
Chapter 8
Reductions to IID: Parallel Interaction

Multi-round parallel boxes, discussed in Sect. 6.1, can display an almost arbitrary
behaviour and hence are complicated to analyse. However, some additional structure
of the boxes can be assumed when certain types of symmetries are present in the
considered information processing task. In this chapter we focus on the analysis of
parallel boxes that are permutation invariant. Permutation invariance is an inherent
symmetry in many information processing tasks, device-independent tasks among
them. Thus, analysing permutation invariant boxes (as defined below) is of special
interest.

A well known family of tools used to study permutation invariant systems1 is the
family of “de Finetti-type theorems”. A de Finetti-type theorem is any theorem that
relates (in one way or another) permutation invariant systems to a more structured
system, having the form of a convex combination of IID systems, called a de Finetti
system (or state). The relation given by the theorem can be used, in certain cases,
to argue that instead of analysing permutation invariant systems one can restrict the
attention to the simpler to analyse (convex combination of) IID systems. A de Finetti
theorem therefore acts as a reduction to IID.

The first de Finetti theorem [1] established that the collection of infinitely
exchangeable sequences, i.e., distributions on infinite strings that are invariant under
all permutations, exactly coincides with the collection of all convex combinations of
IID distributions. Subsequent results gave quantitative bounds of different forms [2–
9]. de Finetti-type theorems had proven to be useful in various proofs. The quantum
de Finetti theorems, for example, enable a substantially simplified analysis of many
quantum information tasks such as quantum cryptography [7, 10], tomography [11],
channel capacities [12] and complexity [9].

1Depending on the context, the term systemmay refer to a probability distribution, a quantum state,
or a box.
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104 8 Reductions to IID: Parallel Interaction

The de Finetti theorems listed above cannot be used in the device-independent
setting for various reasons.2 In this chapter we present a de Finetti-type theorem,
which was introduced in [13], that is applicable when working with parallel boxes.
Our de Finetti theorem, termed “de Finetti reduction for correlations”, is then used
in the analysis of one of our showcases, namely, non-signalling parallel repetition,
in Chap.10.

The chapter is arranged as follows. We start by explaining the notion of permuta-
tion invariance in the device-independent context in Sect. 8.1. The deFinetti reduction
is presented and proven in Sect. 8.2. Section8.3 exemplifies how the reductions can
be used in two different general ways (while Chap. 10 deals with a specific applica-
tion). The theorems proven in Sect. 8.3 clarify in what sense we think of a de Finetti
reduction as a reduction to IID in the device-independent setting.

In accordance with the rest of the thesis, the chapter focuses only on the case of
two parties. All the statements can be extended to any number of parties, as can be
seen in [13].

8.1 Permutation Invariance

As mentioned above, we are interested in considering permutation invariant parallel
multi-round boxes. Let n be the number of games that can be played with the parallel
box of interest PAB|XY . A permutation π is a bijective function π : [n] → [n]. We
denote π(x) = xπ−1(1), xπ−1(2), . . . , xπ−1(n) and similarly for π( y), π(a), and π(b).
A permutation invariant box3 is defined as follows.

Definition 8.1 (Permutation invariant box)Given aparallelmulti-roundboxPAB|XY ,
definedoverX n,Yn,An,Bn , and apermutationπ : [n] → [n]wedenote byPAB|XY ◦
π the box defined by

∀a, b, x, y (
PAB|XY ◦ π

)
(a, b|x, y) = PAB|XY (π(a),π(b)|π(x),π( y)) . (8.1)

A parallel multi-round box PAB|XY is said to be permutation invariant if and only if

∀π PAB|XY = PAB|XY ◦ π .

Figure8.1 illustrate the action of permuting a parallel box. The action of the
permuted box can be understood as follows: First, the box applies the permutation π
on the inputs. Second, it uses the initial box PAB|XY to produce the intermediate
outputs. Lastly, it applies the inverse permutation π−1 on the intermediate outputs

2The mentioned theorems rely on some initial subsystem structure and/or a bound on the dimen-
sion of the subsystems. In the device-independent setting one cannot start with such assumptions
regarding the considered boxes in general.
3The definition and the derived theorem are independent of the nature of the box, i.e., if it is classical,
quantum, non-signalling, or even signalling. This will be addressed in Sect. 8.2.
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Fig. 8.1 Permutation of a
box PAB|XY . The permuted
box, PAB|XY ◦ π acts by first
applying the permutation π
on the inputs, then producing
the outputs using the initial
box PAB|XY , and lastly
applying the inverse
permutation on the outputs.
The input output distribution
of the box is then defined
according to Eq. (8.1). A box
is said to be permutation
invariant if for all π,
PAB|XY = PAB|XY ◦ π

and returns these final strings as the ultimate outputs. Note that only the inputs and
the outputs of the box are being permuted, all using the same permutation π. In
particular, we do not permute the parties, that is, Alice and Bob do not swap their
inputs and outputs with one another.

As we are merely permuting the classical inputs and outputs, the box itself need
not to have a subsystem structure. That is, we do not require, e.g., PA1|X1 to be a
valid system (i.e., a conditional probability distribution). This is in contrast to, e.g.,
quantum de Finetti-type theorems such as [5, 7], where the permutation is applied on
the quantum states themselves.4 This distinction is relevant when wishing to discuss
general parallel boxes (recall Sect. 6.1).

