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Abstract. The success of Convolution Neural Network (CNN) in com-
puter vision presents a continuing challenge on performance requirement
in both training and inference processes. Various software optimization
has been examined towards existing hardware devices such as CPU and
GPU to meet the computation needs; however, the performance gap
between ideal and reality will keep going if there is short of hardware sup-
port. In this paper, we propose a customized CNN processor by extend-
ing the RISC-V instruction set. We have added six primary instructions
by analyzing and abstracting the characteristics of conventional CNN
models. The target micro-architecture has been upgraded accordingly
to exploit the parallelism in the massive data access. We evaluated our
work on the broadly used CNN model, LeNet-5, on Field Programmable
Gate Arrays (FPGA) for the correctness validation. Comparing to tra-
ditional x86 and MIPS ISAs, our design provides a higher code density
and performance efficiency.

Keywords: CNN · RISC-V architecture · RISC-V processor · Custom
instruction · FPGA

1 Introduction

Convolution Neural Network (CNN) has been one of the most attractive tech-
nique in the past decade due to its outstanding prediction capability in a wide
range of computer vision applications [5,10,11,20,22]. Such a high precision
comes from extensive training over numerous training samples by well-structured
models which usually have a large number of trainable weights to capture the
characteristics of the model inputs. An example is a model with a larger size
generally outperforms its smaller counterparts in terms of prediction accuracy
[17]. But, at the same time, it also introduces a significantly greater number of
operations which requires more time and resources to perform the calculation [6].
The computation burden can prohibit a comprehensive CNN model’s deploying
in practice, particularly for those applications with performance requirement.
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The mainstream machine framework selects the most appropriate form of
convolution among the options allowed by the runtime for the given platform.
For CPU processors, a general matrix multiplication (GEMM) routine is a pop-
ular replacement of direct convolution [8,23], as most machines already have a
fast implementation of the Basic Linear Algebra Subprograms (BLAS), while
for the GPU counterpart, it often relies on the runtime library provided by the
device vendors, such as Nvidia CuDNN and AMD ROCm. Because neither CPU
nor GPU is initially designated for performing machine learning applications, it
requires a significant effort for software to optimize code towards those proces-
sors. As a result, the generated code is often cumbersome, and its performance
falls into suboptimal if there is a short of customized hardware support.

GPU (Graphics Processing Unit) is the broadest used hardware in training
machine learning models because of its high throughput in parallel computing
together with the massive bandwidth [9,13,21]. The GPU programming model
allows a single instruction to perform on a group of independent data on sepa-
rate PEs (Computing Elements) in a synchronized manner, which called SIMD
(Single Instruction Multiple Data), to upgrade the computation throughput.
The programmability of GPU makes it an easy-to-use platform that is popu-
lar among data scientists and CNN designers. However, the GPU also comes
with obvious limitations that constrain its usage in a narrower range of scenar-
ios. First, workload performance is not portable. The program has to be tuned
before migrating from one GPU to another if the two processors have different
architectures or various hardware resources. Second, GPU is not transparent to
the programmer, and it requires explicit management of data and the function-
ality of processing the data. Transforming legacy code and library to the GPU
is not a trivial effort. Finally, GPU requires the code to be compiled on-the-fly
by a Just-in-Time compiler which shipped by the device vendor. Such a process
introduces a nonnegligible runtime overhead.

In this paper, we propose hardware optimization for Convolutional Neu-
ral Networks. Instead of implementing a discrete accelerator, we extended the
RISC-V instruction set by characterizing and abstracting the working pattern of
mainstream CNN models. The proposed instruction set is transparent to the pro-
grammer and can be easily supported by compilers. It enhances the readability
of the assembly program by decreasing the size of the code. In our experiment,
we validated our design by implementing in on FPGA (Field Programmable
Gate Arrays) fabrics. We have also examined and optimized the corresponding
micro-architecture to improve the data parallelism.

