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Abstract. Federated learning is considered to be a privacy-preserving
collaborative machine learning training method. However, due to the
general limitation of the computing ability of the terminal device, the
training efficiency becomes an issue when training some complex deep
neural network models. On the other hand, edges, the nearby station-
ary devices with higher computational capacity, might serve as a help.
This paper presents the design of a component-based federated learning
framework, which facilitates the offloading of training layers to nearby
edge devices while preserving the users’ privacy. We conduct an empirical
study on a classic convolutional neural network to validate our frame-
work. Experiments show that this method can effectively shorten the
time cost for mobile terminals to perform local training in the federated
learning process.

Keywords: Federated learning · Deep learning · Mobile edge
computing · Program decomposition · Distributed computing

1 Introduction

In a traditional cloud-centric approach, if the cloud wants to utilize the data from
mobile terminal devices to train a Machine Learning (ML) model, local data of
the terminal has to be directly uploaded to the cloud, which can hardly pre-
serve the privacy of clients and will pose a burden on the backbone networks [7].
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Currently, Federated Learning (FL) has been introduced as a privacy-preserving
distributed ML approach [10]. In a gradient-descent based FL, mobile termi-
nals will locally train the given model with its privacy-sensitive dataset. Mean-
while, based on the current parameters, all terminals will return different sets of
parameter gradients to the cloud [17]. This approach avoids directly sending the
dataset to the untrusted cloud, which makes it possible to preserve user privacy
and reduce network overhead.

Compare to the traditional cloud-centric approach, FL migrates part of the
task from the cloud to the terminal. However, the computation resource of the
mobile terminal device varies and is generally constrained. When some more
complicated ML models like Deep Neural Network (DNN) [5] are trained with
multimedia datasets, it may be too time-consuming for the terminal to com-
plete the task. However, the computing power of the mobile edge computing
(MEC) device is much stronger than that of the terminal. The distance and
the communication cost between edge and terminal are relatively low, and it
will not create a significant burden on the backbone network. Besides, the edge
has higher security than the cloud [9]. Therefore, the edge may help solve this
problem.

In terms of model training efficiency optimization, current works focus on
the following two aspects: the optimization of the traditional FL procedure by
improving the existing protocol and the optimization of the DNN training pro-
cess by applying distributed methods. However, these works do not consider how
to apply the distributed methods to accelerate the local update process of FL
with the help of MEC.

In our work, we propose a component-based FL framework that can offload
some of the training layers of the DNN model to the nearby edge while preserv-
ing the privacy of the terminal user. The local parameter updating process is
further decomposed into inter-independent components by coarse-grained pro-
gram decomposition, and each component can be separately deployed either on
the edge or the terminal. Each layer component can independently complete the
forward and backward propagation. We conduct an empirical study on a classic
convolutional neural network (CNN). Experiments show that this framework can
efficiently shorten the time cost of local training. The optimal strategy of com-
ponent deployment and the effectiveness of user privacy preservation in different
edge trusting situations are separately discussed.

The remaining sections of the paper are organized as follows. We review
some related works in Sect. 2, and discuss the general method applied for layers
decomposition of DNN in Sect. 3. Section 4 presents the architecture and the
program design of the proposed component-based distributed training system.
In Sect. 5, we discuss different trusting situations of the edge device and provide
the optimal strategies which can efficiently preserve user privacy. Moreover, in
Sect. 6, we present the results of a set of experiments that explore the efficiency
of the system in different conditions. Finally, Sect. 7 concludes the paper and
discusses the aspects that can be further studied on the basis of this work.
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2 Related Work

In the field of federated learning, current researches on the optimization of FL
focus on at least two aspects as follow: (1) User privacy preservation and (2)
FL efficiency improvement. For users’ privacy preservation, some existing pro-
tocols [1] have been proven to be effective. But some existing cloud storage
protection method [13] is challenging to use directly in the FL process. For FL
efficiency improvement, recent works discuss how to make user selection [11] for
clients during the learning process, as well as how to determine the frequency
of local up-dates and global aggregation [16]. Our work focuses on improving
the efficiency of the local updates through the distributed method with the help
of MEC, which is different from the above works and does not contradict each
other.

In the field of software program decomposition, currently, there are two
primary schemes: Fine-Grained Decomposition and Coarse-Grained Decom-
position. Coarse-grained decomposition partitions the program into a set of
functional-independent and stateless components. A web-based coarse-grained
program decomposition platform has been developed in the current work [2] [3],
which provides a good execution engine and API for software decomposition. In
this work, we apply the coarse-grained decomposition to decompose the layers
in a CNN into different functional components. The number of components is
ensured to be sufficient to provide us with more possible component deployment
strategies.