In some applications (e.g., the showcase considered in Chap.10) one can easily
show that it is sufficient to consider permutation invariant boxes without loss of
generality. If this is not the case, it is also possible to enforce permutation invariance.
A protocol, for example, can bemodified to enforce the symmetry by adding a step in
which a random permutation is applied5 on the box and by this make it permutation
invariant. Precisely: given any parallel box PAB|XY , let

P̃AB|XY = 1

n!
∑

π

PAB|XY ◦ π

be the result of applying a permutation π, chosen uniformly at random out of all
permutations, on the original box. It can be easily verified that P̃AB|XY is indeed a
permutation invariant box.

4In a quantum de Finetti statement a permutation takes a state |φ1〉 ⊗ . . . |φn〉 to
∣
∣φπ−1(1)

〉 ⊗
. . .

∣
∣φπ−1(n)

〉
. That is, the quantum states themselves are being permuted.

5Depending on the considered scenario, the application of the permutation may be a purely theo-
retical step or needs to be done in practice.
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8.2 de Finetti Reductions for Correlations

A de Finetti-type theorem is any theorem that relates a permutation invariant system
to a much more structured system called a de Finetti system. In our context, we
consider permutation invariant and de Finetti boxes. A de Finetti box is defined as
follows.

Definition 8.2 (de Finetti box6) A de Finetti box is any box of the form of a convex
combination of IID boxes. That is, it is a box τAB|XY , defined over X n,Yn,An,Bn ,
such that

τAB|XY =
∫

O⊗n
AB|XYdOAB|XY ,

where dOAB|XY is some measure on the space of bipartite boxes overA, B,X , and Y
and O⊗n

AB|XY is the IID box defined by OAB|XY , i.e.,

O⊗n
AB|XY (a, b|x, y) =

∏

i∈[n]
OAB|XY (ai , bi |xi , yi ) .

As seen from the above definition, by choosing different measures dOAB|XY we
define different de Finetti boxes. Depending on themeasure, τAB|XY may be classical,
quantum, non-signalling, or even signalling between the two parties. If the measure
dOAB|XY assigns weight only to, e.g., non-signalling boxes OAB|XY , then the de
Finetti box τAB|XY is non-signalling as well. The other direction does not necessarily
hold—there are convex combinations of signalling boxes that result in over-all non-
signalling boxes.

A de Finetti reduction is a de Finetti-type theorem of a specific form: it sets an
inequality relation between any permutation invariant box to a certain de Finetti
box. Specifically, the following theorem is a de Finetti reduction for any permutation
invariant conditional probability distribution [13].7

Theorem 8.3 (de Finetti reduction for conditional probability distributions)For any
X , Y ,A, B, and n there exists a de Finetti box τAB|XY , defined overX n,Yn,An,Bn,
such that for every permutation invariant box PAB|XY

∀a, b, x, y PAB|XY (a, b|x, y) ≤ (n + 1)|X ||Y|(|A||B|−1) τAB|XY (a, b|x, y) . (8.2)

To see why Theorem 8.3 is not trivial and what needs to be done to prove it, let
us first consider a “bad choice” of a de Finetti box, τ bad

AB|XY . Imagine that we choose
our de Finetti box to be the uniform distribution over An × Bn for all x and y. With

6As previouslymentioned, we focus on the case of two parties. The definition extends to any number
of parties trivially.
7In [13], amore general version of Theorem 8.3was proven, in which further symmetries of PAB|XY
(on top of permutation invariance) can be exploited to construct more structured de Finetti boxes and
prove de Finetti reductions with improved parameters. Theorem 8.3 was then derived as a corollary.
To keep things (relatively) concise, we present in this thesis a direct proof of Theorem 8.3.
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this choice, τ bad
AB|XY (a, b|x, y) = (|A||B|)−n for all a, b, x, and y. Then, the only

inequality relation that holds is

∀a, b, x, y PAB|XY (a, b|x, y) ≤ (|A||B|)n τ bad
AB|XY (a, b|x, y) ,

i.e., a relationwith a pre-factor exponential in n. By choosing a “good” de Finetti box,
we are able to get a pre-factor polynomial in n instead; this is crucial for applications
of de Finetti reductions. In Sect. 8.3 we show how Theorem 8.3 can be utilised as a
reduction to IID in certain scenarios.8

The proof of the theorem proceeds in two steps. In the first, an explicit de Finetti
box τAB|XY is constructed and a lower-bound on its entries is calculated. In the second
step the permutation invariance of PAB|XY is used to upper-bound its entries. The
theorem follows by combining the two bounds.

In the proofs below we use the following notation.

1. |X ||Y| = l and we identify each pair (x, y) ∈ X × Y with a label j ∈ [l] by
writing (x, y) = j .

2. |A||B| = m and we identify each pair (a, b) ∈ A × B with a label k ∈ [m] by
writing (a, b) = k.

3. For all j ∈ [l] and k ∈ [m], p j
k ∈ [0, 1] such that

∑
k p

j
k = 1.

4. For all j ∈ [l] and k ∈ [m], c j
k = 1 − ∑

t<k p
j
t .

5. For all x, y, and j ∈ [l], n j = | {i : (xi , yi ) = j} |, i.e., n j denotes the number of
indices of (x, y) in which the type of inputs is (x, y) = j .

6. For all x, y, a, b, j ∈ [l], and k ∈ [m], n j
k = | {i : (xi , yi ) = j ∧ (ai , bi ) = k} |,

i.e., n j
k denotes the number of indices of (x, y, a, b) in which the type of inputs

is (x, y) = j and the type of outputs is (a, b) = k.

