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Supervisor’s Foreword

Even the most sophisticated physics experiment suffers from the problem that our
control and knowledge of the relevant parameters is limited. Take, for example, a
single-particle interference experiment. To realise it, we would require a source that
emits one single particle towards an interferometer and a detector that tells us where
that particle arrived. Any real detector has, however, a finite efficiency and may thus
only register a fraction, say 1=4, of the incoming particles. Conversely, a realistic
source may with a certain probability, say again 1=4, accidentally emit two particles
instead of only one at a time. Normally, we wouldn’t care too much about such
potential imperfections and, for example, simply ignore rounds of the experiment in
which no particle was detected.

Nonetheless, doing so requires an assumption, which is known as “fair sam-
pling”. Specifically, we would need to assume that the interference pattern seen in
our actual data, which consists of the (roughly) one quarter of the rounds in which a
particle was detected, would not significantly change if we also included the other
three quarters of the rounds. But we obviously don’t have data from them. The fair
sampling assumption is thus inherently untestable!

However, without the fair sampling assumption the door is wide open for
alternative explanations of the experimental outcome. For example, one may pos-
tulate the existence of a (hidden) mechanism that activates the detector exactly in
those one quarter of rounds of the experiment in which the source accidentally
emitted two particles instead of only one. The observed data would then solely
reflect rounds of the experiment in which two particles were simultaneously in the
interferometer. The interference pattern could thus be explained by a hypothesised
interaction between these particles. To exclude this possibility, we really need the
fair sampling assumption.

This puts us in a dilemma: To draw sensible conclusions from our experiment,
we need extra assumptions, such as fair sampling. Conversely, these assumptions
are not themselves experimentally testable. A way out could be to design experi-
ments whose analysis does not require such untestable assumptions, or only weak
ones. This is precisely the idea of “device independence”.
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The loophole-free Bell tests that have been carried out recently by several
experimental groups are excellent examples of this paradigm. The conclusions
drawn from these experiments hold independently of any assumptions on the
devices that have been used to generate the data, and in particular without the fair
sampling assumption. This is crucial in this case, as the result is a very far-reaching
one, namely that quantum mechanics cannot be turned into a deterministic theory
without giving up locality.

While device independence may still appear to be a rather academic, if not
paranoid, approach to physics, it has its natural place in quantum information
processing and quantum cryptography. Here one would like to trust in the outcomes
of computations or the security of encryption schemes even if the devices on which
they are running are untrusted. Achieving such device-independent security is
challenging, but recent progress, both on the theoretical and on the experimental
side, is extremely promising. In fact, first proof-of-principle experiments are already
underway.

This book by Dr. Rotem Arnon-Friedman provides an introduction into the
theory of device-independent information processing. It explains general principles
but also covers some of the latest research, to which the author contributed sig-
nificantly. The book provides the toolbox that is necessary to understand and
analyse current and future device-independent experiments, ranging from Bell tests
to quantum cryptographic schemes.

Device independence may, on a first encounter, bear various surprises. Things
that we normally take for granted have to be questioned—the fair sampling
assumption described above is just one example. Rotem Arnon-Friedman elegantly
guides the reader through this amazing subject. The path always returns to a set of
“showcases” which explain how the abstract and general concepts are applied to
concrete applications. It culminates in a full-fledged security proof of
device-independent quantum key distribution, one of the most prominent applica-
tions in the field.

While this book focuses on information processing and cryptography, the
device-independent approach ultimately also bears a message for physicists: It is
worth questioning even the most naturally sounding and seemingly unavoidable
assumptions. This message should of course not be new to them—the history of
physics has told us that doing so is a key to deeper insights.

Zürich, Switzerland
September 2020

Renato Renner

viii Supervisor’s Foreword



Abstract

The field of device-independent quantum information processing concerns itself
with devising and analysing protocols, such as quantum key distribution and
quantum tomography, without referring to the quality of the physical devices uti-
lised to execute the protocols. Instead, the analysis is based on the observed cor-
relations that arise during repeated interactions with the devices and, in particular,
their ability to violate the so-called Bell inequalities.

Since the analysis of device-independent protocols holds irrespectively of the
underlying physical device, it implies that any device can be used to execute the
protocols: If the apparatus is of poor quality, the users of the protocol will detect it
and abort; otherwise, they will accomplish their goal. This strong statement comes
at a price—the analysis of device-independent protocols is, a priori, extremely
challenging. Having good techniques at hand is thus crucial.

The thesis presents an approach that can be taken to simplify the analysis of
device-independent information processing protocols. The idea is the following:
Instead of analysing the most general device leading to the observed correlations,
one should first analyse a significantly simpler device that, in each interaction with
the user, behaves in an identical way, independently of all other interactions. We
call such a device an independently and identically distributed (IID) device. As the
next step, special techniques are used to prove that, without loss of generality, the
analysis of the IID device implies similar results for the most general device. Such
techniques reduce the problem of analysing the general scenario to that of analysing
an IID one and, hence, we term them reductions to IID.

We present two mathematical techniques that can be used as reductions to IID in
the device-independent setting: de Finetti reductions for correlations and the en-
tropy accumulation theorem. Each technique is accompanied by a showcase-
application that exemplifies the reduction’s usage and benefits. Specifically, we use
our de Finetti reduction to prove a non-signalling (super-quantum) parallel repe-
tition theorem, belonging to a family of theorems discussed in theoretical computer
science. The entropy accumulation theorem is used to prove the security of
device-independent quantum cryptographic protocols.
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Performing the analysis via a reduction to IID instead of directly analysing the
most general scenarios leads to simpler proofs and significant quantitive
improvements, matching the tight results proven when analysing IID devices. In
particular, our analysis of device-independent quantum key distribution protocols
produces essentially optimal key rates and noise tolerance, crucial for all future
experimental implementations of device-independent cryptography.
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Chapter 1
Introduction

1.1 Motivation

1.1.1 Device-Independent Information Processing

The study of quantum information unveils new possibilities for remarkable forms of
computation, communication, and cryptography by investigating different ways of
manipulating quantum states. Crucially, the analysis of quantum information pro-
cessing tasks must be based, in one way or another, on the actual physical processes
used to implement the considered task; the physical processes must be inherently
quantum as otherwise no advantage can be gained compared to classical information
processing. In most applications, the starting point of the analysis is an explicit and
exact characterisation of the quantum apparatus, or device, used to implement the
task of interest.

As an example, consider the task of quantum key distribution (QKD). In a QKD
protocol, the goal of the honest parties, called Alice and Bob, is to create a shared
key, unknown to everybody else but them. The protocol is intrinsically quantum:
To execute it Alice and Bob hold entangled quantum states in their laboratories and
perform quantum operations, or measurements, on the quantum states. Informally,
proving the security of a QKD protocol amounts to showing that no adversary can
hold (significant) information about the produced key. To prove security one usually
needs to have a complete description of the quantum devices, i.e., the quantum states
and measurements, used by Alice and Bob. For example, the security proof of the
celebrated BB84 protocol [1] builds on the assumptions that Alice and Bob hold two-
qubit states and are able to measure them in a specific way. When these assumptions
are dropped, the protocol is no longer secure [2]. Thus, if Alice and Bob wish to use
their quantum devices in order to implement a QKD protocol they need to first make
sure that the device is performing the exact operations described by the protocol.
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Unfortunately, in practice we are unable to fully characterise the physical devices
used in quantum information processing tasks. Even the most skilled experimentalist
will recognise that a fully characterised, always stable, large-scale quantum device
that implements aQKDprotocol is extremely hard to build. If the honest users’ device
is different from the device analysed in the accompanying security proof, security is
no longer guaranteed and imperfections can be exploited to attack the protocol.

Noise and imperfections cannot be completely avoided when implementing quan-
tum information processing tasks. Furthermore, imperfections being imperfections,
one also cannot expect to perfectly characterise them. That is, we cannot say for
sure what exactly is about to go wrong in the quantum devices: Maybe the measure-
ments are not well-calibrated, perhaps some noise introduces correlations between
particles which are intended to be independent, or interaction with the environment
may possibly lead to decoherence. Even the advent of fault-tolerant computation, if
achievable one day, cannot resolve all types of errors if no promise is given regarding
the number of errors and their, possibly adversarial, nature. Once we come to terms
with the above, a natural question arises:

Can quantum information processing tasks be accomplished by utilising
uncharacterised, perhaps even adversarial, physical devices?

An adversarial, or malicious, device is one implemented by a hostile party inter-
ested in, e.g., breaking the cryptographic protocol being executed. Clearly, this is
an extreme scenario to consider. Note, however, that even if the manufacturer of the
device is to be trusted, he may still be incompetent—the physical apparatus will be
subject to uncharacterised imperfections even though the manufacturer is honest and
has good intentions.

The field of device-independent information processing addresses the above ques-
tion. In the device-independent framework we treat the physical devices, on which
a minimal set of constraints is enforced,1 as black boxes—Alice and Bob hold a
box and can interact with it classically (as explained below) to execute the consid-
ered protocol, but they cannot open it to assess its internal workings.2 They have no
knowledge regarding the physical apparatus and do not trust that it works as alleged
by the manufacturer of the device.

What can Alice and Bob do with the black box? They can interact with it by
pushing buttons, each associated with some classical input (e.g., a bit) and record the
classical outputs produced by the box in response to pressing its buttons. Thus, the

1Clearly, one cannot perform any cryptographic task if the device includes a transmitter that just
sends all the information to the adversary. Few minimal assumptions regarding the device will be
needed; see Sect. 3.3. Depending on the considered task, some of the assumptions can be enforced
in practice while others may require some minimal level of trust.
2Notice that even if Alice and Bob did have some information about the physical apparatus, the
device-independent framework does not allow them to take advantage of this information in the
analysis. For example, Alice and Bob may be able to distinguish a device that uses the polarisation
of a photon to encode a qubit from one based on superconducting qubits (even the author is able to
do that). Yet, this information is not to be used when treating the device as a black box.
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only information available to Alice and Bob is the observed classical data created
during their interaction with the black box. (Hence the name “device-independent”).

Since the device is not to be trusted, the classical information collected by Alice
and Bob during the interaction with the box must allow them, somehow, to test the
possibly faulty or malicious device and decide whether using it, e.g., to create their
keys by executing a QKD protocol, poses any security risk. A protocol or task is
said to be device-independent if it guarantees that by interacting with the device
according to the specified steps the parties will either abort, if they detect a fault, or
accomplish the desired task (with high probability).

The possibility of device-independent information processing is quite surpris-
ing. Indeed, restricting ourselves to classical physics and classical information, it is
impossible to derive device-independent statements.3 Themost important ingredients
for device-independent protocols are the existence of Bell inequalities and quantum
“non-local” correlations that violate them [3]. These two facts are far from trivial
and play a fundamental role in quantum theory. In the context of device-independent
information processing, a Bell inequality acts as a “test for quantumness” that allows
the users of the device to verify that their device is “doing something quantum”
and cannot be simulated by classical means. This “quantumness”, of a specific form
discussed below, is what allows us to, e.g., prove security of a QKD protocol.

A Bell inequality can be thought of as a multi-player game, also called a non-
local game, played by the parties using the device they share. A non-local game
goes as follows. A referee asks each of the (cooperating) parties a question chosen
according to a given probability distribution. The parties need to supply answers
which fulfil a pre-determined requirement according to which the referee accepts
or rejects the answers. In order to do so, they can agree on a strategy beforehand,
but once the game begins communication between the parties is not allowed. If the
referee accepts their answers the players win. The goal of the parties is, naturally, to
maximise their winning probability in the game.

Different devices held by the parties implement different strategies for the game
andmay lead to different winning probabilities. In the device-independent setting we
are interested in games that have a special “feature”—there exists a quantum device
which achieves a winning probability in the game that is greater than all classical,
local, devices.

Crucially, the winning probability in the game does not merely indicate that the
device is doing something quantum but how non-classical it is. Relations are known
between the probability of winning some non-local games and various other quanti-
ties. Some examples for quantities of interest are the entropy produced by the device,
the amount of entanglement consumed to play the game, or the distance (under an
appropriate distance measure) of the device from a specific fully characterised quan-
tum device. Such relations lie at the heart of any analysis of device-independent
information processing tasks.

3Consider for example the case of device-independent QKD. Classical devices can always be pre-
programmed by the adversary to output a fixed key of her choice.
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Although above we only mentioned device-independent QKD as an example for
a device-independent task, the framework of device-independence does not only
concern the more-than-average paranoid cryptographers. The framework fits any
scenario in which, a priori, we do not want to assume anything about the utilised
devices and their underlying physical nature. To reassure the reader, we give three
additional examples.

Bell inequalities were originally introduced in the context of the foundations of
quantum mechanics in order to resolve the EPR paradox [4]. When trying to test
quantum theory against an alternative classical world that admits a “local hidden
variable model” (or, in other words, falsify all classical explanations of a behaviour
of a physical system), one cannot assume that quantum theory holds to beginwith and
must treat the device as a black box without assuming to know its internal workings.

A second example is that of blind tomography, also termed self-testing. Assume a
quantum state is being produced in some experimental setting. Quantum tomography
is the process of estimating which state is being created by performingmeasurements
on copies of the state and collecting the statistics [5]. To get a meaningful estimation,
a certain set of measurements needs to be used, depending on the dimension of the
state. In other words, in order to estimate and characterise the quantum state, wemust
be able to first characterise the measurement devices. Blind quantum tomography
refers to the process in which the measurements are also unknown. In such a case,
nothing but the observed statistics can be used [6, 7].

Another interesting example is that of verification of computation—given a device
claimed to be a quantum computer, how can human beings, who cannot perform
quantum computations by themselves, verify that this is indeed the case? There
are different ways of addressing this question, but in all cases we would like to
make statements without presuming that the considered devices are performing any
particular quantum operations (see, e.g., [8]).

The device-independent framework becomes relevant whenever one wishes to
make concrete statements without referring to the underlying physical nature of
the utilised devices and the types of imperfections or errors that may occur. The
derived statements are extremely strong. Device-independent security, for example,
is regarded as the gold standard for quantum cryptography, since attacks exploiting
the mismatch between security proof and implementation are no longer an issue.
Making such strong statements comes at a price. The analysis of device-independent
tasks is, a priori, extremely challenging: We treat the devices as black boxes and thus
the proofs need to account for an almost arbitrary, even adversarial, behaviour of the
devices. Having good techniques for the analysis at hand is therefore crucial. This is
further discussed in the following section.

1.1.2 Reductions to IID

In the device-independent setting one does not have a description of the specific
device used in the considered task and, hence, must analyse the behaviour of arbitrary
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devices. For example, when proving security of cryptographic protocols we clearly
need to consider any possible device that the adversary may prepare. Unfortunately,
analysing the behaviour of arbitrary devices can be wearying at best and infeasible
at worst. Let us start by explaining why this is the case.

As mentioned above, the ability to achieve device-independent information pro-
cessing tasks is based on the existence of non-local games and quantum strategies
to play them that can beat any classical strategy. To perform complex tasks, such
as device-independent cryptography, employing the device to play a single non-
local game is clearly not enough; we cannot conclude any meaningful information
regarding the device by asking it to produce outputs only for a single game. To put
quantum information to work we must consider protocols in which the device is
used to play many non-local games. This way, the parties executing the protocol can
collect statistics and test their device. If the device does not pass the test the parties
abort the protocol (see Protocol 1.1 below for an example).

The reason for the difficulty of the analysis lies in the fact that one needs to exam-
ine the overall behaviour of the device during the entire execution of the protocol,
consisting of playing many games with the device, instead of its behaviour in a sin-
gle game. As the device is uncharacterised its actions when playing one game may
depend on other games.

In general, there are two families of devices able to play many games that one
can consider—parallel and sequential devices. A parallel device is one which can
be used to play all the games at once. That is, the parties executing the protocol are
instructed to give all the inputs, for all the games, to the device and only then the
device produces the outputs for all the games. In such a case, the actions of the device
in one game may depend on all other games.

A sequential device, on the other hand, is used to play the games one after the
other, i.e., the parties give the device the first inputs and wait for its outputs and only
then proceed to play the next game. In between the games, some communication
may be allowed between the parties and the different components of the device.
In the case of a sequential device, the behaviour of the device in one game may
depend on all previous games as well as communication taking place during the time
between the games.4 In both cases, the input-output behaviour of the devices gets
quite complicated.

One common assumption introduced to simplify the analysis of device-
independent information processing tasks is the so called “independent and iden-
tically distributed” (IID) assumption. As the name suggests, a device is said to be
an IID device if it plays each of the games independently of the others and utilises
the same strategy for all games. An IID device is a special case of both parallel and
sequential devices and, since it is highly structured, analysing its behaviour can be
significantly simpler than analysing the more general devices; see Fig. 1.1.

The IID assumption heavily restricts the structure of the device. It is therefore not
clear at all that analysing device-independent information processing tasks under
the IID assumption is sufficient. Returning to the example of device-independent

4The formal definitions of parallel and sequential devices are given in Chap.6.
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Fig. 1.1 The relation between the different sets of devices. The intersection of the sets of sequential
and parallel devices includes the set of IID devices. The analysis of IID devices, i.e., that done under
the IID assumption, is rather simple

cryptography, an adversary who can prepare arbitrary devices (let it be sequential or
parallel) may be strictly stronger, i.e., can get more information about the outputs
of the honest parties, than an adversary restricted to IID devices. Thus, simplifying
the analysis by using the IID assumption comes at the cost of weakening the final
statement.

The main question addressed in this thesis is the following:

Can the analysis of device-independent information processing tasks be
reduced to that performed under the IID assumption?

The term reduction is widely used in theoretical computer science and is meant to
describe the process of showing that one problem is as hard/easy as another. In our
case, we ask whether analysing general devices is as easy as analysing IID devices or,
in other words, does an analysis performed under the IID assumption imply results
concerning general devices (i.e., statements which are not restricted to the IID case).
A priori, it is not at all obvious that this is the case; clearly, not all devices are IID
devices. A positive answer to the above question means that even though there exist
devices that cannot be described as IID ones, it is sometimes possible to restrict the
attention solely to IID devices and the rest will follow.

The idea of applying a reduction to IID as a proof technique was conceived5 in [9],
following which a concrete reduction relevant for applications was developed in [10]
and used to reduce the security proof of QKD protocols to that done under the IID
assumption.6 As such, [10] acts as the first example for a proof using a reduction to
IID.

5Perhaps surprisingly, as far as the author is aware the idea of a “reduction to IID” does not appear
or used in classical information processing and cryptography.
6In the context of QKD, security under the IID assumption is called security against collective
attacks.
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Analysing information processing tasks via a reduction to IID has several signifi-
cant advantages. Analysing IID devices is relatively easy and almost always intuitive.
Thus, having tools that allow us to extend the analysis to the general case greatly
simplifies proofs.7 The simplicity, in turn, allows for clear and modular statements
as well as quantitively strong results.8

The importance of quantitively strong results is obvious, especially when dis-
cussing quantum information processing tasks: If we wish to benefit from the new
possibilities brought by the study of quantum information, we must be able to imple-
ment the protocols in practice. Without strong quantitive bounds on, e.g., key rates
and tolerable noise levels, we cannot take the device-independent field from theory
to practice. Clarity and modularity should also not be dismissed. Science is not a
“one-man’s job”; clarity and modularity are crucial when advancing science as a
community. Indeed, complex and fine-tuned proofs are hard to verify, adapt to other
cases of interest, and quantitively improve.

Another advantage of reducing a general analysis to IID is that it allows us to
separate the wheat from the chaff. The essence of the arguments used in proofs of
information processing tasks almost always enter the game in the analysis of the IID
case. Proofs that address the most general scenarios directly (i.e., not via a reduction
to IID) are at risk of obscuring the “physics” by more technical mathematical steps.
When using a reduction to IID this is (mostly) not the case—the essence, or the
interesting part, lies in the analysis of IID devices while the technicalities are pushed
into the reduction itself.

As we will show in the thesis, reductions to IID can also be developed and
employed in device-independent quantum information processing. We present two
techniques that can be used as reductions to IID, accompanied by two showcase-
applications that illustrate how the reductions can be used and their benefits in terms
of the derived theorems. The following section presents the content of the thesis in
more detail.

1.2 Content of the Thesis

The goal of the thesis is to explain how reductions to IID can be performed in the
context of device-independent information processing. To this end, after explaining
the different mathematical objects that one needs to consider and their relevance, we
discuss the IID assumption and its implications in the device-independent setting.
We then present two techniques, or tools, that can be used as reductions to IID in

7The reductions themselves are not necessarily simple, but that is fine. They are technical tools that
are only proved once and can then be used to simplify many other proofs. The researcher using the
reduction does not need to reprove anything.
8This is in agreement with Occam’s razor; while there is no notion of the “right proof” out of several
possible proofs (assuming they are all mathematically correct), the simplest proof usually turns out
to be the most useful and insightful one.
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Fig. 1.2 Reductions to IID in device-independent information processing. de Finetti reductions
can be used to reduce the study of parallel devices to IID device (see Chaps. 8 and 10), while the
entropy accumulation theorem can be used when dealing with sequential devices (Chaps. 9 and 11)

the analysis of device-independent information processing tasks, one relevant for
parallel devices and the other for sequential ones.

To better comprehend the topic and exemplify the usage of the two reductions,
we consider two applications as showcases, namely, parallel repetition of non-local
games and device-independent cryptography. These are studied in detail throughout
the chapters of the thesis, while taking the perspective of reductions to IID.

1.2.1 Reductions

Two types of reductions are presented. The reductions are applicable in different
scenarios and give statements of different forms; see Fig. 1.2.

1.2.1.1 de Finetti Reduction for Correlations

The first reduction, the topic of Chap.8, is called “de Finetti reduction for correla-
tions” and was developed in [11]. The de Finetti reduction is relevant for the analysis
of permutation invariant parallel devices. Permutation invariance is an inherent sym-
metry in many information processing tasks, device-independent tasks among them.
Thus, analysing permutation invariant devices is of special interest.

In short, in our context, a de Finetti reduction is a theorem that relates any permu-
tation invariant parallel device to a special type of device, termed de Finetti device,
which behaves as a convex combination of IID devices (see Chap.8 for the for-
mal definitions). The given relation acts as a reduction to IID when considering
tasks admitting a permutation invariance symmetry and in which a parallel device
needs to be analysed. Our showcase of parallel repetition of non-local games fits this
description and thus can benefit from our de Finetti reduction.
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Various quantum de Finetti theorems were know prior to our work and were suc-
cessfully used to substantially simplify the analysis of many quantum information
tasks. However, they cannot be applied in the device-independent setting, since they
make many assumptions regarding the permutation invariant quantum states being
analysed and therefore cannot accommodate uncharacterised devices. The unique
property of the reduction presented in Chap. 8 is that, apart from permutation invari-
ance, it makes no assumptions whatsoever regarding the systems of interest and is
therefore applicable in the analysis of device-independent information processing.

For pedagogical reasons, we choose to present in the thesis a de Finetti reduction
which is relevant to the case of bipartite devices, i.e., devices which are shared
between two parties, Alice and Bob. The statements can be extended to any number
of parties, as shown in [11]; the proofs of the general case do not include fundamental
insights on top of those used in the bipartite case but require somewhat heavynotation.
We therefore omit the more general theorems and proofs (while supplying the full
analysis of the bipartite case in Chap.8), with the hope of making the content more
inviting for readers unfamiliar with the topic.

Apart from presenting the reduction and the possible ways of using it, Chap. 8
also includes a discussion of ways in which it may be possible to extend or modify
the reduction (to be more specific, we mainly present impossibility results). This
content does not appear in detail in other published papers and can be relevant for
future studies of the topic.

1.2.1.2 Entropy Accumulation Theorem

The second reduction to IID that can be used in the device-independent setting is the
entropy accumulation theorem (EAT) [12] and is the topic of Chap.9. The EAT can
be seen as an extension of the entropic formulation of the asymptotic equipartition
property (AEP) [13, 14], applicable only under the IID assumption, to more general
sequential processes.

TheAEP, presented inChap.7, basically asserts thatwhen considering IID random
variables, the smooth min- and max-entropies of the random variables converge to
their vonNeumann (or Shannon, in the classical case) entropy, as the number of copies
of the random variable increases. The AEP is of great importance when analysing,
both classical and quantum, information processing tasks under the IID assumption:
It explains why the von Neumann entropy is so important in information theory—the
smooth entropies, which describe operational tasks, converge to the von Neumann
entropy when considering a large number of independent repetitions of the relevant
task.9

9A commonly used example is that of “data compression”. There, one would like to encode an
n bit string using less bits. If we allow for some small error when decoding the data, the smooth
max-entropy roughly describes the number of bits needed. However, for a large enough number of
independent repetitions, less bits suffice and the exact amount is governed by the Shannon entropy.
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Moving on from the IID setting, the EAT considers a certain class of quantum
sequential processes. That is, in our context, it is relevant when studying sequential
devices.10 Similarly to the AEP, when applicable, the EAT allows one to bound the
total amount of the smooth min- and max-entropies using the same bound on the von
Neumann entropy calculated for the IID analysis, i.e., the one used when applying
the AEP. In this sense, the EAT can be seen as a reduction to IID—with the aid of
the EAT the analysis done under the IID assumption using the AEP can be extended
to the one relevant for sequential devices.

The proof of the EAT is not presented in the thesis (and should not be attributed
to the author). We focus on motivating, presenting, and explaining the EAT in the
form relevant for device-independent quantum information processing [15] (as well
as quantum cryptography in general), so it can be later used in our showcase of
device-independent cryptography. The pedagogical presentation of the EAT given in
Chap.9 does not appear in full in any other published material and we hope that it
will make the theorem more broadly accessible.

Before presenting our showcases, let us remark that both of the reductions men-
tioned above are not “black box” reductions, in the sense that one cannot simply say
that if a problem is solved under the IID assumption then it is solved in the general
case. In particular, one should be familiar with the exact statements of the reductions
(though not with their proofs) as well as the analysis of the considered task under the
IID assumption in order to apply the reductions (or even just check whether they are
applicable or not). When discussing the reductions in Chaps. 8 and 9, we explicitly
explain in what sense the presented tools count as reductions to IID techniques.

1.2.2 Showcases

We use two showcases throughout the thesis in order to exemplify the approach of
reductions to IID and the more technical usage of the presented reductions. The
showcase of parallel repetition of non-local games uses the de Finetti reduction
techniquewhile the showcase of device-independent cryptography builds on theEAT.
As mentioned in Sect. 1.1.2 above, we believe that analysing device-independent
tasks using a reduction to IID has its benefits. The derived theorems are, arguably,
more intuitive and insightful and, in addition, give strong quantitive results.

We shortly discuss below each of our showcases. We present informal theorems
describing the results proven for the showcases. The informal theorems shed light
on the fundamental nature and strength of the approach of reductions to IID.

10To be more precise, some requirements regarding the process, or protocol, in which the sequential
device is to be used must hold. This is explained in details in Chap.9.
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1.2.2.1 Non-signalling Parallel Repetition

Our first showcase is that of non-signalling parallel repetition. Chapter 10 presents
our formal statements and proofs, which previously appeared in [16]. As before, we
focus in the thesis on the bipartite case for pedagogical reasons; [16] includes the
general analysis, which is valid for any number of parties playing the game.

Non-local games, as mentioned in Sect. 1.1.1, are games played by several coop-
erating parties, also called players. A referee asks each of the players a question
chosen according to a given probability distribution. The players need to supply
answers which fulfil a pre-determined requirement according to which the referee
accepts or rejects the answers. In order to do so, they can agree on a strategy before-
hand, but once the game begins communication between the parties is no longer
allowed. If the referee accepts their answers the players win.

In the language used so far, we can think of a device as implementing a strategy
for the game. Depending on the field of interest, one can consider classical, quantum,
or non-signalling devices, the latter referring to devices on which the only restriction
is that they do not allow the players to communicate. We focus below on the case of
non-signalling strategies, or devices.

One of the most interesting questions regarding non-local games is the question of
parallel repetition. Given a non-local game with optimal winning probability 1 − α
using non-signalling strategies, we are interested in analysing the optimal winning
probability of a non-signalling strategy in the repeated, or threshold, game. A thresh-
old game is a game in which the referee asks the players to play n ∈ N instances of
the non-local game, all at once, and the players’ goal is to win more than 1 − α + β
fraction of the games, for β > 0 a parameter of the threshold game. The parallel rep-
etition question concerns itself with upper-bounding the optimal winning probability
in the threshold game, as the number of games n increases.11

One trivial strategy that the players can use in the threshold game is a strategy
employing a non-signalling IID device. That is, they simply answer each of the n
questions independently using the optimal non-signalling device used to play a single
game. Using an IID device, the fraction of successful answers is highly concentrated
around 1 − α and the probability to win more than a 1 − α + β fraction of the games
decreases exponentially fast with nβ2, as follows from the optimal formulation of
the Chernoff bound.

However, since the players receive from the referee all the questions to the n
instances of the non-local game at once, an IID device is not the most general device
that they can use. Instead, they can use any non-signalling parallel device to imple-
ment their strategy. As parallel devices are strictly more general than IID ones, using
parallel devices in fact allows them to win the threshold gamewith higher probability
than in the IID case.12 Still, one may ask how the winning probability behaves for a

11This is actually a generalisation of the more commonly known parallel repetition question, in
which one wishes to upper-bound the probability of winning all the n games.
12When first encountering the question of parallel repetition it may seem surprising that the players
can do better using a parallel device, but this is indeed the case; see Sect. 4.1.2 a concrete example.
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sufficiently large number of repetitions n and, especially, whether it decreases in a
similar fashion as for IID strategies.

To answer the above question, wewish to reduce the study of strategies employing
parallel devices to those using IID devices. A crucial observation that allows us to do
so is that the threshold game itself admits a permutation invariance symmetry (i.e.,
the order of questions-answers tuples does not matter; see Chap. 10 for the details)
and, therefore, we can assume without loss of generality that the optimal strategy
is also permutation invariant. Now that we can restrict our attention to permutation
invariant parallel devices, de Finetti reductions become handy and can be used as a
tool for reduction to IID.

In Chap.10we consider the case of non-signalling strategies for complete-support
games. A complete-support game is one in which all possible combinations of ques-
tions being sent to the players have some non-zero probability of being asked by the
referee. We prove the following via a reduction to IID:

Theorem 1.1 (Informal) Given a game with optimal non-signalling winning prob-
ability 1 − α, for any β > 0, the probability to win more than a fraction 1 − α + β
of n games played in parallel using a non-signalling strategy is exponentially small
in nβ2, as in the IID case.

Perhaps surprisingly, while the parallel repetition question is a well-investigated one,
an exponential decrease that matches the IID case, as far as we are aware, was not
known prior to our work (also not for classical or quantum strategies). In the context
of reductions to IID, however, achieving the same behaviour as in the IID case is not
unexpected.

To prove Theorem 1.1 we first prove another statement that has a “reduction to
IID flavour” and is perhaps of more fundamental nature. To present it, however, we
need to first set some notation.13

As mentioned above, we focus on two-player games, i.e., games played by
Alice and Bob (and the referee). A parallel device used for the threshold game
can be described using a conditional probability distribution PAB|XY , where A =
A1, . . . , An is the random variable describing Alice’s answers in the threshold game
(Ai being her answer in the i’th game) and, similarly, B = B1, . . . , Bn describes
Bob’s answers, and X = X1, . . . , Xn and Y = Y1, . . . ,Yn are Alice’s and Bob’s
questions, respectively.

Whenwe say that a parallel device is non-signalling,wemean that it cannot be used
as means of communication between the parties. The behaviour of the device in one

13We are jumping ahead now with the aim of being able to explain Theorem 1.2 to readers who
are already somewhat familiar with device-independent information processing and non-signalling
systems. For a reader unfamiliar with these topics, the mathematical statements may seem puzzling
without further explanations. We will get back to the discussed theorem in Chap.10, after giving all
the preparatory information throughout the thesis. A reader unfamiliar with the used terminology
can therefore skip the current discussion without the risk of missing out.
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game, however, may depend on the other games.14 Mathematically, this means that,
while the marginals PA|X and PB|Y are proper conditional probability distributions,
objects such as PA1|X1 are not well-defined.

During the threshold game, the device used by the players produces the observed
data in the n games: a = a1, . . . , an , b = b1, . . . , bn , x = x1, . . . , xn , and y =
y1, . . . , yn . These are distributed according to Q⊗n

XYPAB|XY , where QXY denotes the
distribution used by the referee to choose the questions in a single non-local game.
Q⊗n

XY is then the IID distribution according to which the questions are chosen in the
threshold game. The observed data a, b, x, y can be used to calculate frequencies
and define a “frequencies’ conditional probability distribution”, which we denote by
Ofreq(a,b,x, y)

ABXY , as:

Ofreq(a,b,x, y)
ABXY (ãb̃x̃ ỹ) =

∣
∣
∣

{

i : (ai , bi , xi , yi ) = (ã, b̃, x̃, ỹ)
} ∣

∣
∣

n

and define

Ofreq(a,b,x, y)
AB|XY = Ofreq(a,b,x, y)

ABXY

QXY
. (1.1)

Ofreq(a,b,x, y)
AB|XY can be seen as a (not necessarily physical) device, or a strat-

egy, for a single game. Starting with IID devices, which can be written in the
form of15 PAB|XY = O⊗n

AB|XY , it holds that if the device OAB|XY is non-signalling
then PAB|XY is non-signalling and vice versa. This also implies that, for sufficiently
large n, Ofreq(a,b,x, y)

AB|XY is non-signalling with high probability.
For a non-IID, but non-signalling, device PAB|XY , however, it is not clear at all that

Ofreq(a,b,x, y)
AB|XY should be non-signalling as well. Using a reduction to IID, the following

theorem is proven:

Theorem 1.2 (Informal) LetPAB|XY be a non-signalling permutation invariant par-

allel device andOfreq(a,b,x, y)
AB|XY as in Eq. (1.1). Then, for sufficiently large n,Ofreq(a,b,x, y)

AB|XY
is close to a non-signalling device with high probability. In particular, this means
that the observed data produced by a non-signalling permutation invariant parallel
device can be seen as if, with high probability, it was sampled using an IID device
O⊗n

AB|XY in which every single device OAB|XY is close to a non-signalling one.

Theorem 1.1 follows directly from Theorem 1.2 by noting that the number of
games won in a given use of the device can be directly read from Ofreq(a,b,x, y)

AB|XY and

that if Ofreq(a,b,x, y)
AB|XY is close to a non-signalling device then its winning probability

cannot be too far from the optimal non-signalling winning probability 1 − α.

14In otherwords, the local strategy of each player does require “communication between the games”:
In order to (locally) answer the i’th question received from the referee, the player needs to know
his j’th question (with i �= j).
15An IID device is illustrated in the bottom of Fig. 1.2. We can then think of each copy OAB|XY as
describing a single copy of the smaller boxes in the figure, while PAB|XY = O⊗n

AB|XY described the
device including all the copies together.
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Protocol 1.1 Device-independent quantum key distribution protocol (simplified
example)

Given: A device for Alice and Bob that can play the chosen Bell game repeatedly

1: For every round i ∈ [n] do Steps 2-3:
2: Alice and Bob choose Xi , Yi at random.
3: They input Xi , Yi to the device and record the outputs Ai , Bi .
4: Parameter estimation: Alice and Bob estimate the average winning probability in the game

from the observed data. If it is below the expected winning probability, ωexp, they abort.

5: Classical post processing: Alice and Bob apply an error correction protocol and a privacy
amplification protocol (both classical) on their raw data A and B.

1.2.2.2 Device-Independent Quantum Cryptography

Chapter11 is devoted to the analysis of our second showcase—device-independent
cryptography. The chapter’s content previously appeared in [17]. The most challeng-
ing cryptographic task in which device-independent security has been considered is
device-independent QKD (DIQKD); we will use this task as our main example. In
DIQKD the goal of the honest parties, called Alice and Bob, is to create a shared
key, unknown to everybody else but them. To execute the protocol they hold a device
consisting of two parts: Each part belongs to one of the parties and is kept in their
laboratories. Ideally, the device performs measurements on some entangled quantum
states it contains.

The basic structure of aDIQKDprotocol is presented as Protocol 1.1. The protocol
consists of playing n non-local games, one after the other, with the given untrusted
device and calculating the average winning probability from the observed data (i.e.,
Alice and Bob’s inputs and outputs). If the average winning probability is below the
expected winning probability ωexp defined by the protocol, Alice and Bob conclude
that something is wrong and abort the protocol. Otherwise, they apply classical post-
processing steps that allow them to create identical and uniformly distributed keys.
(The full description of the considered DIQKD protocol is presented and discussed
in the following chapters).

The central task when proving security of DIQKD consists in bounding the
information that an adversary, called Eve, may obtain about Alice’s raw data A =
A1, . . . , An used to create the final key (see Protocol 1.1).More concretely, one needs
to establishing a lower bound on the smooth conditional min-entropy H ε

min(A|E),
where E is Eve’s quantum system, which can be initially correlated to the device
used by Alice and Bob in the protocol and ε > 0 is one of the security parameters of
the protocol (see Sect. 4.2). The quantity H ε

min(A|E) determines the maximal length
of the secret key that can be created by the protocol. Hence, proving security amounts
to lower-bounding H ε

min(A|E). Evaluating the smooth min-entropy H ε
min(A|E) of a

large system is often difficult, especially in the device-independent setting where
Alice and Bob are using an uncharacterised device, which may also be manufactured
by Eve.
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The IID assumption is commonly used in order to simplify the calculation
of H ε

min(A|E). In the IID case we can assume that Alice and Bob use an IID device
to execute the protocol and, hence, each Ai is produced independently of all other
outputs. Furthermore, one can assume that Eve’s quantum information also takes
the IID form E = E1, . . . , En , where each Ei holds information only regarding Ai .
Then, the AEP, briefly mentioned above, can be used to calculate an upper-bound
on H ε

min(A|E) and, by this, prove security.
The most general adversarial device to consider is, clearly, not an IID one. Due to

the sequential nature of the protocol, the relevant devices to consider are sequential
devices. As sequential devices are more complex than IID ones, security proofs for
DIQKD that proved security by addressing the most general device directly, e.g., [8,
18], had to use techniques which are far more complicated than the ones used for
security proofs under the IID assumption, e.g., in [2]. Consequently, the derived
security statements were of limited relevance for practical experimental implemen-
tations; they are applicable only in an unrealistic regime of parameters, e.g., small
amount of tolerable noise and large number of signals.

We take the approach of reductions to IID in order to prove the security of our
DIQKD protocol. In particular, we leverage the sequential nature of the protocol, as
well as the specific way in which classical statistics are collected by Alice and Bob,
to prove its security by reducing the analysis of sequential devices to that of IID
devices using the EAT. The resulting theorem can be informally stated as follows:

Theorem 1.3 (Informal) Security of DIQKD in the most general case follows from
security under the IID assumption. Moreover, the dependence of the key rate on the
number of rounds of the protocol, n, is the same as the one in the IID case, up to
terms that scale like 1/

√
n.

On the fundamental level, the theorem establishes the a priori surprising fact that
general quantum adversaries are no stronger than an adversary restricted to preparing
IID devices. As mentioned in Sect. 1.1.2, this does not mean that the most general
device that an adversary can prepare is an IID device. Instead, it means that the
adversary (at least asymptotically) does not benefit form preparing more complex
devices.

On the quantitive level, taking the path of a reduction to IID results in a proof
with several advantages. In particular, it allows us to give simple and modular secu-
rity proofs of DIQKD (as well as other device-independent protocols) and to extend
tight results known for DIQKD under the IID assumption to the most general set-
ting, thus deriving essentially optimal key rates and noise tolerance. This is crucial
for experimental implementations of device-independent protocols. Our quantitive
results have been applied to the analysis of the first experimental implementation of a
protocol for randomness generation in the fully device-independent framework [19].
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1.3 How to Read the Thesis

We review the structure of the thesis. Depending on the reader’s main interest and
prior knowledge, different chapters of the thesis may or may not be relevant.

Chapters2 and 3 give preliminary information. Chapter 2 presents general intro-
ductory information and notation. We remark that in most parts of the thesis, general
intuition is sufficient and the exact mathematical definitions are not that important
in order to understand the essence. Therefore, even a reader unfamiliar with, e.g.,
the quantum formalism or the mathematical definitions of the various entropies, may
skip Chap.2 in the first reading and get back to the relevant definitions appearing in
it only when wishing to get a better understanding of the complete technical details.

Chapter3 deals with basic information and terminology related to device-
independent information processing. Readers who are unfamiliar with, e.g., non-
locality, should first of all read this chapter. Readers already familiar with some
device-independent tasks may skip the chapter and come back to it if needed.

Chapter4 acts as an introduction to our showcases; no theorems or proofs are
given there. Thus, readers who are familiar with the question of parallel repetition
and the task of DIQKD may pass over this chapter.

Chapters5 and 6 concern themselves with the mathematical objects that we con-
sider in the thesis—the “black boxes” that model the different types of devices.
Chapter5 defines what we call a “single-round box”, which is, in a sense, a device
that can be used to play only a single non-local game. The single-round box acts as
an abstract object that allows us to study the fundamental aspects of non-locality,
without needing to deal with complex protocols. As we will see, it captures the
“physics” of the problem at hand. Hence, studying single-round boxes is the first
step in any analysis of device-information processing task. In Chap.6, we formally
define parallel and sequential boxes, which give the mathematical model for parallel
and sequential devices, and discuss the relations between them.

After setting the stage, we are ready to start discussing the method of reductions
to IID. The first step in this direction is done in Chap. 7, where we discuss the IID
assumption and see how it can be used to simplify the analysis of device-independent
tasks and, in particular, our showcases. This chapter also presents the asymptotic
equipartition property, which acts as a valuable mathematical tool when working
under the IID assumption.

The tools used as reductions, i.e., the de Finetti reduction and the entropy accu-
mulation theorem, are the topics of Chaps. 8 and 9, respectively. Chapters10 and 11
are devoted to the analysis of our showcases via a reduction to IID.

Clearly, many open questions and directions for future works arise. We discuss
open questions specific for our showcases within the relevant chapters. In addition,
the thesis ends with an outlook in Chap.12 including questions that, in order to
answer, require further development of the toolkit of reductions to IID.

A reader interested in the topic of reductions to IID in general is recommended to
read the thesis from the beginning to the end, following the order of the chapters. On
the other hand, a reader who is mainly interested in one of the showcases may focus
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Table 1.1 Reading suggestion according to the reader’s main interest

Reader’s interest Recommended sections

Reductions to IID All chapters

Parallel repetition 4.1, 5.1, 6.1, 7.1, 7.3.1, 8, 10

Device-independent cryptography 4.2, 5, 6.2, 7.1, 7.2, 7.3.2, 9, 11

only on the sections relevant for the showcase of interest. To assist such readers, we
list in Table1.1 the relevant sections (in the order in which they should be read) for
each of the showcases.
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Chapter 2
Preliminaries: Basics and Notation

2.1 General Notation

The relevant notation for sets and vectors is summarised below.

• N, R, and C are the sets of natural, real, and complex numbers, respectively.
• [a, b] denotes the closed set of real numbers a ≤ x ≤ b.
• [n] denotes the set {1, 2, . . . , n}.
• Whenanobject xi is defined for all i ∈ [n], {xi }i∈[n] denotes the set {x1, x2, . . . , xn}.
• Other sets are mostly denoted by calligraphic letters, e.g., S.
• S ⊆ P means that S is a subset of P . S ⊂ P means that S is a proper subset of
P .

• S \ P = {s : s ∈ S ∧ s /∈ P} stands for the difference between the two sets.
• S × P = {(s, p) : s ∈ S ∧ p ∈ P} is the multiplication of the sets. Furthermore,
S × S is denoted by S2 and Sn is defined analogously for any n.

• For setsS,P we denote byHom(S,P) the set of all homomorphisms fromS toP .
The set of all endomorphisms is denoted by End(S), i.e., End(S) = Hom(S,S).

• Vectors (of different objects) are marked in bold. For example, we use x =
x1, x2, . . . , xn .

• Let f : S → R be a function over some set S ⊂ R
n . The infinity norm of the

gradient of f is defined as

‖∇ f ‖∞ = sup

{
∂

∂si
f (s) : s ∈ S, i ∈ [n]

}
.

We use the following general notation.

• ∧, ∨, and ¬ denote the logical and, or, and negation, respectively.
• ⊕ denotes the XOR operation.
• We denote by log the logarithm in base 2.
• ( n

k1,...,km

)
is the multinomial coefficient, i.e.,

( n
k1,...,km

) = n!
k1!...,km ! , where ! is the fac-

torial operation.
© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
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• A function f : N → R is called negligible if for every positive polynomial p(·),
there exists an n0 such that for all n > n0, f (n) < 1

p(n)
. In the thesis, in all cases

where the term negligible is used f (n) decreases exponentially fast with n.

2.2 Probability Distributions and Random Variables

We use both probability distributions and random variables (RV) and interchange the
two when convenient. Specifically,

• Capital letters, e.g., X , denote RV. When implicit, a RV X takes values from the
set denoted by the same letter, i.e., X .

• PX denotes the probability distribution corresponding to the RV X . To distinguish
different probability distributions we sometimes replace P by other letters, such
as O and Q.

• PX (x) is the probability that X = x .
• When a probability distribution is used without a need of referring to the event
space etc., we simply use {pi }i∈I for some I (usually clear from the context or
irrelevant) while keeping in mind that pi ≥ 0 for all i ∈ I and

∑
i pi = 1.

• When discussing more complex events Ω ⊆ X over X , we use Prx∼X [Ω] to
denote the probability of the event Ω when sampling according to PX . When it
is clear from the context according to which probability distribution the sampling
is done we may drop the subscript and write only Pr [Ω]. For example, when
applying Chernoff-type bounds, we use standard notation such as Pr

[∑
i Xi > t

]
instead of PX1...Xn

[∑
ai > t

]
.

• The expectation value E[X ] of X is given by E[X ] = ∑
x∈X xPX (x).

When considering two RVs X and Y , jointly distributed according to PXY , the
marginal PX is defined via

PX (x) =
∑
y

PXY (x, y) .

The conditional distribution of X given Y = y, given by

∀x, PX |Y=y(x) = PXY (x, y)

PY (y)
. (2.1)

We mostly use PX |Y (x |y) to denote PX |Y=y(x) and the shorthand notation PX |Y =
PXY /PY instead that of Eq. (2.1).

Throughout the thesis, we use the following operations on probability distribu-
tions:

• For any q ∈ [0, 1], PX , and RX , the convex combination SX = qPX + (1 − q)RX

is defined via
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∀x, SX (x) = qPX (x) + (1 − q)RX (x) .

• For any n ∈ N and PX , P
⊗n
X denoted the probability distribution over X n defined

via
∀x, P⊗n

X (x) =
∏
i

PX (xi ) ,

where x = x1, x2, . . . , xn .

2.2.1 Independent and Identical Random Variables

Consider two RV X and Y defined over X and Y respectively. We say that the two
are independent if and only if for all (x, y) ∈ X × Y , PXY (x, y) = PX (x) · PY (y).
For X = Y , we say that X and Y are identical if and only if PX = Py .

A sequence ofRVs X = X1, X2, . . . , Xn , each overX are said to be independently
and identically distributed (IID) RVs if and only if they are all independent and
identical to one another.

2.2.2 Concentration Inequalities

When considering IID RVs, concentration inequalities are of special importance.
Roughly speaking, concentration inequalities give bounds on how fast the observed
frequencies converge to the expected value when sampling IID RVs. The formal
statements relevant for the thesis are given below.

Lemma 2.1 (Hoeffding’s inequality)Consider a RV X defined overX = {0, 1} and
let X1, X2, . . . , Xn be a sequence of n identical and independent copies of X. Then,

Pr

[∑
i

Xi − nE[X ] ≥ tn

]
≤ exp

(−2nt2
)

and

Pr

[∣∣∣ ∑
i

Xi − nE[X ]
∣∣∣ ≥ tn

]
≤ 2 exp

(−2nt2
)

.

Sanov’s inequality can be seen as a concentration inequality for conditional prob-
ability distributions, in the following sense. Let OA|X be a conditional probability
distribution over A and X , QX be a probability distribution over X and denote
OAX = QXOA|X . Fix n ∈ N. Consider a scenario in which we sample a = a1, . . . , an
and x = x1, . . . , xn using O⊗n

AX and estimate OA|X from the sample by calculating
Ofreq(a,x)

AX defined by
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Ofreq(a,x)

AX (ã x̃) =
∣∣∣ {i : (ai , xi ) = (ã, x̃)}

∣∣∣
n

and define

Ofreq(a,x)

A|X = Ofreq(a,x)

AX

QX
. (2.2)

Lemma 2.2 (Sanov’s inequality) For every OAX and n,

Prax∼O⊗n
AX

[∣∣Ofreq(a,x)

A|X − OA|X
∣∣
1 > ε

]
≤ δ(n, ε)

where Ofreq(a,x)

A|X is as in Eq. (2.2), δ(n, ε) = (n + 1)|A|·|X |−1e−nε2/2, and

∣∣Ofreq(a,x)

A|X − OA|X
∣∣
1 =

∑
x̃

QX (x̃)
∑
ã

∣∣Ofreq(a,x)

A|X (ã|x̃) − OA|X (ã|x̃)∣∣ .

2.3 Quantum Formalism

The basic notation used in the thesis related to the quantum formalism is listed below.
We remark, however, that understanding what is meant by a “state” and “measure-
ments” on the intuitive level will almost always suffice in order to understand the
essence of the thesis. The exact definitions below are given for the sake of complete-
ness. Clearly, they do not cover all concepts and definitions employed in quantum
physics and quantum information theory. Readerswho are not familiarwith the topics
and would like to get a more comprehensive understanding are directed to [1].

We use the Dirac notation: |ψ〉 denotes a column vector while 〈ψ| is a row vector.
〈φ|ψ〉 and |φ〉〈ψ| denote inner and outer products of the two vectors, respectively.

2.3.1 Operators

We use the following standard notation and definitions.

• The identity matrix, or operator, of dimension d is denoted by Id . Alternatively,
instead of indicating the dimension, we use, e.g., IX to denote the identity operator
acting in a specific space associated to X (see below).When the space or dimension
is clear from the context we simply write I.

• A Hermitian, or self-adjoint, operator A is an operator satisfying A = A†.
• A unitary operator A is an operator satisfying AA† = A†A = I.
• The trace of a square matrix A, i.e., the sum of the elements on the main diagonal
of A, is denoted by Tr(A).
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• A � 0, for A Hermitian, means that the eigenvalues of A are non-negative. A � B
stands for A − B � 0.

• The 1-norm is defined as ‖A‖1 = Tr|A| = Tr
√
A†A, where A† denotes the con-

jugate transpose of A.
• For a diagonal matrix A with eigenvalues {ai }i , log(A) is the diagonal matrix with
eigenvalues {log(ai )}i .

2.3.2 Hilbert Spaces

The postulates of quantum mechanics tell us that all quantum states “belong” to
a complex vector space called a Hilbert space. All quantum states and operations
will be defined with respect to the considered Hilbert spaces. We give the formal
definitions below.

Definition 2.3 (Hilbert space) A Hilbert space H is a complex vector space, i.e.,

|ψ〉, |φ〉 ∈ H and λ1,λ2 ∈ C → λ1|ψ〉 + λ2|φ〉 ∈ H

such that for all |ψ〉, |φ〉 ∈ H , there exists 〈φ|ψ〉 ∈ C for which

1. it is linear in |ψ〉: 〈φ|λ1ψ1 + λ2ψ2〉 = λ1〈φ|ψ1〉 + λ2〈φ|ψ2〉 ,
2. 〈φ|ψ〉 = 〈ψ|φ〉, where the bar denotes the complex conjugate ,
3. for all |ψ〉 ∈ H , 〈ψ|ψ〉 ≥ 0 and 〈ψ|ψ〉 = 0 ↔ |ψ〉 = 0.

The norm of a vector |ψ〉 is defined as ‖|ψ〉‖1 = √〈ψ|ψ〉.
Definition 2.4 (Orthonormal basis) An orthonormal basis of H is a set of vectors
{|φi 〉}i∈I such that

• 〈φi |φ j 〉 = δi j for all i, j ∈ I and
• 〈ψ|φi 〉 = 0 for all i ∈ I → ψ = 0 .

We will usually consider Hilbert spaces of finite dimensions, meaning I is a set
with a finite amount of elements.

Definition 2.5 (Projector) LetH be a Hilbert space andH ′ a subspace ofH with
{|φi 〉}i∈I ′ an orthonormal basis ofH ′. The projector ofH ontoH ′ is the operator

PH ′ =
∑
i∈I ′

|φi 〉〈φi | .

Given HA and HB , the tensor product Hilbert space HA ⊗ HB is defined such
that for |ψ〉 ∈ HA and |φ〉 ∈ HB , it associates a vector |ψ〉 ⊗ |φ〉 ∈ HA ⊗ HB with
the property that
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1. c · (|ψ〉 ⊗ |φ〉) = (c · |ψ〉) ⊗ |φ〉 = |ψ〉 ⊗ (c · |φ〉)
2. (|ψ1〉 + |ψ2〉) ⊗ |φ〉 = |ψ1〉 ⊗ |φ〉 + |ψ2〉 ⊗ |φ〉
3. |ψ〉 ⊗ (|φ1〉 + |φ2〉) = |ψ〉 ⊗ |φ1〉 + |ψ〉 ⊗ |φ2〉
for all c ∈ C, |ψ1〉, |ψ2〉 ∈ HA and |φ1〉, |φ2〉 ∈ HB .

2.3.3 Quantum States

2.3.3.1 Pure and Mixed States

There are two “types” of quantum states one can consider—pure and mixed states.
A pure quantum state is associated with a vector belonging to an Hilbert

space, |ψ〉 ∈ H , with normalisation ‖|ψ〉‖1 = 1.
Instead of working only with vectors, we can define quantum states as matrices,

or operators.

Definition 2.6 (Density operator) A density operator, or simply a quantum state, ρ ∈
End(H ) is a Hermitian positive operator with trace 1. That is,

ρ = ρ† ; ρ � 0 ; Tr(ρ) = 1 .

For a given Hilbert space H , we denote by S(H ) the set of all density operators
defined over H .

Any pure state |ψ〉 ∈ H can bewritten as a density operatorρ = |ψ〉〈ψ| ∈ S(H ).
Density operators can describe more general states, called mixed quantum states,
which can be thought of as a convex combination of pure states:

ρ =
∑
i

pi |ψi 〉〈ψi | .

