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Abstract Reduced sulphur compounds such as sulphide, polysulphides,
thiosulphate, and elemental sulphur are oxidized by a large and diverse group of
prokaryotes. In many cases, intracellular globules of polymeric, water-insoluble
sulphur are accumulated either as a transient product en route to sulphate or as the
final product. Sulphur globule formation is especially widespread among sulphur-
oxidizing Proteobacteria and occurs in purple sulphur bacteria of the family
Chromatiaceae, in Beggiatoa species as well as in other “morphologically conspic-
uous” sulphur bacteria (e.g. Thioploca, Achromatium, Thiovulum). Sulphur globules
are typically enclosed by a surface layer consisting of highly repetitive glycine-rich
structural proteins (sulphur globule proteins, Sgps) and reside in the bacterial
periplasm. Here, an overview of recent findings on the speciation of stored sulphur,
the occurrence of Sgps and the enzymes involved in the formation and breakdown of
bacterial sulphur globules is given.
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1 Introduction

Sulphur is the 16th element on the periodic table and the tenth most abundant
element in the universe (Steudel and Chivers 2019). Sulphur serves essential func-
tions in all living cells. In proteins it occurs not only in the form of cysteine and
methionine, but also in iron-sulphur clusters, in several sulphur-containing cofactors
like thiamine, biotin, coenzyme A and lipoic acid and is furthermore indispensable in
tRNAs through a variety of modifications (Shigi 2014, 2018). Sulphur is a very
versatile chemical element and undergoes permanent cycling in terrestrial as well as
in marine environments. Dissimilatory sulphate reduction is the primary driver of the
biogeochemical sulphur cycling. In this anaerobic respiratory process, sulphate is
used as an electron acceptor instead of oxygen, nitrate or manganese [Mn(IV)]
(Henkel et al 2019; Rabus et al 2015). In turn, hydrogen sulphide, polysulphides,
thiosulphate, elemental sulphur and polythionates serve as electron donors for a huge
array of chemo- and photolithotrophic bacteria and archaea such as Acidithiobacillus
or Acidianus species (Dahl et al. 2008; Mangold et al. 2011; Kletzin et al. 2004;
Frigaard and Dahl 2009; Dahl 2017). A large portion of these organisms forms
sulphur globules both extracellularly and intracellularly (Dahl and Prange 2006;
Dahl 2017; Maki 2013). Whether the sulphur accumulates as a transient or the final
product varies depending on the species, the culture conditions and the reduced
sulphur substrate.

Here, I attempt to give an update about the different sulphur-forming prokaryotes,
the structure and chemical nature of bacterial sulphur inclusions and the metabolic
pathways related to sulphur globule formation and degradation. An exclusive focus
will be laid on sulphur globules deposited within the confines of the cell wall,
i.e. sulphur present as a bacterial inclusion senso strictu. For further detailed
information, the reader is referred to a number of reviews on oxidative sulphur
metabolism (Frigaard and Dahl 2009; Dahl 2017; Wang et al. 2019; Friedrich et al.
2005; Dahl et al. 2008; Dahl and Prange 2006).

2 History

Internal sulphur globules are easily recognized even via light microscopy as they are
highly light refractive (Fig. 1) and can reach diameters of several micrometres.
Accordingly, the first mentioning of these conspicuous structures dates back to
1786, when Müller described intracellular spherical inclusions of unknown compo-
sition in ‘colourless’, egg-shaped algae (Müller 1786), later identified as Thiovulum
majus (Rivière and Schmidt 2006). Over the following decades, several additional
microorganisms were mentioned to contain similar inclusions (Ehrenberg 1838;
Trevisan 1842; Perty 1852) and differentiated due to the presence of colour (the
later Thiospirillum, Chromatium, Lamprocystis) and lack of colour (Beggiatoa,
Thiothrix and Thiovulum). About a century after their discovery the cellular
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inclusions were proven to consist of elemental sulphur in Beggiatoa (C. Cramer in
(Müller 1870); in Allochromatium vinosum (Cohn 1875); and in Thiovulum muelleri
(Warming 1875)). A first systematic analysis of uncoloured and coloured
‘sulphobacteria’ and their sulphur globules was provided by Winogradsky
(Winogradsky 1887), who also demonstrated the oxidation of hydrogen sulphide
to stored sulphur under microaerophilic conditions in the chemotrophic Beggiatoa
(Winogradsky 1889). Pioneering studies on the oxidation of sulphur in bacterial
photosynthesis were done by van Niel whose classic studies about phototrophic
sulphur bacteria and accumulation of elemental sulphur can be considered as
milestones and provided the basis for further studies about sulphur compounds in
photosynthesis (van Niel 1936; van Niel 1931). Those interested in the early
research on sulphur bacteria are referred to discussions by (Waksman 1922; Waks-
man and Joffe 1922; Shively et al. 2006; Dahl and Prange 2006; Trüper 2008).

3 Elemental Sulphur

Naturally, sulphur occurs in a huge variety of environments (Cosmidis et al. 2019;
Nims et al. 2019) such as volcanic areas including sulphidic springs (Macur et al.
2013; Kamyshny et al. 2014; Lau et al. 2017), deep-sea hydrothermal vents (Taylor
et al. 1999), deep-sea hydrocarbon seeps (Eichinger et al. 2014) or marine sediments

Fig. 1 Allochromatium vinosum DSM 180T cells with sulphur globules visualized by light
microscopy: (a) phase contrast (b) DNA stain with DAPI. In panel (c), staining with Nile red
highlights sulphur globules. (d), DAPI and Nile red stain merged. Microscopy was carried out at
room temperature using a Zeiss Axio Observer Z1 microscope (Zeiss, Jena, Germany) equipped
with HXP 120 V light source and Axio Cam MR3 camera. Standard filter sets were used for DAPI
(335–383 nm excitation and 420–470 nm emission) and Nile red (510–560 nm excitation and
590 nm long pass emission). Image acquisition and analysis were performed with Zen 2 software
(Zeiss). Nile red is a useful probe of hydrophobic sites on proteins (Sackett and Wolff 1987) and
probably interacts with the hydrophobic Sgps. The red halo in the Nile red image requires further
investigation and currently remains unexplained. Photos courtesy of Fabian Grein
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and salt marshes (Kamyshny and Ferdelman 2010; Zopfi et al. 2004; Jørgensen and
Nelson 2004; Taylor and Wirsen 1997).

