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Preface

Evolutionary biology has been transformed over the past few decades by the
remarkable wealth of information offered by genomic data. Throughout this
period, one enduring concept has been the molecular evolutionary clock,
which proposes that rates of genetic change are relatively constant through
time. Following its origins in the first half of the 1960s, the molecular clock
has played an important role in molecular evolutionary theory while also
serving as a valuable tool for inferring evolutionary timescales. It has
sustained a range of challenges and criticisms over the years, undergoing
considerable development and evolution in response. In the genomic era, the
molecular clock remains an exceptionally useful means of placing a timescale
on the tree of life.

The purpose of this book is to provide an overview of the molecular
evolutionary clock, including its theory and applications. Despite its impor-
tance, the molecular clock has not been the focus of any scholarly books in the
past two decades, although numerous review articles on this topic have been
published. The chapters of this book are grouped into four sections. Part I
deals with Evolutionary Rates and introduces the molecular clock, the
principles of molecular evolution, spontaneous mutation rates, and the causes
of evolutionary rate variation. Part II introducesMolecular Dating, including
the principles of molecular dating, Bayesian molecular dating, and clock
models for morphological evolution. Part III describes approaches for
Calibrating Molecular Clocks, including calibrations from the fossil record,
biogeographic calibrations, tip-dating, and total-evidence dating and the
fossilized birth–death model. Part IV examines the growing field of
Phylogenomics and describes rapid dating methods and phylogenomic dat-
ing. In Chap. 1, I briefly introduce the individual chapters in these four
sections of the book.

I take this opportunity to thank all of the contributors to this book. The
authors are leading experts in their respective fields of research and generously
gave their time to contribute high-quality chapters to this project. The chapters
also benefited from helpful evaluations by anonymous reviewers. I sincerely
hope that this book provides a useful, informative, and comprehensive
resource for students and researchers in molecular evolution and other fields.

Sydney, Australia Simon Y. W. Ho
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The Molecular Clock and Evolutionary
Rates Across the Tree of Life 1
Simon Y. W. Ho

Abstract

The molecular evolutionary clock was pro-
posed in the 1960s and has undergone consid-
erable evolution over the past six decades.
After arising from early studies of the amino
acid sequences of proteins, the molecular
clock became a point of contention between
competing theories of molecular evolution. In
this chapter, I describe the origins of the
molecular clock hypothesis and the mixture
of evidence that emerged throughout the
1970s and 1980s, including the discovery of
departures from clocklike evolution in proteins
and DNA. I review some of the broad patterns
of evolutionary rate variation across the tree of
life, including rates of spontaneous mutation
and long-term evolution in viruses, bacteria,
animals, and plants. With the remarkable
growth of genomic data over the past two
decades, the molecular clock is now primarily
seen as a tool for reconstructing evolutionary
timescales. In the final parts of this chapter, I
summarize the key developments in molecular
dating methods and describe how these
approaches have been used to infer the timing
of major evolutionary events.

Keywords

Molecular clock · Neutral theory · Mutation
rate · Evolutionary rate · Rate variation ·
Molecular dating · Tree of life

1.1 Introduction

The molecular evolutionary clock has had a pro-
found influence on molecular evolutionary the-
ory, while also providing an indispensable tool
for inferring evolutionary rates and timescales.
Starting from the simple premise that evolution-
ary change at the molecular level proceeds at a
relatively constant rate, the molecular clock has
undergone considerable evolution over the past
six decades (Fig. 1.1). The history of research on
the molecular clock has featured an extensive
debate over molecular evolutionary theory, per-
sistent challenges to its assumptions and
predictions, and applications to questions about
the timing of major biological events. Throughout
this time, researchers have devoted substantial
efforts to understand the causes of evolutionary
rate variation across the tree of life, and to apply
the principle of the molecular clock in methods
for estimating evolutionary timescales. The
molecular clock has now confirmed its important
role in research in the life sciences, finding
applications in such diverse fields as evolutionary
biology, molecular ecology, archaeology, and
epidemiology.

S. Y. W. Ho (*)
School of Life and Environmental Sciences, University of
Sydney, Sydney, New South Wales, Australia
e-mail: simon.ho@sydney.edu.au
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The idea of a molecular clock emerged from
studies of proteins in the mid-twentieth century, a
time when new biochemical and genetic data
were bringing important insights into evolution-
ary biology. In particular, efforts to determine the
amino acid sequences of proteins were yielding
valuable data sets that could inform evolutionary
thinking. A series of innovative studies in the
early 1960s gave rise to the molecular clock
(Zuckerkandl and Pauling 1962, 1965;
Margoliash 1963; Doolittle and Blombäck
1964), which soon grew to become an integral
part of the neutral theory of molecular evolution
(Kimura 1968, 1969). In the ensuing decades, the
molecular clock played a central role in the
debates between neutralists and selectionists,
who supported opposing theories of molecular
evolution (Ohta and Gillespie 1996). In the pres-
ent genomic age, the molecular clock is perhaps
most widely recognized as a tool for estimating
the timing of evolutionary events (Bromham and
Penny 2003).

This book provides an overview of the molec-
ular evolutionary clock, including its theory and
practice. It attempts to cover a huge field of
research that cannot be satisfactorily summarized
in an individual review article; nevertheless, this
book can only be considered as an introductory
text. Many of the chapters in this book focus on
recent developments in this fast-moving field,
including the latest endeavours to cope with
genome-scale data sets and to combine molecular,
phenotypic, and palaeontological data in a biolog-
ically meaningful way.

In this opening chapter, I describe the origins
of the molecular clock and its evolution over the
past six decades. I then provide an overview of
the different forms of evolutionary rate variation
across the tree of life, ranging from viruses and
bacteria to eukaryotes. The chapter concludes
with a description of how molecular clocks are
used to infer evolutionary timescales, including a
summary of some of the major applications of
molecular dating. Throughout this chapter, I
introduce the contents of the remaining chapters
of the book.

1.2 The Molecular Clock
Hypothesis

1.2.1 Origins of the Molecular Clock

The term ‘molecular evolutionary clock’ was pro-
posed by Emile Zuckerkandl and Linus Pauling in
1965. Zuckerkandl had joined Pauling in the
California Institute of Technology in late 1959
and the two worked on the sequencing and analy-
sis of the haemoglobin protein (Morgan 1998).
Less than a decade earlier, the first amino acid
sequence of a protein, insulin, had been deter-
mined. Zuckerkandl and Pauling (1962) noted
that the divergence in the amino acid sequence
of haemoglobin increased over time with the evo-
lutionary distance between species. They made
the inspired assumption that a simple linear rela-
tionship existed between the two quantities.

Zuckerkandl and Pauling (1962) raised the
possibility of using this clocklike property to
develop a tool for estimating the timing of diver-
gence between haemoglobin chains and between
vertebrate species. Based on a palaeontological
estimate of 100–160 million years (Myr) for the
divergence between human and horse, they
inferred an evolutionary rate of 1 amino acid
substitution per 14.5 Myr (Fig. 1.2a). Their appli-
cation of this rate to the amino acid sequences
yielded estimates of the divergence times between
haemoglobin chains, with the α chain splitting
from the β and γ chains about 565–600 Myr ago
in the late Precambrian. The divergences between
the β chain and the γ and δ chains were estimated
to have occurred much more recently, at 260 Myr
ago in the Permian and 44 Myr ago in the Eocene,
respectively.

In their analysis of haemoglobin, Zuckerkandl
and Pauling (1962) also obtained an estimate of
11 Myr for the evolutionary split between gorilla
and human (Fig. 1.2a). They noted that this esti-
mate was at the lower end of the timing of 11–35
Myr ago suggested by the fossil record. Their
estimate, and other molecular estimates of the
hominid evolutionary timescale reported in the
1960s (Sarich and Wilson 1967a), were contro-
versial because they were inconsistent with the

4 S. Y. W. Ho



prevailing notion of a large evolutionary distance
between modern humans and the other great apes
(Wilson et al. 1977). However, reports would
soon emerge of constant evolutionary rates in
the amino acid sequences of cytochrome
c (Margoliash 1963) and fibrinopeptides
(Fig. 1.2b; Doolittle and Blombäck 1964), lend-
ing support to the molecular clock hypothesis.

In addition to developing a tool for inferring
evolutionary timescales, Zuckerkandl and
Pauling (1962) foresaw some of the problems
that would beset molecular clock analyses in
subsequent decades. They referred to the
problems posed by repeated substitutions at the
same amino acid site (including back-mutations),
the potentially confounding impacts of natural
selection, and the influence of population size.

2020

2010

2000

1990

1980

1970

1960

Data types used for
molecular dating

Developments in theory,
methods, and models

amino acid sequencesmolecular dating analysis

‘molecular evolutionary clock’

Bayesian molecular dating

calibration priors

immunological distances

protein electrophoresis

nucleotide sequences

DNA-DNA hybridization

microsatellites

randomly amplified polymorphic DNA

genome complexity

amplified fragment length polymorphisms

neutral theory

nearly neutral theory

protein folds

recombination events

uncorrelated relaxed-clock model

nonparametric rate smoothing
autocorrelated relaxed-clock model

penalized likelihood

fluctuating neutral space theory

total-evidence dating with fossil tips

dating with fossilized birth-death model

relative-rates test

episodic selection model

local-clock model

Fig. 1.1 Timeline of advances throughout the history of
the molecular clock, beginning with its application to
amino acid sequences (Zuckerkandl and Pauling 1962).
The left side of the timeline lists some of the key
developments in molecular evolutionary theory (stars)
and in molecular dating methods and models of evolution-
ary rate variation (squares). The term ‘molecular

evolutionary clock’ was introduced in 1965. Most of the
developments listed here are referred to explicitly in the
main text of this chapter. The right side of the timeline lists
the first use of different data types for molecular dating
(circles; for references, see Ho et al. 2016). Nucleotide
sequences are now the most widely used type of genetic
data in molecular dating analyses
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Fig. 1.2 (a) The earliest use of the molecular clock to
infer evolutionary divergence times, based on amino acid
sequences of haemoglobin (Zuckerkandl and Pauling
1962). The evolutionary rate was calibrated using a
palaeontological estimate of the horse–human divergence
at 100–160 million years ago. Assuming a constant rate of
amino acid replacements, the divergence time of gorilla
and human was estimated (represented by two data points
corresponding to the divergences between the two α

chains and between the two β chains), along with the
divergence times of various pairs of haemoglobin chains
(denoted by Greek letters). Data from Zuckerkandl and
Pauling (1962). (b) Clocklike evolution in fibrinopeptides,
based on pairwise comparisons of amino acid sequences in
sheep, goat, reindeer, ox, pig, and human. Pairwise amino
acid sequence identity (%) is plotted against the time of
divergence estimated from the fossil record. Data from
Doolittle and Blombäck (1964)
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Their idea of the molecular clock acknowledged
an important role for natural selection, although
they later surmised that ‘the changes that occur at
a fairly regular over-all rate would be expected to
be those that change the functional properties of
the molecule relatively little’ (p. 148,
Zuckerkandl and Pauling 1965). This statement
seemed to anticipate the close association that
would soon form between the molecular clock
and the neutral theory of molecular evolution
(e.g., Kimura 1968; King and Jukes 1969; Wilson
and Sarich 1969).

The neutral theory, put forward by Motoo
Kimura in 1968, made the bold assertion that
the majority of mutations are neutral. This
contradicted the dominant view that such
mutations are rare or transient (Fisher 1936;
Mayr 1963), although the importance of neutral
mutations in molecular evolution had been
suggested earlier in the same decade (Freese
1962; Sueoka 1962). In Kimura’s proposal, the
term ‘neutral’ was not intended to suggest that the
corresponding gene lacked function (e.g.,
Zuckerkandl 1978), but instead meant that the
mutation conferred neither an advantage nor dis-
advantage to the organism and that the fate of the
mutation would be governed by genetic drift.
Although the molecular clock was influential in
the development of the neutral theory (Takahata
2007), Kimura’s case for the theory largely rested
on estimates of enzyme variability from electro-
phoretic studies and rates of protein evolution
inferred from analyses of amino acid sequences.
He argued that these high evolutionary rates
greatly exceeded the limits imposed by the ‘cost
of natural selection’ (Haldane 1957), thus
suggesting that many of the mutations must be
neutral (Kimura 1968).

A significant consequence of the neutral the-
ory is that the rate at which neutral mutations are
fixed in the population (known as the ‘substitu-
tion rate’) is approximately equal to the rate at
which the mutations are spontaneously generated
(Kimura 1968). For this reason, the molecular
clock was regarded as an additional source of
evidence for the neutral theory (Kimura 1969,
1983). In Chap. 2, Soojin Yi provides an intro-
duction to molecular evolution, including the

neutral theory and its later developments, as
well as some of the principles behind the molecu-
lar clock. She also explains the relationship
between the mutation rate and substitution rate
under the neutral theory.

The initial reactions to the proposal of the
molecular clock were largely negative (e.g.,
Stebbins and Lewontin 1972), with criticisms
being levelled by a number of eminent evolution-
ary biologists. For example, Ernst Mayr argued
that ‘evolution is too complex and too variable a
process, connected with too many factors, for the
time dependence of the evolutionary process at
the molecular level to be a simple function’
(p. 137, Zuckerkandl and Pauling 1965). At the
time, the evolutionary biologist Morris Goodman
was one of the few to recognize the potential
applications of the clock (Morgan 1998). With
further evidence for the constancy of molecular
evolutionary rates, as well as growing apprecia-
tion of its great potential for reconstructing the
timescale of evolution, the notion of a molecular
clock endured. By the late 1970s, Allan Wilson
et al. (1977) declared that the ‘discovery of the
evolutionary clock stands out as the most signifi-
cant result of research in molecular evolution’
(p. 577).

1.2.2 Decades of Evolution

The molecular clock was a prominent source of
contention in the molecular evolutionary debates
throughout the 1970s to 1990s, an era that also
saw a shift in focus from protein sequences to
DNA sequences (Fig. 1.1; Ohta and Gillespie
1996; Nei et al. 2010). In the early part of this
period, there was growing evidence of a discrep-
ancy between the evolutionary dynamics of
‘silent’ (synonymous or non-coding) and
‘replacement’ (nonsynonymous) changes in
DNA. Replacement substitutions occurred at a
constant rate per year, which was cited as support
for the neutral theory (Kimura 1969). However,
silent substitutions, which are expected to be
under much lower selective constraint, appeared
to occur at a constant rate per generation (Laird
et al. 1969; Kohne 1970). There was evidence of a

1 The Molecular Clock and Evolutionary Rates Across the Tree of Life 7



slowdown in evolutionary rates of both proteins
and DNA in hominoids compared with other
primates and mammals, particularly rodents
(Goodman 1961; Kikuno et al. 1985; Wu and Li
1985), in accordance with the differences in gen-
eration times among these organisms.

Kimura (1983) later recognized that the neutral
theory should predict a constant substitution rate
per generation rather than per year, while admit-
ting that evidence of the constancy of evolution-
ary change per unit time presented a ‘difficult
problem’ (p. 246) for the theory. The different
dynamics observed for silent and replacement
substitutions were partly reconciled in the nearly
neutral theory, developed by Tomoko Ohta
(1972, 1973). The nearly neutral theory proposed
that many mutations have a small impact on fit-
ness and are mildly deleterious or mildly advan-
tageous (see Chap. 2), and predicts a constant
evolutionary rate per unit of time. However, this
prediction relies on a negative correlation
between population size and generation time,
which was assumed but not explicitly
demonstrated by Ohta (1972, 1973). In any case,
as described by Gillespie (1991), Kimura ‘quickly
retreated from the [per-year constancy of muta-
tion rates] when he adopted Ohta’s mildly delete-
rious theory’ (p. 274). Nevertheless, upon
considering the evidence of a generation-time
effect, Kimura (1987) noted that the departures
from rate constancy across lineages were not as
great as would be expected on the basis of
differences in generation time.

A somewhat different challenge to the hypoth-
esis of a molecular clock was that the occurrences
of substitutions were often found to be more
erratic than expected. Zuckerkandl and Pauling
(1965) had suggested that amino acid
substitutions occur stochastically, following a
Poisson point process. Under this stochastic pro-
cess, the variance in the number of substitutions
per unit time is equal to the expected number of
substitutions per unit time. The ratio of these
quantities, known as the index of dispersion,
provides a measure of the departure from a
Poisson process; values exceeding 1 indicate
overdispersion. Studies of proteins found that
overdispersion was widespread among proteins

(Ohta and Kimura 1971; Langley and Fitch
1974; Gillespie 1984, 1989), contradicting the
expectations under the molecular clock. One
attempt to explain this overdispersion within the
framework of the neutral theory was based on a
model of fluctuating neutral space (Takahata
1987), in which each neutral mutation changes
the rate of neutral mutations. However, most
explanations appealed to the effects of natural
selection, with overdispersion being a potential
outcome under some conditions of episodic,
fluctuating, or negative selection (Gillespie
1984, 1993; Cutler 2000). There is now a body
of evidence showing that some features of molec-
ular and genomic evolution cannot be adequately
explained by the neutral theory (e.g., Kreitman
and Akashi 1995; Kern and Hahn 2018).

The molecular clock gradually moved away
from its conspicuous role in the selectionist–neu-
tralist debate and became increasingly
appreciated for its practical applications in evolu-
tionary biology. Although there is continued
interest in the causes of evolutionary rate varia-
tion, the molecular clock is now most widely
known as a tool for inferring evolutionary
timescales. However, the utility of the molecular
clock as a dating tool is potentially diminished by
the presence of evolutionary rate variation. There
have been considerable efforts to rescue the
molecular clock from this quagmire, leading to
major advances in molecular dating methods over
the past two decades.

1.3 Evolutionary Rate Variation

1.3.1 Partitioning Variation in Rates

Evolutionary rate variation occurs in different
modes and across a range of temporal, molecular,
and biological scales. Early studies considered
differences in rates across nucleotide or amino
acid sites (site effects), across genes or loci
(gene or locus effects; Fig. 1.3a), and across
lineages (lineage effects; Fig. 1.3b). For a given
gene, any overdispersion that remained after
accounting for lineage effects was ascribed to
residual effects (e.g., Langley and Fitch 1974;
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Gillespie 1991). In their comprehensive review of
evolutionary rate variation in plants, Gaut et al.
(2011) used an approach inspired by an analysis
of variance that had been conducted 8 years ear-
lier (Smith and Eyre-Walker 2003). Specifically,
in addition to site effects, gene effects, and line-
age effects, they considered the two- and three-

way interactions among these three components:
site-by-gene effects, site-by-lineage effects, gene-
by-lineage effects, and site-by-gene-by-
lineage effects. For molecular clocks, the most
important of these effects are caused by gene-
by-lineage interactions (Fig. 1.3c); these are anal-
ogous to residual effects (Gillespie 1991).
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Fig. 1.3 Evolutionary rate variation depicted in phyloge-
netic trees with branch lengths proportional to the amount
of genetic change. Each tree consists of six taxa, labelled A
to F. (a) Gene effects lead to rate variation across genes, so
that there are different total amounts of genetic change in
the phylogenetic trees from genes 1, 2, and 3. (b) Lineage
effects lead to rate variation across the branches of the tree,
but this effect is shared by all of the genes. Accordingly,
the branch lengths of the three phylogenetic trees share the
same proportions. (c) Gene-by-lineage interactions lead to
different patterns of among-lineage rate variation across
the phylogenetic trees from the three genes. (d) Punctuated

evolution proposes that bursts of genetic change occur at
speciation events, denoted by circles. This leads to a
pattern in which the length of the path between the root
and any tip of the tree is approximately proportional to the
number of speciation events along that path. (e) Epoch
effects occur when there is a different evolutionary rate
during a particular period of time, as indicated by the grey
shaded area. (f) Time-dependent rates lead to a bias
whereby evolutionary rates are higher when estimated
over recent, short-term timescales than over longer periods
of time
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1.3.2 Site Effects and Gene Effects

Site effects can be caused by differences in selec-
tive constraints on individual nucleotides or
amino acids and by heterogeneity in mutation
rates (Hodgkinson and Eyre-Walker 2011). Func-
tionally or structurally important sites tend to
evolve more slowly than other sites, or might
even be invariant to change, and such amino
acid sites in cytochrome c and haemoglobin
were discussed at length by Zuckerkandl and
Pauling (1965). Differences in the proportions of
such constrained sites were argued to be the main
cause of rate variation across proteins under the
neutral theory (King and Jukes 1969). In the
nucleotide sequences of protein-coding genes,
nonsynonymous mutations are more likely to be
selected against than are synonymous mutations.
The distinction between ‘silent’ and ‘replace-
ment’ dynamics in DNA sequences was already
well appreciated by the 1970s (e.g., King and
Jukes 1969; Jukes and Kimura 1984), and its
varying effects on rates at the three codon
positions in protein-coding genes are now rou-
tinely taken into account in analyses of nucleotide
sequences (e.g., Shapiro et al. 2006).

Mutation rates can also vary among
nucleotides and according to the local context,
with mutations at cytosine-guanine dinucleotides
(‘CpG’) occurring at higher rates than at other
dinucleotides partly because of the vulnerability
of the cytosine to deamination (see Chap. 2).
Studies of genomic data have revealed other
forms of site effects, such as higher mutation
rates in parts of the genome linked to insertions
and deletions (Tian et al. 2008). In analyses of
molecular sequence data, site effects are typically
accommodated by modelling the site rates using a
gamma distribution (Yang 1996). As with many
models in biology, this approach aims to capture
an important feature of sequence evolution with-
out attempting to resolve the underlying
mechanisms.

Gene effects were widely recognized during
the development of the molecular clock
(Fig. 1.3a), with evidence of evolutionary rate
variation across haemoglobin, cytochrome c,

fibrinopeptides, and other gene products (e.g.,
Zuckerkandl and Pauling 1965; Dickerson
1971). In her extensive survey of protein
sequences, the pioneering biochemist Margaret
Dayhoff (1978) found nearly 400-fold variation
in evolutionary rates across proteins. Many of the
causes of site effects also lead to rate variation
across genes, so the two forms of variation are
closely linked. However, the evolutionary rates of
genes and proteins are most strongly correlated
with their levels of expression (e.g., Rocha and
Danchin 2004; Park et al. 2012) and not their
functional importance (Wang and Zhang 2009).
A negative relationship between the expression
level of a protein and its evolutionary rate has
been found across a wide range of organisms,
including bacteria and eukaryotes, but the specific
causes of this relationship remain unclear (Zhang
and Yang 2015). In contrast with the rate varia-
tion across proteins, rates of synonymous
substitutions show little variation across protein-
coding genes in mammalian genomes (Kumar
and Subramanian 2002).

On a broader scale, evolutionary rates can
show substantial disparities between nuclear and
organellar genomes. A widely recognized pattern
in metazoans is that mutation rates are much
higher in the mitochondrial genome than in the
nuclear genome (Brown et al. 1979; Miyata et al.
1982). However, the ratio of mitochondrial to
nuclear evolutionary rates has been found to be
considerably greater in birds, reptiles, and other
vertebrates than in insects and arachnids (Allio
et al. 2017). The comparatively high information
content of mitochondrial DNA ensured that it
held a long reign as the preferred marker in stud-
ies of population genetics, molecular systematics,
and phylogenetics in humans and other animals
(Avise et al. 1987). The popularity of mitochon-
drial DNA declined with the advent of high-
throughput sequencing technologies, which
enabled nuclear genome data to be obtained effi-
ciently and on large scales, and with growing
concerns about excessive reliance on a single
genetic marker.

In contrast with the trends observed in
animals, elevated mutation rates are not seen in
the mitochondrial genomes of other eukaryotes

10 S. Y. W. Ho



(Baer et al. 2007). In plants, nuclear genomes
evolve more rapidly than chloroplast genomes,
which evolve more rapidly than mitochondrial
genomes (Wolfe et al. 1987). This pattern is par-
ticularly pronounced in angiosperms, but less so
in gymnosperms (Drouin et al. 2008). The
reasons for the low evolutionary rates in the chlo-
roplast and mitochondrial genomes of plants are
not entirely clear, but might be related to DNA
repair mechanisms (Christensen 2013). In plastid-
bearing eukaryotes other than land plants, mito-
chondrial genomes have a higher evolutionary
rate than plastid genomes (Smith 2015).

1.3.3 Lineage Effects
and Gene-by-Lineage
Interactions

Evidence of lineage effects emerged soon after
the proposal of the molecular clock and continued
to grow in the ensuing decades (Fig. 1.3b). The
generation-time effect, as described in Sect. 1.2.2,
appeared to be the most prominent form of evolu-
tionary rate variation across lineages. The homi-
noid slowdown in evolutionary rates, first
quantified by Goodman (1961), has been con-
firmed in genome-scale analyses of primates
(Kim et al. 2006; Chintalapati and Moorjani
2020). A generation-time effect has now been
found in a variety of organisms, including bacte-
ria (Weller and Wu 2015), birds (Mooers and
Harvey 1994), and invertebrates (Thomas et al.
2010), and broadly across animals (Allio et al.
2017). However, evolutionary rates appear to
show a more complex relationship with genera-
tion time in plants, in which the germline is
segregated at a late stage of their growth (Lanfear
et al. 2013).

Lineage effects can be detected using a variety
of methods. Sarich and Wilson (1967b, 1973)
described a framework for comparing the relative
rates between a pair of taxa, which was later
developed into a statistical test (Fitch 1976; Wu
and Li 1985). The relative-rates test has largely
been superseded by methods that can test for
among-lineage rate heterogeneity across an entire
phylogenetic tree. These include the likelihood-

ratio test, which can be used to compare a model
in which the phylogeny is constrained to be
ultrametric (all tips being equally distant from
the root of the tree) against a model in which the
branch lengths are unconstrained (Felsenstein
1981). The rapid increase in genetic data through-
out the 1980s and 1990s led to an accumulation of
evidence of evolutionary rate variation (Britten
1986; Drake et al. 1998). Some of the major
patterns of rate variation across the tree of life
are described in Sect. 1.4.

Gene-by-lineage interactions (Fig. 1.3c),
which comprise the variation in evolutionary
rates that are not accounted for by gene effects
or lineage effects, represent an additional layer of
complexity in patterns of rate variation (e.g.,
Gillespie 1989; Ayala 1997). These interactions
have been found to be more prominent in
nonsynonymous than synonymous rates in plant
chloroplast genomes (Muse and Gaut 1997).
Gene-by-lineage interactions appear to account
for a small proportion of evolutionary rate hetero-
geneity in mitochondrial and nuclear genes from
eutherian mammals (Smith and Eyre-Walker
2003), but are potentially important when large
sets of genes are being analysed for the purposes
of inferring evolutionary timescales. Variation
across genes and across lineages are the dominant
forms of genome-scale rate heterogeneity (Snir
et al. 2012), although gene-by-lineage
interactions have been detected in genomic data
from eutherian mammals (Duchêne and Ho 2015)
and flowering plants (Duchêne et al. 2016a). Fur-
ther genomic analyses will allow the different
forms of evolutionary rate variation to be
characterized for other groups of organisms.

1.3.4 Other Forms of Evolutionary
Rate Variation

The framework used in the previous section
provides a helpful means of partitioning rate vari-
ation into its major components, allowing consid-
eration of the biological and evolutionary drivers
of rates of mutation and substitution (Fig. 1.3).
Nevertheless, there are several important features
of evolutionary rate variation that do not fit neatly
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into this classification. Here I describe three of
these phenomena: punctuated evolution, epoch
effects, and time-dependent rates. These forms
of rate variation can pose substantial challenges
for using molecular clocks to infer evolutionary
timescales.

The punctuated equilibrium theory was put
forward in an attempt to explain patterns in the
fossil record, which appears to feature long
periods of stasis punctuated by rapid bursts of
morphological change (Eldredge and Gould
1972). Inspired by this theory, molecular evolu-
tionary biologists have sought evidence of bursts
of genetic change caused by founder effects at
speciation events (Fig. 1.3d; Webster et al. 2003;
Pagel et al. 2006). These can potentially be
detected using a phylogenetic approach to analyse
molecular sequence data, because the theory
predicts that a measurable proportion of genetic
change is correlated with the number of specia-
tion events along any lineage in the evolutionary
tree. However, tests of punctuated evolution have
been seriously hindered by a problem known as
the node-density effect, which produces patterns
similar to those expected under punctuated
molecular evolution (Fitch and Beintema 1990).
Newly developed phylogenetic models of evolu-
tionary rates might be able to shed further light on
the occurrence of punctuated molecular evolution
(Manceau et al. 2020).

Rates of molecular evolution can vary across
time periods, leading to epoch effects (Fig. 1.3e;
Lee and Ho 2016). For example, some external
factors, such as environmental conditions, might
raise evolutionary rates across an entire popula-
tion or even an entire assemblage of organisms.
One potential example is a several-fold increase
in phenotypic and genomic evolutionary rates
during the rapid diversification of metazoan
phyla in the Cambrian, an event that is often
referred to as the ‘Cambrian explosion’ (Lee
et al. 2013). Epoch effects are particularly diffi-
cult to identify unless the period of evolutionary
rate elevation can be bracketed by reliable age
constraints from the fossil record. For example,
epoch effects cannot be detected by a likelihood-
ratio test for clocklike evolution, in which the null
hypothesis is that all of the tips are the same
distance from the root of the tree (Yang 2014).

The study of evolutionary rates has been hin-
dered by a time-dependent bias, which causes rate
estimates to scale negatively with the timeframe
of their measurement (Fig. 1.3f). This pattern can
be caused by various factors, including the effects
of purifying selection and substitution saturation
(Ho et al. 2011). On short timeframes, estimates
of evolutionary rates can be inflated by the inclu-
sion of deleterious mutations, which tend to be
removed from the population by purifying selec-
tion over longer periods of time. Substitution
saturation can cause underestimation of the
amount of genetic change across longer evolu-
tionary timescales, and this bias is exacerbated
by model misspecification (Soubrier et al. 2012).
The most striking disparities are seen when the
short-term rate estimates from pedigrees and
mutation-accumulation lines are compared with
those inferred using phylogenetic analysis (e.g.,
Howell et al. 2003). There is evidence of a time-
dependent pattern in evolutionary rate estimates
from viruses (Duchêne et al., 2014; Aiewsakun
and Katzourakis 2016), bacteria (Duchêne et al.
2016b; but see Gibson and Eyre-Walker 2019),
and metazoan mitochondrial genomes (Molak
and Ho 2015). The evidence for time-dependent
biases in metazoan nuclear genomes has so far
been limited, although spontaneous mutation
rates appear to be greater than long-term evolu-
tionary rates estimated using phylogenetic
methods (with modern humans being at least
one exception to this pattern; Scally 2016;
Chintalapati and Moorjani 2020).

1.4 Evolutionary Rates Across
the Tree of Life

1.4.1 Estimating Rates of Mutation
and Evolution

Across the tree of life, evolutionary rates show
striking variation and span multiple orders of
magnitude. This variation can be considered at a
range of biological scales: within individuals,
between generations, between populations,
among species, and across clades. Lying at one
end of this spectrum are rates of spontaneous
mutation, which have commonly been estimated
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by studying laboratory populations but are
increasingly based on genome sequencing of
closely related individuals or even of different
tissues within the same individual. These rates
have typically been difficult to estimate directly,
because of the small numbers of mutations
between generations and because studies often
compare the genomes of somatic rather than
germline cells. However, improvements in the
efficiency and cost of genome sequencing have
led to a stunning increase in studies of spontane-
ous mutation rates, even in multicellular
eukaryotes that experience very few mutations
per generation. In Chap. 3, Susanne Pfeifer
presents an overview of the major approaches
that have been used to estimate spontaneous
mutation rates, along with a summary of the
estimates that have been published so far. These
studies have revealed considerable variation in
mutation rates across species (Drake et al. 1998;
Baer et al. 2007).

Given that most mutations have negative
impacts on fitness, the question arises as to why
mutation rates are nonzero (Sturtevant 1937).
This can be understood in terms of the fitness
costs of reducing mutation rates, because cellular
and energetic resources are needed for
proofreading and error correction (Kimura
1967). A nonzero mutation rate also provides
genetic variation, allowing populations of
organisms to adapt to changes in environmental
conditions. These factors have led to the idea that
mutation rates themselves are evolvable; the opti-
mal mutation rate is expected to vary along the
genome and across species (Baer et al. 2007).
However, some have argued that mutation rates
represent a balance between genetic drift and
selection for reduced copying errors (Lynch
2010; Lynch et al. 2016). In Chap. 4, Lindell
Bromham describes the current state of knowl-
edge of the causes of rate variation across the tree
of life, including the factors that affect rates of
spontaneous mutation and the rates of fixation of
these mutations (i.e., substitution rates).

In many phylogenetic studies using molecular
clock models, evolutionary rates and timescales
are jointly estimated. These analyses have pro-
duced a comprehensive picture of evolutionary

rate variation across the diversity of life. In these
cases, evolutionary rates are averaged along
branches of the phylogeny, meaning that these
estimates represent long-term quantities and are
partly dependent on taxon sampling (Lanfear
et al. 2010). Furthermore, they are somewhat
removed from the underlying rates of spontane-
ous mutation because they have also been shaped
by the effects of selection and drift. Some
researchers have attempted to use rates estimated
from noncoding or synonymous sites as an
approximation of mutation rates. In any case, a
more complete understanding of rate variation
can be achieved by considering both spontaneous
mutation rates and phylogenetic estimates of evo-
lutionary rates.

1.4.2 Viruses and Bacteria

The genomes of viruses and bacteria show a
remarkable range of mutation rates and evolution-
ary rates. Among viruses, rates broadly vary with
the structure and composition of the genome.
Viruses with single-stranded genomes evolve
more rapidly than those with double-stranded
genomes (Duffy et al. 2008; Sanjuán et al.
2010), although the reasons for this pattern
remain unclear (Peck and Lauring 2018). RNA
viruses copy their genomes using
RNA-dependent RNA polymerases, which lack
proofreading ability, so most of these viruses are
unable to correct any copying errors that occur
during genome replication. As a consequence,
they generally have higher mutation rates than
DNA viruses, especially double-stranded DNA
viruses. There is also a negative correlation
between genome size and evolutionary rate
(Sanjuán et al. 2010), which is particularly notice-
able in viruses but is also seen across a broad
range of taxa (Drake 1991; Drake et al. 1998).

The most rapidly evolving viruses tend to be
those with single-stranded RNA genomes, such
as influenza virus, dengue virus, and
coronaviruses. These viruses experience substitu-
tion rates as high as 10�3 substitutions per site per
year (Duffy et al. 2008). At the other end of the
spectrum, double-stranded DNA viruses, such as
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variola virus (which causes smallpox), can evolve
at rates below 10�5 substitutions per site per year
(Firth et al. 2010). For rapidly evolving viruses,
evolutionary rates can be estimated using time-
structured data sets in which genomes have been
sampled at different points in time (Rambaut
2000; Drummond et al. 2001). In contrast, slowly
evolving viruses, such as hepatitis B virus, might
not undergo a sufficient amount of genetic change
over such timeframes to permit any reliable infer-
ence of their substitution rate. In some of these
cases, evolutionary rates can be estimated by
assuming that viruses have codiverged with their
hosts (e.g., Bernard 1994; Paraskevis et al. 2013).
Virus-host codivergence appears to be more com-
mon in double-stranded DNA viruses than in
RNA viruses (Geoghegan et al. 2017).

Bacteria have larger genomes than viruses and
tend to evolve more slowly. Analyses of genomic
data sets have revealed a wide variation in evolu-
tionary rates among bacterial taxa (Duchêne et al.
2016b). The most rapidly evolving bacterial spe-
cies, such as Neisseria gonorrhoeae,
Helicobacter pylori, and Enterococcus faecium,
experience nucleotide substitution rates of about
10�5 substitutions per site per year. In contrast,
rates below 10�7 substitutions per site per year
are seen in Mycobacterium tuberculosis and the
plague bacterium Yersinia pestis (Duchêne et al.
2016b). The variation in evolutionary rates in
bacteria has been ascribed to differences in gen-
eration time (Gibson and Eyre-Walker 2019), but
attempts to resolve these patterns have been hin-
dered by strong time-dependent biases in rate
estimation (Rocha et al. 2006; Duchêne et al.
2016b). Nevertheless, a generation-time effect
can be seen in the lower evolutionary rates of
spore-forming bacteria compared with bacteria
that do not form spores (Weller and Wu 2015).

1.4.3 Eukaryotes

Rates of molecular evolution in eukaryotes, par-
ticularly multicellular eukaryotes with long gen-
eration times, are generally lower than those of
viruses and bacteria. Estimates of mutation rates
in unicellular eukaryotes include 1.9 � 10�11

substitutions per site per generation for the protist
Paramecium tetraurelia (Sung et al. 2012) and
about 2 � 10�10 substitutions per site per genera-
tion for the yeasts Saccharomyces cerevisiae
(Zhu et al. 2014) and Schizosaccharomyces
pombe (Farlow et al. 2015). There have been
relatively few estimates of spontaneous mutation
rates in the nuclear genomes of animals, but these
are growing rapidly with the application of high-
throughput sequencing to pedigrees and parent-
offspring trios (see Chap. 3).

Animal nuclear genomes evolve slowly, so
per-generation mutation rates are difficult to esti-
mate because of the confounding impacts of
sequencing error. Inference of mutation rates is
also complicated by rate differences between
sexes and between the soma and germline.
Analyses of genomes from pedigrees and
parent-offspring trios have produced a range of
estimates of the spontaneous mutation rate in
modern humans, centred on a value of
5 � 10�10 mutations per site per year (Scally
2016). Spontaneous mutation rates have also
been estimated for the nuclear genomes of the
nematode worm Caenorhabditis elegans, the
common fruit fly Drosophila melanogaster,
Western honey bee Apis mellifera, collared fly-
catcher Ficedula albicollis, house mouse Mus
musculus, and common chimpanzee Pan
troglodytes, among other animal species (see
Chap. 3; Smeds et al. 2016).

An alternative approach to estimating muta-
tion rates has involved analyses of rates of synon-
ymous substitutions and changes at third codon
positions, which are under weaker selective
constraints and so are believed to provide an
approximation of mutation rates. These analyses
have revealed that mitochondrial mutation rates
vary considerably across birds and mammals
(Nabholz et al. 2008, 2009) and invertebrates
(Thomas et al. 2010). In contrast, studies of mito-
chondrial substitution rates in birds and mammals
have identified a relative degree of constancy
across lineages, with a mean rate of about 0.01
substitutions per site per Myr (Weir and Schluter
2008; but see Pereira and Baker 2006; Nguyen
and Ho 2016). This has led to the notion of a 1%
mitochondrial clock in birds and mammals. A
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similar ‘universal’ mitochondrial clock has been
widely used in studies of invertebrates (Brower
1994; but see Papadopoulou et al. 2010).

Evolutionary rates show considerable hetero-
geneity across plant lineages, but a few general
trends can be observed. The nuclear genomes of
gymnosperms evolve at rates that are several
times lower, on average, than those of
angiosperms (De La Torre et al. 2017). This pat-
tern can potentially be explained by the longer
generations and large genomes of gymnosperms.
Within flowering plants, there is evidence of a
substantial increase in evolutionary rates in the
early evolution of the grasses (Christin et al.
2014), whereas palms have evolved much more
slowly (Gaut et al. 1992). Evolutionary rates are
higher in annual plants than in perennial plants, a
pattern that has been found in sequence analyses
of the internal transcribed spacer of nuclear ribo-
somal DNA (Kay et al. 2006) and in larger sets of
chloroplast and nuclear genes (Yue et al. 2010).
Similarly, herbaceous flowering plants have
higher rates of molecular evolution than woody
plants with shrub or tree habits (Smith and
Donoghue 2008). These patterns in rate variation
between annual and perennial plants, and
between herbaceous and woody plants, are
believed to reflect broad differences in
generation time.

Mutation rates in nuclear genomes have been
estimated for a number of plant species, including
thale cress Arabidopsis thaliana (Ossowski et al.
2010), common oak Quercus robur (Schmid-
Siegert et al. 2017), Sitka spruce Picea sitchensis
(Hanlon et al. 2019), and yellow box eucalypt
Eucalyptus melliodora (Orr et al. 2020). Some
of these studies were able to trace somatic
mutations across the plant, such as along tree
branches. For example, 300 mutations were
identified along 90.1 metres of branch length in
an individual tree of Eucalyptus melliodora,
allowing the somatic mutation rate to be calcu-
lated at 2.75 � 10�9 mutations per nucleotide for
each metre of tree branch (Orr et al. 2020). A
detailed genomic analysis of eight plant species
revealed evidence of higher per-year mutation
rates in roots than in shoots in perennial plants,
but such a pattern was not seen in annual plants

(Wang et al. 2019). In addition, mutation rates
were found to be higher in petals than in leaves.
These studies have revealed the complexities of
mutation rate variation in plants, while
highlighting the difficulty in understanding the
relationships of these rates to the long-term evo-
lutionary rates in these taxa.

1.5 The Molecular Clock as a Tool
for Inferring Timescales

1.5.1 Molecular Dating

In modern genetics and genomics, the molecular
clock has its most prominent role as a tool for
inferring evolutionary timescales. This applica-
tion of the molecular clock is sometimes referred
to as molecular clock dating, divergence-time
estimation, or simply molecular dating. There is
a rich history of development of molecular dating
methods (Fig. 1.1), with much of the progress in
this field being tied to advances in phylogenetic
methods and computational power (Bromham
and Penny 2003; Kumar 2005). In Chap. 5,
Susana Magallón describes the principles behind
molecular dating methods and the steps involved
in using these methods to infer evolutionary
timescales from molecular sequence data.

Research on molecular dating has led to the
development of a range of phylogenetic dating
methods and statistical models of evolutionary
rates (Heath and Moore 2014; Ho and Duchêne
2014; Yang 2014; Kumar and Hedges 2016).
These have included methods to cope with
among-lineage rate variation, such as nonpara-
metric rate smoothing (Sanderson 1997) and
penalized likelihood (Sanderson 2002), as well
as models of evolutionary rate variation across
branches (Hasegawa et al. 1989; Thorne et al.
1998). Notably, much of the recent progress in
molecular clocks has focused on phenomenologi-
cal rather than mechanistic models, leaving these
developments somewhat decoupled from the ear-
lier theoretical context of the molecular clock.

Molecular dating was first performed using
amino acid sequences (Zuckerkandl and Pauling
1962) and immunological comparisons by
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microcomplement fixation (Sarich and Wilson
1967a), but is now overwhelmingly based on the
analysis of nucleotide sequences. The most
important developments have been in the use of
genome-scale data sets for inferring evolutionary
timescales. Alongside these efforts, there have
been various attempts to use other forms of
genetic, genomic, and protein data for molecular
dating (Fig. 1.1; Ho et al. 2016). For example, the
timing of intraspecific events has been estimated
using molecular clocks based on microsatellites
(Goldstein et al. 1995), whereas deeper events
have been dated using protein folds (Wang et al.
2011).

The application of Bayesian approaches to
phylogenetic analysis has led to major
developments in molecular dating (dos Reis
et al. 2016; Bromham et al. 2018). In Chap. 6,
Tianqi Zhu provides an introduction to the Bayes-
ian framework for molecular dating, which
permits the application of complex, parameter-
rich models that would not be tractable using
other methods. These include sophisticated
models of evolutionary rate heterogeneity (clock
models), models of lineage diversification (in the
form of the tree prior), and various means of
incorporating data from the fossil record (dos
Reis et al. 2016; Bromham et al. 2018).

In Bayesian molecular dating, models of
among-lineage rate variation have seen particu-
larly active development. The most widely used
are the relaxed-clock models, which allow a dis-
tinct rate of evolution along each branch of the
phylogenetic tree. The earliest relaxed-clock
models were inspired by the work of Gillespie
(1991), who suggested that the substitution rate
might evolve along lineages. Relaxed-clock
models that allow such autocorrelation in the
evolutionary rate were implemented in Bayesian
dating methods in the late 1990s and subse-
quently expanded (e.g., Thorne et al. 1998;
Kishino et al. 2001; Aris-Brosou and Yang
2002). Later work saw the appearance of
relaxed-clock models that allow independent or
uncorrelated rates across branches (e.g.,
Drummond et al. 2006; Rannala and Yang 2007).

The methods developed for molecular dating
have also been applied, with some modifications,
to analyses of morphological data. In Chap. 7,

Michael Lee describes the use of phenotypic traits
for estimating evolutionary timescales, focusing
on the analysis of discrete morphological
characters. The use of morphological clocks has
produced useful insights into the evolution of
birds and other groups of organisms (e.g., Polly
2001; Lee et al. 2014), although there continue to
be various shortcomings that need to be addressed
(Puttick et al. 2016). For example, questions per-
sist about the strength of the association between
molecular and morphological rates of evolution
(Davies and Savolainen 2006; Seligmann 2010).
Nevertheless, with continued advances in models
of phenotypic evolution (e.g., Álvarez-Carretero
et al. 2019), phylogenetic dating analyses of mor-
phological characters present a promising avenue
for further research.

Unless there is a priori information about the
evolutionary rate, molecular dating methods need
to calibrate the clock so that it gives date
estimates measured in absolute time. The most
widely used types of calibrating information are
those based on palaeontological, geological, and
biogeographic evidence. In Chap. 8, Jacqueline
Nguyen and I describe the use of fossil evidence
for calibration, which has a rich history of devel-
opment and has fostered productive
collaborations between geneticists and
palaeontologists. In Chap. 9, Michael Landis
explains how information from biogeography
and palaeogeography can be used to calibrate
the molecular clock, based on the timing of geo-
logical events such as the separation of
landmasses.

Some phylogenetic methods have been
extended to account for the inclusion of genomes
and morphological data that have been sampled at
distinct points in time. In Chap. 10, Sebastián
Duchêne and David Duchêne describe the use of
sampling times for calibration in analyses of rap-
idly evolving viruses and bacteria, and when
analysing data sets containing ancient DNA
sequences. Distinct sampling times are also a
feature of morphological data sets that include
fossil taxa. In Chap. 11, Alexandra Gavryushkina
and Chi Zhang describe the analysis of combined
morphological and molecular data, including the
development of diversification models that
explicitly include extinct species and fossil
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sampling (e.g., Ronquist et al. 2012; Heath et al.
2014).

The past two decades have seen remarkable
growth in genomic data, which has been made
possible by the development of high-throughput
sequencing methods. This has provided a vast
wealth of molecular sequence data for under-
standing molecular evolution at the genomic
scale, but has also brought substantial challenges
to molecular dating (Ho 2014; Tong et al. 2016).
In Chap. 12, Qiqing Tao, Koichiro Tamura, and
Sudhir Kumar review a range of methods that are
designed to perform rapid molecular dating,
allowing the analysis of data sets containing
large numbers of sequences. In Chap. 13, Sandra
Álvarez-Carretero and Mario dos Reis describe
the application of Bayesian phylogenetic dating
to genome-scale data sets, including some of the
techniques that have been used to improve
computational feasibility. These two closing
chapters present a promising picture of how the
molecular clock will retain its relevance and util-
ity in the coming years.

1.5.2 Evolutionary Timescales

The molecular clock has been used extensively to
reconstruct evolutionary timescales across the
tree of life. Early studies focused on the diver-
gence times of humans and related primates
(Zuckerkandl and Pauling 1962; Sarich and
Wilson 1967a), but often included other
mammals (Margoliash 1963; Doolittle and
Blombäck 1964). There continued to be a focus
on the evolutionary rates and timescales of
mammals, particularly eutherian mammals, pri-
marily because of the availability of molecular
data for this group of organisms. Developments
in automated DNA sequencing in the late 1980s
and early 1990s led to rapid growth in molecular
sequence data, allowing a considerable expansion
of the scope of molecular dating studies.

Molecular dating gained widespread attention
in the 1990s when researchers began analysing
large data sets to reconstruct the timescales of
major evolutionary events. These studies often
involved spectacular claims about the antiquity

of major branches of the tree of life. These
questions have held perennial interest, including
the timing of the divergences among the
kingdoms of life (e.g., Doolittle et al. 1996), the
divergences among metazoan phyla (the ‘Cam-
brian explosion’; e.g., Wray et al. 1996; dos Reis
et al. 2015), the diversification of angiosperms
(e.g., Martin et al. 1989; Magallón et al. 2015),
and the radiations of eutherian mammals and
modern birds (e.g., Hedges et al. 1996; Easteal
1999; Springer et al. 2003; dos Reis et al. 2013).
The molecular date estimates for these events
have often been at odds with the timescales
supported by a literal reading of the
palaeontological evidence, leading to deliberation
about the relative merits of the fossil record and
molecular clocks (Smith and Peterson 2002;
Benton and Ayala 2003; Brochu et al. 2004).
For example, many molecular estimates for the
age of crown angiosperms have been greater than
200 Myr, whereas the oldest fossil evidence dates
to about 136 Myr in the Early Cretaceous
(Magallón et al. 2015). The debates over the
discrepancies between molecular and fossil evi-
dence identified some important shortcomings in
molecular dating methods, which provided a
strong impetus for methodological innovation.
Improved modelling of evolutionary rate varia-
tion and use of fossil evidence has narrowed some
of the gaps between molecular and
palaeontological date estimates.

Molecular dating has been particularly valu-
able for understanding the evolutionary history
and epidemiological dynamics of pathogens
(Pybus and Rambaut 2009). Fine-scale sampling
of pathogens, for example during contemporary
virus outbreaks, can allow a detailed reconstruc-
tion of evolutionary rates, transmission dynamics,
and phylogeographic spread (Pybus and Rambaut
2009). Over longer evolutionary timescales,
molecular clocks can be used to determine when
pathogens crossed species barriers and infected
new hosts, and whether these pathogens
continued to codiverge with the host populations.

One of the more surprising applications of
molecular dating has been to estimate the ages
of the biological samples from which genomic
data have been obtained (Shapiro et al. 2011;
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Moorjani et al. 2016). This approach can be used
to estimate or validate the ages of any samples
that have uncertain or contentious dates, such as
those that are beyond the 50,000-year reach of
radiocarbon dating or where the cost of direct
radiometric dating is prohibitive. For example, a
Bayesian dating analysis was used to estimate the
age of a 400,000-year-old hominin sample from
Sima de los Huesos in Spain (Meyer et al. 2014).
Ancient hominin genomes have also been dated
using a molecular clock based on the accumula-
tion of recombination events over time (Moorjani
et al. 2016).

Continued development of molecular clocks
will allow evolutionary and demographic
timescales to be resolved with increasing confi-
dence. Some of the most promising areas of
research include better techniques for
incorporating fossil data, mechanistic models of
evolutionary rate variation among lineages, and
molecular dating methods that are able to process
genome-scale data sets from large numbers of
taxa. At the same time, these efforts will be sub-
stantially aided by advances in understanding of
genomic evolution and other biological
processes.

1.6 Concluding Remarks

This book is intended to provide an overview of
the state of the art of molecular clocks, although
the continual and rapid expansion of the field
prevents a comprehensive treatment from being
achievable. Nevertheless, I hope that this book
provides a useful starting point for researchers
and students interested in molecular evolutionary
clocks. The field is likely to carry on developing
at a great pace in response to the growth of
genomic data. With international efforts to
sequence the genomes of all vertebrates,
invertebrates, and other eukaryotes, we will con-
tinue to make great strides towards placing a
timescale on the tree of life.
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Abstract

Molecular evolution is an expansive and
highly interdisciplinary field of research that
investigates the evolution of biological
molecules and molecular phenomena over
time. A notable feature of the field is its ability
to embrace and adapt to novel molecular
methods, technology, and data while develop-
ing and applying a rigorous theoretical frame-
work of population genetics to data
interpretation. In the early days of molecular
biology, as protein and DNA sequences began
to accumulate, molecular evolutionary
analyses contributed to the development of
several fundamental concepts that remain
impactful even after several decades. From
preliminary comparisons of protein sequences
from distantly related species emerged the idea
of a constant molecular clock. In turn, this idea
became one of the main inspirations for the
neutral theory of molecular evolution, which
provides the basis for widely used statistical
approaches to test selection using molecular
data, including genome sequences. The nearly
neutral theory emphasizes that the evolution-
ary dynamics of many mutations are governed
by genetic drift because their effects on fitness
are borderline neutral, and this theory can

explain many broad patterns of molecular evo-
lution. As the field of molecular evolution
embraces the so-called ‘omics’ era, these foun-
dational ideas continue to provide guiding
principles.

Keywords

Mutation · Molecular clock · Neutral theory ·
Nearly neutral theory · Effective population
size

2.1 Introduction

The field of molecular evolution can be broadly
defined as the study of how biological molecules
change over time in response to evolutionary
forces. The biological molecules of interest
extend from individual genes, RNAs, and
proteins to whole chromosomes, genomes, and
other genomic information that can be collected
from organisms (such as transcriptomes and
proteomes). Molecular evolutionary research
also encompasses processes such as transposition,
duplication, and interaction between different
biological molecules. Ultimately these studies
aim to provide insights into how organisms
evolve. As such, the two roots of molecular evo-
lution are evolutionary biology and molecular
biology.

Biological molecules were first used in evolu-
tionary analysis long before the emergence and
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growth of modern molecular biology. In the early
1900s, George Nuttall used blood serums to infer
relatedness between species (Nuttall 1904).
Immunological methods continued to be used in
the 1960s by visionaries such as Morris Goodman
and Allan Wilson to infer primate phylogenies
and divergence times (Goodman 1961, 1962,
1963; Sarich andWilson 1967; Wilson and Sarich
1969).

Although these early studies were revolution-
ary in their time, it was the advent of protein
sequencing technologies that finally allowed
scientists to generate data and infer the
relationships between protein molecules within
and between species (Zuckerkandl et al. 1960;
Zuckerkandl and Pauling 1962; Margoliash
1963; Doolittle and Blombäck 1964). It was
from these analyses that the molecular clock
hypothesis emerged, which remains one of the
most famous and influential concepts in molecu-
lar evolution. In turn, the foundational concepts
around the molecular clock hypothesis inspired
the neutral theory of molecular evolution and the
nearly neutral theory of molecular evolution.
Together, these core concepts form the basis of
many modern evolutionary genetic studies.

In this chapter, I will provide a brief overview
of these foundational concepts. I will also discuss
how these concepts influenced each other’s devel-
opment, as a way of introducing some of the main
questions and parameters in the field, including
mutation rates, selection coefficients, effective
population size, and substitution rates. Finally,
at the close of the chapter, some examples of
how molecular evolutionary research applies
these concepts to genomics-era data will be
discussed.

2.2 The Molecular
Evolutionary Clock

In the early 1960s, a group of biologists began to
investigate similarities and differences between
the same proteins in different species
(Zuckerkandl and Pauling 1962; Margoliash
1963; Doolittle and Blombäck 1964). Emile
Zuckerkandl and Linus Pauling studied

haemoglobins between species using a protein
‘fingerprinting’ technique, involving a combina-
tion of chromatography and electrophoresis. The
initial goal of their study was to infer the phylog-
eny of primates, but they soon expanded their
analyses to include haemoglobins of other
animals, including cow, pig, shark, bony fish,
worm, and lungfish (Zuckerkandl et al. 1960).
Using these data, they quantified the time of
divergence between different species and
between different chains of haemoglobins
(Zuckerkandl and Pauling 1962). At the centre
of their inference was the fundamental idea that
the number of differences between amino acids of
different species could provide information on the
time of divergence between the species. They
discovered that the rates of amino acid
replacements in haemoglobin from different spe-
cies were roughly constant over time
(Zuckerkandl and Pauling 1962). Analyses of
other proteins sequenced around the same time,
such as those of cytochrome c (Margoliash 1963)
and fibrinopeptide (Doolittle and Blombäck
1964), revealed similar patterns: amino acid
differences of proteins between species were pro-
portional to the divergence times between species
inferred from the fossil record. These findings led
Zuckerkandl and Pauling (1965) to famously
state, ‘there may exist a molecular evolutionary
clock’ (Fig. 2.1). Thus, in its initial proposal, the
term ‘molecular clock’ referred to constant rates
of amino acid changes in proteins over time.

These early studies also illuminated several
characteristics of protein evolution that laid
foundations for the neutral theory and the nearly
neutral theory (Fig. 2.1). Margoliash (1963) com-
pared amino acid sequences of cytochrome
c from horses, humans, pigs, rabbits, chicken,
tuna, and baker’s yeast, and noted that cyto-
chrome c appears to evolve ‘slowly’. He
concluded that cytochrome c might be more
appropriately used to infer relationships between
distantly related species. Doolittle and Blombäck
(1964) analysed amino acid sequences of
fibrinopeptides and proposed that some portions
of the proteins were more suitable for evolution-
ary analyses, because they might serve ‘little
function’. Thus, differences in the ‘speed’ of the
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molecular clock between proteins, and the poten-
tial role of functional importance in determining
this speed, were already recognized in these early
studies. Moreover, Zuckerkandl and Pauling
(1965) offered a mathematical derivation for the
molecular clock, positing that ‘rates of mutations
that have not been eliminated by natural selec-
tion’ might be roughly constant over time. These
ideas foreshadowed the neutral theory of molecu-
lar evolution first proposed by Motoo Kimura.

2.3 The Molecular Clock
and the Neutral Theory
of Molecular Evolution

The idea of a molecular evolutionary clock was
controversial from its first appearance (see
Dietrich 1998; Morgan 1998). It was proposed
during a time when biologists considered natural
selection as the predominant evolutionary force.
Consequently, most of the evolutionary changes
observed between proteins of different species, or
‘substitutions’, were viewed as the result of

natural selection, especially of directional selec-
tion. In parallel, molecular variation within
populations (polymorphism) was thought to be
maintained by balancing selection.

The proposal of the molecular evolutionary
clock implied that amino acid substitutions at
proteins should occur at constant rates over
time. This was diametrically opposed to the
notion that natural selection was the main cause
of amino acid substitutions. According to popula-
tion genetic theory, the rate of amino acid substi-
tution caused by natural selection was determined
by several parameters, namely the strength of
selection (measured by the ‘selection coeffi-
cient’), effective population size, and adaptive
mutation rates (Kimura 1983). These parameters
should be specific to different mutations as well
as to the different populations and species in
which they occur. Although there could be spe-
cial scenarios where the combination of all of
these parameters produces similar substitution
rates between species, such scenarios could not
be easily generalized across different species and
over time. The scientific community and the
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Fig. 2.1 Rates of amino
acid changes in
fibrinopeptides,
haemoglobin, and
cytochrome c (Zuckerkandl
and Pauling 1962;
Margoliash 1963; Doolittle
and Blombäck 1964). The
three proteins show
different rates of change per
unit time. For each protein,
however, the rate of change
per unit time appears to be
approximately constant.
This phenomenon was
referred to as the ‘molecular
evolutionary clock’ by
Zuckerkandl and Pauling
(1965). Figure modified
from Dickerson (1971)
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incipient field of molecular evolution were in dire
need of an alternative explanation to understand
the pervasively constant rate of protein evolution.

The neutral theory of molecular evolution
(Kimura 1968, 1983; King and Jukes 1969)
provided just such an explanation. Kimura
(1968) proposed that the majority of substitutions
at the protein or DNA level were caused by ran-
dom genetic drift of selectively ‘neutral’
mutations, and that only a minor fraction of
changes at the molecular level were due to adap-
tive evolution. The neutral theory provided an
elegant and simple explanation for the molecular
evolutionary clock. Namely, if we assume that
most of the mutations that lead to amino acid
substitutions between species are neutral, then
the rate of substitution is identical to the rate of
mutation (Kimura 1968, 1983). Briefly, let us
consider a population of N diploid individuals,
so that the total number of alleles in the popula-
tion is 2N. If each allele can mutate to a new allele
at a rate of u, the number of new mutations in this
population is 2Nu. A substitution occurs when
any of these new mutations becomes fixed in the
population. If the mutations are neutral, each of
the 2Nu mutations will have the same probability
of reaching fixation, namely 1/2N. The total num-
ber of substitutions is the total number of
mutations multiplied by the probability of fixation
of each mutation. Thus, the substitution rate
equals the mutation rate. King and Jukes
(1969) also stated that ‘in the absence of selection
constraints, the substitution rate reaches the max-
imum value set by the mutation rate’. Indepen-
dent of other parameters such as effective
population size, a constant molecular evolution-
ary clock could be achieved if mutation rates were
equal between species (Kimura and Ohta 1971a).

Another important inspiration for Kimura was
the high rate of amino acid substitution in the
genome. Using the data available at that time,
Kimura (1968) estimated that there has been
1 nucleotide substitution every 2 years in a mam-
malian genome, which would far exceed the
‘limit’ of evolution according to the cost of natu-
ral selection (Haldane 1957; Kimura 1960).
Although Kimura’s original estimate was inflated
due to limited and incorrect genomic data at that

time (such as the number of total nucleotides in
the genome, and the lack of understanding of
noncoding regions; see Takahata 2007), it was
apparent that there were many more substitutions
between species than could be sustained by natu-
ral selection. Kimura (1968) posited that the high
rate of amino acid substitutions in the genome
was another indicator that most mutations are
neutral and, by definition, free from the constraint
or limit of natural selection. In addition, protein
electrophoresis data from fruit flies (Hubby and
Lewontin 1966; Lewontin and Hubby 1966)
demonstrated that the amount of protein polymor-
phism in natural populations was in fact very
high. Kimura (1968) and Kimura and Ohta
(1971b) interpreted this high rate of polymor-
phism as a snapshot of an equilibrium between
high rates of neutral mutations and random
genetic drift.

The neutral theory of molecular evolution has
had a tremendous impact both on molecular evo-
lution and on evolutionary biology as a whole
(Nei 2005). Under the neutral theory, it was
straightforward to explain differences in evolu-
tionary rates among proteins, by assuming that
numbers of selectively unconstrained sites dif-
fered between proteins (King and Jukes 1969;
Kimura and Ohta 1971a). Higher rates at synony-
mous sites compared with nonsynonymous sites
were also explained by the preponderance of neu-
tral mutations in the former compared with the
latter (Kimura 1977). Similarly, the faster evolu-
tion of pseudogenes compared with their func-
tional counterparts was attributed to the increase
of unconstrained sites following the loss of func-
tion (Li et al. 1981). These studies solidified the
idea that evolutionary rates of specific sequences
reflect their proportion of sites that are free to
vary. This concept continues to be extremely
useful for identifying functionally important
sites in comparative genomic analysis. For exam-
ple, genomic regions that experience few nucleo-
tide changes during evolution are considered to
be candidates for functionally constrained sites
(e.g., Margulies et al. 2003; Woolfe et al. 2004).

In addition, Kimura’s insightful recognition
that the high rate of substitutions (between spe-
cies) and the high level of polymorphism (within
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species) reflected two phases of selectively neu-
tral mutations (Kimura and Ohta 1971b) laid
foundations for many statistical tests of natural
selection using molecular data. Specifically, sev-
eral statistical approaches explicitly test whether
the observed patterns of within-species polymor-
phism and between-species divergence are con-
sistent with the null model of neutral evolution, as
a means to detect underlying selective forces
(Hudson et al. 1987; Tajima 1989; McDonald
and Kreitman 1991). Broadly, the neutral theory
of molecular evolution led to the development of
firm scientific frameworks to contrast the impacts
of natural selection versus genetic drift in the
study of molecular data.

2.4 Nearly Neutral Theory

Ohta (1973, 1974) and Ohta and Kimura (1971)
extended the neutral theory by pointing out that
mutations with very small selection coefficients,
while not strictly neutral, are also highly subject
to genetic drift and consequently behave as if they
are neutral. Ohta (1972b, 1973, 1974) further
developed the nearly neutral theory of molecular
evolution, emphasizing the significance of
slightly deleterious mutations whose selection
coefficients lie near the inverse of the effective
population size (|Nes| ~ 1 or s ~ 1/Ne). For exam-
ple, in a population of 103 individuals, the fixa-
tion probability of a slightly deleterious mutation
with selection coefficient of �10�3 is 43% of the
fixation probability of the neutral mutations (Ohta
1973). According to the nearly neutral theory,
patterns of molecular evolution are more consis-
tent with the abundance of nearly neutral
mutations than of strictly neutral mutations
(Fig. 2.2). In one of the first papers on the nearly
neutral theory, Ohta (1973) argued that the high
incidences of compensatory substitutions could
be explained by assuming slightly deleterious
mutations. Since its early days, the nearly neutral
theory of molecular evolution has proven power-
ful and applicable to many other aspects of
genome evolution (e.g., see Akashi et al. 2012).

A key feature that separates the neutral theory
and the nearly neutral theory is the impact of

effective population size on substitution rates.
Unlike strictly neutral mutations, the definition
of nearly neutral mutations depends critically on
the effective population size. Due to the inverse
relationship between the effective population size
and the range of nearly neutral mutations, the
proportion of mutations whose evolutionary fate
is largely determined by genetic drift is greater in
smaller populations. Consequently, if there are a
large number of nearly neutral mutations (namely
|Nes| ~ 1), there will be more substitutions per unit
time in small populations. Thus, the nearly neu-
tral theory predicts that substitution rates should
be negatively correlated with the effective popu-
lation size (Ohta 1972b, 1974).

It is convenient to test the predictions of the
nearly neutral theory using protein-coding DNA
sequences. Because mutations at nonsynonymous
sites are more likely to be deleterious compared
with those at synonymous sites, the ratio of
nonsynonymous to synonymous substitutions
could be influenced by the fixation of nearly
neutral mutations. Using the sequences of
49 genes available at that time, Ohta (1995)
showed that the DNA sequences of primates
have greater ratios of nonsynonymous to synony-
mous substitutions than those of artiodactyls and
rodents. This was consistent with the prediction
of the nearly neutral theory, because primates
have smaller effective population sizes than
artiodactyls or rodents do. Comparison of
protein-coding sequences from the whole
genomes of human, rhesus macaque, mouse, and
rat demonstrated the same pattern (Rhesus
Macaque Genome Sequencing and Analysis Con-
sortium 2007; Kosiol et al. 2008). Humans and
rhesus macaques have greater genome-wide
ratios of nonsynonymous to synonymous
substitutions than the two rodents (Fig. 2.3),
providing strong support that nearly neutral
mutations contribute to protein evolution in
these genomes. The nearly neutral theory
continues to be extremely insightful in explaining
many observations of molecular evolution (e.g.,
Ohta 2002, 2011).
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2.5 Origin of Mutations
and Substitution Rates

While the neutral theory was inspired by analyses
of protein sequences, the nearly neutral theory

was in part motivated by the need to reconcile
the molecular evolutionary clock with the
patterns observed in DNA sequences. As
discussed above, according to the neutral theory,
neutral sites should evolve at the rate at which
mutations occur, and mutation rates should be
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similar between lineages according to the molec-
ular evolutionary clock. However, analyses of
DNA that were performed around the same time
as the emergence of the neutral theory found that
evolutionary rates of DNA sequences were quite
variable between lineages. For example, evolu-
tionary rates inferred from DNA hybridization
showed faster evolution of rodent sequences com-
pared with primate sequences (Laird et al. 1969;
Kohne 1970). In fact, even earlier immunological
studies indicated that evolutionary rates of blood
proteins were different between primate lineages,
with humans and other apes being particularly
slow-evolving (Goodman 1961, 1962, 1963).
These studies showed that, in general, lineages
with longer generation times had lower evolution-
ary rates, a pattern referred to as the ‘generation-
time effect’. This pattern has been supported by
numerous subsequent studies (e.g., Wu and Li
1985; Yi et al. 2002; Thomas et al. 2010).

The generation-time effect is consistent with
the mechanisms of germline mutations. It has
been long considered that most mutations arise
due to DNA replication errors in germlines
(Haldane 1947; Muller 1954). Since germline
DNA replication occurs in each generation, spe-
cies with shorter generations will have more
mutations per given time than organisms with
longer generations. Then why were the protein
evolutionary rates constant?

The nearly neutral theory answers this ques-
tion in the following way. Given the same amount
of time, fewer mutations should occur in species
with longer generations (due to the generation-
time effect). However, generation time is often
highly correlated with population size. Organisms
with longer generations tend to have smaller
effective population sizes. Therefore, if mutations
were nearly neutral, even though they would
occur less frequently in species with longer
generations, they are more likely to be fixed due
to the small effective population sizes. The
generation-time effect would partially be can-
celled out due to the increase in substitution
rates (Ohta 1972a).

It should be noted that there are many other
traits that correlate with generation time.
Depending on the data set, other factors might
better explain the observed variation in evolution-
ary rates (e.g., Welch et al. 2008; Tsantes and
Steiper 2009). In addition, some mutations are
not caused by DNA replication errors. For exam-
ple, in many species, cytosines are chemically
modified by the addition of the methyl group, a
process referred to as DNA methylation (Suzuki
and Bird 2008; Yi 2012). Primary targets of DNA
methylation in many genomes are cytosines
followed by guanine, or ‘CpGs’. For chemical
reasons, methylated CpGs are highly prone to
being converted to TpGs (Bird 1980). Because
DNA methylation itself is not dependent on cell
replication (e.g., Vandiver et al. 2015), mutations
caused by DNA methylation might not exhibit a
generation-time effect. Kim et al. (2006) used
data from primates and showed that mutations at
CpGs indeed occur at similar rates between
lineages, while those at non-CpG sites show vari-
ation consistent with the generation-time effect.
Kim et al. (2006) further noted that protein-
coding sequences generally have many CpG
sites, whereas non-coding sequences have fewer
CpG sites. Consequently, we might observe a less
pronounced generation-time effect in protein-
coding sequences than in non-coding sequences,
due to their asymmetric CpG composition (Kim
et al. 2006). Subsequent studies have supported
this conclusion (e.g., Moorjani et al. 2016).

2.6 Molecular Evolution: Past,
Present, and Future

As stated in the opening of this chapter, the two
main components of the field of molecular evolu-
tion are evolutionary biology and molecular biol-
ogy. While inspired by discoveries in molecular
biology, evolutionary biology, especially popula-
tion genetics, continues to provide guiding
principles and theories that can help us to inter-
pret data from molecular biology. The neutral
theory, despite having been proposed without
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knowledge of the genomic data, has withstood the
test of time and continues to offer the most widely
used null model for inferring evolutionary forces
in molecular data.

The significance of slightly deleterious
mutations is even more appreciated in the era of
genomics. A notable extension of the nearly neu-
tral theory is the idea that the fixation of slightly
deleterious mutations enabled the evolution of
complex genomic architecture (Lynch and
Conery 2003; Lynch 2007). For example, introns,
repetitive sequences, and duplicate genes might
have reached fixation in genomes of species with
small effective population sizes despite their
selective disadvantages (Lynch and Conery
2003), as predicted by the nearly neutral theory.
The ‘drift-barrier hypothesis’ formalizes the idea
that the efficiency of natural selection is limited
by the extent of genetic drift conferred by the
effective population size (Sung et al. 2012;
Lynch et al. 2016).

The biological molecules of interest for molec-
ular evolutionists have constantly changed as
technical advancements yielded the riches of
new types of data. At present, molecular evolu-
tionary studies have completely embraced geno-
mic sequence data (or other genome-scale
data such as transcriptomes, lipidomes, and
proteomes). The synergy between molecular biol-
ogy and evolutionary biology is growing even
stronger in the era of genomics. Recent techno-
logical advances in genomics are leading to
explosive growth in genome sequence analyses
using evolutionary principles. The idea of using
genome sequences to infer relatedness between
individuals and demographic history is now no
longer confined to the realm of molecular evolu-
tion. For example, a new fervour for genealogical
DNA tests that utilize the principles of molecular
evolution and molecular population genetics is
currently expanding on a global scale.

We are in the midst of a massive expansion
of access to novel biological data, fuelled by
innovative developments in genomic, epigenetic,
and molecular technology. In the near future,
researchers will have the ability to explore every-
thing from epigenetic modification on a cellular
scale to genomic features at a population level

from many species. Molecular evolutionists are
readily embracing these new data, discovering
general principles that can help molecular
biologists interpret their findings and generate
ideas for future investigations.
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Spontaneous Mutation Rates 3
Susanne P. Pfeifer

Abstract

There is a long-standing interest in the study of
mutations—from the quest to enhance evolu-
tionary inference related to the genetic
underpinnings of disease, to the improvement
of our understanding of the chronology of
human evolution, to characterizing
relationships between species. There is sub-
stantial uncertainty in historical estimates
obtained from indirect methods: classical
genetic approaches, going back to Haldane’s
work in 1935 that utilized information from
incidence of genetic disorders; and phyloge-
netic approaches, based on Kimura’s observa-
tion that under neutrality the mutation rate is
equal to the rate of divergence. However,
recent advances in high-throughput sequenc-
ing have made it possible to estimate mutation
rates directly from parent-offspring trios and
multigenerational pedigrees. Moreover, the
combination of mutation accumulation studies
with high-throughput sequencing has led to
nearly complete, largely unbiased insights
into the genome-wide spontaneous mutation
rate in several experimentally tractable

organisms. This chapter will focus on the
basic concepts underlying the different
methods used to estimate spontaneous muta-
tion rates and will summarize current knowl-
edge regarding the evolution of mutation rates
across taxa.

Keywords

Spontaneous mutation rate · Mutation–
selection balance · Disease incidence-based
approach · Neutral Theory of Molecular
Evolution · Phylogenetic analysis · Pedigree
studies · Mutation accumulation study

3.1 Introduction

Mutation is the ultimate source of genetic varia-
tion and is thus a critical process in evolution. The
rate at which new (i.e., de novo) mutations arise is
of fundamental interest not only for our under-
standing of evolutionary outcomes, but also for
determining the genetic underpinnings of health
and disease specifically. As such, research on the
evolution of mutation rate itself has garnered
considerable scientific interest for decades
(e.g., see reviews by Lynch 2010a; Lynch et al.
2016).

The spontaneous mutation rate represents the
probability of a de novo mutation occurring in a
genomic region (scaled to a single site, a particu-
lar gene, or an entire genome) per unit time,
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measured either as an absolute quantity (per days
or years depending on the species of interest) or
taxon-specific quantity (per generation). It has
proven notoriously difficult to measure with
high accuracy. This owes to several reasons:
first and foremost, mutation rates are extremely
low in most species (particularly in eukaryotes),
making it challenging to practically observe
them (Drake et al. 1998; Lynch 2006; Lynch
et al. 2006). Second, the majority of spontaneous
mutations are either neutral (i.e., no change
in fitness of an organism) or deleterious (i.e.,
decreasing fitness)—with the extreme case being
lethal, and thus, unobservable in a population (see
review by Bank et al. 2014). Third, even for
mutations that can be observed, the rate of occur-
rence strongly depends on the genomic context,
such as the nucleotides immediately
neighbouring the site of interest (Hwang and
Green 2004) or the methylation status (Nachman
and Crowell 2000). This causes mutation rates to
vary across genomes. As such, there is no single
mutation rate for any given organism. Lastly,
mutation rate is a quantitative trait, with exoge-
nous agents (such as chemical mutagens or radia-
tion), physiological factors (such as age and sex),
and selective pressures causing fluctuations
across both fine and large scales (Haldane 1947;
Lynch 2008).

