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Abstract. Deriving an effective VLSI layout for interconnected network
is important, since it increases the cost-effectiveness of parallel archi-
tectures. Graph embedding is the key to solving the problems of par-
allel structure simulation and layout design of VLSI. Wirelength is a
criterion measuring the quality for graph embedding. And it is exten-
sively used for VLSI design. Owing to the limitation of the chip area, the
total wirelength of embedded network becomes a key issue affecting the
network-on-chip communication performance. AQn, the n-dimensional
augmented cube, is an important interconnection network topology pro-
posed for parallel computers. In this paper, we first study the minimum
wirelength of embedding augmented cube into a linear array based on
the maximum induced subgraph problem. Furthermore, we obtain the
exact wirelength of embedding augmented cubes into grids and propose
a linear embedding algorithm to prepare for further study of efficient
layout areas.

Keywords: Graph embedding · Wirelength · Augmented cube ·
Linear array · Grid

1 Introduction

The tremendous engineering advances made in Very Large Scale Integration
(VLSI) manufacturing technology has aroused great theoretical interest in VLSI
circuit layout issues. Through the effective VLSI layout of the interconnection
network, the cost-effectiveness of the parallel architecture can be improved.
These efforts have focused on minimizing the layout area of the circuits on the
chip. This is partly due to the fact that the layout, which consumes a large
amount of chip area, is more expensive to manufacture, less reliable, and more
difficult to test, than the VLSI layout which consumes less chip area [2].

In order to meet the requirements of scalability, energy consumption, size,
clock asynchronization, reusability etc. in large-scale integrated circuits, the new
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design method Network-on-Chip (NoC) came into being, which is a new innova-
tion compared to the original design patterns [25]. Grid is one of the most main-
stream NoC interconnection structures. It is to connect components together in
the form of a matrix. The topology of grid is simple, and it has good scalability
and low power consumption. Many researchers early focused on the embedding
of simple graphs into complex graphs. They studied the embedding of grids
into exchanged crossed cube, crossed cubes, locally twisted cubes, faulty crossed
cubes and twisted-cubes [9,20,21,24]. Then, another kind of embedding is to
study the embedding of complex graphs into simple graphs. They studied embed-
ding hypercubes, locally twisted cubes, exchanged hypercube and 3-ary n-cubes
into grids [1,5,6,18,19]. There is no research on the embedding of augmented
cubes into grid networks. Thus, in this paper, we mainly study the embedding
of augmented cubes into grids.

Then, we mainly introduce related work and the contribution of this paper
in the following subsections.

1.1 Related Work

Augmented cube, an enhancement to the hypercube, proposed by Choudum and
Sunitha [4], not only retains some excellent properties of hypercube but also
contains some embedding properties that hypercube does not have. For exam-
ple, n-dimensional augmented cube AQn contains cycles of all lengths from 3
to 2n, but Qn contains only even cycles [14]. Since its introduction, AQn has
attracted the interest of many researchers because of its favorable properties.
Hsu et al. studied the fault hamiltonicity and the fault hamiltonian connectiv-
ity of the augmented cubes [12]. Ma et al. mainly studied panconnectivity and
edge-fault-tolerant pancyclicity of augmented cubes [14]. They also studied the
super connectivity of augmented cubes [15]. Edge-independent spanning trees
have important applications in networks. Thus, Wang et al. studied the edge-
independent spanning trees in augmented cubes and proposed an O(N log N)
algorithm that constructs 2n − 1 edge-independent spanning trees in AQn [22].
Mane et al. studied the construction of spanning trees in augmented cubes, and
constructed n−1 edge-disjoint spanning trees of the augmented cubes [16]. With
the development of optical networks, Li et al. studied the routing and wave-
length assignment for the augmented cube communication pattern in a linear
array wavelength division multiplexing optical network [13].

