
Estimating Evolutionary Rates
and Timescales from
Time-Stamped Data

10

Sebastian Duchêne and David A. Duchêne

Abstract

Methods of molecular dating are playing
increasingly valuable roles in evolutionary
biology. These methods require independent
information to calibrate the molecular clock
and obtain meaningful estimates of evolution-
ary rates and times. One source of such infor-
mation is the age of the molecular samples,
such that the data are said to be time-stamped.
In this chapter, we present an outline of current
practice and the latest advances in methods for
molecular dating using time-stamped data. In
addition, there is a broad range of approaches
for identifying whether time-stamped data
contain sufficient information for estimating
evolutionary rates and timescales. We describe
a fully Bayesian approach for this purpose
and illustrate its performance in analyses
of sequence data from H1N1 influenza virus
and from Mycobacterium tuberculosis.
The approaches outlined here provide the
foundations for the analysis of time-stamped

data in the era of high-throughput sequencing
and high-performance computing.
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10.1 Introduction

Molecular clock models in phylogenetics are
widely used for estimating evolutionary rates
and timescales. In addition to information about
genetic divergence, molecular clocks often use
information about the timing of evolutionary
events, also known as a time calibration. Such
calibrations provide the raw material for
estimating absolute evolutionary rates and times
from sequence data. A popular source of
calibrating information for molecular clock
analyses is the timing of sample collection
(Rambaut 2000). Data sets that contain samples
collected at different points in time are described
as time-stamped or heterochronous. In contrast,
isochronous data sets contain samples of similar
or identical ages and their evolution is most
appropriately represented using an ultrametric
time-tree (phylogenetic tree with branch lengths
in time units and where ultrametricity means that
the distance from the root to each of the tips is the
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same). For the sampling times to be useful for
calibration of the molecular clock, the period of
collection, or sampling window, must have been
sufficient for molecular evolution to have left a
signature (Fig. 10.1). Samples that have been
collected over sufficiently broad periods of time
to accumulate evolutionary change are said to
come from ‘measurably evolving populations’
(Drummond et al. 2002, 2003).

Many of the principles of phylogenetic infer-
ence using molecular clocks in isochronous data
also hold for time-stamped data, such as the
requirement of using substitution and molecular
clock models. The central difference between
analyses of these two types of data is methods
of fitting a molecular clock and the statistical tests
used to confirm that the sampling times span a
sufficiently long time, known as assessment of
temporal structure (Rieux and Balloux 2016).

Time-stamped data have most frequently been
used for the study of evolutionary events involv-
ing individuals sampled from a single population
or species, as opposed to divergence events
among species or higher taxonomic groups. This
means that the principles of microevolution and
population genetics often play an important role

in analyses of time-stamped data (Arbogast et al.
2002). Combining the methods used in
phylogenetics and population genetics largely
relies on genealogy-based inference using the
principles outlined in coalescent theory (Kingman
1982; Griffiths and Tavaré 1994). By drawing
from population genetics theory, analyses of
time-stamped data can lead to a range of insights
about demography and epidemiology. The power
of these approaches is exemplified by the thriving
field of phylodynamics (Grenfell et al. 2004).

The growth of efficient, low-cost sequencing
has had a substantial impact on the analysis of
time-stamped data. Before the major advances in
sequencing and computational technologies,
studies of pathogen populations using time-
stamped data were restricted to RNA viruses
(Drummond et al. 2003). This was due to the
high rates of evolution of RNA viruses compared
with those of other microbes, which allowed for
the accumulation of sufficient molecular change
over calendar time, even for short genomic
regions. Nowadays, high-throughput sequencing
allows the extraction of vast amounts of data,
including complete genomes, from more slowly
evolving microbes. Similarly, novel sequencing
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Fig. 10.1 Examples of (a) isochronous (i.e., ultrametric)
and (b) heterochronous trees. Data sets with time-stamped
sequences are expected to produce heterochronous trees
where an appreciable amount of evolutionary change has
occurred over the sampling window. The limited sampling
window in a is insufficient to measure evolutionary
change, while that in b between TB and TE is a candidate
for being measurably evolving. (c) The root-to-tip
distances plotted as a function of their sampling times.

The evolutionary rate is the slope of the regression line
and is intuitively equivalent to the difference in root-to-tip
distances between any pair of tips (such as tips A and B)
divided by the difference in their sampling times (TA and
TB). The x-intercept corresponds to the time to the most
recent common ancestor and the degree to which the
points deviate from the line (R2) reflects the extent to
which the data have departed from strictly clocklike
evolution
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technologies have revolutionized the extraction of
target DNA from highly degraded samples,
making way for whole-genome analysis of
ancient DNA from plants and animals (Millar
et al. 2008; Der Sarkissian et al. 2015). As a
consequence, methods of analysing these data
have also seen appreciable progress, for instance
by lifting their former restriction to population-
level processes (e.g., Stadler et al. 2013; Grealy
et al. 2017) or to rapidly evolving microbes (Biek
et al. 2015; Menardo et al. 2019).

Time-stamped data have the advantage that
sampling times alone can be used to calibrate
the molecular clock, often without the need for
other forms of calibration using divergence times
or rates. Incorporating sample ages as time
calibrations is done in the same way as for node
calibrations, either by treating each sample age as
a fixed time point or by specifying a probability
distribution that accounts for age uncertainty
(Rieux and Balloux 2016). In this chapter, we
discuss the methods of data collection and analy-
sis of two commonly used types of time-stamped
data: those coming from populations of pathogens
and those sampled from subfossil material as
extracted using ancient DNA techniques.

