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Abstract. 3D object detection is a major topic in unmanned driving
and robotics, which is suffering from the low accuracy recently. We found
that the loss function of 3D object detection network is the main cause
to the low accuracy. For this, we proposed an optimized realization of
deep sensor fusion network model (DSFN) based on Generalized Inter-
section over Union (GIoU). In DSFN, the designed backbone network is
used to fuse point cloud features and image features, making full use of
heterogeneous sensor information. Specifically, we introduced the GIoU
as the loss function of the backbone network. We evaluated our model on
KITTI dataset which is resulted from a LIDAR-camera setup. Compared
with similar models, our model shows a higher accuracy.

Keywords: Deep Sensor Fusion Network (DSFN) · 3D bounding box
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1 Introduction

In recent years, artificial intelligence (AI) has developed rapidly, where the
unmanned driving (UD) has been paid more attention by major enterprises,
scholars and even general public. There are two quite different ways to achieve
the goal of UD: one is a progressive method adopted by traditional enterprises,
starting from the existing assisted driving system, and gradually increasing auto-
matic steering to actively prevent collisions and other functions, to achieve con-
ditional UD, and finally to complete UD when the costs and related technologies
reach certain requirements. The other is represented by high-tech IT enterprises,
they choose “one step” way to directly reach the ultimate goal of driverless driv-
ing. But the technical route chosen by the latter is more challenging and risky.

This research is supported by the National Natural Science Foundation of China (Grant
No.61931017 and No.61831007).

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12453, pp. 552–562, 2020.
https://doi.org/10.1007/978-3-030-60239-0_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60239-0_37&domain=pdf
https://doi.org/10.1007/978-3-030-60239-0_37


An Optimization of Deep Sensor Fusion Based on GIoU 553

Therefore, innovative algorithms and efficient and robust systems are needed to
support it. Under this demand, object detection and positioning is particularly
important, because it is equivalent to the intelligent unmanned system can “see”
all directions, and provides a lot of useful information for the decision-making
planning of UD system.

Nowadays, the latest development of convolutional neural networks has
enabled 2D detection in complex environments. However, there is an urgent
demand for precise detection in 3D environment, leading to an open challenge of
3D object detection. Thus, in this context, We propose an optimized realization
of DSFN by using GIoU (see Fig. 1) based on PointFusion [1], that can give a
6 −DoF pose and the 3D bounding box dimensions by combining point cloud
and RGB information, along with identifying objects of interest in the scene.

Bounding box regression is one of the most basic components in many 2D/3D
computer vision tasks. The tasks of target location, multi-object detection, target
tracking and instance level segmentation all depend on the associated bounding
box regression. The main trend of using deep neural network to improve appli-
cation performance is to propose a better framework backbone [2] or a better
strategy to extract reliable local characteristics [3].

Main contribution of our model as follows:

• The model we based on is validated on the KITTI 3D object detection dataset
[4] with two indicators, namely, object classification accuracy and 3D bound-
ing box accuracy. From many research works, we found that the object classifi-
cation task had achieved a good enough performance, so we paid more atten-
tion on 3D bounding box accuracy while ensuring the object classification
accuracy. For achieving a better 3D bounding box regression, we optimized
the loss function by using IoU and GIoU [5] in backbone network.

Fig. 1. An overview of the dense DSFN architecture. DSFN has two feature extractors:
a PointNet variant that processes raw point cloud data, and a CNN (ResNet) that
extracts visual features from an input image. Our fusion backbone network that directly
regresses the box corner locations.

The rest of this article is as follows. The Sect. 2 introduces some achievements
and related work. After discussing the DSFN model in Sect. 3, the specifications
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about the datasets with the implementation and experimentation details are
discussed in Sect. 4. The obtained performance results are also analyzed. Finally,
we make a summary and set further goals of future work in Sect. 5.

