Chapter 1 ®)
Introduction Check for

1.1 Motivation

1.1.1 Device-Independent Information Processing

The study of quantum information unveils new possibilities for remarkable forms of
computation, communication, and cryptography by investigating different ways of
manipulating quantum states. Crucially, the analysis of quantum information pro-
cessing tasks must be based, in one way or another, on the actual physical processes
used to implement the considered task; the physical processes must be inherently
quantum as otherwise no advantage can be gained compared to classical information
processing. In most applications, the starting point of the analysis is an explicit and
exact characterisation of the quantum apparatus, or device, used to implement the
task of interest.

As an example, consider the task of quantum key distribution (QKD). In a QKD
protocol, the goal of the honest parties, called Alice and Bob, is to create a shared
key, unknown to everybody else but them. The protocol is intrinsically quantum:
To execute it Alice and Bob hold entangled quantum states in their laboratories and
perform quantum operations, or measurements, on the quantum states. Informally,
proving the security of a QKD protocol amounts to showing that no adversary can
hold (significant) information about the produced key. To prove security one usually
needs to have a complete description of the quantum devices, i.e., the quantum states
and measurements, used by Alice and Bob. For example, the security proof of the
celebrated BB84 protocol [1] builds on the assumptions that Alice and Bob hold two-
qubit states and are able to measure them in a specific way. When these assumptions
are dropped, the protocol is no longer secure [2]. Thus, if Alice and Bob wish to use
their quantum devices in order to implement a QKD protocol they need to first make
sure that the device is performing the exact operations described by the protocol.
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2 1 Introduction

Unfortunately, in practice we are unable to fully characterise the physical devices
used in quantum information processing tasks. Even the most skilled experimentalist
will recognise that a fully characterised, always stable, large-scale quantum device
that implements a QKD protocol is extremely hard to build. If the honest users’ device
is different from the device analysed in the accompanying security proof, security is
no longer guaranteed and imperfections can be exploited to attack the protocol.

Noise and imperfections cannot be completely avoided when implementing quan-
tum information processing tasks. Furthermore, imperfections being imperfections,
one also cannot expect to perfectly characterise them. That is, we cannot say for
sure what exactly is about to go wrong in the quantum devices: Maybe the measure-
ments are not well-calibrated, perhaps some noise introduces correlations between
particles which are intended to be independent, or interaction with the environment
may possibly lead to decoherence. Even the advent of fault-tolerant computation, if
achievable one day, cannot resolve all types of errors if no promise is given regarding
the number of errors and their, possibly adversarial, nature. Once we come to terms
with the above, a natural question arises:

Can quantum information processing tasks be accomplished by utilising
uncharacterised, perhaps even adversarial, physical devices?

An adversarial, or malicious, device is one implemented by a hostile party inter-
ested in, e.g., breaking the cryptographic protocol being executed. Clearly, this is
an extreme scenario to consider. Note, however, that even if the manufacturer of the
device is to be trusted, he may still be incompetent—the physical apparatus will be
subject to uncharacterised imperfections even though the manufacturer is honest and
has good intentions.

The field of device-independent information processing addresses the above ques-
tion. In the device-independent framework we treat the physical devices, on which
a minimal set of constraints is enforced,' as black boxes—Alice and Bob hold a
box and can interact with it classically (as explained below) to execute the consid-
ered protocol, but they cannot open it to assess its internal workings.” They have no
knowledge regarding the physical apparatus and do not trust that it works as alleged
by the manufacturer of the device.

What can Alice and Bob do with the black box? They can interact with it by
pushing buttons, each associated with some classical input (e.g., a bit) and record the
classical outputs produced by the box in response to pressing its buttons. Thus, the

IClearly, one cannot perform any cryptographic task if the device includes a transmitter that just
sends all the information to the adversary. Few minimal assumptions regarding the device will be
needed; see Sect. 3.3. Depending on the considered task, some of the assumptions can be enforced
in practice while others may require some minimal level of trust.

ZNotice that even if Alice and Bob did have some information about the physical apparatus, the
device-independent framework does not allow them to take advantage of this information in the
analysis. For example, Alice and Bob may be able to distinguish a device that uses the polarisation
of a photon to encode a qubit from one based on superconducting qubits (even the author is able to
do that). Yet, this information is not to be used when treating the device as a black box.
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only information available to Alice and Bob is the observed classical data created
during their interaction with the black box. (Hence the name “device-independent”).

Since the device is not to be trusted, the classical information collected by Alice
and Bob during the interaction with the box must allow them, somehow, to test the
possibly faulty or malicious device and decide whether using it, e.g., to create their
keys by executing a QKD protocol, poses any security risk. A protocol or task is
said to be device-independent if it guarantees that by interacting with the device
according to the specified steps the parties will either abort, if they detect a fault, or
accomplish the desired task (with high probability).

