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Abstract. Convolutional Neural Networks (CNNs) achieve state-of-the
art performance in a wide range of applications including image recog-
nition, speech recognition, and natural language processing. Large-scale
CNNs generally have encountered limitations in computing and stor-
age resources, but sparse CNNs have emerged as an effective solution to
reduce the amount of computation and memory required. Though exist-
ing neural networks accelerators are able to efficiently process sparse
networks, the strong coupling of algorithms and structures makes them
inflexible. Dataflow architecture can implement different neural network
applications through flexible instruction scheduling. The dataflow archi-
tecture needs to be initialized at execution time to load instructions into
the computing array. Running a dense convolutional layer only needs
to be initialized once due to regular calculations. However, running a
sparse convolutional layer requires multiple initializations, which takes
a long time to fetch instructions from memory, resulting in the com-
puting array being idle and degrading performance. In this paper, we
propose an instruction sharing strategy based on the field content in
the instruction, which can reduce initialization time and improve per-
formance. Moreover, we use an extended instruction sharing strategy
based on the static nature of filters to remove filters-related instruc-
tions, further reducing initialization time. Experiments show that our
strategies achieve 1.69x (Alexnet), 1.45x (VGG-16) speedup and 37.2%
(Alexnet), 34.26% (VGG-16) energy reduction compared with dense net-
works. Also, they achieve on average 2.34x (Alexnet), 2.12x (VGG-16)
and 1.75x (Alexnet), 1.49x (VGG-16) speedup over Titan Xp GPU and
Cambricon-X for our benchmarks.
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1 Introduction

Application-specific accelerators [4,16] have proposed as a high performance and
low power alternative to traditional CPUs/GPUs due to stringent energy con-
straints. However, CNNs continue to evolve towards larger and deeper architec-
tures as applications diversify and complicate, which leads to a heavy burden on
processing computation, memory capacity, and memory access of accelerators [6].
To address these challenges, many methods for reducing model parameters are
proposed to turn dense networks into sparse networks using the redundant char-
acteristics of model parameters [7], such as pruning [13], low rank [15]. In order
to make full use of the advantages of sparse network computing and storage,
many accelerators have emerged to accelerate sparse networks [1,11,12,29,30]
due to the low efficiency of CPU/GPU for sparse network acceleration.

However, these application-specific accelerators suffer from inflexible char-
acteristics due to the tightly coupled nature of algorithms and structures. For
example, DianNao family [4], a series of customized accelerators without spar-
sity support can not benefit from sparsity. Cnvlution [1] has completely modified
DaDianNao’s [5] microstructure to support sparse networks. EIE [12] and ESE
[11] accelerators supporting sparse networks are no longer suitable for dense
networks.

Dataflow architecture has advantage in good flexibility and high data par-
allelism and power efficiency for today’s emerging applications such as high
performance computing [2], scientific computing [21,27] and neural networks
[25,28]. It implement different applications through flexible instruction schedul-
ing. Compared with the traditional control flow (controlled by PC), it consists of
a simple control circuit composed of processing unit array (PEs) that can com-
municate directly avoiding frequent memory access. Based on codelet model (a
dataflow-inspired parallel execution model) [9], an application is represented as a
Codelet Graph (CDG) which is a directed graph consisting of codelets, which are
composed of instructions, and arcs, which represent data dependencies among
codelets. At the same time, a codelet is fired once all data is available and all
resource requirements are met, which maximizes instruction codelet-level and
data-level parallelism. Its natural parallel characteristics fit perfectly with the
inherent parallelism of neural network algorithms. Based on this architecture,
we study the data characteristics and instruction characteristics of the neural
network to optimize the mapping and execution of the network to maximize the
structural benefits.

In the dataflow architecture, codelets instructions in the CDG need to be
loaded from the memory into the instruction buffer in the PE through initial-
ization process when the PE array is running. A codelet in the buffer waits for
the condition to be satisfied and then is emitted. For dense convolutional layer
of CNN, convolution operation of each channel is mapped on the PE array in
the form of a CDG diagram. The codelets instructions formed by different chan-
nels are the same due to the regular calculation mode. In this case, codelets
instructions need only be loaded once to implement convolution operations in
all channels.
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However, for a sparse convolutional layer of CNN obtained using pruning
method such as [13], the following problem will occur when the PE array is run-
ning. The codelet instructions in the CDG of different channels are no longer the
same, due to the pruning operation makes the convolution calculation irregular.
It must load the codelets instructions of different channels from different memory
address when running, which causes frequently memory access and the idleness
of the PE array. Eventually results in a significant performance degradation.

