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Abstract

Peroxisomopathies are qualitative or quantita-
tive deficiencies in peroxisomes which lead to
increases in the level of very-long-chain fatty
acids (VLCFA) and can be associated with
more or less pronounced dysfunction of cen-
tral nervous system cells: glial and microglial
cells. Currently, in frequent neurodegenerative
diseases, Alzheimer’s disease (AD) and multi-
ple sclerosis (MS), peroxisomal dysfunction is
also suspected due to an increase in VLCFA,
which can be associated with a decrease of

plasmalogens, in these patients. Moreover, in
patients suffering from peroxisomopathies,
such as X-linked adrenoleukodystrophy
(X-ALD), AD, or MS, the increase in oxida-
tive stress observed leads to the formation of
cytotoxic oxysterols: 7-ketocholesterol (7KC)
and 7β-hydroxycholesterol (7β-OHC). These
observations led to the demonstration that 7KC
and 7β-OHC alter the biogenesis and activity of
peroxisomes in glial and microglial cells. In
X-ALD, AD, and MS, it is suggested that 7KC
and 7β-OHC affecting the peroxisome, and
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which also induce mitochondrial dysfunctions,
oxidative stress, and inflammation, could
promote neurodegeneration. Consequently,
the study of oxisome in peroxisomopathies,
AD and MS, could help to better understand
the pathophysiology of these diseases to
identify therapeutic targets for effective
treatments.
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Abbreviations

ABC ATP-binding cassette
ACALD adolescent cerebral

adrenoleukodystrophy
ACOX1 Acyl-CoA oxidase 1
AD Alzheimer’s disease
ALDP adrenoleukodystrophy protein
AMN adrenomyeloneuropathy
CCALD childhood cerebral

adrenoleukodystrophy
CNS central nervous system
DHA docosahexaenoic acid
DHAPAT dihydroxyacetone-phosphate

acyltransferase
DMF dimethyl fumarate
DNA deoxyribonucleic acid
LC3 protein light chain 3
LXR Liver X receptor
MFP2 multifunctional protein 2
MMF monomethyl fumarate
MS multiple sclerosis
PARP poly-ADP-ribose polymerase
PD Parkinson’s disease
P-MS progressive MS
PPAR peroxisome proliferator-activated

receptor
RNS reactive nitrogen species
RR-MS remittent recurrent-MS
ROS reactive oxygen species

TEM transmission electron microscopy
VLCFA very-long-chain fatty acid
X-ALD X-linked adrenoleukodystrophy
7β-OHC 7β-hydroxycholesterol
7KC 7-ketocholesterol

3.1 Neurodegeneration
and Peroxisomal Disorders

3.1.1 Peroxisome
and Peroxisomopathies

Peroxisomes, which are devoid of DNA, are sin-
gle cell membrane organelles present in nearly all
eukaryotic cells [1]. Depending on the cell type,
elongated tubular (>2 μm in length) or spherical
(0.1–1 μm) peroxisomes can be observed by
transmission electron microscopy (TEM) [2]
(Fig. 3.1). The identification of peroxisomes by
immunofluorescence with the use of appropriated
antibodies directed against specific peroxisomal
antigens, such as the Abcd3, gives information on
the peroxisomal topography (conventional immu-
nofluorescence, confocal microscopy) and on the
peroxisomal mass per cell (flow cytometry)
(Fig. 3.2). Peroxisomes are essential to maintain
Redox homeostasis and have important roles in
lipid metabolism: β-oxidation of very-long-chain
fatty acids (VLCFAs) and branched fatty acids,
synthesis of docosahexaenoic acid (DHA, C22:6
n-3) and of plasmalogens which are major
components of the myelin sheath [1]. There are
also several evidences that peroxisome and
mitochondria are tightly connected organelles
playing key roles in cellular ageing [3]. It is now
well-established that peroxisomal changes can
directly or indirectly affect mitochondrial activ-
ity, and reciprocally [3].