The possibility of device-independent information processing is quite surpris-
ing. Indeed, restricting ourselves to classical physics and classical information, it is
impossible to derive device-independent statements.® The most important ingredients
for device-independent protocols are the existence of Bell inequalities and quantum
“non-local” correlations that violate them [3]. These two facts are far from trivial
and play a fundamental role in quantum theory. In the context of device-independent
information processing, a Bell inequality acts as a “test for quantumness” that allows
the users of the device to verify that their device is “doing something quantum”
and cannot be simulated by classical means. This “quantumness”, of a specific form
discussed below, is what allows us to, e.g., prove security of a QKD protocol.

A Bell inequality can be thought of as a multi-player game, also called a non-
local game, played by the parties using the device they share. A non-local game
goes as follows. A referee asks each of the (cooperating) parties a question chosen
according to a given probability distribution. The parties need to supply answers
which fulfil a pre-determined requirement according to which the referee accepts
or rejects the answers. In order to do so, they can agree on a strategy beforehand,
but once the game begins communication between the parties is not allowed. If the
referee accepts their answers the players win. The goal of the parties is, naturally, to
maximise their winning probability in the game.

Different devices held by the parties implement different strategies for the game
and may lead to different winning probabilities. In the device-independent setting we
are interested in games that have a special “feature”—there exists a quantum device
which achieves a winning probability in the game that is greater than all classical,
local, devices.

Crucially, the winning probability in the game does not merely indicate that the
device is doing something quantum but how non-classical it is. Relations are known
between the probability of winning some non-local games and various other quanti-
ties. Some examples for quantities of interest are the entropy produced by the device,
the amount of entanglement consumed to play the game, or the distance (under an
appropriate distance measure) of the device from a specific fully characterised quan-
tum device. Such relations lie at the heart of any analysis of device-independent
information processing tasks.

3Consider for example the case of device-independent QKD. Classical devices can always be pre-
programmed by the adversary to output a fixed key of her choice.
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Although above we only mentioned device-independent QKD as an example for
a device-independent task, the framework of device-independence does not only
concern the more-than-average paranoid cryptographers. The framework fits any
scenario in which, a priori, we do not want to assume anything about the utilised
devices and their underlying physical nature. To reassure the reader, we give three
additional examples.

Bell inequalities were originally introduced in the context of the foundations of
quantum mechanics in order to resolve the EPR paradox [4]. When trying to test
quantum theory against an alternative classical world that admits a “local hidden
variable model” (or, in other words, falsify all classical explanations of a behaviour
of a physical system), one cannot assume that quantum theory holds to begin with and
must treat the device as a black box without assuming to know its internal workings.

A second example is that of blind tomography, also termed self-testing. Assume a
quantum state is being produced in some experimental setting. Quantum tomography
is the process of estimating which state is being created by performing measurements
on copies of the state and collecting the statistics [5]. To get a meaningful estimation,
a certain set of measurements needs to be used, depending on the dimension of the
state. In other words, in order to estimate and characterise the quantum state, we must
be able to first characterise the measurement devices. Blind quantum tomography
refers to the process in which the measurements are also unknown. In such a case,
nothing but the observed statistics can be used [6, 7].

Another interesting example is that of verification of computation—given a device
claimed to be a quantum computer, how can human beings, who cannot perform
quantum computations by themselves, verify that this is indeed the case? There
are different ways of addressing this question, but in all cases we would like to
make statements without presuming that the considered devices are performing any
particular quantum operations (see, e.g., [8]).

The device-independent framework becomes relevant whenever one wishes to
make concrete statements without referring to the underlying physical nature of
the utilised devices and the types of imperfections or errors that may occur. The
derived statements are extremely strong. Device-independent security, for example,
is regarded as the gold standard for quantum cryptography, since attacks exploiting
the mismatch between security proof and implementation are no longer an issue.
Making such strong statements comes at a price. The analysis of device-independent
tasks is, a priori, extremely challenging: We treat the devices as black boxes and thus
the proofs need to account for an almost arbitrary, even adversarial, behaviour of the
devices. Having good techniques for the analysis at hand is therefore crucial. This is
further discussed in the following section.

1.1.2 Reductions to IID

In the device-independent setting one does not have a description of the specific
device used in the considered task and, hence, must analyse the behaviour of arbitrary
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devices. For example, when proving security of cryptographic protocols we clearly
need to consider any possible device that the adversary may prepare. Unfortunately,
analysing the behaviour of arbitrary devices can be wearying at best and infeasible
at worst. Let us start by explaining why this is the case.

