
Chapter 7
Introduction to Optimisation

Annalisa Riccardi, Edmondo Minisci, Kerem Akartunali, Cristian Greco,
Naomi Rutledge, Alexander Kershaw, and Aymen Hashim

Abstract This chapter gives a brief introduction to the formulation of optimisa-
tion problems and solving algorithms. After mentioning the different classes of
problems, such as continuous/discrete, local/global and single-/multi-objective, and
introducing some of the useful terminology, the chapter is split in two main parts:
(1) formulations and algorithms for continuous problems, including optimal control,
and (2) formulations and algorithms for integer and mixed-integer problems. Both
sections first consider standard deterministic methods that have been derived starting
by optimality criteria, then more recent heuristics derived by experience and
sometimes inspired by nature. This gives the basis to better read and understand
some of the following chapters on more advanced topics.

Keywords Optimisation · Optimal control · Network optimisation ·
Multi-objective · Continuous variables · Combinatorial variables

7.1 Introduction

Optimisation, derived from the Latin word optimus meaning ‘the best’, is the general
name used to characterise the process of finding the best possible solution for a
problem given a measure of ‘goodness’. This is, for example, the problem of finding
the shortest or fastest route between two points or the best investment in the stock
market that minimises risk and maximises return.

People have been optimising since the beginning of the humankind era, but the
roots for modern-day mathematical and engineering optimisation can be traced to
the SecondWorldWar, where optimisation processes were formalised, implemented
and applied to practical operational problems. The term operational research (OR)

A. Riccardi (�) · E. Minisci · K. Akartunali · C. Greco · N. Rutledge · A. Kershaw · A. Hashim
University of Strathclyde, Glasgow, UK
e-mail: annalisa.riccardi@strath.ac.uk; edmondo.minisci@strath.ac.uk;
kerem.akartunali@strath.ac.uk; c.greco@strath.ac.uk; naomi.rutledge.2013@uni.strath.ac.uk;
alexander.kershaw.2013@uni.strath.ac.uk; aymen.hashim.2013@uni.strath.ac.uk

© Springer Nature Switzerland AG 2021
M. Vasile (ed.), Optimization Under Uncertainty with Applications to Aerospace
Engineering, https://doi.org/10.1007/978-3-030-60166-9_7

223

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60166-9_7&domain=pdf
mailto:annalisa.riccardi@strath.ac.uk
mailto:edmondo.minisci@strath.ac.uk
mailto:kerem.akartunali@strath.ac.uk
mailto:c.greco@strath.ac.uk
mailto:naomi.rutledge.2013@uni.strath.ac.uk
mailto:alexander.kershaw.2013@uni.strath.ac.uk
mailto:aymen.hashim.2013@uni.strath.ac.uk
https://doi.org/10.1007/978-3-030-60166-9_7

224 A. Riccardi et al.

originated from the activities performed by teams of multidisciplinary experts in the
armed forces that were using advanced analytical methods to devise better decisions.
Applications in the service industries did not begin until the mid-1960s, where the
knowledge generated during the war was applied to logistic-related problems.

The term ‘programming’ is often used in relation to optimisation: mathematical
programming, linear programming, non-linear programming, mixed-integer pro-
gramming, etc. In principal, the original use of the word ‘programming’ has little to
do with modern-day computer programming. Before the days of computing, a set of
values which represented a solution to a problem was referred to as a programme.
Nowadays, software is programmed to find a set of optimal values (or ‘programme’)
for your problem. The intention of optimisation in modern-day programming is
to maximise or minimise an objective function (performance measure indicator)
with respect to a set of variables (optimisation variables) subject to one or more
constraints. Modern mathematical optimisation can be used in a wide array of
fields and disciplines, ranging from the design of aircrafts, the planning of routes
and schedules, to the design of a control profile for an operating machine. In any
optimisation problem, there are formulation and programming challenges that must
be overcome to find an optimal solution. Some of them are discussed in the next
section.

7.1.1 Solving an Optimisation Problem

There are three main challenges, or steps, to be addressed when facing a general
optimisation problem: problem formulation, problem characteristics and algorithm
selection.

• Problem formulation: the problem, originally described in general terms, needs
to be translated into its mathematical formulation, including the identification of
the set of optimisation variables and constant problem parameters, definition of
objectives and constraints.

• Problem characteristics: the dimension of the design vector space (number of
optimisation variables) and its nature (continuous or discrete), dimension of
the objectives and constraints space (number of performance measures and
constraints functions), their degree of non-linearity, their smoothness, their
landscape as well as their computational cost.

• Algorithm selection: from the pool of available algorithms the most suitable
algorithm needs to be selected to solve the formulated problem.

Without loss of generalisation we can restrict ourselves to discuss only the case of
minimisation: find x∗ ∈ Ω ⊆ R

nx

f (x∗) = min
x∈Ω

f (x)

subject to c(x) ≤ 0,

7 Introduction to Optimisation 225

where f : Ω → R
nobj is the objective function and c : Ω → R

m the constraints
function.

The set of points satisfying the constraints is called the feasible region

D = {x ∈ Ω | c(x) ≤ 0}.

The problem can be rewritten as

min
x∈D

f (x).

Depending on the nature of the objective function and constraints (linear or non-
linear, single or multi-objective) of the search space (continuous or discrete), the
optimisation problems can be divided in different classes

• Continuous or discrete: the optimisation variables belong to a feasible set that
is a subset of the real space

x ∈ D ⊆ R
n.