10.2 Measurably Evolving
Populations

10.2.1 Microbial Evolution over
Calendar Time

Early phylogenetic analyses of RNA viruses
revealed that their substitution rates were suffi-
ciently high that the viruses were able to accumu-
late an appreciable number of substitutions over
weeks or months (Holmes 2009). For example,
influenza viruses have been found to evolve at
rates of up to 10–2 substitutions per site per year;
with a genome size of around 13.5 kb, they can
accumulate several substitutions per day (Duffy
and Holmes 2009). Human immunodeficiency
virus (HIV) also undergoes very rapid evolution-
ary change, with a rate of about 10–3 substitutions
per site per year (Duchêne et al. 2014a), and can
accumulate at least one substitution per week

(assuming a genome size of about 9.5 kb). In a
seminal study, Korber et al. (2000) took advan-
tage of the rapid evolution of HIV to calibrate the
molecular clock to date its origin in human
populations, which revealed that some strains of
HIV probably originated in the early twentieth
century.

Whole-genome sequencing has revolutionized
studies of more slowly evolving microbes, nota-
bly bacteria. The evolutionary rates of bacteria are
much lower than those of viruses, implying that
they would need a much wider sampling window
than viruses for their evolutionary rates to be
estimated reliably. However, bacteria also have
much larger genomes than viruses, such that even
with lower rates it is sometimes possible to treat
them as measurably evolving. As a case in point,
estimates of the evolutionary rate of Salmonella
enterica range from about 10–7 to about 10–6

substitutions per site per year (Duchêne et al.
2016b), and hence are at least three orders of
magnitude lower than those of some RNA
viruses. If only a small portion of its ~5.3 Mb
genome is sequenced, for example 10 kb, it would
take about 10 years to observe a single substitu-
tion. In contrast, when the complete genome is
sequenced, up to four substitutions might be
observed per month and the samples can be
treated as measurably evolving (Zhou et al.
2018). As a result, the growing prevalence of
whole-genome sequencing means that many bac-
teria can now be analysed as measurably evolving
populations (Biek et al. 2015).

Although whole-genome sequencing has
expanded the range of analyses that are possible
in microbes, it has also revealed biological
patterns that are not correctly modelled by stan-
dard techniques. The most notable problem is
homologous recombination, which is very com-
mon in some bacterial groups (Yahara et al.
2016). The most obvious limitation of phyloge-
netic analyses of data sets with substantial recom-
bination is that the whole genome cannot be
assumed to follow a single phylogenetic tree
topology and that estimates of branch lengths
will be incorrect (Hedge and Wilson 2014).
While some methods explicitly attempt to model
recombination events (Didelot and Wilson 2015;
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Vaughan et al. 2017), the most popular approach
is to remove recombining regions and to conduct
phylogenetic analysis on a ‘core genome’ that
includes only sites that have been inherited verti-
cally (Croucher et al. 2014). Failing to account for
recombination can give the impression of an
erratic molecular clock, and removing such
regions can improve the extent to which the data
can be treated as measurably evolving (Schultz
et al. 2016). It is important to note that down-
stream analyses based on estimates of evolution-
ary timescales, such as skyline plots (Pybus et al.
2000), can produce biased inferences when
recombinant regions are removed (Lapierre et al.
2016). Accordingly, it is preferable to model
recombination explicitly, although this is usually
computationally intensive.

10.2.2 Ancient DNA for Temporal
Calibration

DNA taken from subfossils of plants and animals
usually comes from highly degraded material and
requires specialized extraction techniques
(Gamba et al. 2016). Until recently, ancient
DNA was primarily retrieved from mitochondrial
genomes, which are more abundant and have a
lower rate of degradation than nuclear genomes
(Allentoft et al. 2012). The mitochondrial DNA
molecule usually has a highly stable circular
structure and has additional protection from
decay due to the double membrane of the organ-
elle. In most animals, the rate of evolution of
mitochondrial DNA is much higher than that of
most nuclear DNA. These characteristics make
mitochondrial DNA particularly useful for infer-
ring population-level dynamics over short geo-
logical timescales (de Bruyn et al. 2011; Ho and
Shapiro 2011). Fast-evolving ancient DNA has
been instrumental for inferring population-size
fluctuations in a great range of taxa, including
the woolly mammoth (Palkopoulou et al. 2013),
steppe bison (Shapiro et al. 2004), musk ox
(Campos et al. 2010), collared lemming (Brace
et al. 2012), and hominids (Posth et al. 2017),
among many others (e.g., Lorenzen et al. 2011).

The advent of genome-scale sequencing
technologies has greatly facilitated the recovery
of ancient DNA data. High-throughput sequenc-
ing methods can target highly fragmented DNA
molecules, which enables vast amounts of nuclear
DNA to be retrieved. This has allowed whole-
genome sequences to be recovered from ancient
remains (Prüfer et al. 2014). Similarly, it is now
commonplace to recover sequence data from
materials with trace amounts of the target DNA
(Grealy et al. 2017). As a result of novel extrac-
tion and sequencing technologies, older samples
can now be included in genetic studies.