The paper makes the following contributions:

– Design an instruction set based on RISC-V to optimize classic CNN opera-
tions

– Validate the extended instruction set on the FPGA fabric
– Optimize the micro-architecture to upgrade data access parallelism.
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2 Background

2.1 Convolution Neural Network

Convolution Neural Network (CNN) has won considerable attention due to its
outstanding performance in many sub-domains in computer vision, including
image classification, object detection, motion estimation, video tracking, and so
on. It outperforms the human being’s capability in many of the above aspects via
extensive training over a vast amount of samples for well-designed model struc-
tures. A typical CNN model consists of an input layer, an output layer and many
hidden layers in between. Each layer performs a distinct operation on its input
which is the output from its leading layer and outputs the processing outcome
to its following layer. The most remarkable operation is the convolution that
applies the multiply-accumulate operation for each element of the input (usually
a 4-dimensional array called tensor) by a group of trainable variables, called
weights. Behind each convolution, a CNN model usually presents an activation
and pooling layer to perform the non-linear transformation and downsampling.
The typical sub-structure of CNN shows in Fig. 1. Assisted by the activation
layer, the convolution captures the feature hidden in the input by adjusting its
weights and passes the abstracted information to a deeper layer for further anal-
ysis. Due to the intensive operation, the convolution layers dominant the overall
execution time of a CNN model. Most of the optimization is targetting this type
of layer because of its overwhelming runtime cost.

Fig. 1. Typical substructure of convolution neural network.

2.2 RISC-V

RISC-V is an open standard instruction set architecture (ISA) under open source
licenses that allow hardware researchers to study and develop on top of it without
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having to pay fees to use it [12,24]. The design of RISC-V follows reduced instruc-
tion set computer principles that made up by a small but highly-optimized set
of instructions. To the contrary of x86 and ARM, the modular nature of RISC-V
promises an incremental ISA design. The core of RISC-V is called RV32I which
is the primary ISA that never changes; therefore, it provides a stable hardware
target for the compiler and operating system designers. The principle specifies
the basic ISA in terms of instruction code, the number of registers, memory
addressing mode and so on. Following the principle, architecture researchers are
able to extend ISA by adding new instructions to perform customized function-
alities. Through incrementally modifying the compiler to support the extended
instruction, such enhanced service can be delivered to the software. Besides the
upgrade brought by the customization, the whole process is transparent to the
programmer and no explicit program changing is required.

3 RISC-V CNN Processor Design

Developing a dedicated ISA and implementing the corresponding processor with
Verilog is a complex process that requires a proper abstracting of the compu-
tation and efficient implementation. However, for CNN, such a process can be
simplified due to its regular building structures. A group of operations, such as
convolution, pooling, and activation, are the building block for standard CNN
networks and are often the type of compute-intensive. Hence in this paper, we
designate to expend RISC-V standard towards these operations. We also opti-
mize the storage structure because of the massive data access required by CNNs.
In this section, we present the details of accelerating CNN model by combining
scalar, logic, jump, control and other instructions provided in rv32i with CNN
specialized instructions. In order to simplify instruction decoding, all instruc-
tions are 32 bits. A data buffer memory is implemented, and peripheral devices
such as flash, SRAM and SDRAM are added, including 32 32-bit registers.

3.1 CNN Oriented Instruction Set

We design our customized instruction set based on top of RV32I. The instruc-
tions include matrix loading and storing, together with other operations such
as activation, pooling and so on. The customized instructions are designed to
share common opcode bits as many as possible for those ones that perform on
the same data path to simplify the control logic implementation. The combi-
nation of standard RV32I instructions and CNN oriented customization fulfills
the functionality of CNN computation. Thereby, CNN can be implemented in
assemblies with the extended ISA.

We describe the customized commands in this section. The inst[6:0] is
the opcode part of the instruction. We use 0001011 of this part to identify
the instruction is customized for a special operation. It used together with the
function code (funt), which is inst[14:12], to decode the functionality of a
specific instruction. The bits in inst[11:7], inst[19:15], and inst[24:20],
contains the register address respectively.
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Matrix Load and Store Instructions
The instruction format is shown in Fig. 2. The function code 0000 indicates
matrix load, MLOAD. It loads matrix, such as feature map and convolution
kernel from the main memory to the on-chip cache. The m addr, m size and
dest addr specifies the memory address, size of the fetching data and the on-
chip memory address, respectively. The bits in ker str indicates the rs3 register
with its upper 16 bits describe the size of convolution window while the lower 16
bits represent the stride of the convolution. The loaded matrix is kept in the on-
chip scratchpad. For the computation efficiency reason, we reformat the matrix
while storing it. The layout rearrangement changes with the size of convolution,
and we will show the details in the following section.