Graph embedding is the operation of mapping a guest graph into a host
graph. Embedding the graph into a linear array is also called linear layout (or
linear arrangement) problem. The minimum linear layout problem was first pro-
posed by Harper in 1964 and proved to be NP-Complete [7]. The grid embedding
is not only related to the ability of grid to simulate other structures, but also
the layout of different structures on the chip. Owing to the limitation of the
chip area, the total wirelength of the embedding network has become a key
issue affecting the communication performance of the on-chip network. In [1],
Bezrukov et al. obtained an approximate result of embedding the hypercube to
the grid and lower bound estimate of the wirelength. Rajasingh et al. proposed
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a minimum wirelength for embedding hypercubes into grid networks [18]. In
[19], Shalini et al. proposed a linear algorithm for embedding locally twisted
cube into a grid network and obtained the minimum wirelength. In [5], Fan et
al. studied embedding exchanged hypercube layout into a grid and obtained an
exact formula of minimum wirelength. They also studied the exact wirelength
for embedding 3-ary n-cubes into grids [6].

1.2 Contribution

The graph embedding problem is a very worthwhile topic in the field of par-
allel computing. Regarding the layout of the chip, most researchers let grid be
the guest graph because of its simple structure, good scalability and easy to
implement on the chip. Augmented cube is an enhancement to the hypercube
by adding the complement edge, which makes it more complex than other vari-
ants of hypercube. To the best of our knowledge, there are no research results on
embedding augmented cubes into grids. In this paper, we study the embedding
of n-dimensional augmented cubes into grids with minimum wirelength. The
major contributions of the paper are as follows:

(1) By studying embedding AQn into linear array LN , where N = 2n, the
minimum wirelength of embedding can be obtained.

(2) We first study embedding AQn into grid M(2�n
2 �, 2�n

2 �) and calculate the
exact wirelength. Then we propose a linear algorithm for the embedding.

(3) We compare the embedding method mentioned in this paper with the ran-
dom embedding through simulation experiments.

The rest of this paper is organized as follows: In Sect. 2, some preliminaries
are described. In Sect. 3, the wirelength of embedding an augmented cube into a
linear array is obtained. Then we study the minimum wirelength of embedding
AQn into a grid. Section 4 gives simulation and experimental results. The last
part is the conclusion of this paper.

2 Preliminaries

In this section, we will introduce some definitions and notations used in this
paper. Let G = (V,E) be a graph, where V (G) and E(G) denote vertex set and
edge set of graph G, respectively. Let (u, v) be an edge with end vertices u and
v. And we call u, v neighbors for each other. Given a simple graph G, if V ′ ⊆ V ,
the subgraph of G induced by the vertex subset V ′ is denoted by G[V ′].

Let G = (V (G), E(G)) and H = (V (H), E(H)) be two connected graphs. G
is isomorphic to H (represented by G ∼= H) if and only if there exists a bijection
ψ from V (G) to V (H), such that if (u, v) ∈ E(G) then (ψ(u), ψ(v)) ∈ E(H).
For a subset S ⊆ V (G), let T = {x ∈ V (H)|there is y ∈ S, such that y = ψ(x)}.
Then, we write T = ψ(S) and S = ψ−1(T ).

For two connected graphs G and H, an embedding π = (ψ,Pψ) of G into H
is defined as follows [11]:
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(i) ψ is a bijective map from V (G) → V (H).
(ii) Pψ is a one-to-one map from E(G) to {Pψ((u, v)) : Pψ((u, v)) is a path in H

between ψ(u) and ψ(v) for (u, v) ∈ E(G)}.

Definition 1 [17]. The congestion of an embedding π of G into H is the
maximum number of edges of the graph G that are embedded on any single
edge of H. Then the congestion of an edge e in H is the number of paths
in {Pψ((u, v))}(u,v)∈E(G) such that e is in the path Pψ((u, v)) and denoted by
ECπ(e). In the other words:

ECπ(e) = |{(u, v) ∈ E(G) : e ∈ Pψ((u, v))}|. (1)

Thus, The edge congestion of an embedding π of G into H is given by,

ECπ(G,H) = max{ECπ(e)|e ∈ E(H)}. (2)

EC(G,H) = min{ECπ(G,H)|π is an embedding from G to H}. (3)

Edge congestion is one of the important factors of embedding problem. The
wirelength we mainly study in this paper is another important factor. And there
is a significant relationship between edge congestion and wirelength.

Definition 2 [17]. The wirelength of an embedding π of G into H is given by

WLπ(G,H) =
∑

(u,v)∈G

d(ψ(u), ψ(v)), (4)

where d(ψ(u), ψ(v)) denotes the shortest length of the paths Pψ((u, v)) in H.