Elemental sulphur can be formed through abiogenic processes when sulphide is
oxidized by molecular oxygen, possibly catalyzed by oxidized metals (Luther et al.
2011). Its presence in the environment is often associated with microbial oxidation
of reduced sulphur compounds (Kleinjan et al. 2003).

Sulphur forms more than 30 solid allotropes, more than any other element. It
exists in many forms, from cyclic octamers (S8 rings) that crystallize in different
structures to sulphur chains with varying numbers of S-S bonds, and polysulphides
(Sn2�) (Kamyshny and Ferdelman 2010; Meyer 1976; Trofimov et al. 2009). Only a
few sulphur allotropes occur in biological systems. The thermodynamically most
stable form at standard conditions is homocyclic, orthorhombic crystalline α-sulphur
(α-S8) (cyclo-octasulphur) (Roy and Trudinger 1970; Steudel 1996a, b). S6, S7 and
S12 rings have also been detected in samples of biological origin, while bigger rings
up to S20 were made accessible by chemical synthesis (Steudel 1987, 2000).
Commercially available sulphur consists mainly of S8 rings, traces of S7 rings that
are responsible for the bright yellow colour (Steudel and Holz 1988) and polymeric
sulphur. Polymeric sulphur consists of very long helically wound chains of almost
all sizes (Steudel 2000). Regardless of the molecular size, all sulphur allotropes are
hydrophobic, are not wetted by water and have very low solubilities in water
(Steudel and Eckert 2003).

4 Organisms Forming Intracellular Sulphur Globules

Sulphur can accumulate in the form of water-insoluble globules as a transient or the
final product during the oxidation of reduced sulphur compounds (sulphide,
polysulphides, thiosulphate, polythionates and elemental sulphur). Accordingly,
sulphur-forming bacteria share environments characterized by elevated levels of
hydrogen sulphide mainly produced by bacterial sulphate reduction in anoxic
sediments rich in organic nutrients or originating from hydrothermal vents or cold
seeps.

Concerning their physiology, two large groups of sulphur-storing bacteria can be
differentiated: The first are phototrophic prokaryotes that use sulphur compounds as
electron donors for CO2 fixation in the light (Dahl 2017). Among these, purple
sulphur bacteria of the family Chromatiaceae form intracellular sulphur deposits. On
the other hand, chemotrophic (the classical “colourless”) sulphur-oxidizing pro-
karyotes use the energy derived from the oxidation of sulphur compounds with
either oxygen, nitrate or Mn(IV) oxide as electron acceptors to fix carbon dioxide
(Henkel et al. 2019; Dahl et al. 2008; Friedrich 1998; Kletzin et al. 2004; Wang et al.
2019). Sulphur compounds are also an important energy source for symbiotic
associations of chemoautotrophic sulphur bacteria with marine organisms from
unicellular protists (Ott et al. 2004) to metazoans, such as meduzoans (Abouna
et al. 2015), bivalves (Frenkiel et al. 1996) and nematodes (Himmel et al. 2009).

22 C. Dahl



Although first discovered at hydrothermal vents, symbiosis with sulphur oxidizers is
not limited to these highly specialized environments but has also been found in
shallow subtidal sands, macrophyte debris, deep sea cold seeps, mangrove swamps,
sea grass beds, anoxic marine basins, sewage outfalls and even rotting whale
carcasses (Distel 1998; Kleiner et al. 2012; Petersen et al. 2016; Seah et al. 2019;
Cavanaugh et al. 1981; Felbeck 1981; Nelson and Fisher 1995).

Concerning their systematic affiliation, the vast majority of organisms with
reported capability for the formation of intracellular sulphur globules belong to the
Proteobacteria (Table 1). Notable exceptions are the Gram-positives
Thermoanaerobacter sulfurigignens and Thermoanaerobacterium
thermosulfurigienes (Lee et al. 2007), which fall into the class Clostridia within
the Firmicutes phylum. Sulphur globules within the confines of the cell have also
been detected in Thermus scotoductus (Skirnisdottir et al. 2001) belonging to the
class Deinococci within the phylum Thermus-Deinococcus.

Most reports about intracellular sulphur deposition are available for members of
the α-, β-, γ- and ε-Proteobacteria (Table 1). The trait is widespread though not
ubiquitous in alphaproteobacterial, microaerophilic, autotrophic magnetotactic bac-
teria which form the globules upon growth on sulphide and/or thiosulphate
(Bazylinski et al. 2004, 2013; Bazylinski and Williams 2006; Keim et al. 2005;
Williams et al. 2006; Lefevre et al. 2012; Spring and Bazylinski 2000). Another
example among the Alphaproteobacteria is Azospirillum thiophilum for which
intracellular sulphur globule formation has been described upon growth in the
presence of sulphide (Lavrinenko et al. 2010). Within the β-Proteobacteria, we
find the genus Macromonas (La Riviere and Schmidt 1999). The large cells of this
genus are characterized by voluminous inclusions of calcium oxalate. In addition,
sulphur globules may be present. Macromonas bipunctata can oxidize sulphide to
sulphur by means of hydrogen peroxide; however, this process does not allow
energy conservation (Willems 2014). Furthermore, the Betaproteobacterium
Thermothrix azorensis, an aerobic, thermophilic, obligately chemolithoautotrophic
sulphur oxidizer, appears to form inclusions of sulphur under certain growth condi-
tions (incomplete thiosulphate oxidation, pH above 7.0) (Odintsova et al. 1996).
Thiovulum is a spectacular genus belonging to the ε-branch of the Proteobacteria that
has primarily been defined observationally by its large egg-shaped cells that can
reach a length of 5–25μm. In the cells, sulphur globules are often concentrated at one
cell pole (Marshall et al. 2012; La Riviere and Schmidt 1999). Thiovulum has so far
evaded isolation in pure culture but appears to be a chemolithoautotrophic
microaerophile. A single-cell genome is available (Marshall et al. 2012).