Some ancient tissue samples used for ancient
DNA sequencing have known ages, for instance
as documented dates of collection, but others are
too old for their ages to be known exactly. There-
fore, the ages of samples in time-stamped data
sets can have a degree of uncertainty that should
not be ignored in phylogenetic analysis. One
common source of age uncertainty in ancient
DNA samples that are less than around 55,000
years old is that arising from radiocarbon dating
(Guilderson et al. 2005). An additional complica-
tion is that radiocarbon dates are different from
absolute ages, due to fluctuations in atmospheric
14C content. To allow the radiocarbon date
estimates to be compared with the timing of
other events, such as those of climatic changes,
radiocarbon ages need to be converted to calendar
time. This conversion can be done by using
estimates of atmospheric 14C content in the past,
which are becoming increasingly accurate
(Stuiver and Reimer 1993; Reimer et al. 2013).

The distribution of uncertainty that emerges
from radiocarbon dating can be multimodal, so
using a point summary such as the mean or
median is a poor description of sample ages
(Molak et al. 2015). To solve this problem,
some phylogenetics software allow the imple-
mentation of parametric distributions to account
for uncertainty in sample ages (Shapiro et al.
2011). There are also applications that allow the
use of nonparametric distributions to model the
uncertainty in radiocarbon dates (Molak et al.
2015). Nonetheless, using the point mean or
median estimates of sample ages of time-stamped
data strikingly often leads to reasonable estimates
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of uncertainty in times and rates (Molak et al.
2013).

An ancient sample can also be dated using
indirect methods. The age estimate of the archae-
ological or stratigraphic location of a sample, or
ages estimated from nearby samples, can be used
for calibration. However, dating based on the
boundaries of stratigraphic layers is often
associated with much greater uncertainty than
direct estimates. Dates estimated using this
method can also be highly inaccurate if the
deposit has been reburied or mixed.

10.3 Popular Approaches
for Molecular Dating Using
Time-Stamped Data

Since the early 2000s, a range of methods have
been developed for calibrating the molecular
clock using sampling times: root-to-tip regres-
sion, likelihood or optimality methods, and
Bayesian inference. The intuition behind using
sampling times for calibration is that the evolu-
tionary rate is approximately the difference in
evolutionary distance between a pair of tips
divided by the difference in their sampling
times. In the phylogenetic tree in Fig. 10.1b, the
rate of evolution can be calculated as the differ-
ence in the root-to-tip distance between tips B and
E divided by their difference in sampling times
(TE – TB). To obtain a time-tree, the branch
lengths of the phylogenetic tree (in units of
substitutions per site) can be divided by the evo-
lutionary rate estimate (substitutions per site per
year). Clearly, the inclusion of a larger number of
time-stamped tips gives more opportunities to
calculate the evolutionary rate, thereby improving
its accuracy. A fundamental consideration with
all methods that use time-stamped data is that
the estimates depend on the position of the root,
which can be selected or estimated in a number
of ways.

10.3.1 Root-to-Tip Regression

One of the earliest molecular clock approaches to
time-stamped data was implemented by Korber
et al. (2000) to infer the age of the most recent
common ancestor of HIV pandemic strains. The
data consisted of molecular sequences of the gag
and env genes, with the samples collected over
about 10 years. Their method consisted of infer-
ring a phylogenetic tree using maximum likeli-
hood and assuming a constant evolutionary rate
(i.e., a strict molecular clock). They conducted a
regression of the distance from the root of the tree
to each of the tips as a function of their sampling
times. The expectation is that samples that are
collected later should have undergone more
molecular evolutionary change than those closer
to the root of the tree.

In such root-to-tip regression, the slope of the
line corresponds to the evolutionary rate and the
x-intercept is the age of the most recent common
ancestor (Fig. 10.1c). The optimal position of the
root is that which maximizes clocklike behaviour,
which is typically quantified with the R2 of the
regression, although a range of regression statis-
tics can be used. Alternatively, the position of the
root can be specified by including an outgroup
taxon. The root-to-tip regression method is
implemented in the program TempEst (Rambaut
et al. 2016).

Benefits of the root-to-tip regression include
that it only requires a phylogenetic tree with
branch lengths in units of evolutionary distance
that can be inferred using different methods
(distance-based, maximum-likelihood, or Bayes-
ian approaches), it is computationally very effi-
cient, and it gives a measure of the clocklike
behaviour of the data. Empirical studies suggest
that it can produce estimates of evolutionary rates
that are comparable to those of more sophisticated
methods (Duchêne et al. 2016a; Tong et al. 2018).
However, the root-to-tip regression has some
important limitations. Measuring the root-to-tip
distance for every tip means that there is
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substantial pseudoreplication because the path
from the root to each of the tips will go through
the internal branches multiple times and it does
not report uncertainty in a meaningful way. In
turn, using a p-value to determine the significance
of the association of evolutionary distance and
time is statistically invalid (Rambaut et al.
2016). Although the phylogenetic tree is used to
measure evolutionary distance, the branching
order is not taken into account in the regression
so that this potentially useful information is
discarded. Finally, modelling rate variation
among lineages is not straightforward. For these
reasons, the root-to-tip regression is mostly used
for visual inspection of the data, rather than as a
rigorous molecular clock method (see Sect. 10.4).