Lemma 1 [17]. Under the embedding π = (ψ,Pψ), the graph H is divided into
two subgraph H1 and H2 if one edge cut S is removed. Let G1 = G[ψ−1(V (H1))]
and G2 = G[ψ−1(V (H2))]. If S satisfies the following conditions:

(i) For every edge (a, b) ∈ E(Gi), i = 1, 2, Pψ(a, b) has no edges in S.
(ii) For every edge (a, b) ∈ E(G) with a ∈ V (G1) and b ∈ V (G2), Pψ((a, b)) has

exactly one edge in S.
(iii) G1 or G2 is a maximum subgraph.

Then ECπ(S) is minimum and ECπ(S) ≤ ECg(S) for any other embedding
g of G into H.

Since ECπ(S) is minimum based on Lemma 1, and according to the defini-
tions of edge congestion and wirelength, the relationship between edge congestion
and wirelength is as below.

Lemma 2 [17]. Let π : G → H be an embedding, and S1, S2, . . . , Sp be p edge
cuts of H such that Si ∩ Sj = ∅, i �= j, 1 ≤ i, j ≤ p. Then

WLπ(G,H) =
p∑

i=1

ECπ(Si). (5)
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Then, we would introduce the definition of augmented cube in the following.
Let AQn denote the n-dimensional augmented cube [4]. And it has 2n vertices,
each of which corresponds to an n-bit binary string. AQn can be defined recur-
sively as below [13]:

(1) For n = 1, AQ1 is a complete graph with two vertices labeled 0 and 1,
respectively. The edge (0, 1) is called 0-dimensional hypercube edge.

(2) For n ≥ 2, an AQn can be recursively constructed by two copies of AQn−1.
We denote the two copies as AQ0

n−1 and AQ1
n−1, where V (AQ0

n−1) =
{0un−2un−3 . . . u0|ui ∈ {0, 1} for 0 ≤ i ≤ n − 2} and V (AQ1

n−1) =
{1un−2un−3 . . . u0|ui ∈ {0, 1} for 0 ≤ i ≤ n − 2}. Then, we add 2n edges
between AQ0

n−1 and AQ1
n−1, and these edges can be divided into the follow-

ing two sets:
(a) {(0un−2un−3 . . . u0, 1un−2un−3 . . . u0)|ui ∈ {0, 1} for 0 ≤ i ≤ n − 2}, where

the edges in this set are called (n−1)-dimensional hypercube edges, denoted
by HEn−1.

(b) {(0un−2un−3 . . . u0, 1un−2un−3 . . . u0)|ui ∈ {0, 1} for 0 ≤ i ≤ n − 2}, where
the edges in this set are called (n−1)-dimensional complement edges, denoted
by CEn−1.

For example, AQ1, AQ2, AQ3, and AQ4 are shown in Fig. 1. We can see
that Qn is the subgraph of AQn, thus AQn retains all favorable properties of
Qn. It is proved in that AQn is (2n − 1)-regular, and (2n − 1)-connected graph
with 2n vertices for any positive integer n.

Fig. 1. AQn for n = 1, 2, 3, 4.

3 Embedding Augmented Cubes into Grids

In this section, we first study embedding AQn into a linear array and obtain
the minimum wirelength of embedding. Then, we further study embedding AQn

into grid to obtain the minimum wirelength of embedding.
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3.1 Embedding Augmented Cubes into Linear Arrays

In this section, we will study the minimum wirelength of embedding AQn into
a linear array. Before discussing the issue, we first study maximum induced
subgraph of AQn. It is the key to our research on the wirelength problem.

In [3], Chien et al. solved the maximum induced graph for augmented cube.
For any positive integer m, it can be uniquely expressed as m =

∑r
i=0 2pi , where

p0 > p1 > . . . > pr. Chien et al. proposed a useful function [13]:

f(m) =

⎧
⎨

⎩

0, m ≤ 1∑r
i=0(pi + 2i − 1

2 )2pi , m is even and m ≥ 2∑r−1
i=0 (pi + 2i − 1

2 )2pi + 2r, m is odd and m ≥ 2
(6)

Property 1 [13]. f(2k + m) = f(2k) + f(m) + 2min{2k,m} if k ≥ �log2 m�.
Let ξAQn

(m) be the number of edges among induced subgraphs with m ver-
tices. The following lemmas can be proved by the function f(m):

Lemma 3 [13]. For any n ≥ 1 and 0 < m ≤ 2n, then max ξAQn
(m) = f(m).