Based on the above problem, in this paper we use two strategies to accelerate
sparse CNNs based on dataflow architecture. Our contributions are as follows:

– By analyzing the data and instruction characteristics of the sparse convolution
layer, we share same instructions in the convolutional layer based on the field
contents in instructions, and proposed an instruction sharing strategy (ISS),
which can reduce initialization time and computing array idle time.

– Based on the ISS strategy, we use the extended instruction sharing Strategy
(EISS) to delete filter-related instructions by using the static nature of filters,
further reducing the initialization time.

– These two strategies achieve on average 1.45x (Alexnet), 1.24x (VGG-16)
and 1.69x (Alexnet), 1.45x (VGG-16) speedup and 36.57% (Alexnet), 33.05%
(VGG-16) and 37.2% (Alexnet),34.26% (VGG-16) energy reduction respec-
tively compared with dense convolutional layers. In addition, they achieve on
average 2.34x (Alexnet), 2.12x (VGG-16) and 1.75x (Alexnet), 1.49x (VGG-
16) speedup over Titan Xp GPU and current state-of-the-art Cambricon-X
accelerator.

This paper is organized as follows. In Sect. 2, we introduce the background
of dataflow architecture and CNN. In Sect. 3 we analyze the existing problems
in implementing sparse CNN based on a dataflow architecture. In Sect. 4, we
describe two strategies in detail to accelerate sparse convolution. In Sects. 5 and
6, we present our evaluation methodology and experimental results respectively.
In Sects. 7 and 8, we provide related work and a conclusion to this work.

2 Background

2.1 Dataflow Architecture

This section explains microarchitecture, execution model, and instruction format
of a dataflow process unit (DPU), that resembles coarse-grained instruction level
dataflow architecture, such as Runnemede [2], TERAFLUX [10].

Microarchitecture. Figure 1 is an instantiated dataflow accelerator, which
includes a micro controller (Micc), processing element (PE) array and a network
on chip (NoC). The structure of the DPU is similar to the traditional many-core
architecture [8], and each PE inside the array is a control-flow core. The micro
controller manages the overall execution of the PE array and is responsible for
communicating with the host. Each PE contains a buffer for storing instructions,
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Fig. 1. DPU: An instantiated dataflow
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Fig. 2. Codelet execution model.

a buffer for storing data, a codelet choosing controller unit, a codelet status reg-
ister unit and a pipeline execution unit.

Before running each PE, it needs to go through an initialization phase to
load all required codelets in the memory into the instruction buffer by routers.
Then the codelet choosing controller selects ready codelet instructions and sends
them to the pipeline execution unit according to the codelet status register. The
pipeline execution unit contains load, store, calculation and flow unit to execute
the corresponding instructions.

Madd Operand index0 Operand index1 Operand index2

Load Operand index0 Address offset Base address index0
Store Operand index0 Address offset Base address index0

Opcode F0 F1 F2

Flow Operand index0 Operand index1 PE index1
Mul/Add/Sub Operand index0 Operand index1 Operand index2

Value(F2)=Value(F0)*Value(F1)+Value(F2)

Value(F0)=DRAM(Base address(F2) + F1)

Value(F1,F2)=Value(F0)

DRAM(Base address(F2) + F1)=Value(F0)

Fuction

Value(F2)=Value(F0)*/+/-Value(F1)

Fig. 3. Instruction format.

Execution Mode. In order to achieve high utilization of computing elements
in each PE, an application is written for a codelet model, which is a dataflow-
inspired parallel execution model [9]. All code are partitioned into codelets con-
taining a sequence of instructions, which are linked together based on codelets
dependencies to form a Codelet Graph (CDG) and then are mapped in the PE
array, as shown in the Fig. 2. A codelet will only fire when all data is available
and all resource requirements are met, which maximizes instruction codelet-level
and data-level parallelism.

