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Abstract. Automatic feature engineering aims to construct informative
features automatically and reduce manual labor for machine learning
applications. The majority of existing approaches are designed to han-
dle tasks with only one data source, which are less applicable to real
scenarios. In this paper, we present a distributed automatic feature engi-
neering algorithm, DAFEE, to generate features among multiple large-
scale relational datasets. Starting from the target table, the algorithm
uses a Breadth-First-Search type algorithm to find its related tables and
constructs advanced high-order features that are remarkably effective in
practical applications. Moreover, DAFEE implements a feature selection
method to reduce the computational cost and improve predictive perfor-
mance. Furthermore, it is highly optimized to process a massive volume of
data. Experimental results demonstrate that it can significantly improve
the predictive performance by 7% compared to SOTA algorithms.

Keywords: AutoML · Automatic feature engineering · Relational
dataset · Big data · Feature selection · Machine learning

1 Introduction

Nowadays, as most businesses in the world embrace the opportunity of data
science, people are dramatically impressed by the magic of data mining. An
experienced data scientist is capable of generating and transforming useful fea-
tures based on his or her high degrees of skill. However, this procedure, which is
called feature engineering, is highly manual and typically requires domain knowl-
edge. In addition, it is usually unrepeatable and non-scalable and occupies the
majority of time in a machine learning task.

W. Zhao and X. Li—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2020
M. Qiu (Ed.): ICA3PP 2020, LNCS 12453, pp. 32–46, 2020.
https://doi.org/10.1007/978-3-030-60239-0_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60239-0_3&domain=pdf
http://orcid.org/0000-0002-6547-005X
http://orcid.org/0000-0003-2075-2106
http://orcid.org/0000-0003-4576-0524
http://orcid.org/0000-0002-4429-363X
http://orcid.org/0000-0003-2858-9104
http://orcid.org/0000-0001-9127-168X
https://doi.org/10.1007/978-3-030-60239-0_3


DAFEE: A Scalable Distributed Automatic Feature Engineering Algorithm 33

As a result, automatically extracting informative features from data has
become the forefront of both academia and industry. Although priory knowl-
edge is essential, there are still some regular routines of generating informative
features from the original attributes. However, since the actual structured data
is typically residing in the relational database management systems (RDMS),
being represented as a set of tables with relational links, the combinations of orig-
inal features’ mathematical transformations among relational tables may also be
important, which makes the number of potential features grows exponentially.

Recently, researchers try to automatically extract the information among
the relational datasets in two ways. One way is to use deep neural networks
to implicitly complete the feature generation work, such as R2N [18]. However,
since the created features are uninterpretable, this approach is hardly applicable
in scenarios requiring strict justifications, such as fraud detection in banks. The
other is to generate a tree representation for the connected datasets and then
constructs features automatically when searching through the tree. Deep Feature
Synthesis (DFS) [12] uses the Depth-First-Search algorithm. After finding out
the farthest table from the target table, DFS sequentially applies different kinds
of mathematical functions and generates features according to the relationship
along the search path. To prevent generating too many features, DFS introduces
a hyper-parameter called max-depth to control the farthest table it can reach.
However, some information may be lost since not all tables are used to generate
features. Furthermore, as DFS only supports limited mathematical functions, it
can not extract complex features in practice.

Based on these observations, we propose the Distributed Automatic FEature
Engineering (DAFEE) algorithm to improve the performance of automatic fea-
ture engineering. DAFEE uses a Breadth-First-Search type algorithm to search
through the datasets. Each time the features are joined back to the target table,
feature selection strategies would be applied to remove useless features. Addi-
tionally, DAFEE generates high-order features by applying sophisticated trans-
formations upon multiple keys, which are both informative and interpretable.
The major contributions of this paper are summarized as follows:

– DAFEE improves the DFS algorithm and can produce more useful features
by increasing interaction among entities efficiently.

– DAFEE generates advanced features to improve model performance in ways
that SOTA algorithms cannot, such as generating features based on the inter-
est values, by connecting multiple keys simultaneously and so on.

– DAFEE is implemented with the Spark [31] distributed framework and uti-
lizes its advantage to be better applied to large datasets.