With these circumstances and limitations in
mind, there are four general types of approaches
that can be taken to estimate the spontaneous
mutation rate: methods based on disease
incidence; phylogenetic analysis; whole-
genome sequence data obtained from pedigrees;
and, for amenable organisms, mutation accumu-
lation studies of laboratory populations. This
chapter will focus on the basic concepts under-
lying these different methods to estimate spon-
taneous mutation rate, highlight their
limitations, and finally summarize our current
knowledge pertaining to spontaneous mutation
rate in a variety of organisms. This overview
will focus upon single-nucleotide changes,
because considerably fewer studies have
investigated rates associated with insertions
and deletions.

3.2 Methods to Estimate
Spontaneous Mutation Rates

3.2.1 Mutation–Selection Balance
and the Disease
Incidence-Based Approach

Classical genetics approaches rely on screens for
highly penetrant, monogenic Mendelian mutants
with major phenotypic effects to derive locus-
specific rate estimates from crosses and
pedigrees. Nearly a century ago, Muller (1928),
an experimental geneticist, implemented a pheno-
typic survey of balanced lethals by breeding a
large number of individuals and their offspring
and scoring for mutations. In this way, he was
able to gain the first insights into the mutation rate
of the model organism Drosophila melanogaster.
However, due to the rarity of mutations, this
scoring method required a large number of
individuals (hundreds to thousands), thus
restricting its usage to species with short
generations and large numbers of offspring.

While conceptually simple, the approach used
by Muller (1928) has several notable limitations.
Most importantly, it cannot provide an estimate of
the mutation rate per site because the genomic
region producing the mutant phenotype is gener-
ally unknown. As a consequence, estimates of
mutation rates obtained using this approach can
differ by several orders of magnitude even within
the same species (Schultz 2001). Nevertheless,
the method has provided valuable first insights
into the mutation spectrum of several unicellular
species (e.g., bacteriophages, Escherichia coli,
and Saccharomyces cerevisiae) as well as
multicellular model organisms easily reared in a
laboratory (e.g., Drosophila melanogaster,
Arabidopsis thaliana, and maize) (Schultz 2001).

At the same time, Haldane (1927), a statistical
geneticist, formulated the mathematical frame-
work describing equilibrium allele frequencies
in ‘mutation-selection balance’—the idea that
deleterious alleles exist in populations because
their purging via purifying selection is
counterbalanced by a continual influx of new
mutations. The observation itself was not novel
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(it had already been noted by Danforth in 1923),
but only with the population genetic theory devel-
oped by Haldane did it become possible to indi-
rectly estimate spontaneous mutation rates based
on this logic. Specifically, for autosomal domi-
nant mutations (and assuming that the dominance
coefficient, h, is equal to 1), the equilibrium allele
frequency, q, in a randomly mating population is
equal to μ/s, where μ is the mutation rate and s is
the selective effect of the deleterious mutation. As
a result, estimating the spontaneous mutation rate
μ is, at least in principle, straightforward as long
as the frequency of the mutant alleles and the
strength of selection can be determined.

Using this expectation, Haldane (1932)
provided one of the first indirect estimates of the
de novo mutation rate in humans from
haemophilia, a recessive X-linked disorder. For
recessive X-linked mutations, the mutation rate
can be calculated as μ ¼ qs/3, whereby q denotes
the frequency of haemophilia in males and s the
strength of selection. Haldane (1932) assumed
s to be (close to) 1, reasoning that most
haemophiliacs do not contribute offspring to the
next generation. A few years later, Haldane
(1935) himself provided an update to the approx-
imate per-locus mutation rate (2 � 10�5) by
utilizing an estimate of the frequency of
haemophilic men in London as a proxy for the
frequency of the mutant allele.

Following Haldane’s pioneering work, these
basic genetic principles have been widely
employed to estimate spontaneous
per-generation mutation rates, especially in
humans, by counting the number of individuals
affected by a monogenic autosomal dominant or
X-linked recessive Mendelian disorder that has
emerged from their unaffected parents (Cooper
and Krawczak 1993) (Fig. 3.1a). These studies
have produced estimates of per-locus rates rang-
ing from 10�6 to 10�4 (Vogel and Motulsky
1997). However, it is important to note that the
approach is, by design, limited to mutations with
fitness effects sufficiently large to make the
mutant phenotype easily observable in all
carriers, such as well-known disease genes. This
most certainly biases it towards genomic regions
with high mutation rates. On the other hand, the

method might underestimate the spontaneous
mutation rate if only a subset of mutations
produces a visible mutant phenotype, and if sub-
tle phenotypes or those with incomplete pene-
trance are missed.

Accurately calculating mutation rates is also
complicated by the fact that the mutational target
size (i.e., the size of the genomic region in which
mutations would lead to the mutant phenotype),
as well as the strength of selection, need to be
known a priori; however, both of these can often
be estimated only with a high degree of uncer-
tainty. Controlling for the mutational target size,
Kondrashov (2003) estimated a human mutation
rate of 2 � 10�8 per site per generation by exam-
ining alleles at 20 known disease-causing loci in
affected individuals. A few years later,
aggregating data across a wider range of loci,
Lynch (2010b) estimated a slightly lower human
mutation rate of 1.28 � 10�8 per site per
generation.

Lastly, although these methods based on dis-
ease incidence have provided us with first insights
into spontaneous mutation rates, they are natu-
rally limited to specific regions of the genome.
Due to the heterogeneity of mutation, estimates
from a few selected loci are unlikely to be repre-
sentative of the process on a genome-wide scale.

3.2.2 The Neutral Theory
of Molecular Evolution
and the Phylogenetic Approach

In 1968, Kimura noted that for strictly neutral
mutations, the mutation rate is equal to the rate
of fixation. In other words, he suggested the exis-
tence of a molecular clock ticking at a constant
speed throughout evolutionary time (see Chap. 2).
Specifically, the neutral theory states that the
number of substitutions K that accumulate in a
lineage over time T is equal to (μ/G)T, where μ is
the per-generation mutation rate and G is the
generation time (Kimura 1968). As a result, his-
torically averaged estimates of the spontaneous
mutation rate can be inferred from phylogenetic
data using the extent of sequence divergence at
orthologous, putatively neutral genomic regions
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between two species, as long as both the genera-
tion time and the time to the most recent common
ancestor (the divergence time) are known a priori
(Kondrashov and Crow 1993; Drake et al. 1998;
Nachman and Crowell 2000) (Fig. 3.1b).

By estimating the genetic distance between
humans and chimpanzees in genomic regions
where selection was not believed to be a
confounding factor, Nachman and Crowell
(2000) estimated a human mutation rate of
2.5 � 10�8 per site per generation. This estimate
is in agreement with a per-site estimate of
2 � 10�8 by Kondrashov (2003) and with a
per-locus estimate of 2 � 10�5 by Haldane
(1935), assuming 103 nonsynonymous sites per
gene (Vogel and Motulsky 1997) as an approxi-
mation (Nachman 2004).

Although the phylogenetic approach is easily
applicable to a wide range of organisms,
uncertainties in both the underlying assumptions
and the resulting parameter estimates place limits
on the accuracy that can realistically be achieved.
Pseudogenes (non-functional copies of genes) or
fourfold degenerate sites (positions of codons at
which all four different nucleotides specify the
same amino acid) are frequently taken as proxies
for regions or sites in the genome that evolve
neutrally (i.e., governed exclusively by genetic
drift). However, the pervasive effects of purifying
selection can cause the unintentional inclusion of
non-neutral sites, particularly in species with
large effective population sizes (Ohta 1973). Spe-
cifically, the inclusion of deleterious alleles will
cause an underestimation of mutation rate
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Fig. 3.1 Methods to estimate the spontaneous mutation
rate. (a) Disease incidence-based methods estimate locus-
specific mutation rates by counting the number of
individuals affected by a monogenic autosomal dominant
or X-linked recessive Mendelian disorder that has emerged
from their unaffected parents. (b) Phylogenetic methods
estimate historically averaged mutation rates using the
extent of sequence divergence at orthologous, putatively
neutral genomic regions between two species. (c)
Pedigree-based methods estimate spontaneous mutation

rates on a short timescale (usually a few generations) by
comparing genome sequences of individuals from present-
day parent-offspring pedigrees. (d) Mutation accumula-
tion studies directly measure mutation rates in laboratory
populations by forcing initially identical ancestral homo-
zygous lines through extreme population bottlenecks and
propagating them for many generations (G) to build up
spontaneous mutations, before individual lines are
sequenced to survey mutations (adapted from Baer et al.
2007). Red stars (a–c) or lines (d) indicate mutations
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because natural selection will reduce their proba-
bility of fixation relative to the neutral expectation
(hence, they are less likely to contribute to diver-
gence). Other effects exacerbate this issue, such
as biased gene conversion (Duret and Galtier
2009) and mutation saturation (i.e., several
mutations at the same site), which can lead to
over- and underestimates of genetic distance,
respectively (see review by Ségurel et al. 2014).

Perhaps even more clouded by uncertainty are
estimates of generation times, because present-
day generation times might not accurately reflect
ancestral ones; and divergence times, because
securely dated fossils are unavailable for many
species. Indeed, rather than remaining constant
among lineages, the speed of the molecular
clock might have changed substantially through-
out evolutionary history as a result of lineage-
specific changes in life-history traits, making it
difficult to infer absolute mutation rates from
taxon-specific estimates (Yi et al. 2002; Elango
et al. 2006, 2009; Kim et al. 2006; Ségurel et al.
2014; Amster and Sella 2016; Gao et al. 2016;
Moorjani et al. 2016; Scally 2016b). Taken
together, uncertainties in these crucial parameters
often cause the phylogenetic approach to under-
estimate the spontaneous mutation rate.

3.2.3 De Novo Mutations
in Pedigrees and the Genome
Sequencing Approach

The methods based on disease incidence and
phylogenetic analysis provide extrapolated and
historical mutation rates, respectively. In contrast,
comparisons of high-throughput genome
sequences of present-day parent-offspring trios
or larger multigenerational pedigrees (Fig. 3.1c)
offer direct, comprehensive, and largely unbiased
insights into the number and genome-wide distri-
bution of de novo mutations (i.e., mutations that
are present in the offspring but not in their
parents). By their nature, however, they are lim-
ited to surveying spontaneous mutations on a
short timescale (usually a few generations),
which are extremely rare. Thus, the chief diffi-
culty confronting researchers are errors

introduced during sequencing, which outnumber
genuine spontaneous mutations in most species,
and which can lead to the false inference of de
novo mutations (i.e., false positives) (Pfeifer
2017b).

The effect of false positives on mutation rate
estimates can be attenuated either by experimen-
tally validating identified de novo mutations
through an independent technology with a low
error rate (such as Sanger sequencing) or by com-
putationally weeding them out using a set of
highly stringent statistical filters. Due to the
costs associated with additional sequencing, the
latter strategy has become widely adopted in the
field. However, it is important to note that, while
mitigating false positives, this filtering might also
result in the loss of genuine de novo mutations
(i.e., false negatives) (Ségurel et al. 2014). To
estimate the spontaneous mutation rate accurately
from high-throughput sequencing data, it is thus
necessary to infer both false-positive as well as
false-negative rates, which remains a challenging
endeavour (Pfeifer 2017a). Moreover, the appli-
cation of computational filters, combined with
frequent uneven sequencing coverage in complex
genomic regions, will narrow the number of loci
at which genuine de novo mutations can be
detected. This makes it necessary to obtain an
unbiased estimate of the length of the genomic
regions available to the study when estimating a
per-site mutation rate. Note that this is not as
simple as knowing the genome size, because it
is necessary to know the exact number of bases
for which reliable sequence data were obtained
for any given sequencing experiment.

While easily applicable to a variety of
organisms, direct estimation of de novo mutations
by high-throughput sequencing requires the avail-
ability of high-quality genomic resources in the
species of interest which, thus far, has limited its
usage. In humans, large-scale sequencing studies
of pedigrees have yielded mutation rate estimates
of ~10�8 per site per generation (reviewed by
Ségurel et al. 2014), a twofold decrease compared
with earlier indirect estimates. Another potential
issue arises from the samples themselves: because
germline cells are often either difficult to obtain or
unavailable for the species of interest, somatic
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tissue (e.g., blood or saliva) is frequently used as a
surrogate, which can obscure mutational
signatures. Specifically, post-zygotic mutations
that took place before germline specification
might be present in the soma of both parent and
offspring (Scally 2016b). As a result, these
mutations will incorrectly be inferred as standing
variation, contributing to the underestimation of
the spontaneous mutation rate (Campbell et al.
2012; Acuna-Hidalgo et al. 2015; Scally 2016a).
This problem can be ameliorated by sequencing
additional generations to validate stable Mende-
lian transmission, though naturally only half of
the variants will be segregating in the next gener-
ation (Ségurel et al. 2014; Scally 2016b; Pfeifer
2017a).

Taken together, mutation rate estimates from
genomic sequencing data from pedigrees are
likely to represent underestimates of the true
per-site mutation rate. Given the considerable
variation in mutation rates that has been observed
among individuals, families, and populations
(Ségurel et al. 2014; Scally 2016b), it is also
important to note that this approach only offers
insights into the mutation rates of the studied
individuals, who are mere representatives of the
entire population. Owing to sampling error, the
number of individuals included will directly influ-
ence the degree of uncertainty in the mutation rate
estimates that are obtained (Tran and Pfeifer
2018).

3.2.4 Experimentally Tractable
Organisms and the Mutation
Accumulation Approach

Previous research has illustrated that the majority
of spontaneous mutations are neutral, nearly neu-
tral, or deleterious (see review by Bank et al.
2014). The last of these categories is particularly
problematic for the study of spontaneous muta-
tion rates in natural populations because
mutations of large deleterious effect are unlikely
to be observed. As such, the approaches discussed
above should not be viewed as estimators of the
total de novo mutation rate because, at a mini-
mum, the contribution of lethal mutations is not

being counted. Importantly, the fitness of a muta-
tion depends not only on the selection coefficient
(s) but also on the effective population size (Ne),
so the number of mutations that will behave neu-
trally will vary with population size (see Chap. 2).
In fact, in her extension of the neutral theory,
Ohta (1973) demonstrated that deleterious
mutations will behave as effectively neutral in
diploid populations as long as s is smaller than
1/(2Ne). Thus, in experimentally tractable
organisms, the confounding impacts of nearly
neutral and deleterious mutations can be over-
come by artificially keeping the effective popula-
tion size sufficiently small to observe a broader
spectrum of mutations. Specifically, to allow the
accumulation of nearly neutral mutations, a stud-
ied population will repeatedly be forced through a
demographic bottleneck. This collapses the effec-
tive population size to such an extent that genetic
drift overpowers weak and moderate selection
(Lynch et al. 2016) (Fig. 3.1d).

Mutation accumulation experiments generally
start from a series of identical ancestral homozy-
gous lines that are subjected to these extreme
bottlenecks: single individuals for self-fertilizing
or clonally reproducing species, and single full-
sibling pair (brother and sister) for sexually
reproducing species. These are then propagated
for many generations to build up spontaneous
mutations, before individual lines are sequenced
and mutations surveyed to allow mutation rates to
be estimated directly (Keightley et al. 2014). The
approach offers a more detailed view of the muta-
tional spectrum, but it is time consuming and is
practically limited to species for which inbred
lines can be produced in the laboratory. These
organisms include microbial taxa (Saccharomy-
ces cerevisiae, Lynch et al. 2008), some plants
(e.g., Ossowski et al. 2010), and invertebrate
model organisms such as Caenorhabditis elegans
(Denver et al. 2004, 2009) and Drosophila
melanogaster (Haag-Liautard et al. 2007;
Keightley et al. 2009).

It remains questionable whether (or at least to
what extent) laboratory inbred lines represent the
mutation patterns expected in natural populations.
Moreover, mutation accumulation experiments
often yield underestimates of mutation rates
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because sterile mutations cannot propagate and
lethals still cannot be observed. It is also impor-
tant to note that during the relaxed selection
regime, mutations can arise that themselves
might modify the mutation rate (Sniegowski
et al. 1997).

3.3 Spontaneous Mutation Rates
Across Taxa

Rates of spontaneous mutation, though remark-
ably similar within taxa, vary by several orders of
magnitude across species (ranging from 10�11 in
single-celled eukaryotes to 10�8 in primates),
roughly scaling with genome size (Fig. 3.2).
This pattern is suggestive of an evolutionary opti-
mum for an organism’s genome-wide mutation
rate (Drake et al. 1998). Two hypotheses have
been put forward to explain this observation.
First, the reduction of an organism’s spontaneous
mutation rate might be intrinsically limited by the

biochemical and physiological costs associated
with improving replication fidelity (e.g., Drake
1991; Drake et al. 1998). Second, in order to
limit the influx of deleterious mutations, purifying
selection might act to reduce rates of spontaneous
mutations by improving replication fidelity. How-
ever, purifying selection will be overpowered by
genetic drift when the fitness advantage of further
reducing the rate of spontaneous mutations in a
diploid organism is smaller than 1/2Ne, where Ne

is the effective population size. Hence, by setting
the efficiency of selection, genetic drift
determines a lower boundary for an organism’s
spontaneous mutation rate—this idea is known as
the ‘drift-barrier hypothesis’ (Lynch 2010b). This
is an elegant explanation for the observation that
species with larger effective population sizes (i.e.,
more efficient selection) generally exhibit lower
per-generation rates of spontaneous mutations.
However, further work, extending previous stud-
ies by including a wider set of species, is required
to evaluate this pattern carefully across phyloge-
netic lineages.
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Fig. 3.2 Spontaneous mutation rates in a variety of
organisms. The log–log scaling of mutation rate (measured
in base pairs per generation) with genome size (measured
in Mb). Data sources: Haag-Liautard et al. (2007), Lynch
et al. (2008), Awadalla et al. (2010), Ossowski et al.
(2010), Roach et al. (2010), Conrad et al. (2011), Denver
et al. (2012), Kong et al. (2012), Lee et al. (2012),
Michaelson et al. (2012), Sung et al. (2012a, b, 2015),
Schrider et al. (2013), Keightley et al. (2014, 2015), Venn

et al. (2014), Zhu et al. (2014), Behringer and Hall (2015),
Besenbacher et al. (2015, 2019), Farlow et al. (2015), Ness
et al. (2015), Rahbari et al. (2016), Uchimura et al. (2015),
Yang et al. (2015), Yuen et al. (2015), Kucukyildirim et al.
(2016), Smeds et al. (2016), Wong et al. (2016), Xie et al.
(2016), Feng et al. (2017), Jónsson et al. (2017),
Milholland et al. (2017), Pfeifer (2017a), Tatsumoto
et al. (2017), Long et al. (2018), Thomas et al. (2018)
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Causes of Variation in the Rate
of Molecular Evolution 4
Lindell Bromham

Abstract

The genome is an elaborate tapestry of conser-
vation and change. The complex patterns of
molecular evolution frustrate simple analyses
and can obscure the historical narrative
recorded in the genome. In addition to
differences in patterns and rates of change
between different regions of the genome,
there are consistent differences in the tempo
and mode of molecular evolution among spe-
cies. In particular, the fact that species differ in
their average rate of molecular evolution
makes inference of evolutionary time from
genetic divergence very challenging. But vari-
ation in the patterns of change between
lineages also gives us a rich source of evidence
with which to test ideas about the causes of
molecular evolutionary change. The genome is
not simply a passive recorder of history, but a
dynamic engine of change, both creating and
responding to a species’ changing situation
over evolutionary time. We need to develop
an understanding of the influences on the rates
and patterns of molecular evolution if we are to
use genomic data to study evolutionary
history.

Keywords

Mutation rate · Substitution rate ·
Diversification · Body size · Population size

4.1 Introduction

At the heart of evolutionary biology is the princi-
ple that simple processes, operating continuously
over long periods, can generate complex
outcomes. This is as evident at the molecular
level as at the level of phenotype or ecosystem.
In this chapter, I will look at how the basic pro-
cesses of mutation and substitution combine to
generate complex patterns of variation in the rate
of molecular evolution. My focus will be on the
causes of consistent differences in the average
rate of molecular evolution between different spe-
cies, rather than on variation in rate of change
across the genome. Consistent variation in rate
among species makes estimation of divergence
times from molecular data challenging (Welch
and Bromham 2005). But if we can understand
and predict those patterns of change, it may help
us to develop more reliable molecular dating
methods, or at least to be able to identify cases
where our dates are likely to be systematically
misleading (e.g., Phillips 2015). More impor-
tantly, studying the way that rates of genome
evolution vary among species illuminates the
causes of variation in the tempo and mode of
molecular evolution. To understand how
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species-specific differences in the rate of molecu-
lar evolution are generated, the processes that we
have to consider are mutation (creation of herita-
ble variation), substitution (fate of heritable vari-
ation), and diversification (accumulation of
heritable variation).

A mutation is a physicochemical change that
occurs in a DNA molecule, which alters the
genetic information that is copied and passed
on. A mutation happens in one individual, alter-
ing the heritable information that the individual is
able to pass on to its offspring, should it be
fortunate enough to reproduce. We can detect
mutations by comparing offspring with their
parents. Many mutations will be lost when their
carriers fail to leave descendants. For most molec-
ular dating studies, we only detect differences in
DNA sequences between populations, species, or
lineages. So we need to understand how a muta-
tion that has occurred in a single individual can
rise in frequency until it is carried by all members
of a population. This is the process of substitu-
tion, which can happen through selection (biased
reproduction or survival of particular mutations)
or through drift (chance variation in mutation
frequencies due to random sampling effects).
Since mutations occur continually, and some of
them rise in frequency and become substitutions,
over time each population accumulates more and
more genetic changes. Some of these genetic
changes will be associated with adaptation to
particular niches, some will affect the likelihood
or success of reproduction with members of
other populations, and some will have little or
no effect on fitness. Eventually, a population
might acquire sufficient substitutions that it
becomes a genetically isolated species. In this
way, mutation drives substitution which drives
diversification of lineages: this is the engine
room of biodiversity.

4.2 Mutation

4.2.1 An Evolutionary Balancing Act

For the purposes of this chapter, I am going to
consider a mutation to be a permanent change in

the nucleotide base sequence of the genome, such
that the original base can no longer be recovered,
so the new base sequence will be present in copies
made of that genome. Many and varied disasters
can befall the genome—double-strand breaks that
sever the DNA helix, lesions that prevent the
replication machinery from copying a sequence,
or structural damage to the bases that prevents
proper pairing. Such mutations happen, but if
they prevent proper function or replication, they
will not tend to be passed on, so will not provide
fuel for evolutionary change.

For molecular dating, the kind of mutations we
are interested in are those where an accident
changes the DNA sequence, but that are not so
disastrous that the cell can no longer make a copy
of its genome. Furthermore, molecular dating is,
by and large, concerned only with mutations in
nucleotide sequences where one base is
exchanged for another (not insertions, deletions,
rearrangements, changes to methylation, etc.).
Mutations arise by accident, as damage that is
imperfectly repaired or copy errors that are not
corrected. However, the rate of mutation is sub-
ject to evolutionary modification, through invest-
ment of time and resources into DNA repair and
copy fidelity, and through the use of energy and
material to build, maintain, and operate
specialized DNA repair equipment. Varying the
level of investment in repair and fidelity will
change the mutation rate.

The simplest illustration of the balancing act
involved in replication and repair is to consider
the action of DNA polymerase molecules. Poly-
merase copies a strand of DNA by adding
nucleotides to the end of a new polynucleotide
chain, adding complementary bases to match the
opposite strand. Some polymerase molecules
have proofreading activity: if the newly added
base is not complementary to the base on the
template strand, it might be removed and
replaced. If the polymerase fails to detect and
correct an incorrect base, there are additional
mismatch repair pathways that can detect incor-
rect base pairs, excise the DNA strand, and
replace it (for an introduction to DNA replication
and repair, see Bromham 2016). The relative bal-
ance between the ‘forward’ activity of the
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polymerase (adding bases) and the ‘backward’
activity (proofreading) will alter the fidelity of
DNA replication, but it will also alter replication
speed. Investing less in proofreading or post-
replicative repair increases the cost due to harm-
ful somatic mutations and poor genome copies.
Investing more in proofreading and repair
increases the costs of replication in terms of
time and resources taken to copy the DNA, with
more bases excised and replaced (for a useful
review, see Kunkel 2009).

Mutations can alter DNA replication accuracy.
Changes to the polymerase enzyme can increase
fidelity by slowing replication, favouring more
exonuclease (proofreading) activity (Herr et al.
2011b; Maslowska et al. 2018). Mutations can
also reduce the effectiveness of proofreading
and repair, leading to greater replication speed
and higher rates of generation of beneficial
mutations, but at the cost of reduced genome
fidelity and lowered survival rates (Herr et al.
2011a). The same considerations are likely to
apply to other aspects of replication that affect
copy fidelity, such as the speed of movement of
the replication fork (Mertz et al. 2017). The avail-
ability of heritable variation that alters DNA rep-
lication fidelity, and the clear impacts on fitness of
such variation, suggest that the mutation rate
itself is subject to evolutionary change (Baer
et al. 2007). A similar argument can be made for
the repair of incidental DNA damage, for exam-
ple by mismatch repair (Denamur and Matic
2006).

Most of the research on the evolution of muta-
tion rates has, not surprisingly, been conducted on
viruses, bacteria, and yeast. Do the findings of
laboratory-based studies on microbes tell us much
about the causes of variation in rate of molecular
evolution for other species, such as plants,
animals, and fungi? DNA repair rates vary
among species, among individuals, and among
polymerase enzymes within an individual. Can
we conclude that these differences are also shaped
by selection for a balance between the costs and
benefits of mistakes and fidelity, damage and
repair? It seems reasonable to suppose that multi-
cellular species carry the costs of low fidelity or
inefficient damage repair, though it is harder to

establish the metabolic costs of increased repair.
Nonetheless, copy fidelity and damage repair do
not come for free. All species must ultimately
balance the costs of mutation against the costs
of repair, and many different factors might
weigh into the balance (Bromham 2009). For
example, increasing the rate of cell division
might not only generate more copy errors per
unit time, but might also leave less time for effi-
cient damage repair, increasing the mutation rate
(Gao et al. 2016). We expect that different species
will find different balance points, depending on
the costs of mutation (in terms of both frequency
and impact) and the costs of fidelity and repair
(in terms of resources used and time taken).

4.2.2 Mutation Risk

Species may face different risks of mutation, in
terms of the probability of mutations occurring.
Given that the two sources of mutation are repli-
cation error and damage, risk of mutation should
increase with the number of copies made per unit
time (more opportunity for copy errors), and with
the relative influence of mutagens (more
opportunities for damage). Note that there are
also differences in mutation risk across the
genome, for example due to transcription-
associated mutagenesis (Jinks-Robertson and
Bhagwat 2014) or variation in base composition
and methylation patterns (Mugal et al. 2015), but
here we are focussing only on the overall
differences in mutation risk between different
species.

4.2.2.1 Environmental Mutagens
We expect species with increased exposure to
mutagens to suffer more DNA damage. For
example, bacteria living in high-altitude lakes in
the Andes must be able to survive conditions of
high UV exposure, high salinity, and
concentrations of heavy metals that would be
lethal to other organisms. They have increased
DNA repair activity, for example through the
efficient use of photolyase enzymes to reverse
UV-related damage (Albarracín et al. 2012). Sim-
ilarly, some species have evolved highly efficient
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double-strand-break repair in order to survive the
genome-wrecking effects of desiccation, includ-
ing bdelloid rotifers and Deinococcus
radiodurans (otherwise known as ‘Conan the
Bacterium’). Their increased DNA repair ability
makes them incidentally resistant to a range of
other mutagens such as irradiation (Slade and
Radman 2011; Hespeels et al. 2014). These
superhero-like abilities to repair DNA illustrate
the balancing act of mutation rate evolution: high
rates of damage demand greater investment in
repair if a species is to survive in a mutagenic
environment. Therefore, increased DNA damage
does not necessarily increase the mutation rate
(the number of DNA base sequence changes
passed on to offspring) if most of the damage is
repaired.

This balancing act is well illustrated by con-
sidering one of the most pervasive mutagens, UV
light, which has a number of mutagenic effects. It
causes pyrimidine dimers to form: adjacent
thymines (Ts) on the same DNA strand pair
with each other and so lose the ability to pair
with the opposite strand in the helix. This is
disastrous not only due to the loss of information
from complementary base pairing, but also
because the dimers create lesions that block the
action of polymerases, preventing replication. A
cell that cannot replicate its DNA is a cell that
cannot pass on mutations, and therefore does not
contribute to the evolutionary future of the line-
age. UV light can also cause other forms of DNA
damage, for example generating free radicals that
trigger the formation of 8-oxoguanine, which can
lead to mismatched base pairs in the DNA helix
(Ikehata and Ono 2011; Sage et al. 2012).

Cells have a number of systems for
ameliorating UV-induced damage, employing
both specific responses to UV-signature damage
(such as photoreactivation, which reverses pyrim-
idine dimerization), and more general pathways
that remove damaged bases or fix broken strands
(such as nucleotide excision repair; Karentz
2015). Mutations that affect the proteins in these
pathways can lead to higher rates of light-induced
mutation, or to increased ability to repair
UV-induced damage (e.g., Friedberg et al. 2002;
Tanaka et al. 2002; Tang and Chu 2002).

Therefore, efficiency of repair of UV damage is
evolvable and can be shaped by selection in
response to typical levels of exposure. For exam-
ple, populations of pond fleas (Daphnia) living in
transparent ponds have higher rates of DNA
repair of UV-induced damage than those living
in ponds with lower UV transparency (Miner
et al. 2015). Bacteria from high-altitude lakes
show a range of abilities to respond to UV dam-
age, consistent with their different levels of expo-
sure in their natural environments (Fernández
Zenoff et al. 2006).

UV-damage repair systems are evolvable in
response to environmental levels of exposure, so
greater mutation risk from environmental
mutagens might result in greater investment in
repair, effectively cancelling out the influence of
environment on mutation rate. This higher rate of
repair investment might be inducible on an indi-
vidual basis, or might be selected for over evolu-
tionary time (Jansen et al. 1998). For example,
Daphnia with high UV exposure could moderate
DNA damage through behavioural responses
(light avoidance), through investment in protec-
tive mechanisms such as melanin and
carotenoids, or through enhanced repair (Miner
et al. 2015). The evolutionary adjustment of
UV-damage repair might explain why there is
little consistent evidence of higher mutation
rates in lineages with greater average UV expo-
sure. While some studies have found that UV
exposure is correlated with substitution rates in
flowering plants (Davies et al. 2004), others have
found that higher average UV exposure is
associated with lower mutation rates in the chlo-
roplast and mitochondrial genomes (Bromham
et al. 2015). Furthermore, while UV exposure
increases with altitude, rates of molecular evolu-
tion do not (Dowle et al. 2013).

It has been suggested that environmental tem-
perature could influence the mutation rate (e.g.,
Wright et al. 2011). Higher rates of molecular
evolution have been reported in species living in
warmer areas (e.g., Wright et al. 2011), but the
pattern is not consistent (e.g., Qiu et al. 2014).
Most studies have not separately tested for an
association between temperature and synony-
mous substitution rates, which are changes to
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the DNA sequence that do not affect protein
sequences and so are expected to reflect
differences in the underlying mutation rates
(Davies et al. 2004; Wright et al. 2011; Gillman
and Wright 2014; Barrera-Redondo et al. 2018).
So it is difficult to evaluate whether the reported
links between temperature and rates of molecular
evolution are due to an increase in mutation rate
or a general increase in pace of evolution, for
example due to differences in life history
(Bromham and Cardillo 2003), accelerated niche
evolution (e.g., Kozak and Wiens 2010), or
greater tempo of diversification (e.g., Cardillo
1999). As for other mutagens, it might be that
lineages subject to high temperatures invest in
mutation mitigation, just as they do for high
UV, in which case we might not expect to see
raised mutation rates over evolutionary time.

A latitudinal gradient in rates of molecular
evolution has been reported (e.g., Lourenço
et al. 2012), but a study over a large number of
species pairs found only a slight influence of
latitude on rates of molecular evolution (Orton
et al. 2018). There is some evidence that effi-
ciency of DNA repair can vary with latitude
(Svetec et al. 2016), which might contribute to a
lack of clear relationships between mutation rates,
environmental temperatures, and latitude. Envi-
ronmental temperature and latitude both correlate
with many other traits that are associated with
rates of molecular evolution, so confounding
factors should be taken into account in any analy-
sis of the association between environment and
rates of molecular evolution. For example, tem-
perature scales with species richness and species
richness is associated with rates of molecular
evolution (Dowle et al. 2013; Bromham et al.
2015). Similarly, body size and life history can
vary along geographic temperature gradients
(e.g., Blackburn et al. 1999; Angilletta Jr et al.
2004), which could contribute to environmental
variation in the rate of molecular evolution.

Currently, the empirical support for a direct
effect of environmental temperature or UV on
lineage-specific mutation rates is not very strong.
This is because most studies of molecular evolu-
tionary rates along environmental gradients have
not specifically looked for signals of mutation rate

variation, nor controlled for confounding factors
that also scale with environment and mutation
rates. Alternatively, environmental conditions
could increase the mutation rate indirectly,
through increasing stress (such as extreme
temperatures or inadequate nutrition), which can
result in higher mutation rates. For example,
enzymes that ameliorate UV-induced mutation
inDaphnia are less efficient in cases of nutritional
stress (Balseiro et al. 2008). DNA repair effi-
ciency can be reduced at suboptimal temperatures
(MacFadyen et al. 2004; Berger et al. 2017). For
example, Caenorhabditis raised at non-optimal
temperatures have higher microsatellite mutation
rates (Matsuba et al. 2013), and seed beetles
(Callosobruchus) raised at high temperatures
were less able to repair radiation-induced
mutations (Berger et al. 2017). This might be a
result of resources being directed to stress mitiga-
tion, reducing the availability of resources for
repair.

Environmental stresses can also interact with
other factors that influence mutation rates. For
example, higher exposure to mutagens can result
in lower growth, so reduced biomass production,
which might have knock-on effects on the num-
ber of replication errors per unit time (see Karentz
2015). Experiments on the bacterium Escherichia
coli have demonstrated that opposing effects of
nutrient availability and population density can
result in a minimum mutation rate at intermediate
values of both (Krašovec et al. 2018).

While environmental stress could increase the
mutation rate of a whole population, individuals
might vary in their ability to mitigate the effects
of stress. Some studies of Drosophila have
revealed that individuals that are low quality,
due to suboptimal genotype or poor condition,
pass on more mutations to their offspring
(Agrawal and Wang 2008; Sharp and Agrawal
2012). Owing to all of these factors and more,
lineages under environmental stress might accu-
mulate more mutations (Ram and Hadany 2012;
Jiang et al. 2014). However, the contribution of
stress-induced elevation of mutation rate to
lineage-specific differences in molecular evolu-
tion is unclear. For example, stress-induced muta-
tion might cause only transient pulses in mutation
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generation, because species that experience
long-term changes in environmental conditions
might either adapt their DNA repair levels or
suffer extinction due to mutational load. There
might be some interaction between stress-induced
mutation and the influence of stress on the selec-
tive coefficients of mutations in populations
under stress, which might also potentially be con-
founded by changes in population size due to
suboptimal conditions.

4.2.2.2 Copy Errors
DNA replication represents an opportunity for
mutation. Every time a base is copied there is a
small chance that it will be changed. The error
rate is amazingly small, typically ranging from
one-in-ten-million to one-in-a-billion bases
(Kunkel 2004). But because most genomes are
very big—ranging from ten million to over ten
billion bases for non-bacterial organisms—even
this high copy fidelity will result in new mutations
being introduced into every genome copy. The
more times the genome is copied, the more
opportunities there are for mutations to occur.

The copy-error effect has generally been con-
sidered to explain why animals with longer
generations have lower mutation rates, on the
assumption that they copy their genomes less
often per unit time (Ohta 1993; see Chap. 2).
The correlation between generation length and
rate of molecular evolution is pervasive in
animals, including invertebrates (Thomas et al.
2010), mammals (Bromham et al. 1996; Nabholz
et al. 2008), birds (Mooers and Harvey 1994), and
reptiles (Bromham 2002). A generation-time
effect has also been reported for plants, although
this is typically based on a proxy for generation
time such as herbaceous versus woody habit
(Smith and Donoghue 2008), and has not been
supported by all studies (Whittle and Johnston
2003). In bacteria, spore formation can be
interpreted as increasing the generation length,
reducing the number of cell divisions per unit
time, and Firmicutes inferred to be spore-forming
(on the basis of genome composition) have been
found to have lower mutation rates than their
presumed non-spore-forming relatives (Weller
and Wu 2015).

But, while there is broad empirical evidence
for a correlation between generation time and rate
of molecular evolution, particularly in animals,
there are a number of complications in
interpreting the cause of the generation-time
effect. Variation in rate of molecular evolution
does not scale simply with the number of
generations per unit time. For example, mice can
go through 50 generations for every human gen-
eration, yet the mutation rate in mice is only
several times higher than that of humans
(Bromham 2011). The mismatch may be partly
explained by lack of a simple relationship
between the number of cell divisions and age at
first reproduction (the most common measure of
generation time). This can be illustrated by con-
sidering the number of cell generations in the
germline in the individual, which reflects the
number of times the genome is copied from one
generation to the next, from the formation of the
embryo to the growth and maturation of the indi-
vidual to the production of gametes. For example,
compared with mice, a human has only 6.5 times
more cell generations in the male germline (aver-
age of 401 cell generations in humans to 62 in
mice) and only 1.2 times more cell divisions in
the female germline (31 to 25, respectively;
Bromham 2011). Similarly, it has been estimated
that the number of cell divisions between repro-
ductive events in flowering plants is only doubled
in tall forest trees compared with short annuals
(Burian et al. 2016). As an added complication, it
is possible that some cell divisions in the germline
are more mutation-prone than others (Gao et al.
2014).

The relationship between the number of cell
generations, generation time, and mutation rate is
particularly complicated for plants. Generation
time (as reflected in perenniality) scales nega-
tively with stature in plants (Duminil et al.
2009), so we might expect taller plants to have
lower rates of molecular evolution (Lanfear et al.
2013; Bromham et al. 2015). But, for a plant that
produces reproductive structures at the tips of
growth, gametes from taller plants could have
been the product of a longer chain of cell
divisions than gametes from a shorter plant, so
might have had the opportunity to collect more
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replication errors per generation (Scofield and
Schultz 2006).

One explanation for the observed negative
relationship between plant height and rate of
molecular evolution is that absolute growth rates
slow as plants increase in height (Lanfear et al.
2013). Furthermore, the cell line that gives rise to
gametes might have lower rates of cell division
and growth than the somatic tissue, offsetting the
effect of height on number of cell divisions, and
therefore dampening the DNA copy-error effect
(Burian et al. 2016; Watson et al. 2016). So the
number of cell divisions per generation does not
necessarily increase with age, longevity, or
amount of biomass (Watson et al. 2016). In addi-
tion, for long-lived species, age at first breeding
might be a poor indicator of average age at repro-
duction (Petit and Hampe 2006). For species with
a long reproductive span, the number of cell
divisions per generation might increase with lon-
gevity (Lehtonen and Lanfear 2014). So while
there is much empirical evidence for an
association between generation time and rate of
molecular evolution, this might not reflect a sim-
ple copy-frequency effect (Gao et al. 2016).

Replication frequency has been implicated in
other patterns of variation in rate of molecular
evolution that are not closely tied to generation
length. For example, highly eusocial bees and
wasps have higher rates of molecular evolution
than their non-social relatives, which might be a
result of increased number of cell divisions in
species where queens produce vast numbers of
offspring (Bromham and Leys 2005). If the eggs
that will become reproductive offspring are pro-
duced only after many eggs have developed into
non-reproductive workers, then the genome cop-
ies passed to the next generation will have gone
through a larger number of cell generations than
in species that produce few or no workers. Con-
sistent with this, colony size is related to rate of
molecular evolution across a wide range of social
insects (Rubin et al. 2019). Additional support for
this hypothesis comes from comparisons of social
parasites with their eusocial relatives. Social
parasites typically do not produce
non-reproductive workers, so will presumably
have fewer genome replications in their average

generation length. Consistent with predictions,
social parasites have lower rates of molecular
evolution than their eusocial relatives (Bromham
and Leys 2005). However, these results rest on
relatively few phylogenetically independent
comparisons; further investigation would be
needed to establish whether the effect is general,
and to determine whether the effect is due to copy
frequency, effective population size, or some
other factor. Similarly, raised rates of molecular
evolution in species of the fungus Neurospora
that produce asexual spores have been attributed
to increased mitotic divisions in spore production,
though this result is based on a very small number
of comparisons (Nygren et al. 2011).

One of the strongest cases for a replication-
frequency pattern on mutation rate is the phenom-
enon often referred to as ‘male-driven evolution’
or ‘male-biased mutation’. Male gametes are typ-
ically produced in greater abundance than female
gametes, and male gametes are commonly the
product of more cell generations than female
gametes of the same species. So in many taxa,
DNA sequences that spend more time in males
will go through more replications per unit time
than those that spend more time in females, and so
will accumulate more copy errors. This has been
noted in mammals (higher mutation rates on the Y
chromosome than the X) and in birds (higher
mutation rates on the Z chromosome than the
W) (Wilson Sayres and Makova 2011). Plants
provide an interesting test of the hypothesis
because of the diversity of patterns of inheritance
of organelle DNA. For example, in some conifer
lineages both the chloroplast and mitochondrial
genomes are inherited from the female parent, but
in others they are both inherited from the male
parent, and in other lineages the chloroplast is
paternally inherited but the mitochondrion is
maternally inherited. Contrasts between lineages
with different patterns of organelle inheritance
have revealed that the rate of evolution in
organellar DNA is greater when it is passed
through the paternal line than through the mater-
nal line (Whittle and Johnston 2002). So the aver-
age mutation rate for a species will be strongly
influenced by mutations occurring in males dur-
ing the production of gametes (Gao et al. 2016).

4 Causes of Variation in the Rate of Molecular Evolution 51



Sperm are produced continuously throughout
a male’s reproductive lifespan, so the average
number of DNA replications in the germline
should also increase with age of males at repro-
duction, and it should also increase with the
amount of sperm produced. Testis size in
primates correlates with the predicted degree of
sperm competition due to multiple matings
(Harcourt et al. 1995), and also correlates posi-
tively with rate of molecular evolution (Wong
2014). Because of the strong effect of sperm
production on the average number of cell
replications in the germline, it has been suggested
that the length of reproductive lifespan for males
is a better indicator of the effect of DNA copy
errors on mutation rate than is the age of first
breeding for females (Thomas et al. 2018). Note
that we expect the same copy-error effect in
females in species where oogenesis is continuous,
so that the longer the reproductive lifespan, and the
higher the fecundity, the more copy errors should
accumulate. In this case, we might expect the
mutation rate per year to scale more closely with
the average age at reproduction than with the age at
maturity (Lehtonen and Lanfear 2014). This effect
has been noted in highly eusocial bees and wasps,
where one or few females each produces a very
large number of offspring (Bromham and Leys
2005). But in rockfish, where oogenesis is contin-
uous, mutation rate does not appear to increase
with fecundity, counter to the expectation of a
copy-number effect (Hua et al. 2015).

4.2.3 Mutation Cost

We have seen that the opportunity for mutations
to occur is influenced by the relative impact of
mutagenic agents (increasing DNA damage) and
the relative number of DNA replications (increas-
ing copy errors). But we have also seen that the
response to mutation risk might be to increase
investment in mitigation, for example increased
efficiency of DNA repair in response to higher
environmental mutagens. Given that there is
ample evidence that natural populations contain
heritable variation in repair efficiency and repli-
cation fidelity, and that greater mutation risk can

be countered by greater investment in repair and
fidelity, why do species have different mutation
rates (see Chap. 3)? If most mutations are harm-
ful, should we expect selection to reduce the
mutation rate to a minimum in all species by
favouring increased repair and copy fidelity to
reduce the mutational burden?

One possible explanation for persistent
lineage-specific differences in mutation rate is
that the relative costs of mutation vary among
lineages. If reduction in mutation rate is costly
in terms of resources invested and time taken,
then it must be balanced by a reduction in the
negative impact of mutation (Sniegowski et al.
2000). If costs of mutation vary among species,
then we might expect levels of investment in
fidelity and repair also to vary, and therefore
modulate the average mutation rate for that line-
age. Mutation is costly because most mutations
are deleterious, but the distribution of selection
coefficients is expected to vary with the environ-
ment and population dynamics, which will fluc-
tuate over time (Lanfear et al. 2014). Here we will
only consider the general ways in which species’
characteristics can influence the average costs of
mutation.

In the previous section, we considered that the
generation-time effect on rates of molecular evo-
lution might not be a straightforward result of
replication frequency. It is possible that the
observed generation-time effect is, at least in
part, due to generation time scaling with other
aspects of life history that also have an influence
on mutation rate, by altering the balance between
the costs of mutation and the costs of repair and
fidelity. Several correlates of generation time
have been shown to have a significant association
with rates of molecular evolution: body size,
fecundity, and longevity. In addition to
influencing the relative risk of mutation (for
example, through a greater number of cell
generations), each of these might have an impact
on the relative cost of mutations (Bromham
2009).

4.2.3.1 Body Size
Bigger animals and taller plants tend to have
lower rates of molecular evolution (e.g., Martin
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and Palumbi 1993; Bromham 2002; Gillooly
et al. 2005; Lanfear et al. 2013; Barrera-Redondo
et al. 2018). It has commonly been assumed that
the size scaling of substitution rates is an indirect
effect of the correlation between size and other
life-history traits, such as generation time, popu-
lation size, or metabolic rate (Martin and Palumbi
1993; Gillooly et al. 2005). Body size might have
an indirect effect on the generation of mutations.
For example, larger animals have lower mass-
specific metabolic rates, so might generate fewer
free radicals per unit time and thereby might
suffer lower rates of DNA damage. So far, there
is little evidence that metabolic rate provides a
convincing explanation of variation in rate of
molecular evolution, once its covariation with
other life-history traits is accounted for
(Bromham et al. 1996; Lanfear et al. 2007; Galtier
et al. 2009b). It might be that DNA repair rate is
adjusted to the expected level of insult from
mutagens, whether generated internally or
externally.

Body size might have a direct influence on the
costs of mutation, by modulating the relative
impact of mutation on fitness. A larger animal
has more cells, and so has more copies of the
genome, each of which is subject to ongoing
mutation. Mutation in somatic cells can have a
significant effect on fitness, for example by
knocking out a critical function in a cell line of
the developing embryo or generating a cancerous
cell line. The risk of a life-threatening mutation
occurring per lifetime should increase with the
number of cell generations required to make a
body, and the number of cells that must be
maintained over the reproductive lifespan. Even
within a species, larger individuals can have a
greater cancer risk (Nunney 2018). So a species
with larger average body size might require
greater investment in DNA damage control or
replication fidelity in order to maintain the same
lifetime risk of death from somatic mutation as a
smaller animal (Nunney 1999). Yet there is no
evidence that larger animals have a greater life-
time cancer risk than smaller animals
(an observation known as Peto’s Paradox). This
paradox can be explained if lineages of larger
animals invest in decreasing their mutation rates

in order to reduce rates of spontaneous cancer
formation (Caulin and Maley 2011). This risk
reduction might occur through selection on spe-
cific genes involved in cancer, but increases in
DNA repair and copy fidelity could also play a
role (Rozhok and DeGregori 2019).

Perhaps we can see the influence of selection
reducing the somatic mutation rate if we compare
a large, sexually reproducing individual plant
with a multi-part clonal plant that grows and
reproduces by ramets. Even if it contains as
many cells as the larger individual, the cost of
mutation might be lower for the colony as a
whole, if a mutation in one part reduces the suc-
cess of that ramet but does not compromise the
longevity or reproductive potential of the clonal
set as a whole. For example, a study of buttercups
found that the older the meadow, the more
buttercups with extra petals, and the lower the
viability of pollen (Warren 2009). Since the
buttercups predominantly reproduce clonally,
this was interpreted as evidence of the gradual
accumulation of mutations in long-lived clonal
sets over time. The collection of somatic mutation
in clonal growth can have measurable effects on
the genetic diversity of a population of asexual
ramets, resulting in a level of genetic diversity
greater than in sexual populations of the same
species (Gross et al. 2012). So the costs of body
size in increasing lifetime mutation risk might be
higher for an organism with a single reproductive
cell line and an indivisible phenotype (e.g., many
animals) than for an organism with multiple
reproductive cell lines and a flexible phenotype
where parts can be lost without compromising the
success of the whole (e.g., many plants).

4.2.3.2 Fecundity
Some studies have suggested that fecundity
correlates with rate of molecular evolution,
above and beyond its covariation with generation
time. For example, a study of rates in mammals
found that fecundity scaled with rates of both
synonymous (silent) and nonsynonymous
(amino-acid replacement) substitutions (Welch
et al. 2008). In some species, a link between
fecundity and rates of molecular evolution might
represent a copy-number effect. For example,

4 Causes of Variation in the Rate of Molecular Evolution 53



where gamete production is continuous through-
out life, the more offspring produced, the greater
the average number of germline copies. This is a
possible explanation for the higher rate of molec-
ular evolution in highly eusocial bees, wasps, and
ants (Schmitz and Moritz 1998; Bromham and
Leys 2005; Rubin et al. 2019). Similarly, if fecun-
dity scales with the opportunity for multiple
matings, or with the length of male reproductive
lifespan, then it will also scale with the number of
male germline replications. But the copy-number
effect clearly does not represent a general expla-
nation for the fecundity effect: in rockfish, rates of
molecular evolution are greatest in small-bodied,
short-lived species, even though they have lower
fecundity than their larger relatives (Hua et al.
2015).

An alternative explanation is that higher fecun-
dity changes the relative costs of mutation. If each
parent produces a large number of offspring, then,
unless the population is growing rapidly, a greater
number of offspring will die (or otherwise fail to
reproduce). For a high-fecundity species, the loss
of any one offspring due to deleterious mutation
represents a lower proportional reduction in
reproductive fitness. As long as some offspring
survive and reproduce, the production of addi-
tional defective copies is a cost that can be
borne (as long as investment in poor-quality off-
spring is low). But for low-fecundity species with
relatively higher investment in each offspring, a
deleterious mutation can cause a proportionally
greater reduction in reproductive success.

The balancing act between fecundity and fidel-
ity is evident in RNA viruses, which have a stu-
pendously high mutation rate. Even with a small
genome, the error rate per genome copy is such
that between 40% and 100% of all offspring will
carry a mutation (Belshaw et al. 2008). These
high rates of error per nucleotide base copied
push RNA viruses perilously close to the ‘error
threshold’, the mutation rate beyond which there
are too few viable offspring to maintain the line-
age. RNA virus mutation rates might represent a
balance point, modulated by genome length,
below which the mutation rate per genome copy
is too high to guarantee the production of suffi-
cient functional offspring to allow the lineage to

persist (Holmes 2003). In fact, it has been
suggested that an association between genome
size and mutation rate is a general phenomenon
for microbes, an observation known as Drake’s
rule (Drake et al. 1998).

There is not yet enough evidence or analysis to
clarify whether there is a general effect of fecun-
dity on rate of molecular evolution. If such a
general effect does exist, it is unclear whether it
is due to higher mutation risk (more replications
per unit time) or lower mutation cost (less reduc-
tion in fitness per mutation), or both, or neither.
While increased fecundity might raise the muta-
tion risk through more genome copies per unit
time, it could also decrease the cost of each muta-
tion; the level of investment in mutation avoid-
ance would be reduced, in line with reduced
parental investment per offspring (Welch et al.
2008; Bromham 2011). Increasing multiple mat-
ing without increasing overall fecundity could
have the opposite effect, because higher sperm
competition selects for increased quality of off-
spring, which could potentially favour lower
mutation rates (Firman and Simmons 2012).

4.2.3.3 Lifespan
Maximum recorded lifespan scales with mito-
chondrial substitution rates in mammals, birds,
and fish, though it is less of a strong predictor of
nuclear rates (Nabholz et al. 2008; Welch et al.
2008; Galtier et al. 2009a; Hua et al. 2015). Some
researchers have explained this observation in
terms of metabolically induced DNA damage.
Aerobic metabolism in the mitochondria
produces oxygen free radicals, which can damage
cellular biomolecules including DNA. The mito-
chondrial theory of ageing suggests that metabol-
ically induced mitochondrial damage contributes
to age-related decline and therefore limits
lifespan.

Some studies have found a link between mito-
chondrial mutation and variation in lifespan
between individuals, but others have failed to
support this connection (see discussion in Hua
et al. 2015). However, there is little evidence
that mass-specific metabolic rate per se is a
good predictor of variation in rate of molecular
evolution (Bromham et al. 1996; Lanfear et al.
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2007; Galtier et al. 2009a). Furthermore, the lon-
gevity effect on molecular evolution has been
noted in taxa that show no signs of senescence
with advancing age (Hua et al. 2015). Instead, it
might be that, just as for externally produced
mutagens, the level of DNA repair is adjusted to
the level of risk arising from cellular metabolites,
balanced against the average cost of mutation.

Longevity could increase mutation risk, if it
results in increased reproductive lifespan and
therefore more cell generations in the germline.
This might explain why the male mutation bias is
stronger in longer-lived organisms (Goetting-
Minesky and Makova 2005). Longevity might
also increase the cost of mutation, if fitness-
harming somatic mutations accumulate over
time. Therefore, selection could drive lower
rates of mutation in longer-lived organisms to
counter the increase in lifetime risk of fitness-
harming mutation.

It is important to recognize that the somatic
mutation rate (which generates the cost of body
size and longevity) need not be the same as the
germline mutation rate (which can be protected
from risk and receive enhanced repair). Germline
cells might receive heightened levels of repair,
through greater investment in damage detection
and maintenance activities, potentially at the
expense of investment in damage control in
somatic cells (Maklakov and Immler 2016).
Germline DNA might be further protected from
damage by being kept in a relatively quiescent
state, through reduced metabolic activity or lower
growth rates (Allen 1995; Burian et al. 2016).
Protection of the germline can further dissemble
a simple linear relationship between size, genera-
tion time, longevity, and mutation rate. This
might explain the lack of a proportional relation-
ship between plant age and the number of
mutations transmitted to the next generation
(Watson et al. 2016). The problem is that longev-
ity rarely varies without being correlated with
changes in other life-history traits that can also
influence rate of molecular evolution. It would be
interesting to compare the relative effects of lon-
ger lifespan against more germline cell
generations by comparing rates of molecular evo-
lution in semelparous species with high sperm

competition with their non-semelparous relatives,
or related species with similar longevity but dif-
ferent mating strategies.

4.3 Substitution

So far we have considered the different evolution-
ary forces that shape the mutation rate, which
affects the number of permanent changes
introduced to an individual’s genome. But the
rate of change of nucleotide sequences in the
genome is not wholly governed by the mutation
rate. Many mutations that occur will fail to be
passed on to offspring and, of those that are, not
all will persist in the population over the long
term. If a mutation rises in frequency over
generations until all individuals in the population
carry a copy of that mutation, it becomes a substi-
tution (one base has been substituted for another).
We will be able to detect the substitution as a
change in the DNA sequence that is characteristic
of a particular population or lineage. Mutation is
the individual-level generation of heritable
variants: substitution is the population-level
replacement of all other heritable variants at that
sequence position. While variation in mutation
rate should be correlated with variation in the
substitution rate, there are additional factors that
can shape variation in substitution rates even
when the mutation rate is static.

There are two broad ways in which a mutation
can rise in frequency until it replaces all other
variants at that position in the DNA sequence.
The first is by chance: in a population where not
all individuals reproduce, or where different
versions of DNA sequences have differing num-
bers of descendants, the frequency of variants
present in one generation might not be an exact
representation of the frequencies in the previous
generation, simply due to random sampling error.
This sampling error will cause allele frequencies
to fluctuate. By chance, one variant might
undergo, on average, more increases in frequency
than decreases, and might even ‘wander’ all the
way to a frequency of 100%.

We can appreciate the effects of random sam-
pling with any simple sampling experiment, such
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as flipping a coin or pulling coloured beans from a
bag. But there are two important features of
genetic sampling that allow substitution to occur
by chance. First, the sampling occurs in a series,
so that accidentally sampling an excess of one
variant over another in one generation results in
an excess of that variant in the next generation. If
in the following generation the frequency
increases again by chance, it will creep closer to
100%. Once any variant reaches 100%, we say it
has become fixed in the population, because the
alternative variants have disappeared. Serial sam-
pling can generate a random walk in allele
frequencies that might wander all the way to
fixation, with the concomitant loss of all other
variants at that locus. If the subsampling is severe
(few variants in the parent generation make it into
the offspring generation) then there is a high
potential for skewing frequencies.

A second feature of genetic sampling that
allows substitution to occur by chance is that
frequencies are determined entirely by replica-
tion: barring repeat mutation, all copies of a vari-
ant are descendants from an original copy. This is
important because if the frequency of any one
variant wanders all the way to 100% then substi-
tution occurs; it is not possible for the frequencies
of that variant to change again in the next genera-
tion. All individuals in the population carry iden-
tical copies of the same variant so there can be no
offspring born with any other variant. Similarly, if
any variant wanders all the way to a frequency of
0%, there are no more copies of the mutation that
can be copied to the next generation, so no off-
spring can inherit that variant from its parents.
These two things together—replication and finite
population size—make substitution due to chance
(genetic drift) a possibility, particularly for
mutations that have little or no effect on fitness.

The second process that can drive substitution
is selection: if a mutation, by virtue of its heritable
effects, has a higher chance of ending up in suc-
cessful offspring than other variants present in the
population, then it is expected to increase in fre-
quency until it replaces all other variants in the
population (if its advantage is maintained). The
relative influence of biased transmission (selec-
tion) and random sampling (drift) is dependent on

circumstance. For example, the state of the envi-
ronment will affect the relative fitness of variants,
and aspects of population size and structure will
influence the number of individuals that pass on
their genes to the next generation. Because the
likelihood of a mutation going to fixation is
influenced by its selective coefficient, and
because the selective coefficient is dependent on
the interaction between genome, population, and
environment, substitution rates can vary across
the genome (Wong and Seguin 2015). But in
this chapter we are only concerned with factors
that influence the genome-wide, lineage-specific
rate of molecular evolution, so we will consider
only the ways in which substitution rates can
differ consistently between species over long
time periods.

Effective population size is one of the major
determinants of patterns and rates of substitution,
because it mediates the relative influences of drift
and selection (Ohta 1987; Charlesworth 2009;
Lanfear et al. 2014). The substitution rate of
completely neutral mutations, those that have no
effect on fitness, is determined primarily by the
mutation rate (Kimura 1983; Lehmann 2014) and
is generally assumed to be unaffected by popula-
tion size (though some patterns of demography
can result in fluctuations in the neutral substitu-
tion rate; Balloux and Lehmann 2012). Advanta-
geous mutations are fixed more efficiently in large
populations where the influence of random sam-
pling on allele frequencies is less severe, but, on
the whole, advantageous mutations are rare
(Eyre-Walker and Keightley 2007). Strongly del-
eterious mutations are, by definition, unlikely to
be passed on to the next generation, so do not
contribute to the substitution rate.

But there are many mutations that are neither
advantageous nor strongly deleterious (see
Chap. 2). For example, a mutation might slightly
reduce the efficiency or structural stability of an
enzyme, yet not prevent it from functioning.
These slightly deleterious mutations are not
severe enough to prevent survival and reproduc-
tion under most circumstances, so they can be
passed on to the next generation. In a large popu-
lation, selection is efficient enough to eventually
eliminate even slightly disadvantageous
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mutations. But in small populations, where the
effects of random sampling are the most marked,
these slightly deleterious mutations can occasion-
ally go to fixation by chance. Therefore, in a small
population, some mutations with a slightly nega-
tive effect on fitness will behave as if neutral, and
their fate will be governed by drift. Because these
‘nearly neutral’ mutations are defined by both the
selective coefficient and the relative strength of
drift, the proportion of mutations that fall into this
category is determined not only by the distribu-
tion of selective effects but also by the effective
population size. Because the proportion of nearly
neutral mutations increases with decreasing effec-
tive population size (Castellano et al. 2018), and
because nearly neutral mutations are more numer-
ous than advantageous changes (Eyre-Walker and
Keightley 2007), we expect smaller populations
to have a higher overall substitution rate (driven
by drift on nearly neutral changes) than larger
populations (driven by positive selection).

All other things being equal, anything that
causes a long-term reduction in population size
should increase the substitution rate, relative to
similar lineages with larger population sizes. It is
surprisingly hard to test this prediction empiri-
cally, because effective population size is not
independently known for many populations
(although it is commonly estimated from the
genetic data themselves using assumptions about
the substitution process). Furthermore, the rela-
tionship between mutation rate, substitution rate,
and population size can change over time with
changing selection pressures, and with population
expansion and decline (Lanfear et al. 2014; Hua
and Bromham 2017). Given that substitution rates
are typically estimated from phylogenetic branch
lengths, which reflect changes that have
accumulated over millions of years, a ‘snapshot’
of population size from the tips of the phylogeny
might have relatively little explanatory power
unless it adequately reflects long-term average
population sizes for those lineages.

Most empirical studies of the effect of popula-
tion size on substitution rates rely on comparing

distantly related species with distinct differences
in population size. However, these species would
usually also differ in many aspects of their biol-
ogy that might also influence rates, confounding
the search for evidence of a relationship between
population size and substitution rates. But there is
some evidence from studies of closely related
pairs of species that those with smaller population
sizes tend to have higher substitution rates. For
example, a comparison of island endemic species
with their mainland relatives found a significant
trend towards higher ratios of nonsynonymous to
synonymous changes, as predicted (Woolfit and
Bromham 2005), though this result is not always
strong or consistent (James et al. 2016). Similarly,
comparisons between endosymbiotic microbes
and their free-living relatives found higher substi-
tution rates in the species confined to small
populations in insect guts (Woolfit and Bromham
2003); this result is also consistent with a
population-size effect, but additional driving
factors cannot be ruled out.

The relevant measure here is not necessarily
census population size (number of individuals):
effective population size reflects the number of
individuals that contribute alleles to the next
generation. For example, higher rates of molecu-
lar evolution in eusocial bees, wasps, and ants
have also been interpreted in terms of reduced
effective population size, because the number of
reproductive individuals in a colony is very small
despite the large overall number of individuals
(Schmitz and Moritz 1998; Bromham and Leys
2005; Rubin et al. 2019). Similarly, if strong
sexual selection results in a reduction in the num-
ber of contributing parents (e.g., a small number
of males father a disproportionate share of off-
spring), this should reduce the effective popula-
tion size and increase the substitution rate,
although this effect could be conflated with
higher male-biased mutation due to increased
sperm production (Bartosch-Härlid et al. 2003).
A wider range of empirical tests of the effect of
population size on substitution rates would be
welcome.
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4.4 Diversification

Rate of molecular evolution, as measured from
phylogenetic branch lengths, is correlated with
diversification rate, as measured by phylogenetic
clade size (Barraclough and Savolainen 2001;
Pagel et al. 2006; Eo and DeWoody 2010;
Lanfear et al. 2010; Duchêne and Bromham
2013; Ezard et al. 2013; Bromham et al. 2015,
2018). At first, this might look suspiciously like
an artefact of measurement: more lineages, more
nodes in the phylogeny, more inferred
substitutions (Hugall and Lee 2007). Yet the
same pattern has been found for a wide range of
sequences and lineages using a number of differ-
ent methods, each of which addresses some mea-
surement biases. This growing body of evidence
suggests that we must look for reasons why
lineages with higher rates of diversification tend
to have higher rates of molecular evolution than
related lineages with lower diversification rates
(Hua and Bromham 2017).

What could be the cause of a link between rate
of molecular evolution and rate of lineage diver-
sification? One explanation is that speciation
generates genetic change, as species adapt to
new environments or undergo selection for repro-
ductive isolation (Venditti and Pagel 2009).
Selection on specific traits is unlikely to be
reflected in genome-wide rates of molecular evo-
lution. Advantageous mutations are rare:
increased strength of selection will apply to only
a small number of mutations, and those directly
adjacent to them (hitchhiking). Such sites seem
unlikely to be included in the kinds of sequences
classically included in phylogenetic analyses
(‘housekeeping genes’), which are exactly the
kinds of sequences that have furnished evidence
for the association between diversification rate
and substitution rate. However, other processes
associated with speciation might influence
genome-wide substitution rates, which would be
reflected in all kinds of sequences compared
between lineages.

Repeated reductions in population size, caused
by founder effects associated with speciation
occurring in small population isolates, could

generate bursts of nearly neutral substitutions
(Venditti and Pagel 2008). In the words of Ernst
Mayr (1970): ‘small populations . . . are great
opportunities for a genetic revolution’. Changes
in population size will influence the substitution
rate of nearly neutral mutations, and selection will
affect the fixation rate of advantageous mutations.
Both of these classes of mutations, advantageous
and nearly neutral, must have some effect on
phenotype (in the broad sense, including patterns
of gene expression) in order to have nonzero
effects on fitness. Therefore, both of the proposed
mechanisms linking speciation to rate of molecu-
lar evolution—population size influencing nearly
neutral substitutions and selection affecting
advantageous substitutions—should be detect-
able only in the nonsynonymous substitution
rate (changes that might influence phenotype),
not in the rate of synonymous substitutions
(which do not affect the encoded proteins and so
have negligible selection coefficients).

Yet the association between diversification
rate and rate of molecular evolution has been
demonstrated for synonymous substitution rates
(Lanfear et al. 2010; Duchêne and Bromham
2013; Bromham et al. 2015). The observed link
between variation in synonymous substitution
rate and diversification rate is not easy to explain
in terms of selection associated with speciation
events, or changes in population size influencing
the proportion of nearly neutral mutations
(because synonymous mutations should be essen-
tially neutral and therefore unaffected by popula-
tion size). Synonymous substitution rates are
expected primarily to reflect the underlying muta-
tion rate. So what could cause a link between
diversification rate and mutation rate? It is diffi-
cult to think of a convincing explanation for spe-
ciation rate affecting the mutation rate. One
possible explanation is that repeated reductions
in population size might result in a degradation of
repair efficiency through the substitution of
slightly deleterious mutations in replication and
repair pathways (Lynch et al. 2016). But a link
between effective population size and mutation
rate is not evident in all species (e.g., Lanfear
et al. 2014; Castellano et al. 2018).
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Could an increased mutation rate, for example
due to changes in life-history traits (see Sect. 4.2),
directly lead to an increased rate of diversifica-
tion? To do so, increased mutation rate would
need to have some impact on increasing specia-
tion rates, decreasing extinction rates, or both. If
adaptation is mutation-limited, then it is possible
that increased mutation could increase speciation
or lower extinction, if it facilitates rapid response
to changing environments. But such a strategy
would presumably come at the expense of a
greater rate of deleterious mutations. Alterna-
tively, increased mutation rate could influence
the speciation rate by providing fuel for the devel-
opment of hybrid incompatibility between
separated populations. This might be through
the selection of changes that increase reproduc-
tive isolation, such as changes in flowering time,
particularly in traits that both increase ecological
separation and promote nonrandom mating
(Servedio et al. 2011). Or it might simply be
that the accumulation of slightly deleterious
changes and associated compensatory changes
drive the erosion of genome compatibility
through Bateson–Dobzhansky–Muller incompat-
ibilities (e.g., Wang et al. 2013). In this way, life
history can be linked to changes in mutation rate,
which contribute to variation in the substitution
rate, resulting in variation in diversification rate
(Bromham et al. 2015).

In addition, we must consider the possibility
that the rate of molecular evolution and diversifi-
cation rate are indirectly linked through other
traits. For example, if body size influences both
the mutation rate and the diversification rate, then
it could generate a correlation between mutation
rate and diversification rate even if the two are not
directly functionally linked. For a more detailed
discussion of the links in the explanatory chain
connecting mutation rates, substitution rates, and
diversification rates, see Hua and
Bromham (2017).

4.5 Implications

Most contemporary molecular dating analyses
use methods that allow rates of molecular

evolution to vary among lineages (see Chap. 5
and others in this book). However, these methods
typically draw rates from a convenient distribu-
tion and rely on a stochastic model of rate change
(Bromham et al. 2018). In other words, most
molecular dating methods aim to account for
rate variation without explicitly modelling
mechanisms or causes of rate changes. There are
few methods that model the way that rates of
molecular evolution evolve in concert with spe-
cies biology (Lartillot and Delsuc 2012; Nabholz
et al. 2013). This is not, in and of itself, a prob-
lem. After all, most base substitution models
allow different rates of transitions and
transversions without incorporating any informa-
tion on how that bias towards transitions results
from a particular process of damage (e.g.,
UV-induced thymine dimers), differential rates
of repair (e.g., bias in mismatch repair), or selec-
tion (e.g., more transitions are synonymous). Just
as the approach to base transition frequencies is to
model the rate difference without reference to the
underlying causes of the difference, so the
approach in molecular dating has been to model
variation in rate of molecular evolution without
incorporating any a priori expectation of how
those rates will vary among lineages.

Can we be confident that these stochastic
models are adequately capturing rate variation?
We should be worried that different molecular
dating analyses can give dramatically different
answers, even when applied to similar—or even
identical—data sets (e.g., dos Reis et al. 2014;
Foster et al. 2016). The lack of agreement
between date estimates from different studies
shows that inference is highly sensitive to
assumptions made in the analyses. This does not
tell us whether the answer is right or wrong, but it
does tell us that the assumptions are driving the
estimates, over and above the signal from
the data.

How can we use our understanding of rate
variation to improve molecular date estimates?
In some cases, we can check whether our inferred
rate estimates across the phylogeny are consistent
with our predictions on the basis of our under-
standing of rate variation. For example, parasitic
plants have higher rates of molecular evolution
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than their non-parasitic relatives (Bromham et al.
2013), and encouragingly these higher rates can
be detected by a range of models of rate variation
(Bellot and Renner 2014). But the different
models distribute these higher rates in different
ways, some at the tips of the parasitic clade, some
on the deeper lineages, and some at the root
(Bromham 2019). This results in a doubling of
the inferred age of the clade under some models.
It is not clear, in the absence of additional infor-
mation on the timing of origin of this clade, which
molecular dates are correct.

We could use an understanding of the causes
and patterns of rate variation to highlight cases in
which the date estimates might be subject to error.
For example, it has been suggested that surpris-
ingly old molecular dates for the radiation of
placental mammals (e.g., Bininda-Emonds et al.
2007) might be due to the well-established link
between body size and rates of molecular evolu-
tion in mammals. If early mammals were, on
average, smaller than those species usually
included in phylogenies, then the rate estimates
might be too low for the basal lineages in the
phylogeny, making the molecular date estimates
too old (Bromham 2003; Phillips 2015). Simi-
larly, reduction in body size in birds over the
Cretaceous–Palaeogene boundary could have
accelerated the rate of molecular evolution, caus-
ing molecular dating based on rates in younger
lineages to overestimate the age of the radiation
(Berv and Field 2017). This is a topic of much
debate, but serves as a useful case study for
examining the challenges of molecular dating
when rates evolve with species biology.

Ideally, though, we would use our understand-
ing of the causes of variation in rates of molecular
evolution to inform the rates models themselves,
using information on traits likely to correlate with
rate variation to derive empirically informed
distributions of plausible substitution rates. Such
models are not easy to develop and apply, but are
hopefully on their way to becoming a reality.

Acknowledgements I thank Simon Ho and Minh Bui for
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Principles of Molecular Dating 5
Susana Magallón

Abstract

Time-calibrated trees are a fundamental
starting point for investigating organismal
evolution. The use of molecular sequence
data to infer the time of lineage origin and
diversification was initially based on the
assumption that molecular rates were homoge-
neous across lineages, giving rise to the origi-
nal concept of the molecular clock. Evidence
of vast rate heterogeneity, even among closely
related species, prompted the development of
clock models that account for among-lineage
rate heterogeneity. In particular, relaxed clocks
allow each branch in the phylogenetic tree to
have a unique rate. Relaxed clocks include
numerical, semiparametric, and parametric
methods, the last of these in fully Bayesian
implementations. Absolute temporal informa-
tion is typically used to separate the time and
rate components of the branches in a phyloge-
netic tree. Temporal information can be
obtained from fossils, which provide mini-
mum calibration ages; from extrinsic events
linked to cladogenesis, which can provide
maximum calibration ages; or from age
intervals estimated in independent analyses.
Importantly, molecular clocks differ in terms
of how temporal information is introduced. In

node-dating methods, temporal information is
used to calibrate internal phylogenetic nodes,
and the resulting time-trees typically include
only extant taxa. In tip-dating methods, tem-
poral information is provided by fossils that
are included in the data matrix. In the resulting
time-tree, fossils appear as tips of extinct
branches. In the fossilized birth–death process,
temporal information is provided by fossils
which, together with molecular data from
extant species, influence the diversification
process that generates the tree prior. In the
resulting time-tree, fossils are extinct tips or
sampled ancestors of lineages.

Keywords

Branch lengths · Calibrations · Fossilized
birth–death process · Fossils · Molecular
clock · Node-dating · Nonparametric rate
smoothing · Penalized likelihood · Tip-dating

5.1 Introduction

Comparative methods today encompass a body of
models and analytical techniques to investigate
organismal evolution. These rely on phylogenetic
trees that express evolutionary relationships
among species as branching structures, in which
branch lengths typically represent the product of
the rate of character evolution and elapsed time.
While phylogenetic relationships are of critical
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importance, explicit information about the abso-
lute times of origin and diversification of lineages
allows us to place evolutionary events in the
context of a global temporal scale, and relative
to each other. Therefore, time-trees, which
express the temporal component of phylograms,
are a fundamental starting point for exploring
organismal evolution (Bromham and Penny
2003), including the rate of character change,
morphological evolution, biogeographic history,
biome assembly, and co-diversification, among
many other topics.

In a very general way, the relationship
between genetic distance and elapsed time allows
us to evaluate the temporal dimension in a phylo-
genetic tree. Emile Zuckerkandl and Linus
Pauling (1962, 1965) relied on the assumption
that rates of molecular evolution are constant
among lineages and through time, developing
the concept of the molecular clock. This assump-
tion was supported by subsequent observations
that the genetic differences among pairs of living
species are approximately proportional to the time
since their lineages diverged, based on the fossil
record (Doolittle and Blombäck 1964;
Zuckerkandl and Pauling 1965; Morgan 1998).
The molecular clock is a model of substitution
rate constancy among lineages. It rests on the
assumption that the genetic distance between
two lineages reflects, with probabilistic regular-
ity, the passage of time since they diverged from
their common ancestor. Accordingly, the genetic
distance between a pair of species whose diver-
gence can be calibrated with reference to an abso-
lute date, such as a fossil, provides a scale against
which the divergence times of other lineages can
be estimated.