Note that by definition:

1. For all j ∈ [l] and k ∈ [m − 1], p j
k ∈ [0, c j

k ] and p j
m = c j

m .
2. For all j ∈ [l], n j

m = n j − ∑m−1
k=1 n j

k .

According to Definition 8.2, a de Finetti box is defined via the choice of mea-
sure dOAB|XY . We think of a bipartite box OAB|XY as a set of probabilities p j

k , with
the identification OAB|XY (a, b|x, y) = p j

k for (x, y) = j and (a, b) = k. Thus, we
can define ameasure over OAB|XY by ameasure over the probabilities p j

k . Our chosen
measure is

dOAB|XY =
l∏

j=1

dp j
1

c j
1

. . .
dp j

m−1

c j
m−1

,

where dp j
k is the uniform measure over [0, c j

k ] for c j
k defined above. The resulting

de Finetti box is given by

8A curious reader may already take a glimpse of Theorems 8.11 and 8.15.



108 8 Reductions to IID: Parallel Interaction

τAB|XY (a, b|x, y) =
∫

O⊗n
AB|XYdOAB|XY

=
l∏

j=1

[∫ c j
1

0

dp j
1

c j
1

(
p j
1

)n j
1

]

. . .

[∫ c j
m−1

0

dp j
m−1

c j
m−1

(
p j
m−1

)n j
m−1

]

· (
p j
m

)n j−∑m−1
k=1 n j

k .

(8.3)

The measure dOAB|XY assigns some weight to all conditional probability dis-
tributions OAB|XY . As a result, the de Finetti box in Eq. (8.3) is signalling. This is
discussed in Sect. 8.4 below.

The following lower-bound on the entries of the above de Finetti box is proven in
Appendix A.1:

Lemma 8.4 For all a, b, x, and y,

τAB|XY (a, b|x, y) ≥
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1
1

(n j + 1)m−1
,

where τAB|XY is as in Eq. (8.3).

Next, we exploit the permutation invariance of PAB|XY to prove the following
upper-bound on it:

Lemma 8.5 For every permutation invariant box PAB|XY , as in Definition 8.1, and
for all a, b, x, and y,

PAB|XY (a, b|x, y) ≤
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1

.

Proof To prove the lemma we bound the value of a specific entry PAB|XY (a, b|x, y)
by counting how many entries PAB|XY (ã, b̃|x, y) must have the same value as
PAB|XY (a, b|x, y) due to permutation invariance. The normalisation of PAB|XY then
implies a bound on the value of the entries.

Denote

N (a, b, x, y) =
∣∣∣
{
(ã, b̃) ∈ A × B : PAB|XY (ã, b̃|x, y) = PAB|XY (a, b|x, y)

} ∣∣∣ .

The permutation invariance of PAB|XY implies that N (a, b, x, y) is lower-bounded
by the number permutations π for which π(x) = x, π( y) = y. To keep π(x) = x
and π( y) = y, the relevant permutations π are only allowed to permute indices
with the same input type (x, y). The number of such permutations is exactly
∏l

j=1

( n j

n j
1 ,...,n

j
m

)
. Thus,



8.2 de Finetti Reductions for Correlations 109

N (a, b, x, y) ≥
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)

and

PAB|XY (ab|x y) ≤ 1

N (a, b, x, y)
≤

l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1

. �

Proof of Theorem 8.3.UsingLemmas8.4 and8.5 one can easily proveTheorem8.3.
For all a, b, x, and y,

PAB|XY (a, b|x, y)
τAB|XY (a, b|x, y) ≤

∏l
j=1

( n j

n j
1 ,...,n

j
m

)−1

∏l
j=1

( n j

n j
1 ,...,n

j
m

)−1
(n j + 1)−(m−1)

≤
l∏

j=1

(n j + 1)m−1

≤ (n + 1)l(m−1) . �

To end this section let us give a last remark regarding Theorem 8.3. Notice the
order of the quantifiers; there exists one de Finetti box forwhich Eq. (8.2) holds for all
permutation invariant box. For the purpose of applications, one could also imagine
a different statement in which for each permutation invariant box a de Finetti box
is constructed (i.e., different permutation invariant boxes may be related to different
de Finetti boxes). Such a statement has the potential of improving the obtained
parameters and simplifying the use of the reduction in applications (see also [13] for
examples of such statements).

8.3 Ways of Using the Reductions

The main motivation for considering de Finetti reductions as in Theorem 8.3 is to
allow us to simplify the analysis of device-independent information processing tasks.
However, it is a priori not clear how one can bring an inequality as that in Eq. (8.2)
into work. The aim of this section is to exemplify the usage of the inequality in
a mathematical way by considering two types of abstract applications. Chapter10
discusses a more concrete application of the reduction to prove a non-signalling
parallel repetition theorem.

To derive the results presented in this section we use an alternative, but equivalent,
version of the de Finetti reduction; this is the topic of Sect. 8.3.1 below. Sections8.3.2
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Fig. 8.2 post-selecting a box
PAB|XY from an extension of
τAB|XY . Conditioned on the
output cz , the resulting box is
PAB|XY . After [13]

τABC|XY Z

x,y

a, b cz

PAB|XY

x,y

a, b

and 8.3.3 present two ways of using the de Finetti reduction via the alternative
formulation.