Instruction Format. The instruction format of DPU is shown in Fig. 3. And
the instruction set is fixed-length. Each instruction is composed of instruction
code, source operand index and destination operand index. DPU contains basic
arithmetic instructions (Add, Sub, Mul, Madd) and memory access instructions
(Load, Store) and direct communication instructions (Flow) between PEs.
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2.2 Neural Network

Convolutional Neural Network. CNN is mainly composed of multiple con-
volutional layers, which performs high-dimensional convolutions computation
and occupies about 85% computational time of the entire network processing
[19,24]. A convolutional layer applies filters on the input feature maps (ifmaps)
to generate the output feature maps (ofmaps). The Fig. 4a shows a convolution
calculation that the dimensions of both filters and ifmaps are 3D. In order to
reduce memory access and save data movement energy cost, data needs to be
reused [3]. In the PE array, convolution can be reused in each PE, and ifmap
and filter are reused between PEs through flow operations. Figure 4b shows the
process of convolution reuse in PE. To generate first row of output, three rows
(row1, row2, row3) of the ifmap and the filter are mapped in PE. The PE imple-
ments convolution reuse by sliding window. Figure 4c shows ifmap and filter reuse
between PEs. Filter weights are reused across PEs vertically. Rows of ifmap val-
ues are reused across PEs vertically and horizontally. In Fig. 4c, through flow
operation, PE3 reuses filter1 of PE1 and row2–row3 of PE1 ifmap. PE2 reuses
row1–row3 of PE1 ifmap. PE4 reuses filter2 of PE2, and also reuses row2–row3
of PE2 ifmap, and row4 of ifmap of PE3.
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Fig. 4. Opportunities for convolution reuse.

Sparse Neural Network. Due to the challenge of large-size CNN models on
hardware resources, researchers have proposed many methods to compress CNN
models (e.g. pruning [13], low rank [15], short bit-width [14]) that reduce models
size without loss of accuracy or slight loss. Among them, using the pruning
method to generate a sparse network is one of the effective methods. The state-
of-art pruning method [13] using three-step method (First, network is trained
to learn which connections are important. Second, unimportant connections are
pruned based on a pre-set threshold. Third, network with remaining connections
is retrained to get final weights) achieves a sparsity of 11% for Alexnet [17] and
7% for VGG-16 [23].
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3 Motivation

Dense networks can easily achieve high performance and energy efficiency on
application-specific accelerator platforms due to dedicated hardware support [4].
However, these accelerators lack dedicated hardware support for sparse networks
due to strong coupling of algorithms and structures. Even though the sparse net-
work greatly reduces the amount of calculation and memory access, its perfor-
mance and energy efficiency gains are small. For data flow architecture, flexible
instruction scheduling provides the possibility for different algorithm implemen-
tations.

Based on the execution model of the dataflow, the convolution operations
of different channels of the dense network have the same instruction codelets
due to the regular calculation of features. Therefore, it only needs one initial-
ization operation, that is, loading instructions of codelets from memory, and
then all channels convolution operations can be implemented. The Fig. 5 shows
the instructions required to calculate the partsum value of two channels. The
operand indexes of ifmap, filter, and ofmap are respectively represented by IF0–
IF3, F0–F3, and OF0. The base address indexes of ifmap, filter, and ofmap are
0, 1, and 2, respectively.

In Fig. 5, channel 1 and 2 perform the same convolution operation by using
different data, which is obtained by channel offset, and address offset and base
address index (points to base address) in the instruction. For the data in the
same position of each channel, their channel offsets are different (Ifmap are 0 × 0,
0 × 400. Filter are 0 × 0, 0 × 100 respectively), but the instructions are the
same due to the operand index, the address offset and the base address index are
the same. For example, the base address, address offset, operand index0 of the
inst1 instruction of two channels are respectively 0 × 0, 0, and IF0. Therefore,
convolution can be done without interruption by one initialization, which ensures
the full utilization of the computing resources of the PE array.

However, compared to dense CNN, the execution way of sparse CNN has
changed. As shown in the Fig. 5, the pruning operation removes the instruc-
tions required for the zero weight. The load instructions (inst6, inst7), madd
instructions (inst10, inst11), flow instructions (inst19, inst20) of channel 1 are
removed. For channel 2, the load instructions (inst5, inst8), madd instructions
(inst9, inst12), flow instructions (inst18, inst21) are removed. It can be seen
that the instructions of different channels are no longer exactly the same, which
makes it necessary to reinitialize the PE array when performing the convolution
operation. That is, new instructions of codelet are loaded from memory into the
instruction buffer. When instructions are loaded, the PE array is in an idle state,
making the computing resources underutilized, and eventually causing a serious
performance degradation of sparse convolution.