As mentioned above, the ability to achieve device-independent information pro-
cessing tasks is based on the existence of non-local games and quantum strategies
to play them that can beat any classical strategy. To perform complex tasks, such
as device-independent cryptography, employing the device to play a single non-
local game is clearly not enough; we cannot conclude any meaningful information
regarding the device by asking it to produce outputs only for a single game. To put
quantum information to work we must consider protocols in which the device is
used to play many non-local games. This way, the parties executing the protocol can
collect statistics and test their device. If the device does not pass the test the parties
abort the protocol (see Protocol 1.1 below for an example).

The reason for the difficulty of the analysis lies in the fact that one needs to exam-
ine the overall behaviour of the device during the entire execution of the protocol,
consisting of playing many games with the device, instead of its behaviour in a sin-
gle game. As the device is uncharacterised its actions when playing one game may
depend on other games.

In general, there are two families of devices able to play many games that one
can consider—parallel and sequential devices. A parallel device is one which can
be used to play all the games at once. That is, the parties executing the protocol are
instructed to give all the inputs, for all the games, to the device and only then the
device produces the outputs for all the games. In such a case, the actions of the device
in one game may depend on all other games.

A sequential device, on the other hand, is used to play the games one after the
other, i.e., the parties give the device the first inputs and wait for its outputs and only
then proceed to play the next game. In between the games, some communication
may be allowed between the parties and the different components of the device.
In the case of a sequential device, the behaviour of the device in one game may
depend on all previous games as well as communication taking place during the time
between the games.* In both cases, the input-output behaviour of the devices gets
quite complicated.

One common assumption introduced to simplify the analysis of device-
independent information processing tasks is the so called “independent and iden-
tically distributed” (IID) assumption. As the name suggests, a device is said to be
an IID device if it plays each of the games independently of the others and utilises
the same strategy for all games. An IID device is a special case of both parallel and
sequential devices and, since it is highly structured, analysing its behaviour can be
significantly simpler than analysing the more general devices; see Fig. 1.1.

The IID assumption heavily restricts the structure of the device. It is therefore not
clear at all that analysing device-independent information processing tasks under
the IID assumption is sufficient. Returning to the example of device-independent

“The formal definitions of parallel and sequential devices are given in Chap. 6.
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Parallel devices IID devices Sequential devices

Simple analysis

Fig. 1.1 The relation between the different sets of devices. The intersection of the sets of sequential
and parallel devices includes the set of IID devices. The analysis of IID devices, i.e., that done under
the IID assumption, is rather simple

cryptography, an adversary who can prepare arbitrary devices (let it be sequential or
parallel) may be strictly stronger, i.e., can get more information about the outputs
of the honest parties, than an adversary restricted to IID devices. Thus, simplifying
the analysis by using the IID assumption comes at the cost of weakening the final
statement.

The main question addressed in this thesis is the following:

Can the analysis of device-independent information processing tasks be
reduced to that performed under the IID assumption?

The term reduction is widely used in theoretical computer science and is meant to
describe the process of showing that one problem is as hard/easy as another. In our
case, we ask whether analysing general devices is as easy as analysing IID devices or,
in other words, does an analysis performed under the IID assumption imply results
concerning general devices (i.e., statements which are not restricted to the IID case).
A priori, it is not at all obvious that this is the case; clearly, not all devices are IID
devices. A positive answer to the above question means that even though there exist
devices that cannot be described as IID ones, it is sometimes possible to restrict the
attention solely to IID devices and the rest will follow.

The idea of applying a reduction to IID as a proof technique was conceived® in [9],
following which a concrete reduction relevant for applications was developed in [10]
and used to reduce the security proof of QKD protocols to that done under the IID
assumption.® As such, [10] acts as the first example for a proof using a reduction to
IID.

SPerhaps surprisingly, as far as the author is aware the idea of a “reduction to IID” does not appear
or used in classical information processing and cryptography.

SIn the context of QKD, security under the IID assumption is called security against collective
attacks.



1.1 Motivation 7

Analysing information processing tasks via a reduction to IID has several signifi-
cant advantages. Analysing IID devices is relatively easy and almost always intuitive.
Thus, having tools that allow us to extend the analysis to the general case greatly
simplifies proofs.” The simplicity, in turn, allows for clear and modular statements
as well as quantitively strong results.®

The importance of quantitively strong results is obvious, especially when dis-
cussing quantum information processing tasks: If we wish to benefit from the new
possibilities brought by the study of quantum information, we must be able to imple-
ment the protocols in practice. Without strong quantitive bounds on, e.g., key rates
and tolerable noise levels, we cannot take the device-independent field from theory
to practice. Clarity and modularity should also not be dismissed. Science is not a
“one-man’s job”; clarity and modularity are crucial when advancing science as a
community. Indeed, complex and fine-tuned proofs are hard to verify, adapt to other
cases of interest, and quantitively improve.