There are substantial challenges to the use of
the molecular clock, including correctly
estimating genetic distances and obtaining accu-
rate calibration dates from the fossil record. How-
ever, a fundamental obstacle is the absence of
molecular rate constancy among lineages
(Sanderson 1998), even among closely related
species, as documented by vast empirical evi-
dence (see Chap. 1). Many different causes
underlie among-lineage molecular rate
differences, including intrinsic biological traits

and extrinsic environmental or physical factors,
such as life form, generation time, metabolic rate,
or exposure to UV light (dos Reis et al. 2016;
Bromham et al. 2018; Chap. 4).

The original formulation of the molecular
clock model (i.e., the strict clock) assumes that
molecular rates are constant among lineages and
through time. As such, all branches in the phylo-
genetic tree can be characterized by a single rate.
While this model might be appropriate among
intraspecific populations, it is unrealistic when
considering different species because heteroge-
neous molecular rates are pervasive. It has been
recognized that rate constancy among lineages is
not a general feature of molecular evolution, but
exceptional, and that variable among-lineage
molecular rates are ubiquitous. This led to the
proposal of different molecular clock models to
accommodate rate heterogeneity.

Different molecular clock models account for
different ways in which molecular rate heteroge-
neity is distributed among lineages. These models
roughly correspond to two distinct modes: those
that allow few but usually large changes, and
those that allow many different rates that vary
relatively little from each other (Welch and
Bromham 2005). In the former type, the number
of distinct molecular rates is usually much smaller
than the number of branches in the tree. Ho and
Duchêne (2014) and Bromham et al. (2018) refer
to these models as ‘multi-rate’ clocks. Branches
with the same rate can be closely grouped (local
clocks) or scattered across the phylogenetic tree
(discrete clocks; Ho and Duchêne 2014). In multi-
rate clock models, an important concern is
identifying the number of distinct rates in a tree,
and assigning these rates to the branches of
the tree.

The second type corresponds to relaxed-clock
models, which assign a unique substitution rate to
each branch in the phylogenetic tree. Rates can be
modelled following the principle of temporal
autocorrelation (Gillespie 1991; see below),
which considers that attributes that determine
molecular rates are transmitted from ancestral to
descendent lineages and, consequently, that rates
among closely related lineages are similar. This
principle might be appropriate for molecular
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change among closely related species (Ho 2009).
However, it is not clear if it adequately reflects
molecular rate differences among lineages that
diverged in the distant past, where substantial
extinction has taken place, or when taxon sam-
pling is incomplete. In uncorrelated relaxed-clock
models, rates are sampled from a statistical distri-
bution and are independent of those on adjacent
branches (Drummond et al. 2006; Rannala and
Yang 2007).

5.2 Sources of Absolute Temporal
Calibrations

The absence of constant rates among interspecific
lineages is an empirical reality that precludes the
use of a strict molecular clock. However, even
when applying variable-rates clock models, a
major difficulty is that absolute substitution rates
and time, which determine the lengths of
branches in phylogenetic trees, are not identifi-
able (Fig. 5.1; Rannala 2016). The algorithms
used in parametric phylogeny estimation
(Felsenstein 1981) produce trees in which branch
lengths are the product of the absolute substitu-
tion rate (i.e., number of substitutions per unit
time) and temporal duration: such trees are
known as phylograms. Because for any given
branch there is an infinite number of
combinations of absolute rates and times that
can yield the same length, and leading to the
same likelihood score, explicit information
about the magnitude of one of these components
is necessary to estimate the other. In the absence
of absolute information about rates or times to
anchor the phylogram, estimated divergence
times cannot be linked to an absolute timescale.
The most common sources of information about
absolute time are the fossil record, extrinsic
events at local or global scales assumed to be
causally linked to speciation (e.g., tectonics,
orography, or temperature shifts), and secondary
calibrations (Fig. 5.2; Hipsley and Müller 2014).

5.2.1 The Fossil Record

Fossils are the most common source of indepen-
dent information for temporal calibration of phy-
logenetic trees (see Chap. 8). A fossil provides a
minimum age for the phylogenetic splitting event
that gave rise to the lineage to which it belongs.
This is because a certain amount of time elapsed
before this lineage acquired morphological dis-
tinctiveness—which allows us to recognize it—
and became preserved in the fossil record
(Fig. 5.2a). The magnitude of this temporal dif-
ference is unknown; it varies from lineage to
lineage and depends on the rate of morphological
evolution and on lineage-specific rates of fossil
preservation.

To be used as a calibration, the phylogenetic
position of a fossil with respect to extant taxa
included in the dating analysis needs to be
identified. The placement of the fossil can be
estimated simultaneously with divergence times
in a total-evidence context, which involves com-
bining molecular and morphological data from
extant taxa with morphological data from fossil
species. The minimum age provided by the fossil
can be implemented with a hard or a soft bound
(Yang and Rannala 2006), or as a feature of a
probability density. In the latter case, selecting the
type of distribution and the values of its
parameters are important choices. Useful
considerations for selecting the type of probabil-
ity distribution are available (e.g., Ho and Phillips
2009; Bromham et al. 2018), but providing values
for its parameters is mostly a grey area in need of
further theoretical and empirical research
(Matschiner et al. 2017). For a more detailed
treatment of this topic, see Chap. 8.

5.2.2 Extrinsic Events

Extrinsic events at local or global scales that are
causally linked with phylogenetic divergences
can provide a maximal age or a time estimate
for an internal node in the phylogeny (Fig. 5.2b;
see also Chap. 9). These events include, for exam-
ple, tectonic and orographic processes at global or
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local scales, as well as events derived from these
extrinsic processes, such as climate change, ori-
gin of biomes, and major geochemical changes in
Earth’s history (Falcón et al. 2010; Knoll and
Nowak 2017). The critical assumption is that the
event was the underlying cause of cladogenesis,
which is in itself a hypothesis to be tested
(Magallón 2004; Kodandaramaiah 2011). The
temporal relationship between the calibrated
node and the extrinsic event is imprecise, because
geologic, tectonic, orographic, or climatic pro-
cesses usually take place over millions of years;
and lineage splitting became effectively
established at an unknown time after the onset
of the event (Magallón 2004). Extrinsic global or
local events can thus provide temporal informa-
tion, but rely on a tentative causality hypothesis
which, if correct, provides a soft maximal age
constraint for a phylogenetic node (Fig. 5.2b).
For a more detailed treatment of this topic, see
Chap. 9.

5.2.3 Secondary Calibrations

Ages estimated in independent molecular clock
analyses can be used as node calibrations when
the fossil record of a group is of low quality or is
nonexistent, and when other sources of calibra-
tion are unavailable (Fig. 5.2c). There are numer-
ous caveats to the use as calibrations of dates
derived from independent studies. Each step in a
molecular dating exercise is laden with
assumptions that might be tenuous and potentially
derived from dubious choices, and the resulting
inaccuracies and biases will be transferred to the
new study. However, secondary calibrations
might be the only available source of independent
temporal information. In these cases, an important
consideration is whether a tree dated in absolute
time is strictly necessary; a tree scaled in relative
time units (e.g., with internal splits given dates
relative to the root) might be sufficient for
addressing the question driving the research.
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Fig. 5.1 The time and rate components of a phylogram. A
phylogram is a phylogenetic tree in which branch lengths
represent the product of the molecular substitution rate and
time duration. Molecular dating uses numerical,
semiparametric, or fully parametric methods, combined
with independent information about molecular rates or,
more commonly, time calibrations, to separate the two

components of branch lengths. Molecular dating produces
a time-tree (or chronogram) in which branch lengths rep-
resent absolute time units (e.g., million years). The abso-
lute molecular substitution rate (number of substitutions
per site per time unit) on each branch is also obtained,
which can be used to build a rate-tree. Nevertheless,
molecular rates are usually not recorded this way
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If the need for a tree scaled to absolute time is
inescapable and other sources of temporal infor-
mation are unavailable, a secondary calibration
might be applied tentatively, bearing in mind
that any potential error in the primary analysis
will be transferred to the new calibration.
Implementing a secondary calibration should be
done carefully and, at the very least, should
involve a rigorous evaluation and consideration
of all sources of uncertainty in the primary dating
analysis. This should include a critical examina-
tion of the choices of molecular data, taxonomic
sample, source and reliability of temporal
calibrations, models, and how each of these was
applied. Secondary calibrations should be applied
as an interval that encompasses the associated
error estimated in the original study (Fig. 5.2c).

5.3 Types of Relaxed-Clock
Methods

Many important decisions are required when
conducting a relaxed-clock analysis to estimate
divergence times and rates (Sauquet 2013). These
include, for example, the choice and density of
taxon sampling for the ingroup and the outgroup,
the type of molecular data and its phylogenetic
informativeness relative to the sampled taxa,
whether to include morphological data, and, in
the case of parametric relaxed molecular clocks,
the models and model parameters for different
components of the likelihood. In the case of
relaxed clocks, two critical choices need to be
made: the type of relaxed clock to be
implemented, and the way in which absolute
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Fig. 5.2 Three main sources of absolute temporal
calibrations for molecular dating. (a) Fossil calibration.
A fossil reliably identified as belonging to an extant
clade, such as the clade that includes species A and B,
can be used to calibrate (orange bar) the stem node of that
clade (yellow circle). Because an unknown amount of time
elapsed between the divergence of A + B from C and the
acquisition of morphological distinctiveness and fossil
preservation, a fossil belonging to clade A + B provides
a minimum age for the origin of this clade. The age
estimate for the divergence between A + B and C (orange
interval) can be any time older than the fossil. (b) Calibra-
tion with an extrinsic event. Extrinsic global or local
events can be used to calibrate an internal node in the
phylogeny if causally linked to cladogenesis. The under-
lying assumption is that an extrinsic event, such as conti-
nental breakup due to plate tectonics, separated an

ancestral species (MRCA) whose descendants evolved
into species A and B on different land masses. The cali-
bration (orange bar) represents the maximum age of the
calibrated node (yellow circle), which represents the phy-
logenetic divergence between A and B. The estimated age
for the divergence between A and B can be any time
younger than the calibration (orange interval). (c) Calibra-
tion from an independent molecular clock analysis. A
node, for example the divergence between A and B (yel-
low circle), can be calibrated with the age estimated for the
equivalent node in an independent molecular clock analy-
sis. A secondary calibration involves the strong assump-
tion that the independent study obtained an accurate
estimate of the age of the node, and should be treated
critically and cautiously. The calibration should encom-
pass the full uncertainty interval associated with the
estimated age (orange interval)
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temporal information to separate rates and times
will be incorporated into the analysis. These criti-
cal choices are closely intertwined, conceptually
and methodologically, and should be primarily
determined by the research question. Available
relaxed-clock methods differ substantially in the
input data that they require, in the type and mode
of implementation of external calibrations, and in
their underlying mathematical machinery. How-
ever, these methods share the ability to estimate
divergence times while allowing each branch in
the tree to have its own molecular rate.

5.3.1 Nonparametric
Rate-Smoothing Numeric
Relaxed Clock

The earliest implementation of a molecular clock
that directly incorporates rate differences among
lineages is the nonparametric rate smoothing
(NPRS) method developed by Sanderson
(1997). NPRS is an entirely numerical method
that relies on minimization of substitution rate
differences between ancestor and descendent
lineages in a phylogenetic tree. Each branch is
allowed to have its own substitution rate, under
the assumption of temporal rate autocorrelation
(Gillespie 1991). The principle of rate autocorre-
lation is based on population-level processes that
assume that molecular rates (or the factors under-
lying them) are inherited by descendants from
their ancestors. The assumption of rate autocorre-
lation imposes constraints on the amount of rate
change between ancestral and descendent
branches and, effectively, on the difference in
molecular rates among nearby branches in
the tree.

Nonparametric rate smoothing uses as data the
branch lengths in an independently estimated
phylogram, where branch lengths represent
expected number of substitutions (absolute rate
r multiplied by time t). To obtain divergence-age
estimates in terms of absolute time, temporal
calibrations on internal nodes are necessary.
These calibrations are frequently obtained from
fossils but can also be obtained from other
sources (Fig. 5.2, and see above). Each node can

be constrained to a minimal and/or a
maximal age.

The absolute substitution rate on each branch
is calculated as r ¼ b/t (where b is the branch
length in substitutions per site), which is the
maximum-likelihood estimate of the rate in a
Poisson process (Sanderson 1997). To account
for temporal autocorrelation, the method seeks
branch durations (t) that minimize differences in
rates (r) between ancestral and descendent
branches, contingent on node calibrations. Mini-
mization is solved as a non-linear optimization
problem approached through standard numerical
techniques (Sanderson 1997). As a result,
estimates of divergence times and absolute
molecular rates are obtained. Errors associated
with estimates of time and absolute rate are
obtained by conducting the analysis on
phylograms derived from bootstrapped data sets.

The availability of NPRS led to substantial
enthusiasm for estimating divergence times on
trees for different groups of organisms (e.g.,
Wikström et al. 2001; Smith et al. 2006). Initial
tests showed that age estimation with NPRS
outperformed a strict-clock model, especially
when rates were nonclocklike and autocorrelated
(Sanderson 1997). However, it was later discov-
ered that NPRS tends to introduce excessive rate
variation, losing predictive power (Sanderson
2002). Its use has been mostly discontinued in
favour of semiparametric or fully parametric
options, particularly methods that do not rely on
a fixed tree topology.

5.3.2 Penalized-Likelihood
Semiparametric Relaxed Clock

A penalized-likelihood relaxed molecular clock
was later introduced by Sanderson (2002). It is a
semiparametric rate-smoothing method that
combines a parametric model that allows each
phylogenetic branch to have its own molecular
rate. A numerical roughness penalty deters rates
from varying excessively among nearby
branches. The penalty is based on the level of
smoothing applied to the data, which is deter-
mined through a cross-validation procedure. As
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in NPRS, penalized likelihood uses as input data a
phylogram in which branch lengths represent
expected number of substitutions.

The parametric component of penalized likeli-
hood is a saturated model that assigns a unique
molecular rate to each branch in the tree. Instead
of using a conventional molecular model to esti-
mate the number of substitutions along a branch,
penalized likelihood uses a simpler method in
which the number of substitutions is an observa-
tion drawn from a Poisson process (Sanderson
2002). The choice of rates is regulated by a rough-
ness penalty (Φ) that avoids drastic changes by
penalizing squared rate differences between
ancestral and descendent branches. It is equiva-
lent to the rate-smoothing parameter in NPRS,
which is based on the principle of temporal rate
autocorrelation (Sanderson 2002).

The roughness penalty should adequately
reflect rate differences in the data. This is
achieved through a smoothing parameter (λ),
which can take any value between zero and infin-
ity. When the smoothing parameter is zero, each
branch is allowed to have its own rate, and
differences between neighbouring branches are
not penalized. As the magnitude of the smoothing
parameter increases, rate changes between
branches are increasingly constrained. When the
value of the smoothing parameter is very large, all
branches have the same rate, in what constitutes a
strict molecular clock.

Each value of the smoothing parameter entails
its own solution in terms of absolute rates and
estimated divergence times. Therefore, it is criti-
cal that the smoothing parameter adequately
represents the amount of rate variation in the
tree. The magnitude of the smoothing parameter
is selected through a cross-validation procedure
related to prediction error. The cross-validation
procedure starts by removing one terminal branch
of the phylogenetic tree. Penalized likelihood and
a selected smoothing magnitude are applied to the
data of the remaining branches to predict the
length of the pruned branch. The squared differ-
ence between the predicted and the observed
values is calculated, weighted by the inverse of
the variance, to reflect the mean of the Poisson
process (Sanderson 2002). This step is repeated

by pruning each of the terminal branches in turn,
and the average of the prediction errors represents
the cross-validation score for the smoothing mag-
nitude being tested. The cross-validation is
repeated for a range of magnitudes of the smooth-
ing parameter, for example from 0.1 to 100,000.
The smoothing magnitude that returns the lowest
cross-validation score is chosen as the
optimal one.

The roughness penalty increases as rates are
more variable across branches. Age constraints
can be placed on internal nodes as minimum
and/or maximum bounds. The smoothing param-
eter balances the amount of rate variation in the
data identified through cross-validation with
goodness-of-fit to the saturated parametric
model. Absolute rates and divergence times are
estimated by maximizing the penalized likelihood
(Ψ ), which combines the roughness penalty and
the smoothing parameter. The solution consists of
the set of branch rates and divergence times that
maximize the penalized likelihood for the
observed branch lengths in the input phylogram,
given the chosen smoothing parameter.
Associated errors can be obtained by conducting
penalized-likelihood analyses on trees derived
from bootstrapped data sets.

The penalized-likelihood method was
rewritten in the program treePL to handle very
large data sets (Smith and O’Meara 2012).
Although its reliance on a fixed phylogram as
input is a drawback, this can be compensated for
by conducting penalized-likelihood analyses on
phylograms derived from bootstrapped data sets.
Penalized likelihood has proven to be a robust
method for estimating divergence times and
rates under a variety of conditions, and remains
a useful tool for dealing with very large data sets,
both under its r8s and treePL implementations
(e.g., O’Meara et al. 2016).

5.3.3 Parametric (Bayesian) Relaxed
Clocks

Parametric relaxed molecular clocks, specifically
Bayesian relaxed clocks (dos Reis et al. 2016),
have revolutionized estimation of absolute branch
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rates and divergence times (see Chap. 6). They
can allow the simultaneous estimation of phylo-
genetic, substitution, and diversification
parameters, while taking advantage of vast
amounts of available molecular sequence and
genomic data for all types of organisms.

Bayesian relaxed clocks have been
implemented in the general Bayesian framework,
in which the posterior probability is the product of
the prior probability of model parameters and the
likelihood of the data, divided by the probability
of the data (Nascimento et al. 2017). In the con-
text of relaxed molecular clocks, the data are the
aligned molecular sequences (and morphological
characters) of the sampled taxa. The likelihood
involves two components. One is the model of
character evolution, typically a conventional
model of nucleotide (or amino acid or codon)
substitutions, but might also include a model of
morphological character evolution (Lewis 2001).
Its parameters include, at least, the rates of
transitions among character states and state
frequencies. The second component of the likeli-
hood is the tree model, in which the relevant
parameters are the topology and the branch
lengths. Branch lengths represent the product of
the absolute character substitution rate and the
branch duration.

The prior probability of each parameter is
described by a statistical distribution or a process
governed by hyperparameters. Branch durations
(and node ages) are potentially influenced by the
prior on the tree, which might be based on a birth–
death diversification process or one of its variants
(e.g., Gernhard 2008), and independent temporal
information, which can be introduced in different
ways into the analysis (see below; Fig. 5.3). The
posterior distribution represents the prior distribu-
tion updated with the likelihood calculated from
the data. The posterior distribution is usually
estimated by Markov chain Monte Carlo sam-
pling, which involves repeatedly calculating the
ratio of two posterior probabilities (see Chap. 6).
We can extract the marginal posterior probability
distributions of any parameters of interest.

5.4 Incorporating Temporal
Information

Absolute time calibrations are among the most
consequential components of molecular dating
analyses. One of the earliest (albeit sometimes
implicit) choices in a molecular clock analysis is
how to introduce temporal information to sepa-
rate absolute rates and time in the branches of the
phylogeny. Different ways in which temporal
information is introduced determine a major cate-
gorization of molecular dating methods. Tempo-
ral calibrations for internal phylogenetic nodes
can be obtained from fossils, extrinsic events, or
dates estimated in an independent analysis. Ter-
minal nodes can be calibrated with known sam-
pling dates in data sets from viruses, bacteria, or
obtained from ancient DNA (Rambaut 2000;
Chap. 10).

More recent methods allow extant species to
be combined with fossil taxa in the taxonomic
sample for molecular dating (e.g., Pyron 2011;
Ronquist et al. 2012a). Diversification models
that sample species through time (Stadler 2010;
Didier et al. 2012) can combine fossils with
extant species in the tree prior (Heath et al.
2014). Given these alternatives, one critical step
at the outset of a molecular clock analysis is
deciding how absolute temporal information will
be introduced. This decision is closely associated
with (or depends on) the type of available data,
the source of temporal information, and the dating
method to be implemented.

5.4.1 Node Dating: Calibrating
Internal Nodes

Calibrating internal nodes in a phylogenetic tree
(node dating) is the most common way to incor-
porate absolute chronological information into
molecular clock analyses. In node-dating
analyses, divergence-time estimation is indepen-
dent of the type and source of calibrations. The
dates provided by calibrations only inform about
the age of an internal node (as a minimum value,
maximum value, or a probability density), but are
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somewhat detached from the mechanisms of
estimating phylogenetic relationships, diversifica-
tion parameters, and other components of the
analysis (Fig. 5.3). The specified calibrations
form the basis of age estimation but they do not

play a direct role in estimating other model
parameters. Except for analyses of time-
structured data sets (see Chap. 10), the product
of a node-dating analysis is a time-tree that
includes only extant terminals. Phylogenetic
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Fig. 5.3 Different ways of incorporating temporal infor-
mation from fossils in molecular dating analyses. The role
of fossils (fA, fB, fC, and fD) is indicated in red. Filled
circles indicate the presence of fossils in the tree; empty
circles indicate that the age of the fossil informs the age of
the node, but the fossil itself is not present in the tree. (a)
Node dating does not include fossils in the data matrix.
Molecular data (node dating) or molecular and morpho-
logical data (total-evidence node dating) from extant spe-
cies can be included in the data matrix. Based on
independently inferred relationships, fossils directly
inform the age of internal nodes (empty red circles) but
do not appear in the resulting time-tree. Fossils may be
redundant if two or more calibrate the same node. In
addition to fossils, internal nodes can be calibrated with
extrinsic events or secondary calibrations. (b) Tip-dating
includes fossils in the data matrix. Morphological data are
scored for fossil and extant species, together with molecu-
lar data from extant species (total-evidence tip-dating).
Phylogenetic relationships and divergence times are

estimated simultaneously, so fossils contribute to infer-
ence of topology and to the time component of branch
lengths. Fossils (red circles) appear as tips of extinct
branches in the estimated time-tree. (c) The fossilized
birth–death process includes fossils in the data matrix.
Input data can be: molecular sequences from extant spe-
cies only (unresolved FBD); morphological data from both
extant and fossil species (morphological clock dating); or
molecular data from extant species and morphological data
from both extant and fossil species (total-evidence dating).
If morphological data are included, phylogenetic
relationships and divergence times can be estimated simul-
taneously. If not, the placement of fossils needs to be
specified based on independently inferred relationships.
Fossil and extant taxa are part of the diversification process
that generates the phylogenetic tree and its branching
times. Fossils (red circles) appear as tips of extinct
branches (fB and fC) or as sampled ancestors of lineages
that became extinct some time after the fossil was sampled
(fA and fD)
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relationships among extant taxa can be simulta-
neously estimated in some Bayesian
implementations (e.g., BEAST; Bouckaert et al.
2014). When fossils are used as calibrations, they
do not appear in the resulting time-tree: their only
manifestation is their influence on ages of nodes
in the tree, particularly the calibrated nodes.

Node-dating analyses can be conducted under
a wide variety of methodological and analytical
conditions, including numerical, semiparametric,
and parametric relaxed clocks. The input data
depend on the type of relaxed-clock method
used. In numerical or semiparametric methods,
the required input consists of a phylogram and
node calibrations, which are indicated as point
values or as minimum and/or maximum ages.
Because ages are optimized on the basis of
phylogram branch lengths (Sanderson 1997,
2002), a character matrix is not required. The
phylogram is expected to be derived from molec-
ular data, but it could also be derived from a total-
evidence data set. In parametric molecular clocks,
a data matrix represents the fundamental input for
estimating divergence times and other parameters
of the model. In Bayesian node dating, the input
data are a character matrix comprising molecular
data (for extant taxa) and possibly morphological
data for extant and fossil species (total-evidence
node dating; Fig. 5.3a). Some implementations
require a fixed tree topology, so that the estimates
of divergence times are conditioned on a specified
set of evolutionary relationships.

The taxonomic sample in the data matrix for a
node-dating analysis usually includes only extant
taxa, but taxa that recently went extinct (e.g.,
Tasmanian tiger and woolly mammoth) can also
be included, provided that their ages are much
younger than the divergence times in the phylog-
eny. In addition to the species of interest, or a
substantial representation of them, the taxonomic
selection might need to be expanded to encom-
pass nodes that can be reliably calibrated, for
example, by a particularly well phylogenetically
placed and confidently dated fossil. This might
lead to a denser representation in the ingroup, or
expansion of sampling to include more external
outgroups until a node that can be reliably
calibrated is represented in the phylogenetic tree.

The data matrix typically contains only molecular
data, but it is possible to include morphological
data under appropriate models (Lewis 2001;
Wright and Hillis 2014; Wright et al. 2016).
One important assumption is that models of
molecular and morphological character evolu-
tion appropriately capture the rate and variation
of the evolutionary process that gave rise to
the data.

Because in node-dating analyses the
calibrations are largely independent from the pro-
cess of phylogenetic inference, temporal informa-
tion can be obtained from different sources,
including non-biological ones (e.g., from extrin-
sic large-scale events or from independent molec-
ular clock analyses; see above and Fig. 5.2). The
maximum number of calibrations that can be use-
fully implemented in a node-dating analysis is
equal to the number of internal nodes in the tree.
If several sources of calibration are available for a
particular node, such as multiple fossils, the
oldest will determine the minimum age of the
node and the rest will become uninformative
(Fig. 5.3a), unless they are used to inform the
shape or parameters of a calibration prior distri-
bution. Furthermore, older calibrations will
supersede any younger calibrations that are
applied to deeper nodes (i.e., closer to the root),
rendering them irrelevant because of the tree
structure. However, it is possible to combine dif-
ferent calibrating sources for different internal
nodes, for example, assigning to the root node a
secondary calibration and calibrating one or more
internal nodes with fossil-derived information.
Importantly, identifying the correct calibration
nodes and ages can involve considerable
uncertainty.

5.4.2 Tip-Dating: Ages
of Phylogenetic Terminals

Extant and fossil taxa can be combined for the
joint estimation of phylogenetic relationships and
divergence times in a tip-dating analysis. Such an
analysis is based on a total-evidence data set that
contains molecular sequences from extant species
and morphological characters from both fossil
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and extant species (Fig. 5.3b). It is critically
important that scoring of morphological
characters is as complete as possible for the sam-
pled species, because these data represent the
source of information used to estimate the phylo-
genetic relationships of the fossil species, and will
affect the estimated divergence times. Fossils
occupy terminal positions on extinct phylogenetic
branches and their ages serve as calibrations for
estimating divergence times in the tree. The out-
come of a tip-dating analysis is a time-calibrated
phylogenetic tree that includes extant and fossil
species as terminals.

In tip-dating analyses, calibrations are only
provided by fossils (but see below), because
they are directly included in the phylogenetic
tree. Inference of the phylogeny is an integral
part of the analysis, so the placement of fossils
with respect to extant species does not need to be
specified a priori. The age of each fossil can be
introduced as a fixed point, or preferably as a
uniform interval (e.g., spanning the stratigraphic
interval of the fossil species), a probability den-
sity, or a distribution that reflects the uncertainty
in radioisotopic dating (Ho and Duchêne 2014).
The number of fossils that can be usefully
included in a tip-dating analysis can be smaller
than, equal to, or larger than the number of inter-
nal branches in the tree. The fossils do not need to
be limited to the oldest members of each clade;
because fossils are tips in the tree, fossils that are
younger than the oldest member of a clade can
play a useful role in divergence-time estimation.
Although it is desirable to include as many fossils
as possible, because they will provide greater
temporal information for dating the tree, their
usefulness is contingent on the availability of
phylogenetically informative morphological data.

Tip-dating analyses can be performed in
Bayesian frameworks that allow simultaneous
inference of phylogenetic relationships and diver-
gence times (e.g., Ronquist et al. 2012b;
Bouckaert et al. 2014). In numerical and
semiparametric relaxed clocks, tip-dating is pos-
sible if the input phylogenetic tree includes extant
and fossil species and, importantly, in which
branch lengths represent expected number of
character state changes. It is technically possible

to conduct a tip-dating analysis using numerical
or semiparametric relaxed clocks on a phylogram
with extant and fossil species in which branch
lengths represent evolutionary distances and fos-
sil species are specified as non-extant terminals
(Magallón 2010). However, these analyses differ
importantly from conventional parametric
tip-dating in that the estimation of phylogeny
and divergence times are uncoupled from each
other.

The most attractive element of tip-dating
analyses is the possibility to infer simultaneously
phylogenetic relationships and divergence times
among extant species and fossils in a total-
evidence context. The estimation of phylogenetic
relationships among fossils and living taxa frees
the need to specify a priori the position of
calibrations in the tree, which can be problematic.
Furthermore, the requirement of a total-evidence
data matrix as input should promote documenta-
tion, justification, and discussion of morphologi-
cal characters (Sauquet and Magallón 2018). One
question is the interpretation of the position of
fossils as terminals in extinct lineages, namely,
whether the fossil represents the time of extinc-
tion of the lineage. Most tip-dating methods
assume that a lineage does not persist beyond
the sampling of a fossil.

Tip-dating analyses, despite their appeal, have
often produced unexpected results when applied
to empirical data sets. In some studies, fossils
have been placed as stem-lineage representatives
(i.e., diverged after the separation of the lineage
from its extant sister clade, but before the diversi-
fication of the crown group of extant species (e.g.,
Pyron 2011), or in unresolved phylogenetic
positions (e.g., Ronquist et al. 2012a). It is not
clear if the frequent assignment of fossils to stem
lineages correctly reflects their relationships with
respect to extant clades, or whether it is a conse-
quence of incompletely documented and/or
incompletely scored morphological data. In
other studies, estimated ages have been found to
be unrealistically old (e.g., Arcila et al. 2015 and
references therein).

The exceedingly old ages estimated in
tip-dating analyses might be due to the use of
models that insufficiently capture the complexity
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of morphological evolution, including possible
correlated evolution and ascertainment bias (dos
Reis et al. 2016). It has also been suggested that,
because tip-dating does not necessarily place any
temporal constraints on internal nodes, age esti-
mation might become extremely sensitive to the
tree-generating model used for the prior (dos Reis
et al. 2016).

A potentially useful methodological alterna-
tive would be to combine a tip-dating analysis
including extant species and fossils, with node
calibrations derived from fossils that are not
included in the data matrix. This presents a
means of mitigating the unreasonably old ages
estimated in some tip-dating analyses. In a study
of the evolution of floral structure at the onset of
the diversification of the Pentapetalae clade
(eudicot angiosperms; López-Martínez et al. in
prep.), the availability of complete and informa-
tive morphological characters for fossils and
extant species, combined with a strong maximal
age constraint on the root node, allowed an
improved estimation of the phylogenetic place-
ment of fossils. The analysis also produced age
estimates that fell within the general understand-
ing of the evolutionary timeframe of the group
being examined.

5.4.3 Fossilized Birth–Death Process:
Absolute Time Is a Component
of the Tree-Generating
Diversification Process

Divergence-time estimation with the fossilized
birth-death (FBD) process (Heath et al. 2014) is
based on a tree-generating birth–death diversifi-
cation model, which includes sampling of extant
species and fossils (Stadler 2010). In contrast
with other molecular dating methods, temporal
calibrations in the FBD process do not need to
be attached directly to the phylogeny (as in node
dating) or incorporated into the data matrix (as in
tip-dating), but play a role in the diversification
process that generates the tree prior for the topol-
ogy and divergence times (Fig. 5.3c). The diver-
sification process incorporates extant species for
which molecular data are available, and extinct

species sampled as fossils of known age, within
the same birth–death model (Stadler 2010; Didier
et al. 2012; Chap. 11).

The FBD process has been implemented in
Bayesian phylogenetic dating methods (e.g.,
Bouckaert et al. 2014; Höhna et al. 2016). The
method requires an input data matrix containing
molecular data from extant species and a list of
dated fossil occurrences (unresolved FBD). The
data matrix can include morphological data from
extant and fossil species, either alone (morpho-
logical clock dating; Chap. 7) or in addition to the
molecular data from extant species (total-
evidence dating) (Gavryushkina et al. 2017).
The age of each fossil needs to be specified as a
point age, or preferably as a temporal interval
(Barido-Sottani et al. 2018) that accounts for
uncertainty in the age of the fossil. Incomplete
sampling of extant clades can be accommodated
with an appropriate correction (Zhang et al.
2016).

Absolute temporal information is provided by
fossils in the tree-generating birth–death process.
The number of fossils that can be meaningfully
introduced can be smaller than, equal to, or larger
than the number of internal branches in the phy-
logenetic tree. There can potentially be a very
large number of fossils, limited only by the ability
to specify their phylogenetic position, or by the
informativeness of morphological data
(if available) to provide phylogenetic resolution.
Fossils can be crown-group members (i.e., being
more closely related to a particular set of extant
species than to the clade as a whole) or stem-
lineage representatives of the extant clade. Stud-
ies have suggested that including stem-lineage
fossils leads to greater accuracy in estimated
divergence times (Gavryushkina et al. 2017).

The outcome of molecular dating with the
FBD process is a time-tree containing extant and
fossil taxa. Phylogeny estimation is implicitly
included in the FBD but, in practice, there is a
range of options for specifying phylogenetic
relationships. In FBD analyses that include only
molecular data, relationships among extant spe-
cies are estimated, whereas the phylogenetic
placements of fossils must be explicitly specified
(unresolved FBD). The precision of this
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specification can range from a broad indication of
clade membership to a strict placement of the
position of the fossil with respect to other species
in the tree. Including morphological data for
extant and fossil species, either alone (morpho-
logical clock dating) or combined with molecular
data (total-evidence dating), allows FBD analyses
in which phylogenetic relationships and diver-
gence times are simultaneously estimated.

Estimation of divergence times with the FBD
model implies calculation of diversification
parameters: the speciation rate λ and extinction
rate μ (or net diversification d and turnover ν), the
fossil recovery rate ψ (or fossil sampling propor-
tion s), and the sampling proportion of extant
species ρ (Heath et al. 2014; Gavryushkina et al.
2017). When every sampled ancestor can come
from a different point in time, birth–death models
are nonidentifiable. Hence, at least one of these
parameters needs to be specified in order to allow
the others to be estimated (Gavryushkina et al.
2017).

One distinctive element of the FBD process is
its ability to interpret fossils either as terminals of
extinct lineages or as ancestors on branches of the
tree. These phylogenetic branches might lead to
extant species or become extinct some time after
the sampling of the fossil (Gavryushkina et al.
2014, 2017). This allows the presence of a fossil
to be unlinked from the extinction of the branch to
which it belongs.

The most notable difference between the
fossilized birth–death process and node-dating
and tip-dating is the way in which temporal infor-
mation from fossils is used. In node-dating or
tip-dating methods, this temporal information is
used for estimating parameters of the tree model,
either only time (in node dating) or both time and
topology (in tip dating). In tip-dating, fossils are
interpreted only as extinct terminals in the tree. In
the FBD process, the temporal information
provided by fossils is directly involved in the
diversification process that generates the tree
prior. The fossils can be resolved as extinct
terminals or as direct ancestors.

5.5 Conclusions

Today, molecular clocks are standard
components in the bioinformatic toolkit of com-
parative phylogenetics. Although molecular dat-
ing is now mainstream, there are questions and
important challenges to be resolved. The avail-
ability of genomic data represents an extraordi-
nary asset in phylogenetic inference, broadening
our understanding of relationships at all scales of
the tree of life. Yet, the use of genomic data in
molecular dating is not without problems. The
availability of vast amounts of molecular
sequence data can improve phylogram branch-
length estimates, but does not provide additional
information about the temporal component in
those branch lengths (e.g., Yang and Rannala
2006; dos Reis and Yang 2013; Chap. 13). More
specifically, simulation studies have shown that
when the amount of molecular data is increased
(Yang and Rannala 2006; dos Reis and Yang
2013; Zhu et al. 2015), posterior estimates of
divergence times do not converge on point
values, as would be expected in conventional
Bayesian estimation. Instead, there are lingering
uncertainties that are due to the uncertainty in the
calibrations (Inoue et al. 2010; dos Reis et al.
2012).

Other empirical studies have shown that
genome-scale data sets do not inherently improve
age estimates and, furthermore, that smaller
amounts of sequence data can provide compara-
ble results (Foster et al. 2017). Increased compu-
tational demand, along with correct choice and
assignment of substitution models and clock
models, become more critical when applied to
genome-scale data sets. Comparable efforts
towards increasing the number of informative
calibrations might yield more substantial returns.

Currently available relaxed molecular clocks
are powerful tools for estimating divergence
times and absolute molecular rates in phyloge-
netic trees. Through the development of molecu-
lar clocks, some of the most important advances
have involved the use of increasingly realistic
models of among-lineage molecular rate hetero-
geneity. Nevertheless, some prominent molecular
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dating analyses have estimated ages that seem
unexpectedly old, especially in comparison with
first appearances in the fossil record. These
discrepancies are at least partly due to the use of
models that insufficiently account for the extent
and drastic pattern of among-lineage molecular
rate variation (e.g., Dornburg et al. 2012;
Wertheim et al. 2012; Beaulieu et al. 2015).
Improvements in modelling rate variation
among lineages should be a prime area of
research for the further development of molecular
clock models and methods.
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Tianqi Zhu

Abstract

Using methods based on the molecular clock,
genetic data provide an opportunity to estimate
divergence times across the tree of life. Among
the most widely used methods for molecular
dating are those based on the Bayesian phylo-
genetic approach. With major developments in
phylogenetic models and computational
methods in recent years, Bayesian methods
allow users to estimate divergence times and
evolutionary rates from multilocus data sets
under complex models. In this chapter, we
introduce the Bayesian phylogenetic frame-
work and Markov chain Monte Carlo
algorithms. We explain the main components
of Bayesian molecular dating, including the
specification of the time prior incorporating
fossil calibrations, the specification of the rate
prior based on relaxed-clock models of evolu-
tionary rate drift, the likelihood model of
sequence evolution for partitioned data, and
approaches for summarizing the posterior
estimates. We explain the infinite-sites theory,
which quantifies the uncertainties in posterior
time estimates due to the imprecision of fossil

calibrations and the finite amount of sequence
data. The chapter concludes with a list of the
major Bayesian dating software packages.

Keywords

Bayesian dating · Markov chain Monte Carlo
algorithm · Molecular clock models · Prior ·
Likelihood · Posterior · Fossil calibrations

6.1 Introduction

The tree of life is one of the most important
organizing principles in biology (Hug et al.
2016). A time-tree provides much richer informa-
tion than a tree without temporal information,
because it allows one to correlate macroevolu-
tionary events (species divergences and
extinctions) with geological events or
palaeoclimatic changes. However, resolving the
timeline of the tree of life is faced with many
challenges. Perhaps the fundamental difficulty is
the fact that times and rates are confounded in
molecular sequence data, so that the fossil data
are ultimately responsible for resolving sequence
distances or branch lengths into estimates of abso-
lute times and rates.

Bayesian methods were first introduced into
phylogenetics in the 1990s and have become
increasingly popular (Rannala and Yang 1996;
Mau and Newton 1997; Yang and Rannala
1997; Mau et al. 1999). Bayesian methods can
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be used to reconstruct phylogenetic relationships,
infer phylogeographic history and gene flow
between species, estimate species divergence
times, and delimit species boundaries. Under
complex models, maximum likelihood can
become intractable and frequentist statistics
must rely on data summaries for inference. In
these circumstances, however, it may still be pos-
sible to conduct Bayesian inference, thanks to
Markov chain Monte Carlo algorithms. Indeed,
advances in computing power and implementa-
tion of sophisticated computational algorithms in
user-friendly software have made it possible to
analyse genome-scale data sets (see Chap. 13).
This chapter will focus on Bayesian dating of
species divergences, which has been the subject
of several detailed reviews (dos Reis et al. 2016;
Bromham et al. 2018).

6.2 Bayes’s Theorem

The main feature of Bayesian statistics is the use
of probability distributions to describe all kinds of
uncertainty, such as the occurrence of data or
uncertainty in the parameters. Suppose we are
interested in an unknown parameter θ, and we
have collected data D. f(θ) is called the prior
distribution of θ and reflects our subjective belief
on the unknown parameter θ before the data are
analysed. f(D|θ) is referred to as the likelihood,
which is the probability of the data given the
parameters under the model. Bayes’s theorem
states that:

f θjDð Þ ¼ f Djθð Þf θð Þ
f Dð Þ ¼ f Djθð Þf θð ÞR

f Djθð Þf θð Þdθ ð6:1Þ

where f(θ|D), or θ given data D, is the posterior
distribution of θ. Thus, the posterior combines
information in the prior and in the sample data. f
(D) is the marginal likelihood, a normalizing con-
stant that is used to ensure that f(θ|D) is a statis-
tical distribution.

The three goals of statistical inference are esti-
mation of parameter values, prediction of data
outcomes, and model comparison. Bayes’s

theorem is used to estimate parameter θ,
characterized by its posterior distribution. Equa-
tion (6.1) is derived under a certain model. If we
want to compare two modelsM1 andM2, we need
to focus on the posterior probability of the model
given the data, that is:

f MijDð Þ ¼ π Mið Þf DjMið Þ
f Dð Þ

¼ π Mið Þ R f Djθi,Mið Þf θijMið Þdθi
f Dð Þ

ð6:2Þ
where π(Mi) is the prior probability of model Mi,
with ∑iπ(Mi) ¼ 1, and f(θi|Mi) is the prior of θi
under model Mi. The posterior odds is then
given as:

f M1jDð Þ
f M2jDð Þ ¼

π M1ð Þ
π M2ð Þ �

f DjM1ð Þ
f DjM2ð Þ

¼ prior ratio� Bayes factor ð6:3Þ

The Bayes factor is usually used for model
selection problems, to choose the better model
between two candidates M1 and M2. The Bayes
factor k is defined as:

k ¼ f DjM1ð Þ
f DjM2ð Þ

¼
R
f Djθ1,M1ð Þf θ1jM1ð Þdθ1R
f Djθ2,M2ð Þf θ2jM2ð Þdθ2 ð6:4Þ

By averaging over the parameters θi in model
Mi, the Bayes factor compares the marginal
likelihoods f(D|Mi) of the two models. The mar-
ginal likelihood f(D|Mi) is the predicted prob-
ability of the data. This can be used to assess the
general adequacy of the assumed model. The
posterior model probabilities in Eq. (6.3) can be
used to compare non-nested models as well as
nested models. If we assign equal prior weight
(1/2) to each of the two models, the posterior odds
is the Bayes factor, which is the ratio of marginal
likelihoods under the models.
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6.3 The Framework of Bayesian
Clock Dating

In this section, we use the program MCMCTree
as an example to illustrate the framework of
Bayesian molecular dating using a set of nucleo-
tide or amino acid sequences. The details for other
Bayesian dating programs are similar.
MCMCTree was the first program for Bayesian
phylogenetics and is part of the software package
PAML (Yang 2007). PAML can read sequence
data in .nuc, .aa, and .nex formats, and PHYLIP
format is the ‘native’ format for PAML. The data
can be organized in sequential format or as site
pattern counts. More details on how to prepare the
data can be found in the PAML documentation.

Suppose a species tree with s species is fixed,
and the divergence times (the s � 1 node ages on
the rooted tree) are shared among different loci
(or subsets of the data). LetD¼ {D1, D2, . . ., DL}
be the sequence data, where Di is the aligned
sequences at locus i. θ are the parameters in the
evolutionary model. t¼ {t1, t2, . . ., ts � 1} are the
s � 1 divergence times. r ¼ {ri} are the rates,
where ri ¼ {rij} are the rates at locus i, specified
by the relaxed-clock models. According to
Bayes’s theorem (Eq. 6.1), the joint posterior
distribution of θ, t, and r is:

f θ, t, rjDð Þ ¼ f Djt, rð Þf rjt, θð Þf tjθð Þf θð Þ
f Dð Þ ð6:5Þ

Here f(θ) is the prior for parameters in the
substitution model. f(t|θ) is the prior of diver-
gence times, which is specified using a birth–
death process and will be discussed in Sect. 6.4.
f(r|t, θ) is the rate prior. The rates can vary across
branches of each gene tree and the average rate
can differ among loci. The strategies to assign the
rate prior among loci are discussed in Sect. 6.5.3.
At a given locus, the rates on branches of the gene
tree are governed by the relaxed-clock models.
Several commonly used clock models are
introduced in Sect. 6.5, where we also discuss
strategies for specifying the rate prior on
branches. The likelihood is:

f Djt, rð Þ ¼ ∏
i
f Dijt, rið Þ ð6:6Þ

where f(Di|t, ri) is the Felsenstein’s phylogenetic
likelihood (Felsenstein 1981). For more details of
this calculation see, for example, Chap. 4 of Yang
(2014). In practice, the likelihood is expensive to
calculate; approximate methods have been devel-
oped to accelerate the computation (Thorne et al.
1998; Guindon 2010; dos Reis and Yang 2011).

The denominator of Eq. (6.5), f(D), is called
the marginal likelihood and is in the form of a
high-dimensional integral. The calculation of
high-dimensional integrals with numerical
methods is difficult and error prone. By using
Markov chain Monte Carlo (MCMC) methods,
the calculation of f(D) can be avoided. This is
why MCMC methods can deal with complex
models. In the Metropolis–Hastings algorithm
used in software such as MCMCTree, the state
of the Markov chain includes substitution rate θ,
divergence times t, and evolutionary rates r. At
the current state (θ, t, r), a new state (θ�, t�, r�) is
proposed according to a proposal density q(θ�, t�,
r�|θ, t, r). The acceptance ratio is

α ¼ min 1,
f Djt�, r�ð Þf r�jt�, θ�ð Þf t�jθ�ð Þf θ�ð Þ

f Djt, rð Þf rjt, θð Þf tjθð Þf θð Þ
�

� q θ, t, rjθ�, t�, r�ð Þ
q θ�, t�, r�jθ, t, rð Þ

�
ð6:7Þ

which is the product of the likelihood ratio, the
prior ratio, and the proposal ratio. Each MCMC
algorithm can consist of several moves that
change some components of the state. For exam-
ple, one might first propose t�, then rates ri

� at
each of the loci, and lastly propose θ�. The state of
the Markov chain is a vector of the parameters in
the model, including species divergence times
and the rates for branches at each locus. In each
iteration, the MCMC chain visits a state (θ, t, r)
of the parameter space, and the states visited
during successive iterations are recorded. For an
irreducible and aperiodic Markov chain, regard-
less of the initial state, the chain will eventually
reach the stationary distribution. We require
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samples from the stationary distribution, so we
typically discard the initial portion of the samples
as the ‘burn-in’.

The samples collected from the MCMC run
(after the burn-in is discarded) can be summarized
to characterize the posterior distribution of the
parameters. For most Bayesian software
packages, MCMC samples can be recorded and
processed according to the user’s needs. We can
use the posterior mean or median and the 95%
equal-tail credibility interval (CI) to give a simple
characterization of the posterior distribution. To
recover the marginal distribution of any parame-
ter of interest, we simply extract the sampled
values for that parameter while ignoring other
parameters.

The most common credibility intervals used
are the equal-tail credibility interval and the
highest posterior density (HPD) interval. Given
significance value α, the equal-tail credibility
interval is given by (θL, θU) ¼ (F�1(α/2),
F�1(1 � α/2)), where F is the probability density
function and F�1 its inverse (i.e., the quantile). By
this construction, the probabilities of being below
θL and above θU are the same, both being α/2. For
a continuous distribution, the equal-tail CI will
always include the median. The HPD interval is
the narrowest interval that covers 1 � α of the
probability mass.

As an example, consider an exponential distri-
bution with mean 1. The 95% equal-tail CI is
(0.025, 3.689) with length 3.664, while the HPD
CI is (0, 2.996), which is the shortest CI. When
prior and likelihood are in conflict or the posterior
is a mixture of two distributions, the posterior
distribution might have multiple modes. In such
cases, the HPD CI might be two or more discon-
nected intervals. The 90% equal-tail CI and HPD
CI of a bimodal distribution are shown in Fig. 6.1.
Because there is a valley in the distribution, the
HPD CI excludes the valley and consists of two
disconnected intervals (θ1, θ2) and (θ3, θ4). Most
molecular dating software will report the HPD
CIs, and some software such as MCMCTree will
calculate both equal-tail CIs and HPD CIs.

6.4 Prior on Node Times

To assign a time prior (i.e., the prior distribution
of ages of nodes in the tree), we can use a birth–
death process (Kendall 1948) to model the pro-
cess of speciation, extinction, and species sam-
pling (Yang and Rannala 1997). In a very small
time interval with length Δt, each species existing
at the time splits into two with probability λΔt,
and becomes extinct with probability μΔt. λ and μ
are called the per-lineage birth rate and death rate,
respectively. The probability that the number of
species increases or decreases by more than 1 is of
order o(Δt).

Suppose that the process starts from an ances-
tor species at time t in the past. The number of
present-day species S, which is a random vari-
able, relies on this birth–death process. Let the
number of species in the sample be s, then each
species is sampled with probability ρ ¼ s/S, and
we call ρ the sampling fraction. Some important
properties of this birth-death process have been
described (Nee et al. 1994). The probabilities that
a lineage arising at time t in the past has at least
one descendant and that exactly one descendant
has survived until the present time are P(0, t) and
p1(t), where:

P 0, tð Þ ¼ ρ λ� μð Þ
ρλþ λ 1� ρð Þ � μð Þe μ�λð Þt ð6:8Þ

and

p1 tð Þ ¼ 1
ρ
P 0, tð Þ2e μ�λð Þt ð6:9Þ

Conditional on the root age t1, the other s � 2
node ages are order statistics from the kernel
density:

g tð Þ ¼ λp1 tð Þ
vt1

ð6:10Þ

where
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vt1 ¼ 1� 1
ρ
P 0, t1ð Þe μ�λð Þt1 ð6:11Þ

We can derive the prior density of node ages tk,
which is the (s � k)th order statistics of s � 2
random variables from the kernel:

f tkð Þ ¼
s� 2ð Þ!

s� k� 1ð Þ k� 2ð Þ!G tkð Þs�k�1 1�G tkð Þð Þk�2g tkð Þ
ð6:12Þ

where G(t) denotes the cumulative density func-
tion of g(t). The joint density of the s � 2 node
ages t2, t3, . . ., ts � 1 is

f t2, t3, . . . , ts�1ð Þ ¼ s� 2ð Þ!∏s�1
j¼2g t j

� � ð6:13Þ

Birth rate λ and death rate μ, together with
sampling fraction ρ, determine the shape of the
tree. One can examine the impact of the prior on
the posterior time estimation by changing these
parameters. Generally, with small ρ, the tree will
have long branches toward the tips. With large ρ,
the tree will have long branches near the root.

On the nodes with calibrations, fossils provide
important information for Bayesian molecular
dating (see Chap. 8). An overview of calibration
methods used in divergence dating is provided by

Ho and Phillips (2009). In early dating analyses,
calibrations took the form of fixed time points
(Graur and Martin 2004). Nowadays, the uncer-
tainty in the fossil data is considered in the dating
process, usually by using minimum and/or maxi-
mum age bounds (e.g. Benton et al. 2009;
Chap. 5). Most often the fossil evidence can pro-
vide an informative lower bound, but less infor-
mative upper bound. If the time is restricted to an
interval [tL, tU], we call such calibrations hard
bounds. Sometimes the bound is one-sided, with
a lower bound only [tL, 1) or an upper bound
only (0, tU].

Yang and Rannala (2006) introduced soft
bounds as a new strategy to assign fossil time
priors. The soft bounds [tL, tU] allow the node
age to be outside the bounds with a certain small
probability, say 5%. The node age tk then follows
a general distribution f(tk|C), rather than the sim-
ple uniform distribution. Using soft bounds has a
number of advantages (Yang and Rannala 2006).
When the fossils conflict with each other or with
the genetic data, soft bounds allow sequence data
to correct poor calibrations, while it is impossible
to overcome poor hard bounds regardless of the
amount of genetic data. With soft bounds, it is not
necessary to use ‘safe’ but high upper bounds,
which can lead to biased posterior time estima-
tion. In addition, soft bounds allow more reliable
assessment of estimation errors, whereas hard
bounds can result in misleadingly high precision
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Fig. 6.1 Two kinds of credibility intervals used in Bayes-
ian phylogenetics. (a) The 90% equal-tail credibility inter-
val (θL, θU), with θL and θU as 5% and 95% quantiles. (b)
The 90% highest posterior density (HPD) interval consists

of two disconnected intervals: (θ1, θ2) and (θ3, θ4). The
HPD interval is the narrowest interval that covers 90% of
the probability
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when fossils and genetic data are in conflict
(Yang and Rannala 2006).

Fossil calibration information is part of the
time prior. Given the number of species s and
the root age t1, the remaining nodes t�1 are
partitioned into two sets t�1 ¼ (tC, t�C) (Yang
and Rannala 2006), with tC for the nodes with
fossil calibrations and t�C for the nodes without
fossil calibrations. In the tree shown in Fig. 6.2,
tC ¼ {t2, t4} and t�C ¼ {t3, t5}. Thus:

f t�1jt1, s,Cð Þ ¼ f t�C, tCjt1, s,Cð Þ
¼ f BD t�CjtC, t1, sð Þf tCjCð Þ

ð6:14Þ
where the prior f(tC|C) is specified according to
the fossil calibration information. Following the
definition of conditional probability,

f BD t�CjtC, t1, sð Þ ¼ f BD t�1jt1, sð Þ= f BD tCjt1, sð Þ
ð6:15Þ

where fBD(t�1|t1, s) is calculated according to
Eq. (6.13), and fBD(tC|t1, s) is given by the joint
distribution of order statistics:

Finally, we deal with the root age t1. If the root
has associated fossil calibration information, then
f(t1|C) is assigned a prior distribution like other
nodes that have fossil calibrations. Otherwise,
according to the birth–death process, we assign:

f t1jsð Þ ¼ P 0, t1ð Þ 1� vt1ð Þ½ �2vs�2
t1

ð6:17Þ

where P(0, t) and vt1 are defined in Eqs. (6.8) and
(6.11).

Combining Eqs. (6.14), (6.15), and (6.17), we
get the joint prior distribution of divergence

times, constructed with a birth–death process
with species sampling and incorporating fossil
calibration information.

f tjs,Cð Þ ¼ f t1, t2, . . . , ts�1js,Cð Þ
¼ f t1jsð Þf t�1jt1, s,Cð Þ
¼ f t1jsð Þ f BD t�CjtC, t1, sð Þf tCjCð Þ

¼ f t1jsð Þ f BD t�1jt1, sð Þ
f BD tCjt1, sð Þ f tCjCð Þ ð6:18Þ

Note the distinction between fBD(tC|t1, s) and
f (tC|C). The former is the joint marginal distribu-
tion of tC determined by the birth–death process,
and the latter is the prior density specified
according to the fossil evidence.

Stadler and colleagues (Stadler 2010; Heath
et al. 2014) proposed to use the fossilized birth–
death (FBD) process as the time prior (see
Chap. 11). The FBD model characterizes the pro-
cess of speciation, extinction, and fossilization
that leads to extant and extinct (fossil) species.
Parameters in the model include the birth (specia-
tion) rate λ, death (extinction) rate μ, and sam-
pling rate Ψ (which is the rate at which a fossil is

sampled over time), as well as the sampling frac-
tion ρ (which is the probability with which mod-
ern species are included in the data). The FBD
model is used in tip-calibration approaches, in
which sequence data are available for extant spe-
cies and morphological measurements are avail-
able for both extant and extinct species.
Compared with traditional node-dating
approaches, it is unnecessary to use constraints
on node ages and the FBD model allows us to
include all available fossils. Some limitations of
tip calibrations are discussed in Chap. 11 and by
dos Reis et al. (2016).

f BD tCjt1, sð Þ ¼ s� 2ð Þ!
i1 � 1ð Þ! i2 � i1 � 1ð Þ! . . . s� iC � 2ð Þ! g ti1ð Þg ti2ð Þ . . . g tiCð Þ

� G ti1ð Þi1�1 G ti2ð Þ � G ti1ð Þð Þi2�i1�1 . . . 1� G tiCð Þð Þs�iC�2 ð6:16Þ

88 T. Zhu



6.5 Clock Models and Rate Prior
on Branches

6.5.1 Molecular Clock

The molecular clock, in its simplest form, is
sometimes called the strict molecular clock and
assumes that the substitution rate is constant over
time (Zuckerkandl and Pauling 1965). Using
genome data and under the assumptions of the
substitution model, evolutionary distances can be
accurately estimated. When the molecular clock
is assumed, the distance between two sequences
is expected to increase linearly with divergence
time. Brown and Yang (2011) suggested that the
strict clock models are generally appropriate in
shallow phylogenies where rate variation is
expected to be low. For example, if the difference
between sequences is less than 5%, the molecular
clock model is usually appropriate. Note that the
molecular clock allows the rate to vary among
loci, with the rate at locus i (ri) treated as a
parameter with a particular distribution rather
than a fixed number.

6.5.2 Relaxed-Clock Models

If we assume the strict clock model, then all of the
branches on the tree at each locus will share the
same rate. However, the assumption of a strict
clock is often violated, especially if the study
species are distantly related (Langley and Fitch
1974; Yoder and Yang 2000; Hasegawa et al.
2003; see Chaps. 1 and 4). For this reason, most
modern dating analyses are conducted using
relaxed-clock models, which allow rates to vary
throughout the tree. The two major classes of
relaxed-clock models are those that assume
autocorrelated rates and those that assume inde-
pendent rates.

Thorne et al. (1998) and Kishino et al. (2001)
introduced a method to assign a prior to the rates
on branches using the geometric Brownian
motion model. Let rt denote the rate at time t,
and r0 ¼ rA denote the rate at the root node. When
there is no potential for ambiguity, rt is
abbreviated as r. In the autocorrelated-rates
model, rt follows a geometric Brownian motion
process, i.e., yt ¼ log (rt) follows a Brownian
motion. It is natural to let E(rt|rA) ¼ rA.
According to the property of geometric Brownian
motion with drift parameter u and volatility
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t4 > 7.25
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Fig. 6.2 Phylogenetic tree
of six primate species, with
three fossil calibrations.
The five node times are
partitioned into three
categories: the root node t1,
the non-root nodes with
fossil calibrations
tC ¼ {t2, t4} and the
non-root nodes without
calibrations t�C ¼ {t3, t5}
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parameter σ, E(rt|rA)¼ rA � exp (ut). Solving the
equation leads to the drift parameter u ¼ 0. Thus,
the density of rate rt given rA is derived as

f rtjrAð Þ ¼
1

rt
ffiffiffiffiffiffiffiffiffiffiffi
2πtσ2

p exp � 1
2tσ2

log rt=rAð Þ þ tσ2

2

� �2
( )

ð6:19Þ
The parameter σ2 determines how quickly

the rate drifts with time, and Var(rt|rA) ¼
rA

2(exp(σ2) � 1).
To derive the average rate on a branch, we

need to calculate an integral over time t, which
can be complicated. Kishino et al. (2001) used the
mean of the rates at the two ends of a branch as
the average rate on the branch. Rannala and Yang
(2007) used the rate at the midpoint of the branch
instead. The rate at the root node is assigned a
gamma prior, and the volatility parameter σ2 is
assigned another gamma prior. Then the proba-
bility density of r1 and r2 given r0, where r1, r2,
and r0 are the rates at the midpoints of two
descendent branches and the ancestral branch,
respectively, can be calculated under the geomet-
ric Brownian motion model (Eq. 7 of Rannala and
Yang 2007). In this way, r1 are r2 are
autocorrelated.

Drummond et al. (2006) proposed a model
with independent and identically distributed (i.i.
d.) substitution rates, which incorporates rate var-
iation among lineages without the assumption of
correlation. The i.i.d. rates model is widely used
in software for molecular dating, such as BEAST
(Suchard et al. 2018; Bouckaert et al. 2019) and
MCMCTree. For example, the rates r1, r2, . . .,
r2s � 2 for the 2s� 2 branches might be i.i.d. from
a lognormal distribution:

Note that ri follows Lognormal(log(μ) � σ2/
2, σ2) instead of Lognormal(μ, σ2), with E(ri)¼ μ

and Var(ri) ¼ μ2(exp(σ2) � 1), and furthermore,
Var(log(ri)) ¼ σ2. In the dating software
MCMCTree, the parameters μ and σ2 are assigned
a hyperprior with a gamma distribution.

6.5.3 Prior on Rates Among Loci

When data sets with multiple loci are analysed,
we also need to consider rate variation among
loci. A natural way to do this is to assign a prior
on the locus rate, which can be viewed as the
average rate over branches at this locus, to be
i.i.d. This rate prior is adopted by commonly
used Bayesian dating software such as BEAST
(Suchard et al. 2018; Bouckaert et al. 2019),
MrBayes (Ronquist et al. 2012), and older
versions of MCMCTree (Yang 2007). Consider
MCMCTree as an example. Under the relaxed-
clock models, i.i.d. gamma priors are used to
generate parameters μi and σ2i at locus i, allowing
the average locus rate to vary among loci. At each
locus, the branch rates can then be
i.i.d. (independent-rates model) or specified
according to the geometric Brownian motion
(autocorrelated-rates) model (Rannala and Yang
2007).

In recent years, increasing attention has been
paid to the time prior, but the i.i.d. rate prior
among loci remained the only prior to be widely
used. dos Reis et al. (2014) discovered that the
i.i.d. prior is problematic in this context. In con-
ventional Bayesian analysis, the prior will have
less and less impact on the posterior as the
amount of data increases. However, in
divergence-time estimation with fossil calibra-
tion, as the number loci L increases, the posterior
time estimates can be increasingly incorrect if the
prior is not properly assigned. Furthermore, the

data cannot correct errors in the prior, owing to
the fact that rates and times are confounded.

f rijμ, σ2
� � ¼ 1

ri
ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp � 1
2σ2

log ri=μð Þ þ σ2

2

� �2
( )

, 0 < ri < 1 ð6:20Þ
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This problem is illustrated in Fig. 6.3, which
shows the posterior estimates of the human–
chimpanzee divergence time under the
i.i.d. prior for locus rate. The fossils indicate that
this divergence time should be around 5.7 to
10 Myr ago (Benton et al. 2009), and molecular
studies indicate a mean rate of 10�9 substitutions
per site per year. In an analysis of 300 loci, if a
high rate prior is used, μi ~ G(2, 2) (with mean
rate 10�8 substitutions per site per year), the
posterior time estimate is too young, at 3.3 (2.9,
3.6) Myr ago. In contrast, if a low rate prior is used,
μi ~ G(2, 200) (with mean rate 10�10

substitutions per site per year), the estimate is
too old, at 26.4 (24.7, 28.2) Myr ago. In both
cases, the posterior means of times are outside
the fossil bounds.

The reason for this phenomenon is that as the
number of loci L increases, the prior variance of

the average rate across all loci goes to zero at the
rate 1/L, and thus the rate prior dominates the
posterior estimates of times. If the rate prior is
misspecified, the posterior divergence times will
converge to incorrect values with very narrow
credibility intervals. The tendency will be
aggravated as L increases.

A new prior on locus rates, the compound
Dirichlet prior, was developed by dos Reis et al.
(2014). To avoid the average rate over loci con-
verging to a point value as L increases, the new
prior is implemented by two steps. First, we
assign the average rate over loci μ ¼ PL

i¼1μi=L
a gamma prior G(αμ, βμ). Then we partition the
total rate Lμ to L loci according to a symmetrical
Dirichlet distribution with parameter α. The
expectation and variance of locus rate μi, and the
correlation between μi and μj, can be calculated
under this construction.
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Fig. 6.3 Posterior estimates of the human–chimpanzee
divergence time under the i.i.d. prior for locus rate. Three
priors on locus rate were used: (1) a high rate, μi ~ G(2, 2)
(empty diamonds) with mean 1; (2) an appropriate rate
μi ~ G(2, 20) with mean 0.1 (empty circles); and (3) a low
rate, μi ~ G(2, 200) with mean 0.01 (filled circles). The

time unit of the rate is 100 Myr. When the high rate is
used, the estimated time becomes younger as L increases.
When the low rate is used, the estimated time becomes
older as L increases. When more than 300 loci are used, the
posterior times are outside the fossil bounds (dashed lines)
in both cases
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E μið Þ ¼ E E μijμð Þð Þ ¼ αμ=βμ ð6:21Þ

Var μið Þ ¼ E Var μijμð Þð Þ þ Var E μijμð Þð Þ

¼ αμ
β2μ

1þ αμ þ 1
Lαþ 1

L� 1ð Þ
� �

! αμ
β2μ

1þ αμ þ 1
α

� �
ð6:22Þ

Corr μi, μ j

� � ¼ Lα� αμ
L αþ 1ð Þ þ L� 1ð Þαμ

! α
αþ αμ þ 1

ð6:23Þ

The prior variances of both μ and μi converge
to nonzero limits, and thus the rate prior does not
have an overwhelming impact on the posterior
times. In the relaxed-clock models, the parameter
σ2i , which measures the variance of the log-rate in
the independent-rates model or the extent of drift
in the autocorrelated-rates model, can be assigned
a compound Dirichlet distribution as well. How-
ever, the prior on σ2i has much less impact on
posterior time estimation than that of μi (dos Reis
et al. 2014).

The compound Dirichlet prior was evaluated
by dos Reis et al. (2014), who carried out
simulations for two species and analysed a data
set from six primates (Fig. 6.4). Both analyses
showed poor performance of the i.i.d. prior and
robustness of the compound Dirichlet prior when
the priors were misspecified. A primate data set
with 300 loci was analysed using both locus rate
priors. With the i.i.d. prior, if the prior rate is too
high (or too low), the estimated divergence times
are too young (or too old) (Table 6.1). In contrast,
with the compound Dirichlet prior, posterior time
estimates are accurate and insensitive to the rate
prior.

6.6 Uncertainty
of Divergence-Time Estimation

With advances in sequencing technology, more
and more genome data have become available,
which enables us to estimate evolutionary
distances with high accuracy. However, molecu-
lar sequence data only provide information about
distance, not about times and rates separately.
Therefore, we need to use information in the
prior and fossils to perform dating analysis. In a
conventional Bayesian analysis, as the amount of
sequence data increases, the posterior mean will
converge to the true value of the parameter, with
the CI length converging to zero. The estimate
will involve less and less uncertainty, measured
by the posterior variance or the square of the
posterior CI length. However, owing to the
confounding effect of times and rates, Bayesian
divergence-time estimation with fossil
calibrations is an unconventional estimation prob-
lem (Zhu et al. 2015). Even with an infinite
amount of sequence data, the posterior variance
will not converge to zero, and the estimates will
always have uncertainties (Yang and Rannala
2006; Rannala and Yang 2007; dos Reis and
Yang 2013).

6.6.1 Infinite-Sites Theory
for the Molecular Clock

Yang and Rannala (2006) studied the asymptotic
posterior distribution of divergence times under
the strict-clock model when the number of sites
approaches infinity. In this context, we consider a
data set that contains only one locus because
multiple loci do not contain more information
than a single locus under the strict clock. The
prior of rates and times are g(r) and f(t1, t2, . . .,
ts�1), where s is the number of species. The pos-
terior for time tj is:
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f t jjd1, d2, . . . , ds�1

� �
/ g

d j

t j

� �
f

d1
d j

t j,
d2
d j

t j, . . . ,
ds�1

d j
t j

� �
d j

t j

� �2�s
1
t j

ð6:24Þ
where the dj s are evolutionary distances that are
estimated without uncertainty or error when the
number of sites goes to infinity. Instead of con-
verging to a point mass, the posterior converges
to a one-dimensional distribution. If we plot the
posterior means of tj s against their true ages,
percentiles, or CI lengths, the points lie on a

straight line (e.g., Yang and Rannala 2006; dos
Reis and Yang 2013). When analysing real data,
we can plot the posterior mean times against their
CI widths to assess whether the sequence data are
nearly saturated. This is known as the infinite-
sites theory.

6.6.2 Finite-Sites Theory Under
the Strict Molecular Clock

The uncertainty in posterior time estimation has
been studied by dos Reis and Yang (2013) using
mathematical analysis, simulation, and analysis
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34.0 > t8 > 23.5
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Orangutan
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Catarrhini
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33.7 > t9 > 11.2

10.0 > t11 > 5.7

Fig. 6.4 The phylogeny of
six primate species. All five
nodes have fossil
calibrations. The fossil
bounds are soft bounds,
with a 1% probability that
the minimum bound is
violated and 5% probability
that the maximum bound is
violated. The time unit on
nodes is Myr

Table 6.1 Posterior means of mean rate (μ) and divergence times among six primate species using the i.i.d. prior and the
compound Dirichlet prior

Prior on mean rates of loci Mean rate (�10�8)

Node times (Myr ago)

t7 t8 t9 t10 t11
i.i.d. prior μi ~ G(2, 2) 0.199 32.9 17.2 9.2 4.2 3.3

μi ~ G(2, 20) 0.098 64.4 32.5 17.5 7.8 5.9
μi ~ G(2, 200) 0.019 308.8 150.4 81.8 36.3 26.4

Compound Dirichlet prior μ ~ G(2, 2) 0.096 65.7 33.1 17.8 8.0 6.0
μ ~ G(2, 20) 0.096 65.8 33.1 17.8 8.0 6.0
μ ~ G(2, 2) 0.096 65.8 33.1 17.8 8.0 6.0

Three priors for locus rates were used: G(2, 2) is a high rate, G(2, 20) is a medium rate, and G(2, 200) is a low rate. The
mean rate is calculated by averaging locus rates over loci from the MCMC samples. The number of loci analysed is 300.
Data from dos Reis et al. (2014)
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of real data. Suppose that the data set contains one
alignment with length N, and the sequences
evolved under the strict molecular clock. dos
Reis and Yang (2013) proposed a finite-sites the-
ory which predicts that the uncertainty of the
posterior approaches its infinite-data limit at the
rate 1/N. Let w be the width of the
posterior CI. Because w2 is proportional to the
posterior variance, w2 measures the uncertainty of
posterior time estimation. dos Reis and Yang
(2013) suggested that:

w2 � w2
1 / 1=N ð6:25Þ

where w1 is the posterior CI width for infinite
data. Note that in Bayesian dating, w1 is not zero,
as we have emphasized. Furthermore, uF ¼
w2
1=w2 is the fraction of the uncertainty in poste-

rior time estimates that is due to uncertainties in
the fossil calibrations, while uS ¼ 1 � uF is the
fraction due to the finite amount of sequence data.
As the size of the sequence data increases, uS will
go to zero and uFwill go to 1, which indicates that
all uncertainty in the posterior comes from that in
the fossil calibrations.

6.6.3 Finite-Sites Theory Under
Relaxed-Clock Models Using
Multiple Loci

In the genomic era, most analyses are conducted
with multilocus data sets. Owing to violations of
the strict-clock model, relaxed-clock models are
used in most modern Bayesian dating analyses.
Zhu et al. (2015) extended the finite-sites theory
to the case of relaxed-clock analysis of multiple
loci. They predicted that:

w2 ¼ b
NL

þ a
L
þ w2

1 ð6:26Þ

where L is the number of loci, N is the sequence
length at each locus, and a, b are constants that are
independent of N and L. Equation (6.26) is con-
firmed by computer simulation and real data
analysis.

According to Eq. (6.26), the sources of
uncertainties in the posterior time estimation are
partitioned into three parts. The first part is sam-
pling errors in the estimates of branch lengths in
the tree for each locus owing to limited sequence
length, which corresponds to the term b/(NL).
This part of the uncertainty will be eliminated as
either N ! 1 or L ! 1. If L is large, this
component goes to zero at the rate 1/N. The
second part is due to variation in substitution
rates among lineages and among loci according
to the relaxed-clock model, which corresponds to
the term a/L. This part of the uncertainty goes to
zero at rate 1/L when L!1. The last part is due
to the uncertainty in fossil calibrations, which
corresponds to the term w2

1 . This uncertainty
cannot be reduced by further increasing the
amount of sequence data. In fact, the finite-sites
theory for the strict-clock model with one locus
(Eq. 6.25) is a special case of the finite-sites
theory discussed in this section (Eq. 6.26), with
a ¼ 0 and L ¼ 1.

Zhu et al. (2015) used MCMCTree to analyse
a data set comprising sequences from six primate
species (Fig. 6.4). The posterior uncertainties
(measured by w2) of five divergence times (t7 to
t11) against 1/L are shown in Fig. 6.5. In all cases
except t8, when L is larger than 10, w2 shows a
strong linear relationship with 1/L. For t8, the
linear relationship holds when L is larger than
50, which is due to the very informative fossil
calibration on this node. When L ! 1, the inter-
cept of the line is the amount of uncertainty from
fossil calibrations. Note that in real data sets,
sequence lengths are likely to differ among loci.
Although the finite-sites theory assumes that all
loci have the same length, the linear relationship
holds even if this assumption is incorrect.

There are 7949 genes in the primate data set.
To examine the impact of the number of loci on
the posterior precision (measured by the width of
the 95% CI), the data set was subsampled to
produce data sets with L ¼ 1, 5, 10, 20, 50,
100, 200, and 500 loci by two strategies. Regard-
less of which strategy was applied, the posterior
CI widths were very short with larger L. The
results suggest that to improve the precision of
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posterior time estimation, increasing the number
of loci is far more effective than increasing the
sequence length at each locus, indicating the
importance of using multilocus data in relaxed-
clock dating analyses. However, even if a huge
amount of sequence data is analysed, consider-
able uncertainty will persist in time estimates
owing to the nature of the fossil calibrations.