– DAFEE reduces the complexity of feature explosion and improves the robust-
ness by applying pruning and feature selection strategy to trim trivial features
before the feature expansion process.

The remaining part of this paper is organized as follows: Sect. 2 reviews some
related work; Sect. 3 introduces our research motivation, DAFEE algorithm and
its implementation in detail; Sects. 4 and 5 present the datasets and experiment
results; Sect. 6 summarizes the work.
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2 Related Work

Most automatic feature engineering works contain both automatic feature gen-
eration and feature selection. Some of them explicitly expand the dataset with
all transformed features and apply a feature selection afterward. ExploreKit [13]
is such a framework that generates a large number of candidate features with
identified common operators and conducts meta-feature based ranking and the
greedy-search evaluating approaches. AutoLearn [14] proposes a regression-based
feature learning algorithm which constructs regression models to study the fea-
ture correlations. These correlation scores are deemed as new features to conduct
feature selections after all features are generated.

On the other hand, FEAture DIScovery (FEADIS) [5] employs a wide range
of feature combinations and includes constructed features greedily. Cognito [17]
expresses feature generation as a directed acyclic graph, which is called a Trans-
formation Tree. Each non-root node in the tree represents a transformed dataset
with newly generated features and is associated with a score that measures
the importance. Several heuristics tree traversal strategies such as depth-first
and balanced traversal could be done with it. [29] introduces Genetic Program-
ming (GP) into feature generation and selection of high-dimensional classifica-
tion problems, where feature selection selects the leaf nodes used to construct
the GP tree. [30] presents AutoCross to automatically generate cross features
for categorical features. AutoCross also ensures efficiency, effectiveness, and sim-
plicity with mini-batch gradient descent and multi-granularity discretization.

Some novel techniques such as meta-learning and reinforcement learning
are also applied on automatic feature generation. Learning Feature Engineer-
ing (LFE) [26] proposes a meta-learning method to evaluate the features’ score
on the Transformation Tree. It trains a classifier to recommend a set of use-
ful transformations from historical feature engineering experiences on other
datasets. [16] derives a strategy for efficiently searching the Transformation Tree
by reinforcement learning (RL). Under a budget constraint, RL could be used
for performance-driven exploration of the tree.

All researches above only consider single table, Data Science Machine (DSM)
[12] is the first end-to-end system that automates feature engineering for rela-
tional tables. The core of DSM is Deep Feature Synthesis (DFS), which auto-
matically generates features from interconnected tables. In addition to the DFS-
based feature generation method, DSM autotunes an entire machine learning
pipeline, including data preprocessing, Truncated SVD based feature selection,
and automatic model selection with Bayesian Copula Process for Bayesian hyper-
parameter optimization. One Button Machine [19] extends DSM to handle large
datasets while compensating for the disadvantage of DSM to handle unstruc-
tured data. Neural networks are also taken into account as [18] proposes a novel
Relational Recurrent Neural Network (R2N) that maps the relational tree to a
target value. However, the generated features are not interpretable.
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3 Method

Let D be a set of relational tables, where each entry is related to at least another
table in D. Assume any relationship is treated as an edge, and one or more
connected edges started from target table constitute a path p. The path set
P includes all possible paths. Suppose g

(t)
p (.) is an arbitrary mapping function

that takes any features X as input and uses the transformation t along the
path p. Then the result feature set F could be written as F = {F : F =
g
(t)
p (X),∀ path p, transformation t}. To simplify the setting, we assume each

table could be split into the training data set Dtrain and validation data set
Dvalidate by a universal criterion. Assume �(.) is the loss function (such as RMSE
or F1-score) and L(.) is a learning algorithm. Our target is to derive:

F � = arg min
F⊆F

�(L(Dtrain, F ),Dvalidate, F ) (1)

In this manuscript we propose DAFEE, an automatic scalable feature engi-
neering algorithm that is implemented on the distributed computation engine
Spark [31]. Based on the relationship of tables, it connects all the tables and
convey the information of each table to the target table through joining any two
related tables in an ordered manner. Finally, DAFEE applies a feature selection
after each time joining other tables to the target table, in order to reduce the
number of features. In this section, we explain the motivation for DAFEE and
introduce the algorithm in detail.