Note, however, that different convex combinations can result in the same mixed state
ρ and, thus, ρ does not pin-down a specific decomposition to pure states.

A qubit is a quantum state belonging to S(H ) for a two-dimensional Hilbert
space H . The basis states are denoted by |0〉 and |1〉.

2.3.3.2 Composite Systems

One can consider quantum states over tensor products of Hilbert spaces. Such states
are called multipartite states. For example, a bipartite state is a quantum state ρAB ∈
S(HA ⊗ HB) for some Hilbert spaces HA and HB . The state ρAB can describe a
state shared between two parties, Alice and Bob. The most important thing to notice
in the context of the thesis is that given a bipartite state ρAB , its marginals are also
quantum states; these are called the reduced density operators.
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Definition 2.7 (Reduceddensity operators)GivenρAB ∈ S(HA ⊗ HB), its reduced
density operator over HA is given by

ρA = TrB (ρAB) =
∑
i

(IA ⊗ 〈φi |) ρAB (IA ⊗ |φi 〉)

where {|φi 〉}i is a basis of HB , and similarly for ρB .

Thinking of ρAB as shared between Alice and Bob, Alice’s local state is then ρA

while Bob’s local state is ρB .
Given a state ρA we can consider its purification.

Definition 2.8 (Purification) The purification of a state ρA ∈ S(HA) is a pure bipar-
tite state ρAB ∈ S(HA ⊗ HB) for which TrB(ρAB) = ρA.

Note that by applying a unitary on B the state on A is not being modified and the
overall state remains pure. Thus, after the unitary operation, we are still holding a
purification. In this sense, we usually say that all purifications are equivalent up to
the application of a unitary on the purifying system B.

2.3.3.3 Classical Systems

A classical system, defined by a RV A with probability distribution PA, can be
represented by the density operator

ρA =
∑
a∈A

PA(a)|a〉〈a| ,

where {|a〉}a is an orthonormal basis of a Hilbert space HA.
One example of a classical system that is of common use is the state associated

with the uniform distributionUm over {0, 1}m . This distribution can be written as the
state ρUm = 1

m Im , called the completely mixed state on m qubits.
A classical-quantum state is a bipartite state in which one register is classical and

the other is quantum. Formally,

Definition 2.9 (Classical-quantumstate)Aclassical-quantumstateρAE ∈ S(HA ⊗
HE ), classical on A, is a state of the form

ρAE =
∑
a

PA(a)|a〉〈a| ⊗ ρaE ,

where {|a〉}a is an orthonormal basis of the Hilbert space HA and, for all a ∈ A,
ρaE ∈ S(HE ).
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Given a classical-quantum state ρAE as above, we can consider the quantum state
arising from conditioning on an event defined over A. For example, conditioning
on the event A = a, the quantum state is ρaE . Conditioning can also be done when
consideringmore complicated events. ForΩ some event overA, the state conditioned
on Ω is

ρAE |Ω = 1

Pr[Ω]
∑
a∈Ω

PA|Ω(a) ⊗ ρaE ,

where Pr[Ω] = ∑
a∈Ω PA(a) is the probability ofΩ according to ρAE and PA|Ω(a) =

Pr[A = a ∧ Ω]/Pr[Ω] is the probability of a given Ω .

2.3.3.4 Entanglement

Given a bipartite state ρAB ∈ S(HA ⊗ HB), shared between two parties, one can
study the type of correlations that appear between the two parties. A state is said to
be separable if it can be written as

ρAB =
∑
i

pi ρiA ⊗ ρiB (2.3)

for some probabilities pi , ρiA ∈ S(HA), and ρiB ∈ S(HB). That is, a separable state
is a convex combination of tensor product states. Using the above we notice that
a pure state |ψ〉AB is separable if and only if it is a tensor product of two pure
states |ψ〉AB = |ψA〉 ⊗ |ψB〉.

Not all quantum states are separable. A bipartite state ρAB ∈ S(HA ⊗ HB) is said
to be entangled if it cannot be written in the form of Eq. (2.3). Such states exhibit
correlations which cannot be explained by classical means.

Of specific interest to us are maximally entangled states of two qubits, also called
Bell states, denoted by

|Φ+〉 = 1√
2

(|00〉 + |11〉) , |Φ−〉 = 1√
2

(|00〉 − |11〉) ,

|Ψ +〉 = 1√
2

(|01〉 + |10〉) , |Ψ −〉 = 1√
2

(|01〉 − |10〉) .

Here, |00〉 stands for |0〉 ⊗ |0〉 ∈ HA ⊗ HB , with HA and HB two-dimensional
Hilbert spaces. |01〉, |10〉, and |11〉 are similarly defined.
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2.3.4 Quantum Operations

2.3.4.1 Unitary Evolution

The evolution of a closed, or isolated, quantum system is described by unitary opera-
tions. By “a closed system” wemean that the transformation of the system of interest
is independent of the “rest of the world”, or the environment. We have:

• For any unitary U , U evolves a pure state |ψ1〉 ∈ H to a pure state |ψ2〉 ∈ H
according to |ψ2〉 = U |ψ1〉.

• Moregenerally, formixed states, startingwithρ1 ∈ S(H )wehaveρ2 = Uρ1U † ∈
S(H ).

• For a bipartite state ρ1AB , we can evolve each subsystem locally by ρ2AB =
(UA ⊗UB)ρ1AB(U †

A ⊗U †
B).

• As unitary operations are reversible (UU † = U †U = I), the evolution of closed
systems is always reversible.

2.3.4.2 Quantum Measurements

To describe a quantum measurement one can use the so called Kraus operators.

Definition 2.10 (Kraus operators) A set of Kraus operators {Ki }i∈I is a set of oper-
ators such that

∑
i∈I K †

i Ki = I.

Definition 2.11 (Quantum measurement: Kraus representation) Given a state ρ and
a set of Kraus operator {Ki }i∈I describing a measurement, the outcome of the mea-
surement on ρ is a RV I , defined over the set I, where each outcome i ∈ I is
associated with the operator Ki . The probability of observing the outcome i when
measuring ρ with {Ki }i is given by

Pr(i) = Tr(KiρK
†
i ) .

The post-measurement state is given by

ρi = KiρK
†
i

Tr(KiρK
†
i )

.

We can further identify an operator Mi = K †
i Ki and work with it, instead of

the Kraus operators, to ease notation in some cases. These operators, called posi-
tive operator valued measures (POVMs), can then be used to describe the relevant
measurements.

Definition 2.12 (Positive operator valuedmeasure) A positive operator valuedmea-
sure (POVM) is a set of positiveHermitian operators {Mi }i∈I such that

∑
i∈I Mi = I.
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Definition 2.13 (Quantummeasurement: POVMrepresentation) Given a state ρ and
a POVM {Mi }i∈I describing a measurement, the outcome of the measurement on
ρ is a RV I , defined over the set I, where each outcome i ∈ I is associated with
the operator Mi . The probability of observing the outcome i when measuring ρ with
{Mi }i is given by

Pr(i) = Tr(Miρ) .

Given a POVM {Mi }i∈I there are many different decomposition to Kraus opera-
tors. While the specific decomposition is not relevant for knowing the measurement
statistics, they are needed in order to describe the post-measurement state.

In most of the scenarios considered in this thesis we will only be interested with
the observed measurements statistics and therefore we will use POVMs to describe a
measurement. When there will be a need to consider the post-measurement state we
will switch to Kraus operators. Which form on quantum measurement is being used
is usually clear from the context and hence we simply call all of them measurement
operators.

The Pauli operators, denoted by σx , σy, and σz , are an example for measurement
operators for qubits:

σx =
(
0 1
1 0

)
; σy =

(
0 −i
i 0

)
; σz =

(
1 0
0 1

)
. (2.4)

2.3.4.3 Quantum Channels

Quantum channels, ormaps, are functions describing the evolution of quantum states.
In order for amapE to describe a real physical process, transferring one quantum state
ρ ∈ S(HA) to another E(ρ) ∈ S(HB),1 it must fulfil certain conditions. Specifically,
it must be completely positive and trace preserving (CPTP).

Definition 2.14 (Quantum channel) A linear map E ∈ Hom(S(HA),S(HB)) is a
quantum channel if it is:

1. Completely positive (CP): for any ρAR ∈ S(HA ⊗ HR) with ρAR � 0,

(E ⊗ IR)(ρAR) � 0 ,

where HR is any additional Hilbert space and IR is the identity map on that
Hilbert space.

2. Trace preserving (TP): for any ρ ∈ S(HA), Tr (E(ρ)) = Tr(ρ).

1Note that HB may be different than HA. For a unitary evolution, discussed before, this was not
the case.
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2.4 Distance Measures

The trace distance of two states is given by Δ(ρ, τ ) = 1
2‖ρ − τ‖1. Operationally,

the trace distance quantifies the distinguishing advantage when trying to distinguish
ρ from τ . Consider a situation in which either the state ρ or the state τ are chosen
uniformly at random and given to someone who has no information as to which state
was chosen and needs to output a guess. The probability of succeeding in this task
depends on how far ρ and τ are from one another via

Pr[correct guess] = 1

2

(
1 + 1

2
‖ρ − τ‖1

)
= 1

2
+ Δ(ρ, τ ) .

Wewill be interested below in the so called purified distance. The purified distance
involves sub-normalised states, i.e., states with Tr(ρ) ≤ 1. For this, one first needs
to extend the definition of the trace distance to describe also the distance between
two sub-normalised states.

Definition 2.15 (Generalised trace distance) The trace distance between two sub-
normalised states ρ and τ is given by

Δ(ρ, τ ) = 1

2
‖ρ − τ‖1 + 1

2
|Tr(ρ − τ )| .

Another important measure of distance (though not a metric) is the fidelity. The
fidelity of two quantum states is given by F(ρ, τ ) = (

Tr|√ρ
√

τ |)2. The fidelity is
related to the trace distance by

1 − √
F(ρ, τ ) ≤ Δ(ρ, τ ) ≤ √

1 − F(ρ, τ )

Here, again, we can define the fidelity between two sub-normalised states.

Definition 2.16 (Generalised fidelity) The fidelity between two sub-normalised
states ρ and τ is given by

F(ρ, τ ) =
(
Tr|√ρ

√
τ | + √

(1 − Tr(ρ))(1 − Tr(τ ))
)2

.

The last distance measure that will be of importance for us is the purified dis-
tance [2]. This measure will be used to define the smooth entropies below and will
always be considered with sub-normalised states.

Definition 2.17 (Purified distance) The purified distance between two sub-
normalised states ρ and τ is given by

P(ρ, τ ) = √
1 − F(ρ, τ ) .
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2.5 Entropies

2.5.1 Shannon and von Neumann Entropy

Definition 2.18 (Shannon entropy) Given RVs A and B defined over A and B,
respectively, the Shannon entropy of A is given by

H(A) = −
∑
a∈A

PA(a) log (PA(a)) .

The conditional Shannon entropy of A given B is defined to be

H(A|B) = H(AB) − H(B) =
∑
b∈B

PB(b)H(A|b) .

In the case of a RV defined over {0, 1} with PA(0) = p the Shannon entropy is
reduced to the so called “binary entropy” h(p) = −p log(p) − (1 − p) log(1 − p).

The von Neumann entropy is the extension of the Shannon entropy to quantum
states.

Definition 2.19 (von Neumann entropy) Given a quantum state ρAB ∈ S(HA ⊗
HB), the von Neumann entropy of A is given by

H(A)ρ = −Tr (ρ log ρ) .

The conditional von Neumann entropy of A given B is defined to

H(A|B)ρ = H(AB)ρ − H(B)ρ .

When the state on which the entropy is evaluated is clear from the context we drop
the subscript and write, e.g., H(A|B).

Definition 2.20 (Mutual information) For a quantum state ρABC , the conditional
mutual information between A and B conditioned C is given by

I (A : B|C)ρ = H(A|C)ρ + H(B|C)ρ − H(AB|C)ρ

= H(A|C)ρ − H(A|BC)ρ .

There are other equivalent ways of defining Markov chains for quantum states [3],
but for our purposes this definition suffices.

The conditional mutual information fulfils the following properties:

1. Strong subadditivity: I (A : B|C)ρ ≥ 0 for any ρ.
2. Data processing: for any quantum channels E : S(HA) → S(HA′) and F :

S(HB) → S(HB ′),
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I (A : B|C)ρ ≥ I (A′ : B ′|C)ρ′ ,

where ρ′
A′B ′C = E ⊗ F ⊗ IC(ρABC).

3. I (A : B|C) = 0 if and only if A and B are independent given C , i.e., PAB|C =
PA|C · PB|C .

Definition 2.21 A tripartite quantum state ρABC is said to fulfil the Markov chain
condition A ↔ C ↔ B if I (A : B|C) = 0.

2.5.2 Min- and Max-Entropies

We will work with the smooth min- and max-entropies, formally defined as follows.

Definition 2.22 (Smooth conditional entropies) For any ε ∈ [0, 1] the ε-smooth con-
ditional min- and max-entropy of a state ρAB are given by

H ε
min(A|B)ρAB = log inf

σAB∈Bε(ρAB )
inf
τB

‖σ 1
2
ABτ

− 1
2

B ‖2∞
H ε

max(A|B)ρAB = log inf
σAB∈Bε(ρAB )

sup
τB

‖σ 1
2
ABτ

− 1
2

B ‖21 ,

for Bε(ρAB) the set of sub-normalised states σAB with P(ρAB,σAB) ≤ ε, where P
is the purified distance as in Definition 2.17.

In practice, we will not need the fully general definitions above (which are stated
for completeness). When considering the min-entropy, we will be interested in the
case where the A system is classical. This leads to more intuitive definitions.When A
is classical and B is trivial, one can simply write

Hmin(A) = − log
[
max
a

PA(a)
]

.

For quantum B, the state can be written as ρAB = ∑
a pa|a〉〈a| ⊗ ρaB . Then, the

conditional min-entropy is the directly related to the guessing probability of A
given B via

Hmin(A|B) = − log pguess(A|B) ,

where pguess(A|B) is the maximum probability of guessing A given the quantum
system B:

pguess(A|B) = max
{Ma

B }a

∣∣∣∑
a

paTr(M
a
BρaE )

∣∣∣ ,

and the maximisation is performed over all POVMs {Ma
B}a on B. The smooth con-

ditional min-entropy can be written by maximising the min-entropy over all close
sub-normalised states, i.e.,
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H ε
min(A|B)ρAB = max

σAB∈Bε(ρAB )
Hmin(A|B)σAB .

Moving on to themax-entropy, wewill mainly be interested in the case of classical
registers. In the classical case, the following holds for the max-entropy

Hmax(A) ≤ − log

[
min

a|PA(a)�=0
PA(a)

]
.

Evaluating the smooth conditional max-entropy will be done by considering a
closely related quantity, namely the classical smooth zero-entropy.

Definition 2.23 (Classical zero-entropy) For classical RVs A and B distributed
according to PAB ,

H0(A|B) = max
b

log
∣∣Supp (

PA|B=b
)∣∣ ,

where Supp
(
PA|B=b

) = {a : PA|B=b (a) > 0}. The smooth version of the zero-
entropy is given by

H ε
0 (A|B) = min

Ω
max
b

log
∣∣Supp (

PA|Ω,B=b
)∣∣ ,

where the minimum ranges over all events Ω with probability at least 1 − ε.

Finally, we remark that for any quantum state ρAB ,

Hmax(A|B) ≥ H(A|B) ≥ Hmin(A|B) .

The same ordering does not necessarily hold for the smooth entropies.
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Chapter 3
Preliminaries: Device-Independent
Concepts

The goal of this chapter is to present the basic information needed while reading the
thesis. It is by no means a comprehensive review of the topic of device-independent
information processing. A reader completely unfamiliar with the concepts of non-
locality and device-independent protocols is encouraged to read the survey [1] and
book [2].

As explained in the introduction, the device-independent framework allows one
to examine certain properties of physical devices without referring to their internal
workings. Instead of describing a device using its hardware and actions we think of it
as a box with buttons, on which the user can press in order to give classical inputs to
device, and a display, from which the user can read the classical outputs produced by
the device. Then, the only information available to the user of the box is the observed
data, i.e., the input-output behaviour of the box.

The input-output behaviour of the box can be described mathematically using
a conditional probability distribution PO|I , where I describes the possible inputs
of the box and O the possible outputs. For example, if the box has three buttons
we can think of I as being a random variable over {0, 1, 2}. If the box displays a
bit as its output then O is a random variable over {0, 1}. PO|I then describes the,
possibly probabilistic, actions of the box. For example, a box with PO|I (0|0) = 1/2
and PO|I (1|0) = 1/2 outputs 0 or 1, each with probability 1/2, when the user presses
the button associated with the input 0.

The following sections are devoted to explaining the types of boxes that one
can consider and their properties. In Sect. 3.1 we define three important classes of
boxes according to their input-output behaviour. In Sect. 3.2 we introduce the topic
of Bell inequalities, which lies at the heart of all device-independent information
processing tasks. In Sect. 3.3 we formally discuss the concept of untrusted devices
and, in particular, how a possibly malicious box is modelled.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
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3.1 Black Boxes

In this thesis we mainly consider bipartite boxes. We think of a bipartite box as a box
with two components, each belonging to a different party—one component for Alice
and one for Bob. Crucially later on, the components are separated in space so Alice
and Bob may locate their parts of the box in different places. Both of Alice’s and
Bob’s component have buttons and a display. Alice has the possibility of supplying
an input to her component and reading the output produced by her component. Bob
has no access to Alice’s component. Similarly, Bob has the possibility of supplying
an input to his component and reading the output produced by his component, while
Alice has no access to Bob’s component.

Mathematically the bipartite nature of the box presents itself by considering con-
ditional probability distributions PAB|XY , where X and A denote Alice’s inputs and
outputs, respectively, while Y and B denote Bob’s inputs and outputs, respectively.
PAB|XY includes all the information about the input-output behaviour of the box and
the correlations between Alice’s and Bob’s outputs.

A priori, there are no restrictions on PAB|XY , i.e., it can be any conditional proba-
bility distribution. One may restrict the type of boxes being considered by imposing
certain constraints on PAB|XY that depend on the physical theory being studied.
Specifically, we are interested in boxes that describe classical, quantum, and non-
signalling devices (as explained below). A quantum box, for example, may exhibit
correlations between Alice and Bob that cannot be created by classical means. When
considering the space of conditional probability distributions PAB|XY the constraints
imposed on the box define sets to which the different type of boxes belong. The
constraints defining the sets of interest are explained below.

3.1.1 Non-signalling Boxes

When considering general conditional probability distributions PAB|XY any depen-
dence between A, B, X , and Y is allowed. In particular, even thoughwe think ofAlice
and Bob as holding two separated parts of the box, Alice’s output A may depend on
both inputs X and Y . In practice this means that in order for Alice’s box to produce
an output, following Alice’s choice of input X , the box first needs to get Bob’s input
Y as well. That is, until a signal including Bob’s input arrives to Alice’s component,
no actions will be taken by Alice’s component of the box and Alice will need to wait.

In most cases, the above is not a desired behaviour; usually one expects the
component of one user to produce an output as a response to pressing the button
on that component alone. Mathematically this requirement is phrased using the so
called “non-signalling conditions” that imply that the marginals PA|X and PB|Y are
a well-defined conditional probability distribution. In other words, the behaviour of
Alice’s part of the box is described by PA|X , which is independent of Bob’s input Y .
Thus, Alice’s box does not need to receive Y before producing A. A box fulfilling
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the non-signalling conditions between Alice and Bob is called a non-signalling box
and is defined as follows.

Definition 3.1 (Non-signalling box) A non-signalling box is a conditional proba-
bility distribution PAB|XY for which the non-signalling conditions

∑

b

PAB|XY (a, b|x, y) =
∑

b

PAB|XY (a, b|x, y′) (3.1)

∑

a

PAB|XY (a, b|x, y) =
∑

a

PAB|XY (a, b|x ′, y) (3.2)

hold for all a ∈ A, b ∈ B, x, x ′ ∈ X and y, y′ ∈ Y .

Denote by Py
A|X (a|x, y) = ∑

b PAB|XY (a, b|x, y) the behaviour of Alice’s part
of the box, which may a priori depend on Bob’s choice of input y. Equation (3.1)
states that Py

A|X = Py′
A|X and, hence, the conditional probability distribution describing

Alice’s part of the box is independent of Bob’s input, i.e., whether Bob inputs y or
y′. We can therefore drop the superscript and simply consider PA|X—a well defined
marginal. Similarly, Eq. (3.2) implies that PB|Y is independent of Alice’s input and
faithfully describes Bob’s part of the box.

On the more fundamental level, the non-signalling conditions describe the
assumption that the box cannot be used to send instantaneous signals between Alice
and Bob. Alice and Bob may locate their components arbitrarily far away from one
another. If we require the two components to produce outputs right away, then signals
including information about the inputs used by the other party have no time to get
from one part of the box to the other and influence its actions. In such a case, using the
above notation, if Py

A|X �= Py′
A|X , then Alicemay conclude from her observed statistics

whether Bob used y or y′, even though this information did not have enough time to
travel from Bob to Alice. It follows that a non-signalling box is a device that cannot
be used as means of communication between Alice and Bob.

A closely related definition that will be of use later is that of a non-signalling
extension. Given Alice’s component, one can consider an extension of it to an addi-
tional party Bob. Specifically, we will be interested in what we call a non-signalling
extension of a box, defined below.

Definition 3.2 (Non-signalling extension) A non-signalling extension of a box
PA|X is a non-signalling box PAB|XY such that for all a ∈ A, x ∈ X , and y ∈ Y ,∑

b PAB|XY (a, b|x, y) = PA|X (a|x).
In words, given PA|X , PAB|XY is a non-signalling box with the “correct marginal”

on Alice’s side (while Bob’s marginal PB|Y can be arbitrary).
Before moving on we point to the simplicity of the non-signalling conditions

in Eqs. (3.1) and (3.2). The non-signalling conditions are linear. As a result, the
set of non-signalling boxes is a polytope. The faces of the polytope are defined
by the various non-signalling conditions as well as the positivity and normalisation
constrains fulfilled by any conditional probability distribution.
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3.1.2 Quantum Boxes

One can further restrict the modelled device by considering quantum boxes, i.e.,
boxes that exhibit quantum correlations. Such boxes are relevant when considering
device-independent processing tasks in which all the resources are quantum.

Quantum correlations are correlations that can be explained within the formalism
of quantum physics. To put it differently, we think of a box as a device that “holds”
some bipartite quantum state ρQAQB , shared between Alice and Bob.1 Alice’s com-
ponent of the device performs some local quantum measurements on her marginal
state ρQA and similarly for Bob. Formally:

Definition 3.3 (Quantum box) A quantum box is a conditional probability distri-
bution PAB|XY such that there exist a bipartite state ρQAQB and sets of POVMs for
Alice and Bob {Mx

a }a∈A for all x ∈ X and {My
b }b∈B for all y ∈ Y , respectively, for

which
PAB|XY (a, b|x, y) = Tr

(
Mx

a ⊗ My
b ρQAQB

) ∀a, b, x, y . (3.3)

We make the following remarks regarding Definition 3.3. First, while we assume
that the bipartite box is quantum, we do not assume anything regarding its internal
workings. In particular, we only assume here that the state ρQAQB is defined over a
bipartite Hilbert space2 HQA ⊗ HQB (since we consider bipartite boxes) but we do
not restrict the dimensions of HQA and HQB .

Second, the non-signalling assumption is “encoded” in the bipartite structure of
Alice and Bob’s state ρQAQB together with tensor product structure of their measure-
ments as in Eq. (3.3). That is, the conditional probability distribution PAB|XY is by
definition non-signalling. Hence, the set of quantum boxes is a subset of the set of
non-signalling boxes.

3.1.3 Classical Boxes

A classical box is described by a conditional probability distribution that can be
explained in terms of shared randomness alone. That is, we think of Alice’s and
Bob’s component of the box as holding a shared random string (in contrast to a
shared quantum state). Each component decides on its output depending on its input
and the shared string. Formally:

1We distinguish the quantum state from the correlations throughout the thesis: QA and QB denote
quantum registers belonging to Alice and Bob while A and B denote their classical outputs.
2The definition of a quantum box over a bipartite Hilbert space HQA ⊗ HQB is the standard one
in the context of non-relativistic quantum mechanics. When studying relativist quantum mechanics
one considers a single Hilbert space H and two commuting measurements acting on it (instead of
tensor product measurements). The two definitions coincide when restricting the attention to finite
dimensional Hilbert spaces but otherwise different in general [3].
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Definition 3.4 (Classical box) A classical box is a conditional probability distribu-
tion PAB|XY that can be written in the form

PAB|XY (a, b|x, y) =
∫

Λ

dλPr [Λ = λ] PA|XΛ(a|xλ) · PB|YΛ(b|yλ) , (3.4)

where Λ is the random variable describing the randomness shared by the two com-
ponents of the box.

One can assumewithout loss of generality that PA|XΛ and PB|YΛ are deterministic.
That is, for all λ, x , and a, either PA|XΛ(a|x,λ) = 0 or PA|XΛ(a|x,λ) = 1, and
similarly for Bob. This holds since we can always “push” the non-deterministic
behaviour of the components to the shared randomness λ itself. As the number of
deterministic assignments of a to each x is finite (assuming A and X are finite), it
follows that one can also express all classical boxes as

PAB|XY (a, b|x, y) =
∑

λ

Pr [Λ = λ] PA|XΛ(a|xλ) · PB|YΛ(b|yλ) ,

for λ belonging to a finite set and deterministic PA|XΛ and PB|YΛ.
In the context of Bell inequalities, discussed below, Λ is called the “hidden vari-

able” that explains the correlations between Alice’s and Bob’s parts of the box.
Conditioned on the value of Λ, the two components, PA|XΛ and PB|YΛ, are indepen-
dent of one another, as seen in Eq. (3.4). Classical boxes, or correlations, are also
termed “local correlations”.3

It is easy to see thatwhen considering scenarioswith a singleparty, i.e., boxesPA|X ,
all conditional probability distributions can be written in the form of Eq. (3.4). Thus,
all single-party boxes are classical boxes. This is not an interesting scenario and, in
particular, no device-independent information processing task can be performed in
such a case. Thus, boxes of two parties or more are always considered.

3.1.4 Correlations’ Space

Let C, Q, and NS denote the sets of classical, quantum, and non-signalling boxes,
respectively. It is easy to see that all of these sets are convex: given two classical boxes
P1
AB|XY and P2

AB|XY , the box PAB|XY = pP1
AB|XY + (1 − p)P2

AB|XY is also classical,
and similarly for quantum and non-signalling boxes. The convex sets of classical and
non-signalling boxes can be described as the convex combination of a finite number
of extremal point and hence C and NS are polytopes. This is not the case for the
quantum set Q. See Fig. 3.1 for an illustration.

3Though common, this is a rather confusing and unjustified terminology. As clear from Eq. (3.3),
quantum correlations are also local, in the sense that each component performs a local operation
on its part of the state.
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Fig. 3.1 Illustration of the
sets of boxes. C, Q, and NS
denote the sets of classical,
quantum, and non-signalling
boxes, respectively. All sets
are convex, C and NS being
polytopes, and the relation
C � Q � NS holds. Bell
inequalities can be used to
separate classical boxes from
quantum ones

As clear from the definition of the various types of boxes, any classical box is also
a quantum box and any quantum box is also a non-signalling box. Furthermore, there
are examples for quantum boxes that cannot be written in the form of Eq. (3.4) and
for non-signalling boxes that cannot be written in the form of Eq. (3.3). It follows
that the sets fulfil the relation

C � Q � NS ,

as in Fig. 3.1.
Bell inequalities, discussed in the next section, give us awayof separating classical

boxes from quantum ones4—an essential tool in any device-independent information
processing task.

3.2 Bell Inequalities

From now on our discussion is restricted to boxes which fulfil, at the least, the non-
signalling conditions. That is, we are considering only boxes which cannot be used
as means of communication between two separated parties, Alice and Bob.

The polytope of classical boxes C is a strict subset of the set of quantum and
non-signalling boxes. As such, some of the affine hyperplanes defining C separate C
from Q.5 Informally, when we say that a hyperplane separates C from Q we mean
that all classical boxes are on one side of the hyperplane, while the other side can
only include quantum and non-signalling boxes.

The condition of being on “one side of the hyperplane” is written in the form of
an inequality

4Separating quantum boxes from non-signalling ones is a far more complicated task; see, e.g., [4].
5Other hyperplanes represent the trivial conditions of positivity of normalisation of the conditional
probability distributions which are relevant for all sets.
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∀PAB|XY ∈ C,
∑

a,b,x,y

s(a, b, x, y)PAB|XY (a, b|x, y) ≤ S , (3.5)

for some given constants S and s(a, b, x, y), for all a, b, x, y.
Given a box PAB|XY , the simple form of Eq. (3.5) allows us to test, by calculating∑
a,b,x,y s(a, b, x, y)PAB|XY (a, b|x, y), if the box cannot be a classical one. In other

words, if the inequality is violated, i.e.,

∑

a,b,x,y

s(a, b, x, y)PAB|XY (a, b|x, y) > S ,

then PAB|XY cannot be written in the form of Eq. (3.4).
As first noticed by [5], some quantum boxes, arising from measurements per-

formed on entangled states, are capable of violating inequalities as in Eq. (3.5).6 Bell
suggested to use such states in an experiment, proposed to test the EPR paradox [6],
that will allow us to check whether there is some classical piece of information,
that we are just unaware of or cannot observe, that can explain the apparent “non-
local” correlations exhibit by certain quantum states. Such experiments, called today
“loophole-free Bell tests” [7–9], have verified the violation of Bell inequalities and
by this refuted the possibility of classical explanations of the behaviour of some
entangled quantum states.

The inequalities which are fulfilled by any classical box while being violated
by some quantum boxes are called Bell inequalities; see Fig. 3.1. All of the above
implies that a Bell inequality acts as a test for “quantumness” or, more precisely,
“non-classicalness” and its violation acts as a certificate for passing the test. As
such, it is crucial for any device-independent information processing task in which
we need to rule out the possibility of executing the considered task with a classical
device.

3.2.1 Non-local Games

Bell inequalities, as in Eq. (3.5), can also be phrased as special types of games, called
non-local, or Bell, games. In a game, a referee asks Alice and Bob, the players of
the game, a question each, chosen according to a given probability distribution; each
player only sees her/his question. The players then need to supply answers which
fulfil a pre-determined requirement according to which the referee accepts or rejects
the answers. To win the game the players can agree on a strategy beforehand but,

6Notice that the statement that some quantum states violate Bell inequalities is independent from
the statement that classical boxes cannot violate the inequality; it could have been the case that
no box is able to violated such inequalities. This would have implied that all quantum correlations
can be written in the form of Eq. (3.4) and, hence, can be described as arising from some shared
randomness, or an “hidden variable”, λ.
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once the game begins, communication between the players is not allowed. If the
referee accepts their answers the players win.

Formally, a game G = (X ,Y,A,B,QXY , w) is defined by sets of possible ques-
tions X and answers A for Alice, sets of possible questions Y and answers B for
Bob, a probability distribution QXY over the questions, according to which the ref-
eree chooses the questions, and a winning condition w : A × B × X × Y → {0, 1},
where w(a, b, x, y) = 0 means that the referee rejects (a, b, x, y), i.e., the players
lose, and w(a, b, x, y) = 1 means that the players win with (a, b, x, y).

A strategy for the game is naturally described by a box PAB|XY held by the
players—the referee chooses questions (x, y) ∈ X × Y and the players need to reply
with answers (a, b) ∈ A × B. The fact that the players are not allowed to commu-
nicate during the game means that, at the least, the box PAB|XY is constrained by
non-signalling conditions between Alice and Bob, i.e., PAB|XY belongs to the non-
signalling polytope NS.7 The winning probability of a box PAB|XY in the game G
is given by

ω
(
PAB|XY

) =
∑

a,b,x,y

QXY (x, y)PAB|XY (a, b|x, y)w(a, b, x, y) .

When the discussed box PAB|XY is clear from the context we simple writeω to denote
its winning probability.8

In the context of device-independent information processing we interpret a Bell
inequality as a special type of game.Whatmakes the game special is that it is designed
so that any classical box used by the players leads to a winning probability of at most
ωc < 1, while there exists a quantum box that can be used by the players to achieve
a greater winning probability, ωq > ωc. Instead of a Bell inequality as in Eq. (3.5)
we have

∀PAB|XY ∈ C, ω
(
PAB|XY

) ≤ ωc . (3.6)

Violating aBell inequality then translates to violatingEq. (3.6) bywinning the respec-
tive game with probability greater than ωc. In both cases, the conclusion is the same;
if PAB|XY violates Eq. (3.6) then PAB|XY /∈ C.

Before discussing an explicit example of a non-local game, one remark is in
order. Above, we thought of Alice and Bob as the ones preparing the box, according
to their strategy in the game, and the referee was asking them questions to test their
winning probability. Alternatively, we can think of Alice and Bob as holding an
uncharacterised box and they are the ones testing the box, by choosing the questions
themselves. In that case, Alice and Bob basically take the role of the referee (while
the box takes the role of Alice and Bob). (In the showcase of non-signalling parallel

7Depending on the context, one can further restrict the allowed strategies by considering classical
or quantum boxes.
8Notice the notation: w denotes a winning condition (function) while ω is the winning probability
(a number). W will be used to denote the random variable describing whether a game is won or
lost. In any case, the difference between these three objects is always clear from the text.
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repetition, in Chap. 10, we use the first terminology, while the showcase of device-
independent quantum cryptography, in Chap.11, the second is terminology is the
more appropriate one).

3.2.2 The CHSH Game

We now present an explicit non-local game that will be of use in the thesis. The
Clauser–Horne–Shimony–Holt (CHSH) game [10] is probably themost famous non-
local game. In the game, Alice’s and Bob’s inputs and outputs are bits, a, b, x, y ∈
{0, 1} and the inputs are distributed uniformly at random, i.e., QXY (x, y) = 1/4 for
all x and y. The winning conditions is given by:

wCHSH =
{
1 and a ⊕ b = x · y
0 otherwise.

(3.7)

The optimal classical box, or strategy, achieves a winning probability of 0.75. An
example for such a strategy is one in which the outputs are always (a, b) = (0, 0).

An optimal quantum strategy consists in measuring the maximally entangled state
|Φ+〉 = (|00〉 + |11〉) /

√
2 with the following measurements: Alice’s measurements

x = 0 and x = 1 correspond to the Pauli operators σz and σx respectively and Bob’s
measurements y = 0 and y = 1 to (σz + σx) /

√
2 and (σz − σx ) /

√
2 respectively.

A box implementing the above achieves winning probability ω = 2+√
2

4 ≈ 0.85. Per-
haps surprisingly, any box that achieves the optimal quantum winning probability
(or close to it) must be implementing a strategy identical to the above up to local
isometries (or close to such a strategy) [11–13].

The CHSH game can also phrased in the form of a Bell inequality. The most
common way of writing the CHSH inequality is as follows. Given PAB|XY , for any
pair of inputs (x, y), let

Exy =PAB|XY (0, 0|x, y) + PAB|XY (1, 1|x, y)
− PAB|XY (0, 1|x, y) − PAB|XY (1, 0|x, y)

and denote the CHSH value by

β
(
PAB|XY

) = E00 + E01 + E10 − E11 .

The CHSH inequality reads

∀PAB|XY ∈ C, β
(
PAB|XY

) ≤ 2 .

The interesting regime isβ ∈ [2, 2√2], whereβ = 2 is the optimal classical violation
while β = 2

√
2 is the quantum one. The relation between the winning probability in



42 3 Preliminaries: Device-Independent Concepts

the CHSH game and the CHSH value is given by ω = 1/2 + β/8 and we have ω ∈[
3
4 ,

2+√
2

4

]
.

When discussing device-independent quantum cryptography in Chap.11, we use
a variant of the CHSH game previously used in [14, 15]. In this game Alice has two
inputsX = {0, 1}while Bob has three possible inputs Y = {0, 1, 2}. The output sets
are A = B = {0, 1}. The winning condition is the following9:

wCHSH =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 x, y ∈ {0, 1} and a ⊕ b = x · y
1 (x, y) = (0, 2) and a = b

1 (x, y) = (1, 2)

0 otherwise.

(3.8)

The optimal quantum strategy for this game is the same as in the standard CHSH
game, except that if Bob’s input is a y = 2 he applies the same measurement as
Alice’s measurement for input 0. Since the underlying state is maximally entangled
this ensures that their outputs always match when (x, y) = (0, 2).

Conditioned on Bob’s input not being 2, the game played is the CHSH game and
the optimal classical and quantum winning probabilities are as above.

3.3 Untrusted Devices

Formally defining an untrusted device, or untrusted box, is essential when analysing
device-independent information processing tasks. The current section is devoted to
explaining what is meant by this term and what are the assumptions regarding an
untrusted device. To understand the definition of an untrusted device, it is perhaps
best to consider a cryptographic scenario inwhich the devicemay bemanufactured by
the malicious party, the adversary, and hence is not to be trusted. The same definition
of a device is used also when we do not have an explicit adversary in mind; the
device itself is still uncharacterised (in the sense explained below) but we are free to
ignore the additional subsystem given to the adversary in what follows. We therefore
employ below the terminology used in the cryptographic setting.

As before, we consider the case of two honest parties. A device D is modelled by
a bipartite box PAB|XY , shared between the honest parties, Alice and Bob, who try
to accomplish a certain task. We think of the box as being prepared by the adversary
Eve and hence we call it untrusted. Since Eve is the one manufacturing the device it
allows her, in particular, to keep an extension of Alice and Bob’s device. Formally,
we consider a non-signalling extension of PAB|XY to a tripartite box PABC |XY Z (recall
Definition 3.2): we have

9For the inputs (x, y) = (1, 2) one can set either wCHSH = 1 or 0 (it is not relevant later on); for
completeness we choose wCHSH = 1 in this case, following previous works.
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PAB|XY (a, b|x, y) =
∑

c

PABC |XY Z (abc|xyz) ∀a, b, x, y, z

and Eve “holds” the marginal PC |Z . Eve can use her component PC |Z as she wishes.
For example, in a cryptographic protocol, Eve can eavesdrop on all the classical
communication between the honest parties during the run of the protocol and only
later choose to use her boxwith input z that depends on all other information available
to her.

When considering non-signalling (super-quantum) boxes, the only constraint on
the extension PABC |XY Z is that it is non-signalling between the three parties and that
themarginal ofAlice andBob is equal to the box PAB|XY . In the quantum case, PAB|XY
describes both the state shared between Alice and Bob ρQAQB and measurements
devices used to measure ρQAQB . Eve then holds a purification10 of Alice and Bob’s
quantum state in a quantum register in her possession. The tripartite box PABC |XY Z

describes the pure state ρQAQB E together with the measurements of Alice and Bob
as well as the measurements that can be used by Eve to measure her marginal ρE .11

Although the device is untrusted, we always assume that the following require-
ments hold.

Alice andBob can interactwith the device as expected. In any considered scenario,
the type of interaction with the device D is defined explicitly. In particular, every
protocol clearly states how the users should interact with the device utilised to run
the protocol; for example, a protocol may require the users to play n games with
the device (by pressing buttons and recording the outputs) one after the other. The
different types of interactions and the resulting conditions on the untrusted device are
discussed in Chap. 6. Note that this requirement can be verified—if the honest parties
try to use the device in the specified way and the device does not react as expected
(e.g., it does not produce outputs or produces outputs from a different alphabet) then
it is clear that something is wrong. In this sense, the requirement that it is possible to
interact with the device as expected is not really an assumption regarding the device,
but rather a formality that allows us to be explicit when talking about untrusted
devices.

Communication (signalling) between the components of the device. The com-
munication between Alice, Bob, and Eve’s components of the device is restricted in
the following way:

1. Alice and Bob’s components of D cannot signal to Eve’s component.
2. Alice and Bob can decide when to allow communication (if any) between their

components.

10A purification ρQAQB E is the most general extension of a quantum state ρQAQB , in the sense that
it gives Eve the maximal amount of information regarding Alice and Bob’s marginal state. Hence,
in the cryptographic setting we always say that Eve holds the purifying system E , without loss of
generality—any adversary holding a system E ′ which is not the purifying system E can only be
weaker than that holding E .
11We emphasise again that Eve is not required to measure her quantum state at any particular point.
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3. Alice and Bob can decide when to receive communication (if any) from Eve’s
component.

The requirement given in Item 1 is necessary for device-independent cryptogra-
phy; without it the device could directly send to Eve all the raw data it generated.

Item 2 implies that Alice and Bob’s component must be (at least) bipartite. This is
necessary to assure that the violation of the considered Bell inequality is meaningful.
In the quantum case, this requirement is identified with the “assumption” that we
can write Alice and Bob’s quantum state as a bipartite state ρQAQB and that the
measurements made in Alice’s and Bob’s components of the device are in tensor
product with one another.

Items 2 and 3 give Alice, Bob, and Eve’s components the possibility to communi-
cate in certain stages of the protocol (see Sect. 4.2.5 for an explicit example). This is
not a restrictive nor necessary assumption. This possibility to communicate is added
since it is advantageous to actual implementations of certain protocols. For instance,
allowing the different components of the device to communicate in certain stages of
some protocols opens the possibility of distributing resources, such as entanglement,
“on the fly” for each round of the protocol, instead of maintaining large quantum
memories.

Other assumptions. Apart from the above description of the untrusted device, the
following list includes the standard assumptions used in device-independent infor-
mation processing tasks (in particular, device-independent cryptography):

1. The honest parties have a trusted random number generator (that can be used to
choose the inputs for playing the games, for example).

2. The honest parties have a trusted classical post-processing units to make the
necessary (classical) calculations during the considered task.

3. There is a public, but authenticated, classical channel connecting the honest parties
(if the considered task requires that the parties communicate classically with one
another).

4. In cryptographic scenarios—the honest parties’ physical locations are secure and
can be isolated if needed (unwanted information cannot leak outside to Eve or
between their devices).

5. Depending on the considered scenario—the actions of the device can be described
within the non-signalling or quantum formalism.

In contrast to an untrusted device, we sometimes use the terminology honest
device or honest implementation. A device is said to be honest if it implements the
considered protocol by using a certain pre-specified strategy. In that case, the actions
of the device are known and fixed. See Sect. 4.2.4 for an example.
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Chapter 4
Introduction to the Showcases

4.1 Introduction to Non-signalling Parallel Repetition

Non-local games, introduced in Sect. 3.2.1, are relevant in many areas of both theo-
retical physics and theoretical computer science. In the context of parallel repetition,
we think of a game G as follows. A referee asks each of the cooperating parties,
also called players, a question chosen according to a given probability distribution.
The players then need to supply answers which fulfil a pre-determined requirement
according to which the referee accepts or rejects the answers. In order to do so,
they can agree on a strategy beforehand, but once the game begins communication
between the players is not allowed. If the referee accepts their answers the players
win. The goal of the players is, naturally, to maximise their winning probability in
the game.

According to the field of interest, one can analyse any non-local game under dif-
ferent restrictions on the players (in addition to not being allowed to communicate).
In classical computer science the players are usually assumed to have only classi-
cal resources, or strategies. That is, they can use only local operations and shared
randomness. In contrast, one can also consider quantum strategies: before the game
starts the players create a multipartite quantum state that can be shared among them.
When the game begins each player locally measures their own part of the state and
bases the answer on their measurement result. Another, more general, type of strate-
gies are those where the players can use any type of correlations that do not allow
them to communicate, i.e., non-signalling strategies.

One of the most interesting questions regarding non-local games is the question
of parallel repetition. Given a game G with optimal winning probability 1 − α (using
either classical, quantum, or non-signalling strategies), we are interested in analysing
the winning probability in the repeated game, denoted by Gn . In Gn the referee gives
the players n independent tuples of questions at once, to which the players should
reply. The players win Gn if they win all of the n games. Another, more general
and natural, winning criterion is that the players answer a certain fraction 1 − α + β
of the n game instances correctly. One can then ask what is the probability that the
© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Arnon-Friedman, Device-Independent Quantum Information Processing,
Springer Theses, https://doi.org/10.1007/978-3-030-60231-4_4
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players succeed in the repeated game, as the number of repetitions n increases and
whether, in particular, this probability decreases exponentially fast with n, similarly
to what happens when playing each of the games independently. While the question
of parallel repetition is easy to phrase, its answer is far from trivial (and, in fact, up
to date there is no general answer that holds for all games).

The device-independent framework fits perfectly to the study of the parallel rep-
etition question: We can think of a box, i.e., a conditional probability distribution, as
describing a strategy of the players. The requirement that the players are not allowed
to communicate easily translates to non-signalling conditions between the parties
holding the box. Furthermore, the claims that we wish to make regarding the prob-
ability of winning the repeated game are oblivious of the exact description of the
strategy and hence treating the strategy as a black box makes sense. In particular,
studyin

g the behaviour of the strategy without having an explicit description of it is
necessary in order to be able to use parallel repetition results to, e.g., analyse exper-
iments that aim at ruling-out local realism while performing several Bell violation
experiments in parallel or for hardness amplification [1] in complexity theory and
cryptography.

We define and explain the question of parallel repetition below. Our showcase,
presented in Chap.10, focuses on the case of non-signalling parallel repetition. Note,
however, that all statements made in the following two sections are general and
applicable to any type of strategies. (One only needs to interchange the words non-
signalling and quantum or classical).

4.1.1 Parallel Repeated Games

For simplicity and as in the rest of the thesis, we consider two player non-local games.
All of the statements below can be extended to an arbitrary number of players.

We define a two-player game, with the players named Alice and Bob, similarly
to a non-local game.1

Definition 4.1 (Two-player game) A two-player game G = (X ,Y,A,B,QXY , R)

is defined by:

1. A set of possible questions for each player: X for Alice and Y for Bob.
2. A probability distribution QXY over the questions, according to which the referee

choses the questions.
3. A set of possible answers for each player: A for Alice and B for Bob.
4. A winning condition R : A × B × X × Y → {0, 1}.

In the repeated game, denoted by Gn , the referee asks Alice and Bob n questions,
all at once. The questions are chosen independently for each game and the answers are

1Multi-player games and non-local games are one and the same; we define a two-player game here
just to set the terminology used when discussing the showcase of parallel repetition.
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checked independently. In most works dealing with parallel repetition, the winning
condition of the repeated game is defined such that Alice and Bob win Gn if and
only if they win all n repetitions of G (hence the name). We will use a more general
winning condition in which only a certain fraction of the games needs to be won. We
call such games threshold games.

Definition 4.2 (Threshold game) Any two-player gameG = (X ,Y,A,B,QXY , R)

induces a two-player threshold game Gn
1−γ = (X n,Yn,An,Bn,Q⊗n

XY , Rn
1−γ), for 0 ≤

γ ≤ 1, where the winning criterion Rn
1−γ is defined by:

Rn
1−γ(a, b, x, y) = 1 ⇔ 1

n

∑

i∈[n]
R(ai , bi , xi , yi ) ≥ 1 − γ .

A strategy for a game is simply a box, i.e., a conditional probability distribution,
defining the input-output behaviour of the players. Throughout the thesis, a strategy
for a single game G is denoted by OAB|XY . The winning probability of a strategy
OAB|XY in game G is given by

w
(
OAB|XY

) =
∑

a,b,x,y

QXY (x, y)OAB|XY (a, b|x, y)R(a, b, x, y) (4.1)

Whenwe say that the optimal non-signallingwinningprobability in a gameG is 1 − α
we mean that

max
OAB|XY

w
(
OAB|XY

) = 1 − α ,

where the maximisation is over all non-signalling strategies OAB|XY .
A strategy for the threshold game Gn

1−γ is denoted by PAB|XY . PAB|XY ’s winning
probability in the threshold game is given by

w
(
PAB|XY

) =
∑

a,b,x, y

Q⊗n
XY (x, y)PAB|XY (a, b|x, y)Rn

1−γ(a, b, x, y) .

4.1.2 Threshold Theorems

The parallel repetition question is the following. Let G be a non-local game whose
optimal non-signalling winning probability is 1 − α and let Gn

1−γ be the threshold
game defined by G (Definition 4.2). We then ask—what is the probability that a
non-signalling strategy PAB|XY wins Gn

1−γ? The more “standard” parallel repetition
question is retrieved by setting γ = 0. The interesting scenario to consider is the one
in which 1 − γ = 1 − α + β for β > 0.

The players can always use the trivial independent and identically distributed (IID)
strategy for Gn

1−α+β : they simply answer each of the n questions independently
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according to the optimal non-signalling strategy for G. In this case, the fraction of
successful answers is highly concentrated around 1 − α and the probability to win
all games simultaneously is (1 − α)n . Thus, for any β > 0, the winning probability
in Gn

1−α+β decreases exponentially fast with n.
Can the players do better when using a correlated, i.e., a non-IID, strategy? There

are many examples showing that the answer is yes for certain games. One of the most
interesting examples to a person studying non-locality is that of two repetitions of
the CHSH game. As mentioned in Sect. 3.2.2, the optimal classical strategy in the
CHSH game achieves a winning probability of 3/4. If the players play two CHSH
games in parallel and use the optimal classical strategy of a single game twice, the
probability that they win both games is 9/16. However, there exists a better classical
strategy [2]:

Alice’s actions:

{
(a1, a2) = (1, 1) (x1, x2) ∈ {(0, 0), (1, 0), (1, 1)}
(a1, a2) = (1, 0) (x1, x2) = (0, 1) ,

Bob’s actions:

{
(b1, b2) = (1, 1) (y1, y2) ∈ {(0, 0), (0, 1), (1, 1)}
(b1, b2) = (0, 1) (y1, y2) = (1, 0) .

One can easily check that this strategy wins both games with probability 10/16 and,
hence, is better than playing the two games independently.More examples are known
for classical games, e.g., [3, 4], as well as for quantum and non-signalling games [5].

Still, one may ask whether the players can achieve a significantly higher winning
probability compared to the IID strategy as n increases. In the IID case the probability
of winning more than a fraction 1 − α + β of the games decreases exponentially fast
with n and β2; see Sect. 7.3.1 for the simple analysis. Does this type of decrease also
hold when considering strategies PAB|XY that may correlate the different rounds? If
correlated strategies for Gn

1−α+β are not substantially better than independent ones,
even in an asymptotic manner, we learn that “one cannot fight independence with
correlations”. As long as the questions are asked, and the answers are verified, in
an independent way, creating correlations between the different answers using a
correlated strategy cannot help much.

The first exponential parallel repetition theorem was derived for classical two-
player games and appeared in [6]: it was shown that if the classical optimal winning
probability in a game G is smaller than 1, then the probability to win all the games in
the repeated game, using a classical strategy, decreases exponentiallywith the number
of repetitions n. This was improved and adapted to the non-signalling case in [7].
Another improvement was made in [8], where a threshold theorem for the classical
two-player case was proven: the probability to win more than a fraction 1 − α + β
of the games for any β > 0 is exponentially small in n.

Following the same proof technique as [6–9] gave a threshold theorem for multi-
player non-signalling complete-support games. Their threshold theorem was the
first result where more than two players were considered. In [10, 11] a completely
different proof technique, based on de Finetti reductions, was used to derive similar
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(improved in some respects) results as [7, 9].2 Holmgren and Yang [12] gave a
counter example to a general non-signalling parallel repetition—they show that for
a certain three-player game without complete-support the probability of winning n
instances of the game played in parallel remains constant. This implies that the results
of [9–11] cannot be extended to games without complete-support (as they hold for
any number of parties).

The question of parallel repetition in the quantum case is less well understood than
its classical and non-signalling versions. The only results applicable to all two-player
games is that of [13], which states that the probability of winning all n instances of
the game decreases inverse polynomially with n. Exponential decrease is known for
different classes of two-player games [14–17] or modifications thereof [18–20].

4.2 Introduction to Device-Independent Quantum
Cryptography

Classical cryptography relies on computational assumptions, such as the hardness
of factoring, to deliver a wide range of functionalities. The advent of quantum infor-
mation brought forward a completely different possibility: security based only on
the fundamental laws of physics. For example, the quantum key distribution (QKD)
protocols by Bennett and Brassard [21] and Ekert [22] allow mutually trustful users
connected only by an authenticated classical channel, and an arbitrary quantum chan-
nel, to establish a private key whose security is guaranteed by the laws of quantum
mechanics. With their private key, the users can communicate with perfect security
using, e.g., a one-time pad.

The security of cryptographic protocols such as QKD relies on certain assump-
tions regarding the physical implementation, such as the quantum states and mea-
surements used in the apparatus implementing the protocol. In real life, however, the
manufacturer of the device can have limited technological abilities (and hence cannot
guarantee that the device’s actions are exact and non-faulty) or even be malicious.
Furthermore, the quantum device may be far too complex for the honest parties run-
ning the protocol to open and assess whether it works as alleged. In the cryptographic
setting, imperfections in the physical apparatus are of a real concern, even when the
manufacturer himself is honest and has good intentions. Indeed, when trying to
implement quantum devices we find that creating perfect states and measurements
is practically impossible. In the presence of an adversary, imperfections and noise in
the implementation can and are being exploited to gain information on the outputs
of the cryptographic protocols [23–26]. This means that if one does not trust that the
quantum devices are exactly as supposed to be, due to a potentially incompetent or
malicious manufacture, then the security of the protocols no longer holds.

2The de Finetti reduction used in these proofs is the topic of Chap. 8; the non-signalling threshold
theorem of [10] acts as one of our showcases and is discussed in Chap.10.
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To solve this issue the quantum cryptography community took one step further. In
contrast to “standard” quantum cryptographic protocols that are proven to be secure
only for specific implementations of the used devices, device-independent quantum
cryptographic protocols achieve an unprecedented level of security with guaran-
tees that hold (almost) irrespective of the quality, or trustworthiness, of the physical
devices used to implement them and hence count as the “gold standard” of quantum
cryptography [27]. In device-independent cryptography we let the adversary, called
Eve, prepare the quantum devices used in the protocol. The honest parties, Alice
and Bob, must therefore treat the possibly faulty or malicious device as an untrusted
device (as defined in Sect. 3.3) with which they can only interact according to the pro-
tocol. The protocol must allow them to test the untrusted device and decide whether
using it to run the considered cryptographic protocol poses any security risk. The
protocol guarantees that by interacting with the device according to the specified
steps the honest parties will either abort, if they detect a fault, or produce secure
outputs (with high probability). Clearly, the security proof cannot rely on the inner-
workings of the device as it may be malicious. Hence, if we are able to prove that the
produced outcomes are secure to use, then the statement is inherently independent
of the implementation of the physical device (hence the name “device-independent
security”).

