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Abstract. Edge computing is commonly adapted to reduce network
delay and fluctuation in the traditional cloud-terminal architecture.
Many research teams have been dedicated to algorithms and optimiza-
tions in the cloud-edge data cache and computation offloading schemes,
while there is a blank in practical implementation to facilitate such a
paradigm. In this work, we proposed a component-based framework that
facilitates dynamic partitioning of a software program. We have designed
and implemented the very first test-bed for further optimizing the com-
ponents distribution strategy among cloud, edge, and terminal devices.
Experiments have revealed the characteristics of components execution
in the proposed architecture, showing that the system can improve com-
puting performance under the real-world unstable network environments.

Keywords: Cloud computing · Edge computing · Software
decomposition · Offloading · Distributed system

1 Introduction

With abundant computational resources as a guarantee, cloud computing is
becoming the main direction of software evolution. The software in recent years,
such as cloud-hosted augmented reality, online video editing, games, etc., often
demands assistance from cloud computing technologies [3] in data storage and
computing resources [14]. However, accessing the remote cloud server introduces
inevitable network delay. As a supporting infrastructure of cloud computing,
edge computing [6,16] utilizes hardware facilities at the edge of the network as
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relay nodes for reducing latency, pushing the cloud services closer to the termi-
nal end to avoid backbone network communication as much as possible [2]. Due
to the hardware limitation, the resources available at the edge node are far less
powerful than cloud servers. Therefore, to achieve a balanced workload between
the end devices as well as a reduced communication latency, it is necessary to
distribute the calculation tasks between the mobile terminal, the edge node, and
the remote cloud server according to the runtime status of the application.

In order to build software in the traditional cloud computing engineering
implementation, the engineer should first analyze various functions in the pro-
gram, identify the module’s dependencies, code the software and finally deploy
the application in the cloud server to achieve the functioning remote service. Such
a classic engineering solution is generally called the server-terminal architecture
[1]. However, heterogeneous computation distribution of cloud, edge, and termi-
nal brings new challenges to the traditional computing framework. First, there is
a tendency that the software in recent years is becoming more calculation-heavy.
With the introduction of complex computing tasks like deep learning algorithms,
decomposition may become the main revolution direction of reducing software
complexity. Second, it is hard to predict the network environment of the termi-
nal since more mobile devices are introduced into the system. The engineers can
no longer assume a stable network condition between the end devices, making it
hard to determine what kind of components are most suitable for running on the
edge. Third, the types of terminal devices will continue to expand in the future
as the Internet of Things (IoT) technologies grow, ranging from smart buttons to
smart cars. Their computational performance may vary significantly. Therefore,
the new types of software in the edge-computing system are now more compu-
tational and communication intensive. Thus, to fully utilize the computational
capacity of the devices at each end of the distributed system, software should
be able to be decomposed into components to achieve the optimal distribution
of overall performance.

Decomposing software into a set of executable components and adjust this
partition results dynamically according to the system environment is critical in
maximizing the program’s overall efficiency. In fact, various types of cloud appli-
cations that are widely used nowadays (e.g. the classic MapReduce [17] and deep
neural networks [12]) have the improvement potential for software decomposi-
tion since it is possible to decompose the data modules and the neural network
architectures in these programs. Although there have been many current stud-
ies on the algorithms and optimization for partitioning program components
under simulated scenarios [15,19], few have done practical implementations and
quantitative experiments on the partitioning strategies. Thus, it is essential to
implement a system that facilitates the measurements and the performance test-
ing of the current software under the edge-assisted cloud computing scenario.

In this paper, we have proposed and implemented a component-based frame-
work for an edge computing system that allows dynamic partitioning of the
software components. Our proposed system can help in further investigations
of optimizing the components distribution strategies between the cloud, edge,
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and terminal devices by measuring the system performance of different types
of applications in the deployed settings. Our experiments have also proved the
effectiveness of our system by outperforming the traditional cloud-terminal sys-
tem in the real-world unstable network environments. The outline of the paper
is as follows. We reviewed the related works in Sect. 2. The design of our pro-
posed system is shown in Sect. 3. Section 4 presents our implementation of our
testing environment. In Sect. 5, we discussed different experiment settings and
presented the corresponding results. Section 6 concludes the paper and discusses
aspects for future improvements based on this work.