In some problems the variable x represents integer values. Such problems are
defined as integer programming problems, and the variables are in a feasible
set such that

x ∈ D ⊆ Z
n.

A subset of integer programming problems is the binary programming prob-
lems where

x ∈ D = {0, 1}n.

If some of the variables in the problem are not restricted to be integer variables,
the problem is called mixed-integer programming problem

x = (xr , xd) ∈ D ⊆ R
nr × Z

nd , with nr + nd = n.

• Constrained or unconstrained: if there are no constraints on the design
variables (m = 0), the problem is unconstrained. For constrained optimisa-
tion, instead m > 0. Unconstrained problems arise also as reformulations of
constrained optimisation problems, in which the constraints are added to the
objective function as penalisation terms.

• Linear or non-linear: if the objective function and all the constraints are linear
functions of x, the problem is called linear programming problem. Otherwise
if some of the constraints or the objectives are non-linear functions, the problem
is a non-linear programming problem.

226 A. Riccardi et al.

• Global or local: many algorithms for non-linear optimisation problems find only
a local solution, i.e. a point at which the objective function is smaller than
all the other feasible points in a neighbourhood. They do not always find the
global solution, which is the point that has the lowest function value among
all the points of the feasible region. Only for linear programming problems
and convex programming problems, the local solution is also the global one.
An objective function that presents a large number of local optima is called
multimodal function.

• Single- ormulti- ormany-objective: if the objective function is a scalar function,
that is

nobj = 1

the problem is said to be single-objective. In many engineering applications, one
is seeking a trade-off between different objectives; f is in this case a vectorial
function with

nobj > 1

and the problem is called amulti-objective optimisation problem (1 < nobj ≤ 3)
or many-objective optimisation problem (nobj > 3). Multi-objective optimisa-
tion problems can be transformed into single-objective problems, for example,
by means of aggregating functions, condensing all objectives in a single-cost
function with the use of weights coefficients, or by using alternatives such as
the ε−constrained, and the goal-attainment methods. More details are given in
Sect. 7.2.3.

To apply the most suitable algorithm, the problem must first be understood and
categorised. An algorithm suitable for linear problems may not be suitable for non-
linear problems, and vice versa. By incorrectly categorising a problem, an unsuitable
optimisation category can be chosen, leading to invalid results, for example, a
convex problem. This is a problem where the constraint functions are all convex,
all minimising objectives are convex, and all maximising objectives are concave.
These problems typically have only one optimal solution, and so every local solution
is also a global solution. Using a global algorithm on a convex problem is generally
computationally more expensive than a local one while still leading to the correct
solution.

When selecting an algorithm, it should be noted also that there is not a single
most effective algorithm that can be applied to all optimisation problems. Each
algorithm has benefits and drawbacks. The main theorem of optimisation, the no free
lunch theorem (NFL) [1]), states: if any algorithm A outperforms another algorithm
B in the search for an extreme of an objective function, then algorithm B will
outperform A over some other desired trait such as computational cost, accuracy
or complexity. The NFL theorem suggests that the average performance overall
possible objective functions is the same for all search algorithms. All algorithms

7 Introduction to Optimisation 227

for optimisation will give the same average performance when averaged overall
possible functions, which means that the universally best method does not exist for
all optimisation problems. This theorem proves the importance of applying problem-
specific information when deciding upon an appropriate algorithm to achieve better
than average results.

7.1.2 Local vs Global Optimisation

There are two categories of optimal solutions that can be found as a result of an
optimisation process: local solutions and global solutions. Mathematically, a local
solution is a solution for which an optimal solution x∗

local is better than all other
values of x in its neighbourhood. A global solution describes an optimal solution
x∗
global which is better than all other values of x across the whole search space. As
a result, all global minima are also local minima. This distinction highlights the
importance of a correct problem formulation. For a linear, convex problem, a local
solution is a global solution. In the case of a complex, non-convex problem, a local
solution is not necessarily a global one. In this case the choice of the initial guess,
from which the optimisation algorithm performs the search, can be crucial for the
performance of the algorithm itself because of the possibility of converging into one
of the local optima close to the initial guess rather than the global one. Hence global
optimisation algorithms are designed with particular strategies that are aiming at
avoiding being trapped in local optima.

7.1.3 Single- vs Multi-Objective

The objective functions drive the optimisation algorithm to find an optimum value,
depending on whether the result has to be minimised or maximised. In single-
objective optimisation, the main goal is to find the ‘optimal’ solution for only one
objective function.

For a problem with more than one objective, there is rarely one solution that is
the optimal solution for each of the objective functions. In this case, a set of optimal
solutions is found. Finding the optimum solution for multiple objective functions
can be difficult and computationally expensive. One method of simplification is
to reduce the number of objective functions. Multiple objective functions can be
lumped into one objective functions through a weighted sum approach, where the
function outputs are scaled then multiplied a constant representing its importance
relative to the other objectives. It should be noted that, although conceptually
easy, the weighted sum approach only finds solution on the convex regions of
the Pareto front and are difficult to implement when the objective functions have
different orders of magnitude. Another method is the ε-constraint one, which
considers all objectives except one, as constraints in the optimisation process.