Lemma 4 [23]. Let {U0, U1, . . . , Uk} be a partition of U , where U ⊆ V (G).
Let ξ(U) denote the number of edges of the graph G[U ], and ξ(Ui, Uj) =
|{(u, v)|u ∈ Ui, v ∈ Uj , where 0 ≤ i < j ≤ k}|. Then ξ(U) =

∑k
i=0 ξ(Ui) +∑

0≤i<j≤k ξ(Ui, Uj).

We use LN to represent a linear array graph with the size of N , where V (LN )
is the vertex set {l|0 ≤ l ≤ N − 1} and E(LN ) is the edge set {(l − 1, l)|1 ≤ l ≤
N − 1}.

Notation 1. Let lex : V (AQn) → {1, 2, . . . , 2n} be a mapping, where N = 2n

and for arbitrary vertex u = un−1un−2 . . . u0 in AQn,

lex(u) =
n−1∑

i=0

ui ∗ 2i + 1. (7)

which is actually the decimal number of u.

In [13], Chien et al. studied the wavelengths of embedding augmented cube
into linear array by considering the congestion. They proved that the natural
embedding is an optimal scheme in embedding augmented cube into linear array.
There is a significant relationship between edge congestion and wirelength. So,
we can use the similar way to prove the following lemma.

Lemma 5. For each edge e ∈ E(LN ), EClex(e) = l(2n − 1) − 2f(l). And the
embedding lex is an optimal scheme which has minimized the congestion of each
edge.
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Proof. Let Un,l denote a vertex set of l vertices in AQn defined by Un,l =
{u|∑n−1

i=0 ui2i < l}. Hence Un,l ⊆ V (AQn) consists of l vertices and maps to the
first l vertices in LN by the embedding lex. Then EClex = l(2n − 1) − 2ξ(Un,l),
where e = (l − 1, l). Then we would prove that ξ(Un,l) = f(l) by induction
n. Clearly, the statement holds for n = 1. Suppose that the claim is true for
n ≤ k, i.e., ξ(Uk,l) = f(l) for 0 ≤ l ≤ 2k. Then consider that n = k + 1, that is
0 ≤ l ≤ 2k+1. The cases are as below.
Case 1: l = 0. Obviously, Uk+1,l = ∅ and f(0) = 0. Hence ξ(Uk+1,0) = f(0).
Case 2: l �= 0. We consider the following subcases.

Case 2.1: 1 ≤ l ≤ 2k. It implies that
∑n−1

i=0 ui2i < 2k for u ∈ Uk+1,l. So uk = 0
for u ∈ Uk+1,l, i.e., Uk+1,l is a subset of V (AQ0

k). U1
k,l = ∅ and Uk+1,l = U0

k,l.
Since AQ0

k+1 is isomorphic to AQk and by the induction hypothesis, ξ(U0
k,l) =

f(l) which implies ξ(Uk+1,l) = f(l).
Case 2.2: 2k < l ≤ 2k+1. This implies that |U0

k+1,l| = |V (AQ0
k)| and let

l
′

= |U1
k,l| where l

′
= l − 2k. Thus for any vertex u ∈ U1

k,l, there are exactly
two vertices in U0

k,l adjacent to u. This implies that ξ(U0
k,l, U

1
k,l) = 2|U1

k,l| = 2l
′
.

Since {U0
k,l, U

1
k+1,l} is a partition of Uk+1,l, by Lemma 4 we have ξ(Uk+1,l) =

ξ(U0
k,l) + ξ(U1

k,l) + ξ(U0
k,l, U

1
k,l). By the induction hypothesis, we have

ξ(Uk+1,l) = ξ(U0
k,l) + ξ(U1

k,l) + ξ(U0
k,l, U

1
k,l)

= f(|U0
k,l|) + f(|U1

k,l|) + ξ(U0
k,l, U

1
k,l)

= f(2k) + f(l
′
) + 2l

′

Therefore, by Property 1, we have ξ(U l
k+1) = f(l).