2 Related Work

2.1 Decomposition

Software decomposition is a way to decouple a large system by dividing software
into executable components, which is closely related to the program slicing prob-
lem [18]. Software decomposition can be classified as functional decomposition
[11,13] or micro-services decomposition [7,8]. Functional decomposition decom-
poses the program into a series of functions (methods) and constructs a working
process tree by analyzing the execution process. Micro-services decomposition
adopts the theory from Object-Oriented Programming model. In this work, we
adopt the programming model from micro-services, deconstructing the applica-
tions in our system into different low-coupling instances in software engineering
terms.

2.2 Performance Evaluation

Performance evaluation of decomposed software components is a crucial tech-
nique for evaluating the execution efficiency of heterogeneous components. Meth-
ods can be summarized as model-based analysis [9,11] and statistic prediction
[13,20]. The model-based analysis builds a model on the static structure of the
program code and estimates the system performance by combing the structure
with the real-time execution state of each component. Statistic prediction infers
performance evaluation results by maintaining a timeline table of all compo-
nents at execution. However, the current performance evaluation methods have
shown these drawbacks: For the model-based analysis, it is hard to construct a
model that can precisely predict the performance. For the statistic prediction,
it heavily relies on two assumptions: 1. Components’ performance within one
application is stable. 2. The consumption of components execution is based on
static time complexity analysis. Our previous results [5] have proved that these
two assumptions are not correct. Therefore, to address problems in performance
evaluation, we have implemented an effective measuring system in our testing
framework for component-based software.
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2.3 Migration

To support the migration of software between different end devices, current
popular solutions include virtual machine migration [9–11] and mobile agent
migration [4,5]. Virtual machine migration should build a complete application
including the system image. This kind of solution is easy to deploy in the cloud
but hard for mobile devices and edge nodes, which is weak in computation ability
to support the full capacity of running components. On the contrary, mobile
agent solution can migrate corresponding decomposed heterogeneous resources
in the components level without consuming much computational resources. In
this paper, we adopt Mobile Agent as our migration implementation to studying
the component distribution between the cloud, edge, and terminal.

3 System Design

Based on the cloud-terminal architecture proposed in the previous work [5], we
continue to design an architecture that incorporates edge computing as follows.

Fig. 1. System Architecture

Figure 1 describes the main components of the proposed system. Overall, the
entire architecture can be divided into three layers. The first layer is the Cloud
server layer with unlimited computing resources and storage of all the software
components. The rectangle on the right represents the component pools of each
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layer, which is part of the storage that persists the executing code of the corre-
sponding components. The dots with different numbers represent different com-
ponents. The Edge server connects with the cloud and starts to request compo-
nents. Then the cloud carries components to the edge’s component pool and the
terminal’s component pool. If the edge detects the existence of a missing compo-
nent on the terminal side, it can also pass this code to the terminal’s component
pool. In this process, the component performs inter-component communication
through the synchronization controller to prevent unmatched computing status.

3.1 Constructing Components

Execution Monitor is a general system component that exists on each side of
the system. It provides monitoring tools for measuring the resource usage of
all the components executing on that end, including the runtime CPU cycle or
memory usage of components. These data are collected to analyze the effect of
the software components distributions. On the terminal-side, the performance
recorder(e.g., an FPS recorder) is created to demonstrate the real-time user
experience of the application. Since it best indicates the overall system’s user
satisfaction, we have been adapting this as the criteria for the system QoE in
our experiments. Synchronization Controller in our system is designed to allow
parameter updates in the application. Since in a remotely distributed system,
the components are executed separately on different end devices, it is common
to have the problem of data getting out of synchronization. Thus, in our system
architecture, every component can only communicate with each other through
the Synchronization Controller. Moreover, the parameter messages in our sys-
tem need to be compiled and serialized into a JSON string before passing to its
destination component as a message. Onloading Manager is only implemented
in the cloud and the edge system, since all the application codes were originally
stored on the cloud and the edge devices. When the system was first started, it
would call the Onloading Manager to do the first preloading steps to have all
the application components stored in the database on the cloud as well as on
the edge ends. Since our system does not require any installation of application
software on the terminal device, the Onloading Manager will load the software
components to the terminal before the software was started or running as a
backend service as the software is being used in the terminal end. Onloading
manager achieves components code migration through Mobile Agent, a stringi-
fied message of the software components that can be passed between ends. The
Strategy Map in the cloud is a configuration file to guide the distribution of each
component. It needs to be loaded in the cloud server’s initial stage since the
cloud server will be loading the corresponding components to each end in the
first preloading process. The dynamic partitioning of the components can be eas-
ily achieved by changing the configuration file of the Strategy Map. The WebKit
JS Engine is a native Javascript Engine in browser kernel that is responsible for
image rendering computation on the terminal-side.
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Fig. 2. Workflow