At first sight, it seems impossible to prove that the outputs of a cryptographic
protocol are secure to usewhen the adversary is the one tomanufacture the device. As
known for quite some time now, the solution is to base device-independent protocols
on the violation of Bell inequalities [22, 28, 29]. As explained in Sect. 3.2.1, a Bell
inequality can be thought of as a game played by the honest parties using the device
they hold. Different devices lead to different winning probabilities when playing
the game. The game has a special property—there exists a quantum device which
achieves a winning probability ω greater than all classical, local, devices. Hence,
if the honest parties observe that their device wins the game with probability ω
they conclude it must be non-local.3 A non-local game therefore acts as a “test for
quantumness”. The idea of basing the security of cryptographic protocols (QKD
especially) on the violation of Bell inequalities originates in the celebrated work
of Ekert [22]. Later, Mayers and Yao [28] recognised that devices that maximally
violate a certain Bell inequality could be fully characterised, up to local degrees of
freedom, and thus need not be trusted a priori.

Device-independent security relies on the following deep but well-established
facts. High winning probability in a non-local game not only implies that the mea-
sured system is non-local but, more importantly, that the kind of non-local correla-
tions it exhibits are “private”—the higher the winning probability, the less informa-
tion any adversary can have about the devices’ outcomes. The amount of entropy,
or secrecy, generated in a single round of the protocol can therefore be calculated

3A recent sequence of breakthrough experiments have verified the quantum advantage in non-local
games in a loophole-free way [30–32]. In the context of device-independent cryptography, the fact
that the experiments are “loophole-free” means that the experiments were executed without making
assumptions that could otherwise be exploited by Eve to compromise the security of a cryptographic
protocol.
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from the winning probability in the game. Let us gain some intuition regarding the
relation between the winning probability in a non-local game and the knowledge of
the adversary about, e.g., Alice’s output in the game by considering two extreme
cases—the optimal classical and quantum strategies for the CHSH game.

If the device is classical its local strategy used to win the game can be written as
(recall Definition 3.4):

PAB|XY (ab|xy) =
∫

Λ

dλPr [Λ = λ] PA|XΛ(a|xλ) · PB|YΛ(b|yλ) ,

where λ describes the “hidden variable” (or shared randomness). Pr [Λ = λ] as well
as PA|XΛ and PB|YΛ are chosen by the adversary and, in particular, PA|XΛ and PB|YΛ

may be deterministic. It is easy to see that in such a case Eve may simply keep a
copy of λ for herself by extending PAB|XY to include her system E in the following
way:

PABE |XY (abe|xy) =
∫

Λ

dλPr [Λ = λ] PA|XΛ(a|xλ) · PB|YΛ(b|yλ) · PE |Λ(e|λ) ,

where PE |Λ(e|λ) = 1 if e = λ and PE |Λ(e|λ) = 0 otherwise. Since PA|XΛ is deter-
ministic, λ (and x , which is considered to be known to the adversary in most crypto-
graphic protocols) reveals all the information about Alice’s outcome a. Hence, Eve
has full information about Alice’s outcome.

However, if the device is implementing the optimal quantum strategy then
the underlying quantum state and measurements are fully characterised (recall
Sect. 3.2.2). In particular, the state shared between Alice and Bob must be the maxi-
mally entangled state. As such, any quantum state held by Eve must be completely
uncorrelated with Alice and Bob’s state, i.e., it is of the form

ρQAQB E = |Φ+〉〈Φ+|QAQB ⊗ ρE ,

and hence is uncorrelated with Alice’s measurement outcome. Furthermore, mea-
suring the maximally entangled state using the optimal measurements employed by
the device results in a uniformly distributed bit on Alice’s side. In total we get that
Alice’s output is completely random from Eve’s perspective. In Sect. 5.2 we will
see a quantitative relation between the knowledge of any adversary and the winning
probability in the CHSH game which goes beyond the above two extreme cases.

We use the task of device-independent QKD (DIQKD) as one of the showcases
considered in this thesis. In DIQKD the goal of the honest parties, called Alice and
Bob, is to create a shared key, unknown to everybody else but them. To execute the
protocol they hold a device consisting of two parts: each part belongs to one of the
parties and is kept in their laboratories. Ideally, the device performsmeasurements on
some entangled quantum states it contains. The basic structure of a DIQKD protocol
was presented as Protocol 1.1. The protocol consists of playing n non-local games
with the given untrusted device and calculating the average winning probability from
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the observed data (i.e., Alice and Bob’s inputs and outputs). If the average winning
probability is below the expected winning probability ωexp defined by the protocol,
Alice and Bob conclude that something is wrong and abort the protocol. Otherwise,
they apply classical post-processing steps that allow them to create identical and
uniformly distributed keys. (The full description of the DIQKD protocol considered
in the analysis performed in the following chapters is given in Sect. 4.2.2 below).

Barrett et al. [29] were the first to derive a “proof of concept”4 of the security of
DIQKD. Following that an extended line of research has explored the application
of the device-independence paradigm to multiple cryptographic tasks. A partial list
includes QKD [29, 33–36], randomness expansion [36–40] and amplification [41–
45], verified quantum computation [35, 46–48], bit commitment [49] andweak string
erasure [50].

The following sections present the preliminary knowledge needed when consid-
ering our showcase of device-independent quantum cryptography in the upcoming
chapters. Specifically, in Sect. 4.2.1 we explain what is meant when talking about
the security of DIQKD and present the formal security definitions. Sections 4.2.2
and 4.2.3 describe our DIQKD protocol and explain what is the main challenge in
any security proof. Section 4.2.4 includes a possible implementation of the protocol
in the honest (i.e., non-adversarial) case while Sect. 4.2.5 describes the assumptions
made regarding a potentially malicious device. The security analysis itself is pre-
sented as a showcase in later chapters. In particular, the full security proof, which
previously appeared in [51], is given in Chap.11.

4.2.1 DIQKD Security Definitions

A DIQKD protocol consists of an interaction between two trusted parties, Alice
and Bob, and an untrusted device as defined in Sect. 3.3. At the end of the protocol
each party outputs a key of length �, K̃ A for Alice and K̃B for Bob. The goal of the
adversary, Eve, is to gain as much information as possible about Alice and Bob’s
keys without being detected (i.e., in the case where the protocol is not being aborted).

Correctness, secrecy, and overall security of a DIQKD protocol are defined as
follows (see also [52, 53]):

Definition 4.3 (Correctness) A DIQKD protocol is said to be εcorr -correct, when
implemented using a device D, if Alice and Bob’s keys, K̃ A and K̃B respectively,
are identical with probability at least 1 − εcorr . That is, Pr(K̃ A 
= K̃B) ≤ εcorr .5

4The protocol of [29] could not tolerate any amount of noise and produced just one secret bit when
using the device many times (i.e. the key rate is zero); we therefore consider it to be a “proof of
concept” showing that device-independent security is possible to achieve.
5We use the convention that when the protocol aborts, K̃ A = K̃B =⊥.
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Definition 4.4 (Secrecy) A DIQKD protocol is said to be εsec-secret, when imple-
mented using a device D, if for a key of length �,6

(1 − Pr[abort]) ‖ρK̃ A E
− ρU�

⊗ ρE‖1 ≤ εsec ,

where Pr[abort] is the probability that the protocol aborts when running using device
D and ρK̃ A E

is Alice and Eve’s quantum state in the end of the protocol, conditioned
on not aborting, with E a quantum register holding Eve’s state that may initially be
correlated with D.

εsec in the above definition can be understood as the probability that some non-trivial
information leaks to the adversary [52].

If a protocol is εcorr -correct and εsec-secret (for a given D), then it is εsQKD-correct-
and-secret for any εsQKD ≥ εcorr + εsec.

Definition 4.5 (Security) A DIQKD protocol is said to be (εsQKD, εcQKD)-secure if:

1. (Completeness) There exists an honest implementation of the device D such that
the protocol does not abort with probability greater than 1 − εcQKD.

2. (Soundness) For any implementation of the device D, the protocol is εsQKD-
correct-and-secret.

The protocols that we consider below take into account possible noise in the
honest implementation. That is, even when there is no adversary at all, the actual
implementation of the devicesmight not be perfect. This should be taken into account
when proving the completeness of the protocol—completeness must be proven for
noisy but honest devices (as otherwise the protocol is of no real use). By doing so we
get that the completeness of the protocol implies its robustness to the desired amount
of noise.

Lastly, a remark regarding the composability of this security definition is in order.
A security definition is said to be composable [52, 54, 55] if it implies that the
protocol can be used arbitrarily and composed with other protocols (proven secure
by themselves), without compromising security. Obviously, if Alice and Bob wish to
use the keys theyproduced in aDIQKDprotocol in someother cryptographic protocol
(i.e., they compose the two protocols), it is necessary for them to use protocols which
were proven to have composable security.

For the case of (device-dependent) QKD, Definition 4.5 was rigorously proven
to be composable [52]. This suggests that the same security definition should also
be the relevant one in the device-independent context and, indeed, as far as we are
aware, it is the sole definition used in works on DI cryptography. Nevertheless, the
claim that Definition 4.5 is composable for device-independent protocols as well
has never been rigorously proven. Even worse, there is some evidence indicating
that the definition is not composable when the same devices are being reused in the
composition. Let us briefly explain that.

6� can be thought of as a parameter of the protocol. In what follows, we set � in terms of the other
parameters of the protocol, such that secrecy holds for the protocol.
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Barrett et al. [56] highlighted a simple fact: A malicious device may store the
raw data used to create the key in a first execution of the DIQKD protocol and then,
when reusing the device to execute the protocol for the second time (or any other
protocol for that matter), leak the raw data from the first run.7 Our security definition,
Definition 4.5, deals only with a single execution of the protocol and, hence, does not
address this type of attack. In other words, even when proving that the considered
protocol is secure according to Definition 4.5, the above attack can still be performed
by a malicious device when composing two protocols that utilise the same device.
This implies that, as is, the security definition is not composable. Note that the
same issue does not arise when considering device-dependent protocols; there, by
assumption, the devices do not keep any information in their memory after the end
of the execution of the protocol.

Even given the above, Definition 4.5 seems like the most promising security
definition to date. We therefore stick to it here. This implies that, as in all other
works, after the end of the protocol the device cannot be used again in an arbitrary
way.

4.2.2 DIQKD Protocol

Our protocol for DIQKD is described as Protocol 4.1. An honest implementation of
a device that can be used to run the protocol is described in Sect. 4.2.4.

In the first part of the protocol Alice and Bob use their devices to produce the
raw data by playing n CHSH games one after the other. Specifically, in each round
Alice and Bob randomly choose whether the round is going to be a test round or
a generation round (Ti = 1 or Ti = 0, respectively, in Protocol 4.1). This can be
done using classical communication or shared public randomness. In both cases, this
information becomes available toEve during the execution of the protocol. (Crucially,
she does not know in advance, i.e., before supplying the devices to Alice and Bob,
which rounds are going to be test rounds). The inputs used by Alice and Bob in each
round depend on whether it is a test or generation round; see Protocol 4.1.

In the second part of the protocol Alice and Bob apply classical post-processing
steps to produce their final keys. We choose classical post-processing steps that
optimise the key rate but may not be optimal in other aspects, e.g., computation time.
The protocol and the analysis presented in Chap.11 can easily be adapted for other
choices of classical post-processing.

We now describe the three post-processing steps, error correction, parameter esti-
mation, and privacy amplification in detail.8

7This should not be confused with “reusing” the device in a given execution of the protocol, i.e.,
playing many non-local games with the same physical device.
8In many QKD protocols there is an additional step called “sifting”; in the sifting step Alice and
Bob announce their choice of measurements in the different rounds so that they can ignore the
rounds that do not contribute to parameter estimation or the generation of the key (for example,
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Protocol 4.1 CHSH-based DIQKD protocol
Arguments:

D – untrusted device of two components that can play CHSH repeatedly
n ∈ N+ – number of rounds
γ ∈ (0, 1] – expected fraction of test rounds
ωexp – expected winning probability in an honest implementation
δest ∈ (0, 1) – width of the confidence interval for parameter estimation
EC – error correction protocol
PA – privacy amplification protocol

1: For every round i ∈ [n] do Steps 2-4:
2: Alice and Bob choose a random Ti ∈ {0, 1} such that Pr(Ti = 1) = γ.
3: If Ti = 0, Alice and Bob choose (Xi , Yi ) = (0, 2) and otherwise Xi , Yi ∈ {0, 1} uniformly at

random.
4: Alice and Bob use D with Xi , Yi and record their outputs as Ai and B̃i respectively.

5: Error correction:Alice and Bob apply the error correction protocol EC. If EC aborts they abort
the protocol. Otherwise, they obtain raw keys denoted by KA and KB .

6: Parameter estimation: Using B̃ and KB , Bob setsWi = wCHSH

(
KBi , B̃i , Xi , Yi

)
for the test

rounds and Wi =⊥ otherwise. He aborts if
∑

j :Tj=1 Wj <
(
ωexpγ − δest

) · n;.
7: Privacy amplification: Alice and Bob apply the privacy amplification protocol PA on KA and

KB to create their final keys K̃ A and K̃B of length �.

4.2.2.1 Error Correction

An essential property of any QKD protocol is its correctness—Alice and Bob should
hold identical keys in the end of the protocol (see Definition 4.3). Since the raw data
of the two parties may differ in parts, Alice and Bob need to run an error correction
protocol (also termed an “information reconciliation protocol” in the literature). An
error correction protocol9 starts by the exchange of classical information between
Alice and Bob that should help the parties agree on the final key. When the commu-
nication is only from one party to the other, the protocol is said to be a “one-way
error correction protocol”. By sending classical information about the raw data over a
public classical channel the uncertainty of the adversary regarding the key decreases.
A good error correction protocol therefore needs to minimise the amount of commu-
nication, or leakage, while still allowing to correct the errors with high probability.

in protocols like BB84 [21] Alice and Bob ignore the rounds in which they chose non-identical
measurements). Sifting is not necessary in our case since in Step 2 of Protocol 4.1 Alice and Bob
choose Ti together (or exchange its value between them) in every round of the protocol and choose
their inputs accordingly. This is in contrast to choosing Alice and Bob’s inputs from a product
distribution and then adding a sifting step. It follows from our proof technique that making Ti
public as we do does not compromise the security of the protocol.
9Note that we are discussing classical error correction protocols, not to be confused with the task
of quantum error correction [57].
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In the considered DIQKD protocol, Alice and Bob use an error correction proto-
col EC to obtain identical raw keys KA and KB from their raw data A, B̃.10 We use
a one-way error correction protocol, based on universal hashing, which minimises
the amount of leakage to the adversary [58, 59] (see also [53, Sect. 3.3.2] for more
details). To implement EC Alice chooses an hash function and sends the chosen
function and the hashed value of her bits to Bob. We denote this classical commu-
nication by O and the number of bits of O by leakEC. Bob uses O , together with
all his prior knowledge B̃XYT , to compute a guess Â for Alice’s bits A.11 If EC
fails to produce a good guess the protocol aborts; in an honest implementation this
happens with probability at most εcEC. The probability of Alice and Bob not aborting
and while holding non-identical keys is at most εEC.

The following guarantee holds for the described protocol [59, 60]:

leakEC ≤ H
ε′
EC

0

(
A|B̃XYT

)

ρhonest
+ log

(
1

εEC

)
, (4.2)

for any εcEC, ε′
EC, εEC ∈ [0, 1] such that ε′

EC = εcEC − εEC and where

H
ε′
EC

0 (A|B̃XYT )ρhonest is the smooth zero-entropy (Definition 2.23) evaluated
on the state ρhonest used in an honest implementation of the protocol.12 Equa-
tion (4.2) presents the tradeoff between the probability of having non-identical keys
after the end of the protocol (εEC), the probability of the protocol not succeeding in
the honest case (εcEC), and the number of bits leaked to the adversary in the process
(leakEC). The amount of communication during the error correction protocol is
chosen, before running the DIQKD protocol, such that Eq. (4.2) holds. If more
errors than expected in the honest implementation occur when running the DIQKD
protocol (due to the use of adversarial or too noisy devices), then Bob may not have
a sufficient amount of information to obtain a good guess of Alice’s bits and hence
will not be able to correct the errors. If so, this will be detected with probability at
least 1 − εEC and the protocol will abort.

4.2.2.2 Parameter Estimation

The goal of the parameter estimation step is to check whether the device D, used to
run the protocol, is sufficiently good in order to produce a secret key. In the case of
device-independent protocols the quantity to be considered is the number of games

10It will become clear in Sect. 11.3 why we use here B̃i rather than Bi . Although it is not relevant
at the moment, we keep it like this for the sake of consistency.
11The idea is basically the following—given the output of the hash function, there is a small set
of possible strings (from the domain of the function) compatible with it; Bob then chooses the one
which is most compatible to his prior knowledge about Alice’s key [58, Sect. 4].
12For quantum channels with an IID noise model H

ε′
EC

0

(
A|B̃XYT

)

ρhonest
can be bounded by above

using the asymptotic equipartition property, discussed in Sect. 7.2.2. The explicit calculation is done
in Sect. 11.3.3.
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won during the run of the protocol. If the number of games won is not large enough,
the honest parties conclude that the device cannot be used to produce a secure key
(an adversary may be present). Specifically, we require that the number of games
won,

∑
j :Tj=1 Wj , fulfils

∑

j :Tj=1

Wj ≥ (
ωexpγ − δest

) · n , (4.3)

where ωexp, γ, and δest are parameters of the protocol. γ is the probability of a test
round while ωexp is the expected winning probability (of an honest device). Thus,
the multiplication ωexpγ gives the expected fraction of games won out of all rounds
of the protocol. δest describes the desired confidence interval (which cannot be zero
since we consider a finite number of rounds n).

After the error correction step described above, Bob has all of the relevant infor-
mation to perform parameter estimation from his data alone, without any further
communication with Alice.13 Using his raw data B̃ and his guess of Alice’s key KB ,
Bob sets

Wi =
{⊥ Ti = 0

wCHSH

(
Âi , B̃i , Xi ,Yi

)
= wCHSH

(
KBi , B̃i , Xi ,Yi

)
Ti = 1 ,

where wCHSH is the CHSH winning condition given in Eq. (3.8). Bob aborts if the
fraction of successful game rounds is too low, that is, if Eq. (4.3) is not fulfilled.

As Bob does the estimation using his guess of Alice’s bits, the probability of
aborting in this step in an honest implementation, εcPE, is bounded by

εcPE ≤ Pr
( ∑

j :Tj=1

Wj <
(
ωexpγ − δest

) · n
∣∣∣KA = KB

)

+ Pr
(
KA 
= KB and EC does not abort

)
.

(4.4)

4.2.2.3 Privacy Amplification

The final classical post-processing step is that of privacy amplification. The goal of
privacy amplification is to takeAlice’s raw key14 A, onwhich the adversarymay have
partial information, and transform it to a secret final key, as required by the secrecy

13In many QKD protocols error correction is performed after the parameter estimation step. In such
cases, Alice and Bob reveal the data collected in the test rounds and use it for parameter estimation.
Further information is then communicated during the error correction step.
14Note that Alice’s and Bob’s raw keys, A and Â respectively, are identical with high probability,
due to the error correction step. As we now explain, in the privacy amplification step Alice and Bob
can perform the exact same actions so that they end with identical final keys (assuming that the
error correction step was successful). Thus, we describe here only Alice’s actions, while keeping
in mind that Bob is going to perform the same steps on his raw key.
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definition of the protocol (Definition 4.4). To this end, Alice applies a quantum-proof
randomness extractor, defined as follows.

Definition 4.6 (quantum-proof strong extractor) A function Ext : {0, 1}n ×
{0, 1}d → {0, 1}� that takes as an input a string A ∈ {0, 1}n together with a seed
S ∈ {0, 1}d and outputs a string K̃ A ∈ {0, 1}� (for � ≤ n) is called a quantum-proof
(m, εPA)-strong extractor if for any ρAE with Hmin(A|E)ρ ≥ m and uniformly dis-
tributed seed S we have

‖ρExt(A,S)SE − ρU�
⊗ ρSE‖1 ≤ εPA . (4.5)

Several constructions of extractors have been shown to be fulfil the above defi-
nition, among them [61–64]. Different constructions are used in different scenarios;
for example, some constructions minimise the length d of the seed while others
maximise the output length � or the computation time needed to apply the extractor.

Before continuing, an important (though somewhat technical) remark is in order.
An extractor, as above, is defined with respect to the min-entropy. However, it is
the smooth min-entropy H εs

min(A|E)ρ, rather than the min-entropy, that is known to
give a tight bound on the maximum amount of uniform randomness that can be
extracted from A while being independent from E [65]. If one is interested in using
an extractor when starting with a lower bound on the smooth min-entropy, then some
parameters should be adapted. In particular, εPA appearing in Eq. (4.5) is the error
probability of the extractor when it is applied on a normalised state satisfying the
relevant min-entropy condition. For universal hashing [61] for example, when only
a bound on the smooth min-entropy is supplied the smoothing parameter εs should
be added to the error εPA (as done below). When working with other extractors one
should adapt the parameters accordingly; see [66, Sect. 4.3].

For simplicity we use universal hashing [61, 67] as our privacy amplification
protocol PA.15 The secrecy of the final key K̃ A = Ext(A, S) depends only on the
privacy amplification protocol used and the value of H εs

min(A|XYTOE), evaluated
on the state at the end of the protocol, conditioned on not aborting. For universal
hashing, for any εPA, εs ∈ (0, 1) a secure key of maximal length [67]

� = H εs
min(A|XYTOE) − 2 log

1

εPA
(4.6)

is produced with probability at least 1 − εPA − εs.

15Any other quantum-proof strong extractor, e.g., Trevisan’s extractor [64], can be used for this
task and the analysis done in Chap.11 can be easily adapted.
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4.2.3 Main Task of a Security Proof

After presenting the DIQKD protocol and the relevant security definition we are
equippedwith the necessary informationneeded to explainwhat themain task iswhen
proving security of a DIQKD protocol. First, note that in order to prove security one
needs to prove both the correctness (Definition 4.3) and the secrecy (Definition 4.4)
of the protocol. Correctness follows almost directly from the error correction step
performed in the protocol. We therefore focus below on the secrecy of the protocol.

Returning to the secrecy requirement of a DIQKD protocol given in Definition 4.4
and the definition of a quantum-proof extractor as in Definition 4.6, we see that by
applying the extractor we assure that the output of the extractor K̃ A = Ext(A, S)

is εPA-close to an ideal key, i.e., a uniformkey ofm bits that is completely independent
of the overall side-information SE16 and hence the protocol is secret.

For the extractor to work, the raw data A must exhibit a sufficient amount of
min-entropy (by definition). Relations for specific extractor, such as the one given in
Eq. (4.6), determine the length of the key that can be extracted for a given amount of
(smooth) min-entropy. Therefore, the main task of any security proof of a protocol
applying an extractor boils down to computing a lower bound on the (smooth) min-
entropy. Indeed, the security proofs presented in Sect. 7.3.2 and Chap.11 are focused
on deriving such bounds.

4.2.4 The Honest Implementation

The honest implementation of the device D describes the way the device acts when
an adversary is not present. In other words, this is the device Alice and Bob expect
to share when the manufacture of the device is not malicious and “everything goes
according to the plan”. In the analysis of DIQKD the description of the honest
implementation is used in two places. Firstly, the completeness of the protocol (recall
Definition 4.5) is provenwith respect to the chosen honest implementation. Secondly,
it is used to set the amount of communication betweenAlice and Bob during the error
correction step, according to the relation presented in Eq. (4.2). We remark that these
are the only two places in the proof where the choice of honest implementation
is taken into account and both are used solely for choosing the parameters of the
protocol. Critically, the soundness proof does not depend in any way on the choice
of honest implementation.

16We include the seed S as part of the side-information and ask that the output of the extractor is
close to uniform even conditioned on the seed S. Extractors that fulfil this requirement are called
“strong extractors” (while those that fulfil the weaker condition ‖ρExt(A,S)E − ρU�

⊗ ρE‖1 ≤ εPA
are termed “weak extractors”).When consideringQKDprotocols, one needs to use a strong extractor
since the seed S is to be communicated between Alice and Bob and hence should be considered as
information which leaks to the adversary.
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The chosen honest implementation may also be noisy. In fact, in an experiment,
the mathematical description of the honest device, or honest boxes, should be cho-
sen to fit the behaviour of the physical systems as accurately as possible. An accu-
rate description allows us carefully choose the parameters of the DIQKD protocol
(e.g., ωexp) such that the produced key rate is maximised while keeping the proba-
bility of the protocol aborting, when utilising the honest device, small. That is, an
accurate description allows us to construct a protocol which is useful in practice.

Most commonly, one chooses the honest implementation to be an IID one. That
is, that device D acts in an IID manner: in every round i ∈ [n] of the protocol D
performs themeasurementsMai

xi ⊗ Mbi
yi onAlice and Bob’s state σQAQB . That is, the

device is initialised with an IID bipartite state, σ⊗n
QAQB

, on which the device makes
IID measurements. The state σQAQB and measurements are such that the winning
probability achieved in the CHSH game in a single round is ωexp.17

As a concrete example, one possible realisation of such an implementation is the
following. Alice and Bob share the two-qubit Werner state

σQAQB = (1 − ν)|φ+〉〈φ+| + ν
I

4

for |Φ+〉 = 1/
√
2 (|00〉 + |11〉) and ν ∈ [0, 1]. The state σQAQB arises, e.g., from

the state |Φ+〉 after going through a depolarisation channel. We can therefore think
of the over all state σ⊗n

QAQB
as resulting from the transmission of |Φ+〉⊗n using an

IID noisy channel. For every i ∈ [n], Alice’s measurements Xi = 0 and Xi = 1
correspond to the Pauli operators18 σz and σx respectively and Bob’s measurements
Yi = 0, Yi = 1, and Yi = 2 to the Pauli operators σz+σx√

2
, σz−σx√

2
and σz respectively.

The winning probability in the CHSH game (restricted to Xi ,Yi ∈ {0, 1}) using these
measurements on σQAQB is

ωexp = 2 + √
2(1 − ν)

4

and the quantum bit error rate is given by

Q = Pr[Ai 
= Bi |(Xi ,Yi ) = (0, 2)] = ν

2
.

17Note that in our notation, the noise that affects the winning probability in the CHSH game is
already included in ωexp.
18Even though both are denoted by σ, do not confuse our bipartite state σQAQB describing the
honest state with the Pauli operators σx and σz defined in Eq. (2.4).
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4.2.5 Model of an Arbitrary Device

As previously mentioned, Alice and Bob’s device is considered to be an untrusted
device, as defined in Sect. 3.3.

On top of the general statements made in Sect. 3.3, we can further describe the
untrusted device in the case of DIQKD as follows. Alice and Bob interact with D
according to Protocol 4.1. Alice and Bob’s components of D implement the protocol
bymaking sequentialmeasurements on quantum states. In each round of the protocol,
we say that the device is implementing some strategy for the CHSHgame. The device
may have memory, and thus apply a different strategy each time the game is played,
depending on the previous rounds. Therefore, themeasurement operatorsmay change
in each round, and the state on which the measurements are performed may be the
post-measurement state from the previous round, a new state, or any combination of
these two.

To be specific, we consider the following scenario. In-between different rounds of
the protocol, Alice and Bob’s components of the device are allowed to communicate
freely.During the execution of a single round, however, no communication is allowed.
In particular, when the game is being played, there is no communication between
the components once the honest parties’ inputs are chosen and until the outputs are
supplied by the device. That is, communication is allowed in every round i right after
Step 4 is done, and until the beginning of round i + 1, i.e., before Ti+1 is chosen
in Step 2. Furthermore, in-between rounds Eve may send information to the device,
but not receive any from it. In actual implementations this implies that entanglement
can be distributed “on the fly” for each round of the protocol, instead of maintaining
large quantum memories.

Section 3.3 includes a list of standard assumptions made when working with
device-independent protocols. The following list includes the assumptions that are
made when proving the security of DIQKD:

1. Alice and Bob have a trusted random number generator.
2. Alice and Bob have trusted classical post-processing units.
3. There is a public, but authenticated, classical channel connecting the honest par-

ties.
4. Alice’s and Bob’s physical locations are secure (unwanted information cannot

leak outside to Eve.
5. Quantum physics is correct.
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Chapter 5
Single-Round Box

In the device-independent framework we use “boxes” to describe the physical
devices, or resources, of interest. A box, formally modelled as a conditional proba-
bility distribution (recall Sect. 3.1), is always defined with respect to a specific task
or protocol. More specifically, note the following:

1. To define a box PAB|XY we need to fix the sets of the inputs X ,Y and the outputs
A,B of the box. These sets are chosen according to the task in which the box is
being used. For example, if a box is used to play a single CHSH game then the
sets are all chosen to be {0, 1}. The box’s action is undefined when it is used with,
e.g., the input x = 2.

2. The location of the used devices in space (or space-time) also sets the conditions
that the box describing the devices must fulfil. For example, if a protocol demands
two devices, separated in space, that cannot communicate during the execution of
the protocol then the defined box should fulfil certain non-signalling conditions.1

3. When considering boxes that are used to execute a complex protocol, in which
many games are being played with the box (as done in the succeeding chapters),
we also need to take into account the type of interactionwhen defining the box. For
example, some protocols require boxes with which we can interact sequentially—
in each round of the protocol we give one input to the box, wait for the output, and
only then give the next input. Other protocols involve boxes which accepts all the

1Interestingly, if one considers protocols with more than two parties in which the devices can only
be used in specific space-time coordinates and merely assumes that the box modelling the devices
respects relativistic causality (in the sense that it cannot lead to casual loops) then the conditions
defining the box are different than the non-signalling ones [1]. This acts as another example for
how the specific use of the devices effects the mathematical model of the box.
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inputs and only then produces all the outputs. If we only give one input to such a
box we do not expect it to output anything and its action is undefined. Thus, these
differences in the behaviour of the boxes depend on the way we intend to use it
in the task of interest and effect the mathematical model of the considered boxes.

To grasp the dependence of the box on the considered task, as described above,
one can contrast it with the standard formalism used to define quantum states and
measurements. For example, the definition of a quantum state in terms of a density
operator is completely independent of thewaywemightwant tomeasure it. Consider,
for example, a quantum state used to play the CHSH game with the measurements
σx and σz for one of the parties. Even though we only intend to perform these
measurements, the formalism also tells us what will happen if we choose to measure
σy instead. This stands in contrast to Item 1 above.2

The current chapter as well as Chap. 6 are devoted to the way one models the
different boxes used in device-independent information processing, depending on
the considered setting and interaction with the boxes. In Chap.6 wewill be interested
in boxes, or devices, which can be used to implement certain protocols. Before we
explain how such boxes can be described let us focus on a simpler object—the
“single-round box”.

We think of a single-round box as illustrated in Fig. 5.1, as a small device that can
be used to play a single round of a Bell game. That is, in the case of the CHSH game,
for example, Alice andBob can input their bits x, y ∈ {0, 1} to the box and receive the
outcomes a, b ∈ {0, 1}. After that the box can no longer be used (i.e., Alice and Bob
cannot play another game with it). Mathematically, such a box can be described by a
non-signalling conditional probability distribution PAB|XY as explained in Sect. 3.1.
Physically, an example of a single-round box is a single EPR pair together with a set
of possible measurements for each party.

A single-round box is not a useful resource in the operational sense. Since our
starting point in the device-independent setting is that we do not know how the
device operates, we must interact with it to test it. However, since a single-round
box allows us to play just a single game we can hardly conclude anything regarding
its inner-working. One can imagine Alice and Bob playing the CHSH game with
their box and observing (a, b, x, y) = (0, 0, 0, 0). Then what? It can always be the
case that they are sharing a classical device that always outputs (a, b) = (0, 0) for
the inputs (x, y) = (0, 0). Thus, Alice and Bob cannot learn anything regarding,
e.g., the randomness of their outputs, from this single game. As the information
collected in a single game is not sufficient to test the box we start, instead, with an
assumption regarding the box, e.g., that it can be used to win the CHSH game with
winning probability ω. As will be shown below, various fundamental properties can
be concluded by starting with such an assumption.

2One can rightfully say that this property of boxes, among several other properties, renders them
an “unphysical description” of real systems and resources. With this respect, the formalism of the
so called “generalised probabilistic theories” [2, 3] is a more appropriate mathematical setting to
discuss physical theories which extend, or abstract, quantum physics. In contrast, boxes are merely
a simplified mathematical model sufficient for certain analyses.
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Fig. 5.1 A single-round
box. We think of a
single-round box as a small
device, shared between Alice
and Bob, which can be used
to play a single round of a
Bell game, such as the
CHSH game. It is described
by a conditional probability
distribution PAB|XY

Although a single-round box is not a valuable resource in practice, it is useful
as a simple abstract object that allows us to study the fundamental implications
of violating a Bell inequality (while putting aside many technical details that arise
when considering the complex devices used in protocols). Furthermore, it is the
goal of this thesis to explain how “single-round box statements” can be lifted to
operational statements regarding more complex scenarios such as the analysis of
device-independent protocols.

5.1 The Model

Mathematically, we model a single-round black box by a non-signalling conditional
probability distribution PAB|XY that can be used to play a single Bell game G defined
over the sets of inputs X ,Y and outputs A,B for Alice and Bob (see Sect. 3.2.1 for
complete definitions). PAB|XY is also sometimes referred to as a strategy for G.

As mentioned above, when considering single-round boxes one usually assumes
that the box PAB|XY can be used to win the gamewith a certain winning probabilityω.
That is, PAB|XY is such that

Ex,y

∑

a,b|
w(a,b,x,y)=1

PAB|XY (ab|xy) = ω , (5.1)

where the expectation Ex,y is defined with respect to the input distribution of the
considered game and w : A × B × X × Y → {0, 1} is the winning function of the
game.

Depending on the context, one can consider quantum single-round boxes or non-
signalling ones.
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5.1.1 Quantum Single-Round Boxes

When we say that a single-round box is quantum we mean that its inner-working can
be described within the quantum formalism. Specifically:

Definition 5.1 (Quantum single-round box) Given a Bell gameG, a quantum single-
round box is a quantum box PAB|XY , as in Definition 3.3, defined for the inputs and
outputs of the game G – X ,Y,A,B. That is, there exist a bipartite state ρQAQB and
measurements {Mx

a } and {My
b } such that

PAB|XY (ab|xy) = Tr
(
Mx

a ⊗ My
b ρQAQB

) ∀a, b, x, y . (5.2)

The quantum single-round box is said to win G with winning probability ω when the
state and measurements are such that Eq. (5.1) holds.

Note that mathematically a quantum single-round box is merely a quantum box
(Definition 3.3). What makes it single-round is that PAB|XY is defined for the inputs
and outputs of a single game G.

When considering cryptographic applications where a quantum adversary is
present we extend the box to the adversary. That is, we let ρQAQB E be the purifi-
cation of ρQAQB where E is a quantum register belonging the the adversary and
ρQAQB = TrE

(
ρQAQB E

)
is Alice and Bob’s marginal satisfying Eqs. (5.1) and (5.2).

5.1.1.1 Non-signalling Single-Round Boxes

Instead of restricting our attention to quantum boxes we can also consider non-
signalling single-round boxes. These are defined in a similar way to their quantum
counterparts.

Definition 5.2 (Non-signalling single-round box) Given a Bell game G, a non-
signalling single-round box is a non-signalling box PAB|XY , as in Definition 3.1,
defined for the inputs and outputs of the game G –X ,Y,A,B. That is, for all a ∈ A,
b ∈ B, x, x ′ ∈ X and y, y′ ∈ Y ,

∑

b

PAB|XY (a, b|x, y) =
∑

b

PAB|XY (a, b|x, y′)

∑

a

PAB|XY (a, b|x, y) =
∑

a

PAB|XY (a, b|x ′, y) .

The non-signalling single-round box is said to win G with winning probability ω

when PAB|XY is such that Eq. (5.1) holds.

Here aswell one can consider an extension of the single-round box to an additional
party describing a non-signalling (super-quantum) adversary. This will not be needed
in this thesis so we do not explain how this is done. The interested reader is referred
to [4, Sect. 3.2].
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5.2 Showcase: Device-Independent Quantum
Cryptography

As mentioned above, a single-round box is useful as a simple abstract object that
allows us to study the fundamental implications of violating a Bell inequality. More
specifically, certain properties of the box can be concluded if we assume to know the
probability of winning a Bell game using a single-round box described by PAB|XY .
We consider out showcase of device-independent cryptography as an example.

Themost crucial observationwhen considering device-independent cryptographic
protocols is the fact that high winning probability in a Bell game not only implies that
the measured system is non-local, but more importantly that the kind of non-locality
it exhibits cannot be shared: the higher the winning probability, the less information
any eavesdropper can have about the outcomes produced by the box.

There are different ways of making such a statement quantitive. One possible way
(that will also be of relevance later on) is to consider the conditional von Neumann
entropy H(A|XY E)where A is the random variable describing Alice’s outcome bit,
X and Y are the random variables describing the inputs of Alice and Bob and E is a
quantum register holding the quantum side information belonging to the adversary.
If the adversary is completely oblivious to the value of a bit A even given X , Y and
E then takes its maximal value H(A|XY E) = 1.

A tight trade-off between the winning probability of a single-round box ω and the
entropy H(A|XY E) generated by the box was derived in [5, 6] and is stated in the
following lemma.

Lemma 5.3 ([5, 6]3) For any quantum single-round box PAB|XY with winning prob-

ability ω ∈
[
3
4 ,

2+√
2

4

]
in the CHSH game,

H(A|XY E) ≥ 1 − h

(
1

2
+ 1

2

√
16ω (ω − 1) + 3

)
, (5.3)

where E denotes the quantum side-information belonging to the adversary and h(·)
is the binary entropy function.

The relation stated in Eq. (5.3) is plotted in Fig. 5.2. One can see that the entropy
increases as the winning probability ω increases. That is, the amount of secret ran-
domness inAlice’s outcome is directly related to thewinningprobability of the single-
round box. In particular, we observe that H(A|XY E) = 0 (i.e., the adversary knows
the value of A) for the optimal classical winning probability and H(A|XY E) = 1
(i.e., A looks completely random to the adversary) for the optimal quantum winning
probability.4 Note that there can be many different boxes PAB|XY (and hence exten-
sions to the adversary) with the same winning probability ω. That is, the assumption

3Lemma 5.3 is stated in the form appearing in [7]. To see how the original results of [5] can be used
to derive the lemma as we state it, follow the proof given in Appendix C.1.
4These two extreme cases are easy to understand. When the box employs a classical strategy the
adversary can simply hold a copy of A. When the box employs the optimal quantum strategy the
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Fig. 5.2 Secrecy versus winning probability ω in the CHSH game for a single-round box. Two
lower-bounds are shown: one for the conditional von Neumann entropy H(A|XY E) [5] and the
other for the conditional min-entropy Hmin(A|XY E) [8]; both bounds are tight. As soon as the
winning probability is above the classical threshold of 75% some secret randomness is produced

regarding the winning probability of the box does not pin down the full probability
distribution. The bound given in Eq. (5.3) is thus very strong—it says that for any
single-round box with winning probability ω and any purification to the adversary
the stated lower bound holds.

Instead of considering the von Neumann entropy as above, one can also study
lower-bounds on the conditional min-entropy Hmin(A|XY E) as a function of the
winning probability of a single-round box—as was done in [8]. We plot the resulting
bound in Fig. 5.2. As can be seen in the figure, for non-optimal Bell violation the
min-entropy can be significantly lower than the von Neumann entropy. Indeed, the
min-entropy is always upper-boundedby the vonNeumann entropy (hence the name).
Still, in some cases a bound on themin-entropy, rather than the vonNeumann entropy,
is needed or, at the least, is easier to derive. In particular, lower-bounds on the min-
entropy for single-round boxes can be found using general techniques based on the
semidefinite programming hierarchies of [9] while, up to date, there is no general
technique to derive (or even estimate) such bounds on the von Neumann entropy.

Similar bounds were derived also for other Bell inequalities. For example, lower-
bounds on the min-entropy produced by a single-round box were found as a function
of the violation of the Mermin inequality [10, Eq. (6)] and the tilted-CHSH inequal-
ity [11, Lemma 2]. Another result in the same spirit is that of [12, Sect. 5], where
a bound on the min-entropy is derived as a function of several Bell inequalities all
at once.5 Lower-bounds on the von Neumann entropy were derived as a function of

used state is the maximally entangled state. Then, due to monogamy of entanglement, the adversary
is completely decoupled from the Alice and Bob’s state. For more details see Sect. 4.2.
5That is, instead of assuming that we know just the winning probability of the single-round box in
a specific game, we assume we know its winning probabilities in several different games. In the
context of single-round boxes this is a stronger assumption regarding the device. However, in actual
application this is not an issue, as will be mentioned later on.
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the violation of the MDL inequalities [13, Sect. 3] and the MABK inequality [14,
Lemma S5].

Before continuing to the next chapter, we emphasise once again that single-round
statements as mentioned above should not be understood as operational statements.
If we are given a single-round box but we do not assume to know its winning prob-
ability ω then we cannot conclude anything about its properties (e.g., the entropy
of the outputs). When considering, for example, device-independent cryptographic
protocols one must test the device in order to estimate whether it can violate a Bell
inequality or not. This is done by playing several games with the device and col-
lecting statistic regarding its input-output behaviour. For this purpose we need to
consider multi-rounds boxes, as done in the following sections.
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Chapter 6
Multi-round Box

In the previous chapter we discussed the single-round box, which can be seen as
a simple abstract object that allows us to study the fundamental aspects of non-
locality. When studying actual device-independent information processing tasks,
however, one must consider more complex objects that describe the behaviour of the
devices while performing the task of interest. More concretely, in actual applications
we usually interact with a device by playing many games. Even in the simplest
setting where one would like to merely verify the violation of a Bell inequality,
as in experiments performing loophole-free Bell tests, a Bell game is played many
times so that sufficient amount of data can be collected to estimate the violation in
a satisfactory statistical manner. Playing just a single game is clearly not enough.
Another example is device-independent protocols, such as quantum key distribution.
All protocols include a phase in which the users (or honest parties) are playing many
games with their device in order to decide whether it can be used for the considered
task. Hence, considering boxes that can be used to play just a single game is not
enough. Instead, we need to work with multi-round boxes.

Multi-round boxes can be described using a conditional probability distribu-
tion PAB|XY over the inputs and outputs of many rounds of a game. That is, for
n the number of games which one would like to play with the box (e.g., the number
of rounds of a protocol), A = A1A2 . . . An is a random variable over An and B, X ,
and Y are similarly defined.

As explained in the beginning of Chap.5, the way we model a box, and in par-
ticular a multi-round box, depends on the type of interaction that we would like to
performwith it.We consider two different forms of interactions: parallel and sequen-
tial interactions. Different tasks require different types of boxes. Parallel boxes are
used, for example, in self-testing [1], parallel quantum key distribution [2], and cer-
tification of entanglement [3]. Some examples for settings in which sequential boxes

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Arnon-Friedman, Device-Independent Quantum Information Processing,
Springer Theses, https://doi.org/10.1007/978-3-030-60231-4_6

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60231-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-60231-4_6


76 6 Multi-round Box

are considered are delegated computation [4] and randomness amplification [5]. In
the scope of this thesis, Chaps. 8 and 10 deal with parallel boxes while Chaps. 9
and 11 focus on sequential boxes.

6.1 Parallel Interaction

The simplest to describe form of interaction is the “parallel interaction”. In such an
interaction the box is “expecting” to get the n inputs of all the rounds, x and y, at the
same time and is expected to give all the outputs, a and b, together; see Fig. 6.1. If
the box is only given inputs of a single game, e.g., x1, y1, it is not expected to return
any output. This behaviour of the box will present itself in the mathematical model
of the box, as we explain below.

For a given a game G, a parallel multi-round box is a device with which Alice and
Bob can play n instances of G in parallel (i.e., at the same time). Mathematically this
translates to a conditional probability distribution PAB|XY , non-signalling between
Alice and Bob, defined over the inputs and outputs of n games. For example, when
considering the CHSH game, A, B, X, and Y are all random variables over {0, 1}n .

As explained in Sect. 3.1.1, the non-signalling conditions between Alice and Bob
imply that Alice and Bob’s marginals, PA|X and PB|Y respectively, are well-defined.
The fact that we are talking about a parallel multi-round box means that no further
structure can be assumed. In particular, other marginals, e.g., PA1|X1 or PA2B2|X2B2 ,
are not necessarily well-defined. Intuitively this stands for the fact that the box is
expecting to get all the inputs together and only then it produces the outputs; the
output for A1 can therefore depend, for example, on the value of X5 and not on

Fig. 6.1 Parallel multi-round box. We think of a parallel multi-round box as a large device, shared
between Alice and Bob, which can be used to play many rounds of a Bell game, all at once. Such a
box is expecting to get the inputs for all rounds, x and y, at the same time, and it will then produce
all the outputs, a and b for Alice and Bob
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just that of X1. Hence the conditional probability distribution PA1|X1 is not properly
defined.

6.1.1 Non-signalling Parallel Boxes

One can consider a parallel multi-round box which is only restricted by the non-
signalling conditions. We then get the following definition.

Definition 6.1 (Non-signalling parallel multi-round box) Given a Bell game G, a
non-signalling parallel multi-round box is a non-signalling box PAB|XY , as in Defini-
tion 3.1, defined for the inputs and outputs of n rounds of the game
G – X n,Yn,An,Bn . That is, for all a ∈ An , b ∈ Bn , x, x′ ∈ X n and y, y′ ∈ Yn ,

∑

b

PAB|XY (ab|x y) =
∑

b

PAB|XY (ab|x y′)

∑

a

PAB|XY (ab|x y) =
∑

a

PAB|XY (ab|x′ y) .
(6.1)

As mentioned above, the only non-signalling conditions restricting the parallel
box, are those between Alice and Bob appearing in Definition 6.1; we do not set any
other assumptions regarding the box apart from that.

6.1.1.1 Quantum Parallel Boxes

Similarly to a quantum single-round box, as in Definition 5.1, a quantum parallel
multi-round box is just a quantum box (Definition 3.3) defined for the inputs and
outputs of n rounds of G.

Definition 6.2 (Quantum parallel multi-round box) Given aBell gameG, a quantum
parallel multi-round box is a quantum box PAB|XY , as in Definition 3.3, defined for
the inputs and outputs of n rounds of the game G – X n,Yn,An,Bn . That is, there
exist a bipartite state ρQAQB and measurements {M x

a } and {M y
b } such that

PAB|XY (ab|x y) = Tr
(
M x

a ⊗ M y
b ρQAQB

) ∀a, b, x, y . (6.2)

The non-signalling conditions in Eq. (6.1) are automatically fulfilled by quantum
parallel boxes defined above. We remark again that there are no further assumptions
regarding the structure of the state and measurements apart from what appears in
Eq. (6.2). Specifically, ρQA and ρQB are not assumed to have some further subsys-
tem structure and the measurements need not have a tensor product form such as
Mx1

a1 ⊗ · · · ⊗ Mxn
an .



78 6 Multi-round Box

6.2 Sequential Interaction

In the previous section we discussed parallel multi-rounds boxes. These are boxes
that allow (and “expect”) to be interacted with in a parallel way, i.e., by giving all
the inputs to the box at the same time. As the parallel multi-round box receives all
the inputs at once, the output for, e.g., the first game, A1, can depend on the inputs
for all games X1, X2, . . . , Xn .

In this sectionwe consider a different type ofmulti-roundboxes – sequentialmulti-
round boxes. Such boxes are, in some sense, more structured than parallel multi-
round boxes and accurately model the devices used in many device-independent
scenarios. As such, sequential multi-round boxes are of relevance for applications.
Furthermore, the additional structure of sequential multi-round boxes will allow us
to derive stronger results than those derived for their parallel counterparts.

As mentioned above, the way we model a multi-round box depends on how we
would like to interact with it. Most device-independent protocols proceed in rounds
which are performed one after the other: Alice and Bob use their box in the first
round of the protocol and only once they receive the outputs from the box they
proceed to the second round, and so on; See Protocol 1.1 for an example. We call
such an interactionwith the box “sequential interaction”. This is illustrated in Fig. 6.2
(the reader may compare Fig. 6.2 to the single-round box in Fig. 5.1 and the parallel
multi-round box in Fig. 6.1).

The chronological order which is implied by the sequential interaction enforces
certain constraints on the behaviour of the box. In particular, while past events
can influence future ones, the future cannot change the past. For example, the
first output A1 can depend on the first input X1 but not on the inputs of the next
rounds X2, . . . , Xn . The second output A2 can depend both on X2 and past events,
such as the values assigned to A1 and X1, but not on the following inputs X3, . . . , Xn .

Fig. 6.2 Sequential interaction with a multi-round box. Alice and Bob start by playing the first
game with the box and only once they receive the outputs from the box they proceed to the second
game, and so on
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Fig. 6.3 The relation between the different multi-round boxes

We define two different types of sequential boxes – one which allows for commu-
nication between the rounds of interactions and onewhich does not. A box that allows
for communication between the rounds is a box in which Alice and Bob’s devices
can exchange classical or quantum information after finishing playing a game and
before starting the next one. Such boxes should be considered when entanglement is
to be distributed “on the fly”, e.g., in protocols where Alice is expected to send half of
an entangled state to Bob in each round, or when the devices are located far enough
so they cannot communicate during a single game but too close to make sure signals
from one round cannot arrive to the other device until the end of all games. A box that
does not allow for communication can be considered, e.g., in cryptographic settings
in which any communication between the devices implies that all information can
leak to the adversary. We remark that parallel boxes and sequential boxes that allow
for communications are incomparable to one another, while both are more general
than sequential boxes without communication; see Fig. 6.3. This is explained inmore
detail after formally defining the two types of sequential boxes.

6.2.1 Without Communication Between the Rounds

As in the case of a parallel multi-round box, a sequential multi-round box is described
by a conditional probability distribution PAB|XY defined over the inputs and outputs
of n rounds of the gameG –X n,Yn,An,Bn . The special thing about a sequential box
is that the marginals describing the individual rounds of the game are well-defined
and non-signalling between Alice and Bob. That is, they are boxes by themselves.

In this sectionwe consider amodel of sequential boxes in whichAlice’s and Bob’s
components are not allowed to communicate between the rounds of the game. For
short, we call such boxes non-communicating sequential boxes. Formally, to define a
non-communicating sequential box we consider the marginals of PAB|XY describing
a round i ∈ [n]. The relevant marginals are
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PAi Bi |XiYi Hi,AliceHi,Bob (6.3)

where Hi,Alice = X1,...,i−1A1,...,i−1 and Hi,Bob = Y 1,...,i−1B1,...,i−1 denote the “his-
tories” of Alice and Bob’s boxes in round i . These histories basically describe all the
information that can be kept by the boxes from the previous rounds (we can think of
such boxes as devices which record past events in their memory). The history may
include more information1 than past inputs and outputs; for simplicity we stick to
the above choice.

A first requirement on a sequential box is that themarginals (6.3) are well-defined.
This can be mathematically described by a set of non-signalling conditions. Explic-
itly, for every i ∈ [n], we denote:
1. P = [i − 1], aP = a1, . . . , ai−1, and similarly for bP , xP , and yP .
2. F = {i + 1, . . . , n}, aF = ai+1, . . . , an , and similarly for bF , xF , and yF .
3. For any xP , yP , xi , yi , xF , yF , x

′
F , and y′

F ,

(a) x = xP , xi , xF
(b) x′ = xP , xi , x′

F
and similarly for y and y′.

Then, we require that the following non-signalling conditions hold for all aP , bP ,
xP , yP , ai , bi , xi , yi , xF , x

′
F , yF , and y′

F ,

∑

aF ,bF

PAi Bi AF BF |AP BP XY (ai , bi , aF , bF |aP , bP , x, y) =
∑

aF ,bF

PAi Bi AF BF |AP BP XY
(
ai , bi , aF , bF |aP , bP , x′, y′) .

(6.4)

Now that the marginals PAi Bi |XiYi Hi,AliceHi,Bob are well-defined for all i ∈ [n], we
further ask that they are non-signalling between Alice and Bob, when each party
holds only its own history. That is, PAi |Xi Hi,Alice and PBi |Yi Hi,Bob need to be well-defined
as well. Explicitly, for each round i ∈ [n], for all a ∈ A, b ∈ B, x, x ′ ∈ X , y, y′ ∈ Y
and histories hi,Alice, hi,Alice

′ ∈ X i−1 × Ai−1 and hi,Bob, hi,Bob
′ ∈ Y i−1 × Bi−1,

∑

b

PAi Bi |XiYi Hi,AliceHi,Bob(a, b|x, y, hi,Alice, hi,Bob) =
∑

b

PAi Bi |XiYi Hi,AliceHi,Bob(a, b|x, y′, hi,Alice, hi,Bob
′
)

∑

a

PAi Bi |XiYi Hi,AliceHi,Bob(a, b|x, y, hi,Alice, hi,Bob) =
∑

a

PAi Bi |XiYi Hi,AliceHi,Bob(a, b|x ′, y, hi,Alice
′
, hi,Bob) .

(6.5)

1For example, in device-independent quantum key distribution protocols the parties randomly
choose in each round whether the round is used for testing the device or for generating key bits.
This information can also be included in the history Hi .
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The fact that the boxes cannot communicate between the rounds presents itself by
having two different histories, one for Alice and one for Bob. The above equations
then imply that the actions of Alice’s box in round i depend only on Alice’s history,
i.e., on what happened in the previous rounds on Alice’s side (while she is oblivious
to Bob’s history), and similarly for Bob.2

Note that we only ask the marginals PAi |Xi Hi,Alice and PBi |Yi Hi,Bob to be well-defined.
PAi |Xi , on the other hand, are not necessarily valid boxes.

6.2.1.1 Non-signalling Non-communicating Sequential Boxes

A non-signalling non-communicating sequential multi-round box is simply a box
PAB|XY fulfilling the above non-signalling constraints; there are no further require-
ments.