10.3.2 Optimality Methods

Approaches based on optimizing a function to fit
a molecular clock fall in the category of optimal-
ity methods and include those based on maximum
likelihood, least squares, and genetic distance.
Rambaut (2000) devised a likelihood function
where branch lengths in the tree are treated as
the product of evolutionary rates and times.
Given a phylogenetic tree and sampling times, it
is possible to estimate the evolutionary rate that
maximizes this likelihood. This can be performed
under the assumption that there is a strict molecu-
lar clock, or by allowing rates among branches to
be governed by a probability distribution (Seo
et al. 2002; Volz and Frost 2017; Sagulenko
et al. 2018). Nonparametric methods also opti-
mize a likelihood (or penalized likelihood) func-
tion to fit a molecular clock with different degrees
of rate variation among lineages (Sanderson
2003; Fourment and Holmes 2014; Chap. 12).
There exist several software programs to fit
molecular clocks to time-stamped data using like-
lihood, including TreeDater (Volz and Frost
2017), TreeTime (Sagulenko et al. 2018),
TipDate (Rambaut 2000), Physher (Fourment
and Holmes 2014), and r8s (Sanderson 2003).

In the program LSD, To et al. (2016)
implemented a least-squares dating method that
is similar in principle to the Langley–Fitch model

(Langley and Fitch 1974), which assumes a strict
molecular clock. The new method differs in that
errors in evolutionary rates are assumed to follow
a Gaussian, rather than a Poisson, distribution.
The objective function depends on the evolution-
ary rate and the branch lengths. The optimization
is conducted via weighted least squares, where
the weights are the uncertainty of the Gaussian
distribution that governs rates (To et al. 2016).
This method assumes a strict molecular clock and
aims to minimize evolutionary rate variation
among lineages. To obtain uncertainty in the
estimates of node times and evolutionary rates,
LSD conducts a parametric bootstrap of branches.
The position of the root can be optimized in the
program, or specified using an outgroup or a
particular branch. A useful feature of this method
is that it is possible to estimate the ages of
samples with unknown collection times.

The optimality methods described here are
computationally very efficient, which makes
them amenable to very large data sets. For exam-
ple, LSD has been used to infer the evolutionary
rate and timescale of over 1000 strains of influ-
enza within a few minutes on a standard laptop
(To et al. 2016). Such computational efficiency is
due to the fact that these methods require an
estimated phylogenetic tree as an input, instead
of inferring the tree directly from the sequence
data as is the case with most Bayesian methods.
The most obvious limitation is that any uncer-
tainty in LSD estimates typically reflects evolu-
tionary rate variation but not uncertainty in the
tree topology or branch lengths. However, these
sources of uncertainty can be incorporated using
indirect methods, such as repeating the analyses
on a set of bootstrap trees.

10.3.3 Bayesian Methods

Most Bayesian molecular clock methods natu-
rally incorporate uncertainty in the estimates of
the tree topology, branch lengths, and evolution-
ary rates via the posterior distribution (see
Chap. 6). They can also implement sophisticated
models to describe complex patterns of evolution-
ary rate variation and demographic dynamics. It is
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of particular relevance to ancient DNA studies
that Bayesian methods allow the researcher to
assign a prior distribution for the ages of tips,
for example to reflect the uncertainty in 14C dat-
ing, and their posterior distribution will be
estimated as for other parameters (Shapiro et al.
2011). The most widely used programs that incor-
porate a full Bayesian model include BEAST 1
(Suchard et al. 2018) and BEAST 2 (Bouckaert
et al. 2019), MrBayes (Ronquist et al. 2012b), and
RevBayes (Höhna et al. 2016).

In its simplest form, the full Bayesian model
consists of a time-tree prior (du Plessis and Stadler
2015) to describe the branching process, a molec-
ular clock model to describe the prior on branch
rates, and a substitution model. The phylogenetic
likelihood of the sequence data given the tree and
the substitution model is calculated by treating
branch lengths as the product of times (from the
time-tree prior) and rates (from the clock model)
(Heath and Moore 2014; Bromham et al. 2018).
The position of the root of the tree is informed by
the tree prior, instead of being optimized indepen-
dently as in optimality methods and the root-to-tip
regression. The range of clock models that can be
used is the same as that for isochronous data, but
only some of the available tree priors are valid for
heterochronous data.

The most common tree priors posit that
branching events are described by either a coales-
cent or a birth–death process (Drummond and
Stadler 2015). Coalescent models are backwards-
in-time processes that are conditioned on the ages
and number of samples. The rate at which
lineages coalesce back in time is determined by
a mathematical function of population size over
time (Rosenberg and Nordborg 2002). For exam-
ple, an exponential function can be used to esti-
mate the growth rate of a pathogen population
based on the temporal distribution of nodes
(Volz et al. 2009). An array of flexible skyline-
plot methods can also use the coalescent to infer
more complex population dynamics using non-
parametric and semiparametric approaches
(Ho and Shapiro 2011). Because coalescent
models do not explicitly describe the sampling

process, they only require a few modifications to
make them applicable to heterochronous data
(Rodrigo and Felsenstein 1999; Drummond
et al. 2002).

Birth–death models are forwards-in-time pro-
cesses and they have an expectation of the num-
ber of samples and of their ages. The simplest
model is known as the Yule process and it
assumes constant diversification and no extinc-
tion, or death, of lineages (Yule 1924). The result
of the Yule process is always an isochronous
time-tree, so it cannot be used for analyses of
heterochronous data. A birth–death process with
explicit sampling assumes that lineages can go
extinct and can be sampled with some probability
(Stadler 2010), and hence can be applied to
heterochronous data. A key consideration relating
to the birth–death model is that the sampling
parameter should reflect the process under which
the data were sampled; the constant birth–death
assumes constant sampling effort over time and
lineages, whereas the birth–death skyline allows
the user to specify periods of time with variable
sampling effort (Stadler et al. 2013). There also
exist multiple birth–death models that allow cer-
tain lineages to be sampled with a higher proba-
bility (Stadler and Bonhoeffer 2013). Recent
studies have suggested that the choice of sam-
pling scheme can have a considerable effect on
the birth–death tree prior, producing time priors
for internal nodes that are more informative than
those under the coalescent (Boskova et al. 2018).
As with all Bayesian analyses, it is important to
choose a prior distribution that is reasonable for
the data at hand.

