greedy Heuristic Based Beacons Selection for Localization 715

where |rpi,L|, |rpj,L| and |rps,L| are the distance from the target to rpi, rpj and rps,
respectively.Hij is the perpendicular distance from rps to the side formed by rpi and rpj.
cons is constant.

(2) If the target is within the triangle, we calculate the gravity center of the triangle.
(3) Repeat step (1) until all the triangles formed by three PRs are found and checked.
(4) The average of all gravity centers is the target’s estimation location, as shown in

Fig. 2 (b).
(5) If the target is not in any triangle, we use the centriod of k nearest RPs to estimate

the target, as shown in Fig. 2 (c).

6 Experimental Analysis

In order to verify the feasibility and priority of the proposed algorithm, we useMATLAB
to build a simulation platform. In the experiments, the detection area of the sensor
network is a 50 × 50 unit area, and 36 beacons are deployed in the network. We divide
the monitoring area into several small grids according to the grid resolution of 1 ×
1unit, 1.2 × 1.2 unit and 1.5 × 1.5 unit, respectively. We investigate the the impact
of system parameters, including the number of reference points and grid size on the
localization performance. When one parameter is evaluated, we fix other parameters.
For each sampled value, we sample it three times and use the average result over three
times. The metirc we consider to measure the localization quality is localization error.

6.1 Impact of RPs Number and Grid Size on Localization Error

The experimental results study the influence of parameters including involved RPs num-
ber and grid size on localization accuracy. Figure 3, Fig. 4 and Fig. 5 show localization
error when the number of RPs is varying from 5 to 12 and the grid size is 1, 1.2 and 1.5,
respectively.

Fig. 3. The influence of RP number on localization when grid size = 1

In the algorithm, the RPs locate in the area covered by beacons in DB′′ participate
in localization procedure. To further release the computation cost, we try to choose

716 F. Ma et al.

Fig. 4. The influence of RP number on localization when grid size = 1.2

Fig. 5. The influence of RP number on localization when grid size = 1.5

partial RPs closest to the target involved in work. It can be seen from the figures that the
localization error increases with the increasing number of RPs. However, the difference
is not very obvious. It is also observed that as the raise of grid size, the localization error
increases. When grid resolution is 1 × 1unit, the localization error is minimal.

6.2 Localization Results Under Different Trajectories

Figure 6 and Fig. 7 show the real trajectories of the target and the estimated trajectories
of support vector machines(SVM) algorithm [9] and our algorithm under linear and
parabolic moving trajectories, respectively. We observe that our algorithm can obtain
better tracking results compared to SVM algorithm under both linear and parabolic
moving trajectories.

A Greedy Heuristic Based Beacons Selection for Localization 717

Fig. 6. Linear moving trajectories

Fig. 7. Parabolic moving trajectories

7 Conclusion

This paper considers the problem of indoor environment factors on localization accuracy
and introduce a greedy heuristic algorithm to select beacons for target localization. In the
localization procedure, the reference points in the area covered by the selected beacons
are investigated for localization. The experimental results show that the beacons selection
based localization algorithm we present in this paper not only reduces the redundancy
and calculation, but also can obtain excellent localization quality.

References

1. Li, T., Chen, Y., Zhang, R., Zhang, Y., Hedgpeth, T.: Secure crowdsourced indoor position-
ing systems. In: IEEE INFOCOM 2018 - IEEE Conference on Computer Communications,
Honolulu, HI, pp. 1034–1042 (2018)

718 F. Ma et al.

2. He, S., Chan, S.H.G.: Wi-Fi fingerprint-based indoor positioning: recent advances and
comparisons. IEEE Commun. Surv. Tutorials 18(1), 466–490 (2015)

3. Yiu, S., et al.: Wireless RSSI fingerprinting localization. Signal Process. 131, 235–244 (2017)
4. Ossain, A.M., Soh, W.-S.: A survey of calibration-free indoor positioning systems. Comput.

Commun. 66, 1–13 (2015)
5. He, S., Chan, S.-H.G.: Wi-Fi fingerprint-based indoor positioning: recent advances and

comparisons. IEEE Commun. Surv. Tutorials 18(1), 466–490 (2016)
6. Liu, S., Jiang, Y., Striegel, A.: Face-to-face proximity estimation using Bluetooth on

smartphones. IEEE Trans Mobile Comput. 13(4), 811–823 (2014)
7. Huang, W., et al.: Shake and walk: acoustic direction finding and fine-grained indoor

localization using smartphones. In: Proceeding of IEEE INFOCOM, pp. 370–378, April
2014

8. Sun, Z., et al.: PANDAA: physical arrangement detection of networked devices through
ambient-sound awareness. In: Proceeding of ACM UbiComp, pp. 425–434 (2011)

9. Xiao, L., Behboodi, A., Mathar, R.: A deep learning approach to fingerprinting indoor local-
ization solutions. In: 2017 27th International Telecommunication Networks and Applications
Conference (ITNAC). IEEE (2017_

10. Mizmizi, M., Reggiani, L.: Design of RSSI based fingerprinting with reduced quantization
measures. In: 2016 International Conference on Indoor Positioning and Indoor Navigation
(IPIN), Alcala de Henares (2016)

11. Chen, Y., Kleisouris, K., Li, X., Trappe, W., Martin, R.P.: The robustness of localization
algorithms to signal strength attacks: a comparative study. In: Gibbons, P.B., Abdelzaher, T.,
Aspnes, J., Rao, R. (eds.) DCOSS 2006. LNCS, vol. 4026, pp. 546–563. Springer, Heidelberg
(2006). https://doi.org/10.1007/11776178_33

12. Hou, Y., Sum, G., Fan, B.: The indoor wireless location technology research based on WiFi.
In: International Conference on Natural Computation. IEEE (2014)

13. Peng, L., et al.: 3D indoor localization based on spectral clustering and weighted back propa-
gation neural networks. In: IEEE/CIC International Conference on Communications in China
(ICCC), Qingdao (2017)

14. He, T., Huang, C., Blum, B.M., Stankovic, J.A., Abdelzaher, T.F.: Range-free localization
schemes for large scale sensor networks. In: Proceedings of the 9th Annual International
Conference on Mobile Computing and Networking, pp. 81–95 (2003)

https://doi.org/10.1007/11776178_33

A Periodic Variable Star Observation System
with High Accuracy Based on Star Sensors

Chen Jiwei(B) and Tang Guojian

College of Aerospace Science and Engineering, National University of Defense Technology,
Changsha, China

chenjiwei@spacechina.com, gjtang@263.net

Abstract. In order to observe the photodynamic characteristics of periodic vari-
able stars, a periodic variable star ground observation system is designedwith high
frequency and high precision star sensor. The high precision star sensor is used
to determine the attitude information of the system, and the NFOV star sensor
is used to detect atmospheric changes and other environmental factors to track
the variable stars accurately. The accuracy measurement matrix and the pointing
vector of the star sensor are obtained from the attitude matrix and the accuracy
measurement transformation matrix of the star sensor. Finally, the pointing and
rolling accuracy of the star sensor are obtained by the accuracy evaluation stan-
dard. The system is validated for the observation of periodic variable stars and
high dynamic detection, which provides the observation basis for the application
of periodic variable stars.

Keywords: Periodic variable star · Star sensors · Observation accuracy

1 Introduction

Periodic variable stars refer to special variable stars whose photodynamic character-
istics have periodic variation laws. Periodic variable stars have a longer optical varia-
tion period [1]. Their photodynamic characteristics can be obtained through full-period
phase measurement. Moreover, the observable spectral range of periodic variable stars is
widely distributed, which is convenient for ground-based observation and ground-based
applications and has a wide range of applications.

Much that we know about stars and the universe came from studying variable stars.
There are over 200,000 variable stars cataloguedwithmanymore suspected.Withmodest
equipment any amateur can make observations that are valuable scientific contributions
[2]. The minimum required equipment for this award is a pair of binoculars, but any size
telescope or go-to telescope can be used.

Variable stars are objecting whose light is not constant. The observer’s goal is to
determine the brightness of the star when compared to stars of fixed brightness in or
near the same field of view. The thrills of variable star observation are many finding
the right star in the patterns in the field; pushing the limits of your telescope and your
observational skills to glimpse that mag 14.5 star; improving your observing methods,

© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12452, pp. 719–728, 2020.
https://doi.org/10.1007/978-3-030-60245-1_49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60245-1_49&domain=pdf
https://doi.org/10.1007/978-3-030-60245-1_49

720 C. Jiwei and T. Guojian

equipment, and ability to yield more and more variables per observing session; seeing
your favorite stars change in brightness as you watch them from week to week; catching
in outburst [3]. You get all this plus you get to provide useful scientific data to scientists
and other observers.

Star sensor is a high-precision space attitude measurement device which takes fixed
stars as reference and starry sky asworking object. So, in this paper,with the development
of research on star sensor and the emergence of new materials and new technologies,
the accuracy of star sensor is continuously improved, power consumption is reduced,
cost is reduced, and new type star sensors with increasingly wide application fields are
constantly introduced.