228 A. Riccardi et al.

These constraints are assigned different constants based on the importance of their
respective objective functions (e.g. minimum reliability levels, maximum price), and
multiple solution of a single-objective problem are found for different satisfaction
levels of each constraint. A deeper discussion into multi-objective strategies is
provided in Sect. 7.2.3.

7.2 Continuous Optimisation

7.2.1 Local Optimisation

Local optimisation algorithms are exact methods that guarantee the convergence to
the local optimum in a neighbourhood of search. They are the most investigated
optimisation techniques and have their roots in the calculus of variations and the
work of Euler and Lagrange. The development of linear programming falls back to
the 1940s, and it was the base of the modern optimisation theory that rapidly grew
and then was developed in the last 70 years.

As already defined in the previous section, the general optimisation problem is
defined as

min
x∈D

f (x)

where D = {x ∈ Ω | c(x) ≤ 0}, f : Ω → R and c : Ω → R
m are sufficiently

smooth functions. It must be pointed out that local optimisation techniques restrict
their field of application to single-objective optimisation problems with continuous
variables. To extend the use to multi-objective optimisation problems, one of the
aggregate techniques presented above must be taken into consideration.

Before introducing the optimality results, some definitions need to be stated.

Definition 7.2.1 The real function L : Ω × R
m → R defined as

L (x, λ) = f (x) − λT c(x)

is the Lagrangian, and the coefficients λ ∈ R
m are called Lagrange multipliers.

Definition 7.2.2 Given a point x in the feasible region, the active set A (x) is
defined as

A (x) = {i ∈ I | ci(x) = 0},

where I = {1, . . . , m} is the index set of the constraint.

Definition 7.2.3 The linear independence constraint qualification (LICQ) holds if
the set of active constraint gradients {∇ci(x), i ∈ A (x)} is linearly independent,
that is,

7 Introduction to Optimisation 229

rank(∇ci(x), i ∈ A (x)) = |A |.

Note that if this condition holds, none of the active constraint gradients can be zero.

7.2.1.1 Optimality Conditions

These definitions allow the statement of the following optimality conditions (refer
to [2], for a proof of the Theorems).

Theorem 7.2.1 (First-order necessary condition) Suppose that x∗ is a local solu-
tion of the constrained non-linear programming (NLP) problem and that the LICQ
holds at x∗. Then a Lagrange multiplier vector λ∗ exists such that the following
conditions are satisfied at the point (x∗, λ∗)

∇xL (x∗, λ∗) = 0, (7.1)

c(x∗) ≤ 0, (7.2)

λ∗ ≥ 0, (7.3)

(λ∗)T c(x∗) = 0. (7.4)

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.

Remark 7.2.1 The last condition implies that the Lagrange multipliers correspond-
ing to inactive inequality constraints are zero; hence it is possible to rewrite the first
equation as

0 = ∇xL (x∗, λ∗) = ∇f (x∗) −
∑

i∈A (x∗)
λ∗

i ∇ci(x∗).

The optimality condition presented above gives information on how the derivatives
of objective and constraints are related at the minimum point x∗. Another fundamen-
tal first-order necessary condition that gives additional information on the gradient
of the objective function in the optimal point can be stated. For this an additional
definition is needed.

Definition 7.2.4 Given a feasible point x ∈ D, a sequence {xk}∞k=0 with xk ∈ Ω is
a feasible sequence if, for all k ∈ N, xk ∈ D\{x∗} and

lim
k→∞ xk = x.

Given a feasible sequence, the set of the limiting directions w ∈ Ω\{0}

lim
k→∞

xk − x
‖xk − x‖2 = w

‖w‖2
is called the cone of the feasible directions, C(x).

230 A. Riccardi et al.

Moving along any vector of this cone (with vertex in a local minimum point x∗)
either increases the objective value or keeps it the same.

Theorem 7.2.2 (First-order necessary condition) If x∗ is a local solution of the
optimisation problem and f is differentiable in x∗, then

∇f (x∗) · w ≥ 0 ∀w ∈ C(x∗).

For the directions w for which ∇f (x∗) ·w = 0, it is not possible to determine, from
first derivative information alone, whether a move along this direction will increase
or decrease the objective function. It is necessary to examine the second derivatives
of the objective function and constraints to see whether this extra information
resolves the issue. The directions for which the behaviour of f is not clear from
the first derivative form the following set:

Definition 7.2.5 Given a pair (x∗, λ∗) satisfying the KKT conditions

C(λ∗) = {w ∈ C(x∗) | ∇ci(x∗) · w = 0, for all i ∈ A (x∗) ∩ I , with λ∗
i > 0}

is called the critical cone.

Indeed for w ∈ C(λ∗) from the first KKT condition it follows that

∇f (x∗) · w =
∑

i∈A (x∗)
λ∗

i ∇ci(x∗) · w

= 0.

If x∗ is a local solution, then the curvature of the Lagrangian along the directions in
C(λ∗) must be non-negative in the case of qualified constraints. A positive curvature
is instead a sufficient condition for a local optimum.

Theorem 7.2.3 (Second-order necessary condition) Let f and c be twice contin-
uously differentiable; x∗ is a local solution of the constrained problem and that the
LICQ condition is satisfied. Let λ∗ ∈ R

m be the Lagrange multiplier for which the
pair (x∗, λ∗) satisfies the KKT conditions. Then

wT ∇2
xxL (x∗, λ∗) w ≥ 0, ∀w ∈ C(λ∗)

Theorem 7.2.4 (Second-order sufficient condition) Let f and c be twice contin-
uously differentiable; x∗ is a feasible point, λ∗ ∈ R

m such that (x∗, λ∗) satisfies the
KKT conditions and

wT ∇2
xxL (x∗, λ∗) w > 0, ∀w ∈ C(λ∗), w = 0.