Among the Gammaproteobacteria, formation of intracellular sulphur globules is
especially widespread (Table 1). Many of these bacteria belong to families within the
order Chromatiales. Sulphur deposition is a characteristic trait of many purple
sulphur bacteria of the family Chromatiaceae (Dahl 2017), while Thiorhodospira
sibirica is the only phototrophic member of the family Ectothiorhodospiraceae that
is capable of intracellular sulphur deposition (Bryantseva et al. 1999). In fact, this
organism also forms extracellular sulphur deposits, the name-giving feature of the
family. The Ectothiorhodospiraceae harbour additional species that store sulphur
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internally; these belong to the chemoautotrophic genus Thioalkalivibrio (Sorokin
et al. 2003; Berben et al. 2015; Mu et al. 2016; Ahn et al. 2017). Recently, a member
of the Thioalkalispiraceae, Endothiovibriovibrio diazotrophicus, was also described
as containing intracellular sulphur globules (Bazylinski et al. 2017). The
Thiotrichales are the second gammaproteobacterial order containing a variety of
sulphur-storing chemotrophic sulphur oxidizers. Among these, the family
Thiotrichaceae features some of the most conspicuous bacteria in nature. Species
of the genera Thiomargerita and Achromatium as well as the filamentous sulphur-
oxidizing bacteria of the genera Beggiatoa, Thiothrix and Thioploca are among the
largest known prokaryotes (Mansor et al. 2015; Schulz and Jørgensen 2001; Schulz
et al. 1999; Salman et al. 2016) and characterized by massive sulphur formation. The
only representatives of the families Thiofilaceae and Thiolinaceae described so far
also form intracellular sulphur globules (Boden and Scott 2018).

A vast majority of bacterial partners in thiotrophic symbioses with eukaryotes are
taxonomically unclassified Gammaproteobacteria (Table 1). Regardless of whether
the host is a protist or an invertebrate and whether the bacteria are associated as
endo- or as ectosymbionts, formation of sulphur globules inside of their cells has
often been noted (Grimonprez et al. 2018; Rinke et al. 2006, 2009; Bergin et al.
2018; Seah et al. 2019; Markert et al. 2011; Krieger et al. 2000; Frenkiel et al. 1996).

5 Subcellular Localization of Sulphur Globules

Internal sulphur globules are easily recognized even via light microscopy as they are
highly light refractive (Fig. 1). Cultures and colonies of cells containing sulphur
globules, therefore, exhibit a characteristic milky appearance (Fig. 2). Usually the
diameter of sulphur globules is in the range of 1–3μm (Fig. 1), but sizes exceeding
15μm have also been reported (Williams et al. 1987; Head et al. 1996; Remsen 1978;

Fig. 2 Colonies Allochromatium vinosum DSM 180T grown (a) on malate in the absence of
reduced sulphur compounds (b) grown in the presence of sulphide and thiosulphate. Colonies
appear milky-white due to massive accumulation of sulphur globules inside of the cells. A. vinosum
was cultivated for 10 days on plates solidified with 1% (w/v) phytagel as described by
(Pattaragulwanit and Dahl 1995)
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Skirnisdottir et al. 2001). The sulphur can comprise 20–34% of the cell dry mass of
Beggiatoa sp. and purple sulphur bacteria, respectively (Nelson and Castenholz
1981; Overmann 1997). While sulphur globules appear to be randomly localised
in many bacterial species, specific cellular localizations have also been reported. In
Thiovulum for example, the globules accumulate toward one cell pole (Marshall
et al. 2012; La Riviere and Schmidt 1999).

A series of technical problems must be considered when it comes to elucidating
the subcellular localization of sulphur globules using microscopic techniques. Sul-
phur dissolves during the preparation of biological samples for electron microscopy,
and in addition, any remaining sulphur is subject to thermal degradation under the
electron beam. Therefore, sulphur deposits appear as a conspicuous, empty, and
electron-lucent space in electron micrographs (Strohl et al. 1981; Remsen and Trüper
1973; Vetter 1985; Pasteris et al. 2001). Nevertheless, microscopic evaluation has
resolved the periplasm as the intracellular compartment harbouring sulphur globules
in many cases. In studies with free-living filamentous sulphur bacteria, including
Thiothrix (Bland and Staley 1978; Larkin and Shinabarger 1983; Williams et al.
1987), Thioploca (Maier and Murray 1965), Thiofilum and Thiolinea (Boden and
Scott 2018) as well as Beggiatoa (de Albuquerque et al. 2010; Maier and Murray
1965; Larkin and Strohl 1983), sulphur inclusions were found to be located within
invaginated pockets of the cytoplasmic membrane. In some cases, the sulphur
globules appeared as a membrane-bound inclusion in the cytoplasm with no appar-
ent connection to the cytoplasmic membrane (Strohl et al. 1981), which may be an
effect of the specific sectioning plane (Shively et al. 1989). Other examples for
which a periplasmic localization of sulphur globules has been settled are species of
the genera Thioalkalivibrio (Sorokin et al. 2001) and Thermus (Skirnisdottir et al.
2001).