6.7 An Example

Here we use a very simple example to illustrate
the MCMC implementation of Bayesian clock
dating. The data consists of 12S rRNA genes
from humans and orangutans. There are x ¼ 90
differences at n ¼ 948 nucleotides. We assume a
strict clock and the JC69 model of nucleotide
substitution (Jukes and Cantor 1969). The likeli-
hood is a function of d ¼ 2rt only, so there are no
extra parameters in the evolutionary model. Thus,
the only two parameters are divergence time t and
the evolutionary rate on both branches r. Under
these assumptions, the posterior (Eq. 6.5) is
simplified as:

f t, rjDð Þ ¼ f Djt, rð Þf rjtð Þf tð ÞRR
f Djt, rð Þf rjtð Þf tð Þdrdt ð6:27Þ

Under the JC69 substitution model, the
likelihood is:

f Djr, tð Þ ¼ 3
4
� 3
4
e�8rt=3

	 
x 1
4
þ 3
4
e�8rt=3

	 
n�x

ð6:28Þ
Unless specifically stated, the time unit is

100 Myr. Under the strict-clock model, the rate
r does not rely on the time t. We use two prior
distributions for r to examine the sensitivity to the
rate prior. The first is G(1, 10), which is equiva-
lent to the exponential distribution Exp(10), with
mean 0.1 and variance 0.01. The other is inverse-
gamma distribution InvG(3, 0.2), also with mean
0.1 and variance 0.01. In this case, the prior
density of r is:

f rð Þ ¼ βα

Γ αð Þ r
�α�1 exp � β

r

� �
ð6:29Þ

With α ¼ 3 and β ¼ 0.2. For the root age t, the
fossil information is available and we use
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Fig. 6.5 The finite-sites theory applied to the analysis of
genomic sequence data from six primate species (Fig. 6.4).
The square of the 95% posterior CI widths (w2) for (a) the
root node t7 and (b) four other node ages (t8, t9, t10, and t11)

are plotted against the reciprocal of the number of loci,
sampled at random from 7947 protein-coding genes (with
only the third codon positions used)
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0.112 < t < 0.337 to calibrate in Zhu et al.
(2015). The fossil bounds are implemented as
soft uniform bounds, allowing 2.5% of the proba-
bility below the lower bound and 2.5% of the
probability above the upper bound. In the left
and right tails, there are exponential decays, and
following Yang and Rannala (2006) the prior
density of time t is:

f tð Þ ¼
0:025

θ1
tL

t
tL

� �θ1�1

, t � tL

0:95
tU � tL

, tL < t < tU

0:025θ2 exp �θ2 t � tUð Þf g, t � tU

8>>>>><
>>>>>:

ð6:30Þ
where θ1¼ 0.95tL/(0.025(tU� tL)) and θ2¼ 0.95/
(0.025(tU � tL)). The time prior density is shown

in Fig. 6.6a. Because there are only two
parameters in the model and the data set includes
only one alignment, we use Eq. (6.27) directly to
calculate the joint posterior. The posterior density
of divergence time t is derived by integration over
r:

f tjDð Þ ¼
Z

f t, rjDð Þdr ð6:31Þ

The gamma rate prior and inverse gamma rate
prior are shown in Fig. 6.6b. The posterior
distributions of t using two rate priors are shown
in Fig. 6.6c. Regardless of which rate prior is
used, the posterior mean of t is 0.2637 (time unit
100 Myr) and the 95% equal-tail CI is (0.1325,
0.3420). This is mainly because the two priors are
similar at the tail (say, r > 0.34), and have the
same mean and variance. At the same time, the
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Fig. 6.6 The time prior, rate priors, and posteriors of
divergence time. (a) The time prior with a soft bound for
the node is 0.112 < t < 0.337 (where each time unit
represents 100 Myr). The probabilities that the node age
is younger than 0.112 and older than 0.337 are 2.5% each.
(b) The probability densities of two rate priors. The blue

solid line is G(1, 10) and the purple dashed line is InvG
(3, 0.2). Both priors have mean 0.1 (i.e., 10�9

substitutions per site per year) and variance 0.01. (c) The
posterior density of the divergence time with gamma and
inverse-gamma rate prior. Both posterior densities have
mean 0.2637 and 95% CI (0.1325, 0.3420)
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time prior density is concentrated in the interval
(0.112, 0.337). Because the size of the data set is
small, the time prior and rate prior dominate the
posterior. In both cases, the posterior mean is
inside the interval of the fossil calibration. Note
that in both cases, the posterior of time has a
mode at 0.337, which is the upper bound of the
fossil calibration. This is mainly due to the rate
priors placing greater weight on low rates
conflicting with the data. The maximum-
likelihood estimate of evolutionary distance d is
0.1015 (e.g., Yang 2014). Using the posterior
mean t ¼ 0.2637 as an estimate of t, a simple
approximate calculation leads to r ¼ d/(2t) ¼
0.19, which is almost twice the prior mean.

A sketch of the MCMC algorithm is as
follows:

1. Set initial state (θ, t, r). In the plot shown in
Fig. 6.7, there is no parameter in the substitu-
tion model, and we set t ¼ 0.2 and r ¼ 0.1 as
initial values.

2. In each iteration, do the following:
(a) Change times t. In the plot shown in

Fig. 6.7, a new state of t is proposed by
a uniform sliding window with width
w ¼ 0.01. Note that divergence times
should not conflict with each other.

(b) Change ri for each locus i. In the plot
shown in Fig. 6.7, a new state of r is
proposed by a uniform sliding window
with width w ¼ 0.05.

(c) Change substitution parameters θ. (This
step is skipped in the plot shown in
Fig. 6.7).

(d) Do proportional scaling if necessary.
Generate multiplier c, which is a random
variable near 1. Then multiply all times
by c, and divide all rates by c.

(e) Calculate the acceptance ratio α
according to Eq. (6.7) and accept the
new state with probability α.

(f) Record (θ, t, r) every k iterations, where
k is the sample frequency.

3. Summarize the data. Discard the first part of
the samples as burn-in. In Fig. 6.7, 10,000
MCMC samples are collected to estimate the
posterior density. Extract component t from
vector (t, r), and the posterior mean and CI
can be estimated accordingly.

6.8 Bayesian Dating Software

In this section, we briefly describe some of the
Bayesian dating software packages that can be
used to analyse multilocus data sets.

MCMCTree is a program in the PAML pack-
age (Yang 2007). How MCMCTree works is
briefly introduced in Sect. 6.3. MCMCTree
dates with soft fossil calibrations under various
molecular clock models. Evolutionary rates can
vary across sites, along lineages, and among loci.
As a compound Dirichlet distribution is used for
the rate prior among loci, the posterior time
estimates are insensitive to the rate prior, making
the posterior estimates more accurate and robust.
MCMCTree offers an option to use a fast approx-
imate likelihood method, which enables the anal-
ysis of genome-scale data sets (dos Reis and Yang
2011).

BEAST (Suchard et al. 2018; Bouckaert et al.
2019) is a comprehensive Bayesian MCMC anal-
ysis software package. BEAST can use MCMC to
average over tree space, and thus the data are
analysed without conditioning on a single tree
topology. In this respect, BEAST differs from
most other dating software. A variety of evolu-
tionary models are available in BEAST. Besides
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Fig. 6.7 The posterior density of the divergence time for
two species with gamma rate prior G(1, 10) and inverse-
gamma rate prior InvG(3,0.2). The Markov chain Monte
Carlo algorithm was used to generate 104 posterior
samples for this plot
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the frequently used JC69, K80, HKY, and GTR
models, complex substitution models can be
specified. The strict-clock model, relaxed-clock
models, and local-clock models can be used for
dating analyses. Morphological trait models are
also available.

MrBayes (Ronquist et al. 2012) is a large
software package for Bayesian inference and
model selection. The topological model can be
fixed, constrained, or unconstrained (with all
labelled trees having the same probability). The
clock models include a uniform strict-clock
model and three relaxed-clock models: the
Thorne-Kishino 2002 (TK02) autocorrelated-
rates model, the compound Poisson process
(CPP) model, and the independent gamma rates
(IGR) model. When calibrations are assigned to
the nodes, the prior of the node ages is forced to
satisfy the calibrations. In addition to dating with
calibrations on node ages, MrBayes implements
total-evidence dating in which fossil tips are
assigned dates while internal nodes do not neces-
sarily have any calibrations.

DPPDiv (Heath et al. 2012) is an application
for estimating divergence times and substitution
rates on a fixed species tree. A wide range of
evolutionary models can be used for analysis,
including very complex models. Clock models
include the Dirichlet relaxed-clock model,
independent-rates model, and strict-clock model.
The priors on time include the birth–death model
and the uniform distribution. Fast versions
FastDPPDiv and FDPPDIV are available.

Multidivtime (Thorne et al. 1998; Kishino
et al. 2001) is the first Bayesian dating program.
The geometric Brownian model was introduced
in Multidivtime. The prior of the divergence
times is a generalization of the Dirichlet distribu-
tion to rooted tree structures. Thorne et al. (1998)
approximated the likelihood surface with a multi-
variate normal distribution to alleviate the heavy
computation of the likelihood.

PhyloBayes (Lartillot et al. 2009, 2013) is a
Bayesian MCMC software package for phyloge-
netic reconstruction and molecular dating analy-
sis using protein alignments. A distinguishing
feature of PhyloBayes is the underlying probabi-
listic model CAT, which accounts for site-specific

features of protein evolution. PhyloBayes
implements autocorrelated as well as
non-autocorrelated models of rates. Both hard
and soft fossil bounds are accepted. Data augmen-
tation methods are used to speed up the likelihood
computation, so that large multilocus data sets
can be analysed. Parallel computing is also
allowed, making PhyloBayes especially suitable
for large data sets.

6.9 Conclusions and Perspectives

Bayesian molecular clock dating has gone
through rapid development in the past two
decades, driven by the advancement of
sequencing technologies, explosive growth of
genomic data sets, rapid accumulation of mor-
phological measurements from modern and fos-
sil species, and development of powerful
statistical models. It has now become the domi-
nant approach for molecular dating. Through
the prior for times and prior for rates, the
method provides a natural framework for
integrating information from different kinds of
data, particularly nucleotide sequences and
fossils. In contrast, non-Bayesian approaches
often have difficulty in accommodating the
uncertainties in the fossil data, for example,
and might thus produce very precise but unreli-
able estimates (dos Reis et al. 2016).

Many heuristic non-Bayesian methods are
computationally efficient and can be applied to
very large data sets (see Chap. 12). In contrast, the
MCMC algorithm used by Bayesian methods
requires intensive computation, which prohibits
its application to some phylogenomic data sets.
Improving the mixing efficiency of MCMC
algorithms so that they can handle genome-scale
data sets will be a major research topic for the
future. We note that MCMCTree applies approx-
imate calculation of the likelihood function so
that the program can be applied to extremely
long sequences (dos Reis and Yang 2011) and
faster versions of DPPDiv have also been
produced.

Given the complexity and huge stochastic
fluctuations of the process of fossil preservation
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and discovery, and the difficulty of interpretation,
clock dating will remain a very inexact science
for years to come. It is then essential to under-
stand the sensitivity of time estimates to different
aspects of the analysis, including the branching-
process model that specifies the time prior
and the model of rate drift that specifies the rate
prior. For example, current rate-drift models
assume that rates vary independently among
genes, but it is well known that there might
exist strong lineage or genome effects, with cer-
tain branches of the species phylogeny showing
high (or low) rates across almost all genes.
Accounting for such genome effects will be
important.

Another challenging component of the dating
analysis is the partitioning of sites, with the sites
in the same locus or subset assumed to share the
same trajectory of evolutionary rate drift. Theory
predicts that time estimates will become more
precise when more loci are included in the analy-
sis or when the same set of sites are partitioned
into more subsets. However high precision does
not necessarily mean high accuracy. The next few
years are likely to see a more systematic charac-
terization of the limits of divergence-time estima-
tion. Although multiple factors can cause
uncertainties in a clock dating analysis, we sug-
gest that the joint analysis of morphological and
molecular data from both extant and fossil species
provides the most promising approach to resolv-
ing the timescale of the tree of life.
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Clock Models for Evolution of Discrete
Phenotypic Characters 7
Michael S. Y. Lee

Abstract

Clock models, which consider rates of charac-
ter change through time and across lineages,
are widely used in molecular phylogenetics for
inferring the pattern and timing of evolution-
ary divergences. However, clock models are
also potentially relevant to phenotypic
analyses, such as those involving morphologi-
cal characters. Important hurdles need to be
overcome, including biases in character sam-
pling (e.g., changes along terminal branches
are often not sampled) and strong among-
lineage heterogeneity in evolutionary rates
(e.g., ‘living fossils’ vs rapidly evolving
taxa). These caveats notwithstanding, an
increasing number of empirical studies have
applied clock models to good effect in phylo-
genetic analysis, especially in combined
analyses of DNA and morphological data
from fossil and living taxa (total-evidence
tip-dating). These studies have improved our
estimates of the shape and chronology of the
tree of life.

Keywords

Phenotypic characters · Evolutionary rate
variation · Relaxed clock · Morphological
clock · Tip-dating · Total-evidence tip-dating ·
Bayesian phylogenetics

7.1 Introduction

Molecular clocks have been discussed and devel-
oped extensively since the concept was first
introduced (Zuckerkandl and Pauling 1962).
They are now firmly established as a major area
of scientific research, yielding insights into the
dynamics of genetic evolution as well as the
shape and timing of the tree of life, among many
other things. The catalyst for the early interest in
molecular clocks was the possibility that molecu-
lar change accrued at a relatively constant rate
across time and across lineages, with the result
that genetic divergence could be employed as a
universal yardstick for relatedness (time elapsed
since lineage splitting).

Subsequent work has increasingly questioned
this ‘strict clock’ and instead revealed evidence
that molecular evolutionary rates can often vary
greatly (e.g., Lanfear et al. 2010). Nevertheless,
there are sometimes predictable patterns to this
variation, with particular groups having a rela-
tively narrow range of typical evolutionary rates
(see Chap. 1). For instance, the genomes of
viruses evolve at rates up to a million times higher

M. S. Y. Lee (*)
College of Science and Engineering, Flinders University,
Bedford Park, SA, Australia

Earth Sciences Section, South Australian Museum,
Adelaide, SA, Australia
e-mail: mike.lee@samuseum.sa.gov.au

# Springer Nature Switzerland AG 2020
S. Y. W. Ho (ed.), The Molecular Evolutionary Clock, https://doi.org/10.1007/978-3-030-60181-2_7

101

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60181-2_7&domain=pdf
mailto:mike.lee@samuseum.sa.gov.au
https://doi.org/10.1007/978-3-030-60181-2_7#DOI


than those of mammals (Bromham and Penny
2003), while even within mammals, some groups
such as rodents tend to evolve more rapidly than
others. To better accommodate such variation, a
range of ‘relaxed’ clock models have been devel-
oped, which allow rates of evolution to vary
across lineages and across time (e.g., Sanderson
1997; Drummond et al. 2006).

The traits used most commonly in morpholog-
ical phylogenetics are discrete phenotypic traits
(e.g., presence/absence), rather than continuous
(e.g., ratios and lengths) or geometric morpho-
metric (two- or three-dimensional shape)
characters. Discrete traits also arguably have the
most similar evolutionary dynamics to those of
molecular data (e.g., nucleotide sequences): each
discrete trait flips between a small number of
possible states (e.g., Lewis 2001). Thus, this
chapter will focus on clock models for discrete
phenotypic traits, and discrete non-molecular
traits in general (e.g., certain ecological or bio-
geographic characters). Clock models can be
readily applied to discrete phenotypic data such
as morphology, and the interaction of molecular
and morphological clocks can yield novel insights
into evolutionary rates in both systems. However,
morphological phylogenetic studies continue to
be performed largely without any explicit clock
model, often inferring branching order without
any relative or absolute temporal dimension
(e.g., most commonly using parsimony or
undated Bayesian methods).

There have been comparatively few studies
that have explicitly used clock models to infer
phylogenies from morphological data. Several
factors have contributed to this dearth of studies.
The most common method of phylogenetic anal-
ysis of discrete morphological data remains parsi-
mony (cladistics sensu Hennig 1966); this
approach selects the tree with the smallest number
of character changes and does not incorporate any
temporal information. Model-based approaches,
where expected changes are scaled according to
relative or absolute time elapsed (such as dated
Bayesian methods; Chap. 6), have only been
adopted relatively recently for phylogenetic anal-
ysis of phenotypic data.

Furthermore, there are some widely
appreciated issues with clock models for pheno-
typic data. First, unlike the case for genetic data,
there was never any expectation that phenotypic
evolution would follow a constant clock. Classic
works from evolution’s modern synthesis
emphasized this rate variability across lineages,
epitomized by Simpson’s (1953) terms bradytely,
horotely, and tachytely for low, typical, and high
rates of morphological evolution. The clock
models implemented in most phylogenetic
packages were largely developed in the context
of molecular data that had lower rate variation,
and the application of these models to morpho-
logical data might be problematic (e.g., dos Reis
et al. 2016). Second, phenotypic characters tend
to evolve in a highly mosaic fashion, so a single
common ‘morphological clock’ might not ade-
quately capture biological reality (Goloboff et al.
2019). Third, the intrinsic difficulty in identifying
‘unit’ phenotypic characters (and thus unit
changes) makes morphological clock analyses
more difficult (e.g., Freudenstein 2005). Fourth,
most phenotypic data sets were collected in a
parsimony framework and often failed to ade-
quately sample changes along terminal branches
of the tree (Yeates 1992), making them poten-
tially ill-suited to clock analyses (e.g., Lee and
Palci 2015).

All four hurdles can be overcome, to some
extent. First, even if rates of evolution of discrete
phenotypic traits are much more variable than for
molecular data, the ability of highly flexible
relaxed-clock models to adequately model this
variation should be a matter for empirical evalua-
tion (e.g., Gavryushkina et al. 2017; Goloboff
et al. 2019). Notably, the majority of comparative
studies of phenotypic characters (Harvey and
Pagel 1991) continue to use models where
expected change is some function of time (branch
duration). Most of these studies make the even
stronger assumption of a strict clock, i.e., totally
homogeneous rates of phenotypic evolution. Yet,
few have seized upon this assumption to chal-
lenge the broad validity of the entire field of
comparative biology. Only relatively recently
have models in comparative studies been
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elaborated to incorporate rate variation across
lineages (e.g., O’Meara et al. 2006; Rabosky
2014). Second, the use of multiple clocks—as
already happening in analyses of genomic data
(Duchêne et al. 2014)—might ameliorate issues
with the lack of a single common ‘morphological
clock.’ Third, the difficulty in identifying ‘units’
of phenotypic change is not unique to morpho-
logical clock studies but is critical for many other
disciplines, notably morphological phylogenetics
in general (e.g., Freudenstein 2005). Again,
this issue has rarely been considered as a reason
to reject the entire field of morphological
phylogenetics. Fourth, there is nothing to deter
researchers from collecting new data sets or
modifying old ones so that they conform better
to the assumptions of clock analyses, notably by
scoring all variation across all branches, includ-
ing ‘autapomorphies’ that change on terminal
branches. Some analytical corrections to correct
for biases in most earlier data sets might also
work in particular situations (Matzke and Irmis
2018).

Why study phenotypic evolution using clock
models? In addition to improving our understand-
ing of the tempo and drivers of phenotypic evolu-
tion, it can help us better reconstruct ancestral
states, infer divergence dates across the time-tree
of life, and potentially improve our estimates of
phylogenetic relationships, even in the age of
genomic data. Thus, there is direct relevance for
molecular clock analyses, which almost always
require an absolute temporal framework. One
promising new method to provide this absolute
timescale is total-evidence tip-dating (Ronquist
et al. 2012a), which integrates morphological
clocks with molecular clocks, and combines liv-
ing taxa and fossils, to simultaneously infer the
tree topology and divergence dates.

7.2 Categories of Phenotypic Data

The phenotype of an organism encompasses all of
its expressed morphological, ecological, and
behavioural traits. When organisms extensively
modify their immediate habitats, it is often diffi-
cult to draw the line where the phenotype actually

ends and the environment begins (Dawkins 1982;
Odling-Smee et al. 2003). However, only pheno-
typic traits that are genetically determined and
heritable are generally appropriate for phyloge-
netic analyses and clock studies. Phenotypically
plastic traits are environmentally determined, and
there is no reason to expect differences across
organisms to reflect genealogical relationships or
to correlate with time elapsed since divergence.

An obvious categorization of phenotypic data
can be made using their biological characteristics.
The vast majority of phenotypic characters used
in phylogenetic studies, including those
employing clock models, are anatomical (mor-
phological) traits, often hard parts (e.g., bones,
shells, and exoskeletons) due to their accessibility
in museum specimens and frequent preservation
in the fossil record. However, soft anatomy,
behavioural, and ecological traits can and are
also regularly employed. The use of features of
human language to determine population
relationships and divergence times is an exciting,
rapidly expanding study area (Maurits et al.
2017).

In the context of phylogenetic analysis and
clock models, a different categorization of pheno-
typic data is potentially more useful. This is based
on how they are encoded as character information
and on the relevant evolutionary models (Wiens
1989):

1. Discrete characters can only take the form of a
small number of states, conventionally
labelled using integers starting from
0. Examples are whether two bones in the
skull meet or not, whether the eyes are
brown, blue, or green, and whether an
organism’s diet includes plant matter or not.
This sort of phenotypic character is most anal-
ogous to DNA sequence data, which have four
discrete states (typically A, T, C, and G).

2. Meristic characters are counts which can take
any value within a large range of whole num-
bers. These characters share some similarities
with typical discrete characters. Examples
are number of dorsal fin spines in a fish and
number of repeated notes in a bird’s
vocalization.
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3. Continuous characters are measurements
(or functions of multiple measurements) that
vary in a single dimension and can take the
value of any real number. Examples are body
size, relative brain size (a ratio), or area of
home range.

4. Geometric morphometric data are two- or
three-dimensional data that involve identifying
homologous landmarks across taxa, rescaling
and aligning their shapes, and inferring the
landmark displacements. Thus, unlike the
first three categories, characters are not
(at least potentially) independent of each
other, but emerge simultaneously as displace-
ment vectors when shapes are superimposed.

Although these definitions appear relatively
clear-cut, in practice many traits can be expressed
as more than one type of character. For instance,
the length of a bone (a continuous character) can
be reduced into a discrete character (e.g., short,
medium, and long), or expressed using geometric
morphometrics (e.g., via the displacement of
landmarks at the proximal and distal ends). Most
early versions of phylogenetic software were
designed for discrete characters (e.g., PAUP*;
Swofford 2003), so continuous and meristic traits
were often ‘discretized’. However, many modern
phylogenetic programs (e.g., TNT, Goloboff and
Catalano 2016; BEAST2, Bouckaert et al. 2019)
can analyse all discrete, meristic, and continuous
(and in the case of TNT, landmark) data simulta-
neously; continuous and meristic traits no longer
need to be recoded into a small number of discrete
states, which can result in loss of information.

This chapter will focus on discrete traits,
because they remain by far the most common
type of phenotypic data used in phylogenetic
analyses, including those that implement clock
models. Discrete phenotypic data are also more
similar to DNA sequence data than are meristic,
continuous, or geometric morphometric data.
However, clock models can and have also been
applied to other categories of phenotypic data,
notably continuous and multidimensional traits
(e.g., Álvarez-Carretero et al. 2019; Paterson
et al. 2019).

7.3 Considerations When Working
with Discrete Phenotypic Data

Phenotypic characters are usually identified in a
much more idiosyncratic fashion than DNA
characters. Generally, investigators survey partic-
ular phenotypic systems of interest (e.g., the
skull), and then ‘score’ characters based on
observed variation perceived to be phylogen-
etically informative. Invariant characters are
almost never scored, and characters unique to
single taxa (autapomorphies) have also histori-
cally been rarely scored. This is because
autapomorphies are phylogenetically uninforma-
tive under parsimony (the dominant method for
analysing morphological characters in recent
decades): autapomorphies map perfectly onto
any and every tree topology with no homoplasy
and thus do not arbitrate between alternative
trees. This bias means that existing morphological
data sets typically underestimate the amount of
change along terminal branches (Seligmann
2010), which raises important issues for clock
analyses (see later). In contrast, DNA data are
gathered much more methodically, e.g., all
nucleotides for a gene or fragment can be
sequenced, including invariant and
autapomorphic characters. Even when there is
ascertainment bias in molecular data, as when
single-nucleotide polymorphisms are analysed, it
is more easily corrected mathematically.

The size of phenotypic data sets (typically
dozens to a few hundred characters) is also
much smaller than for molecular data sets (now
usually thousands to millions of characters) (Lee
and Palci 2015). This means that the number of
phenotypic changes along each branch is usually
small. This small sample size severely limits the
power of clock models to infer subtle patterns of
variation in phenotypic evolutionary rates across
the tree (dos Reis et al. 2016). For instance, if a
branch of a certain duration that ‘should’ have
undergone 100 nucleotide substitutions only
exhibits 50 such changes, this would be rather
strong evidence of a reduced rate of change. But
if the expected and actual numbers of morpholog-
ical changes were ten and five respectively, it is
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difficult to determine whether this is due to a
genuine slowdown or simply due to the stochastic
nature of the evolutionary process.

Discrete phenotypic data also differ from stan-
dard DNA nucleotide data in several important
ways that are relevant to model-based phyloge-
netic and clock analyses. First, states given the
same label across different phenotypic characters
are usually not equivalent: in different characters,
state 0 might denote the absence of a particular
bone, or brown eye colour, or aquatic habits. For
DNA sequence data, corresponding states across
all characters are comparable: at all sites, an ‘A’
always denotes the base adenine. Second, the
labelling of states within a particular character
is also largely arbitrary: given three discrete
eye-colour states, any colour could be called
0. Historically, the state that is likely to be primi-
tive in the group under investigation (ingroup) is
often allocated state 0, but this is still arbitrary: if
the analysis were to consider a larger or a more
restricted clade, the inferred primitive state for the
‘group of interest’might change. Where character
states form a continuum or morphocline (e.g.,
short, medium, and long process), it is often con-
venient to number the states in ascending or
descending order, but again, the polarity of this
numbering is arbitrary (e.g., either short or long
could be allocated state 0).

The smaller size of phenotypic data sets,
non-equivalence of states across characters, and
the arbitrariness of state labels within characters
severely restricts the implementation of detailed
models related to aspects of morphological evo-
lution, including clock models. These models are
most useful when they can estimate evolutionary
dynamics from large samples of comparable
traits.

7.4 Models of Morphological
Character Evolution

Model-based analyses of discrete phenotypic
characters typically use the stochastic model of
Lewis (2001), which is essentially the Jukes–
Cantor (1969) model of molecular evolution
generalized to a particular number of

morphological states (e.g., see Wright and Hillis
2014). Transformations between all possible pairs
of different states occur at equal rates (Fig. 7.1a);
these rates are determined by (homogeneous)
relative-rate parameters and (equal) equilibrium
state frequencies. There are two variations of this
model that are typically used, based on analogous
approaches in parsimony. The unordered model is
appropriate where states do not form a
morphocline, and direct transformations between
all states are allowed (Fig. 7.1a). The ordered
model is often used where states form a clear
morphocline, and direct transformations are only
allowed between morphologically adjacent (simi-
lar) states; transformations from one extreme to
the other are thus constrained to pass through all
intermediate states (Fig. 7.1b). The distinction
between unordered and ordered characters is
only relevant for characters with three or more
states (‘multistate characters’); for binary
(two-state) characters, there can be no intermedi-
ate states, and direct transformations between all
(both) states must be possible.

For a data set of numerous discrete characters
with a range of (2, 3, . . ., k) states, it is possible
to analyse all characters using a single k � k rate
matrix (or two k � k matrices, for ordered and
unordered characters). Such an approach assumes
that all characters, even the binary characters, can
(theoretically at least) flip between all k states,
and thus might be seen to be less appropriate
than a more complex approach that disallows
unobserved states (Gavryushkina et al. 2017). In
the latter partitioned approach, all binary
characters are analysed using a 2 � 2 matrix,
three-state characters using a 3 � 3 matrix, and
so on. Because the state labels for phenotypic
characters are largely arbitrary, it generally does
not make sense to have more complex substitu-
tion matrices or state frequencies analogous to the
HKY or GTR models used for DNA sequence
data. Across all four-state unordered characters
(Fig. 7.1a), for instance, it is often meaningless
to try and estimate a rate matrix where 0 ! 1
transformations occur at a rate different from
1 ! 2 transformations, or from 1 ! 0
transformations. Promising attempts have been
made to stochastically model asymmetry in such
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morphological rate matrices, by allowing differ-
ent characters to have different state frequencies
sampled from some prior distribution (Klopfstein
et al. 2015). Additionally, for comparative
analyses of single characters, there is no issue
regarding non-equivalent state labels, and hetero-
geneous rate matrices are potentially appropriate
(e.g., King and Lee 2015).

Models of among-site rate variability, origi-
nally developed by geneticists, have been readily
adapted for use for phenotypic characters. Thus,
rate variation among phenotypic characters is
often modelled using a gamma distribution
(Yang 1993, 1994) widely used for molecular
data, though other distributions might be more
appropriate for morphological data (Harrison
and Larsson 2015).

7.5 Considerations When Working
with Clock Analyses
of Morphological Data

The clock models developed largely for DNA
data, and implemented in widely used phyloge-
netic packages such as MrBayes (Ronquist et al.

2012b), RevBayes (Höhna et al. 2016), BEAST
(Drummond et al. 2012; Suchard et al. 2018), and
BEAST 2 (Bouckaert et al. 2019), can readily
accommodate discrete phenotypic data. As
discussed above, the most widely used substitu-
tion model for the evolution of discrete pheno-
typic traits is very similar to the Jukes–Cantor
model of DNA evolution. Thus, theoretically,
most of the elements of molecular clock models
used to characterize among-lineage rate variation
in molecular data can be applied to phenotypic
data, though their appropriateness might vary for
several reasons. The major considerations are
summarized as follows:

1. Strict clock or relaxed clock. The frequently
episodic nature of phenotypic evolution means
that few phenotypic data sets are likely to
conform to a strict clock. In empirical studies
that have compared strict and relaxed clocks
using model-testing methods such as Bayes
factors, some sort of relaxed clock has always
been a significantly better fit (e.g., Lee and
Yates 2018).

2. Shared or separate clocks. It is conceivable
that different genetic loci or subsets of the
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data (e.g., all mitochondrial protein-coding
genes) might share correlated patterns of rate
variation across branches and thus be ade-
quately described by a single shared clock
model (Duchêne et al. 2014). However, any
universal genetic ‘pacemaker’ is unlikely to
also apply to non-genetic (e.g., phenotypic)
data. Instead, it is likely that on some branches
genetic evolution will be fast while phenotypic
evolution is slow, and vice versa. Thus, phe-
notypic data are usually better modelled under
their own separate clock or by multiple sepa-
rate clocks (e.g., Pyron 2011).

3. Uncorrelated or autocorrelated rate variation.
This concept refers to whether rates of evolu-
tion vary stochastically (uncorrelated) or sys-
tematically (autocorrelated) across branches in
the phylogeny (e.g., Ho et al. 2015a). The
famously sporadic nature of morphological
evolution means that rates of evolution on
adjacent branches might be very different
(Fig. 7.2a). In such cases, uncorrelated clock
models might be more appropriate. The widely
used uncorrelated lognormal model in BEAST
is one example: it assumes that the evolution-
ary rate on each branch is drawn indepen-
dently from a single global lognormal
distribution (Drummond et al. 2006), so that
expected rates on a pair of adjacent branches
are no more similar than expected rates on a
pair of widely separated branches. Conversely,
it is possible that certain clades have
characteristics that enhance or depress the
rate of phenotypic evolution, resulting in adja-
cent branches having similar evolutionary
rates. In such cases, an autocorrelated model
would be more appropriate. For instance, key
adaptations such as cichlid pharyngeal jaws
(Liem 1973) are likely to have increased the
rate of phenotypic diversification in that clade.
Local clocks (Yoder and Yang 2000;
Drummond and Suchard 2010) assume there
are different rate ‘regimes’ across different
regions of the tree (Fig. 7.2b). Branches in
the same regime evolve at the same rate, but
different regimes have different rates. The
number of regimes, the shift points between

regimes, and the rate in each regime can either
be fixed or estimated using Markov chain
Monte Carlo sampling. Another autocorrelated
model is the epoch clock (Bielejec et al. 2014;
Paterson et al. 2019), which assumes that rates
vary across time slices, so that (for instance) all
early branches might have higher rates of evo-
lution than all later branches (Fig. 7.2c).

4. Statistical distribution of among-lineage rate
variation. This refers to the question of what
statistical distribution best characterizes rate
variation across all the branches of a tree. It
is (at least theoretically) distinct from the pre-
vious point, which refers to whether adjacent
branches have similar rates, and also distinct
from among-character rate variation, which
relates to the distribution of rate variation
across characters. Rate variation across
branches can also be modelled in many differ-
ent ways, and exhaustive evaluation of a large
range of models has seldom been done for
large and relatively homogeneous molecular
data sets, let alone much smaller and idiosyn-
cratic morphological data sets. Some common
relaxed-clock models assume that rates vary in
a continuous fashion across lineages, follow-
ing a lognormal distribution. The uncorrelated
lognormal model in BEAST and BEAST2 (see
above) assumes that rates for all branches are
drawn from a single global lognormal distribu-
tion. In contrast, the autocorrelated TK02
model in MrBayes assumes that the rate on a
particular branch is drawn from a local lognor-
mal distribution, where the variance is deter-
mined by length of the branch (Thorne and
Kishino 2002).

7.6 Dating Evolutionary Trees
Using Morphological Clocks

When taxa in a phylogenetic analysis are all from
the same time slice (e.g., living species), clock
models—whether used for phenotypic or molec-
ular characters—can generally only provide rela-
tive divergence times, rather than an absolute
timescale. To translate such relative ages into
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absolute ages, clock analyses typically have to be
calibrated using external information about node
dates or rates. In ‘node dating’, a fossil (or, less
frequently, a biogeographic event) of a certain
age is used to provide a minimum age constraint
for the relevant divergence event. Often, multiple
such calibrations are used to improve accuracy,
and calibration nodes are given probabilistic age
distributions rather than point ages to better
accommodate potential sources of error (Parham
et al. 2012; Chap. 8). Fossil-based node dating
uses the following reasonable logic: the clade
containing a fossil of a certain age must have

evolved some time earlier, hence the age of a
fossil provides a minimum age constraint on the
living clade to which it belongs. Biogeographic
calibrations assume that certain divergences
(nodes) in the tree are temporally associated
with particular dated biogeographic events (see
Chap. 9). For instance, the divergence between
Australian and South American marsupial clades
might be assumed to be the result of vicariance
related to the final breakup of Gondwana. In rate
calibrations, broad estimates of average rates of
molecular evolution (e.g., a ‘typical’ substitution
rate of 1% per lineage per million years in
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mitochondrial DNA) can be used to translate
degree of genetic divergence into absolute time.

Both node and rate calibrations for dating
evolutionary trees have potentially major
shortcomings. Fossil node calibrations fail to ade-
quately accommodate uncertainty in the affinities
of the calibration fossils (e.g., Rutschmann et al.
2007), and in any case only provide minimum
(not maximum) age constraints. For biogeo-
graphic node calibrations, a given split might
be due to dispersal (not vicariance) and thus
not be associated with the putatively related tec-
tonic event (e.g., Ho et al. 2015b). Rates of
molecular evolution can vary greatly from group
to group, making general ‘average’ values dan-
gerous to use, though taxon-specific estimates
might help reduce errors due to extrapolated
rates (e.g., Arcones et al. 2019). Furthermore,
with modern genomic data sets, each analysis
often has a unique set of gene loci and thus
unique rate dynamics (e.g., single-nucleotide
polymorphisms or ultraconserved elements),
making it impossible to even broadly guess the
expected ‘evolutionary rates’.

When taxa in a phylogenetic analysis are sam-
pled across time, clock models for molecular
and/or morphological data can, at least in princi-
ple, infer absolute divergence dates directly from
the character and taxon-age data, thus providing a
way to avoid the problematic assumptions of
node or rate calibration. This approach, termed
‘tip-dating’, introduces new assumptions, notably
related to the clock and diversification models
(Chap. 11). Tip-dating was initially employed in
the situation when viruses are sampled across real
time and their nucleotide sequences analysed via
molecular clocks to directly infer dated trees (see
Chap. 10). An analogous situation is when taxa
are sampled across geological time (e.g., living
species and their long-extinct relatives), and their
preserved phenotypic traits analysed via morpho-
logical clock analysis, again to infer dated trees.
In both instances, the correlation between the age
of a taxon and the amount of anagenetic evolution
that it has undergone allows estimates of rates of
change and, thus, estimates of absolute ages
across the tree.

7.7 Some Case Studies

There is a rich literature on rates of morphological
evolution, but phylogenetic analyses of pheno-
typic characters using explicit clock models
remain relatively scarce. I here focus on some
examples that highlight the usefulness of morpho-
logical clock methods, either for morphological
analyses or for such analyses in concert with
molecular data. These examples are certainly not
exhaustive and focus on phylogenetic studies in
which tree topology and divergence dates, as well
as evolutionary rate dynamics, were all estimated.
There is also a rapidly growing body of compara-
tive studies in which relaxed-clock methods are
being used to map phenotypic characters onto
trees (e.g., Rabosky 2014).

7.7.1 Divergence Dating

Tip-dating approaches, initially developed in the
context of molecular clock analysis of time-series
samples of virus data, can also be applied to
fossils and phenotypic data. Tip-dated clock
analyses have been performed on morphological
data alone to infer evolutionary relationships and
divergence dates (e.g., Lee et al. 2014; Matzke
and Wright 2016). However, when numerous ter-
minal taxa (‘tips’) are still living (extant), it desir-
able to also include available genetic data, to
allow better inference of relationships and (rela-
tive) divergence times between living taxa.

Total-evidence tip-dating refers to the simulta-
neous analysis of morphological and molecular
data using clock-based methods for both types of
data (Ronquist et al. 2012a). The method has been
used to infer relationships across the tree of life,
including plants (Grimm et al. 2014), insects
(Ronquist et al. 2012a; Vea and Grimaldi 2016),
arachnids (Sharma and Giribet 2014), fish (Arcila
et al. 2015), amphibians (Pyron 2011), reptiles
(Pyron 2016; Lee and Yates 2018), mammals
(Herrera and Dávalos 2016; Kealy and Beck
2017), and birds (Gavryushkina et al. 2017;
Crouch et al. 2019). All of these taxa have
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relatively complex morphologies, allowing a rea-
sonable number of phenotypic characters to be
scored and analysed using model-based methods.

The relationships of the fossil and living taxa,
and divergence dates, are assessed simulta-
neously (usually in a Bayesian framework) to
find the global solution that best fits the pheno-
typic, molecular, and stratigraphic data.
Uncertainties in estimated variables (e.g., the
positions of the fossils and the rates of molecular
evolution) are fully integrated into the results
(e.g., clade probabilities and node age ranges).
In such cases, the ages of the fossils, along with
the diversification and morphological clock
models, are the primary drivers of node ages
across the tree. Total-evidence tip-dating (poten-
tially in concert with node-dating) has been
argued to be theoretically superior to the tradi-
tional, sequential method of using node-dating
alone, where fossils are initially analysed (typi-
cally using parsimony analysis) without recourse
to their stratigraphy and often ignoring molecular
data, and then their positions assumed to be
known without error and used as minimum age
constraints on relevant nodes in molecular clock
analyses (see Chap. 5). However, tip-dating is
much more computationally intensive and, as
mentioned above, requires additional
assumptions about the dynamics of diversifica-
tion and morphological evolution.

7.7.2 Homoplasy and Tree Topology

Tip-dating approaches have usually been
discussed in the context of better dating the tree
of life (e.g., Ronquist et al. 2012a, b; Matzke and
Wright 2016; Turner et al. 2017). However, they
can also potentially improve our estimates of
phylogenetic relationships, by ‘nudging’ the
topology away from branching patterns that are
highly stratigraphically incongruent, and towards
phylogenies that perhaps entail slightly more
homoplasy but match the fossil record much
more closely (King 2021). As an example, parsi-
mony and undated Bayesian approaches consis-
tently unite two lineages of long-snouted
crocodilians that are widely separated in time;
Bayesian tip-dating approaches instead suggest

(more reasonably) that these lineages are succes-
sive iterations of a similar morphotype (Lee and
Yates 2018).

7.7.3 Rates of Phenotypic Evolution

Morphological evolution is widely seen as largely
decoupled from molecular evolution (e.g., Lahr
et al. 2014). Model testing typically suggests that
morphology usually is better modelled under its
own clock, rather than sharing the molecular
clock (e.g., Lee and Yates 2018), even though
early total-evidence tip-dating methods employed
a single common clock (Ronquist et al. 2012a).
Clock models have revealed the predicted high
variation in rates of phenotypic evolution, to the
extent that the validity of models themselves have
been questioned (Puttick et al. 2016; Goloboff
et al. 2019). Accordingly, when separate clocks
have been applied to morphological and molecu-
lar data, the morphological data are invariably
found to have larger amounts of rate variation
(e.g., Pyron 2011; Lee et al. 2013; Beck and Lee
2014; Goloboff et al. 2019).

Morphological clock methods are also able to
identify particular clades, lineages, or time-slices
where rates of evolution are unusually high. Ele-
vated rates of evolution were identified in some of
the dinosaurian ancestors of birds, using explicit
clock methods (e.g., Lee et al. 2014) and tradi-
tional time-scaling methods (Brusatte et al. 2014).
Similarly, rates of morphological (as well as
genetic) evolution during the Cambrian explosion
(i.e., the latest Precambrian to earliest Cambrian)
were estimated to be several times higher than
subsequent rates (Lee et al. 2013). Surprisingly,
however, after the earliest Cambrian, rates of
evolution appeared to have steadied rapidly,
with rates in the rest of the Lower Cambrian
barely differing from rates in the Middle and
Upper Cambrian, at least for trilobites (Paterson
et al. 2019).

7.8 Concluding Remarks

Studies applying clock models to phenotypic data
are still in their relative infancy, compared with
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molecular clock studies. Important concerns have
been raised about the applicability of clock
models to character systems such as morphology,
where different characters and different taxa can
exhibit highly idiosyncratic rates. However, some
similar complications also manifest themselves,
typically in more moderate amounts, in molecular
data sets, and have been at least partly
ameliorated by improved relaxed-clock models.
Thus, when it comes to clock models, many of the
differences between phenotypic and morphologi-
cal data sets are potentially matters of degree,
rather than kind. Increasing the number of empir-
ical phenotypic studies will help identify which
aspects of these clock models are adequate, and
which need to be reconsidered. However, the vast
majority of published phylogenetic matrices of
phenotypic data are ill-suited to clock analyses,
because only parsimony-informative traits were
sampled. In this regard, it is vital that scientists
gathering phenotypic phylogenetic data sets
‘future-proof’ their work by sampling all variable
traits, so that their data sets are amenable to clock-
based analytic approaches.
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Calibrations from the Fossil Record 8
Jacqueline M. T. Nguyen and Simon Y. W. Ho

Abstract

Molecular clocks can be used to reconstruct
evolutionary timescales based on analyses of
genetic data, but these clocks need to be
calibrated in order to give estimates in absolute
time. Calibration is most often carried out
using fossil evidence of the timing of evolu-
tionary events, corresponding to internal nodes
in phylogenetic trees. Early molecular dating
studies treated fossil calibrations as point
values, whereas later methods allowed
calibrations to be specified as age constraints
on nodes. The application of Bayesian
methods to phylogenetic analysis opened up
opportunities for fossil calibrations to take
more complex forms. In this chapter, we
trace the development and use of fossil
calibrations and describe some a priori and a
posteriori methods and criteria for evaluating
their quality. We then present two examples of

fossil calibrations from modern birds. Our
chapter concludes with a discussion of the
limitations of fossil calibrations, along with
the changing role of the palaeontological
record in molecular dating.

Keywords

Molecular clock · Molecular dating · Fossil
calibration · Age constraints · Calibration
prior · Phylogenetic analysis · Modern birds

8.1 Introduction

The timing of evolutionary divergences among
lineages can be reconstructed from genetic data
using molecular clocks, in an inference procedure
known as molecular dating. This is often carried
out using phylogenetic analysis of nucleotide or
amino acid sequences, allowing timescales to be
attached to evolutionary trees. In contrast with
standard molecular phylogenetic analysis, how-
ever, molecular dating cannot be performed using
the sequence data alone (see Chap. 5). This is
because the sequence data only provide informa-
tion about the genetic change occurring along
each branch of the tree, but not about the separate
contributions of evolutionary rate and absolute
time to each of these branch lengths. Endless
combinations of evolutionary rate (substitutions
per site per year) and time duration (years) can be
multiplied to give the same branch length

J. M. T. Nguyen
Australian Museum Research Institute, Australian
Museum, Sydney, NSW, Australia

College of Science and Engineering, Flinders University,
Adelaide, SA, Australia

PANGEA Research Centre, School of Biological, Earth
and Environmental Sciences, UNSW Sydney, Sydney,
NSW, Australia

S. Y. W. Ho (*)
School of Life and Environmental Sciences, University of
Sydney, Sydney, New South Wales, Australia
e-mail: simon.ho@sydney.edu.au

# Springer Nature Switzerland AG 2020
S. Y. W. Ho (ed.), The Molecular Evolutionary Clock, https://doi.org/10.1007/978-3-030-60181-2_8

117

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60181-2_8&domain=pdf
mailto:simon.ho@sydney.edu.au
https://doi.org/10.1007/978-3-030-60181-2_8#DOI


(substitutions per site). Therefore, molecular dat-
ing requires external information either about the
evolutionary rate across the tree or about the age
of at least one of the internal nodes or some of the
tips of the tree. The use of external information to
constrain the ages of nodes in the tree is known as
clock calibration (see Chap. 1). When the clock is
calibrated, the entire phylogenetic tree can be
scaled according to time to produce a ‘time-tree’
or ‘chronogram’.

Calibrations for molecular dating can come
from the fossil record, biogeography, and
palaeogeography (Chap. 9), the sampling times
of the sequence data (Chap. 10), or molecular date
estimates from previous studies. The fossil record
is the most widely used source of clock
calibrations, as confirmed in a survey of nearly
700 molecular dating analyses (Hipsley and
Müller 2014). Fossil calibrations can be applied
to internal nodes of the tree, which represent
evolutionary divergences between lineages, or to
the terminal nodes or tips of the tree, which rep-
resent the fossil taxa themselves (Chap. 11).

In this chapter, we focus on the use of fossil
evidence to inform the age calibrations for inter-
nal nodes in the tree. We describe how these
calibrations are derived from palaeontological
evidence and explain how they are used in molec-
ular dating analyses, including Bayesian phyloge-
netic inference. We then discuss some a priori and
a posteriori methods for evaluating fossil
calibrations in molecular dating. Case studies
are presented for two fossil calibrations from
modern birds: the Palaeocene penguin Waimanu
manneringi and the Miocene bristlebird
Dasyornis walterbolesi. We conclude the chapter
with a brief outline of the prospects for using
fossil data in molecular dating.

8.2 Fossil Calibrations as Point
Values

In the first application of molecular dating, the
evolutionary rate of haemoglobin sequences was
calibrated using palaeontological evidence for the
age of the split between horse and modern human
(see Chap. 1; Zuckerkandl and Pauling 1962).

There was some uncertainty in the timing of this
divergence event, which the authors believed to
have occurred between 160 and 100 million years
(Myr) ago. These two dates were used for calibra-
tion and the authors took the average of the
resulting estimates of the evolutionary rate.
Although the uncertainty in the fossil record was
considered in this case, the palaeontological
information was effectively distilled into a point
estimate of the timing of the human–horse split.

The treatment of fossil calibrations as point
estimates of node times was to continue for sev-
eral decades. For example, several prominent
molecular dating studies used a fossil-based
point estimate of about 310 Myr for the diver-
gence time between mammals and birds
(Doolittle et al. 1996), sometimes as the sole
calibration point (Kumar and Hedges 1998;
Wang et al. 1999). The support for this particular
fossil calibration was subsequently challenged
(Lee 1999; Reisz and Müller 2004), raising seri-
ous concerns about the reliance on point
calibrations that did not sufficiently acknowledge
the level of uncertainty.

A fundamental problem with using point
calibrations is that they make bold statements
about the timing of evolutionary divergence
events, when the fossil record can only provide
good evidence of the earliest appearance of a
lineage or clade (Fig. 8.1a; Marshall 1990;
Smith and Peterson 2002). There can be a consid-
erable time gap between the appearance of a clade
and the oldest fossil that has been sampled from
that clade. The time gap will be wider if the
diagnostic features that allow fossil taxa to be
assigned to the lineage did not appear until
much later (Fig. 8.1a; Magallón 2004). For these
reasons, the molecular date estimates obtained
using point calibrations are often more appropri-
ately interpreted as minimum dates (Hedges and
Kumar 2004).

The fossil specimens used for calibrations
have numerous sources of uncertainty relating to
their identification, phylogenetic placements, and
age (Benton and Donoghue 2007; Gandolfo et al.
2008). The fossils need to preserve features that
allow them to be assigned to a specific lineage or
clade, but their relationships to the taxa included

118 J. M. T. Nguyen and S. Y. W. Ho



in the molecular dating analysis might not be
resolved with confidence. It can also be difficult
to identify which specific node in the tree should
be calibrated using that fossil because this
depends on whether the fossil can be placed in a
crown group or on a stem lineage (Fig. 8.1a;
Wilson et al. 1977; Magallón 2004).

Although molecular dating can be performed
with just a single calibration point, the use of
multiple calibrations is preferred because it can
minimize the impact of any erroneous calibrations
(Lee 1999; Lukoschek et al. 2012). Calibrations
close to the root of the tree are particularly effec-
tive because they can help to counteract the
underestimation of deep divergence times
(Duchêne et al. 2014), which can be caused by
poor modelling of the molecular evolutionary

process across long timeframes. The introduction
of molecular dating methods that allowed evolu-
tionary rate variation across branches, known as
relaxed molecular clocks, increased the need for
employing multiple calibrations to enable better
estimation of among-lineage rate variation
(Thorne et al. 1998; Sanderson 2003). These
methods also provided statistical frameworks
that allowed the field to move away from using
point calibrations.

8.3 Fossil Calibrations as Age
Constraints

The fossil record is most effective in supplying
minimum age constraints, which can be identified

A

B

fa

fb

fc

fd

C

MRCA of A+B+C

MRCA of A+B

presentpast

a

b A

B

C

pr
ob

ab
ilit

y pr
ob

ab
ilit

y

tb ta

Fig. 8.1 (a) Phylogenetic tree showing the use of fossil
evidence to provide age constraints for calibrating the
molecular clock. Fossil fa, which has age ta, is placed in
the crown group of A + B and puts a minimum bound of ta
on the age of the most recent common ancestor (MRCA)
of A and B. The fossils fb and fc are on the stem lineage
leading to A + B. Although fc is older than fb, a diagnostic
morphological feature (star) of A and B only appeared
later, along the sister lineage of fc that led to A + B.
Therefore, fb is the oldest fossil that can be confidently
assigned to the lineage leading to A + B. The age of fb
places a minimum bound of tb on the age of the MRCA of
A + B + C. The oldest fossil in the sister group, fd, can also

be used to put a minimum bound on the MRCA of
A + B + C. (b) Calibration densities for Bayesian molecu-
lar dating. A lognormal distribution has been selected for
the age of the MRCA of A + B, with an offset (minimum
bound) of ta. The mean and standard deviation of this
distribution must also be chosen. An exponential distribu-
tion has been selected for the age of the MRCA of
A + B + C, with an offset of tb. The rate parameter of the
distribution must also be chosen. For both distributions,
the light grey tail contains 5% of the probability density
and the beginning of this tail is sometimes referred to as a
‘soft’ maximum bound
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for many groups of organisms across the tree of
life (Benton and Donoghue 2007). In molecular
dating, these minimum age constraints are usually
implemented in the form of ‘hard’ bounds, which
exclude the possibility of the node being younger
than the specified value. Thus, minimum bounds
represent strong statements about the possible
ages of nodes in the phylogeny. On their own,
however, minimum bounds are insufficient for
molecular dating because they do not impose
any upper limits on node ages.

An important aspect of using age constraints
for molecular dating is that at least one maximum
constraint or point calibration needs to be
included. Maximum age constraints are difficult
to establish because they are equivalent to
postulating the absence of a particular clade at
some point in the past. If the maximum bound is
too small, then it brings the risk of incorrectly
claiming the absence of a lineage at a point in
time when it was actually present. If the bound is
too large, then it might be too uninformative for
molecular dating. The choice of maximum age
constraints can have a considerable impact on the
molecular date estimates (Hug and Roger 2007;
Warnock et al. 2015), as seen in a recent debate
concerning the evolutionary timescale of modern
birds (Jarvis et al. 2014; Cracraft et al. 2015;
Mitchell et al. 2015).

Several methods have been proposed for
deriving maximum age constraints from fossil
evidence. One approach is to interpret the absence
of evidence of a clade at some time point as being
(weak) evidence of absence. If the clade of inter-
est and its putative stem taxa are absent from a
fossil assemblage that has been well sampled,
then we might consider this to be an indication
that the clade had not yet evolved. A more careful
approach can involve the use of a taphonomic
control group comprising taxa that have
biological and ecological features similar to
those of the clade of interest (Bottjer and
Jablonski 1988). If the clade of interest is absent
from older, well-sampled strata that contain the
taphonomic control group, then this provides sup-
port for the absence of the clade of interest at that
point in time.

Another approach to setting a maximum
bound is to bracket the age of a node by
constructing a 95% confidence interval, which
can be calculated by a method that uses the distri-
bution of the ages of the oldest fossil on each
branch of the tree (Marshall 2008). This
bracketing method uses an ultrametric tree: one
in which the branch lengths are proportional to
time, such that all extant tips are equally distant
from the root. The method then identifies the
fossil that covers the largest time duration of its
corresponding branch and adds a confidence
interval to the age of that fossil. The construction
of the confidence interval is based on the branch-
coverage proportions for all of the available
fossils, which are assumed to follow a uniform
distribution. The age-bracketing method involves
a number of assumptions, such as random fossili-
zation and the correct phylogenetic placement of
fossils (Strauss and Sadler 1989; Marshall 2008).

Phylogenetic bracketing can be used to set a
maximum bound on the age of a node (e.g., Reisz
and Müller 2004; Benton and Donoghue 2007).
In this approach, the age range of a node is
constrained by the ages of its neighbouring
nodes (i.e., those that are immediately ancestral
and descendent), which can be based on fossil
evidence or on an independent molecular date
estimate. Phylogenetic bracketing requires prior
knowledge of the evolutionary relationships,
along with an age estimate for at least one of the
neighbouring nodes. The method still carries the
risk of setting a maximum age constraint that is
too young. The need to specify maximum bounds
can be partly avoided by taking a Bayesian
approach to molecular dating, as described below.

8.4 Fossil Calibrations in Bayesian
Molecular Dating

8.4.1 Calibration Priors

The rich information of the fossil record is used
most effectively in Bayesian molecular dating
methods, which provide a framework that natu-
rally integrates multiple sources of information
and their uncertainty (see Chap. 6; dos Reis
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et al. 2016; Bromham et al. 2018). The Bayesian
statistical framework was applied to phylogenetic
analysis in the mid-1990s, with the first Bayesian
molecular dating analyses following soon after-
wards (Thorne et al. 1998; Kishino et al. 2001;
Aris-Brosou and Yang 2002). In Bayesian molec-
ular dating, prior probability distributions need to
be specified for all of the parameters in the model,
including the node times. To obtain a dated phy-
logenetic tree in which the nodes are scaled in
absolute time units (e.g., Myr), an informative
prior distribution must be specified for the evolu-
tionary rate or for at least one of the internal node
ages. The prior distribution of relative node times
also needs to be specified, although this is some-
times combined with the prior on the tree topol-
ogy (e.g., Stadler 2009).

An early Bayesian dating program,
multidivtime, required the user to specify a
gamma prior distribution for the age of the root
node, in addition to allowing the user to set age
constraints on any of the other internal nodes
(Thorne et al. 1998; Kishino et al. 2001). Mini-
mum age constraints are analogous to uniform
prior densities between the specified minimum
age and infinity, whereas maximum age
constraints are analogous to uniform prior
densities between zero and the specified maxi-
mum age. Soon after the initial applications of
Bayesian molecular dating, Huelsenbeck et al.
(2000) suggested using fossil information to con-
struct non-uniform prior distributions for internal
node times. New Bayesian phylogenetic software
packages enabled users to select parametric
distributions for the calibration priors on any
internal nodes in the tree (Drummond et al.
2006; Yang and Rannala 2006). The first such
use of a fossil calibration prior was in an analysis
of equid evolution in the Americas, where a nor-
mal prior with a mean of 55 Myr and standard
deviation of 5 Myr was specified for the diver-
gence time between rhinoceroses and horses
(Weinstock et al. 2005).

A calibration prior describes the prior informa-
tion about the age of a node in the tree, so it can be
based on a single fossil specimen or on an inter-
pretation of a body of palaeontological evidence.
In the former case, the calibration prior represents

the probability distribution of the time gap
between the appearance of a clade (as defined
by its most recent common ancestor) and the
age of the oldest fossil in that clade to be pre-
served, sampled, and identified. This time gap
depends on a number of factors, including the
rate of morphological evolution (which affects
the confidence with which we can assign fossils
to the clade of interest), the preservation proba-
bility of the fossil, the geological processes that
affect the survival of the fossil through time, and
the sampling efforts and sampling biases of
present-day researchers and collectors (Magallón
2004; Reisz and Müller 2004; Donoghue and
Benton 2007).

The choice of parametric distribution for the
calibration prior is largely subjective. Unfortu-
nately, palaeontological evidence is rarely
detailed enough to allow a well-justified choice
of non-uniform probability density and its
parameters; these choices are often made without
explicit justification (Warnock et al. 2012). In
many cases, there is no prior information except
for the minimum age of the node. Intuitively, the
distribution should have a declining probability
for values that are increasingly distant from the
age of the fossil (Hedges and Kumar 2004;
Donoghue and Benton 2007). Common choices
for the calibration prior include lognormal, expo-
nential, and gamma distributions (Ho 2007), all of
which have a declining tail of probability towards
greater ages (Fig. 8.1b). Thus, these distributions
have ‘soft’maxima at the values that mark the 5%
tail of the probability. The lognormal, exponen-
tial, and gamma distributions are bounded at zero,
but when they are used for calibration priors they
are often offset so that the minimum bound is
fixed to some nonzero value based on fossil evi-
dence (Fig. 8.1b).

A different approach to calibration priors was
taken with the development of uniform priors
with soft bounds (Yang and Rannala 2006),
implemented in the software MCMCTree in the
PAML package (Yang 2007). Uniform calibra-
tion priors continued the tradition of using the
fossil record to set age constraints on node
times, but soft bounds allowed a declining tail of
probability (e.g., 2.5 or 5%) of the node age being
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outside the chosen time interval. In principle, this
enables the sequence data to overrule erroneous
calibration constraints.

Using different prior distributions for node
ages can have a strong influence on the posterior
date estimates (Inoue et al. 2010; Warnock et al.
2012, 2015), so the choice of distribution needs to
be considered carefully. One way of obviating the
responsibility of choosing the parameters of the
calibration priors is to construct them using a
hierarchical approach. For example, the
calibrations can be modelled using exponential
priors, with offsets being based on the fossil evi-
dence and with the rate parameters (of the expo-
nential distributions) being distributed according
to a Dirichlet process (Heath 2012). The number
of distinct rate parameters, and their assignment
to the exponential priors, are random variables in
the analysis.

There have been efforts to develop methods
that can construct the calibration densities in an
objective manner, typically by modelling the time
gap between the oldest fossil within a clade and
the most recent common ancestor of that clade.
The CladeAge method generates a probability
density for the origin time of a clade based on
the oldest known fossil in that clade, an estimate
of the fossil sampling rate, and estimates of the
speciation and extinction rates (Matschiner et al.
2017). Another class of methods combines
estimates of fossil preservation rates with a
model of lineage diversification that is fitted to
the stratigraphic ranges of the fossil taxa within
the clade (Wilkinson et al. 2011; Nowak et al.
2013). The number of fossils and the distribution
of their ages across chosen time periods then
inform the estimates of the rates of speciation,
fossil preservation, and fossil discovery. This pro-
cedure allows a probability density to be
generated for the time gap between the age of a
clade and the appearance of its oldest known
fossil. The probability density can then be used
as a calibration prior in a Bayesian molecular
dating analysis. This approach is limited to
groups of organisms that have a sufficient fossil
record to inform the parameters of the lineage
diversification model, such as primates
(Wilkinson et al. 2011). However, these

sequential methods have largely been rendered
obsolete by the development of the fossilized
birth–death model, which allows the fossil
occurrences and molecular data to be analysed
jointly in a single framework (see Chap. 11;
Heath et al. 2014).

8.4.2 The Induced Calibration Prior

An important challenge to using fossil
calibrations in Bayesian molecular dating is that
the calibration prior specified by the user is not
necessarily preserved when it is combined with
the other priors in the analysis. For this reason,
some researchers prefer the term ‘calibration den-
sity’ when referring to the probability density
defined by the user (Heled and Drummond
2012). If the calibration densities overlap between
ancestral and descendent nodes, then they are
necessarily truncated so that the order of the
nodes is preserved. In some implementations of
Bayesian molecular dating, such as those in
BEAST (Bouckaert et al. 2019) and MrBayes
(Ronquist et al. 2012), the priors on node times
are constructed multiplicatively by combining the
calibration densities with the prior on the relative
node times. For example, some model of diversi-
fication might be used to generate the prior on the
tree topology and relative node times (e.g.,
Stadler 2009). The induced or effective prior
distributions of the node ages might then differ
from the calibration densities that were initially
specified by the user (Kishino et al. 2001; Ho and
Phillips 2009; Heled and Drummond 2012;
Warnock et al. 2012). This problem is particularly
noticeable when the calibration densities are dif-
fuse, because this involves the largest extent of
overlap between the ancestral and descendent
nodes (Warnock et al. 2015; Barba-Montoya
et al. 2017).

The discrepancy between the specified calibra-
tion density and the induced prior distribution can
be reduced by enforcing monophyly for the
calibrated nodes, or partly avoided by applying
the diversification model to the uncalibrated
nodes while conditioning on the nodes that have
specified calibration densities (Yang and Rannala
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2006; Heled and Drummond 2012, 2015). How-
ever, the calibration densities can also interact
with each other and influence the node
probabilities, owing to the rank ordering of the
internal nodes imposed by the calibrations
(Ho and Phillips 2009; Heled and Drummond
2012; Rannala 2016). An alternative is to exam-
ine the induced priors by sampling from the joint
prior distribution, to check whether they are con-
sistent with the intended, user-specified calibra-
tion densities (e.g., Warnock et al. 2015). This
can be done, for example, by running the Bayes-
ian analysis without any molecular sequence data.
If any disparities are observed, a potential solu-
tion is to adjust the calibration priors to ensure
that the induced priors reflect the age information
supported by the fossil evidence (Kishino et al.
2001; Warnock et al. 2015).

8.5 A Priori Evaluation of Fossil
Calibrations

The accuracy of molecular date estimates depends
critically on the reliability of the calibrations that
are employed for the molecular clock. There is
growing recognition of the need for clear and
convincing justifications for fossil calibrations.
Accordingly, various groups of researchers have
proposed methods for evaluating the quality and
influence of fossil calibrations. Some have put
forward specific criteria for selecting fossils for
molecular dating (Gandolfo et al. 2008; Parham
et al. 2012), whereas others have described
approaches for investigating the influence of dif-
ferent calibrations and calibration schemes on
estimates of node times (see Sect. 8.6). In this
section, we describe some of the key
considerations when selecting fossil calibrations,
focusing on the criteria described by Gandolfo
et al. (2008) and Parham et al. (2012).

8.5.1 Phylogenetic Placement

Fossil calibrations are usually applied to specific
internal nodes (evolutionary divergence events)
in the tree, meaning that the phylogenetic

placement of each fossil should be determined
as precisely as possible. The fossil calibration
should preferably be based on a single specimen
that preserves characters that allow its assignment
to a specific branch or clade in the tree. The
phylogenetic position of the fossil should be
supported by an apomorphy-based diagnosis or
a phylogenetic analysis including the specimen,
although most of the fossils used as calibrations in
molecular dating have not been explicitly
analysed in a phylogenetic framework (Magallón
2004; Gandolfo et al. 2008). Any uncertainty in
the placement of the fossil can be taken into
account by considering the age constraint that is
imposed by the fossil across a set of candidate tree
topologies or a set of bootstrap replicates (e.g.,
Sterli et al. 2013). If molecular data are also
available for the extant taxa in the data set, a
joint analysis of morphological and molecular
data can be performed. In this case, there should
be some degree of congruence between the
relationships supported by morphological and
molecular data, because any discrepancies can
lead to uncertainty in the placement of the fossil
calibration.

Some fragmentary fossils might not preserve a
sufficient number of features to allow many
characters to be coded, but might still preserve
diagnostic apomorphies that allow the fossil to be
assigned unambiguously to a particular lineage or
clade. For example, the Oligo-Miocene logrunner
Orthonyx kaldowinyeri is known only from frag-
mentary leg bones, but these bones exhibit
apomorphies that unambiguously place the spe-
cies in the family Orthonychidae (Nguyen et al.
2014). This bird is the oldest known crown oscine
passerine and has been used in molecular dating
studies to provide a minimum age for
Orthonychidae (Moyle et al. 2016; Oliveros
et al. 2019).

The identification and phylogenetic
placements of fossils can have a large impact on
molecular date estimates. These can change in
light of subsequent fossil discoveries, reinterpre-
tation of available fossils, and new knowledge
about phylogenetic relationships. For example,
the Cretaceous bird Vegavis iaai was initially
placed in crown Anseriformes (ducks, geese,
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and swans) in a phylogenetic analysis (Clarke
et al. 2005) and was used as a fossil calibration
for this group in several molecular dating studies
(e.g., Pacheco et al. 2011; Ksepka and Phillips
2015). Subsequent phylogenetic analyses placed
Vegavis iaai outside crown Anseriformes (e.g.,
Lee et al. 2014; Agnolín et al. 2017; Worthy
et al. 2017), and a re-evaluation of this species
questioned its affinities to Galloanseres (a clade
comprising Galliformes and Anseriformes) alto-
gether (Mayr et al. 2018b).

When selecting fossil calibrations, input from
palaeontologists is essential for verifying the
identification of fossils and investigating any
major taxonomic and phylogenetic revisions
since their original description (Gandolfo et al.
2008; Parham et al. 2012). Therefore, it is impor-
tant that the fossils are well documented and
accessible to researchers, for example by being
registered in the collections of a public museum
or other institution.

8.5.2 Fossil Age

A fossil specimen can only be useful for calibra-
tion if there is an estimate of its geological age.
Fossils are rarely dated directly and radiometric
dating of their associated strata is not always
possible, so their ages are often inferred using
other methods including stratigraphy and correla-
tion. The stratigraphic placement of a fossil
provides a relative age that can be used to estab-
lish a numerical age. When translating a relative
age into a numerical age, a published geological
timescale (e.g., Raine et al. 2015; Cohen et al.
2020) or geochronological literature should be
referenced to explain how the numerical age was
established. The estimated age of the fossil can be
corroborated or constrained with more than one
method of dating or with evidence from multiple
studies. For fossil calibrations taking the form of
minimum age constraints, the youngest possible
age of the fossil should be used (Gandolfo et al.
2008). This involves using the minimum value of
the age range of the fossil-bearing stratum, as well
as the lower (minimum) limit of the error interval
in radiometric dates.

Ongoing revisions in geochronology and stra-
tigraphy are continually improving the accuracy
and precision of these age estimates. After the
initial publication of a fossil description, there
can be changes to the stratigraphic interpretations
and geochronology of the fossil deposit, as well
as changes in stratigraphic classifications and
regional and global geological timescales. For
example, the Gelasian stage was moved from
the Pliocene to the Pleistocene in 2009, leading
to a 43% increase in the age of the Pliocene–
Pleistocene boundary from 1.806 to 2.588 Myr
(Gibbard et al. 2010). In terms of magnitude,
there has been an even larger change in the age
of the lower boundary of the Norian stage (Upper
Triassic). The base of the Norian was defined as
216.5 Myr in the 2004 Geologic Time Scale
(Gradstein et al. 2004) but is estimated to be
227 Myr in the 2020 International Chronostra-
tigraphic Chart (v2020/3, Cohen et al. 2020).

Therefore, best practice dictates that the
description of a fossil calibration should include
explicit details of the precise locality and strati-
graphic context of the specimen, and a numerical
date with reference to published radiometric dates
or a geological timescale. This information allows
researchers to check whether there have been any
revisions to the stratigraphic placement and
estimated age of the fossil, prior to using the fossil
as a calibration.

8.6 A Posteriori Evaluation
of Fossil Calibrations

Once a set of fossil calibrations has been selected,
they can be employed in a molecular dating anal-
ysis. Inevitably, however, some fossil calibrations
are less reliable than others, and using different
subsets of the calibrations might lead to different
molecular date estimates. A simple way to
address the problem of calibration choice is to
repeat the molecular dating analysis using differ-
ent candidate sets of calibrations. For example,
molecular date estimates might be compared for a
set of conservatively chosen ‘safe but late’
calibrations and for a set of more assertive ‘early
but risky’ fossil calibrations (Sauquet et al. 2012).
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This approach allows the impacts of various cali-
bration schemes to be compared, although it does
not necessarily give any insight into which set of
date estimates is more accurate.

A number of methods have been developed to
investigate the quality of fossil calibrations by
employing them in molecular dating analyses
and then using some criterion to evaluate them.
These methods can be used to choose the node
placements of the calibrations, to choose from
among candidate sets of calibrations, or to
exclude poor calibrations. Methods for a
posteriori evaluation of fossil calibrations are
based on the principle that any erroneous
calibrations will lead to inconsistencies in the
molecular date estimates and should be revised
or discarded. They differ from a priori methods
(described above in Sect. 8.5) in that the assess-
ment of fossil calibrations is based primarily or
exclusively on their age and phylogenetic place-
ment, rather than on qualitative features of the
fossils themselves.

The internal consistency of a set of calibrations
can be evaluated using a cross-validation
approach. The first implementation of such a
method involved performing a molecular dating
analysis using each fossil individually, then cal-
culating the sum of squared differences between
the molecular and fossil-based estimates of the
remaining nodes considered for calibration
(Near et al. 2005). Then, the calibrations with
the greatest sum of squared differences are pro-
gressively removed until there is no further sig-
nificant reduction in the variance of the
differences between molecular and fossil-based
estimates of node ages. The application of this
approach to a data set from turtles led to seven of
17 candidate calibrations being discarded, with
large shifts resulting in the molecular date
estimates for some nodes (Near et al. 2005). The
cross-validation approach can also be used to
evaluate different node placements of fossil
calibrations (Rutschmann et al. 2007). In this
case, the sum of squared (relative) differences
between estimated and fossil ages is calculated
for all possible combinations of the candidate
placements of the fossil calibrations.

There are several potential problems
associated with using cross-validation to select a
set of calibrations on the basis of internal consis-
tency. A notable weakness of the approach is that
it treats all of the fossil calibrations as point
estimates of node ages, rather than as age
constraints (Parham and Irmis 2008). Further-
more, the cross-validation approach might call
for the removal of the calibrations that are actu-
ally the most informative (Marshall 2008). For
example, if a large majority of the fossil
calibrations are substantial underestimates of the
corresponding node ages, then the cross-
validation approach would support the retention
of these calibrations while erroneously excluding
any fossil calibrations that are actually much
closer to the true node ages. These shortcomings
can be circumvented by implementing the fossil
calibrations as age constraints rather than as point
values (Marshall 2008).

Candidate fossil calibrations can be evaluated
by using reliably dated evolutionary divergences
as reference points, as in the likelihood-
checkpoint approach (Pyron 2010). In this
method, a number of nodes with well-constrained
ages are chosen as checkpoints. A molecular dat-
ing analysis is then performed using each set of
fossil calibrations that is being considered. The
preferred set of calibrations is the one that
produces molecular date estimates with the
highest likelihood for the checkpoint nodes. The
likelihood is calculated on the basis of probability
distributions, either lognormal or exponential,
that are selected for each checkpoint node
(Pyron 2010). Other probability distributions are
likely to be more appropriate, because they pro-
vide more realistic penalties for molecular date
estimates that contradict the fossil evidence (Lee
and Skinner 2011). A weakness of the likelihood-
checkpoint approach is that the potentially most
reliable fossil calibrations are sequestered as
checkpoints rather than being used as calibrations
for the molecular dating analysis itself (Lee and
Skinner 2011).

In Bayesian molecular dating, conflicting
signals among calibrations can potentially be
identified through comparison of the prior and
posterior distributions of the node ages (Sanders
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and Lee 2007). The reasoning behind this
approach is that if a calibration has a temporal
signal that differs from the rest of the calibrations,
its posterior distribution will tend to be shifted
from its prior distribution. Bayesian methods
have also been used to identify sets of consistent
calibrations. One method builds on the
age-bracketing method used to select maximum
age constraints (described in Sect. 8.3) while
accounting for phylogenetic uncertainty
(Dornburg et al. 2011). Another method, Bayes
factor cluster analysis, involves the inference of
dated trees from all possible pairs of calibrations,
then retains the calibration pairs that yield similar
marginal likelihoods (Andújar et al. 2014). How-
ever, the effectiveness of Bayes factor cluster
analysis is reduced when the calibrations are dis-
tant from each other on the tree or when there is
large variation in evolutionary rates. In general,
any Bayesian phylogenetic method of evaluating
fossil calibrations is susceptible to being misled
by discrepancies between the user-specified cali-
bration densities and the induced priors on node
times, as described in Sect. 8.4.2 (Warnock et al.
2015).

Methods for the a posteriori evaluation of fos-
sil calibrations have not been used widely, despite
the importance of calibrations in molecular dat-
ing. The low uptake of these methods might
partly be due to the difficulty in identifying
good fossil calibrations for most groups of
organisms in the first place. Another reason
might be that Bayesian methods offer varied and
flexible ways to incorporate fossil information
into molecular dating analyses, which has
removed the need to treat fossil calibrations as
simple point values or hard bounds on node ages.

8.7 Case Studies

Here we present two examples to illustrate the use
of fossil specimens to set minimum age
constraints for molecular dating analyses of mod-
ern birds. In these examples, we refer to the a
priori criteria described in the previous section of
this chapter (Gandolfo et al. 2008; Parham et al.
2012). However, we do not attempt to construct

maximum age constraints. Similar treatments of
fossil calibrations have been presented for turtles
(Joyce et al. 2013), insects (Kohli et al. 2016;
Evangelista et al. 2017), and other groups of
organisms.

8.7.1 An Ancient Penguin from
the Early Palaeocene

Penguins (Sphenisciformes) are well represented
in the fossil record. These birds have a high
fossilization potential because they have robust
bones and live in shallow marine environments.
One of the oldest known representatives of
Sphenisciformes is the early Palaeocene penguin
Waimanu manneringi Jones, Ando, and Fordyce,
2006 (in Slack et al. 2006) from the Waipara
Greensand in the Waipara River in Canterbury,
New Zealand. The holotype and only known
specimen of W. manneringi, CM (Canterbury
Museum) zfa 35, is a partial skeleton of one
individual, including the pelvis, leg bones, and
vertebrae (Fig. 8.2a).