Another advantage of reducing a general analysis to IID is that it allows us to
separate the wheat from the chaff. The essence of the arguments used in proofs of
information processing tasks almost always enter the game in the analysis of the IID
case. Proofs that address the most general scenarios directly (i.e., not via a reduction
to IID) are at risk of obscuring the “physics” by more technical mathematical steps.
When using a reduction to IID this is (mostly) not the case—the essence, or the
interesting part, lies in the analysis of IID devices while the technicalities are pushed
into the reduction itself.

As we will show in the thesis, reductions to IID can also be developed and
employed in device-independent quantum information processing. We present two
techniques that can be used as reductions to IID, accompanied by two showcase-
applications that illustrate how the reductions can be used and their benefits in terms
of the derived theorems. The following section presents the content of the thesis in
more detail.

1.2 Content of the Thesis

The goal of the thesis is to explain how reductions to IID can be performed in the
context of device-independent information processing. To this end, after explaining
the different mathematical objects that one needs to consider and their relevance, we
discuss the IID assumption and its implications in the device-independent setting.
We then present two techniques, or tools, that can be used as reductions to IID in

"The reductions themselves are not necessarily simple, but that is fine. They are technical tools that
are only proved once and can then be used to simplify many other proofs. The researcher using the
reduction does not need to reprove anything.

8This is in agreement with Occam’s razor; while there is no notion of the “right proof” out of several
possible proofs (assuming they are all mathematically correct), the simplest proof usually turns out
to be the most useful and insightful one.
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Fig. 1.2 Reductions to IID in device-independent information processing. de Finetti reductions
can be used to reduce the study of parallel devices to IID device (see Chaps. 8 and 10), while the
entropy accumulation theorem can be used when dealing with sequential devices (Chaps.9 and 11)

the analysis of device-independent information processing tasks, one relevant for
parallel devices and the other for sequential ones.

To better comprehend the topic and exemplify the usage of the two reductions,
we consider two applications as showcases, namely, parallel repetition of non-local
games and device-independent cryptography. These are studied in detail throughout
the chapters of the thesis, while taking the perspective of reductions to IID.

1.2.1 Reductions

Two types of reductions are presented. The reductions are applicable in different
scenarios and give statements of different forms; see Fig. 1.2.

1.2.1.1 de Finetti Reduction for Correlations

The first reduction, the topic of Chap.8, is called “de Finetti reduction for correla-
tions” and was developed in [11]. The de Finetti reduction is relevant for the analysis
of permutation invariant parallel devices. Permutation invariance is an inherent sym-
metry in many information processing tasks, device-independent tasks among them.
Thus, analysing permutation invariant devices is of special interest.

In short, in our context, a de Finetti reduction is a theorem that relates any permu-
tation invariant parallel device to a special type of device, termed de Finetti device,
which behaves as a convex combination of IID devices (see Chap.8 for the for-
mal definitions). The given relation acts as a reduction to IID when considering
tasks admitting a permutation invariance symmetry and in which a parallel device
needs to be analysed. Our showcase of parallel repetition of non-local games fits this
description and thus can benefit from our de Finetti reduction.
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Various quantum de Finetti theorems were know prior to our work and were suc-
cessfully used to substantially simplify the analysis of many quantum information
tasks. However, they cannot be applied in the device-independent setting, since they
make many assumptions regarding the permutation invariant quantum states being
analysed and therefore cannot accommodate uncharacterised devices. The unique
property of the reduction presented in Chap. 8 is that, apart from permutation invari-
ance, it makes no assumptions whatsoever regarding the systems of interest and is
therefore applicable in the analysis of device-independent information processing.

For pedagogical reasons, we choose to present in the thesis a de Finetti reduction
which is relevant to the case of bipartite devices, i.e., devices which are shared
between two parties, Alice and Bob. The statements can be extended to any number
of parties, as shown in [ 11]; the proofs of the general case do not include fundamental
insights on top of those used in the bipartite case but require somewhat heavy notation.
We therefore omit the more general theorems and proofs (while supplying the full
analysis of the bipartite case in Chap. 8), with the hope of making the content more
inviting for readers unfamiliar with the topic.

Apart from presenting the reduction and the possible ways of using it, Chap. 8
also includes a discussion of ways in which it may be possible to extend or modify
the reduction (to be more specific, we mainly present impossibility results). This
content does not appear in detail in other published papers and can be relevant for
future studies of the topic.

1.2.1.2 Entropy Accumulation Theorem

The second reduction to IID that can be used in the device-independent setting is the
entropy accumulation theorem (EAT) [12] and is the topic of Chap.9. The EAT can
be seen as an extension of the entropic formulation of the asymptotic equipartition
property (AEP) [13, 14], applicable only under the IID assumption, to more general
sequential processes.