In the field of the distributed deep neural network, current works focus on
the following aspects: (1) Improving the training efficiency of DNN through
distributed parallel training method [4]. (2) Using distributed DNN to do the
training process or forward propagation to protect user privacy [8,12,15]. How-
ever, the existing works do not carry out program design or deployment strategy
under the framework of FL, do not guarantee user privacy, or propose a suitable
decomposition schema. In this paper, we decompose the training process of DNN
into more fine-grained components under the framework of FL and MEC.

3 Layers Decomposition

Different DNN models have a lot in common in their architectures: they are
usually composed of multiple relatively independent layers with different func-
tionalities. Furthermore, there exists a sequential relationship between the differ-
ent layers, which provides the possibility to design a general DNN decomposing
method: In the forward propagation process of DNN models, the Lth layer always
receives the input from the (L−1)th layer and gives the output to the (L + 1)th

layer. In the process of backward propagation, the Lth layer receives the gradi-
ents from the (L + 1)th layer, calculates gradients of the weight, and returns the
gradients of its input to the (L−1)th layer.

The dependency relationship between adjacent layers must be considered
when decomposing the training process of the DNN model. Each layer in the
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Fig. 1. Layer decomposition of DNN.

original DNN model can be decomposed as an independent component where
the specific calculating procedure of the layer is implemented and encapsulated.
Meantime, in the forward and backward propagation, the original layer-to-layer
association can be achieved through mutual communication between devices.
Besides, the intermediate results generated during the forward propagation pro-
cess must be reasonably cached since these results will be used when performing
the backward propagation.

In our work, in the local update process, we decompose the entire training
procedure into different inter-independent coarse-grained layer components, as
shown in Fig. 1. Each component is stateless and can be selected by instructions
to execute a specific layer’s forward or backward propagation procedure. Mean-
while, each component can be independently deployed on different devices and
communicate with each other through the network protocol. The design of the
layer component will be further discussed in detail in the next section.

4 System Design

4.1 Component-Based Program Design

The system is divided into two main components, which separately execute
on the cloud and the client-side. The component executes on the client-side
is responsible for the local updating and can be further decomposed into multi-
ple more fine-grained components, which can be deployed either on the terminal
or edge. As shown in Fig. 2, the components on the client generally interact with
the terminalController component to cache intermediate data and exchange mes-
sages. Since the layer components have the possibility of migration at run time,
there is no direct interaction between the layer components.

The entire procedure of FL can be decomposed into three sets of components:
CloudController, TerminalController, and Layer Components.



204 Y. Shi et al.

Fig. 2. Component diagram of the system.

CloudController Component. The cloudController component fixedly exe-
cutes on the cloud and is responsible for the original cloud task, which includes
initialization, parameter distribution, and gradient aggregation. When the ini-
tialization instruction is raised, the cloudController will perform cloud initial-
ization and then send the initialization instruction to the terminalController
component. When terminalController returns the gradient of weights, the cloud-
Controller will perform aggregation and distribute new parameters.

TerminalController Component. The terminalController fixedly executes
on terminal devices. It is responsible for managing local privacy-sensitive
datasets, caching intermediate results generated in the forward propagation of
the DNN model, and determining which layer components to call next after the
execution of the last layer component and gives the corresponding content. When
the initialization instruction is raised, the terminalController will perform local
initialization and inform the cloudController after its completion. In the forward
propagation, when the intermediate output of the last layer component is sent
back, the terminalController will cache the calculation results and redirect the
control to the next layer component. In the backward propagation, it will store
the sent back gradients from the last layer component and redirect the control.

Layer Components. Layer Components (Fig. 3) are a collective term for vari-
ous layer components. Layer components in the general CNN model include and
are not limited to convolutional layer components, fully connected layer com-
ponents, activation function components, and pooling layer components. Since
the communication cost and calculation cost of each layer is generally different,
layer components should be established for each layer in a particular model. For
example, if a CNN model is mainly composed of two convolutional layers and
a fully connected layer, then it should consist of two independent convolutional
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Fig. 3. The IPO diagram of Layer Components.

layer components with different hyper-parameters and only one fully connected
layer type component. These components are independent of each other and are
uniformly called by the terminalController.

4.2 Data Flow

Fig. 4. The sequence diagram of the system.

