
Chapter 5
Single-Round Box

In the device-independent framework we use “boxes” to describe the physical
devices, or resources, of interest. A box, formally modelled as a conditional proba-
bility distribution (recall Sect. 3.1), is always defined with respect to a specific task
or protocol. More specifically, note the following:

1. To define a box PAB|XY we need to fix the sets of the inputs X ,Y and the outputs
A,B of the box. These sets are chosen according to the task in which the box is
being used. For example, if a box is used to play a single CHSH game then the
sets are all chosen to be {0, 1}. The box’s action is undefined when it is used with,
e.g., the input x = 2.

2. The location of the used devices in space (or space-time) also sets the conditions
that the box describing the devices must fulfil. For example, if a protocol demands
two devices, separated in space, that cannot communicate during the execution of
the protocol then the defined box should fulfil certain non-signalling conditions.1

3. When considering boxes that are used to execute a complex protocol, in which
many games are being played with the box (as done in the succeeding chapters),
we also need to take into account the type of interactionwhen defining the box. For
example, some protocols require boxes with which we can interact sequentially—
in each round of the protocol we give one input to the box, wait for the output, and
only then give the next input. Other protocols involve boxes which accepts all the

1Interestingly, if one considers protocols with more than two parties in which the devices can only
be used in specific space-time coordinates and merely assumes that the box modelling the devices
respects relativistic causality (in the sense that it cannot lead to casual loops) then the conditions
defining the box are different than the non-signalling ones [1]. This acts as another example for
how the specific use of the devices effects the mathematical model of the box.
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inputs and only then produces all the outputs. If we only give one input to such a
box we do not expect it to output anything and its action is undefined. Thus, these
differences in the behaviour of the boxes depend on the way we intend to use it
in the task of interest and effect the mathematical model of the considered boxes.

To grasp the dependence of the box on the considered task, as described above,
one can contrast it with the standard formalism used to define quantum states and
measurements. For example, the definition of a quantum state in terms of a density
operator is completely independent of thewaywemightwant tomeasure it. Consider,
for example, a quantum state used to play the CHSH game with the measurements
σx and σz for one of the parties. Even though we only intend to perform these
measurements, the formalism also tells us what will happen if we choose to measure
σy instead. This stands in contrast to Item 1 above.2

The current chapter as well as Chap. 6 are devoted to the way one models the
different boxes used in device-independent information processing, depending on
the considered setting and interaction with the boxes. In Chap.6 wewill be interested
in boxes, or devices, which can be used to implement certain protocols. Before we
explain how such boxes can be described let us focus on a simpler object—the
“single-round box”.

We think of a single-round box as illustrated in Fig. 5.1, as a small device that can
be used to play a single round of a Bell game. That is, in the case of the CHSH game,
for example, Alice andBob can input their bits x, y ∈ {0, 1} to the box and receive the
outcomes a, b ∈ {0, 1}. After that the box can no longer be used (i.e., Alice and Bob
cannot play another game with it). Mathematically, such a box can be described by a
non-signalling conditional probability distribution PAB|XY as explained in Sect. 3.1.
Physically, an example of a single-round box is a single EPR pair together with a set
of possible measurements for each party.

A single-round box is not a useful resource in the operational sense. Since our
starting point in the device-independent setting is that we do not know how the
device operates, we must interact with it to test it. However, since a single-round
box allows us to play just a single game we can hardly conclude anything regarding
its inner-working. One can imagine Alice and Bob playing the CHSH game with
their box and observing (a, b, x, y) = (0, 0, 0, 0). Then what? It can always be the
case that they are sharing a classical device that always outputs (a, b) = (0, 0) for
the inputs (x, y) = (0, 0). Thus, Alice and Bob cannot learn anything regarding,
e.g., the randomness of their outputs, from this single game. As the information
collected in a single game is not sufficient to test the box we start, instead, with an
assumption regarding the box, e.g., that it can be used to win the CHSH game with
winning probability ω. As will be shown below, various fundamental properties can
be concluded by starting with such an assumption.

2One can rightfully say that this property of boxes, among several other properties, renders them
an “unphysical description” of real systems and resources. With this respect, the formalism of the
so called “generalised probabilistic theories” [2, 3] is a more appropriate mathematical setting to
discuss physical theories which extend, or abstract, quantum physics. In contrast, boxes are merely
a simplified mathematical model sufficient for certain analyses.
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Fig. 5.1 A single-round
box. We think of a
single-round box as a small
device, shared between Alice
and Bob, which can be used
to play a single round of a
Bell game, such as the
CHSH game. It is described
by a conditional probability
distribution PAB|XY

Although a single-round box is not a valuable resource in practice, it is useful
as a simple abstract object that allows us to study the fundamental implications
of violating a Bell inequality (while putting aside many technical details that arise
when considering the complex devices used in protocols). Furthermore, it is the
goal of this thesis to explain how “single-round box statements” can be lifted to
operational statements regarding more complex scenarios such as the analysis of
device-independent protocols.