2 Related Work

2.1 Object Detection Accuracy Measures

Intersection over Union (IoU) is a standard for measuring the accuracy of cor-
responding objects in a specific data set. It can be used to measure any task
that gets a prediction range in the output. In lots of task detection and 2D/3D
bounding box projects [6,7], IoU is the most commonly used to determine true
positives and false positives in a set of prediction, which will be given a deci-
sion threshold when be selected. Similarly, our experiment also uses IoU as a
measure of the performance of our 3D bounding box, and the threshold is set to
0.5. Actually, due to not sensitive to the scales of the target object, IoU , as the
core evaluation index, can be used as the direct representation of the regression
loss of bounding box. However, there are few experiments that use IoU as loss
function directly, so we have verified the effect of idea that IoU as loss function
in our experiments.

2.2 Bounding Box Representations and Losses

In object detection, learning bounding box parameters is crucial. Various kinds of
bounding box representations and losses are proposed in the literatures. Redmon
et al. in YOLO v1 [8] propose a direct regression on the bounding box parameters
with a small tweak to predict square root of the bounding box size to remedy
scale sensitivity. Girshick et al. [9] in R-CNN parameterize the bounding box
representation by predicting location and size offsets from a prior bounding box
calculated using a selective search algorithm [10]. Most popular object detectors
[11–13] utilize some combination of the bounding box representations and losses
mentioned above. These considerable efforts have yielded significant improve-
ment in object detection. As their loss of bounding box regression is not a direct
representation of the core evaluation indicators, there may be opportunities to
further improve localization.

In 2019, based on IoU , [5] introduced GIoU as a new loss and new measure to
make up for the lack of IoU as the loss function, and verified its advantages in 2D
environment. However, as far as we know, the performance of this new concept
in 3D environment has not been explored much yet, so we made a attempt in
our experiment and has gotten the optimized effect just like it in 2D experiment.

3 Deep Sensor Fusion Network Model

DSFN is expected to use image features extracted by a standard CNN, ResNet
50, and corresponding point cloud features generated by changed PointNet sub-
networks as inputs to combine these functions and output a 3D boundary frames
of the target objects. The backbone network of DSFN is showed as follows:
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• A changed PointNet network to extract point cloud features.
• Resnet50 to extract image appearance features.
• The fusion network takes the fusion information of the two mentioned above

as input, and then outputs 3D boundary prediction.

3.1 Fusion Subcomponent

Fig. 2. Pointnet architecture: PointNet takes the lead in using the symmetric function
(max pooling) to realize the permutation invariance in the processing of unordered 3D
point sets. The modified model inherits this point, and then in order to improve the
estimation performance of 3D bounding box, the original batch normalization layer is
removed.

For the part of processing point cloud, we used a changed PointNet architecture,
which was revised on the basis of Qi et al.’s model [14]. PointNet takes the
lead in using the symmetric function (max pooling) to realize the permutation
invariance in the processing of unordered 3D point sets. The modified model
inherits this point, and then in order to improve the estimation performance
of 3D bounding box, the original batch normalization layer is removed. But
theme architecture has no fundamental change (see Fig. 2). The model takes the
raw point cloud and learns a spatial coding of each point and the aggregated
global point cloud features. Then these features are used for classification and
semantic segmentation. PointNet has many ideal properties: it directly processes
the original points without the lossy operation like voxelization or projection,
and it is linearly proportional to the number of input points.

Resnet50 [15] (see Fig. 3) is used in the part of image feature extraction.
The traditional convolution network or the all connected network have some
problems, such as information loss, when information is transmitted. At the
same time, it will cause the gradient to disappear or the gradient to explode,
which makes the deep network unable to be trained. Resnet50 solves this problem
to a certain extent by bypassing the input information directly to the output to
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protect the integrity of the information. The whole network only needs to learn
the difference between the input and output to simplify the learning objectives
and difficulties.

Our fusion model takes raw point cloud and image features preprocessed by
the above two methods as input (we try the painless fusion function based on the
previous experience, and find that the series of two feature vectors can obtain
better performance), and then directly outputs the 3D positions of the eight
corners of the target bounding box. The fusion network is implemented with
three dense layers, where the dense network does well in regression problem.

Fig. 3. ResNet50 architecture: Resnet50 solves some problems that will be caused by
traditional convolution network to a certain extent by bypassing the input information
directly to the output to protect the integrity of the information.