Some Bayesian methods do not implement a
full Bayesian model. Instead of relying on
sequence data, they assume an estimate of the
phylogenetic tree with branch lengths (Thorne
et al. 1998; Yang 2007; Didelot et al. 2018).
These approaches are usually more computation-
ally efficient than those that use the full Bayesian
model. However, they currently have a limited
range of tree priors available and their computa-
tional efficiency comes at the expense of ignoring
phylogenetic uncertainty.
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10.4 Verifying Temporal Structure

Estimating evolutionary rates and times using
time-stamped data requires sufficient molecular
evolution between sampling times (Duchêne
et al. 2015b; Murray et al. 2015). If this requisite
is met, the data are said to have temporal struc-
ture. If the molecular data have evolved too
slowly relative to the timeframe covered by the
samples, then they might not have temporal struc-
ture and can produce spurious inferences of evo-
lutionary rates and times (Rambaut 2000). Failing
a test of temporal structure generally means that
either a more rapidly evolving molecular marker
must be sampled, or the sampling window must
be widened by the inclusion of new samples from
times outside the existing window. Below we
outline the methods that have been proposed to
test whether time-stamped data have temporal
structure.

10.4.1 Root-to-Tip Regression

A fast and popular approach to test temporal
structure is to employ a root-to-tip regression
under the assumption that the data follow a
molecular clock, as described above. The test
only requires estimation of the root-to-tip
distances, which are the summed lengths of
branches from the root of the tree to each tip.
This method tests for a linear relationship
between the molecular substitutions accumulated
and the ages of the samples (Fitch et al. 1991;
Fig. 10.1c). The slope must be positive because it
is a crude estimate of the evolutionary rate, and a
high R2 coefficient of determination indicates
clocklike evolution (Korber et al. 2000).

The root-to-tip regression has several known
shortcomings. In many time-structured data sets,
the samples come from only a small number of
time points; this means that the results could be
based on only a small number of data points,
leading to low statistical power. In addition,
many data sets violate the assumption of the
molecular clock, such that a poor root-to-tip
regression can lead to falsely taking the data as

lacking temporal structure (Firth et al. 2010;
Duchêne et al. 2020). More critically, the root-
to-tip measurements used in this method are not
statistically independent, as explained in Sect.
10.3.1. Nonetheless, root-to-tip regression is
extremely fast and it is commonly used as an
exploratory diagnostic of the reliability of rate
estimates (Duchêne et al. 2016a; Rambaut et al.
2016; Tong et al. 2018).

10.4.2 Date-Randomization Test

Amore robust test of temporal structure known as
the date-randomization test involves permuting
the dates of samples (Ramsden et al. 2008). The
goal of permuting the sample ages is to create data
sets where the association between sample age
and molecular evolution is broken. A large col-
lection of data sets with randomized tips can be
taken to represent a null distribution of rate
estimates. Temporal structure is said to be lacking
if the rate estimates obtained with the correct
sampling times resemble those estimated from
the date-randomized replicates (Fig. 10.2a).

The date-randomization test can be used to
evaluate temporal structure using Bayesian and
optimality methods, and two test criteria have
been proposed. The first criterion (CR1) assesses
whether the mean rate estimated from the empiri-
cal data falls within the 95% credible interval of
the rate estimates from the date-randomized
replicates (Fig. 10.2a). The second criterion
(CR2) assesses whether the 95% credible interval
of the rate estimates with correct sampling times
overlaps with the range of those from the date-
randomized replicates (Duffy and Holmes 2009;
Ramsden et al. 2009). CR2 provides a more con-
servative assessment and is recommended, with
minimal chances of failing to reject a data set with
no temporal structure (Duchêne et al. 2015b).
However, this criterion also brings a moderate
chance of incorrectly rejecting data sets as lacking
structure, equivalent to a high Type II error rate.
An implementation of this test in LSD, or any
optimality method, is computationally less expen-
sive and it is feasible to conduct a large number of
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randomizations. In this case, one can compute
where the estimate with correct sampling times
falls with respect to those from the
randomizations, providing the equivalent of a
frequentist p-value (Duchêne et al. 2018).
Although a large number of randomizations is
desirable, several studies have used 20 with rea-
sonable results (e.g., Kerr et al. 2012; Duchêne
et al. 2015b).

A critical consideration when performing the
date-randomization test comes about when data
have a nonuniform temporal sampling. In many
time-structured data sets, dates are grouped in
such a way that close relatives have similar sam-
pling ages, a pattern known as phylogenetic and
temporal clustering (Fig. 10.2b).