Waimanu manneringi provides a reliable min-
imum age constraint for the divergence between
Sphenisciformes and Procellariiformes
(albatrosses, petrels, and allies). It exhibits several
apomorphies that unambiguously place
W. manneringi in Sphenisciformes (Slack et al.
2006). The phylogenetic position of
W. manneringi has consistently been shown to
be outside crown-group penguins (Fig. 8.2a),
based on analyses of morphological data (e.g.,
Mayr et al. 2017, 2018a) and combined morpho-
logical and molecular data (e.g., Ksepka and
Clarke 2010; Ksepka et al. 2012; Blokland et al.
2019).

A clade comprising W. manneringi and
Muriwaimanu (formerly in Waimanu) tuatahi
has been resolved as the sister lineage to all
other fossil and extant penguins in some phyloge-
netic analyses (e.g., Ksepka et al. 2012; Mayr
et al. 2017; Blokland et al. 2019). Although
M. tuatahi also derives from the Waipara Green-
sand and is represented by several skeletons, it
was found higher up in the strata from that of
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W. manneringi and is slightly younger in age
(60–58 Myr; Slack et al. 2006).

A sister relationship between Sphenisciformes
and Procellariiformes is supported by several
phylogenetic analyses of genomic data (e.g.,
Jarvis et al. 2014; Prum et al. 2015) and morpho-
logical data (Livezey and Zusi 2007). Other phy-
logenetic analyses of morphological data inferred
a sister relationship between Sphenisciformes and
a clade comprising Podicipediformes (grebes)
and Gaviiformes (loons) (Smith 2010), and pro-
posed affinities of Sphenisciformes with
Suliformes (cormorants and allies) and
Pelecaniformes (pelicans and allies) (Mayr
2005). The phylogenetic placement of
W. manneringi in stem-group Sphenisciformes
does not conflict with current hypotheses

regarding the sister relationships of
Sphenisciformes, so does not affect its reliability
as a fossil calibration.

The Waipara Greensand yields microfossils
that indicate that it falls within the Teurian stage
of the New Zealand geological timescale (e.g.,
Strong 1984; Hollis and Strong 2003). The top
of the Waipara Greensand marks the Teurian–
Waipawan local stage boundary, which correlates
with the Palaeocene–Eocene international stage
boundary (Cooper 2004; Slack et al. 2006;
Raine et al. 2015). Waimanu manneringi derives
from the basal part of the Waipara Greensand. On
the basis of calcareous nannofossils, including
two age-diagnostic taxa, the age of
W. manneringi is constrained to late early
Palaeocene (61.6–60.5 Myr; Slack et al. 2006).
Based on these data, an age of 60.5 Myr is

Dasyornis broadbenti
Dasyornis brachypterus
Pardalotus striatus
Acanthizidae
Meliphagidae
Maluridae
Pomatostomus temporalis
Cormobates leucophaea
Ptilonorhynchus violaceus
Menura novaehollandiae
Tyranni
Acanthisitta chloris

b Dasyornis walterbolesi

a

Other fossil penguins

Waimanu manneringi
Procellariiformes
Phaethon rubricauda

Crown penguins

Muriwaimanu tuatahi

Fig. 8.2 Examples of two fossil specimens that provide
calibrations for molecular dating analyses of modern birds.
(a) Holotype specimen (CM zfa 35) of the Palaeocene
stem penguin Waimanu manneringi, comprising a partial
skeleton (scale bar ¼ 100 mm), from Canterbury,
New Zealand (Slack et al. 2006). An analysis of combined
morphological and molecular data grouped the fossil spe-
cies with Muriwaimanu tuatahi as the sister lineage to all
other fossil and extant penguins (Blokland et al. 2019).

Silhouette based on artwork by Chris Gaskin. (b) Holotype
specimen (QM F50580) of the Miocene crown-group
bristlebird Dasyornis walterbolesi, comprising hindlimb
bones of one individual (scale bar ¼ 2 mm), from
Riversleigh, Australia (Nguyen 2019). An analysis of
morphological data grouped the fossil species with the
extant species of Dasyornis. Silhouette based on artwork
by Peter Schouten

8 Calibrations from the Fossil Record 127



recommended as a minimum constraint for the
split between Sphenisciformes and
Procellariiformes.

8.7.2 Walter’s Bristlebird from
the Early Miocene

Songbirds (oscines, Passeriformes) are enor-
mously diverse and make up nearly half of all
living birds, but have a relatively patchy fossil
record. Recent years have seen the description of
a number of fossil songbirds that are potentially
useful for calibrating the molecular dating
analyses of modern birds (Worthy and Nguyen
2020). These include the early Miocene
bristlebird Dasyornis walterbolesi Nguyen, 2019
from the Riversleigh World Heritage Area in
Queensland, Australia. This species is the oldest
known representative of the bristlebird family
Dasyornithidae, which has a deep divergence
from most of the remaining songbirds. The holo-
type specimen of D. walterbolesi, QM
(Queensland Museum) F50580, comprises the
major hindlimb bones (femur, tibiotarsus, and
tarsometatarsus) of one individual bird
(Fig. 8.2b).

The holotype specimen of Dasyornis
walterbolesi provides a firm calibration for the
split between Dasyornithidae and its sister
group. It possesses several apomorphies that
unambiguously place it in Dasyornithidae
(Nguyen 2019). Phylogenetic analyses of mor-
phological data also provide robust support for
this placement (Fig. 8.2b), regardless of whether
the analysis includes topological constraints
based on genetic evidence (a ‘molecular
scaffold’).

A sister relationship between Dasyornithidae
and a clade comprising Acanthizidae (thornbills
and gerygones), Pardalotidae (pardalotes), and
Meliphagidae (honeyeaters) was supported in
analyses of molecular data (Gardner et al. 2010;
Marki et al. 2017; Oliveros et al. 2019). However,
a phylogenetic analysis of morphological data
found a sister relationship between
D. broadbenti and a clade comprising Maluridae,
Meliphagidae, and Acanthizidae (Worthy et al.

2010). The differences between the interfamilial
relationships supported by these molecular and
morphological studies do not affect the phyloge-
netic placement of D. walterbolesi in
Dasyornithidae.

The type locality of Dasyornis walterbolesi,
Camel Sputum Site, is part of Godthelp’s Hill
Sequence from D-Site Plateau in Riversleigh.
Based on biocorrelation of mammalian faunas,
this site is allocated to Riversleigh Faunal Zone
B and is inferred to be early Miocene in age
(Archer et al. 1989, 1997). Arena et al. (2016)
refined the biostratigraphy and biochronology of
Riversleigh using its mammalian faunas and
placed Camel Sputum Site in Interval B3 of
Faunal Zone B, which is the youngest zone inter-
val. The age of this site is further constrained by
uranium–lead radiometric dating of flowstone
associated with fossil bone in the deposit, which
yielded an estimated age of 17.75 � 0.78 Myr
(Woodhead et al. 2016). Based on these data, a
minimum age of 16.97 Myr is recommended for
the divergence between Dasyornithidae and its
sister lineage.

8.8 Concluding Remarks

Fossil calibrations have been a pivotal component
of the majority of molecular dating studies
throughout the history of the molecular clock.
They have undergone an impressive amount of
expansion and development, but have also been
subject to considerable scrutiny. The use of fossil
calibrations flourished with the development of
Bayesian phylogenetic methods, which provide a
natural means of incorporating various sources of
information and uncertainty. Even with genome-
scale data sets, the precision of molecular date
estimates ultimately depends on the precision of
the calibrations (see Chap. 13; Thorne and
Kishino 2002; Yang and Rannala 2006; dos
Reis and Yang 2013). Therefore, further
refinements to fossil calibrations will lead to bet-
ter estimates of evolutionary timescales. Collabo-
ration between geneticists and palaeontologists
will be of great value to this endeavour.
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Revisions of the taxonomy and phylogenetic
relationships of fossil taxa, as well as ongoing
improvements in geochronology and stratigraphic
classifications, can have a strong influence on
fossil calibrations and molecular date estimates.
Because of these continual revisions, it is impor-
tant to document specimen and provenance data
in detail so that researchers can readily determine
whether any changes have occurred since the
initial description of the fossil (Gandolfo et al.
2008; Parham et al. 2012). These and other
aspects of molecular dating studies can benefit
substantially from the input of palaeontologists.

A range of methods are now available for
implementing fossil calibrations in molecular dat-
ing analyses, but one unsatisfying aspect is that
they use the palaeontological evidence in a lim-
ited and often indirect way. For example, mini-
mum age constraints are based only on the age of
the single oldest fossil in the descendent lineage
or clade; other fossils are uninformative for this
approach and are not taken into account. This
shortcoming has motivated the development of
methods that allow greater incorporation of the
information from the fossil record. The fossilized
birth–death model allows fossil taxa to be
included as tips in the phylogenetic tree, with
their placement inferred as part of a total-evidence
dating analysis of molecular and morphological
data (Stadler 2010; Didier et al. 2012). Alterna-
tively, the unresolved fossilized birth–death
model can use the full set of known fossil
occurrences, with phylogenetic constraints on
these occurrences being specified by the user
(see Chap. 11; Heath et al. 2014). These methods
are best suited to groups of organisms with richly
preserved morphological features or with exten-
sive fossil records. Therefore, we expect that fos-
sil calibrations will continue to be an important
component of molecular dating analyses of most
branches across the tree of life.
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Biogeographic Dating of Phylogenetic
Divergence Times Using Priors
and Processes

9

Michael J. Landis

Abstract

Historical biogeographic processes shaped the
distribution of life throughout space and time.
A species range might expand, contract, or
subdivide throughout its evolutionary history,
during which extrinsic factors such as the
palaeogeographic arrangement of land masses
can influence how a species range evolves.
Phylogenetic studies can therefore benefit
from incorporating biogeographic and
palaeogeographic evidence into their analyses
in order to better estimate species divergence
times and species relationships. This chapter
begins by outlining a conceptual framework
for using biogeography to date phylogenies,
with some emphasis on the inherent uncer-
tainty of reconstructing past events. Following
this, the chapter explores two methods (prior-
and process-based methods) for estimating
divergence times using biogeographic evi-
dence and discusses their applications and
merits.

Keywords

Phylogenetic inference · Time-calibration ·
Dating · Biogeography · Palaeogeography

9.1 Introduction

How have the evolutionary lineages of life
diversified during Earth’s history? Phylogenetic
inference seeks to answer this question in two
principal ways: with topological estimates that
explain relationships among lineages and with
dating estimates to bracket when lineages
diverged in geological time (in millions of
years). Today, tree topology is readily estimated
from molecular sequence data thanks to nearly
50 years of parallel advancements in the fields
of molecular evolution, genetic sequencing, and
phylogenetic inference. But even with this bounty
of molecular sequences, those data alone are inca-
pable of dating geological divergence times under
existing models of molecular evolution. For now
and for the foreseeable future, extrinsic informa-
tion is needed to time-calibrate (or date) the ages
of phylogenetic lineages, information such as that
from the fossil record or from the lasting impres-
sion of palaeogeographical scenarios upon bio-
geographic patterns (see Chap. 5). Fossils have
been, and remain, indispensable in how biologists
understand evolution. In the current era of
phylogenetic inference, the fossil record is
unquestionably the preferred source of evidence
for time-calibrating molecular phylogenies (see
Chap. 8). Under the best conditions, a fossil spec-
imen preserves the ancient presence of an evolu-
tionary lineage through its morphological features
and its age. With palaeontological expertise, that
morphology can be used to diagnose the fossil
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taxon’s phylogenetic relationship to extinct and
extant taxa. If the phylogenetic hypothesis places
the fossil within a clade of extant taxa (a crown
group), then that clade must be at least as old as
the fossil, i.e., a crown-group fossil constrains the
minimum age for that clade (Marshall 1990).

For many, this line of reasoning is quite direct
and intuitive. But, in practice, fossil dating is
complicated by a range of challenges, spanning
the theoretical to the empirical. Researchers are
actively advancing how we understand fossil dat-
ing in topics as varied as its application
(Donoghue and Moore 2003; Parham et al.
2012), its robustness (Warnock et al. 2015;
Brown and Smith 2017), and how to explicitly
incorporate fossil morphology into the model of
divergence-time estimation (Pyron 2011;
Ronquist et al. 2012), with diversification
processes that allow for the preservation of fos-
sil-taxon occurrences (Heath et al. 2014) and
fossil-taxon time series (Stadler et al. 2018),
with fossilization processes under the multispe-
cies coalescent (Ogilvie et al. 2018), and more
(see Chap. 11).

While many theoretical obstacles in fossil dat-
ing are likely to surrender to human creativity
(and computational muscle) over time, some
empirical obstacles appear to be immutable
properties of our natural world. Perhaps the larg-
est empirical complication is the paucity of
known fossils for many groups of organisms. To
make this concern concrete, take the turtles (order
Testudines), a clade with a fossil record so exqui-
site that turtles serve as a model clade for
experimenting with fossil dating strategies
(Joyce et al. 2013; Warnock et al. 2015). In con-
trast, consider the daisy family (Asteraceae),
where new fossil discoveries are rare and when
found rewrite our understanding of their diversi-
fication (Barreda et al. 2015). While the Paleobi-
ology Database is not a perfect reflection of the
fossil record itself, Asteraceae is represented by
far less than one-thousandth as many described
fossil specimens per living species when com-
pared with Testudines ( 100

26000 � 8000
350 � 0:00017 )

on the database (Turtle Taxonomy Working
Group 2017; Paleobiology Database 2018;

Angiosperm Phylogeny Website 2018). Many
plant, fungus, and insect clades lack fossils useful
for dating, creating widespread demand for dating
methods that do not directly depend on the fossil
record.

Biogeographic dating is one possible alterna-
tive. Biogeographic evidence, like the fossil
record, is fundamentally linked to our understand-
ing of how evolution has generated and
maintained biodiversity over geological time.
Since the earliest days of evolutionary thinking,
biogeographic disjunctions have been viewed as
both intriguing and perplexing patterns (Wallace
1855; Darwin 1859; Wallace 1876). In particular,
how is it that closely related lineages come to
inhabit distinct regions that are separated today
by a geographical barrier? One lineage must have
either dispersed over the barrier after it was
formed, or dispersed into the new region before
the barrier existed. Studying disjunctions from an
evolutionary perspective makes it clear that dis-
persal opportunities are shaped by palaeogeo-
graphical dynamics that play a central role in
shaping biogeographic processes and patterns:
the opening and closing of ancient seaways, the
formation of mountains, and the surfacing of vol-
canic islands.

It follows that palaeogeography and biogeog-
raphy, together, can serve as a valuable source of
dating information. Take, for instance, a clade of
species that is endemic to a young oceanic island,
far from its mainland relatives (Fleischer et al.
1998). The endemics did not spontaneously orig-
inate on the island, so what sequence of biogeo-
graphic events can explain the clade’s
geographical distribution? At one extreme, all
lineages within the clade might have first
originated on the mainland before the new island
formed, then independently colonized the island
only after its origination, followed by any neces-
sary extirpation and/or extinction of mainland
lineages. In this case, the clade might be older
than the island. A second, more plausible scenario
is that one lineage colonized the new island and
then radiated upon it (Baldwin and Sanderson
1998). If this second scenario were true, the
clade would be younger than the island. Time-
calibrating phylogenies with biogeography and
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palaeogeography operates by this reasoning: that
some biogeographic scenarios are more likely
than alternatives for a given palaeogeographical
context, and that likelihood should influence what
ages we estimate for the lineages involved
(Ho et al. 2015; de Baets et al. 2016).

Although historical biogeography and
palaeogeography are each fascinating in isolation,
I will only focus on how they serve to inform
divergence times in this chapter. Translating pos-
sible biogeographic histories into statistical infor-
mation, specifically, to inform or date divergence
times in a tree, is the exercise of dating
phylogenies using historical biogeography. I
will begin this chapter by reviewing several
examples of how palaeogeography, biogeogra-
phy, and diversification together generate infor-
mation to date phylogenies. Then, I will discuss
two Bayesian frameworks for biogeographic
time-calibration, and illustrate the utility of both
with empirical examples. First, I will consider
biogeographic node calibrations that date key
divergence events using expert-defined prior
node densities. Second, I will explore a newer
class of likelihood-based biogeographic dating
methods, which explicitly model and probabilis-
tically weight alternative biogeographic histories.
This chapter concludes by characterizing general
views of the utility of biogeographic dating in the
field, its uses, its shortcomings, and its future.

9.2 Linking Phylogeny,
Biogeography,
and Palaeogeography

In its simplest form, biogeographic dating relies
on combined evidence from palaeogeographic,
biogeographic, and molecular phylogenetic data
(Renner 2005; Ho et al. 2015; de Baets et al.
2016). What dating information can be extracted
from these data depends entirely on what clade,
what regions, and what timescales are under
study. Rather than speaking in generalities, this
section will examine several idealized scenarios
portrayed in Fig. 9.1 to develop guidelines for
identifying what biogeographic scenarios might
enrich a phylogenetic dating analysis.

For clarity, we will consider geography in a
discrete setting, with two regions, a northern
region (N) and a southern region (S). The
palaeogeographic context, which describes
features such as the availability of and connectiv-
ity between regions, changes at the time labelled
T. Figure 9.1 shows three alternative
palaeogeographic scenarios: the new availability
of a region where the initial existence of region S
begins only after time T (Fig. 9.1a); the new
connectivity between the regions N and S after
time T (Fig. 9.1b); and the lost connectivity
between the regions N and S after time
T (Fig. 9.1c).

Three biogeographic and phylogenetic
scenarios are shown in Fig. 9.1 and these are
explained in more detail below. In each biogeo-
graphic scenario, I assume that we know precisely
when and how the palaeogeographic context
changed, how that influenced species range evo-
lution, and how that relates to lineage diversifica-
tion. Note that the examples assume identical
statements of phylogenetic topology and species
ranges across scenarios, highlighting how node-
age distributions (in red) should respond to alter-
native palaeogeographic histories. All scenarios
require at least one dispersal event from region N
into region S. Multiple dispersals could also
explain the observed biogeographic patterns, but
those explanations would generally be eliminated
by parsimony or penalized by probability: all else
being equal, the probability of one dispersal, p, is
greater than or equal to the probability of two
dispersals, 0 � p2 � p � 1.

The first biogeographic scenario describes the
recent colonization of and radiation within a
newly accessible region (Fig. 9.1d). One example
of a newly available region is the birth of an
oceanic island through volcanic activity
(Fig. 9.1a; Clague and Sherrod 2014). Regional
availability provides a strong maximum age con-
straint for divergence times, since the region
could not have been inhabited before it existed.
New interregional connectivity generates a
related, but weaker, source of dating information.
Connectivity between regions increases follow-
ing events such as the merging of two continents
or the erosion of an intermediate mountain range
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(Fig. 9.1b). In this scenario, colonization events
can precede the formation of the barrier, but they
occur at a much lower rate (i.e., with lower prob-
ability per unit time).

The second biogeographic scenario describes
ancient dispersal (Fig. 9.1e). Ancient dispersal
involves a lineage colonizing a region before a
geographical barrier is formed. Interregional con-
nectivity is lost with the emergence of mountains,

the splitting of continents, the submergence of a
land bridge (Fig. 9.1c), or the loss of an interme-
diate connecting region (absent in Fig. 9.1 since it
requires >2 regions). Lineages can freely dis-
perse between regions before the barrier forms,
but they do so at a much lower rate afterwards
(i.e., with lower probability per unit time). For the
example shown in Fig. 9.1e, dispersal into region
S occurs before the barrier forms, with the

a  new availability

b  new connectivity

c  lost connectivity

Biogeographic
scenarios

d  recent dispersal

e  ancient dispersal

f  vicariance speciation

Palaeogeographic
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Fig. 9.1 Cartoon of biogeographic dating scenarios.
Node-age distributions (red) by combining evidence that
supports particular palaeogeographic scenarios (top) and
biogeographic scenarios (bottom), either with prior- or
process-based methods (further details are given in Sect.
9.3 of the main text). The three palaeogeographic
scenarios show how connectivity and availability between
two regions, N and S, changed during the time interval
T (grey bar): (a) region S originates; (b) regions N and S

merge; and (c) regions N and S split. The three biogeo-
graphic scenarios show various timings for biogeographic
and lineage splitting events and whether those timings are
consistent or not with the proposed palaeogeographic
scenarios (a–c): (d) a recent dispersal scenario; (e) an
ancient dispersal scenario; and (f) a vicariance scenario.
Panels (d–f) all show the same topology and species
ranges, differing only in the ages of biogeographic and
lineage splitting events
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lineages diverging for unspecified reasons well
before regions N and S separate.

The third biogeographic scenario describes
vicariance (Fig. 9.1f). Vicariance speciation
involves two phases. First, a new geographical
barrier interrupts the gene flow within a wide-
spread species range. Widespread is a relative
term, which operationally means that the species
range spans multiple regions; in Fig. 9.1f, one
lineage becomes widespread when it expands
from region N into both regions N and
S. Second, while this new barrier stands,
subdivided populations in the species range
develop heritable incompatibilities that establish
one or both isolates as new lineages. Note that
vicariance requires that the split lineage is ances-
trally widespread, implying that vicariance
scenarios involve an ancient dispersal event at
some point in the clade’s ancestry. While an
ancient dispersal scenario prefers clade ages that
predate the age of the new geographical barrier
(Fig. 9.1e), a vicariance scenario constrains both
the minimum and maximum clade ages to follow
the age of the new barrier.

To reiterate, the biogeographic scenarios
presented in Fig. 9.1 are simplified in order to
introduce three categories of biogeographic dat-
ing evidence. When appropriate, each biogeo-
graphic scenario generates its own set of
divergence-time constraints: recent dispersal
scenarios are used to constrain the maximum
age of a divergence, ancient dispersal scenarios
provide a minimum age constraint, and vicariance
scenarios provide both maximum and minimum
age constraints. But how do we know when it is
appropriate to invoke biogeographic evidence to
date a phylogeny? And how much influence
should biogeography and palaeogeography have
on clade-age estimates? After all, in standard
phylogenetic analyses, we do not precisely
know the relationships among lineages, their
divergence times, and the biogeographic history
of the clade (which depends on phylogenetic
knowledge), not to mention our poor knowledge
of the exact sequence and timing of many
palaeogeographic events. The next section
discusses these matters in more detail.

9.3 Time-Calibrating Trees
with Biogeography

A central premise of biogeographic dating is that
palaeogeography informs phylogenetic node ages
through the clade’s biogeographic history. But
how do we translate palaeogeographic events
and biogeographic patterns into information
about clade ages in practice? To begin, I will
reintroduce several familiar modelling
components used in molecular phylogenetics
that were detailed in Chaps. 5 and 6. Here, and
for the rest of the chapter, we will assume that we
are interested in estimating phylogeny by
modelling a molecular substitution process
(Felsenstein 1981) where lineages diversify fol-
lowing a branching process (Nee et al. 1994) and
molecular rates along branches vary according to
a relaxed-clock model (Thorne et al. 1998). By
fitting such a phylogenetic model to molecular
data, we can simultaneously estimate the
parameters for the tree topology, the node ages,
the substitution process, the relaxed molecular
clock, and the diversification process.

Without calibrations, the node ages can be
estimated in units of relative time at best (Thorne
et al. 1998). To estimate geological divergence
times, researchers have typically relied on fossil
evidence, secondary calibrations from backbone
phylogenies, or biogeographic hypotheses.
Regardless of the dating method, the exact rela-
tionship between any line of extrinsic evidence
and the timing of one (or several) divergence
events is not known with absolute certainty.
Because they readily accommodate this inherent
source of uncertainty, Bayesian phylogenetic
approaches have proven extremely effective for
divergence-time estimation (Drummond et al.
2006; Yang and Rannala 2006; Ronquist et al.
2012; Chaps. 6 and 13).

Briefly reviewing Bayesian phylogenetics will
help frame how we survey biogeographic dating
methods. The chief aim of Bayesian
phylogenetics is to estimate the distribution of
evolutionary parameters that have a high proba-
bility of generating the data that we observe in
nature, such as the observed data being the
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molecular sequences and geographic ranges of
the species being compared. This estimated dis-
tribution is called the posterior distribution, and it
is defined as being proportional to the product of
the likelihood function and the prior distribution.

P τ, a, θjXð Þ
posterior

¼ 1
Z
� P Xjτ, a, θð Þ

likelihood

� P τ, a, θð Þ
prior

ð9:1Þ

In the above formulation, the posterior distri-
bution defines the joint probability over the pos-
sible tree topologies, τ, divergence times, a, and
other model parameters, θ, such as various rates
of evolution and diversification-process
parameters, conditional upon the observed data
collected from nature, X. The normalization term,
1
Z , is the reciprocal of the marginal likelihood,
which is not directly relevant to the topic of
dating discussed here. What is important to
recognize here is that the likelihood function,
P(X | τ, a, θ), is a function of the observed data, X,
while the prior distribution, P(τ, a, θ), is not. The
likelihood function defines a model of evolution
that can generate our observed data, X, that we
use to fit the model parameters, θ. This means that
if our observations of the natural world for
X changed, so would our parameter estimates for
θ. In contrast, the prior distribution θ remains
constant regardless of the value of X. In this
sense, the prior density is data-independent and
the likelihood function is data-dependent, which
has consequences for the dating estimates that are
discussed later. The next two sections introduce
Bayesian strategies for time-calibrating
phylogenies: prior-based node calibration
methods and process-based dating methods. In
these sections, I will discuss some of the strengths
and sensitivities of each approach.

9.3.1 Prior-Based Node Calibrations

Prior-based node calibrations, often called node
calibrations or node priors for short, are used to

constrain the range of divergence times for
targeted nodes in phylogenies. During inference,
the prior probability of the calibrated node’s age
is taken into account when computing the joint
probability of all node ages in the phylogeny.
Dated phylogenies with node ages that do not
conform to all specified node calibrations are
scored with low probabilities, and are thus
disfavoured during estimation. In practice, node
calibrations are most often applied using fossil
evidence. Over decades, palaeontologists and
evolutionary biologists have developed a rich lit-
erature of techniques and best practices (Parham
and Irmis 2007; Parham et al. 2012; Joyce et al.
2013; Warnock et al. 2015) that we can extend to
frame principles for biogeographic node
calibrations here.

Applying fossil-based node calibrations
involves two major steps: the calibration must
first be justified, then the age constraints must be
specified. Justification involves determining that
a fossil specimen is a valid representative of
early-diverging stem or crown lineages of the
target node that is present in an explicitly stated
phylogenetic hypothesis. Parham et al. (2012)
advocate for the placement of fossils through the
cladistic analysis of morphology of fossil and
extant taxa. During justification, the biologist
defines the prior probability for the distribution
of possible ages relating to the calibrated node.
Some aspects of specification are considered stan-
dard practice, particularly that fossil specimens
represent the minimum age of the split, so the
calibrated lineage must be at least as old as the
fossil representative (Marshall 1990). Yet other
aspects of the prior are not so easily specified. In
particular, when did a lineage first originate, i.e.,
what is its maximum age? The clade could lack
early fossil representation because of taphonomy
or simply because the lineage had not yet
originated (Jaanusson 1976), rendering the true
maximum age unknowable. While models exist
to estimate origin times under fossil sampling
distributions (Strauss and Sadler 1989; Marshall
2008), assigning maximum age constraints to
calibrations is, to some, a dubious exercise
(Heads 2012). Nonetheless, explicitly or
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implicitly, all sources of calibration uncertainty
are encoded in the phylogenetic position and the
prior age density.

Superficially, biogeographic node calibrations
resemble fossil node calibrations in that they both
assert an evolutionary hypothesis to justify the
prior preference for certain node-age estimates.
To justify, specify, and validate a biogeographic
node calibration, however, requires principles
that are distinct from what fossil-based methods
use (Kodandaramaiah 2011; Ho et al. 2015; de
Baets et al. 2016). I have outlined these principles
below and diagrammed them in Fig. 9.2.

An overview of prior-based biogeographic dating
(I) Justification

(a) Declare the phylogenetic hypothesis of
lineage relationships.

(b) Record the biogeographic distributions
for the taxa.

(c) Indicate which node will be calibrated by
identifying a biogeographic disjunction
between one clade and its close relatives.

(d) Assert the hypothesis that a (dated)
palaeogeographic event facilitated or
maintained the biogeographic disjunc-
tion that is represented by the
calibrated node.

(II) Specification
(a) Record the range of possible dates for

the palaeogeographic event named in
Step I-d.

(b) Define a prior to constrain the range of
plausible ages for the node specified in
Step I-c as influenced by the dated
palaeogeographic event of Step II-a.

(c) Define standard models of molecular
evolution and lineage diversification.

(III) Estimation
(a) Estimate the posterior of dated

phylogenies under the chosen biogeo-
graphic prior.

(b) Confirm that dated phylogenies do not
imply internal inconsistencies, i.e., no
resulting biogeographic scenarios that
contradict premises for justifying the
calibration.

(c) Assess prior sensitivity of posterior
estimates.

Justifying a biogeographic node calibration
leverages a combination of palaeogeographic,
biogeographic, and phylogenetic evidence. Typi-
cally, the researcher begins with a phylogenetic
hypothesis, such as the topology estimated from a
molecular phylogeny. Next, biogeographic
disjunctions are identified from species range
data mapped to the tips of the phylogenetic
hypothesis. Lastly, the researcher identifies and
asserts that a particular palaeogeographic event
influenced the age of the proposed biogeographic
scenario. For example, take the phylogenetic
hypothesis (Step I-a) and range data (Step I-b)
of the biogeographic scenario in Fig. 9.1d. In
this case, we assert that a dispersal event into
region S followed by in situ speciation in region
S explains the biogeographic disjunction between
regions N and S today (Step I-c), where the dis-
persal event must have occurred after region S
came into existence (Step I-d).

Justifying biogeographic node calibrations is
often challenging for purely practical reasons:
small and recent radiations often lack sufficient
molecular variation to claim strong phylogenetic
hypotheses, while backbone phylogenies built
from, for example, genera as taxa generally rep-
resent deeper timescales, making it difficult to
assert specific historical biogeographic scenarios
with certainty. Perhaps more troublingly, several
researchers (Renner 2005; Kodandaramaiah
2011) hold that circular reasoning is sometimes
required to justify biogeographic node
calibrations: to assert that a biogeographic event
should favour a certain phylogenetic hypothesis
(i.e., a range of node ages for a divergence event),
the practitioner must first assume a phylogenetic
hypothesis (i.e., that biogeographic change
induced the divergence event).

Once the calibrated node has been justified,
specifying the calibration density requires two
main considerations: When was the
palaeogeographic event and, relative to it, when
might the calibrated divergence event have
occurred? Depending on the event, the
palaeogeographic event might have occurred
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instantaneously or gradually, and its date
(or duration) might be known precisely or not
(Step II-a). When in doubt, conservative times
that minimize the dating information are pre-
ferred, e.g., using an island age that is slightly
too old reduces the influence of a young-dispersal
node calibration. To define the offset between the
calibrated divergence time and the

palaeogeographic event, the shape of the calibra-
tion density should reflect whatever scenario was
used for its justification (Step II-b). The diver-
gence event might have preceded, coincided
with, or followed the palaeogeographic event
(Fig. 9.1). For example, the young-dispersal sce-
nario acts as a hard maximum age constraint for
the crown node of a subclade’s radiation, so the

Step I: Justification

Step I-a
State phylogenetic

hypothesis

Step I-b
Record biogeographic

states

N N

N

S

S

Step I-c Identify node
to time-calibrate

Step I-d State palaeogeographic
hypothesis

N N
S

Step II: Specification

Step II-a
Record time(s) of
palaeogeographic
event

Step II-b
Define 

biogeographic
node prior

T

T

Step III: Estimation

Step III-a
Estimate posterior ages from
molecular data and node prior

Zero prior
probability

High prior
probability

Age (Ma)

Step II-c
Define molecular and
diversification models

Age (Ma)

Data

Fig. 9.2 Diagram of prior-based biogeographic dating.
Node calibration involves three major steps. Justification
(Step I) asserts a divergence scenario by interpreting evi-
dence from a phylogenetic hypothesis (I-a) and the bio-
geographic states of the taxa (I-b) to identify a divergence
event (I-c) whose biogeographic disjunction was hypothet-
ically caused by a palaeogeographic event (I-d). Specifica-
tion (Step II) designs a model to estimate divergence times
by recording the time of the divergence-causing
palaeogeographic event (II-a) then assigning a node prior

of divergence times relative to the palaeogeographic event
time (II-b), along with specifying standard molecular and
diversification model components (II-c). Estimation (Step
III) fits the model with the node prior to the molecular data
to estimate a posterior density of dated phylogenies. The
prior density (purple; Step II-b) has zero probability for
ages older than T, which is reflected in the posterior
density (red). Thus, the posterior density prefers young
ages (a1) rather than old ages (a2). Steps III-b and III-c
are not shown. See Sect. 9.3.1 for additional details
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prior probability should be zero for all subclade
ages that are older than the newly available region
(Fig. 9.1d). Ancient-dispersal scenarios include
only a minimum age constraint (Fig. 9.1e). Vicar-
iance speciation scenarios apply both minimum
and maximum age constraints (Fig. 9.1f). Node
ages that do not conform to the asserted biogeo-
graphic scenario can be assigned zero prior prob-
ability (hard constraints) or small nonzero
probabilities (soft constraints). Typical node
prior densities are simple univariate densities
(e.g., uniform, exponential, gamma, and lognor-
mal) with shapes that reflect the asserted biogeo-
graphic hypothesis. In addition to the node prior,
a standard model of molecular evolution and line-
age diversification is specified (Step II-c).

The final step, estimation, first estimates the
posterior of time-calibrated phylogenies (Step
III-a), then validates those estimates in two
ways. One type of validation re-examines
whether the initial justification for the calibration
is compatible with the subsequent estimates for
all nodes in the phylogeny (Step III-b). A
vicariance-based node calibration, for example,
will assert that a conspicuous biogeographic dis-
junction resulted from, say, continental rifting
that subdivided an ancestor’s range. This justifi-
cation excludes long-distance dispersal as an
explanation, but if a vicariance-based calibration
inadvertently induces long-distance dispersal
events elsewhere in the phylogeny, then the justi-
fication itself is questionable (discussed by
Kodandaramaiah 2011). It is also crucial to vali-
date that the specified calibrations do not interact
negatively with other model priors and with the
data (Step IV-b). Though choosing well-behaved
priors in Bayesian phylogenetics is often difficult
(Alfaro and Holder 2006), misbehaviour can be
detected through prior-sensitivity analyses in
which the prior and posterior divergence-time
estimates are compared under a variety of calibra-
tion hypotheses (Warnock et al. 2015; Brown and
Smith 2017).

Practical details aside, hundreds of studies
have employed prior-based node calibrations
based on biogeographic evidence over the past
two decades. Listed below is a sample of biogeo-
graphic node-calibration analyses applied to a

diversity of clades and historical scenarios
(Fig. 9.1). Pioneering examples include the work
of Fleischer et al. (1998), who calibrated the
Hawaiian honeycreeper radiation using the ages
of the modern High Islands while being careful to
explicate what they assumed to justify the
calibrations. That same year, Baldwin and
Sanderson (1998) dated the Hawaiian silversword
radiation, not using the island ages themselves,
but rather the date of dry-summer conditions that
appeared in the western North American conti-
nent during the mid-Miocene (15 Myr ago).
Under the assumption that the arid climate
predated the radiation of the silverswords’ arid-
adapted ancestors (crown Madiinae), this
palaeoclimatic shift was used to impose maxi-
mum age constraints to calibrate the tree. Hawai-
ian palaeogeography has been subsequently used
to date numerous clades, including Megalagrion
damselflies (Jordan et al. 2003) and
Hyposmocoma moths (Haines et al. 2014).

Island palaeogeography outside of Hawaii has
also proven useful for node calibration. Studying
Sapotaceae, Swenson et al. (2014) used the age
when New Caledonia last surfaced from the sea to
date five independent colonizations of New
Caledonia, shifting crown node ages to be youn-
ger by 15–20% (up to 5 million years) relative to
when palaeogeography was ignored. Plana et al.
(2004) took the formation of two volcanic islands
to time-calibrate the radiation of African
begonias, a clade with no described fossils.
From 16 possible biogeographic calibrations
dependent on volcanic and continental island
ages, Andújar et al. (2014) computed Bayes
factors to select eight biogeographic scenarios
that yielded congruent divergence times for
Carabus beetle diversification.

To marine organisms, the appearance of new
land in the ocean acts as a geographical barrier
that potentially limits, rather than facilitates, new
dispersal opportunities. To this end, many bio-
geographic calibration studies have focused on
the closure of the Isthmus of Panama during the
Pliocene: Cowman and Bellwood (2011) used
this event, along with fossil calibrations, to date
four families of coral reef fishes; Thacker (2017)
dated two fish families, Elotridae and
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Apogonidae, and showed that using biogeo-
graphic calibrations reduced mean divergence
times by roughly 30–35%; Swart et al. (2015)
also used the isthmus to date Carangidae fishes,
which, during validation, revealed that an ancient
divergence event and biogeographic disjunction
was incidentally consistent with the closure of the
Tethys Sea. Yet, as a land bridge, the isthmus
simultaneously facilitates terrestrial dispersal:
Fuchs et al. (2007) calibrated the basal node of a
North-South American disjunction in
woodpeckers (Picidae), arguing that dispersal
was improbable before the isthmus began to form.

Gondwanan vicariance has been proposed
extensively to date clades distributed throughout
the Southern Hemisphere, with mixed results in
studies of terrestrial invertebrates. Allwood et al.
(2010) invoked Gondwanan vicariance to date the
evolution of velvet worms (Onychophora), a
monophyletic phylum with no inferred transoce-
anic dispersals. If it is true that New Zealand was
entirely below sea level during the late Oligocene
(Mildenhall et al. 2014), then this vicariance cali-
bration would imply that velvet worms somehow
survived the island’s submersion. Allegrucci et al.
(2010) examined the Gondwanan distribution of
cave crickets (Raphidophoridae), finding that
while many vicariance calibrations appear
justified, other biogeographic disjunctions can
only be explained by invoking long-distance dis-
persal or with exceedingly ancient (Precambrian)
crown-node ages (also see Beasley-Hall et al.
2018). McCulloch et al. (2016) studied the effect
of various fossil and tectonic calibrations on the
date estimates of Gondwanan stoneflies
(Plecoptera). Examining 17 uncalibrated nodes
that corresponded to Gondwanan disjunctions,
McCulloch et al. found that five of those nodes
had age estimates consistent with tectonic events:
vicariance sufficiently explained some, but not
all, divergence events.

Mountain-building episodes have also been
used to calibrate divergence times. On one hand,
mountains can serve as geographical barriers
between regions: Mansion and Zeltner (2004)
used the dates of uplift of the Sierra mountains
and various Mexican mountains to calibrate
nodes of the Zeltnera (Gentianaceae) phylogeny.

Mountains also resemble islands to high-altitude
specialists: Chaves et al. (2011) dated the serial
expansion of Adelomyia hummingbirds, a clade
of cloud forest endemics, using calibrations based
on the south-to-north uplift of the Andean
mountains.

Like many fossil-based node calibrations, bio-
geographic node calibrations are often conten-
tious. Node calibrations should be, and are,
subject to measured scientific scrutiny. For exam-
ple, efforts to date the plant clade Crypteroniaceae
stoked discourse among phytogeographers about
if, when, and how one might use biogeographic
calibrations. Conti et al. (2002) applied tectonic
calibrations for Crypteroniaceae, including its
migration from the African to Asian continent
aboard India as it drifted northwards following
the breakup of Gondwana. Moyle (2004) pro-
posed an alternative phylogenetic hypothesis
that undermined the justification of Africa-India
vicariance calibrations and questioned the range
of dates used to represent Gondwanan rifting (see
response by Conti et al. 2004), but a comprehen-
sive effort to validate the calibrations by
Rutschmann et al. (2004) supported the original
conclusions of Conti et al. (2002).

There are important cases where the fossil
record undermines the justification of key
calibrations. Gibb et al. (2015) questioned the
use of Gondwanan vicariance to time-calibrate
several passerine phylogenies in the literature.
The calibration depended on the rifting of
Zealandia from Australia throughout the Late
Cretaceous (�82 Myr ago) to date the split
between a clade composed of two species of
flightless wrens that are endemic to
New Zealand from all remaining passerines.
Gibb et al. (2015) took two issues with the justifi-
cation of this calibration. First, the wrens might
have arrived in Zealandia after the rifting event if
their ancestors could fly. Second, flightless wrens
would have been extirpated from New Zealand if
and when the island was inundated in the late
Oligocene (22–25 Myr ago). Gibb et al. (2015)
also took one issue with the specification: that the
Australia-Zealandia rift might not have
completed until much later (�55 Myr ago). In
another example, Goswami and Upchurch
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(2010) found that the vicariance calibrations used
by Heads (2010) were unjustified in explaining
the disjunction between NewWorld monkeys and
Old World monkeys. The calibrations require that
early primate lineages were globally distributed,
first diverging during the breakup of Pangaea in
the Jurassic (�160 Myr ago). It would be unprec-
edented, Goswami and Upchurch argued, for
primates to be sufficiently ancient and widely
distributed, yet leave no appearances in the fossil
record until the late Paleocene (�56 Myr ago).
Moreover, no eutherian mammal fossils were
known prior to 125 Myr ago (Goswami and
Upchurch 2010). If primates were so ancient,
per the Pangaean vicariance hypothesis, that fact
would radically alter our understanding of evolu-
tionary processes, vicariance speciation, and the
fossil record.

In other cases, sole reliance on fossils for dat-
ing can result in node-age estimates that are
unusual when viewed in light of biogeographic
and palaeogeographic evidence. Ali (2020)
identified that the fossil-calibrated phylogeny of
Kurixalus frogs (Lv et al. 2018) implies that
Taiwan was colonized at least 10 Myr before the
island had originated. Román-Palacios et al.
(2018) detected a similar issue in a fossil-dated
phylogeny of Caribbean anoles that they
estimated. In it, a clade of island endemics
appeared to predate the emergence of the island
itself. The quality of a dating analysis is improved
by examining where complementary lines of evi-
dence agree or disagree.

To summarize this section, biogeographic
node calibrations encode expert knowledge and
diversification hypotheses as prior probabilities to
constrain when key lineage-splitting events
occurred. Biogeographers and evolutionary
biologists are developing new conceptual
frameworks for how to justify and specify
palaeogeographic node calibrations
(Kodandaramaiah 2011; Ho et al. 2015; de
Baets et al. 2016). Two dominant themes emerge
from the few examples of biogeographic node
calibration listed above. First, biogeographic
node calibrations tend to be used to date clades
with little or no representation in the fossil record,
including plants, insects, fish, and birds. And,

second, the justification for some biogeographic
calibrations, particularly vicariance calibrations,
wither away when assessed critically, while
others remain firm.

Beyond their application in the literature, it is
important to recognize that node priors are only as
good as their justification and specification. With
justification, how certain is it that a particular
biogeographic event influenced the phylogenetic
split of interest? If this scenario is unlikely, then
any dates estimated under its premise are equally
questionable. If one could confidently state the
probability, p, of a key biogeographic scenario
informing the age of the calibrated node, an,
then the node prior could be treated as a mixture
of priors where an follows the calibration prior
with probability p and an uninformative uniform
prior with probability 1 � p. This is a calibration
with soft bounds (Yang and Rannala 2006). What
complicates this strategy is that the value of
p should depend on the biogeographic states at
the tips of the tree, the tree topology and distribu-
tion of divergence times, the tempo and mode of
the biogeographic process, and the unknown
interactions between biogeography and
palaeogeography: that is, p needs to be inferred
from the data with a biogeographic model.

Specifying node prior calibration densities is
also challenging. What probability density
represents all of the uncertainty concerning the
age of the divergence event relative to the
palaeogeographic event? This depends a great
deal on the palaeogeography, biogeography, and
phylogeny of the system in question. For exam-
ple, a prior density for a lineage from the main-
land colonizing and radiating in an island system
might be constructed as a compound prior

an ¼ ai � tc � td ð9:2Þ
where an is the age of the first divergence event
among a clade of island endemics, ai is the age of
the island, tc is the waiting time for a mainland
lineage to colonize the new island, and td is the
waiting time until divergence following genetic
isolation. Decomposing the prior in this manner
clarifies some of the assumptions made to specify
it. For example, we might define an as the age of a
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uniformly distributed island age minus two expo-
nentially distributed waiting times: this would be
fairly consistent with the definition of a gamma
distribution centred on a random age away from
zero. While it might be straightforward to acquire
a radiometric date (with error terms) for the island
age component, ai, it is less clear what the
expected waiting times until colonization, tc, and
until lineage splitting, td, should be. Like the
justification probability, p, the values of tc and td
are quantities that one typically estimates from
data phylogenetically, rather than what one
asserts a priori.

Despite the many conceptual challenges, prior-
based calibration methods are easy to apply, com-
putationally speaking. Most prior densities are
standard univariate parametric distributions, so it
is simple and fast to compute the node-age prob-
ability under the calibration. That said, multiple
node calibrations can induce a joint prior density
that behaves in unpredictable ways, making it
imperative to assess the prior sensitivity of the
calibration model: see Warnock et al. (2015) for
an excellent overview of this subject. Biogeo-
graphic node calibrations can be specified in any
phylogenetic software that supports node priors,
such as MrBayes (Ronquist et al. 2012),
RevBayes (Höhna et al. 2016), BEAST
(Bouckaert et al. 2014), and MCMCTree (Yang
and Rannala 2006).

9.3.2 Process-Based Biogeographic
Dating

The previous section explored how prior-based
methods date phylogenies that reflect hypotheti-
cal biogeographic scenarios. This section
introduces a second class of dating methods,
called process-based methods, that instead rely
on data-dependent biogeographic inference.
Process-based dating methods estimate posterior
node-age densities that are shaped through the
likelihood function rather than through the prior.
The distinction between prior-and process-based
approaches is important to many researchers,
because process-based inference means that
node-age estimates result from the

palaeogeographic, biogeographic, and phyloge-
netic evidence provided, rather than as an inter-
pretation of the evidence that one asserts on the
inference problem through the prior. The two
biogeographic dating strategies are directly anal-
ogous to prior-based (Donoghue and Moore
2003; Yang and Rannala 2006; Parham et al.
2012) and process-based (Pyron 2011; Ronquist
et al. 2012; Heath et al. 2014; Gavryushkina et al.
2017) fossil dating strategies.

As the name suggests, process-based biogeo-
graphic dating methods require that we define a
biogeographic process of range evolution. Much
like any process of molecular evolution, biogeo-
graphic processes are used to compute transition
probabilities for biogeographic change over time,
for example to compute the probability that a
lineage dispersed from a continent into an island
within 1 million years of the lineage’s existence.
To compute this probability, again similar to
molecular processes, biogeographic processes
probabilistically average (integrate) over all pos-
sible histories that are compatible with the bio-
geographical data observed at the tips of the tree,
weighing each history by its probability. Biogeo-
graphic models come in a variety of forms, with
special attention paid to discrete regions (Ree
et al. 2005; Sanmartín et al. 2008), continuous
regions (Lemmon and Lemmon 2008; Lemey
et al. 2009; Quintero et al. 2015), range-
dependent speciation-extinction rate variation
(Goldberg et al. 2011; Caetano et al. 2018), clad-
ogenetic range-inheritance events (Matzke 2014),
and factors including geography (Landis et al.
2013; Tagliacollo et al. 2015), ecology (Meseguer
et al. 2015; Landis et al. 2021), morphology
(Sukumaran et al. 2016), and interspecific com-
petition (Quintero and Landis 2020).

Unlike molecular processes, however, biogeo-
graphic processes can readily incorporate
palaeogeographic information to structure their
transition rates (and thus their transition
probabilities) between regions so that they
depend on the geological age of a possible
range-evolution event. These models are often
called time-stratified (Ree et al. 2005; Ree and
Smith 2008) or epoch models (Bielejec et al.
2014). As an example, a dispersal event from a
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continent into a 5-million-year-old island at any
time during a 1 Myr interval would have zero
probability before the island surfaced (e.g.,
10 Myr ago) and nonzero probability only after
it originated (e.g., just 1 Myr ago). Although
evolutionary rate and geological time are
non-identifiable from one another under standard
molecular models (Zuckerkandl and Pauling
1962; Thorne et al. 1998), the parameters can be
separately identified under biogeographical
models that are palaeogeographically structured
(Landis 2017).

A major strength of process-based dating
methods is their ability to model the uncertainty
that is inherent to biogeographic dating
approaches. Rather than justifying and specifying
individual biogeographic node calibrations as one
does in a prior-based approach, process-based
methods assess the likelihood of observed bio-
geographic disjunctions by fitting models with
historical interactions between palaeogeographic,
biogeographic, and phylogenetic components. By
integrating over hypothetical scenarios involving
palaeogeographic, biogeographic, and phyloge-
netic interactions that compete to explain the
observed molecular and biogeographic variation,
process-based dating methods generate posterior
distributions of node-age densities through the
model’s likelihood function. A brief overview of
how to design a process-based analysis is given
below (Fig. 9.3).

An overview of process-based biogeographic
dating
(I) Specification

(a) Define a set of discrete regions.
(b) Define a model of palaeogeographical

dynamics.
(c) Define a palaeogeography-dependent

model of biogeographic evolution.
(d) Define standard models of molecular

evolution and lineage diversification.
(II) Estimation

(a) Estimate the posterior of divergence
times from molecular and
biogeographic data.

(b) Assess prior sensitivity of posterior
estimates.

(c) Conduct simulation experiments to
assess confidence in empirical results.

Process-based dating relies on two major
steps: specification and estimation. Unlike prior-
based dating, there is no justification step because
the specified model averages over possible bio-
geographic and palaeogeographic justifications
(hypotheses). Specification, however, is more
involved. The first step is to define the set of
regions that will adequately portray the relevant
palaeogeographic dynamics and biogeographic
disjunctions in the analysis (Step I-a). For exam-
ple, two regions are sufficient to capture the
dynamics in Fig. 9.1. Further dividing region S
into regions SW and SE would not expose any
new dating information. Next, characterize the
palaeogeographic dynamics in terms of the avail-
ability and connectivity between regions with
respect to time (Step I-b). In practice, this can be
done by defining a vector of adjacency graphs,
where nodes correspond to regions, edges corre-
spond to dispersal routes, and each graph in the
vector is indexed by the timing of a
palaeogeographic event (Buerki et al. 2011;
Landis 2017). The time-stratified biogeographic
model of Step I-c will then be defined to condition
on the palaeogeographic structure defined in Step
I-b by, for example, declaring that dispersal rates
between two regions are greater than zero only if
the regions are connected. To estimate the topol-
ogy and branch-length parameters, standard
molecular phylogenetic models are used (Step
I-d).

Once the molecular, biogeographic, and
palaeogeographical models are specified, all
model components are simultaneously fitted to
the molecular and biogeographic data in a joint
Bayesian analysis (Step II-a). The estimates are
then validated in two ways. Prior sensitivity
experiments or simulation experiments can be
used to validate process-derived age estimates.
Prior sensitivity analyses for process-based
methods behave similarly to those for prior-
based methods (see previous section), except
that the priors applied to the biogeographic pro-
cess parameters should also be tested for sensitiv-
ity. Sensitivity analyses are useful to assess the
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accuracy of divergence-time estimates under a
variety of controlled settings, such as under the
assignment of alternative prior densities to model
parameters. Simulation experiments involve
simulating many (�100) phylogenetic data sets
under the model defined in Steps I-b, I-c, and I-d,
then estimating divergence times for those
simulated data. If the estimated ages agree with
the true simulated ages, that instils confidence
that the process-based method behaves well
under controlled conditions. But if the method
grossly misestimates divergence times, then it is
likely that any empirical estimates are incorrect or
worse. Simulation experiments cannot be
conducted naturally using prior-based dating
methods, since priors do not generate

biogeographic data, making this form of valida-
tion somewhat unique to process-based methods.

Process-based biogeographic dating methods
are quite young relative to prior-based methods,
with only two examples in the literature at this
time. In the study that introduced the method,
Landis (2017) used the process-based techniques
to date the phylogeny of crown turtles
(Testudines). Testudines has received excellent
taxonomic and phylogenetic treatment for
decades (Crawford et al. 2015), and possesses a
superbly documented fossil record that spans the
Mesozoic and Cenozoic. These data have been
used to generate numerous fossil-based estimates
of the clade’s age (Near et al. 2004; Hugall et al.
2007; Joyce et al. 2013), which are valuable to

Step I: Specification

Step I-a
Define regions N and S

Step I-b
Define time-calibrated
palaeogeographic model

T
N N

SStep I-c
Define palaeogeography-
dependent model
of biogeography

Step I-d
Define molecular and
diversification models

Step II: Estimation

Step II-a
Estimate posterior ages from
molecular and biogeographic data

DataT
   N S

   N S

   N S

Low likelihood High likelihood

Age (Ma)

Fig. 9.3 Diagram of process-based biogeographic dating.
Node calibration involves two major steps. Specification
(Step I) first defines a set of biogeographic regions (I-a),
then defines a dated palaeogeographic model for the avail-
ability and connectivity of those regions (I-b) that
structures a time-stratified biogeographic model (I-c).
Here, the biogeographic model, M bg , defines
palaeogeography-dependent dispersal rates, d(t), that are
zero before region S appears at time T and positive after-
wards (blue density). Simple molecular and diversification

models (M mol and M div) are also defined (I-d). Estimation
(Step II) fits the model to the molecular and biogeographic
data to estimate a posterior density of dated phylogenies
(II-a). The model likelihood favours few, young dispersal
events over many, (young or ancient) dispersal events,
which is reflected in the posterior density (red). Thus, the
posterior density prefers young ages (a1) rather than old
ages (a2). Steps II-b and II-c are not shown. See main text
for details
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validate whether alternative dating methods find
similar ages. Biogeographically speaking,
Testudines exhibits an ‘out-of-Gondwana’ distri-
bution (Joyce et al. 2016) that remains imprinted
in extant ranges thanks to their tendency for slow-
and-steady dispersal. Together, these natural and
scientific conditions made Testudines ideal for
studying the behaviour of process-based biogeo-
graphic dating methods.

Landis (2017) dated the global expansion of
Testudines lineages by jointly modelling
interactions between processes of diversification,
molecular evolution, biogeographic change, and
palaeogeography while assuming a fixed topol-
ogy. To do this, I introduced a global empirical
model of continental drift for 25 regions and
26 time intervals, stretching from the Cambrian
(540 Myr ago) to the present. The continental
drift model defined connectivity between regions
as strong, weak, or absent with three sets of
graphs, defining�200 connections per time inter-
val, with over 1000 changes to interregional con-
nectivity in total. It is not obvious how important
geographic connectivity is to any particular clade:
birds might disperse freely across mountains, but
turtles might not. Rather than asserting the impor-
tance of connectivity a priori, as one must do
when justifying a prior-based node calibration,
the combined importance of strong, weak,
and/or absent connectivity on biogeographic
change was estimated from the data. Fitting the
model to the Testudines data set estimated a mean
posterior root age of 205 Myr (95% highest pos-
terior density of 135–358 Myr), a result that was
congruent with the fossil-based estimates from
the literature, which reported estimates as low as
150 Myr (Joyce 2007) and as high as 325 Myr
(Dornburg et al. 2011).

In the second study, Landis et al. (2018)
estimated divergence times for the silversword
alliance, an iconic adaptive radiation of plants
that dispersed throughout the Hawaiian Islands
(Carlquist 1966). Like many island plant
endemics, silverswords lack any described
fossils, so estimating the age of this clade has
been consequently difficult (Baldwin and
Sanderson 1998). To complicate matters, the
topology within the silversword clade is not

completely resolved, making it difficult to justify
calibrations for a specific phylogenetic hypothe-
sis. Although there was likely to have been only
one long-distance dispersal event from the North
American continent into the Hawaiian archipel-
ago (Baldwin et al. 1991), silverswords are found
only throughout the High Islands, the set of youn-
ger islands that are not more than 6 million years
old (Clague and Sherrod 2014). The exact
sequence and timing of island colonization events
within the archipelago must inform the diver-
gence times, but no single biogeographic scenario
is suitable for justifying or specifying node
calibrations, further limiting the applicability of
prior-based methods.

Similar to the approach taken by Landis
(2017), Landis et al. (2018) estimated what com-
bination of evolutionary histories for silverswords
with divergence times, tree topologies, biogeo-
graphic histories, and island origination times
had a high probability of generating the observed
molecular and biogeographical data. The silver-
sword crown age was dated to be roughly 3.5
Myr, and at most 5.1 Myr, a date that is consistent
with the maximum age estimate of Baldwin and
Sanderson (1998) that disregarded island ages to
date the clade. Standard practice for using prior-
based methods would assign the maximum age of
the clade as equal to the oldest inhabited island
(Kauai), while potential dating information from
younger islands would be disregarded because it
cannot easily be justified. But process-based dat-
ing applied to the silverswords extracted addi-
tional information for subclade ages when using
all islands’ ages rather than only the oldest
island’s age. For example, when testing prior
sensitivity of the age estimates, one subclade
(Argyroxiphium) age was estimated to be twice
as old when only using the age of Kauai in com-
parison with an analysis using all islands’ ages.

Keep in mind that evolutionary biologists and
biogeographers are often interested in dating
phylogenies for the purposes of estimating ances-
tral states. Dated phylogenies that rely on biogeo-
graphic node calibrations generally cannot be
used to later reconstruct ancestral species ranges:
prior-based calibrations are justified through the
assertion of a historical biogeographic scenario,
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so subsequent ancestral range estimates would be
biased towards scenarios that conform to the prior
hypothesis (de Jong 2007). As part of the process-
based dating analysis, Landis et al. (2018)
estimated distributions of possible biogeographic
scenarios, then used those estimated histories to
test various biogeographic hypotheses, such as
which island silverswords first colonized and
whether dispersal and speciation processes
favoured young or old islands. Because process-
based dating methods do not involve a justifica-
tion step, they avoid many such forms of circular
reasoning ascribed to prior-based methods
(Renner 2005; Kodandaramaiah 2011; de Jong
2007).

In summary, process-based biogeographic dat-
ing methods measure the probabilities of compet-
ing node-age distributions by averaging
(integrating) over all possible palaeogeographic,
biogeographic, and phylogenetic histories that are
defined by the likelihood model. Because
process-based dating methods fit models to
palaeogeographic and biogeographic data, they
are more data-intensive than prior-based methods.
This makes process-based methods more sensi-
tive to data errors, such as errors in coding species
ranges or island ages, which could skew first
arrival times to islands. In addition,
process-based methods are more computationally
intensive than prior-based methods. Estimating
divergence times using a process-based approach
requires repeatedly computing the biogeography
model’s likelihood function, which can be as
slow as computing the molecular likelihood func-
tion or worse. Most biogeographic models scale
abysmally with increasing numbers of regions
(Ree and Sanmartín 2009), and current methods
designed to circumvent this issue cannot treat
phylogenies as random variables (Landis et al.
2013).

Biogeographic model adequacy is also a major
concern. Models that neglect major features of
range evolution will assign inaccurate
probabilities in support of alternative biogeo-
graphic scenarios. For example, an extremely
inadequate model might treat all geographical
barriers as entirely impermeable, assigning zero
probability to any dated phylogeny that requires

long-distance dispersal to explain biogeographic
disjunctions. But, in reality, long-distance
dispersal always has a nonzero probability, how-
ever small. At the moment, phylogenetic models
of biogeography are still in their infancy (Albert
and Antonelli 2017), but are maturing steadily
(Sanmartín et al. 2008; Webb and Ree 2012;
Matzke 2014; Meseguer et al. 2015; Quintero
et al. 2015; Tagliacollo et al. 2015; Sukumaran
et al. 2016). Not only are the biogeographic
models young, but so are the methods that apply
them to divergence-time estimation problems
(Landis 2017; Landis et al. 2018), meaning the
properties of those methods are poorly under-
stood relative to prior-based methods. Further
limiting the method’s use, the computational
framework needed to jointly model phylogenetic,
biogeographic, and palaeogeographic interactions
is specialized and only currently available in
RevBayes (Höhna et al. 2016).

9.4 Conclusions

Recounting the biological history of Earth
requires knowledge of the order and timing of
the constituent events. Our record of historical
events is incomplete, meaning that we rely on
inference to retrace the past. But it is no trivial
matter to locate key phylogenetic events, such as
when or where lineages diverged, throughout
most of the tree of life. Advances in phylogenetic
inference let us establish a geological timescale
for lineage divergences by recruiting extrinsic
evidence: for example, the age and morphology
of a fossil specimen can indicate the early origins
of a particular clade. Palaeogeographic events,
such as the birth of islands, the building of
mountains, or the separation of continents, have
also proven useful for dating evolutionary
lineages, particularly lineages in clades with
poor fossil representation. That framework, bio-
geographic dating, works by adopting a phyloge-
netic perspective to disentangle how a clade’s age
and biogeographic pattern might have been
influenced by one or several palaeogeographic
events.
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In this chapter, I reviewed the conceptual basis
of biogeographic dating under two methodologi-
cal frameworks: prior-based biogeographic node-
calibration methods and process-based biogeo-
graphic dating methods. Although prior- and
process-based methods both convert biogeo-
graphic hypotheses into information to estimate
divergence times, they do so in different ways.
Prior-based methods require that the researcher
first justifies that a particular biogeographic sce-
nario resulted from a palaeogeographic event and,
second, specifies a range of plausible origination
times for the newly diverged lineage(s). Process-
based methods specify a model of
palaeogeography-dependent biogeographic evo-
lution that is fitted to the observed species ranges
by probabilistically averaging over the distribu-
tion of possible historical scenarios.

Prior-based dating is extremely flexible. Part
of this flexibility emerges from the conceptual
foundation of biogeographic node calibrations,
which has been regarded as somewhat murky
(Renner 2005; Kodandaramaiah 2011; de Baets
et al. 2016). But being murky comes with
advantages and disadvantages. Prior-based dating
affords the biologist complete control to set the
precision and accuracy of the dating estimates in
such a way that comports with their expert
description of the system’s evolutionary history.
From the computational perspective, prior-based
node calibrations tend to be fairly easy to design
and evaluate in phylogenetic analyses. But it is
not uncommon to hear experts disagree about
whether a calibration has a correct justification
or specification. While those disagreements are
not easily settled quantitatively because the justi-
fication and specification are, ultimately, related
to prior model design, they can be settled logi-
cally (Goswami and Upchurch 2010;
Kodandaramaiah 2011). Several researchers
have also voiced concern that justifying a biogeo-
graphic node calibration often requires circular
reasoning, or at least the assertion of an unfalsifi-
able hypothesis (Renner 2005; Kodandaramaiah
2011; de Baets et al. 2016). One last consequence
of prior-based dating is that the biogeographically
dated trees cannot later be used to estimate ances-
tral species ranges without improperly ‘double

counting’ the biogeographic evidence (de Jong
2007). Despite any complications, prior-based
methods are still the most popular and widely
used biogeographic dating strategy.

Process-based methods extract calibration
information from the joint distribution of
palaeogeographic data, biogeographic data, and
molecular data. When compared with prior-based
methods, the biologist is required to make fewer
strong assertions about specific biogeographic
scenarios, such as exactly how species are related,
how completely a geographic barrier disrupts
geodispersal, and the exact choreography of a
clade’s spatial radiation. Rather than supposing
a particular scenario a priori, process-based dat-
ing approaches average over all historical biogeo-
graphic scenarios that are defined by the model,
weighing each scenario by its probability of hav-
ing occurred. While process-based approaches
have some features that are theoretically appeal-
ing, they depend entirely on the adequacy of our
biogeographic models, which are still quite sim-
ple despite ongoing developments. Process-based
methods are fundamentally more complex than
prior-based methods, with a computational bur-
den that might limit their application in practice.

Regardless of whether one uses prior-based or
process-based methods, the most satisfying
divergence-time estimates are those that are cor-
rect (high accuracy) and confident (high preci-
sion). Precise results without accuracy are
especially disturbing, leading one to draw the
wrong conclusions from the evidence at hand.
Seeking highly precise dating estimates should
not be a goal at the expense of all else (Graur
and Martin 2004). How do we extract that dating
information from biogeography without
introducing bias? When applying biogeographic
prior-based calibrations, first, be critical of
whether the calibration is truly justified and
defensible. What empirical evidence or computa-
tional experiment could render the justification
invalid? Second, avoid recycling densities that
were previously published in the literature.
Instead, the biologist should define a new density
that represents her prior beliefs for when a diver-
gence event occurred after reviewing the phylo-
genetic, biogeographic, and palaeogeographic
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evidence. Experiment with densities with higher
variance or soft tails during validation. For exam-
ple, if it is not certain that a vicariance scenario
occurred, consider the use of a ‘soft’ vicariance
prior (Fig. 9.1f, bottom), or instead use the less
constrained ancient dispersal prior (Fig. 9.1e).
Process-based methods are also prone to giving
biased estimates when the biogeographic data
contain coding errors, when the palaeogeographic
model is too restrictive or contains inaccurate
dates, and when the biogeographic model is
severely inadequate. Simulation experiments
might help to detect and protect against such
biases.

We do not know the exact limits for when we
can accurately or precisely date nodes using bio-
geography. It is worth mentioning that fossil-
based estimates are generally deemed superior to
biogeography-based estimates for many good
reasons. The timing of biogeographic scenarios
contains many uncertainties: the timing of many
palaeogeological events is not known precisely,
the actual palaeogeographical event might be
prolonged over many millions of years, or the
relationship between the palaeogeographic event
and the biogeographic event is itself unclear. Fos-
sil specimens are often dated with fairly high
precision when compared with biogeographic
scenarios, and fossilization and divergence
scenarios involve fewer contingent events to
describe patterns than do biogeographic
scenarios. This ultimately makes it easier to
model fossilization scenarios (with a prior or a
process). Despite the superiority of fossil-based
dating in these respects, the fossil record varies in
reliability: some groups (such as carnivorans and
cetaceans) have exceptional records, while many
groups are poorly represented (bacteria, plants,
fungi, soft-bodied invertebrates, and small
vertebrates). Fossil and biogeographic dating
methods, however, should be regarded as com-
plementary, not competing, strategies. Applying
the two strategies simultaneously will, in princi-
ple, improve dating estimates beyond what might
be learned using only one half of the available
evidence.

Our understanding of evolution draws from
diverse lines of evidence, and so our attempts to
chronicle evolutionary history will require simi-
larly diverse evidence and methods. No
matter what method is used to time-calibrate a
phylogeny, it is a delicate and often difficult prac-
tice. But biologists, in exercising care, curiosity,
and patience, are making steady progress towards
a richer portrait of when, where, and how life
diversified.

Acknowledgements Feedback from Nate Upham,
Rachel C. Warnock, Edgar Benevides, and Luis Palazessi
helped improve an early draft of the chapter. I am also
grateful to an anonymous reviewer and to the editor of this
book, Simon Y. W. Ho, for their remarks.

Funding
MJL was supported by a NSF Postdoctoral Fellowship
(DBI-1612153) to MJL and a Gaylord Donnelley Environ-
mental Fellowship through the Yale Institute of Biospheric
Studies.