Peroxisomopathies, which are rare diseases of
genetic origin affecting the central and/or periph-
eral nervous system, include peroxisome biogen-
esis disorders (Zellweger syndrome), multiple
peroxisomal enzyme deficiency (rhizomelic
chondrodysplasia punctata), and single peroxi-
somal enzyme deficiency, such as X-linked
adrenoleukodystrophy (X-ALD, MIM 300100),
Acyl-CoA oxidase deficiency, and
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D-Bifunctional protein deficiency [4]. X-ALD,
which is the most frequent peroxisomal leukodys-
trophy of childhood, is characterized by progres-
sive central nervous system (CNS) demyelination
[5]. X-ALD is caused by mutations of the ABCD1
gene which encodes for a peroxisomal ABC half-
transporter (ATP-binding cassette member
1 (ABCD1) also named adrenoleukodystrophy
protein (ALDP)) involved in the import of very-
long-chain fatty acids (VLCFAs) into the peroxi-
some [6]. These different forms of peroxiso-
mopathies are all characterized by increased
plasma levels of VLCFAs due to an impaired

β-oxidation in the peroxisome and/or increased
elongation [7]. The initial diagnosis of peroxiso-
mopathies relies on the clinical presentation,
brain-imaging, and biochemical analyses of
VLCFAs, especially C24:0 and C26:0, which
are elevated in the plasma and tissues of patients
[7]. Newborn screening is based on the measure-
ment of C26:0 lysophosphatidylcholine (26:0-
lyso-PC) in dried blood spots [7]. At the moment,
several studies have shown cytotoxic effects of
VLCFA in vitro and in vivo [8, 9]. In vitro, on
different types of nerve cells (neurons, glial, and
microglial cells), C24:0 and C26:0 often induce a

1 µm

158NMouse liver

2 µm

SK-NB-E

5 µm 0.5 µm

N2a

peroxisome

mitochondria

Fig. 3.1 Identification of peroxisomes in neural cells by
transmission electron microscopy. Peroxisomes can be
identified by various techniques, including transmission
electron microscopy (TEM). Dark arrows point towards
peroxisomes and white arrows towards mitochondria.

Round peroxisomes were observed. The diameters were
in the range of 0.5 μm in mouse liver, murine oligoden-
drocytes 158 N, and human neuronal SK-NB-E cells and
of 0.1 μm in murine neuronal N2a cells
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Fig. 3.2 Analysis of peroxisomes in neural cells by flow
cytometry and fluorescence microscopy. The peroxisomes
were revealed by indirect immunofluorescence with a

rabbit polyclonal primary antibody directed against
Abcd3 (ref # 11523651, Pierce / Thermo Fisher Scientific,
Montigny le Bretronneux, France) and with a secondary
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non-apoptotic mode of cell death associated with
Ca2+ raise [10], K+ homeostasis disruption [11],
reactive oxygen species (ROS) and reactive nitro-
gen species (RNS) overproduction [8, 12], and
autophagic criteria [13]. In vivo, lysophosphati-
dylcholine (C24:0) injection into the parietal cor-
tex of mice led to widespread microglial
activation and apoptosis [14]. However, in
human, there is no apparent correlation between
the VLCFA level and the phenotype in X-ALD
patients [7]. Therefore, other factors than
VLCFA, including lipid and non-lipid
compounds, are suspected to trigger
neurodegeneration in peroxisomopathies. At the
moment, some signs of oxidative stress, consid-
ered as a hallmark of neurodegeneration, have
been detected in the plasma and brain of X-ALD
patients [15] and in patients with frequent neuro-
degenerative diseases: Alzheimer’s disease (AD),
Parkinson’s disease (PD), and multiple sclerosis
(MS) [16]. As VLCFA (C24:0; C26:0) are potent
inducers of oxidative stress [8, 12], they can favor
the production of protein and lipid oxidation
products capable to trigger cytotoxic effects.
The lipid peroxidation products generated include
several aldehydes [8], which are known to induce
protein carbonylation, as well as some cholesterol
oxidation products (oxysterols), including
7-ketocholesterol (7KC; also named
7-oxocholesterol) and 7β-hydroxycholesterol
(7β-OHC) [8]. 7KC and 7β-OHC, which are
mainly formed by cholesterol auto-oxidation, are
strongly cytotoxic [17]. These oxysterols induce a
mode of cell death by oxiapoptophagy involving
oxidative stress, apoptosis, and autophagy [18],
which are hallmarks of neurodegeneration. Cur-
rently, increased levels of 7KC and 7β-OHC have
been described in the plasma of patients with
different forms of X-ALD [19]: (i) cerebral demy-
elination, inflammatory childhood phenotypes