3.2 System Workflow

As shown in Fig. 2, after the application instance starts to run, the entire running
process is similar to an infinite state machine. In the initialization phase, the
cloud server will first launch the application instance in the cloud server to
start its execution. Meanwhile, the cloud server transmits the corresponding
component to the Edge server and the terminal server through the Onloading
Manager according to the pre-specified partition strategy in Strategy Map. After
the local calculation of each component finishes, each component in the cloud,
edge, or terminal will pass through the message passing in the Synchronization
Controller. In this way, we can ensure the proper execution of the software in
this distributed setting.

4 Test Bed Implementation

After evaluating the current system’s needs and the experimental goals, we
decided to reconstruct the original cloud-terminal system to support offload-
ing to the edge end. JavaScript is currently the only language supported by the
browser on all platforms. Using Node.js, a runtime package of JavaScript, we
wrote our server end program. This kind of combination allows us to imple-
ment the whole project within one programming language. In this setting, the
offloaded and migrated computing components can continue its execution in any
end without any modification to the code. On the terminal-side, we embedded
a Web Kit based browser to parse and execute our JavaScript code so that our
system can be well tested on any platform.

We have been using the JavaScript Socket.IO library to establish our connec-
tion between the end devices. The library enables us to build sockets allowing
real-time, bidirectional, and event-based communication between the terminal
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and the servers. In our system implementation, each end device will establish
two socket connections when the system is fired up: the cloud-terminal socket,
the edge - terminal socket, and the edge-cloud socket. These sockets are respon-
sible for component onloading, connection management, and components mes-
sage passing. In our system, to enable the migration of the components, we have
encapsulated the software components into separated JavaScript files wrapped
in a function. The component will first be converted as an executable string in
the system, and then use the built-in function eval in JavaScript to run corre-
sponding tasks. The demonstration of our test bed is shown in Fig. 3.

(a) cloud experiment screenshot (b) edge experiment screenshot

(c) terminal experiment screen-
shot

(d) OpenStack virtualization
platform

Fig. 3. System screenshots

5 Experiment

In this article, our experiment’s main purpose is to prove the edge-based system’s
performance improvement compared with pure cloud-terminal architecture. We
adopt the Tank Game Application illustrated in previous work [5] as the main
testing benchmark.

The experiment part is constructed as follows. We first conducted single-
end measurements, which means all components are all running on either the
cloud, the edge, or the terminal device. The first experiment is to measure the
effects of an increased computational burden. We have considered two aspects
for the computational intensity: the iteration times of each component, and the
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component quantity in the system. After finishing the necessary measurements
of computation ability, we have conducted intra-cloud, intra-edge, and intra-
terminal experiments to determine the message passing ability of each ends.
They have shown varying degrees of attenuation in FPS as the message length
increase of message frequency increases. Combined with the conclusion above, we
have tested the edge-based system with cloud-terminal architecture in different
network configurations. Finally, we have compared different hardware computing
power setups to discover the relationships between the system performance and
the computational capacity of the edge device. Based on our measurements,
we have proved that in a changing network condition, the edge-based system
can perform better than traditional architecture. Moreover, we have found a
marginal effect in the reward of increase the resources at edge to increase the
system performance.

5.1 Experiment Settings

We have deployed our systems on Ubuntu 18.04 virtual machines created on the
OpenStack platform. The cloud system is initially configured with 16-core CPU
and 32 GB RAM; The edge system configured with 4-core CPU and 8 GB RAM;
The terminal system with 2-core CPU and 4 GB RAM.

With our distributed system, we have mainly tested from two aspects: Com-
putational Cost can be adjusted by Iteration Times, component quantity, and
Communication Cost can be adjusted by Communication Frequency and Mes-
sage Length. In our experiments for Computational Cost, no other communi-
cation except for those essential for basic inter-component invocation. With this
setting, we can analyze the impact of components on computational complexity
and communication complexity separately. After measuring the system parame-
ters from the two experiments, we have constructed a hardware-level case study
on the impact of Computing Power Ratio setting between the cloud, edge,
and the terminal devices in this scenario.