3.1 Motivation

Most of the researches on feature engineering [7,24,25,28], especially automatic
feature engineering [13,17,20,30], only consider single table. However, real-world
data is usually much more complicated. In most cases, features are derived from
multiple tables. Consider the customer anomaly detection scenario in banking
industry as an example. In order to predict whether a customer is abnormal,
we need to fully utilize different aspects of information, such as customer profile
and transactions. However, these data are usually collected in separate tables,
making it impossible for automatic feature engineering algorithms mentioned
above to handle. Besides, generating useful features, especially interaction fea-
tures extracted from multiple tables requires domain knowledge and is time-
consuming. In this manuscript, we propose DAFEE to tackle these problems.

3.2 Combination Strategy

To search and join related tables, a revised version of deep feature synthesis
(DFS) [12] is used. In DFS, a table is called an entity, which is capable to
handle numeric, categories, timestamps and free text features. We use the same
concepts and symbols introduced in DFS.

A forward relationship could be simply regarded as a one-to-many or
one-to-one relationship, while a backward relationship is just the opposite.
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Direct features (DFEAT) are features directly delivered through forward rela-
tionships. Relational features (RFEAT) are generated by applying aggregation
functions like MAX, MIN and SUM on a backward relationship. Different from
direct features and relational features, Entity features (EFEAT) are created by
taking transformations on the entity’s current features, regardless of any forward
or backward relationship.

DFS uses a search strategy similar to depth-first-search, which starts from
the target entity, traverses through the relation paths and stops searching when
finding any leaf. On each leaf entity, entity features would be generated at first.
Then direct features or relational features are generated on the leaf and joined to
its parent according to the relationship between them. These operations would
be taken sequentially until all features are joined back to the target entity.

Fig. 1. Simplified Schema for e-commerce scenario.

However, this strategy is unable to generate some complicated but useful
features. Figure 1(a) shows a simplified schema with four entities targeting for
predicting actions of customers in an e-commerce scene. Customers entity con-
tains personal information like age, gender, registration date, and so on. Items
and Categories entities hold features describing items and categories. Actions
entity is the entity with labels that records customers’ actions, such as browse
and purchase. The direction of arrows represents the direction of relationships
illustrated above. Complicated features, such as “the number of products whose
sales ranks 1st last month in its category that customer A bought in a week”, are
often used to describe the customer but could not be generated by DFS.

To solve this problem, we introduce Combine functions to join forward entity
back to its father and create new features after generating relational features.
With Combine functions, we can first construct relational features like “whether
the sales of this product ranks 1st last month in its category” and then construct
the feature illustrated in the last paragraph based on that. Besides, since a
Combine function merges the visited forward entity into current entity, the entity
tree is simplified as its depth reduces. In addition, we introduce more types of
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relational features, such as Rank and Proportion features. Conditional features
filtered by Time Windows and Interesting Values are also revised to make them
more applicable.

Algorithm 1: Naive features generation
1 Function DAFEE(Ei, EM , EV ):
2 EV ← EV ∪ Ei;

3 F i ← F i ∪ EFEAT(Ei);

4 EF ← Forward(Ei, EM );
5 while EF �= null do
6 for Ej ∈ EF do
7 F j ← F j ∪ RFEAT(Ej , Ei) ∪ EFEAT(Ej);

8 F i ← F i ∪ DFEAT(Ei, Ej);

9 Combine(Ei, Ej);

10 EF ← Forward(Ei, EM );

11 EB ← Backward(Ei, EM );

12 for Ej ∈ EB do
13 if Ej ∪ EV then
14 continue;

15 DAFEE(Ej , EM , EV );

16 F i ← F i ∪ RFEAT(Ei, Ej);

Here E and F are entity and feature set corresponding. Ai indicates the i-th
element of set A. AV represents the subset of A annotated by V . For example,
Ej presents the j-th entity while EV stands for the set of visited entities.