In some cases, it has been problematic to distinguish putative sulphur vesicles
from other vesicle-like storage structures such as polyhydroxyalkanoate bodies. This
applies especially to chemoautotrophic sulphur–oxidizing endosymbionts that reside
in animal organs, e.g., in specialized gills of Vesicomyid clams (Goffredi and Barry
2002) or in so-called trophosomes in Vestimeniferan worms like Riftia pachyptila
(Felbeck 1981; Cavanaugh 1983). Inside these organs, the symbiontic bacterial cells
exhibit roundish to polymorphic electron-translucent vesicles whose membranes are
infoldings of the cytoplasmic membrane, and the enclosed spaces are contiguous
with the periplasmic space. Although these vesicles obviously share common
ultrastructural characteristics with sulphur-containing globules of other organisms,
it has been debated whether these structures are indeed related to sulphur storage
(Bright and Sorgo 2003; Maina and Maloyi 1998; Vetter 1985). On the other hand,
electron spectroscopic imaging pictures clearly identified sulphur in the globules of
gutless oligochaete worm endosymbionts. A cytoplasmic localization was inferred
for the globules without analysis via cryo-EM (Krieger et al. 2000).

Interpretation of electron micrographs of phototrophic bacteria containing sul-
phur globules is complicated by the dense packing of these cells with
intracytoplasmic membranes harbouring the photosynthetic apparatus. These
so-called chromatophores are associated with sulphur globules in a highly organized
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manner. Careful inspection of electron micrographs revealed that some chromato-
phores, the insides of which are extracytoplasmic or periplasmic (depending on
whether the insides are continuous with the periplasm or not), open into the space
enclosing the sulphur globules, thus implying an extracytoplasmic location for the
globules themselves (Pattaragulwanit et al. 1998).

It is obvious from the last paragraphs that high-resolution microscopy has so far
not provided assignment of the correct subcellular compartment for sulphur deposi-
tion in all cases. Fortunately, another very valuable information resource is available.
As early as 1963, an envelope was reported for the sulphur globules of the purple
sulphur bacterium A. vinosum (Kran et al. 1963) that was soon identified as a protein
envelope (Nicolson and Schmidt 1971; Schmidt and Kamen 1970). In A. vinosum,
the envelope consists of four different proteins of 8.5–20.8 kDa named SgpA, SgpB,
SgpC and SgpD (Brune 1995a; Pattaragulwanit et al. 1998; Weissgerber et al. 2014).
Relative transcript abundances for all four of the corresponding genes strongly
increase upon the exposure of the cells to sulphide, thiosulphate and elemental
sulphur compared to photoorganoheterotrophic growth on malate in the absence of
reduced sulphur compounds (Weissgerber et al. 2013; Weissgerber et al. 2014). All
four proteins are synthesized as precursors carrying amino-terminal signal peptides
mediating Sec-dependent transport across the cytoplasmic membrane (Weissgerber
et al. 2014; Pattaragulwanit et al. 1998). The proposed targeting process was
experimentally confirmed with a sgpA-phoA fusion in E. coli (Pattaragulwanit
et al. 1998) which finally resolved the subcellular localization of the globules in
purple sulphur bacteria of the family Chromatiaceae. Single-layered electron-dense
envelopes of 2–5 nm have also been observed for the sulphur globules of
Thioalkalivibrio paradoxus (Berben et al. 2015) as well as for Beggiatoa and
Thiothrix species (Strohl et al. 1981; Williams et al. 1987). In Beggiatoa alba
BL15D, the envelope is pentalaminar, 12–14 nm thick and consists of three electron
dense layers of 3.5, 2.1 and 3.5 nm thickness (Strohl et al. 1982). Sulphur inclusion
envelopes have been described as being fragile in fixatives used for transmission
electron microscopy (Strohl et al. 1981) which may explain why they are not always
visible in electron micrographs of sulphur-depositing bacteria. In fact, recently
performed BLAST searches revealed the presence of genes encoding putative
sulphur globule proteins targeted to the periplasm in almost all genome-sequenced,
globule-forming Proteobacteria analyzed (unpublished) with Thiovulum and
Macromonas as the only notable exceptions. Table 1 provides an overview of
selected species. The number of predicted sgp genes in a given organism can vary
from only one, e.g., in Beggiatoa alba or in Thiolinea disciformis to six in Thiothrix
caldifontis (Table 1) and even 15 in Thiothrix lacustris (not shown). Taken together,
these observations provide strong indication that the general target compartment for
sulphur storage is not the bacterial cytoplasm, but that deposited sulphur is separated
from the cytoplasm by a unit membrane which may be continuous with the cyto-
plasmic membrane, depending on the organism.
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6 Properties and Function of Sulphur Globule Proteins

Brune already noted in 1995 that SgpA, SgpB and SgpC from the purple sulphur
bacteria A. vinosum and Thiocapsa roseopersicina exhibit sequence similarity with
structural proteins containing repetitive amino acid sequences rich in regularly
spaced glycine-like cytoskeletal keratins, insect and blood fluke egg-shell proteins
and plant cell wall proteins (Brune 1995a). SgpC shows some sequence similarity to
Gly and Trp-rich regions of prion proteins (Brune 1995a). SgpD from A. vinosum
appears to be a coiled-coil protein (Weissgerber et al. 2014). The coiled coil is a
protein motif characterized by superhelical twisting of two or more alpha helices
around one another. They can form rod-like tertiary structures and include the
intermediate filaments of the metazoan cytoskeleton as well as bacteria specific
cytoskeletal proteins that typically assemble into stable macromolecular scaffolds
(Lin and Thanbichler 2013; Rose and Meier 2004). In general, sulphur globule
proteins appear to be rich in glycine, alanine and asparagine. Tyrosine and glutamine
and proline can also be major constituents, depending on the protein (Brune 1995a).