Before the training process, the cloudController will issue initialization instruc-
tions to the terminalController. After the entire initialization is completed, in
each round of training, the cloudController will send the current weight to the
terminalController of each terminal. The local update process of each terminal
can be divided into the forward propagation and the backward propagation.
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In forward propagation, the terminalController sends content to each layer
component accordingly. The state of the training process is passed through con-
tent, which also contains all the parameters needed for the forward propagation
of this specific layer. After the forward propagation of this layer is completed,
the layer component will return the intermediate results. The process of back-
ward propagation is the same as that of the forward propagation. The difference
is that the order of accessing the layer components is reversed, and the layer
components return gradients of the weights to the terminalController. After the
backward propagation is all over, the terminalController will return gradients of
weights in this round of training to the cloudController. After cloudController
aggregates the gradients returned by all terminals, it will update the existing
weights and distribute them back to the terminalController to start the next
iteration of training.

5 Privacy Preservation Analysis

Privacy preservation is one of the main features of FL. When using distributed
methods for FL training, it is necessary to formulate specific component deploy-
ment strategies according to different situations to preserve user privacy.

First, the same as the general assumption of FL, it is assumed that the cloud
is not trusted. The property of the cloud is that it is the publisher of training
tasks and aggregator of gradients. The cloud knows the specific structure of the
model, and after each mobile terminal device completes the local update process,
the gradients generated will also be uploaded to the cloud. Recent works have
proven that in the FL instances without any protection mechanism, algorithms
like DLG [18] can be deployed on the cloud to restore user multimedia inputs
at the pixel level. However, similar privacy risks can be avoided by gradient
pruning [18] or formulating effective privacy protocols [1]. In our work, if the
components execute on the cloud are separated from the other components,
then the communication content existing between the former and the latter only
includes the distribution of parameters and uploads of gradients, which is same as
the communication content between the mobile terminal devices and the cloud in
the traditional FL method. Therefore, the existing privacy preservation methods
can still help eliminate the risk of privacy leakage on the cloud, so this is not
the focus of our discussion.

Second, three different assumptions about the security situation of the edge
device are made. The corresponding privacy preservation deployment strategies
are discussed base on each assumption. Assumptions: (a)The edge is fully trusted
(b)The edge is untrusted, but there is no direct communication or cooperation
between the edge and the cloud (c)The edge is untrusted while there is direct
communication or cooperative relationship between the edge and the cloud.

Case A. The edge device may be fully trusted in some cases; for example, the
edge device is privately owned by an organization instead of being public. In this
case, there is no additional privacy concern when doing the local update. The
optimal strategy is which can maximize the overall efficiency.
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Case B. The edge is untrusted, but it does not have direct communication
or cooperation with the cloud. It means that there may exist potential attack-
ers on the edge device, but the edge has different knowledge from the cloud:
the edge does not have the specific knowledge about the entire structure of the
DNN model. However, edge knows the input and the corresponding intermedi-
ate results and gradients of the layer components executing on it. In this way, it
should be avoided to deploy the input layer component on edge, which will lead
to direct leakage of user input. However, since the components are independent
of each other and are stateless, layer components executing on edge will not be
informed about the structure of the entire DNN model or the hyper-parameters,
algorithms like DLG will not be able to obtain user privacy. Therefore, in this
case, the optimal deployment strategy should be a strategy that maximizes
the operating efficiency after fixing the input layer component on the mobile
terminal.

Case C. The edge is not trusted, and there may exist direct communication
or cooperation between the edge and the cloud, the potential attackers on edge
and the cloud may share knowledge about the DNN model. In this case, directly
giving the input of a specific layer component to the edge could be dangerous.
Furthermore, we need to find new privacy preservation methods, such as design-
ing new protocols, to ensure client privacy.

6 Experiments and Results

6.1 Experimental Settings

In our work, we decompose the FL process with classic CNN model LeNet [6]
as the training model into two fixed components and seven free components
(Fig. 5) as follow: Conv1 and Conv2 are layer components correspond to the
convolutional layers in the order of the forward propagation, ReLu1 and ReLu2
are components for activation layers, Pool1 and Pool2 for pooling layers, FC
for the remaining fully connected layers. The system is implemented by using
the existing distributed software platform [2,3] bases on program decomposition.
Base on the different deployment strategies in Table 1, we conducted a series of
experiments and discussions on the efficiency of local training.

We deploy our system and conduct all experiments by constructing virtual
machines on the existing OpenStack-based cloud platform. If there is no further
instruction, the default experiment configuration is as follows: the operating
system of the edge is Ubuntu 18.04, whose operating environment is Node.js
12.18.0, with 8 CPU cores and 32 GB RAM. The operating system of the terminal
is Ubuntu 18.04, whose operating environment is Firefox 77.0.1, with 4 CPU
cores and 16 GB RAM. The screenshots of the log output on the edge and
terminal during the local training process are shown in Fig. 6.
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Table 1. Different components deployment strategies.