Computational Cost: This experiment will consider factors that determine
the computational intensity of the components. Considering our system design,
we have chosen the Iteration Number and Component Quantity as our parame-
ters for measurements of the system’s performance on calculation tasks. Iteration
Number is set to be the calculation task number of a single component, which
is proportional to computation complexity. Component quantity increases the
computational pressure by having more components running at the same time.

Iteration Number : To find out the execution characteristics of each end, we have
designed our experiment with all the components running in the cloud, edge,
and terminal end. We start with a small number of iteration (10 iterations)
and then gradually increase the number of iterations to 16000. The result is
shown in Fig. 4. From the above measurement cases, we can infer that the higher
iteration number will decrease the FPS value in the cloud and edge ends. Cloud
outperforms the other ends when the components have a smaller number of
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iterations. Moreover, cloud and edge execution of high iteration components
are less stable comparing to the all-terminal execution, which shows almost no
FPS change when the iterations number is getting higher. Generally, when the
component has a relatively small size of iteration (e.g., 2000 iterations), it should
be offloaded to cloud/edge for execution in order to give the best QoE.

Fig. 4. FPS and iteration numbers at each end

Component Quantity : To further discover the execution characteristics of each
end devices, we have experimented with different numbers of components in our
system. For all experiments in this series, the iteration number was set to be 2000
iterations, since it was shown in the last experiment that a relatively small iter-
ation is more suitable for cloud/edge execution. Component quantity indicates
more components running in a single time period, which can be a measurement
of concurrency. Similar to the iteration number experiment, we increase the num-
ber of components executing in the single-end system and record their average
FPS. The results of Fig. 5 show that an increased number of components leads
to a lower FPS value. Moreover, the cloud and edge server are more resistant
to the increase in the component quantity than the terminal. Thus, we decided
to offload components with more instances to the cloud or the edge side in our
further experiments.

Based on the previous two experiments regarding the computing capacity
of the end devices in our system, we have constructed a strategy map for fur-
ther experiments. Components with a large number of instances and a smaller
amount of iterations should be distributed to cloud/edge, and a small number
of components with large iteration numbers should be left on the terminal.

To verify that our conclusion of different types of components execution on
the single end system can show the characteristics of the distributed system, we
have further conducted an experiment with components originally executing on
the cloud migrating to different end systems and evaluate their performances.
The result is shown in Fig. 6. The components with small size of iterations and
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Fig. 5. FPS and quantity numbers at each end

large quantities are originally running at the cloud, yielding a high FPS. The
FPS quickly drops when it was migrated to the terminal for execution after 500
time steps. It then further executed for 500 time steps, and then changed to edge
for execution. The performance of edge is similar to the cloud in this current
setting.

Fig. 6. Live migration of the components

Communication Cost: This experiment will modify the communication fre-
quency and message length under fixed iteration number and component quan-
tity. We aim at discovering the property of both intra-end and inter-end com-
munication in the distributed system.

Intra-end Communications: The three graphs represent intra-cloud, intra-edge
and intra-terminal in Fig. 7 respectively. For intra-cloud communications, it can
be observed that for communication within the cloud, the FPS value will drop
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as the message length and communication frequency increases. Most of the FPS
value is still acceptable for the gaming environment, which means that the cloud
end is more suitable for executing components with long and frequent message
passing within their instances. For intra-edge communications, we have observed
a general decrease in overall FPS performance due to the limited computing
resources compared to the cloud. However, the execution performance is still at
a satisfying level. From the Fig. 7(2), it can be observed that intra-edge commu-
nication displays a similar property to the intra-cloud communication. Thus, the
edge is also more suitable for components with larger communication frequen-
cies and message length. For intra-terminal communications, it can be observed
that transmitting data between components in the terminal greatly reduces the
performance of the system. The FPS value dropped the most when the mes-
sage length is long, and the communication is more frequent compared to the
edge/cloud. This implies that the communication within the components at the
terminal should be minimized as much as possible.