In plant cell walls, glycine-rich proteins form an important group of structural
protein components (Ringli et al. 2001). The primary sequences of these proteins
contain more than 60% glycine, which is considerably higher than the glycine
content in bacterial Sgps (Brune 1995a). Just as in glycine-rich proteins from plants,
the sequences of Sgps often follow the motif (Gly-X)n in the glycine rich regions. In
the proteins forming sulphur globule envelopes, Ala, Pro, Ser and Tyr are common at
the X position. In some cases the motif varies, e.g. (G-G-X)n, or is more complex.
The structures proposed for the glycine-rich plant cell-wall proteins are antiparallel
beta-pleated structures analogous to that of silk fibroin, in which the side chains of
the X residues in the GXGX repeats all lie on one side of the sheet (Condit and
Meagher 1986; Keller et al. 1988). If the sulphur globule proteins fold in a similar
way, this may help to explain how they aid preserving the enclosed hydrophobic
sulphur in a reactive state and at the same time impart hydrophilic properties to the
globule surface (Steudel 1989). In the future, it will certainly be necessary to study
secondary structure of Sgps in detail.

The presence of a protein envelope around the sulphur inclusions in sulphur-
oxidizing bacteria suggests an important structure–function relationship. Indeed,
mutants of A. vinosum lacking SgpB and SgpC are no longer able to oxidize sulphide
and thiosulphate and to form sulphur inclusions from these sulphur compounds
(Prange et al. 2004). In A. vinosum SgpA and SgpB can replace each other in the
presence of SgpC. Still, SgpB and SgpA are not fully competent to replace each
other as sulphur globule formation is not possible in mutants possessing soley SgpA
or SgpB (Prange et al. 2004). A mutant containing SgpA and SgpB but lacking SgpC
can grow on sulphide and thiosulphate. As this mutant forms significantly smaller
sulphur globules, SgpC probably plays an important role in sulphur globule expan-
sion. The construction of mutants lacking SgpA and SgpC or SgpA, SgpB and SgpC
was not possible, leading to the conclusion that a basic level of Sgps is obligatory for
cell survival even under conditions that do not allow sulphur globule formation
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(Prange et al. 2004). SgpD appears to be the most abundant of the A. vinosum
sulphur globule proteins (Weissgerber et al. 2014). Genetic information about its
role is not available because mutants lacking the respective gene have not yet been
analyzed. The analysis of the A. vinsoum sulphur globule proteome revealed SgpB as
the second most abundant sulphur globule protein in this organism while peptides
originating from SgpA and SgpC were less frequently detected (Weissgerber et al.
2014). In A. vinosum, all four sgp genes form separate transcriptional units
(Pattaragulwanit et al. 1998; Prange et al. 2004; Weissgerber et al. 2013). All four
genes are constitutively expressed and their expression is significantly enhanced in
the presence of sulphide and thiosulphate (Weissgerber et al. 2013; Prange et al.
2004).

Interestingly, cells of Beggiatoa alba grown in the absence of sulphur compounds
apparently contained small rudimentary sulphur inclusion envelopes. It was hypoth-
esized that these envelopes were present in collapsed form until a reduced sulphur
source became available (Strohl et al. 1982). A direct/covalent attachment of chains
of stored sulphur to the proteins enclosing the globules does not appear to occur as a
vast majority of studied or predicted Sgps do not contain any cysteine residues
(Brune 1995a; Weissgerber et al. 2014). It has been speculated that protein envelope
may provide binding sites for sulphur-metabolizing enzymes (Schmidt et al. 1971).
To elucidate the possibility that enzymes taking part in sulphur globule formation
and/or oxidation are bound to or interact with the envelope proteins, similar to the
situation found for polyhydroxyalkanoate (PHA) granules (Jendrossek 2009), the
sulphur globule proteome of A. vinosum was enriched and analyzed (Weissgerber
et al. 2014). While this approach identified 78 proteins that occur exclusively in the
sulphur globule proteome and were not detected in the soluble and membrane
fractions, none of the established components of the periplasmic sulphide- and
thiosulphate-metabolizing enzymes appeared to be enriched with the globules.

7 Speciation of Sulphur

The chemical nature of the sulphur in the globules has been the subject of intensive
controversy (Pickering et al. 1998; Prange et al. 1999b, 2002; George et al. 2002,
2008; Berg et al. 2014; Pasteris et al. 2001). It has been recognized several decades
ago that this sulphur has several properties that do not go along with those of
elemental sulphur outside of biological systems. The first discrepancy relates to its
low density of 1.2 (Guerrero et al. 1984), compared to 2.1 for the common α-sulphur
(Meyer 1976). Moreover, globule sulphur has been described as ‘liquid’ and ‘hydro-
philic’ (Steudel 1989; Hageage et al. 1970), while all allotropes of sulphur are solid
and virtually water-insoluble at room temperature. In fact, analysis of sulphur in
biological systems is generally hampered by the variety of possible reactions, the
high reactivity and short lifetime of sulphur compounds with intermediate oxidation
states that may be formed during these reactions, the allotropic enantiotropy of S8
and its ability to catenate (Steudel 1982).
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The first study focussing on the speciation of sulphur in sulphur globules dates
back to 1970, applied polarizing microscopy and X-ray diffraction to a purple
sulphur bacterium, A. vinosum (Hageage et al. 1970), and culminated in the con-
clusion that the sulphur is present in a ‘liquid’ or ‘liquid-like’ state. Later, this was
questioned because Raman spectroscopy provided evidence for predominance of S8
sulphur in the globules from Beggiatoa and Thioploca (Pasteris et al. 2001). Several
other studies applied synchrotron-based X-ray absorption near-edge structure spec-
troscopy (XANES) at the sulphur K-edge to investigate the nature of intracellular
sulphur globules (George et al. 2008; Pickering et al. 2001; Prange et al. 1999a,
2002; Lee et al. 2007), however, with contradicting results. Our own work indicated
different speciation depending on metabolic properties of the organisms and the
environmental conditions: long sulphur chains very probably terminated by organic
residues (mono- or bisorganyl polysulphanes) in purple sulphur bacteria, cyclo-
octasulphur in chemotrophic sulphur oxidizers like Beggiatoa alba and
Thiomargararita namibiensis and long chain polythionates in the aerobically
grown acidophilic sulphur oxidizer Acidithiobacillus ferrooxidans (Prange et al.
1999a, 2002). Others pointed out shortcomings of the detection method applied
that may suffer from spectroscopic distortions dependent upon particle size and
compositions. Experimental data was provided suggesting that the spectral differ-
ences observed for the sulphur globules from different organisms are not due to
differences in sulphur speciation but are solely due to differences in the particle sizes
of the sulphur globules (George et al. 2008). More recently, Raman spectroscopy has
been applied to various sulphur globule-forming bacteria. This non-destructive
analytical technique circumvents many of the problems associated with other char-
acterization methods, as measurements can be collected on solid, liquid and live
samples at room temperature and atmospheric pressure. Characteristic internal
vibrational (molecular) spectra make elemental sulphur easy to detect and charac-
terize (Eichinger et al. 2014; Pasteris et al. 2001; Berg et al. 2014; Oren et al. 2015;
Maurin et al. 2010; Himmel et al. 2009). Additionally, Raman mapping produces
high spatial (~1μm) and spectral resolution. A first Raman study on the globules of
Thioploca and Beggiatoa indicated the presence of S8 in a nano-crystalline form
(Pasteris et al. 2001). Another study also identified S8 as the main form of elemental
sulphur in sulphur globules produced in Beggiatoa filaments, but only in subpopu-
lations located at the sulphide–oxygen interface of gradient tubes or in early growth
stage cultures (Berg et al. 2014). Beggiatoa mats in a deeper sulphide-rich, anoxic
zone, and freshwater gradient cultures gave rise to Raman signals suggesting a
mixture of S8 rings and linear polysulphides (Sn