Fig. 2. Instruction for matrix load and store.

The function code 001 stands for matrix store command, MSTORE. It writes a
matrix from the on-chip scratchpad to the off-chip memory. The decoding parts
are functionally similar to MLOAD. The mnemonic of load and store is described
as:

MLOAD rd, rs1, rs2, rs3
MSTORE rd, rs1, rs2

Matrix Operation Instruction
The instruction format is shown in Fig. 3: Function codes 010 and 011 define the
operation of matrix multiplication (MCONV) and addition (MADD). Intrinsically,
both instructions perform multiply and accumulations. For MCONV and MADD,
dest addr is the address to store the computation result, while m addr1 and
m addr2 keep the address to the two operands separately. Different from MLOAD
and MSTORE, the inst[30:25] indicates register rs3. In MCONV, the upper 16 bits
of rs3 register keep the number of rows for the first matrix while the lower 16
bits store the number of columns for the second one. This mechanism is related
to the matrix rearrangement and details is shown in the following section. In
MADD, the value of the rs3 is the size of the matrix.
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Fig. 3. Instruction of Matrix operation.

The instruction mnemonic is described as:

MCONV rd, rs1, rs2, rs3
MADD rd, rs1, rs2, rs3

Pooling and Activation Instructions
The instruction format is shown in Fig. 4. The function code of 100 means the
maximum pooling instruction MPOOL. The maximum pooling is selected here
because, in CNN, the effects of maximum pooling, minimum pooling and average
pooling will not be much different. But the minimum and maximum pooling have
advantages in implementation simplicity. The dest addr represents the starting
address of the result after pooling. The m addr and m size respectively represent
the starting address and size of the matrix to be pooled. The ker str identifies
the rs3 register. The upper 16 bits of the register store the size of the pooling
window, and the lower 16 bits stores the size of the stride.

The function code 101 indicates the activation command MRELU. The ReLU
activation has been broadly used since the appearance of AlexNet. Comparing to
the function of Sigmod and tanh, ReLU has a much simpler structure and easy
to implement, particularly in hardware. The dest addr specifies the starting
address to the result after activation. The m addr and m size specify the address
and size of the matrix feeding to the activation function.

Fig. 4. Instruction of pooling and activation.
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The instruction mnemonic is described as:

MPOOL rd, rs1, rs2, rs3
MRELU rd, rs1, rs2

3.2 Processor Micro-architecture

The simple structure diagram of the processor is shown in Fig. 5, which includes
five stages of operations: fetch, decode, execute, access to memory and write
back. The execution unit is the main part of the design, which includes a general-
purpose computing unit (ALU unit) and a CNN (M ALU unit) computing unit,
in which the data processed by the convolution computing operation interacts
indirectly with the off-chip memory. Apart from the execution unit, there is
no significant difference between the other four levels and the classic five-level
pipeline. Therefore, we focus on introducing the CNN computing unit and data
access optimization method in detail.

After the basic instructions are decoded, the logic, arithmetic, shift and other
instructions are executed in the general computing unit. Our CNN instructions,
from matrix loading, convolution, to pool activation, and the final matrix stor-
age will be completed in CNN computing unit. All phases of CNN processing are
taken place in the chip, including matrix loading, convolution, pooling, activa-
tion and writing the results. Such a process does not involve the main memory
accessing. Data exchange and management are performed within the in-chip
buffer (rerang buffer).

Memory Access Optimization
Given the fact that the speed of computation comes faster than data loading for
convolution, we have to optimize data access.

As we can see from Fig. 1, for classic convolution layer, multiple multi-channel
convolution kernels convolve input feature map by stride. The result of one layer
is the input of the next layer. Based on this truth, we optimize data access in
two directions.

A: Because the same group of weight kernels convolves different feature maps, we
can reuse the weight data with M LOAD instruction and perform the convolution
in parallel. The convolution kernel and the feature map from the off-chip SDRAM
will be sent to the on-chip memory (rerang buffer), from where we can change
their layout. We take a 2 * 2 convolution with stride 2 as an example, which is
shown in Fig. 6.