The designed periodic variable star ground observation system is mainly composed
of: high-precision star sensor, NFOV (narrow field of view) (1°) star sensor, two-
dimensional turntable and related accessories. During observation, the high-precision
star sensor is used to match the star map, determine the attitude information of the sys-
tem, and NFOV star sensor is used to accurately track the variable stars by detecting
environmental factors such as atmospheric changes, thus realizing periodic observa-
tion and high dynamic detection of the variable stars. The two-dimensional turntable is
used to realize 360-degree rotation control in yaw and roll directions, which has various
working modes and can accurately control the rotation angle and angular velocity.

2 Related Works

The accuracy of the observation system based on star sensors is relatively high, but the
accuracy of star sensors is affected by the atmosphere to some extent. Therefore, it is
very important to study the sources of star sensor errors and analysis methods, and then
calibrate and compensate the errors. The accuracy of star sensors is the cornerstone of the
observation accuracy of the whole system. Only by mastering the accuracy evaluation
process can we obtain more accurate photodynamic characteristics of periodic variable
stars [4].

When we look up at the night sky it is easy to imagine that the stars are unchang-
ing. Apart from twinkling due to the effects of our atmosphere stars appear fixed and
constant to the untrained eye. Careful observations, some even done with the naked
eye, show that some stars do in fact appear to change in brightness over time. Some
exhibit periodic behavior, brightening quickly then diminishing in brightness slowly
only to repeat themselves [5]. With some these changes take place over several days
whilst others occur in a matter of hours or many months. Other stars exhibit a once-off
dramatic change in brightness by orders of magnitude before fading away to obscurity.
All of these are examples of what are termed variable stars. A variable star is simply one
whose brightness (or other physical property such as radius or spectral type) changes
over time.

At a fundamental level all stars are variable as they evolve and change over time
(from a main sequence to a red giant star as in the Sun’s case for example). Furthermore,
we can infer that all stars are likely to vary their light output to some extent due to
variations caused by phenomena such as sunspots. In the section however, we focus on
stars with a measurable change in brightness. In order to try and understand variable

A Periodic Variable Star Observation System with High Accuracy 721

stars, astronomers have sought to classify them according to observable properties. The
diagram below the main types of variable stars.

A supernova is a cataclysmic stage towards the end of a star’s life that is characterized
by a sudden and dramatic rise in brightness. A typical supernova may see a star become
brighter by up to 20 magnitudes to an absolute magnitude of about −15 [6]. This means
that a typical supernova may outshine the rest its galaxy for several days or a few weeks.

Supernovae are caused by one of two main mechanisms. The first takes place when
accreting material falling onto a white dwarf in a binary system takes it over the mass
set by the Chandrasekhar limit [7]. The resulting instability triggers a runaway ther-
monuclear explosion that destroys the star and releases large amounts of radioactive and
heavy elements into space. The second process occurs in very massive stars once all the
material in their core has been fused into iron. As fusion cannot occur in elements heav-
ier than iron the drop in outwards radiation pressure means that gravitational collapse
overwhelms the core which rapidly implodes. The core material gets crushed to form
degenerate neutron-density material whilst the extreme temperature and pressure in the
surrounding layers cause rapid (R-process) nuclear reactions that synthesize the heav-
iest elements [8]. A huge flux of neutrinos is thought to interact with the super-dense
material, ripping the star apart. Such core collapse supernovae may result in neutron
stars and black holes forming from the remaining core material. More details are given
in the later section on star death.

Observationally, supernovae are classified according to their spectra. Type I super-
nova exhibit no hydrogen lines in spectra taken soon after the supernova event. Those
with silicon lines present are further classified as Type Ia and are thought to be due to
thermonuclear explosions as in accreting white dwarfs. If no Si lines are present they
are Type Ib or Ic depending on the high or low abundance of He lines respectively.
These types occur due to core collapse following the outer layers being stripped away
in Wolf-Rayet or binary stars [9].

3 Observation Probability and Attitude

3.1 Observation Probability

The NFOV star sensor is mainly used to analyze the atmospheric environment in the sky
field when the high-precision star sensor has captured the variable star, so as to realize
high-precision tracking of the variable stars. First of all, the variable star observation
capability of NFOV star sensor shall be analyzed. The detection capability of star sensors
is mainly reflected in the detectable limit magnitude and detection probability. The
formula of detectable limit magnitude is:

MV = lg
S

5
√
S + Nbkg + N 2

sensor

/
lg2.512 (1)

Where,

S =
∫ λ2

λ1

F0(λ)τ0(H, μ, λ)
πD2

4
τopt(λ)t

1

Wph
Q0(λ)Kdλ (2)

722 C. Jiwei and T. Guojian

Nbkg =
∫ λ2

λ1

Ib(λ, μ,μ0, φ,H)
πD2

4
τopt(λ)t

1

Wph
Q0(λ)�dλ (3)

S represents the energy of the picture element in the light spot center, and F0(λ)

represents the spectral radiant exitance of zero-magnitude stars. The G2 spectrum of the
sun has an apparent magnitude of −26.7, the surface temperature of 5800 K, and the
radiance on the earth is about 1.4 KW/m2. Therefore, the energy of the sun measured
on the earth is about 2.51226.7 = 4.79 × 1010 times that of the zero-magnitude stars,
and the total radiant exitance of the zero-magnitude stars is about 2.9228× 10−8 W/m2.
Under the given wavelength and temperature conditions, the energy of the black-body
radiation is distributed according to the wavelength:

I(λ,T) = 2πhc2

λ5
(
ehc/λkBT − 1

) (4)

h = 6.626×10−34Js, c is the light velocity, c= 2.997× 108 m/s,KB is the boltzmans
constant, KB = 1.38 × 10−23 J/K, T is the temperature, T = 5800 k.

τ0(H, μ, λ) is the atmospheric transmittance at the observation height of H and the
observation zenith angle of μ, D the optical system aperture, τopt(λ) the optical system
transmittance, Wph = h c

λ
the energy of a single photon, Nbkg the background radiation

energy, Nsensor the detector noise, and Ib(λ, μ,μ0, φ,H) represents the sky background
radiance reaching the detector when the observation height is H, the observation zenith
angle is μ, the solar zenith angle is μ0, and the observation azimuth angle is φ. Q0(λ)

is the quantum efficiency of the detector, � is the solid angle occupied by the picture
element, t is the integration time, and λ is the working spectral wavelength. � = σ/f 2,
σ is the area of a single picture element, f is the focal length of the optical system.

According to the function provided by the SKY2000 Star Catalog, the corresponding
relationship between the average number of stars and the apparent magnitude:

N (MV) = 6.5e1.107MV (5)

Where, N (MV) represents the number of guide-stars whose magnitude is less than
or equal toMV , and MV the apparent magnitude.

It is assumed that the average number of observable variable stars is not less than
180, and that stars are evenly distributed on the celestial sphere, the average number of
stars in the field of view can be calculated according to the sphericity corresponding to
the field of view of the star sensor which satisfies the following relation:

NFOV = N (MV)

[
sin2

(
θFOV
2

)]

4
(6)

Where, NFOV represents the number of stars in the field of view, θFOV the angle
of the field of view. If a one-dimensional rotating mechanism and coding system are
equipped, the number of stars in the field of view can be expressed as:

NFOV = N (MV)sin

(
θFOV

2

)
sin(δ) (7)

A Periodic Variable Star Observation System with High Accuracy 723

When δ = 45◦, NFOV ≈ 3.3318.
The number of stars in any field of view follows the Poisson distribution, and its

distribution law is as follows:

P(X = k) = e−NFOV
Nk
FOV

k! (8)

Where, P(X = k) represents the probability of k stars appearing in the field of view,
and NFOV represents the average number of stars in the field of view. Here, it is assumed
that NFOV = 3.33, the probability that the number of stars in the field of view is greater
than or equal to 1 can be calculated as follows:

P(X ≥ 1) = 1 − P(X = 0) = 96.42% (9)

3.2 Attitude Matrix

Fix the star sensor on the earth with its rolling axis pointing to the zenith, and a star
map stored in the star sensor. According to the direction vector of the guide star in
the coordinate system of the star sensor and the direction vector (ϑCRFJ2000) in the
J2000.0 rectangular coordinate system, the optimal attitude matrix of the star sensor
qi = [

q1 q2 q3 q4
]
and the actual shooting time (T + �ti) of the corresponding star map

are obtained and output.
The optimal attitude matrix Aq(T + �ti) obtained according to qi is as follows:

Aq(T + �ti) =
⎡
⎣
q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q1q4)
2(q1q3 + q2q4) 2(q2q3 − q1q4) −q21 + q22 − q23 + q24

⎤
⎦

(10)

3.3 Accuracy Measurement Matrix

According to the actual shooting time of the star sensor (T + �ti) and the preces-
sion, nutation and rotation of the earth, the accuracy test transformation matrix RT+�ti
associated with the star sensor can be obtained.