The Fig. 6 shows the time taken by the DPU to execute several sparse con-
volutional layers of Alexnet and VGG-16. Since dense convolution requires only
one initialization operation, the initialization time is almost negligible compared
to the execution time (accounting for 1.04% of the total time). However, for
sparse convolution, it can be seen that the execution time of the PE array is
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significantly reduced, but multiple initialization operations take a long time,
and they account for an average of 50.2% of the total time. Obviously, the total
time of sparse networks does not decrease much compared with dense networks,
and some are even longer than dense networks, which makes the sparse network
unable to accelerate at all. The multiple initialization seriously hindered the
benefits of sparse networks.

The reason for sparse convolution initialization multiple times is that the
pruning operation removes filter-related instructions and data, which makes the
instructions of different channels no longer the same. In order to reduce the ini-
tialization time of sparse networks, an intuitive idea is to use one load instruction
to load multiple values from memory. This requires adding multiple operand
indexes in the instruction and increasing the data transmission bandwidth to
support the operation. However, all instructions are fixed-length, and the data
transmission bandwidth is also fixed, so this method is undesirable.

Removed by pruning

Ifmap base addr: 0x0
Ifmap channel offset: 0x400
Filter base addr: 0x3000
Filter channel offset: 0x100
Ofmap base addr: 0xf000

Inst9 Inst10
Inst11 Inst12

flow

Inst5 Inst6
Inst7 Inst8

OfmapFilterIfmap
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Channel2
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Inst14 Inst15
Inst16 Inst17

flow

*

Inst13

Inst18 Inst19
Inst20 Inst21

store
Inst1 Inst2
Inst3 Inst4

OfmapFilter

Inst9 Inst10
Inst11 Inst12

Inst5 Inst6
Inst7 Inst8

Inst13

Ifmap

Inst1 Inst2
Inst3 Inst4

Inst14 Inst15
Inst16 Inst17

Inst18 Inst19
Inst20 Inst21

Ifmap base addr: 0x0
Ifmap channel offset: 0x0

madd

Channel1

Filter base addr: 0x3000
Filter channel offset: 0x0

Addr 
offset

+0
+3
+6

Addr 
offset

+0
+2
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+2

load

flow

*

load

flow

store

Fig. 5. The instructions required for the two channels to perform a convolution oper-
ation in PE1.

By analyzing these instructions and data, it is found that the pruning oper-
ation only removes the instructions related to the zero weight in filters, these
instructions include load, flow, and madd. However, the relevant instructions
of ifmap and partsum are not affected. These instructions are still the same
between different channels. For example, in the Fig. 5, the instructions inst1–
inst4, inst13, and inst14–inst17 of channel 1 and channel 2 are still the same.
These same instructions can be shared between different channels. Multiple
accesses of these instruction addresses increase the cache hit rate during each
initialization, which reduces instruction load time, also reduces the idle time of
the PE array, and increases the full use of computing resources.

The above observation and analysis motivate us using highly efficient strate-
gies to take advantage of the sparsity of neural networks.
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Fig. 6. Execution time breakdown of convolutional layers normalized to dense net-
works.

4 Acceleration Strategy for Sparse Networks

In this section, we present the detailed strategies of our proposed, including
the instruction sharing strategy (ISS) and extended instruction sharing strategy
(EISS). We use the advanced pruning method [13] to obtain sparse networks.
This method resets the weights below the threshold to 0 and retains the weights
above the threshold based on a preset threshold.

Using Eyeriss [3] analysis framework can achieves energy saving mapping
of convolutional layers statically based on the reuse opportunities of the above
dataflow in the Fig. 4. It folds multiple logical PE arrays, which are required for
full convolutional layer operations, into the physical PE array for data reuse and
ofmaps accumulation. For example, it folds logical PE from different channels at
the same position onto a single physical PE to achieve ofmaps accumulation. It
also folds multiple ifmaps and multiple filters to a same physical PE for ifmaps
and filters reuse, as shown in the Fig. 4c. In this paper, the ISS and EISS strate-
gies are implemented on the logical PE array to realize the instruction sharing
of the convolutional layer.

The reason for instruction sharing is that the convolution calculates charac-
teristics regularly, that is, the same multiply-accumulate operation is performed
using different data. Pruning method destroys part of the characteristic of regu-
lar calculation. Therefore, our instruction sharing idea is still applicable to other
dataflow methods, such as WS, OS, NLR, RS [3], whose purpose is to maximize
data reuse to achieve excellent performance and energy efficiency.