8.3.1 Post-selecting Permutation Invariant Boxes

Lemma 8.6 There exists a de Finetti box τAB|XY and a non-signalling extension9 of
it (Definition 3.2) to a larger box τABC |XY Z such that for every permutation invariant
box PAB|XY there exists an input z and an output of this input cz for which

∀a, b, x, y τABC |XY Z (a, b, cz|x, y, z) = 1

(n + 1)l(m−1)
PAB|XY (a, b|x, y) ,

where l = |X ||Y| and m = |A||B|.
This lemma states that there exists a de Finetti box τAB|XY and a non-signalling

extension of it τABC |XY Z such that any permutation invariant box PAB|XY can be
post-selected from it with probability greater or equal to 1

(n+1)l(m−1) . When we say that
PAB|XY can be post-selected we mean that there exists an input z to τABC |XY Z and an
output cz of this input such that with probability τC |Z (cz|z) ≥ 1

(n+1)l(m−1) the result-
ing box (the “post-measurement box”, using terminology borrowed from quantum
physics) is PAB|XY (see Fig. 8.2). Note that we consider a single extension τABC |XY Z

of the box τAB|XY , and by choosing different inputs z we can post-select different
boxes PAB|XY .

It is easy to see how to deriveLemma8.6 fromTheorem8.3 by using the formalism
introduced in [14, 15] of partitions of a conditional probability distribution.We repeat
here the relevant statements.

Definition 8.7 A partition of a box QAB|XY is a family of pairs
{(

qc,Qc
AB|XY

)}

c
where qc ≥ 0,

∑
c qc = 1, and the boxes Qc

AB|XY are such that

QAB|XY =
∑

c

qc · Qc
AB|XY .

9Note that τAB|XY may be signalling, as in our previous statements. The fact that we are considering
non-signalling extensions only means that the marginals τAB|XY and τC |Z of τABC |XY Z are well
defined.
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Lemma 8.8 (Lemma 9 in [14]) Given a box QAB|XY , there exists a partition with

element
(
qc,Qc

AB|XY

)
if and only if

∀a, b, x, y qc · Qc
AB|XY (a, b|x, y) ≤ QAB|XY (a, b|x, y) .

Lemma 8.9 (Lemma 3.2 in [15]) Given a box QAB|XY , let Z be the set of all

partitions
{(

qcz ,Q
cz
AB|XY

)}

cz
ofQAB|XY . Then, there exist a non-signalling extension

QABC |XY Z of QAB|XY , an input z, and an output cz such that

∀a, b, x, y QABC |XY Z (a, b, cz|x, y, z) = qcz · Qcz
AB|XY (a, b|x, y) .

Using the lemmas above and Theorem 8.3 we can now prove Lemma 8.6.

Proof of Lemma 8.6. The above lemmas together with Theorem 8.3 imply that for

any permutation invariant box PAB|XY ,
(

1
(n+1)l(m−1) ,PAB|XY

)
is an element of a parti-

tion of τAB|XY . Moreover, there exists a box τABC |XY Z and an input z such that with
probability 1

(n+1)l(m−1) the resulting box is PAB|XY :

∀a, b, x, y τABC |XY Z (a, b, cz|x, y, z) = 1

(n + 1)l(m−1)
PAB|XY . �

Lemma 8.6 is used in the following sections to illustrate two ways in which de
Finetti reductions can be used in applications.

8.3.2 Failure Probability of a Test

We start by considering the following abstract application. Let T be a test which
interacts with a box PAB|XY and outputs “success” or “fail” with some probabilities.
One can think about this test, which can be chosen according to the application
being considered, as a way to quantify the success probability of a protocol when
the box PAB|XY is given as input. For example, if one considers an estimation, or a
tomography, protocol a test can be chosen to output “success” when the estimated
box is close to the actual box [7]. Another type of test will be considered explicitly
in Sect. 10.2.

A test T interacts with PAB|XY by supplying it with inputs x, y, according to some
probability distribution PrT (x, y) overX n × Yn , and collecting its outputs a, b. This
is illustrated in Fig. 8.3. The test then decides whether to output 0 or 1 depending
on x, y, a, and b. Given a test T , we denote by Prfail(PAB|XY ) the failure probability
of the test, i.e., the probability that T outputs 0 after interacting with PAB|XY :
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PAB|XY

x,y

a, bT
T (a, b,x,y) ∈ {0, 1}

Fig. 8.3 The test T interacts with PAB|XY by supplying it with inputs x, y and collecting its outputs
a, b. The test then decides whether to output 0 or 1 depending on x, y, a, and b. If the output is 0
then we say that the test failed. After [13]

Prfail(PAB|XY ) =
∑

x, y

PrT (x, y)
∑

a,b:T (a,b,x, y)=0

PAB|XY (a, b|x, y) .

The event of failing the test can therefore be defined as an event over X n × Yn ×
An × Bn .

We consider permutation invariant tests, defined as follows.

Definition 8.10 A test T is permutation invariant if and only if for all boxes PAB|XY

and all permutations π we have

Prfail(PAB|XY ) = Prfail(PAB|XY ◦ π) .

Using the de Finetti reduction in Theorem 8.3 we can prove upper bounds of the
following type:

Theorem 8.11 Let T be a permutation invariant test. Then for every box PAB|XY

Prfail(PAB|XY ) ≤ (n + 1)l(m−1)Prfail(τAB|XY ) ,

where τAB|XY is the de Finetti box given in Eq. (8.3).