Definition 6.3 (Non-signalling non-communicating sequential multi-round box)
Given a Bell game G, a non-signalling non-communicating sequential multi-round
box is a conditional probability distribution PAB|XY defined for the inputs and outputs
of n rounds of the game G – X n,Yn,An,Bn fulfilling the non-signalling conditions
given in Eqs. (6.4) and (6.5).

6.2.1.2 Quantum Non-communicating Sequential Boxes

The simplest way of defining a quantum non-communicating sequential box is to
consider the initial state shared by Alice and Bob and the sequence of measurements
that they perform.

More specifically, in each round Alice and Bob’s boxes can perform a measure-
ment on the post-measurement state of the previous round. We denote the state in
the beginning of round i ∈ [n] (i.e., before performing the measurements of the i’th
round) by ρ

i,hi,Alice,hi,Bob

QAQB
. As clear from the notation, this state depends on the histories

hi,Alice, hi,Bob. We identify ρ1
QAQB

= ρQAQB as the initial state of the box.
Furthermore, we denote the (Kraus) measurements performed in each round

by {K x
a } and {K y

b }.3 One can think of the measurements {K x
a } as depending on

the history hi,Alice and similarly for Bob. Alternatively, we can imagine that the his-
tory is already kept in some classical registers within the quantum state ρ

i,hi,Alice,hi,Bob

QAQB
,

i.e., ρQA includes also the information hi,Alice and similarly for Bob. The measure-
ments can thus be defined as first reading the history and then applying the relevant
measurement depending on the history. This allows us to use the shorter notation in
which the operators do not depend on the histories explicitly.

2This should be compared to the next section, where we will have just a single history Hi for Alice
and Bob together.
3Note that in contrast to the previous definitions, the measurement operators K are now written
as Kraus operators and not POVMs, since we are interested in the post-measurement state. See
Sect. 2.3 for more details.
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Using the above notation, the relation between the state in round i to that of round
i − 1 is simply (up to normalisation of the state)

ρ
i,hi,Alice,hi,Bob

QAQB
∝

(
K xi−1

ai−1
⊗ K yi−1

bi−1

)
ρ
i−1,hi−1,Alice,hi−1,Bob

QAQB

((
K xi−1

ai−1

)† ⊗
(
K yi−1

bi−1

)†
)

,
(6.6)

where hi,Alice and hi,Bob uniquely determine xi−1, ai−1, hi−1,Alice and yi−1, bi−1,

hi−1,Bob, respectively (i.e., the values on the righthand-side of Eq. (6.6) should be
consistent with the histories on the lefthand-side). The conditions stated in Eq. (6.5)
follow directly.

Definition 6.4 (Quantum non-communicating sequential multi-round box) Given a
Bell game G, a quantum non-communicating sequential multi-round box is a condi-
tional probability distribution PAB|XY defined for the inputs and outputs of n rounds
of the game G, X n,Yn,An,Bn , such that there exist a bipartite state ρQAQB and
measurements {K x

a } and {K y
b } defining a sequence of bipartite states for i ∈ [n] as

in Eq. (6.6).

As mentioned before, a non-communicating sequential box is also a parallel one.
Indeed, it is easy to see that a parallel box can always simulate the behaviour of a
non-communicating sequential box.

6.2.2 With Communication Between the Rounds

In the previous section we considered sequential boxes in which Alice’s and Bob’s
components are not allowed to communicate between the rounds. This implies that
Alice’s and Bob’s components evolve separately in time and each of them has their
own “history”: hi,Alice for Alice and hi,Bob for Bob. Now, we consider a scenario
in which Alice’s and Bob’s components are allowed to communicate between the
different games, i.e., after the outputs of round i − 1 were supplied by the box and
before the i’th inputs are given.4 Considering boxes that are allowed to communi-
cate is, in particular, relevant when considering realistic application of, e.g., device-
independent cryptography. There, one would like to allow the experimentalists to
distribute entanglement “on the fly” during the protocol. To send a new quantum
state in each round the communication channels need to be open and an adversarial
box may use this opportunity to communicate.

Mathematically this setting can be formalised by allowing Alice and Bob to keep
a common history register that includes the classical information of all past events
on both sides. More specifically, the marginal describing the i’th round of the game,

4In Protocol 1.1, for example, “between the different games” refers to the time after Step 3 of round
i − 1 and before Step 2 of round i , for all i ∈ [n].
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for i ∈ [n], is given by PAi Bi |XiYi Hi , where Hi denotes the history defined by the
previous rounds. Hi includes X1,...,i−1Y 1,...,i−1A1,...,i−1B1,...,i−1 as well as any other
information available to Alice’s and Bob’s component. For simplicity we assume
that Hi = X1,...,i−1Y 1,...,i−1A1,...,i−1B1,...,i−1 similarly to what was done before. The
only non-trivial communication to consider is one which depends on the history,
since any other information could have been included as part of the box to begin
with. Therefore, we can assume without loss of generality that the communicated
information is simply the entire history.

As before, we first require that PAi Bi |XiYi Hi are well-defined, i.e., Eq. (6.4) is ful-
filled. In addition, PAi Bi |XiYi Hi needs to be non-signalling between Alice and Bob,
when they both hold their common history. That is, PAi |Xi Hi and PBi |Yi Hi are well-
defined. Formally: for each round i ∈ [n], for all a ∈ A, b ∈ B, x, x ′ ∈ X , y, y′ ∈ Y
and hi ∈ Ai−1 × Bi−1 × X i−1 × Y i−1,

∑

b

PAi Bi |XiYi Hi (a, b|x, y, hi ) =
∑

b

PAi Bi |XiYi Hi (a, b|x, y′, hi )

∑

a

PAi Bi |XiYi Hi (a, b|x, y, hi ) =
∑

a

PAi Bi |XiYi Hi (a, b|x ′, y, hi ) .
(6.7)

In contrast to Eq. (6.5), in the above equations the behaviour of Alice’s component
in the i’th round may depend also on past events on Bob’s side, as Hi includes
also Y 1,...,i−1B1,...,i−1, and similarly for Bob’s part of the box.

6.2.2.1 Non-signalling Communicating Sequential Boxes

A non-signalling communicating sequential multi-round box is a box PAB|XY fulfill-
ing the above non-signalling constraints.

Definition 6.5 (Non-signalling communicating sequential multi-round box) Given
a Bell game G, a non-signalling communicating sequential multi-round box is a
conditional probability distribution PAB|XY defined for the inputs and outputs of n
rounds of the gameG –X n,Yn,An,Bn fulfilling the non-signalling conditions given
in Eqs. (6.4) and (6.7).

It is perhaps instructive to note that PAB|XY itself is not a non-signalling box.;
communication (i.e., signalling) between the rounds may be necessary in order to
implement the box. We give a trivial example in the end of the section.

6.2.2.2 Quantum Communicating Sequential Boxes

When we say that a communicating sequential multi-round box is quantum we mean
that in each round the behaviour of the box can be described within the formalism
of quantum physics.
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Definition 6.6 (Quantum communicating sequential multi-round box) Given a Bell
game G, a quantum sequential multi-round box is a conditional probability dis-
tribution PAB|XY defined for the inputs and outputs of n rounds of the game G,
X n,Yn,An,Bn , such that for all i ∈ [n] the marginal PAi Bi |XiYi Hi , for Hi = X1,...,i−1

Y 1,...,i−1A1,...,i−1B1,...,i−1, is a quantum box as in Definition 3.3. That is, there exist

a bipartite state ρhi
QAQB

and measurements {Mhi ,x
a } and {Mhi ,y

b } such that

PAi Bi |XiYi Hi (ab|xyhi ) = Tr
(
Mhi ,x

a ⊗ Mhi ,y
b ρhi

QAQB

)
∀a, b, x, y, hi . (6.8)

The box in Eq. (6.8) is written as PAi Bi |XiYi Hi so it is mathematically clear which
marginals of PAB|XY are being discussed. On the level of the state and measurements

one thinks of ρhi
QAQB

, {Mhi ,x
a }, and {Mhi ,y

b } as depending on the history hi , which
allows the actions in each round to depend on the past. As in Sect. 6.2.1, we may
also consider a state ρhi

QAQB
that keeps hi in one of its registers and measurements

that first read the history and then apply the relevant operations; in such a case we
may think of {Mx

a }, and {My
b } independent of the history.

It may seem from Definition 6.6 that only the individual rounds are considered.
The sequential nature of the box is concealed in the relations between the different
rounds. It becomes apparent when noting that all the marginals describing the indi-
vidual rounds should be consistent with the same overall box PAB|XY . Alternatively,
one can consider an equivalent definition of a quantum communicating sequential
multi-round box that is perhaps more intuitive (but mathematically more complex):
Similarly to the evolution described in Eq. (6.6), we start with some initial quantum
state and make sequential measurements. In contrast to Eq. (6.6), however, we allow
for an additional general operation, which may depend on the history, to be per-
formed on the post-measurement state of each round. The general operation between
the rounds is what models the communication between the two parts of the box.

Before concluding this section, let us mention the relations between the different
types of multi-round boxes. The relations are shown in Fig. 6.3. It is obvious to
see that communicating sequential boxes are more general than non-communicating
sequential boxes. In contrast to non-communicating sequential boxes, parallel boxes
cannot simulate a general communicating sequential box. A trivial example is a
communicating sequential box that always outputs b2 = x1. Clearly, since a parallel
box must, in particular, fulfill Eq. (6.1), it cannot simulate such a box. On the other
hand, communicating sequential boxes cannot simulate a general parallel box. For
example, a communicating sequential box cannot simulate a parallel box for which
a1 = x2. Thus, the two types of boxes are incomparable.
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Chapter 7
Working Under the IID Assumption

In this thesis, we are interested in analysing the behaviour of multi-round boxes
when such boxes are used to play many non-local games, e.g., while running a
cryptographic protocol. In the previous chapter we discussed the different models of
multi-round boxes (the parallel and sequential ones). As we saw, their behaviour can
be quite complex. As a consequence, the analysis of protocols which use such boxes
is (a priori) tedious in the good case and infeasible in the worst.

In this chapterwediscuss an assumption that canmake the analysis of the scenarios
of interest much simpler—the so called “independent and identically distributed”
(IID) assumption. The assumption states that the boxes behave independently and
identically when playing the n games. The IID assumption is commonly made in
the literature as it significantly simplifies the behaviour of the considered boxes and
allows us to gain better intuition and understanding of the problem at hand. As we
explain below, there is no reason to believe that the IID assumption can be enforced
in the device-independent setting; we use it just as a first stage before moving on
to the general analysis. In Chaps. 8–9 we will see that, in certain scenarios, some
techniques can be used to reduce the general analysis to the one made under the IID
assumption.

We start by explaining the assumption itself. Following that, we present a math-
ematical tool, namely the “quantum asymptotic equipartition property”, which is of
great use when considering IID random variables and quantum systems. Finally, we
discuss the analysis of our showcases under the IID assumption.
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Fig. 7.1 IID box. The box PAB|XY can be described as n identical and independent copies of a
single-round box. Each game is played with a different copy of the box. We can see each copy as a
well defined subsystem

7.1 The IID Assumption

As in the previous chapter, we consider multi-round boxes. An IID box, as the name
suggests, is a multi-round box which behaves identically and independently in each
game played with it. Pictorially, we can think of an IID box as n identical and
independent copies of a single-round box, as shown in Fig. 7.1. Comparing this to
Figs. 6.1 and 6.2, one sees that an IID box has more structure than the other, more
general, multi-round boxes. In particular, in the case of an IID box we can talk about
a subsystem structure of the box. In the quantum case, for example, if σ denotes the
state of a single-round box in Fig. 7.1 then the overall state of the IID box is σ⊗n . A
similar tensor product structure also holds for the measurements describing the box.
Mathematically, an IID box is defined as follows.

Definition 7.1 (IID box) Given a non-local game G, an IID box is a conditional
probability distribution PAB|XY defined for the inputs and outputs of n rounds of the
game G, X n,Yn,An,Bn , such that

PAB|XY (a, b|x, y) =
∏

i∈[n]
PAB|XY (ai , bi |xi , yi ) (7.1)

for some single-round box PAB|XY . An IIDbox is said to be quantumor non-signalling
if the single round box PAB|XY is quantum (Definition 5.1) or non-signalling (Defi-
nition 5.1), respectively.

Note that the single-round box PAB|XY in Eq. (7.1) is the same for every round
i ∈ [n]. This means that the behaviour of the box is identical in each round and
independent of all other rounds.1 Hence, the behaviour of an IID box PAB|XY is
solely characterised by the single-round box PAB|XY and, thus, the substance of any

1As always, a box is a conditional probability distribution and its definition is therefore independent
of the distribution of the inputs, x and y, which can be arbitrary (depending on how the box is being
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Fig. 7.2 The relation between the sets of multi-round boxes. The intersection of the sets of sequen-
tial and parallel boxes includes the set of IID boxes. The analysis of IID boxes is rather simple

analysis done for the IID box is the study of the single-round box. This also implies
that the box behaves exactly the samewhetherwe give it all the inputs at once (parallel
interaction) or one after the other (sequential interaction). An IID box is therefore
both a parallel multi-round box and a sequential multi-round box; see Fig. 7.2. Given
all of the above, it indeedmakes sense that any analysis done solely for IID boxes can
be much simpler than the general analysis in which one needs to deal with parallel
or sequential multi-round boxes.

Whenconsideringdevice-independent protocols oneusually encounters IIDboxes
in two different contexts—the so called “completeness” and “soundness” of the
protocols (recall, e.g., Sect. 4.2). When proving the completeness of a protocol one
shows that an “honest implementation” of the box does not cause the protocol to
abort (with high probability). The honest implementation is the implementation of
the box that one would like to have if the manufacture of the device is to be trusted
and, most commonly, it is described as an IID box. Thus, investigating the behaviour
of the protocol when an IID box is being used allows us to see what happens in the
honest scenario when “everything goes according to the plan”.

The second context to discuss IID boxes is that of the soundness proof. There, one
ought to show that the protocol acts as required for any box, i.e., even for adversarial
ones.2 Clearly, not all boxes are IID boxes and hence analysing the situation only
for IID boxes is not sufficient. That is, by assuming that all boxes behave in an

used). It is perhaps helpful to note that the idea here is that, while the inputs of the different rounds
may be correlated in general (i.e., not IID), the box itself does not “create” further correlations
between the rounds (in contrast to parallel and sequential boxes). In any case, in most scenarios the
inputs are usually taken to be IID random variables as well.
2Recall that in the device-independent setting we assume that the adversary is the one construct-
ing the box. Device-independent protocols are expected to abort, with high probability, when an
adversarial device is detected.
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IID manner we weaken the final statement. Still, working under the IID assumption
allows us to gain better understanding of the full question at hand.

It is important to remark that, even though quite convenient for the soundness
analysis, the IID assumption cannot be justified a priori. Assuming that the box
behaves in an IID way goes against the spirit of device-independence by imposing
severe restrictions on the implementation of the box. In particular, the assumption
implies that the multi-round box does not include any, classical or quantum, internal
memory (i.e., its actions when playing one game cannot depend on the other games)
and cannot display time-dependent behaviour. We therefore emphasise that working
under the IID assumption is only a first step in the process of proving full soundness
(as will be shown in the proceeding chapters).

7.2 Asymptotic Equipartition Property

When analysing IID processes a useful mathematical tool is the so called “asymp-
totic equipartition property” (AEP). The entropic formulation of the AEP used in
this thesis basically asserts that when considering IID RV A = A1, A2, . . . , An , all
identical copies of the RV A, the smooth min- and max-entropies rates, H ε

min(A)/n
and H ε

max(A)/n, converge to H(A) [1]. Similarly, the quantum version of the AEP
asserts that the same is true for IID quantum states (σA)

⊗n and, even more, it holds
also when considering conditional entropies [2–4].

Inmany information theoretic tasks one needs to bound the smoothmin- andmax-
entropies, as they describe operational quantities. In particular, this will be the case in
one of the showcases investigated in the thesis. When considering IID processes, as
done in this chapter, the AEP allows us to reduce the analysis of the smooth entropies
for IID boxes to the analysis of the von Neumann entropy for a single-round box.3

This explains why the AEP is a useful tool when working under the IID assumption.
To comprehend the statement of the AEP and its significance we start by present-

ing and explaining the classical AEP. The quantum variant is then presented as an
extension of the classical one.

7.2.1 Classical Asymptotic Equipartition Property

The (classical) AEP can be seen as the “information theoretic version” of the law of
large numbers. Given IID RV A1, A2, . . . , An the law of large numbers states that
for large enough number of samples n, the average is close to the expected value in
probability. Formally this can be written as

3An example of the analysis of the von Neumann entropy for single-round boxes was presented
in Sect. 5.2. The AEP motivates the analysis done in that section when working under the IID
assumption.
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∀μ > 0 lim
n→∞ Pr

[∣∣∣
1

n

∑

i

Ai − E [A]
∣∣∣ > μ

]
= 0 , (7.2)

for A = A1 = · · · = An a single copy of the RV. Similarly, the AEP, which is a direct
consequence of the law of large numbers,4 states that for IID RV

∀μ > 0 lim
n→∞Pr

[∣∣∣ − 1

n
log (PA[a]) − H(A)

∣∣∣ > μ

]
= 0 , (7.3)

where we denoted A = A1A2 . . . An .
Assume that we sample a sequence a. What can we say about its probability

PA[a]? We learn from Eq. (7.3) that, for large enough n,

2−n(H(A)+μ) < PA[a] < 2−n(H(A)−μ) (7.4)

with high probability. This allows us to talk about “typical sequences” and “typical
sets”. A typical sequence is a sequence A for which Eq. (7.4) holds and the typical
set includes all typical sequences. Denote by 1 − ε the probability that Eq. (7.4)
holds or, in other words, the probability of the typical set. In the limit n → ∞,
ε → 0, the typical set has probability approximately 1, all elements of it appear with
approximately 2−nH(A) probability, and, hence, it includes approximately 2nH(A)

elements. (For formal proofs see [5, Chap. 3]). Thus, the AEP implies that when
analysing probabilistic statements regarding a sequence of IID RV, one can focus on
the typical events (and ignore the non-typical ones) without introducing much of an
error.

Equation (7.4) can be used to state the AEP in terms of the smooth min- and
max-entropies; this form of the AEP is the one used in this thesis.

Theorem 7.2 (AEP5 (direct part)) Let A = A1A2 . . . An be a sequence of IID RV.
Then, for any ε ∈ (0, 1) and n large enough,

1

n
H ε

min(A) ≥ H(A) − δ√
n

1

n
H ε

max(A) ≤ H(A) + δ√
n
,

where δ depends on ε and A.6

4To see this, one can define a new RV, Ãi , which, for all a ∈ A takes the value log (Pr[a]) with
probability Pr[a]. Applying Eq. (7.2) for the new IID RV Ã1, . . . , Ãn , Eq. (7.3) follows.
5Note that this theorem is actually a non-asymptotic version of the AEP, as it describes also the
convergence rate for finite n (i.e., it includes also the second order term). The limit, stated as Eq. (7.5)
below, follows trivially from the presented theorem.
6For the time being we are not interested in the explicit form of δ; this will be discussed when
relevant.
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To gain some intuition of how the smooth entropies enter to the above theorem
we sketch the main arguments here in a somewhat hand-waving way. For the more
accurate analysis we refer the interested reader to [1, 2, 4]. Recall that

Hmin(A) = min
a

− log [PA[a]]
Hmax(A) ≤ max

a|PA[a]
=0
− log [PA[a]] .

Thus, when considering only typical events, it follows from Eq. (7.4) that

1

n
Hmin(A) > H(A) − μ

1

n
Hmax(A) < H(A) − μ .

To account for non-typical events we need to incorporate their probability ε.We do so
by switching to the smooth versions of the entropies while using ε as the smoothing
parameter.7

Theorem 7.2, in combination with a converse bound,8 implies that when n goes
to infinity both smooth entropies converge to the Shannon entropy:

lim
n→∞

1

n
H ε

min(A) = lim
n→∞

1

n
H ε

max(A) = H(A) . (7.5)

This explains why the Shannon entropy is so important in information theory—the
smooth entropies, which describe operational tasks (recall, for example, Sect. 4.2),
converge to the Shannon entropy when considering a large number of independent
repetitions of the relevant task. A commonly used example is that of “data compres-
sion”. There, one would like to encode an n bit string using less bits. If we allow for
some small error when decoding the data, roughly H ε

max(A) bits are needed [7]. For
a large enough IID sequence A1, A2, . . . , An , however, nH(A) bits suffices [8].

A final important comment about the entropic formulation of the AEP is with
regards to the so called “chain rules”. The Shannon entropy respects the chain rule
H(A) = ∑

i H(Ai |A<i ), where A<i denotes the sequence of all RV A j with j < i .
In the case of IID RV this is reduced to H(A) = nH(A). That is, the total amount
of entropy of A is n times the entropy of a single copy of A. Thus, in order to
calculate H(A)we only need to know H(A). In contrast to the Shannon entropy, the
smooth min- and max-entropies do not fulfil a similar chain rule. Theorem 7.2 tells
us that, to first order in n, H ε

min(A) = H ε
max(A) = nH(A). Therefore, for sufficiently

large n, the total amount of the smooth min- and max- entropies of A are n times

7The above only (roughly) explains why the smooth entropies are considered, without addressing
the second order term of the AEP. The second order term does not come from the law of large
numbers but its refinement—the central limit theorem.
8The converse bound roughly follows from themonotonicity of the so calledα-entropies. For details
see [6, Sect. 6.4].
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the Shannon entropy of a single copy of A and, here as well, we only need to know
H(A) to calculate H ε

min(A) and H ε
max(A).

7.2.2 Quantum Asymptotic Equipartition Property

As the name suggests, the quantum AEP is an extended version of the AEP that
applies to IID quantum states ρ = (σAB)

⊗n (the classical variant is then a special
case of the quantum one). The following theorem, developed in [4, Result 5] (see
also [3, Theorem 9]), acts as the generalisation of Theorem 7.2 above; it extends
the theorem to quantum states and, at the same time, incorporates conditioning on
quantum systems.9

Theorem 7.3 (Quantum AEP (direct part) [4]) Let ρ = (σAB)
⊗n be an IID quantum

state. Then, for any ε ∈ (0, 1) and n large enough,

1

n
H ε

min(A|B)ρ ≥ H(A|B)σ − δ(ε, ν)√
n

(7.6)

1

n
H ε

max(A|B)ρ ≤ H(A|B)σ + δ(ε, ν)√
n

, (7.7)

where δ(ε, ν) = 4 log ν
√
log(2/ε2) for ν = 2

√
2Hmax(A|B) + 1.

In combination with a converse bound [6, Corollary 6.3], we get the asymptotic
equality of the conditional entropies:

lim
n→∞

1

n
H ε

min(A|B)ρ = lim
n→∞

1

n
H ε

max(A|B)ρ = H(A|B)σ .

For the proofs of the quantum AEP the reader is directed to [6, Sect. 6.4].
The quantum AEP reveals the same important facts as its classical counterpart

when considering IID quantum states—it justifies the use of the von Neumann
entropy in quantum information processing and tell us that, for sufficiently large n,
the total amount of the conditional smooth entropies, H ε

min(A|B)ρ and H ε
max(A|B)ρ,

are n times the von Neumann entropy H(A|B)σ of a single copy of σ. That is,
instead of calculating the entropies of the full state ρ one only needs to analyse the
von Neumann entropy for a single copy of σ.

When considering applications in which the analysis should be done for a finite
number of repetitions n, it is not sufficient to know that the smooth entropies converge

9The classicalAEP, given as Theorem7.2, can be easilywritten also in terms of conditional entropies
if the conditioning is done on classical systems (then one can directly define the probability distri-
bution of A as the conditional one). This is not the case when conditioning on quantum systems.
That is to say that the statement of the theoremwhich includes conditional entropies does not follow
directly from a “non-conditional” variant.
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to the von Neumann entropy; we also need to know how fast they converge. The
second order terms appearing in Eqs. (7.6) and (7.7), i.e., the terms that scale with
1/

√
n, account for the “finite-size effects”. While the 1/

√
n dependency is optimal,

the constant δ is not tight.10

7.3 Using the IID Assumption

In this section we discuss the analysis of our showcases when working under the IID
assumption. The analysis of the parallel repetition question, presented in Sect. 7.3.1,
is somewhat trivial. Our showcase of device-independent cryptography, considered
in Sect. 7.3.2, demonstrates the use of the quantumAEP in device-independent infor-
mation processing tasks.

7.3.1 Showcase: Non-signalling Parallel Repetition

In our terminology, parallel repetition results aim toupper-bound theprobability that a
parallel multi-round box can simultaneously win all the n games playedwith it; recall
Sect. 4.1. The discussion below holds for classical, quantum, and non-signalling
strategies. The word “optimal” then refers to the considered type of players.

One simple strategy for the parallel repeated game is the IID strategy. This strategy
takes the form of an IID box, which plays each of the n games independently and
identically, as in Definition 7.1. That is, the box does not take advantage of the
fact that it gets all the inputs at the same time. For an optimal IID strategy, i.e.,
the strategy which achieves the maximal probability of winning all games out of
all IID strategies, the single-round box PAB|XY appearing in Eq. (7.1) is the optimal
single-game strategy, that is, the one achieving winning probability of 1 − α.

It is easy to see that the probability that an IID box wins all the n games simul-
taneously decreases exponentially fast with n. Specifically, consider an IID box (or
strategy) PAB|XY with

PAB|XY (a, b|x, y) =
∏

i∈[n]
PAB|XY (ai , bi |xi , yi )

for some single-round box PAB|XY . Let Wi denote the RV describing whether the
i’th game is won (Wi = 1) or not (Wi = 0) and denote by 1 − α = Pr [Wi = 1] the
winning probability of the single-round box PAB|XY (aibi |xi yi ) in a single game (as in
Eq. (5.1)). Due to the IID assumption, all the RV Wi are independent and identically
distributed. Thus, the probability that all the n games are won is given by

10To see that the 1/
√
n dependency is optimal follow, e.g., the proof of [2, Theorem 3.3.3]. Second

order terms with constants better than δ can be derived from [9].
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Pr

[
∑

i

Wi = n

]
=

∏

i

Pr [Wi = 1] = (1 − α)n ,

Clearly, for any 1 − α < 1, (1 − α)n decreases exponentially fast in n.
It is easy to show that also a concentration bound holds for any IID box: for any

0 ≤ β ≤ α, Hoeffding’s inequality tells us that11

Pr

[
∑

i

Wi ≥ (1 − α + β)n

]
≤ exp

(−2nβ2
)
,

which decreases exponentially fast in n as well. The answer to the parallel repetition
question, under the IID assumption, is therefore almost trivial.

7.3.2 Showcase: Device-Independent Quantum Cryptography

Following the first proof of concept of the security of device-independent quantum
key distribution derived in [10], a long line of works [11–20] considered the secu-
rity of device-independent quantum and non-signalling cryptography under the IID
assumption. In this sectionwe explain how the IIDassumption is usedwhen analysing
device-independent quantum cryptographic protocols. Specifically, we consider here
the task of device-independent randomness certification in the presence of a quantum
adversary, which acts as themain building block ofmany device-independent crypto-
graphic protocols, e.g., device-independent quantum key distribution. We focus only
on the parts of the security proof in which the IID assumption plays a crucial role and
present them in a slightly simplified form. In particular, we consider large enough
number of rounds n and neglect finite-size effects for the moment. In Chap.11 we
give full security proofs (which do not rely on the IID assumption) and contrast the
relevant parts with the analysis done here.

When dealing with device-independent cryptography we first need to model the
box used by the honest parties, Alice and Bob, and the adversary’s knowledge about
it. Under the IID assumption, the state ofAlice andBob has an IID structure ρQA QB =(
σQAQB

)⊗n
where each copy of σQAQB is a bipartite state shared between Alice and

Bob. Moreover, we assume that the measurements performed in each round of the
protocol are all identical and independent of one another, i.e., for all a, x, M x

a =(
Mx

a

)⊗n
and similarly for Bob’s measurements. Themost general quantum adversary

holds a purification of Alice and Bob’s state. As all purifications are equivalent up to

11Hoeffding’s inequality tells us even more; it says that when using the optimal IID strategy the
probability of winning less than 1 − α − β fraction of the games is also decreasing exponentially
fast.
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local unitaries on Eve’s state, we can assume without loss of generality that the
overall state of Alice, Bob, and Eve takes the IID form12

ρQA QB E = (
σQAQB E

)⊗n
. (7.8)

We remark that while we assume that ρ has the above IID structure, the state σQAQB E

is unknown.
Equation (7.8), together with the IID form of the quantum measurements describ-

ing the device, indeed leads to an IID box PAB|XY as in Eq. (7.1). In particular, this
implies that A1, A2, . . . , An are IID RV. Furthermore, it follows from Eq. (7.8) that,
for all i ∈ [n], the quantum system Ei holds information only regarding the output Ai

of the same round (that is, A1 and E2, for example, are independent of one another).
Recall from Sect. 4.2.3 that the central task when proving security of quan-

tum cryptographic protocols is to bound the amount of information that Eve may
obtain about certain values generated by the protocol, which are supposed to be
unknown to her. In the case of randomness certification the main technical step
of all soundness proofs is to lower-bound the smooth min-entropy of Alice’s out-
puts A = A1, A2, . . . , An (see, e.g., Protocol 1.1). Our goal is therefore to lower-
bound H ε

min(A|E), where E = E1, E2, . . . , En are Eve’s IID quantum systems
appearing in Eq. (7.8).

The rough idea behind a security proof under the IID assumption is illustrated in
Fig. 7.3 and is rather simple. The first step is the estimation of the winning probability
ω of the single-round box defining the IID box, i.e., the unknown state σQAQB . Alice
and Bob play the n games with each of their independent quantum boxes and collect
the statistics. Denoting by Wi the RV describing whether the i’th game is won or
not, the IID assumption implies that W1,W2, . . . ,Wn are, as well, IID RV. Thus, it
follows from Chernoff’s bound that the average 1

n

∑
i Wi is close to the expected

winning probability E[W ], which is no other than the winning probability ω of a
single copy of the state (see Eq. (5.1)). That is,

ω ≈ 1

n

∑

i

Wi .

The second step is to lower-bound the conditional smoothmin-entropy H ε
min(A|E)

as a function of ω. Due to the IID assumption, we can do so using the quantum AEP
presented as Theorem 7.3 above. Specifically, for large enough n we have

12It is the equivalence of all purifications that allows us to go from an IID assumption regarding
Alice andBob’s state ρQA QB to an IID assumption regarding the state ρQA QB E , which also includes
Eve. Interestingly, the same thing cannot be done when considering non-signalling boxes and
adversaries. It follows from [21] that the extension of a non-signalling IID box to the adversary
does not necessarily have an IID structure as well. (See also [20], where the box itself is assumed
to have a subsystem structure similar to that of an IID box while the structure of the adversary’s
system is unrestricted).
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Fig. 7.3 Sketch of a security proof under the IID assumption and for large enough n. The honest
parties hold an IID box. Each quantum system Ei , belonging to the adversary, can be entangled only
to the i’th box. The non-local game is being playedwith each of the independent and identical boxes.
The statistics are then collected and used to estimate the winning probability ω of the single-round
boxes. According to the quantum AEP, for large enough n, the total amount of smooth min-entropy
is the sum of the von Neumann entropy of each round, which can be bounded as a function of the
estimated winning probability ω

H ε
min(A|E) ≈ nH(A|E)

≥ n f (ω) ,
(7.9)

where f (ω) is some function of ω that lower-bounds the conditional von Neumann
entropy H(A|E)σ for any state σ with the estimated winning probability ω.13 For the
CHSH game, such a function f (ω)was given in Lemma 5.3 as part of the discussion
of single-round boxes.

In certain protocols one would like to use different copies of the boxes in differ-
ent ways. For example, in device-independent quantum key distribution the protocol
includes “test rounds” and “generation rounds”. Alice’s usage of the box in a test
round may be different than her usage in a generation round. The winning prob-
ability ω is estimated from the statistics collected in the test rounds, as discussed
above. Using the IID assumption we can conclude that the other boxes, utilised in
the generation rounds, could have also been used to win the game with probability
ω, even though Alice and Bob do not test these boxes.

Clearly, the IID assumption plays a crucial role in the above proof sketch; it allows
us to talk about a single-round box, estimate its winning probability in a meaningful
way, and, furthermore, to bound the total amount of smooth min-entropy of the
outputs as the number of games played times the von Neumann entropy of the output
of a single game. In total, the IID assumption allows us to reduce the analysis of
the multi-round box to that of a single-round box—the “physics” enters the analysis

13We previously wrote σ as the tripartite state σQAQB E while here we are referring also to the
classical register A. What is meant by this notation is that σ is a state which can lead to winning
probability ω when measured with some given measurements

{
Mx

a

}
and

{
My

b

}
. The result of

measuring QA with
{
Mx

a

}
defines the RV A.
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only in the single-round statement (e.g., Lemma 5.3) while the rest is done using
standard mathematical tools such as Chernoff’s bound and the AEP.

7.3.2.1 Quantum Key Distribution Key Rates

The main fundamental difference between device-independent randomness certifi-
cation and device-independent quantum key distribution is that in the latter Alice and
Bob should share identical secret keys in the end of the protocol. To this end, they
need to apply an additional classical post-processing step, namely, error correction.
The goal of the error correction step is to reconcile the differences between Alice’s
and Bob’s keys so they share the same final key with high probability.

In classical error correction protocols utilising one-way communication, Alice
sends some classical information about her key to Bob. This information, together
with all of Bob’s prior information, helps Bob conclude which key Alice is most
likely to hold. If the information sent is not sufficient in order for Bob to derive a
conclusion, the parties abort the protocol. Since Alice sends the additional infor-
mation to Bob over a public (but authenticated) classical channel, this information
also leaks to the adversary and hence increases her knowledge about Alice’s key.
In other words, the leakage reduces the conditional smooth min-entropy—we now
need to consider H ε

min(A|EO), where O denotes the leaked information, instead
of H ε

min(A|E) appearing in Eq. (7.9).
Notice the resulting tradeoff. To get good key rates, we wish to leak as little

information as possible to the adversary (so we do not reduce the min-entropy by too
much).On the other hand,wewant the error correction step to succeedwhenAlice and
Bob use the honest box14 and, thus, Alice needs to send a sufficient amount of infor-
mation that will allow Bob to correct the errors. We therefore wish to minimise the
amount of leakage needed for successful error correction. As explained in Sect. 4.2,
this turns out to be quantified by the conditional smooth zero-entropy H ε

0 (A|B) [22],
which is closely related to the conditional smooth max-entropy H ε

max(A|B).
Inmany cases the honest box, which also incorporates the considered honest noise

model, is chosen to be an IID box. (For example, a common choice is a box describing
n independent pairs of maximally entangled states which are being distributed over
an IID noisy quantum channel.) Hence, one can use the AEP to get

H ε
max(A|B) ≈ nH(A|B) (7.10)

and by this upper-bound the amount of leakage due to error correction. All and all,
under the IID assumption and for sufficiently large n, the key rate is governed by

14If the box is malicious or simply noisier than we wished for, we anyhow expect the protocol to
abort. Thus, we only ask that the error correction protocol does not abort with high probability when
the honest implementation of the devices is used since, otherwise, it will affect the completeness of
the protocol.
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r � 1

n

(
H ε

min(A|E) − H ε
max(A|B)) (7.11)

� H(A|E) − H(A|B) . (7.12)

Equation (7.12) is usually referred to as the DW-formula since it first appeared
in [23, Theorem 2.1]. In [22], the smooth entropies were used to describe the optimal
key rates without employing the IID assumption and, by the use of the AEP, the
results of [22] imply Eq. (7.12) (as we sketched above). Interestingly, [23, Theorem
2.8] states that, up to some possible classical post-processing, Eq. (7.12) is tight for
any protocol utilising error correction with one-way communication.

Two last remarks are in order. Firstly, we would like to emphasise that Eq. (7.10)
does not rely on the IID assumption that we are making in order to simplify the
soundness analysis. Here we are allowed to use the AEP since we choose to consider
an IID box as our honest box. Other choices can also be made (if one, for example,
wishes to analyse the protocol under a different honest noise model) and then the
AEP might no longer be relevant. In Chap. 11 we will drop the IID assumption used
for the soundness analysis but will still choose an IID honest implementation for the
completeness analysis.

Secondly, since an adversary limited to preparing IID boxes is weaker than one
that can make general multi-round boxes, tight key rates achieved under the IID
assumption act as upper-bounds on the achievable key rates in the general setting.
Thus, by calculating key rates using Eq. (7.12) we usually already get a feeling of
what is the best we can hope for when performing the general analysis. Indeed, [16]
used Eq. (7.12) to derive tight key rates for device-independent quantum key distri-
bution under the IID assumption for n → ∞. These will act as an upper-bound when
considering the most powerful quantum adversary in Chap. 11.

7.4 Beyond IID

In this chapterwe studied the behaviour of IIDboxes and sawhow themain ingredient
in an analysis of IID boxes is the analysis of a single-round box. In a way, one can
say that once we understand the behaviour of a single-round box, we understand the
“physics”, or the essence, of the problem at hand. Unfortunately, IID boxes are far
frombeing themost general ones and sowe are enforced to go beyond the IID analysis
and consider more complicated objects, namely, the different types of multi-round
boxes that we encountered in Chap.6.

As explained in Chap.1, it is the goal of this thesis to show that the analysis of
IID boxes can be almost directly extended, at least in some cases, to the analysis
of multi-round boxes via a reduction to IID. In the following chapters we present
two techniques that can be used to reduce the analysis of parallel and sequential
boxes to that of IID boxes; see Fig. 7.4. Specifically, Chap.8 deals with a technique
called “de Finetti reduction” that relates permutation invariant parallel boxes to IID
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Fig. 7.4 The big picture. The single-round box, at the bottom of the figure, is the simplest object
to consider (Chap.5). The IID box consists of many copies of the single-round box and, thus,
can be easily analysed once we understand the behaviour of the single-round box (Chap. 7). The
multi-round boxes are the most complex objects (Chap.6). “Reductions to IID” techniques can be
used to simplify the analysis of multi-round boxes by reducing it to that of IID boxes. The “de
Finetti reduction” technique (Chap. 8) is used when dealing with parallel boxes while the “entropy
accumulation theorem” (Chap.9) is relevant for sequential boxes. In total, with the help of the
different reductions, the main thing to study when considering device-independent information
processing tasks is the behaviour of single-round boxes

boxes [24]. Chapter9 presents the so called “entropy accumulation theorem” that
relates sequential boxes, fulfilling certainMarkov-chain conditions, to IID ones [25].

With the help of those techniques one can show that, in certain scenarios, the
analysis of IID boxes is sufficient without loss of generality. This is not to say that all
multi-round boxes are IID boxes; clearly this is not the case. Instead, we claim that
even though there exist multi-round boxes that can not be described as IID boxes,
one can sometimes restrict the attention solely to IID boxes and the rest will follow.
This will be clarified with the aid of our showcases in Chaps. 10 and 11.
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Chapter 8
Reductions to IID: Parallel Interaction

Multi-round parallel boxes, discussed in Sect. 6.1, can display an almost arbitrary
behaviour and hence are complicated to analyse. However, some additional structure
of the boxes can be assumed when certain types of symmetries are present in the
considered information processing task. In this chapter we focus on the analysis of
parallel boxes that are permutation invariant. Permutation invariance is an inherent
symmetry in many information processing tasks, device-independent tasks among
them. Thus, analysing permutation invariant boxes (as defined below) is of special
interest.

A well known family of tools used to study permutation invariant systems1 is the
family of “de Finetti-type theorems”. A de Finetti-type theorem is any theorem that
relates (in one way or another) permutation invariant systems to a more structured
system, having the form of a convex combination of IID systems, called a de Finetti
system (or state). The relation given by the theorem can be used, in certain cases,
to argue that instead of analysing permutation invariant systems one can restrict the
attention to the simpler to analyse (convex combination of) IID systems. A de Finetti
theorem therefore acts as a reduction to IID.

The first de Finetti theorem [1] established that the collection of infinitely
exchangeable sequences, i.e., distributions on infinite strings that are invariant under
all permutations, exactly coincides with the collection of all convex combinations of
IID distributions. Subsequent results gave quantitative bounds of different forms [2–
9]. de Finetti-type theorems had proven to be useful in various proofs. The quantum
de Finetti theorems, for example, enable a substantially simplified analysis of many
quantum information tasks such as quantum cryptography [7, 10], tomography [11],
channel capacities [12] and complexity [9].

1Depending on the context, the term systemmay refer to a probability distribution, a quantum state,
or a box.
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The de Finetti theorems listed above cannot be used in the device-independent
setting for various reasons.2 In this chapter we present a de Finetti-type theorem,
which was introduced in [13], that is applicable when working with parallel boxes.
Our de Finetti theorem, termed “de Finetti reduction for correlations”, is then used
in the analysis of one of our showcases, namely, non-signalling parallel repetition,
in Chap.10.

The chapter is arranged as follows. We start by explaining the notion of permuta-
tion invariance in the device-independent context in Sect. 8.1. The deFinetti reduction
is presented and proven in Sect. 8.2. Section8.3 exemplifies how the reductions can
be used in two different general ways (while Chap. 10 deals with a specific applica-
tion). The theorems proven in Sect. 8.3 clarify in what sense we think of a de Finetti
reduction as a reduction to IID in the device-independent setting.

In accordance with the rest of the thesis, the chapter focuses only on the case of
two parties. All the statements can be extended to any number of parties, as can be
seen in [13].

8.1 Permutation Invariance

As mentioned above, we are interested in considering permutation invariant parallel
multi-round boxes. Let n be the number of games that can be played with the parallel
box of interest PAB|XY . A permutation π is a bijective function π : [n] → [n]. We
denote π(x) = xπ−1(1), xπ−1(2), . . . , xπ−1(n) and similarly for π( y), π(a), and π(b).
A permutation invariant box3 is defined as follows.

Definition 8.1 (Permutation invariant box)Given aparallelmulti-roundboxPAB|XY ,
definedoverX n,Yn,An,Bn , and apermutationπ : [n] → [n]wedenote byPAB|XY ◦
π the box defined by

∀a, b, x, y (
PAB|XY ◦ π

)
(a, b|x, y) = PAB|XY (π(a),π(b)|π(x),π( y)) . (8.1)

A parallel multi-round box PAB|XY is said to be permutation invariant if and only if

∀π PAB|XY = PAB|XY ◦ π .

Figure8.1 illustrate the action of permuting a parallel box. The action of the
permuted box can be understood as follows: First, the box applies the permutation π
on the inputs. Second, it uses the initial box PAB|XY to produce the intermediate
outputs. Lastly, it applies the inverse permutation π−1 on the intermediate outputs

2The mentioned theorems rely on some initial subsystem structure and/or a bound on the dimen-
sion of the subsystems. In the device-independent setting one cannot start with such assumptions
regarding the considered boxes in general.
3The definition and the derived theorem are independent of the nature of the box, i.e., if it is classical,
quantum, non-signalling, or even signalling. This will be addressed in Sect. 8.2.
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Fig. 8.1 Permutation of a
box PAB|XY . The permuted
box, PAB|XY ◦ π acts by first
applying the permutation π
on the inputs, then producing
the outputs using the initial
box PAB|XY , and lastly
applying the inverse
permutation on the outputs.
The input output distribution
of the box is then defined
according to Eq. (8.1). A box
is said to be permutation
invariant if for all π,
PAB|XY = PAB|XY ◦ π

and returns these final strings as the ultimate outputs. Note that only the inputs and
the outputs of the box are being permuted, all using the same permutation π. In
particular, we do not permute the parties, that is, Alice and Bob do not swap their
inputs and outputs with one another.

As we are merely permuting the classical inputs and outputs, the box itself need
not to have a subsystem structure. That is, we do not require, e.g., PA1|X1 to be a
valid system (i.e., a conditional probability distribution). This is in contrast to, e.g.,
quantum de Finetti-type theorems such as [5, 7], where the permutation is applied on
the quantum states themselves.4 This distinction is relevant when wishing to discuss
general parallel boxes (recall Sect. 6.1).

In some applications (e.g., the showcase considered in Chap.10) one can easily
show that it is sufficient to consider permutation invariant boxes without loss of
generality. If this is not the case, it is also possible to enforce permutation invariance.
A protocol, for example, can bemodified to enforce the symmetry by adding a step in
which a random permutation is applied5 on the box and by this make it permutation
invariant. Precisely: given any parallel box PAB|XY , let

P̃AB|XY = 1

n!
∑

π

PAB|XY ◦ π

be the result of applying a permutation π, chosen uniformly at random out of all
permutations, on the original box. It can be easily verified that P̃AB|XY is indeed a
permutation invariant box.

4In a quantum de Finetti statement a permutation takes a state |φ1〉 ⊗ . . . |φn〉 to
∣
∣φπ−1(1)

〉 ⊗
. . .

∣
∣φπ−1(n)

〉
. That is, the quantum states themselves are being permuted.

5Depending on the considered scenario, the application of the permutation may be a purely theo-
retical step or needs to be done in practice.
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8.2 de Finetti Reductions for Correlations

A de Finetti-type theorem is any theorem that relates a permutation invariant system
to a much more structured system called a de Finetti system. In our context, we
consider permutation invariant and de Finetti boxes. A de Finetti box is defined as
follows.

Definition 8.2 (de Finetti box6) A de Finetti box is any box of the form of a convex
combination of IID boxes. That is, it is a box τAB|XY , defined over X n,Yn,An,Bn ,
such that

τAB|XY =
∫

O⊗n
AB|XYdOAB|XY ,

where dOAB|XY is some measure on the space of bipartite boxes overA, B,X , and Y
and O⊗n

AB|XY is the IID box defined by OAB|XY , i.e.,

O⊗n
AB|XY (a, b|x, y) =

∏

i∈[n]
OAB|XY (ai , bi |xi , yi ) .

As seen from the above definition, by choosing different measures dOAB|XY we
define different de Finetti boxes. Depending on themeasure, τAB|XY may be classical,
quantum, non-signalling, or even signalling between the two parties. If the measure
dOAB|XY assigns weight only to, e.g., non-signalling boxes OAB|XY , then the de
Finetti box τAB|XY is non-signalling as well. The other direction does not necessarily
hold—there are convex combinations of signalling boxes that result in over-all non-
signalling boxes.

A de Finetti reduction is a de Finetti-type theorem of a specific form: it sets an
inequality relation between any permutation invariant box to a certain de Finetti
box. Specifically, the following theorem is a de Finetti reduction for any permutation
invariant conditional probability distribution [13].7

Theorem 8.3 (de Finetti reduction for conditional probability distributions)For any
X , Y ,A, B, and n there exists a de Finetti box τAB|XY , defined overX n,Yn,An,Bn,
such that for every permutation invariant box PAB|XY

∀a, b, x, y PAB|XY (a, b|x, y) ≤ (n + 1)|X ||Y|(|A||B|−1) τAB|XY (a, b|x, y) . (8.2)

To see why Theorem 8.3 is not trivial and what needs to be done to prove it, let
us first consider a “bad choice” of a de Finetti box, τ bad

AB|XY . Imagine that we choose
our de Finetti box to be the uniform distribution over An × Bn for all x and y. With

6As previouslymentioned, we focus on the case of two parties. The definition extends to any number
of parties trivially.
7In [13], amore general version of Theorem 8.3was proven, in which further symmetries of PAB|XY
(on top of permutation invariance) can be exploited to construct more structured de Finetti boxes and
prove de Finetti reductions with improved parameters. Theorem 8.3 was then derived as a corollary.
To keep things (relatively) concise, we present in this thesis a direct proof of Theorem 8.3.
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this choice, τ bad
AB|XY (a, b|x, y) = (|A||B|)−n for all a, b, x, and y. Then, the only

inequality relation that holds is

∀a, b, x, y PAB|XY (a, b|x, y) ≤ (|A||B|)n τ bad
AB|XY (a, b|x, y) ,

i.e., a relationwith a pre-factor exponential in n. By choosing a “good” de Finetti box,
we are able to get a pre-factor polynomial in n instead; this is crucial for applications
of de Finetti reductions. In Sect. 8.3 we show how Theorem 8.3 can be utilised as a
reduction to IID in certain scenarios.8

The proof of the theorem proceeds in two steps. In the first, an explicit de Finetti
box τAB|XY is constructed and a lower-bound on its entries is calculated. In the second
step the permutation invariance of PAB|XY is used to upper-bound its entries. The
theorem follows by combining the two bounds.

In the proofs below we use the following notation.

1. |X ||Y| = l and we identify each pair (x, y) ∈ X × Y with a label j ∈ [l] by
writing (x, y) = j .

2. |A||B| = m and we identify each pair (a, b) ∈ A × B with a label k ∈ [m] by
writing (a, b) = k.

3. For all j ∈ [l] and k ∈ [m], p j
k ∈ [0, 1] such that

∑
k p

j
k = 1.

4. For all j ∈ [l] and k ∈ [m], c j
k = 1 − ∑

t<k p
j
t .

5. For all x, y, and j ∈ [l], n j = | {i : (xi , yi ) = j} |, i.e., n j denotes the number of
indices of (x, y) in which the type of inputs is (x, y) = j .

6. For all x, y, a, b, j ∈ [l], and k ∈ [m], n j
k = | {i : (xi , yi ) = j ∧ (ai , bi ) = k} |,

i.e., n j
k denotes the number of indices of (x, y, a, b) in which the type of inputs

is (x, y) = j and the type of outputs is (a, b) = k.

Note that by definition:

1. For all j ∈ [l] and k ∈ [m − 1], p j
k ∈ [0, c j

k ] and p j
m = c j

m .
2. For all j ∈ [l], n j

m = n j − ∑m−1
k=1 n j

k .

According to Definition 8.2, a de Finetti box is defined via the choice of mea-
sure dOAB|XY . We think of a bipartite box OAB|XY as a set of probabilities p j

k , with
the identification OAB|XY (a, b|x, y) = p j

k for (x, y) = j and (a, b) = k. Thus, we
can define ameasure over OAB|XY by ameasure over the probabilities p j

k . Our chosen
measure is

dOAB|XY =
l∏

j=1

dp j
1

c j
1

. . .
dp j

m−1

c j
m−1

,

where dp j
k is the uniform measure over [0, c j

k ] for c j
k defined above. The resulting

de Finetti box is given by

8A curious reader may already take a glimpse of Theorems 8.11 and 8.15.
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τAB|XY (a, b|x, y) =
∫

O⊗n
AB|XYdOAB|XY

=
l∏

j=1

[∫ c j
1

0

dp j
1

c j
1

(
p j
1

)n j
1

]

. . .

[∫ c j
m−1

0

dp j
m−1

c j
m−1

(
p j
m−1

)n j
m−1

]

· (
p j
m

)n j−∑m−1
k=1 n j

k .

(8.3)

The measure dOAB|XY assigns some weight to all conditional probability dis-
tributions OAB|XY . As a result, the de Finetti box in Eq. (8.3) is signalling. This is
discussed in Sect. 8.4 below.

The following lower-bound on the entries of the above de Finetti box is proven in
Appendix A.1:

Lemma 8.4 For all a, b, x, and y,

τAB|XY (a, b|x, y) ≥
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1
1

(n j + 1)m−1
,

where τAB|XY is as in Eq. (8.3).

Next, we exploit the permutation invariance of PAB|XY to prove the following
upper-bound on it:

Lemma 8.5 For every permutation invariant box PAB|XY , as in Definition 8.1, and
for all a, b, x, and y,

PAB|XY (a, b|x, y) ≤
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1

.

Proof To prove the lemma we bound the value of a specific entry PAB|XY (a, b|x, y)
by counting how many entries PAB|XY (ã, b̃|x, y) must have the same value as
PAB|XY (a, b|x, y) due to permutation invariance. The normalisation of PAB|XY then
implies a bound on the value of the entries.

Denote

N (a, b, x, y) =
∣∣∣
{
(ã, b̃) ∈ A × B : PAB|XY (ã, b̃|x, y) = PAB|XY (a, b|x, y)

} ∣∣∣ .

The permutation invariance of PAB|XY implies that N (a, b, x, y) is lower-bounded
by the number permutations π for which π(x) = x, π( y) = y. To keep π(x) = x
and π( y) = y, the relevant permutations π are only allowed to permute indices
with the same input type (x, y). The number of such permutations is exactly
∏l

j=1

( n j

n j
1 ,...,n

j
m

)
. Thus,
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N (a, b, x, y) ≥
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)

and

PAB|XY (ab|x y) ≤ 1

N (a, b, x, y)
≤

l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1

. �

Proof of Theorem 8.3.UsingLemmas8.4 and8.5 one can easily proveTheorem8.3.
For all a, b, x, and y,

PAB|XY (a, b|x, y)
τAB|XY (a, b|x, y) ≤

∏l
j=1

( n j

n j
1 ,...,n

j
m

)−1

∏l
j=1

( n j

n j
1 ,...,n

j
m

)−1
(n j + 1)−(m−1)

≤
l∏

j=1

(n j + 1)m−1

≤ (n + 1)l(m−1) . �

To end this section let us give a last remark regarding Theorem 8.3. Notice the
order of the quantifiers; there exists one de Finetti box forwhich Eq. (8.2) holds for all
permutation invariant box. For the purpose of applications, one could also imagine
a different statement in which for each permutation invariant box a de Finetti box
is constructed (i.e., different permutation invariant boxes may be related to different
de Finetti boxes). Such a statement has the potential of improving the obtained
parameters and simplifying the use of the reduction in applications (see also [13] for
examples of such statements).

8.3 Ways of Using the Reductions

The main motivation for considering de Finetti reductions as in Theorem 8.3 is to
allow us to simplify the analysis of device-independent information processing tasks.
However, it is a priori not clear how one can bring an inequality as that in Eq. (8.2)
into work. The aim of this section is to exemplify the usage of the inequality in
a mathematical way by considering two types of abstract applications. Chapter10
discusses a more concrete application of the reduction to prove a non-signalling
parallel repetition theorem.

To derive the results presented in this section we use an alternative, but equivalent,
version of the de Finetti reduction; this is the topic of Sect. 8.3.1 below. Sections8.3.2
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Fig. 8.2 post-selecting a box
PAB|XY from an extension of
τAB|XY . Conditioned on the
output cz , the resulting box is
PAB|XY . After [13]

τABC|XY Z

x,y

a, b cz

PAB|XY

x,y

a, b

and 8.3.3 present two ways of using the de Finetti reduction via the alternative
formulation.