5.1 The Model

Mathematically, we model a single-round black box by a non-signalling conditional
probability distribution PAB|XY that can be used to play a single Bell game G defined
over the sets of inputs X ,Y and outputs A,B for Alice and Bob (see Sect. 3.2.1 for
complete definitions). PAB|XY is also sometimes referred to as a strategy for G.

As mentioned above, when considering single-round boxes one usually assumes
that the box PAB|XY can be used to win the gamewith a certain winning probabilityω.
That is, PAB|XY is such that

Ex,y

∑

a,b|
w(a,b,x,y)=1

PAB|XY (ab|xy) = ω , (5.1)

where the expectation Ex,y is defined with respect to the input distribution of the
considered game and w : A × B × X × Y → {0, 1} is the winning function of the
game.

Depending on the context, one can consider quantum single-round boxes or non-
signalling ones.
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5.1.1 Quantum Single-Round Boxes

When we say that a single-round box is quantum we mean that its inner-working can
be described within the quantum formalism. Specifically:

Definition 5.1 (Quantum single-round box) Given a Bell gameG, a quantum single-
round box is a quantum box PAB|XY , as in Definition 3.3, defined for the inputs and
outputs of the game G – X ,Y,A,B. That is, there exist a bipartite state ρQAQB and
measurements {Mx

a } and {My
b } such that

PAB|XY (ab|xy) = Tr
(
Mx

a ⊗ My
b ρQAQB

) ∀a, b, x, y . (5.2)

The quantum single-round box is said to win G with winning probability ω when the
state and measurements are such that Eq. (5.1) holds.

Note that mathematically a quantum single-round box is merely a quantum box
(Definition 3.3). What makes it single-round is that PAB|XY is defined for the inputs
and outputs of a single game G.

When considering cryptographic applications where a quantum adversary is
present we extend the box to the adversary. That is, we let ρQAQB E be the purifi-
cation of ρQAQB where E is a quantum register belonging the the adversary and
ρQAQB = TrE

(
ρQAQB E

)
is Alice and Bob’s marginal satisfying Eqs. (5.1) and (5.2).

5.1.1.1 Non-signalling Single-Round Boxes

Instead of restricting our attention to quantum boxes we can also consider non-
signalling single-round boxes. These are defined in a similar way to their quantum
counterparts.

Definition 5.2 (Non-signalling single-round box) Given a Bell game G, a non-
signalling single-round box is a non-signalling box PAB|XY , as in Definition 3.1,
defined for the inputs and outputs of the game G –X ,Y,A,B. That is, for all a ∈ A,
b ∈ B, x, x ′ ∈ X and y, y′ ∈ Y ,

∑

b

PAB|XY (a, b|x, y) =
∑

b

PAB|XY (a, b|x, y′)

∑

a

PAB|XY (a, b|x, y) =
∑

a

PAB|XY (a, b|x ′, y) .

The non-signalling single-round box is said to win G with winning probability ω

when PAB|XY is such that Eq. (5.1) holds.

Here aswell one can consider an extension of the single-round box to an additional
party describing a non-signalling (super-quantum) adversary. This will not be needed
in this thesis so we do not explain how this is done. The interested reader is referred
to [4, Sect. 3.2].
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5.2 Showcase: Device-Independent Quantum
Cryptography

As mentioned above, a single-round box is useful as a simple abstract object that
allows us to study the fundamental implications of violating a Bell inequality. More
specifically, certain properties of the box can be concluded if we assume to know the
probability of winning a Bell game using a single-round box described by PAB|XY .
We consider out showcase of device-independent cryptography as an example.

Themost crucial observationwhen considering device-independent cryptographic
protocols is the fact that high winning probability in a Bell game not only implies that
the measured system is non-local, but more importantly that the kind of non-locality
it exhibits cannot be shared: the higher the winning probability, the less information
any eavesdropper can have about the outcomes produced by the box.

There are different ways of making such a statement quantitive. One possible way
(that will also be of relevance later on) is to consider the conditional von Neumann
entropy H(A|XY E)where A is the random variable describing Alice’s outcome bit,
X and Y are the random variables describing the inputs of Alice and Bob and E is a
quantum register holding the quantum side information belonging to the adversary.
If the adversary is completely oblivious to the value of a bit A even given X , Y and
E then takes its maximal value H(A|XY E) = 1.