The importance of de Finetti reductions is already obvious from Theorem 8.11—
if one wishes to prove an upper bound on the failure probability of the test T ,
then instead of proving it for all boxes PAB|XY , it is sufficient to prove it for the
de Finetti box τAB|XY and “pay” for it with the additional polynomial pre-factor
of (n + 1)l(m−1). Since the de Finetti box can be written as a convex combination of
IID boxes, this can highly simplify the calculations of the bound. In this sense the
de Finetti reduction acts as a reduction to IID.

In many cases one finds that the bound on Prfail(τAB|XY ) is exponentially small in
n. For an estimation protocol, the failure probability of the test, when interacting with
an IID box, can be shown to be exponentially small in the number of boxes n used
for the estimation, using Chernoff bounds. This is also the case when dealing with
security proofs—the failure probability of a protocol, when a de Finetti box is given
as input, is usually exponentially small in the number of boxes n used in the protocol.
If this is indeed the case then the polynomial pre-factor of (n + 1)l(m−1) becomes
irrelevant in the asymptotic limit of large n. In other words, an exponentially small
bound on Prfail(τAB|XY ) implies an exponentially small bound on Prfail(PAB|XY ).

Let us prove Theorem 8.11 using the de Finetti reduction given as Theorem 8.3.
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Proof of Theorem 8.11.We followhere a similar proof given in [16] for the quantum
post-selection theorem [7]. First, since the test T is permutation invariant it is suffi-
cient to consider only permutation invariant boxes. To see this recall that for any box
PAB|XY and permutation π we have Prfail(PAB|XY ) = Prfail(PAB|XY ◦ π) according
to Definition 8.10. Therefore we also have by linearity10

Prfail(PAB|XY ) = 1

n!
∑

π

Prfail(PAB|XY ◦ π) = Prfail

(
1

n!
∑

π

PAB|XY ◦ π

)

.

The box 1
n!

∑
π PAB|XY ◦ π is permutation invariant and therefore we can consider

only permutation invariant boxes without loss of generality.
Next we define the following probabilities. Let Prfail∧cz (τABC |XY Z ) be the proba-

bility that the second part of the box, τC |Z , is used with the input z and the output is
cz and that the first part of the box, τAB|XY , fails the test T at the same time. That is,

Prfail∧cz (τABC |XY Z ) = Prfail(τAB|XY ) · τC |Z (cz|z) .

In a similar way we define Prfail|cz (τABC |XY Z ) to be the probability that τAB|XY fails
the test T given that cz is the output of τC |Z when used with the input z. We have

Prfail|cz (τABC |XY Z ) = Prfail∧cz (τABC |XY Z )

τC |Z (cz|z) ≤ Prfail(τAB|XY )

τC |Z (cz|z)
since Prfail∧cz (τABC |XY Z ) ≤ Prfail(τAB|XY ) always holds.

Lemma 8.6 implies that τC |Z (cz|z) ≥ 1
(n+1)l(m−1) and that Prfail|cz (τABC |XY Z ) =

Prfail(PAB|XY ) (given that the output was cz , the resulting box is PAB|XY ). All together
we get Prfail(PAB|XY ) ≤ (n + 1)l(m−1)Prfail(τAB|XY ) as required. �

8.3.3 Diamond Norm

Theorem 8.3 allows for a simple treatment of cases that can be analysed using the
notation of a test. In some information processing tasks this is not possible and
different ways of utilising the reductions are needed. In this section we consider the
task of distinguishing two channels acting on boxes. The channels can describe, for
example, a cryptographic protocol.11

10Linearity refers here to the linearity of the test in the box PAB|XY , which follows from the fact
that the test interacts only once with PAB|XY (or, in other words, the test gets only a single copy of
the box).
11Let us briefly explain why the notation of a test considered in Sect. 8.3.1 is not appropriate
in the cryptographic setting. When considering tests, we were interested in events defined over
X n × Yn × An × Bn . Whether an output of a protocol (a key, for example) is secure to use cannot
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Fig. 8.4 The channel E ⊗ I

acts on an extension
PABC |XBZ of PAB|XY and
outputs a classical string
k ∈ {0, 1}t according to the
probability EK (k). After [13]

PABC|XBZ

x,y

a, b

z c

E
k = E(a, b,x,y)

When considering quantum protocols the distinguishing advantage is given by
the diamond norm [17]. The distance between two channels E and F which act on
quantum states ρAB is given by ‖E − F‖� = max

ρABC

‖ (E − F) ⊗ I ρABC‖1 where ρABC

is a purification of ρAB and ‖ · ‖1 is the trace distance. Informally, the idea is that in
order to distinguish two channels we are not only allowed to choose the input state
to the channels, ρAB , but also keep to ourselves a purifying state ρC .

Although the definition of the diamond norm includes a maximisation over all
states ρABC it was proven, using the quantum post-selection theorem [7], that when
considering permutation invariant channels it is sufficient to calculate the distance
for a specific quantum de Finetti state. Motivated by this, we give a similar bound on
a distance analogous to the diamond norm for channels which act on boxes (instead
of quantum states).

In the following, we denote by P the set of all boxes PAB|XY and by K the set of
all probability distributions PK over {0, 1}t for some t ∈ N. We consider channels
of the form E : P → K which interact with boxes PAB|XY and output a classical bit
string k ∈ {0, 1}t of some length t ≥ 0 with some probability PK (k). The connection
between the channel and the box is illustrated in Fig. 8.4.12

The probability distribution of the output depends on the channel E itself and is
given by the following definition.