In cases of nonuniform temporal sampling, the
temporal and phylogenetic information is con-
founded and this can lead to severe overestima-
tion of molecular rates. A possible reason for the
poor rate estimates is that such data sets provide
few independent instances of comparison

between molecular and temporal data, and there-
fore less information about molecular rates
(Murray et al. 2015). Interestingly, data sets that
yield highly phylogenetically imbalanced trees
(those that look pectinate or comb-like) also
tend to yield overestimates of molecular rates
(Duchêne et al. 2015a), which might in part be
explained by the common confounding of tempo-
ral and phylogenetic data observed in imbalanced
trees.

Most tests of temporal structure fail to reject
data sets when the temporal and phylogenetic
information are confounded. This means that
data will be falsely identified as containing tem-
poral structure. One solution to this problem is to
use the clustered date-randomization test
(Duchêne et al. 2015b), in which sampling times
are permuted among samples but not among those
that share the same age. Such a clustered
approach to date randomization leads to a reliable
test of temporal structure (Duchêne et al. 2015b;
Murray et al. 2015).
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Fig. 10.2 (a) Example of results from a date-
randomization test indicating strong temporal structure.
Evolutionary rate estimates correspond to the estimate
with the correct sampling times (black) and those from
20 date-randomized replicates (grey). Solid circles are the
mean rate estimates and the error bars are the 95% credible
intervals. The blue dashed lines denote the mean rate
values with the correct sampling times and the range in
mean rates coming from the randomizations, as used in the
CR1 method of testing temporal structure. Similarly, the
red dashed lines denote the 95% credible intervals from

the data with correct sampling times and the
randomizations, and can be used as a stringent criterion
for assessing temporal structure CR2. In CR2, the data are
considered to have strong temporal structure if the credible
interval for the estimate with correct sampling times does
not overlap with those from any of the date-randomized
replicates. The tree in b presents an example of phyloge-
netic and temporal clustering, where samples A and B
have similar sampling times to each other, as do samples
D and E. In this case, a cluster-based date-randomization
test is more appropriate
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10.4.3 Bayesian Test of Model Fit

The statistical fit of models with different sample
dates can provide an alternative test of temporal
structure. For example, treating a heterochronous
data set as isochronous is expected to lead to a
poorer statistical fit than if samples are assigned
their true dates. In Bayesian molecular dating,
testing for temporal structure using model fit is
done by estimating the marginal likelihood of two
different models: one using the empirical sam-
pling times, and one where all the samples are
assigned the most recent date (Baele et al. 2012;
Murray et al. 2015). If the data contain temporal
structure, the marginal likelihood for the model
with the original sample dates is expected to be
superior. Approximate methods for computing
marginal likelihoods are often regarded as com-
putationally expensive and sometimes unreliable,
but some are likely to be sufficient (e.g., path
sampling, stepping-stone sampling; Xie et al.
2011; Baele et al. 2013). Marginal likelihoods
can be readily estimated using popular software
such as BEAST.

Analyses of empirical data have shown that
this method can be misleading if a poor
marginal-likelihood estimator is used, with a ten-
dency to support the presence of temporal struc-
ture even in analyses that yield incorrect estimates
of evolutionary rates and times (Murray et al.
2015). However, recent work has demonstrated
that a highly accurate estimator, generalized
stepping-stone sampling (Fan et al. 2011; Baele
et al. 2016), can effectively detect temporal struc-
ture in simulations and empirical data (Duchêne
et al. 2020).

10.4.4 Comparing the Prior
and Posterior to Assess
Temporal Structure

The broad uptake of the date-randomization test is
largely due to the possibility of implementing it in
popular Bayesian frameworks, such as BEAST.
However, the interpretation of its result is not
strictly Bayesian, instead bearing some

resemblance to frequentist methods; the goal is
to test a hypothesis (whether the data have tem-
poral structure or not) with some confidence level
(similar to p-value testing using a significance
value, α). In contrast, a fully Bayesian approach
should assess statistical support for including
sampling times (Baele et al. 2012; Murray et al.
2015; Duchêne et al. 2020) or assessing the extent
to which the sequence data and sampling times
are informative about the inferences. The former
method has been previously assessed (see Sect.
10.4.3), but the latter has received limited
attention.

In general, sequence data are considered infor-
mative if the posterior distribution is considerably
different from the prior (with the notable excep-
tion of internal-node calibrations; Heath and
Moore 2014). The expectation is that with infor-
mative sequence data, the posterior should be
more precise and closer to the true value than
the prior, a behaviour also known as statistical
consistency. However, even sequence data with
very low information content can drive, and
sometimes mislead, estimates of some parameters
in the full phylogenetic model. As a case in point,
Möller et al. (2018) found that uninformative
sequence data can produce precise, but incorrect,
estimates of tree length and of the evolutionary
rate. This probably occurs because sequence data
that are uninformative for estimating evolutionary
rates and timescales can still contain sufficient
information to resolve the topology. Under these
circumstances, a limited set of trees will be sam-
pled and lead to a posterior that is much more
precise than the prior. Other parameters, includ-
ing the age of the root node, do not appear to
suffer from this problem.

Here we describe an approach that involves
comparing the prior and posterior distributions
of different parameters to assess information con-
tent in molecular sequence data and their associa-
tion with their sampling times. Our method of
assessing temporal structure consists of
quantifying information content in the posterior
relative to that of the prior for the age of the root
node. A simple measure is to take the 95%
quantile width divided by the mean, an analogue
to the coefficient of variation and referred to here
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as CV.We calculate this for the prior, CVprior, and
for the posterior, CVposterior, and take the ratio
CVratio ¼ CVprior / CVposterior. A CVratio of
1 means that the prior and posterior are equally
informative, whereas a CVratio of more than
1 means that the posterior is more informative
than the prior.