3.3 Cross Features Generation

Another common scenario is the multi-key connection scenario, such as two enti-
ties connected by two separated keys. In the sample case illustrated in Fig. 1(b),
the relationship between Actions entity and Customer-Item entity is a typical
multi-key connection relationship since the two entities are connected both by
CustomerID and ItemID. As DFS only supports one foreign key in each connec-
tion of entities, Customer-Item can not be connected to Actions directly. This
causes information lost of the Actions entity in this case.

To support multi-key connection, we introduce a new relationship called cross
relationship in DAFEE. Operations that are used to create relational features,
such as MAX and MIN, are also used to create cross features upon a cross rela-
tionship. Besides, some more complicated operations that utilizes both backward
and cross relationships, e.g. “the proportion of milk A purchased by customer B
among all milk brands that B purchases in a week”, are also supplied. With cross
features, the procedure of automated feature engineering is more close to manual
feature engineering.

In general, we can create more meaningful features using DAFEE. However,
at the same time, we also generate more useless features. To deal with such side
effect, we introduce a trim algorithm to be explained in Sect. 3.4 and a feature
selection module to be illustrated in Sect. 3.5.
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3.4 Trim Strategy

A heuristic algorithm with two principle rules is used to trim the useless features.
Both rules are introduced according to experts’ experiences, some useful features
may be dropped, but with a negligible chance:

– The first rule discards those numeric transformations such as SUM or AVG on
a date related feature. For example, “sum of the months of transaction dates”
is a useless feature, which is an encryption over the month of transaction dates
without further useful information.

– The second rule aims to trim cross features. If one entity has a forward entity
and a cross entity that share one common foreign key, then the features
generated through DFEAT from the forward entity will be passed directly to
the cross entity. For example, in Fig. 1(b) the features in the Actions entity
that are inherited from the Customer entity will be joined to Customer-Item
entity directly without any RFEAT operations.

3.5 Feature Selection

Feature selection has been proven to be an effective and efficient way to reduce
dimension and achieve a better result to solve many machine learning prob-
lems [22]. In general, feature selection algorithms could be categorized into three
types: filter, wrapper and embedded [27]. Filter methods select features accord-
ing to the intrinsic property of dataset, without using any classifier. Typical
filter methods include similarity based methods [6,9], information theoretical
based methods [2,21] and statistical based methods [4,23]. Wrapper methods
iteratively learn and predict feature scores by using certain machine learning
algorithm and select part of them as outputs. One such commonly used wrap-
per method is recursive feature elimination (RFE) [8], which recursively ranks
features by the importance score. Embedded methods integrate the feature selec-
tion process with the learner training process, and complete both processes in
the same optimization stage.

Since the label information is included, and embedded methods usually take
less time than wrapper methods, an embedded methods based on XGBoost [3]
is used. XGBoost is an end-to-end tree boosting system that is widely used
in different machine learning tasks. It also designs mechanisms to achieve high
scalability, which is essential in handling the large dataset scenario. Moreover,
its feature importance method using boosting trees has already been proven to
be able to get good performance in industry [10]. Such feature importance is
used to rank and output the top K (or p percent) of the features.

In order to control the number of features, feature selection is applied when
the current entity is the target entity. Breadth-First-Search (BFS) allows more
control on feature selections, which is also one of the reasons why a BFS type
strategy is preferred to search forward entities to a Depth-First-Search alike
strategy that are used in DFS. The final feature generation algorithm with trim
strategy and feature selection is presented in Algorithm2.
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Algorithm 2: Feature generating
1 Function DAFEE(Ei, EM , EV , target):
2 EV ← EV ∪ Ei;

3 F i ← F i ∪ EFEAT(Ei);

4 EF ← Forward(Ei, EM );
5 while EF �= null do
6 for Ej ∈ EF do
7 F j ← F j ∪ RFEAT(Ej , Ei) ∪ EFEAT(Ej);

8 F i ← F i ∪ DFEAT(Ei, Ej);

9 Combine(Ei, Ej);
10 if target == i then
11 F i ← FeatureSelect(F i);

12 EF ← Forward(Ei, EM );

13 EB ← Backward(Ei, EM );

14 for Ej ∈ EB do
15 if Ej ∪ EV then
16 continue;