3.2 Loss Function

SmoothL1 Loss The loss function in the global fusion model we refer to is:

L =
∑

i

smoothL1(X∗
i ,Xi) + Lstn (1)

where X∗
i are the ground-truth box corners, Xi are the predicted corner loca-

tions and Lstn is the spatial transformation regularization loss introduced in [14]
to enforce the orthogonality of the learned spatial transform matrix. A major
drawback of the global fusion network is that the variance of the regression target
Xi is directly dependent on the particular scenario. For autonomous driving, the
system may be expected to detect objects from 1 m to over 100 m. This variance
places a burden on the network and results in suboptimal performance.

In order to solve this problem, we make two adjustments to the loss function
in the model, namely, LIoU and LGIoU .
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IoU Loss IoU is intersection over union, and it is the most commonly used
index in object detection. In the anchor-based method, its function is not only
to determine the positive and negative samples, but also to evaluate the deviation
between the output box and the ground truth.

LIoU = 1 − IoU = 1 − I(X)
U(X)

(2)

where I(X) represents the intersection of the ground truth of target object
and the 3D bounding box, and U(X) is the union. As a loss function, IoU
can directly reflect the detection effect of predicted box and ground truth. In
addition, another good feature is scale invariance, that is, it is not sensitive to
scale. In the region task, it can meet the nonnegative, identity, symmetry and
triangle inequality of prediction results.

With the IoU loss is applied into the fusion model, it results a better regres-
sion effect than SmoothL1 loss, but also shows some defects. One is that if two
boxes with no overlap, according to the definition, IoU = 0, it cannot reflect
the deviation between them (degree of coincidence). At the same time, when
IoU = 0, the loss = 1, there is no gradient return, which stops the model from
training.

GIoU (Generalized Intersection over Union) Loss In CVPR2019, [5] proposed
the idea of GIoU . IoU is a concept of ratio, and it is not sensitive to the scale of
the target. But it shows an obvious defect that doesn’t take the situation that
two boxes without overlap into consideration. GIoU can effective counters this
situation through a more precise definition of the deviation between two boxes.

LGIoU = 1 −GIoU = 1 − (IoU − Ac − U(X)
Ac

) (3)

Similar to IoU , GIoU is also a deviation measure. As a loss function, it meets
the basic requirements of loss function: GIoU is not sensitive to scale. GIoU is
the lower bound of IoU . For surrounding any group of ground truth and 3D
bounding box, where Ac is the volume of the smallest box. In the case of infinite
coincidence of two frames, IoU = GIoU . The value of IoU is within [0,1], but the
value of GIoU has symmetric interval, and the value range is within [− 1,1]. The
maximum value is 1 when the two are coincident, and the minimum value is − 1
when the two are not intersected and infinite, so GIoU is a very good deviation
measure. Different from IoU only focusing on overlapping areas, GIoU not only
focuses on overlapping areas, but also other non overlapping areas, which can
better reflect the degree of coincidence between the two boxes.

4 Experiments

4.1 Dataset

KITTI The KITTI dataset [4] contains 2D and 3D labels of cars, pedestrians
and cyclists in urban driving scenarios. The sensor configuration includes a wide-
angle camera and velodyne hdl−64e lidar. The official training collection contains
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7481 images. In order to ensure the validity and credibility of the experimental
results comparison, we follow the dataset processing in the comparison model,
and divide the official training dataset into training set, development set and
verification set. The size of each set is also consistent (see Table 1).

Table 1. Train-Dev-Test Split

Train data Dev.data Test data

No.of examples 6750 365 366

4.2 Pre-processing

The velodyne setup on the station wagon is used to produce the points clouds.
For details, it’s a rotating 3D laser scanner that generates data points at a
rate of 10 HZ, 64 beams, with 0.09◦ angular resolution, 2 cm distance accuracy,
collecting 1.3 million point/second, with a horizontal and vertical field of view of
360◦ and 26.8 respectively. There are lots of points so that we need to trim down
the input size for correspondence, feasibility and relevance. As a result, we filter
the point clouds falling in the camera view angle and randomly sample 2048
points from them. Then, the points are fed through a Spatial Transformation
Network in order to canonicalize the input space. Further, the ground truth
labels are transformed to the velodyne coordinate for tractability in prediction.