Here, we use the same position convolution window of different input feature
maps in parallel with the calculation of the corresponding convolution kernel.
Using the M LOAD instruction requires multiple cycles to load the convolution
kernel matrix, and each convolution kernel only needs to be accessed once.
The convolution kernel is fully reused, and the input feature map may need
to be loaded multiple times or completed in a single time depending on its size.
The inst [31:25] field of M LOAD specifies the size of the convolution window.
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Fig. 5. Structure diagram of the processor.

Fig. 6. Matrix layout rearrangement.
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This value is also used in the convolution calculation, so it will be kept in a reg-
ister. In this way, when the convolution instruction performed, the data in the
rerang buffer can be accessed according to the size of the convolution window,
the number of rows of one matrix, and the number of columns of another matrix
to fulfill the calculation. Though the rearrangement requires extra hardware
overhead, the efficiency of convolution calculation is hugely improved.

B: The convolution takes a few cycles to finish after the two matrices loaded.
Hence, we need to suspend the pipeline until the two matrices loading completed.
Because there is no dependency between the convolution kernel and the feature
map, we can add the matrix loading instructions after matrix computation. The
efficiency is improved as a result of hiding the delay of data access. In such a
scheme, data can be loaded while the computing unit is performing convolution.

Fig. 7. Matrix layout rearrangement.

We have two buffers in rerang buffer. In specific, when loading data from
off-chip, the multiplexer is used to select the data buffer module that needs to
store the data. For instance, if the matrix operand is delivered from the buffer
1, then the loaded data is sent to the buffer 2, and vice versa. Such a process
takes place alternately to use the idle time caused by data access effectively. Its
structure is shown in Fig. 7.

Calculation Unit
In our M ALU, there are 32 tree-shaped multipliers and adders. Hence, it can
support eight 2 * 2 convolution kernels, three 3 * 3, two 4 * 4 or one 5 * 5 kernel’s
parallel processing. We need compiler supports for generating the correct code.
Figure 8 presents the structure.
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Fig. 8. Diagram of the calculation unit.

To give a clearer example, we present the pseudocode convolutional layer as
follows:

LI $1 ,#imm1 // s i z e o f k e rne l ( $1 high 16 b i t s )
// s l i d i n g s tep ( $1 low 16 b i t s )

MLOAD $3 , $4 , $5 , $0 //LOAD kerne l map
//$3 dest M1 addr
//$4 ke rne l addr
//$5 ke rne l s i z e

. . .
MLOAD $6 , $7 , $8 , $1 //LOAD f ea tu r e map

//$6 dest M2 addr
//$7 input map addr
//$8 input map s i z e

. . .
LI $2 ,#imm2 //row o f M1 ( $2 high 16 b i t s )

//cow o f M2 ( $2 low 16 b i t s )

MCONV $9 , $3 , $4 , $2 //$9 temporary output addr1
. . .

MADD $10 , $9 , $11 , $2 //$10 temporary output addr2
MSTORE $13 , $10 , $2 //$13 s t o r e output addr

4 Experiment

We have implemented the hardware micro-architecture and customized instruc-
tions by Verilog. The design is synthesized by Xilinx toolset on a Artix-7 FPGA.
To validate the hardware implementation, we have tested and simulated it by
Vivado2019.1.

Vivado report regarding occupancy and power consumption is shown in
Table 1.
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Table 1. Resources occupancy and power consumption

Resource Utilization Available Utilization (%)

FF 29015 202800 14.3

LUT 19720 101400 19.4

BRAM 31 135 22.9

DSP48 158 840 18.8

I/O 83 400 20.8

BUFG 11 32 34.8

Multi-column 0.362 W

According to the synthesis report, the implementation is hardware friendly.
It requires 19.4% LUT and 14.3% Flip-Flop of the FPGA chip. The memory
consumption dominants the area usage of the design. As we can see from the
result, the RISC-V extension uses 22.9% of the RAM and 34.8% of the BUFG.
This high memory occupancy is determined by the nature of the CNN network,
which introduces a large amount of data processing. The power consumption is
0.362 W. Combining the result, we can expect our implementation accommodates
three CNNs on a single chip under a 1-W power budget.

We use LeNet-5 on MNIST dataset to validate our design for the reason
of simplicity. LeNet-5 is a well-known machine learning model that has been
reported with outstanding image classification accuracy. It comes with a simple
structure that contains three sets of convolutional and pooling layers, and two
sets of fully connected layers. As a CNN model, LeNet-5 has all classic structural
features while requires minimum effort to implement, which is particularly crit-
ical for hardware design and validation. For the same reason, we select MNIST
dataset, which consists of a group of handwriting images of a consistent size by
28 * 28 pixels. All these selections aim at testing the correctness of hardware with
the simplest settings.