17 DAFEE(Ej , EM , EV , target);

18 F i ← F i ∪ RFEAT(Ei, Ej);
19 if target == i then
20 F i = FeatureSelect(F i);

21 EC ← CrossRelation(Ei, EM );

22 for Ej ∈ EC do
23 if Ej ∪ EV then
24 continue;

25 DAFEE(Ej , EM , EV );

26 F i ← F i ∪ CFEAT(Ei, Ej);
27 if target == i then
28 F i = FeatureSelect(F i);

29 if target == i then
30 F i = FeatureSelect(F i);

3.6 Implementation

Since the amount of data grows rapidly recently, it is necessary to implement
algorithms on a scalable framework. Our system is based on Spark for the capa-
bility of distributed computation. Beside the high performance, Spark provides a
module called Spark SQL [1], which offers sufficient commonly used operations,
e.g. SUM, MIN, MAX, SELECT and JOIN, to process relational data. On top
of Spark, we have developed additional operations like MODE and MEDIAN to
fulfill the needs. All codes are optimized following the Spark code optimization
skills, such as caching the intermediate results. Otherwise, the whole DAG may
be computed multiple times.

Moreover, the mechanism to filter data based on some specified condition is
implemented. Time Window and Interesting Value are two typical filters. A Time
Window is a period of time, such as “1 day” and “3 months”. After specifying
the time column and cutoff time, one can use the Time Window to filter data
by time. For example, if one wants to generate “the number of transactions of
each customer in 1 week”, one can filter “the number of transactions of each
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customer” by Time Window “1 week”. Since data scientists usually generate the
same features with different Time Windows, some commonly used Time Windows
are implemented into a TimeWindows object in a convenient manner.

Interesting Value is another widely used filter. Data scientists may be interest
in studying the conditions that one certain column’s value is equal to a specific
value. One example is “the number of actions that a user put ABC items into
shopping cart within 1 week”. If there is a column called “action type” with
value “1” indicating “put into shopping cart”, then the interesting Value is
the “1” value of column “action type”. One side effect is that the number of
newly generated features grows dramatically as the number of interesting value
increases. For example, if we have two Interesting Values, then the total number
of generated features is nearly doubled. To solve this problem, we introduce
a hyper-parameter called target columns for Interesting Values to restrict the
columns that interesting values filters applied on.

4 Evaluation

We conducted experiments to demonstrate the performance and scalability of
our automatic feature engineering approach. We mainly compared DAFEE with
the DFS algorithm and its Python implementation Featuretools. The latter is the
SOTA algorithm implementation and widely used by data scientists. To evaluate
fairly, a four-node Spark cluster (2 × 8 cores E5-2620 V4 with 8 × 16 GB ram
memory) is set up, where DAFEE and DFS are both ran in the yarn mode.
The software environment is based on Linux 3.10.0-957 with Java (1.8.0-131),
Hadoop (2.7.2) and Spark (2.4.3).

To justify the performance of our method, we test our implementation on four
datasets with different sizes and configurations: HI GUIDES1, KDD Cup 20142,
Coupon Purchase (See footnote 2) and IJCAI 20153. The completed machine
learning pipeline is introduced in the following sections. For scalability, we com-
pare the speedup on four different datasets mentioned above between our frame-
work and Featuretools on Spark, which is the implementation of DFS based on
Spark. All the experiments described in the following paragraphs are repeatedly
conducted for three times to reduce the randomness. Average scores are taken
as the final results.

4.1 Dataset Overview

Four datasets used in experiments will be described briefly in the chapter.
HI GUIDES predicts whether users will purchase quality travel services in

the short term. There are five related tables: UserProfile describes users’ profile
information; Action contains user behavioral information; OrderHistory includes

1 http://www.dcjingsai.com.
2 http://www.kaggle.com.
3 http://ijcai15.org.

http://www.dcjingsai.com
http://www.kaggle.com
http://ijcai15.org
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users’ historical order information; OrderFuture contains user id and order type
for training dataset; UserComment includes users’ evaluation and comments.