Strategy Components on

terminal

Conponents on

edge

Strategy Components on

terminal

Conponents on

edge

A No

Component

All

Components

B Conv1 Conv2, ReLu1,

ReLu2,

Pool1, Pool2, FC

C ReLu1, ReLu2 Conv1, Conv2,

Pool1, Pool2, FC

D Pool1, Pool2 Conv1, Conv2,

ReLu1, ReLu2,

FC

E FC Conv1, Conv2,

ReLu1,

ReLu2, Pool1,

Pool2

F Conv1,

ReLu1, ReLu2

Conv2, Pool1,

Pool2, FC

G Conv1, Pool1,

Pool2

Conv2, ReLu1,

ReLu2, FC

H Conv1, FC Conv2, ReLu1,

ReLu2, Pool1,

Pool2

I ReLu1, ReLu2,

Pool1, Pool2,

Conv1,

Conv2, FC

J Conv1, ReLu1,

ReLu2, Pool1,

Pool2

Conv2, FC

K ReLu1, ReLu2,

Pool1, Pool2, FC

Conv1, Conv2 L Conv1, ReLu1,

ReLu2,

Pool1, Pool2, FC

Conv2

M All

Components

No

Component

Fig. 5. LeNet architecture from a component perspective.

6.2 Run-Time Efficiency with Different Deployment Strategies

We observe the time cost of each iteration for the mobile terminal and the edge
to complete the local update process through the distributed FL method under
different deployment strategies in Table 1. It is defined that the time cost of
each iteration starts when the new parameter distributed by the cloudController
component, ends when the local update is completed and terminalController
uploads the gradients to the cloudController. The batch size is set to 10 for each
strategy. Figure 7 plots the execution curves of several representative deployment
strategies in 150 iterations. The specific component deployment situation corre-
sponding to each strategy is shown in Table 1. In Strategy M, all components
are deployed on the terminal, which is similar to the traditional FL method.
In Strategy A, all components are deployed on edge. The Strategy I and J are
the optimal deployment strategies can be found under two different trusting
assumptions (Case A and B) of edge devices, which can maximize the training
efficiency.

As can be found from the figure, with same operating environment and hard-
ware setting, The run-time efficiency of Strategy J and Strategy M is more
unstable than Strategy A, and Strategy I. Especially in Strategy M, which is
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Fig. 6. Screenshots of the log generate on both edge and terminal during the training
process. The left figure is the console output of the Node.js server on edge. The right
figure is the console output of the Chrome browser on the terminal.

Fig. 7. Time cost of each iteration with different deployment strategies.

equivalent to the traditional FL deployment, the run-time efficiency of local
training fluctuates greatly and periodically. This may be caused by the more
stable execution in the Node.js environment at the edge compare to the browser
engine at the terminal. Besides, it can also be seen that there exist significant
differences in the average execution efficiency of different deployment strategies:
compare with Strategy M, the average training efficiency of Strategy I and J
increases by 74.8% and 36.5% respectively, which will be discussed in detail in
the next section.

6.3 Average Efficiency with Different Deployment Strategies

Multiple sets of different component deployment strategies are tested with dif-
ferent batch sizes. In Fig. 8, the histogram shows the average time costs of each
deployment strategy for an iteration with the batch size of 5, 10, and 20, which
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Fig. 8. Average time cost of different deployment strategies with different batch sizes.
(Color figure online)

represented by dark blue, blue and light blue respectively. The specific deploy-
ment location of layer components in each strategy is shown in Table 1, we can
see that there exists an apparent difference between different deployment strate-
gies. Moreover, the difference widens with the increment of the batch size.

By observing the deployment properties of layer components in different
strategies, the conclusion can be drawn. In the assumption where the edge device
is completely trusted (Case A), the training efficiency is our only concern, so the
optimal deployment strategy for all tested batch sizes is Strategy I (marked with
green circle), which deploys the activation layer and polling layer components on
the terminal and other layer components on edge. It is worth mentioning that
some efficient compression techniques [14] can be further utilized to compress
and decompress the original image at the terminal and edge, respectively.