A tight trade-off between the winning probability of a single-round box ω and the
entropy H(A|XY E) generated by the box was derived in [5, 6] and is stated in the
following lemma.

Lemma 5.3 ([5, 6]3) For any quantum single-round box PAB|XY with winning prob-

ability ω ∈
[
3
4 ,

2+√
2

4

]
in the CHSH game,

H(A|XY E) ≥ 1 − h

(
1

2
+ 1

2

√
16ω (ω − 1) + 3

)
, (5.3)

where E denotes the quantum side-information belonging to the adversary and h(·)
is the binary entropy function.

The relation stated in Eq. (5.3) is plotted in Fig. 5.2. One can see that the entropy
increases as the winning probability ω increases. That is, the amount of secret ran-
domness inAlice’s outcome is directly related to thewinningprobability of the single-
round box. In particular, we observe that H(A|XY E) = 0 (i.e., the adversary knows
the value of A) for the optimal classical winning probability and H(A|XY E) = 1
(i.e., A looks completely random to the adversary) for the optimal quantum winning
probability.4 Note that there can be many different boxes PAB|XY (and hence exten-
sions to the adversary) with the same winning probability ω. That is, the assumption

3Lemma 5.3 is stated in the form appearing in [7]. To see how the original results of [5] can be used
to derive the lemma as we state it, follow the proof given in Appendix C.1.
4These two extreme cases are easy to understand. When the box employs a classical strategy the
adversary can simply hold a copy of A. When the box employs the optimal quantum strategy the
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Fig. 5.2 Secrecy versus winning probability ω in the CHSH game for a single-round box. Two
lower-bounds are shown: one for the conditional von Neumann entropy H(A|XY E) [5] and the
other for the conditional min-entropy Hmin(A|XY E) [8]; both bounds are tight. As soon as the
winning probability is above the classical threshold of 75% some secret randomness is produced

regarding the winning probability of the box does not pin down the full probability
distribution. The bound given in Eq. (5.3) is thus very strong—it says that for any
single-round box with winning probability ω and any purification to the adversary
the stated lower bound holds.

Instead of considering the von Neumann entropy as above, one can also study
lower-bounds on the conditional min-entropy Hmin(A|XY E) as a function of the
winning probability of a single-round box—as was done in [8]. We plot the resulting
bound in Fig. 5.2. As can be seen in the figure, for non-optimal Bell violation the
min-entropy can be significantly lower than the von Neumann entropy. Indeed, the
min-entropy is always upper-boundedby the vonNeumann entropy (hence the name).
Still, in some cases a bound on themin-entropy, rather than the vonNeumann entropy,
is needed or, at the least, is easier to derive. In particular, lower-bounds on the min-
entropy for single-round boxes can be found using general techniques based on the
semidefinite programming hierarchies of [9] while, up to date, there is no general
technique to derive (or even estimate) such bounds on the von Neumann entropy.

Similar bounds were derived also for other Bell inequalities. For example, lower-
bounds on the min-entropy produced by a single-round box were found as a function
of the violation of the Mermin inequality [10, Eq. (6)] and the tilted-CHSH inequal-
ity [11, Lemma 2]. Another result in the same spirit is that of [12, Sect. 5], where
a bound on the min-entropy is derived as a function of several Bell inequalities all
at once.5 Lower-bounds on the von Neumann entropy were derived as a function of

used state is the maximally entangled state. Then, due to monogamy of entanglement, the adversary
is completely decoupled from the Alice and Bob’s state. For more details see Sect. 4.2.
5That is, instead of assuming that we know just the winning probability of the single-round box in
a specific game, we assume we know its winning probabilities in several different games. In the
context of single-round boxes this is a stronger assumption regarding the device. However, in actual
application this is not an issue, as will be mentioned later on.
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the violation of the MDL inequalities [13, Sect. 3] and the MABK inequality [14,
Lemma S5].

Before continuing to the next chapter, we emphasise once again that single-round
statements as mentioned above should not be understood as operational statements.
If we are given a single-round box but we do not assume to know its winning prob-
ability ω then we cannot conclude anything about its properties (e.g., the entropy
of the outputs). When considering, for example, device-independent cryptographic
protocols one must test the device in order to estimate whether it can violate a Bell
inequality or not. This is done by playing several games with the device and col-
lecting statistic regarding its input-output behaviour. For this purpose we need to
consider multi-rounds boxes, as done in the following sections.
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