Then x∗ is a strict local minimum of the constrained problem.

7 Introduction to Optimisation 231

7.2.1.2 Algorithms

In the last 50 years, a variety of approaches have been developed to solve NLP
problems, first tackling the most simple unconstrained NLP problem and then
expanding their application also to the constrained case. A starting point, denoted
by x0, is always provided to the algorithm by the knowledge of the user or
left to the optimiser. The optimisation process iterates exploiting information on
the objective, constraints, their derivatives and the previous iterates to terminate
whenever no further progress can be made or the optimal solution is approximated
with acceptable accuracy.

The algorithm for unconstrained NLP is presented first. They are divided into
two groups: line search based and trust region.

• Line search: the algorithm determines a search direction pk and searches along
this direction from the current iterate xk for a new iterate with a lower function
value. The step length to move along pk can be found by approximately solving
the minimisation problem

min
α>0

f (xk + αpk).

At the new point, a new search direction and step length are computed, and the
process is repeated until convergence.

• Trust region: the algorithm constructs a model function mk whose behaviour
near the current iterate xk is similar to that of the actual objective function f .
The iteration direction of search p is found as the solution of the problem

min
p∈Ω

mk(xk + p),

where xk + p lies inside the trust region. If the solution does not produce a
sufficient decrease in f, it means that the trust region is too large. In this case the
trust region is shrunk and the minimisation problem is solved again. Usually the
trust region is the ball

‖p‖2 ≤ Δ, where Δ is the trust region radius

and the model mk is usually a quadratic function of the form

mk(xk + p) = f (xk) + pT ∇f (xk) + 1

2
pT H(xk)p

where H is the Hessian matrix of the Lagrangian.

The two approaches differ in the way they choose the direction and the distance of
the move: line search based fixes the direction pk and optimises the length of the
step. Thrust region instead first chooses the maximum distance of the move, the trust

232 A. Riccardi et al.

region radius, and then seeks for the best move to attain the best improvement of the
objective function.

As an example for line search methods, there are (refer to [2] for the details about
the methods):

• Steepest descent method: it chooses as search direction the descent one pSD
k =

−∇f (xk).
• Newton methods: the search direction is the solution of the Newton equation

pN
k = −H(xk)

−1∇f (xk).

• Non-linear conjugate gradient methods: where the search direction is defined
as pCG

k = −∇f (xk) + βkpk−1 with βk ∈ R.
• Quasi-Newton methods: they don’t require the computation of the second-

order derivatives but use an approximation of it (B), pQN
k = −B(xk)

−1∇f (xk);
quasi-Newton methods significantly increase convergence speed compared with
Newton ones.

Newton and quasi-Newton methods are the ones that attain a superlinear rate of
convergence, but they require the computation (or approximation) and the storage
of the Hessian matrix. On the other hand, the methods that rely just on the gradient
information are slower at convergence.

Most of the methods have a counterpart for the thrust region approach. In
the quadratic model, the Hessian matrix is substituted by the one used by each
method (identity matrix for the steepest descent, Hk for the Newton method and
its approximation Bk for quasi-Newton methods). It is possible to prove that the
resulting search direction is defined as in the line search methods and its length
constrained by the trust region radius.

The presentation of the algorithms for the unconstrained case was necessary
to introduce the techniques for solving constrained NLP problems as parts of
them rely on the idea of converging to the solution of the constrained problem by
approximating it with a sequence of unconstrained problems.

The algorithms for constrained NLP problems can be grouped in:

• Penalty, barrier, augmented Lagrangian methods and sequential linearly
constrained methods: they solve a sequence of simpler subproblems (uncon-
strained or with simple linearised constraints) related to the original one. The
solutions of the subproblems converge to the solution of the primal one either in
a finite number of steps or at the limit.

• Newton-like methods: they try to find a point satisfying the necessary conditions
of optimality (KKT conditions in general). The sequential quadratic program-
ming (SQP) method is part of this class.

The penalty methods combine the objective function and constraints into a penalty
function α(x) which is null for feasible points and positive otherwise. The problem
to be minimised is the unconstrained problem

min
x∈Ω

f (x) + μα(x)

7 Introduction to Optimisation 233

for a series of increasing values of the penalty parameter μ, such that μα(x) → 0 as
μ → ∞, until the solution of the constrained optimisation problem is identified with
sufficient accuracy. From a computational point of view, superlinear convergence
rates might be achieved, in principle, by applying Newton’s method to solve
the minimisation problem (or its variants such as quasi-Newton methods). The
algorithmic behaviour is strictly related to the choice of the penalty parameter. Ifμ is
large, more importance is given to the feasibility than the optimality, and the iterates
could move to feasible regions far from the optimum, causing slow convergence and
premature termination.