8.3.1 Post-selecting Permutation Invariant Boxes

Lemma 8.6 There exists a de Finetti box τAB|XY and a non-signalling extension9 of
it (Definition 3.2) to a larger box τABC |XY Z such that for every permutation invariant
box PAB|XY there exists an input z and an output of this input cz for which

∀a, b, x, y τABC |XY Z (a, b, cz|x, y, z) = 1

(n + 1)l(m−1)
PAB|XY (a, b|x, y) ,

where l = |X ||Y| and m = |A||B|.
This lemma states that there exists a de Finetti box τAB|XY and a non-signalling

extension of it τABC |XY Z such that any permutation invariant box PAB|XY can be
post-selected from it with probability greater or equal to 1

(n+1)l(m−1) . When we say that
PAB|XY can be post-selected we mean that there exists an input z to τABC |XY Z and an
output cz of this input such that with probability τC |Z (cz|z) ≥ 1

(n+1)l(m−1) the result-
ing box (the “post-measurement box”, using terminology borrowed from quantum
physics) is PAB|XY (see Fig. 8.2). Note that we consider a single extension τABC |XY Z

of the box τAB|XY , and by choosing different inputs z we can post-select different
boxes PAB|XY .

It is easy to see how to deriveLemma8.6 fromTheorem8.3 by using the formalism
introduced in [14, 15] of partitions of a conditional probability distribution.We repeat
here the relevant statements.

Definition 8.7 A partition of a box QAB|XY is a family of pairs
{(

qc,Qc
AB|XY

)}

c
where qc ≥ 0,

∑
c qc = 1, and the boxes Qc

AB|XY are such that

QAB|XY =
∑

c

qc · Qc
AB|XY .

9Note that τAB|XY may be signalling, as in our previous statements. The fact that we are considering
non-signalling extensions only means that the marginals τAB|XY and τC |Z of τABC |XY Z are well
defined.
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Lemma 8.8 (Lemma 9 in [14]) Given a box QAB|XY , there exists a partition with

element
(
qc,Qc

AB|XY

)
if and only if

∀a, b, x, y qc · Qc
AB|XY (a, b|x, y) ≤ QAB|XY (a, b|x, y) .

Lemma 8.9 (Lemma 3.2 in [15]) Given a box QAB|XY , let Z be the set of all

partitions
{(

qcz ,Q
cz
AB|XY

)}

cz
ofQAB|XY . Then, there exist a non-signalling extension

QABC |XY Z of QAB|XY , an input z, and an output cz such that

∀a, b, x, y QABC |XY Z (a, b, cz|x, y, z) = qcz · Qcz
AB|XY (a, b|x, y) .

Using the lemmas above and Theorem 8.3 we can now prove Lemma 8.6.

Proof of Lemma 8.6. The above lemmas together with Theorem 8.3 imply that for

any permutation invariant box PAB|XY ,
(

1
(n+1)l(m−1) ,PAB|XY

)
is an element of a parti-

tion of τAB|XY . Moreover, there exists a box τABC |XY Z and an input z such that with
probability 1

(n+1)l(m−1) the resulting box is PAB|XY :

∀a, b, x, y τABC |XY Z (a, b, cz|x, y, z) = 1

(n + 1)l(m−1)
PAB|XY . �

Lemma 8.6 is used in the following sections to illustrate two ways in which de
Finetti reductions can be used in applications.

8.3.2 Failure Probability of a Test

We start by considering the following abstract application. Let T be a test which
interacts with a box PAB|XY and outputs “success” or “fail” with some probabilities.
One can think about this test, which can be chosen according to the application
being considered, as a way to quantify the success probability of a protocol when
the box PAB|XY is given as input. For example, if one considers an estimation, or a
tomography, protocol a test can be chosen to output “success” when the estimated
box is close to the actual box [7]. Another type of test will be considered explicitly
in Sect. 10.2.

A test T interacts with PAB|XY by supplying it with inputs x, y, according to some
probability distribution PrT (x, y) overX n × Yn , and collecting its outputs a, b. This
is illustrated in Fig. 8.3. The test then decides whether to output 0 or 1 depending
on x, y, a, and b. Given a test T , we denote by Prfail(PAB|XY ) the failure probability
of the test, i.e., the probability that T outputs 0 after interacting with PAB|XY :
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PAB|XY

x,y

a, bT
T (a, b,x,y) ∈ {0, 1}

Fig. 8.3 The test T interacts with PAB|XY by supplying it with inputs x, y and collecting its outputs
a, b. The test then decides whether to output 0 or 1 depending on x, y, a, and b. If the output is 0
then we say that the test failed. After [13]

Prfail(PAB|XY ) =
∑

x, y

PrT (x, y)
∑

a,b:T (a,b,x, y)=0

PAB|XY (a, b|x, y) .

The event of failing the test can therefore be defined as an event over X n × Yn ×
An × Bn .

We consider permutation invariant tests, defined as follows.

Definition 8.10 A test T is permutation invariant if and only if for all boxes PAB|XY

and all permutations π we have

Prfail(PAB|XY ) = Prfail(PAB|XY ◦ π) .

Using the de Finetti reduction in Theorem 8.3 we can prove upper bounds of the
following type:

Theorem 8.11 Let T be a permutation invariant test. Then for every box PAB|XY

Prfail(PAB|XY ) ≤ (n + 1)l(m−1)Prfail(τAB|XY ) ,

where τAB|XY is the de Finetti box given in Eq. (8.3).

The importance of de Finetti reductions is already obvious from Theorem 8.11—
if one wishes to prove an upper bound on the failure probability of the test T ,
then instead of proving it for all boxes PAB|XY , it is sufficient to prove it for the
de Finetti box τAB|XY and “pay” for it with the additional polynomial pre-factor
of (n + 1)l(m−1). Since the de Finetti box can be written as a convex combination of
IID boxes, this can highly simplify the calculations of the bound. In this sense the
de Finetti reduction acts as a reduction to IID.

In many cases one finds that the bound on Prfail(τAB|XY ) is exponentially small in
n. For an estimation protocol, the failure probability of the test, when interacting with
an IID box, can be shown to be exponentially small in the number of boxes n used
for the estimation, using Chernoff bounds. This is also the case when dealing with
security proofs—the failure probability of a protocol, when a de Finetti box is given
as input, is usually exponentially small in the number of boxes n used in the protocol.
If this is indeed the case then the polynomial pre-factor of (n + 1)l(m−1) becomes
irrelevant in the asymptotic limit of large n. In other words, an exponentially small
bound on Prfail(τAB|XY ) implies an exponentially small bound on Prfail(PAB|XY ).

Let us prove Theorem 8.11 using the de Finetti reduction given as Theorem 8.3.
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Proof of Theorem 8.11.We followhere a similar proof given in [16] for the quantum
post-selection theorem [7]. First, since the test T is permutation invariant it is suffi-
cient to consider only permutation invariant boxes. To see this recall that for any box
PAB|XY and permutation π we have Prfail(PAB|XY ) = Prfail(PAB|XY ◦ π) according
to Definition 8.10. Therefore we also have by linearity10

Prfail(PAB|XY ) = 1

n!
∑

π

Prfail(PAB|XY ◦ π) = Prfail

(
1

n!
∑

π

PAB|XY ◦ π

)

.

The box 1
n!

∑
π PAB|XY ◦ π is permutation invariant and therefore we can consider

only permutation invariant boxes without loss of generality.
Next we define the following probabilities. Let Prfail∧cz (τABC |XY Z ) be the proba-

bility that the second part of the box, τC |Z , is used with the input z and the output is
cz and that the first part of the box, τAB|XY , fails the test T at the same time. That is,

Prfail∧cz (τABC |XY Z ) = Prfail(τAB|XY ) · τC |Z (cz|z) .

In a similar way we define Prfail|cz (τABC |XY Z ) to be the probability that τAB|XY fails
the test T given that cz is the output of τC |Z when used with the input z. We have

Prfail|cz (τABC |XY Z ) = Prfail∧cz (τABC |XY Z )

τC |Z (cz|z) ≤ Prfail(τAB|XY )

τC |Z (cz|z)
since Prfail∧cz (τABC |XY Z ) ≤ Prfail(τAB|XY ) always holds.

Lemma 8.6 implies that τC |Z (cz|z) ≥ 1
(n+1)l(m−1) and that Prfail|cz (τABC |XY Z ) =

Prfail(PAB|XY ) (given that the output was cz , the resulting box is PAB|XY ). All together
we get Prfail(PAB|XY ) ≤ (n + 1)l(m−1)Prfail(τAB|XY ) as required. �

8.3.3 Diamond Norm

Theorem 8.3 allows for a simple treatment of cases that can be analysed using the
notation of a test. In some information processing tasks this is not possible and
different ways of utilising the reductions are needed. In this section we consider the
task of distinguishing two channels acting on boxes. The channels can describe, for
example, a cryptographic protocol.11

10Linearity refers here to the linearity of the test in the box PAB|XY , which follows from the fact
that the test interacts only once with PAB|XY (or, in other words, the test gets only a single copy of
the box).
11Let us briefly explain why the notation of a test considered in Sect. 8.3.1 is not appropriate
in the cryptographic setting. When considering tests, we were interested in events defined over
X n × Yn × An × Bn . Whether an output of a protocol (a key, for example) is secure to use cannot
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Fig. 8.4 The channel E ⊗ I

acts on an extension
PABC |XBZ of PAB|XY and
outputs a classical string
k ∈ {0, 1}t according to the
probability EK (k). After [13]

PABC|XBZ

x,y

a, b

z c

E
k = E(a, b,x,y)

When considering quantum protocols the distinguishing advantage is given by
the diamond norm [17]. The distance between two channels E and F which act on
quantum states ρAB is given by ‖E − F‖� = max

ρABC

‖ (E − F) ⊗ I ρABC‖1 where ρABC

is a purification of ρAB and ‖ · ‖1 is the trace distance. Informally, the idea is that in
order to distinguish two channels we are not only allowed to choose the input state
to the channels, ρAB , but also keep to ourselves a purifying state ρC .

Although the definition of the diamond norm includes a maximisation over all
states ρABC it was proven, using the quantum post-selection theorem [7], that when
considering permutation invariant channels it is sufficient to calculate the distance
for a specific quantum de Finetti state. Motivated by this, we give a similar bound on
a distance analogous to the diamond norm for channels which act on boxes (instead
of quantum states).

In the following, we denote by P the set of all boxes PAB|XY and by K the set of
all probability distributions PK over {0, 1}t for some t ∈ N. We consider channels
of the form E : P → K which interact with boxes PAB|XY and output a classical bit
string k ∈ {0, 1}t of some length t ≥ 0 with some probability PK (k). The connection
between the channel and the box is illustrated in Fig. 8.4.12

The probability distribution of the output depends on the channel E itself and is
given by the following definition.

Definition 8.12 The probability that a channel E outputs a string k ∈ {0, 1}t when
interacting with PAB|XY is

EK (k) =
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

PAB|XY (a, b|x, y)

where PrE(x) is the probability that E inputs x, y to PAB|XY and E(a, b, x, y) is the
function according to which the output of the channel is determined. Analogously,

EK |C(k|c) =
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

PAB|XYC(a, b|x, y, c) .

be defined as an event. Security depends on the process of producing the key rather on the specific
data that was produced during the run of the protocol.
12Figure8.4 is almost identical toFig. 8.3, describing a test. Thedifference between the two scenarios
lies in the quantity that we wish to bound; see the previous footnote.
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Definition 8.13 The distance between two channels E,F : P → K according to the
diamond norm is

‖E − F‖� = max
PABC |XY Z

‖ (E − F) ⊗ I(PABC |XY Z )‖1 ,

where the maximisation is over all boxes PAB|XY and all possible extensions of them
and

E ⊗ I(PABC |XY Z ) = E ⊗ I(PAB|XYC · PC |Z )
= EK |C · PC |Z .

F ⊗ I(PABC |XY Z ) is defined in a similar way.

Similarly to the concept of a permutation invariant test presented in Defini-
tion 8.10, we define a permutation invariant channel:

Definition 8.14 A channel E is permutation invariant if for all boxes PAB|XY and all
permutations π we have

E(PAB|XY ) = E(PAB|XY ◦ π) .

Using the de Finetti reduction, Theorem 8.3, we prove the following theorem.

Theorem 8.15 For any two permutation invariant channels E,F : P → K

‖E − F‖� ≤ (n + 1)l(m−1) max
τABC |XY Z

‖ (E − F) ⊗ I(τABC |XY Z )‖1 (8.4)

where τABC |XY Z is a non-signalling extension of the de Finetti box τAB|XY where
given in Eq. (8.3).

Theorem 8.15 tells us that when looking to bound the diamond norm for permu-
tation invariant channels, one does not need to optimise over all possible boxes (as
in Definition 8.13) but can consider only extensions of de Finetti boxes13 without
loss of generality. This gives us another example as to why a de Finetti reduction is
a reduction to IID technique. As in the case of Theorem 8.11 if one is able to find
an exponentially small upper bound on ‖ (E − F) ⊗ I(τABC |XY Z )‖1, an exponen-
tially small upper bound on ‖E − F‖� follows. That is, the polynomial pre-factor
(n + 1)l(m−1) does not affect the asymptotic behaviour.

The proof of Theorem 8.15 builds on the following lemma.

Lemma 8.16 For every two permutation invariant channels E,F : P → K where
PK is a probability distribution over k ∈ {0, 1}t for some t > 0, and all PABC |XY Z ,

‖ (E − F) ⊗ I(PABC |XY Z )‖1 ≤ (n + 1)l(m−1)‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC |XY Z )‖1

13Note, however, that the extension τABC |XY Z itself cannot be written as a convex combination of
IID boxes, only its marginal τAB|XY is a de Finetti box. Furthermore, τAB|XY may be signalling in
general, as before.
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where τ
PABC |XY Z

ABC |XY Z is a non-signalling extensionof τAB|XY whichdependson the specific
box PABC |XY Z .

The proof of the lemma follows by using Lemma 8.6 in order to construct a
specific convex decomposition of τAB|XY from a convex decomposition of PAB|XY .
A detailed proof is given in Appendix A.2.

Theorem 8.15 now easily follows from Lemma 8.16:

Proof of Theorem 8.15 Using Lemma 8.16,

‖E − F‖� = max
PABC |XY Z

‖ (E − F) ⊗ I(PABC |XY Z )‖1
≤ (n + 1)l(m−1) max

τ
PABC |XY Z
ABC ′ |XY Z

‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC ′|XY Z )‖1

≤ (n + 1)l(m−1) max
τABC |XY Z

‖ (E − F) ⊗ I(τABC |XY Z )‖1

where τABC |XY Z is a non-signalling extension of τAB|XY . �

8.4 Impossibility Results

Before concluding this chapter, let us discuss the directions in which one could hope
to further develop the technique of device-independent de Finetti reductions. We do
so by presenting several impossibility results with regards to different variants of
Theorem 8.3.

8.4.1 Restricted de Finetti Box

First, as explained in the above sections, our de Finetti box, given in Eq. (8.3), is a
signalling box. Clearly, this raises some difficulties when coming to use the different
theorems presented in this chapter.14 Ideally, we would have wished to have a de
Finetti reduction inwhich the de Finetti box τAB|XY can be quantumor non-signalling
when starting with a quantum or non-signalling box PAB|XY . That is, we wish to find
reductions of the form (with some c polynomial15 in n):

Pquant
AB|XY ≤ c · τ

quant
AB|XY ; Pns

AB|XY ≤ c · τ ns
AB|XY , (8.5)

where Pquant
AB|XY and τ

quant
AB|XY are quantum boxes and, similarly, Pns

AB|XY and τ ns
AB|XY are

non-signalling boxes.

14Though this does not make them useless; see Chap.10.
15Weaker statements, e.g., with a pre-factor sub-exponential in n, may also be of interest in certain
applications.
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Sadly, such reductions cannot be true when considering general permutation
invariant boxes Pquant

AB|XY and Pns
AB|XY . One way to see that this is the case is by con-

sidering the task of parallel repetition of games (which acts as one of our showcases;
see Sect. 4.1). Reductions as those in Eq. (8.5) will imply very strong parallel repeti-
tion results. Indeed, if, e.g., Pquant

AB|XY ≤ c · τ
quant
AB|XY holds for any permutation invariant

quantum box Pquant
AB|XY , then it follows that, for any game,

w
(
Pquant
AB|XY

)
≤ c · w

(
τ
quant
AB|XY

)
= poly(n) · ωn , (8.6)

wherew (◦) is the winning probability of the considered box in the repeated game, ω
is the winning probability of the optimal quantum strategy in a single game, and
poly(n) is some polynomial of n, possibly depending on the alphabet of the RVs
A, B, X , and Y . However, there are examples of games (in the classical, quantum,
and non-signalling case) for which a strong decrease in the winning probability with
the number of games played n, as in Eq. (8.6), does not hold; recall Sect. 4.1. Thus,
reductions as in Eq. (8.5) cannot be true.

Knowing that Eq. (8.5) is not more than a wishful thinking, one could hope for
the next best thing, i.e., an approximate version of the reduction. Concretely, we are
interested in reductions of the form

Pquant
AB|XY ≤ c · τ

approx-quant
AB|XY ; Pns

AB|XY ≤ c · τ
approx-ns
AB|XY , (8.7)

where τ
approx-quant
AB|XY is an approximately-quantum de Finetti box and τ

approx-ns
AB|XY is an

approximately-non-signalling one. By approximately-quantum (and analogously for
the non-signalling case) we mean that the de Finetti box can be written as

τ
approx-quant
AB|XY =

∫ (
Oquant

AB|XY
)⊗n

dOquant
AB|XY +

∫ (
Onon-quant

AB|XY
)⊗n

dOnon-quant
AB|XY ,

where dOquant
AB|XY and dOnon-quant

AB|XY are measures over quantum and non-quantum single-

round boxes, respectively, and
∫
dOnon-quant

AB|XY is, say, exponentially small in n and/or

assigns weight only to boxes Onon-quant
AB|XY which are close to quantum boxes, under some

distance measure.16

Parallel repetition results can, again, be used to show that such reductions cannot
hold in general, at least in the non-signalling case. Here the reason lies in the observa-
tion that the reductions in Eq. (8.7) are independent of the choice of distribution over
the inputs X n and Yn (while they may depend on the alphabet of the inputs). Thus,
they would imply general parallel repetition results which hold for any distribution
over the inputs to the parallel boxes.As there are games forwhich such non-signalling
parallel repetition results do not hold [18], at best Pns

AB|XY ≤ c · τ
approx-ns
AB|XY cannot be

true in general.

16The hope here is that by adding the additional weight on non-quantum or signalling boxes one
could account for the “gap” between Eq. (8.6) and the known parallel repetition results.
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By this we learn that we ought to consider reductions that also include the input
distribution PXY :

PXYP
quant
AB|XY ≤ c · PXYτ

approx-quant
AB|XY , (8.8)

PXYP
ns
AB|XY ≤ c · PXYτ

approx-ns
AB|XY . (8.9)

The case of PXY = Q⊗n
XY is of special interest. For such distributions, two results are

known. In Sect. 10.2 we prove a result in the flavour of Eq. (8.9) using the de Finetti
reduction given as Theorem 8.3. The result, which originally appeared as part of [19],
is stated informally as Theorem 10.2. Roughly speaking, it says that observed data
that is sampled using a permutation invariant non-signalling parallel box looks as if
it was sampled using an approximately non-signalling IID box.

In [20] a reduction similar to that of Eq. (8.9) was proven by combining the
de Finetti reduction in Theorem 8.3 together with another de Finetti-type theorem,
presented in [21]. Their theorem can be written as follows17:

Theorem 8.17 (Theorem 4.3 in [20]) For any non-signalling permutation invariant
parallel box PAB|XY and distribution QXY

Q⊗n
XYPAB|XY ≤

∫
F̃ (OABXY )

2n O⊗n
ABXYdOABXY , (8.10)

where

F̃ (OABXY ) = min

{
max
RA|X

F
(
QXYRA|X ,OAXY

)
, max

RB|Y
F

(
QXYRB|Y ,OBXY

)}

for F the fidelity.

To see that Eq. (8.10) is in the spirit of Eq. (8.9) note that F̃ (OABXY ) is some measure
of how far OABXY is from QXY ÕAB|XY for a non-signalling box ÕAB|XY . Recall that
the fidelity is smallwhen the distributions are far fromone another; thus, F̃ (OABXY )

2n

assures that only negligible weight is assigned to distributions OABXY originating
from highly signalling boxes (or with marginals OXY far from QXY ).

We conjecture that reductions similar to Eq. (8.8), relevant for quantum boxes,
should also hold. Yet, up to date there are no proofs in this direction (the difficulty
in deriving such a statement is discussed in Chap.10).

8.4.2 Extension to an Adversary

Another direction in which one may wish to extend our de Finetti reductions is
relevant for device-independent cryptographic protocols. To explain what we aim

17We present only the bipartite case; [20, Theorem 4.3] is stated for an arbitrary number of parties.
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for, let us first discuss the quantum variant of Theorem 8.15, also called the post-
selection technique, developed in [7].18 The post-selection theorem implies that for
any two permutation invariant quantum channels, E andF , acting on quantum states
ρQA QB ∈ S(H ⊗n

QAQB
) for some bipartite Hilbert space HQAQB of dimension d,

‖E − F‖� ≤ (n + 1)d
2−1‖ (E − F) ⊗ I(τQA QBE )‖1 (8.11)

where τQA QBE is a purification of a given de Finetti state. Equation (8.11) should be
compared to Eq. (8.4); while Eq. (8.4) includes a maximisation over all possible non-
signalling extensions of the de Finetti box, in Eq. (8.11) we consider only a single
purification. The reason is simple—in the quantum case all purifications of a state are
equivalent up to local unitaries. Furthermore (and crucially for applications), there
exists a purification of a de Finetti state that has a very special form. To purify

τQA QB =
∫ (

σQAQB

)⊗n
dσQAQB

we can first purify the states σQAQB to get

τQA QBE ′ =
∫ (

σQAQB E ′
)⊗n

dσQAQB E ′

and then purify the state τQA QBE ′ using an additional system E ′′ to account for
the convex combination of the pure states

(
σQAQB E ′

)⊗n
. This defines us the pure

state τQA QBE ′E ′′ . Denoting E = E ′E ′′ we get our pure τQA QBE .
In the cryptographic setting the quantum register E is considered to belong to

the adversary. Hence, any information about the structure of the system kept in it
could be useful when analysing security. Equation (8.11) in combination with the
observation regarding the structure of the purification, τQA QBE ′E ′′ , we learn that the
main task when proving security is to analyse the IID case, as in Chap.7 (see [7, 16]
for the detailed explanation). That is, the quantum de Finetti reduction can be used
as a reduction to IID in quantum cryptography.

In contrast, in general, it is impossible to prove amodified version of Theorem8.15
in which the extension τABC |XY Z of our de Finetti box τAB|XY will be as structured as
the quantumstate τQA QBE . In particular, even ifwe can startwith a deFinetti reduction
where both PAB|XY and τAB|XY are non-signalling,19 it is impossible to derive a
theorem which would imply that the analysis of device-independent cryptography in
the presence of a non-signalling adversary can be reduced to the analysis under the

18Reference [7] presented the first de Finetti reduction, i.e., an inequality relation between permu-
tation invariant systems and de Finetti systems (all previous de Finetti-type theorems gave other
types of relations between the two systems). The term “de Finetti reduction” was not used at that
time and the authors chose the name “post-selection technique” as they first proved the quantum
analogue of Lemma 8.6.
19In the presence of certain types of symmetries (in addition to permutation invariance) one can
derive such de Finetti reductions; see [13].
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IID assumption. This is due to the impossibility result of [22], which asserts that,
while exponential privacy amplification in the presence of a non-signalling adversary
is possible under the IID assumption [23], it is impossible when the IID assumption
is dropped.

8.4.3 Other de Finetti-Type Theorems

A final remark is with regards to the more common type of de Finetti theorem, in
which one bounds the trace distance between an n-exchangeable system and a de
Finetti one. More specifically, let us first consider the classical case, i.e., a system
is a probability distribution. PA1,...,Ak is permutation invariant if it is invariant under
any permutation of A1, . . . , Ak (as before). We say that PA1,...,Ak is n-exchangeable,
for n ≥ k, if it is a marginal of some permutation invariant PA1,...,An . In [24] a bound
on the distance between an n-exchangeable probability distribution and a de Finetti
distributionwas proven.20 Results of this typewere also proven for quantum states [6,
25] and non-signalling boxes [8].

Let us focus on the non-signalling case [8]. There, a conditional probability dis-
tribution PA1,...,An |X1,...,Xn is said to be non-signalling if the box cannot be used to
signal from any subset of parties I ⊂ [n] to the rest of the parties [n] \ I . Permuta-
tion invariance is definedwith respect to permutations π : [n] → [n]. Similarly to the
classical case described above, PA1,...,Ak |X1,...,Xk is n-exchangeable, for n ≥ k, when
it is the marginal of a permutation invariant non-signalling box PA1,...,An |X1,...,Xn . We
then have the following bound [8, Theorem 3] (using the above notation):

Theorem 8.18 ([8]) For any permutation invariant non-signalling box
PA1,...,An |X1,...,Xn and any k < n there exists a de Finetti box τA1,...,Ak |X1,...,Xk such
that

∣
∣PA1,...,Ak |X1,...,Xk − τA1,...,Ak |X1,...,Xk

∣
∣ ≤ min

{
2k|X ||A||X |

n
,
k(k − 1)|X |

n

}
.

The crucial thing to note here is that the boxes PA1,...,Ak |X1,...,Xk and PA1,...,An |X1,...,Xn

are a very special type of parallel boxes: the non-signalling conditions must hold for
any division of the indices in [n]. This implies that the for any i, j ∈ [n], Ai is
independent of the inputs X j for j �= i . Theorems such as Theorem 8.18 cannot
be proven for general parallel boxes since they study exchangeable boxes, which
inherently require the ability to consider the marginals of the boxes.

20In this language, the original result of de Finetti [1] stated that all infinitely-exchangeable distri-
butions (i.e., distributions that are n-exchangeable for any n ≥ k) are equal to distributions of the
form of a convex combination of IID distributions.
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Chapter 9
Reductions to IID: Sequential Interaction

Many device-independent protocols proceed in rounds and, hence, require devices
with which the honest parties can interact sequentially, i.e., one round after the
other. A particular example for such protocols is our showcase dealing with device-
independent quantum cryptography. When analysing the showcase under the IID
assumption (Sect. 7.3.2), we observed that the quantum AEP, given as Theorem 7.3,
plays a crucial role in the proof of soundness. Specifically, the quantumAEP allowed
us to bound the total amount of the relevant smooth entropy using a bound on the
von Neumann entropy calculated for a single round of the protocol.

The focus of this chapter is the so called “entropy accumulation theorem”
(EAT) [1, 2]. The EAT is a generalisation of the AEP to a scenario in which, instead
of the raw data being produced by an IID process, it is produced by certain sequential
quantum processes of interest.1 In particular, similarly to the AEP, the EAT allows
one to bound the total amount of the considered smooth entropy using the same
bound on the von Neumann entropy calculated for the IID analysis. In this sense, the
EAT can be seen as a reduction to IID—with the aid of the EAT the analysis done
under the IID assumption using the AEP is directly extended to the one relevant for
multi-round sequential boxes.

Below, we motivate, present, and explain the EAT in the form relevant for device-
independent quantum information processing [3]. The EAT is later used in the anal-
ysis of our showcase in Chap.11. For the most general statement of the EAT and its
proof the interested reader is referred to [1, 2].

1We remark that the EAT, as the quantum AEP, is only relevant when assuming that everything can
be described within the quantum formalism. In particular, it cannot be used when talking about,
e.g., cryptographic protocols in the presence of a non-signalling (super-quantum) adversary.

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Arnon-Friedman, Device-Independent Quantum Information Processing,
Springer Theses, https://doi.org/10.1007/978-3-030-60231-4_9
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9.1 Sequential Quantum Processes

We are interested in multi-round quantum sequential boxes (with communication
between the rounds; see Definition 6.6) fulfilling certain conditions. The simplest
way of describing the relevant conditions is by looking at the sequential quantum
process defining the boxes, i.e., the process that results in the input-output distribution
of the boxes.

Consider a sequential process as illustrated in Fig. 9.1. We start with some initial
state ρinR0E

; the distinction between R0 and E is such that R0 is the part of the state
whichmay change during the considered process while E denotes the “environment”
register, i.e., the part of the state not being modified. The marginal ρinR0

undergoes a
sequence of operations in which a sequence of (non-IID) registers O = O1, . . . , On

and S = S1, . . . , Sn are being created. We treat the registers O as the “output regis-
ters” while S are the “side-information registers”. Our ultimate objective is to bound
the conditional smooth entropies H ε

min(O|SE) and H ε
max(O|SE).

To be able to bound the above entropies, some statistical data must be col-
lected during the protocol. Specifically, we consider additional classical registers
C = C1, . . . ,Cn holding the information relevant for the estimation phase performed
in the protocol. For every round i ∈ [n], Ci is derived by performing some action on
the registers Oi and Si . For example, the value of Ci can be the result of applying a
function on some classical information included in Oi and Si .

To gain a bit of intuition regarding all the different registers, let us quickly consider
the cryptographic setting (amore precise discussion can be found in Chap.11).When
analysing cryptographic protocols onemaymake the following choices: E acts as the
register belonging to the adversary, O as the raw data which is supposed to be secret,
S as the side-information leaked during the protocol (e.g., all classical information
which is communicated between Alice and Bob), and C—the indicators of whether
the test rounds were successful or not (e.g., Ci = 1 when the i’th game was won).

Fig. 9.1 Sequential quantum process. The initial state ρinR0E
is transformed to the final one ρOSCE

by applying a sequence of maps on the marginal ρinR0
. Each map Mi in the sequence outputs the

registers Oi and Si , from which Ci is created. The “memory system” Ri is being passed to the next
map as input
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The goal is then to lower bound H ε
min(O|SE) and this should be done by using the

statistics kept in C.
The sequential process itself is formally defined by a sequence of quantum chan-

nels, namely, CPTP maps (Definition 2.14),

Mi : Ri−1 → Ri Oi SiCi , (9.1)

for all i ∈ [n]. As seen fromEq. (9.1), whenwe say that a process is sequentialwe not
only mean that the maps act one after the other, but also that, in each round i ∈ [n],
the output Oi , the side information Si , and the estimation data Ci are being created
by the map Mi applied in that round. That is, O denotes a sequence of registers
created one after the other and similarly for S and C.2 The state of interest in the end
of the process is given by3

ρOSCE = (
TrRn ◦ Mn ◦ · · · ◦ M1

) ⊗ IE ρinR0E . (9.2)

We remark that in the device-independent setting the initial state ρinR0E
, the maps

{Mi }i∈[n], and the final state ρOSCE are unknown; wemerely require that some quan-
tum states and maps {Mi }i∈[n], describing the overall process, exist. In particular,
this implies that we do not restrict the content of the registers {Ri }i∈[n] and, thus,
they may include information which is being passed from previous rounds to the
next ones. That is, we can think of these registers as holding some quantummemory.
This is in stark contrast to what happens when working under the IID assumption.

9.2 Entropy Accumulation Theorem

As mentioned above, the EAT [1] acts as a generalisation of the quantum AEP to
scenarios in which certain sequential processes are considered, rather than IID ones.
The EAT, as the name suggests, quantifies the amount of entropy accumulated during
the considered quantum processes. Moreover, as in the case of the AEP, the total
amount of smooth entropies can be bounded by calculating certain von Neumann
entropies (the precise statements are given below). By this, the EAT justifies the use
of the von Neumann entropy in quantum information processing even outside of the
IID regime.While we discuss the EAT in the context of device-independent quantum
information processing, we remark that the EAT is a general information-theoretic
tool, which can also be applied in other contexts.

2The reader may be concerned by the distinction between, e.g., O1 and O2—clearly, we can also
consider a situation in whichM1 does not output O1 but transfers it toM2 that later outputs O1O2.
We will soon assume that the different registers fulfil certain conditions and then the distinction
will become clear.
3Wewill be interested below in bounding the smooth entropies evaluated on a state closely related to
the final state ρOSCE , namely, the final state conditioned on the event of not aborting the considered
protocol; see Sect. 9.2.3.
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9.2.1 Conceptual Difficulties to Overcome

Before stating the theorem itself, let us explain the conceptual difficulties that arise
when seeking for an “AEP-style” theorem in non-IID scenarios. Specifically, we
would like to understand what is the form of the theorem we are aiming for and
what is non-trivial about it. To keep this section concise we focus on the smooth
min-entropy; the same statements are relevant for the smooth max-entropy as well.

Our goal is to have a theorem resembling the quantum AEP appearing as Theo-
rem 7.3. That is, we look for a statement of the form

H ε
min(O|SE) ≥ nt − μ

√
n . (9.3)

for some t and μ (independent of n but otherwise unrestricted).
The EAT aims at providing a lower-bound on H ε

min(O|SE) which scales linearly
with the number of rounds n (to first order in n, i.e., up to finite statistic effects, as in
the AEP). As O = O1, . . . , On and S = S1, . . . , Sn are being created in a sequential
manner, we intuitively wish to say that in each round i ∈ [n] we accumulate an
additional constant amount of entropy due to the production of Oi (while taking into
account Si and E) until, in the end of the process, the total amount of entropy is linear
in n. Consider, however, a sequential process in which S1, . . . , Sn−1 are all empty
(i.e., do not reveal any information about the outputs) while the side-information Sn
produced by the last map Mn includes all of the outputs O1, . . . , On . Clearly, even
though we may have accumulated entropy in the rounds i ∈ [n − 1], all of it is lost
after Sn is leaked in the last round n. This implies that we can only hope to prove a
statement like the one given in Eq. (9.3) under some restrictions on the considered
sequential processes.

A more fundamental difficulty to overcome is the following. In the case of the
AEP, i.e., when considering IID processes, or boxes, it is clear what t , appearing in
Eq. (9.3), is—it is a quantity describing the single-round box defining the IID box.
(And, as it turns out, this quantity is the relevant conditional von Neumann entropy
evaluated on a single-round box; recall Sect. 7.2.2).

Moving to the sequential processes, or multi-round boxes, it is not obvious at all
which quantity t should describe. We would like to find a quantity related to some
“single-round property”, but how can we even define such a thing in a meaningful
way? Since the behaviour of the box in each round may depend on everything that
happened in previous rounds (see Definition 6.6), we cannot directly define a multi-
round box in terms of single-round ones. To put it differently, when holding a multi-
round device, there is no physical system that we can point to and treat as an isolated
subsystem. Thus, t cannot refer to such a system as in the IID case.

Keeping in mind the conceptual difficulties that one needs to overcome when
phrasing the theorem, we are now ready to discuss the EAT on a more concrete level.
In particular, the following section unveils the resolutions of the issues presented
above.
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9.2.2 Prerequisites of the Theorem

Before presenting the EAT, we need to define two objects to which the theorem
refers—EAT channels and tradeoff functions. The “correct” definition of these
objects is what allows us to overcome the conceptual difficulties discussed above.
Furthermore, when coming to use the EAT, the choice, or construction, of these
objects is what allows one to derive a strong bound on the considered entropy. Thus,
understanding the prerequisites of the theorem is of great importance.

9.2.2.1 EAT Channels

As mentioned in the previous section, entropy does not accumulate in any general
sequential process. Therefore, wemust restrict our attention to processes which fulfil
certain conditions. Specifically, we work with processes defined via the following
type of maps, called “EAT channels”:

Definition 9.1 (EAT channels) Quantum channels {Mi : Ri−1 → Ri Oi SiCi }i∈[n]
are said to be EAT channels if the following requirements hold:

1. {Oi }i∈[n] are finite dimensional quantum systems of dimension dO and {Ci }i∈[n]
are finite-dimensional classical systems (RV). {Si }i∈[n] and {Ri }i∈[n] are arbitrary
quantum systems.

2. For any i ∈ [n] and any input stateσRi−1 , the output stateσRi Oi Si = Mi
(
σRi−1

)
has

the property that the classical value Ci can be measured from the marginal σOi Si
without changing the state. That is, for the map Ti : Oi Si → Oi SiCi describing
the process of deriving Ci from Oi and Si , it holds that TrCi ◦ Ti

(
σOi Si

) = σOi Si .
3. For any initial state ρinR0E

, the final state ρOSCE = (
TrRn ◦ Mn ◦ · · · ◦ M1

) ⊗
IE ρinR0E

fulfils the Markov-chain conditions (Definition 2.21)

O1, . . . , Oi−1 ↔ S1, . . . , Si−1, E ↔ Si (9.4)

for all i ∈ [n].
In words, Eq. (9.4) states that in each round, the previous outcomes O1, . . . , Oi−1

are independent of the future side-information Si given all the past side information
S1, . . . , Si−1, E . That is, the side-information of any given round does not reveal
new information about previous outcomes. When coming to use the EAT, one is free
to choose the different systems as one wishes. By choosing Oi and Si properly the
required Markov chain condition can be satisfied by sequential protocols such as
device-independent quantum key distribution, as will be shown in Chap.11.4

4In some cases the obvious choices for Oi and Si are such that Eq. (9.4) does not hold. Still,
sometimes, one can overcome the problem by considering related protocols in which the Markov-
chain conditions are “enforced”. This is done, for example, in [4].
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Equation (9.4) acts as the additional constraint on the sequential process which
allows us to avoid processes in which entropy does not accumulate.5 We remark
that the above requirements, and Eq. (9.4) in particular, give sufficient, but perhaps
not necessary, conditions for the entropy to accumulate. That is, there might be sets
of weaker or incomparable conditions that can also be used to show that entropy
accumulates.

9.2.2.2 Tradeoff Functions

As explained in Sect. 9.2.1, since we cannot directly define a multi-round box in
terms of single-round ones, it is not clear what quantity should replace t in Eq. (9.3).
The tradeoff functions, defined below, give an adequate way to quantify the amount
of entropy which is accumulated in a single step of the process, i.e., in an application
of just one channel, and by this allow us to define t in a meaningful way. We first
present the formal definition of the functions and then explain.

Definition 9.2 (Tradeoff functions) Let {Mi }i∈[n] be a family of EAT channels and
C denote the common alphabet of C1, . . . ,Cn . A differentiable and convex function
fmin from the set of probability distributions p over C to the real numbers is called a
min-tradeoff function for {Mi }i∈[n] if it satisfies6

fmin(p) ≤ inf
σRi−1R

′ :Mi (σ)Ci =p
H

(
Oi |Si R′)

Mi (σ)
(9.5)

for all i ∈ [n], where the infimum is taken over all purifications of input states ofMi

for which the marginal on Ci of the output state is the probability distribution p.
Similarly, a differentiable and concave function fmax from the set of probability

distributions p over C to the real numbers is called a max-tradeoff function for {Mi }
if it satisfies

fmax(p) ≥ sup
σRi−1R

′ :Mi (σ)Ci =p
H

(
Oi |Si R′)

Mi (σ)
(9.6)

for all i ∈ [n], where the supremum is taken over all purifications of input states of
Mi for which the marginal on Ci of the output state is the probability distribution p.

Figure9.2 illustrates the considered scenario—a single step in the sequential pro-
cess (compare to Fig. 9.1). For any possible input state σRi−1 ∈ S(HRi−1) of the map
Mi , we denote by σRi−1R′ ∈ S(HRi−1 ⊗ HR′) its purification. Note that the register
R′ is not being affected by the map (similarly to E in Fig. 9.1). Oi and Si denote the
output and side-information registers of the output state Mi (σ). Ci can be inferred
from Oi and Si as before.

5One can easily verify that the problematic process described in Sect. 9.2.1 does not fulfil the
Markov-chain conditions.
6The infimum and supremum over the empty set are defined as plus and minus infinity, respectively.
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Fig. 9.2 A single step in the sequential process. The initial state is σRi−1R′ ; σRi−1 is the input of
the map Mi while R′ acts as the environment register and is not affected by the map (similarly to
E in Fig. 9.1). The map produces the registers Oi and Si , from which Ci can be inferred

To comprehend these so called tradeoff functions, let us first discuss the set over
which we perform the optimisations in Eqs. (9.5) and (9.6):

Σ(p) = {
σRi−1R′ : Mi (σ)Ci = p

}
. (9.7)

Mi (σRi−1) is the output state of the map andMi (σ)Ci is its marginal over Ci . Recall
that the classical registers Ci are used to collect statistics during the run of the
considered protocol. Hence, Mi (σ)Ci can be seen as a probability distribution over
C. The conditionMi (σ)Ci = p therefore restricts the set of considered states—Σ(p)
only includes states σ that exhibit the statistics defined by the probability distribution
p. If there are no such states then Σ(p) is empty.

As an example, consider a protocol in which the CHSH game is being played in
each round and Ci records whether the game was won (Ci = 1) or lost (Ci = 0).
Denoting by ω the probability that σ wins the game, we can write

Mi (σ)Ci =
(

ω 0
0 1 − ω

)
. (9.8)

Σ(p) then includes all of the states forwhichω = p(1). For a probability distribution
with p(1) = 1, for example, the setΣ(p) is empty, since there are no quantum states
which can be used to play the CHSH game with probability ω = 1.

Given the above, the infimum/supremum of H
(
Oi |Si R′)

Mi (σ)
over the set Σ(p)

describes the worst-case7 conditional von Neumann entropy in a single round,
restricted to states with the correct marginal over Ci .

To get some intuition as to why the tradeoff functions in Definition 9.2 give an
adequate way of quantifying the amount of entropy accumulated in a single step of
the process, let us present two “alternative” definitions that one could try to use and
refute them with the help of simple classical examples.

7By “worst-case” we mean lowest or largest, depending on whether we are working with min- or
max- tradeoff functions. This will become clearer when discussing the EAT itself.
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In both examples we consider classical processes in which each channel Mi

outputs a single bit Oi without any side information Si about it; the system E is
empty as well. Every bit Oi may depend on the ones produced previously. We would
like to extract randomness out of O and thus aim to calculate H ε

min (O), which tightly
describes the amount of extractable randomness [5, 6]. Howmuch randomness does a
single round contribute to the extractable randomnessgiven thatwe already accounted
for the randomness of the previous rounds?

One possible guess is the conditional von-Neumann entropy:

H(Oi |O1, . . . ,Oi−1) = −Eo1,...,oi log Pr(oi |o1, . . . , oi−1) . (9.9)

The von Neumann entropy fulfils the chain rule and so we have∑
i H(Oi |O1, . . . ,Oi−1) = H(O). Unfortunately, the smooth min-entropy

H ε
min (O) can be arbitrarily lower than H(O). An example for a sequential

process in which this is the case is as follows: O1 is uniform while, for all
i ∈ [n] \ {1},

Oi =
{
0 O1 = 0

uniform otherwise.

Direct calculation of H(O) gives H(O) = 1 + (n − 1)/2. The min-entropy, how-
ever, depends on the most probable value of O rather than its expected value. One
can easily check that Hmin(O) = 1, which implies that the extractable randomness
is independent of n. Thus, H(O) is too optimistic—it suggests that one can get
arbitrarily more randomness than we can possibly extract from this process.

Let us try a worst-case version of the min-entropy instead:

Hw.c.
min = − log max

o1,...,oi
Pr(oi |o1, . . . , oi−1) . (9.10)

While this option at least does not result in a contradiction (in contrast to the one
above), it is too pessimistic. To see this, consider IID RVs O, where each Oi is a
Bernoulli randomvariablewith expectation p < 1/2. Then, Eq. (9.10) tells us thatwe
can extract − log(1 − p) randomness per round. However, it follows from the EAP
that h(p) > − log(1 − p) randomness can be extracted per round, for sufficiently
large n.

The following quantity lies between those given in Eqs. (9.9) and (9.10):

min
o1,...,oi−1

H(Oi |O1 = o1, . . . , Oi−1 = oi−1) .

This quantity describes the von Neumann entropy of Oi , evaluated for the worst case
values of O1, . . . , Oi−1. Going back to the two processes considered above, one can
easily verify that this choice gives the “correct” amount of extractable randomness
in both cases. The min-tradeoff function defined above is the quantum analogue of
this.
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The tradeoff functions are not uniquely defined by Eqs. (9.5) and (9.6). The equa-
tions merely pose a constraint on the functions. That is, a min-tradeoff function
can be chosen to be any differentiable convex function satisfying the condition8

given in Eq. (9.5), i.e., it is upper-bounded by infΣ(p) H
(
Oi |Si R′)

Mi (σ)
. Similarly,

a max-tradeoff function is any differentiable concave function lower-bounded by
supΣ(p) H

(
Oi |Si R′)

Mi (σ)
. To get the tightest bounds on the smooth entropies using

the EAT one should construct tradeoff functions in the tightest way possible, ideally
matching the exact value of the worst-case von Neumann entropy given in Eqs. (9.5)
and (9.6). In device-independent cryptographic protocols based on the CHSH game,
for example, Lemma 5.3 can be used to construct a tight min-tradeoff function; this
will be done in Chap.11.

9.2.3 Statement of the Theorem

After presenting the prerequisites of the EAT, we are now ready to discuss the state-
ment of the theorem.

9.2.3.1 Conditioning on Not Aborting

Consider a sequential protocol, i.e., onewhichproceeds in rounds; the development of
the quantum state throughout the protocol can be described by a sequential process. In
the end of the protocol, the honest parties can choose whether to abort the protocol or
not. For example, if Alice and Bob run a device-independent cryptographic protocols
and observe that the device does not win the game in sufficiently many games, they
conclude that the device might be malicious and abort the protocol. Our goal is to
bound the smooth entropies of the outputs when the protocol does not abort.

Whether the protocol aborts or not depends on the observed data produced during
the execution of the protocol and, specifically, on the value assigned to C . Thus, the
event of not aborting the protocol, denoted by Ω , is defined to be a subset of Cn . The
most common way of choosing the set Ω is such that whether c = c1, . . . , cn ∈ Cn

belongs to Ω or not depends on its “frequencies”. Formally, for any c ∈ Cn , denote
by freqc the probability distribution over C defined by

freqc(c̃) = | {i |ci = c̃} |
n

(9.11)

for c̃ ∈ C. We define a set Ω̂ that includes all the probability distributions approved
by the protocol, i.e., the desired frequencies freqc for which the protocol does not
abort. Then, we can write the event of not aborting in terns of the desired frequencies:

8The value of the functions at points p for which Σ(p) is the empty set is unconstrained and can
be chosen freely (while keeping the function differentiable and convex).
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Ω =
{
c : freqc ∈ Ω̂

}
⊆ Cn .

Note that one can also start by choosing the setΩ describing the event of not aborting
the protocol. Then, Ω̂ can be chosen to be any set fulfilling9

{
freqc : c ∈ Ω

} ⊆ Ω̂ .

Focusing on permutation invariant sets Ω , in the sense that c ∈ Ω if and only if
π(c) ∈ Ω for all permutations π of the n indices, defining Ω̂ via Ω is practically the
same as defining Ω via Ω̂ .

Let us present a simple example of the above definitions and sets. Let C = {0, 1}
and consider, e.g.,

c = 01101000110100111011 . (9.12)

To write freqc we count the number of zeros and ones in the above string and get,
according to Eq. (9.11), the probability distribution over {0, 1} defined by

freqc(0) = 9

20
; freqc(1) = 11

20
.

Wecannowconsider a protocolwhichdoes not abortwhenever the observed statistics
are such that the fraction of ones is greater than half. This leads to

Ω̂ =
{
p : p(1) >

1

2

}

Ω =
{
c : freqc ∈ Ω̂

}
=

{
c : freqc(1) >

1

2

}

and, in particular, for c appearing in Eq. (9.12), c ∈ Ω .

9.2.3.2 The Theorem

We first give the formal statement of the EAT and then explain.

Theorem 9.3 (EAT) LetMi : Ri−1 → Ri Oi SiCi for i ∈ [n] be EAT channels, ρ be
the final state, Ω an event defined over Cn, pΩ the probability of Ω in ρ, and ρ|Ω the
final state conditioned on Ω . Let ε ∈ (0, 1).

9It will become clear from the statement of the EAT that one should choose a minimal convex set
Ω̂ that includes the frequencies considered inΩ . It is perhaps instructive to observe that, for a finite
n, Ω is a finite set; Ω̂ , on the other hand, includes infinitely many probability distributions.
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For Ω̂ = {freqc : c ∈ Ω} convex,10 fmin a min-tradeoff function for {Mi }i∈[n],
and any t ∈ R such that fmin

(
freqc

) ≥ t for any freqc ∈ Ω̂ ,

H ε
min (O|SE)ρ|Ω > nt − μ

√
n , (9.13)

where
μ = 2 (log(1 + 2dO) + �‖� fmin‖∞�) √

1 − 2 log(ε · pΩ) , (9.14)

dO the dimension of the systems Oi , and ‖� fmin‖∞ is the infinity norm of the gradient
of fmin.

Similarly, for Ω̂ = {freqc : c ∈ Ω} convex, fmax a max-tradeoff function and any
t ∈ R such that fmax

(
freqc

) ≤ t for any freqc ∈ Ω̂ ,

H ε
max (O|SE)ρ|Ω < nt + μ

√
n , (9.15)

with
μ = 2 (log(1 + 2dO) + �‖� fmax‖∞�) √

1 − 2 log(ε · pΩ) . (9.16)

Let us parse the statement of the theorem while focusing on the smooth min-
entropy for the moment. Equation (9.13) has exactly the form that we were aiming
for: it gives a lower-bound on the conditional smooth min-entropy, evaluated on the
state ρ|Ω in the end of the protocol and conditioned on not aborting, where the first
order term is linear in n and the second, describing finite statistic effects, scales
like

√
n.

The constant t , governing the entropy rate H ε
min (O|SE)ρ|Ω /n when n → ∞, is

defined via the min-tradeoff function in the following way. The min-tradeoff func-
tion fmin assigns to each probability distribution p, or frequency, a number describing
the minimal amount of conditional von Neumann entropy which is compatible with
the probability distribution p (recall Definition 9.5).We now consider all frequencies
freqc (i.e., probability distributions) which are accepted by the protocol. The theorem
asserts that t should be chosen as the minimal value of fmin over this set of accepted
frequencies. That is,11

10We consider only convex sets Ω̂ (as was done in [3]). One can convince oneself that choosing a
convex Ω̂ is the sensible thing to do. For example, a set Ω̂ including all frequencies, or probability
distributions, for which p(1) ∈ [a, b] for some constants 0 ≤ a, b ≤ 1 is convex. If, nevertheless,
one wishes to consider arbitrary sets Ω , which are not defined via a convex Ω̂ , then this comes
at the cost of considering only affine tradeoff functions (instead of convex/concave functions as in
Definition 9.2); see [1] for the original claim. It is not clear that there are scenarios in which Ω

cannot be defined with an underlying convex set Ω̂ and, at the same time, applying the EAT with
adequate affine tradeoff functions does not result in a trivial statement. Hence, the convexity of Ω̂

should not be seen as a restriction.
11The reader may be concerned that for finite n all frequencies belonging to freqc ∈ Ω̂ actually
lead to empty setsΣ(freqc), defined in Eq. (9.7) and hence t can be arbitrary. Note however that the
tradeoff functions are defined over the set of all probability distributions, not only over the possible
frequencies. Since the tradeoff functions must be differential convex/concave functions with a finite
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ωT

t

ω

f m
in
(ω

)

Fig. 9.3 First order term from the min-tradeoff function. We consider a protocol which does not
abort if the fraction of games won is above ωT . The value of t , appearing in Eq. (9.13), should
be chosen to be the lowest value that the min-tradeoff function fmin assigns to accepted winning
probabilities, i.e., the black point in the plot

t = inf
{
fmin

(
freqc

) : freqc ∈ Ω̂
}

.

Since the min-tradeoff function is practically the worst-case conditional von Neu-
mann entropy, we get that, asymptotically, H ε

min (O|SE)ρ|Ω /n is equal to the lowest
von Neumann entropy of a single-round (in the sense defined by the min-tradeoff
function) that is compatible with the statistics observed in the protocol.

As an example, consider a device-independent protocol that assigns Ci = 1 when
the i’th game is won and Ci = 0 otherwise and which does not abort as long as
the fraction of games won (

∑
i Ci )/n is above some threshold ωT . The min-tradeoff

function is defined over probability distributions p over C = {0, 1}. Thus, we can also
think of it as a function over winning probabilities ω via the relation p(1) = ω and
p(0) = 1 − ω (see Eq. (9.8)). Assuming that the min-tradeoff function is increasing
with ω (as expected to be; see Lemma 5.3), the lowest value that fmin assigns to
accepted frequencies is fmin(ωT ) and hence this should be the value of t ; this is
illustrated in Fig. 9.3.

The above discussion refers to the first order term in Eq. (9.13). Let us now briefly
discuss the second order term. Similarly to the AEP, the second order term scales like√
n, which is the optimal scaling. The constant μ, defined in Eq. (9.14), depends on

the different parameters and constants. In particular, it depends on the dimension of
the output systems Oi and the gradient of the tradeoff functions. To get a good second
order term one should therefore choose the possible values that can be assigned to

gradient, the points in which the functions are constrained by Eqs. (9.5) and (9.6) also constrain the
values of the functions at the points freqc ∈ Ω̂ .
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the registers Oi and the tradeoff functions such that the quantities of interest can
be bounded in a good manner. In particular, to control the gradient of the tradeoff
function one can “cut” when the gradient becomes too large and linearise the function
at that point. An example is given in Sect. 11.2.2. Improved second order terms for
the EAT were derived in [2].

A last remark is with regards to the statement of the EAT for the smooth max-
entropy. When interested in the smooth max-entropy, the registers describing the
environment, i.e., E in Eqs. (9.4) and (9.15) as well as R′ in Eq. (9.6), can be dropped.
The fact that R′ can be dropped from Eq. (9.6) was already noted in [1, Remark 4.2];
the reason is that for the calculation of the supremum one can always assume that
the system on R′ is in product with the rest of the systems. To see that E can be
dropped from Eqs. (2.21) and (9.15) note that the EAT must hold for any initial state
ρinR0E

and, hence, in particular to a tensor product state ρinR0E
= ρR0 ⊗ ρE , for which

the conditional smooth max-entropy is maximal.
To conclude this chapter, we summarise the reasons for why the EAT can be seen

as an extension of the AEP for non-IID processes:

1. Similarly to the AEP, the EAT tells us that for large enough n the smooth entropies
are equal to the von Neumann entropy of a single-round times the number of
rounds.