The transformation matrix RERF (−θ1) conversed from the J2000.0 rectangular coor-
dinate system to the epoch ecliptic coordinate system: Based on the J2000.0 rectangular
coordinate system (XCRFJ2000,YCRFJ2000,ZCRFJ2000), the epoch ecliptic coordinate sys-
tem (XERF ,YERF ,ZERF) can be obtained by rotating the J2000.0 rectangular coordinate
system counterclockwise around theX axis of the J2000.0 rectangular coordinate system
by 23°26′21′′:

(XERF ,YERF ,ZERF) = (XCRFJ2000,YCRFJ2000,ZCRFJ2000) · RX

(
−23◦26′

21′′) (11)

Then, RERF (−θ1) = RX

(
−23◦26′

21′′
)
, where RX is the coordinate transformation

basis. Obtaining a transformation matrix RCRFT (−θ2) for converting the epoch ecliptic
coordinate system into the celestial coordinate system at the current time T;

724 C. Jiwei and T. Guojian

Transforming the epoch ecliptic coordinate system (XERF ,YERF ,ZERF) into the
celestial coordinate system (XCRFT ,YCRFT ,ZCRFT) at the current time T is obtained
by the following steps:

(1) Rotate the epoch ecliptic coordinate system (XERF ,YERF ,ZERF) clockwise
50.29′′ × T around its Z axis;

(2) Then rotate clockwise−23°26′21′′ around the X axis of the coordinate system after
the first rotation;

(3) Then rotate counterclockwise εA around the X axis of the coordinate system after
the second rotation;

(4) Then rotate clockwise�ϕ around the Z axis of the coordinate system after the third
rotation;

(5) Then rotate clockwise εA +�ε around the X axis of the coordinate system after the
fourth rotation to obtain the celestial coordinate system (XCRFT ,YCRFT ,ZCRFT)

of the current time T containing nutation term, where, �ϕ is celestial longitude
nutation, and �ε is and oblique nutation.

The celestial coordinate system structure (XCRFT ,YCRFT ,ZCRFT) is obtained by the
following formula:
(
XCRFT ,YCRFT , ZCRFT

) = (XERF , YERF , ZERF) · RZ
(
50.29

′′ × T
)

· RX
(
23◦26′21′′) · RX

(−εA
) · RZ

(
�ϕ

) · RX
(
εA + �ε

)

(12)

Where, Rx and Rz are the base of coordinate transformation, so

RCRFT (−θ2) = RZ

(
50.29

′′ × T
)

· RX

(
23◦26′21′′) · RX (−εA) · RZ

(
�ϕ

) · RX (εA + �ε)

(13)

According to the IAU2000B nutation model, εA, celestial longitude nutation �ϕ ,
and oblique nutations �ε are respectively as below:

εA = ε0 − 46.84024
′′
t − 0.00059

′′t2 + 0.001813′′t3 (14)

�ϕ = �ϕp +
77∑
i=1

[
(Qi1 + Qi2t) sin γi + Qi3 cos γi

]
(15)

�ε = �εp +
77∑
i=1

[
(Qi4 + Qi5t) sin γi + Qi6 cos γi

]
(16)

Where,�ϕp = −0.000135′′,�εp = −0.000388′′ , ε0 = 84381.488′′ ,t is the number
of Julian centuries starting from J2000.0 and obtained based on the current time T;

The breadth angle γi is a linear combination of the angles as follows, nik is an integer
and Fk is the Delaunay angle related to the position of the sun and moon. The value of
“nik and Qi1 − Qi6” in the nutation expression can be found on the service website of
the International Earth Rotation and Reference System Service.

γi =
5∑

k=1

nkFk = ni1l + ni2l
′ + ni3F + ni4D + ni5� (17)

A Periodic Variable Star Observation System with High Accuracy 725

The conversion from celestial coordinate system (XCRFT ,YCRFT ,ZCRFT) at the
current time T to the ground-fixed coordinate system (XTRF ,YTRF ,ZTRF) at the
actual shooting time (T + �ti) is obtained by rotating the celestial coordinate sys-
tem (XCRFT ,YCRFT ,ZCRFT) around the Z axis of the celestial coordinate system
counterclockwise at � = 7.292115 × 10−5rad/s:

(XTRF ,YTRF ,ZTRF) = (XCRFT ,YCRFT ,ZCRFT) · RZ (−��t) (18)

Therefore, the transformation matrix RTRF (−θ3) = RZ (−��t) of the ground-fixed
coordinate system at the actual shooting time (T + �ti).Get the transformation matrix
of the star sensor accuracy test RT+�ti :

RT+�ti = RERF (−θ1) · RCRFT (−θ2) · RTRF (−θ3) = RERF (θ1)
−1 · RCRFT (θ2)

−1 · RTRF (θ3)
−1

= (RTRF (θ3) · RCRFT (θ2) · RERF (θ1))
−1 (19)

Using the optimal attitude matrix Aq(T + �ti) and the accuracy test transformation
matrix RT+�ti , the accuracy test matrix is obtained as Atest(T + �ti) = Aq(T + �ti) ·
RT+�ti .

4 Experiment Results

4.1 Experiment Setup

The variable star observation system is fixed on the earth through a two-dimensional
turntable. In order tominimize the influence of the atmosphere and the like, the star sensor
is directed to the zenith as far as possible, and the star sensor can output corresponding
attitude information along with the movement of the earth. The precision testing method
comprises the following steps:

(1) acquiring the direction vector of the guide star at the time T under the J2000.0
Rectangular Coordinate System;

(2) deducing the optimal attitude matrix of the star sensor Aq(T + �ti);
(3) acquiring an accuracy measurement transformation matrix associated with the star

sensor according to the actual shooting time of the star sensor and the precession,
nutation and rotation of the earth;

(4) obtaining an accuracy measurement matrix according to the attitude matrix and the
accuracy measurement transformation matrix of the star sensor;

(5) obtaining the Triaxial directional vector of the star sensor according to the accuracy
measurement matrix;

(6) Obtaining the pointing accuracy and rolling accuracy of the star sensor according
to the accuracy evaluation standard.

4.2 Accuracy Evaluation

Determine the Triaxial directional vector of the star sensor P(T + �ti) according to the
accuracy test matrix Atest(T + �ti):

P(T + �ti) = Atest(T + �ti)
T

⎡
⎣
1 0 0
0 1 0
0 0 1

⎤
⎦ (20)

726 C. Jiwei and T. Guojian

According to the triaxial directional vector of the star sensor P(T + �ti), the angles
(αi, βi, εi) respectively between the three optimal directing vectors of the star sensor
and the X-axis, Y-axis, and Z-axis vectors of the star sensor at the actual shooting time
(T + �ti) are obtained as the following steps:

(1) The obtained triaxial directional vector of the star sensor P(T + �ti) is expressed
as a row vector as follows, and normalized;

P(T + �ti) = [
Px(T + �ti), Py(T + �ti), Pz(T + �ti)

]
(21)

(2) According to the row vector of the triaxial directional vector of the star sen-
sor, the optimal vectors of the X-axis, Y-axis and Z-axis of the star sensor
Popt(T + �ti) are obtained, to make it minimum sum of each of the three row
vector of Popt(T + �ti) [Pxopt(T + �ti), Pyopt(T + �ti), Pzopt(T + �ti)] and the
square of the vector angles at different actual shooting time (T + �ti)[Px(T + �ti),
Py(T + �ti), Pz(T + �ti)], and normalize the three row vectors;

(3) According to the optimal triaxial directional vector of star sensor Popt(T + �ti)
and the triaxial directional vector P(T + �ti) at different actual shooting time
(T + �ti), the cosine matrix C is obtained:

C =
⎡
⎣
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎤
⎦ = Popt(T + �ti)

T · P(T + �ti) (22)

(4) According to the cosine matrix C, the angle (αi, βi, εi) between the three optimal
directional vectors of star sensor and the vectors of X-axis, Y-axis and Z-axis of the
star sensor at the actual shooting time (T + �ti) is further obtained:

⎡
⎣

αi

βi

εi

⎤
⎦ =

⎡
⎣
arccos(|c11|)
arccos(|c22|)
arccos(|c33|)

⎤
⎦ (23)

Where, All of (αi, βi, εi) are in the range of [0, π
2].

According to the statistical law, the angle between the optimal vector of the rotation
axis of the star sensor and the angle of the vector of the rotation axis can be obtained
through the three-axis vector of the star sensor, ηi, which is conforms to mean value of
zero, and the variance is normal distribution of σ 2. But due to the measurement error,
the angle must be positive. So its probability density function is slightly different from
the probability density function of normal distribution. The probability density function
is expressed as:

p(ηi) =
{
2f (ηi) ηi ≥ 0

0 ηi < 0
(24)

f (ηi) = 1√
2πσ

e− η2i
2σ2 (25)

A Periodic Variable Star Observation System with High Accuracy 727

Where, σ is expressed by the following formula:

σ =
√∑n

0 η2i

n − 1
(26)

αi, βi, εi are expressed with ηi in a unified way. σX , σY , σZ can be obtained by
substituting them into the above formula ηi respectively. n represents the total sampling
times of the star sensor.

The schematic diagram is shown in Fig. 1:

Star
Tracker

Earth
Xσ

Zσ

Yσ

X axis

Y axis

Z axis

Fig. 1. Schematic diagram of direction accuracy and rolling accuracy of the star sensor

αi, βi, εi can reflect theminor changes of the three axes of the star sensor due to errors,
which is used as the accuracy evaluation standard of the star sensor. The roll accuracy of
the star sensor can be obtained, 3σX (99.7%) or 3σY (99.7%), and the direction accuracy
is 3σZ (99.7%).