(CCALD: childhood cerebral ALD), which is
associated with a poor prognosis and rapidly
progresses to dementia and death; (ii) cerebral
juvenile and adult forms with demyelination in
the CNS (ACALD: adolescent cerebral ALD);
(iii) adulthood forms without CNS demyelination
(AMN: adrenomyeloneuropathy) defined as a spi-
nal cord and peripheral nerve disease; and
(iv) Addison’s disease, which is characterized
by adrenal insufficiency only. It is therefore
hypothesized that 7KC and 7β-OHC could con-
tribute to neurodegeneration in peroxiso-
mopathies, especially in X-ALD, and also in
other major neurodegenerative diseases [20].

3.1.2 Potential Involvement
of Peroxisomal Changes
in Major Neurodegenerative
Diseases: Alzheimer’s Disease
and Multiple Sclerosis

Peroxisomal abnormalities associated with
peroxisomopathies led to the clarification of the
role of this organelle in neurodegeneration occur-
ring in frequent neurodegenerative diseases, such
as AD and MS. Currently, potential roles of
peroxisomes are suspected in AD and in dementia
of the Alzheimer’s type. Indeed, an accumulation
of C22:0 and VLCFAs (C24:0; C26:0), all
substrates for peroxisomal β-oxidation, was
observed in the cortical regions of AD patients
with stages V–VI of the disease compared with
those modestly affected (stages I–II); conversely,
the level of plasmalogens, which need intact
peroxisomes for their biosynthesis, was decreased
[21]. In addition, in demented patients, including
AD patients, the variations of fatty acid levels and
the accumulation of C26:0 in the plasma and red
blood cells highlight an alteration of fatty acid

��

Fig. 3.2 (continued) goat anti-rabbit antibody coupled
with 488-Alexa (Thermo Fisher Scientific). The peroxi-
somal mass was quantified by flow cytometry. A fluores-
cent microscope coupled to an Apotome-structured
illumination system (Imager M2, Zeiss) was used to

visualized the peroxisomes; the fluorescent signals of the
samples were collected with the ZEN software (Zeiss). For
microscopical observations, the nuclei were stained with
Hoechst 33342 (2 μg/mL)
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metabolism and point towards possible peroxi-
somal dysfunction [22]. In MS patients, a reduc-
tion in neuronal peroxisomes in MS grey matter
has been reported [23], and alteration in the
metabolism of VLCFAs, which could be a conse-
quence of defective peroxisomes, has been
described [24]. In the brain of patients with AD,
increased levels of 7KC and 7β-OHC have also
been shown [25]. It is important to underline that
these oxysterols can be formed under the action of
VLCFA-induced oxidative stress [8] and under
stress conditions induced by amyloid-β (Aβ)
proteins, mainly Aβ42, which accumulates in
brain lesions of patients with AD. High amount
of 7KC have been reported in the cerebrospinal
fluid of MS patients [26] as well as low levels
[27]. 7KC values might depend on the type of MS
considered (Progressive-MS (P-MS) versus
remittent recurrent – MS (RR-MS)) [28]. It is
however widely accepted that oxysterols are con-
sidered as bonafide lipid mediators. To be quali-
fied as a bonafide lipid mediator, a lipid
compound should meet three conditions: (i) to
be endogenous, (ii) to have its levels altered
depending on the physiological or pathological
situation, and (iii) to induce a signaling response
when its levels are altered. As a result, abnormal
levels of 7KC (low or high) can alter cellular
behavior. It is therefore hypothesized that 7KC,
7β-OHC could favor peroxisomal and mitochon-
drial dysfunction leading to neurodegeneration in
patients with AD and MS [20] (Fig. 3.3). This led
us to specify the impact of different
concentrations of 7KC and/or 7β-OHC on murine
glial cells (murine oligodendrocyte 158 N [29],
murine microglial BV-2 cells [19], murine neuro-
nal N2a cells, human neuroblastoma SK-N-BE
cells, and on rat C6 astrocytoma cells [30, 31],
taking into account the effects on organelles
(peroxisomes, mitochondria and lysosomes), oxi-
dative stress, and the ability to induce cell death
(apoptosis/necrosis) and to activate autophagy.