When the edge is not trusted, and has no direct communication or coop-
eration with the cloud (Case B), the input layer locally must be kept on the
terminal, so of all the strategies deploying Conv1 component on the terminal,
Strategy J (marked with yellow circle) is the most efficient for all tested batch
sizes. Strategy J deploys the input layer, activation layer, and pooling layer com-
ponents on the terminal and other layer components on edge. The above two
deployment strategies I and J are more efficient than the traditional federated
learning deployment strategy M (marked with red circle). It can be inferred
from the result that, since the communication costs of the layer components
are relatively similar, when deploying some layer components with lightweight
computation task (such as the activation layer component and the pooling layer
component) on the terminal and deploy the computation-intensive layer compo-
nents (such as convolutional layer component) on edge, the overall efficiency is
higher.
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Fig. 9. Average time cost of a single iteration for different batch sizes when the hard-
ware configuration of the edge and the terminal changes.

6.4 Effects of Different Hardware Resources on Average Training
Efficiency

The effect of different hardware configurations on local training efficiency is
also observed. In the following experiment, the layer components are deployed
according to Strategy J, and the computing power resources of the edge and the
terminal are adjusted. The average time cost of the batch iteration with different
batch sizes is calculated, and results are shown in Fig. 9. When the batch size
is equal to 1, with different computing power resources, the average training
efficiency is basically the same. However, the difference in efficiency comes to
be more significant with the gradual increment of the batch size. Among all the
hardware configurations tested with the batch size of 20, the training efficiency
comes to be the highest when the edge has 8 CPU cores and 32 GB RAM, and
the terminal has 4 CPU cores and 16 GB RAM. On the contrary, the training
efficiency comes to be the lowest when the edge has 4 cores with 16 GB RAM,
and the terminal has 2 cores with 2 GB RAM. The training time cost of the
latter is about 2.31 times the former.

It could be concluded that when the memory of the terminal device is below
a certain threshold, which is about 2 GB in our experiment, the local training
efficiency will be greatly reduced. Besides, changes in computing resources of
edge devices will also significantly affect the local training efficiency. However,
when the computing resources of the edge device remain unchanged, and the
memory size of the terminal device is relatively sufficient, the computing resource
of the terminal device has a limited effect on efficiency.

6.5 Effects of Different Terminal Operating Environments on
Training Efficiency and Run-Time Stability

Different operating environments on the terminal device are tested to find their
effects on the training efficiency further. We separately test the efficiency of the
mobile terminal device using Chrome 83.0 browser and Firefox 77.0.1 browser
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Fig. 10. Compare the time cost per iteration with different batch sizes when using the
Chrome 83.0 browser in the Ubuntu 18.04 operating system as the terminal executing
environment.

as the operating engine when the batch size is equal to 1, 5, 10 and 20 under
the default hardware configuration with deployment strategy J. The results are
shown in Fig. 10 and Fig. 11. It can be found that different terminal operating
environments will make a noticeable difference in training efficiency and stability.
In Fig. 10, when using Chrome as the browser, for all batch sizes, the time
cost of each batch iteration is relatively stable. As the batch size increases, the
fluctuation of the curve slightly increases but still not apparent. In Fig. 11, when
using Firefox as the browser, it can be observed that for batch sizes like 1 and
5, the curve does not fluctuate significantly, but for larger batch sizes like 10
and 20, the curve fluctuates periodically and significantly, and there exist some
unreasonably high peaks.

Fig. 11. Compare the time cost per iteration with different batch sizes when using the
Firefox 77.0.1 browser in the Ubuntu 18.04 operating system as the terminal executing
environment.

In fact, with the batch size increasing from 1 to 20, the standard deviation of
the time cost of each iteration in the Chrome environment increases from 0.083
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to 0.170, while for the Firefox, it increases from 0.318 to 4.884. Moreover, the
latter’s average time cost in different batch sizes is about 2.85 times the former.
Since in some application scenarios of FL, the aggregation server may need to
communicate with a large number of terminal devices at the same time in a single
iteration of training, the global time cost of the specific iteration may depend
more on terminals cost maximum time to complete the local training procedure
instead of the average cost of all terminals. Therefore, the operating environment
for the terminal should be reasonably chosen so that the local training of the
terminal in each iteration is stable and has high average efficiency.

7 Conclusions

In this paper, we have proposed a component-based framework for FL, which
can effectively improve the local training efficiency. Unlike the previous related
works, we apply the coarse-grained program decomposition on the DNN model to
allow the terminal to offload the training layers to the edge while preserving user
privacy. An empirical study on a classic CNN is conducted to show the system’s
effectiveness and explore the optimal deployment strategies under different edge-
trusting assumptions.

Several aspects that can be the future work: (1) apply program decomposition
for more complex DNN models and find the corresponding optimal deployment
strategies; (2) improve the system and provide API; (3) consider the impact of
different network environments on training efficiency.
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