5 Conclusions

This paper uses the ground observation system based on star sensor to obtain the attitude
information of the system and the observation probability of periodic variable stars. It
deduces the direction accuracy and rolling accuracy of the star sensor, which provides
theoretical support for the application of subsequent observation system and provides
application system for the observation of periodic variable stars.

References

1. George, J., Terejanu, G., Singla, P.: Spacecraft attitude estimation using adaptive gaussian sum
filter. J. Astronaut. Sci. 57(1), 31–45 (2009)

728 C. Jiwei and T. Guojian

2. Godsill, S.J., Doucet, A., West, M.: Monte Carlo smoothing for nonlinear time series. J. Am.
Stat. Assoc. 99(465), 156–168 (2004)

3. Lyalikov, A.M.: Revealingmacrodefects in periodic structures of the transmission type inwhite
light on the basis of shift of images. Opt. Spectrosc. 98(3), 477–482 (2005)

4. Mutapcic, A., Boyd, S., Farjadpour, A., Johnson, S.G., Avniel, Y.: Robust design of slow-light
tapers in periodic waveguides. Eng. Optim. 41(4), 365–384 (2009)

5. Wei, X., Zhang, G., Jiang, J.: Study on the method of star subdivision and positioning of star
image in the star sensor. J. Beihang Univ. (09) (2003)

6. Pengju, H., Bin, L., Tao, Z., Jun, Y.: Research on calibration technology of star sensor with
large field of view. Acta Opt. Sin. 31(10), 1023001 (2011)

7. Guangpu, Y., et al.: Research progress of CCD star photometry. Prog. Astron. 30(4), 467–486
(2012)

8. Bin, L., Hailong, Z., Tao, Z., Yuchan, T.: Status and development trend of star sensor technology
research. China Opt. (2016)

9. Ting, S., Fei, X., Zheng, Y.: Error analysis of high precision of optical system in star sensor.
Acta opt. Sin. (03) (2013)

Author Index

Ai, Zhengpeng III-426
Anand Gopalakrishnan, Atul III-601
Anderson, Scott II-415
Andrzejczak, Michal I-661
Asare, Bismark Tei III-580

Ba, Cheikh I-344
Bader, David A. II-157
Baek, Nakhoon II-723
Bai, Jing II-619
Bao, Yungang II-705
Ben Messaoud, Othman I-606
Bian, Haodong II-111
Borowiec, Damian II-492
Bu, Deqing I-47

Cai, Meng-nan II-677
Cai, Shubin III-155
Cai, Wei II-200, II-215
Cai, Wenzheng III-703
Cao, Jian II-587
Cao, Weipeng I-219, I-448, II-352, II-538
Cao, Zhengjia II-215
Cérin, Christophe III-381
Chang, Peng III-494
Chang, Xiaolin I-695, II-619
Chao, Pingfu I-190
Chen, Juan I-92
Chen, Lei I-579, I-681
Chen, Lin III-676
Chen, Shuang II-97
Chen, Xuxin III-537
Chen, Zhijun III-441
Chen, Zhuang II-230
Cheng, Dongxu III-144
Cheng, Qixuan I-528
Cheng, Yongyang II-142, II-646
Chi, Yuanfang II-200
Christopher Victor, Ashish III-601
Chu, Zhaole I-15
Cong, Peijin III-564

Cooke, Jake II-415
Cui, Jiahe II-259

Dai, Chuangchuang III-654
Dai, Hua III-218
Dai, Jialu II-383
Dai, Wenhao III-475
De Giusti, Armando I-262
Deng, Anyuan III-81
Deng, Xiaoge I-495
Ding, Jia III-396
Ding, Jiafeng I-190
Ding, Kai III-3
Ding, Yepeng I-480
Ding, Zhenquan II-398
Dong, Bo I-627
Dong, Changkun II-142
Dong, Runting II-111
Dong, Xiaoyun II-259
Dong, Yong I-92, II-82, II-97
Dowling, Anthony I-3
Dricot, Jean-Michel III-309
Du, Xinlu I-465
Du, Zhihui II-157
Duan, Haihan II-200, II-215
Duan, Huifeng III-367
Duan, Lijuan III-367
Dun, Ming I-232

Eliassen, Frank II-230
Ellinidou, Soultana III-309
Engel, Fabian Herbert I-3

Faiz, Sami II-3
Fan, Dongrui I-61, II-14
Fan, Jianxi II-47
Fan, Kai III-676
Fan, Shuhui I-563
Fan, Weibei II-47
Fan, Xiaopeng I-174
Fang, Junhua I-190

Fang, Xuqi III-537
Fang, Zhengkang III-19
Fei, Haiqiang II-398
Feng, Boqin I-627
Feng, Yujing I-61
Friday, Adrian II-492
Fu, Shaojing III-520
Fu, Xianghua II-432, II-477, II-523, III-340
Fu, Zongkai I-247, II-259

Gai, Keke II-200, III-3, III-19, III-35,
III-110, III-282

Gaj, Kris I-661
Gan, Yu I-159, II-82
Gao, Hang III-184
Garraghan, Peter II-492
Ge, Shuxin II-306
Gogniat, Guy III-309
Groß, Julian I-369
Gu, Xiaozhuo III-475
Guan, Hongtao III-609
Guan, Jianbo III-126
Guan, Zhenyu III-144
Gueye, Abdoulaye I-344
Gunturi, Venkata M. V. I-125
Guo, Guibing III-426
Guo, Qiang I-275
Guo, Xiaobing III-654
Guo, Yi I-330
Guo, Yuluo II-111
Guojian, Tang I-719

Hamdi, Wael II-3
Han, Ru III-639
Han, Yetong II-383
Han, Yuejuan II-47
Han, Zhen I-695
Han, Zhu I-695
Hao, Long II-321
Hao, Zhiyu II-398
Harper, Richard II-492
He, Fubao III-297
He, Jianwei II-477, II-523
He, Kai III-65, III-81
He, Yulin II-509
Honan, Reid II-415
Hong, Xiaoguang II-690
Hou, Aiqin III-197

Hou, Biao II-633
Hou, Junteng I-31, I-645
Hu, Jiale III-144
Hu, Jingkun II-157
Hu, Lin II-449
Hu, Mengtao I-386
Hu, Wei I-159, I-330, II-82, II-97
Hu, Wenhui II-603
Hu, Xinrong III-65
Hu, Yuekun I-465
Hu, Ziyue I-174, III-110
Huai, Xu I-579
Huang, Chunxiao III-65
Huang, Feng I-495
Huang, Han I-401
Huang, Hua II-463, III-297, III-355, III-549
Huang, Jiahao III-270
Huang, Jianqiang II-111
Huang, Joshua Zhexue II-509
Huang, Kaixin I-433
Huang, Linpeng I-433
Huang, Qun I-614
Huang, Xiaofu I-465
Huang, Xiaoping II-575
Huang, Xin II-184
Huang, Xinli III-537, III-564
Huang, Yu I-579, II-603
Huang, Zhijian I-563
Hui, Zhao II-142, II-646

Jayanthi, Akhilarka III-601
Ji, Jiawei I-143
Ji, Yimu II-449
Jia, Ziye I-695
Jiang, Congfeng III-381
Jiang, Feng II-142, II-646
Jiang, Jian-guo II-677
Jiang, Linying III-426
Jiang, Peng III-35
Jiang, Shang II-677
Jiang, Shenghong I-143
Jiang, Zoe L. II-126
Jiao, Qiang II-82, II-97
Jin, Hao III-93
Jin, Honghe I-512
Jin, Peipei I-579
Jin, Peiquan I-15, III-623
Jin, Shuyuan III-459

730 Author Index

Jin, Xiaolong III-50
Jing, Junchang I-112
Jiwei, Chen I-719

Kandoor, Lakshmi II-184
Kay, Savio II-184
Khedimi, Amina III-381
Köster, Marcel I-369
Krüger, Antonio I-369
Kuang, Xiaoyun III-676

Lagwankar, Ishaan III-592
Lan, Dapeng II-230
Lei, Yongmei I-143
Lewis, Trent W. II-415
Li, Chao III-297
Li, Dawei III-409
Li, Fei I-416
Li, Geng III-324
Li, Haochen III-35
Li, Huiyong I-247
Li, Jianchuan III-623
Li, Jiawei III-218
Li, Jinbao I-305, III-509
Li, Jingjing I-548
Li, Jun I-710
Li, Ling I-47
Li, Lun II-398
Li, Ningwei III-184
Li, Peilong III-93
Li, Peng II-290
Li, Sukun III-663
Li, Wei I-355
Li, Wenming I-61, II-14
Li, Xiangxiang II-32
Li, Xiangxue I-548
Li, Xin I-314
Li, Yi II-14
Li, Yunchun I-232
Li, Yuwen III-282
Li, Yuxiang I-78, I-112
Li, Zhenhao II-82
Li, Zhong III-50
Liao, Chenyang III-270
Liao, Xiaojian I-416
Lin, Chen II-32
Lin, Mufeng II-32
Lin, Yang II-463, III-270
Lin, Zhen III-520