References

Albert JS, Antonelli A (2017) Society for the study of
systematic biology symposium: frontiers in parametric
biogeography. Syst Biol 66:125–127

Alfaro ME, Holder MT (2006) The posterior and the prior
in Bayesian phylogenetics. Annu Rev Ecol Evol Syst
37:19–42

Ali JR (2020) Geological data indicate that the interpreta-
tion for the age-calibrated phylogeny for the Kurixalus-
genus frogs of South, South-east and East Asia
(Lv et al., 2018) needs to be rethought. Mol Phylogenet
Evol 145:106053

Allegrucci G, Trewick SA, Fortunato A, Carchini G,
Sbordoni V (2010) Cave crickets and cave weta
(Orthoptera, Rhaphidophoridae) from the southern
end of the world: a molecular phylogeny test of bio-
geographical hypotheses. J Orthoptera Res
19:121–130

Allwood J, Gleeson D, Mayer G, Daniels S, Beggs JR,
Buckley TR (2010) Support for vicariant origins of the
New Zealand Onychophora. J Biogeogr 37:669–681

Andújar C, Soria-Carrasco V, Serrano J, Gómez-Zurita J
(2014) Congruence test of molecular clock calibration
hypotheses based on Bayes factor comparisons.
Methods Ecol Evol 5:226–242

Angiosperm Phylogeny Website (2018) The angiosperm
phylogeny website. http://www.mobot.org/MOBOT/
research/APweb/

152 M. J. Landis

http://www.mobot.org/MOBOT/research/APweb/
http://www.mobot.org/MOBOT/research/APweb/


Baldwin BG, Sanderson MJ (1998) Age and rate of diver-
sification of the Hawaiian silversword alliance
(Compositae). Proc Natl Acad Sci USA 95:9402–9406

Baldwin BG, Kyhos DW, Dvorak J, Carr GD (1991)
Chloroplast DNA evidence for a North American ori-
gin of the Hawaiian silversword alliance (Asteraceae).
Proc Natl Acad Sci USA 88:1840–1843

Barreda VD, Palazzesi L, Tellería MC, Olivero EB, Raine
JI, Forest F (2015) Early evolution of the angiosperm
clade Asteraceae in the Cretaceous of Antarctica. Proc
Natl Acad Sci USA 112:10989–10994

Beasley-Hall PG, Tierney SM, Weinstein P, Austin AD
(2018) A revised phylogeny of macropathine cave
crickets (Orthoptera: Rhaphidophoridae) uncovers a
paraphyletic Australian fauna. Mol Phylogenet Evol
126:153–161

Bielejec F, Lemey P, Baele G, Rambaut A, Suchard MA
(2014) Inferring heterogeneous evolutionary processes
through time: from sequence substitution to
phylogeography. Syst Biol 63:493–504

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H,
Xie D, Suchard MA, Rambaut A, Drummond AJ
(2014) BEAST 2: a software platform for Bayesian
evolutionary analysis. PLOS Comput Biol 10:
e1003537

Brown JW, Smith SA (2017) The past sure is tense: on
interpreting phylogenetic divergence time estimates.
Syst Biol 67:340–353

Buerki S, Forest F, Alvarez N, Nylander JAA, Arrigo N,
Sanmartín I (2011) An evaluation of new parsimony-
based versus parametric inference methods in biogeog-
raphy: a case study using the globally distributed plant
family Sapindaceae. J Biogeogr 38:531–550

Caetano DS, O’Meara BC, Beaulieu JM (2018) Hidden
state models improve state-dependent diversification
approaches, including biogeographical models. Evolu-
tion 72:2308–2324

Carlquist S (1966) The biota of long-distance
dispersal. I. Principles of dispersal and evolution. Q
Rev Biol 41:247–270

Chaves JA, Weir JT, Smith TB (2011) Diversification in
Adelomyia hummingbirds follows Andean uplift. Mol
Ecol 20:4564–4576

Clague DA, Sherrod DR (2014) Growth and degradation
of Hawaiian volcanoes. US Geol Surv Prof Pap
1801:97–146

Conti EA, Eriksson T, Schönenberger J, Sytsma KJ, Baum
DA (2002) Early Tertiary out-of-India dispersal of
Crypteroniaceae: evidence from phylogeny and molec-
ular dating. Evolution 56:1931–1942

Conti EA, Rutschmann F, Eriksson T, Sytsma KJ, Baum
DA (2004) Calibration of molecular clocks and the
biogeographic history of Crypteroniaceae: a reply to
Moyle. Evolution 58:1871–1876

Cowman PF, Bellwood DR (2011) Coral reefs as drivers
of cladogenesis: expanding coral reefs, cryptic extinc-
tion events, and the development of biodiversity
hotspots. J Evol Biol 24:2543–2562

Crawford NG, Parham JF, Sellas AB, Faircloth BC, Glenn
TC, Papenfuss TJ, Henderson JB, Hansen MH,
Simison BW (2015) A phylogenomic analysis of
turtles. Mol Phylogenet Evol 83:250–257

Darwin C (1859) On the origin of species. John Murray,
London

de Baets K, Antonelli A, Donoghue PCJ (2016) Tectonic
blocks and molecular clocks. Philos Trans R Soc B
371:20160098

de Jong R (2007) Estimating time and space in the evolu-
tion of the Lepidoptera. Tijdschr Entomol
150:319–346

Donoghue MJ, Moore BR (2003) Toward an integrative
historical biogeography. Integr Comp Biol 43:261–270

Dornburg A, Beaulieu JM, Oliver JC, Near TJ (2011)
Integrating fossil preservation biases in the selection
of calibrations for molecular divergence time estima-
tion. Syst Biol 60:519–527

Drummond AJ, Ho SYW, Phillips MJ, Rambaut A (2006)
Relaxed phylogenetics and dating with confidence.
PLOS Biol 4:e88

Felsenstein J (1981) Evolutionary trees from DNA
sequences: a maximum likelihood approach. J Mol
Evol 17:368–376

Fleischer RC, McIntosh CE, Tarr CL (1998) Evolution on
a volcanic conveyor belt: using phylogeographic
reconstructions and K-Ar-based ages of the Hawaiian
Islands to estimate molecular evolutionary rates. Mol
Ecol 7:533–545

Fuchs J, Ohlson JI, Ericson PGP, Pasquet E (2007) Syn-
chronous intercontinental splits between assemblages
of woodpeckers suggested by molecular data. Zool Scr
36:11–25

Gavryushkina A, Heath TA, Ksepka DT, Stadler T,
Welch D, Drummond AJ (2017) Bayesian total evi-
dence dating reveals the recent crown radiation of
penguins. Syst Biol 66:57–73

Gibb GC, England R, Hartig G, McLenachan PA, Taylor
Smith BL, McComish BJ, Cooper A, Penny D (2015)
New Zealand passerines help clarify the diversification
of major songbird lineages during the Oligocene.
Genome Biol Evol 7:2983–2995

Goldberg EE, Lancaster LT, Ree RH (2011) Phylogenetic
inference of reciprocal effects between geographic
range evolution and diversification. Syst Biol
60:451–465

Goswami A, Upchurch P (2010) The dating game: a reply
to Heads (2010). Zool Scr 39:406–409

Graur D, Martin W (2004) Reading the entrails of
chickens: molecular timescales of evolution and the
illusion of precision. Trends Genet 20:80–86

Haines WP, Schmitz P, Rubinoff D (2014) Ancient diver-
sification of Hyposmocoma moths in Hawaii. Nat
Commun 5:3502

Heads M (2010) Evolution and biogeography of primates:
a new model based on molecular phylogenetics, vicar-
iance and plate tectonics. Zool Scr 39:107–127

Heads M (2012) Bayesian transmogrification of clade
divergence dates: a critique. J Biogeogr 39:1749–1756

9 Biogeographic Dating of Phylogenetic Divergence Times Using Priors and Processes 153



Heath TA, Huelsenbeck JP, Stadler T (2014) The
fossilized birth–death process for coherent calibration
of divergence-time estimates. Proc Natl Acad Sci USA
111:E2957–E2966

Ho SYW, Tong KJ, Foster CSP, Ritchie AM, Lo N, Crisp
MD (2015) Biogeographic calibrations for the molec-
ular clock. Biol Lett 11:20150194

Höhna S, Landis MJ, Heath TA, Boussau B, Lartillot N,
Moore BR, Huelsenbeck JP, Ronquist F (2016)
RevBayes: Bayesian phylogenetic inference using
graphical models and interactive model-specification
language. Syst Biol 65:726–736

Hugall AF, Foster R, Lee MSY (2007) Calibration choice,
rate smoothing, and the pattern of tetrapod diversifica-
tion according to the long nuclear gene RAG-1. Syst
Biol 56:543–563

Jaanusson V (1976) Faunal dynamics in the middle Ordo-
vician (Viruan) of Balto-Scandia. In: Bassett MG
(ed) The Ordovician system: Proceedings of a
Palaeontological Association symposium. University
of Wales Press, Cardiff, pp 301–326

Jordan S, Simon C, Polhemus D (2003) Molecular system-
atics and adaptive radiation of Hawaii’s endemic dam-
selfly genus Megalagrion (Odonata: Coenagrionidae).
Syst Biol 52:89–109

Joyce WG (2007) Phylogenetic relationships of Mesozoic
turtles. B Peabody Mus Nat Hist 48:3–102

Joyce WG, Parham JF, Lyson TR, Warnock RCM,
Donoghue PCJ (2013) A divergence dating analysis
of turtles using fossil calibrations: an example of best
practices. J Paleontol 87:612–634

Joyce WG, Rabi M, Clark JM, Xu X (2016) A toothed
turtle from the late Jurassic of China and the global
biogeographic history of turtles. BMC Evol Biol
16:236

Kodandaramaiah U (2011) Tectonic calibrations in molec-
ular dating. Curr Zool 57:116–124

Landis MJ (2017) Biogeographic dating of speciation
times using paleogeographically informed processes.
Syst Biol 66:128–144

Landis MJ, Matzke NJ, Moore BR, Huelsenbeck JP (2013)
Bayesian analysis of biogeography when the number
of areas is large. Syst Biol 62:789–804

Landis MJ, Freyman WA, Baldwin BG (2018) Retracing
the Hawaiian silversword radiation despite phyloge-
netic, biogeographic, and paleogeographic uncertainty.
Evolution 72:2343–2359

Landis MJ, Edwards EJ, Donoghue MJ (2021) Modeling
phylogenetic biome shifts on a planet with a past. Syst
Biol (in press)

Lemey P, Rambaut A, Drummond AJ, Suchard MA
(2009) Bayesian phylogeography finds its roots.
PLOS Comput Biol 5:e1000520

Lemmon AA, Lemmon EM (2008) A likelihood frame-
work for estimating phylogeographic history on a con-
tinuous landscape. Syst Biol 57:544–561

Lv Y, He K, Klaus S, Brown RM, Li J (2018) A compre-
hensive phylogeny of the genus Kurixalus
(Rhacophoridae, Anura) sheds light on the

geographical range evolution of frilled swamp
treefrogs. Mol Phylogenet Evol 121:224–232

Mansion G, Zeltner L (2004) Phylogenetic relationships
within the New World endemic Zeltnera
(Gentianaceae-Chironiinae) inferred from molecular
and karyological data. Am J Bot 91:2069–2086

Marshall CR (1990) The fossil record and estimating
divergence times between lineages: maximum diver-
gence times and the importance of reliable
phylogenies. J Mol Evol 30:400–408

Marshall CR (2008) A simple method for bracketing abso-
lute divergence times on molecular phylogenies using
multiple fossil calibration points. Am Nat
171:726–742

Matzke NJ (2014) Model selection in historical biogeog-
raphy reveals that founder-event speciation is a crucial
process in island clades. Syst Biol 63:951–970

McCulloch GA, Wallis GP, Waters JM (2016) A time-
calibrated phylogeny of southern hemisphere
stoneflies: testing for Gondwanan origins. Mol
Phylogenet Evol 96:150–160

Meseguer AS, Lobo JM, Ree R, Beerling DJ, Sanmartín I
(2015) Integrating fossils, phylogenies, and niche
models into biogeography to reveal ancient evolution-
ary history: the case of Hypericum (Hypericaceae).
Syst Biol 64:215–232

Mildenhall DC, Mortimer N, Bassett KN, Kennedy EM
(2014) Oligocene paleogeography of New Zealand:
maximum marine transgression. New Zeal J Geol
Geop 57:107–109

Moyle RG (2004) Calibration of molecular clocks and the
biogeographic history of Crypteroniaceae. Evolution
58:1871–1873

Near TJ, Meylan PA, Shaffer HB (2004) Assessing con-
cordance of fossil calibration points in molecular clock
studies: an example using turtles. Am Nat
165:137–146

Nee S, May RM, Harvey PH (1994) The reconstructed
evolutionary process. Philos Trans R Soc B
344:305–311

Ogilvie HA, Vaughan TG, Matzke NJ, Slater GJ,
Stadler T, Welch D, Drummond AJ (2018) Inferring
species trees using integrative models of species evo-
lution. bioRxiv. https://doi.org/10.1101/242875

Paleobiology Database (2018) The Paleobiology Data-
base. https://paleobiodb.org

Parham JF, Irmis RB (2007) Caveats on the use of fossil
calibrations for molecular dating: a comment on Near
et al. Am Nat 171:132–136

Parham JF, Donoghue PCJ, Bell CJ, Calway TD, Head JJ,
Holroyd PA, Inoue JG, Irmis RB, Joyce WG, Ksepka
DT, Patané JSL, Smith ND, Tarver JE, van Tuinen M,
Yang Z, Angielczyk KD, Greenwood JM, Hipsley CA,
Jacobs L, Makovicky PJ, Müller J, Smith KT, Theodor
JM,Warnock RCM (2012) Best practices for justifying
fossil calibrations. Syst Biol 61:346–359

Plana V, Gascoigne A, Forrest LL, Harris D, Pennington
RT (2004) Pleistocene and pre-Pleistocene Begonia
speciation in Africa. Mol Phylogenet Evol 31:449–461

154 M. J. Landis

https://doi.org/10.1101/242875
https://paleobiodb.org


Pyron RA (2011) Divergence time estimation using fossils
as terminal taxa and the origins of Lissamphibia. Syst
Biol 60:466–481

Quintero I, Landis MJ (2020) Interdependent phenotypic
and biogeographic evolution driven by biotic
interactions. Syst Biol 69:739–755

Quintero I, Keil P, Jetz W, Crawford FW (2015) Historical
biogeography using species geographical ranges. Syst
Biol 64:1059–1073

Ree RH, Sanmartín I (2009) Prospects and challenges for
parametric models in historical biogeographical infer-
ence. J Biogeogr 36:1211–1220

Ree RH, Smith SA (2008) Maximum likelihood inference
of geographic range evolution by dispersal, local
extinction, and cladogenesis. Syst Biol 57:4–14

Ree RH, Moore BR, Webb CO, Donoghue MJ (2005) A
likelihood framework for inferring the evolution of
geographic range on phylogenetic trees. Evolution
59:2299–2311

Renner SS (2005) Relaxed molecular clocks for dating
historical plant dispersal events. Trends Plant Sci
10:550–558

Román-Palacios C, Tavera J, Castañeda M (2018) When
did anoles diverge? An analysis of multiple dating
strategies. Mol Phylogenet Evol 127:655–668

Ronquist F, Teslenko M, van der Mark P, Ayres DL,
Darling A, Höhna S, Larget B, Liu L, Suchard MA,
Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayes-
ian phylogenetic inference and model choice across a
large model space. Syst Biol 61:539–542

Rutschmann F, Eriksson T, Schönenberger J, Conti E
(2004) Did Crypteroniaceae really disperse out of
India? Molecular dating evidence from rbcL, ndhF,
and rpl16 intron sequences. Int J Plant Sci 165:S69–
S83

Sanmartín I, Mark PVD, Ronquist F (2008) Inferring
dispersal: a Bayesian approach to phylogeny-based
island biogeography, with special reference to the
Canary Islands. J Biogeogr 35:428–449

Stadler T, Gavryushkina A, Warnock RCM, Drummond
AJ, Heath TA (2018) The fossilized birth-death model
for the analysis of stratigraphic range data under dif-
ferent speciation modes. J Theor Biol 447:41–55

Strauss D, Sadler PM (1989) Classical confidence intervals
and Bayesian probability estimates for ends of local
taxon ranges. Math Geol 21:411–427

Sukumaran J, Economo EP, Knowles LL (2016) Machine
learning biogeographic processes from biotic patterns:
a new trait-dependent dispersal and diversification
model with model choice by simulation-trained dis-
criminant analysis. Syst Biol 65:525–545

Swart BL, von der Heyden S, Bester-van der Merwe A,
Roodt-Wilding R (2015) Molecular systematics and
biogeography of the circumglobally distributed genus
Seriola (Pisces: Carangidae). Mol Phylogenet Evol
93:274–280

Swenson U, Nylinder S, Munzinger J (2014) Sapotaceae
biogeography supports New Caledonia being an old
Darwinian island. J Biogeogr 41:797–809

Tagliacollo VA, Duke-Sylvester SM, Matamoros WA,
Chakrabarty P, Albert JS (2015) Coordinated dispersal
and pre-Isthmian assembly of the Central American
ichthyofauna. Syst Biol 66:183–196

Thacker CE (2017) Patterns of divergence in fish species
separated by the Isthmus of Panama. BMC Evol Biol
17:111

Thorne J, Kishino H, Painter IS (1998) Estimating the rate
of evolution of the rate of molecular evolution. Mol
Biol Evol 15:1647–1657

Turtle Taxonomy Working Group (2017) Turtles of the
world: Annotated checklist and atlas of taxonomy,
synonymy, distribution, and conservation status. In:
Rhodin AGJ, Iverson JB, van Dijk PP, Saumure RA,
Buhlmann KA, Pritchard PCH, Mittermeier RA (eds)
Conservation biology of freshwater turtles and
tortoises: a compilation project of the IUCN/SSC Tor-
toise and Freshwater Turtle Specialist Group. Chelo-
nian Res Monogr 7:1–292

Wallace AR (1855) On the law which has regulated the
introduction of new species. Ann Mag Nat Hist
16:184–196

Wallace AR (1876) The geographical distribution of
animals. Macmillan, London

Warnock RCM, Parham JF, Joyce WG, Lyson TR,
Donoghue PCJ (2015) Calibration uncertainty in
molecular dating analyses: there is no substitute for
the prior evaluation of time priors. Proc R Soc B
282:20141013

Webb CO, Ree RH (2012) Historical biogeography infer-
ence in Malesia. In: Gower D, Johnson K,
Richardson J, Rosen B, Ruber L, Williams S (eds)
Biotic evolution and environmental change in South-
east Asia. Cambridge University Press, Cambridge,
UK, pp 191–215

Yang Z, Rannala B (2006) Bayesian estimation of species
divergence times under a molecular clock using multi-
ple fossil calibrations with soft bounds. Mol Biol Evol
23:212–226

Zuckerkandl E, Pauling L (1962) Molecular disease, evo-
lution, and genic heterogeneity. In: Kasha M, Pullman
B (eds) Horizons in biochemistry. Academic,
New York, pp 189–225

9 Biogeographic Dating of Phylogenetic Divergence Times Using Priors and Processes 155



Estimating Evolutionary Rates
and Timescales from
Time-Stamped Data

10
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Abstract

Methods of molecular dating are playing
increasingly valuable roles in evolutionary
biology. These methods require independent
information to calibrate the molecular clock
and obtain meaningful estimates of evolution-
ary rates and times. One source of such infor-
mation is the age of the molecular samples,
such that the data are said to be time-stamped.
In this chapter, we present an outline of current
practice and the latest advances in methods for
molecular dating using time-stamped data. In
addition, there is a broad range of approaches
for identifying whether time-stamped data
contain sufficient information for estimating
evolutionary rates and timescales. We describe
a fully Bayesian approach for this purpose
and illustrate its performance in analyses
of sequence data from H1N1 influenza virus
and from Mycobacterium tuberculosis.
The approaches outlined here provide the
foundations for the analysis of time-stamped

data in the era of high-throughput sequencing
and high-performance computing.

Keywords
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10.1 Introduction

Molecular clock models in phylogenetics are
widely used for estimating evolutionary rates
and timescales. In addition to information about
genetic divergence, molecular clocks often use
information about the timing of evolutionary
events, also known as a time calibration. Such
calibrations provide the raw material for
estimating absolute evolutionary rates and times
from sequence data. A popular source of
calibrating information for molecular clock
analyses is the timing of sample collection
(Rambaut 2000). Data sets that contain samples
collected at different points in time are described
as time-stamped or heterochronous. In contrast,
isochronous data sets contain samples of similar
or identical ages and their evolution is most
appropriately represented using an ultrametric
time-tree (phylogenetic tree with branch lengths
in time units and where ultrametricity means that
the distance from the root to each of the tips is the
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same). For the sampling times to be useful for
calibration of the molecular clock, the period of
collection, or sampling window, must have been
sufficient for molecular evolution to have left a
signature (Fig. 10.1). Samples that have been
collected over sufficiently broad periods of time
to accumulate evolutionary change are said to
come from ‘measurably evolving populations’
(Drummond et al. 2002, 2003).

Many of the principles of phylogenetic infer-
ence using molecular clocks in isochronous data
also hold for time-stamped data, such as the
requirement of using substitution and molecular
clock models. The central difference between
analyses of these two types of data is methods
of fitting a molecular clock and the statistical tests
used to confirm that the sampling times span a
sufficiently long time, known as assessment of
temporal structure (Rieux and Balloux 2016).

Time-stamped data have most frequently been
used for the study of evolutionary events involv-
ing individuals sampled from a single population
or species, as opposed to divergence events
among species or higher taxonomic groups. This
means that the principles of microevolution and
population genetics often play an important role

in analyses of time-stamped data (Arbogast et al.
2002). Combining the methods used in
phylogenetics and population genetics largely
relies on genealogy-based inference using the
principles outlined in coalescent theory (Kingman
1982; Griffiths and Tavaré 1994). By drawing
from population genetics theory, analyses of
time-stamped data can lead to a range of insights
about demography and epidemiology. The power
of these approaches is exemplified by the thriving
field of phylodynamics (Grenfell et al. 2004).

The growth of efficient, low-cost sequencing
has had a substantial impact on the analysis of
time-stamped data. Before the major advances in
sequencing and computational technologies,
studies of pathogen populations using time-
stamped data were restricted to RNA viruses
(Drummond et al. 2003). This was due to the
high rates of evolution of RNA viruses compared
with those of other microbes, which allowed for
the accumulation of sufficient molecular change
over calendar time, even for short genomic
regions. Nowadays, high-throughput sequencing
allows the extraction of vast amounts of data,
including complete genomes, from more slowly
evolving microbes. Similarly, novel sequencing
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Fig. 10.1 Examples of (a) isochronous (i.e., ultrametric)
and (b) heterochronous trees. Data sets with time-stamped
sequences are expected to produce heterochronous trees
where an appreciable amount of evolutionary change has
occurred over the sampling window. The limited sampling
window in a is insufficient to measure evolutionary
change, while that in b between TB and TE is a candidate
for being measurably evolving. (c) The root-to-tip
distances plotted as a function of their sampling times.

The evolutionary rate is the slope of the regression line
and is intuitively equivalent to the difference in root-to-tip
distances between any pair of tips (such as tips A and B)
divided by the difference in their sampling times (TA and
TB). The x-intercept corresponds to the time to the most
recent common ancestor and the degree to which the
points deviate from the line (R2) reflects the extent to
which the data have departed from strictly clocklike
evolution
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technologies have revolutionized the extraction of
target DNA from highly degraded samples,
making way for whole-genome analysis of
ancient DNA from plants and animals (Millar
et al. 2008; Der Sarkissian et al. 2015). As a
consequence, methods of analysing these data
have also seen appreciable progress, for instance
by lifting their former restriction to population-
level processes (e.g., Stadler et al. 2013; Grealy
et al. 2017) or to rapidly evolving microbes (Biek
et al. 2015; Menardo et al. 2019).

Time-stamped data have the advantage that
sampling times alone can be used to calibrate
the molecular clock, often without the need for
other forms of calibration using divergence times
or rates. Incorporating sample ages as time
calibrations is done in the same way as for node
calibrations, either by treating each sample age as
a fixed time point or by specifying a probability
distribution that accounts for age uncertainty
(Rieux and Balloux 2016). In this chapter, we
discuss the methods of data collection and analy-
sis of two commonly used types of time-stamped
data: those coming from populations of pathogens
and those sampled from subfossil material as
extracted using ancient DNA techniques.

10.2 Measurably Evolving
Populations

10.2.1 Microbial Evolution over
Calendar Time

Early phylogenetic analyses of RNA viruses
revealed that their substitution rates were suffi-
ciently high that the viruses were able to accumu-
late an appreciable number of substitutions over
weeks or months (Holmes 2009). For example,
influenza viruses have been found to evolve at
rates of up to 10–2 substitutions per site per year;
with a genome size of around 13.5 kb, they can
accumulate several substitutions per day (Duffy
and Holmes 2009). Human immunodeficiency
virus (HIV) also undergoes very rapid evolution-
ary change, with a rate of about 10–3 substitutions
per site per year (Duchêne et al. 2014a), and can
accumulate at least one substitution per week

(assuming a genome size of about 9.5 kb). In a
seminal study, Korber et al. (2000) took advan-
tage of the rapid evolution of HIV to calibrate the
molecular clock to date its origin in human
populations, which revealed that some strains of
HIV probably originated in the early twentieth
century.

Whole-genome sequencing has revolutionized
studies of more slowly evolving microbes, nota-
bly bacteria. The evolutionary rates of bacteria are
much lower than those of viruses, implying that
they would need a much wider sampling window
than viruses for their evolutionary rates to be
estimated reliably. However, bacteria also have
much larger genomes than viruses, such that even
with lower rates it is sometimes possible to treat
them as measurably evolving. As a case in point,
estimates of the evolutionary rate of Salmonella
enterica range from about 10–7 to about 10–6

substitutions per site per year (Duchêne et al.
2016b), and hence are at least three orders of
magnitude lower than those of some RNA
viruses. If only a small portion of its ~5.3 Mb
genome is sequenced, for example 10 kb, it would
take about 10 years to observe a single substitu-
tion. In contrast, when the complete genome is
sequenced, up to four substitutions might be
observed per month and the samples can be
treated as measurably evolving (Zhou et al.
2018). As a result, the growing prevalence of
whole-genome sequencing means that many bac-
teria can now be analysed as measurably evolving
populations (Biek et al. 2015).

Although whole-genome sequencing has
expanded the range of analyses that are possible
in microbes, it has also revealed biological
patterns that are not correctly modelled by stan-
dard techniques. The most notable problem is
homologous recombination, which is very com-
mon in some bacterial groups (Yahara et al.
2016). The most obvious limitation of phyloge-
netic analyses of data sets with substantial recom-
bination is that the whole genome cannot be
assumed to follow a single phylogenetic tree
topology and that estimates of branch lengths
will be incorrect (Hedge and Wilson 2014).
While some methods explicitly attempt to model
recombination events (Didelot and Wilson 2015;
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Vaughan et al. 2017), the most popular approach
is to remove recombining regions and to conduct
phylogenetic analysis on a ‘core genome’ that
includes only sites that have been inherited verti-
cally (Croucher et al. 2014). Failing to account for
recombination can give the impression of an
erratic molecular clock, and removing such
regions can improve the extent to which the data
can be treated as measurably evolving (Schultz
et al. 2016). It is important to note that down-
stream analyses based on estimates of evolution-
ary timescales, such as skyline plots (Pybus et al.
2000), can produce biased inferences when
recombinant regions are removed (Lapierre et al.
2016). Accordingly, it is preferable to model
recombination explicitly, although this is usually
computationally intensive.

10.2.2 Ancient DNA for Temporal
Calibration

DNA taken from subfossils of plants and animals
usually comes from highly degraded material and
requires specialized extraction techniques
(Gamba et al. 2016). Until recently, ancient
DNA was primarily retrieved from mitochondrial
genomes, which are more abundant and have a
lower rate of degradation than nuclear genomes
(Allentoft et al. 2012). The mitochondrial DNA
molecule usually has a highly stable circular
structure and has additional protection from
decay due to the double membrane of the organ-
elle. In most animals, the rate of evolution of
mitochondrial DNA is much higher than that of
most nuclear DNA. These characteristics make
mitochondrial DNA particularly useful for infer-
ring population-level dynamics over short geo-
logical timescales (de Bruyn et al. 2011; Ho and
Shapiro 2011). Fast-evolving ancient DNA has
been instrumental for inferring population-size
fluctuations in a great range of taxa, including
the woolly mammoth (Palkopoulou et al. 2013),
steppe bison (Shapiro et al. 2004), musk ox
(Campos et al. 2010), collared lemming (Brace
et al. 2012), and hominids (Posth et al. 2017),
among many others (e.g., Lorenzen et al. 2011).

The advent of genome-scale sequencing
technologies has greatly facilitated the recovery
of ancient DNA data. High-throughput sequenc-
ing methods can target highly fragmented DNA
molecules, which enables vast amounts of nuclear
DNA to be retrieved. This has allowed whole-
genome sequences to be recovered from ancient
remains (Prüfer et al. 2014). Similarly, it is now
commonplace to recover sequence data from
materials with trace amounts of the target DNA
(Grealy et al. 2017). As a result of novel extrac-
tion and sequencing technologies, older samples
can now be included in genetic studies.

Some ancient tissue samples used for ancient
DNA sequencing have known ages, for instance
as documented dates of collection, but others are
too old for their ages to be known exactly. There-
fore, the ages of samples in time-stamped data
sets can have a degree of uncertainty that should
not be ignored in phylogenetic analysis. One
common source of age uncertainty in ancient
DNA samples that are less than around 55,000
years old is that arising from radiocarbon dating
(Guilderson et al. 2005). An additional complica-
tion is that radiocarbon dates are different from
absolute ages, due to fluctuations in atmospheric
14C content. To allow the radiocarbon date
estimates to be compared with the timing of
other events, such as those of climatic changes,
radiocarbon ages need to be converted to calendar
time. This conversion can be done by using
estimates of atmospheric 14C content in the past,
which are becoming increasingly accurate
(Stuiver and Reimer 1993; Reimer et al. 2013).

The distribution of uncertainty that emerges
from radiocarbon dating can be multimodal, so
using a point summary such as the mean or
median is a poor description of sample ages
(Molak et al. 2015). To solve this problem,
some phylogenetics software allow the imple-
mentation of parametric distributions to account
for uncertainty in sample ages (Shapiro et al.
2011). There are also applications that allow the
use of nonparametric distributions to model the
uncertainty in radiocarbon dates (Molak et al.
2015). Nonetheless, using the point mean or
median estimates of sample ages of time-stamped
data strikingly often leads to reasonable estimates
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of uncertainty in times and rates (Molak et al.
2013).

An ancient sample can also be dated using
indirect methods. The age estimate of the archae-
ological or stratigraphic location of a sample, or
ages estimated from nearby samples, can be used
for calibration. However, dating based on the
boundaries of stratigraphic layers is often
associated with much greater uncertainty than
direct estimates. Dates estimated using this
method can also be highly inaccurate if the
deposit has been reburied or mixed.

10.3 Popular Approaches
for Molecular Dating Using
Time-Stamped Data

Since the early 2000s, a range of methods have
been developed for calibrating the molecular
clock using sampling times: root-to-tip regres-
sion, likelihood or optimality methods, and
Bayesian inference. The intuition behind using
sampling times for calibration is that the evolu-
tionary rate is approximately the difference in
evolutionary distance between a pair of tips
divided by the difference in their sampling
times. In the phylogenetic tree in Fig. 10.1b, the
rate of evolution can be calculated as the differ-
ence in the root-to-tip distance between tips B and
E divided by their difference in sampling times
(TE – TB). To obtain a time-tree, the branch
lengths of the phylogenetic tree (in units of
substitutions per site) can be divided by the evo-
lutionary rate estimate (substitutions per site per
year). Clearly, the inclusion of a larger number of
time-stamped tips gives more opportunities to
calculate the evolutionary rate, thereby improving
its accuracy. A fundamental consideration with
all methods that use time-stamped data is that
the estimates depend on the position of the root,
which can be selected or estimated in a number
of ways.

10.3.1 Root-to-Tip Regression

One of the earliest molecular clock approaches to
time-stamped data was implemented by Korber
et al. (2000) to infer the age of the most recent
common ancestor of HIV pandemic strains. The
data consisted of molecular sequences of the gag
and env genes, with the samples collected over
about 10 years. Their method consisted of infer-
ring a phylogenetic tree using maximum likeli-
hood and assuming a constant evolutionary rate
(i.e., a strict molecular clock). They conducted a
regression of the distance from the root of the tree
to each of the tips as a function of their sampling
times. The expectation is that samples that are
collected later should have undergone more
molecular evolutionary change than those closer
to the root of the tree.

In such root-to-tip regression, the slope of the
line corresponds to the evolutionary rate and the
x-intercept is the age of the most recent common
ancestor (Fig. 10.1c). The optimal position of the
root is that which maximizes clocklike behaviour,
which is typically quantified with the R2 of the
regression, although a range of regression statis-
tics can be used. Alternatively, the position of the
root can be specified by including an outgroup
taxon. The root-to-tip regression method is
implemented in the program TempEst (Rambaut
et al. 2016).

Benefits of the root-to-tip regression include
that it only requires a phylogenetic tree with
branch lengths in units of evolutionary distance
that can be inferred using different methods
(distance-based, maximum-likelihood, or Bayes-
ian approaches), it is computationally very effi-
cient, and it gives a measure of the clocklike
behaviour of the data. Empirical studies suggest
that it can produce estimates of evolutionary rates
that are comparable to those of more sophisticated
methods (Duchêne et al. 2016a; Tong et al. 2018).
However, the root-to-tip regression has some
important limitations. Measuring the root-to-tip
distance for every tip means that there is
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substantial pseudoreplication because the path
from the root to each of the tips will go through
the internal branches multiple times and it does
not report uncertainty in a meaningful way. In
turn, using a p-value to determine the significance
of the association of evolutionary distance and
time is statistically invalid (Rambaut et al.
2016). Although the phylogenetic tree is used to
measure evolutionary distance, the branching
order is not taken into account in the regression
so that this potentially useful information is
discarded. Finally, modelling rate variation
among lineages is not straightforward. For these
reasons, the root-to-tip regression is mostly used
for visual inspection of the data, rather than as a
rigorous molecular clock method (see Sect. 10.4).

10.3.2 Optimality Methods

Approaches based on optimizing a function to fit
a molecular clock fall in the category of optimal-
ity methods and include those based on maximum
likelihood, least squares, and genetic distance.
Rambaut (2000) devised a likelihood function
where branch lengths in the tree are treated as
the product of evolutionary rates and times.
Given a phylogenetic tree and sampling times, it
is possible to estimate the evolutionary rate that
maximizes this likelihood. This can be performed
under the assumption that there is a strict molecu-
lar clock, or by allowing rates among branches to
be governed by a probability distribution (Seo
et al. 2002; Volz and Frost 2017; Sagulenko
et al. 2018). Nonparametric methods also opti-
mize a likelihood (or penalized likelihood) func-
tion to fit a molecular clock with different degrees
of rate variation among lineages (Sanderson
2003; Fourment and Holmes 2014; Chap. 12).
There exist several software programs to fit
molecular clocks to time-stamped data using like-
lihood, including TreeDater (Volz and Frost
2017), TreeTime (Sagulenko et al. 2018),
TipDate (Rambaut 2000), Physher (Fourment
and Holmes 2014), and r8s (Sanderson 2003).

In the program LSD, To et al. (2016)
implemented a least-squares dating method that
is similar in principle to the Langley–Fitch model

(Langley and Fitch 1974), which assumes a strict
molecular clock. The new method differs in that
errors in evolutionary rates are assumed to follow
a Gaussian, rather than a Poisson, distribution.
The objective function depends on the evolution-
ary rate and the branch lengths. The optimization
is conducted via weighted least squares, where
the weights are the uncertainty of the Gaussian
distribution that governs rates (To et al. 2016).
This method assumes a strict molecular clock and
aims to minimize evolutionary rate variation
among lineages. To obtain uncertainty in the
estimates of node times and evolutionary rates,
LSD conducts a parametric bootstrap of branches.
The position of the root can be optimized in the
program, or specified using an outgroup or a
particular branch. A useful feature of this method
is that it is possible to estimate the ages of
samples with unknown collection times.

The optimality methods described here are
computationally very efficient, which makes
them amenable to very large data sets. For exam-
ple, LSD has been used to infer the evolutionary
rate and timescale of over 1000 strains of influ-
enza within a few minutes on a standard laptop
(To et al. 2016). Such computational efficiency is
due to the fact that these methods require an
estimated phylogenetic tree as an input, instead
of inferring the tree directly from the sequence
data as is the case with most Bayesian methods.
The most obvious limitation is that any uncer-
tainty in LSD estimates typically reflects evolu-
tionary rate variation but not uncertainty in the
tree topology or branch lengths. However, these
sources of uncertainty can be incorporated using
indirect methods, such as repeating the analyses
on a set of bootstrap trees.

10.3.3 Bayesian Methods

Most Bayesian molecular clock methods natu-
rally incorporate uncertainty in the estimates of
the tree topology, branch lengths, and evolution-
ary rates via the posterior distribution (see
Chap. 6). They can also implement sophisticated
models to describe complex patterns of evolution-
ary rate variation and demographic dynamics. It is
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of particular relevance to ancient DNA studies
that Bayesian methods allow the researcher to
assign a prior distribution for the ages of tips,
for example to reflect the uncertainty in 14C dat-
ing, and their posterior distribution will be
estimated as for other parameters (Shapiro et al.
2011). The most widely used programs that incor-
porate a full Bayesian model include BEAST 1
(Suchard et al. 2018) and BEAST 2 (Bouckaert
et al. 2019), MrBayes (Ronquist et al. 2012b), and
RevBayes (Höhna et al. 2016).

In its simplest form, the full Bayesian model
consists of a time-tree prior (du Plessis and Stadler
2015) to describe the branching process, a molec-
ular clock model to describe the prior on branch
rates, and a substitution model. The phylogenetic
likelihood of the sequence data given the tree and
the substitution model is calculated by treating
branch lengths as the product of times (from the
time-tree prior) and rates (from the clock model)
(Heath and Moore 2014; Bromham et al. 2018).
The position of the root of the tree is informed by
the tree prior, instead of being optimized indepen-
dently as in optimality methods and the root-to-tip
regression. The range of clock models that can be
used is the same as that for isochronous data, but
only some of the available tree priors are valid for
heterochronous data.

The most common tree priors posit that
branching events are described by either a coales-
cent or a birth–death process (Drummond and
Stadler 2015). Coalescent models are backwards-
in-time processes that are conditioned on the ages
and number of samples. The rate at which
lineages coalesce back in time is determined by
a mathematical function of population size over
time (Rosenberg and Nordborg 2002). For exam-
ple, an exponential function can be used to esti-
mate the growth rate of a pathogen population
based on the temporal distribution of nodes
(Volz et al. 2009). An array of flexible skyline-
plot methods can also use the coalescent to infer
more complex population dynamics using non-
parametric and semiparametric approaches
(Ho and Shapiro 2011). Because coalescent
models do not explicitly describe the sampling

process, they only require a few modifications to
make them applicable to heterochronous data
(Rodrigo and Felsenstein 1999; Drummond
et al. 2002).

Birth–death models are forwards-in-time pro-
cesses and they have an expectation of the num-
ber of samples and of their ages. The simplest
model is known as the Yule process and it
assumes constant diversification and no extinc-
tion, or death, of lineages (Yule 1924). The result
of the Yule process is always an isochronous
time-tree, so it cannot be used for analyses of
heterochronous data. A birth–death process with
explicit sampling assumes that lineages can go
extinct and can be sampled with some probability
(Stadler 2010), and hence can be applied to
heterochronous data. A key consideration relating
to the birth–death model is that the sampling
parameter should reflect the process under which
the data were sampled; the constant birth–death
assumes constant sampling effort over time and
lineages, whereas the birth–death skyline allows
the user to specify periods of time with variable
sampling effort (Stadler et al. 2013). There also
exist multiple birth–death models that allow cer-
tain lineages to be sampled with a higher proba-
bility (Stadler and Bonhoeffer 2013). Recent
studies have suggested that the choice of sam-
pling scheme can have a considerable effect on
the birth–death tree prior, producing time priors
for internal nodes that are more informative than
those under the coalescent (Boskova et al. 2018).
As with all Bayesian analyses, it is important to
choose a prior distribution that is reasonable for
the data at hand.

Some Bayesian methods do not implement a
full Bayesian model. Instead of relying on
sequence data, they assume an estimate of the
phylogenetic tree with branch lengths (Thorne
et al. 1998; Yang 2007; Didelot et al. 2018).
These approaches are usually more computation-
ally efficient than those that use the full Bayesian
model. However, they currently have a limited
range of tree priors available and their computa-
tional efficiency comes at the expense of ignoring
phylogenetic uncertainty.

10 Estimating Evolutionary Rates and Timescales from Time-Stamped Data 163



10.4 Verifying Temporal Structure

Estimating evolutionary rates and times using
time-stamped data requires sufficient molecular
evolution between sampling times (Duchêne
et al. 2015b; Murray et al. 2015). If this requisite
is met, the data are said to have temporal struc-
ture. If the molecular data have evolved too
slowly relative to the timeframe covered by the
samples, then they might not have temporal struc-
ture and can produce spurious inferences of evo-
lutionary rates and times (Rambaut 2000). Failing
a test of temporal structure generally means that
either a more rapidly evolving molecular marker
must be sampled, or the sampling window must
be widened by the inclusion of new samples from
times outside the existing window. Below we
outline the methods that have been proposed to
test whether time-stamped data have temporal
structure.

10.4.1 Root-to-Tip Regression

A fast and popular approach to test temporal
structure is to employ a root-to-tip regression
under the assumption that the data follow a
molecular clock, as described above. The test
only requires estimation of the root-to-tip
distances, which are the summed lengths of
branches from the root of the tree to each tip.
This method tests for a linear relationship
between the molecular substitutions accumulated
and the ages of the samples (Fitch et al. 1991;
Fig. 10.1c). The slope must be positive because it
is a crude estimate of the evolutionary rate, and a
high R2 coefficient of determination indicates
clocklike evolution (Korber et al. 2000).

The root-to-tip regression has several known
shortcomings. In many time-structured data sets,
the samples come from only a small number of
time points; this means that the results could be
based on only a small number of data points,
leading to low statistical power. In addition,
many data sets violate the assumption of the
molecular clock, such that a poor root-to-tip
regression can lead to falsely taking the data as

lacking temporal structure (Firth et al. 2010;
Duchêne et al. 2020). More critically, the root-
to-tip measurements used in this method are not
statistically independent, as explained in Sect.
10.3.1. Nonetheless, root-to-tip regression is
extremely fast and it is commonly used as an
exploratory diagnostic of the reliability of rate
estimates (Duchêne et al. 2016a; Rambaut et al.
2016; Tong et al. 2018).

10.4.2 Date-Randomization Test

Amore robust test of temporal structure known as
the date-randomization test involves permuting
the dates of samples (Ramsden et al. 2008). The
goal of permuting the sample ages is to create data
sets where the association between sample age
and molecular evolution is broken. A large col-
lection of data sets with randomized tips can be
taken to represent a null distribution of rate
estimates. Temporal structure is said to be lacking
if the rate estimates obtained with the correct
sampling times resemble those estimated from
the date-randomized replicates (Fig. 10.2a).

The date-randomization test can be used to
evaluate temporal structure using Bayesian and
optimality methods, and two test criteria have
been proposed. The first criterion (CR1) assesses
whether the mean rate estimated from the empiri-
cal data falls within the 95% credible interval of
the rate estimates from the date-randomized
replicates (Fig. 10.2a). The second criterion
(CR2) assesses whether the 95% credible interval
of the rate estimates with correct sampling times
overlaps with the range of those from the date-
randomized replicates (Duffy and Holmes 2009;
Ramsden et al. 2009). CR2 provides a more con-
servative assessment and is recommended, with
minimal chances of failing to reject a data set with
no temporal structure (Duchêne et al. 2015b).
However, this criterion also brings a moderate
chance of incorrectly rejecting data sets as lacking
structure, equivalent to a high Type II error rate.
An implementation of this test in LSD, or any
optimality method, is computationally less expen-
sive and it is feasible to conduct a large number of
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randomizations. In this case, one can compute
where the estimate with correct sampling times
falls with respect to those from the
randomizations, providing the equivalent of a
frequentist p-value (Duchêne et al. 2018).
Although a large number of randomizations is
desirable, several studies have used 20 with rea-
sonable results (e.g., Kerr et al. 2012; Duchêne
et al. 2015b).

A critical consideration when performing the
date-randomization test comes about when data
have a nonuniform temporal sampling. In many
time-structured data sets, dates are grouped in
such a way that close relatives have similar sam-
pling ages, a pattern known as phylogenetic and
temporal clustering (Fig. 10.2b).

In cases of nonuniform temporal sampling, the
temporal and phylogenetic information is con-
founded and this can lead to severe overestima-
tion of molecular rates. A possible reason for the
poor rate estimates is that such data sets provide
few independent instances of comparison

between molecular and temporal data, and there-
fore less information about molecular rates
(Murray et al. 2015). Interestingly, data sets that
yield highly phylogenetically imbalanced trees
(those that look pectinate or comb-like) also
tend to yield overestimates of molecular rates
(Duchêne et al. 2015a), which might in part be
explained by the common confounding of tempo-
ral and phylogenetic data observed in imbalanced
trees.

Most tests of temporal structure fail to reject
data sets when the temporal and phylogenetic
information are confounded. This means that
data will be falsely identified as containing tem-
poral structure. One solution to this problem is to
use the clustered date-randomization test
(Duchêne et al. 2015b), in which sampling times
are permuted among samples but not among those
that share the same age. Such a clustered
approach to date randomization leads to a reliable
test of temporal structure (Duchêne et al. 2015b;
Murray et al. 2015).
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Fig. 10.2 (a) Example of results from a date-
randomization test indicating strong temporal structure.
Evolutionary rate estimates correspond to the estimate
with the correct sampling times (black) and those from
20 date-randomized replicates (grey). Solid circles are the
mean rate estimates and the error bars are the 95% credible
intervals. The blue dashed lines denote the mean rate
values with the correct sampling times and the range in
mean rates coming from the randomizations, as used in the
CR1 method of testing temporal structure. Similarly, the
red dashed lines denote the 95% credible intervals from

the data with correct sampling times and the
randomizations, and can be used as a stringent criterion
for assessing temporal structure CR2. In CR2, the data are
considered to have strong temporal structure if the credible
interval for the estimate with correct sampling times does
not overlap with those from any of the date-randomized
replicates. The tree in b presents an example of phyloge-
netic and temporal clustering, where samples A and B
have similar sampling times to each other, as do samples
D and E. In this case, a cluster-based date-randomization
test is more appropriate
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10.4.3 Bayesian Test of Model Fit

The statistical fit of models with different sample
dates can provide an alternative test of temporal
structure. For example, treating a heterochronous
data set as isochronous is expected to lead to a
poorer statistical fit than if samples are assigned
their true dates. In Bayesian molecular dating,
testing for temporal structure using model fit is
done by estimating the marginal likelihood of two
different models: one using the empirical sam-
pling times, and one where all the samples are
assigned the most recent date (Baele et al. 2012;
Murray et al. 2015). If the data contain temporal
structure, the marginal likelihood for the model
with the original sample dates is expected to be
superior. Approximate methods for computing
marginal likelihoods are often regarded as com-
putationally expensive and sometimes unreliable,
but some are likely to be sufficient (e.g., path
sampling, stepping-stone sampling; Xie et al.
2011; Baele et al. 2013). Marginal likelihoods
can be readily estimated using popular software
such as BEAST.

Analyses of empirical data have shown that
this method can be misleading if a poor
marginal-likelihood estimator is used, with a ten-
dency to support the presence of temporal struc-
ture even in analyses that yield incorrect estimates
of evolutionary rates and times (Murray et al.
2015). However, recent work has demonstrated
that a highly accurate estimator, generalized
stepping-stone sampling (Fan et al. 2011; Baele
et al. 2016), can effectively detect temporal struc-
ture in simulations and empirical data (Duchêne
et al. 2020).

10.4.4 Comparing the Prior
and Posterior to Assess
Temporal Structure

The broad uptake of the date-randomization test is
largely due to the possibility of implementing it in
popular Bayesian frameworks, such as BEAST.
However, the interpretation of its result is not
strictly Bayesian, instead bearing some

resemblance to frequentist methods; the goal is
to test a hypothesis (whether the data have tem-
poral structure or not) with some confidence level
(similar to p-value testing using a significance
value, α). In contrast, a fully Bayesian approach
should assess statistical support for including
sampling times (Baele et al. 2012; Murray et al.
2015; Duchêne et al. 2020) or assessing the extent
to which the sequence data and sampling times
are informative about the inferences. The former
method has been previously assessed (see Sect.
10.4.3), but the latter has received limited
attention.

In general, sequence data are considered infor-
mative if the posterior distribution is considerably
different from the prior (with the notable excep-
tion of internal-node calibrations; Heath and
Moore 2014). The expectation is that with infor-
mative sequence data, the posterior should be
more precise and closer to the true value than
the prior, a behaviour also known as statistical
consistency. However, even sequence data with
very low information content can drive, and
sometimes mislead, estimates of some parameters
in the full phylogenetic model. As a case in point,
Möller et al. (2018) found that uninformative
sequence data can produce precise, but incorrect,
estimates of tree length and of the evolutionary
rate. This probably occurs because sequence data
that are uninformative for estimating evolutionary
rates and timescales can still contain sufficient
information to resolve the topology. Under these
circumstances, a limited set of trees will be sam-
pled and lead to a posterior that is much more
precise than the prior. Other parameters, includ-
ing the age of the root node, do not appear to
suffer from this problem.

Here we describe an approach that involves
comparing the prior and posterior distributions
of different parameters to assess information con-
tent in molecular sequence data and their associa-
tion with their sampling times. Our method of
assessing temporal structure consists of
quantifying information content in the posterior
relative to that of the prior for the age of the root
node. A simple measure is to take the 95%
quantile width divided by the mean, an analogue
to the coefficient of variation and referred to here
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as CV.We calculate this for the prior, CVprior, and
for the posterior, CVposterior, and take the ratio
CVratio ¼ CVprior / CVposterior. A CVratio of
1 means that the prior and posterior are equally
informative, whereas a CVratio of more than
1 means that the posterior is more informative
than the prior.

We expect that data with temporal structure
should have a higher CVratio than those with no
temporal structure. However, this can depend on
the parameter in question and its corresponding
prior. For example, if the evolutionary rate has a
very broad prior, even sequence data with no
temporal structure can produce a posterior that is
much more informative than the prior, with a
potentially large but misleading CVratio. This is
expected because the rate will be a function of the
number of variable sites and the prior on the age
of the root node. In contrast, the age of the root
node will require data with strong temporal struc-
ture to obtain an informative posterior and high
CVratio.

To determine the behaviour of this approach,
we simulated the evolution of DNA sequences
using parameters inferred for H1N1 influenza
virus, which typically has clocklike behaviour
and strong temporal structure (Hedge et al.
2013). We used the HKY+Γ substitution model,
a strict molecular clock with an evolutionary rate
of 3.66 � 10–3 substitutions per site per year, and
an exponential coalescent process for the
branching times. One hundred data sets were
simulated to have temporal structure, with sam-
pling times that span 7 months and which match
those of some data sets of the 2009 influenza
pandemic in North America (Hedge et al. 2013),
while another 100 were generated on ultrametric
trees and with no temporal structure. All data sets
contained 50 samples, sequence lengths of 13,156
nt, and about 350 variable sites to match typical
genome data sets from influenza virus.

We analysed the data in BEAST 2.5
(Bouckaert et al. 2014, 2019) using a substitution
model and tree prior that matched those used to
generate the data, and a Markov chain Monte
Carlo simulation with 5 � 107 steps, sampling
every 5000 steps. For the data with temporal
structure, we used the correct sampling times for
calibration, but, for the data with no temporal

structure, we set sampling times from a typical
influenza outbreak (Hedge et al. 2013). We used a
relaxed-clock model with a lognormal distribu-
tion. This model has good performance even for
data that follow a strict clock (Drummond et al.
2006), and it can accommodate apparent rate
variation among lineages that might arise when
specifying sampling times for the data with no
temporal structure. The priors were all proper,
such that each integrates to 1, and were selected
according to previous analyses of these data
(Duchêne et al. 2019). Ideally, one could compare
the prior selected for each parameter with its
marginal posterior distribution. However, such
user-specified priors often differ from the mar-
ginal prior, particularly those for ages of nodes
(including that of the root node) which can inter-
act with the topology and other priors (Duchêne
et al. 2014b). To obtain the marginal prior one can
run the analyses without sequence data (equiva-
lent to selecting the option ‘sample from prior’ in
BEAST 2).

The simulations demonstrate that analyses of
data with temporal structure result in a posterior
that is much more informative than the prior
(Fig. 10.3a, b), with a CVratio between 3 and
11 for the evolutionary rate and between 4 and
13 for the age of the root node. In 97 out of
100 simulations the posterior 95% credible inter-
val of the evolutionary rate included the value
used to generate the data. Analyses of the data
with no temporal structure yielded rate estimates
that never included the true evolutionary rate, but
the posterior for this parameter was nonetheless
always more informative than the prior
(Fig. 10.3c), with a CVratio between 1 and 12.
The CVratio values of the evolutionary rate are
similar for both sets of simulations, despite
those with no temporal structure always yielding
incorrect rate estimates. This illustrates the point
that comparing the prior and posterior of the rate
can provide a misleading assessment of temporal
structure (Fig. 10.4a). This probably occurs
because sequence data are informative about the
topology and the total amount of sequence diver-
gence even in the absence of temporal structure.

The CVratio of the age of the root node is a
more useful diagnostic to assess temporal struc-
ture than that of the evolutionary rate (e.g.,

10 Estimating Evolutionary Rates and Timescales from Time-Stamped Data 167



Fig. 10.3b, d). Its value ranged between 4.8 and
14 for the simulated data with temporal structure
and between 1 and 2.5 for those with no temporal

structure (Fig. 10.4). According to these results, a
posterior for the age of the root node that is about
fivefold more informative than the prior
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Fig. 10.3 Prior and posterior densities of the mean evo-
lutionary rate and the age of the root node for a simulated
data set with temporal structure (a, b) and without tempo-
ral structure (c, d). CVratio is a measure of information
content. For the prior and the posterior, we calculate the
95% interval width divided by the mean, and the ratio of

this quantity of the prior and the posterior is the CVratio. A
value of 1 indicates that the prior and posterior are simi-
larly informative, with higher values suggesting a more
informative posterior. The dashed line corresponds to the
‘true’ value used to generate the data
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Fig. 10.4 Histograms of the CVratio for the evolutionary
rate and age of the root node for 100 simulations with
temporal structure (grey) and without temporal structure
(red). Higher values indicate a more informative posterior
distribution relative to the prior. (a) CVratio of the evolu-
tionary rate is similar whether the data have temporal
structure or not, but, in the data with no temporal structure,
this parameter was never estimated correctly, meaning that

this statistic is misleading for assessing temporal structure.
(b) In contrast, CVratio of the age of the root node is much
higher for the simulated data with temporal structure. The
distribution of CVratio with no temporal structure (red) is
lower and does not overlap with that from the simulated
data with temporal structure (grey). As such, CVratio of the
age of the root node is an informative statistic for assessing
temporal structure
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(CVratio > 5) can be used as evidence of temporal
structure.

Although this test of temporal structure
appears to be effective, it requires careful consid-
eration of the priors, especially those on node
times as imposed by the tree prior. Here we
have used a coalescent tree prior that is
conditioned on the sampling times. In contrast,
birth–death tree priors can provide information
about sampling times and, if provided, they can
be treated as part of the data to inform diversifica-
tion parameters and the age of the root node
(Boskova et al. 2018). For this reason, it is impor-
tant to sample from the prior to determine
whether it is reasonable (Heled and Drummond
2012). An obvious problem is when the prior on
the age of the root node is over-informative, such
that the posterior is very similar regardless of
whether the data have strong temporal structure
or not. In such circumstances, inferences of evo-
lutionary rates and times are driven by the tree
prior and temporal structure might only have a
small impact. Although this is sometimes desir-
able, for example when internal-node calibrations
are used in combination with sampling times, it
should be explicitly acknowledged when
interpreting the estimates.

10.5 Heterochronous Data Analysis
in Practice

To provide an illustration of how temporal struc-
ture can be evaluated using Bayesian methods,
we present here an analysis of two empirical data
sets. Although there has been extensive use and
validation of the date-randomization test and the
root-to-tip regression, less attention has been
given to comparing prior and posterior
distributions to assess temporal structure. We
analysed two previously published data sets of
2009 H1N1 influenza virus (Hedge et al. 2013)
and of an outbreak of the bacterium Mycobacte-
rium tuberculosis in the Swiss city of Bern
(Kühnert et al. 2018) to show how the results
from the simulations in Sect. 10.4.4 can be
applied to empirical data. The influenza data set
consists of 100 whole genomes collected between

February and August 2009 in North America,
while the M. tuberculosis data set consists of
68 samples collected in Bern over a 10-year
period. Our analyses are similar to those
described in Sect. 10.4.4, with the same tree
prior, substitution model, and Markov chain
Monte Carlo settings.

The evolutionary rate estimates from both data
sets were similar to those of the original studies,
at 0.22 SNPs per genome per year for
M. tuberculosis, and 3.66 � 10-3 substitutions
per site per year for H1N1 influenza, although
slightly lower for M. tuberculosis, reported at
about 0.5 SNPs per genome per year by Kühnert
et al. (2018). The estimate of the age of the root
node of influenza is around the start of 2009,
which is consistent with the expected origin of
the 2009 influenza outbreak in the Northern
Hemisphere (Fig. 10.5). According to the
simulations in Sect. 10.4.4, a CVratio for the age
of the root node of at least 5 would indicate
evidence for temporal structure. As such, there
appears to be strong evidence of temporal struc-
ture for the influenza data set, with a CVratio of
8.91, whereas that for the M. tuberculosis data is
only 1.32. The low CVratio of the M. tuberculosis
data is consistent with a low R2 (0.05) from a root-
to-tip regression in the original study (Kühnert
et al. 2018). Comparing prior and posterior
distributions of the age of the root node appears
to be effective for analyses of empirical data. It
has the key benefits of an intuitive interpretation
and ease of use.

10.6 Conclusions and Future
Directions

Calibrating the molecular clock using
heterochronous data has been valuable for
estimating evolutionary rates and timescales in
rapidly evolving organisms and in ancient DNA
studies. There has been dramatic progress since
the proposal of the early root-to-tip regression
and strict-clock methods (Korber et al. 2000;
Seo et al. 2002), towards incorporating more
sophisticated models of rate variation (Ho and
Duchêne 2014; Bromham et al. 2018), modelling
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uncertainty in sampling times (Shapiro et al.
2011; Molak et al. 2013), and handling very
large data sets (To et al. 2016).

With most current methods it is important to
verify temporal structure to avoid misleading
inferences. Several methods to do this have been
described in this chapter, but regardless of the
choice of method for assessing temporal struc-
ture, the results should be carefully considered
before any of the data are discarded. For example,
many bacterial data sets have strong temporal
structure, but it is often obscured by recombina-
tion (Schultz et al. 2016), so correctly accounting
for recombination is an important development
(Vaughan et al. 2017; Didelot et al. 2018). In
some viruses, notably Hepatitis B virus, even
data sets that include samples from about
500 years ago still show little temporal structure,
a pattern that has been attributed to mutational
saturation (Patterson Ross et al. 2018). Accord-
ingly, developing more realistic substitution and
molecular clock models is likely to improve the
resulting inferences. In cases when the best avail-
able methods still detect no temporal structure in
the data, it might be necessary to resort to adding
calibrating information via internal-node calibra-
tion or previous rate estimates, to widen the sam-
pling window, or to sequence more informative
genomic regions.

Bayesian approaches have been particularly
popular because they allow simultaneous estima-
tion of a multitude of parameters of interest, such
as migration rates or epidemiological spread
(Lemey et al. 2009; Kühnert et al. 2011), and
because they can combine different sources of
information for calibration (Ronquist et al.
2012a; Zhang et al. 2015). Recent developments,
mostly in the Bayesian framework, include models
that allow ancient samples to be placed as direct
ancestors to modern samples (Gavryushkina et al.
2014), and those that can treat fossil taxa as tips in
the phylogenetic tree instead of using them indi-
rectly for internal-node calibrations (Heath et al.
2014). The flexibility of many Bayesian software
programs, such as BEAST 2 and RevBayes
(Höhna et al. 2016; Bouckaert et al. 2019),
presents a key opportunity to develop more realis-
tic approaches for including heterochronous data
in complex evolutionary scenarios.
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Total-Evidence Dating and the Fossilized
Birth–Death Model 11
Alexandra Gavryushkina and Chi Zhang

Abstract

Molecular clock dating has been widely used
to study the evolutionary history of species.
Total-evidence dating is an approach where
morphological and temporal data from fossils,
together with morphological and molecular
sequence data from extant species, are
analysed jointly to infer dated phylogenetic
trees and evolutionary parameters. The data
used for such an analysis are generated by
biological and geological processes and col-
lected by researchers according to their
interests. There is a large amount of
stochasticity involved in these processes and
the data are often incomplete: the species have
undergone speciation and extinction over time;
fossils are only discovered at random points in
time; and only a fraction of species (out of
many more unobserved or unsampled species)
are included in an analysis following a chosen
sampling strategy. Therefore, in a Bayesian
model-based framework, it is very important

to account for the processes that generated
the data. The fossilized birth–death model
describes the stochastic processes of specia-
tion and extinction, the distribution of avail-
able fossils over time, and the sampling of
fossil and extant species. This model has
been used productively in total-evidence dat-
ing analyses, and several variations of the
model have been developed. In this chapter,
we introduce these models and give examples
of their applications in joint or total-evidence
dating analyses. We also introduce the Lewis
Mk morphological substitution model and its
several extensions. We highlight specifics of
the implementations of the fossilized birth–
death and Lewis Mk models in the Bayesian
software packages BEAST 2 (version 2.6.1)
and MrBayes (version 3.2.7). The chapter
ends with a comparison of the total-evidence
and node-dating approaches.

Keywords

Total-evidence dating · Fossilized birth–death
model · Bayesian phylogenetics · Speciation ·
Fossilization · Morphological data

11.1 Introduction

Molecular clock dating is an approach to
estimating species divergence times and evolu-
tionary rates (dos Reis et al. 2016). Data from
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the fossils are used to inform the divergence
times, while the molecular clock assumption is
essential for the evolutionary rates. Early efforts
focused on node-dating approaches, while total-
evidence dating has become a promising alterna-
tive in recent years (Pyron 2011; Ronquist et al.
2012, 2016; Zhang et al. 2016; Gavryushkina
et al. 2017). In molecular clock dating, the Bayes-
ian framework is typically employed for its flexi-
bility and ability to account for various sources of
information and uncertainty in the analysis (see
Chap. 6).

Modelling of the tree-generating process is a
very important part of Bayesian total-evidence dat-
ing. Initial applications of total-evidence dating did
not pay much attention to the choice of the model
for this process. However, it has been shown that it
has a large effect on the estimated dates (Zhang
et al. 2016; Gavryushkina et al. 2017). Here we
describe the fossilized birth–death (FBD) model
(Heath et al. 2014), which was recently developed
to account for the diversification and sampling
processes. The two main advantages of this
model are that it directly accounts for the
stochasticity of the fossilization and fossil-
sampling processes and that the probability density
function has a closed-form expression which
makes it inexpensive for Bayesian inference. To
account for different sampling strategies and the
variability of the speciation and sampling pro-
cesses, several extensions of this model have
been developed and are introduced in this chapter.

Another important component of total-
evidence dating analysis is the model of morpho-
logical character evolution (see also Chap. 7). The
Lewis Mk model (Lewis 2001) is the only model
of discrete character evolution that has been used
for total-evidence dating. We introduce this
model and its several extensions and discuss
potential directions for improved modelling of
morphological character evolution.

We advocate for the statistically rigorous total-
evidence dating approach as an alternative to the
node-dating approach. At the end of this chapter,
we compare the two approaches and discuss the
advantages and shortcomings of the total-
evidence dating approach using the FBD model.

11.2 The Concept of Joint Inference
(Tip-Dating)
and Total-Evidence Dating

The joint inference approach is a method that uses
both comparative (molecular and/or morphologi-
cal) data and temporal fossil data in a joint analy-
sis that acknowledges that the two sources of data
come from processes that are not independent.
This approach has also been termed tip-dating in
the literature, but we avoid this term because it
draws an analogy with the node-dating or calibra-
tion approach, which is different from the joint
inference approach in principle. Another reason is
that, under the model that we introduce here,
fossils are not necessarily tips in phylogenies,
which makes the tip-dating term misleading (see
also Gavryushkina 2017).

Bayesian joint inference takes the compara-
tive data of fossil and extant species and temporal
data of fossil species as inputs. The comparative
data (D) are either morphological traits of fossil
and extant species, or morphological traits of
fossil and extant species and molecular
sequences of extant species. In the latter case,
the joint inference approach has been termed
total-evidence dating (Ronquist et al. 2012;
Chap. 7). In both cases, it is important that we
have enough morphological data for both fossil
and extant species.

The temporal data are usually presented as
stratigraphic ranges of fossil species based on
the geological information. A stratigraphic range
represents the age difference between the first and
last occurrences of the fossil species, and also
reflects the uncertainty in the estimated ages of
the fossil specimens (see Chap. 8). Thus, for a
given fossil species i with a true fossilization time
xi, we only know an interval τi,1, τi,2½ � that
contains xi. Let τ denote a collection of such
intervals (stratigraphic ranges) for all of the fossil
species. Note that, in this approach, we assume
that every fossil species is sampled only once,
that is, we only discover a single fossil specimen
for each species. This is a very strong assumption,
and we discuss how it can be avoided in Sect.
11.3.4.
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Then, in the Bayesian analysis, we estimate the
posterior distribution of the dated phylogenetic
tree (T ), diversification and sampling parameters
(η), and parameters of the models of morphologi-
cal and molecular evolution (θ) after observing
the data: morphological traits and molecular
sequences (D) and stratigraphic ranges (τ). The
posterior probability can be written as follows:

P T , η, θjD, τð Þ ¼ P D, τjT , η, θð ÞP T , η, θð Þ
P D, τð Þ :

Note that morphological and molecular data
D and stratigraphic intervals τ are not directly
dependent. The sequence data do not directly
depend on the diversification and sampling
parameters but only on the parameters of the
evolutionary model and the phylogeny. Similarly,
the assigned stratigraphic intervals only depend
on the true sampling times (and possibly other
parameters that we do not model here):

P D, τjT , η, θð Þ ¼ P DjT , θð ÞP τjTð Þ:
We assume that the diversification-sampling

process is independent of the processes of molec-
ular and morphological evolution:

P T , η, θð Þ ¼ P T , ηð ÞP θð Þ ¼ P Tjηð ÞP ηð ÞP θð Þ:
As mentioned above, we do not model the

process in which stratigraphic ranges are assigned
to fossils here, but assume that the probability of
assigning range [τ1, τ2] to a fossil with a true
preservation time t is constant; that is, P(τ|T ) is
constant. We obtain:

P T , η, θjD, τð Þ / P DjT , θð ÞP T jηð ÞP ηð ÞP θð Þ:
ð11:1Þ

A graphical representation of the model is
shown in Fig. 11.1.

In the following section, we will focus on the
models that are used in the joint inference to
describe the process that generates the phyloge-
netic tree with observed fossil and extant samples.

Such a model will define the term P(T|η) in
Eq. (11.1). In Sect. 11.4, we will discuss the
models of morphological evolution that define a
part of the term P(D|T, θ).

11.3 The Tree-Branching,
Fossil-Sampling Process

An important part of the inference is the model
that describes how the phylogenetic tree with
fossil and extant samples arises. The total-
evidence approach has been used with only a
few models that describe the tree-branching, fos-
sil-sampling process. The models that were used
in initial applications did not model the sampling
of extinct and extant lineages but either assumed
that all lineages are sampled (Pyron 2011) or
ignored the sampling process completely
(Ronquist et al. 2012). Stadler (2010) and Didier
et al. (2012) extended the classical model of spe-
ciation, the birth–death model (Kendall 1948), to
account for the sampling process. We describe
this model in the following section.

11.3.1 Fossilized Birth–Death Process

The fossilized birth–death (FBD) process (Stadler
2010; Didier et al. 2012) is a continuous-time
Markov process (Grimmett and Stirzaker 2001)

θ η

Τ

τD

Fig. 11.1 Graphical representation of the Bayesian net-
work for the joint inference approach. θ denotes the
parameters of the evolutionary models of molecular and
morphological data, η the diversification and sampling
model parameters, T the dated phylogeny, D the molecular
and morphological data, and τ the stratigraphic ranges
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that starts with one lineage at some point in time.
As time goes on the lineage can split (bifurcate) or
terminate (go extinct). At each split, a new line-
age arises that starts a new FBD process. Thus,
the process can generate many lineages that exist
at the same time. If a lineage terminates, the
process stops for that lineage. At the same time,
every lineage arising in the process can be
instantly sampled. This process is modelled as a
combination of three independent Poisson pro-
cesses (Grimmett and Stirzaker 2001): bifurcation
(with rate λ), termination (with rate μ), and sam-
pling (with rate ψ). Thus, the waiting time until a
bifurcation event is exponentially distributed with
rate λ. Similarly, the waiting times until an extinc-
tion event and a sampling event are exponentially
distributed with rates μ and ψ , respectively.

The FBD process assumes that at any point in
time several coexisting lineages develop indepen-
dently of each other; however, the rates are equal
for all lineages. The process can finish because of
the termination of all lineages or can run for
infinitely long. To restrict the space of the
outcomes, we usually use some type of stopping
condition. For example, we might only allow the
process to run for a certain period of time or until
a certain number of lineages is reached. Here we
only consider the first case, that is, the process
stops after a certain period of time (for the other
case, see Stadler 2010). The FBD process

describes events in the past, so the time is usually
expressed in time units before the present. That is,
the process starts at a positive time, the time of
origin tor, and finishes at time zero (the present
time). The lineages that survived until the present
time are additionally sampled with the same con-
stant probability ρ.

We use the described theoretical process to
model the biological process of speciation, the
geological process of fossilization, and the pro-
cess by which species are chosen for analysis. In
this way, the splits correspond to speciation
events and terminations to extinction events. For
the two sampling efforts, ψ-sampling corresponds
to a series of events: fossilization, preservation,
discovery, identification, and inclusion in an anal-
ysis. ρ-sampling corresponds to the choice of
extant species for an analysis.

The process described here generates
bifurcating phylogenetic trees in which lineages
are marked at various points of time with fossil
occurrences and at time zero with extant samples
(Fig. 11.2). However, it is not possible to estimate
the complete tree because we only observe (sam-
ple) a part of this tree and, therefore, we can only
estimate this observed part of the tree called a
reconstructed tree or sampled tree. In the com-
plete tree, all fossil samples are points inside
(along) branches, that is, a sampling point never
coincides with a bifurcation or a lineage

a

tor

0

λ, μ, ψ, ρ

b

Fig. 11.2 (a) A complete tree generated by the fossilized
birth–death process with parameters (tor, λ, μ, ψ , ρ).
Filled circles are sampling points of fossils at nonzero
times (in the past) and of extant samples at time zero
(present time). The observed part of the phylogeny is

highlighted in red on the complete tree. (b) The
corresponding sampled tree. Some fossil samples become
tips and some remain inside the branches (sampled
ancestors) in the sampled tree
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termination. In a sampled tree, however, some of
the sampling points remain inside the branches
and some become tips if the lineage or its descen-
dent lineages were not sampled again (either via
ψ-sampling in the past or via ρ-sampling at the
present). Until recently, the former type of sam-
pling points were not allowed in the reconstructed
trees. Gavryushkina et al. (2014) suggested infer-
ring trees in which samples can lie inside the
branches and called such sampling points sam-
pled ancestors. In species phylogenies, sampled
ancestors represent fossil species that are direct
ancestors of other sampled species or clades. This
explains why the ‘tip-dating’ term is misleading
(Gavryushkina 2017).

The FBD model has been implemented in the
SA package (Gavryushkina et al. 2014) for
BEAST 2 (Bouckaert et al. 2014) and in MrBayes
(Ronquist et al. 2012; Zhang et al. 2016), with
some differences in the available options that we
describe below. It is also available in RevBayes
(Höhna et al. 2016). Thus, a total-evidence analy-
sis using the FBD model can be performed in
several major software packages for Bayesian
phylogenetics.

There are several variations in sampling
conditions that are assumed by the process.
First, we can consider all sampled trees generated
by an FBD process that stops after a fixed time tor
with fixed parameters λ, μ, ψ , and ρ. There exists
a closed-form expression for the probability den-
sity function over the space of these sampled trees
(Eq. (3) in Stadler (2010), up to a constant for
labelled trees). Second, one can consider only the
trees that survived until the present and in which
at least one lineage was sampled at the present
time. This condition is usually called condition-
ing on sampling of at least one extant individual.
The probability density function over such trees
also has a closed-form expression [Stadler 2010;
Eq. (2) in Gavryushkina et al. (2014)]. Third, we
can condition on sampling of at least one individ-
ual (not necessarily extant) because only
non-empty samples are observed. All of these
options are available in BEAST 2.

The motivation for conditioning on sampling
of at least one lineage comes from simulation

studies where one simulates trees and then uses
these trees (or sequence data evolved along these
trees) to re-estimate the parameters of the model.
In such studies only non-empty trees are used
and, therefore, conditioning on sampling of at
least one lineage makes the estimates of the
parameters from simulated data more accurate. It
is not clear, however, whether to condition on
sampling when analysing extant clades. On one
hand, we only analyse non-empty data sets. On
the other hand, the fact that the clade did not go
extinct (or unobserved) might be due to the diver-
sification and fossilization parameters being
higher; conditioning on sampling would result in
underestimation of these parameters.

For some applications, it is more convenient to
describe the process as starting with a bifurcation
event (Heath et al. 2014). In this case, the process
starts at some point in time with two lineages (the
root of the complete tree). This assumption is
often referred to as conditioning on the root rather
than conditioning on the origin. The probability
density function for sampled trees generated by
the process conditioning on the root and condi-
tioning on sampling of at least one extant individ-
ual on each side of the root was derived by Stadler
(2010) and defined by Eq. (3) in Gavryushkina
et al. (2014). In MrBayes, the process is always
assumed to be conditioned on the root. Moreover,
it is assumed that there is at least one sampled
lineage (not necessarily extant) on each side of
the root. There is an equivalent option in
BEAST 2.

The BEAST 2 implementation allows two dif-
ferent parameterizations, λ, μ, ψ , ρ, and d, v, s, ρ,
where:

d ¼ λ� μ > 0,

v ¼ μ
λ
,

s ¼ ψ
ψ þ μ

,
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while MrBayes only allows the d, v,
s parameterization. Note that the alternative
parameterization implies that speciation always
exceeds extinction (d ¼ λ � μ > 0). This might
not be a plausible assumption and the original
parameterization should be used if one wishes to
allow a negative net diversification rate (d ).

The FBD model can also be used to analyse
purely extinct taxa. In this case, we would also
assume that the process started at the time of
origin (or the root) and finished at the present.
Our knowledge that the clade has gone extinct
can be interpreted as sampling at present with
probability 1 even though no extant samples
exist. That is, we intended to include every extant
species belonging to this clade by comparing the
morphology of the fossils with that of all the
extant species, but none of the existing species
could be assigned to this clade. Thus, an analysis
of an extinct clade using the FBD model would
require fixing the ρ parameter to 1.0 and not
conditioning on the sampling of at least one indi-
vidual at the present. However, this possibility is
not available in BEAST 2. One could still analyse
extinct clades by not specifying the ρ parameter
(ρ is then fixed to zero by the program). This
would not be equivalent to modelling the extinct
clades as described above, but rather would treat
the most recent fossil as the last ψ sample of the
process and assume that sampling of extant spe-
cies was not attempted. It means that such an
analysis does not have the information that the
clade has gone extinct, but assumes instead that
there could still be unsampled extant lineages.

MrBayes does not support analysing purely
extinct taxa in an appropriate way (as described
above). A possible solution is to treat the most
recent fossils as ‘extant’ species, by adjusting the
stratigraphic ranges of the older fossils relative to
the most recent fossil (time zero), and setting ρ to
represent the putative sampling proportion of the
most recent fossils.

As described in the previous section, the ages
of the fossils are rarely known with certainty. One
might fix the fossil age to the midpoint or a
random point drawn from within the stratigraphic
range, but it has been shown that ignoring fossil
age uncertainties can lead to biased divergence-

time estimates (Barido-Sottani et al. 2019). The
implementations in BEAST 2 and MrBayes allow
a time range [τ1, τ2] to be specified for each of the
fossil species; the unknown age of the fossil is
averaged over all possible values within the
specified range in the inference.

The total-evidence approach using the FBD
model was initially applied to a penguin data set
consisting of 35 fossils and 19 extant species
(Gavryushkina et al. 2017). The analysis of mor-
phological data from extant and fossil species,
molecular data from extant species, and fossil
stratigraphic intervals yielded a surprising result.
The age of the crown penguin radiation was
estimated to be substantially younger than in pre-
vious studies: 12.7 Myr ago compared with
20.4 Myr ago (the youngest estimate by
Subramanian et al. 2013). This was attributed to
both the improved modelling of the tree-
branching and fossil-sampling process and the
inclusion of all available stem fossils. This analy-
sis brought another interesting insight into pen-
guin fossil ancestry: a fossil species Spheniscus
muizoni was inferred as the direct ancestor of the
extant Spheniscus clade in 61% of the posterior
trees.

11.3.2 Varying Diversification
and Sampling Rates

The FBD model assumes that the diversification
and fossil-sampling rates are constant through
time. The extension of the FBD process that
accounts for rate variation over time is called the
skyline FBD model (Stadler et al. 2013;
Gavryushkina et al. 2014), where the variation
in rates is modelled in a piecewise manner. The
time is divided into k intervals and the diversifi-
cation and sampling rates are constant within each
interval but can vary between intervals. Let
t0 ¼ tor be the time of origin, t1 > . . . > tk � 1

are some times in the past, and tk ¼ 0 is the
present time, then each interval [ti, ti � 1] for
i 2 {1, . . ., k} has rates λi, μi, and ψ i and the last
interval [tk, tk � 1] also has the sampling-at-pres-
ent probability ρ. The probability density of a
sampled tree (Fig. 11.3) generated by the skyline
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FBD process, conditioning on sampling of at least
one individual at the present time, is defined by
Eq. (7) in Gavryushkina et al. (2014). If the pro-
cess starts with a bifurcation event (at the root),
and at least one individual is sampled on each side
of the root, the probability density function is
defined by Eq. (1) in Zhang et al. (2016) (setting
ρi and Ni to zero for i 2 1, . . ., l� 1 and ρl¼ ρ and
multiplying by a constant for labelled trees).

The skyline version of the FBD model is
implemented in the BDSKY package for
BEAST 2. This implementation permits the user
to fix the times of the rate shifts (ti) or to specify
the number of intervals, k. In the latter case, the
period between the time of origin and the present
time is divided into k equal intervals. This implies
that the time shifts will be relative to the time of
origin and will not be fixed within an analysis if
the time of origin is not fixed. One can condition

either on the root or on the origin, either condition
or not condition on the sampling of at least one
individual, and either condition or not condition
on sampling of at least one extant individual.
MrBayes implemented the skyline FBD model
with several variations. First, the process starts
from the root with two lineages instead of one
from the origin. Second, it conditions on sam-
pling at least one individual on each side of the
root. Third, it can only specify absolute and fixed
rate-shifting times.

11.3.3 Diversified Sampling of Extant
Species

The FBD models described above assume a
uniform sampling of extant species, meaning
that we do not make any preferences (e.g.,

t0
λ1, μ1, ψ1

ρ

a

b

t1

t2

t3 = 0

t0

t1

t2

t4 = 0

t3 = tcut

λ2, μ2, ψ2

λ3, μ3, ψ3

λ1, μ1, ψ1

λ2, μ2, ψ2

λ3, μ3, ψ3

λ4, μ4

Fig. 11.3 Skyline fossilized birth–death (FBD) process
with uniform and diversified extant sampling. (a) A com-
plete tree generated under the skyline FBD process with
uniform sampling (left) and a corresponding sampled tree
(right). Each of the intervals has distinct rates λ, μ, and ψ .
Uniform ρ sampling is applied at time zero. (b) The same

complete tree generated under the skyline FBD process but
with diversified sampling (left) and the corresponding
sampled tree (right). No fossils are sampled after the
cut-off time tcut. Five lineages existed at time tcut, four of
which gave rise to surviving lineages or clades. Exactly
one extant species from each of the four clades is sampled
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sampling one clade more densely than another)
when choosing which extant species to be
included in the analysis. For large clades and
higher-level taxa, however, it is common to
include the most diverse sample of the extant
representatives of the clade (Höhna et al. 2011).
Zhang et al. (2016) developed a variant of the
FBD process where this sampling bias is taken
into account and called it the diversified FBD
process.

Consider a skyline FBD process with two
modifications. First, the sampling rate ψ is fixed
to zero within the most recent interval. The begin-
ning of this interval is called the cut-off time
(tcut ¼ tk � 1) and we assume that no fossils are
sampled after the cut-off time. The second modi-
fication is in the sampling scheme for extant spe-
cies. Consider all lineages that existed at the
cut-off time and survived until the present. Each
of these lineages gives rise to a group of extant
species (a clade). The model assumes that exactly
one species from each of these groups is sampled
at the present time. Such an assumption is more
appropriate for higher taxa, such as in previous
studies of hymenopterans and mammals (Zhang
et al. 2016; Ronquist et al. 2016).