2�) within the globules. In vivo
Raman spectra for Thiothrix presented the characteristic S8 structure previously
described for the crystalline S8 standards and molten sulphur in the internal modes
(Nims et al. 2019). The significance of the speciation of sulphur lies in the bioavail-
ability of the different forms, i.e. amorphous polymeric or (nano)crystalline elemen-
tal sulphur. It has been shown, for example, that the purple sulphur bacterium
Allochromatium vinosum, uses only the polymeric component and not the cyclo-
octasulphur component when commercially available sulphur is provided as the
substrate, i.e. the organism has difficulties to attack the comparatively stable S8 rings
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(Franz et al. 2007). It is possible that this also applies to sulphur stored inside of cells
such that it is deposited in a chemical form that is readily available for further
degradation.

8 Formation of Stored Sulphur

In general, sulphur stored in sulphur globules is formed by the oxidation of more
reduced sulphur species. The location of the sulphur inclusions in the periplasmic
space implies that globule formation from sulphide, polysulphides, thiosulphate,
elemental sulphur and also the much less widely used substrate thiocyanate must
occur in this cellular compartment (Fig. 3).

The main characterized enzymes for sulphide oxidation, FAD-containing
flavocytochrome c (FccAB) and sulphide:quinone oxidoreductases (SQR) indeed

Fig. 3 Pathways of sulphur globule formation and degradation. A given organism may contain all
or only a subset of the pathways depicted (cf. Table 1). For clarity, reactions are not given with exact
stoichiometries. TcDh, thiocyanate dehydrogenase. SQR, sulphide:quinone oxidoreductase,
FccAB, flavoctochrome c sulphide dehydrogenase, rDsr, sulphur oxidizing Dsr system, sHdr,
sulphur-oxidizing heterodisulphide reductase-like system, Apr, APS reductase, Sat, ATP
sulfurylase. Question marks indicate that neither the pathways of sulphane sulphur transport into
the cytoplasm nor sulphate export from the cytoplasm have been experimentally clarified
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reside in or are oriented towards the periplasm. All characterized SQRs are single-
subunit flavoproteins asscociated with the cytoplasmic membrane. Based on protein
structure, six distinct types of single subunit flavoprotein SQRs were identified
(Marcia et al. 2009, 2010a, b; Shahak and Hauska 2008). Flavocytochrome is
present as a soluble protein or as a membrane-bound enzyme and shows sulphide:
cytochrome c oxidoreductase activity in vitro (Bosshard et al. 1986). Usually, the
protein consists of a larger flavoprotein (FccB) and a smaller haemoprotein (FccA)
(Castillo et al. 1994; Fukumori and Yamanaka 1979). All sulphur-globule-forming
bacteria contain at least one and often several types of SQR. Flavocytochrome c can
be present in addition (Table 1, Fig. 3). In A. vinosum, the gene for SqrF is followed
in the same direction of transcription by two genes (Alvin_1196/97) each encoding a
very short (32 amino acid) transmembrane protein. Deletion of the genes led to
a ~ 60% reduced rate of sulphur formation from sulphide indicating a direct
functional relation with SQR. Related genes occur in other purple sulphur bacteria,
but nothing is known about their abundance and relevance in other sulphur-globule-
forming bacteria (Weissgerber et al. 2013). In A. vinosum, mutants lacking
flavocytochrome c sulphide oxidation proceeds with wild-type rates indicating that
SQRs play a major role (Reinartz et al. 1998). Flavocytochrome c may represent a
high affinity system for sulphide oxidation especially suited at very low sulphide
concentration (Brune 1995b).

Polysulphides are the primary reaction products of SQR- and FccAB-catalyzed
sulphide oxidation, and indeed, they are well-documented intermediates during the
formation of sulphur globules from sulphide in A. vinosum (Prange et al. 2004). It is
still unclear whether their conversion into sulphur stored in sulphur globules is a
purely chemical process. Theoretically, this is possible because longer polysulphides
are in equilibrium with elemental sulphur (Steudel et al. 1990). On the other hand,
elevated protein and mRNA levels have been observed in A. vinosum for
Alvin_1317–1319, constituting a putative sulphur or polysulphide reductase with
highest similarity to archaeal SreABC (Laska et al. 2003). The active site
molybdopterin-containing subunit PsrA is localized in the periplasm. This led to
the proposal that this enzyme may be involved in the transformation of
polysulphides to stored sulphur (Weissgerber et al. 2013; Weissgerber et al. 2014).
However, only a minority of sulphur-globule-forming bacteria contains closely
related genes shedding doubt on a general role of the encoded enzyme.