4.1 Instruction Sharing Strategy

Multiple initializations of the sparse convolution cause the PE array to be idle,
which severely hinders performance improvement. By analyzing these instruc-
tions, we have found that the same instructions exist in the convolution oper-
ation between different channels, which include instructions related to ifmaps
and partsums. More aggressively, the same instruction also exists in the convo-
lution operation in a channel, because the PE array reuses filters in the vertical
direction and reuses ifmaps in the vertical and horizontal directions. The Fig. 7
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shows the instructions required to calculate an ofmap value in each of the four
PEs (corresponds to channel 1 in Fig. 5).

According to the instruction format in the Fig. 3, the load instructions
(inst3, inst4) of PE1 and PE3 are the same. The inst3/inst4 operand index,
address offset and base address index are IF2/IF3, 3/4, 0/0 respectively. Sim-
ilarly, the inst9, inst12, inst16, inst17 in PE1 and PE3, the inst22, inst23 in
PE1 and PE2, and the inst11, inst12 in PE2 and PE4 are also same. Also,
the inst13 is the same for all PEs. To reduce initialization time, we use the
instruction sharing algorithm (ISS) to set same instructions to same address.

We divide these instructions into three categories, ifmaps instructions
(IF type), which include load instructions and flow instructions with ifmaps. Fil-
ters instructions (F type), these include load instructions, flow instructions, and
madd instructions with filters. Partsum/Ofmap (P type) instructions, including
store instructions with partsums/ofmaps. For the same instruction, we use Algo-
rithm1 and Algorithm 2 to achieve the instruction sharing of different channels
and the same channel respectively.

For convolution instructions of different channels, as previously analyzed,
the pruning operation makes the filters instructions of different channels differ-
ent, but has no effect on ifmaps instructions and partsums instructions. These
instructions are still the same in different channels. Algorithm 1 achieves the
sharing of the same instructions in different channels. Based on the instruction
of channel 1 (channel = 1), for each instruction in other channels (channel > 1),
the instruction address is updated to the instruction address in channel 1 if the
type of this instruction is an ifmap (IF type) or a partsum type (P type), and
it is the same as an instruction in channel 1. In the Fig. 5, the load instructions
inst1–inst4, flow instructions inst14–inst17 in channel 2 belong to the ifmap
type (IF type), and store instruction inst13 belongs to partsum type (P type).
These instructions are the same as those in channel 1. Using algorithm 1, their
addresses are updated to the instructions in channel 1.

Algorithm 2 implements instruction sharing between different PEs in a chan-
nel. According to the convolution reuse rules above, we divide the PE array into
groups by columns because PEs in the vertical direction are mapped to the same
filters. For each PE in the group, the filters type instructions are partially the

Algorithm 1: Instruction sharing algorithm for different channels.
Input: Codelet instruction, Inst; Convolution layer channels, C; Instruction

type, F type; IF type; P type;
Output: Address of instruction: Addr;

1 for each channel ∈ [2, C] do
2 for each Inst ∈ channel do
3 if (Inst type belongs to IF type or P type) && (Inst is the same as

Inst′ of channel1) then
4 Addr(Inst) = Addr(Inst′)
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Algorithm 2: Instruction sharing algorithm for the same channel.
Input: Codelet instruction, Inst; First PE, PE1; PE array group number, G;

PE number in group, P ; First PE in the group, P1; Instruction type,
F type; IF type; P type;

Output: Address of instruction: Addr;
1 for each g ∈ [1, G] do
2 for each p ∈ [1, P ] do
3 for each Inst ∈ p do
4 if (p > 1) &&(Inst type belongs to F type) && (Inst is the same

as Inst′ of P1) then
5 Addr(Inst) = Addr(Inst′)

6 if ( inst type belongs to IF type or P type) && (Inst is the same
as Inst′ of PE1) then

7 Addr(Inst) = Addr(Inst′)

same. Based on the first PE in the group (p = 1), for each instruction in the
other PEs in the group (p > 1), the address is updated to the instruction address
in P1 if the instruction type is a filter type (F type) and is the same as one in
P1. In the Fig. 7, Algorithm 2 updates the madd instructions inst9 and inst12
addresses in PE3 to the inst9 and inst12 addresses in PE1, and also updates
the inst11 and ins12 addresses in PE4 to the inst11 and inst12 addresses in
PE2. For instructions of ifmaps (IF type) and partsums type (P type), using
PE1 as the benchmark, an instruction address in another PE is updated to the
instruction address in PE1 if it is the same as an instruction in PE1. In the
Fig. 7, the inst13, inst22, inst23 of PE2, inst3, inst4, inst13, inst16, inst17 of
PE3 and inst13 of PE4 are all updated to the addresses in PE1.