The barrier methods or interior-point methods add terms to the objective function
that act as a barrier and prevent the iterates from leaving the feasible region. For
example, in the case of inequality constrained problems, a barrier problem can be
formulated as

min
x∈Ω

θ(μ),

where μ ≥ 0 and θ(μ) = inf{f (x) + μb(x) : ci(x) < 0,∀i ∈ I }. The barrier
function b should be non-negative and continuous on the feasible region and go
to infinity as the boundary is approached from the interior. This would guarantee
that the iterates do not leave the domain. The starting point must be chosen in the
interior of the feasible region, and the Newton or quasi-Newton methods can solve
the successive barrier problem.

In the augmented Lagrangian methods, a penalty functions is added to the
Lagrangian:

LA(x, λ, μ) = f (x) − λT c(x) + 1

2μ
‖c(x)‖22

Fixing λ to some estimate of the optimal Lagrange multipliers and μ > 0 to some
positive value, it is possible to find a value of x that approximately minimises
LA(·, λ, μ). Then the process is repeated updating λ and μ with the information
from the previous x-iterate.

In sequential linearly constrained methods, at every iteration, a Lagrangian is
minimised subject to a linearisation of the constraints.

The sequential quadratic programming has instead a completely different
approach. It employs Newton-like methods to solve directly the KKT conditions
of the original problem. The problem turns out to be a minimisation problem of
a quadratic approximation of the Lagrangian subject to a linear approximation of
the constraints. The search direction pk at the iterate (xk, λk) is the solution of the
problem

min
p

1
2p

T ∇2
xxL (xk, λk)p + ∇f (xk) · p

s.t. ∇ci(xk) · p + ci(xk) ≤ 0, i ∈ I .

234 A. Riccardi et al.

A trust region constraint can be added to the algorithm to control the length of the
step, and a quasi-Newton approximation of the Hessian can be used instead of the
second derivatives of the Lagrangian.

7.2.2 Global Optimisation

The effectiveness of the traditional local optimisation techniques on multimodal
objective functions strongly depends on the initial guess solution given to a method.
If a previous knowledge of the problem is available, the designer can provide a
good initial guess to the algorithm to ensure convergence to the global optimum.
Otherwise the algorithm will mostly fail in the global search, getting trapped in one
of the multiple local minima.

The purpose of global optimisation is to find the best solution of a non-linear
optimisation problem,

min
x∈D

f (x)

in the presence of multiple optima and a non-smooth objective function.
Nevertheless, local optimisation techniques will often play an important role also

in global optimisation strategies since some promising global approaches combine
both global and local strategies of search. This is the case, for example, for memetic
algorithms (MA) [3] that combine gradient-based technique with evolutionary
algorithms: the global search generates a set of trial points over the feasible region
(solutions of the evolutionary strategy), and the local algorithm performs local
descent search from the best available points, in an iterative loop that alternates
the two steps till convergence. Obviously the best compromise between global and
local strategies and the effectiveness of their use depends on the characteristic of the
problem such as the geometry of the feasible region, the number of local minima and
the sharpness of the objective function in the neighbourhood of the global solution.
However, the collaborative use of the global exploration capabilities of the first
algorithm to prune the search space narrowing the area of search and the exploitation
of local strategies to converge to the exact location of the global minimum is a very
simple but effective approach for the local refinement of the selected global optimal
solutions.

The limit of combining the two optimisation approaches may be related to the
inefficiency of the local strategies in dealing with multiple-objective problems,
especially when proper scalarisations are not considered. First, a brief overview
to the available global optimisation algorithms and to the historical background that
made them evolving to the actual state of the arts is given (see [4, 5] for a complete
survey).

The methods that were first used in global optimisation were deterministic
techniques. They were introduced in the late 1950s with the advent of the first

7 Introduction to Optimisation 235

electronic computers into the research community. They are mostly based on the
idea of trying to construct a sequence of approximate solutions which converge to
the exact one by dividing the problem into smaller subproblems or approximations
of the original one. With the evolution of the computational power at the beginning
of the 1990s, different probabilistic global optimisation approaches were affirmed
as new strategies. Among them it is worth to mention simulated and nested
annealing [6, 7] and the large family of evolutionary strategies [8]. They are in
general computationally less efficient than deterministic techniques, but due to their
structure, they are able to tackle a wider range of problems, and no assumptions
on the model regularity and smoothness is required. For these reasons they are
considered as one of the most promising techniques for solving also global discrete
non-linear optimisation problems.

There are several classifications of global optimisation strategies. One is the
already mentioned division between deterministic and stochastic algorithms. In
the first category, the model and the optimisation variables are completely known,
and the algorithm performs through predefined steps. The stochastic component
of the latter group instead lies either on the random sampling of the trial points,
random parameters of the algorithm itself that made the single step not predictable,
or on the use of a stochastic model for the objective function. Another division can
be made between exact methods and heuristic methods. Exact methods provide a
mathematical proof that the optimal solution can be found, while heuristic methods
are not based on convergence theories. In most of the cases, no guarantee of finding
the optimal solution can be provided and used to stop the search process: the
optimisation process is constituted of iterative steps that improve the candidate
solutions based on a measure of the quality of their fitness, a function that combines
indexes of optimality and feasibility.

An overview of the relevant methods is given below according to the first
classification deterministic or stochastic with an internal differentiation between
exact and heuristic methods. The objective of the section is to give a comprehensive
overview of the available methodologies. For details about a specific algorithm,
please refer to the corresponding bibliography. The extension of the methodologies
to the multi-objective case is discussed in the next section.