KDD 2014 Cup helps donorschoose.org to find the exciting projects
that are more likely to be funded by website users. There are five related
tables: Projects includes information regarding project itself and it’s correspond-
ing teacher and school; Essays includes a short description and full essay of
each project; Donations: contains information about donations on each project;
Resources: contains requested resources of each project; Outcomes: contains out-
come of each project with the label column “is exciting”. Table projects, essays
and resources provide both training and testing data, while donations and out-
comes only give information regarding projects in training set.

Coupon Purchase predicts the coupons that a customer will buy in a cer-
tain period of time. The dataset contains a whole year’s information. There are
five tables: User list includes user profile and registration information; Coupon list
includes coupon information; Coupon visit includes browsing log of coupons;
Coupon detail includes purchase log and more details of coupons; Coupon area
includes area information of coupons.

IJCAI 2015 predicts the repeated buyers for merchants in Tmall. The data
could be extracted into four different table: Users includes user profile, including
age range and gender; Merchant includes merchant ID; Log includes merchant
id, and action information between users and items; User merchant includes indi-
cates whether a user repeatedly buy a merchant.

4.2 Preparation

To be comparable to DFS, we applied the same machine learning pipeline on
DFS and DAFEE, except for the feature generation part. Figure 2 shows the
full procedure. As DFS’s effectiveness highly relies on its parameter settings
such as the choice of aggregation functions and interesting values, we carefully
follow Featuretools’ guidance to ensure that the result reasonably reflects the
true performance of DFS.

Fig. 2. Machine learning pipeline for effectiveness experiment.

In the preprocessing part, null values are filled with zeros at the beginning.
One-hot encoding is put after feature generation to avoid the curse of dimension-
ality. In modeling section, we choose different model for different task. We use

https://www.donorschoose.org/


42 W. Zhao et al.

random forest classifier for IJCAI 15 task while applying LightGBM [15] for other
three tasks. In order to get the best models, we tuned their hyper-parameters
automatically using SMAC [11], which is a widely used hyper-parameter opti-
mization algorithm based on Bayesian optimization. The hyper-parameters we
choose to tune are the same as defined in paper of DFS. Specifically, we set
n ∈ [50, 500] as the number of decision trees with default value 50; md ∈ [1, 20] as
the maximum depth of the decision trees without any default value; β ∈ [1, 100]
as the maximum percentage of features used in decision trees with default value
50; rr ∈ [1, 10] as the ratio to re-weight underrepresented classes with default
value 1.

5 Experimental Results and Analysis

In order to prove that our method is superior to DFS, we compared them on
both the aspect of predictive performance and scalability. In this testing phase,
DAFEE and DFS treat the four datasets in the same view (Fig. 3). The sample
size and configuration information is shown in Table 1. The entity relationship
of HI GUIDES and KDD Cup 2014 remain unchanged as they were illustrated
originally, while those of the other two’s are revised slightly for a better per-
formance. In Coupon Purchase, all features of userCoupon entity are discarded
except for user list, coupon list, and coupon visit. userCouponPurchase and user-
Purchase entities are generated from the coupon detail table. By the way, cross
features are only generated upon IJCAI15.

Fig. 3. The entity relationship of four datasets.
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Table 1. The number of observations and features per entity in each experiment.

HI GUIDES IJCAI 2015

Entity Rows Features Entity Rows Features

Action 1,666,060 3 Log 38,743,689 7

OrderHistory 27,512 7 Merchant 1,993 1

UserComment 12,337 5 User-Merchant 260,864 2

UserProfile 50,383 4 Users 212,062 3

KDD Cup 2014 Coupon Purchase

Entity Rows Features Entity Rows Features

Essays 664,098 2 UserCoupon 7,776,447 24

Projects 664,098 35 UserCouponPurchase 241,823 20

Resources 3,667,217 7 UserPurchase 168,996 13

5.1 The Performance of DAFEE and DFS

In this section, we compare the performance of DAFEE and DFS on four datasets
in Table 1. Since IJCAI 2015 does not accept submissions any more, we use AUC
score with 3-fold cross-validation as the performance metric. The results are
illustrated in Table 2.

Table 2. The experiment performances. Online AUC for HI GUIDES and KDD Cup
2014, top 10 online MAP for Coupon Purchase and local AUC for IJCAI 2015.