Liu, Bin I-78
Liu, Fanghan III-703
Liu, Feng I-495
Liu, Hongli III-367
Liu, Jianwei III-144, III-324, III-409
Liu, Kaihang II-449
Liu, Lei II-230
Liu, Li I-386
Liu, Liang III-184
Liu, Meiqin III-549
Liu, Qiang II-449
Liu, Shangdong II-449
Liu, Wuji III-197
Liu, Xin II-463
Liu, Xinxin III-549
Liu, Xuefeng I-247, III-687
Liu, Xueyang II-603
Liu, Yanlan II-449
Liu, Yao I-386
Liu, Ye II-383
Liu, Yiyang III-218
Liu, Yizhong III-324, III-409
Liu, Yu I-3, III-297
Liu, Yuan III-426
Liu, Yufei III-537, III-564
Liu, Zhe I-416
Liu, Zihao III-170
Long, Hao I-448
Lu, Fengyuan III-537, III-564
Lu, Jintian III-459
Lu, Ming III-170
Lu, Youyou I-416
Lu, ZhongHua I-290
Lu, Zhonghua III-654
Luan, Hua I-401
Luan, Zerong I-232
Luo, Yan III-93
Luo, Yongping I-15
Luo, Yuchuan III-520
Lv, Huahui III-676
Lv, Xiangyu I-159
Lv, Xingfeng III-509
Lyu, Xukang I-205

Ma, Bingnan I-31
Ma, Dongchao I-465
Ma, Fuhua I-710
Ma, Kun III-703
Ma, Qiangfei III-355

Author Index 731

Ma, Xingkong III-609
Mao, Yupeng III-170
Markowitch, Olivier III-309
Maxwell, Thomas II-184
Memmi, Gerard II-274
Meng, Lianxiao II-552
Menouer, Tarek III-381
Miao, Weikai III-231
Ming, Zhong I-219, II-352, II-538, III-155
Mishra, Abhishek I-125
Mišić, Jelena II-619
Mišić, Vojislav II-619
Mu, Lin III-623
Musariri, Manasah I-47

Nagpal, Rahul III-592, III-601
Naiouf, Marcelo I-262
Nana, Laurent III-580
Nie, Feiping II-337
Nie, Yu III-297
Niu, Beifang III-654
Niu, DanMei I-112
Niu, Jianwei I-247, II-259, III-687

Ou, Yan I-61, II-14
Ou, Zhixin I-92
Ouyang, Zhenchao I-247, II-259

Pan, Yu I-305
Park, Seung-Jong II-723
Pei, Songwen II-173
Peng, Jianfei III-184
Peng, Yaqiong II-398
Peng, Zhaohui II-690
Pousa, Adrián I-262

Qian, Haifeng I-548
Qian, Shiyou II-587
Qiao, Yuanhua III-367
Qin, Xiaolin I-314
Qiu, Han II-274
Qiu, Meikang I-159, II-173, II-274, II-463,

III-3, III-35, III-297, III-355, III-549,
III-654, III-663

Quist-Aphetsi, Kester III-580

Rabbouch, Bochra I-591
Rabbouch, Hana I-591, I-606
Rajapakshe, Chamara II-184

Rajashekar, Vishwas III-592
Ramnath, Sarnath I-125
Ren, Qianqian I-305, I-710
Ren, Shuangyin II-552
Ren, Yi III-126
Rong, Guoping II-32

S N, Durga Prasad III-592
Saâdaoui, Foued I-591, I-606
Sang, Yafei III-494
Sanz, Victoria I-262
Sato, Hiroyuki I-480
Shao, Pengpeng III-170
Sharma, Gaurav III-309
Shen, Chongfei I-61
Shen, Junzhong I-528
Shen, Siqi III-609
Shen, Wei III-197
Shen, Xiaoxian II-245
Shi, Jiakang III-282
Shi, Jiaoli III-65, III-81
Shi, Quanfu II-337
Shi, Yimin II-200
Shu, Jiwu I-416
Si, Chengxiang I-645
Sugizaki, Yukimasa II-365
Sun, Jie III-218
Sun, Qingxiao I-232
Sun, Shibo II-14
Sun, Tao I-495
Sun, Xiaoxiao I-512
Sun, Xudong II-523
Sun, Zhi III-50
Suo, Siliang III-676
Swiatowicz, Frank I-3

Taherkordi, Amir II-230
Takahashi, Daisuke II-365
Tan, Nongdie I-681
Tan, Yusong III-126
Tang, Gaigai II-552
Tang, Minjin I-614
Tang, Shuning II-449
Tang, Xudong III-231
Teng, Meiyan I-314
Teng, Yajun III-475
Tian, Mao III-494
Tian, Mengmeng III-426
Tian, Ze III-639

732 Author Index

Tolnai, Alexander John I-3
Tong, Li I-579
Tu, Yaofeng I-433

Valiullin, Timur I-448, II-321

Wan, Shouhong I-15
Wang, Changming III-367
Wang, Danghui II-563, III-639
Wang, Deguang I-528
Wang, Jianwu II-184
Wang, Jihe II-563, II-575
Wang, Jikui II-337
Wang, Li I-275
Wang, Qiang I-448, III-231
Wang, Ruili III-110
Wang, Sa II-705
Wang, Shiyu II-575
Wang, Shupeng I-31, I-645
Wang, Shuxin II-432, II-477, II-523, III-340
Wang, Si-ye II-677
Wang, Tianbo III-251
Wang, Wei I-386
Wang, Weixu II-306
Wang, Xiaoying II-111
Wang, Xinyi I-47
Wang, Xiwen III-170
Wang, Xizhao II-352
Wang, Yan II-47
Wang, Yang I-174
Wang, Yaobin I-47
Wang, Yonghao I-159, I-330, II-97
Wang, Yongjun I-563
Wang, Yu II-603
Wang, Zhe III-126
Wei, Chenghao I-448, II-321
Wei, Guoshuai II-662
Wei, Xiaohui II-245
Wei, Yanzhi II-432, II-477, II-523
Wei, Yihang III-282
Wen, Mei I-528, I-614
Wen, Yuan I-159, II-82
Wen, Yujuan III-564
Wu, Chase Q. I-205, III-197
Wu, Guangjun I-31, I-645
Wu, Haiyu I-627
Wu, Jie I-314
Wu, Jing I-330
Wu, Jiyan III-687

Wu, Kaishun II-383
Wu, Qianhong III-324, III-409
Wu, Quanwang II-662
Wu, Xinxin I-61, II-14
Wu, Yuhao II-538
Wu, Yusheng II-173

Xia, Chunhe III-251
Xia, Jingjing II-47
Xia, Yuanqing I-219
Xiao, Ailing I-465
Xiao, Bowen II-215
Xiao, Wan II-449
Xie, Peidai I-563
Xie, Tao III-520
Xie, Wenhao II-432, II-477, III-340
Xie, Zhongwu II-352
Xiong, Hailing I-681
Xu, Aidong III-676
Xu, Chen III-93
Xu, Chengzhong I-174
Xu, Fang III-81
Xu, Haoran I-563
Xu, Hongzuo I-563
Xu, Jiajie I-190
Xu, Jianqiu III-218
Xu, Jiawei II-587
Xu, Lei III-19
Xu, Liwen I-512
Xu, Wenxing II-14
Xu, Yuan II-705
Xu, Zhengyang II-449
Xu, Zhiwu II-538, III-396
Xue, Guangtao II-587
Xue, Wei I-386

Yan, Ruibo II-142, II-646
Yang, Chenlong I-548
Yang, Geng III-218
Yang, Guang II-690
Yang, Hailong I-232
Yang, Hang III-676
Yang, Jingying III-340
Yang, Lei II-215
Yang, Lin II-552
Yang, NingSheng III-155
Yang, Renyu II-492
Yang, Saqing III-126
Yang, Shaokang III-687

Author Index 733

Yang, Wu II-552
Yang, Xueying III-654
Yang, Yang I-47, I-695, II-619
Yang, Yifan II-32
Yang, Zhe I-416
Yang, Zhengguo II-337
Ye, Feng III-170
Ye, Qianwen III-197
Ye, Xianglin I-681
Ye, Xiaochun I-61
Ye, Xuan II-509
Yeung, Gingfung II-492
Yin, Hao III-282
Yin, Jiayuan III-324
Ying, Yaoyao I-433
Yiu, Siu Ming II-126
You, Xin I-232
You, Ziqi III-126
Yu, Dunhui III-441
Yu, Hui III-324, III-409
Yu, Huihua I-579
Yu, Shucheng II-62
Yuan, Baojie II-383
Yuan, Yuan I-92
Yue, Chen III-639
Yue, Hengshan II-245

Zeng, Xiao I-159
Zeng, Yi II-274
Zeng, Yunhui I-275
Zhan, Ke I-290
Zhang, Chaokun II-306
Zhang, Chunyuan I-528, I-614
Zhang, Hanning I-627
Zhang, Jie I-275
Zhang, Jiyong I-448, II-538
Zhang, Jun II-126
Zhang, Junxing II-633
Zhang, Lei I-31, I-645
Zhang, Lu III-639
Zhang, Mengjie III-441
Zhang, Minghui II-603
Zhang, Sen II-157
Zhang, Shengbing II-575
Zhang, Tao II-290
Zhang, Tianwei II-705
Zhang, Wentao III-355
Zhang, Xingsheng III-441