7.2.2.1 Deterministic Strategies

The first group are deterministic and exact global optimisation strategies [9]. It
means that no randomness is involved in the optimisation process and the algorithm
will always produce the same solutions for the same starting condition or initial
state. The optimisation steps are predictable and a proof of convergence exists.

• Uniform grid search [4]: it is a trivial search strategy that makes use of a grid
over the search domain to evaluate cost and constraints functions. Local search
from a point in each element of the grid can be performed, and the feasible
local minimum with lowest objective function is the approximation of the global

236 A. Riccardi et al.

optimum. The success of the local search obviously depends on the finesse of the
search grid, and global convergence can be trivially guaranteed by the fact that
the mesh can be made arbitrarily dense. Such a simple scheme however rapidly
becomes inefficient with the enlargement of the bounds on the optimisation
variables and the raising of the dimension. The computational load will increase
as an exponential function of the dimensionality of the problem.

• Complete (enumerative) search [5]: it is based on the simple principle of
searching through all potentially optimum points in the search space, through
enumeration of the possible candidates and evaluation of the objective. If, for
example, the feasible region D is a polyhedra and the objective function is
concave, then it is possible to prove that the problem must have a global optimal
solution which is a corner of D. Since D has a finite number of extreme points,
the problem could be solved by enumerating the extreme points of D in an
appropriate way until an optimal solution is found [10]. Enumerative methods
have few applications in continuous optimisation. Convergence properties are
trivially provable.

• Homotopy and trajectory methods [11, 12]: the two strategies have the
ambitious objective of visiting all stationary points of the objective function on
the feasible domain, tracing the paths on the feasible space that include them.
The solutions are then explored through enumeration techniques and evaluation
of the objective. The twomethods differ in the way of constructing their paths: the
homotopy method makes use of homotopy transformations between the solution
of a simplified problem and the original one; the trajectory problem solves a set
of ordinary differential equations. The methodologies are applicable to smooth
problems with continuous variables, and the enumeration techniques employed
guarantee convergence to the optimum.

• Sequential approximation (relaxation) methods [13]: the idea is to build and
solve a series of approximate (or relaxed) optimisation subproblems converging
to the exact (or approximate) global optimum. A classification of such methods
is based on the target of the approximation (relaxation), either specific model
parameters or the entire system and subsystem models in a non-decomposed or
decomposed problem, and the method employed to perform the approximated
model fitting (response surface methodology (RSM), Taguchi methods, kriging
[14]). The methods can be applied to a wide range of optimisation problems
with continuous and discrete variables, and they are particularly suitable for
expensive or noisy simulation models as a complete analysis is performed
only in the experimental data points of the metamodeling techniques. The
methods form a subset of the derivative-free optimisation techniques, based on
model approximation, as they are completely free from derivative computation
or approximation. Method-specific convergence theories are available in the
suggested reference.

• Interval arithmetic methods [15]: it is possible to develop a complete theory
based on interval entities analogous to the real one. The strength of exploiting the
global information over large domains given by interval analysis in optimisation
methods ensures the convergence to all global optima. The idea is to start with

7 Introduction to Optimisation 237

an initial box and to delete the sub-boxes that cannot contain the global solution
by a branch-and-bound procedure. The process terminates, when the bounds on
the solutions and on the global minimum are below a predefined tolerance. The
main drawback of the interval approach is its computational complexity. It is
applicable to MINLP problems and non-smooth functions.

On the other hand, there is no proof of exactness for the following global
deterministic strategy.

• Sequential improvements of local optima [16]: the basic idea is to generate an
improving sequence of local minima. Deflection techniques, tunnelling and filled
function methods are examples of this approach. The tunnelling method consists
of two phases: seek for a local minimum and apply a tunnelling function to find a
point in the domain that has the same value of the objective function. The newly
formed point is the starting point for the next iteration. The process terminates
when it is not possible to detect any point during the second phase. The last
found local optimum is also the global one. There is no rigorously established
convergence theory associated with these methods, and they are applicable only
to smooth continuous optimisation problems.

7.2.2.2 Stochastic Strategies

Stochastic strategies are methods that contain not deterministic elements, either
random generated algorithm parameters or stochastic approximations of model
functions. As expected it is difficult to develop a rigorous convergence theory for
such a class of algorithms, due to the randomness introduced in the optimisation
process. However two of them provide a convergence proof based on probabilistic
theories, and they can be classified as exact methods.

• Random search methods [17]: the objective of these search methods is to
find the global minimum with an adaptive-probabilistic distribution of random
points over the feasible region. These algorithms ensure that the global minimum
will be found with probability one as the sample size grows to infinity. The
difference to the deterministic grid search algorithm lies in its adaptivity. The
number of experimental points doesn’t need to be decided in advance, but it is
generated in the successive steps. These methods are applicable to both discrete
and continuous global optimisation problems with very mild assumptions on the
model regularity.

• Random function approach [18, 19]: also known in literature as Bayesian
methods, they are the stochastic counterpart of the sequential approximation
approach with an adaptive probabilistic model for the approximation of the
objective function. They are suitable for cost functions that have a highly
computational load. They can deal with continuous and discrete variables and
non-smooth functions. A theoretical convergence to the global optimum is
guaranteed only by generating a dense set of search points.

238 A. Riccardi et al.

The larger group of stochastic optimisation techniques are heuristic. They are most
widely applied in practice, but in general no mathematical proof of convergence
exists. However, some results on convergence for evolutionary methods, provided
that the method satisfies some very general conditions, have been published for
single- [20] and multi-objective [21] problems.