Fig. 7. FPS, message length and communication frequency

In this context, cloud/edge performs better when the message frequency and
message length is growing. From the red area portion in the graph, which is
the indicator of low-FPS, the intra-terminal communication is noticeable worse
than the cloud/edge. It also proved that for the browser running on the terminal
side, gathering all components is not a good choice, especially when the message
communication is increasing. Additionally, we have also observed that compar-
ing to the message length, and the communication frequency will have a more
significant influence on the FPS value. For example, in the intra-edge setting, if
we fix the communication frequency at 50 and only change the message length
from 5000 to 10000, the FPS in this case drops from 42.13 to 38.99, whereas if
we fix the message length at 5000 and change the communication frequency from
50 to 100, we can observe that the FPS drops to 30.67. This could be caused by
the communication overhead of the system in our socket design.

Inter-end Communications: In this experiment, we have conducted experiments
on cases where components communicate across heterogeneous environments.
Good, fair and bad network were being discussed. Here are related settings:
Good network, with network delay <30 ms and no package loss in the socket
transmission. Fair network, with network delay at 60−80 ms and 1% package
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loss in the socket transmission. bad network, with network delay >120 ms and
5% package loss in the socket transmission.

Table 1. Strategy map for network experiments

cloud terminal configuration MEC configuration

Cloud ‘bot’*4, ’bot2’*4 ‘bot’ *4

Edge − ‘bot1’*2 ,‘bot2’*4

Terminal ‘ui’,‘exec’,‘bot1’*2 ‘ui’,‘exec’

The strategy map we adopted in the experiment is shown in Table 1. There
are a total of 12 components running in our testing system, with iteration number
2000, message passing frequency 100, and message length 5000. From the results
shown in Fig. 8, we can infer that the network condition has a direct impact on
system performance. Under good network conditions, the original cloud-terminal
system has the best performance and the highest FPS value due to the better
computation capacity in the cloud.

Fig. 8. FPS, message length and communication frequency between ends

When the network between the terminal and the cloud starts to become
unstable, the edge-assisted systems perform much stable than the cloud-terminal
system. The edge execution of communicative components can fully utilize the
high-speed network between the edge and the other ends, resulting in a higher
FPS. When the system is under a bad network condition with more package loss
between the terminal and the cloud, the performance drops very quickly.

With this experiment, we have shown that with the assistance of edge, the
system performance can be greatly improved when there is a fair but unstable
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network between the mobile device and the cloud. For general case components,
our proposed edge-based system generally shows a better performance compar-
ing to the current cloud-terminal system in an environment with network throt-
tling. In component-wise communications, the message length and frequency can
impact the overall performance. For our system, we found that the communica-
tion frequency will have a more significant influence on the overall FPS than the
message length.

Computing Power Ratio: In this experiment, we altered the hardware set-
tings (CPU core number, memory size) to achieve different computing power
ratios between different end devices in the edge-assisted cloud computing sys-
tem. In this experiment, our hypothesis is that increasing the number of resources
that we deploy on the edge device will not be giving equal improvement to the
system performance. We have adopted the strategy map discussed in the pre-
vious experiment settings. We adopted the fair network scenario (80 ms delay,
1% package loss in each transmission) to simulate common network situation in
reality without extreme assumption on connection quality. We have tested our
system using different sets of hardware. The computing power ratio settings of
different experimental groups are shown in Table 2:

Table 2. Hardware configuration table

Cloud CPU cores Edge CPU cores Terminal CPU cores

16 8 2

16 4 2

8 4 2

8 2 1

4 2 1

We can infer from Fig. 9 that comparing with the original cloud-terminal
configuration, adding edge to the system can have a great improvement on the
system FPS. However, if we increase the CPU core number of the edge device
from 4 cores to 8 cores, the improvement of FPS is not as significant as expected,
which indicates a diminishing marginal utility in the hardware configurations
for the edge end. This might be caused by the lack of edge offloading. The
most computational intense components should be directed to the cloud for
quicker computation. In this case, having a more powerful cloud will give a
larger improvement to system performance.
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Fig. 9. FPS of different hardware settings w.r.t time steps

6 Conclusion

In this paper, we have proposed and implemented an edge-based dynamic par-
tition testing platform. The proposed system can function as a monitoring tool
for the execution of distributed applications in edge computing architecture. Our
experiments on the system revealed the characteristics of program execution in
different end devices. We have also shown that by properly offloading different
types of program components, the edge-based system can improve the overall
performance and is more resistant to the fluctuating network. For future works,
we will focus on improving the current system from the following perspectives:

1. We shall realize automated component transferring between ends with the
real-time data using cognitive algorithms.

2. We shall extend the current single edge system to include multiple edges in
our architecture.
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