Algorithm HI GUIDES KDD Cup 2014 Coupon Purchase IJCAI 2015

DFS 0.84**0a 0.61485 0.00434 0.647241

DAFEE 0.87150 0.6166 0.0053 0.66835
aThe website shows the exact score as 0.84**0, which omits two decimal values.

It can be observed that DAFEE outperforms DFS on all of the four datasets.
Specifically, the performance of DAFEE exceeds which of DFS 3.6% on HI
GUIDES, 0.3% on KDD Cup 2014, 21.43% on Coupon Purchase and 3.3% on
IJCAI 2015. The most significant improvement achieved on Coupon Purchase is
over 20%. Obviously, DAFEE is able to generate more useful features than DFS,
especially in the prediction of transaction types with time related variables.

5.2 The Scalability of DAFEE and DFS

In this experiment, the scalability of the DAFEE and DFS algorithm is measured
by the speedup rate when the computation resource increases. Data preparation
is applied beforehand to enable FeatureTools on Spark to work properly. Specif-
ically, we divide each dataset into several partitions so that all worker nodes can
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apply DFS in parallel. However. This method has two obvious shortcomings.
First, if one non-target entity has a one-to-many relationship with the target
entity, the samples in the non-target entity may be copied several times. Second,
the data may be skewed if it is not uniformly distributed.

During the experiments, the number of driver cores and its memory is fixed
to 1 and 16 GB. Furthermore, we set the total executor memory to 96 GB and
the number of cores in each executor to 4 to ensure that the memory for feature
expansion is sufficient. The number of executors are set to 2, 4, 6 and 8 to get
the speedup curve. The number of data partitions is set to 96. Furthermore, two
executors are treated as one node to make the graph more clear.

Since DFS segments the dataset before feature generation, the time of such
segmentation should also be counted. Hence we provide both DFS Main time
and DFS Total time, which stands for the time of main DFS process and the
time including segmentation time. Because in the IJCAI 2015 experiment DFS
failed to complete due to OOM exception, we only draw the speedup curve of
DAFEE in Fig. 4.

Fig. 4. The speedup performances (in times) of DAFEE and DFS main/total. 1, 2, 3,
and 4 on the horizontal axis correspond to the cases where the number of executors
is 2, 4, 6, and 8, respectively. The vertical axis is Speedup (run time/run time when
executors equal to 2).

Since we manually assign the required data to each partition beforehand, we
can find that in Fig. 4 the speedup of DFS Main is always the highest. However,
after considering the overhead of data preparation, the speedup of DFS Total
drops dramatically, which indicates that the data preparation takes the major-
ity of execution time. On the DAFEE side, we find that it reaches its highest
speedup, which is 3.388, on the large IJCAI 2015 dataset, while achieves a low
speedup when the size of dataset is small. The reason may be that the communi-
cation overhead overwhelm that of computation when the dataset is small. Since
the real data are usually huge, DAFEE may achieve a potential high speedup
on them. To sum up, it can be inferred from Fig. 4 that DAFEE has a higher
Speedup than DFS Total in most scenarios, especially when the amount of data
is huge.
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6 Discussions and Conclusions

In this paper we introduce DAFEE, a scalable distributed automatic feature
engineering algorithm for multiple tables in real-world applications. By provid-
ing a novel search method with flexible time windows and new cross relation-
ships, DAFEE can generate more useful features like proportional feature and
high-order features than DFS to improve the prediction performance. Besides,
DAFEE includes feature selection strategies to remove useless features and
reduce the memory consumption. Additionally, experiment results demonstrate
DAFEE is more scalable than DFS, which is valuable in the era of big data.

For the future work, we plan to dig deeper into the feature selection part.
Since XGBoost used in DAFEE is a supervised learning algorithm, we can only
apply feature selection on the target entity. To generalize the feature selec-
tion strategies, unsupervised feature selection methods other than XGBoost are
needed. In addition, although the scalability of DAFEE is better than DFS, it
is still not optimal. In the future, we intend to improve our algorithm and its
Spark implementation to get better scalability. Finally, we plan to revise the
framework to generate more useful high-order features.
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