2. The observed frequencies from the entire process are used when calculating the
entropy accumulated in a single step of the process, as if all steps contribute
equally and independently of each other. This is analogous to the analysis done
in the IID case, as we saw in Sect. 7.3.

3. The asymptotic bounds on the smooth entropies derived using the EAT are equal
to those derived using the AEP under the IID assumption. As a result, the bounds
resulting form the application of the EAT are tight (assuming that the constructed
tradeoff functions are tight). The second order terms of both theorems are also
similar, as the scaling of both is

√
n.

All the above justifies the use of the EAT as a “reduction to IID” technique.
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Chapter 10
Showcase: Non-signalling Parallel
Repetition

In this chapter we consider the showcase of non-signalling parallel repetition, intro-
duced in Sect. 4.1, and show how threshold theorems derived under the IID assump-
tion can be extended to threshold theorems for general strategies, using a reduction
to IID.

We focus on the case of non-signalling players.1 That is, the only restriction
on the players is that they are not allowed to communicate. Considering the non-
signalling case is interesting for several reasons. A first reason is to minimise the
set of assumptions to the mere necessary. Minimising the set of assumptions can
be useful in cryptography when one wishes to get the strongest result possible, i.e.,
one where the attack strategies of malicious parties are only restricted minimally (as
in [1–3] for example). In theoretical physics, non-signalling correlations enable the
study of generalised theories possibly beyond quantum theory. It is also important to
mention that, due to their linearity, the non-signalling constraints are often easier to
analyse than the quantum or the classical constraints. Therefore, even if additional
constraints hold, focusing on the non-signalling ones serves as a way to get first
insights into a given problem.

Our theorem deals with complete-support games; these are game in which
the distribution QXY over the questions has complete support, i.e., for all x, y,
QXY (x, y) > 0.2 The main result presented in this chapter can be informally stated
as follows.3

1Most steps of our proof can be used as is when considering classical and quantum players as well.
There is one lemma, however, which we do not know how to modify so it can capture the classical
and quantum case. We explain the difficulty later on.
2When considering games with only two players, the requirement for complete support can be
dropped but, even though we focus on two-player games, we do not discuss this here; see [4] for
the details.
3See Theorem 10.11 for the formal statement.
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Theorem 10.1 (Informal) For any complete-support game, a threshold theorem for
general non-signalling strategies follows froma threshold theorem for non-signalling
IID strategies. Furthermore, given a gamewith optimal non-signallingwinning prob-
ability 1 − α, the resulting threshold theorem states that, for any β > 0, the prob-
ability to win more than a fraction 1 − α + β of n games is exponentially small in
nβ2, as in the IID case.

The result previously appeared in [4]. We remark that while the non-signalling
threshold theorem of [5] was known prior to [4], the dependence on β did not match
that of the IID case, which is optimal (as follows from the optimal formulation of
the Chernoff bound). Following [4], the work of [6] showed that parallel repetition
does not hold for general gameswithout complete-support in the non-signalling case.
Thus, Theorem 10.1 is as general as it gets.

Proving parallel repetition via a reduction to IID has the advantage that, as in
the IID case, the proof is oblivious to the number of players and structure of the
considered game. This leads to a general theorem applicable to all games (with
complete support) that is, arguably, simpler than other proof techniques.

When considering a strategy for the repeated game there is one type of symmetry
which one can take advantage of—since the repeated game is permutation invariant
the same symmetry can be assumed to hold for the optimal strategies, without loss of
generality. Permutation-invariant strategies are strategies which are indifferent to the
ordering of the questions given by the referee. That is, the probability of answering
a specific set of questions correctly does not depend on the ordering of the questions
(see Sect. 10.3 below for the formal definitions). Once we restrict our attention to
permutation-invariant strategies, de Finetti theorems presents themselves as a natural
tool to leverage for the analysis. Indeed, our proof builds on the de Finetti reduction
discusses in Chap. 8, which acts as a reduction to IID in our analysis of parallel
repetition.

The chapter is arranged as follows. In Sect. 10.1 we explain the main challenge
when proving parallel repetition and threshold theorems using techniques employed
by works predating [4] and why de Finetti theorems were not used in the context
of parallel repetition before [4]. In Sect. 10.2 we give the main technical statements
needed to prove our non-signalling threshold theorem. The different observations and
lemmas of Sect. 10.2 may be of independent interest when analysing non-signalling
parallel boxes and thereforewe perform the analysis without referring tomulti-player
games. The explicit threshold theorem and its proof are given in Sect. 10.3. As in the
rest of the thesis, we focus on the case of two parties for simplicity; we refer to [4]
for the proofs in the case of more than two players as well as a couple of extensions
of our theorem to games without complete support.
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10.1 Main Challenge and Goal

The main difficulty in proving a parallel repetition result comes from the, almost
arbitrary, correlations between the different questions-answers pairs in the players’
strategy for the repeated Gn

1−α+β : as the players get al.l the n questions together they
can answer them in a correlated way. In most of the known parallel repetition results
(e.g., [5, 7–9]) the main idea of the proof is to bound the winning probability for
some of the questions, conditioned onwinning the game in several other coordinates.
However, as the strategy itself introduces correlations between the different tuples
of questions, a large amount of technical work is devoted to dealing with the effect
of conditioning on the event of winning the previous questions.

As mentioned above (and formally stated in Sect. 10.3), due to the permutation
invariance of Gn

1−α+β one can study only permutation invariant strategies without
loss of generality. Once we restrict our attention to permutation-invariant strategies,
de Finetti theorems seem like a natural tool to leverage for the analysis. In the context
of games and strategies, de Finetti theorems suggest one may be able to reduce the
analysis of general permutation-invariant strategies to the analysis of a de Finetti
strategy, i.e., a convex combination of IID strategies; recall Chap. 8. As presented in
Sect. 7.3.1, the behaviour of IID strategies is trivial under parallel repetition. Hence,
a reduction to IID using a de Finetti-type theorem could significantly simplify the
analysis of parallel repetition theorems and threshold theorems.

Yet, de Finetti theorems were not used in this context prior to [4], and for a good
reason. The many versions of quantum de Finetti theorems (e.g., [10, 11]) could
not have been used as they depend on the dimension of the underlying quantum
strategies, while in the quantum multi-player game setting one does not wish to
restrict the dimension. Non-signalling de Finetti theorems, as in [12, 13], were also
not applicable for non-signalling parallel repetition theorems, as they restrict almost
completely the type of allowed correlations in the strategies for the repeated game
by assuming very strict non-signalling constraints between the different repetitions,
i.e., between the different questions-answers pairs.

In the proof presented in the next sections, we use the de Finetti reduction pre-
sented in Chap.8, which imposes no assumptions at all regarding the structure of
the strategies (apart from permutation invariance), and is therefore applicable in the
context of parallel repetition. This allows us to devise a proof technique which is
completely different from the proofs of parallel repetition results predating [4].4 In
particular, at least in the non-signalling case presented here, the conditioning prob-
lem described above disappears completely and the number of players does not play
a role in the proof structure.

As explained in Sect. 8.2, the de Finetti strategy that one ought to consider when
using our de Finetti reduction assigns someweight to signalling IID strategies.5 Most
of the effort is therefore directed to, informally, showing that when starting with a

4Following [4, 14] presented another, conceptually similar but technically different, proof of non-
signalling parallel repetition based on de Finetti reductions.
5As discussed in Sect. 8.4, this is inevitable.
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permutation-invariant non-signalling strategy the de Finetti strategymust assign only
a small weight to signalling IID strategies. Formally, a similar in spirit but somewhat
different statement is proven; see Theorem 10.2 below. Without further ado, let us
get into the proof of the exact statements in the following section.

10.2 Approximately Non-signalling Marginals

Consider a parallel box PAB|XY (as defined in Sect. 6.1) and some complete-support
distribution QXY , i.e., for all x̃ ∈ X and ỹ ∈ Y , Q(x̃, ỹ) �= 0. Sample x, y, a, and
b according to Q⊗n

XYPAB|XY . We assume in this section that all possible inputs x̃, ỹ
appear in the observed data x and y (that is, there exists i ∈ [n] for which (xi , yi ) =
(x̃, ỹ). For a complete-support distribution QXY , the probability that this is not the
case is exponentially small in n and we will account for it later.

Next, let Ofreq(a,b,x, y)
ABXY be the distribution derived from the frequencies in the

observed data via

Ofreq(a,b,x, y)
ABXY (ãb̃x̃ ỹ) =

∣
∣
∣

{

i : (ai , bi , xi , yi ) = (ã, b̃, x̃, ỹ)
} ∣

∣
∣

n

and define

Ofreq(a,b,x, y)
AB|XY = Ofreq(a,b,x, y)

ABXY

QXY
. (10.1)

Without the complete-support requirement on QXY it does not even make sense
to talk about a fully defined Ofreq(a,b,x, y)

AB|XY , i.e., a conditional probability distribution

which is defined for all x ∈ X and y ∈ Y . Indeed, Ofreq(a,b,x, y)
AB|XY can only be defined for

x ∈ Supp(X ) and y ∈ Supp(Y) due to the estimation process (at leastwhen assuming
that all inputs appear in the observed data, which happens with high probability for
large enough n). If one is willing to consider conditional probability distributions
which are allowed to not assign values to certain inputs then Ofreq(a,b,x, y)

AB|XY regains
its meaning. In the context of non-signalling boxes, these conditional probability
distributions were termed “sub-non-signalling” boxes in [14]; sub-non-signalling
boxes fulfil the subset of the non-signalling conditions which apply for the defined
inputs. In the case of two parties, it is known that there is always a way to “complete”
a sub-non-signalling box to a non-signalling box, defined over all inputs [14, 15].

The current section deals with the following question: given that we start
with a non-signalling box PAB|XY , what is the probability that the single-round

box Ofreq(a,b,x, y)
AB|XY is signalling? Under the IID assumption, i.e., when PAB|XY =

O⊗n
AB|XY , this question is natural and can be easily answered. In that case, O

freq(a,b,x, y)
AB|XY

can simply be seen as an estimation of the “real box”, or marginal, OAB|XY . In partic-
ular, according to Sanov’s theorem (Lemma 2.2), as n → ∞, we have Ofreq(a,b,x, y)

AB|XY =
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OAB|XY almost surely. Thus, for a non-signalling IID box PAB|XY , O
freq(a,b,x, y)
AB|XY must

be non-signalling as n → ∞.
Our goal is to show that roughly the same is true for permutation invariant non-

signalling parallel boxes PAB|XY when boxes such as Ofreq(a,b,x, y)
AB|XY take the role of

the marginals, which are not properly defined for parallel boxes. The theorem can
be stated informally as follows6:

Theorem 10.2 (Informal) Let PAB|XY be a permutation invariant non-signalling

parallel box and Ofreq(a,b,x, y)
AB|XY be the single-round box defined via the observed data

sampled usingQ⊗n
XYPAB|XY , as inEq. (10.1). Then, for sufficiently large n,O

freq(a,b,x, y)
AB|XY

is close to a non-signalling single-round box with high probability. This also implies
that the observed data can be seen as if, with high probability, it was sampled using
an IID box O⊗n

AB|XY with OAB|XY close to a non-signalling single-round box.

To prove the theorem we utilise the concept of a test, discussed in Sect. 8.3.2.
Roughly speaking, we define a signalling test T , interacting with a parallel box,
which accepts whenever the box Ofreq(a,b,x, y)

AB|XY is highly signalling and rejects when-
ever the box is close to a non-signalling box. With the aid of the variant of the
de Finetti reduction phrased as Theorem 8.11 and a rather simple signalling game
(defined in Sect. 10.2.3) we prove that the probability that the test accepts when inter-
acting with a permutation invariant non-signalling parallel box is small. We follow
this proof idea in the succeeding sections.

10.2.1 Single-Round Boxes from Frequencies

To ease notation we denote data = a, b, x, ywhen it is clear from the context which
a, b, x, y are considered.Every observeddata is split into twonon-overlappingparts,
data1 and data2. Specifically, let7

data1 = a1, . . . , a n
2
, b1, . . . , b n

2
, x1, . . . , x n

2
, y1, . . . , y n

2
,

data2 = a n
2 +1, . . . , an, b n

2 +1, . . . , bn, x n
2 +1, . . . , xn, y n

2 +1, . . . , yn .
(10.2)

data (and hence also data1 and data2) is sampled according to Q⊗n
XYPAB|XY ,

where PAB|XY is a non-signalling permutation invariant parallel box. Note the fol-
lowing:

1. PAB|XY may be signalling between the different rounds i ∈ [n] (i.e., for a given
party, the output of one roundmaydepend on the input of other rounds). Therefore,
even though data1 and data2 are each defined only by part of the observed data,
they may depend on the entire data.

6For the formal statement see Theorem 10.10.
7For simplicity we assume n is even; otherwise replace n/2 by �n/2� and modify everything else
accordingly.
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2. Due to permutation invariance, it does not matter which indices i ∈ [n] belong
to each part of the data. We could as well define data1 and data2 by splitting
the data according to whether the index i is even or odd (for example). For any
partition of the data, data1 and data2 are distributed in the same way. Hence, the
choice of partition made in Eq. (10.2) is arbitrary and all other choices give rise
to the same results.

We define two single-round boxes from the observed data, similarly to what was
done in Eq. (10.1):

Ofreq(data1)
ABXY (ãb̃x̃ ỹ) =

∣
∣
∣

{

i ∈ [n/2] : (ai , bi , xi , yi ) = (ã, b̃, x̃, ỹ)
} ∣

∣
∣

n/2
,

Ofreq(data2)
ABXY (ãb̃x̃ ỹ) =

∣
∣
∣

{

|i ∈ {n/2 + 1, . . . , n} : (ai , bi , xi , yi ) = (ã, b̃, x̃, ỹ)
} ∣

∣
∣

n/2
(10.3)

and, for t ∈ {0, 1},
Ofreq(datat )

AB|XY = Ofreq(datat )
ABXY

QXY
. (10.4)

As mentioned above, for Ofreq(data1)
AB|XY and Ofreq(data2)

AB|XY to be defined for all inputs we
assume that all inputs (x, y) appear in both data1 and data2.

10.2.2 Signalling Test

Below we consider distributions OABXY = QXYOAB|XY . One can then consider dif-
ferent marginals of OABXY . For example, OBY is simply defined by OBY (b, y) =
∑

a,x OABXY (a, b, x, y). Note that the marginals of OABXY are all well-defined even
if OAB|XY itself is signalling.

We wish to define a signalling test. To this end, let us first define a signalling
measure over single-round boxes:

Definition 10.3 LetOAB|XY be a single-round box defined overA,B,X , andY , QXY

a distribution over the inputs of the single-round box, and OABXY = QXYOAB|XY .
The amount of signalling fromAlice toBob using the inputs (x, y) andBob’s output b
is given by

Sig(A→B,x,y,b)
(

OAB|XY
) = OBY (b, y)

[

OX |BY (x |b, y) − QX |Y (x |y)] .

Similarly, the amount of signalling from Bob to Alice using the inputs (x, y), dis-
tributed according to QXY , andAlice’s output a, distributed according to OA|X=x,Y=y ,
is given by
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Sig(B→A,x,y,a)
(

OAB|XY
) = OAX (a, x)

[

OY |AX (y|a, x) − QY |X (y|x)] .

The box OAB|XY is non-signalling if and only if

Sig(A→B,x,y,b)
(

OAB|XY
) = Sig(B→A,x,y,a)

(

OAB|XY
) = 0 . (10.5)

To see that the above definition makes sense as a signalling measure first notice
that, when positive, OX |BY (x |b, y) − QX |Y (x |y) can be understood as quantifying
Bob’s advantage in guessing Alice’s input x when observing b, compared to his
prior information QX |Y (x |y) about her input. For a uniform distribution overX × Y ,
QX |Y (x |y) = 0 for all x and y. Then, the non-signalling requirement means that Bob
cannot infer Alice’s input from his output (as otherwise Alice could signal Bob),
that is, OX |BY (x |b, y) = 0 as well. The above is a generalisation of this requirement
to non-uniform distributions QXY . On the more technical level—the non-signalling
conditions (Definition 3.1) can be equivalently written as

∀b, x, y
∑

ã

OAB|XY (ã, b|x, y) =
∑

x̃

QX |Y (x̃ |y)
∑

ã

OAB|XY (ã, b|x̃, y) ;

∀a, x, y
∑

b̃

OAB|XY (a, b̃|x, y) =
∑

ỹ

QY |X (ỹ|x)
∑

b̃

OAB|XY (a, b̃|a, ỹ) .
(10.6)

One can verify that, for complete support QXY , these conditions are equivalent to
Eq. (10.5).

All statements proven below regarding our signalling measure hold for signalling
in both directions, i.e., from Alice to Bob and from Bob to Alice. We present all the
statements and proofs in terms of signalling from Alice to Bob; to derive the same
statements for signalling from Bob to Alice one can simply replace the parties (their
inputs and outputs) with one another.

We use the following definition to measure the distance between two single-round
boxes.8

Definition 10.4 The distance between KAB|XY and RAB|XY is defined as

∣
∣KAB|XY − RAB|XY

∣
∣
1 = E(x,y)∈X×Y

∑

(a,b)∈A×B

∣
∣KAB|XY (a, b|x, y) − RAB|XY (a, b|x, y)∣∣ .

The following lemma shows that our measure of signalling is continuous. That
is, if two strategies are close to one another according to Definition 10.4 then their
signalling values are also close. The proof is given in Appendix B.1.

Lemma 10.5 Let O1
AB|XY and O2

AB|XY be two single-round boxes such that

∣
∣O1

AB|XY − O2
AB|XY

∣
∣
1 ≤ ε .

8 More commonly in the literature, one considers a definition in whichE(x,y) is replaced by maxx,y .
We use Definition 10.4 since it allows us to apply Sanov’s theorem later on.
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Then, for all a, b, x, and y,

∣
∣Sig(A→B,x,y,b)(O1

AB|XY ) − Sig(A→B,x,y,b)(O2
AB|XY )

∣
∣ ≤ 2ε

We can now define our signalling test. The test interacts with the paral-
lel box PAB|XY by sampling data according to Q⊗n

XYPAB|XY and then checking

whether Ofreq(data2)
AB|XY is sufficiently signalling. Formally:

Definition 10.6 Let ζ, ε > 0 be parameters satisfying ζ ≥ 7ε. For any x , y, and b,
a signalling test is defined by9

T (A→B,x,y,b)(PAB|XY ) =
{

1 if Sig(A→B,x,y,b)
(

Ofreq(data2)
AB|XY

)

≥ ζ − 2ε

0 otherwise ,
(10.7)

where Ofreq(data2)
AB|XY is defined as in Eq. (10.4).

Let T denote the event that the signalling test T (A→B,x,y,b) passes. The probability
of the test passing when interacting with PAB|XY is given by

Prdata∼PABXY [T ] =
∑

x, y

Q⊗n
XY (x, y)

∑

a,b:
Sig(A→B,x,y,b)

(

O
freq(data2)

AB|XY
)

≥ζ−2ε

PAB|XY (a, b|x, y) .

The signalling test above is defined with Sig(A→B,x,y,b)
(

Ofreq(data2)
AB|XY

)

, rather than

its absolute value, since this will be the only case relevant for our analysis; see
Appendix B.2.

When considering IID boxes O⊗n
AB|XY , the signalling test T (A→B,x,y,b) is reliable—

if Sig(A→B,x,y,b)
(

OAB|XY
) ≥ ζ the test will detect it with high probability, i.e. the test

will accept with high probability, and if OAB|XY is non-signalling then the test will
reject with high probability. It follows, in particular, that if signalling is detected by
the test in Ofreq(data2)

AB|XY , Ofreq(data1)
AB|XY is also signalling with high probability. This holds

also when considering the de Finetti box as in Definition 8.2.
To make the statement precise, let us define two sets of single-round boxes for

every signalling test T (A→B,x,y,b). The first set is given by

σ(A→B,x,y,b) = {

OAB|XY : ∀ŌAB|XY s.t. |OAB|XY − ŌAB|XY |1 ≤ ε

⇒ Sig(A→B,x,y,b)(ŌAB|XY ) ≥ ζ
}

.

Using the continuity of the signalling measure, Lemma 10.5, we observe that

OAB|XY /∈ σ(A→B,x,y,b) ⇒ Sig(A→B,x,y,b)(OAB|XY ) ≤ ζ + 2ε . (10.8)

9If data1 does not include an index in which the inputs are (x, y) then the test T (A→B,x,y,b) rejects
by definition (recall Definition 10.3).
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SigA→B,x,y,b) OAB|XY

)
ν ζ ζ + 2ε

Sig O ∈ Σ(A→B,x,y,b)

Sig O /∈ σ(A→B,x,y,b)

Fig. 10.1 Visualisation of the sets σ(A→B,x,y,b) and Σ(A→B,x,y,b)

The second set is defined to be

Σ(A→B,x,y,b) = {

OAB|XY : ∃ŌAB|XY s.t. |OAB|XY − ŌAB|XY |1 ≤ ε

∧ Prdata∼Ō⊗n
AB|XY [T ] > δ

}

,

where δ = δ
(
n
2 , ε

) = (
n
2 + 1

)|A||B||X ||Y|−1
e−nε2/4. Since the signalling test is reliable

when acting on IID boxes, one can easily show that

OAB|XY ∈ Σ(A→B,x,y,b) ⇒ Sig(A→B,x,y,b)(OAB|XY ) > ν (10.9)

for any 0 < ν < ζ − 6ε. This is stated and proven as Lemma B.1 in Appendix B.1.
The sets and the relevant constants are illustrated in Fig. 10.1.

We use below the following notation:

• inσ denotes the event that Ofreq(data1)
AB|XY ∈ σ(A→B,x,y,b).

• inΣ denotes the event that Ofreq(data1)
AB|XY ∈ Σ(A→B,x,y,b).

• “For all signalling test T (A→B,x,y,b)…” should be understood as “for all x , y, and
b, defining a signalling test T (A→B,x,y,b),…” and similarly for other quantifiers.

Furthermore, to avoid confusion, we explicitly denote the probability distributions
on which we evaluate the probability of the above events.

As shown in Appendix B.1, the following lemma holds for a de Finetti box:

Lemma 10.7 Let τABXY = Q⊗n
XY τAB|XY , where τAB|XY is a de Finetti box. For every

signalling test T (A→B,x,y,b),

1. Prdata∼τABXY

[¬inΣ ∧ T
] ≤ δ

2. Prdata∼τABXY [in
σ ∧ ¬T ] ≤ δ,

where δ = δ
(
n
2 , ε

) = (
n
2 + 1

)|A||B||X ||Y|−1
e−nε2/4.

A similar lemma can be proven for permutation invariant parallel boxes, using
the de Finetti reduction of Theorem 8.3:

Lemma 10.8 Given a parallel box PAB|XY let PABXY = Q⊗n
XYPAB|XY . For every

permutation-invariant box PAB|XY and every T (A→B,x,y,b):

1. Prdata∼PABXY

[¬inΣ ∧ T
] ≤ cδ
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2. Prdata∼PABXY [in
σ ∧ ¬T ] ≤ cδ,

where c = (n + 1)|X ||Y|(|A||B|−1) and δ is as in Lemma 10.7.

Proof We prove both of the claims together. Denote the relevant event by E(data)

and note that for both events we can write

Prdata∼PABXY

[

E(data) = 1
] =

∑

data|
E(data)=1

PABXY (data) .

From Theorem 8.3 we get PABXY (data) ≤ c · τABXY (data) and therefore

Prdata∼PABXY

[

E(data) = 1
] =

∑

data|
E(data)=1

PABXY (data)

≤ c ·
∑

data|
E(data)=1

τABXY (data)

= c · Prdata∼τABXY

[

E(data) = 1
]

.

Combining this with Lemma 10.7 proves the lemma. �

10.2.3 Guessing Game

The previous section discussed the relations between Ofreq(data1)
AB|XY and Ofreq(data2)

AB|XY in
terms of the probabilities of certain events which depend on these averaged single-
round boxes. All statements made so far were general, in the sense that they hold
for any permutation-invariant parallel box PAB|XY . In the current section we focus
on permutation-invariant non-signalling parallel boxes PAB|XY . Our goal is to show

that for non-signalling boxes PAB|XY , the averaged boxes Ofreq(data1)
AB|XY and Ofreq(data2)

AB|XY
cannot be too signalling as we were set to prove.

To this end, we construct a guessing game for every signalling test T (A→B,x,y,b).
In the game, a referee gives Alice and Bob n/2 questions, distributed according
to Q⊗n/2

XY . Bob’s goal is to output an index j ∈ [n/2] for which (x j , y j ) = (x, y)
(while Alice does not need to output anything). Alice and Bob are allowed to use any
non-signalling box to win the game. Clearly, a non-signalling box should not allow
Bob to learn anything about Alice’s input from his outputs. Bob’s best strategy is
thus to guess an index j for which y j = y. The probability that his guess is correct
is QX |Y (x |y). If Alice and Bob are able to win the game with higher probability then
the used box must be signalling.10

10This motivates our signalling measure given in Definition 10.3.
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The following lemma asserts that, for non-signalling PAB|XY , conditioned on the

signalling test detecting a lot of signalling inOfreq(data2)
AB|XY , the probability thatOfreq(data1)

AB|XY
is highly signalling is bounded away from 1. Intuitively, we would have expected
that if signalling is detected in data2 then data1 should exhibit signalling practically
with certainty. The lemma (roughly) shows that, when starting with non-signalling
boxes, this is not the case.

Before starting, we remind the reader that we assume in this section that all pairs of
questions appear in data1 and data2. For the lemmas and proofs below it is important
to remember that all the probabilities are conditioned on data1. To ease notation we
do not explicitly write it.

Lemma 10.9 Let ε ∈ [0, 1] and n be such that

n

ln(n)
> 20|X ||Y||A||B| ln(2/ε)

ε2
, (10.10)

and PAB|XY a non-signalling parallel box. For any signalling test T (A→B,x,y,b)

denote by PABXY |T =1 the probability distribution PABXY conditioned on the event
T (A→B,x,y,b)

(

PAB|XY
) = 1, whenever such a conditional probability distribution is

defined. Then,
Prdata∼PABXY |T =1

[

inΣ
]

< 1 − √
cδ , (10.11)

for c and δ as in Lemma 10.8.

Proof We denote xdata1 = x1, . . . , xn/2 and ydata1 = y1, . . . , yn/2.
For every signalling test T (A→B,x,y,b) and inputs for Bob ydata1 such

that Prdata∼PABXY

[

T | ydata1
] �= 0 we construct a guessing game. Our goal is to derive

a contradiction by showing that if Eq. (10.11) is not true, then the guessing game can
be won with probability higher than the optimal non-signalling winning probability.

The guessing game is as explained above. A referee gives Bob the inputs ydata1
and Alice gets xdata1 distributed according to QXY (x |y). Bob’s goal is to guess an
index j ∈ [n/2] such that (x j , y j ) = (x, y) (we assume that such exists).

If the parties share a non-signalling box PAB|XY then Bob’smarginals are the same
for all xdata1 . Therefore, his outputs do not give him any information about the inputs
that Alice got from the referee. The best non-signalling strategy for the guessing
game is therefore to choose, uniformly at random, an index j for which y j = y. The
winning probability is then given by Wns = QX |Y (x |y) < 1.11

We now show that if the parties share PAB|XY for which

Prdata∼PABXY |T =1

[

inΣ | ydata1
] ≥ 1 − √

cδ (10.12)

then they can win the above guessing game with probability higher than the optimal
non-signalling winning probability Wns.

11Note that while Bob’s inputs, ydata1 = y1, . . . , yn/2, are fixed in a specific instance of the guessing
game, Alice’s inputs are still distributed according to the prior QXY (x |y).
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The idea is as follows. The parties share many identical copies of PAB|XY . They
use the inputs given by the referee as xdata1 and ydata1 in all of the copies and choose,
using shared randomness, the rest of the inputs, associated with data2, in each copy
(i.e., there are different inputs fordata2 for each copy). They use the copies of PAB|XY

with the described inputs. Bob then looks for the first copy of PAB|XY in which the
event T holds—such a copy exists as long as12 Prdata∼PABXY

[

T | ydata1
] �= 0; he can

find it since he knows all the inputs in data2 (as they were chosen using shared
randomness).13 Alice does not need to know in which copy the test holds. Using the
chosen copy, Bob chooses a random index j ∈ [n/2] such that y j = y and b j = b.

Let us show that, as long as Prdata∼PABXY

[

T | ydata1
] �= 0, this box achieves a

winning probability which is higher thanWns. For the chosen copy, the event T holds
and hence data1 can be seen as data distributed according to n/2 identical copies
of Ofreq(data1)

AB|XY , which is with high probability in Σ(i,b,x,y) according to Eq. (10.12).
Using Eq. (10.9) this implies

Prdata∼PABXY |T =1

[

Sig(A→B,b,x,y)(Ofreq(data1)
AB|XY ) > ν| ydata1

]

≥ 1 − √
cδ , (10.13)

where ν > 0 is any parameter satisfying ν < ζ − 6ε (recall Eq. (10.9)).
Using Definition 10.3 we know that if indeed

Sig(A→B,b,x,y)(Ofreq(data1)
AB|XY ) > ν

then Ofreq(data1)
BY (b, y) > 0 and

Ofreq(data1)
X |BY (x |b, y) >

ν

Ofreq(data1)
BY (b, y)

+ QX |Y (x |y) (10.14)

= ν

Ofreq(data1)
BY (b, y)

+ Wns .

That is, by choosing an index for which b j = b Bob increase the winning probability.

On the other hand, if Sig(A→B,b,x,y)(Ofreq(data1)
AB|XY ) ≤ ν, which can happenwith prob-

ability
√
cδ, then Bob may decrease his winning probability. In the worst case the

winning probability is 0. Therefore, for the chosen copy (for which the test passed)
we get the following winning probability

W ≥ (1 − √
cδ)

(

ν

Ofreq(data1)
BY (b, y)

+ Wns

)

+ √
cδ · 0 . (10.15)

12To see this note that since the box is non-signalling between Alice and Bob, Bob can check in
which copy the test passes even before Alice uses her input. Therefore, the probability to pass the
test is independent of Alice’s inputs and hence must be non-zero for any of them.
13Recalling Definitions 10.3 and 10.6, we see that only Ofreq(data2)

BXY is needed in order to check
whether the signalling test passes or not. Thus, Bob indeed has all the relevant information and he
can locally check whether the test passes or not.
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Thus, W > Wns for

ν >

√
cδ

1 − √
cδ

Wns ≥
√
cδ

1 − √
cδ

Wns · Ofreq(data1)
BY (b, y) . (10.16)

Using Wns · Ofreq(data1)
BY (b, y) ≤ 1 and

√
cδ ≤ (n + 1)|X ||Y||A||B|e−nε2/8, we see that

as long as n/ ln(n) > 20|X ||Y||A||B|ε−2 ln(2/ε) we have

√
cδ WnsO

freq(data1)
BY (b, y)

1 − √
cδ

< ε .

Assuming ζ ≥ 7ε, there is a choice of ν that satisfies both Eq. (10.16) and the earlier
condition that ν < ζ − 6ε.

We get that Eq. (10.12) must not hold for any ydata1 and hence cannot hold also
when we omit the conditioning on ydata1 . The lemma therefore follows. �

The bound given in Eq. (10.11) is weak for two reasons. First, data is distributed
according to the conditional distribution PABXY |T =1 and not according to PABXY

itself. Second, it only tells us that Prdata∼PABXY |T =1

[

Ofreq(data1)
AB|XY /∈ Σ(A→B,x,y,b)

] ≥√
cδ, i.e., the probability that Ofreq(data1)

AB|XY has a small value of signalling is higher

than
√
cδ. We show how the statement can be amplified using Lemma 10.8, which

utilised our de Finetti reduction.

Theorem 10.10 Let PAB|XY be a permutation-invariant non-signalling parallel box
and n such that Eq. (10.16) is satisfied. Then for any signalling test T (A→B,x,y,b) such
thatQXY (x, y) �= 0 andQX |Y (x |y) �= 1 and conditioned on the event of all questions
(x, y) appearing in data1 and data2,

Prdata∼PABXY

[

Sig(A→B,x,y,b)
(

Ofreq(data)

AB|XY
)

> ζ + 2ε
]

≤ 4
√
cδ . (10.17)

Similarly, for any signalling test T (B→A,x,y,a),

Prdata∼PABXY

[

Sig(B→A,x,y,b)
(

Ofreq(data)

AB|XY
)

> ζ + 2ε
]

≤ 4
√
cδ . (10.18)

Proof From Lemma 10.8 part 1 we get

Prdata∼PABXY [T ] >
√
cδ ⇒ Prdata∼PABXY |T =1

[¬inΣ
] ≤ √

cδ

and this can be rewritten as

Prdata∼PABXY [T ] >
√
cδ ⇒ Prdata∼PABXY |T =1

[

inΣ
] ≥ 1 − √

cδ .

According to Lemma 10.9, this implies
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Prdata∼PABXY [T ] >
√
cδ ⇒ PAB|XY is signalling .

Therefore it must be that
Prdata∼PABXY [T ] ≤ √

cδ (10.19)

or alternatively,
Prdata∼PABXY [¬T ] ≥ 1 − √

cδ (10.20)

Next, combining Lemma 10.8 part 2 with Eq. (10.20) we get

Prdata∼PABXY |T =0

[

inσ
] ≤ √

cδ .

Using Eq. (10.19) we get

Prdata∼PABXY

[

inσ
] ≤ 2

√
cδ .

Using the definition of the set σ(A→B,x,y,b) and Eq. (10.8) we get that

Prdata∼PABXY

[

Sig(A→B,x,y,b)
(

Ofreq(data1)
AB|XY

)

> ζ + 2ε
]

≤ 2
√
cδ .

Permutation invariance implies that data1 and data2 are distributed in the same way.
Therefore, we also have

Prdata∼PABXY

[

Sig(A→B,x,y,b)
(

Ofreq(data2)
AB|XY

)

> ζ + 2ε
]

≤ 2
√
cδ .

By definition,

Ofreq(data)

AB|XY = 1

2
Ofreq(data1)

AB|XY + 1

2
Ofreq(data2)

AB|XY

and, thus, using the linearity of the signalling measure, for any fixed observed data

Sig(A→B,x,y,b)
(

Ofreq(data)

AB|XY
)

=1

2
Sig(A→B,x,y,b)

(

Ofreq(data1)
AB|XY

)

+ 1

2
Sig(A→B,x,y,b)

(

Ofreq(data2)
AB|XY

)

.

Equation (10.17) follows by combining the above equations. Switching Alice and
Bob in all lemmas above, Eq. (10.18) follows in the exact same way. �

Theorem 10.10 tells us that if PAB|XY is a permutation-invariant non-signalling

parallel box then the probability that Ofreq(data)

AB|XY is highly signalling (in any direction
and using any inputs and outputs) is exponentially small in the number of games.
De facto, this means that we can think of the observed data sampled from a non-
signalling parallel box as if it came from an IID box defined via a single-round box
that is approximately non-signalling, with high probability. This can be used to infer
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properties of non-signalling parallel boxes. In Sect. 10.3we show that Theorem10.10
implies a threshold theorem almost directly.

Apart from the applications of Theorem 10.10, we see it as an abstract mathemat-
ical statement about the observed data produced by non-signalling parallel boxes.
Deriving a similar statement for quantum boxes is also of interest (and, in particu-
lar, will imply a threshold theorem for all quantum games). The main difficulty in
deriving a quantum analogue of Theorem 10.10 lies in finding a “non-quantumness”
measure which, ideally, can be performed locally by one of the parties (as in our
guessing game in the proof of Lemma 10.9).

10.3 Threshold Theorem

This section is devoted to deriving the following threshold theorem:

Theorem 10.11 For any complete-support two-player game G whose optimal non-
signalling winning probability is wns = 1 − α, there exist C(G) such that for every
0 < β ≤ α and large enough n, the probability that non-signalling players win more
than a fraction 1 − α + β of the n questions in the threshold gameGn

1−α+β is at most

exp
[−C(G)nβ2

]

.

That is, for sufficientlymany repetitions the probability towinmore than a fraction
1 − α + β of then games is exponentially small.A sufficient condition on the number
of repetitions for the bound in the theorem to hold is stated in Eq. (10.10), and a choice
of constants made around Eq. (10.28), for a more precise bound.

The proof builds on Theorem 10.10 and is rather simple. If Ofreq(data)

AB|XY is not too
signalling (for any signalling test), then its winning probability in a single game
cannot be much higher than the winning probability of the optimal non-signalling
strategy for G. Furthermore, the number of games won in any given observed data
can be read directly from the winning probability of Ofreq(data)

AB|XY . Thus, by analysing

Ofreq(data)

AB|XY we are actually analysing the number of games won. The combination of
these two observations gives the final theorem. We follow these steps below.

10.3.1 Winning Probability of Approximately Non-signalling
Strategies

The linearity of the non-signalling conditions (Definition 3.1) and thewinning proba-
bility in a game (Eq. (4.1)) allow us to phrase the optimisation problem of finding the
optimal non-signalling winning probability in any game G as a linear program [16].
For complete-support game we can use the following linear program over the vari-
ables OAB|XY (a, b|x, y):
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max
∑

a,b,x,y

QXY (xy)R(a, b, x, y)OAB|XY (a, b|x, y) (10.21a)

s.t. Sig(A→B,x,y,b)
(

OAB|XY
) = 0 ∀x, y, b (10.21b)

Sig(B→A,x,y,b)
(

OAB|XY
) = 0 ∀x, y, a (10.21c)

∑

a,b

OAB|XY (a, b|x, y) = 1 ∀x, y (10.21d)

OAB|XY (a, b|x, y) ≥ 0 ∀a, b, x, y (10.21e)

The objective function, Eq. (10.21a), is exactly thewinning probability in the game
when using strategy OAB|XY . Equations (10.21d) and (10.21e) are the normalisation
and positivity constraints on the strategy OAB|XY . In Eqs. (10.21b) and (10.21b) all
the non-signalling constraints are listed, as follows for complete-support games from
Eq. (10.5).14

Our goal is to upper-bound the winning probability of Ofreq(data)

AB|XY , which may be
slightly signalling. The optimal winning probability of strategies which are slightly
signalling can be written as a linear program similar to the one above, by relaxing
the constraint in Eqs. (10.21b) and (10.21c) so that it allows for some signalling.
Specifically, keeping inmind Eq. (10.17), we are interested in the following program:

max
∑

a,b,x,y

QXY (xy)R(a, b, x, y)OAB|XY (a, b|x, y)

s.t. Sig(A→B,x,y,b)
(

OAB|XY
) ≤ ζ + 2ε ∀x, y, b

Sig(B→A,x,y,b)
(

OAB|XY
) ≤ ζ + 2ε ∀x, y, a

∑

a,b

OAB|XY (a, b|x, y) = 1 ∀x, y

OAB|XY (a, b|x, y) ≥ 0 ∀a, b, x, y

(10.22)

Program (10.22) can be seen as a perturbation of Program (10.21). Their optimal
values are therefore related to one another; the exact relation can be derived by study-
ing how sensitive the objective function is to small modifications of the constraints.
This process is called “sensitivity analysis of linear programs” and we follow it in
Appendix B.2 for the programs of interest. As a result, we get that strategies OAB|XY
with

Sig(A→B,x,y,b)
(

OAB|XY
) ≤ ζ + 2ε

Sig(B→A,x,y,a)
(

OAB|XY
) ≤ ζ + 2ε ,

for all x , y, a, and b achieve winning probability w
(

OAB|XY
)

such that

w
(

OAB|XY
) ≤ 1 − α + (ζ + 2ε)d , (10.23)

14Reference [4] includes an explanation of the implications of the linear program (10.21) to games
with incomplete support.
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where 1 − α is the optimal winning probability of a non-signalling strategy, i.e., it
is the solution of Program (10.21), and d = |X ||Y| (|A| + |B|) is the number of the
non-signalling constraints in the linear programs above.

10.3.2 Final Result

The results of Sect. 10.2 are applicablewhen considering permutation invariant strate-
gies PAB|XY (recall Definition 8.1). As the repeated game Gn

1−α+β is by itself permu-
tation invariant we can restrict the strategies of the players to be permutation invariant
without loss of generality.15 This is shown in the next lemma.

Lemma 10.12 For every strategy PAB|XY for the repeated gameGn
1−α+β there exists

a permutation-invariant strategy P̃AB|XY such that w
(

PAB|XY
) = w

(

P̃AB|XY

)

.

Proof Given PAB|XY define its permutation-invariant version to be

P̃AB|XY = 1

n!
∑

π

PAB|XY ◦ π .

The winning probability of the game is linear in the strategy, therefore we have

w
(

P̃AB|XY

)

= w

(

1

n!
∑

π

PAB|XY ◦ π

)

= 1

n!
∑

π

w
(

PAB|XY ◦ π
)

. (10.24)

Since the questions in the repeated game are chosen in an IID manner and the
winning condition is checked for each game separately, the winning probability
is indifferent to the ordering of the questions-answers pairs. As π permutes the
questions and answers together we have w

(

PAB|XY ◦ π
) = w

(

PAB|XY
)

. Thus, we

get w
(

P̃AB|XY

)

= w
(

PAB|XY
)

. �

We can now combine everything we have learned in the previous sections in order
to derive the final results. As before, we denote by d the number of non-signalling
conditions appearing in the linear programs above, i.e., d = |X ||Y| (|A| + |B|).
Lemma 10.13 Let w(G) = 1 − α be the optimal winning probability of a non-
signalling strategy in G. Let 0 < β ≤ α be some constant and n a sufficiently large
integer such that Eq. (10.16) is satisfied. Then for any non-signalling strategy PAB|XY

of the threshold game Gn
1−α−β ,

15This is not to say that all strategies are permutation invariant but only that the optimal strategy
can be assumed to be permutation invariant. It is perhaps interesting to note that, more commonly,
the optimal strategies are taken to be, without loss of generality, deterministic in proofs of classical
parallel repetition and pure in proofs of quantum parallel repetition. Here we are choosing to focus
on permutation invariant strategies instead.
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Prdata∼PABXY

[

w
(

Ofreq(data)

AB|XY
)

> 1 − α + β
]

≤ 6d
√
cδ .

Proof We denote the event of all inputs appearing in data1 and data2 by aid.
Furthermore, let ζ, ε > 0 be such that d(ζ + 2ε) ≤ β, ε ≤ minx,y QXY (xy) and 7ε ≤
ζ ≤ 1.

If all questions (x, y) appear at least once in data1 and data2, i.e., the event aid
holds, then we can use Eq. (10.23) in combination with Theorem 10.10 and get

Prdata∼PABXY

[

w
(

Ofreq(data)

AB|XY
)

> 1 − α + β
∣
∣aid

]

≤ Prdata∼PABXY

[

∃a, b, x, y s.t. Sig(A→B,x,y,b)
(

Ofreq(data)

AB|XY
)

≤ ζ + 2ε

or Sig(B→A,x,y,a)
(

Ofreq(data)

AB|XY
)

≤ ζ + 2ε
∣
∣aid

]

≤ d · 4√cδ .

The probability that the event aid does not hold is upper bounded by

2|X ||Y|
(

1 − min
x,y

QXY (x, y)

)n/2

≤ 2|X ||Y|e−minx,y QXY (x,y)n/2

≤ 2|X ||Y|e−εn/2

≤ 2dδ

and therefore all together we have

Prdata∼PABXY

[

w
(

Ofreq(data)

AB|XY
)

> 1 − α + β
]

≤ 6d
√
cδ .

�

Our threshold theorem, Theorem 10.11, follows from Lemma 10.13:

Proof (Proof of Theorem 10.11) Let f denote the fraction of coordinates in which
the players win the game in the observed data. Note that f is equals exactly

w
(

Ofreq(data)

AB|XY
)

by the definition of Ofreq(data)

AB|XY . Lemma 10.13 therefore implies

Prdata∼PABXY [ f > 1 − α + β] ≤ 6d
√
cδ . (10.25)

Plugging the values of the parameters d, c, and δ, we see that Eq. (10.25) can be
written, for an appropriately defined Ĉ(G, n), as

Prdata∼PABXY [ f > 1 − α + β] ≤ Ĉ(G, n) exp[−nε2/8]
= poly(n) exp[−nε2/8] . (10.26)
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Our goal now is to show that, actually, it must be possible to replace Ĉ(G, n) with a
constant smaller than 1 and by this drop the polynomial pre-factor. We do this using
a step that appeared in [14, Proof of Theorem 3.1].16

To this end, denote byωopt(Gn
1−α+β) the optimal winning probability in the thresh-

old game Gn
1−α+β . For any n, let C̃n be the constant for which the tight bound

ωopt(G
n
1−α+β) = C̃n exp[−nε2/8] (10.27)

holds. In particular, this means that there exists a strategy Pn that achieves the above
winning probability.

Assume by contradiction that there exists N0 such that C̃N0 > 1. Thus, there exists
a strategy PN0 achieving C̃N0 exp[−N0ε

2/8], with C̃N0 > 1, in the game GN0
1−α+β .

Let N1 be sufficiently large, so that Eq. (10.10) holds for n = N0N1 and consider
the threshold game GN0N1

1−α+β . On the one hand, using N1 independent copies of PN0

achieves winning probability of
(

C̃N0

)N1

exp[−N0N1ε
2/8] and thus

ωopt(G
N0N1
1−α+β) ≥

(

C̃N0

)N1

exp[−N0N1ε
2/8] .

On the other hand, Eq. (10.26) must hold for n = N0N1:

ωopt(G
N0N1
1−α+β) ≤ poly (N0N1) exp[−N0N1ε

2/8] .

To reconcile both bounds, we must have
(

C̃N0

)N1 ≤ poly (N0N1) for all sufficiently

large N1. Thus, C̃N0 ≤ 1, which leads to a contradiction.
We get that for all sufficiently large n, C̃n ≤ 1. In combination with Eq. (10.27)

we therefore have

ωopt(G
n
1−α+β) ≤ exp[−nε2/8] .

�

To get a better feeling of the result, without trying to optimise it, one can make
the following choices. Let ε = β

10d , ζ = 8ε and ν = ε (assumingminx,y QXY (x, y) >
β
10d ). Using these choices, our proof holds for n and β such that

n

ln(n)
> 20|A||B||X ||Y| ln(20d/β)

(β/10d)2

16The part of the proof starting at this point onward did not appear in the proof of the threshold
theorem of [4]. We follow here the last part of the proof of the threshold theorem presented in [14],
which appeared after [4], and can be used to improve the result of [4].
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with the following constants in Theorem 10.11:

C(G) = (30d)−2 = (30|X ||Y| (|A| + |B|))−2 . (10.28)

The theorem then reads

Prdata∼PABXY [ f > 1 − α + β] ≤ exp
[−nβ2 (30|X ||Y| (|A| + |B|))−2

]

.

A different choice of parameters can improve the dependence of the constants on the
game G.

10.4 Open Questions

In this chapter we considered the question of parallel repetition of games when the
players are allowed to use any non-signalling strategy. The most interesting direction
for future work is the development of a similar proof technique, based on de Finetti
reductions or other forms of reductions to IID, for classical and quantum parallel
repetition. In the case of classical games, parallel repetition results for general games
with more than two parties are unknown. For quantum games, even the case of two-
player games is not completely solved. (Recall Sect. 4.1.2 for further information).
Since our proof captures all types of games and any number of players (see [4]),
a similar proof technique for classical and quantum games will solve some open
questions.

To understand what is the main challenge when trying to extend the proof to
classical and quantum case, note the following. In the standard proofs of parallel
repetition theorems, i.e., proofs following the approach of [7] most of the difficulties
arise due to the effect of conditioning on the event of winning some of the game
repetitions. As this event is one that depends on the structure of the game and strategy
and we have no control over them, conditioning can introduce arbitrary correlations
between the questions used in different repetitions of the game, a major source of
difficulty for the remainder of the argument. In our proof we also need to analyse
the effect of conditioning on a certain event, the event of the non-signalling test
accepting, and this is done in Lemma 10.9. However, the key advantage of our
approach is that the test has a very specific structure, and in particular conditioning
on the test passing can be done locally by the players in a way that respects the non-
signalling constraints. As a result it is almost trivial to deal with the conditioning in
the remainder of the proof. This shift from conditioning on an uncontrolled event,
success in the game, to a highly controlled one, a non-signalling test that we design
ourselves, is a key simplification that we expect to play an important role in any
extension of our method to classical or quantum strategies.

By finding appropriate “non-classicality” and “non-quantumness” measures
which can replace our signalling measure in Definition 10.3 one may be able to
adapt the proof to the multi-player classical and quantum cases as well. Unfortu-
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nately, it is not clear which measure can be used by the players, preferably locally,
to determine if their systems are classical or quantum. In other words, the main
difficulty is finding a measure for which Lemma 10.9 can be proven. The rest of
the proofs should follow easily for most “non-classicality” and “non-quantumness”
measures of one-game strategies.
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Chapter 11
Showcase: Device-Independent Quantum
Cryptography

In this chapter we consider the showcase of device-independent quantum cryptogra-
phy and show how the security proof of device-independent cryptographic protocols
can be performed via a reduction to IID. We introduce a general framework for
obtaining proofs of device-independent security for a broad range of cryptographic
tasks. For the sake of explicitness, we focus in this chapter on the task of device-
independent quantum key distribution (DIQKD).1

The main result that we present can be phrased in the following informal way (the
formal theorem is stated as Theorem 11.6):

Theorem 11.1 (Informal) Security of DIQKD in the most general case follows from
security under the IID assumption. Moreover, the dependence of the key rate on the
number of rounds, n, is the same as the one in the IID case, up to terms that scale
like 1/

√
n.

The theorem establishes the a priori surprising fact that general quantum adver-
saries are no stronger than an adversary restricted to IID attacks, even in the device-
independent setting. This allows us to give simple and modular security proofs of
DIQKDand to extend tight results known forDIQKDunder the IID assumption to the
most general setting thus deriving essentially optimal key rates and noise tolerance.2

Our technique takes advantage of the sequential nature of the protocol, as well as
the specific way in which classical statistics are collected by users of the protocol,

1Since the initial announcement of our work [1], our framework has already been applied to a
variety of additional tasks, including conference key agreement [2], randomness expansion [1] and
privatization [3], as well as randomness generation with sub-linear quantum resources [4].
2This is crucial for experimental implementations of device-independent protocols. Our quantitive
results have been applied to the analysis of the first experimental implementation of a protocol for
randomness generation in the fully device-independent framework [5].

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Arnon-Friedman, Device-Independent Quantum Information Processing,
Springer Theses, https://doi.org/10.1007/978-3-030-60231-4_11

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60231-4_11&domain=pdf
https://doi.org/10.1007/978-3-030-60231-4_11


160 11 Showcase: Device-Independent Quantum Cryptography

and makes use of the entropy accumulation theorem (EAT), discussed as part of
Chap.9. The analysis and results of this chapter previously appeared in [1, 6].

The chapter is arranged as follows. We first explain in Sect. 11.1 what is the main
challenge when proving the security of device-independent quantum cryptographic
protocols, such asDIQKD.Section11.2 dealswith the analysis of themain subroutine
of most device-independent protocols. Then, the security proof of DIQKD is given in
Sect. 11.3. As we are about to encounter many parameters and variables throughout
the proofs, we list them in Appendix C.3 for convenience.

11.1 Main Challenge and Goal

The central task when proving security of cryptographic protocols consists in bound-
ing the information that an adversary, called Eve, may obtain about certain values
generated by the protocol, which are supposed to be secret. In the case of QKD,
for example, the relevant output of the protocol is the raw data K , and proving
security is essentially equivalent3 to establishing a lower bound on the smooth con-
ditional min-entropy H ε

min(K |E), where E is Eve’s quantum system, which can be
initially correlated to the device producing K . The quantity H ε

min(K |E) determines
the maximal length of the secret key that can be created by the protocol. Hence, prov-
ing security amounts to establishing a lower bound on H ε

min(K |E). Evaluating the
smooth min-entropy H ε

min(K |E) of a large system is often difficult, especially in the
device-independent setting where not much is known about the way K is produced
and the system E is out of our control.

The IID assumption, discussed in Chap.7, is commonly used to simplify the task
of calculating H ε

min(K |E). The analysis of the smooth min-entropy under the IID
assumption was sketched in Sect. 7.3.2; in that case the total smooth min-entropy
can be easily related to the sum of the von Neumann entropies in each round sep-
arately, using the quantum asymptotic equipartition property (Sect. 7.2.2). A bound
on the entropy accumulated in one round can usually be derived using the expected
winning probability in the game played in that round (as appeared in Sect. 5.2),
which in turn can be easily estimated during the protocol in the IID case using
standard Chernoff-type bounds. A long line of works [7–16] considered the secu-
rity of device-independent quantum and non-signalling cryptography under the IID
assumption. Most relevant for our work are the results of [12], where security of a
DIQKD protocol was proven in the asymptotic limit, i.e., when the device is used
n → ∞ times, and under the IID assumption. Their protocol is based on the CHSH
inequality [17], and their analysis shows that it achieves the best possible rates under
these assumptions.

Unfortunately, even though quite convenient for the analysis, the IID assumption
is a very strong one in the DI scenario. In particular, under such an assumption the

3From that point onward standard classical post-processing steps, e.g., error correction and privacy
amplification, suffice to prove the security of the protocol; recall Sect. 4.2.3.
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device cannot use any internal memory (i.e., its actions in one round cannot depend
on the previous rounds) or even display time-dependent behaviour (due to inevitable
imperfections for example). Without this assumption, however, very little is known
about the structure of the untrusted device and hence also about its output (as the
device might correlate the different rounds in an almost arbitrary way). As a conse-
quence, DIQKD security proofs [18–20] that estimated H ε

min(K |E) directly for the
most general case had to use complicated techniques and statistical analysis com-
pared to the IID case. This led to security statements which are of limited relevance
for practical experimental implementations; they are applicable only in an unrealis-
tic regime of parameters, e.g., small amount of tolerable noise and large number of
signals.