We expect that data with temporal structure
should have a higher CVratio than those with no
temporal structure. However, this can depend on
the parameter in question and its corresponding
prior. For example, if the evolutionary rate has a
very broad prior, even sequence data with no
temporal structure can produce a posterior that is
much more informative than the prior, with a
potentially large but misleading CVratio. This is
expected because the rate will be a function of the
number of variable sites and the prior on the age
of the root node. In contrast, the age of the root
node will require data with strong temporal struc-
ture to obtain an informative posterior and high
CVratio.

To determine the behaviour of this approach,
we simulated the evolution of DNA sequences
using parameters inferred for H1N1 influenza
virus, which typically has clocklike behaviour
and strong temporal structure (Hedge et al.
2013). We used the HKY+Γ substitution model,
a strict molecular clock with an evolutionary rate
of 3.66 � 10–3 substitutions per site per year, and
an exponential coalescent process for the
branching times. One hundred data sets were
simulated to have temporal structure, with sam-
pling times that span 7 months and which match
those of some data sets of the 2009 influenza
pandemic in North America (Hedge et al. 2013),
while another 100 were generated on ultrametric
trees and with no temporal structure. All data sets
contained 50 samples, sequence lengths of 13,156
nt, and about 350 variable sites to match typical
genome data sets from influenza virus.

We analysed the data in BEAST 2.5
(Bouckaert et al. 2014, 2019) using a substitution
model and tree prior that matched those used to
generate the data, and a Markov chain Monte
Carlo simulation with 5 � 107 steps, sampling
every 5000 steps. For the data with temporal
structure, we used the correct sampling times for
calibration, but, for the data with no temporal

structure, we set sampling times from a typical
influenza outbreak (Hedge et al. 2013). We used a
relaxed-clock model with a lognormal distribu-
tion. This model has good performance even for
data that follow a strict clock (Drummond et al.
2006), and it can accommodate apparent rate
variation among lineages that might arise when
specifying sampling times for the data with no
temporal structure. The priors were all proper,
such that each integrates to 1, and were selected
according to previous analyses of these data
(Duchêne et al. 2019). Ideally, one could compare
the prior selected for each parameter with its
marginal posterior distribution. However, such
user-specified priors often differ from the mar-
ginal prior, particularly those for ages of nodes
(including that of the root node) which can inter-
act with the topology and other priors (Duchêne
et al. 2014b). To obtain the marginal prior one can
run the analyses without sequence data (equiva-
lent to selecting the option ‘sample from prior’ in
BEAST 2).

The simulations demonstrate that analyses of
data with temporal structure result in a posterior
that is much more informative than the prior
(Fig. 10.3a, b), with a CVratio between 3 and
11 for the evolutionary rate and between 4 and
13 for the age of the root node. In 97 out of
100 simulations the posterior 95% credible inter-
val of the evolutionary rate included the value
used to generate the data. Analyses of the data
with no temporal structure yielded rate estimates
that never included the true evolutionary rate, but
the posterior for this parameter was nonetheless
always more informative than the prior
(Fig. 10.3c), with a CVratio between 1 and 12.
The CVratio values of the evolutionary rate are
similar for both sets of simulations, despite
those with no temporal structure always yielding
incorrect rate estimates. This illustrates the point
that comparing the prior and posterior of the rate
can provide a misleading assessment of temporal
structure (Fig. 10.4a). This probably occurs
because sequence data are informative about the
topology and the total amount of sequence diver-
gence even in the absence of temporal structure.

The CVratio of the age of the root node is a
more useful diagnostic to assess temporal struc-
ture than that of the evolutionary rate (e.g.,
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Fig. 10.3b, d). Its value ranged between 4.8 and
14 for the simulated data with temporal structure
and between 1 and 2.5 for those with no temporal

structure (Fig. 10.4). According to these results, a
posterior for the age of the root node that is about
fivefold more informative than the prior
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Fig. 10.3 Prior and posterior densities of the mean evo-
lutionary rate and the age of the root node for a simulated
data set with temporal structure (a, b) and without tempo-
ral structure (c, d). CVratio is a measure of information
content. For the prior and the posterior, we calculate the
95% interval width divided by the mean, and the ratio of

this quantity of the prior and the posterior is the CVratio. A
value of 1 indicates that the prior and posterior are simi-
larly informative, with higher values suggesting a more
informative posterior. The dashed line corresponds to the
‘true’ value used to generate the data
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Fig. 10.4 Histograms of the CVratio for the evolutionary
rate and age of the root node for 100 simulations with
temporal structure (grey) and without temporal structure
(red). Higher values indicate a more informative posterior
distribution relative to the prior. (a) CVratio of the evolu-
tionary rate is similar whether the data have temporal
structure or not, but, in the data with no temporal structure,
this parameter was never estimated correctly, meaning that

this statistic is misleading for assessing temporal structure.
(b) In contrast, CVratio of the age of the root node is much
higher for the simulated data with temporal structure. The
distribution of CVratio with no temporal structure (red) is
lower and does not overlap with that from the simulated
data with temporal structure (grey). As such, CVratio of the
age of the root node is an informative statistic for assessing
temporal structure

168 S. Duchêne and D. A. Duchêne



(CVratio > 5) can be used as evidence of temporal
structure.