PE2
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flow

load store

Ifmap Filter2 Ofmap

3
6
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Fig. 7. Instructions required to perform a convolution operation in one channel. The
PE array, filter, ifmap and ofmap size are 2 * 2, 2 * 2, 4 * 4 and 2 * 2, respectively.
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4.2 Extended Instruction Sharing Strategy

To further reduce the initialization time, we use the static sparsity of weights to
extend the instruction sharing strategy. For static sparsity, zero value weights
are permanently removed from the network. And the sparseness of weights does
not change with the input data. Once they are mapped on the PE, their related
instructions will not change.

As mentioned above, the same instructions come from the ifmap and partsum
related instructions, and the instructions where PEs are mapped to the same
filters in the same channel. Due to the pruning operation, the related instructions
of different filters are different, and they cannot benefit from the instruction
sharing strategy. Based on its static characteristics, we use immediate multiply-
accumulate instructions instead of multiply-accumulate instructions, which are
not needed for dense instructions.

Value(F2)=Value(F0)*Imm)+Value(F2)
FuctionOpcode F0 F1 F2

Imm-madd Operand index0 Imm Operand index2

Fig. 8. Imm-madd instruction format.

The Fig. 8 shows the format of the imm-madd instruction, which directly
carries a value. For all filters, it eliminates the need to load non-zero weights
from memory using load instructions. At the same time, flow instructions are
no longer required to pass non-zero weights to other PEs. Therefor, it reduces
the loading of filter-related instructions and non-zero weights, which is bene-
ficial to memory access and performance. In structure, we added the control
logic of immediate multiply-accumulate instruction decoding and transmission
to achieve this operation. It only adds a little hardware overhead. In the Fig. 7,
by using the extended instruction sharing strategy, the load instructions (inst5,
inst8) and flow instructions (inst18, inst21) are removed in PE1. And the load
instructions (inst7, inst8) and flow instructions (inst20, inst21) are removed in
PE2. For ifmap and partum instructions, they are consistent with the instruction
sharing strategy.

5 Experimental Methodology

In this section, we introduce the experimental methodology. We evaluated the
our strategies using a DPU simulator based on the cycle-accurate and large-scale
parallel simulator framework SimICT [26]. Table 1 lists the configurations of the
simulator. We also implement DPU with RTL description in Verilog, synthesize
it with Synopsys Design Compiler using TSMC 12 nm GP standard VT library.
We calculate energy consumption of the applications according to circuit-level
of atomic operations with Synopsys VCS using PrimeTime PX.

Figure 1 shows the structure of the simulation system which consists of all
components of the DPU. The DPU in the simulator consists of 8× 8 PE array,
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and PE nodes are connected by 2D mesh networks. Each PE contains one 16-
bits MAC (fix point multiply accumulate) in the SIMD8 model. There are 8 KB
instruction buffer and 32 KB data buffer in each PE. To provide high network
bandwidth, the on-chip networks consist of multiple independent physical 2D
mesh networks. And to provide fast memory access, a 1 MB cache is added to
the structure.

Table 1. Configuration of the instantiated dataflow accelerator.

Module Configuration Module Configuration

Host ARM core Micc Control messages, data
transmission

PE 8 * 8, SIMD-8, 16-bits
MAC, 8 KB Instruction
Buffer, 2 KB Data
Buffer

NoC 2D mesh, 1 control
network, 1
data/memory-access
network, 1 inter-PE
network

Memory
subsystem

DDR3 1333 MHz with
1 MB cache

Peak performance 1.887 TOPS

Benchmarks. To evaluate our strategies, we use representative neural net-
works AlexNet [17] and VGG-16 [23] convolution layers as benchmarks which
have different sizes and parameter scales. Table 2 lists the corresponding spar-
sity of different kinds of layers. Each layer is translated into a CDG through our
designed compiler based on LLVM [18] platform. With the limited space, the
details of the compiler are not included in this paper.

Table 2. Configuration of convolutional layer parameters and sparsity for Alexnet and
VGG-16.