It is obvious that EClex = l(2n − 1) − 2ξ(Un,l) = l(2n − 1) − 2f(l). Thus we
can prove that the embedding lex is an optimal scheme which has minimized
the congestion of each edge. ��
Lemma 6. Under the embedding lex of AQn into LN , where N = 2n, we have

WLlex(AQn, L2n) = 2WLlex(AQn−1, L2n−1) + 22n−1. (8)

Proof. Let π = lex. For n ≥ 2, AQn can be partitioned into two dis-
joint subgraphs AQ0

n−1 and AQ1
n−1 by the definition of AQn. Let edge cut

e = (2n−1, 2n−1 + 1) ∈ E(LN ). Let (u, v) ∈ E(AQn), where u ∈ V (AQ0
n−1)

and v ∈ V (AQ1
n−1), then we consider the hypercube edges and the complement

edges between AQ0
n−1 and AQ1

n−1, respectively.
Case 1. (u, v) ∈ HE(n−1). For each vertex u ∈ V (AQ0

n−1), there is a vertex
v in AQ1

n−1 adjacent to u. Then the distance of ψ(u) and ψ(v) in linear array
is 2n−1. See Fig. 2. There are 2n−1 vertices in AQ0

n−1, so
∑

d(ψ(u), ψ(v)) =
2n−1 × 2n−1, where u ∈ V (AQ0

n−1) and v ∈ V (AQ1
n−1).
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Fig. 2. The paths of embedding (n−1)-dimensional hypercube edges into linear array.

Case 2. (u, v) ∈ CE(n − 1). For any vertex u in AQ0
n−1, there always is a

(n − 1)-complement edge (u, v), where v ∈ V (AQ1
n−1). See Fig. 3. Besides, the

distance of ψ(u) and ψ(v) in linear array forms an arithmetic sequence with a
tolerance of 2. There are 2n−1 vertices in AQ0

n−1, so we have
∑

d(ψ(u), ψ(v)) =
1 + 3 + . . . + 2n − 1 = 2n−1 × 2n−1, where u ∈ V (AQ0

n−1) and v ∈ V (AQ1
n−1).

Therefore

Fig. 3. The paths of embedding (n−1)-dimensional complement edges into linear array.

WLπ(AQn, L2n) = 2WLπ(AQn−1, L2n−1) + 22n−1

��
Theorem 1. The minimum wirelength of AQn into LN under embedding lex
is:

WLlex(AQn, L2n) = 22n − 3 × 2n−1 (9)

Proof. We derive this theorem from Lemma 6, then we would prove the result
by induction on n. For n = 1, WLlex(AQ1, L2) = 22 − 3× 20 = 1. Thus, assume
that the result is true for n = k − 1. Then we prove the result for n = k.

WLlex(AQk, L2k) = 2WLlex(AQk−1, L2k−1) + 22(k−1)−1

= 2(22(k−1) − 3 × 2(k−1)−1) + 22k−1

= 22k − 3 × 2k−1

Then the theorem is proved. ��

3.2 Embedding Augmented Cubes into Grids

In this section, we study the minimum wirelength of embedding AQn into a grid
M [2a, 2b], where a =

⌊
n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n. Firstly, the definition of grid

is given as below:
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Notation 2 [5]. An m × n grid M(m,n) is denoted by an m × n matrix
⎛

⎜⎜⎝

α11 α12 · · · α1n

α21 α22 · · · α2n

· · · · · · · · · · · ·
αm1 αm2 · · · αmn

⎞

⎟⎟⎠

Where V (M) = {αij |1 ≤ i ≤ m, and 1 ≤ j ≤ n}, (αi,j , αi,j+1) ∈ E(M)
for 1 ≤ i ≤ m, and 1 ≤ j ≤ n − 1, and (αk,l, αk=1,l) ∈ E(M) for 1 ≤ k ≤
m − 1, and 1 ≤ l ≤ n. 〈α11, α12, · · · , α1n〉 and 〈αm1, αm2, · · · , αmn〉 are called
the row-borders, while 〈α11, α21, · · · , αm1〉 and 〈α1n, α2n, · · · , αmn〉 are called
the column-borders.