Zhang, Yan-fang II-677
Zhang, Yang I-305
Zhang, Yanlin II-290
Zhang, Yongzheng III-494
Zhang, Yue III-3
Zhang, Yunfang I-92
Zhang, YunQuan I-290
Zhang, Yunyi III-459
Zhang, Zhibo II-184
Zhang, Zhiyong I-78, I-112
Zhang, Zijian III-110
Zhao, Bo-bai II-677
Zhao, Da-ming II-62
Zhao, Hui II-603
Zhao, Jiaxiang II-563
Zhao, Jie III-623
Zhao, Lei I-190
Zhao, PengPeng I-190
Zhao, Qinglin II-306
Zhao, Shuyuan III-494
Zhao, Wenqian II-32
Zhao, Xiaolei I-614
Zhao, Yonglin II-432, II-477, II-523
Zheng, Hongqiang I-330
Zheng, Jianyu II-184
Zheng, Shengan I-433
Zheng, Weiyan I-579
Zhou, Changbao II-245
Zhou, Cong II-538
Zhou, Fangkai III-270
Zhou, Hao I-681
Zhou, Huaifeng III-155
Zhou, Jian-tao II-62
Zhou, Jingren III-623
Zhou, Xiaobo II-306
Zhu, Guanghui I-275
Zhu, Haoran II-619
Zhu, Junwei II-587
Zhu, Liehuang III-19, III-35, III-110, III-282
Zhu, Qingting I-386
Zhu, Weidong II-587
Zhu, Yanmin II-587
Zhu, Zongyao II-587
Zhuang, Chuanzhi III-50
Zhuang, Yuan I-275
Zou, Weidong I-219
Zou, Xingshun I-355
Zou, Yongpan II-383

734 Author Index

	Preface
	Organization
	Contents – Part I
	Contents – Part II
	Contents – Part III
	Parallel Architectures and Algorithms (PAA)
	COMBS: First Open-Source Based Benchmark Suite for Multi-physics Simulation Relevant HPC Research
	1 Introduction
	2 Related Work and Motivation
	3 Benchmark Suite
	3.1 Selection Criteria
	3.2 Benchmarks
	3.3 HPC Coverage Analysis

	4 Benchmark Repository on Github
	5 Characteristics of the Benchmark Suite
	6 Conclusion and Future Work
	1 Artifact Description Appendix
	References

	Efficient Sorting and Join on NVM-Based Hybrid Memory
	1 Introduction
	2 Related Work
	3 Data Placement Model on Hybrid Memory
	3.1 Basic Concepts
	3.2 Optimal Data Placement Model

	4 Sorting and Join with the Optimal Data Placement Model
	4.1 NVMSort
	4.2 Sort Join with NVMSort

	5 Performance Evaluation
	5.1 Settings
	5.2 Sorting Performance
	5.3 Join Performance

	6 Conclusions
	References

	Parallel SCC Detection Based on Reusing Warps and Coloring Partitions on GPUs
	1 Introduction
	2 Preliminaries
	3 The FBw-Pc Implementation
	3.1 Overview
	3.2 The Scheme of Reusing Warps
	3.3 The Scheme of Coloring Partitions
	3.4 Details of Parameter Optimization

	4 Experimental Methodology
	4.1 Experiment Setup
	4.2 Performance Analysis of Reusing Warps
	4.3 Performance Analysis of Partitioning Method
	4.4 Performance Analysis of the Entire Algorithm

	5 Conclusion
	References

	Procedure and Loop Level Speculative Parallelism Analysis in HPEC
	1 Introduction
	2 Related Work
	3 Speculative Mechanism
	3.1 Speculation Execution Model
	3.2 Profiling Mechanism
	3.3 Kernel Data Structure

	4 Impact Factors of TLS
	5 Experiment Analysis
	5.1 Results in Loop Level Speculation
	5.2 Discussion

	6 Conclusion
	References

	CTA: A Critical Task Aware Scheduling Mechanism for Dataflow Architecture
	1 Introduction
	2 Dataflow Architecture
	3 A Critical Task Aware Scheduling Algorithm
	3.1 Performance Model of Dataflow Execution
	3.2 Task Scheduling Algorithm

	4 CTA Architecture
	4.1 Elastic Handshake Mechanism
	4.2 Task Scheduling Mechanism Architecture

	5 Evaluation
	5.1 Experimental Platform
	5.2 Workloads
	5.3 Evaluation Metric
	5.4 Result and Discussion

	6 Related Work
	7 Conculusion
	References

	An Adaptive Thread Partitioning Approach in Speculative Multithreading
	1 Introduction
	2 Motivation of AdapTPA
	3 Overall Framework
	3.1 Feature Extraction
	3.2 Knowledge Expression

	4 Implementation of AdapTPA
	4.1 Building of Complexity Calculation Model
	4.2 Building of Candidate Thread Partition Scheme Set
	4.3 Construction of Thread Partitioning Scheme Selection Mechanism in Line with Program Complexity

	5 Experiment and Analysis
	5.1 Configuration of Experiment
	5.2 Experimental Configuration

	6 Conclusion and Future Work
	References

	PMC-Based Dynamic Adaptive CPU and DRAM Power Modeling
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Overview
	3.2 Build Local Models
	3.3 Select PMC
	3.4 Dynamic Model Matching and Updating
	3.5 Utilization of DAPM

	4 Experiment
	4.1 Platform and Configuration
	4.2 Overall Results
	4.3 Local Model Effect Examination (Q1)
	4.4 Dynamic Model Matching Effect Examination (Q2)
	4.5 DAPM Cost and Defects Analysis
	4.6 Comparison with Static Models

	5 Conclusion
	References

	ParaCA: A Speculative Parallel Crawling Approach on Apache Spark
	1 Introduction
	2 Spark-Based Speculative Parallel Crawler Framework
	2.1 Speculative Parallel Crawling
	2.2 Speculative Parallel Algorithm Based Map/reduce

	3 Experiment and Analysis
	3.1 Experiment Configuration
	3.2 Analysis of Experimental Results

	References

	A Multi-threaded Algorithm for Capacity Constrained Assignment over Road Networks
	1 Introduction
	2 Basic Concepts and Problem Definition
	2.1 Problem Statement

	3 Proposed Approach
	3.1 Overview
	3.2 Assignment Subspace Tree
	3.3 Cascades in Assignment Subspace Tree
	3.4 ASRAC Algorithm

	4 Analytical Evaluation
	5 Experimental Evaluation
	References

	A Dynamic Scheduling Strategy of ADMM Sub-problem Optimization Algorithm Based on Hierarchical Structure
	1 Introduction
	2 Problem Description and Related Work
	2.1 Distributed Alternating Direction Method of Multipliers
	2.2 Asynchronous Distributed Alternating Direction Method of Multipliers
	2.3 Hierarchical Communication Structure

	3 Dynamic Scheduling Strategy Based on HAD-ADMM
	3.1 Optimization Algorithm for Solving Sub-problem
	3.2 Dynamic Scheduling Strategy Based on HCS
	3.3 The Dynamic Scheduling Basises

	4 Experiments and Result Analysis
	4.1 Convergence Testing and Analysis
	4.2 Performance Testing and Analysis

	5 Conclusion
	References

	An Improved Heterogeneous Dynamic List Schedule Algorithm
	1 Introduction
	2 System Model
	2.1 Processor Model
	2.2 Application Model
	2.3 Dynamic Task Mapping Model

	3 The Proposed Algorithm
	3.1 Task List Establishment
	3.2 Multi-strategy Task Mapping
	3.3 Workload Balancing Among Processors

	4 Experiment
	4.1 Performance Metrics
	4.2 Result and Analysis

	5 Related Work
	6 Conclusion
	References

	FastThetaJoin: An Optimization on Multi-way Data Stream -join with Range Constraints
	1 Introduction
	2 Related Work
	3 FastThetaJoin Design
	3.1 Filter Strategy
	3.2 Cross Product Strategy
	3.3 Data Skew Processing Strategy
	3.4 -join of Multi-way Data Streams

	4 Experiment Evaluation
	4.1 Experiment Setup
	4.2 Two-Way Data Stream
	4.3 Multi-way Data Stream

	5 Conclusion
	References

	A Distributed Framework for Online Stream Data Clustering
	1 Introduction
	2 Preliminaries
	2.1 Clustering Algorithm
	2.2 Problem Description

	3 Solution Overview
	4 Real-Time Distribute Clustering
	4.1 Dynamic Data Partition
	4.2 Local Clustering Algorithm
	4.3 Global Clustering Algorithm

	5 Experiment
	5.1 Experimental Setup
	5.2 Performance on Real Data

	6 Related Work
	7 Conclusion
	References

	End-System Aware Large File Transfer Solution for Rich Media Applications over 5G Mobile Networks
	1 Introduction
	2 Maximizing Transport Performance over High-Speed Connections
	2.1 Performance Model for Data Receiver
	2.2 Peak Link Utilization Transport

	3 Implementation and Experimental Results
	3.1 Protocol Implementation
	3.2 Performance Evaluation

	4 Conclusion
	References

	Broad Learning System with Proportional-Integral-Differential Gradient Descent
	1 Introduction
	2 Preliminaries
	2.1 Broad Learning System (BLS)
	2.2 Proportional-Integral-Differential (PID)