Thus, the model parameters are (t0, t1, . . .,
tk � 1 ¼ tcut, tk ¼ 0), (λi, μi, ψ i) for i 2 {1, . . .,
k � 1}, and λk, μk. The probability density of a
sampled tree generated by this process is defined
by Eq. (7) in Zhang et al. (2016) (again setting ρi
and Ni to zero for i 2 1, . . ., l � 1 and ρl ¼ 1 and
multiplying by a constant for labelled trees).

The skyline FBD model has been applied to a
data set from Hymenoptera (Ronquist et al. 2012)
under both random and diversified sampling of
extant species (Zhang et al. 2016). The data set
included 60 extant and 45 fossil hymenopterans
and consisted of one morphological and seven
molecular partitions. The geological time was
divided into three intervals, with the rates shifting
at 252 Myr ago and 66 Myr ago. All fossils were
included in the middle interval. The analyses also
explored two relaxed-clock models, the
autocorrelated lognormal (TK02, Thorne and
Kishino 2002) and the independent gamma rates
(IGR, Lepage et al. 2007), shared (linked) across
the partitions. The age estimates, particularly for

the initial radiation of Hymenoptera, were quite
different among these model assumptions. The
age estimates for Hymenoptera were oldest
when assuming random extant sampling and the
TK02 clock model (365.3 Myr), and youngest
when assuming diversified extant sampling and
the IGR clock model (251.7 Myr). This disparity
suggested that violation of the sampling
assumptions of the FBD process can have a
strong influence on the age estimates. The authors
reasoned that diversified sampling and the IGR
clock model provided the best fit for the higher-
level taxon sampling and dramatic evolutionary
rate variation across lineages, and the ages
inferred were the most in line with the fossil
record. Nevertheless, it would be important to
examine the different assumptions in the FBD
model and the influence of violating these
assumptions on the posterior estimates in
practice.

11.3.4 Accounting for Multiple Fossils
of the Same Species

In Sect. 11.2, we made an assumption that every
fossil species is sampled only once. However,
palaeontological data sets often include several
fossil specimens, from different localities and
different stratigraphic layers, assigned to the
same species. Incorporating these data into the
inference would restrict the space of possible
phylogenies, because fossil samples of the same
species cannot be separated by a split, and would
enable a more accurate inference through
improved estimates of sampling rates.

In this section, we introduce a model that
relaxes the ‘single fossil per species’ assumption.
To achieve this, one first needs to model how
lineages are divided into species through time.
Until this point, the FBD model has only assumed
that coexisting lineages belong to different spe-
cies but has assumed no knowledge as to whether
the same lineage represents the same species at
different points in time. This also implied
non-oriented trees, that is, there is no distinction
between the lineage that continues the original
lineage and the other that starts a new FBD
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process at each split. Stadler et al. (2018)
introduced a mixed speciation model that assigns
species through time on semi-oriented trees. Fol-
lowing Foote (1996), they assumed three types of
speciation: asymmetric speciation where, after a
split, one lineage continues the ancestral species
and the other lineage starts a new species; sym-
metric speciationwhere the ancestral species goes
extinct at a branching event that gives rise to two
new species; and anagenetic speciation, where
speciation occurs without branching because one
species goes extinct and gives rise to another
species that continues the lineage.

The mixed speciation process extends the
fossilized birth–death process by assuming that
every bifurcation event is an instance of a sym-
metric speciation event with probability β and an
asymmetric speciation event with probability
1 � β. Additionally, anagenetic speciation events
occur with rate λa. Then ψ- and ρ-sampling
occurs as before. Thus, the FBD process is a
special case of the mixed speciation process
when β ¼ λa ¼ 0. Such an extension reflects the
biological process of speciation and explains the
disparity in the estimates of the speciation and
extinction rates from two sources of data:
phylogenies inferred from molecular sequences
and fossil stratigraphic ranges (Silvestro et al.
2018).

If we keep track of the types of speciation
events, the directionality of asymmetric specia-
tion events, and the times and locations of
anagenetic speciation events, then we always
know the time boundaries of species in a com-
plete tree generated by this process. Then we can
group all ψ- and ρ-sampled nodes belonging to
the same species. The oldest and youngest
samples of these groups will define observed
segments of lineages fully belonging to the same
species. We call such segments stratigraphic
ranges of species.

The aim is to use this process to infer
phylogenies from the data composed of groups
of specimens with estimated ages assigned to
species, that is, from stratigraphic ranges. The
sampled tree is then defined as the observed part
of the complete tree together with the knowledge
of which fossils form stratigraphic ranges. In a

sampled tree, we no longer know the time
boundaries of species because only some of the
branching events and none of the anagenetic
events are observed. However, we still know
which fossils belong to the same species. We
call the process that generates such sampled
trees on stratigraphic ranges a stratigraphic-
range FBD process.

Stadler et al. (2018) have shown that the prob-
ability density function for sampled trees
generated by the stratigraphic-range FBD process
has a closed-form expression. Therefore, there is
no computational barrier to using this model in a
Bayesian joint or total-evidence inference. The
behaviour of this model and its advantages for
joint inference are yet to be investigated once the
implementation of a full Bayesian inference
becomes available.

11.4 The Role
of Morphological Data

Morphological data are crucial for a total-
evidence or joint inference analysis. The topolog-
ical placement of fossils and the lengths of the
branches in the estimated tree are both influenced
by the morphological data. Although one can use
the FBD model in a dating analysis with only
molecular data (Heath et al. 2014), fossils in
such an analysis must be pre-assigned to clades
in the molecular phylogeny. This again involves
comparing morphology between extinct and
extant species. Without (or with too little) mor-
phological data, that is, with uncertain topological
placement of fossils, the posterior distribution of
node ages will reflect the prior distribution of the
parameters of the FBD model informed by only
the number and ages of fossil and extant samples.
Furthermore, inappropriate morphological data or
models can have negative impacts on the
estimated dates.

As introduced in Sect. 11.2, the input data
D for a Bayesian joint or total-evidence inference
analysis consists of morphological data or a com-
bination of morphological and molecular data.
Let D ¼ (M, S), where M is morphological data
from fossil and extant species and S is molecular
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data from extant species (if present). The morpho-
logical data matrix M consists of a collection of
discrete characters or traits for each species, each
with a number of possible states. For example,
position 21 of the morphological character matrix
used for the analysis of penguins describes the
trait ‘iris colour’ (Gavryushkina et al. 2017). It
has six possible states: dark, reddish-brown,
claret red, yellow, white, and silvery grey. These
are coded with numbers 0–5. Then 5 at position
21 for Eudyptula minor (little blue penguin)
reflects the grey colour of the eyes in these
penguins.

We assume that these sets of characters evolve
along the tree similarly to molecular sequences,
that is, the state of a character can change from
one to another along the branches of the tree.
Given the amount of neutral molecular evolution
and the complex nature of phenotype–genotype
relationships, we further assume here that mor-
phological and molecular data evolve indepen-
dently. However, this assumption can be partly
relaxed by linking molecular and morphological
clock models (Ronquist et al. 2012; Zhang et al.
2016). Then the term P(D|T, θ) in Eq. (11.1) can
be written as:

P DjT , θð Þ ¼ P MjT , θMð ÞP SjT , θSð Þ, ð11:2Þ
where θM and θS are the parameters of the models
of morphological and molecular evolution,
respectively. The term P(M|T, θM) defines how
the morphological characters change over time
and involves two components: a clock model,

which describes how the average number of
changes per character per unit of time varies
among the branches; and a character substitution
model, which describes the relative frequency of
particular state-to-state changes. The term
‘substitution’ here is borrowed from models of
molecular evolution. In the following section, we
introduce the Lewis Mk morphological character
substitution model and describe several
generalizations (see also Chap. 7). Then we dis-
cuss several problems concerning the availability
and quality of morphological data.

11.4.1 Lewis Mk and Mkv Model

The Lewis Mk model (Lewis 2001) is widely
used for morphological character evolution. It is
a generalization of the Jukes–Cantor model
(Jukes and Cantor 1969) for four-state nucleotide
substitution. The model assumes that every state
has the same instantaneous rate of changing into
every other state (Fig. 11.4a). For k states (k � 2),
the (instantaneous) substitution rate matrix is:

Q ¼ a

1� k 1 ⋯ 1

1 1� k ⋯ 1

⋮ ⋮ ⋱ ⋮
1 1 ⋯ 1� k

2
6664

3
7775,

where a is the instantaneous rate of change
between states. Thus, the transition probability
matrix P(t) has elements:

c
0

1 2

b

0 1 2

a
0

1 2

Fig. 11.4 (a) Lewis Mk model, (b) ordered states with
equal stationary frequencies, and (c) a more general model
with unequal stationary frequencies. The size of each

circle represents the stationary frequency of the
corresponding state. The thickness of each arrow
represents the instantaneous rate of change
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Pii tð Þ ¼ 1
k
þ k � 1

k
e�kat ,

Pij tð Þ ¼ 1
k
� 1

k
e�kat:

The stationary distribution of the k states is
(1/k, . . ., 1/k). For the likelihood calculation
where branch lengths are typically measured by
the expected number of substitutions per charac-
ter, a ¼ 1/(k � 1).

Palaeontologists typically code variable
characters only, that is, the characters that have
at least some variation in states among the species
of interest. Applying the Mk model directly in
this case will lead to overestimation of the branch
lengths. To account for such an acquisition bias,
one needs to divide the likelihood for each char-
acter c by the probability of c being variable, that
is, 1 minus the probability of c being constant.
This correction has been named the Mkv model
(Lewis 2001).

11.4.2 Modelling Substitution Rate
Heterogeneity

The assumption of an equal rate of change
between states is considered a poor fit for certain
morphological characters. For example, some
characters might be specified as ‘ordered’, that
is, instantaneous change is only allowed between
adjacent states. In this case, only the elements
adjacent to the diagonal have rate 1, while the
rest of the rates are 0 in the Q matrix (k � 3).

Q ¼ a

�1 1 0 ⋯ 0

1 �2 1 ⋯ 0

0 1 �2 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ �1

2
6666664

3
7777775
:

This model has the same equal stationary
frequencies (1/k, . . ., 1/k) as the Mk model but

takes a longer time to move between nonadjacent
states.

Another model, described by Wright et al.
(2016), extends the Mk model and has unequal
stationary frequencies (π0, . . ., πk � 1). It is a
generalization of the F81 model (Felsenstein
1981) for k states (k � 2).

Q ¼ a

π0 � 1 π1 ⋯ πk�1

π0 π1 � 1 ⋯ πk�1

⋮ ⋮ ⋱ ⋮
π0 π1 ⋯ πk�1 � 1

2
6664

3
7775:

This model becomes the Mk model when the
πi s are all equal.

More generally, to account for both the order-
ing of states and unequal stationary frequencies,
the substitution rate matrix (k � 3) can be
written as:

Q ¼ a

: π1 bπ2 ⋯ bπk�1

π0 : π2 ⋯ bπk�1

bπ0 π1 : ⋯ bπk�1

⋮ ⋮ ⋮ ⋱ ⋮
bπ0 bπ1 bπ2 ⋯ :

2
6666664

3
7777775
.

The parameter b controls the bias towards
ordered characters, where b ¼ 0 models
completely ordered characters. For 0 < b < 1,
instantaneous change tends to be more likely
between adjacent states than nonadjacent ones.

Since the substitution process is completely
determined by the Q matrix, one might even
extend the model to be analogous to the GTR
model (Tavaré 1986) by adding more free
parameters. However, it appears less meaningful
to estimate all such parameters from morphologi-
cal characters. One concern, as mentioned by
Wright et al. (2016), is that morphological char-
acter states do not carry common meaning across
characters because each describes a distinct trait
(i.e., ‘0’ for one character might have a
completely different meaning from ‘0’ for
another).

In practice, the unequal stationary frequencies
can be averaged over through the use of priors in
the Bayesian analysis. This is straightforward for
two-state characters, because there is a single

11 Total-Evidence Dating and the Fossilized Birth–Death Model 185



parameter π0 in the model (π1 ¼ 1� π0). One can
assign a beta(α, α) distribution to π0 with mean
0.5, discretize the density into several categories
with equal probabilities, and average over the
values of π0 in the likelihood calculation (Wright
et al. 2016), a strategy similar to discretizing the
gamma distribution for rate variation across sites
(Yang 1994). The posterior estimate of α
indicates the degree of asymmetry of character
state substitutions, with larger α corresponding
to more similar rates of change and thus similar
state frequencies on average for the characters
analysed. The limiting condition of α ¼ 1
corresponds to the Mk model.

For characters with more than two states, one
can assign a symmetric Dirichlet distribution with
a single parameter α for the stationary frequencies
{πi}. However, applying this strategy is not
straightforward, because there is no simple way
to discretize a Dirichlet distribution. In practice,
the stationary distribution of {πi} needs to be
coestimated. For the purpose of interpretation, it
is better to consistently code ancient traits as
smaller numbers (e.g., ‘0’) than for derived traits,
to avoid arbitrary labelling.

Lewis Mk and Mkv models are implemented
in the MM package for BEAST 2 and in
MrBayes. Both software packages allow the
user to specify unequal frequencies and to
assign a Dirichlet prior for the frequencies.
BEAST 2 will estimate the overall frequencies
of all of the characters with the same number of
states (if the morphological matrix is partitioned
into groups of characters with the same number of
states). MrBayes will estimate the frequencies of
each character with more than two states and
average over the frequencies for two-state
characters using a discrete beta prior described
above.

11.4.3 Other Models
and Morphological Data

The specifics of the morphological data should be
reflected in the statistical models that we use for
the inference. The total-evidence approach is a
recent method and the models of morphological

evolution used in it have not been tested thor-
oughly. Better models can potentially be devel-
oped to improve the inferences.

Several other variants of the Lewis Mk model
have been introduced. Klopfstein et al. (2015)
applied a nonstationary Markov model to
the Hymenoptera data set, which resulted in
improved precision in the divergence-time
estimates. Hoyal Cuthill (2015) considered
Lewis models with different state spaces: finite,
inertial (locally finite), and infinite. She simulated
patterns of homoplasy from these different
models and compared them with the patterns of
several empirical data sets, most of which were
compatible with the inertial model and some with
the finite model.

No specific clock models, the second compo-
nent of the term P(M|T, θM) in Eq. (11.2), have
been developed for morphological data. They are
simply adapted from clock models that were
designed for molecular evolution. The most com-
mon models that have been used for morphologi-
cal data are the strict clock (Zuckerkandl and
Pauling 1962) and uncorrelated relaxed-clock
(Drummond et al. 2006; Lepage et al. 2007).
Only a few studies have attempted to compare
and test different clock models for morphological
data (Zhang et al. 2016; King et al. 2017). When
morphological data are limited, the temporal data
might drive the estimated divergence times and
the application of the relaxed-clock model might
result in unexpected patterns of rate variation
among branches.

We usually assume that different characters
evolve independently of each other and share
the same rates of evolution. However, some
characters might be correlated and evolve
together (Lee and Palci 2015; dos Reis et al.
2016). For example, several characters that repre-
sent different measurements (e.g., in different
dimensions) of the same phenotypic feature will
most likely evolve in a similar way. Lee (2016)
partially addressed this issue by partitioning a
large morphological data set of mammals based
on the similarity of the relative branch lengths
reconstructed from different proposed partitions,
then applying a distinct relaxed-clock model to
each of the partitions in the joint inference. This
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resulted in an improved recovery of the topologi-
cal relationships. Thus, better statistical models
accounting for character correlation are needed.

Goloboff et al. (2019) showed that morpholog-
ical characters have distinct patterns of rate varia-
tion among lineages. They showed in simulation
studies that this had a slight effect on the undated
phylogeny estimated from morphological data
using Bayesian inference. More research is
needed to assess how violating the Lewis Mk
model assumption affects the divergence times
from joint inference and whether better modelling
is possible.

The availability of morphological data might
be an issue for joint inference. First of all, there
need to be enough morphological data to inform
the fossil placements in the tree and to date the
phylogeny reliably. The majority of extant spe-
cies have not been coded for morphological
characters (Lee and Palci 2015), making them
unavailable to be included in a joint inference
with the related fossil species for which morpho-
logical data are available. Guillerme and Cooper
(2016) assessed the impact of missing morpho-
logical data on the inferred topology in a total-
evidence analysis. They showed that the ability to
recover a tree topology decreases with decreasing
morphological data. Decreasing the number of
living taxa with morphological characters and
decreasing the total number of morphological
characters had the worst effect, whereas missing
characters in the fossil data affected the inference
to a lesser degree.

Incomplete morphological data are not always
due to the natural reasons of poor preservation or
limited access to geological sites. For example,
the available morphological data have often been
collected with different inference approaches in
mind. In some cases, this issue might be able to be
addressed by improved modelling. Typically,
morphological character matrices constructed for
parsimony analyses do not contain so-called
parsimony-uninformative characters: constant
characters and autapomorphies. The latter are
characters for which only one state can be present
in more than one species. For example, a data

column ‘000100200’ is an autapomorphy.
Matzke and Irmis (2018) showed that the exclu-
sion of autapomorphies led to the morphological
clock rate increasing by an order of magnitude in
a joint inference analysis of early eureptiles.
In simulation studies, they also showed that
when the morphological data are clocklike, the
exclusion of autapomorphies leads to biased
branch-length estimates and, in particular,
underestimation of the terminal branch lengths.
A simple solution by Lewis (2001), where the
likelihood is conditioned on nonrecording
for constant characters (Mkv model), cannot be
easily transformed to ascertaining for
autapomorphies, for computational reasons.
Hoyal Cuthill (2015) also noted that it is not
possible to distinguish between the homoplasy
patterns from finite and inertial models from
data sets where parsimony-uninformative
characters have been excluded. Studies are now
filling in this gap by updating morphological data
sets with autapomorphies (Cau 2017; King et al.
2017).

To date, most studies applying the joint infer-
ence approach have been using species-level fos-
sil data. That is, each fossil species is represented
by a single fossil sample, with morphological
codings merged from many available fossil
specimens of this species. While including only
a single fossil sample per species violates the
assumptions of the FBD model and might lead
to biases in the diversification and sampling
parameters, merging morphological codings
from different specimens also misleads the
models of morphological evolution. First of all,
such data are not accurate because the characters
merged from specimens of distinct ages could
have evolved over the time elapsed between the
fossilization events. On the other hand, characters
with identical states in several specimens from
different stratigraphic layers indicate the period
of time during which no changes occurred in
these characters, improving the estimates of the
morphological evolutionary rates.

Another approach is to include each fossil
specimen with its own morphological codings
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and treat it as a distinct sample. The first and only
study that has applied joint inference with the
FBD model to specimen-level data is by Cau
(2017), who analysed tooth plates from individual
fossils of Mesozoic dipnoans to test for
chronostratigraphic relationships among these
fossil specimens (that is, whether different
specimens represent the same species at different
points in time). However, specimen-level data
are rarely available and can be impractical to
collect and/or analyse because of their size.
The model introduced in Sect. 11.3.4 could over-
come the issue of violating the FBD model
assumption when the size of the specimen-level
data set becomes prohibitive, but it does not
solve the problems arising from merging morpho-
logical codings. A better modelling of morpho-
logical evolution might be able to address this
problem.

The last issue that we discuss here is
discretizing continuous characters. In other
words, if a trait represents a continuous character-
istic (e.g., length) then its values will be
discretized into several categories (e.g., short,
medium, and long). Many traits are presented by
continuous measurements and morphometrics,
but the models (Mk model in particular) that
have been used in joint inference analyses do
not account for this. In phylogenetics, the drift
of continuous characters has been modelled by a
Brownian motion (Felsenstein 1973) or Ornstein–
Uhlenbeck process (Felsenstein 1988). The for-
mer has no bound on the possible value of the trait
in the long run, because the variance grows in
proportion to time. The latter has a long-term
mean and the process will fluctuate around this
mean in the long run. The models of continuous
character evolution have great potential to be
integrated into a joint or total-evidence dating
analysis to take advantage of different types of
morphological data. Álvarez-Carretero et al.
(2019) recently attempted joint inference with a
combination of continuous traits and molecular
sequences. They implemented the Brownian
motion process (Felsenstein 1973) and accounted
for correlations among the traits. In their
approach, the topology of the tree needs to be
fixed.

11.5 Calibration Approach Versus
Joint Inference

In dating analyses based on the calibration
approach, calibration densities are used as prior
distributions for the ages of particular nodes,
which we refer to as calibration nodes (Tavaré
et al. 2002; Yang and Rannala 2006; Ho and
Phillips 2009). The topology of extant species is
often estimated prior to the dating analysis and
calibration nodes are fixed in the tree. If the topol-
ogy and the divergence dates are coestimated in
the dating analysis, a calibration node is defined
as the most recent common ancestor of a group of
extant species. In both cases, dating with
calibrations is performed in two steps. First, tem-
poral fossil data are transformed into calibration
densities and assigned to calibration nodes.
Second, a separate dating analysis of extant spe-
cies is performed. This analysis uses molecular
sequences of extant species as data and calibra-
tion densities as prior distributions on the ages of
calibration nodes to infer dated phylogenies
(Chap. 8). Here we first describe the limitations
of the calibration approach and where joint infer-
ence can overcome them. Then we discuss the
limitations of the joint inference approach and the
directions for further improvement.

11.5.1 Total-Evidence Dating
Overcomes Limitations
of the Calibration Approach

To calibrate a phylogeny with a fossil, one
needs to first assign the fossil to a clade and
then transform the fossil age into a calibration.
Often fossils are assigned to clades based on
apomorphies (traits that are unique for the clade)
without any phylogenetic analysis or, where phy-
logenetic analyses do take place, usually using
non-statistical parsimony methods. In either
case, incorrectly assigned fossils will calibrate
the wrong nodes. In a joint inference analysis,
the positions of the fossils are estimated from
morphological and temporal data based on statis-
tical models that describe how the diversification
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and sampling occurs (FBD model) and how the
morphology evolves (Lewis Mk and clock
models).

Even when a careful phylogenetic analysis is
performed, some fossils cannot be unambigu-
ously assigned to any clade and, following best
practice (Parham et al. 2012), these fossils will be
discarded from a calibration analysis. Often only
a few exemplars from the candidate fossils are
used in the analysis, typically the oldest fossil of
a clade and possibly others that were used
indirectly to identify the tails of the calibration
density. It is also recommended to only use well-
preserved fossils with good age estimates, in
order to minimize errors (Benton and Donoghue
2007). In contrast, a joint inference can analyse
all available fossils (up to a reasonable number).
In the analysis of the penguin data set by
Gavryushkina et al. (2017), including a large
collection of stem fossils (the majority of which
were not used in previous dating analyses)
resulted in a dramatic decrease in the estimated
age of the crown penguin radiation.

Even if a fossil is correctly identified,
phylogenetically placed, and dated, the way in
which the fossil is transformed to a calibration
density might greatly deviate from an accurate
representation of any uncertainty. The calibration
densities are specified ad hoc without a statistical
analysis of the temporal data. Moreover, even if
the minimum bound on the age of the calibration
node can be reliably chosen, maximum bounds
are much more difficult to justify. Statistical
methods have been developed to define the cali-
bration densities (Bapst 2013; Matschiner et al.
2017), but these methods only directly use the age
of the oldest fossils (the ages of other fossils
might be used indirectly, that is, to infer sampling
and extinction rates in a prior analysis).

After the calibrations have been specified, they
need to be correctly incorporated into the analy-
sis. In a Bayesian framework, the calibration
densities are seen as prior information about par-
ticular divergence times. These densities interact
with each other and with the rest of the prior
model in a couple of ways. The first type of
interaction is because there is an internal depen-
dence of the timing events on a phylogeny:

deeper divergences must occur earlier than more
shallow divergences. Thus, if there are two clades
with one nested inside the other and each has a
probability density calibrating its age, then the
actual prior probability densities will differ from
the ones specified by experts (Ho and Phillips
2009; Warnock et al. 2012). Further, there is a
tree-wide prior distribution (the tree-generating
model in case of the joint inference) that describes
the distribution of all branching times in a phy-
logeny, which should be conditioned on the given
calibration densities (conditional construction). In
the case of a fixed topology, such a model is
feasible (Yang and Rannala 2006). However,
when the topology is coestimated with the diver-
gence times, the exact modelling becomes com-
putationally intensive; theoretically inaccurate
multiplicative construction has been used instead
(Inoue et al. 2010; Heled and Drummond 2012).
The joint inference does not require specifying
calibration densities and, therefore, does not suf-
fer from these problems.

The final and the most important problem with
calibrations is that they are done sequentially.
First of all, the multiple steps create more
opportunities for errors. For example, there can
be errors in fossil age estimates, topological
placement of fossils, transforming fossil ages to
calibration densities, and incorporating the
densities into an analysis. These errors can accu-
mulate and propagate to the final estimates of
divergence times. Secondly, and most impor-
tantly, the sequential nature of this procedure
assumes independence of the processes that gen-
erate the data for different stages of the analysis.
However, fossil samples come from the same
underlying phylogeny on which molecular and
morphological data evolved. Thus, if there is a
conflicting phylogenetic signal in the fossil,
molecular, and morphological data, a joint analy-
sis of these data can resolve the conflict or aver-
age over the phylogenetic inputs from the
different data. Even where there is no conflict in
the different data, incorrect assumptions of inde-
pendence might lead to an inaccurate posterior
distribution. This problem is solved by hierarchi-
cal modelling and analysing the data together in
the joint inference.
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11.5.2 Limitations of the Joint
Inference Approach

There are several aspects that can make the joint
inference approach impossible or inaccurate. We
have already discussed the problems connected to
the availability and modelling of morphological
data in Sect. 11.4.3. Another major problem is the
impact of the tree-generating model on the
estimated ages and other model parameters.
Finally, the full Bayesian total-evidence inference
might not scale well with the large amounts of
molecular data that are now available.

It is very important to account for the sampling
process of fossil and extant species in a joint
inference. Matzke and Wright (2016) showed
that estimates of divergence times in the mamma-
lian family Canidae shifted by as much as �30
Myr when they used models that did or did not
account for the fossil sampling process. However,
violation of the assumptions in the FBD process
might also lead to large differences in the poste-
rior estimates.

For extant species, either random (uniform) or
diversified sampling is assumed, both of which
are extreme cases. In practice, sampling is likely
to be uniform for some clades but diversified for
others, or might be completely different from
either. We have seen in Sect. 11.3.3 that different
assumptions about sampling of extant species
changed the estimated time of the origin of
Hymenoptera from �330 Myr ago to
�250 Myr ago.

For fossil sampling, the simple FBD model
assumes that the lineages on the complete tree
are uniformly sampled through time. The skyline
FBD model relaxes this assumption by allowing
variation in the fossil sampling rate through time.
However, a nonuniform fossil sampling among
clades has not been considered in an FBD
model. Some parts of the phylogeny might be
sampled more intensively, owing to higher fossil-
ization and/or preservation or better access to geo-
logical sites. The biases in fossil sampling scheme
are probably more difficult to take into account.
Similarly, the diversification rates are assumed to
be equal in different parts of the phylogeny

(throughout the tree in the constant-rate model or
between rate-shifting times in the skyline model).
The impacts of violating these assumptions (and
probably others) on the estimated ages in the joint
inference have not yet been investigated compre-
hensively, and the FBD model needs to be appro-
priately extended where possible.

Including outgroup species might also violate
the assumption of uniform sampling if the sam-
pling strategy for the outgroup species was differ-
ent from that for the ingroup species. For
example, all extant representatives of the ingroup
clade but only a few extant species from the
outgroup clades are typically included in an anal-
ysis. Similarly, all available ingroup fossils but
only a few fossils (out of many more available)
from the outgroup clades might be used. The
effect of such a biased sampling on the posterior
estimates has not been investigated. The joint
inference analysis using the FBD model does
not require outgroup species and we generally
do not recommend including them if the sampling
of outgroup species is different from that of
ingroup species.

Another major problem for a joint inference,
and for dating analyses in general, is the avail-
ability of the data. As mentioned in Sect. 11.4.3,
limited morphological data might be an issue.
However, limited temporal data is also a prob-
lem. When there are only a few fossils in the
clade of interest or only little morphological
data, the result is usually slow convergence in
the Bayesian analysis and very broad credible
intervals for the estimated ages. In some cases,
this can be overcome by including a sister clade
that has a richer fossil record; however, this
needs to be done cautiously when including
outgroup species, and the same fossil and extant
species-sampling strategies should be used for
the clade of interest and the sister clade.
Another solution is to use informative prior
distributions on the parameters of the FBD
model. Information about the diversification or
fossil sampling rates can possibly be obtained
from other studies, for example, that analysed
larger clades in which the clade of interest is
nested.
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Note that the problem of having a limited
number of fossils cannot be overcome by the
calibration approach either, because too few cali-
bration points would also imply very large
uncertainties. However, if the calibration
densities come from other sources of information
such as biogeographic events (see Chap. 9), then
the calibration approach can be used in combina-
tion with the total-evidence approach (O’Reilly
and Donoghue 2016). Nevertheless, the problem
of how to correctly incorporate such calibration
densities remains open.

Finally, although the total-evidence approach
is a rigorous statistical method, it comes with
large computational costs that are sometimes pro-
hibitive for the increasingly large data sets that are
available today. Much of the computational bur-
den is in coestimating divergence dates and topo-
logical relationships. Kumar and Hedges (2016)
discussed what they call fourth-generation, non-
model-based methods that estimate divergence
times on fixed phylogenies from large data sets
(Tamura et al. 2012; To et al. 2015). The total-
evidence approach is limited to data sets that are
relatively small, such as particular clades in the
tree of life, and is the most effective for clades
with good fossil records. For supertrees
(Matschiner et al. 2017) and larger data sets,
these non-model-based methods might be more
practical (Chap. 12). The methods that use a
pre-estimated phylogeny, such as calibration
approaches or FBD with fixed phylogeny (Heath
et al. 2014), might be more feasible options.
Another option is to use approximate maximum-
likelihood approaches (Sagulenko et al. 2018).
There is also ongoing research into improving
the speed of algorithms used in Bayesian phylo-
genetic inference (Aberer et al. 2014; Zhang et al.
2020). Implementing such algorithms in combi-
nation with the FBD model would enable a full
Bayesian total-evidence analysis of larger
data sets.

11.6 Concluding Remarks

The joint inference or total-evidence approach
with the FBD model is an advanced statistical

method that objectively transforms the fossil
record into absolute time constraints on a phylog-
eny. This method should be used to infer dated
phylogenies, especially for data sets where the
sampling of fossil and extant species is either
unbiased or the sampling scheme can be directly
modelled, where morphological and stratigraphic
data from fossil and extant species are available
and appropriate, and where the volume of the data
is moderate.

The models used in the total-evidence dating
approach have the flexibility to accommodate
various evolutionary processes. For example,
the skyline FBD process can account for varia-
tion in rates of diversification and fossil sampling
over time, as well as different sampling schemes
for extant taxa. The Mk model can be extended to
incorporate heterogeneity in substitution rates.
The Bayesian framework also makes it feasible
to take into account fossil age and topological
uncertainties. In the meantime, the approach
is still in its early stages and is under active
development. There is still abundant work that
needs to be done to improve the models and
implementations.
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Efficient Methods for Dating
Evolutionary Divergences 12
Qiqing Tao, Koichiro Tamura, and Sudhir Kumar

Abstract

Reliable estimates of divergence times are cru-
cial for biological studies to decipher temporal
patterns of macro- and microevolution of
genes and organisms. Molecular sequences
have become the primary source of data for
estimating divergence times. The sizes of
molecular data sets have grown quickly due
to the development of inexpensive sequencing
technology. To deal with the increasing
volumes of molecular data, many efficient dat-
ing methods are being developed. These
methods not only relax the molecular clock

and offer flexibility to use multiple clock
calibrations, but also complete calculations
much more quickly than Bayesian approaches.
Here, we discuss the theoretical and practical
aspects of these non-Bayesian approaches and
present a guide to using these methods effec-
tively. We suggest that the computational
speed and reliability of non-Bayesian
relaxed-clock methods offer opportunities for
enhancing scientific rigour and reproducibility
in biological research for large and small
data sets.

Keywords

Molecular dating · Strict clock · Local clock ·
Calibration · Maximum likelihood · RelTime

12.1 Introduction

Computational methods to estimate divergence
times of genes and species from molecular data
have enjoyed a long history of development,
spanning more than 50 years (dos Reis et al.
2016; Kumar and Hedges 2016). Divergence
times derived by using these methods and
molecular data have illuminated the role of geo-
logical history in shaping the emergence of spe-
cies (Hedges et al. 1996; Hedges and Kumar
2009), tempo and mode of speciation (Hedges
et al. 2015; Marin et al. 2017), dynamics of
genome evolution through gene duplication
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(Huerta-Cepas and Gabaldón 2011; Jiao et al.
2011; Yu et al. 2017), and evolution of pathogens
(Faria et al. 2014; Worobey et al. 2014; Biek et al.
2015; Metsky et al. 2017). Every year, hundreds
of studies report estimates of species divergence
times, enabling the assembly of the grand time-
tree of life and revealing the fundamental
biological processes underlying species diversity
(Hedges et al. 2015).

Early statistical methodologies of molecular
clock dating (Zuckerkandl and Pauling 1962)
were based on the assumption of a constant rate
of evolution over time and across lineages
(strict clock) and used fossil-age calibrations as
point values (Kumar 2005). Over the last two
decades, molecular dating methods have become
increasingly sophisticated and embrace greater
biological realism. They now relax the strict-
clock assumption and have the ability to estimate
divergence times even when molecules have
evolved with vastly different evolutionary rates
across loci and lineages (Ho 2014; Ho and
Duchêne 2014; Kumar and Hedges 2016). Many
modern approaches are also available to incorpo-
rate detailed information from the fossil record to
generate time-calibrated phylogenies (time-trees).

Statistical development of molecular dating
methods remains vibrant even after six decades
of development. It is at the centre of systematics,
biodiversity, and genome evolution research
owing to the ease with which large sequence
data sets can now be assembled (Kumar and
Hedges 2016). Chronologies of molecular dating
methods and their statistical properties have been
presented in recent years (Kumar 2005; Ho 2014;
Ho and Duchêne 2014; Kumar and Hedges 2016;
dos Reis et al. 2016). Therefore, here we focus on
a more pragmatic account of molecular dating
methods, aimed at assisting researchers to select
and utilize available methods.

12.1.1 Non-Bayesian Versus Bayesian
Methods

Increased sophistication of molecular dating
methods has often been accompanied by
increased demand for computational time and

memory. There exists a clear dichotomy of
molecular dating methods based on their compu-
tational resource requirements for large data sets.
Bayesian methods are computationally demand-
ing because of their need for extensive sampling
from the posterior distribution using the Markov
chain Monte Carlo (MCMC) approach
(Bromham et al. 2018). The computational bur-
den is usually very high for large data sets and
grows with the number of sequences (Crosby and
Williams 2017; Tamura et al. 2018). In addition,
problems in MCMC mixing can increase the
computational time further (Bhatnagar et al.
2011). Sometimes, there is a need to run multiple
Bayesian analyses to test different prior
assumptions and calibration settings, which
might result in the requirement for high-
performance computing infrastructure.

In contrast, many non-Bayesian methods tend
to have much smaller computational needs, while
still allowing rates to vary throughout the tree. For
example, both penalized likelihood (Sanderson
2002) and RelTime (Tamura et al. 2012, 2018)
are very fast and known to be accurate. Although
their computational requirements increase line-
arly with the number of sequences and sites,
they still take orders of magnitude less time than
the Bayesian methods (Fig. 12.1). Computational
time demands of these non-Bayesian methods
are essentially the same as the time taken to
estimate branch lengths of a phylogeny, for exam-
ple by using the maximum-likelihood method.
Non-Bayesian methods can also be applied
directly to a phylogeny with branch lengths
(phylogram), which decreases the computational
times further for very large data sets.

In this chapter, our focus is on providing
practitioners with a guide to effectively using
non-Bayesian methods for molecular dating. We
also discuss the advantages and disadvantages of
these methods, because the best approach
depends on the size of the available data, degree
of rate variation among species and loci, nature of
clock calibrations, and the availability of comput-
ing resources. Table 12.1 shows a summary of
different non-Bayesian methods, their statistical
properties, and the software packages in which
they are implemented.
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12.2 A Practical Guide to Selecting
Non-Bayesian Methods

12.2.1 Using Strict- and Local-Clock
Methods

The simplest scenario for molecular dating is
when the evolutionary rates are the same
(or very similar) across different evolutionary
lineages. In this case, methods that assume a strict
clock will usually be reliable and produce the
most precise time estimates. This assumption
was commonly employed in the earliest

molecular dating studies that produced many
fundamental biological insights, including the
finding that humans shared a most recent com-
mon ancestor with chimpanzees only five million
years (Myr) ago, rather than 15–20 Myr ago
based on the classification of Homo as a sister
group to apes in the early 1960s (Sarich and
Wilson 1967, 1973).

Interestingly, methods based on the strict clock
continue to be developed and used today. For
example, the mean path length (MPL) method
(Britton et al. 2002), implemented in the software
PATHd8 (Britton et al. 2007), has been used in
many recent studies (e.g., Louca et al. 2018; Lu
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Fig. 12.1 Computational times required by Bayesian,
penalized likelihood (PL), and RelTime methods to esti-
mate divergence times for data sets containing an increas-
ing number of sequences (n). Bayesian (blue solid line) is
the computational time of the Bayesian method using
molecular sequences as input. PL-bl (green dashed line)
and RelTime-bl (pink dashed line) are the computational
times of PL and RelTime methods using phylogenetic
trees with branch lengths as input. PL-ML (green solid
line) and RelTime-ML (pink solid line) are the total
computational times required by PL and RelTime methods
using molecular sequences as input, which are the sum of
the computational time of maximum likelihood

(ML) inferences of branch lengths and the computational
time of PL-bl and RelTime-bl. ML inferences of branch
lengths were conducted in MEGA X (Kumar et al. 2018).
Bayesian, PL, and RelTime analyses were conducted in
MCMCTree (Yang 2007), treePL (Smith and O’Meara
2012), and MEGA X, respectively. All times were
estimated on a single-core computer by using an alignment
of 4493 sites that was simulated with extensive rate varia-
tion (RR50 from Tamura et al. 2012). For this data set, the
best-fit exponential equation is 0.06 � n2.28, 0.08 � n1.16,
0.07 � n0.97, 0.03 � n1.27, and 0.01 � n0.44 for Bayesian,
PL-ML, PL-bl, RelTime-ML, and RelTime-bl,
respectively
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et al. 2018). This method assumes that the ratio of
ages between two nodes in a phylogeny is pro-
portional to the ratio of their average node-to-tip
distances. Therefore, it is only suitable for data
sets in which the substitution rates are strictly or
nearly constant among lineages throughout the
phylogeny (Britton et al. 2002).

The problem of the equal-rates assumption is
illustrated in the analysis of a phylogeny
consisting of two clades (X and Y) with an
outgroup (Fig. 12.2a). Each clade contains two
orthologous DNA sequences of zinc-finger genes
zfx and zfy; this is a simple gene-family tree with
two genes that arose from a gene duplication prior
to the divergence of human and mouse. Molecu-
lar dating methods should produce the same
values for tX and tY because they refer to the
same evolutionary event: the divergence between
human and mouse. Therefore, the expected ratio
of tX and tY is 1, which is what a molecular dating
method should produce despite the fact that
mouse zfx gene has evolved four times more
quickly than the human zfx, and the mouse zfy

gene has evolved seven times more quickly than
the human zfy.

Analysis of this data set by the MPL approach
in the PATHd8 software produced a tX/tY ¼ 0.43,
which is much smaller than 1. It estimated that the
divergence between human and mouse in clade Y
(tY) happened much earlier than the same event in
clade X (tX) (Fig. 12.2b). This result is clearly
inconsistent with the phylogenetic tree in
Fig. 12.2a and shows that strict-clock methods
produce biologically incorrect results if they are
used for data sets in which evolutionary rates vary
extensively among lineages. Smith and O’Meara
(2012) have also reported that PATHd8 was not
so reliable in analyses of empirical data sets and
simulated data sets when evolutionary rates
varied. Another least-squares method (Xia and
Yang 2011) minimizes the residual sum of
squares of patristic distance and distance
computed by the rate and time under the global
clock. This method, implemented in the DAMBE
software (Xia 2018a), also produced an incorrect
date ratio of 0.37 (Fig. 12.2c).

Table 12.1 A summary of available efficient non-Bayesian dating methods

Software
Statistical
basisa

Clock
typeb

Calibration
typec

Confidence
interval References

Lintre Regression SC F Bootstrap Takezaki et al. (1995)
PATHd8 MPL SC F, B Bootstrap Britton et al. (2007)
DAMBE LS SC, LC,

RC
F, B, S Bootstrap Xia and Yang (2011), Xia (2018a)

r8s LF, NPRS,
PL

SC, LC,
DC, RC

F, B, S Bootstrap Sanderson (1997, 2002, 2003)

treePL PL SC, RC F, B Likelihood Smith and O’Meara (2012)
Ape—chronos &
chronoMPL

PL, MPL SC,
DC, RC

F, B Bootstrap Paradis (2013)

MEGAX—RelTime,
RTDT

RRF SC, RC F, B, D, R,
S

Analytical Kumar et al. (2018), Tamura et al.
(2018), Tao et al. (2019), Miura et al.
(2020)

TipDate Regression SC S Likelihood Rambaut (2000)
TREBLE UPGMA SC S Bootstrap Yang et al. (2007)
Physher ML SC, LC,

DC
S Bootstrap Fourment and Holmes (2014)

LSD LS SC, RC S Bootstrap To et al. (2016)
treedater LS, ML SC, RC S Bootstrap Volz and Frost (2017)
TreeTime ML SC, RC S Likelihood Sagulenko et al. (2018)
aMPL mean path length, LS least squares, LF Langley–Fitch method (Langley and Fitch 1974), NPRS nonparametric
rate-smoothing, PL penalized likelihood, ML maximum likelihood, RRF relative-rate framework
bSC strict clock, LC local multi-rate clock, DC discrete multi-rate clock, RC relaxed clock
cF fixed node calibration, B node calibration boundary,D node calibration density, R substitution rate, S sampling tip date
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Therefore, the use of strict-clock methods is
appropriate only if lineages have evolved with a
strictly or nearly constant rate. The simplest way
to ensure that this condition is valid is to conduct
a molecular clock test. An early molecular clock
test was proposed by Fitch (1976) for data sets
containing two sequences and an outgroup, and
was followed by many others (Wu and Li 1985;
Muse and Weir 1992; Tajima 1993). For larger

data sets, equality of rates on multiple lineages
can be evaluated by least squares (Takezaki et al.
1995) and by likelihood-ratio tests (Nei and
Kumar 2000). Software packages such as
MEGA X (Kumar et al. 2018), LinTre (Takezaki
et al. 1995), PAML (Yang 2007), and DAMBE
can be used for testing the molecular clock. For
example, the difference in log likelihoods with
and without assuming the strict clock was
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Fig. 12.2 Molecular dating analysis of four DNA
sequences. (a) An example phylogeny of orthologous
DNA sequences of two zinc-finger genes (GenBank acces-
sion numbers gi296010876, gi113205066, gi223890138,
gi156938288, and gi363728820). The branch lengths are
shown in substitutions per 100 base pairs. This is an
excellent test case because the expected time for human–
mouse species divergence based on gene zfx (tX, red clade)
and zfy (tY, blue clade) should be the same (tX/tY ¼ 1), as
the gene duplication event occurred prior to the diversifi-
cation of mammals. Shown are the time-trees produced by

(b) PATHd8, (c) DAMBE with strict clock, (d) DAMBE
with relaxed clock, (e) treePL, (f) RelTime, (g)
MCMCTree (Bayesian) with the autocorrelated branch-
rates model, and (h) MCMCTree (Bayesian) with the
independent branch-rates model. Ratios of node ages for
human–mouse divergence based on zfx (tX, red arrow) and
zfy (tY, blue arrow) genes of all resulting time-trees are
labelled. One root calibration was used in PATHd8,
DAMBE, treePL, and Bayesian analyses. No calibrations
were used in the RelTime analysis
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207.33 in PAML for the example data in
Fig. 12.2a. The likelihood-ratio test rejects the
molecular clock (P < 10�80, degrees of free-
dom ¼ 3) for this data set.

In fact, we expect the hypothesis of the strict
molecular clock to be readily rejected for most
contemporary data sets, which often consist of
many genes and/or genomic segments from
many species. Therefore, a practitioner usually
needs to use dating methods that do not assume
a strict clock. They might choose to apply local
clocks that allow different rates in different clades
(subtrees) in the phylogeny (Hasegawa et al.
1989; Yoder and Yang 2000). In local-clock
methods, a strict clock is assumed to exist within
each clade, so one needs to specify clades that
show rate homogeneity (clocklike evolution).
This is not straightforward to accomplish unless
there are clear biological reasons for defining
such clades (Sanderson 2002; Ho and Duchêne
2014). Consequently, methods that allow rates to
vary throughout the phylogeny are more practical
in analyses of real data.

12.2.2 Relaxing the Strict Clock

Relaxed-clock methods allow molecular dating
when evolutionary rates vary throughout the
tree. We focus on rapid non-Bayesian
approaches, as Bayesian approaches have been
discussed extensively elsewhere (dos Reis et al.
2016; Nascimento et al. 2017) and in Chaps. 6
and 13. Among the non-Bayesian approaches,
penalized likelihood and RelTime are often
used. Penalized likelihood estimates divergence
times under the statistical criterion that minimizes
the squared differences between ancestral and
descendent branch rates (Sanderson 1997,
2002). That is, large rate changes are penalized,
which is biologically intuitive because an ances-
tor and its direct descendants are likely to share
similar genomic properties, biological attributes,
and living environments, and thus will tend to
have more similar mutation rates (Gillespie
1984). This property would result in autocorrela-
tion in branch rates (Thorne et al. 1998; Kishino
et al. 2001) (Table 12.2).

The penalized-likelihood approach uses a pen-
alty parameter (λ) for penalizing rate changes
(Sanderson 2002). A large penalty will favour a
strict-clock model, because it will tend to assign
very similar rates to ancestor–descendant pairs.
Small values of λ will allow rates to vary through-
out the tree and will relax the molecular clock.
The optimal value of λ depends on the data set
being analysed and can be determined by a cross-
validation procedure (Sanderson 2002). In this
procedure, one terminal branch is removed from
the tree at a time, so its immediate ancestral node
and other branches are left in place. The rate and
node age of the immediate ancestral node is
estimated using the remaining branches for a
given λ. The optimal value of λ is that which
minimizes the difference between the observed
substitutions on the ancestral branch and the num-
ber of inferred substitutions, which is calculated
using the estimated rate and node age. This rate-
smoothing approach is effective when applied to
the example data in Fig. 12.2a. Penalized likeli-
hood produced an estimate of tX/tY ¼ 0.92
(Fig. 12.2e), which is much closer to 1 than that
from methods based on a strict clock. The original
penalized-likelihood method was implemented in
the r8s software (Sanderson 2003) and a faster
version is implemented in the treePL software
(Smith and O’Meara 2012) and in the R package
APE (Paradis 2013). The penalized-likelihood
method has also been adopted by Xia and Yang
(2011) in their strict-clock method to relax the
clock through rate smoothing (Xia 2018a). It pro-
duced a time ratio of 0.90 when applied to the
example data (Fig. 12.2d).

The RelTime approach is another relaxed-
clock method that minimizes differences between
the evolutionary rates of ancestral and descendent
lineages (Tamura et al. 2012, 2018). An evolu-
tionary lineage consists of a branch and the
descendent clade (including all of the taxa and
branches). For example, lineage a contains three
branches in Fig. 12.3, so the length of lineage
a (La) is based on b1, b2, and b5. Tamura et al.
(2018) presented a mathematical formulation that
produces relative lineage rates purely from the
branch lengths in a phylogeny. In their algebraic
relative-rate framework, the difference between
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rates in ancestral and descendent lineages is
minimized and the observed difference in evolu-
tionary rates between sister lineages is
accommodated.

The use of lineage rates, rather than the branch
rates, is a major difference between RelTime and
other relaxed-clock methods (Table 12.2). For
example, Bayesian methods use a statistical dis-
tribution (e.g., lognormal) as a prior to account for
the variation in branch rates across a phylogeny,
and the penalized-likelihood method smooths the
rate change between ancestral and descendent
branch rates using a global penalty function. If
we consider node 7 in Fig. 12.3, penalized-
likelihood computation will attempt to minimize
the difference between branch rates r5 and r1 and
for other pairs globally. In contrast, RelTime will
minimize the difference between lineage rates Ra

and R1 and other pairs individually. Therefore,
RelTime does not need to use any penalty
functions or distributional priors, which makes it
different from penalized-likelihood and Bayesian
methods. In the example four-taxon data,
RelTime produces a tX/tY ratio of 0.9, which is
close to 1.0 (Fig. 12.2f). The RelTime method is
available in the MEGA X software. Mello (2018)
has provided a detailed protocol for estimating
time-trees with RelTime in MEGA X.

Overall, we find that the time ratios
produced by non-Bayesian relaxed-clock
methods (Fig. 12.2d–f) are similar to the estimate

Table 12.2 Differences between Bayesian dating methods, penalized likelihood, and RelTime

Bayesian Penalized likelihood RelTime

Framework Bayesian statistics Penalized likelihood Algebra
Rate prior Independent or

autocorrelated
rates and probability
distributions

Autocorrelated rates
and a penalty parameter

Not needed

Tree prior Birth-death or
coalescent process

Not needed Not needed

Estimate Node times and branch
rates

Node times and branch rates Node times and
lineage rates

Uncertainty Credibility intervals Confidence intervals Confidence intervals
Consider site sampling error Yes Yes Yes
Consider rate variation Yes No Yes
Consider calibrations Yes; allow the use of

boundaries and
densities

Yes; allow the use of
boundaries

Yes; allow the use
of boundaries and
densities

ou
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Fig. 12.3 An example phylogeny showing branch
lengths (b), branch rates (r), lineage lengths (L ), and
lineage rates (R). Ra is the rate of the lineage La that
consists of branches with lengths of b5, b1, and b2, and
Rb is the rate of the lineage Lb that consists of branches
with lengths of b6, b3, and b4. Lineage rates R1 to R4 are the
same as branch rates r1 to r4, so they are not shown.
Relative lineage rates can be computed in MEGA X from
branch lengths using Eqs. (6–9, 19–24) for arithmetic
means or (28–31, 34–39) for geometric means in Tamura
et al. (2018)
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generated by the Bayesian approach when an
independent branch-rate (IBR) model was used
(0.91, Fig. 12.2h). The use of an autocorrelated
branch-rate (ABR) model produced a time
ratio of 0.98, an estimate that is very close to
1 (Fig. 12.2g). The ABR model assumes that
the branch-specific molecular rates are
autocorrelated, such that closely related branches
share similar rates and distantly related branches
have more different rates (Thorne et al. 1998;
Kishino et al. 2001; Ho and Duchêne 2014).
The IBR model assumes molecular rates are inde-
pendent among branches, such that rates on
closely related branches do not need to be similar
(Drummond et al. 2006; Ho and Duchêne 2014).
Results from Bayesian analyses suggest that the
ABR model might fit these data better. In fact,
Tao et al. (2019) reported the autocorrelation of
branch rates to be the dominant pattern in molec-
ular phylogenies for diverse groups of species in
an analysis of DNA and amino acid sequences.
Therefore, the assumption of autocorrelation is
likely to be valid for this example data set.

12.2.3 Performance of Non-Bayesian
Relaxed-Clock Methods

Non-Bayesian relaxed-clock methods have been
tested extensively in computer simulations with
large data sets. Smith and O’Meara (2012)
conducted computer simulations under the ABR
model on large phylogenies (100–10,000 species)
and reported that the penalized-likelihood method
can achieve high accuracy in estimating diver-
gence times (see Fig. 1 in Smith and O’Meara
2012). However, they did not test the perfor-
mance of penalized likelihood using IBR data
sets and did not evaluate the accuracy of
divergence-time estimates node-by-node; their
investigations conducted using the treePL and
r8s software were rather limited in scope and
depth. In contrast, RelTime has been extensively
tested and has a well-justified mathematical foun-
dation (Tamura et al. 2018).

Tamura et al. (2012) conducted extensive
simulations under ABR and IBR scenarios on a

master time-tree of 446 taxa. In all scenarios,
RelTime produced estimates of node ages that
were close to the true values (Fig. 12.4a–c; also
see Figs. 3 and 5 in Tamura et al. 2012). RelTime
estimates were similar to those from the Bayesian
method in the IBR case where rate variation was
low (Fig. 12.4a). However, the Bayesian method
tended to overestimate divergence times (median
deviation ¼ 19%) when the rate variation in IBR
was larger (Fig. 12.4b). This pattern might relate
to the need to specify a single model of branch
rates in Bayesian methods. When the specified
rate model is not the correct model for the
observed rate variation, biased time estimates
might be produced. Model averaging can poten-
tially reduce this bias in Bayesian analysis (Li and
Drummond 2012). In contrast, RelTime does not
need to model branch rates and it performed much
better in this case (Fig. 12.4b, median devia-
tion ¼ �5%). RelTime also performed better
(median deviation ¼ �2%) than the Bayesian
method (median deviation ¼ 14%) for the ABR
data sets (Fig. 12.4c). Mello et al. (2021) also
reported RelTime to perform as well as Bayesian
methods for dating phylogenies that encompass
both species and population divergences using
simulated data sets.

Apart from the simulation tests, Chernikova
et al. (2011) and Gunter et al. (2016) reported
that penalized-likelihood methods produced
results consistent with those from Bayesian
analyses for some data sets. Mello et al. (2017)
and Battistuzzi et al. (2018) have also examined
many empirical data sets from different groups
across the tree of life and found that RelTime
produced time estimates that were very similar
to those from Bayesian methods, as long as the
equivalent calibration boundaries were used. Tao
et al. (2020) developed a method for utilizing
calibration densities in RelTime and found that
RelTime produced not only time estimates but
also the surrounding uncertainties that were com-
parable to those from Bayesian methods in empir-
ical data analyses.

In fact, some studies have found that
non-Bayesian methods performed better than
Bayesian methods when some priors (e.g.,
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branch-rate model) were incorrectly specified
(Tamura et al. 2012, 2018). For example, Tamura
et al. (2012) did a simulation test of a clade-
specific speed-up, where a random clade of at
least 50 taxa was selected to undergo a rate
increase while the rest of the branches remained
at their original rates simulated under the IBR
model. This meant that two different IBR models
were applied to the same phylogeny, where one
clade had a higher mean rate and the other clade
evolved more slowly. The Bayesian method
yielded accurate estimates in one clade, but
biased estimates in the other clade (Fig. 12.4d–e,
also see Fig. 5 in Tamura et al. 2012). This
occurred because the single model of branch-
rate variation was unable to account for the het-
erogeneity associated with multiple contrasting

clade-specific rate variations. However, RelTime
performed well and generated accurate time
estimates for both clades (Fig. 12.4d–e), because
RelTime does not require the specification of a
branch-rate model.

Therefore, the high computational speeds
afforded by some of the non-Bayesian dating
methods do not come at the expense of accuracy.
In fact, whenever possible, it is prudent to analyse
data by using methods based on different statisti-
cal frameworks to obtain reliable estimates and to
assess the potential biases introduced by the
assumptions and methods (see Sect. 12.9). How-
ever, efficient non-Bayesian methods might be
the only feasible option for many users for
analysing large data sets containing thousands of
genes and species (e.g., Li et al. 2019).
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Fig. 12.4 Distributions of the normalized differences
between true node times (NT) and estimated times
obtained from RelTime and MCMCTree for internal
nodes. Comparisons of the performance of RelTime
(black curve) and MCMCTree (grey curve) for data sets
simulated under (a) independent branch-rates (IBR) model
with low variation, (b) IBR model with high variation, and

(c) autocorrelated branch-rates (ABR) model.
Comparisons of the performance of RelTime (black
curve) and MCMCTree (grey curve) for estimating node
times (d) outside the speed-up clades and (e) inside the
speed-up clades. Data and results are from Tamura et al.
(2012). Dashed grey line indicates the 0% difference in NT
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12.2.4 Eliminating Rate Variability
Before Molecular Dating

Before proceeding further, let us consider
approaches to reduce or eliminate rate variation
in data sets containing multiple genes or genomic
segments, before applying clock methods. This is
important because high rate variation is a key
contributor to the uncertainty in time estimates
(Zhu et al. 2015; Kumar and Hedges 2016). By
reducing the degree of molecular rate variation in
a phylogeny, both the accuracy and precision of
time estimates might be improved.

We can eliminate (or reduce) evolutionary rate
variation by excluding species that have evolved
significantly more quickly or slowly than the rest
in a sequence alignment, or by excluding genes
that fail the molecular clock test. For data sets that
contain large numbers of genes and genomic
segments, this is a viable option for dating species
divergences (Hedges et al. 1996; Smith et al.
2018). In the 1990s, Hedges et al. (1996) and
Kumar and Hedges (1998) applied this strategy
to date major mammalian and vertebrate
divergences, respectively, because relaxed-clock
methods were not available at that time. In those
early multigene studies, genes and species failing
the molecular clock test of Tajima (1993) were
removed before divergences were dated using a
strict clock. These analyses revealed that major
orders of placental mammals and of birds were
likely to have originated prior to the K-Pg extinc-
tion (Hedges et al. 1996), which challenged the
hypothesis of adaptive radiation and founded a
very active area of biological research (Kumar
and Hedges 1998; Eizirik et al. 2001; dos Reis
et al. 2014; Phillips 2015; Prum et al. 2015).
Takezaki et al. (1995) presented a statistical
approach to detect lineages that evolved at rates
that were significantly different from the
phylogeny-wide average. Using such gene- and
species-elimination approaches, evolutionary
timescales were assembled from many large data
sets, including those for Hawaiian drosophilids
(Russo et al. 1995), diatoms (Kooistra and Medlin
1996), metazoans (Wray et al. 1996), and major
eukaryote lineages (Doolittle et al. 1996; Feng
et al. 1997).

Smith et al. (2018) proposed a ‘gene shopping’
approach that extended the original practice of
Hedges et al. (1996) to genes that passed the
molecular clock test in large phylogenies. Their
strategy also requires that the selected genes have
a sufficient number of informative sites and that
selected gene trees are highly concordant with the
species tree. They reported that the application of
strict-clock or relaxed-clock methods on the
selected clocklike genes improved the precision
of time estimates by more than 50%, as the 95%
highest posterior density (HPD) intervals became
much narrower. The higher precision is achieved
by reducing the rate heterogeneity in the phylog-
eny, which is a key contributor to wide 95% HPD
intervals. Higher precision of estimates enables
more powerful tests of biological hypotheses and
helps to establish evolutionary and ecological
patterns more reliably.

Even after ‘gene shopping’, it is possible that
some intrinsic directional rate variation remains
in the data set because molecular clock tests are
not so powerful when sequences are short or the
evolutionary rate is low. This can be remedied by
applying a more stringent clock test to exclude
genes and species showing even small rate
differences (Kumar and Hedges 1998; Hedges
and Kumar 2003; Hedges and Shah 2003). We
also propose that one should do ‘species shop-
ping’ to remove species that show evolutionary
rates significantly different from others before
conducting molecular clock dating, to further
reduce rate variation and the uncertainty in time
estimates (Takezaki et al. 1995; Hedges et al.
1996). In our view, whenever feasible, a combi-
nation of gene shopping and species shopping
with relaxed-clock methods is the best strategy
when many genes and species are available for
estimating divergence times.

12.3 Utility of Relative
Divergence Times

All of the non-Bayesian methods can generate
relative times directly from a phylogeny in
which branch lengths are either provided by the
user or inferred from the sequence data using a
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model of nucleotide or amino acid substitution.
The ability to produce relative node ages and rates
without using any branch-rate model, speciation
model, and even calibration priors can have many
benefits (Tamura et al. 2012). First, the relative
node ages obtained without any calibrations can
be used to identify the calibration constraints or
densities that would be expected to have a notable
impact on the final time estimation (Marshall
2008). This is because the relative and absolute
(‘calibrated’) node ages should be linearly related
when calibration constraints and/or densities do
not conflict with the signal from molecular data
(Battistuzzi et al. 2015).

Second, the estimates of relative rates can be
directly used to identify lineages with signifi-
cantly lower or higher evolutionary rates, because
the standard errors of the relative-rate estimates
are available. Those lineages are potentially very
interesting because they might indicate the pres-
ence of strong selective pressure and other
biological factors (Chikina et al. 2016). In addi-
tion, the relative rates computed from branch
lengths only, without knowing node times, pro-
vide insights into evolutionary patterns between
the ingroup and outgroup sequences. If the
distributions of lineage rates are significantly dif-
ferent, the assumption of the same pattern of rate
variation between the ingroup and outgroup taxa
might need to be reconsidered.

Third, the relative lineage rates estimated by
RelTime can be used for generating new tests of
biological hypotheses and for model selection.
Tao et al. (2019) used these lineage rates and the
machine-learning framework to develop a new
statistical test (called CorrTest) that can distin-
guish between IBR and ABR models, which has
been challenging previously (Paradis 2013; Ho
et al. 2015a). CorrTest performed better than
other methods in detecting the presence of rate
autocorrelation in a simulation analysis.

Fourth, the relative divergence times might be
useful for detecting clades that have undergone a
shift in the rate of diversification, which might
indicate the effect of a geological event or the
appearance of an ecological niche. Therefore,
the knowledge of relative times and rates is useful
for discovering exciting biological patterns,

developing new methods, and examining the
impact of fossil constraints or other prior settings.

12.4 Inferring Absolute
Divergence Times

12.4.1 Dating with a Fixed Global
Evolutionary Rate

A substantial proportion (12%) of molecular
clock studies have been found to use a fixed
substitution rate to calibrate the molecular clock
(Hipsley and Müller 2014). This is the only
choice in cases where no node calibrations are
available. An average evolutionary rate from
another species group is used to date the
divergences in the species group of interest. The
estimation of node times is simple in this case: a
fixed evolutionary rate is used to convert node
heights (in substitutions per site) into divergence
times. One just needs to divide all the node
heights (in substitutions per site) by the fixed
rate of evolution (in substitutions per site per
time unit, such as years or million years). Some
dating programs (e.g., MEGA X) provide such an
option. The use of a fixed rate is only reasonable
if there is a good reason to believe that the aver-
age evolutionary rates and the biological markers
are the same between the species group from
which the calibration rate has been derived and
the species group to which it is being applied
(Wilke et al. 2009). Also, the reliability of the
fixed substitution rate depends on the calibrations
used in the study from which the rate is obtained
(Ho and Phillips 2009).

12.4.2 Dating with a Fixed Node
Calibration

A better approach is to derive the clock calibra-
tion by using a known divergence time for a
node in a phylogeny and then to scale all other
node ages in this phylogeny based on this clock
calibration. This approach does not require one to
assume a molecular clock, because rapid relaxed-
clock methods can deal with rate differences
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among branches and lineages to generate an
ultrametric tree. The clock calibration is the rela-
tive node height divided by fixed time in the
ultrametric tree, and then this calibration sets the
scale to convert relative times into absolute times.
In MEGA X and other programs (Sanderson
2003; Britton et al. 2007; Smith and O’Meara
2012; Xia 2018a), this can be easily done by
assigning a fixed time to a node, which converts
all other node heights into times.

For analyses with fixed node calibrations, cal-
ibration times can come from biogeography or
from ecological/environmental considerations.
In fact, a literature survey of molecular dating
studies has shown that 15% used times derived
from geological events that were associated with
geophysical isolation or the appearance of new
habitats (Hipsley and Müller 2014). These
calibrations can be derived from vicariance,
geodispersal, or biological dispersal (Ho et al.
2015b). The geological event is a good source
of calibration especially for the species that were
directly affected by that event (see Chap. 9).
However, it is not appropriate to use those
calibrations if the research goal is to test the
impact of those geological events
(Kodandaramaiah 2011). Similarly, one can use
the fossil record to obtain an estimate of a single
divergence time in the tree, which is then used to
calibrate the clock. Many early studies used a
single calibration point because gene-specific
alignments generally contained only a few spe-
cies (e.g., Hedges et al. 1996).

12.4.3 Dating with Multiple Node
Calibrations

The most common approach to calibrate a molec-
ular clock is to use many dates derived from the
fossil record (Hipsley and Müller 2014). As
expected, this practice is particularly common
for fossil-rich groups in the tree of life (Ksepka
et al. 2015). In fact, studies have been using
increasingly large numbers of calibrations, with
some contemporary analyses incorporating many

tens of calibrations (e.g., Meredith et al. 2011; dos
Reis et al. 2015; Barba-Montoya et al. 2018;
Morris et al. 2018).

12.4.3.1 Using Multiple Fixed
Calibrations or Calibration
Constraints

Efficient non-Bayesian relaxed-clock methods
allow the use of multiple point calibrations. For
example, RelTime uses a linear regression
between the relative node heights in the
ultrametric tree and all of the user-supplied fixed
calibration points. The resulting scaling factor ( f )
then converts all of the relative times into abso-
lute divergence times. In practice, however, fossil
dates do not correspond directly to actual species
divergence times, so they are rarely used as fixed
calibration points. Instead, the earliest fossil
record usually provides a reliable minimum age
constraint on a node in the phylogeny (Hedges
and Kumar 2004). In some cases, it is possible to
place a maximum age constraint, but these are
usually difficult to determine (Marshall 2008;
Ho and Duchêne 2014; Bromham et al. 2018;
Hedges et al. 2018). In practice, despite these
difficulties, many researchers prefer to impose
both minimum and maximum constraints on mul-
tiple nodes in the phylogeny.

RelTime can use all types of constraints in
calibrating the molecular clock. It generates a
global time factor ( f ) that produces time
estimates that best satisfy the calibration
constraints. If there is a range of f values that do
not violate the calibration constraints, then the
midpoint of that range becomes the estimate of
f. When one or more of the absolute times fall
outside the calibration constraints, then f is set so
that the deviation from the calibration constraints
is minimized. After that, times for calibrated
nodes are adjusted to ensure that the calibration
constraints are fully respected, such that the
estimated times for any offending nodes are
between the minimum and maximum constraint
times specified by the user. This requires altering
local evolutionary rates, which prompts
re-optimization of all other node times in the
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tree recursively in the RelTime algorithm
(Tamura et al. 2013; Tao et al. 2020).

The penalized-likelihood method adds age
constraints in the optimization of the penalty
functions of rate smoothing, to ensure that the
absolute times are within the calibration
constraints imposed by the researcher (see the
documentation for the r8s software). PATHd8
also smooths rates to resolve the conflicts
between estimated ages and calibrations. How-
ever, PATHd8 requires the specification of at
least one fixed node age as the anchor calibration,
which is used to scale relative dates to absolute
dates as the first step. Then, the method smooths
rates of sister lineages to fit all calibration
constraints (Britton et al. 2007). Also, because
PATHd8 is fundamentally a strict-clock method,
it has limited power in smoothing the rates com-
pared with the relaxed-clock methods (e.g.,
penalized likelihood and RelTime). The least-
squares-based method (DAMBE) utilizes the cal-
ibration bounds during the minimization of the
residual sum of squares (RSS) of patristic
distances and pairwise distances computed
based on the evolutionary rate and predicted
divergence times (Xia and Yang 2011). In this
case, times used to compute the distance are con-
trolled by the calibration constraints imposed in
the RSS minimization. To minimize the RSS, the
resulting times will be equal to the maximum or
minimum bounds in some cases (Xia and Yang
2011).

12.4.3.2 Using Calibration Constraints
with Probability Densities

In addition to minimum and/or maximum
constraints, it is becoming commonplace to use
probability densities that reflect prior belief about
the possible location of the true species diver-
gence time relative to the minimum and/or maxi-
mum constraints. Early on, Hedges and Kumar
(2004) mentioned several possible distributions
(triangular, lognormal, and uniform densities) to
model such calibration uncertainty. However,
they preferred a uniform distribution for their
studies due to a lack of additional information

about the true density (Meredith et al. 2011;
Morris et al. 2018). With the development of
Bayesian methods, it became possible to incorpo-
rate any desired probability density in molecular
dating (Drummond et al. 2006; Yang and Rannala
2006; Barba-Montoya et al. 2017). Indeed,
more recent studies use nonuniform distributions
(e.g., Cauchy, lognormal, and exponential
distributions) in which a stronger constraint is
placed on the minimum time. As expected, the
quality of the calibrations and the density
assumptions have a major impact on divergence-
time estimates in Bayesian analyses, even if a
huge amount of molecular data is available
(Barba-Montoya et al. 2017; Bromham et al.
2018).

Tao et al. (2020) have developed an approach
to incorporate such densities and automatically
accommodate the interactions among calibrations
in the RelTime method. The new approach
resamples calibration constraints from densities
many times, to generate a distribution of times
for each calibrated node that is analogous to the
‘effective prior’ in Bayesian approaches, and then
derives minimum and maximum bounds (called
effective bounds) for use in the RelTime analysis
to estimate divergence times and confidence
intervals. Confidence intervals produced by this
approach overlapped with those reported by the
Bayesian analyses and were much narrower than
those generated by using the original approach
that did not account for interactions among
calibrations in RelTime (Tao et al. 2020). The
new approach is available in MEGA X for the
RelTime method. These effective bounds can also
be used in penalized likelihood and other
non-Bayesian dating analyses.

12.4.3.3 Using Molecular Dates
as Calibrations (Secondary
Calibrations)

Many studies use previously published molecular
dates to calibrate the clock. These are referred to
as secondary calibrations because they are not
based on direct fossil or biogeographical data,
but rather on inferred molecular dates. A literature
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survey found that about 15% of studies have used
secondary calibrations (Hipsley and Müller
2014). The use of secondary calibrations traces
its origins to Kumar and Hedges (1998). They
estimated vertebrate divergence times using a
secondary mammalian calibration, which was
inferred by using the bird-mammal divergence
time from the fossil record. This procedure was
needed for inferring intra- and interordinal dates
using protein sequence alignments that lacked
bird sequences. This approach enabled them to
increase the number of genes that could be used to
infer divergence times. In fact, Hedges and
Kumar (2004) suggested that, in some situations,
more accurate time estimates might be obtained
by using a secondary calibration from a robust
source than by using an unreliable primary fossil
calibration.

Secondary calibrations continue to be used for
groups that have limited fossil records, such as
bacteria (Chriki-Adeeb and Chriki 2016) and
fungi (Heckman et al. 2001). They have also
been used in several recent studies to increase
the total number of available calibrations for dat-
ing large phylogenies that contain hundreds of
species (e.g., dos Reis et al. 2012, 2018). Ulti-
mately, one must use secondary calibrations judi-
ciously, because this practice might produce
results significantly different from those produced
by using primary calibrations (Graur and Martin
2004; Sauquet et al. 2012; Schenk 2016). How-
ever, Hedges and Kumar (2004) found that the
inconsistencies in times estimated using the pri-
mary and secondary calibrations reported by
Graur and Martin (2004) were caused by an incor-
rect assumption of Gaussian distribution of
multigene times and, thus, an incorrect calcula-
tion of the time and confidence intervals. The
actual distribution should be very skewed because
of the small sample size and a large extrapolation.
In fact, Morrison (2008) suggested that a lognor-
mal distribution is the most appropriate to model
a secondary calibration. The time estimated using
the secondary calibration was consistent with the
primary time when a skewed distribution was
assumed (Hedges and Kumar 2004). Clearly, fur-
ther research is needed to inform best practices for
using secondary calibrations.

12.5 Molecular Dating with Missing
Sequence Information

Modern studies often involve large data sets with
hundreds of species and genes, due to the growth
of public databases and dramatically decreased
sequencing costs. However, a disadvantage of
building and using such big data sets is that they
might contain a large proportion of missing data.
For example, the alignment analysed by Barba-
Montoya et al. (2018) had 71.4% missing data.
Fortunately, both empirical and simulation stud-
ies have found that missing data had little impact
on divergence-time estimation by both Bayesian
and non-Bayesian dating methods, especially
when multiple calibrations were used (Douzery
et al. 2004; Filipski et al. 2014; Zheng and Wiens
2015). These results indicate that molecular time
estimation is robust even when sequences are
missing from the majority of genes for most of
the species. However, if the data are highly or
systematically sparse, resulting in pairs of species
with no common genes, then divergence-time
estimation can be seriously misled, especially
when only a few or no calibrations are used
(Filipski et al. 2014; Zheng and Wiens 2015).

Filipski et al. (2014) showed that time
estimates for nodes with zero data coverage (i.e.,
nodes without any common genes for any pair of
species in the immediate descendent clades) were
unreliable because there were no data to allow the
corresponding branch lengths to be estimated. In
general, the accuracy of branch-length estimates
is low when the overall number of informative
characters is small, which would result in poor
time estimates (Wiens and Moen 2008; Wiens
and Morrill 2011). Limited numbers of informa-
tive sites in sequence alignments can reduce the
accuracy and precision of time estimates and,
thus, lead to spurious changes in diversification
rates (Marin and Hedges 2018) and mislead sta-
tistical tests of evolutionary rate correlation (Tao
et al. 2019). Therefore, it is important to detect
nodes with low or zero data coverage before any
dating analysis.

One can use MEGA X to visualize data cover-
age for each node in a phylogeny (Fig. 12.5). The
data coverage for each node in the phylogeny is
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the percentage of positions at which at least one
pair of sequences in the descendent clades has a
valid nucleotide base or amino acid residue. For
example, node A has a data coverage of 25%
because only one out of four sites has a valid
state between sequences S4 and S5. Node B has
a data coverage of 0%, because S3 does not share
any positions with a valid state in either S4 or S5
(Fig. 12.5). When the data coverage is zero
(or low), there is no (or limited) ingroup informa-
tion to allow the estimation of branch lengths
(branch lengths ¼ 0), and RelTime will predict
that no time has elapsed on that branch. This
results in the age of node B (tB) becoming the
same as the age of node D (tD) (Filipski et al.
2014). Therefore, dates for nodes with high data
coverage are expected to be estimated with higher
accuracy.