We use risc32-unknown-linux-gun-series cross-compilation tool chain to gen-
erate the code. The customized instructions are implemented with embedded
instruction codes.

We used the MNIST data set to test our design. Limited by the length of
the paper, here we present the simulation result of classifying digit 8 and 9 in
this section. We observe the similar result while doing all the rest handwriting
classifications.

Figure 9 shows the simulation of predicting handwriting digit 8 in MNIST.
The result buffer num result [0:9] carries the confidence of the prediction
and it is a vector of real number in hexadecimal that indicate the probabil-
ity of digit 0 to 9. In Fig. 9, the values in num result [0:9] are: 3dcf81e8,
3c14f69c, 3dab3793, 3dbee02a, 3baa9717, 3c592b7f, 3dbcbab6, 3a85d313,
3f761144, 3de57108. Once transformed in to the decimal, the corresponding
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values are: 0.101322, 0.009092, 0.0836021, 0.093201, 0.005206,0.013255,
0.092153, 0.001021, 0.961201, 0.112032.

As num result [8] has the highest value (0.961201), we know that the digit
8 has been correctly classified.

Fig. 9. Simulation of classifying MNIST digit 8

Similarly, Fig. 10 provides the result in predicting digit 9. The hexadeci-
mal values in num result [0:9] are 3d004b7f, 3ba6d267, 3da8255b, 3da85a0b,
3a9e12a5, 3ca5e99e, 3e3a78f2, 3b46a3bd, 3e0157ee, 3f78a0b1, which are
0.031 322, 0.005091, 0.0821025, 0.082203, 0.001206, 0.020253, 0.182102,
0.003031, 0.126312, 0.971202 in decimal. The num result [9] which has the
largest probability 0.971202, is the correct prediction. Hence, we can conclude
that our RISC-V extension are performing correctly.

Fig. 10. Simulation of classifying MNIST digit 9

5 Related Work

Convolution Neural Networks is a typical compute-intensive application that
involves massive tensor operations. The performance of CNN impacts signifi-
cantly on its deployment, particularly for those models used in inference. Various
methods have been examined to boost computation efficiencies, such as using
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matrix multiplication, Fast Fourier Transform (FFT) [1,3], or Winograd [7,25] to
replace the direction convolution. Such type of algorithm generally have a better
data locality and therefore capable of shortening the execution by strengthened
data reuse.

Mainstream CNN frameworks intrinsically support GPU as a training and
inference accelerator. Because of the SIMD model, the GPU can process a
GEMM-based (General Matrix Multiplication) convolution in massive paral-
lelism [14]. Though GPU has high performance in computation, it is tricky to
release its full horsepower because of the architectural difference within pro-
cessors by various vendors. Hand tuning code towards different platforms is not
feasible. Hence, automatic tools, like TVM [2,18], has been developed to perform
auto-optimization for diverse hardware platforms.

The automatic tools also open the window to explore the territory of software
define hardware (SDH). Accelerators implemented on FPGA fabrics have been
widely studied because of the wide bandwidth, high performance and low energy
consumption. For the moment, SDH still requires collaboration from machine
learning experts and hardware designers, because of the complexity.

RISC-V is an open standard instruction set architecture (ISA) that follows
the reduced instruction set computer (RISC) principles [24]. It provides a frame-
work to facilitate microprocessor and accelerator design. For CNN accelerating,
solutions such as custom processor [15,16,19], integrated/discrete accelerator,
SoC for edge IoT computing [4] have been proposed built on top of RISC-V.
The design works correctly and efficiently according to our FPGA simulation.

6 Conclusion

In this work, we designed an instruction set to accelerate the CNN algorithm
based on the computational characteristics of the CNN network algorithm. We
propose a micro-architecture and two schemes in reformatting data layout to
optimize data access. The design has been implemented in FPGA fabric by
Verilog. In our experiment, we validate our hardware design by implementing
LeNet-5 on MNIST dataset. The simulation result by Vivado shows that our
RISC-V extension for CNN performs efficiently with a small hardware consump-
tion.
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