Definition 8.12 The probability that a channel E outputs a string k ∈ {0, 1}t when
interacting with PAB|XY is

EK (k) =
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

PAB|XY (a, b|x, y)

where PrE(x) is the probability that E inputs x, y to PAB|XY and E(a, b, x, y) is the
function according to which the output of the channel is determined. Analogously,

EK |C(k|c) =
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

PAB|XYC(a, b|x, y, c) .

be defined as an event. Security depends on the process of producing the key rather on the specific
data that was produced during the run of the protocol.
12Figure8.4 is almost identical toFig. 8.3, describing a test. Thedifference between the two scenarios
lies in the quantity that we wish to bound; see the previous footnote.
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Definition 8.13 The distance between two channels E,F : P → K according to the
diamond norm is

‖E − F‖� = max
PABC |XY Z

‖ (E − F) ⊗ I(PABC |XY Z )‖1 ,

where the maximisation is over all boxes PAB|XY and all possible extensions of them
and

E ⊗ I(PABC |XY Z ) = E ⊗ I(PAB|XYC · PC |Z )
= EK |C · PC |Z .

F ⊗ I(PABC |XY Z ) is defined in a similar way.

Similarly to the concept of a permutation invariant test presented in Defini-
tion 8.10, we define a permutation invariant channel:

Definition 8.14 A channel E is permutation invariant if for all boxes PAB|XY and all
permutations π we have

E(PAB|XY ) = E(PAB|XY ◦ π) .

Using the de Finetti reduction, Theorem 8.3, we prove the following theorem.

Theorem 8.15 For any two permutation invariant channels E,F : P → K

‖E − F‖� ≤ (n + 1)l(m−1) max
τABC |XY Z

‖ (E − F) ⊗ I(τABC |XY Z )‖1 (8.4)

where τABC |XY Z is a non-signalling extension of the de Finetti box τAB|XY where
given in Eq. (8.3).

Theorem 8.15 tells us that when looking to bound the diamond norm for permu-
tation invariant channels, one does not need to optimise over all possible boxes (as
in Definition 8.13) but can consider only extensions of de Finetti boxes13 without
loss of generality. This gives us another example as to why a de Finetti reduction is
a reduction to IID technique. As in the case of Theorem 8.11 if one is able to find
an exponentially small upper bound on ‖ (E − F) ⊗ I(τABC |XY Z )‖1, an exponen-
tially small upper bound on ‖E − F‖� follows. That is, the polynomial pre-factor
(n + 1)l(m−1) does not affect the asymptotic behaviour.

The proof of Theorem 8.15 builds on the following lemma.

Lemma 8.16 For every two permutation invariant channels E,F : P → K where
PK is a probability distribution over k ∈ {0, 1}t for some t > 0, and all PABC |XY Z ,

‖ (E − F) ⊗ I(PABC |XY Z )‖1 ≤ (n + 1)l(m−1)‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC |XY Z )‖1

13Note, however, that the extension τABC |XY Z itself cannot be written as a convex combination of
IID boxes, only its marginal τAB|XY is a de Finetti box. Furthermore, τAB|XY may be signalling in
general, as before.
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where τ
PABC |XY Z

ABC |XY Z is a non-signalling extensionof τAB|XY whichdependson the specific
box PABC |XY Z .

The proof of the lemma follows by using Lemma 8.6 in order to construct a
specific convex decomposition of τAB|XY from a convex decomposition of PAB|XY .
A detailed proof is given in Appendix A.2.

Theorem 8.15 now easily follows from Lemma 8.16:

Proof of Theorem 8.15 Using Lemma 8.16,

‖E − F‖� = max
PABC |XY Z

‖ (E − F) ⊗ I(PABC |XY Z )‖1
≤ (n + 1)l(m−1) max

τ
PABC |XY Z
ABC ′ |XY Z

‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC ′|XY Z )‖1

≤ (n + 1)l(m−1) max
τABC |XY Z

‖ (E − F) ⊗ I(τABC |XY Z )‖1

where τABC |XY Z is a non-signalling extension of τAB|XY . �

8.4 Impossibility Results

Before concluding this chapter, let us discuss the directions in which one could hope
to further develop the technique of device-independent de Finetti reductions. We do
so by presenting several impossibility results with regards to different variants of
Theorem 8.3.

8.4.1 Restricted de Finetti Box

First, as explained in the above sections, our de Finetti box, given in Eq. (8.3), is a
signalling box. Clearly, this raises some difficulties when coming to use the different
theorems presented in this chapter.14 Ideally, we would have wished to have a de
Finetti reduction inwhich the de Finetti box τAB|XY can be quantumor non-signalling
when starting with a quantum or non-signalling box PAB|XY . That is, we wish to find
reductions of the form (with some c polynomial15 in n):

Pquant
AB|XY ≤ c · τ

quant
AB|XY ; Pns

AB|XY ≤ c · τ ns
AB|XY , (8.5)

where Pquant
AB|XY and τ

quant
AB|XY are quantum boxes and, similarly, Pns

AB|XY and τ ns
AB|XY are

non-signalling boxes.