3.2 In Vitro Evidence of
7-Ketocholesterol- and
7β-Hydroxycholesterol-
Induced Peroxisomal Damages
in Nerve Cells

The cytotoxic effects of 7KC and 7β-OHC have
been studied on several nerve cell lines: murine
oligodendrocyte 158 N cells, murine microglial
BV-2 cells, murine neuronal N2a cells, and C6 rat
glioma cells. On 158 N and/or BV-2 cells, 7KC
and 7β-OHC induce a mode of cell death by
oxiapoptophagy (OXIdative stress + APOPTOsis
+ autoPHAGY) characterized by ROS overpro-
duction revealed by dihydroethidium staining, a
decrease of oxidative phosphorylation associated
with a loss of transmembrane mitochondrial
potential (ΔΨm) measured with DiOC6(3),
reduced expression of Bcl-2, caspase-3 activa-
tion, poly-ADP-ribose polymerase (PARP) deg-
radation, and condensation and/or fragmentation
of the nuclei which are typical criteria of oxida-
tive stress and apoptosis [18, 19, 32, 33]. More-
over, 7KC and 7β-OHC also enhance cytoplasmic
membrane permeability to propidium iodide and
induce acidic vesicular organelle formation
evaluated with acridine orange which evocate
autophagic vesicles in agreement with
observations realized by TEM [32, 33]. In addi-
tion, 7KC and 7β-OHC promote conversion of
microtubule-associated protein light chain
3 (LC3-I) to LC3-II which is a characteristic of
autophagy [18, 32], and 7KC increases the
expression of p62 an autophagosome cargo pro-
tein involved in the sequestosome/aggresome for-
mation preceding the autophagosome formation
[19, 29]. On C6 rat glioma cells, it has been
demonstrated that 7β-OHC induces survival
autophagy, since rapamycin, an autophagic
inducer, and 3-methyladenine, an autophagic
inhibitor, reduce and increase 7β-OHC-induced
cell death, respectively [31]. On 158 N cells,
under treatment with 7KC used at sub-toxic
(25 μM, 24 h) and toxic (50 μM, 24 h)
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concentrations, important peroxisomal changes
were observed even in the absence of
oxiapoptophagy which was only induced at
50 μM [31] (Fig. 3.4). In the presence of 7KC
(25 μM), only slight mitochondrial dysfunction
and oxidative stress were found as well as
modifications of the cytoplasmic distribution of
mitochondria: clusters of mitochondria were
detected. Thus, the peroxisomal alterations
observed were similar with 7KC used at 25 and
50 μM [29]: presence of peroxisomes with abnor-
mal sizes and shapes observed by TEM; lower
cellular level of ATP-binding cassette transporter

member 3 (ABCD3) used as a marker of peroxi-
somal mass (measured by flow cytometry); lower
mRNA and protein levels (measured by
RT-qPCR and western blotting) of ABCD1 and
ABCD3 (two ATP-dependent peroxisomal
transporters), of two peroxisomal enzymes Acyl-
CoA Oxidase 1 (ACOX1) and multifunctional
protein 2 (MFP2) enzymes involved in peroxi-
somal β-oxidation, and lower mRNA level of
dihydroxyacetone-phosphate acyltransferase
(DHAPAT), involved in peroxisomal
β-oxidation and plasmalogen synthesis; and
increased levels of VLCFAs (C24:0, C24:1,