	3 BLS with PID-based Gradient Descent (PID-GD-BLS)
	4 Simulation Experiments and Discussions
	4.1 Convergence Rate Comparison of PID-GD, Adam, and AdaMod
	4.2 Performance Comparison of PID-GD-BLS, BLS, and FBLS

	5 Conclusions
	References

	Accelerating De Novo Assembler WTDBG2 on Commodity Servers
	1 Introduction
	2 Background
	2.1 Genome Assembly
	2.2 Wtdbg2

	3 Methodology
	3.1 Bottleneck Analysis
	3.2 Memory Auto-Tuning
	3.3 Sequence Alignment Optimization

	4 Implementation
	4.1 Memory Auto-Tuning
	4.2 Sequence Alignment Optimization
	4.3 Output Optimization

	5 Evaluation
	5.1 Experiment Setup
	5.2 Performance Analysis
	5.3 Parameter Sensitivity Analysis

	6 Related Work
	7 Conclusion
	References

	Typing Everywhere with an EMG Keyboard: A Novel Myo Armband-Based HCI Tool
	1 Introduction
	2 Related Work
	2.1 Gesture Recognition by EMG
	2.2 Wearable Device-Based Text Entry System

	3 System Overview
	3.1 System Architecture
	3.2 Keyboard Design

	4 Gesture Sequence Model
	4.1 Model Architecture
	4.2 Model Training
	4.3 Model Predict

	5 Experimental Evaluation
	5.1 Goals
	5.2 Procedure
	5.3 Experiment Result
	5.4 Analysis
	5.5 Add the Language Model to the Decoding Process
	5.6 Keycode to Character
	5.7 Real Time Performance

	6 Conclusion
	References

	Accelerating Pattern Matching on Intel Xeon Phi Processors
	1 Introduction
	2 Background
	2.1 The Aho-Corasick Algorithm
	2.2 The Parallel Failureless Aho-Corasick Algorithm
	2.3 Intel Xeon Phi Knights Landing Processor

	3 Pattern Matching on Xeon Phi Processors
	3.1 Parallelization Strategy
	3.2 Implementation Details

	4 Experimental Results
	5 Conclusions and Future Work
	References

	Redistributing and Optimizing High-Resolution Ocean Model POP2 to Million Sunway Cores
	1 Introduction and Motivation
	2 High-Resolution Case of POP2 in CESM
	3 Porting and Optimizing to Many-Core
	4 Refactoring and Redistributing
	4.1 Refactoring 2D-Array Computing Flow
	4.2 Grid Decomposition and Block Distribution

	5 Speedup Ratio and Scalability
	6 Conclusion and Discussions
	References

	Performance Optimization for Feature Extraction Section of DeepChem
	1 Introduction
	2 Related Work and Motivation
	3 Algorithms and Implementations
	4 Experiment
	4.1 Experiment Environment
	4.2 Experiment Results and Analysis

	5 Conclusions
	References

	Principal Component Analysis for Fingerprint Positioning
	1 Introduction
	2 Related Work
	3 System Model
	4 Generating Fingerprint Database for Localization
	4.1 RSSI Fingerprint Database
	4.2 Quantized Fingerprint Database
	4.3 PCA Fingerprint Database

	5 Simulations and Analysis
	5.1 Impact of k on Localization Accuracy
	5.2 Impact of Threshold on Localization Accuracy
	5.3 Localization Accuracy Comparison Under Different Fingerprint Database

	6 Conclusion
	References

	Priority Based Service Placement Strategy in Heterogeneous Mobile Edge Computing
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Scenario and Notation
	3.2 Problem Formulation

	4 Service Placement Strategy
	4.1 Total Delay Algorithm
	4.2 Node Priority
	4.3 Priority Placement Algorithm

	5 Evaluation
	5.1 Simulation Settings
	5.2 Results Comparing

	6 Conclusion
	References

	VTC: A Scheduling Framework Between Soft Real-Time and Hard Real-Time on Multimedia OS
	1 Introduction
	2 Related Work
	3 Literature Review
	3.1 Scheduling Model
	3.2 TDCS Scheduling Theory

	4 Proposed Scheduling Framework
	4.1 The Principle of VTC
	4.2 The Framework of VTC
	4.3 The Process of Scheduling
	4.4 Feasibility

	5 Experiments and Analysis
	5.1 Schedulability Simulation
	5.2 The Comparison of Delay
	5.3 Delay Rate
	5.4 Scheduling Complexity
	5.5 Advantages and Disadvantages of VTC

	6 Conclusions
	References

	A BSP Based Approach for NFAs Intersection
	1 Introduction
	2 Related Works
	3 Terminology and Background
	3.1 Finite State Automata
	3.2 MapReduce and NFAs Intersection
	3.3 BSP Model

	4 Solution for NFAs Intersection
	5 Analysis
	5.1 State Complexity
	5.2 Computational Complexity

	6 Concluding Remarks
	References

	Tight Bound of Parallel Request Latency for Erasure-Coded Distributed Storage System
	1 Introduction
	2 System Model
	3 Queueing Model and Performance Analysis with Batch Poisson Arrival
	3.1 Queueing Model Analysis with Batch Poisson Service Processes
	3.2 Queueing Model Analysis with Poisson Service Processes
	3.3 Queueing Model Analysis with Shifted Poisson Service Process

	4 Bound of Parallel File Request Latency
	5 Implementation and Evaluation
	6 Conclusions and Future Work
	References

	High-Performance Simulations on GPUs Using Adaptive Time Steps
	1 Introduction
	2 Related Work
	3 Component-Based Simulations on GPUs
	4 Our Method
	4.1 Leveraging Shared-Memory Caches
	4.2 Hiding Different Access Patterns Using Views
	4.3 Algorithm
	4.4 Implementation Details

	5 Evaluation
	5.1 Gravity-Like Simulation
	5.2 PBD-like Simulation

	6 Conclusion
	References

	Performance Modeling of Stencil Computation on SW26010 Processors
	1 Introduction
	2 Related Work
	2.1 Performance Modeling
	2.2 Stencil Computation
	2.3 Blocking Schemes

	3 Performance Modeling on SW26010 Processors
	3.1 Overview of Sunway TaihuLight
	3.2 Generic Performance Model on Sunway TaihuLight
	3.3 Performance Modeling of Stencil Computation

	4 Experiments
	4.1 Experimental Setup and Metrics
	4.2 Error Ratio of Models
	4.3 Model-Guided Performance Optimization

	5 Conclusion
	References

	Optimizing B+-Tree Searches on Coupled CPU-GPU Architectures
	1 Introduction
	2 Preliminaries
	2.1 B+-Tree
	2.2 Coupled CPU-GPU Architectures
	2.3 OpenCL

	3 Optimization Techniques
	3.1 Hierarchical Searching on the Coupled GPU
	3.2 Co-processing on Coupled CPU-GPU Architectures

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Performance of the Hierarchical Searching Scheme
	4.3 Performance of the Co-processing Pipeline Searching

	5 Related Work
	6 Conclusion
	References

	OCVM: Optimizing the Isolation of Virtual Machines with Open-Channel SSDs
	1 Introduction
	2 Background
	3 Design
	3.1 Channel-Granular Isolation
	3.2 Block-Granular Isolation
	3.3 Dynamic Allocation of Pool Resources

	4 Evaluation
	4.1 Experimental Setup
	4.2 Overall Performance
	4.3 The Impact of Channel-Granular Isolation on VMs
	4.4 The Impact of Block-Granular Isolation on Garbage Collection
	4.5 The Effect of Dynamically Allocating Pool Resources

	5 Related Work
	6 Conclusion
	References

	CANRT: A Client-Active NVM-Based Radix Tree for Fast Remote Access
	1 Introduction
	2 Background and Motivation
	2.1 Non-Volatile Memory
	2.2 Remote Direct Memory Access
	2.3 RDMA-enabled Index Structure
	2.4 Persistent Radix Tree

	3 CANRT
	3.1 CANRT Data Structures
	3.2 Locating Target Data Node
	3.3 Fine-Grained Lock-Based Remote Write
	3.4 Node-Oriented Remote Read
	3.5 Non-blocking Resizing
	3.6 Crash Recovery

	4 Evaluation
	4.1 Experimental Setup
	4.2 Remote Write Latency
	4.3 Remote Read Latency
	4.4 Range Query Latency
	4.5 Concurrent Throughput

	5 Conclusion
	References

	Distributed and Parallel Ensemble Classification for Big Data Based on Kullback-Leibler Random Sample Partition
	1 Introduction
	2 Preliminaries
	2.1 Data Storage in HDFS and Spark
	2.2 Sampling Method for Big Data
	2.3 Kernel Density Estimation and Kullback-Leibler Measure

	3 KL-RSP Data Storage Model
	4 Ensemble Classification for KL-RSP Data Model
	5 Experiment Results
	5.1 Sampling Time Efficiency Comparison
	5.2 Ensemble Learning Results

	6 Conclusion
	References

	SWAF: A Distributed Solar WSN Adaptive Framework
	1 Introduction
	2 Related Work and Problem Analysis
	2.1 SCP and Applicability
	2.2 Influence of Prediction Period on Network Lifetime
	2.3 Energy-Aware Routing Strategies