14Though this does not make them useless; see Chap.10.
15Weaker statements, e.g., with a pre-factor sub-exponential in n, may also be of interest in certain
applications.
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Sadly, such reductions cannot be true when considering general permutation
invariant boxes Pquant

AB|XY and Pns
AB|XY . One way to see that this is the case is by con-

sidering the task of parallel repetition of games (which acts as one of our showcases;
see Sect. 4.1). Reductions as those in Eq. (8.5) will imply very strong parallel repeti-
tion results. Indeed, if, e.g., Pquant

AB|XY ≤ c · τ
quant
AB|XY holds for any permutation invariant

quantum box Pquant
AB|XY , then it follows that, for any game,

w
(
Pquant
AB|XY

)
≤ c · w

(
τ
quant
AB|XY

)
= poly(n) · ωn , (8.6)

wherew (◦) is the winning probability of the considered box in the repeated game, ω
is the winning probability of the optimal quantum strategy in a single game, and
poly(n) is some polynomial of n, possibly depending on the alphabet of the RVs
A, B, X , and Y . However, there are examples of games (in the classical, quantum,
and non-signalling case) for which a strong decrease in the winning probability with
the number of games played n, as in Eq. (8.6), does not hold; recall Sect. 4.1. Thus,
reductions as in Eq. (8.5) cannot be true.

Knowing that Eq. (8.5) is not more than a wishful thinking, one could hope for
the next best thing, i.e., an approximate version of the reduction. Concretely, we are
interested in reductions of the form

Pquant
AB|XY ≤ c · τ

approx-quant
AB|XY ; Pns

AB|XY ≤ c · τ
approx-ns
AB|XY , (8.7)

where τ
approx-quant
AB|XY is an approximately-quantum de Finetti box and τ

approx-ns
AB|XY is an

approximately-non-signalling one. By approximately-quantum (and analogously for
the non-signalling case) we mean that the de Finetti box can be written as

τ
approx-quant
AB|XY =

∫ (
Oquant

AB|XY
)⊗n

dOquant
AB|XY +

∫ (
Onon-quant

AB|XY
)⊗n

dOnon-quant
AB|XY ,

where dOquant
AB|XY and dOnon-quant

AB|XY are measures over quantum and non-quantum single-

round boxes, respectively, and
∫
dOnon-quant

AB|XY is, say, exponentially small in n and/or

assigns weight only to boxes Onon-quant
AB|XY which are close to quantum boxes, under some

distance measure.16

Parallel repetition results can, again, be used to show that such reductions cannot
hold in general, at least in the non-signalling case. Here the reason lies in the observa-
tion that the reductions in Eq. (8.7) are independent of the choice of distribution over
the inputs X n and Yn (while they may depend on the alphabet of the inputs). Thus,
they would imply general parallel repetition results which hold for any distribution
over the inputs to the parallel boxes.As there are games forwhich such non-signalling
parallel repetition results do not hold [18], at best Pns

AB|XY ≤ c · τ
approx-ns
AB|XY cannot be

true in general.

16The hope here is that by adding the additional weight on non-quantum or signalling boxes one
could account for the “gap” between Eq. (8.6) and the known parallel repetition results.
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By this we learn that we ought to consider reductions that also include the input
distribution PXY :

PXYP
quant
AB|XY ≤ c · PXYτ

approx-quant
AB|XY , (8.8)

PXYP
ns
AB|XY ≤ c · PXYτ

approx-ns
AB|XY . (8.9)

The case of PXY = Q⊗n
XY is of special interest. For such distributions, two results are

known. In Sect. 10.2 we prove a result in the flavour of Eq. (8.9) using the de Finetti
reduction given as Theorem 8.3. The result, which originally appeared as part of [19],
is stated informally as Theorem 10.2. Roughly speaking, it says that observed data
that is sampled using a permutation invariant non-signalling parallel box looks as if
it was sampled using an approximately non-signalling IID box.

In [20] a reduction similar to that of Eq. (8.9) was proven by combining the
de Finetti reduction in Theorem 8.3 together with another de Finetti-type theorem,
presented in [21]. Their theorem can be written as follows17:

Theorem 8.17 (Theorem 4.3 in [20]) For any non-signalling permutation invariant
parallel box PAB|XY and distribution QXY

Q⊗n
XYPAB|XY ≤

∫
F̃ (OABXY )

2n O⊗n
ABXYdOABXY , (8.10)

where

F̃ (OABXY ) = min

{
max
RA|X

F
(
QXYRA|X ,OAXY

)
, max

RB|Y
F

(
QXYRB|Y ,OBXY

)}

for F the fidelity.

To see that Eq. (8.10) is in the spirit of Eq. (8.9) note that F̃ (OABXY ) is some measure
of how far OABXY is from QXY ÕAB|XY for a non-signalling box ÕAB|XY . Recall that
the fidelity is smallwhen the distributions are far fromone another; thus, F̃ (OABXY )

2n

assures that only negligible weight is assigned to distributions OABXY originating
from highly signalling boxes (or with marginals OXY far from QXY ).

We conjecture that reductions similar to Eq. (8.8), relevant for quantum boxes,
should also hold. Yet, up to date there are no proofs in this direction (the difficulty
in deriving such a statement is discussed in Chap.10).