As apparent from Table 1, utilization of thiosulphate is very widespread among
sulphur-globule-forming bacteria. When thiosulphate is oxidized, only its sulphane
group is stored as sulphur; the sulphone sulphur is immediately excreted as sulphate.
Thiosulphate oxidation is catalyzed by the periplasmic Sox system, consisting
minimally of the proteins SoxXAK, SoxYZ and SoxB (Fig. 1). The heterodimeric
SoxYZ protein acts as the central player and serves as a carrier of pathway interme-
diates (Sauvé et al. 2007). Recently, it has been shown that these intermediates are
not simply bound to a cysteine residue located near the carboxy-terminus of the
SoxY subunit as previously assumed but that the true carrier species is a SoxYZ-S-
sulphane adduct (Grabarczyk and Berks 2017). The c-type cytochrome SoxXA
(K) catalyzes the oxidative formation of a disulphide linkage between the sulphane
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sulphur of thiosulphate and the persulphurated active site cysteine residue of SoxY
(Bamford et al. 2002; Ogawa et al. 2008; Grabarczyk and Berks 2017). Then, the
sulphone group is hydrolytically released as sulphate. This reaction is catalyzed by
SoxB (Grabarczyk et al. 2015; Sauvé et al. 2009) and leaves the original sulphane
sulphur of thiosulphate bound to SoxY (Fig. 3). From here, the sulphur is transferred
to the sulphur globules by an unknown mechanism, possibly involving the
rhodoanese-like protein SoxL (Welte et al. 2009). It may be important to note in
this regard that polysulphurated SoxY(S3–4)Z species occur as intermediates of
thiosulphate oxidation catalyzed by a reconstituted Sox system in vitro (Grabarczyk
and Berks 2017). Such polysulphurated species could serve as direct donors for
sulphur globule formation. In organisms that do not form sulphur globules from
thiosulphate, the Sox pathway involves one further crucial enzyme, SoxCD. This
hemomolybdoprotein acts as a sulphane dehydrogenase and oxidizes the SoxY-
bound sulphane sulphur stemming from thiosulphate to the level of a sulphone
which is finally hydrolytically released as sulphate in a reaction catalyzed by
SoxB. Among the sulphur-storing organisms tabulated in Table 1, Azospirillum
thiophilum is the only one containing soxCD-homologous genes. Notably, this
organism forms sulphur globules only in the presence of sulphide but not on
thiosulphate (Kwak and Shin 2016; Lavrinenko et al. 2010).

Many phototrophic and also chemotrophic sulphur oxidizers use external ele-
mental sulphur as a substrate and transform it into intracellular sulphur deposits
before further oxidation (Franz et al. 2007). How external elemental sulphur is
transformed into internally stored sulphur is currently completely unclear.
A. vinosum needs direct cell–sulphur contact for the uptake of elemental sulphur
(Franz et al. 2007). Further details remain to be investigated.

Some Thioalkalivibrio species are able to form sulphur globules from thiocyanate
(SCN�) (Berben et al. 2017; Sorokin et al. 2002). Two different pathways for
thiocyanate degradation have been described. In the first, a periplasmic cobalt-
dependent enzyme, thiocyanate dehydrogenase, catalyzes direct oxidation of the
sulphane atom, forming cyanate and sulphur (Berben et al. 2017; Tsallagov et al.
2019) (Fig. 3). The second pathway occurs in Thioalkalivibrio
thiocyanodenitrificans (Berben et al. 2017) and involves hydrolysis of the C � N
bond by thiocyanate hydrolase to form carbonyl sulphide (COS) and ammonia. The
carbonyl sulphide is further hydrolyzed to CO2 and sulphide by carbonyl sulphide
hydrolase. T. thiocyanodenitrificans has not been reported to form sulphur globules
from thiocyanate (Sorokin et al. 2004). In addition, none of the three genes for the
subunits of its thiocyanate hydrolase encode signal peptides mediating transport into
the periplasm (Berben et al. 2017). The carbonyl sulphide hydrolase from
Thiobacillus thioparus also resides in the cytoplasm (Ogawa et al. 2013). It is
therefore highly unlikely that the pathway is relevant for sulphur globule formation
and it is not integrated into Fig. 3.
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9 Degradation of Stored Sulphur

9.1 Oxidative Degradation

The majority of sulphur-storing organisms has the capacity to completely oxidize
sulphur to sulphate (Table 1, Fig. 3). The enzyme systems involved reside in the
cytoplasm necessitating sulphur transfer from the periplasm as the storage compart-
ment to the cytoplasm as the compartment for further oxidation. How this transfer is
achieved has not been not clarified. Low-molecular-weight organic persulphide such
as glutathione amide persulphide has been proposed as a carrier molecule; however
although potential transporters for such molecules are encoded in the genome of
A. vinosum, they have not been genetically or biochemically characterized from this
or any other sulphur-oxidizing prokaryote (Weissgerber et al. 2014).

Sulphur is never processed in a free form in the cytoplasm but rather in a protein-
bound persulphidic state (Dahl 2015; Tanabe et al. 2019). A cascade of sulphur
transfer reactions usually involving a rhodanese-like protein, a protein of the DsrE
family and a TusA homolog delivers the sulphur to an oxidizing enzyme machinery
that generates sulphite (Venceslau et al. 2014; Liu et al. 2014; Tanabe et al. 2019;
Dahl 2015; Stockdreher et al. 2014). The sulphur carrier protein TusA has been
recognized as a central element in these reactions (Tanabe et al. 2019). For better
clarity, Fig. 3 shows only this central sulphur carrier protein instead of each single
sulphur transferase. The pathway employed for the oxidation of protein-bound
sulphane sulphur to sulphite can vary (Fig. 3).