To overcome the above difficulty we take the approach of reductions to IID in the
analysis presented in the following sections. In particular, we leverage the sequential
nature of our DIQKD protocol to prove its security by reducing the analysis of multi-
round sequential boxes to that of IID boxes as discussed in Chap.9. Specifically, we
use the EAT presented in Sect. 9.2.3 to establish that entropy accumulates additively
throughout the multiple rounds of the protocol and use it to bound the total amount
of smooth min-entropy H ε

min(K |E).4

This results in a proof technique with several benefits. Firstly, since the analysis
of the IID case is rather simple and modular (as it builds mainly on the analysis of
a single-round box) a security proof via a reduction to IID ends up being simple
and modular by itself. For example, if one wishes to consider a DIQKD protocol
based on a game other than the CHSH game, the sole significant modification of
the security proof is the analysis of a single-round box (see Sects. 5.2 and 11.2.2).
Secondly, due to the optimality of the EAT (at least to first order in n), we are
able to extend tight results known for, e.g., DIQKD, under the IID assumption, to
the most general setting. This yields the best rates known for any protocol for a
device-independent cryptographic task. Thirdly, performing a finite-size analysis is
no harder than performing the asymptotic one as all dependency on n is either trivial
or already incorporated in the EAT.

We are now ready to embark on the mission of proving the security of our DIQKD
protocol, described in Sect. 4.2.2 (see also Protocol 11.2 below).

11.2 Device-Independent Entropy Accumulation

The current section is devoted to the analysis of the entropy accumulation protocol
presented as Protocol 11.1. The entropy accumulation protocol acts as the main
building block of many device-independent cryptographic protocols. It is used to

4The security proof presented in [20] is similar in spirit (but technically very different) to the one
presented here. It bounds the total amount of smooth min-entropy generated in the protocol in a
round-by-round fashion but the entropy accumulated in a single round is not the von Neumann
entropy.
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Protocol 11.1 CHSH-based entropy accumulation protocol
Arguments:

D – untrusted device of two components that can play CHSH repeatedly
n ∈ N+ – number of rounds
γ ∈ (0, 1] – expected fraction of test rounds
ωexp – expected winning probability in an honest implementation
δest ∈ (0, 1) – width of the confidence interval for parameter estimation

1: For every round i ∈ [n] do Steps 2-5:
2: Alice and Bob choose a random Ti ∈ {0, 1} such that Pr(Ti = 1) = γ.
3: If Ti = 0, Alice and Bob choose (Xi , Yi ) = (0, 2) and otherwise Xi , Yi ∈ {0, 1} uniformly at

random.
4: Alice and Bob use D with Xi , Yi and record their outputs as Ai and Bi respectively.
5: If Ti = 0 then Bob updates Bi to Bi =⊥, and they set Wi =⊥. If Ti = 1 they set Wi =

w (Ai , Bi , Xi , Yi ).
6: Alice and Bob abort if

∑
j :Tj=1 Wj <

(
ωexpγ − δest

) · n .

generate the raw data for Alice and Bob by playing a non-local game n times in
sequenceusing anuntrusteddevice D.We remark that even thoughwecall the entropy
accumulation protocol a “protocol”, one should see it more as a mathematical tool
which allows us to use the machinery of the EAT rather than an actual protocol to be
implemented.5 The relevance of the protocol stems from the fact that the final state at
the end of the protocol, onwhich a smoothmin-entropy is evaluated, is closely related
to the final state in the actual protocol to be executed (e.g., our DIQKD protocol).

Our primary task is to lower-bound the amount of smooth min-entropy generated
by playing the n games. This lower-bound can then be used as the starting point of
security proofs of device-independent cryptographic protocols, such as DIQKD. The
informal statement is given below (for the explicit formulation see Theorem 11.5):

Theorem 11.2 (Informal) Fix a choice of parameters for Protocol 11.1. Then there
exist constants c1, c2 > 0 such that the following holds. Let D be any device and ρ|Ω
the state generated using Protocol 11.1, conditioned on the protocol not aborting.
Then for any ε1, ε2 ∈ (0, 1), either the protocol aborts with probability greater than
1 − ε1 or

H ε2
min (AB|XYTE)ρ|Ω > c1n − c2

√
n log(1/ε1ε2) . (11.1)

The registers AB inEq. (11.1) contain the classical outputs generatedby the device
during the protocol. The registers XYT hold the classical information exchanged
during the protocol, that may be leaked to the adversary. E is a quantum register that
describes the adversary’s quantum system. Thus, Eq. (11.1) gives a precise bound on
the amount of the smooth min-entropy present in the users’ outputs at the end of the
protocol, conditioned on all information available to the adversary.

We give below explicit formulas for computing the constants c1 and c2 that appear
in Eq. (11.1) as a function of the parameters of the protocol. Importantly, the con-

5In particular, in a setting with two distinct parties, Alice and Bob, communication is required to
actually implement Protocol 11.1. We ignore this as it is not relevant for the analysis.
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stant c1 that governs the leading-order term equals the optimal constant, i.e., the
same leading constant that would be obtained under the IID assumption, which by
the asymptotic equipartition property (Theorem 7.3) is the von Neumann entropy
accumulated in one round of the protocol. Furthermore, our analysis provides con-
trol over the constant c2 in front of the second-order term. Such control is necessary
for any application where finite values of n need to be considered, such as in quantum
cryptography, where the values of n achieved in practice remain relatively small.6

Aswe showbelow,Theorem11.2 can be proven by reducing the general sequential
scenario to the IID one using the EAT. To use the EAT, we first need to construct
the relevant objects, i.e., the EAT-channels and the min-tradeoff functions defined in
Sect. 9.2.2. This is done in the following two sections. A lower-bound on the smooth
min-entropy is then proven in Sect. 11.2.3.

11.2.1 EAT Channels

Protocol 11.1 proceeds in rounds and can therefore be presented by an application of
a sequence of quantum channels (recall Sect. 9.1). In this section we define the con-
sidered channels and prove that they are EAT-channels, according to Definition 9.1.
Note that one has some freedom in choosing the channels to work with (i.e., the
channels are not completely defined by the protocol itself). We choose our particular
channels so that all the prerequisites of the EAT are fulfilled and, at the same time, the
final bound on the smooth min-entropy can be converted to a bound on the smooth
min-entropy in our DIQKD protocol (see Sect. 11.3.2, and Lemma 11.8 in particular,
for details).

Every EAT channel Mi describes one round of the protocol, where one round
includes Steps 2–5 of Protocol 11.1. For every i ∈ {0} ∪ [n], the (unknown) quantum
state of the device D shared by Alice and Bob after round i of the protocol is denoted
by ρiQAQB

. We denote the register holding this state by Ri . In particular, R0 = QAQB

at the start of the protocol. At Step 4 in Protocol 11.1, the quantum state of the
devices is changed from ρi−1

QAQB
in Ri−1 to ρiQAQB

in Ri by the use of the device. To
be a bit more precise, the quantum state is changed in two stages. First, the relevant
measurement of Step 4 is done (where it is assumed that the measurements of the
different components are in tensor product). Then, after Ai and Bi are recorded, the
different components of the device are allowed to communicate. Thus, some further
changes can be made to the post-measurement state even based on the memory of
all components together (recall Sect. 6.2.2).

In the notation of Chap.9, we make the following choices:

6See e.g. Fig. 11.4, where one can see that finite-size effects can play an important role up to even
moderately large values of n ≈ 1010.
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Oi = Ai Bi

Si = XiYi Ti
Ci = Wi

Ri = Ri

E = E .

(11.2)

Our EAT channels are then

Mi : Ri−1 → Ri Ai Bi XiYi TiWi

defined by the CPTPmap describing the i-th round of Protocol 11.1, as implemented
by the untrusted device D. That is, the channel describes the random choices of Ti ,
Xi , and Yi , the quantum operations made by the device, and the production of Ai ,
Bi , and Wi .

Since the operations of D are unknown, our EAT channels are not completely
explicit. The important thing is merely that we know that some quantum channels
describing the operation of the device exist. The lack of knowledge regarding the
channels does not raise any problemswhen applying theEATbut it doesmake the task
of deriving good min-tradeoff functions more challenging (compared to the scenario
of a characterised device). This difficulty, however, is inherent to device-independent
information processing tasks and has nothing to do with the proof technique; see
Sect. 11.2.2 below for further details.

We prove that the described channels can act as our EAT channels.

Lemma 11.3 The channels {Mi : Ri−1 → Ri Ai Bi XiYi TiWi }i∈[n] defined by the
CPTP map describing the i-th round of Protocol 11.1, as implemented by the
untrusted device D are EAT channels according to Definition 9.1 and the identi-
fication made in Eq. (11.2).

Proof To prove that the constructed channels {Mi }i∈[n] are EAT channels we need
to show that the three conditions stated in Definition 9.1 are fulfiled.

1. {Oi }i∈[n] = {Ai Bi }i∈[n], {Si }i∈[n] = {XiYi Ti }i∈[n], and {Ci }i∈[n] = {Wi }i∈[n] are all
finite-dimensional classical systems. {Ri }i∈[n] are arbitrary quantum systems.
Finally, we have dO = dAi · dBi = 2 · 3 = 6.

2. For any i ∈ [n] and any input state σRi−1 , Wi is a function of the classical val-
ues Ai , Bi , Xi , and Yi . Hence, the marginal σOi Si = σAi Bi Xi Yi Ti of the output
state is unchanged when deriving Wi from it. (In other words, we can “measure”
σAi Bi Xi Yi Ti to get the value of Wi repeatedly without disturbing σAi Bi Xi Yi Ti ).

3. For any initial state ρinR0E
and the resulting final state ρOSCE = ρABXYTWE , the

Markov-chain conditions

(AB)1, . . . , (AB)i−1 ↔ (XYT )1, . . . , (XYT )i−1, E ↔ (XYT )i

trivially hold for all i ∈ [n] since, according to Protocol 11.1, Xi , Yi , and Ti are
chosen independently from everything else. �
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When defining the EAT channels we identified Oi with Ai Bi . Looking ahead, this
means that we are about to derive a bound on H ε

min(AB|XYTE). For the analysis
of DIQKD, however, a bound on H ε

min(A|XYTE) is needed. Why not set Oi = Ai

instead of Oi = Ai Bi? The reason is that the definition of an EAT channel requires
that Ci can be derived from Oi Si alone. Thus, choosing Oi = Ai , Si = XiYi Ti , and
Ci = Wi would render the above lemma wrong. The reader may then ask—why
not choose Oi = Ai and Si = Bi XiYi Ti? With this choice, however, the required
Markov-chain conditions read

A1, . . . , Ai−1 ↔ (BXYT )1, . . . , (BXYT )i−1, E ↔ (BXYT )i

and these do not hold for an arbitrary initial states since nothing restricts Bi from
being correlated to, e.g., Ai−1, when considering untrusted devices.7 Hence, the
lemma would not hold for this choice as well. We therefore stick with the choices
made in Eq. (11.2) and relate H ε

min(AB|XYTE) to H ε
min(A|XYTE) in Sect. 11.3.2.

Now that our EAT channels are defined, the next step is to construct amin-tradeoff
function for them. This is done in the next section.

11.2.2 Min-Tradeoff Function

When working with the EAT the most important task is to devise a good tradeoff
function, as defined in Definition 9.2. As mentioned in Sect. 9.2.3, this is where the
“physics kicks in”. We are aiming for a lower-bound on the smooth min-entropy and
hence in need of a min-tradeoff function fmin. That is, we need to construct a convex
differential function for which, for all i ∈ [n],

fmin(p) ≤ inf
σRi−1R

′ :Mi (σ)Wi =p
H
(
Ai Bi |XiYi Ti R

′)
Mi (σ)

, (11.3)

where p is a probability distribution overW = {⊥, 0, 1} and {Mi }i∈[n] are the EAT
channels defined in the previous section.

To understand the task at hand, let us first focus on the set of states

Σ(p) = {
σRi−1R′ : Mi (σ)Wi = p

}
.

on which the infimum is evaluated. First observe that, due to the structure of our
channels, the distributions over Xi , Yi , and Ti are fixed for any σ ∈ Σ(p). That is,
even though we take an infimum over many possible input states for the channels,
and even though the actions of the untrusted device are not characterised, the values

7Consider for example a device in which the initial state ρQA1 QB1 QA2 QB2
= |Φ〉〈Φ|QA1 QB2

⊗
|Φ〉〈Φ|QA2 QB1

, i.e., the systems over QA1 and QB2 are entangled. Thus, A1 and B2 may be cor-
related even given B1X1Y1T1. In this case the Markov-chain conditions do not hold since the
side-information B2 reveals information regarding the past output A1.
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of Xi , Yi , and Ti are always chosen according to Protocol 11.1.8 This implies, in
particular, that for probability distributions p with p(⊥) �= 1 − γ the set Σ(p) is
empty.

Given the above, for any p over {⊥, 0, 1}, the set Σ(p) includes only states σ for
which

Mi (σ)Wi =
⎛

⎝
p(⊥) 0 0
0 p(0) 0
0 0 p(1)

⎞

⎠ =
⎛

⎝
1 − γ 0 0
0 γ(1 − ω) 0
0 0 γω

⎞

⎠ , (11.4)

where we identify ω with the winning probability of the state σ in the CHSH game
(when using the measurements defining the channel Mi ). For this reason, we can,
slightly informally,9 see the function fmin as defined over a single variableω ∈ [0, 1].

In total, we can understand the set Σ(p) = Σ(p(ω)) as the set including all
states σ that can be used to win the CHSH game with probability ω. It is this infor-
mation about the relevant input states σ that allows us to construct a min-tradeoff
function fulfilling Eq. (11.3). In fact, given the above observation, themain ingredient
needed to construct a valid (and tight) min-tradeoff function is Lemma 5.3, which
was discussed in the context of single-round boxes (Chap. 5). This clarifies why the
presented proof technique can be seen as a reduction to IID.

We are ready to embark on the construction of the min-tradeoff function.

Lemma 11.4 Let10

g(p) =

⎧
⎪⎨

⎪⎩

1 − h

(
1
2 + 1

2

√

16 p(1)
γ

(
p(1)
γ

− 1
)

+ 3

)
p(1)
γ

∈
[
3
4 ,

2+√
2

4

]

1 p(1)
γ

∈
[
2+√

2
4 , 1

]
,

and

8A different model for the sequential process could have been one in which the initial quantum
state itself includes the registers X and Y and the channel is defined such that a measurement is
performed on those registers to get the inputs (and then use the device in the protocol).When starting
with maximally mixed states over XY the entire sequential process is exactly the same as the one
described by our EAT channels. However, when coming to construct a min-tradeoff function with
this (somewhat strange) alternative choice of channels, we see that the set Σ(p) can include states
in which, e.g., Xi = 0 with probability 1 (since we need to consider all possible input states). In
the context of Bell inequalities, this is similar to dropping the “free choice assumption”. Clearly, if
this had been the case, the only min-tradeoff function one could construct is the constant function
fmin(p) = 0 for all p, which is trivial and useless.
9Formally, we will need to extend the function to all probability distributions p (even those with
p(⊥) �= 1 − γ). We can extended the function in any way we wish, while keeping it convex and
differentiable.
10We define the functions g and fmin only in the regime in which the protocol does not abort, i.e.,
p(1)/γ ≥ 3/4.
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fmin (p, pcut) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

g (p) p(1) ≤ pcut(1)
d

dp(1)
g(p)

∣
∣
pcut

· p(1)

+ g(pcut) − d

dp(1)
g(p)

∣
∣
pcut

· pcut(1)
p(1) > pcut(1) .

(11.5)
Then, for any probability distribution pcut over {⊥, 0, 1}, fmin (p, pcut) is a min-
tradeoff functions for the EAT channels from Lemma 11.3.

Before proving the lemma, let us parse the above lengthy equations. The function g
is basically the single-round bound presented in Lemma 5.3, where we replace ω
with p(1)

γ
and trivially extend the function to the regime of winning probabilities

above the optimal quantum winning probability 2+√
2

4 . Notice that for an arbitrary p,

the correct relation between p andω is given byω = p(1)
p(0)+p(1) . However, as explained

above, due to the definition of the channels Mi , the set Σ(p) is empty for p with
p(0) + p(1) �= γ. This implies that there are no constraints on the value of the min-
tradeoff function for such p’s and we are free to define it as we wish in this regime.
Thus, we are not going to run into problems even though the value of the function g
does not seem to have any “physical meaning” for p with p(0) + p(1) �= γ.11

The function fmin in Eq. (11.10) is governed by g and can be understood as follows.
Fix aprobability distribution pcut ∈ [0, 1]. For pwith p(1) ≤ pcut(1), fmin is identical
to g. Otherwise, fmin is a linear function (when restricting ourselves to a slice p(0) +
p(1) = constant) defined via the value and the tangent of g at the point pcut(1). That
is, we “cut and glue” the function at point pcut. By doing so, we make sure that
fmin is a convex and differentiable function, as required by Definition 9.2 while
restraining its gradient, which will later affect the bound on the smooth min-entropy
(via Eq. (9.14)). This construction of fmin is illustrated in Fig. 11.1.

Proof (Proof of Lemma 11.4) We start by using the chain rule of the von Neumann
entropy,

H
(
Ai Bi |XiYi Ti R

′)
Mi (σ)

≥ H
(
Ai |XiYi Ti R

′)
Mi (σ)

.

Due to the bipartite requirement on the untrusted device D used to implement the
protocol, the actions of Alice’s device are independent of Bob’s choice of Yi as well
as of and Ti .12 We thus have

H
(
Ai |XiYi Ti R

′)
Mi (σ)

= H
(
Ai |Xi R

′)
Mi (σ)

.

11Alternatively, one could replace p(1)/γ with p(1)/(p(0) + p(1)), which is more meaningful,
in the definition of the function g. However, since the d fmin/dp(1) will affect the final smooth
min-entropy bound, using p(1)/γ leads to better quantitive results.
12We assume that the value of Ti is exchanged over a classical authenticated channel to which the
device D does not have access. In particular, Alice’s part of the device is independent from the
value of Ti given Xi .
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Fig. 11.1 The construction of the min-tradeoff function fmin appearing in Eq. (11.10). The plot
shows the values of the min-tradeoff function restricted to a slice p(0) + p(1) = constant. After [1,
6]

Combined with Lemma 5.3 we get that for any state σ with winning probability ω
in the CHSH game,

H
(
Ai Bi |XiYi Ti R

′) ≥ 1 − h

(
1

2
+ 1

2

√
16ω (ω − 1) + 3

)

. (11.6)

For probability distributions p with p(0) + p(1) �= γ, the set of states fulfilling
Mi (σ)Wi = p is empty and the condition on the min-tradeoff function given in
Eq.11.3 becomes trivial. Hence, for the construction of the min-tradeoff function
we can restrict our attention to p with p(0) + p(1) = γ. For such p’s one can write
ω = p(1)

p(0)+p(1) = p(1)
γ
. All together we learn that for all p with p(1)

γ
≥ 3

4 ,

inf
σRi−1R

′ :Mi (σ)Wi =p
H
(
Ai Bi |XiYi Ti R

′)
Mi (σ)

≥

1 − h

(
1

2
+ 1

2

√

16
p(1)

γ

(
p(1)

γ
− 1

)

+ 3

)

.

(11.7)

Define a function g by

g(p) =

⎧
⎪⎨

⎪⎩

1 − h

(
1
2 + 1

2

√

16 p(1)
γ

(
p(1)
γ

− 1
)

+ 3

)
p(1)
γ

∈
[
3
4 ,

2+√
2

4

]

1 p(1)
γ

∈
[
2+√

2
4 , 1

]
.

(11.8)
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FromEq. (11.7) it follows that any choice of fmin that is differentiable and satisfies
fmin(p) ≤ g(p) for all p will satisfy Eq. (11.3).
For p(1)

γ
= 2+√

2
4 the derivative of g is infinite. Looking ahead, for the final bound

on the smooth min-entropy derived using the EAT to be meaningful, fmin should be
chosen such that ‖� fmin‖∞ is finite. To assure that this is the case we choose fmin

by “cutting” the function g and “gluing” it to a linear function at some point pcut,
while keeping the function differentiable. By doing this we ensure that the gradient
of fmin is bounded, at the cost of losing a bit of entropy for p with p(1) > pcut(1).13

Towards this, denote

a(pcut) = d

dp(1)
g(p)

∣
∣
pcut

and b(pcut) = g(pcut) − a(pcut) · pcut(1). (11.9)

We then make the following choice for the min-tradeoff function fmin (see
Fig. 11.1):

fmin (p, pcut) =
{

g (p) p(1) ≤ pcut(1)

a(pcut) · p(1) + b(pcut) p(1) > pcut(1)
(11.10)

From the definition of a and b in Eq. (11.9), this function is convex, differentiable,
and fulfils the condition given in Eq. (11.3). fmin can therefore be rightfully called a
min-tradeoff function. Furthermore, by definition, for any choice of pcut it holds that
‖� fmin(·, pcut)‖∞ ≤ a(pcut). �

11.2.3 Smooth Min-Entropy Rate

After constructing the EAT channels and min-tradeoff function in the previous sec-
tions, we are ready to apply Theorem9.3 to derive our lower-bound on the conditional
smooth min-entropy generated by the entropy accumulation protocol, Protocol 11.1.

We use the following notation. The event of not aborting the protocol is given by

Ω =
{
w :

∑

j :Tj=1

w j ≥ (
ωexpγ − δest

) · n
}

. (11.11)

For any initial state ρinQAQB E
, the final state in the end of the protocol is denoted by ρ =

ρABXYTWE and the final state conditioned on not aborting the entropy accumulation
protocol is ρ|Ω .

As shown in Theorem 11.5 below, The smooth min-entropy rate is governed by
the following functions, where h is the binary entropy and γ, p(1) ∈ (0, 1]:

13The point pcut can later be chosen such that the derived smooth entropy bounds are optimised.
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g(p) =

⎧
⎪⎨

⎪⎩

1 − h

(
1
2 + 1

2

√

16 p(1)
γ

(
p(1)
γ − 1

)
+ 3

)
p(1)
γ ∈

[
3
4 , 2+√

2
4

]

1 p(1)
γ ∈

[
2+√

2
4 , 1

]
,

fmin (p, pcut) =
{

g (p) p(1) ≤ pcut(1)
d

dp(1) g(p)
∣
∣
pcut

· p(1) + g(pcut) − d
dp(1) g(p)

∣
∣
pcut

· pcut(1) p(1) > pcut(1) ,

μ(p, pcut, εs, εe) = fmin (p, pcut)

− 1√
n
2

(

log 13 + d

dp(1)
g(p)

∣
∣
pcut

)
√
1 − 2 log(εs · εe) ,

μopt(εs, εe) = max
3
4 <

pcut (1)
γ < 2+√

2
4

μ(ωexpγ − δest, pcut, εs, εe) . (11.12)

Theorem 11.5 Let D be any device, ρ the state generated by running Proto-
col 11.1, Ω the event that the protocol does not abort (as defined in Eq. (11.11)),
and ρ|Ω the state conditioned onΩ . Then, for any εEA, εs ∈ (0, 1), either the protocol
aborts with probability greater than 1 − εEA or

H εs
min (AB|XYTE)ρ|Ω > n · μopt(εs, εEA) , (11.13)

where μopt is defined in Eq. (11.12).

Proof We wish to apply the EAT, stated as Theorem 9.3. To this end, denote by
freqw(w̃) = |{i |wi=w̃}|

n the frequency defined by the raw dataw (recall Eq. (9.11)) and
observe the following:

1. The EAT channels {Mi }i∈[n] constructed in Sect. 11.2.1 faithfully describe the
protocol and the device D, in the sense that the final state of the protocol, ρ, can
be written as

ρABXYTWE = (
TrRn ◦ Mn ◦ · · · ◦ M1

)⊗ IE ρinQAQB E . (11.14)

2. The set Ω̂ = {p : p(1) ≥ ωexpγ − δest} is convex and {freqw : w ∈ Ω} ⊆ Ω̂

(recall Sect. 9.2.3.1).
3. According to Lemma 11.4, fmin (p, pcut) is a min-tradeoff function for the con-

sidered EAT channels, for any pcut with 3
4 <

pcut(1)
γ

< 2+√
2

4 .

4. For any pcut with 3
4 <

pcut(1)
γ

< 2+√
2

4 , the value t = fmin
(
ωexpγ − δest, pcut

)
sat-

isfies fmin
(
freqw, pcut

) ≥ t for any freqw ∈ Ω̂ .
5. dO = dAi Bi = 6 and ‖� fmin(·, pcut)‖∞ = a(pcut) for any pcut with 3

4 <
pcut(1)

γ
<

2+√
2

4 .

Using the EAT (Theorem 9.3) in combination with the above observations we
conclude that for any pcut with 3

4 <
pcut(1)

γ
< 2+√

2
4 , either the protocol aborts with

probability greater than 1 − εEA, or
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H εs
min (AB|XYTE)ρ|Ω > n fmin

(
ωexpγ − δest, pcut

)− √
nζ(pcut) , (11.15)

for ζ(pcut, εs, εEA) = 2 (log 13 + a(pcut))
√
1 − 2 log(εs · εEA). To obtain the opti-

mal rate we maximise H εs
min (AB|XYTE)ρ|Ω over pcut. Denote μ(p, pcut, εs, εEA) =

fmin (p, pcut) − 1√
n
ζ(pcut, εs, εEA) and let

μopt(εs, εEA) = max
3
4 <

pcut (1)
γ < 2+√

2
4

μ(ωexpγ − δest, pcut, εs, εEA) .

Plugging this into Eq. (11.15) the theorem follows. �

Importantly, the theorem tells us that the first order term of the smooth min-
entropy is linear in n. Moreover, asymptotically, the entropy rate is simply given by
the min-tradeoff function fmin (p, pcut). This is why it was crucial to construct an
optimal min-tradeoff function in Sect. 11.2.2.

The rate μopt is plotted in Fig. 11.2 as a function of the expected winning probabil-
ityωexp in the CHSH game for γ = 1 and several choices of values for the parameters
εEA, δest, and n (while optimising over all other parameters). For comparison, we also
plot in Fig. 11.2 the asymptotic rate (n → ∞) under the IID assumption. In this case,
the quantum asymptotic equipartition property implies that the optimal rate is the
Shannon entropy accumulated in one round of the protocol (recall Sect. 7.2.2). This

Fig. 11.2 μopt(ωexp) for γ = 1 and several choices of n, εEA, and the smoothing parameter εs.
δest = 10−2 in the curve with n = 105 and δest = 10−3 in all other curves. Note that for the errors
of the protocols to be meaningful the number of rounds n should be at least of order δ−2

est . εEA and εs
affect the soundness error in the DIQKD protocol considered in Sect. 11.3 and therefore should be
chosen to be relatively small. The dashed line shows the optimal asymptotic (n → ∞) rate under
the IID assumption. After [1, 6]
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rate, appearing as the dashed line in Fig. 11.2, is an upper bound on the smooth min-
entropy that can be accumulated. One can see that as the number of rounds in the
protocol increases the rate μopt approaches this optimal rate.

11.3 Device-Independent Quantum Key Distribution

Our DIQKD protocol is stated as Protocol 11.2. In the first part of the protocol Alice
and Bob use their devices to produce the raw data, similarly to what is done in the
entropy accumulation protocol, Protocol 11.1, analysed in the previous section. In
the second part of the protocol Alice and Bob apply classical post-processing steps
to produce their final keys from the raw data. The classical post-processing consists
of error correction, parameter estimation, and privacy amplification; all discussed in
detail in Sect. 4.2.2.

Apart from the classical post-processing, the main difference between the entropy
accumulation protocol and the DIQKD protocol is the way we set Bob’s outputs. In
Protocol 11.1, Bob’s outputs are being set to ⊥ in all rounds for which Ti = 0, i.e.,
in the generation rounds. In contrast, when dealing with QKD Bob needs to keep the
outputs produced in the generation rounds so that he could create a key identical to
Alice’s key. Tomake the distinction explicit we denote Bob’s outputs in Protocol 11.2
with a tilde, B̃. We will get back to this point later and explain why the distinction
is relevant for our analysis.

Our main goal in the following sections is to prove the security (according to
Definition 4.5) of Protocol 11.2:

Theorem 11.6 For any choice of parameters, the DIQKD protocol given in Proto-
col 11.2 is (εsQKD, εcQKD, )-secure according to Definition 4.5, with εsQKD ≤ 2εEC +
εPA + εs + εEA, εcQKD ≤ εcEC + εcEA + εEC, and for key length

� = n · μopt (εs/4, εEA + εEC) − leakEC

− 3 log
(
1 −

√
1 − (εs/4)2

)
− γn

− √
n2 log(7)

√
1 − 2 log (εs/4 · (εEA + εEC)) − 2 log

(
ε−1
PA

)
,

(11.16)

where μopt is specified in Eq. (11.12).

The resulting key rates, �/n, are discussed and plotted in Sect. 11.3.3 for different
choices of parameters.

In the following sections we are set to prove Theorem 11.6. The theorem follows
from the completeness of the protocol, stated as Lemmas 11.7, and its soundness,
stated as Lemma 11.9.
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Protocol 11.2 CHSH-based DIQKD protocol
Arguments:

D – untrusted device of two components that can play CHSH repeatedly
n ∈ N+ – number of rounds
γ ∈ (0, 1] – expected fraction of test rounds
ωexp – expected winning probability in an honest implementation
δest ∈ (0, 1) – width of the confidence interval for parameter estimation
EC – error correction protocol that leaks leakEC bits and has completeness and soundness

error probabilities εcEC and εEC respectively
PA – privacy amplification protocol with error probability εPA

1: For every round i ∈ [n] do Steps 2-4:
2: Alice and Bob choose a random Ti ∈ {0, 1} such that Pr(Ti = 1) = γ.
3: If Ti = 0, Alice and Bob choose (Xi , Yi ) = (0, 2) and otherwise Xi , Yi ∈ {0, 1} uniformly at

random.
4: Alice and Bob use D with Xi , Yi and record their outputs as Ai and B̃i respectively.

5: Error correction:Alice and Bob apply the error correction protocol EC. If EC aborts they abort
the protocol. Otherwise, they obtain raw keys denoted by KA and KB .

6: Parameter estimation: Using B̃ and KB , Bob setsWi = wCHSH

(
KBi , B̃i , Xi , Yi

)
for the test

rounds and Wi =⊥ otherwise. He aborts if
∑

j :Tj=1 Wj <
(
ωexpγ − δest

) · n;.
7: Privacy amplification: Alice and Bob apply the privacy amplification protocol PA on KA and

KB to create their final keys K̃ A and K̃B of length �.

11.3.1 Completeness

We seek to prove that Protocol 11.2 is complete, i.e., that there exists an honest
implementation of the device D that leads to a negligible probability of the protocol
aborting. We remark that in order for the protocol to be relevant in practice, com-
pleteness has to be proven with respect to a realistic honest implementation that can
be realised in experiments (or, at the least, believed to be feasible in the future).
The honest implementation that we consider is the standard one and is described in
Sect. 4.2.4. In short, the honest device makes IID measurements on an IID quantum
state ρ = σ⊗n . The state and measurements are such that the winning probability
achieved in the CHSH game in a single round is ωexp that can be chosen freely.14

The following lemma gives the relation between the probability εcQKD that the
protocol aborts for an honest implementation of the device D and the other parameters
of the protocol.

Lemma 11.7 Protocol 11.2 is complete with completeness error

εcQKD ≤ εcEC + εEC + εcE A ,

14For any ωexp there are many devices that fit this description; an explicit example can be found in
Sect. 4.2.4.
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where εcE A ≤ exp(−2nδ2est) and εcEC and εEC are two independent parameters of the
error correction protocol.

Proof We wish to upper-bound the probability that Protocol 11.2 aborts when run-
ning using the honest implementation. There are two steps in which Alice and Bob
can abort Protocol 11.2:

1. The protocol may abort after the error correction step (Step 5). This happens with
probability εcEC .

2. Assuming the protocol did not abort in Step 5, it may abort after the parameter
estimation step (Step 6). Recall that Bob performs parameter estimation using KB

and B̃, i.e., he checks whether sufficiently many games were won when looking
at his data KB and B̃. There are two scenarios which lead to the protocol aborting
after parameter estimation:

(a) Error correction was successful, i.e., KB = KA, but not sufficiently many
games were won when comparing KA and B̃. When utilising the honest
implementation,Wi are IID RVs with E [Wi ] = ωexpγ. Therefore, we can use
Hoeffding’s inequality to bound the probability of such an event:

εcE A = Pr

⎡

⎣
∑

j :Tj �=⊥
Wj ≤ (

ωexpγ − δest
) · n

⎤

⎦ ≤ exp(−2nδ2est) . (11.17)

(b) Error correction was not successful, i.e., KB �= KA (but EC did not abort)
and not sufficiently many games were won when comparing at KB and B̃.
This happens with probability at most εEC .

The lemma follows by using the above in combination with the union bound. �

11.3.2 Soundness

To establish soundness first note that, by definition, as long as Protocol 11.2 does not
abort it produces a key of length �. Therefore it remains to verify correctness (Defi-
nition 4.3), which depends on the error correction step, and security (Definition 4.4),
which is based on the privacy amplification step.

To prove security we start by assuming that the error correction step is successful
and lower-bound the smooth min-entropy of the quantum state shared between Alice
and Bob right before the privacy amplification step. The main ingredient in the proof
is the lower-bound on the smooth min-entropy established in Theorem 11.5. Most
effort in proving security is devoted to relating the state considered in the entropy
accumulation protocol (to which Theorem 11.5 refers) and the state in the end of the
DIQKD protocol.
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To be more precise, let
≈
Ω denote the event of Protocol 11.2 not aborting and the

EC protocol being successful, and let ρ̃
AB̃XYTOE | ≈

Ω
be the state at the end of the pro-

tocol,15 conditioned on this event. Success of the privacy amplification step relies on
the smooth min-entropy H εs

min(A|XYTOE)ρ̃
|≈Ω
being sufficiently large. Lemma 11.8

connects this quantity to H
εs
4

min(AB|XYTE)ρ|Ω , on which a lower bound is provided
by Theorem 11.5.

Lemma 11.8 For any device D, let ρ̃ be the state generated in Protocol 11.2 right
before the privacy amplification step, Step 7. Let ρ̃| ≈

Ω
be the state conditioned on not

aborting the protocol and success of the EC protocol. Then, for any εEA, εEC, εs ∈
(0, 1), either the protocol aborts with probability greater than 1 − εEA − εEC or

H εs
min (A|XYTOE)ρ̃

|≈Ω
≥ n · μopt (εs/4, εEA + εEC) − leakEC

−3 log
(
1 −

√
1 − (εs/4)2

)
− γn

−√
n2 log 7

√
1 − 2 log (εs/4 · (εEA + εEC)) .

(11.18)

Proof Consider the following events:

1. Ω: the event of not aborting in the entropy accumulation protocol, Protocol 11.1.
This happens when the Bell violation, calculated using Alice and Bob’s outputs
and inputs, is sufficiently high.

2. Ω̃: Suppose Alice and Bob run Protocol 11.1, and then execute the EC protocol.
The event Ω̃ is defined by Ω and KB = A.

3.
≈
Ω: the event of not aborting the DIQKD protocol, Protocol 11.2, and KB = A.

The state ρ|Ω̃ then denotes the state at the end of Protocol 11.1 conditioned on Ω̃ .
As we are only interested in the case where the EC protocol outputs the correct

guess of Alice’s bits, that is KB = A (which happens with probability 1 − εEC),
we have ρ̃

AXYTE | ≈
Ω

= ρAXYTE |Ω̃ (note that B̃ and B were traced out from ρ̃ and ρ

respectively). Hence,

H εs
min (A|XYTE)ρ̃

|≈Ω
= H εs

min (A|XYTE)ρ|Ω̃ . (11.19)

Using the chain rule given in [21, Lemma 6.8] together with Eq. (11.19) we get
that

H εs
min (A|XYTOE)ρ̃

|≈Ω
≥ H εs

min (A|XYTE)ρ̃
|≈Ω

− leakEC

= H εs
min (A|XYTE)ρ|Ω̃ − leakEC , (11.20)

where leakEC denotes the amount of information leaked during error correction.

15O denotes the classical information sent fromAlice to Bob during error correction; see Sect. 4.2.2.
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To apply Theorem 11.5 it remains to relate H εs
min (A|XYTE)ρ|Ω̃ to

H
ε′
s

min (AB|XYTE)ρ|Ω̃ for some ε′
s. For this we first write

H εs
min (A|XYTE)ρ|Ω̃ ≥ H

εs
4

min (AB|XYTE)ρ|Ω̃ − H
εs
4

max (B|AXYTE)ρ|Ω̃

− 3 log
(
1 −

√
1 − (εs/4)2

)

≥ H
εs
4

min (AB|XYTE)ρ|Ω̃ − H
εs
4

max (B|TE)ρ|Ω̃

− 3 log
(
1 −

√
1 − (εs/4)2

)
,

where the first inequality is due to the chain rule [21, Eq. (6.57)] and the second is
due to strong sub-additivity of the smooth max-entropy.

One can now apply the EAT to upper bound H
εs
4

max (B|TE)ρ|Ω̃ in the following
way. We use Theorem 9.3 with the replacements O → B, S → T , E → E . The
Markov conditions B1,...,i−1 ↔ T1,...,i−1E ↔ Ti then trivially hold and the condition
on the max-tradeoff function reads

fmax(p) ≥ sup
σRi−1R

′ :Mi (σ)Wi =p
H
(
Bi |Ti R′)

Mi (σ)
.

By the definition of the EAT channels {Mi }i∈[n], Bi �=⊥ only for Ti = 1, which
happens with probability γ.16 Hence, for any state σRi−1R′ we have,

H
(
Bi |Ti R′)

Mi (σ)
≤ H (Bi |Ti )Mi (σ) ≤ γ

and the max-tradeoff function is simply fmax(p) = γ for any p (and thus
‖� fmax‖∞ = 0). Applying17 Theorem 9.3 with this choice of fmax we get

H
εs
4

max (B|TE)ρ|Ω̃ < γn + √
n2 log 7

√
1 − 2 log (εs/4 · (εEA + εEC)) . (11.21)

Combing the equations above we get that

H εs
min (A|XYTOE)ρ̃

|≈Ω
≥ H

εs
4

min (AB|XYTE)ρ|Ω̃ − leakEC

−3 log
(
1 −

√
1 − (εs/4)2

)
− γn

−√
n2 log 7

√
1 − 2 log (εs/4 · (εEA + εEC)) .

16This is why we made the distinction between Bi in the entropy accumulation protocol and B̃i in
the DIQKD protocol.
17Here a slightly more general version of the EAT than the one given in Sect. 9.2.3 is needed, in
which the event Ω can be defined via A, B, X, Y and not only C ; see [22] for the details.
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Finally, note that by applying the EAT on ρ|Ω̃ , as in Theorem 11.5, we have that
either 1 − Pr(Ω̃) ≥ 1 − εEA − εEC, or

H
εs
4

min(AB|XYTE)ρ|Ω̃ > n · μopt (εs/4, εEA + εEC) .

The last two equations together give us the desired bound on
H εs

min (A|XYTOE)ρ̃
|≈Ω
: either the protocol aborts with probability greater than

1 − εEA − εEC or

H εs
min (A|XYTOE)ρ̃

|≈Ω
≥ n · μopt (εs/4, εEA + εEC) − leakEC

−3 log
(
1 −

√
1 − (εs/4)2

)
− γn

−√
n2 log 7

√
1 − 2 log (εs/4 · (εEA + εEC)) .

�

Using Lemma 11.8, we prove that Protocol 11.2 is sound.

Lemma 11.9 For any device D let ρ̃ be the state generated using Protocol 11.2.
Then either the protocol aborts with probability greater than 1 − εE A − εEC or it is
(εEC + εPA + εs)-correct-and-secret while producing keys of length �, as defined in
Eq. (11.16).

Proof Denote all the classical public communication during the protocol by J =
XYTOS where S is the seed used in the privacy amplification protocol PA. Denote
the final state of Alice, Bob, and Eve at the end of Protocol 11.2, conditioned on not
aborting, by ρ̃K̃ A K̃B J E |Ω̇ .

We consider two cases. First assume that the EC protocol was not successful (but
did not abort). Then Alice and Bob’s final keys might not be identical. This happens
with probability at most εEC.

Otherwise, assume the EC protocol was successful, i.e., KB = A. In that case,
Alice and Bob’s keys must be identical also after the final privacy amplification step.
That is, conditioned on KB = A, K̃ A = K̃B .

We continue to show that in this case the key is also secret. The secrecy depends
only on the privacy amplification step, and for universal hashing a secure key is
produced as long as

� = H εs
min(A|XYTOE) − 2 log

1

εPA

holds (recall Sect. 4.2.2). Hence, a uniform and independent key of length � as in
Eq. (11.16) is produced by the privacy amplification step unless the smooth min-
entropy is not high enough (i.e., the bound in Eq. (11.18) does not hold) or the
privacy amplification protocol was not successful, which happens with probability
at most εPA + εs.
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According to Lemma 11.8, either the protocol aborts with probability greater than
1 − εEA − εEC, or the entropy is sufficiently high for us to have (recall Definition 4.6)

‖ρ̃K̃ A J E |Ω̇ − ρUl ⊗ ρ̃J E‖1 ≤ εPA + εs .

Combining both cases above the lemma follows. �

11.3.3 Key Rate Analysis

Theorem 11.6 establishes a relation between the length � of the secure key produced
by our protocol and the different error terms. As this relation, given in Eq. (11.16), is
somewhat hard to visualise,we analyse the key rate r = �/n for some specific choices
of parameters and compare it to the key rates achieved in device-dependent QKD
with finite resources [23, 24] and DIQKD with infinite resources and a restricted set
of attacks [12].

The key rate depends on the amount of leakage of information due to the error
correction step, which in turn depends on the honest implementation of the protocol
(recall Sect. 4.2.2). We use the honest IID implementation described in Sect. 4.2.4
and choose the honest state of each round to be the two-qubit Werner state ρQAQB =
(1 − ν)|φ+〉〈φ+| + νI/4 (and the measurements are as described in Sect. 4.2.4). The
quantum bit error rate is then Q = ν

2 and the expected winning probability is ωexp =
2+√

2(1−2Q)

4 .
We emphasise that this is only a choice of the honest implementation and it does

not in any way restrict the actions of the adversary (and, in particular, the types of
imperfections in the device). Furthermore, the analysis done below can be adapted
to any other honest implementation of interest.

11.3.3.1 Leakage Due to Error Correction

To calculate the rates we first need to explicitly upper bound the leakage of infor-
mation due to the error correction protocol, leakEC . As shown in Eq. (4.2), this can

be done by evaluating H
ε′
EC

0 (A|B̃XYT ) on Alice and Bob’s state in an honest IID
implementation of the protocol, described in Sect. 4.2.4.

For this we first use the following relation between H ε
0 and H ε′

max [25, Lemma 18]:

H
ε′
EC

0 (A|B̃XYT ) ≤ H
ε′EC
2

max

(
A|B̃XYT

)
+ log

(
8/ε′2

EC + 2/
(
2 − ε′

EC

))
.

The quantum asymptotic equipartition property, given as Theorem 7.3, tells us
that

H
ε′EC
2

max

(
A|B̃XYT

)
≤ nH(Ai |B̃i XiYi Ti ) + √

nδ(ε′
EC, τ ) ,
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for τ = 2
√
2Hmax(Ai |B̃i Xi Yi Ti ) + 1 and δ(ε′

EC, τ ) = 4 log τ
√
2 log

(
8/ε′2

EC

)
.

For the honest implementation of Protocol 11.2 Hmax(Ai |B̃i XiYi Ti ) = 1 and

H(Ai |B̃i XiYi Ti ) =Pr(Ti = 0) · H(Ai |B̃i XiYi , Ti = 0)+
Pr(Ti = 1) · H(Ai |B̃i XiYi , Ti = 1)

= (1 − γ) · H(Ai |B̃i XiYi , Ti = 0)+
γ · H(Ai |B̃i XiYi , Ti = 1)

= (1 − γ) h(Q) + γh(ωexp) ,

where the first equality follows from the definition of conditional entropy and the
second from the way Ti is chosen in Protocol 11.2. The last equality holds since for
the generation rounds the error rate (i.e., the probability that Ai and B̃i differ) in the
honest case is Q and for the test rounds Bob can guess Ai with probability ωexp given
B̃i , Xi , and Yi .

We thus have

H
ε′
EC

0

(
A|B̃XYT

)
≤ n

[
(1 − γ) h(Q) + γh(ωexp)

]

+ √
n4 log

(
2
√
2 + 1

)√
2 log

(
8/ε′2

EC

)

+ log
(
8/ε′2

EC + 2/
(
2 − ε′

EC

))
.

Plugging this into Eq. (4.2) we get

leakEC ≤ n
[
(1 − γ) h(Q) + γh(ωexp)

]

+ √
n4 log

(
2
√
2 + 1

)√
2 log

(
8/ε′2

EC

)

+ log
(
8/ε′2

EC + 2/
(
2 − ε′

EC

))+ log

(
1

εEC

)

.

(11.22)

11.3.3.2 Key Rate Curves

In Appendix C.2 a slightly modified protocol is considered in which, instead of
fixing the number of rounds in the protocol, only the expected number of rounds is
fixed. The completeness and soundness proofs follow the same lines as the proofs
above, as detailed in Appendix C.2 and do not include additional crucial insights.
The modification of the protocol improves the dependency of the key rate on the
probability of a test round γ18 The analysis presented in the appendix leads to the

18The second order term of the smoothmin-entropy rate given in Lemma11.8 scaleswith γ, roughly,
as 1/γ, while in Appendix C.2 the dependency is roughly 1/

√
γ. The modified analysis can be seen

as a “patch” used to overcome the non-optimal dependency of the EAT given in Theorem 9.3 on the
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Fig. 11.3 The expected key rate r = �/n̄ as a function of the quantum bit error rate Q for several
values of the expected number of rounds n̄ (see the main text and Appendix C.2). For n̄ = 1015

the curve essentially coincides with the curve for the IID asymptotic case [12, Eq. (12)]. The
following values for the error terms were chosen: εEC = 10−10, εsQKD = 10−5 and εcQKD = 10−2.
After [1, 6]

key rates for the modified protocol and these are the rates presented here. Putting the
technical details aside, the reader may simply think of n̄ below as taking the place
of the number of rounds n used so far.

In an asymptotic analysis (n̄ → ∞) it is well understood that the soundness and
completeness errors εsQKD, εcQKD should tend to zero as n̄ increases. However, in the
non-asymptotic scenario considered here these errors are always finite. We therefore
fix some values for them which are considered to be realistic and relevant for actual
applications. We choose the parameters such that the security parameters are at least
as good (and in general even better) as in [23], such that a fair comparison can be
made. All other parameters are chosen in a consistent waywhile (roughly) optimising
the key rate.

In Fig. 11.3 the expected key rate r = �/n̄ is plotted as a function of the quantum
bit error rate Q for several values of the expected number of rounds n̄. For n̄ = 1015

the curve essentially coincides with the rate achieved in the asymptotic IID case [12].
Since the latter was shown to be optimal [12] it provides an upper bound on the key
rate and the amount of tolerable noise. Hence, for large enough n̄ our rates become
optimal and the protocol can tolerate up to the maximal error rate Q = 7.1%. For
comparison, the previously established explicit rates [19] are well below the lowest
curve presented in Fig. 11.3, even when the number of signals goes to infinity, with
a maximal noise tolerance of 1.6%.

testing probability in the considered protocols. This issue was overcome in a more recent version
of the EAT [26].
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Fig. 11.4 The expected key rate r = �/n̄ as a function of the expected number of rounds n̄ (see
the main text and Appendix C.2) for several values of the quantum bit error rate Q. For Q = 0.5%,
2.5%, and 5% the achieved key rates are approximatly r = 87%, 53%, and 22% respectively. The
following values for the error terms were chosen: εEC = 10−10, εsQKD = 10−5 and εcQKD = 10−2.
After [1, 6]

In Fig. 11.4, r is plotted as a function of n̄ for several values of Q. As can be seen
from the figure, the achieved rates are significantly higher than those achieved in
previous works. Moreover, they are practically comparable to the key rates achieved
in device-dependent QKD (see Fig. 1 in [23]). The main difference between the
curves for the device-dependent case and the independent one is the minimal value
of n̄ which is required for a positive key rate. (That is, for the protocols considered
in [23] one can get a positive key rate with less rounds.)

11.4 Open Questions

To end the chapter, we list some future work directions and open questions specific
for the showcase of quantum cryptography.

11.4.1 Experimental Realisations

The results presented in this chapter provide the theoretical groundwork for experi-
mental implementations of device-independent cryptographic protocols. The quan-
titive results imply that the first proof of principle experiments, with small distances
and small rates, are within reach with today’s state-of-the-art technology, which
recently enabled the violation of Bell inequalities in a loophole-free way [27–29] (a
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necessity for device-independent cryptography). Indeed, Theorem 11.5 has already
been applied to the analysis of the first experimental implementation of a proto-
col for randomness generation in the fully device-independent framework [5]. The
next major challenge in experimental implementations is a field demonstration of a
DIQKD protocol. This would provide the strongest cryptographic experiment ever
realised.

As can be seen from Figs. 11.2, 11.3, and 11.4, implementing a DIQKD protocol
is more challenging than implementing a randomness generation protocol—positive
key rates require higher number of signals and lower noise levels. It therefore becomes
increasingly relevant to achieve the best possible dependence of the rate curves on
the number of rounds n̄, even for very small values of n̄. As can be seen from the
figures our rate curves approach (and essentially coincide) with the optimal curves
as the number of rounds increases. This is the case since our first-order term of the
key rate is tight.

However, one thing that can perhaps still be further optimised is the dependency on
the number of rounds, or in other words, how fast the curves approach the asymptotic
curve. Although this seems like a minor issue, it can make actual implementations
more feasible. The explicit dependency on n̄ given in Eq. (11.16) is already close to
optimal and we did not try to optimise it. It can still be improved and several efforts
were already made in the direction of achieving a better second order term.

1. A refined entropy accumulation theorem with a tighter second order term was
developed in [26] following our work. Building on the improved theorem will
lead directly to stronger quantitive results for finite and relatively small values of
n.

2. In [30] a randomness expansion protocol was proven to be secure using our
technique, while performing a more detailed analysis of the second order term.
This, in particular, allowed for a more efficient experimental implementation of
their protocol.

3. A different proof technique, termed “quantum probability estimators”, for bound-
ing the smoothmin-entropywas recently developed in [31, 32]. The entropy accu-
mulation and the probability estimators approaches are closely related (see [31]
for a discussion) but the exact relation between them is not fully understood to
date. The technique of probability estimators has to potential of leading to bet-
ter second order terms, possibly due to a more fine-tuned use of concentration
bounds.

11.4.2 Possible Extensions

The optimality of our key rates is only with respect to the structure of the considered
protocol, which is the standard (and only, as far as we are aware) DIQKD protocol
studied in the literature. It is interesting to come up with new DIQKD protocols and
see if they lead to key rates with higher first-order terms. Apart from the theoretical
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curiosity, protocols with better asymptotic key rates can, of course, help us reach an
experimental implementation.

Due to themodularity of our analysis, it can at large be directly applied to the anal-
ysis of other protocols. The main challenge is to come up with interesting protocols.
We discuss several possible directions to consider.

On the “quantum side” of the protocol, one may modify the protocol by consid-
ering different Bell inequalities. Even more, one can construct protocols in which
more information than the violation of a single inequality is used: Alice and Bob
may use the collected statistics to evaluate several quantities and decide accordingly
whether to abort or not; see for example the related work [33]. To apply our proof to
other Bell inequalities and additional statistical information one should find a good
bound on the min-tradeoff function, as done in Eq. (11.7) for the CHSH inequality.
For many Bell inequalities such bounds are known, but for the min-entropy instead
of the von Neumann entropy. In most cases using a bound on the min-entropy will
result in far fromoptimal rate curves. Therefore, to adapt our protocol in this direction
one should probably first bound the min-tradeoff function using the von Neumann
entropy directly.19

On the “classical side” of the protocol, different classical post-processing steps
can be considered. It is known that, asymptotically, considering protocols with other
one-way classical post-processing cannot lead to an improvement over our proto-
col [34]. Hence, the interesting thing to check is whether there are protocols with
either classical pre-processing of the data (i.e., prior to applying error correction and
privacy amplification) and/or two-way classical post-processing protocols that lead
to an improvement of the first-order term of the key rates. Two such protocols were
suggested recently: [35, 36].

Of course, it is also interesting different protocols in which the entropy of a single
round is certified by considering a more general setting than the one of the protocol
analysed here. An example is the novel protocol of [37], where the randomness is
produced from two different measurements settings rather than one. Once the single-
round of the protocol is done [37], our framework is applied directly to get the full
security proof.

An interesting related question is that of finding upper-bounds on the possible
key rates that can be extracted from a given correlation. Such upper-bounds show us
the limitations of a whole class of protocols all together, without needing to analyse
each protocol separately and in a sense tell us what is the best that we can expect.
This question was recently studied in [38–41].

19This should not be dismissed as can be seen from the following state of affairs. [33] reports an
advantage in terms of the min-entropy when considering the full statistics instead of merely the
violation if the CHSH inequality. Comparing the bound on the min-entropy from the full statistics
to the bound on the von Neumann entropy from the violation alone, both evaluated on the quantum
states produced by the honest implementations, we find that it is still better to use the bound on the
von Neumann entropy as we do here. Thus, to truly see if an advantage can be gained by considering
the full statistics, one should aim to a direct bound on the von Neumann entropy.
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11.4.3 Bounding the von Neumann Entropy

As mentioned above, the main task to perform when modifying the protocol and the
analysis is to lower-bound the min-tradeoff function. Getting a tight bound on the
von Neumann entropy, and hence on the min-tradeoff function, does not seem to be
an easy task. Is there a numerical technique that allows one to get good bounds on
the von Neumann entropy for general Bell inequalities?

Interestingly, as it turns out, good numerical tools are known for a couple of
similar quantities:

1. When considering the min-entropy instead of the von Neumann entropy one can
use SDP hierarchies to get (not necessarily tight) lower-bounds [42].

2. In the device-dependent case, a recent development [43] presents a numerical
technique to lower-bound the von Neumann entropy and by this derive better key
rates for QKD.