4.3 Network Specifications

This subsection generally lists the network specifications resulted from extensive
experimentations. The model we used has 1,808,207 trainable parameters, where
most of them belong to the PointNet [14] architecture. Moreover, in the fusion
network, we finally choose a simple and effective architecture which is consisted
of 3 hidden layers having 512, 128 and 128 units, respectively, the fusion layer
gives the box-corner locations as output.

4.4 Results

First of all, we completely restored Global Fusion network which is the compo-
nent of Pointfusion [1]. SmoothL1 as the loss function of Global Fusion network
has been introduced in 3.2. the model was trained to give the loss curves, pre-
sented in the figure below (see Fig. 4).

The output of Global Fusion has two aspects: classification and 3D bound-
ing box regression. In the process of recurrence experiment, we found that the
classification accuracy reached 96.17%, which was hardly to be improved qual-
itatively, leading to the truth that 96.17% shows a good enough performance
indeed. However, there is a lot of room for improvement in the performance
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Fig. 4. Box output loss vs Epochs for training and development with SmoothL1

of 3D bounding box regression. So in our experiment, we focused on the 3D
bounding box regression on the premise of ensuring classification accuracy.

IoU is the core index to measure 3D bounding box regression. The loss
curves of applying IoU as loss function instead of SmoothL1 in DSFN is shown
as follows (see Fig. 5):

GIoU is a new concept based on IoU in 2019. An example has be given in [5]
that the performance in 2D environment is indeed better than IoU . According
to the research, GIoU has not been widely used at present, especially in 3D
bounding box regression. The performance of the DSFN using GIoU as loss
function is shown as follows. (see Fig. 5):

Fig. 5. Box output loss vs Epochs for training and development with LIoU and LGIoU
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0 is the threshold of whether the target is framed in 3D bounding box. From
many experimental results, we found that not all the values of IoU are bigger
than 0. Thus, we decided to take the ratio of the number of samples with IOU
bigger than 0 to the total number of test-set as the measurement of accuracy, and
then calculated the average value of all the IOU bigger than 0 as the measure-
ment of precision. Table 2 offers more information about different loss function’s
performance on the test set.

Table 2. Different Loss Function’s Performance

SmoothL1 LIoU LGIoU

Test set 366 366 366

Number of simples (IoU>0) 201 85 343

Accuracy 54.9% 23.2% 93.7%

Precision (average IoU) 0.30 0.49 0.13

From the Fig. 4, we find that the model with SmoothL1 trends to converge
roughly when the epoch exceeds 300. Moreover, there is a comparison between
the model with LIoU and LGIoU as shown in Fig. 5. We can observe that the loss
of LGIoU with a faster convergence than LIoU , while compared to the SmoothL1
show the same performance.

From Table 2 we find that model with loss of LIoU shows a better precision
than loss of SmoothL1, which has a precision improvement of 0.19. It can be
explained by that LIoU represents the expected aim at evaluation of model at
the phase of training, which is more significant than SmoothL1. However, there
is a accuracy descend of 31.7% of LIoU when compared to SmoothL1, which is
caused by that LIoU only focuses on the case that intersection of two bounding
boxes is bigger than 0, but ignores the case that the intersection is 0. For LGIoU ,
we observe that there is a large improvement of accuracy to 93.7%, which is
due to that LGIoU take both cases of intersection of two bounding boxes into
consideration. Nevertheless, an unsatisfactory effect occurs on the precision, we
consider this maybe because LGIoU is incomplete for the specific intersection
position of 3D bounding box, which is a problem that does not exist in 2D
verification before. This provides a research point for our follow-up work.

Further, figures (see Fig. 6 Fig. 7) demonstrate some correct result predicted
by the model with LGIoU (Red: ground truth; Ink Blue: 3D bounding box).
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Fig. 6. Correct prediction. (Color figure online)

Fig. 7. Correct prediction. (Color figure online)

5 Conclution

In order to improve the performance of the bounding box regression in 3D envi-
ronment, we optimized DSFN model based on Global Fusion model. Our model
focuses on the optimization of loss function in training process. In experiments,
we use IoU and GIoU instead of SmoothL1 as the loss function of DSFN respec-
tively. The results are obtained that IoU outperforms SmoothL1 on bounding
box regression precision while GIoU shows the best performance on bounding
box regression accuracy.
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