The AEP, presented in Chap. 7, basically asserts that when considering IID random
variables, the smooth min- and max-entropies of the random variables converge to
their von Neumann (or Shannon, in the classical case) entropy, as the number of copies
of the random variable increases. The AEP is of great importance when analysing,
both classical and quantum, information processing tasks under the IID assumption:
It explains why the von Neumann entropy is so important in information theory—the
smooth entropies, which describe operational tasks, converge to the von Neumann
entropy when considering a large number of independent repetitions of the relevant
task.’

9A commonly used example is that of “data compression”. There, one would like to encode an
n bit string using less bits. If we allow for some small error when decoding the data, the smooth
max-entropy roughly describes the number of bits needed. However, for a large enough number of
independent repetitions, less bits suffice and the exact amount is governed by the Shannon entropy.
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Moving on from the IID setting, the EAT considers a certain class of quantum
sequential processes. That is, in our context, it is relevant when studying sequential
devices."” Similarly to the AEP, when applicable, the EAT allows one to bound the
total amount of the smooth min- and max-entropies using the same bound on the von
Neumann entropy calculated for the IID analysis, i.e., the one used when applying
the AEP. In this sense, the EAT can be seen as a reduction to IID—with the aid of
the EAT the analysis done under the IID assumption using the AEP can be extended
to the one relevant for sequential devices.

The proof of the EAT is not presented in the thesis (and should not be attributed
to the author). We focus on motivating, presenting, and explaining the EAT in the
form relevant for device-independent quantum information processing [15] (as well
as quantum cryptography in general), so it can be later used in our showcase of
device-independent cryptography. The pedagogical presentation of the EAT given in
Chap. 9 does not appear in full in any other published material and we hope that it
will make the theorem more broadly accessible.

Before presenting our showcases, let us remark that both of the reductions men-
tioned above are not “black box” reductions, in the sense that one cannot simply say
that if a problem is solved under the IID assumption then it is solved in the general
case. In particular, one should be familiar with the exact statements of the reductions
(though not with their proofs) as well as the analysis of the considered task under the
[ID assumption in order to apply the reductions (or even just check whether they are
applicable or not). When discussing the reductions in Chaps. 8 and 9, we explicitly
explain in what sense the presented tools count as reductions to IID techniques.

1.2.2 Showcases

We use two showcases throughout the thesis in order to exemplify the approach of
reductions to IID and the more technical usage of the presented reductions. The
showcase of parallel repetition of non-local games uses the de Finetti reduction
technique while the showcase of device-independent cryptography builds on the EAT.
As mentioned in Sect. 1.1.2 above, we believe that analysing device-independent
tasks using a reduction to IID has its benefits. The derived theorems are, arguably,
more intuitive and insightful and, in addition, give strong quantitive results.

We shortly discuss below each of our showcases. We present informal theorems
describing the results proven for the showcases. The informal theorems shed light
on the fundamental nature and strength of the approach of reductions to IID.

10T be more precise, some requirements regarding the process, or protocol, in which the sequential
device is to be used must hold. This is explained in details in Chap. 9.



1.2 Content of the Thesis 11
1.2.2.1 Non-signalling Parallel Repetition

Our first showcase is that of non-signalling parallel repetition. Chapter 10 presents
our formal statements and proofs, which previously appeared in [16]. As before, we
focus in the thesis on the bipartite case for pedagogical reasons; [16] includes the
general analysis, which is valid for any number of parties playing the game.

Non-local games, as mentioned in Sect. 1.1.1, are games played by several coop-
erating parties, also called players. A referee asks each of the players a question
chosen according to a given probability distribution. The players need to supply
answers which fulfil a pre-determined requirement according to which the referee
accepts or rejects the answers. In order to do so, they can agree on a strategy before-
hand, but once the game begins communication between the parties is no longer
allowed. If the referee accepts their answers the players win.

In the language used so far, we can think of a device as implementing a strategy
for the game. Depending on the field of interest, one can consider classical, quantum,
or non-signalling devices, the latter referring to devices on which the only restriction
is that they do not allow the players to communicate. We focus below on the case of
non-signalling strategies, or devices.

One of the most interesting questions regarding non-local games is the question of
parallel repetition. Given a non-local game with optimal winning probability 1 — «
using non-signalling strategies, we are interested in analysing the optimal winning
probability of a non-signalling strategy in the repeated, or threshold, game. A thresh-
old game is a game in which the referee asks the players to play n € N instances of
the non-local game, all at once, and the players’ goal is to win more than 1 — o +
fraction of the games, for § > 0 a parameter of the threshold game. The parallel rep-
etition question concerns itself with upper-bounding the optimal winning probability
in the threshold game, as the number of games n increases.'!

One trivial strategy that the players can use in the threshold game is a strategy
employing a non-signalling IID device. That is, they simply answer each of the n
questions independently using the optimal non-signalling device used to play a single
game. Using an [ID device, the fraction of successful answers is highly concentrated
around 1 — « and the probability to win more thana 1 — a 4 [3 fraction of the games
decreases exponentially fast with n/3?, as follows from the optimal formulation of
the Chernoff bound.