Layer Ifmap Filter Sparsity Layer Ifmap Filter Sparsity

Alexnet C2 312 * 96 52 * 256 0.62 C3 152 * 256 32 * 384 0.65

C4 152 * 384 32 * 384 0.63 C5 152 * 384 32 * 256 0.63

VGG-16 C1 2 2242 * 128 32 * 128 0.78 C2 1 1122 * 64 32 * 128 0.66

C2 2 1122 * 128 32 * 128 0.64 C3 1 562 * 128 32 * 256 0.47

C3 2 562 * 256 32 * 256 0.76 C3 3 562 * 256 32 * 256 0.58

C4 1 282 * 256 32 * 512 0.68 C4 2 282 * 512 32 * 512 0.73

C4 3 282 * 512 32 * 512 0.66 C5 1 142 * 512 32 * 512 0.65

C5 2 142 * 512 32 * 512 0.71 C5 3 142 * 512 32 * 512 0.64



26 X. Wu et al.

Evaluation Metric. In this paper, we refer to the instruction sharing strat-
egy, and extended instruction sharing strategy as ISS, EISS, respectively. By
applying these benchmarks, we evaluate our strategies in different ways. For
the ISS and EISS, we compare with dense networks and verify the effectiveness
of our method in terms of instruction execution times, execution time (per-
formance) and energy. At the same time, we report the speedup of our DPU
and Cambricon-X (peak sparse performance 544 GOP/s) over NVIDIA Titan
Xp GPU (12 TFLOP/s peak performance, 12 GB GDDR5x, 547.7 GB/s peak
memory bandwidth), a state-of-the-art GPU for deep learning. To run the bench-
mark, We use cuSparse library based on CSR indexing implement sparse network
(GPU-cuSparse) [20]. We use nvidia-smi utility to report the power.

6 Experimental Results

6.1 Instruction Execution Times

Compared to dense networks, pruning operation removes redundant filter
weights, thereby removing related filters instructions, which reduces the number
of instruction executions. As shown in the Fig. 9, the load, calculation, and flow
instructions execution times of Alexnet (VGG-16) sparse network are reduced by
10.38% (5%), 63.38% (66.95%), and 61.69% (48.06%), respectively, and the total
instructions execution times are reduced by an average of 55.03% (54.24%). The
EISS uses imm-madd instructions to further remove load instructions and flow
instructions of non-zero weights and does not affect the execution times of other
instructions, which reduces the load and flow instructions execution times by an
average of 0.4% (1.33%) and 12.18% (8.77%) based on the pruning operation.
Compared with dense networks, the EISS reduces load, calculation, and flow
instructions execution times of Alexnet (VGG-16) by 10.78% (6.33%), 63.38%
(66.95%), and 73.87% (56.83%), respectively, and reduces the total instructions
execution times by an average of 55.8% (55.8%).

Fig. 9. Instruction execution times breakdown of convolutional layers normalized to
dense layers.
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6.2 Execution Time and Performance

The pruning method reduces the number of instruction executions and memory
access to redundant data. It also reduce the execution time of the sparse network.
By implementing ISS and EISS strategies, the initialization time of the sparse
network is reduced, which reduces the total time and improves performance. As
can be seen from the Fig. 10, compared with the dense network, the total exe-
cution time of ISS was reduced by 30.84% (Alexnet) and 19.65% (VGG-16) on
average, respectively. In terms of performance, the average performance of the
sparse network under the ISS is 1.45x (Alexnet) and 1.24x (VGG-16) that of
the dense network and the maximum is 1.84x (Alexnet C2 layer). The EISS uses
imm-madd instructions to replace the madd instructions of the dense network,
eliminating non-zero weights instructions and data memory access, which fur-
ther reduces the initialization time, execution time and improves performance.
Compared with the dense network, the total execution time of EISS has been
reduced by an average of 40.74% (Alexnet) and 31.35% (VGG-16), respectively.
For performance, the EISS improves average performance by 14% on the basis of
the ISS, which is 1.69x (Alexnet) and 1.45x (VGG-16) that of the dense network.

Fig. 10. Execution time breakdown of convolutional layers normalized to dense net-
works.