The best-characterized cytoplasmic sulphite-generating pathway involves
reverse-acting dissimilatory sulphite reductase rDsrAB as a central player (Pott
and Dahl 1998; Dahl et al. 2005; Stockdreher et al. 2012). This pathway occurs in
a majority of sulphur-globule-forming organisms (Table 1). The protein DsrC serves
as the substrate-binding entity (Cort et al. 2008; Stockdreher et al. 2012). Presum-
ably, the membrane-bound DsrMKJOP electron-transporting complex oxidizes
persulphurated DsrC, thus generating a DsrC trisulphide, in which a sulphur atom
is bridging two strictly conserved cysteine residues. As DsrC trisulphide has been
identified as the reaction product of DsrAB in a sulphate reducer (Santos et al. 2015)
and very probably serves as the substrate for oxidation catalysed by rDsrAB which
releases sulphite and the reduced DsrC protein as products. The two released
electrons are used to generate NADH. This reaction is catalyzed by the iron-sulphur
flavoprotein DsrL, an intimate interaction partner of rDsrAB (Löffler et al. 2020).

The second sulphite-generating pathway, the so-called sulphur-oxidizing
heterodisulphide reductase-like (sHdr) pathway (Cao et al. 2018; Koch and Dahl
2018), is much less studied and occurs in only a few organisms forming intracellular
sulphur globules like Thiorhodospira sibirica (Table 1) and several Thioalkalivibrio
species (Berben et al. 2019). The central element of this pathway is an enzyme
complex resembling heterodisulphide reductase HdrABC from methanogenic
archaea (Kaster et al. 2011; Wagner et al. 2017). The other crucial component of
the pathway is a novel lipoate-binding protein (Cao et al. 2018). Both the sHdr
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complex and the lipoate-binding protein have been identified as indispensable for
sulphur compound oxidation in the Alphaproteobacterium Hyphomicrobium
denitrificans (Cao et al. 2018; Koch and Dahl 2018). The reaction mechanism of
the Hdr-LbpA-based sulphur oxidation system is currently unclear although an
experimentally testable hypothesis has recently been put forward (Tanabe et al.
2019).

Neither the Dsr nor the sHdr pathway is confined to sulphur oxidizers with the
capacity for depositing intracellular sulphur globules. Both pathways also occur in
sulphur oxidizers that do not form sulphur deposits, e.g. species of the genera
Thiobacillus or Acidithiobacillus (Quatrini et al. 2009; Beller et al. 2006a, b). The
Dsr and sHdr pathways occur virtually exclusively. Only very few organisms bear
the genetic potential for both oxidation routes (Berben et al. 2019; Koch and Dahl
2018).

Sulphite is usually oxidized to the final product sulphate. All the sulphur-storing
organisms tabulated in Table 1 that contain sulphite-generating enzyme systems in
the cytoplasm also have the ability to oxidize sulphite in this compartment. Again,
two pathways exist (Fig. 3) that can either occur individually or in parallel. The first
pathway involves direct oxidation of sulphite to sulphate via the cytoplasm-oriented
membrane-bound iron-sulphur molybdoenzyme SoeABC (Dahl et al. 2013). The
second pathway proceeds via formation of the intermediate adenosine-5-
0-phosphosulphate (APS) and is catalyzed by APS reductase and ATP sulphurylase
(Sat) (Dahl 1996; Parey et al. 2013). In A. vinosum, the periplasmic substrate-
binding protein SoxYZ is needed in parallel to the cytoplasmic enzymes for effective
sulphite oxidation (Dahl et al. 2013). Whether this also applies to other sulphur-
oxidizing bacteria has not been elucidated.

9.2 Reductive Degradation

In purple sulphur bacteria, sulphur globules serve as an electron acceptor reserve that
allow rudimentary anaerobic respiration under anoxic conditions leading to produc-
tion of sulphide (van Gemerden 1968). Beggiatoa OH-75-2a used sulphur globules
that were accumulated during aerobic thiosulphate oxidation to sustain anaerobic
metabolism and several days of anoxia. Reduction of stored sulphur to sulphide with
concomitant de novo synthesis of cell material was also found during anoxic
incubation of Beggiatoa alba BL18LD. Furthermore, elemental sulphur stored as
globules in thioautotrophic symbionts may serve as an electron sink, leading to
production of sulphide during temporary anoxia (Gardebrecht et al. 2012; Arndt
et al. 2001; Duplessis et al. 2004). Similar processes have been suggested for the
sulphur globules in those organisms that lack enzymes to further oxidize stored
sulphur, i.e. Dsr or sHdr systems, as is the case for Thiovulum for example (Table 1).
Thiovulummay have to oscillate between an aerobic mode of energy conservation in
which elemental sulphur accumulates in the cell and an anaerobic mode of energy
conservation in which intracellular sulphur serves as an electron acceptor, perhaps
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with formate acting as an electron donor or via anaerobic sulphur disproportionation
(Marshall et al. 2012). The mechanisms underlying reductive degradation of stored
sulphur are unresolved.

10 Outlook

Much remains to be learned on bacterial sulphur globules. This especially applies to
the abundance, function and structure of the proteins in the globule envelopes. As
evident from Table 1, most—if not all—organisms depositing intracellular sulphur
encode periplasmic sulphur globule proteins; however, the only organisms for which
the proteins have been unambiguously identified are A. vinosum and Thiocapsa
roseopersicina (Brune 1995a). None of the proteins have been structurally charac-
terized nor have their interactions been analysed. Further research should also finally
clarify the question whether any other proteins involved in formation or degradation
of the globules may be specifically attached to the protein envelope.
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