• Two-phase methods [22]: they are the stochastic counterpart of the deterministic
grid search technique. They combine two phases of search: a global one and
a local one. The process starts with a random sampling of the feasible space
followed by the application of a local refinement. Multistart [22], clustering
methods [23] and multilevel single linkage [24] are the examples. The range
of applications for the technique is constrained to the local search used. The
greedy global strategy is suitable for both continuous and discrete variables with
no assumptions on the model structure.

• Simulated annealing [25]: the technique is based on the analogy between
minimising a cost function and the cooling process of a material till it reaches
its state of low energy equilibrium. The algorithm iteratively brings the actual
state (optimisation variables) to a lower level of the internal energy of the system
(objective function). The changes between the states are done probabilistically.
The new configuration is constructed by imposing a random displacement at each
step. If the energy of the new state is lower than the previous one, the change
is accepted. If the energy is greater, the new configuration is accepted with a
probabilistic value. The probabilistic acceptance of upward moves is aiming to
avoid the convergence to the local minima. It is able to tackle global optimisation
problems with discrete and continuous variables under mild assumptions on the
model regularity.

• Genetic algorithms (GAs) [26]: are stochastic search methods that take their
inspiration from natural selection and survival of the fittest in the biological
world. Each iteration of a GA involves a competitive selection that eliminates
poor solutions. The solutions with high fitness are recombined with other solu-
tions by swapping parts of a solution with another. The solutions are also mutated
by making a small change to a single element, or a small number of elements,
of the solution. Recombination and mutation are used to generate new solutions
that are biased towards the regions of the space for which good solutions have
already been seen. GAs were born and are well suited, to solve discrete problems,
and they have been successfully applied to continuous problems as well. Most of
their efficacy is due to a powerful recombination operator, which, for this reason,
becomes the main operator. The recombination operation used by GAs requires
that the problem can be represented in a manner that makes combinations of the
two solutions likely to generate interesting solutions. Selecting an appropriate
representation is a challenging aspect to properly apply these methods. Usually
a binary coding is used, and many applications have demonstrated the validity of
this approach.

• Estimation of distribution algorithms (EDA): with the idea that probabilistic
modelling may offer a more efficient/effective way to treat real problems,

7 Introduction to Optimisation 239

instead of using standard genetic operators used in traditional EAs, in EDAs
new candidate solutions to the problem are generated using regression, i.e.
estimating a probabilistic model based on the statistics collected from the set
of candidate solutions (regression), and sampling the achieved probabilistic
model, bringing a new paradigm in evolutionary computation. Because of the
different natures of both optimisation and probabilistic modelling in discrete
and continuous domains, developed EDAs also have differences depending on
the representation type they use for the problem. Many of the early continuous
EDAs as well as their recent improvements are based on the assumption that
design variables can be characterised by Gaussian distribution. The continuous
population-based incremental learning (PBILC) [27] extends the original discrete
version to continuous domains by updating a vector of independent Gaussian dis-
tributions. The continuous univariate marginal distribution algorithm (UMDAC)
[28] uses maximum likelihood estimation to learn the parameters of the Gaussian
distribution for each variable from the population of solutions. The continuous
mutual information maximisation for input clustering (MIMICC) [28] learns the
chain structured probabilistic model for continuous variables by adapting the
concept of conditional entropy for univariate and bivariate Gaussian distributions.

Other probabilistic models estimate a non-parametric distribution for the
variables have also been used in continuous EDAs. The multi-objective Parzen-
based estimation of distribution (MOPED) [29] uses a Parzen estimator to build
the probabilistic model. Both Gaussian and Cauchy kernels are used alternatively
during evolution to exploit their complementary characteristics.

A review of methods and their characteristics can be found at [30].
• Differential evolution (DE) [31]: it is an optimisation method particularly

suitable for multidimensional multimodal functions, belonging to the class of
evolution strategy (ES). The main idea is to generate a variation vector by taking
the weighted difference between two other solution vectors randomly chosen
within a population of solution vectors and to add that difference to the vector
difference between the considered solution and a third solution vector.

An approach used to create new algorithms is to hybridise existing ones
by appropriately mixing some of their building blocks. By following this
approach, and based on some new theoretical results on the convergence of
DE, the inflationary differential evolution algorithm (IDEA) [32] was proposed,
combining DE with the restarting procedure of monotonic basin hopping (MBH)
algorithm [33, 34]. Although IDEA showed very good results when applied to
problems with a single or multi-funnel landscape, its performance was found to
depend on the parameters controlling both the convergence of DE and MBH and
the inflationary stopping criterion used to terminate the DE search.

Despite its simplicity, the standard DE alone shows good performance on
a broad range of problems featuring multimodal, separable and non-separable
structures, but the performance is strongly influenced by three parameters: the
population size, npop; the crossover probability, CR; and the differential weight
(or step parameter), F . In addition, it was reckoned that the chosen strategies for
mutation and crossover [35] plays an important role.