Environmental factors
(oxysterols: 7KC, 7β-OHC)

Gene�c
abnormali�es

Bioenerge�c failures, 
Rupture of redox homeostasia

Inflamma�on (cytokinic, non cytokinic)

* Demyelina�ng neurodegenera�ve diseases (peroxisomopathies,  mul�ple sclerosis)
* Non-demyelina�ng neurodegenera�ve disease (Alzheimer’s disease)

* Ageing (neurodegenera�on)

Peroxisomal dysfunc�ons
Peroxisomal transporters deficiency

Peroxisomal enzyme deficiencies
Increased catalase level and ac�vityMitochondrial

dysfunc�on

Modifica�on of lipid profile
VLCFA accumula�on

Fig. 3.3 Incidence of peroxisomal dysfunction in
neurodegeneration: hypothetic model. Environmental
factors (oxysterols: 7-ketocholesterol (7KC) and 7-
β-hydroxycholesterol (7β-OHC)) resulting from rupture
or Redox homeostasis, which is a hallmark of neurodegen-
erative diseases, are often enhanced in the biological fluids
and in the brain of patients with neurodegenerative dis-
ease. These oxysterols could trigger peroxisomal and

mitochondrial damages which could further favor
bioenergetic failure, overproduction of ROS, and activa-
tion of inflammatory processes. In turn, these events could
contribute to amplify brain damages via secondary mito-
chondrial and peroxisomal dysfunctions contributing to
the overproduction of oxysterols, thereby creating an
amplification loop [20]

3 7-Ketocholesterol- and 7b-Hydroxycholesterol-Induced Peroxisomal. . . 37



C26:0, and C26:1) quantified by gas chromatog-
raphy coupled with mass spectrometry
metabolized by peroxisomal β-oxidation. On
158 N cells, under treatment with 7β-OHC
(50 μM, 24 h), morphological alterations of
mitochondria and peroxisomes were simulta-
neously observed [33]. These data obtained on
158 N cells support the following hypotheses:
(i) the peroxisome would be more sensitive to
7KC than the mitochondria (7KC used at 25 μM
induced important peroxisomal changes, whereas
the mitochondria was slightly affected);
(ii) peroxisomal changes can occur without
signs of cytotoxicity (induction of
oxiapoptophagy); and (iii) peroxisomal changes

could precede mitochondrial dysfunctions
required to induce oxiapoptophagy. These perox-
isomal dysfunctions may be associated with oli-
godendrocyte degeneration and may contribute to
demyelination in X-ALD and MS. On BV-2 cells,
7KC also induced several peroxisomal
modifications: decreased Abcd1, Abcd2, Abcd3,
Acox1, and/or Mfp2 mRNA and protein levels,
increased catalase activity, and decreased Acox1-
activity [19]. In microglial cells,
7-ketocholesterol- and 7β-hydroxycholesterol-
induced peroxisomal alterations may favor the
pro-inflammatory phenotype of these cells,
thereby contributing to brain inflammation often
seen in neurodegenerative diseases.

158N cells

- Slight ROS overproduc�on
- Slight autophagy
(slight increase [LC3-II / LC3-I] 

Slight func�onal impact on the 
mitochondria (topographical changes, mainly) 

Peroxisomal damages
(morphological, topographical, func�onal) 

7-ketocholesterol (7KC)
Minor cytotoxicity 

(25 μM) 

No apoptosis (no cleaved caspase-3 and PARP)

- Strong ROS overproduc�on
- Autophagy / Apoptosis

Strong impact on the mitochondria
(morphological, topographical, func�onal) 

Peroxisomal damages
(morphological, topographical, func�onal) 

Oxiapoptophagy

158N cells

7-ketocholesterol (7KC)
Major cytotoxicity 

(50 μM) 

? ?