12.6 Estimation of Confidence
Intervals

In Bayesian methods, the credibility intervals or
HPD intervals of node ages can be derived from
the posterior distributions of times. Although the
Bayesian credibility intervals and HPD intervals
are not the same as the traditional analytical con-
fidence intervals used in frequentist statistics

(Jaynes and Kempthorne 1976), many researchers
interpret them in a similar way. However, for
non-Bayesian methods, the calculation of confi-
dence intervals is complex. This is because it is
difficult to generate analytical equations to
account for the variance in node times introduced
by the stochastic error in branch-length estima-
tion, the rate heterogeneity among branches, and
the uncertainty of calibrations. Therefore, many
non-Bayesian methods (e.g., penalized likeli-
hood) compute confidence intervals for diver-
gence times by using the bootstrap approach, in
which only sites or genes of molecular sequences
are resampled. This leads to overly narrow confi-
dence intervals because the site-bootstrapping
approach only captures errors associated with
the estimation of branch lengths in the tree. It
cannot account for the variance introduced by
evolutionary rate differences among lineages,
which can have a big impact on the precision of
time estimation (Kumar and Hedges 2016)
(Table 12.2).

Tamura et al. (2013) suggested a method to
generate confidence intervals encompassing the
error due to branch-length estimation and rate
variation for the RelTime method. Tao et al.
(2020) improved this method and presented the
analytical equations to compute confidence
intervals for RelTime reliably, which is available
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Fig. 12.5 An example of computing node data coverage
for a phylogeny containing five species (S) and four nucle-
otide bases or amino acid residues (b) in the alignment
matrix. Node times are given by ti. Not all bases are

available for each species. The available states are
designated by check marks and missing ones are indicated
by dashes in the matrix. The percentage of data coverage
of each internal node is shown
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in MEGA X. Simulation analyses showed that
RelTime performed better than Bayesian methods
and produced confidence intervals with high
probabilities of containing the true values
(�94%) for both small and large data sets when
a minimum number of calibrations was used.

The uncertainty in calibrations is also an
important source of estimation error in the infer-
ence of divergence times. Therefore, reliable and
well-constrained calibrations can be very effec-
tive in reducing the widths of confidence
intervals. Bayesian methods use different proba-
bility densities to accommodate the uncertainty
in calibrations and to account automatically for
the interaction among calibrations. Tao et al.
(2020) have developed a new method for use in
the RelTime framework to derive calibration
boundaries from probability densities that
account for their interactions (mentioned above).
The resulting confidence intervals are comparable
to the HPD intervals generated from Bayesian
methods in empirical analyses (Tao et al. 2020).
This method, with modifications, can also be used
for other non-Bayesian methods (e.g., penalized
likelihood).

12.7 Dating
with Non-contemporaneous
Molecular Data

In some studies, molecular sequences are
obtained from biological samples that have been
acquired at different times. This is common in the
analysis of DNA and protein sequences from fast-
evolving pathogens and those generated from
ancient samples (Rambaut 2000; Stadler and
Yang 2013; Biek et al. 2015). This makes the
tips of the evolutionary tree asynchronous. Sev-
eral rapid dating methods have been developed
for this type of sequence data (see also Chap. 10).
As with the evolution of methods for dating
analyses of contemporaneous data, the first
approaches to be developed were based on a strict
clock. In the single-rate dated tips (SRDT)
method, the slope of a linear regression between
the root-to-tip distances (or pairwise distances
from the outgroup sequence) and the sampling

dates is used to determine the global rate and
the dates for the internal nodes (Li et al. 1988;
Bollyky and Holmes 1999; Rambaut 2000).
SRDT is a very fast method and has been
implemented in the TipDate software (Rambaut
2000). Some UPGMA-like methods, such as
serial-sampled UPGMA (Drummond and
Rodrigo 2000) and TREBLE (Yang et al. 2007),
were also developed under the strict-clock
model. The least-squares method of Xia and
Yang (2011), implemented in the DAMBE
software, can also be modified to analyse
non-contemporaneous data to minimize the resid-
ual sum of squares under a global clock (Xia
2018b).

Non-Bayesian methods that relax the assump-
tion of rate constancy have also been developed,
and they do not require the specification of many
priors as in Bayesian approaches (To et al. 2016;
Miura et al. 2020). Maximum-likelihood methods
have been developed to estimate substitution rates
and node dates under local and discrete clocks
(Physher; Fourment and Holmes 2014) and under
a relaxed clock (TreeTime; Sagulenko et al.
2018). TreeTime uses a normal prior to control
the rate variation to be more autocorrelated-like
or independent-like. The penalized-likelihood
method implemented in r8s can also be used for
dating non-contemporaneous data (Sanderson
2003). To et al. (2016) developed a least-squares
dating (LSD) method that assumes the noise in
molecular rates to be normal-like to account for
independent rate variation across branches. Volz
and Frost (2017) combined the maximum-
likelihood and least-squares criteria to develop
treedater. Miura et al. (2020) developed a method
based on the RelTime approach, called RelTime
with Dated Tips (RTDT), and the method is avail-
able in MEGA X.

Many of these non-Bayesian methods have
been evaluated using data sets simulated under
IBR models. They perform as well as Bayesian
methods in estimating substitution rates and the
root age (Fourment and Holmes 2014; To et al.
2016; Volz and Frost 2017; Sagulenko et al.
2018). Miura et al. (2020) conducted a bench-
mark study to assess the performance of various
Bayesian and non-Bayesian methods in
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estimating divergence times for a large collection
of simulated data sets, which were simulated
under ABR and IBR models, using different tree
shapes, and with strong and weak temporal
signals. For data sets with moderate or strong
temporal signals, RTDT performed better than
other non-Bayesian methods because it produced
good node-by-node time estimates and reliable
confidence intervals that often contained the true
values. Other non-Bayesian methods (e.g., LSD
and TreeTime) performed well for IBR data sets,
but not for ABR data sets. When there was a weak
temporal signal in the data, Bayesian methods
provided better estimates than non-Bayesian
methods, as long as the correct rate model was
specified. Tong et al. (2018) also suggested that
non-Bayesian methods produced reliable rate
estimates when the evolutionary rate was high,
but that Bayesian methods generated slightly bet-
ter estimates when there was a low evolutionary
rate and weak temporal signal.

Non-Bayesian methods also allow the data to
have missing sampling dates or to have
uncertainties in the sampling dates (Volz and
Frost 2017; Sagulenko et al. 2018; Miura et al.
2020). All of these non-Bayesian methods are
orders of magnitude faster than Bayesian methods
(Volz and Frost 2017; Miura et al. 2020), so they
provide the feasibility of dating phylogenies with
thousands of tips and sampling dates, which are
expected to become increasingly common in
molecular epidemiology. Miura et al. (2020)
provided brief guidelines for users to select the
most appropriate method for tip-dating analysis,
based on the characteristics of the data set being
analysed.

12.8 Phylogenetic Uncertainty

In the above, we focused on the application of
non-Bayesian methods for estimating divergence
times and confidence intervals for a given topol-
ogy, because molecular dating is frequently done
after inferring a phylogenetic tree. Ideally, one
would obtain a reliable tree topology using maxi-
mum likelihood and other methods, and then

estimate divergence times and their uncertainties
based on this fixed topology. If the inferred tree is
inaccurate, divergence times estimated for many
of the nodes will be meaningless, because they
would not correspond to actual evolutionary
divergence events. The placement of calibrations
can also become complicated when the phyloge-
netic tree is not well established. The presence of
uncertainty in the tree topology is expected to
inflate the uncertainty of divergence-time
estimates (Ho 2009).

In some situations, however, one might fix the
nodes of interest and allow the rest of the phylog-
eny to be inferred from the data. In this case, it is
possible to apply a chosen non-Bayesian method
to each alternative topology and report the mean
time estimate, the standard deviation, and a sum-
mary confidence interval around the meantime of
the node of interest across all of the candidate
topologies. For example, it is of great interest to
date the origin of a set of pathogenic strains in
tip-dating analyses. The accuracy of time
estimates for this node has been tested in simula-
tion analyses by using phylogenies inferred from
the sequence alignment, rather than fixing the
topology (To et al. 2016; Volz and Frost 2017;
Sagulenko et al. 2018; Miura et al. 2020). The
results of these analyses have been very encour-
aging, with RTDT and other non-Bayesian
methods producing reliable estimates for this
node. Similar procedures can be applied to dating
species and divergences between duplicated
genes by using relaxed non-Bayesian methods.

12.9 Concluding Remarks

We anticipate that RelTime, penalized likelihood,
and other non-Bayesian methods will become
more widely used for a number of reasons. First,
the computational speed and reliable inferences
offered by these non-Bayesian methods allow one
to use larger data sets for dating the tree of life
or for testing biological hypotheses. Because
Bayesian methods often demand large amounts
of computational time and memory, many
researchers adopt a divide-and-conquer approach
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by running the Bayesian methods on small
partitions and gluing the results together (Misof
et al. 2014; Oliveros et al. 2019). Alternatively,
researchers might filter the genes until the size of
the remaining data set is feasible for Bayesian
inference (Hughes et al. 2018). This situation is
going to become more acute, because progress in
sequencing technology has been a boon for
molecular systematics and biodiversity research,
leading to a two-dimensional expansion of data
sets (sites and species) available for dating studies
(e.g., Zeng et al. 2014; Testo and Sundue 2016;
Zheng and Wiens 2016; Barba-Montoya et al.
2018; Hughes et al. 2018). For this reason, faster
Bayesian implementations are also being devel-
oped (Åkerborg et al. 2008; Lartillot et al. 2013).

Second, the use of efficient and reliable
methods will enhance scientific rigour by
allowing an assessment of the robustness of
estimates to the assumptions made in dating
analyses. Such analyses might involve studying
the effects of using different combinations of
genes, species, calibrations, and priors. Owing
to computational time requirements, such
explorations can be difficult for large data sets.
Rapid non-Bayesian methods provide researchers
with a toolkit to test the sensitivity of molecular
time estimates and to improve downstream
investigations of the biological process.

Third, the computational time requirements
imposed by Bayesian methods make it challeng-
ing to examine the accuracy and precision of their
estimates for large data sets, whereas rapid
non-Bayesian methods have been tested on data
sets with hundreds to thousands of species (Smith
and O’Meara 2012; Tamura et al. 2012, 2018). A
high computational burden also discourages inde-
pendent evaluation of Bayesian date estimates by
others interested in reproducing the results. Many
practitioners are frustrated by the fact that inde-
pendent attempts to simply reproduce the results
of Bayesian dating can take weeks to months, and
can only be pursued by research groups with
access to extensive computing resources. This
delays, and even impedes, scientific discourse
and progress. The presence of reliable, efficient
non-Bayesian methods is very useful and makes
molecular dating accessible to all, including those

without ready access to high-performance com-
puting infrastructure.

Admittedly, Bayesian methods are useful
when one wishes to incorporate some other infor-
mation into divergence-time inference (e.g., bio-
geographic data) or to get a joint inference of
some other phylogenetic features (e.g., popula-
tion dynamics parameters). However, whether
the inclusion of additional information or the
joint inference will improve the accuracy of
divergence-time estimation requires more exten-
sive study, because appropriate settings for priors
are usually unknown.

In fact, we suggest that users apply both
Bayesian and non-Bayesian methods to obtain
estimates of divergence times and their confi-
dence intervals for molecular data sets, where
possible. This would allow us to detect potential
biases introduced by the assumptions and
methods. Nevertheless, it is important to note
that concordance between time estimates from
Bayesian and non-Bayesian approaches should
not be taken to suggest that the estimated times
are correct. This is because the estimation of
absolute divergence times highly depends on
the calibration constraints used, and all methods
will be negatively affected if the calibration
constraints or densities used are incorrect
(Battistuzzi et al. 2015; Hedges et al. 2018). For
example, the use of an exponential density
indicates a very high probability that the node
age is close to the minimum constraint (Hedges
and Kumar 2004; Ho and Duchêne 2014). With-
out proper justification and prior independent
data, the choice of calibration density is largely
subjective (Heath 2012; Bromham et al. 2018),
which can adversely affect molecular date
estimates. Different density distributions, even
with the same minimum and maximum bounds,
can produce different posterior time estimates in
Bayesian methods (dos Reis et al. 2015; Barba-
Montoya et al. 2017; Warnock et al. 2017; Morris
et al. 2018). In addition, there are concerns about
the imposition of maximum constraints on node
times, because the fossil record only provides
reliable minimum constraints (Battistuzzi et al.
2015; Bromham et al. 2018; Hedges et al.
2018). Therefore, one needs to examine the
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reliability of calibrations before conducting dat-
ing analyses (Andújar et al. 2014; Battistuzzi
et al. 2015; Hedges et al. 2018).

In general, we see no reason for avoiding
non-Bayesian methods for constructing time-
trees, given that they are computationally efficient
and produce estimates of divergence times and
their surrounding uncertainties that are scientifi-
cally rigorous and reproducible. In particular,
efficient non-Bayesian methods might be the
only feasible option for many users for analysing
large data sets containing thousands of genes and
species.
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Bayesian Phylogenomic Dating 13
Sandra Álvarez-Carretero and Mario dos Reis

Abstract

The development of divergence-time estima-
tion methods has been an active area of
research since the early 1960s, when the
molecular clock was first postulated by
Zuckerkandl and Pauling. Thanks to techno-
logical and computational improvements,
more powerful and cutting-edge techniques
and algorithms have been developed to better
understand species evolution at the molecular
level. These have led to improved methods for
molecular clock dating of speciation events.
During the past two decades, the approaches
for DNA sequencing have substantially
advanced and their costs have decreased, thus
enabling large-scale genome-sequencing
projects that aim to sequence all species in
the tree of life. Being able to access thousands
of complete genomes, however, has brought
new biological and computational challenges
to phylogenomic analyses. We might have
more data, but also new questions to answer.
Inferring reliable phylogenies and accurately
dating them is now the main goal of
phylogenomic analyses. Although new
computational tools that implement more com-
plex evolutionary models have been

developed, there remain challenges in dealing
with issues such as polytomies, incomplete
lineage sorting, and the uncertainty in the fos-
sil record. This chapter aims to guide the
reader through the steps of Bayesian
phylogenomic dating analyses, from data col-
lection and processing up to the inference of
the species tree and subsequent clock dating
analysis. We pay close attention to the Bayes-
ian paradigm in molecular clock dating, focus-
ing on the effects that the prior and the
likelihood can have on the estimated diver-
gence times when using phylogenomic data.
We describe strategies to speed up computa-
tion when using large genomic data sets, such
as the approximate-likelihood method, which
produces speed-ups of up to 1000� in time-
tree inference. We also discuss strategies to
improve the efficiency of Markov chain
Monte Carlo sampling.

Keywords

Bayesian inference · Molecular clock ·
Divergence times · Phylogeny · Approximate
likelihood · Model selection

13.1 Introduction

In the early 1960s, Zuckerkandl and Pauling’s
realization that globin chains evolve at an approx-
imately constant rate led them to postulate the
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existence of a molecular clock (Zuckerkandl and
Pauling 1962). This rate constancy means that
molecular phylogenies can be calibrated to geo-
logical time by using information from the fossil
record, thus allowing the inference of species
divergence times. It is now acknowledged that
molecular rate constancy only applies to closely
related species (e.g., Goodman et al. 1971; Ohta
and Kimura 1971; Jukes and Holmquist 1972;
Langley and Fitch 1974; Fitch and Langley
1976; Li et al. 1987), leading to the development
of ‘relaxed-clock’ methods that allow estimation
of divergence times in phylogenies with more
distantly related species (Takezaki et al. 1995;
Sanderson 1997; Rambaut and Bromham 1998;
Thorne et al. 1998; Huelsenbeck et al. 2000;
Kishino et al. 2001; Drummond et al. 2006;
Yang and Rannala 2006). Continual advances in
technology and computation, as well as the devel-
opment of new and more efficient methods and
techniques (particularly the use of the Bayesian
method), have changed the way molecular and
palaeontological data are used for divergence-
time estimation (dos Reis et al. 2016).

The availability of molecular data for different
species has increased exponentially during the six
decades since the proposal of the molecular clock
hypothesis. We have moved from sequencing a
unique DNA fragment in one run with the Sanger
method (Sanger et al. 1977) to high-throughput

approaches that allow the sequencing of millions
of DNA bases in parallel (Zhang et al. 2011;
Slatko et al. 2018). Thus, over 50,000 prokaryotic
and eukaryotic genomes are, as of 2020, readily
available for analysis in GenBank (Fig. 13.1). The
phylogenetic analysis of complete genomes,
phylogenomics, is a breakthrough that is expected
to bring deeper insights into the evolutionary
history of species (Eisen and Fraser 2003; Delsuc
et al. 2005).

Nevertheless, just as the number of complete
genomes has been continually increasing, the
challenges encountered when working with
them have also increased. In the beginnings of
phylogenomics, the aim was not only to develop
computational tools that could better differentiate
between orthologues and paralogues to resolve
the incongruence among phylogenetic trees (Gee
2003; Rokas et al. 2003; Delsuc et al. 2005).
More importantly, phylogenomics was expected
to be the panacea to resolve the polytomies in the
tree of life (Delsuc et al. 2005; Rokas and Carroll
2006). These expectations do not seem to have
been fulfilled yet, and thus the challenges
described above are still unresolved in current
phylogenomic analyses, demanding even more
efficient and effective algorithms.

In the first phylogenomic analyses,
reconstructing and resolving incongruences in
inferred phylogenies were the first issues to be

Viruses
17,392 (34%)

Bacteria
26,902 (53%)

Archaea
1,746 (3%)

Animals
1,906 (4%)

Fungi
2,218 (4%)

Plants
602 (1%)

Protists
335 (1%)

Other
32 (0%)

TOTAL = 51,133 genomes

Fig. 13.1 Number of
genome sequences
available in GenBank as of
April 2020. The outer
circles correspond to
Bacteria (dark orange),
Archaea (light orange),
Eukarya (green), and
viruses (dark blue)
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encountered when developing computational
methods. Different statistical approaches were
proposed for this purpose: distance methods
such as minimum evolution using least-squares
optimality (e.g., Rzhetsky and Nei 1992; Bryant
andWaddell 1998) and neighbour-joining (Saitou
and Nei 1987), maximum parsimony (Camin and
Sokal 1965; Fitch 1970), maximum likelihood
(Felsenstein 1981, 1988), and the Bayesian
approach (Rannala and Yang 1996; Mau et al.
1999; Larget and Simon 1999). In addition, it
was observed that phylogenies inferred for differ-
ent genes did not always have the same topology,
leading to the realization that different genes can
have different evolutionary histories (e.g., Camin
and Sokal 1965; Takahata 1989; Huelsenbeck
et al. 2001; Thorne and Kishino 2002; dos Reis
et al. 2016; Zhang et al. 2016). This observation
encouraged the development of software that
could incorporate the inference of coalescence
events using phylogenomic data (e.g., Rannala
and Yang 2003; Liu and Pearl 2007; Heled and
Drummond 2010; Yang and Rannala 2010;
Bryant et al. 2012; Mirarab et al. 2014; Bouckaert
et al. 2019).

As phylogenies for different taxa started to be
resolved, a parallel methodological and computa-
tional challenge arose: dating the inferred phylog-
eny with phylogenomic data. The methodology
used to estimate divergence times is based on the
combination of molecular data (genetic and/or
genome sequences) and the fossil record (contin-
uous and/or discrete morphological data, and the
ages of fossils), with the latter used to calibrate
the inferred phylogeny with geological times
(Benton and Donoghue 2007; Chap. 8). Unfortu-
nately, the fossil record is not complete, adding a
level of uncertainty to the analysis that needs to
be taken into account (e.g., dos Reis et al. 2015).

The Bayesian paradigm is an interesting
approach to tackle this problem: it can integrate
different sources of information and account for
uncertainty on model parameters through the use
of probability distributions (see Chap. 6). Despite
Bayes’s theorem dating back to the 1700s (Bayes
1763), it was not until 1998 that it was introduced
by Thorne et al. (1998) for divergence-time esti-
mation. Since then, Bayesian clock dating

methods have been extended to integrate different
kinds of data (molecular and morphological) and
to estimate model parameters such as evolution-
ary rates or times of speciation (e.g., Kishino et al.
2001; Thorne and Kishino 2002; Rannala and
Yang 2003; Drummond et al. 2006; Yang and
Rannala 2006; dos Reis et al. 2012, 2016, 2018;
Ronquist et al. 2012a; Heath et al. 2014; Zhu et al.
2015; Davín et al. 2018; Bouckaert et al. 2019).

Nevertheless, there are three main drawbacks
associated with Bayesian clock dating. First,
establishing prior probability distributions for
model parameters is somewhat subjective, in par-
ticular when modelling fossil uncertainties (e.g.,
see Tavaré et al. 2002; Drummond et al. 2006;
Yang and Rannala 2006; Benton et al. 2015).
Second, the phylogenetic likelihood calculation
is computationally expensive, and thus alternative
approaches to approximate the likelihood have
been explored (e.g., Thorne et al. 1998;
Beaumont et al. 2002; Guindon 2010; dos Reis
and Yang 2011; dos Reis et al. 2012). Third, the
uncertainty in posterior estimates can become
small but will never disappear in clock dating of
extant species, because divergence times and evo-
lutionary rates are unidentifiable in the likelihood
function (Rannala and Yang 2007; dos Reis and
Yang 2013; Zhu et al. 2015).

Faster dating methods using penalized likeli-
hood have been developed (Sanderson 2002;
Yang and Yoder 2003; Yang 2004; Smith and
O’Meara 2012), increasing computational effi-
ciency compared with Bayesian methods (see
Chap. 12). These fast methods, however, do not
account for fossil or branch-length uncertainty
(Thorne and Kishino 2005). Despite these
challenges, the Bayesian approach has become
the preferred method for phylogenomic dating
(e.g., Clarke et al. 2011; dos Reis et al. 2012,
2018; Springer et al. 2012; Jarvis et al. 2014;
Misof et al. 2014; Zheng and Wiens 2016;
Barba-Montoya et al. 2018).

This chapter aims to guide the reader through
the different steps of Bayesian phylogenomic dat-
ing analyses, from data collection and processing
up to the inference of the species tree and
subsequent clock dating analysis. We pay close
attention to the Bayesian paradigm in molecular
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clock dating, focusing on the effects that the prior
and the likelihood can have on the estimated
divergence times when using phylogenomic
data. We discuss strategies to speed up computa-
tion when using large genomic data sets, such as
the approximate-likelihood method, which
produces speed-ups of up to 1000� in time-tree
inference, as well as strategies to improve the
efficiency of Markov chain Monte Carlo
(MCMC) sampling. General reviews of Bayesian
phylogenetic inference are available elsewhere
(Holder and Lewis 2003; Yang 2014; Nascimento
et al. 2017).

13.2 Bayesian Phylogenomic Dating

In this section, we will go through the different
steps involved in a Bayesian phylogenomic dat-
ing analysis. We start with data preparation, then
explain how to set up the prior distributions for
rates and times, set up the likelihood model, and
summarize the posterior distribution.

13.2.1 Preparing the Data

Before we can perform Bayesian inference of
divergence times using phylogenomic data, there
are several steps that need to be carried out:
(1) data collection, (2) sequence alignment,
(3) alignment partitioning, (4) species-tree infer-
ence, and (5) model selection. The general
approach is illustrated in Fig. 13.2.

The first step, data collection, can start with the
user (1) collecting biological samples from the
species of interest, (2) sequencing and bioinfor-
matically processing the raw sequence data from
the samples, or (3) directly downloading
orthologous genes for the species of interest
from a database such as GenBank (Benson et al.
2018) or Ensembl (Zerbino et al. 2018). Starting
at one point or another will depend on the design
of the research project. Here, we give a summary
of each of these steps.

13.2.1.1 Obtaining and Generating
the Molecular Data

Collecting samples suitable for DNA sequencing
from the species of interest (e.g., blood or tissue)
is the first step in many studies. For instance,
studies on unsequenced non-model organisms
might start with gathering samples for DNA
extractions. Once the samples are collected, they
need to be processed using different molecular
techniques and sent for sequencing. At the end
of this stage, sequencing reads are obtained, the
quality of which will have a direct impact on the
subsequent analyses. For example, if the samples
have been contaminated or there have been
problems during sequencing, the quality of the
raw sequence reads will be poor and will affect
the downstream in silico analyses (e.g., Kircher
and Kelso 2010; Strong et al. 2014; Kebschull
and Zador 2015; Ballenghien et al. 2017). Even
though there might be systematic and random
errors that cannot be avoided nor controlled for
in this stage, these can be minimized if the
protocols for each technique carried out during
the experimental work are cautiously followed
(e.g., Cheung et al. 2011; Benjamini and Speed
2012; Wong et al. 2012; Ross et al. 2013). This
will help to increase the quality of raw
sequence data.

13.2.1.2 Processing the Molecular
Sequence Data

The raw sequence data must be processed through
a pipeline of bioinformatics software to filter,
assemble, and annotate the data. Quality-control
checks should be done before each step (Guo
et al. 2014). During the filtering step, the raw
sequence data are trimmed by removing the
ends of the reads. This is done to remove the
adapter sequences used during sequencing. In
addition, the user can specify parameters such as
the Phred score, the minimum read length, or the
minimum base quality to further restrict the
trimming process (see some trimmer software
examples in Table 13.1). After trimming, read
quality needs to be checked for any errors before
the genome assembly is generated (Laehnemann

224 S. Álvarez-Carretero and M. dos Reis



ra
w

 re
ad

s

ge
no

m
e 

as
se

m
bl

y

fil
te

re
d 

re
ad

s

2.
 F

ilt
er

 ra
w

 re
ad

s 
an

d 
qu

al
ity

 c
on

tro
l (

Q
C

)

3.
 A

ss
em

bl
e 

fil
te

re
d 

re
ad

s 
an

d 
Q

C

1.
 S

eq
ue

nc
e 

sa
m

pl
es

 a
nd

 o
bt

ai
n 

ra
w

 re
ad

s

5.
 In

fe
r a

nd
 k

ee
p 

on
ly

 o
rth

ol
og

ou
s 

ge
ne

s

or
th

ol
og

ue
s

b A
lig

n 
or

th
ol

og
ue

s 
fo

r e
ac

h 
sp

ec
ie

s

c P
ar

tit
io

n 
al

ig
nm

en
t

4.
 G

en
e 

an
no

ta
tio

n

re
fe

re
nc

e 
as

se
m

bl
y

ge
no

m
e 

as
se

m
bl

y
d In

fe
r s

pe
ci

es
 tr

ee

!!!
! !

 
 

 
 

 
 

 
 

 
 

!!!
! ! "

 
 

 
 

 
 

 
 

 
 

!!#
##

!! ! "

   
C

A
G

T
A

G

T
C

G

T
C

A

G
BM

IL
N

ST
R

...
C

lo
ck

 m
od

el

...
...

...

a D
ow

nl
oa

d 
or

th
ol

og
ue

s 
fro

m
 d

at
ab

as
es

...
...

sp
 1

sp
 2

 
sp

 3
sp

 4
sp

 5 ...
...

sp
 1

sp
 2

 
sp

 3
sp

 4
sp

 5 ...
...

sp
 1

sp
 2

 
sp

 3
sp

 4
sp

 5

e M
od

el
 s

el
ec

tio
n

A B CTr
ee

 to
po

lo
gy

JC
69

K8
0

H
KY

85

Su
bs

tit
ut

io
n 

m
od

el

f D
iv

er
ge

nc
e-

tim
e 

es
tim

at
io

n

Fi
g
.
13

.2
S
te
ps

fr
om

da
ta

co
lle
ct
io
n
to

B
ay
es
ia
n
ph

yl
og

en
om

ic
da
tin

g.
(a
)
D
at
a

co
lle
ct
io
n.

W
e
st
ar
tw

ith
ra
w
se
qu

en
ce

da
ta
fo
r
th
e
sp
ec
ie
s
of

in
te
re
st
,o

r
w
ith

al
re
ad
y

fi
lte
re
d
or
th
ol
og

ou
s
ge
ne
s
do

w
nl
oa
de
d
fr
om

sp
ec
ifi
c
da
ta
ba
se
s.
R
aw

da
ta
w
ill

ne
ed

to

be
fi
lte
re
d
an
d
as
se
m
bl
ed
.
T
he

qu
al
ity

of
th
e
ra
w

se
qu

en
ci
ng

re
ad
s
af
te
r
ea
ch

st
ep

is
m
ea
su
re
d
us
in
g
qu

al
ity

-c
on

tr
ol

so
ft
w
ar
e
be
fo
re

ge
ne
s
in

th
e
ge
no

m
e
as
se
m
bl
y
ca
n
be

an
no

ta
te
d.

T
he

fi
na
l
an
no

ta
te
d
as
se
m
bl
y
is

sc
re
en
ed

fo
r
or
th
ol
og

ue
s.

(b
)
S
eq
ue
nc
e

13 Bayesian Phylogenomic Dating 225



Fi
g
.
13

.2
(c
on

tin
ue
d)

al
ig
nm

en
t.
S
of
tw
ar
e
is
us
ed

to
al
ig
n
th
e
or
th
ol
og

ue
s
co
lle
ct
ed

fo
r
th
e
sp
ec
ie
s
of

in
te
re
st
.
(c
)
A
lig

nm
en
t
pa
rt
iti
on

in
g.

T
he

al
ig
nm

en
t
is

pa
rt
iti
on

ed
ac
co
rd
in
g
to

a
sp
ec
ifi
c
sc
he
m
e,

su
ch

as
co
nc
at
en
at
io
n
of

co
do

n
po

si
tio

ns
of

pr
ot
ei
n-

co
di
ng

ge
ne
s
an
d/
or

gr
ou

pi
ng

ge
ne
s
w
ith

si
m
ila
r
ev
ol
ut
io
na
ry

ra
te
s
or

nu
cl
eo
tid

e
co
m
po

si
tio

ns
.
(d
)
S
pe
ci
es
-t
re
e
in
fe
re
nc
e.

T
he

pa
rt
iti
on

ed
al
ig
nm

en
t
is

us
ed

to
in
fe
r

th
e
sp
ec
ie
s
tr
ee

us
in
g
an

ap
pr
oa
ch

su
ch

as
m
ax
im

um
lik

el
ih
oo

d
or

B
ay
es
ia
n
in
fe
re
nc
e.

(e
)
M
od

el
se
le
ct
io
n.
T
he

ev
ol
ut
io
na
ry

m
od

el
fo
r
th
e
da
ta
ne
ed
s
to

be
ch
os
en
.T

he
re
ar
e

di
ff
er
en
tm

od
el
s
th
at
ca
n
be

te
st
ed
,s
uc
h
as

di
ff
er
en
tc
lo
ck

m
od

el
s,
tr
ee

to
po

lo
gi
es
,a
nd

su
bs
tit
ut
io
n
m
od

el
s.
M
et
ho

ds
su
ch

as
B
ay
es

fa
ct
or
s
ca
n
be

us
ed

to
se
le
ct
th
e
be
st
m
od

el
fo
r
th
e

da
ta
.
(f
)
D
iv
er
ge
nc
e-
tim

e
es
tim

at
io
n.

T
he

la
st

st
ep

us
es

th
e

pa
rt
iti
on

ed
ph

yl
og

en
om

ic
al
ig
nm

en
t,
th
e
in
fe
rr
ed

sp
ec
ie
s
tr
ee
,
an
d
th
e
se
le
ct
ed

m
od

el
to

in
fe
r

th
e
sp
ec
ie
s
di
ve
rg
en
ce

tim
es

w
ith

th
e
pr
ef
er
re
d
B
ay
es
ia
n
M
C
M
C
da
tin

g
so
ft
w
ar
e

226 S. Álvarez-Carretero and M. dos Reis



Ta
b
le

13
.1

S
el
ec
tio

n
of

so
ft
w
ar
e
us
ed

to
fi
lte
r,
as
se
m
bl
e,
an
d
an
no

ta
te
ra
w

se
qu

en
ce

da
ta

S
of
tw
ar
e

D
at
a

R
ea
ds

A
da
pt
er

re
m
ov

al

Q
ua
lit
y

fi
lte
ri
ng

tr
im

m
in
g

(Q
F
T
)

R
ea
d-

er
ro
r

co
rr
ec
tio

n
A
ss
em

bl
y

A
nn

ot
at
io
n

P
ar
al
le
liz
at
io
n

C
ita
tio

ns

T
ri
m
m
in
g
to
ol
s

C
ut
ad
ap
t
v2

.1
45

4/
R
oc
he
,A

B
I
S
O
L
iD

(c
ol
or
sp
ac
e)
,I
llu

m
in
a

S
E
,

P
E

Y
Y

N
N

N
M
ul
ti-
co
re

su
pp

or
t

M
ar
tin

(2
01

1)

T
ri
m
m
om

at
ic

v0
.3
9

Il
lu
m
in
a

S
E
,

P
E

Y
Y

N
N

N
M
ul
tit
hr
ea
d

su
pp

or
t

B
ol
ge
r
et
al
.

(2
01

4)
P
ri
nS

eq
•
lit
e
v0

.2
0.
4

•
w
eb

v0
.2
0.
1

D
es
ig
ne
d
fo
r
45

4/
R
oc
he
,b

ut
w
or
ks

w
ith

ot
he
r

da
ta

S
E
,

P
E

Y
Y

N
N

N
N
o

S
ch
m
ie
de
r
an
d

E
dw

ar
ds

(2
01

1)

A
ss
em

bl
y
to
ol
s

A
B
yS

S
v2

.1
.5

N
ot

sp
ec
ifi
ed

S
E
,

P
E
,

M
P

N
Y

N
a

Y
N

M
P
I
an
d

m
ul
tit
hr
ea
d

su
pp

or
t

S
im

ps
on

et
al
.

(2
00

9)
,J
ac
km

an
et
al
.(
20

17
)

C
an
u
v1

.8
P
ac
B
io

R
S
II
or

O
xf
or
d
N
an
op

or
e
M
in
IO

N
L
R
S
M

N
Y
b

Y
Y

N
G
ri
d

en
vi
ro
nm

en
t

su
pp

or
t

K
or
en

et
al
.

(2
01

7)

M
aS
uR

C
A

v3
.3
.1

Il
lu
m
in
a,
P
ac
B
io
/M

in
IO

N
.O

th
er

da
ta
ne
ed

to
be

co
nv

er
te
d
to

C
el
er
a
A
ss
em

bl
er

co
m
pa
tib

le
fr
g
fi
le
s

S
E
,

P
E
,

M
P

Y
Y
c

Y
Y

N
G
ri
d

en
vi
ro
nm

en
t

su
pp

or
t

Z
im

in
et
al
.

(2
01

3)

R
ay

M
et
a
v2

.3
.1

S
in
gl
e
ge
no

m
es
,m

et
ag
en
om

es
,t
ra
ns
cr
ip
to
m
es

d
S
E
,

P
E

N
Y

N
Y

Y
e

M
P
I
su
pp

or
t

B
oi
sv
er
t
et
al
.

(2
01

2)
S
G
A
v0

.1
0.
15

Il
lu
m
in
a

S
E
,

P
E

N
Y
b

Y
Y

N
N
o

S
im

ps
on

an
d

D
ur
bi
n
(2
01

2)
S
O
A
P
de
no

vo
2

v2
.0
4-
r2
41

Il
lu
m
in
a
G
A

sh
or
tr
ea
ds

S
E
,

P
E
,

M
P

N
Y
b

Y
Y

N
M
ul
tit
hr
ea
d

su
pp

or
t

L
uo

et
al
.(
20

12
)

S
P
A
de
s
&

M
et
aS
P
A
de
s

v3
.1
3

D
es
ig
ne
d
fo
r
Il
lu
m
in
a
an
d
Io
nT

or
re
nt
,b

ut
w
or
ks

w
ith

hy
br
id

as
se
m
bl
ie
s
us
in
g
P
ac
B
io
,

O
xf
or
d
N
an
op

or
e,
an
d
S
an
ge
r
re
ad
s

S
E
,

P
E
,

M
P

N
Y
b

Y
f

Y
N

M
ul
tit
hr
ea
d

su
pp

or
t

B
an
ke
vi
ch

et
al
.

(2
01

2)

T
ri
ni
ty

v2
.8
.4

T
ra
ns
cr
ip
ts
fr
om

Il
lu
m
in
a
R
N
A
-S
eq

da
ta

S
E
,

P
E
,

M
P

Y
g

Y
h

Y
Y

N
M
ul
tit
hr
ea
d

su
pp

or
ti

G
ra
bh

er
r
et
al
.

(2
01

1)

(c
on

tin
ue
d)

13 Bayesian Phylogenomic Dating 227



Ta
b
le

13
.1

(c
on

tin
ue
d)

S
of
tw
ar
e

D
at
a

R
ea
ds

A
da
pt
er

re
m
ov

al

Q
ua
lit
y

fi
lte
ri
ng

tr
im

m
in
g

(Q
F
T
)

R
ea
d-

er
ro
r

co
rr
ec
tio

n
A
ss
em

bl
y

A
nn

ot
at
io
n

P
ar
al
le
liz
at
io
n

C
ita
tio

ns

V
el
ve
t
v1

.2
.1
0

N
ot

sp
ec
ifi
ed

S
E
,

P
E
,

M
P

N
Y
b

Y
Y

N
M
ul
tit
hr
ea
d

su
pp

or
t

Z
er
bi
no

an
d

B
ir
ne
y
(2
00

8)

A
nn

ot
at
io
n
to
ol
s

P
ro
kk

a
v1

.1
3

B
ac
te
ri
al
,a
rc
ha
ea
l,
an
d
vi
ra
l
as
se
m
bl
ie
s

–
N

N
N

N
Y

M
ul
tit
hr
ea
d

su
pp

or
t

S
ee
m
an
n
(2
01

4)

M
A
K
E
R

v2
.3
1.
10

A
ny

as
se
m
bl
y

–
N

N
N

N
Y

M
P
I
su
pp

or
t

C
an
ta
re
l
et
al
.

(2
00

8)

SE
si
ng

le
-e
nd

re
ad
s,
P
E
pa
ir
ed
-e
nd

re
ad
s,
M
P
m
at
e-
pa
ir
s
re
ad
s,
L
R
SM

lo
ng

-r
ea
d
si
ng

le
-m

ol
ec
ul
e
se
qu

en
ce
s,
Q
F
T
qu

al
ity

fi
lte
ri
ng

tr
im

m
in
g

a D
oe
s
no

t
do

er
ro
r
co
rr
ec
tio

n,
bu

t
us
es

lin
ke
d-
re
ad

lib
ra
ri
es

to
co
rr
ec
ta
ss
em

bl
y
er
ro
rs

b
A
ft
er

re
ad
-e
rr
or

co
rr
ec
tio

n
c B
ef
or
e
an
d
af
te
r
re
ad
-e
rr
or

co
rr
ec
tio

n
d
R
ay

ca
n
w
or
k
w
ith

tr
an
sc
ri
pt
om

es
,b

ut
it
ha
s
no

t
be
en

ex
te
ns
iv
el
y
te
st
ed

e T
he
re

is
an

op
tio

na
lt
ax
on

om
ic
pr
ofi

lin
g
w
ith

co
lo
ur
ed

de
B
ru
ijn

gr
ap
hs

f T
he
re

is
an

op
tio

na
lc
or
re
ct
io
n
fo
r
m
is
m
at
ch
es

an
d
sh
or
t
in
de
ls

g
Y
es
,i
f
Q
F
T
en
ab
le
d
w
ith

T
ri
m
m
om

at
ic

h
O
pt
io
na
l
pr
e-
Q
F
T
w
ith

T
ri
m
m
om

at
ic
;
ad
di
tio

na
l
Q
F
T
af
te
r
re
ad
-e
rr
or

co
rr
ec
tio

n
i R
eq
ui
re
s
a
sc
ri
pt

w
ith

th
e
lis
t
of

co
m
m
an
ds

to
ex
ec
ut
e

228 S. Álvarez-Carretero and M. dos Reis



et al. 2016). Quality-control software such as
FastQC (Andrews 2010) can be used for this
purpose.

Once reads have been processed, the assembly
step takes place. This involves aligning and
stacking the short sequence reads to construct
large stretches of sequenced genome known as
contigs (e.g., Nagarajan and Pop 2013; Ekblom
and Wolf 2014). There are several assembler
tools available, each using its own specific
algorithms (see Table 13.1). The output of
genome assemblies can depend on the assembler
used, whether a reference genome was available,
and the type of species for which sequence reads
are being assembled. Therefore, it is important to
decide which assembly is to be kept (e.g., Magoc
et al. 2013). The quality of a genome assembly
can be measured with QUAST (Gurevich et al.
2013), a program that not only measures assem-
bly quality but also compares multiple assemblies
generated with different approaches. Measures
such as the cumulative length or the number of
misassemblies are included in the QUAST report.

The next step, genome annotation, is a critical
component of the bioinformatics pipeline (e.g.,
Miller et al. 2010; Schatz et al. 2010; Ekblom
and Wolf 2014). If genes are not properly
annotated, they might be assigned to the wrong
orthologue or paralogue groups, thus compromis-
ing the subsequent analyses (Phillippy et al. 2008;
Florea et al. 2011). There are several tools that use
a reference genome to annotate genome
assemblies (see Table 13.1) as well as databases
that already contain annotated genomes, such as
Ensembl or GenBank. Even though standard
practices have been established to annotate the
genomes (Madupu et al. 2010; Klimke et al.
2011), automatic annotation is not always accu-
rate. Thus, manual curation of the annotated
genomes may be required (Yandell and Ence
2012).

13.2.1.3 Inferring Orthologues
Most molecular dating software cannot deal with
the computational costs associated with using
whole-genome alignments. Thus, it is common
practice to select sets of orthologous genes from
genome assemblies to be used in the dating

analysis. Orthologues are genes related via speci-
ation, while paralogues have evolved via duplica-
tion events (Koonin 2005). In phylogenomic
dating analyses, the interest lies in estimating
species divergence times in the phylogeny of
interest, and thus orthologues must be used
(Siu-Ting et al. 2019).

Different methodologies have been developed
for orthology inference and several orthology
databases have been created (see Table 13.2).
Benchmarking has been proposed to assess the
performance of orthology-inference methods and
to compare databases of orthologues (see Hulsen
et al. 2006; Chen et al. 2007; Altenhoff and
Dessimoz 2009; Boeckmann et al. 2011;
Altenhoff et al. 2016).

13.2.1.4 Generating the Phylogenomic
Alignment

Once the user has a set of orthologous genes for
each species of interest, the sequences must then
be aligned (the second step in Fig. 13.2). A range
of bioinformatics tools can be used to obtain a
multiple sequence alignment (see Table 13.3).
Biological processes such as insertions, deletions,
or nucleotide substitutions can be considered
when aligning the sequences (e.g., Vingron and
von Haeseler 1997; Chowdhury and Garai 2017).
They are modelled and integrated in a scoring
function to evaluate the quality of an alignment
(e.g., likelihood function, hidden Markov models,
mismatch, gap-opening penalty, and
gap-extension penalty). If the wrong scoring
function is used or if it is not correctly optimized,
however, the resulting alignment can contain
errors, thus affecting the subsequent analyses
(for an example of the impact of alignment errors
on testing for positive selection, see Fletcher and
Yang 2010).

Aligners based on progressive alignment
algorithms tend to be very popular because of
their speed. Unfortunately, the guide tree used
might influence the generated alignment and
hence the inferred phylogeny (Lake 1991; Thorne
and Kishino 1992; Redelings and Suchard 2005).
In contrast, dynamic programming can resolve
this issue because it can sum over all possible
pairwise alignments, hence accounting for all
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Table 13.3 Selection of software used to generate multiple sequence alignments for phylogenomic data sets

Software Brief description Citations

Clustal Ω In default mode, uses the input sequence to generate the guide
tree with mBED (Blackshields et al. 2010). Uses a hidden
Markov model (Söding 2005) to generate the alignment.

Larkin et al. (2007), Sievers et al. (2011)

Muscle Uses a guide tree, which subsequently is refined. Edgar (2004)
MAFFT Same approach as in MUSCLE. Katoh and Standley (2013)
ProbCons Same approach as in MUSCLE but computes the expected

accuracy and the probabilistic consistency transformation for
the refinement steps to improve the alignment.

Do et al. (2005)

PRANK Uses a guide tree, but it is not subsequently refined. Uses the
tree to score each alignment column.

Löytynoja and Goldman (2005, 2008),
Löytynoja (2014)

FSA Does not use a guide tree. Uses an alignment accuracy metric
that penalizes the wrong alignments. Can estimate the branch
lengths, indel rates, and substitution rates.

Bradley et al. (2009)

Table 13.2 Selection of software and databases used for orthology inference

Software/
database Brief description Citations

OMA Orthology
Database in 2018

Database and method used to infer orthologues in complete
genomes. The stand-alone OMA pipeline can be used on
custom genomic/transcriptomic data, which can be combined
with precomputed data exported from parts of the OMA
database.

Roth et al. (2008), Dalquen et al.
(2013), Altenhoff et al. (2018)

OrthoFinder
v2.2.7

Comprehensive platform for comparative genomics. Not only
finds orthogroups and orthologues, but also infers rooted gene
trees and gene-duplication events. The latter can also be
mapped onto an inferred rooted species tree.

Emms and Kelly (2015)

Eggnog v4.5.1 Database with orthologous groups predicted with a
hierarchical functional annotation EggNOG pipeline.

Huerta-Cepas et al. (2016)

HieranoiDB
Hieranoid2

Interactive database with hierarchical groups of orthologues
from InParanoid aggregated by Hieranoid2.

Kaduk et al. (2017), Kaduk and
Sonnhammer (2017)

PANTHER v14.1 Classification system of proteins (and their genes) generated
after combining bioinformatics algorithms and manual
curation. Part of the Gene Ontology Phylogenetic Annotation
Project.

Mi et al. (2019)

MetaPhOrs Database with phylogeny-based orthology and paralogy
predictions computed after relying on publicly available
homology-prediction servers. Each prediction comes with a
quality assessment using a consistency score and an evidence
level.

Pryszcz et al. (2011)

InParanoid8 Uses pairwise similarity scores between complete proteomes
to infer orthology groups. Proteomes with sequences similar
to those already in the group are included, i.e., in-paralogues.
The relatedness between in-paralogue members and the seed
orthologue is provided with a confidence value.

Sonnhammer and Östlund
(2015)

Ensembl Interactive platform used for comparative genomics analyses.
Genes and genomes in this database have undergone manual
curation, and are tagged as orthologous based on identity
thresholds, which depend on the most recent common
ancestor of the species pair.

Vilella et al. (2009)

OrthoDB v9.1
OrthoDB pipeline
v2.4.4

Comprehensive hierarchical catalogue of orthologues. The
pipeline software is the OrthoDB stand-alone version that can
be used to find and cluster in-paralogues from the Fasta files
provided by the user.

Zdobnov et al. (2017)
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gene evolutionary histories in the genome
sequence. Nevertheless, it becomes computation-
ally intractable for phylogenomic data in terms of
time and memory requirements (Redelings and
Suchard 2009), in which case using approximate
methods becomes an appealing solution. For
instance, methods based on MCMC and hidden
Markov models have been implemented in the
software BAli-Phy (Suchard and Redelings
2006) to jointly estimate the sequence alignment
and the tree, with promising results. Computa-
tional limitations in this software, however,
restrict the number of taxa that can be included
in the alignment and the length of the molecular
sequences.

Once the phylogenomic sequence alignment is
obtained, it might need to be partitioned (the third
step in Fig. 13.2). There are several partitioning
approaches that can be used, and the best
partitioning scheme for a specific alignment can
be selected using bioinformatics tools such as
PartitionFinder (Lanfear et al. 2012, 2017) or
ClockstaR (Duchêne and Ho 2014). Despite
extensive benchmarking analyses (e.g., Brown
and Lemmon 2007; Duchêne et al. 2011;
Duchêne and Ho 2014; Foster and Ho 2017;
Angelis et al. 2018), no standard practice has yet
been established for deciding on the best
partitioning scheme. Nevertheless, the choice of
partitioning scheme can affect the accuracy of
phylogenomic analysis, so the user should cau-
tiously evaluate different partitioning schemes
prior to Bayesian inference.

13.2.1.5 Inferring the Species Tree
The last step before estimating the species diver-
gence times consists of inferring the species tree
using the phylogenomic data (the fourth step in
Fig. 13.2). As pointed out in Sect. 13.1, however,
studies have shown that different genes can lead
to trees with different topologies for the same
taxa. These observations suggest that each gene
could have its own evolutionary history. As a
result, researchers have developed software
based on the multispecies coalescent to better
estimate species trees that accommodate gene-
tree versus species-tree discrepancies, such as
BPP (Yang and Yoder 2003; Yang and Rannala

2010), *BEAST (Heled and Drummond 2010;
Bouckaert et al. 2019), SNAPP (Bryant et al.
2012), BEST (Liu and Pearl 2007), and ASTRAL
(Mirarab et al. 2014).

Some of the issues that might cause conflict
among gene trees include hidden paralogy,
hybridization, recombination, horizontal gene
transfer, incomplete lineage sorting, and substitu-
tion saturation (e.g., Galtier and Daubin 2008;
Smith et al. 2015). In addition, some of the taxa
included in a phylogeny might not have a com-
plete genome available. This means that some of
the genes included in the phylogenomic align-
ment might not be present in all of the taxa,
which can result in an alignment with large
amounts of missing data. Apart from that, not all
of the genes evolve at the same evolutionary rate
on each lineage (i.e., rate heterogeneity or
heterotachy). Missing data and heterotachy can
lead to long-branch attraction, an artefact that
involves the clustering of long branches even
though the species are not actually closely related
(Felsenstein 1978; Huelsenbeck 1998). If this is
left uncorrected, using the wrong tree topology
will negatively affect the inference of the branch
lengths and the model parameters, such as evolu-
tionary rates and divergence times. Sampling taxa
to include slow-evolving species (Aguinaldo
et al. 1997) and to root deep-level trees
(Brinkmann and Philippe 1999; Brinkmann
et al. 2005) might help to reduce long-branch
attraction.

13.2.2 Bayesian Divergence-Time
Inference

Once a suitable species tree and sequence align-
ment are available, we can infer the species diver-
gence times (Table 13.4). In theory, it is possible
to infer the tree topology and the divergence times
simultaneously (e.g., Drummond et al. 2006). For
very large phylogenomic data sets, however, this
is impractical because the computation is too
expensive. Therefore, it is customary to fix the
topology in the analysis, or at least to provide
constraints on the monophyly of clades
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(Drummond et al. 2006; Yang and Rannala
2006).

The posterior distribution of times (t) and rates
(r) given the phylogenomic alignment (D) is

f t, rjDð Þ ¼ 1
z
f tð Þf rjtð Þf Djt, rð Þ ð13:1Þ

where f(t) is the prior on times, f(r| t) is the prior
on the molecular rates, and f(D| t, r) is the likeli-
hood of the phylogenomic alignment given t and
r. The constant z is set so that the posterior distri-
bution integrates to 1 and so it is a proper proba-
bility distribution. In Bayesian clock dating,
z usually cannot be calculated analytically and
thus MCMC sampling is needed (e.g., Thorne
et al. 1998; Yang and Rannala 2006).

A review of the Bayesian theory of clock dat-
ing is given in Chap. 6 and in previous
publications (Chaps. 6 and 7 in Yang 2014;
Heath and Moore 2014). Here, we focus on how
calculation of the prior and the likelihood affect
the phylogenomic analysis. We discuss the
strategies that can be followed to speed up the
computation of the posterior and thus improve the

computational efficiency of MCMC sampling on
large phylogenomic alignments.

13.2.2.1 Approximating the Likelihood
Approximating the likelihood is perhaps the most
important strategy to speed up clock dating in
phylogenomic alignments. Calculation of the
likelihood in a phylogeny is proportional to the
number of distinct configurations of characters in
an alignment column (site patterns). For
phylogenomic alignments with millions of sites,
likelihood computation can be very expensive,
and thus a typical phylogenomic MCMC might
take several months to complete. Thorne et al.
(1998) suggested using the Taylor expansion of
the log likelihood as an approximation to speed
up the computation. This approximation allows
Bayesian estimation of divergence times on large
phylogenomic alignments that would otherwise
be intractable.

Let b ¼ {bi ¼ tiri} be the vector of branch
lengths (in substitutions per site) in the tree,
where ti is the time duration of the ith branch,
and ri is the molecular rate on the branch. Let
‘(b) ¼ log f(D| t, r) be the log likelihood written

Table 13.4 Selection of software for Bayesian inference of species divergence times. Based on Table 1 in dos Reis et al.
(2016)

Software Brief description Citations

BEAST Comprehensive suite of models. Particularly aimed at analyses of
infectious diseases using molecular, phenotypic, and
epidemiological data.

Suchard et al. (2018)

BEAST 2 Comprehensive suite of models. Especially strong for the analysis of
serially sampled sequence data. Includes models of morphological
traits.

Bouckaert et al. (2019)

MCMCtree Comprehensive suite of models of rate variation. Fast approximate-
likelihood method that allows the estimation of time-trees using
genome alignments. Brownian motion model to analyse quantitative
morphological data.

Yang (2007)

MrBayes Large suite of models for morphological and molecular evolutionary
analysis. Comprehensive suite of models of rate variation.

Ronquist et al. (2012b)

MultiDivtime First Bayesian clock-dating program. Introduced the geometric
Brownian model (autocorrelated-rates model) and the approximate-
likelihood approach.

Thorne et al. (1998), Thorne
and Kishino (2002)

RevBayes Interactive suite of models. Uses probabilistic graphical models and its
own language Rev. Requires the user to fully specify the model for the
analysis. Models to analyse quantitative data implemented but not
exhaustively tested.

Höhna et al. (2016)

PhyloBayes Broad suite of models. Uses data augmentation to speed up likelihood
calculation.

Lartillot et al. (2009)
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as a function of the branch lengths. The Taylor
expansion of ‘(b) around the maximum-
likelihood estimates of the branch lengths, bb, is

ℓ bð Þ � ℓ bb
� �

þ gTΔbþ 1
2
ΔbTHΔb ð13:2Þ

where Δb ¼ b� bb, and g ¼ {gi} and H ¼ {Hij}
are the gradient (the vector of first derivatives)
and the Hessian (the matrix of second derivatives)
of the likelihood function evaluated at the
maximum-likelihood estimates. Thus, to use the
approximation, a two-step procedure is followed.
First, bb , g, and H are estimated by maximum
likelihood for each partition in the phylogenomic
alignment. Note that the substitution model is
chosen at this step. Then, once bb , g, and H are
obtained, they are used to approximate the likeli-
hood in Eq. (13.2) during MCMC sampling.

We note the following about the likelihood
approximation:

1. When the maximum-likelihood estimates of
the branch lengths are inside the parameter
space (i.e., when they are not 0 or 1),
the gradient is zero and the second term
in Eq. (13.2) is null. In this case,
the approximated likelihood is simply

L ¼ exp ℓð Þ � L bb
� �

� exp 1
2Δb

THΔb
� �

,

which is proportional to the multivariate nor-

mal density with mean bb and covariance
matrix �H�1. When some branch lengths are
zero, the second term dominates the approxi-
mation for those branches. When some branch
lengths are infinite, the approximation does
not work well. We suggest that taxa and/or
partitions with infinite branches be removed
from the analysis.

2. The approximation can be improved by
using transformations on the branch lengths,
u ¼ h(b) (dos Reis and Yang 2011). The
approximate log likelihood on the transformed
parameter space is

ℓ uð Þ � ℓ buð Þ þ ΔuTgu þ 1
2
ΔuTHuΔu,

where gu and Hu are the gradient and Hessian
of the transformed likelihood. The square-root
and arcsine-based transforms appear to pro-
vide very good approximations (Fig. 13.3).

3. The approximation improves as the number of
sites in the alignment is increased. Analyses of
empirical data have shown that as few as
10,000 sites are enough to provide an excellent
approximation under a relaxed molecular
clock on a mitochondrial mammal phylogeny
(Fig. 13.4). Nevertheless, the approximation
does not work well under the strict clock
(Fig. 13.4). This is because, when the clock
is violated (as usually happens in real data),
proposed branch lengths during MCMC sam-
pling will tend to be very far away from the
maximum-likelihood estimates, i.e., in the left
and right tails of the likelihood curve, where
the approximation is poor (Fig. 13.3). There-
fore, we do not recommend using approximate
likelihood calculation under the strict clock
unless it is used in the analysis of closely
related organisms, when the clock is not
violated.

4. Because we must estimate bb , g, and H on a
fixed tree before we carry out MCMC sam-
pling of the posterior, it is not possible to use
the approximate method to coestimate the tree
topology and divergence times. Nonetheless, if
there are uncertain nodes in the tree, it is pos-
sible instead to run a separate analysis on each

topology. In this case, one set of bb , g, and
H must be estimated for each tree topology
separately.

Bayesian inference with approximate likeli-
hood calculation is orders of magnitude quicker
than with exact calculation (Battistuzzi et al.
2011; Tamura et al. 2012; Mello et al. 2017).
For instance, Battistuzzi et al. (2011) found
speed-ups of up to 1000� when comparing the
approximation with the exact method, without
loss of accuracy. The approximate method is
implemented in the programs MCMCtree (dos
Reis and Yang 2011) and MultiDivTime (Thorne
et al. 1998). The implementation in MCMCtree
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has successfully been used to estimate divergence
times on phylogenomic alignments of various
data sets, including mammals (Meredith et al.
2011; dos Reis et al. 2012), birds (Jarvis et al.
2014), metazoans (dos Reis et al. 2015), and
plants (Barba-Montoya et al. 2018; Morris et al.
2018); and to study the origin of life on Earth
(Betts et al. 2018). A tutorial for approximate
likelihood calculation with MCMCtree is given
by dos Reis and Yang (2019).

13.2.2.2 The Rate Prior
The realization of the violation of the molecular
clock motivated the search for methods that
could accommodate rate heterogeneity across
lineages (Welch and Bromham 2005), resulting
in the development of relaxed-clock models

(Thorne et al. 1998; Drummond et al. 2006).
These approaches allow the evolutionary rate to
vary across branches of the phylogeny, making it
possible to determine which lineages evolve
quickly or slowly. The adequacy of clock models
has been assessed in several studies, in which
different probability distributions are used to
model rate evolution among lineages (e.g.,
Heath et al. 2012; Ho 2014; Zhu et al. 2015;
dos Reis et al. 2016, 2018). The log-normal inde-
pendent-rates model (Drummond et al. 2006;
Rannala and Yang 2007) and the log-normal
autocorrelated-rates model (Thorne et al. 1998;
Rannala and Yang 2007) are the most commonly
used. Using different rate models on the same
data set can lead to different posterior estimates
of node times (e.g., Aris-Brosou and Yang 2002;
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four transforms: NT, SQRT, LOG, and ARCSIN. The
ARCSIN transform appears to provide the best approxi-
mation overall. Redrawn from Fig. 1 in dos Reis and Yang
(2011)

234 S. Álvarez-Carretero and M. dos Reis



Beaulieu et al. 2015; dos Reis et al. 2015, 2018;
Barba-Montoya et al. 2018). Therefore, selection
of the rate model is a very important step before
proceeding with divergence-time estimation.

Besides selecting the best rate model (which
accounts for rate variation among lineages), it
might also be important to select an appropriate
model of rate heterogeneity among sites in genes
(Gillespie 1991; Welch and Bromham 2005). For
instance, rate heterogeneity among sites or align-
ment partitions can be accommodated by
discretizing the data set into different categories.
Current practice is to use a probability distribu-
tion such as the gamma (Yang 1994) or the
Dirichlet (dos Reis et al. 2014) so that sites or
loci assigned to the same category share the same
evolutionary rate. Usually, a gamma distribution
divides sites within a locus into several categories
according to different evolutionary rates under a
nucleotide substitution model. A similar approach
can be used to model the prior on the mean rate
among loci, first using a gamma distribution and
then the Dirichlet distribution to partition rates
among loci (dos Reis et al. 2014). Natural

selection does not have the same impact on dif-
ferent codon positions in protein-coding genes,
with first and second codon positions usually
evolving much more slowly and having a smaller
transition/transversion bias than third codon
positions (Bofkin and Goldman 2007). Such dif-
ferent evolutionary patterns can be easily
accommodated by separating the first and second
codon positions from the third codon positions
into two different data partitions.

Deciding on the best partitioning scheme is
not easy for the user, but there is software
that can automatically perform this task, such
as ClockstaR (Duchêne and Ho 2014) and
PartitionFinder (Lanfear et al. 2012, 2017). The
algorithms of these two programs differ in their
approach to assigning data subsets to partitions:
ClockstaR uses a tree-distance metric to generate
clusters using the partitioning-along-medoids
method (Kaufman and Rousseeuw 1990), while
PartitionFinder relies on a hierarchical clustering
approach based on information-theoretic
measures (Bayesian information criterion, Akaike
information criterion, or Akaike information
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criterion with small-sample correction). Alterna-
tively, the use of principal-components analysis
to find better strategies to partition the data has
also been explored (dos Reis et al. 2012). Several
benchmarking analyses have been carried out
with both simulated and real data sets with the
aim of defining the best partitioning scheme to
accommodate rate heterogeneity (Brown and
Lemmon 2007; Duchêne et al. 2011; Duchêne
and Ho 2014; Foster and Ho 2017; Angelis et al.
2018). Simulation results show no consensus on a
best partitioning scheme, hence the importance of
carefully choosing a suitable partitioning scheme
before proceeding with Bayesian inference.

When the molecular clock is violated and the
posterior times and rates are inferred, the concat-
enation approach tends to result in less precise
estimates and wider credibility intervals (Angelis
et al. 2018). Increasing the data size in the same
partitioning block (concatenating sites) does not
result in more informative data nor in more cer-
tain posterior estimates (dos Reis and Yang 2013;
dos Reis et al. 2014; Zhu et al. 2015). Note that
rate heterogeneity along branches is confounded
with the divergence times in the molecular branch
lengths. Thus, information on patterns of rate
heterogeneity among loci is lost if the different
loci are concatenated. Nevertheless, if the align-
ment is correctly partitioned, the process of rate
evolution can then be thought of as being
replicated in each partition. Consequently, when
the molecular clock is relaxed, partitioning the
molecular data can add information that might
lead to posterior estimates with smaller variances.
Figure 13.5 shows the resulting posterior diver-
gence times estimated with different partitioning
schemes and the two relaxed-clock models
implemented in MCMCtree (i.e., the
independent-rates and the autocorrelated-rates
models) for a plant data set (Angelis et al.
2018). These results are just one example of the
dramatic effect that changing the partitioning
scheme can have on the estimated posterior times.

Dating software such as MCMCtree (Yang
2007), BEAST (Suchard et al. 2018), BEAST
2 (Bouckaert et al. 2019), MrBayes (Ronquist
et al. 2012b), and RevBayes (Höhna et al. 2016)
have implemented different relaxed-clock

models, the use of partitioned data sets, and dis-
crete probability distributions to model the rate
prior. For programs that do not currently imple-
ment approximate likelihood, phylogenomic data
can be divided into smaller subsets of genes
and/or species for the dating analysis (e.g.,
Misof et al. 2014; Upham et al. 2019). The pro-
cess can be repeated for further subsamples of
genes and/or species and the results collated to
provide consolidated estimates. This procedure,
however, does not make efficient use of all of the
data and does not benefit from asymptotic reduc-
tion of estimated variances as when using the
complete data sets.

13.2.2.3 The Time Prior and Fossil
Calibrations

The posterior divergence times estimated in a
dating analysis will not be calibrated to geological
time (i.e., absolute ages) unless fossil or geologi-
cal information is incorporated. Common practice
is to use probability distributions to model node
ages based on fossil evidence (see Chap. 8).
These distributions can account for fossil uncer-
tainty, such as uncertainty related to the age of the
fossil or its assignment to a particular lineage. In
many cases, calibration distributions are set to
comply with minimum and maximum node ages
as informed by the fossil evidence (Benton and
Donoghue 2007). Deciding which probability
distribution and/or which maximum and mini-
mum bounds to use, however, involves some
subjectivity. This means that different studies
analysing the same data set might use different
calibration distributions, thus resulting in differ-
ent posterior time estimates. There is ongoing
debate on how calibrations should be constructed
(e.g., Tavaré et al. 2002; Yang and Rannala 2006;
Benton and Donoghue 2007; Heled and
Drummond 2012; Heath et al. 2012; Parham
et al. 2012; Nowak et al. 2013).

In addition to these difficulties, some of the
models used by different dating software might
not be implemented in the same way (e.g., rate
models), which makes it difficult to compare the
results obtained by different tools. Therefore, it is
very important for the user to first run their pre-
ferred dating software without data to verify the
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rate and time prior distributions applied in the
dating analysis. For instance, there are some dat-
ing programs that do not require the user to input
a prior for the root age. This might be trouble-
some if users decide to accept the default
parameters, which is quite often the case among

users with less technical background. Using the
default time prior for the root age, which might
not be an appropriate prior, might have a big
impact on the posterior time estimates.

Although using time constraints on small
data sets to estimate divergence times is

66 0145201252299359419443485

Time (Ma)

Helianthus
Cornus
Oxalis
Eucalyptus
Platanus
Yucca
Elaeis
Chamaedorea
Acorus

Nymphaea
Amborella
Ginkgo
Adiantum
Psilotum
Huperzia

a

b

Pteridophytes

Angiosperms

Lycophytes

Gymnosperms

Pteridophytes

Angiosperms

Lycophytes

Gymnosperms

Helianthus
Cornus
Oxalis
Eucalyptus
Platanus
Yucca
Elaeis
Chamaedorea
Acorus

Nymphaea
Amborella
Ginkgo
Adiantum
Psilotum
Huperzia

O
rd

ov
ic

ia
n

Si
lu

ria
n

D
ev

on
ia

n

C
ar

bo
n-

ife
ro

us

Pe
rm

ia
n

Tr
ia

ss
ic

Ju
ra

ss
ic

C
re

ta
ce

ou
s

C
en

oz
oi

c

Fig. 13.5 Effect of partitioning schemes on divergence-
time estimates in a plant phylogeny under the (a)
independent-rates model and (b) autocorrelated-rates
model. Coloured bars show the estimates from five differ-
ent partitioning schemes. From top to bottom, the schemes

applied are: (1) concatenation and ClockstaR, (2) codon
position, (3) PartitionFinder, (4) gene, and (5) gene codon
positions. The choice of partitioning scheme has a sub-
stantial effect on the divergence-time estimates. Modified
from Fig. 4 in Angelis et al. (2018)
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straightforward and computationally tractable, it
becomes very inefficient with phylogenomic data
sets. This issue was tackled by dos Reis et al.
(2012, 2018) through their sequential Bayesian
procedure. In this approach, the user first
estimates the posterior times of a small sample
from the phylogenomic data set (i.e., few species
and large alignment) and then uses the posterior
times from this analysis to build the priors in a
subsequent analysis (i.e., with many species but
with a short alignment). If a phylogenomic data
set, D, can be split into two independent (and thus
non-overlapping) subsets, D ¼ (D1, D2), then the
posterior distribution of θ (e.g., divergence times,
molecular rates, and model parameters) can be
written as

f θjDð Þ / f θð Þf D1jθð Þf D2jθð Þ
/ f θjD1ð Þf D2jθð Þ ð13:3Þ

In other words, the posterior when using the
first data partition, f(θ| D1) / f(θ)f(D1| θ), can be
used as the prior for the subsequent analysis of the
second subset. This strategy of partitioning data
into independent subsets is well known in Bayes-
ian data analysis (Gelman et al. 2013). We note
that this approach is different from the use of
secondary calibrations (see Graur and Martin
2004): the sequential Bayesian analysis is a
method that uses two non-overlapping and inde-
pendent partitions, D1 and D2 (dos Reis et al.
2018). When using MCMCtree, this methodol-
ogy reduces the computational burden in
phylogenomic dating analyses because it avoids
the computational cost of sampling rates for
lineages with missing data in a partition. In prac-
tice, we would first run a dating analysis of the
first partition and collect an MCMC sample of
times and rates. Then, a statistical distribution
(such as the skew-t, Wilkinson et al. 2011) can
be used to approximate the posterior density for
each node age. The fitted distribution is then used
to construct the calibrations for the corresponding
nodes when analysing the second subset. We note
that, when using this method with fitted skew-
t distributions, the posterior correlation among
node ages is ignored, in which case this approach
gives an approximation to the true posterior.

Even though large amounts of data can be used
for phylogenomic dating analyses, there is uncer-
tainty regarding the molecular branch lengths: the
times and rates are confounded and cannot be
estimated separately. Consequently, as the
amount of molecular data increases and tends
to infinity, the uncertainty in posterior time
estimates does not converge to zero (Yang and
Rannala 2006; Rannala and Yang 2007). Instead,
the uncertainty converges to a limiting distribu-
tion that depends on the fossil uncertainties. This
is known as the infinite-sites theory (Yang and
Rannala 2006; Rannala and Yang 2007). An
example is given in Fig. 13.6, where the 95%
credibility interval (CI) widths for each estimated
node age, i.e., a measure of the uncertainty in
the estimates, are plotted against different data
sizes. The uncertainty in the estimates does not
converge to zero despite the data size increasing
substantially. Therefore, there is a limit to the
amount of data that is informative in
phylogenomic analysis. How informative a
molecular alignment is on the divergence times
can be assessed by using the so-called infinite-
sites plot, in which the posterior CI widths are
plotted against the posterior mean node times
(Fig. 13.7). If the data points fall on a straight
line, the limit of uncertainty has been reached;
including further data in the analysis will not
improve the time estimates.

13.2.2.4 Running the MCMC
and Summarizing the Posterior

Once the data are prepared and the appropriate
model and prior distributions have been chosen,
Bayesian inference of evolutionary rate and diver-
gence times can proceed. To obtain our posterior
estimates, we need to run the MCMC so that we
can obtain a sample from the posterior distribu-
tion. This simulation technique is necessary
because the normalizing constant of the Bayes
equation (z in Eq. 13.1) cannot be obtained
analytically.

When analysing phylogenomic data, the
MCMC chain might take too long to run before
convergence is reached. Therefore, poor choices
of proposal mechanisms and/or step lengths can
lead to poor mixing and problems with
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convergence (Yang and Rodríguez 2013). The
user can diagnose these issues by plotting the
sampled parameters of interest against the
MCMC sampling iteration, known as an MCMC
trace plot. Software such as Tracer (Rambaut
et al. 2018) can be used, although R (R Core
Team 2019) can also be used for this purpose.
Figure 13.8 shows an example of a healthy
(or efficient) MCMC chain in comparison with a
chain that is inefficient and has not converged.

If convergence or mixing issues are observed
in the MCMC traces, there are a number of
strategies that can be used to improve the effi-
ciency of the MCMC. For instance, we can
increase the number of MCMC iterations if the
chain has not achieved convergence and needs to
run longer. Alternatively, we might increase the
sampling frequency but keep the same number of
samples to be collected during the MCMC
(Nascimento et al. 2017). This has the effect of
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remains in a dating analysis. For instance, in (c) and for
100 nucleotides, the slope of the infinite-sites plot is 0.8,
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the posterior CI width for every 1 million years of diver-
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lengthening the MCMC chain without producing
excessively large files. Another option is for the
user to run several chains using overdispersed
starting points, and later combine the samples to
generate a unified posterior summary. As a gen-
eral rule of thumb, the user should aim to collect
an effective sample size between 1000 and
10,000; although effective sample sizes as low
as 200 are commonly found in phylogenetic
analyses. For more details on MCMC efficiency
and effective sample sizes, see Nascimento
et al. (2017).

13.3 Further Considerations

The initial idea of phylogenomic data as the ulti-
mate solution to the issues faced in phylogenetic
analyses, such as polytomies or gene-tree conflict,
was overestimated. Not only have these problems
persisted, but new and more complex computa-
tional challenges have arisen with the increased
availability of whole-genome data. There is a
constant search for new computational methods

to improve the modelling of evolutionary pro-
cesses. For instance, some software packages
have implemented the multispecies coalescent
model, which integrates incomplete lineage
sorting and can potentially allow hybridization.
Unfortunately, other evolutionary processes such
as recombination are more complex to model and
difficult to integrate into the multispecies coales-
cent model.

In addition to computational limitations, it is
worth paying attention to the selection of the best
model for the data. The user has the responsibility
of understanding their data, and thus should be
familiar with the steps involved in a complete
Bayesian clock dating analysis starting from the
way the data are preprocessed and including the
Bayesian inference. These steps include deciding
which fossils are best suited to calibrate the phy-
logeny, deciding on the most appropriate
partitioning scheme, and choosing appropriate
parameters for the Bayesian model (e.g., molecu-
lar clock, prior on the root age, prior on the
evolutionary rate, nucleotide substitution model,
fossilized birth–death process, and the tree
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the divergence-time estimates. Redrawn from Fig. 6 in dos
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topology). These ultimately depend on the data
set being analysed. Unfortunately, users with a
lack of statistical or computational background
often select default software settings as an easy-
to-follow protocol. This is poor practice and

should not be followed. We would also like to
stress again how important it is for the user to run
their preferred MCMC software without data to
verify the prior that will be used in the Bayesian
dating analysis. In fact, many common MCMC
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clock dating problems, such as misspecified fossil
calibrations, can be easily diagnosed when
analysing the prior.

While the ages of fossils are carefully used to
select the most accurate probability distributions
to calibrate the phylogeny, fossils are also infor-
mative about another important feature: their
morphology. These characters can also be used
in dating analyses because it is possible to infer
morphological distances between extinct and
extant species in a phylogeny (see Chap. 7). Dis-
crete morphological characters have been widely
used in models that can treat fossils as dated tips,
combined with molecular data to infer species
divergence times (Nylander et al. 2004; Pyron
2011; Ronquist et al. 2012b). The most com-
monly used model of discrete character evolution
is the Mk model (Lewis 2001). Nevertheless,
there are some disadvantages: the Mk model
assumes that rates of change are equal among
character states and, even though this assumption
can be relaxed (e.g., symmetrical and all-rates-
different models; Paradis et al. 2004), character
correlation is not accounted for (Felsenstein
2005) and a correction for acquisition bias is
still needed (Lewis 2001; Leaché et al. 2015).

Continuous morphological characters can help
to resolve the issues with discrete characters, and
thus are a promising data source for Bayesian
dating analyses. Recent studies have shown how
morphometric data can be used as quantitative
characters under the Brownian diffusion model
(Felsenstein 1973) to estimate phylogenies
(Parins-Fukuchi 2018a, b) and infer the evolu-
tionary rate and species divergence times
(Álvarez-Carretero et al. 2019). The latter
approach has been implemented in the dating
software MCMCtree to account for character cor-
relation and variation in character measurements
within a population. Using these new dating
approaches, with phylogenomic data sets com-
bined with thousands of aligned morphometric
landmarks, offers very interesting prospects and
may lead to a new area of research:
morphogenomic dating.

In summary, improvement in phylogenomic
dating seems to be tied to parallel progress in
computational and technological equipment. As

soon as more efficient algorithms and more real-
istic models are included in Bayesian dating
analyses, the estimates of species divergence
times should improve.
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