6.3 Energy

The ISS method improve the performance of sparse convolution, and also reduce
energy consumption due to the reduction in instruction execution times, instruc-
tion and data memory access. We show the energy breakdown for convolutional
layers in Fig. 11. Compared to dense convolution, the ISS reduces the total energy
on average by 36.57% (Alexnet) and 33.05% (VGG-16). The EISS reduces the
total energy by an average of 37.20% (Alexnet) and 34.26% (VGG-16). The EISS
only slightly reduces the energy consumed by the data buffer, instruction buffer,
and transmission due to the removal of non-zero weight instructions (load and
flow) and data loading. Although it reduces the memory access of instructions
and data, the energy proportion of memory access is small. Based on the ISS,
the total energy is reduced by less than 1% on average.
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6.4 Compare with Other Accelerators

In addition to comparing with dense networks, we also compare the perfor-
mance and energy efficiency with GPU and Cambricon-X accelerator. In Fig. 12,
we report the speedup comparison of DPU and Cambricon-X over GPU base-
line across all the benchmarks. Compared to the GPU platform, on average,
DPU achieves 2.34x (Alexnet), 2.12x (VGG-16) speedup for the sparse convolu-
tion. Cambricon-X achieves 1.34x (Alexnet), 1.42x (VGG-16) speedup. There-
fore, DPU speedup 1.75x (Alexnet) and 1.49x (VGG-16) over Cambricon-X.
Table 3 reports the energy efficiency comparison of the GPU, Cambricon-X and
our DPU. Our energy efficiency is 12.56x of GPU, while Cambricon-X is 18.9x

Fig. 11. Energy breakdown for convolutional layers normalized to dense layers.

Fig. 12. Speedup of DPU and Cambricon-X sparse convolution over GPU baseline.

Table 3. GPU and Cambricon-X compared to DPU.

GPU (Titan Xp) Cambricon-X This work

Technology 16 nm 65 nm 12 nm

Area - 6.38 mm2 13.82 mm2

Power 243 W 954 mW 1.93 W

Throughput 7320 GFLOPS 544 GOPS 730 GOPS

Energy efficiency 30.1 GFLOPS/W 570.2 GOPS/W 378.2 GOPS/W
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of GPU. It can be seen that the energy efficiency of DPU is not as good as
Cambricon-X, but the performance is higher than it.

7 Related Work

Sparse neural networks have emerged as an effective solution to reduce the
amount of computation and memory required. Many application-specific accel-
erators have been proposed to accelerate sparse networks.

Although DaDianNao [5] uses wide SIMD unit with hundreds of multiplica-
tion channels to achieve efficient processing of the neural network, it cannot take
advantage of the sparsity of modern neural networks. CNV [1] decouples these
lanes into finer-grain groups, and by using activation sparseness, only non-zero
activation values are passed to the arithmetic unit, which accelerates the con-
volutional layer. However, it does not take advantage of the sparsity of weights.
Eyeriss [3] implements a data gating logic to exploit zeros in the ifmap and saves
processing power. However, it only has energy saving effect without acceleration
effect. At the same time, it cannot accelerate the network with sparse weights.
EIE [12], ESE [11] were proposed for leveraging the sparsity of full-connected
layers in neural networks with CSC sparse representation scheme. However, EIE
and ESE are no longer suitable for dense networks and sparse convolutional
layer. Compared with these accelerators, we use the sparsity of the weights to
accelerate the convolutional layer of the neural network.

Cambricon-X [29] designs Indexing Module (IM) efficiently selects and trans-
fers no-zero neurons to connected PEs with reduced bandwidth requirement.
Finally, it accelerates the convolutional layer and the fully connected layer,
including dense networks and sparse networks. Cambricon-S [30] uses a coarse-
grained pruning method which reduces the irregularity drastically sparse net-
work. And designs a hardware structure to leverage the benefits of pruning
method. It also achieves acceleration of convolutional layers and fully connected
layers. SCNN [22] uses Cartesian product-based computation architecture which
eliminates invalid calculations. Moreover, it designs the hardware structure to
efficiently deliver weights and activations to a multiplier array. However, those
application-specific accelerators sacrifice the flexibility of the hardware architec-
ture to achieve the highest performance and energy efficiency, and cannot adapt
to new applications. In this paper, applications can be implemented through
flexible instruction scheduling based on the dataflow architecture.

8 Conclusion

In this paper, we propose two strategies to accelerate sparse CNN in the dataflow
architecture. These strategies improve the performance of sparse networks and
reduces energy consumption. We are the first to propose instruction sharing
method to accelerate sparse networks based on a dataflow architecture. Our
method is only applicable to networks with sparse weights, not to activate sparse
networks because it is dynamically generated by using Relu function after each
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operation. In the future, we will continue to study sparse acceleration at the
hardware level.
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