Although this test of temporal structure
appears to be effective, it requires careful consid-
eration of the priors, especially those on node
times as imposed by the tree prior. Here we
have used a coalescent tree prior that is
conditioned on the sampling times. In contrast,
birth–death tree priors can provide information
about sampling times and, if provided, they can
be treated as part of the data to inform diversifica-
tion parameters and the age of the root node
(Boskova et al. 2018). For this reason, it is impor-
tant to sample from the prior to determine
whether it is reasonable (Heled and Drummond
2012). An obvious problem is when the prior on
the age of the root node is over-informative, such
that the posterior is very similar regardless of
whether the data have strong temporal structure
or not. In such circumstances, inferences of evo-
lutionary rates and times are driven by the tree
prior and temporal structure might only have a
small impact. Although this is sometimes desir-
able, for example when internal-node calibrations
are used in combination with sampling times, it
should be explicitly acknowledged when
interpreting the estimates.

10.5 Heterochronous Data Analysis
in Practice

To provide an illustration of how temporal struc-
ture can be evaluated using Bayesian methods,
we present here an analysis of two empirical data
sets. Although there has been extensive use and
validation of the date-randomization test and the
root-to-tip regression, less attention has been
given to comparing prior and posterior
distributions to assess temporal structure. We
analysed two previously published data sets of
2009 H1N1 influenza virus (Hedge et al. 2013)
and of an outbreak of the bacterium Mycobacte-
rium tuberculosis in the Swiss city of Bern
(Kühnert et al. 2018) to show how the results
from the simulations in Sect. 10.4.4 can be
applied to empirical data. The influenza data set
consists of 100 whole genomes collected between

February and August 2009 in North America,
while the M. tuberculosis data set consists of
68 samples collected in Bern over a 10-year
period. Our analyses are similar to those
described in Sect. 10.4.4, with the same tree
prior, substitution model, and Markov chain
Monte Carlo settings.

The evolutionary rate estimates from both data
sets were similar to those of the original studies,
at 0.22 SNPs per genome per year for
M. tuberculosis, and 3.66 � 10-3 substitutions
per site per year for H1N1 influenza, although
slightly lower for M. tuberculosis, reported at
about 0.5 SNPs per genome per year by Kühnert
et al. (2018). The estimate of the age of the root
node of influenza is around the start of 2009,
which is consistent with the expected origin of
the 2009 influenza outbreak in the Northern
Hemisphere (Fig. 10.5). According to the
simulations in Sect. 10.4.4, a CVratio for the age
of the root node of at least 5 would indicate
evidence for temporal structure. As such, there
appears to be strong evidence of temporal struc-
ture for the influenza data set, with a CVratio of
8.91, whereas that for the M. tuberculosis data is
only 1.32. The low CVratio of the M. tuberculosis
data is consistent with a low R2 (0.05) from a root-
to-tip regression in the original study (Kühnert
et al. 2018). Comparing prior and posterior
distributions of the age of the root node appears
to be effective for analyses of empirical data. It
has the key benefits of an intuitive interpretation
and ease of use.

10.6 Conclusions and Future
Directions

Calibrating the molecular clock using
heterochronous data has been valuable for
estimating evolutionary rates and timescales in
rapidly evolving organisms and in ancient DNA
studies. There has been dramatic progress since
the proposal of the early root-to-tip regression
and strict-clock methods (Korber et al. 2000;
Seo et al. 2002), towards incorporating more
sophisticated models of rate variation (Ho and
Duchêne 2014; Bromham et al. 2018), modelling
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uncertainty in sampling times (Shapiro et al.
2011; Molak et al. 2013), and handling very
large data sets (To et al. 2016).

With most current methods it is important to
verify temporal structure to avoid misleading
inferences. Several methods to do this have been
described in this chapter, but regardless of the
choice of method for assessing temporal struc-
ture, the results should be carefully considered
before any of the data are discarded. For example,
many bacterial data sets have strong temporal
structure, but it is often obscured by recombina-
tion (Schultz et al. 2016), so correctly accounting
for recombination is an important development
(Vaughan et al. 2017; Didelot et al. 2018). In
some viruses, notably Hepatitis B virus, even
data sets that include samples from about
500 years ago still show little temporal structure,
a pattern that has been attributed to mutational
saturation (Patterson Ross et al. 2018). Accord-
ingly, developing more realistic substitution and
molecular clock models is likely to improve the
resulting inferences. In cases when the best avail-
able methods still detect no temporal structure in
the data, it might be necessary to resort to adding
calibrating information via internal-node calibra-
tion or previous rate estimates, to widen the sam-
pling window, or to sequence more informative
genomic regions.

Bayesian approaches have been particularly
popular because they allow simultaneous estima-
tion of a multitude of parameters of interest, such
as migration rates or epidemiological spread
(Lemey et al. 2009; Kühnert et al. 2011), and
because they can combine different sources of
information for calibration (Ronquist et al.
2012a; Zhang et al. 2015). Recent developments,
mostly in the Bayesian framework, include models
that allow ancient samples to be placed as direct
ancestors to modern samples (Gavryushkina et al.
2014), and those that can treat fossil taxa as tips in
the phylogenetic tree instead of using them indi-
rectly for internal-node calibrations (Heath et al.
2014). The flexibility of many Bayesian software
programs, such as BEAST 2 and RevBayes
(Höhna et al. 2016; Bouckaert et al. 2019),
presents a key opportunity to develop more realis-
tic approaches for including heterochronous data
in complex evolutionary scenarios.
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