Fig. 3.4 Association of peroxisomal damages with mito-
chondrial dysfunctions in 7-ketocholesterol-treated 158 N
murine oligodendrocytes. 7-ketocholesterol (7KC)-
induced topographical, morphological, and functional per-
oxisomal changes are observed either with slight or strong
mitochondrial dysfunctions, slight or strong ROS overpro-
duction, and without or with cell death induction
(oxiapoptophagy) on 158 N cells. The cellular model
(158 N cells treated with 7KC) has been used to clarify

the relationships between peroxisome and mitochondria
(and vis versa) during 7KC-induced side effects leading
either to slight cytotoxic effects (7KC: 25 μM) or
oxiapoptophagy (7KC: 50 μM) The figure was reproduced
with the written consent of Elsevier Editor (Nury T et al.,
Induction of peroxisomal changes in oligodendrocytes
treated with 7-ketocholesterol: Attenuation by
α-tocopherol [29])
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3.3 Pharmacological
Consequences of the
Involvement of
7-Ketocholesterol- and 7β-
Hydroxycholesterol-Induced
Peroxisomal Damages
for the Treatment
of Neurodegenerative Diseases

Under the effect of 7KC and 7β-OHC, the signal-
ing pathways involved in oxidative stress, inflam-
mation, and cell death, associated with apoptotic
and autophagic criteria, have the advantage of
being fairly well-known [17, 33]. This made it
possible to identify natural and synthetic
molecules as well as mixtures of molecules
(argan, olive, and milk thistle oils) [34] having
cytoprotective activities with respect to 7KC and
7β-OHC and capable to prevent peroxisomal and
mitochondrial dysfunctions. Several molecules
are able to attenuate the cytotoxic effects of
7KC on different cell types, but only few are
very efficient. Currently, the only molecules
identified strongly counteracting the toxicity of
7KC and 7β-OHC are α-tocopherol,
docosahexaenoic acid (DHA, C22:6 n-3), and
oleic acid (C18:1 n-9) [18]; biotin is only
cytoprotective for 7β-OHC. Among the synthetic
molecules, only dimethyl fumarate (DMF),
marketed under the name Tecfidera for the treat-
ment of MS, as well as its major metabolite,
monomethyl fumarate (MMF), protect against
oxiapoptophagy [33]. As more and more
arguments are in favor of the relationships
between neurodegeneration, peroxisomal, and
mitochondrial dysfunction and the involvement
of oxysterols, to oppose the cytotoxic activities
of these molecules could pave the way for new
therapeutic approaches in both peroxiso-
mopathies and frequent neurodegenerative
diseases, such as AD and MS.

3.4 Conclusion

Although the auto-oxidation of cholesterol essen-
tially leads to the formation of oxidized choles-
terol derivatives in the 7-position, the formation

of oxidized cholesterol derivatives at the 4-, 5-,
and 6-positions should be studied. An analysis of
the oxisome by appropriate analytical biochemis-
try methods could also be informative. This
approach would also take into account the
metabolites of 7KC and 7β-OHC and also other
enzymatically formed oxysterols
(24S-hydroxycholesterol (also named
cerebrosterol), 27-hydroxycholesterol,
25-hydroxycholesterol, and derivatives) known
to be involved in neurodegeneration. The study
of the impact of oxysterols on the organelles of
nerve cells (glial and microglial cells, neurons) in
relation to oxidative stress, inflammation, and cell
death as well as the incidence of these molecules
on certain nuclear receptors (peroxisome
proliferator-activated receptors (PPARs), Liver
X receptors (LXRs) in particular) offers many
perspectives to better know and better treat neu-
rodegenerative diseases.
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