Definition 3. Let lex : AQn → M(2a, 2b) be an embedding, where a =
⌊

n
2

⌋
,

b =
⌈

n
2

⌉
and a + b = n. Embedding lex can be defined as follows: The first

row is labeled from 1 to 2b from top to bottom, and the ith row is labeled as
(i − 1)2a + 1, (i − 1)2a + 2, . . . , i2a from left to right where i = 1, 2, . . . , 2b.

The embedding lex of hypercube into grid has been proved in [18]. And
augmented cube is an enhancement on hypercube. Then, we first introduce some
lemmas about embedding of hypercube.

Lemma 7 [10]. For i = 1, 2, 3, . . . , 2n, Pi = {0, 1, . . . , i− 1} is an optimal set in
Qn.

Let Ai be a horizontal edge cut of the grid M [2a, 2b], where i = 1, 2, . . . , 2a −
1, a =

⌊
n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n, such that Ai disconnects M [2a, 2b] into

two components Xi and Xi′ . For Xi, there are i2b vertices. Then we let Rlex
i =

{1, . . . , i2b} denote the vertices of Xi.
By Lemma 7, the following lemmas can be easily proved.

Lemma 8. Rlex
i = {1, . . . , i2b} is an optimal set in AQn for i = 1, 2, . . . , 2a.

Similarly, let Bj be a column edge cut of the grid M [2a, 2b] where j =
1, 2, . . . , 2b − 1, a =

⌊
n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n, such that Bj disconnects

M [2a, 2b] into two components Yj and Yj′ . For Yi, let Clex
j be the vertex set of

Yj .

Lemma 9. For j = 1, 2, . . . , 2a

Clex
j =

⎧
⎪⎪⎨

⎪⎪⎩

1 1 × 2b + 1 · · · (2a − 1) × 2b + 1
2 1 × 2b + 2 · · · (2a − 1) × 2b + 2

· · · · · · · · · · · ·
j 1 × 2b + j · · · (2a − 1) × 2b + j

⎫
⎪⎪⎬

⎪⎪⎭

is an optimal set in AQn, where a =
⌊

n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n.

Lemma 10. The embedding lex of AQn into M(2a, 2b) induces a minimum
wirelength WLlex(AQn,M [2a, 2b]), where a =

⌊
n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n.



56 J. Xia et al.

Proof. Horizontal edge cutAi disconnects M [2a, 2b] into two components Xi and
Xi′ . Similarly, column edge cut Bj disconnects M [2a, 2b] into two components
Yj and Yj′ . Let Gi and Gi′ be the inverse images of Xi and Xi′ under lex
respectively. The edge cuts Ai and Bi of the partition, satisfy conditions (i) and
(ii) of Lemma 1. In order to show that EClex(Ai) is minimum, we just need to
prove that |E(Gi)| is maximum by Lemma 1.

Since Gi is a subcube derived from the vertices of Rlex
i by Lemma 8, it is true

that Gi is a maximum induced subgraph of augmented cube. Thus by Lemma1,
EClex(Ai) is minimum for i = 1, 2, . . . , 2a − 1.

Similarly, let Gj and Gj′ be inverse images of Yj and Yj′ under lex, respec-
tively. By Lemma 9, it is true that Gj is a maximum induced subgraph of aug-
mented cube derived from the vertices of Clex

j . Thus by Lemma 1, EClex(Bj) is
minimum for j = 1, 2, . . . , 2b − 1.

Thus by Lemma 2, WLlex(AQn,M(2a, 2b)) is minimum. ��
Lemma 11 [17]. WLlex(Qn, P2n) = 22n−1 − 2n−1, where P2n is a path with 2n

vertices.

Firstly, we study the paths of embedding hypercube edges into grid, and the
ends of each path are in different columns. The problem can be transformed
into calculating the wirelength of embedding a hypercube into a linear array.
By Lemma 11 Manuel et al. solved the problem of embedding Qn into M [2a, 2b],
and calculated the wirelength of a path. Then the exact wirelength of embedding
hypercube edges into grid where the ends of each path are in different columns
is 2b(22a−1 − 2a−1).

Then, we study the paths of embedding complement edges into grid, and the
ends of each path are in different columns. Let the embedding π = lex. Then for
the embedding π(ψ,Pψ) of AQn into M(2a, 2b), where a =

⌊
n
2

⌋
, b =

⌈
n
2

⌉
and

Fig. 4. The paths of embedding 3-dimensional complement edges of AQ4 into
M[4 × 4].