However, since the players receive from the referee all the questions to the n
instances of the non-local game at once, an IID device is not the most general device
that they can use. Instead, they can use any non-signalling parallel device to imple-
ment their strategy. As parallel devices are strictly more general than IID ones, using
parallel devices in fact allows them to win the threshold game with higher probability
than in the IID case.'? Still, one may ask how the winning probability behaves for a

UThis is actually a generalisation of the more commonly known parallel repetition question, in
which one wishes to upper-bound the probability of winning all the n games.

12When first encountering the question of parallel repetition it may seem surprising that the players
can do better using a parallel device, but this is indeed the case; see Sect.4.1.2 a concrete example.
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sufficiently large number of repetitions n and, especially, whether it decreases in a
similar fashion as for IID strategies.

To answer the above question, we wish to reduce the study of strategies employing
parallel devices to those using IID devices. A crucial observation that allows us to do
so is that the threshold game itself admits a permutation invariance symmetry (i.e.,
the order of questions-answers tuples does not matter; see Chap. 10 for the details)
and, therefore, we can assume without loss of generality that the optimal strategy
is also permutation invariant. Now that we can restrict our attention to permutation
invariant parallel devices, de Finetti reductions become handy and can be used as a
tool for reduction to IID.

In Chap. 10 we consider the case of non-signalling strategies for complete-support
games. A complete-support game is one in which all possible combinations of ques-
tions being sent to the players have some non-zero probability of being asked by the
referee. We prove the following via a reduction to IID:

Theorem 1.1 (Informal) Given a game with optimal non-signalling winning prob-
ability 1 — «, for any 3 > 0, the probability to win more than a fraction 1 — o + (3
of n games played in parallel using a non-signalling strategy is exponentially small
in nf3%, as in the IID case.

Perhaps surprisingly, while the parallel repetition question is a well-investigated one,
an exponential decrease that matches the IID case, as far as we are aware, was not
known prior to our work (also not for classical or quantum strategies). In the context
of reductions to IID, however, achieving the same behaviour as in the IID case is not
unexpected.

To prove Theorem 1.1 we first prove another statement that has a “reduction to
[ID flavour” and is perhaps of more fundamental nature. To present it, however, we
need to first set some notation.'?

As mentioned above, we focus on two-player games, i.e., games played by
Alice and Bob (and the referee). A parallel device used for the threshold game
can be described using a conditional probability distribution P4p xy, where A =

Ay, ..., A, isthe random variable describing Alice’s answers in the threshold game
(A; being her answer in the i’th game) and, similarly, B = By, ..., B, describes
Bob’s answers, and X = X;,..., X, and Y =Y,...,Y, are Alice’s and Bob’s

questions, respectively.
When we say that a parallel device is non-signalling, we mean that it cannot be used
as means of communication between the parties. The behaviour of the device in one

13We are jumping ahead now with the aim of being able to explain Theorem 1.2 to readers who
are already somewhat familiar with device-independent information processing and non-signalling
systems. For a reader unfamiliar with these topics, the mathematical statements may seem puzzling
without further explanations. We will get back to the discussed theorem in Chap. 10, after giving all
the preparatory information throughout the thesis. A reader unfamiliar with the used terminology
can therefore skip the current discussion without the risk of missing out.
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game, however, may depend on the other games.'* Mathematically, this means that,
while the marginals P4y and Ppy are proper conditional probability distributions,
objects such as P4, |x, are not well-defined.

During the threshold game, the device used by the players produces the observed
data in the n games: @ =ay,...,a,, b="by,...,b,, x =x1,...,x,, and y =
Y1, ..., Yu. These are distributed according to Q?’;PA Bixy, where Qxy denotes the
distribution used by the referee to choose the questions in a single non-local game.
Q?’; is then the IID distribution according to which the questions are chosen in the
threshold game. The observed data a, b, x, y can be used to calculate frequencies

and define a “frequencies’ conditional probability distribution”, which we denote by

freq(a,b,x,y) .
Oupxy , as:

i @by =@ 5.5 9|

Ol abs5) =

n
and define
) Ofreq(a,b,x,y)
ofrea@bx.y) _ Dapxy "~ (L.
AB|XY - Qxy ’ .

freq(a,b,x,y) . . .
Ounxy can be seen as a (not necessarily physical) device, or a strat-

egy, for a single game. Starting with IID devices, which can be written in the
form of?!? Papixy = O%’MY’ it holds that if the device O4p|xy is non-signalling
then P4 g xy is non-signalling and vice versa. This also implies that, for sufficiently
large n, O:e;‘(;’f’x’y ) s non-signalling with high probability.