We hope that it is possible to devise a general technique (numerical or analytical)
to calculate good lower bounds on the von Neumann entropy relevant for our case.
Two works that go in this direction are [44, 45]. Such a technique, in combination
with our work, will allow us to “enumerate” over all possible protocols and calculate
their key rates when looking for better protocols. If it is not possible to devise a
general tool, it will at least be interesting to understand why this is the case. Is there
a fundamental mathematical reason behind the complexity of the problem?
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Chapter 12
Outlook

The development and application of the concept of reductions to IID, taking the
form of de Finetti theorems, flourished in “standard” quantum information process-
ing in the last decade and more. The tools used, unfortunately, were not applica-
ble when considering device-independent information processing tasks, where the
devices being analysed are uncharacterised. The reductions presented in the the-
sis, namely the de Finetti reduction (Chap. 8) and the entropy accumulation theorem
(Chap.9), are thefirst to be applicable in the device-independent setting.As such, they
have opened the possibility of a significantly simpler analysis of device-independent
information processing tasks.

Among the advantages of applying the approach of reductions to IID in the device-
independent setting, compared to directly analysing themost general case, are tighter
quantitive results and modular proofs. The thesis’ showcases, used to exemplify the
usage of the reductions, indeed report such benefits. Our proof of non-signalling
parallel repetition (Chap. 10) is automatically valid for any complete-support game
with any number of players and achieves an exponential decrease that matches that of
IID strategies. Our security proof for device-independent quantum key distribution
(Chap. 11) achieves tight key rates, as under the IID assumption, that are significantly
better than all prior results and can be easily adapted to other related protocols.

With this in mind, it is interesting to investigate how the presented reductions or
variants thereof can be used in the analysis of other tasks. Let us discuss a partial list
of questions and possible future work that we find intriguing.1

1We list here questions that are not directly related to the showcases considered in the thesis. For
concrete open questions regarding parallel repetition (e.g., extensions of the results) and device-
independent quantum key distribution (such as possible improvements and experimental implemen-
tations) see Sects. 10.4 and 11.4, respectively.
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12.1 Two-Party Device-Independent Quantum
Cryptography

In the cryptographic protocols discussed in the thesis we considered two honest and
cooperating parties, Alice andBob. Two-party cryptography, on the other hand, refers
to cryptographic protocols in which Alice and Bob do not trust each other. When
considering device-independent two-party cryptography the dishonest party (which
can be either Alice or Bob) takes the role of the adversary and hence is allowed
to prepare the device used to implement the protocol. References [1, 2] present
examples for such protocols.

The above mentioned works study the security of the protocols under the IID
assumption (or a closely related assumption). Clearly, it is interesting to see if the
analysis can be extended to capture the most general adversarial scenario, which,
in the case of these protocols, includes the use of sequential boxes. Applying a
reduction to IID can be beneficial here. Unfortunately, it is not clear whether the
entropy accumulation theorem, in its current form, can be of use in such protocols.
The reason is that the Markov-chain conditions stated in Eq. (9.4) do not hold, at
least when considering the most obvious choices of random variables.2

In some cases, one can overcome the problem by considering “imaginary” proto-
cols, closely related to the “real” protocol, in which the Markov-chain conditions do
hold. The idea is then to reduce the problem of proving the security of the real proto-
col to that of the imaginary one and perform the analysis of the imaginary protocol
using the entropy accumulation theorem.

Such a proof technique is used in [3]. There, the protocol of interest is a device-
independent entanglement certification protocol and its analysis requires an upper
bound on the smooth max-entropy, rather than a lower bound on the smooth min-
entropy as in cryptographic scenarios.3 Thus, the steps used in [3] are not directly
applicable to two-party device-independent cryptography. It is interesting to see if
similar ideas can be useful in cryptographic scenarios as well.

Alternatively, one could also try to prove a different variant of the entropy accu-
mulation theorem in which the Markov-chain conditions are replaced by some
other restrictions on the sequential process, which are fulfilled by two-party crypto-
graphic protocols. (Finding such conditions is interesting by itself). As discussed in
Sect. 9.2.1, some conditions on the process must appear in the theorem, since entropy
does not accumulate in any sequential process. While the Markov-chain conditions
are sufficient, we currently have no reason to believe that they are necessary; it might
as well be that some weaker or incomparable conditions also suffice.

2In the case of two-party cryptography, the natural choice to make when trying to use the entropy
accumulation theorem is one in which the O systems belong to the honest party and the S systems
to the dishonest party. One can easily come up with boxes that do not fulfil Eq. (9.4) with these
choices.
3In the considered scenarios the two quantities are not dual to one another; see [3] for the details.
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12.2 Parallel Device-Independent Quantum Cryptography

Another type of cryptographic protocols to which the presented reductions to IID are
not applicable in a trivial manner are ones in which the most general analysis should
be done with quantum parallel boxes. An example is the parallel device-independent
quantum key distribution protocol of [4], in which all the non-local games are played
in parallel with the device (as in the parallel repetition question).While [4] includes a
security proof that goes beyond the IID scenario, it achieves quantitivelyweak results.
This raises the fundamental question of whether parallel adversaries, i.e., adversaries
that can create parallel boxes, are stronger than sequential and IID adversaries (which
are proven to have the same strength by ourwork). To learn the answer to this question
there is a need to supply tight key rates for parallel device-independent quantum key
distribution protocols.

Utilising a reduction to IID instead of analysing the general case directly, as
in [4], will almost surely lead to stronger, perhaps even tight, results. Alas, the known
reductions are not directly applicable here. The entropy accumulation theorem is not
useful in this case since it is restricted to sequential boxes and here one ought to
analyse parallel boxes. The de Finetti reduction, while suitable for parallel boxes, is
a priori not applicable here since the de Finetti box does not include the adversary
and is not a quantum box; see Sect. 8.4. It is therefore interesting to investigate
whether the analysis can somehow be manipulated so that the known techniques can
be utilised to prove security of parallel device-independent quantum cryptography
or, otherwise, whether other types of reductions, more adequate for such scenarios,
can be developed.

12.3 Device-Independent Tomography

One of the applications of the “original” quantum de Finetti reduction (also called
the post-selection technique) [5] is a technique for a reliable quantum state tomogra-
phy [6]. The technique is said to be reliable since it reports not just an estimation of
the quantum state but also a confidence region around the estimated state, which acts
as a meaningful “error bar”. This is of crucial importance as the other more standard
approaches, such as the maximum-likelihood optimisation and least-square-error
estimation, suffer from systematic errors [7].

Recently, the device-independent equivalents of the maximum-likelihood opti-
misation and least-square-error estimation were considered in [8]. The goal of such
device-independent tomographic techniques is to report an estimated quantum box
from the observed finite statistics. Apart from systematic errors, device-independent
tomographic procedures as above are also at risk of providing a non-quantum box,
since up to date it is unknown how to perform optimisation problems over the set
of quantum boxes. In analogy to [6], applying our de Finetti reductions to achieve
reliable device-independent tomography can therefore be of interest.
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Appendix A
Additional Proofs: de Finetti Reductions

A.1 Bounding the de Finetti Box

We use the notation used in Sect. 8.2:

1. |X ||Y| = l and we identify each pair (x, y) ∈ X × Y with a label j ∈ [l] by
writing (x, y) = j .

2. |A||B| = m and we identify each pair (a, b) ∈ A × B with a label k ∈ [m] by
writing (a, b) = k.

3. For all j ∈ [l] and k ∈ [m], p j
k ∈ [0, 1] such that

∑
k p

j
k = 1 for all j .

4. For all j ∈ [l] and k ∈ [m], c j
k = 1 −∑t<k p

j
t .

5. For all x, y, and j ∈ [l], n j = | {i : (xi , yi ) = j} |, i.e., n j denotes the number of
indices of (x, y) in which the type of inputs is (x, y) = j .

6. For all x, y, a, b, j ∈ [l], and k ∈ [m], n j
k = | {i : (xi , yi ) = j ∧ (ai , bi ) = k} |,

i.e., n j
k denotes the number of indices of (x, y, a, b) in which the type of inputs

is (x, y) = j and the type of outputs is (a, b) = k.

and notice that:

1. For all j ∈ [l] and k ∈ [m − 1], p j
k ∈ [0, c j

k ] and p j
m = c j

m .
2. For all j ∈ [l] and k ∈ [m], c j

k = c j
k−1 − p j

k−1.

3. For all j ∈ [l], n j
m = n j −∑m−1

k=1 n j
k .

Lemma 8.4 For all a, b, x, and y,

τAB|XY (ab|x y) ≥
l∏

j=1

(
n j

n j
1, . . . , n

j
m

)−1
1

(n j + 1)m−1
,

where τAB|XY is the de Finetti box defined by
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τAB|XY (a, b|x, y) =
∫

O⊗n
AB|XYdOAB|XY

=
l∏

j=1

[∫ c j
1

0

dp j
1

c j
1

(
p j
1

)n j
1

]

. . .

[∫ c j
m−1

0

dp j
m−1

c j
m−1

(
p j
m−1

)n j
m−1

]

· (p j
m

)n j−∑m−1
k=1 n j

k .

In the proof of the lemma we use the following formula:

∀c > 0 ∀n, n′ ∈ N, n′ ≤ n
∫ c

0

dp

c
pn

′
(c − p)n−n′ = cn

∫ 1

0
qn′

(1 − q)(n−n′)dq

= cnB(n − n′ + 1, n′ + 1)

= cn
(
n

n′

)−1 1

n + 1

(A.1)

where B is the Beta function. We also need the following identity:

(
n −∑s

t=1 nt
ns+1

)

·
(

n

n1, . . . , ns, n −∑s
t=1 nt

)

=
(

n

n1, . . . , ns+1, n −∑s+1
t=1 nt

)

(A.2)

Proof Abusing notation we denote below, for t ∈ [2,m − 1],1
[∫ c j

1

0

dp j
1

c j
1

(
p j
1

)n j
1

]

. . .

[∫ c j
t

0

dp j
m−1

c j
t

(
p j
t

)n j
t

]

=
t∏

k=1

[∫ c j
k

0

dp j
k

c j
k

(
p j
k

)n j
k

]

.

We start by proving the following, for all j ∈ [l], by induction:

m−1∏

k=1

[∫ c j
k

0

dp j
k

c j
k

(
p j
k

)n j
k

]
(
c j
m−1 − p j

m−1

)n j−∑m−1
k=1 n j

k ≥
(

n j

n j
1, . . . n

j
m−1, n

j −∑m−1
k=1 n j

k

)−1
1

(n j + 1)m−1

(A.3)

Base case, m = 2:

∫ c j
1

0

dp j
1

c j
1

(
p j
1

)n j
1
[
(c j

1 − p j
1)
]n j−n j

1 =
(
n j

n j
1

)−1
1

n j + 1

This follows from Eq. (A.1) while noting that for the first index we have c j
1 = 1 by

definition.

1This is just a notation and
∏t

k=1 should not be understood as the product operation. In particular,
the order of terms is relevant since the different parameters are not independent of one another.



Appendix A: Additional Proofs: de Finetti Reductions 193

Induction hypothesis for m − 2:

m−2∏

k=1

[∫ c j
k

0

dp j
k

c j
k

(
p j
k

)n j
k

]
(
c j
m−2 − p j

m−2

)n j−∑m−2
k=1 n j

k ≥
(

n j

n j
1, . . . n

j
m−2, n

j −∑m−2
k=1 n j

k

)−1
1

(n j + 1)m−2

(A.4)

Inductive step:

m−1∏

k=1

[∫ c jk

0

dp j
k

c jk

(
p j
k

)n j
k

]
(
c jm−1 − p j

m−1

)n j−∑m−1
k=1 n j

k =

m−2∏

k=1

[∫ c jk

0

dp j
k

c jk

(
p j
k

)n j
k

]∫ c jm−1

0

dp j
m−1

c jm−1

(
p j
m−1

)n j
m−1
(
c jm−1 − p j

m−1

)n j−∑m−2
k=1 n j

k−n j
m−1 =

(A.5)
m−2∏

k=1

[∫ c jk

0

dp j
k

c jk

(
p j
k

)n j
k

]

×

×
(
c jm−1

)n j−∑m−2
k=1 n j

k
(
n j −∑m−2

k=1 n j
k

n j
m−1

)−1
1

n j −∑m−2
k=1 n j

k + 1
=

(A.6)

(
n j −∑m−2

k=1 n j
k

n j
m−1

)−1
1

n j −∑m−2
k=1 n j

k + 1
×

×
m−2∏

k=1

[∫ c jk

0

dp j
k

c jk

(
p j
k

)n j
k

]
(
c jm−2 − p j

m−2

)n j−∑m−2
k=1 n j

k ≥
(A.7)

(
n j −∑m−2

k=1 n j
k

n j
m−1

)−1
1

n j −∑m−2
k=1 n j

k + 1
×

×
(

n j

n j
1, . . . n

j
m−2, n

j −∑m−2
k=1 n j

k

)−1
1

(n j + 1)m−2 ≥
(A.8)

(
n j

n j
1, . . . n

j
m

)−1
1

(n j + 1)m−1 .

where we used Eq. (A.1) to get from (A.5) to (A.6), c j
m−1 = c j

m−2 − p j
m−2 to get from

(A.6) to (A.7), the induction hypothesis (A.4) to get from (A.7) to (A.8) and Eq. (A.2)
as well as n j −∑k = 1m−2 + 1 ≥ n j + 1 in the last line.

Finally, for any a, b, x, and y,
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τAB|XY (ab|x y) =
l∏

j=1

m−1∏

k=1

[∫ c j
k

0

dp j
k

c j
k

(
p j
k

)n j
k

]
(
p j
m

)n j−∑m−1
k=1 n j

k =

l∏

j=1

m−1∏

k=1

[∫ c j
k

0

dp j
k

c j
k

(
p j
k

)n j
k

]
(
c j
m

)n j−∑m−1
k=1 n j

k =

l∏

j=1

m−1∏

k=1

[∫ c j
k

0

dp j
k

c j
k

(
p j
k

)n j
k

]
(
c j
m−1 − p j

m−1

)n j−∑m−1
k=1 n j

k ≥

l∏

j=1

(
n j

n j
1, . . . n

j
m

)−1
1

(n j + 1)m−1

where we used Eq. (A.3) it the last step. �

A.2 Diamond Norm Reduction

We prove Lemma 8.16

Lemma 8.16 For every two permutation invariant channels E,F : P → K where
PK is a probability distribution over k ∈ {0, 1}t for some t > 0, and all PABC |XY Z ,

‖ (E − F) ⊗ I(PABC |XY Z )‖1 ≤ (n + 1)l(m−1)‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC |XY Z )‖1

where τ
PABC |XY Z

ABC |XY Z is a non-signalling extensionof τAB|XY whichdependson the specific
box PABC |XY Z .

Proof First, as in the proof of Theorem 8.11, since the channels are permutation
invariant it is sufficient to consider boxes PAB|XY which are permutation invariant.

Given a specific box PABC |XY Z we can see this extension as a set of convex
decompositions of PAB|XY , according to Lemma 8.9. That is, every possible input z
induces a specific decomposition {(pcz ,Pcz

AB|XY )}cz such that pcz = PC |Z (cz|z) and
Pcz
AB|XY (a, b|x, y) = PABC |XY Z (a, b, cz|x, y, z). Since this is a convex decomposi-

tion of PAB|XY we also have

∀z
∑

c

pc · Pc
AB|XY = PAB|XY . (A.9)

We now use the set of decompositions of PAB|XY to construct a set of decompositions
of the de Finetti box τAB|XY . Combining Lemmas 8.6, 8.8 and 8.9 together, we know
that there exists a non-signalling box RAB|XY such that
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τAB|XY = 1

(n + 1)l(m−1)
PAB|XY +

(

1 − 1

(n + 1)l(m−1)

)

RAB|XY

= 1

(n + 1)l(m−1)

∑

c

pc · Pc
AB|XY +

(

1 − 1

(n + 1)l(m−1)

)

RAB|XY ,

where the second equality is due to Eq. (A.9). For every z this defines a decompo-
sition {( 1

(n+1)l(m−1) · pcz ,Pcz
AB|XY )}cz ∪ {(1 − 1

(n+1)l(m−1) ,RAB|XY )} of τAB|XY . That is,

this defines an extension τ
PABC |XY Z

ABC ′|XY Z of τAB|XY where C ′ = C ∪ {c′}.
This connection between the extensions PABC |XY Z and τ

PABC |XY Z

ABC ′|XY Z allow us to get
the following bound on the trace distance, from which the lemma follows:

‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC ′|XY Z )‖1 ≥ 1

(n + 1)l(m−1)
‖ (E − F) ⊗ I(PABC |XY Z )‖1 .

(A.10)
Equation (A.10) can be proven using the following sequence of steps. First, the

diamond norm can be written in the following way.

‖E − F‖� = max
PABC |XY Z

‖ (E − F) ⊗ I(PABC |XY Z )‖1
= max

PABC |XY Z

‖EK |C · PC |Z − FK |C · PC |Z‖1

= max
PABC |XY Z

1

2

∑

k

max
z

∑

c

PC |Z (c|z)
∣
∣
∣EK |C(k|c) − FK |C(k|c)

∣
∣
∣

= max
PABC |XY Z

1

2

∑

k

max
z

∑

c

PC |Z (c|z)×

×
∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

PAB|XYC(a, b|x, y, c)−

∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

PAB|XYC(a, b|x, y, c)
∣
∣
∣

where the third equality is due to the explicit form of the trace distance previously
given in [1, 2].

This can then be used to write

‖ (E − F) ⊗ I(τ
PABC |XY Z

ABC ′|XY Z )‖1
= 1

2

∑

k

max
z

∑

c∈C ′
τ
PABC |XY Z

C ′|Z (c|z)
∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc)

−
∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc)
∣
∣
∣
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= 1

2

∑

k

max
z

[∑

c∈C
τ
PABC |XY Z

C ′|Z (c|z)
∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc)

−
∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc)
∣
∣
∣

+
(

1 − 1

(n + 1)l(m−1)

) ∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc′)

−
∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc′)
∣
∣
∣
]

≥ 1

2

∑

k

max
z

∑

c∈C
τ
PABC |XY Z

C ′|Z (c|z)
∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc)

−
∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

τ
PABC |XY Z

AB|XYC ′(ab|x yc)
∣
∣
∣

= 1

2

∑

k

max
z

∑

c∈C

1

(n + 1)l(m−1)
· PC |Z (c|z)

·
∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

PAB|XYC(ab|x yc)

−
∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

PAB|XYC(ab|x yc)
∣
∣
∣

= 1

(n + 1)l(m−1)
‖ (E − F) ⊗ I(PABC |XY Z )‖1 .

where in order to get the second equality we divide the sum over C ′ = C ∪ {c′} to
the sum over C and then additional part of the partition c′. The next inequality is
then correct since
(

1 − 1

(n + 1)l(m−1)

)∣
∣
∣
∑

x, y

PrE(x, y)
∑

a,b:
E(a,b,x, y)=k

τ
PABC |XY Z

A|XC (ab|x yc′)−

∑

x, y

PrF (x, y)
∑

a,b:
F(a,b,x, y)=k

τ
PABC |XY Z

A|XC (ab|x yc′)
∣
∣
∣ ≥ 0 ,

and the two last equalities are due to the specific decomposition of τAB|XY that we
defined and the definition of the trace distance. This proves the lemma. �
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Appendix B
Additional Proofs: Non-signalling Parallel
Repetition

B.1 Signalling Measure and Test

We present here proofs of lemmas relevant to Sect. 10.2. The proofs previously
appeared in [1].

Lemma 10.5 Let O1
AB|XY and O2

AB|XY be two single-round boxes such that

∣
∣O1

AB|XY − O2
AB|XY

∣
∣
1 ≤ ε .

Then, for all a, b, x, and y,

∣
∣Sig(A→B,x,y,b)(O1

AB|XY ) − Sig(A→B,x,y,b)(O2
AB|XY )

∣
∣ ≤ 2ε

Proof We prove a stronger result from which the lemma follows. We prove

∑

b,x,y

∣
∣Sig(A→B,x,y,b)

(
O1

AB|XY
)− Sig(A→B,x,y,b)

(
O2

AB|XY
) ∣
∣ ≤ 2ε .

To do so first note the following,

∣
∣O1

AB|XY − O2
AB|XY

∣
∣
1 = Ex,y

∑

a,b

∣
∣O1

AB|XY (a, b|x, y) − O2
AB|XY (a, b|x, y)∣∣

≥ Ex,y

∑

b

∣
∣
∣
∑

a

(
O1

AB|XY (a, b|x, y) − O2
AB|XY (a, b|x, y))

∣
∣
∣

= Ex,y

∑

b

∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)∣∣

=
∑

b,x,y

QXY (x, y)
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)∣∣ ,

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
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therefore if
∣
∣O1

AB|XY − O2
AB|XY

∣
∣
1 ≤ ε then

∑

b,x,y

QXY (x, y)
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)∣∣ ≤ ε . (B.1)

Next, using Definition 10.3 and the discussion following it,

∑

b,x,y

∣
∣Sig(A→B,x,y,b)

(
O1

AB|XY
)− Sig(A→B,x,y,b)

(
O2

AB|XY
) ∣
∣

=
∑

b,x,y

QXY (x, y)
∣
∣
∣O1

B|XY (b|x, y) −
∑

x̃

QX |Y (x̃ |y)O1
B|XY (b|x̃, y)

− O2
B|XY (b|x, y) +

∑

x̃

QX |Y (x̃ |y)O2
B|XY (b|x̃, y)

∣
∣
∣

=
∑

b,x,y

QXY (x, y)
∣
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)

+
∑

x̃

QX |Y (x̃ |y) (O2
B|XY (b|x̃, y) − O1

B|XY (b|x̃, y))
∣
∣
∣

≤
∑

b,x,y

QXY (x, y)
∣
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)

∣
∣
∣

+
∑

b,x,y

QXY (x, y)
∣
∣
∣
∑

x̃

QX |Y (x̃ |y) (O2
B|XY (b|x̃, y) − O1

B|XY (b|x̃, y))
∣
∣
∣

≤
∑

b,x,y

QXY (x, y)
∣
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)

∣
∣
∣

+
∑

b,x,y

∑

x̃

QX |Y (x̃ |y)QXY (x, y)
∣
∣
∣O2

B|XY (b|x̃, y) − O1
B|XY (b|x̃, y)

∣
∣
∣

=
∑

b,x,y

QXY (x, y)
∣
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)

∣
∣
∣

+
∑

b,y

∑

x̃

QX |Y (x̃ |y)QY (y)
∣
∣
∣O2

B|XY (b|x̃, y) − O1
B|XY (b|x̃, y)

∣
∣
∣

=
∑

b,x,y

QXY (x, y)
∣
∣
∣O1

B|XY (b|x, y) − O2
B|XY (b|x, y)

∣
∣
∣

+
∑

b,x,y

QXY (x, y)
∣
∣
∣O2

B|XY (b|x, y) − O1
B|XY (b|x, y)

∣
∣
∣

≤ 2ε

where the last inequality follows from Eq. (B.1). �

Lemma B.1 Let ν > 0 be any parameter such that ν < ζ − 6ε. Then for every x,
y, and b,
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∀OAB|XY ∈ �(A→B,x,y,b), Sig(A→B,x,y,b)
(
OAB|XY

)
> ν .

Proof Assume by contradiction that there exists OAB|XY ∈ �(A→B,x,y,b) such that
Sig(A→B,x,y,b)

(
OAB|XY

) ≤ ν. SinceOAB|XY ∈ �(A→B,x,y,b) there exists ŌAB|XY such
that |OAB|XY − ŌAB|XY |1 ≤ ε and

Prdata∼Ō⊗n
AB|XY [T ] > δ . (B.2)

Using Lemma 10.5 we get Sig(A→B,x,y,b)
(
ŌAB|XY

) ≤ ν + 2ε. From Lemma 2.2

we know that Prdata∼Ō⊗n
AB|XY

[
|Ōfreq(data2)

AB|XY − ŌAB|XY |1 > ε
]

≤ δ and therefore, using

Lemma 10.5 again,

Prdata∼Ō⊗n
AB|XY

[
Sig(A→B,x,y,b)

(
Ōfreq(data2)

AB|XY
)

> ν + 4ε
]

≤ δ .

Since ν < ζ − 6ε this implies

Prdata∼Ō⊗n
AB|XY

[
Sig(A→B,x,y,b)

(
Ōfreq(data2)

AB|XY
)

> ζ − 2ε
]

≤ δ

and therefore, according to the definition of the test,

Prdata∼Ō⊗n
AB|XY [T ] ≤ δ ,

which contradicts Eq. (B.2). �

Next we would like to prove Lemma 10.7. To do so, we first prove the same
statement but for IID boxes:

Lemma B.2 Assume the players share an IID box O⊗n
AB|XY and let ζ, ε > 0 be the

the parameters defined as in Eq. (10.7). For every T (A→B,x,y,b),

1. If Sig(A→B,x,y,b)
(
OAB|XY

) ≥ ζ then

Prdata∼O⊗n
AB|XY [T ] > 1 − δ (B.3)

2. If Sig(A→B,x,y,b)
(
OAB|XY

) = 0 then

Prdata∼O⊗n
AB|XY [¬T ] > 1 − δ (B.4)

where δ = δ
(
n
2 , ε
) = ( n2 + 1

)|A|·|Q|−1
e−nε2/4.
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Proof For the first part of the lemma assume that Sig(A→B,x,y,b)
(
OAB|XY

) ≥ ζ. Then

Prdata∼O⊗n
AB|XY [¬T ] = Prdata∼O⊗n

AB|XY

[
Sig(A→B,x,y,b)

(
Ofreq(data2)

AB|XY
)

< ζ − 2ε
]

≤ Prdata∼O⊗n
AB|XY

[
|Ofreq(data2)

AB|XY − OAB|XY |1 > ε
]

≤ δ

where the first inequality is due to Lemma 10.5 and the second due to Lemma 2.2.
This implies Eq. (B.3). Equation (B.4) can be proven in an analogous way. �

Lemma 10.7 Let τABXY = Q⊗n
XY τAB|XY , where τAB|XY is a de Finetti box. For every

T (A→B,x,y,b)

1. Prdata∼τABXY

[¬in� ∧ T
] ≤ δ

2. Prdata∼τABXY [in
σ ∧ ¬T ] ≤ δ,

where δ = δ
(
n
2 , ε
) = ( n2 + 1

)|A||B||X ||Y|−1
e−nε2/4.

Proof Since a de Finetti box is a convex combination of IID boxes, it is sufficient to
prove this for IID boxes O⊗n

AB|XY and the lemma will follow. We start by proving the
first part of the lemma.

If Prdata∼O⊗n
AB|XY [T ] ≤ δ then we are done. Consider therefore single-round boxes

OAB|XY such that
Prdata∼O⊗n

AB|XY [T ] > δ .

For such boxes

Prdata∼O⊗n
AB|XY

[¬in�
] ≤ Prdata∼O⊗n

AB|XY

[
|Ofreq(data1)

AB|XY − OAB|XY |1 > ε
]

≤ δ

where the first inequality follows from the definition of �(A→B,x,y,b) and the second
from Lemma 2.2. All together we get Prdata∼O⊗n

AB|XY

[¬in� ∧ T
] ≤ δ as required for

the first part of the lemma.
We now proceed to the second part of the lemma. If Prdata∼O⊗n

AB|XY [in
σ] ≤ δ then

we are done. Consider therefore boxes OAB|XY such that

Prdata∼O⊗n
AB|XY

[
inσ
]

> δ .

Using Lemma 2.2 we know that there exists a state Ofreq(data1)
AB|XY ∈ �(A→B,x,y,b) such

that |Ofreq(data1)
AB|XY − OAB|XY |1 ≤ ε and according to the definition of �(A→B,x,y,b) this

implies that OAB|XY is ζ signalling or more. Therefore, according to Lemma B.2,
Prdata∼O⊗n

AB|XY [¬T ] ≤ δ. All together we get

Prdata∼O⊗n
AB|XY

[
inσ ∧ ¬T

] ≤ δ . �
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B.2 Sensitivity Analysis

Linear programs (see, e.g., [2]) are a useful tool when considering non-signalling
games, as the non-signalling constraints are linear. The following general results
regarding the sensitivity of linear programs will be of use for us.

Lemma B.3 (Sensitivity analysis of linear programs, [2] Sect. 10.4). Let
max{cT x |Ax ≤ b} be a primal linear program and min{bT y|AT y = c, y ≥ 0} its
dual. Denote the optimal value of the programs byw and the optimal dual solution by
y�. Then the optimal value of the perturbed program we = max{cT x |Ax ≤ b + e}
for some perturbation e is bounded by we ≤ w + eT y�.

Lemma B.4 (Dual optimal solution bound, [2] Sect. 10.4). Let A be an r1 × r2-
matrix and let Δ be such that for each non-singular sub-matrix B of A all entries
of B−1 are at most Δ in absolute value. Let c be a row vector of dimension r2 and
let y� be the optimal dual solution of min{bT y|AT y = c, y ≥ 0}. Then

κ =
r1∑

j=1

|y�
j | ≤ r2Δ

r2∑

j=1

|c j | .

We start with the following program from Sect. 10.3.1:

max
∑

a,b,x,y

QXY (xy)R(a, b, x, y)OAB|XY (ab|xy)

s.t. Sig(A→B,x,y,b)
(
OAB|XY (ab|xy)) = 0 ∀x, y, b (B.5a)

Sig(B→A,x,y,b)
(
OAB|XY (ab|xy)) = 0 ∀x, y, a (B.5b)

∑

a,b

OAB|XY (ab|xy) = 1 ∀x, y

OAB|XY (ab|xy) ≥ 0 ∀a, b, x, y

ToapplyLemmaB.3wefirst need towrite the program in the formmax{cT x |Ax ≤
b}. For this purpose, one can relax the linear program (B.5) to the following:

max
∑

a,b,x,y

QXY (xy)R(a, b, x, y)OAB|XY (ab|xy)

s.t. Sig(A→B,x,y,b)
(
OAB|XY (ab|xy)) ≤ 0 ∀x, y, b (B.6a)

Sig(B→A,x,y,b)
(
OAB|XY (ab|xy)) ≤ 0 ∀x, y, a (B.6b)

∑

a,b

OAB|XY (ab|xy) = 1 ∀x, y

OAB|XY (ab|xy) ≥ 0 ∀a, b, x, y
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To see that the relaxation of the non-signalling constraints (B.5a) and (10.21c) to
the constraints (B.6a) and (B.6b) does not change the program, i.e., does not change
the value of the optimal solution, recall Eq. (10.6) and assume there exists x, y, b for
which

QXY (x, y)

[

OB|XY (b|x, y) −
∑

x̃

QX |Y (x̃ |y)OB|XY (b|x̃, y)
]

< 0 .

That is, OB|XY (b|x, y) is smaller than the average
∑

x̃ QX |Y (x̃ |y)OB|XY (b|x̃, y), and
therefore there must be some x ′ for which OB|XY (b|x ′, y) is larger than the average,
meaning,

QXY (x ′, y)

[

OB|XY (b|x ′, y) −
∑

x̃

QX |Y (x̃ |y)OB|XY (b|x̃, y)
]

> 0 ,

but this contradicts the constraints (B.6a) and (B.6b).
The dual program of the primal (B.6) is given below.

min
∑

x,y

z(x, y)

s.t. z(x, y) + yA(x, y, b)QXY (x, y) + yB(x, y, a)QXY (x, y)

−
∑

x̃

yA(x̃, y, b)QXY (x̃, y)QX |Y (x |y)

−
∑

ỹ

yB(x, ỹ, a)QXY (x, ỹ)QY |X (y|x)

≥ QXY (x, y)R(a, b, x, y) ∀a, b, x, y
(B.7a)

yA(x, y, b) ≥ 0 ∀x, y, b
yB(x, y, a) ≥ 0 ∀x, y, a

Lemma B.5 Let κ =∑d
j=1 |y�

j | where d is the number of signalling tests and y� is
an optimal solution of the dual program (B.7). Let OAB|XY be a strategy such that
the following holds for all a, b, x, y

Sig(A→B,x,y,b)
(
OAB|XY

) ≤ ζ + 2ε

Sig(B→A,x,y,a)
(
OAB|XY

) ≤ ζ + 2ε .
(B.8)

Then w
(
OAB|XY

) ≤ 1 − α + (ζ + 2ε) d.

Proof The fact that OAB|XY is not “too signalling” in any direction can be used to
bound its winning probability in the game G.
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The following linear program describes the optimal winning probability of a
strategy OAB|XY which fulfils Eq. (B.8):

max
∑

a,b,x,y

QXY (xy)R(a, b, x, y)OAB|XY (ab|xy)

s.t. Sig(A→B,x,y,b)
(
OAB|XY (ab|xy)) ≤ ζ + 2ε ∀x, y, b

Sig(B→A,x,y,b)
(
OAB|XY (ab|xy)) ≤ ζ + 2ε ∀x, y, a

∑

a

OAB|XY (ab|xy) = 1 ∀x, y

OAB|XY (ab|xy) ≥ 0 ∀a, b, x, y

(B.9)

Program (B.9) can be seen as a perturbation of the linear program (B.6), we can
therefore bound its optimal value by using known tools for sensitivity analysis of
linear programs, stated in Lemmas B.3 and B.4.

Denote by y� an optimal solution of the dual program2 (B.7) and letκ =∑d
j=1 |y�

j |
where d is the number of signalling tests. That is, κ is the sum of all the dual variables
which are associated to the non-signalling constraints.

According to Lemma B.3 the perturbed winning probability is then bounded by

we ≤ 1 − α + (ζ + 2ε) κ.

In the case of a game with two players, using [3, Sect. 4], one can show that κ ≤ d
where d is the number of different signalling tests, i.e., d = |X ||Y|(|A| + |B|)). �
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Appendix C
Additional Proofs: Device-Independent
Quantum Cryptography

This appendix is devoted to presenting the technical proofs of the statements made
in this thesis related to the device-independent cryptography. The proofs previously
appeared in [1].

C.1 Single-Round Statement

As mentioned in Sect. 5.2, Lemma 5.3 (restated below) follows, almost directly,
from [2, 3]. We show here how the bound derived in these works can be manipulated
in a simple way to get the bound used in this thesis.

Lemma 5.3 For any quantum single-round box PAB|XY with winning probability

ω ∈
[
3
4 ,

2+√
2

4

]
in the CHSH game,

H(A|XY E) ≥ 1 − h

(
1

2
+ 1

2

√
16ω (ω − 1) + 3

)

,

where E denotes the quantum side-information belonging to the adversary and h(·)
is the binary entropy function.

Proof Our starting point is the result of [4]. There, a quantum single-round box
P Â B̂|XY with symmetric marginals on Â and B̂ was considered (i.e., Â and B̂ are
uniformly distributed). To derive a bound which holds for any PAB|XY we do the
following:

1. Symmetrisation of PAB|XY—Alice chooses a bit F uniformly at random and com-
municates it to Bob. They then symmetrise their marginals by setting Â = A ⊕ F
and B̂ = B ⊕ F .

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2020
R. Arnon-Friedman, Device-Independent Quantum Information Processing,
Springer Theses, https://doi.org/10.1007/978-3-030-60231-4
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2. Use [4] to lower-bound H
(
Â|XY FE

)
.

3. Derive a bound on H (A|XY E) from H
(
Â|XY FE

)
.

Let us follow the above steps. After applying Â = A ⊕ F and B̂ = B ⊕ F , with
F uniformly distributed, A and B are unbiased. In our notation, [4] considered the
following Holevo quantity

χ
(
Â : FE |X = 0

)
= H (FE |X = 0) − H

(
FE | Â, X = 0

)
.

and showed that for states leading to a CHSH violation of β ∈ [2, 2√2], related to
the winning probability viaω = 1/2 + β/8, the following tight bound holds [4, Sect.
2.3]:

χ
(
Â : FE |X = 0

)
≤ h

(
1

2
+ 1

2

√
β2

4
− 1

)

.

Rewriting the bound in terms of the winning probability ω one gets that for all

ω ∈
[
3
4 ,

2+√
2

4

]
(i.e. a winning probability in the quantum regime)

χ
(
Â : FE |X = 0

)
≤ h

(
1

2
+ 1

2

√
16ω (ω − 1) + 3

)

. (C.1)

We now wish to related the above Holevo quantities to our von Neumann entropy.
Using the definition of the conditional von Neumann entropy one can rewrite
H (A|FE, X = 0) (σ) as follows:

H
(
Â|FE, X = 0

)
= H

(
ÂFE |X = 0

)
− H (FE |X = 0)

= H
(
Â|X = 0

)
+ H

(
FE | Â, X = 0

)
− H (FE |X = 0)

= H
(
Â|X = 0

)
− χ

(
Â : FE |X = 0

)

= 1 − χ
(
Â : FE |X = 0

)
, (C.2)

where the last equality holds since A is uniformly random due to the symmetrisation
step (note that we do not condition on F in H (A|X = 0)). Furthermore,

H
(
Â|XY FE

)

Mi (σ)
= Pr [Xi = 0] · H

(
Â|Y FE, Xi = 0

)

Mi (σ)

+ Pr [Xi = 1] · H
(
Â|Y FE, Xi = 1

)

Mi (σ)
.

(C.3)

Combining Eqs. (C.1) and (C.2) while noting that, due to the symmetry between the
cases X = 0 and X = 1, the same relations can be written for X = 1 and plugging
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the bounds in Eq. (C.3) we get

H
(
Â|XY FE

)
≥ 1 − h

(
1

2
+ 1

2

√
16ω (ω − 1) + 3

)

. (C.4)

The only think left to do is to use the above to get our bound for the original box
PAB|XY . For this simply observe that

H
(
Â|XY FE

)
= H (A|XY FE) = H (A|XY E) ,

where the first equality holds since Â = A ⊕ F and the second follows since F is
independent of A, X , Y , and E . The lemma therefore follows. �

C.2 An Improved Dependency on the Test Probability

In this section we show how the EAT can be used in a slightly different way than
what was done in the main text. This results in an entropy rate which has a better
dependency on the probability of a test round γ, compared to the entropy rate given
in Eq. (11.12). The improved entropy rate derived here is the one used for calculating
the key rates of the DIQKD protocol is Sect. 11.3.3.2.

C.2.1 Modified Entropy Accumulation Protocol

We use a different entropy accumulation protocol, given as Protocol C.1. In this
modified protocol instead of considering each round separately we consider blocks
of rounds. A block is defined by a sequence of rounds: in each round a test is carried
out with probability γ (and otherwise the round is a generation round). The block
ends when a test round is being performed and then the next block begins. If for smax

rounds therewas no test, the block endswithout performing a test and the next begins.
Thus, the blocks can be of different length, but they all consist at most smax rounds.

In this setting, instead of fixing the number of rounds n in the beginning of the
protocol, we fix the number of blocks m. The expected length of block is

s̄ =
∑

s∈[smax]

[
s(1 − γ)(s−1)γ

]+ smax(1 − γ)smax = 1 − (1 − γ)smax

γ

=
∑

s∈[smax]

[
(1 − γ)(s−1)

]
. (C.5)

The expected number of rounds is denoted by n̄ = m · s̄.
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Compared to the main text, we now have a RV W̃ j ∈ {0, 1,⊥} for each block,
instead of each round. Alice and Bob set W̃ j to be 0 or 1 depending on the result of
the game in the block’s test round (i.e., the last round of the block), or W̃ j =⊥ if a
test round was not carried out in the block. By the definition of the blocks we have
Pr[W̃ j =⊥] = (1 − γ)smax .

Protocol C.1Modified entropy accumulation protocol
Arguments:

G—two-player non-local game
Xg,Xt ⊂ X—generation and test inputs for Alice
Yg,Yt ⊂ Y—generation and test inputs for Bob
D—untrusted device of (at least) two components that can play G repeatedly
m ∈ N+—number of blocks
smax ∈ N+—maximal length of a block
γ ∈ (0, 1]—probability of a test round
ωexp—expected winning probability in G for an honest (perhaps noisy) implementation
δest ∈ (0, 1)—width of the statistical confidence interval for the estimation test

1: For every block j ∈ [m] do Steps 2–9:
2: Set i = 0 and Wj =⊥.
3: If i ≤ smax:
4: Set i = i + 1.
5: Alice and Bob choose Ti ∈ {0, 1} at random such that Pr(Ti = 1) = γ.
6: If Ti = 0 Alice and Bob choose inputs Xi ∈ Xg and Yi ∈ Yg respectively. If Ti = 1 they

choose inputs Xi ∈ Xt and Yi ∈ Yt .
7: Alice and Bob use D with Xi , Yi and record their outputs as Ai and Bi respectively.
8: If Ti = 0 Bob updates Bi to Bi =⊥.
9: If Ti = 1 they set W̃ j = w (Ai , Bi , Xi , Yi ) and i = smax + 1.
10: Alice and Bob abort if

∑
j∈[m] W̃ j <

[
ωexp (1 − (1 − γ)smax ) − δest

] · m.

C.2.2 Modified Min-tradeoff Function

Below, we apply the EAT on blocks of outputs instead of single rounds directly. Let
M j denote the EAT channels defined by the actions of Steps 2-9 in Protocol C.1
together with the behaviour of the device. It is easy to verify that M j fulfil the
necessary conditions given in Definition 9.1.

We now construct a min-tradeoff function for M j . Let p̃ be a probability distri-
bution over {0, 1,⊥}. Our goal is to find Fmin such that

∀ j ∈ [m] Fmin( p̃) ≤ inf
σR j−1R

′ :M j (σ)W̃ j
= p̃

H
( �A j �Bj | �X j �Y j �Tj R

′
)

M j (σ)
, (C.6)
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where �A j is a vector of varying length (but at most smax). We use A j,i to denote
the i’th entry of �A j and A j,i−1

j,1 = A j,1 . . . A j,i−1. Since we will only be interested

in the entropy of �A j we can also describe it as a vector of length smax which is
initialised to be all ⊥. For every actual round being performed in the block the value
of A j,i is updated. Thus, the entries of �A j which correspond to rounds which were
not performed do not contribute to the entropy. We use similar notation for the other
vectors of RVs.

To lower-bound the right-hand side of Eq. (C.6) we first use the chain rule

H
( �A j �Bj | �X j �Y j �Tj R

′
)

=
∑

i∈[smax]
H(A j,i B j,i | �X j �Y j �Tj R

′A j,i−1
j,1 B j,i−1

j,1 ) . (C.7)

Next, for every i ∈ [smax],

H(A j,i B j,i | �X j �Y j �Tj R
′A j,i−1

j,1 B j,i−1
j,1 ) =

Pr[T j,i−1
j,1 = �0]H(A j,i B j,i | �X j �Y j R

′A j,i−1
j,1 B j,i−1

j,1 T j,smax
j,i T j,i−1

j,1 = �0)
+ Pr[T j,i−1

j,1 �= �0]H(A j,i B j,i | �X j �Y j R
′A j,i−1

j,1 B j,i−1
j,1 T j,smax

j,i T j,i−1
j,1 �= �0)

= (1 − γ)(i−1)H(A j,i B j,i | �X j �Y j R
′A j,i−1

j,1 B j,i−1
j,1 T j,smax

j,i T j,i−1
j,1 = �0)

since the entropy is not zero only if the i’th round is being performed in the block,
i.e., if a test was not performed before that round. Plugging this into Eq. (C.7) we get

H
( �A j �Bj | �X j �Y j �Tj R

′
)

=
∑

i∈[smax]
(1 − γ)(i−1)H(A j,i B j,i | �X j �Y j R

′A j,i−1
j,1 B j,i−1

j,1 T j,smax
j,i T j,i−1

j,1 = �0) .

Each term in the sum can now be identified as the entropy of a single round. We
can therefore use the bound derived in the main text, as given in Eq. (11.6). For this
we denote by ωi the winning probability in the i’th round (given that a test was not
performed before). Then it holds that

H
( �A j �B j | �X j �Y j �Tj R

′) ≥
∑

i∈[smax]
(1 − γ)(i−1)

[

1 − h

(
1

2
+ 1

2

√
16ωi (ωi − 1) + 3

)]

,

(C.8)
where, by the actions of the EAT channel M j , the ωi ’s must fulfil the constraint

p̃(1) =
∑

i∈[smax]
γ(1 − γ)(i−1)ωi . (C.9)

Note that, similarly to what was done in the main text, we only need to con-
sider p̃ for which p̃(1) + p̃(0) = 1 − (1 − γ)smax (otherwise the condition on the
min-tradeoff function is trivial, as the infimum is over an empty set).



212 Appendix C: Additional Proofs: Device-Independent Quantum Cryptography

To find themin-tradeoff function Fmin( p̃)we therefore need tominimise Eq. (C.8)
under the constraint of Eq. (C.9). The following lemma shows that the minimum is
achieved when all ωi are equal.

Lemma C.1 The minimum of the function given on the righthand-side of Eq. (C.8)
over ωi constrained by Eq. (C.9) is achieved for ω∗

i = p̃(1)
1−(1−γ)smax for all i ∈ [smax].

Proof Let �ω = ω1, . . . ,ωsmax and

f (�ω) ≡
∑

i∈[smax]
(1 − γ)(i−1)

[

1 − h

(
1

2
+ 1

2

√
16ωi (ωi − 1) + 3

)]

;

g(�ω) ≡
∑

i∈[smax]
γ(1 − γ)(i−1)ωi − p̃(1) .

Using themethod of Lagrangemultipliers, we should look for �ω∗ such that g(�ω∗) = 0
and ∇ f (�ω∗) = −λ∇g(�ω∗) for some constant λ.∇ f (�ω∗) = −λ∇g(�ω∗) implies that
for any i ,

(1 − γ)(i−1) d

dωi

[

1 − h

(
1

2
+ 1

2

√
16ωi (ωi − 1) + 3

)] ∣
∣
∣
ω∗
i

= −λγ(1 − γ)(i−1)

and therefore

d

dωi

[

1 − h

(
1

2
+ 1

2

√
16ωi (ωi − 1) + 3

)] ∣
∣
∣
ω∗
i

= −λγ .

The function on the left-hand side of the above equation is strictly increasing. Hence,
it must be that all ω∗

i are equal to some constant ω∗.
Lastly, we must have g(�ω∗) = 0. Thus,

∑

i∈[smax]
γ(1 − γ)(i−1)ω∗ − p̃(1) = 0

which means

ω∗ = p̃(1)
∑

i∈[smax] γ(1 − γ)(i−1)
= p̃(1)

1 − (1 − γ)smax
. �
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Plugging the minimal values of ωi into Eq. (C.8) we get that

H
( �A j �Bj | �X j �Y j �Tj R

′)

≥
∑

i∈[smax]
(1 − γ)(i−1)

[

1 − h

(
1

2
+ 1

2

√

16
p̃(1)

1 − (1 − γ)smax

(
p̃(1)

1 − (1 − γ)smax
− 1

)

+ 3

)]

= s̄

[

1 − h

(
1

2
+ 1

2

√

16
p̃(1)

1 − (1 − γ)smax

(
p̃(1)

1 − (1 − γ)smax
− 1

)

+ 3

)]

,

where we used Eq. (C.5) to get the last equality.
From this point we can follow the same steps as in Sect. 11.2.2 (cutting and gluing

the function etc.). The resulting min-tradeoff function is given by

g( p̃) = (C.10)
⎧
⎪⎨

⎪⎩

s̄

[

1 − h

(
1
2 + 1

2

√

16 p̃(1)
1−(1−γ)smax

(
p̃(1)

1−(1−γ)smax − 1
)

+ 3

)]
p̃(1)

1−(1−γ)smax ∈
[
0, 2+√

2
4

]

s̄ p̃(1)
1−(1−γ)smax ∈

[
2+√

2
4 , 1

]
,

Fmin ( p̃, p̃t ) =
{
g ( p̃) p̃(1) ≤ p̃t (1)

d
d p̃(1) g( p̃)

∣
∣
p̃t

· p̃(1) +
(
g( p̃t ) − d

d p̃(1) g( p̃)
∣
∣
p̃t

· p̃t (1)
)

p̃(1) > p̃t (1) .

The min-tradeoff function given above is effectively identical to the one derived in
the main text; although it gives us a bound on the von Neumann entropy in a block,
instead of a single round, this bound is exactly the expected length of a block, s̄,
times the entropy in one round. For smax = 1 the min-tradeoff function constructed
in the main text is retrieved.

C.2.3 Modified Entropy Rate

Since we apply the EAT on the blocks, the entropy rate is now defined to be the
entropy per block. We therefore get

μ( p̃, p̃t , εs, εe) =Fmin ( p̃, p̃t )

− 1√
m
2

(

log(1 + 2 · 2smax3smax ) + ‖ d

d p̃(1)
g( p̃)‖∞

)
√
1 − 2 log(εs · εe) ,

μopt(εs, εe) = max
3
4 < p̃t (1)<

2+√
2

4

μ(ωexp
[
1 − (1 − γ)smax

]− δest, p̃t , εs, εe) ,

and the total amount of entropy is given by

H εs
min (AB|XYTE)ρ|Ω > m · μopt(εs, εEA) = n̄

s̄
· μopt(εs, εEA) . (C.11)
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By choosing smax = � 1
γ
� the scaling of the entropy rate with γ is better than the

rate derived in the main text. In particular, a short calculation reveals that the second
order term scales, roughly, as

√
n̄/γ instead of

√
n/γ.

C.2.4 Modified Key Rate

To get the final key rate we need to repeat the same steps from the main text, but this
time applied to random variables of varying length.

For this we first observe that, with high probability, the actual number of rounds,
n, cannot be much larger than the expected number of rounds n̄. Let Si be the RV
describing the length of block i , for i ∈ [m], and N theRVdescribing the total number
of rounds. Then N = S1 + · · · + Sm . Since all the Si are independent, identical, and

have values in
[
1, 1

γ

]
we have

Pr[N ≥ n̄ + t] ≤ exp

[

− 2t2γ2

m(1 − γ)2

]

.

Let εt = exp
[
− 2t2γ2

m(1−γ)2

]
then

t =
√

−m(1 − γ)2 log εt

2γ2
.

The first step in the derivation of the key rate which needs to be changed
is the one given in Eq. (11.21). The quantity that needs to be upper bounded is

H
εs
4

max (B|TEN )ρ|Ω̂ ; N can be included in the entropy since its value is fixed by T.
By the definition of the smooth max-entropy we have

H
εs
4

max (B|TEN ) ≤ H
εs
4 −√

εt
max (B|TEN , N ≤ n̄ + t) .

Following the same steps as in the proof of Lemma 11.8 we have

H
εs
4 −√

εt
max (B|TEN , N ≤ n̄ + t)ρ|Ω̂ <

γ(n̄ + t) + √
n̄ + t2 log 7

√
1 − 2 log

(
(εs/4 − √

εt ) · (εEA + εEC)
)

.

With this modification and the modified entropy rate given in Eq. (C.11) we get
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Hεs
min (A|XYTOE)ρ̃|Ω̃ ≥ n̄

s̄
· μopt (εs/4, εEA + εEC) − leakEC

− 3 log

(

1 −
√

1 − (εs/4)2
)

− γ(n̄ + t)

− √
n̄ + t2 log 7

√
1 − 2 log

(
(εs/4 − √

εt ) · (εEA + εEC)
)

.

Similarly, the amount of leakage due to the error correction step leakEC should
be modified as well. Following the steps in Sect. 11.3.3.1, the quantity to be upper

bounded is H
ε′EC
2

max

(
A|B̃XYTN

)
. Here as well we have

H
ε′EC
2

max

(
A|B̃XYTN

)
≤ H

ε′EC
2 −√

εt
max

(
A|B̃XYTN , N ≤ n̄ + t

)
.

The asymptotic equipartition property can be used with the maximal length n̄ + t to
get

H
ε′EC
2 −√

εt
max

(
A|B̃XYTN , N ≤ n̄ + t

)

≤ (n̄ + t) · H(Ai |B̃i XiYi Ti ) + √
n̄ + t δ(ε′

EC − 2
√

εt , τ ) ,

for

τ = 2
√
2Hmax(Ai |B̃i Xi Yi Ti ) + 1

δ(ε′
EC − 2

√
εt , τ ) = 4 log τ

√
2 log

(
8/(ε′

EC − 2
√

εt )2
)

.

Continuing exactly as in Sect. 11.3.3.1 we get

leakEC ≤ (n̄ + t) · [(1 − γ) h(Q) + γh(ωexp)
]

+√
n̄ + t 4 log

(
2
√
2 + 1

)√
2 log

(
8/(ε′

EC − 2
√

εt )2
)

+ log
(
8/ε′2

EC + 2/
(
2 − ε′

EC

))+ log

(
1

εEC

)

.

Theparameter εt should be chosen such that the key rate is optimised.The resulting
key rates are shown in Figures 11.3 and 11.4 in the main text.

C.3 Summary of Parameters and Variables

For convenience, all the parameters and variables are listed in Tables C.1 and C.2.
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Table C.1 Parameters used in Chap.11

Symbol Meaning

n ∈ N+ Number of rounds

γ ∈ (0, 1] Expected fraction of Bell violation estimation rounds

ωexp ∈ [0, 1] Expected winning probability in an honest (perhaps noisy) implementation

δest ∈ (0, 1) Width of the statistical confidence interval for the Bell violation estimation test

εs Smoothing parameter

εcE A Completeness error of the entropy accumulation protocol

εEA The error probability of the entropy accumulation protocol

leakEC The leakage of the error correction protocol

εEC, ε′
EC Error probabilities of the error correction protocol

εcEC Completeness error of the error correction protocol

εcPE Completeness error of the parameter estimation step

εPA Error probability of the privacy amplification protocol

� Final key length in the DIQKD protocol

εcQK D Completeness error of the DIQKD protocol

εsQK D Soundness error of the DIQKD protocol

Table C.2 Random variables and quantum systems used in Chap.11

Random variables and systems Meaning

Xi ∈ {0, 1} Alice’s input in round i ∈ [n]
Yi ∈ {0, 1} Bob’s input in round i ∈ [n]
Ai ∈ {0, 1} Alice’s output in round i ∈ [n]
Bi ∈ {0, 1,⊥}, B̃i ∈ {0, 1} Bob’s output in round i ∈ [n]
Ti ∈ {0, 1} Indicator of the estimation test in round i :

Ti =
{
0 i′th round is not a test round

1 i′th round is a test round

Wi ∈ {⊥, 0, 1} Indicator of the correlation in the test rounds:

Wi =

⎧
⎪⎨

⎪⎩

⊥ Ti = 0

0 Ti = 1 and the test fails

1 Ti = 1 and the test succeeds

E Register of Eve’s quantum state

Ri Register of the (unknown) quantum state
ρiQAQB

of Alice and Bob’s devices after step i
of the protocol, for i ∈ {0} ∪ [n]
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