Embedding Augmented Cubes into Grid Networks for Minimum Wirelength 57

a + b = n, horizontal edge cut Ai disconnects M [2a, 2b] into two components
Xi and Xi′ . Let Gi and Gi′ be the inverse images of Xi and Xi′ under π,
respectively. Let e = (u, v) be a complement edge of AQn, where u ∈ V (Gi)
and v ∈ V (Gi′), thus ψ(u) = αij ∈ V (Xi) and ψ(v) = αi′j′ ∈ V (Xi′). So
d(ψ(u), ψ(v))) = |i′ − i| + |j′ − j|. Then, we use Wa to denote the sum of
d(ψ(u), ψ(v))), where 2a is the number fo rows in grid.

Lemma 12. For embedding m-dimensional complement edges into M [2a, 2b],
where a < m ≤ n − 1 and a = 2�n

2 �, the wirelength of embedding is

Wa = 2Wa−1 + 2a+b−2(2a + 2b). (10)

Proof. Let i = 2a−1, so the horizontal edge cut Ai disconnects M [2a, 2b] into
two M [2a−1, 2b], M1 and M2, as depicted in Fig. 4. Let e = (u, v) be a com-
plement edge of AQn, where ψ(u) = αi,j ∈ V (M1[2a−1, 2b]) and ψ(v) = αi′j′ ∈
V (M2[2a−1, 2b]). Then the distance of e in grid is d(ψ(u), ψ(v)) = |i−i′|+|j−j′|.
There are 2n−1 vertices in M [2a−1, 2b], so there are 2n−1 complement edges that
one end vertex is in M1 and the other end is in M2. Let yi be a vertex of the ith
row. Then for the first row R1, there are 2b vertices, so

∑

ψ(y1)∈V (R1),ψ(v)∈V (M2)

d(ψ(y1), ψ(v)) = 2 × (2a + (2a + 2) + (2a + 4) + . . .

+ (2a + 2b − 2))

= 2b[2a+1 + 2(2b−1 − 1)]

It is similar for the rest rows from 2 to 2a−1, then the distance of all the
paths of embedding complement edges into M [2a, 2b], where for each path one
end is in M1 and the other end is in M2.

∑

R1

d(ψ(y1), ψ(v)) +
∑

R2

d(ψ(y2), ψ(v)) + . . . +
∑

R2a−1

d(ψ(y2a−1), ψ(v))

= 2a+b−2(2a−1 + 2b)

So
Wa = 2Wa−1 + 2a+b−2(2a + 2b).

By Lemma 12, we obtain the recursion formula of the wirelength about
embedding complement edges into grids. In the following, we will calculate the
exact formula of minimum wirelength about embedding augmented cubes into
grids.

Theorem 2. The minimum wirelength of embedding AQn into M [2a, 2b] under
lex is:

WLlex(AQn,M) =2a(22b − 3 × 2b−1) + 2b(22a−1 − 2a−1)

+ 2a+b−2(a2b + 2a+1 − 2)
(11)

where a =
⌊

n
2

⌋
, b =

⌈
n
2

⌉
, n ≥ 2 and a + b = n.
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Fig. 5. Mapping vertices of AQn to the ith row from left to right.

Proof. There are 2a rows in M [2a, 2b], where a =
⌊

n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n.

Let Hi denote the ith row, where 1 ≤ i ≤ 2a, as depicted in Fig. 5. Then the
inverse images of H1,H2, . . . , H2a are disjoint sets in AQn, and |(Hi)| = 2b.
Obviously, vertices in Hi are mapped to the ith row from left to right. There
are 2b vertices in each row. Each row can be considered as a linear array. And
the embedding for each row can be seen as the embedding of AQb into L2b . So
for each row, WLlex(Hi, L2b) = WL(AQb, L2b) = 22b − 3 × 2b−1.

Then, we study the paths of hypercube edges and complement edges in grids.
And the ends of each path are in different rows. For the hypercube edges, by
Theorem 11, we derived that the wirelength along the columns is 2b(22a−1 −
2a−1).