8.4.2 Extension to an Adversary

Another direction in which one may wish to extend our de Finetti reductions is
relevant for device-independent cryptographic protocols. To explain what we aim

17We present only the bipartite case; [20, Theorem 4.3] is stated for an arbitrary number of parties.
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for, let us first discuss the quantum variant of Theorem 8.15, also called the post-
selection technique, developed in [7].18 The post-selection theorem implies that for
any two permutation invariant quantum channels, E andF , acting on quantum states
ρQA QB ∈ S(H ⊗n

QAQB
) for some bipartite Hilbert space HQAQB of dimension d,

‖E − F‖� ≤ (n + 1)d
2−1‖ (E − F) ⊗ I(τQA QBE )‖1 (8.11)

where τQA QBE is a purification of a given de Finetti state. Equation (8.11) should be
compared to Eq. (8.4); while Eq. (8.4) includes a maximisation over all possible non-
signalling extensions of the de Finetti box, in Eq. (8.11) we consider only a single
purification. The reason is simple—in the quantum case all purifications of a state are
equivalent up to local unitaries. Furthermore (and crucially for applications), there
exists a purification of a de Finetti state that has a very special form. To purify

τQA QB =
∫ (

σQAQB

)⊗n
dσQAQB

we can first purify the states σQAQB to get

τQA QBE ′ =
∫ (

σQAQB E ′
)⊗n

dσQAQB E ′

and then purify the state τQA QBE ′ using an additional system E ′′ to account for
the convex combination of the pure states

(
σQAQB E ′

)⊗n
. This defines us the pure

state τQA QBE ′E ′′ . Denoting E = E ′E ′′ we get our pure τQA QBE .
In the cryptographic setting the quantum register E is considered to belong to

the adversary. Hence, any information about the structure of the system kept in it
could be useful when analysing security. Equation (8.11) in combination with the
observation regarding the structure of the purification, τQA QBE ′E ′′ , we learn that the
main task when proving security is to analyse the IID case, as in Chap.7 (see [7, 16]
for the detailed explanation). That is, the quantum de Finetti reduction can be used
as a reduction to IID in quantum cryptography.

In contrast, in general, it is impossible to prove amodified version of Theorem8.15
in which the extension τABC |XY Z of our de Finetti box τAB|XY will be as structured as
the quantumstate τQA QBE . In particular, even ifwe can startwith a deFinetti reduction
where both PAB|XY and τAB|XY are non-signalling,19 it is impossible to derive a
theorem which would imply that the analysis of device-independent cryptography in
the presence of a non-signalling adversary can be reduced to the analysis under the

18Reference [7] presented the first de Finetti reduction, i.e., an inequality relation between permu-
tation invariant systems and de Finetti systems (all previous de Finetti-type theorems gave other
types of relations between the two systems). The term “de Finetti reduction” was not used at that
time and the authors chose the name “post-selection technique” as they first proved the quantum
analogue of Lemma 8.6.
19In the presence of certain types of symmetries (in addition to permutation invariance) one can
derive such de Finetti reductions; see [13].
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IID assumption. This is due to the impossibility result of [22], which asserts that,
while exponential privacy amplification in the presence of a non-signalling adversary
is possible under the IID assumption [23], it is impossible when the IID assumption
is dropped.

8.4.3 Other de Finetti-Type Theorems

A final remark is with regards to the more common type of de Finetti theorem, in
which one bounds the trace distance between an n-exchangeable system and a de
Finetti one. More specifically, let us first consider the classical case, i.e., a system
is a probability distribution. PA1,...,Ak is permutation invariant if it is invariant under
any permutation of A1, . . . , Ak (as before). We say that PA1,...,Ak is n-exchangeable,
for n ≥ k, if it is a marginal of some permutation invariant PA1,...,An . In [24] a bound
on the distance between an n-exchangeable probability distribution and a de Finetti
distributionwas proven.20 Results of this typewere also proven for quantum states [6,
25] and non-signalling boxes [8].

Let us focus on the non-signalling case [8]. There, a conditional probability dis-
tribution PA1,...,An |X1,...,Xn is said to be non-signalling if the box cannot be used to
signal from any subset of parties I ⊂ [n] to the rest of the parties [n] \ I . Permuta-
tion invariance is definedwith respect to permutations π : [n] → [n]. Similarly to the
classical case described above, PA1,...,Ak |X1,...,Xk is n-exchangeable, for n ≥ k, when
it is the marginal of a permutation invariant non-signalling box PA1,...,An |X1,...,Xn . We
then have the following bound [8, Theorem 3] (using the above notation):

Theorem 8.18 ([8]) For any permutation invariant non-signalling box
PA1,...,An |X1,...,Xn and any k < n there exists a de Finetti box τA1,...,Ak |X1,...,Xk such
that

∣
∣PA1,...,Ak |X1,...,Xk − τA1,...,Ak |X1,...,Xk

∣
∣ ≤ min

{
2k|X ||A||X |

n
,
k(k − 1)|X |

n

}
.

The crucial thing to note here is that the boxes PA1,...,Ak |X1,...,Xk and PA1,...,An |X1,...,Xn

are a very special type of parallel boxes: the non-signalling conditions must hold for
any division of the indices in [n]. This implies that the for any i, j ∈ [n], Ai is
independent of the inputs X j for j �= i . Theorems such as Theorem 8.18 cannot
be proven for general parallel boxes since they study exchangeable boxes, which
inherently require the ability to consider the marginals of the boxes.

20In this language, the original result of de Finetti [1] stated that all infinitely-exchangeable distri-
butions (i.e., distributions that are n-exchangeable for any n ≥ k) are equal to distributions of the
form of a convex combination of IID distributions.
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