For anon-1ID, but non-signalling, device P4 g xy, however, it is not clear at all that
Og?‘(;’f’x’y  should be non-signalling as well. Using a reduction to IID, the following

theorem is proven:

Theorem 1.2 (Informal) LetP 4 xy be a non-signalling permutation invariant par-
allel device and Ogel;ll(;'yb'x’y Y as in Eq. (1.1). Then, for sufficiently large n, Ogi;]‘(;’yb’x’y )
is close to a non-signalling device with high probability. In particular, this means
that the observed data produced by a non-signalling permutation invariant parallel
device can be seen as if, with high probability, it was sampled using an IID device
O%%\xy in which every single device O sp|xy is close to a non-signalling one.

Theorem 1.1 follows directly from Theorem 1.2 by noting that the number of

. . . . fi Jbox,
games won in a given use of the device can be directly read from O Zi(’ll(; Y *¥ and

that if Og‘?‘(;f’x’y ) is close to a non-signalling device then its winning probability
cannot be too far from the optimal non-signalling winning probability 1 — a.

141n other words, the local strategy of each player does require “communication between the games”:
In order to (locally) answer the i’th question received from the referee, the player needs to know
his j’th question (with i # j).

15 An TID device is illustrated in the bottom of Fig. 1.2. We can then think of each copy O |xy as
describing a single copy of the smaller boxes in the figure, while P4 g xy = O%’%‘ xy described the
device including all the copies together.
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Protocol 1.1 Device-independent quantum key distribution protocol (simplified
example)
Given: A device for Alice and Bob that can play the chosen Bell game repeatedly

1: For every round i € [n] do Steps 2-3:

2:  Alice and Bob choose X;, Y; at random.

3:  They input X;, ¥; to the device and record the outputs A;, B;.

4: Parameter estimation: Alice and Bob estimate the average winning probability in the game
from the observed data. If it is below the expected winning probability, wexp, they abort.

5: Classical post processing: Alice and Bob apply an error correction protocol and a privacy
amplification protocol (both classical) on their raw data A and B.

1.2.2.2 Device-Independent Quantum Cryptography

Chapter 11 is devoted to the analysis of our second showcase—device-independent
cryptography. The chapter’s content previously appeared in [17]. The most challeng-
ing cryptographic task in which device-independent security has been considered is
device-independent QKD (DIQKD); we will use this task as our main example. In
DIQKD the goal of the honest parties, called Alice and Bob, is to create a shared
key, unknown to everybody else but them. To execute the protocol they hold a device
consisting of two parts: Each part belongs to one of the parties and is kept in their
laboratories. Ideally, the device performs measurements on some entangled quantum
states it contains.

The basic structure of a DIQKD protocol is presented as Protocol 1.1. The protocol
consists of playing n non-local games, one after the other, with the given untrusted
device and calculating the average winning probability from the observed data (i.e.,
Alice and Bob’s inputs and outputs). If the average winning probability is below the
expected winning probability wey, defined by the protocol, Alice and Bob conclude
that something is wrong and abort the protocol. Otherwise, they apply classical post-
processing steps that allow them to create identical and uniformly distributed keys.
(The full description of the considered DIQKD protocol is presented and discussed
in the following chapters).

The central task when proving security of DIQKD consists in bounding the
information that an adversary, called Eve, may obtain about Alice’s raw data A =
Ay, ..., A, used to create the final key (see Protocol 1.1). More concretely, one needs
to establishing a lower bound on the smooth conditional min-entropy H; (A|E),
where E is Eve’s quantum system, which can be initially correlated to the device
used by Alice and Bob in the protocol and € > 0 is one of the security parameters of
the protocol (see Sect.4.2). The quantity H;; (A|E) determines the maximal length
of the secret key that can be created by the protocol. Hence, proving security amounts
to lower-bounding H,,; (A|E). Evaluating the smooth min-entropy H,,, (A|E) of a
large system is often difficult, especially in the device-independent setting where
Alice and Bob are using an uncharacterised device, which may also be manufactured
by Eve.
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The IID assumption is commonly used in order to simplify the calculation
of H:, (A|E). In the IID case we can assume that Alice and Bob use an IID device
to execute the protocol and, hence, each A; is produced independently of all other
outputs. Furthermore, one can assume that Eve’s quantum information also takes
the IID form E = E|, ..., E,, where each E; holds information only regarding A;.
Then, the AEP, briefly mentioned above, can be used to calculate an upper-bound
on HZ, (A|E) and, by this, prove security.

The most general adversarial device to consider is, clearly, not an IID one. Due to
the sequential nature of the protocol, the relevant devices to consider are sequential
devices. As sequential devices are more complex than IID ones, security proofs for
DIQKD that proved security by addressing the most general device directly, e.g., [8,
18], had to use techniques which are far more complicated than the ones used for
security proofs under the IID assumption, e.g., in [2]. Consequently, the derived
security statements were of limited relevance for practical experimental implemen-
tations; they are applicable only in an unrealistic regime of parameters, e.g., small
amount of tolerable noise and large number of signals.