For complement edges, we derived the result by the recursion formula in
Lemma 12. The wirelength of complement edges in different rows is 2a+b−2(a2b+
2a+1−2). We prove the result by induction on a. The base case is trivial. Assume
that the result is true for a = k − 1. Then we prove the result for a = k.

Wk = 2Wk−1 + 2k+b−2(2k + 2b)

= 2(2k+b−3((k − 1)2b + 2k − 2)) + 2k+b−2(2k + 2b)

= 2k+b−2(k2b + 2k+1 − 2)

Thus the minimum wirelength of AQn into M [2a, 2b] under embedding lex
is:

WLlex(AQn,M) = 2a(22b −3×2b−1)+2b(22a−1−2a−1)+2a+b−2(a2b +2a+1−2)

where a =
⌊

n
2

⌋
, b =

⌈
n
2

⌉
, n ≥ 2 and a + b = n.

Then the theorem is proved. ��
For each vertex u = un−1un−2un−3 . . . u0 ∈ V (AQn), let j (0 ≤ j ≤ 2n − 1)

be a decimal representation of u. Thus we can use uj
n to represent each vertex

in AQn. We present Algorithm 1 for embedding AQn into M(2a, 2b), where a =⌊
n
2

⌋
, b =

⌈
n
2

⌉
and a + b = n.
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Algorithm 1. Embedding AQn into M(2a, 2b)

Input: The augmented cube AQn and grid M(2a, 2b).
Output: Embedding lex of AQn into M(2a, 2b) with minimum wire-
length.

1: /*Label the vertices of AQn */
2: Set count = 1;
3: For each vertex in u ∈ V (AQn), let the decimal value of u = null;
4: for j = 0 to 2n − 1 do
5: num(uj

n) = count;
6: count = count + 1;
7: end for
8: /*Label the vertices of M(2a, 2b) */
9: for j = 0 to 2n − 1 do

10: Label the ith row of M(2a, 2b) as (i− 1)2b + 1, (i− 1)2b + 2, · · · , i2b from left to
right where i = 1, 2, · · · , 2a.

11: end for
12: return lex.

4 Simulation and Experiments

Fig. 6. (a) Wirelength of embedding augmented cubes into linear arrays. (b) Wire-
length of embedding augmented cubes into grids

In this section, we compare the result with the other embedding scheme to
verify that the proposed embedding is superior to the random embedding [8]. The
random embedding (short for Random)is the bijection f : {1, .., n} → {1, . . . , n}
is random.

Firstly, we consider the wirelength of embedding augmented cubes into linear
arrays. As seen in Fig. 6(a), compared with the random embedding, the proposed
embedding has lower wirelength. With the increasing of the dimension, it also has
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better performance than random embedding. Besides, the wirelength increases
rapidly when we rise the dimension of the augmented cubes. In Fig. 6(a), when n
is less than 7, the difference is not obvious. We list the exact wirelength in Table 1.
Linear array is a special grid M [1, n], then the comparison of two embedding
schemes in gird would be similar to the linear array. In Fig. 6(b), compared with
the random embedding, the proposed embedding has lower wirelength. And the
exact wirelength is shown in Table 1.

Table 1. Wirelength of embedding augmented cubes into linear arrays and grids in
different dimensions

Dimension Linear array Grid

Lex Random Lex Random

3 52 60 36 42

4 232 300 120 156

5 976 1568 432 606

6 4000 7604 1248 1864

7 16192 36018 4288 6474

8 65152 162366 11648 20782

9 261376 745656 39680 69460

10 1047040 3351960 103936 208526

5 Conclusions

In this paper, we study embedding augmented cubes into grid networks and
obtain the exact wirelength of embedding. Firstly, we prove that augmented
cubes can be embedded into linear arrays with minimum wirelength and obtain
the exact wirelength based on the maximum induced subgraph problem. Fur-
thermore, we obtain the minimum wirelength of embedding augmented cubes
into grids and propose a linear algorithm.

Acknowledgment. This work is Supported by the Joint Fund of the National Natural
Science Foundation of China (Grant No. U1905211) and A Project Funded by the
Priority Academic Program Development of Jiangsu Higher Education Institutions
(PAPD).

References

1. Bezrukov, S.L., Chavez, J.D., Harper, L.H., Röttger, M., Schroeder, U.-P.: Embed-
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