	3 Solar WSN Adaptive Algorithm (SWA)
	3.1 Judging the Risk of Node Death
	3.2 Judgement Method of Shadow
	3.3 SWA Algorithm

	4 Experimental
	5 Conclusion and Prospect
	References

	Formalizing and Verifying Decentralized Systems with Extended Concurrent Separation Logic
	1 Introduction
	2 Related Work
	3 Our Logic
	3.1 Communication Encapsulation
	3.2 Environment Perception
	3.3 Node-Level Reasoning

	4 Application
	4.1 Consensus Mechanism
	4.2 Smart Contract

	5 Discussion
	6 Conclusion
	References

	PRIAG: Proximal Reweighted Incremental Aggregated Gradient Algorithm for Distributed Optimizations
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Set Up
	2.1 Nonconvex and Nonsmooth Model
	2.2 Some Examples
	2.3 The PRIAG Algorithm

	3 Convergence Analysis
	3.1 Preliminaries
	3.2 Key Result

	4 Applications
	4.1 Application to the Distributed Optimization
	4.2 Application to the Nonconvex and Nonsmooth Problem

	5 Conclusion
	References

	Decentralized Expectation Maximization Algorithm
	1 Introduction
	2 Background
	2.1 The EM Algorithm
	2.2 The Decentralized Algorithm

	3 The Decentralized EM Algorithm
	3.1 Algorithm Description
	3.2 Convergence Analysis

	4 Experiments
	4.1 Mixture Gamma Distribution
	4.2 Hidden Markov Models with Mixtures as Emission Distribution

	5 Conclusion
	References

	Towards a Deep-Pipelined Architecture for Accelerating Deep GCN on a Multi-FPGA Platform
	1 Introduction
	2 Related Works
	3 Background
	3.1 Traditional GCN Algorithm
	3.2 Deep GCN Algorithm
	3.3 Partitioning Scheme for Large-Scale Sparse MV
	3.4 Blocking Compression Scheduling Algorithm

	4 Deep-Pipelined Acceleration Scheme for DAGCN
	4.1 System Design
	4.2 Neural Network Mapping Scheme
	4.3 GCN Accelerator
	4.4 Data Flow

	5 Performance and Resource Modeling
	6 Experiments
	6.1 Experiment Settings
	6.2 Experiment Evaluation

	7 Conclusion and Future Work
	References

	Linear Scalability from Sharding and PoS
	1 Introduction
	2 Preliminaries
	2.1 Proof-of-Stake
	2.2 Blockchain Sharding

	3 The Proposed Framework
	3.1 Consensus Protocol
	3.2 Reward Mechanism

	4 Security Analysis
	4.1 Sybil Attack
	4.2 51% Attack

	5 Conclusion and Future Work
	References

	Tree2tree Structural Language Modeling for Compiler Fuzzing
	1 Introduction
	2 Problem Statement
	3 TSmith
	3.1 Design Overview
	3.2 Tree2tree Neural Network
	3.3 Generating New Test Programs

	4 Experiments and Evaluation
	4.1 Dataset and Preprocessing
	4.2 Evaluation Metrics
	4.3 Pass Rate
	4.4 Code Coverage
	4.5 New Bugs

	5 Related Work
	6 Conclusion
	References

	Research and Design of Distribution Equipment Health Early Warning System
	1 Introduction
	2 Design of Distribution Equipment Health Early Waring System
	2.1 System Requirements Analysis
	2.2 System Architecture Description
	2.3 System Deployment Architecture

	3 Design of the System Core Function Module
	3.1 Data Preprocessing Module
	3.2 Model Prediction Module
	3.3 Early Warning Module
	3.4 Model Update Module

	4 System Development Technology
	4.1 VC Design Pattern
	4.2 Flask Framework

	5 Conclusion
	References

	Parallel Processing Algorithms for the Vehicle Routing Problem and Its Variants: A Literature Review with a Look into the Future
	1 Introduction
	2 General Background
	3 Bibliometric Analysis of VRP and Parallel Metaheuristics
	4 Major Review and Survey Publications
	5 Conclusion
	References

	Multi-scaled Non-local Means Parallel Filters for Medical Image Denoising
	1 Introduction
	2 Empirical Mode Decomposition (EMD)
	3 Wavelet Transform
	4 Multiscaled NLM-Denoising
	5 Numerical Results
	6 Conclusion
	References

	Optimized HybridSketch: More Efficient with Analysis and Algorithm
	1 Introduction
	2 Background and Motivations
	3 Boundary Analysis
	3.1 Top-K Part Bound Analysis
	3.2 Sketch Part Bound Analysis

	4 Data Augmentation Algorithm
	4.1 Ideal Preliminary Algorithm
	4.2 Preprocessing of the Dataset

	5 Implementation of Optimized HybridSketch
	6 Performance Evaluation of the System
	6.1 Experimental Setup
	6.2 Performance Evaluation of Optimal System

	7 Related Work
	8 Conclusion
	References

	An Overlapping Community Detection Algorithm Based on Triangle Reduction Weighted for Large-Scale Complex Network
	1 Introduction
	2 Related Work
	2.1 Overlapping Community Detection
	2.2 Modularity and NMI
	2.3 Label Propagation Algorithm

	3 Triangle Reduction Network
	3.1 Triangle Reduction Network Structure
	3.2 Triangle Topology Has Strong Community Nature
	3.3 Most Networks Are Rich in Triangle Topology
	3.4 Triangle Reduction Process Is Sustainable
	3.5 Triangle Reduction Algorithm
	3.6 Complexity Analysis of Triangle Reduction

	4 TRWLPA Algorithm for Reduction Network
	4.1 Node Weight Calculation
	4.2 Community Detection
	4.3 Complexity Analyses

	5 Experimental Analyses
	5.1 Datasets and Platform
	5.2 Comparative Experiment and Parameter Setting
	5.3 Analyses of Experimental Results

	6 Conclusion
	References

	Parallel Belief Propagation Optimized by Coloring on GPUs
	1 Introduction
	2 Preliminaries
	3 The BP Implementation Based on GPUs
	3.1 The Color Wave Algorithm
	3.2 The Color Extract Algorithm
	3.3 The Random Drop Algorithm

	4 Experimental Methodology
	4.1 Experimental Setup
	4.2 Performance Analysis of Color Wave Algorithm
	4.3 Performance Analysis of Color Extract Algorithm
	4.4 Performance Analysis of Random Drop Algorithm
	4.5 Performance Analysis of All Algorithms

	5 Conclusion
	References

	A Multiplatform Parallel Approach for Lattice Sieving Algorithms
	1 Introduction
	1.1 Contribution

	2 Mathematical Background
	3 Lattice Sieving
	3.1 The GaussSieve
	3.2 Parallel Sieves

	4 Hardware Acceleration of Vector Reduction
	4.1 Computing a Vector Product
	4.2 Division with Rounding to the Nearest Integer
	4.3 Update of Vector Values
	4.4 Reduce Module

	5 Caching Approach to Lattice Sieving for Multi-platform Environment
	5.1 Data Transfer Costs
	5.2 Reducing Newly Sampled Vectors by a Set
	5.3 On-the-Fly Reduction
	5.4 Maximizing Performance with the Proper Schedule of Operations

	6 Multiple Parallel Instances of the Accelerator in One FPGA
	6.1 Final Results
	6.2 Comparison to Other Results

	7 Conclusions
	References

	Effect of Evaporation on Aggregation Kinetics of Clusters: A Monte Carlo Simulation Study
	1 Introduction
	2 Construction of Evaporation Model
	2.1 Construction of Diffuse Model
	2.2 Construction of Aggregation Model

	3 Experiment and Analysis
	3.1 Effect of Evaporation Rate on Aggregation Results
	3.2 Effect of Evaporation Rate on Weight Average of System
	3.3 Cluster Distribution Under the Conditions of Rapid Evaporation and Slow Evaporation
	3.4 Influence of Monomer Aggregation Probability on Aggregation Process

	4 Conclusion
	References

	Processing in Memory Assisted MEC 3C Resource Allocation for Computation Offloading
	1 Introduction
	2 System Model
	3 The Proposed Computation Offloading Approach
	3.1 Overview
	3.2 Master Problem
	3.3 Pricing Problem
	3.4 Details of CGBA

	4 Performance Evaluation
	4.1 Simulation Environment Configurations
	4.2 Simulation Result Analysis

	5 Conclusions
	References

	A Greedy Heuristic Based Beacons Selection for Localization
	1 Introduction
	2 Related Work
	3 Network Model
	4 Beacons Selection Algorithm
	5 Target Localization Algorithm
	6 Experimental Analysis
	6.1 Impact of RPs Number and Grid Size on Localization Error
	6.2 Localization Results Under Different Trajectories

	7 Conclusion
	References

	A Periodic Variable Star Observation System with High Accuracy Based on Star Sensors
	1 Introduction
	2 Related Works
	3 Observation Probability and Attitude
	3.1 Observation Probability
	3.2 Attitude Matrix
	3.3 Accuracy Measurement Matrix

	4 Experiment Results
	4.1 Experiment Setup
	4.2 Accuracy Evaluation

	5 Conclusions
	References

	Author Index