We take the approach of reductions to IID in order to prove the security of our
DIQKD protocol. In particular, we leverage the sequential nature of the protocol, as
well as the specific way in which classical statistics are collected by Alice and Bob,
to prove its security by reducing the analysis of sequential devices to that of IID
devices using the EAT. The resulting theorem can be informally stated as follows:

Theorem 1.3 (Informal) Security of DIQKD in the most general case follows from
security under the IID assumption. Moreover, the dependence of the key rate on the

number of rounds of the protocol, n, is the same as the one in the IID case, up to
terms that scale like 1//n.

On the fundamental level, the theorem establishes the a priori surprising fact that
general quantum adversaries are no stronger than an adversary restricted to preparing
IID devices. As mentioned in Sect. 1.1.2, this does not mean that the most general
device that an adversary can prepare is an IID device. Instead, it means that the
adversary (at least asymptotically) does not benefit form preparing more complex
devices.

On the quantitive level, taking the path of a reduction to IID results in a proof
with several advantages. In particular, it allows us to give simple and modular secu-
rity proofs of DIQKD (as well as other device-independent protocols) and to extend
tight results known for DIQKD under the IID assumption to the most general set-
ting, thus deriving essentially optimal key rates and noise tolerance. This is crucial
for experimental implementations of device-independent protocols. Our quantitive
results have been applied to the analysis of the first experimental implementation of a
protocol for randomness generation in the fully device-independent framework [19].
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1.3 How to Read the Thesis

We review the structure of the thesis. Depending on the reader’s main interest and
prior knowledge, different chapters of the thesis may or may not be relevant.

Chapters2 and 3 give preliminary information. Chapter 2 presents general intro-
ductory information and notation. We remark that in most parts of the thesis, general
intuition is sufficient and the exact mathematical definitions are not that important
in order to understand the essence. Therefore, even a reader unfamiliar with, e.g.,
the quantum formalism or the mathematical definitions of the various entropies, may
skip Chap.?2 in the first reading and get back to the relevant definitions appearing in
it only when wishing to get a better understanding of the complete technical details.

Chapter3 deals with basic information and terminology related to device-
independent information processing. Readers who are unfamiliar with, e.g., non-
locality, should first of all read this chapter. Readers already familiar with some
device-independent tasks may skip the chapter and come back to it if needed.

Chapter4 acts as an introduction to our showcases; no theorems or proofs are
given there. Thus, readers who are familiar with the question of parallel repetition
and the task of DIQKD may pass over this chapter.

Chapters 5 and 6 concern themselves with the mathematical objects that we con-
sider in the thesis—the “black boxes” that model the different types of devices.
Chapter 5 defines what we call a “single-round box”, which is, in a sense, a device
that can be used to play only a single non-local game. The single-round box acts as
an abstract object that allows us to study the fundamental aspects of non-locality,
without needing to deal with complex protocols. As we will see, it captures the
“physics” of the problem at hand. Hence, studying single-round boxes is the first
step in any analysis of device-information processing task. In Chap. 6, we formally
define parallel and sequential boxes, which give the mathematical model for parallel
and sequential devices, and discuss the relations between them.

After setting the stage, we are ready to start discussing the method of reductions
to IID. The first step in this direction is done in Chap. 7, where we discuss the IID
assumption and see how it can be used to simplify the analysis of device-independent
tasks and, in particular, our showcases. This chapter also presents the asymptotic
equipartition property, which acts as a valuable mathematical tool when working
under the IID assumption.

The tools used as reductions, i.e., the de Finetti reduction and the entropy accu-
mulation theorem, are the topics of Chaps. 8 and 9, respectively. Chapters 10 and 11
are devoted to the analysis of our showcases via a reduction to IID.

Clearly, many open questions and directions for future works arise. We discuss
open questions specific for our showcases within the relevant chapters. In addition,
the thesis ends with an outlook in Chap. 12 including questions that, in order to
answer, require further development of the toolkit of reductions to IID.

A reader interested in the topic of reductions to IID in general is recommended to
read the thesis from the beginning to the end, following the order of the chapters. On
the other hand, a reader who is mainly interested in one of the showcases may focus
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Table 1.1 Reading suggestion according to the reader’s main interest

Reader’s interest Recommended sections
Reductions to 1ID All chapters

Parallel repetition 4.1,5.1,6.1,7.1,7.3.1, 8, 10
Device-independent cryptography 42,5,62,7.1,72,7.3.2,9,11

only on the sections relevant for the showcase of interest. To assist such readers, we
list in Table 1.1 the relevant sections (in the order in which they should be read) for
each of the showcases.
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