240 A. Riccardi et al.

The need of self-adapting techniques especially for these two parameters
has been widely recognised in the literature. In [36] the authors introduced a
fuzzy adaptive differential evolution algorithm using fuzzy logic controllers to
adapt the parameters for the mutation and crossover operators. The self-adaptive
DE (SADE), described in [37], incorporates a mechanism that self-adapts both
the parameters CR and F and the trial vector generation strategy. In [38] an
adaptation strategy is proposed for parameter F , while CR is kept constant. In
[39] both control parameters are added to each individual of the population and
evolve with it. An alternative approach for the on-line adaptation of both CR and
F parameters and embedded into the general framework of IDEA is proposed
in [40]. The proposed approach uses the Parzen kernel method to build a joint
probabilistic representation of the most promising region of the bivariate CR−F

space. The resulting probability density function (PDF) is updated during the
optimisation process on the basis of obtained results. A further development of
AIDEA is multi-population adaptive inflationary differential evolution algorithm
(MP-AIDEA) [41] where multiple populations are initialised in the search space
and exchange information during the optimisation process.

• Particle swarm optimisation (PSO) [42]: it is a population-based stochastic
optimisation technique developed by Eberhart and Kennedy in 1995 [43],
inspired by the social behaviour of bird flocking or fish schooling. In PSO, the
potential solutions, called particles, fly through the problem space by following
the current optimum particles. Each particle keeps track of its coordinates in the
problem space, which are associated with the best solution it has achieved so far.
The particle swarm optimisation concept consists of, at each iteration, changing
the velocity of each particle i according to a close-loop control mechanism.

7.2.3 Multi-Objective Optimisation

The problem of optimising concurrently two or more objective functions falls
into the category of multi-objective optimisation problems. In contrary to single-
objective optimisation, the purpose is not to find a unique global optimal solution
but rather a set of solutions representing the compromise (trade-offs) between the
different objectives.

Also in multi-objective optimisation, as in single-objective, it is possible to
distinguish between local and global solutions: they will be referred as global
frontier and local frontier.

The generic multi-objective optimisation problem is defined as

min
x∈Ω

f (x)

subject to c(x) ≤ 0

7 Introduction to Optimisation 241

where x is the optimisation variables vector, f : Ω → R
nobj , with nobj > 1, the

objective function and c : Ω → R
m the constraints function. As before the set of

feasible points is denoted by D.
To extend the methodologies presented for global optimisation to the multi-

objective case, it is necessary to introduce some definitions.

Definition 7.2.6 A point x1 ∈ D Pareto dominates x2 ∈ D if

fi(x1) ≤ fi(x2), i = 1, . . . , nobj

and there is at least one component j ∈ {1, . . . , nobj} such that

fj (x1) < fj (x2).

This is indicated by

x1 � x2.

Definition 7.2.7 A point x∗ ∈ D is Pareto optimal if it isn’t dominated by any
x ∈ D,

x � x∗.

In other words, a solution is said to be Pareto optimal, or equivalently nondominated,
if there is no other point in the feasible space for which a decrease in one objective
will not cause a simultaneous increase of at least one of the other objectives.

Definition 7.2.8 For a multiple objective optimisation problem, the Pareto optimal
set is defined as

P∗ = {x ∈ D | ∃x′ ∈ D x′ � x}.

Definition 7.2.9 The union of the objective values of all Pareto optimal points is
called Pareto front or equivalently

PF ∗ = {f (x) ∈ R
nobj | x ∈ P∗}.

The Pareto front is the set of all solutions in the feasible space that are not
dominated by any other possible solution. The minima in the sense of Pareto will
lie on the boundary of the feasible region or in the tangent points of the objective
functions. Generally it is not possible to derive analytically the equation of the front.
Approximation techniques have been developed during the years to approach the
Pareto frontier by successive iterations or to solve in parallel a sequence of single-
objective optimisation problems.

A comprehensive survey of multi-objective optimisation techniques is given
in [44–46], the last two focusing mainly on global evolutionary multi-objective

242 A. Riccardi et al.

strategies. Evolutionary programming is the area of multi-objective optimisation
research that in the last years registered the fastest growth. This is due to the
intrinsic structure of the evolutionary algorithms, population based, well suited for
an extension to multi-objective problems.

The multi-objective approaches are divided in methods that use the concept of
Pareto dominance for the selection mechanism of the next iterates and methods that
develop a special handling of the objective functions for reformulating the problem
as single objective. The latter techniques are applicable to all the presented global
optimisation strategies, while the former are typically for evolutionary algorithms.

The aggregation of the multiple objectives into a common single objective
can be achieved by the different techniques presented below, outlining their main
advantages and disadvantages.

• Weighted sum approach: the objectives are aggregated into a single function
using weighting coefficients. The optimisation problem becomes

min
x∈Ω

∑nobj
i=1 wifi(x)

subject to c(x) ≤ 0,

where wi ≥ 0 and it is usually assumed that

nobj∑

i=1

wi = 1.

By varying the values of the coefficients, different solutions on the Pareto front
are traced. To cover the entire front, a sequence of single-objective optimisation
problems needs to be solved, making the procedure very inefficient from a
computational point of view. Moreover, this technique has the drawback of not
generating proper Pareto optimal solutions in the presence of non-convex search
spaces [47]. Additionally, there is no a priori knowledge about how a change in
the weights will affect the position on the Pareto front of the new solution.

• Goal programming [48]: the designer has to assign targets to the objectives, and
the optimisation problem is transformed in the problem of minimising the sum
of the norms of the deviations from the targets

min
x∈Ω

∑nobj
i=1 ‖fi(x) − Ti‖2

subject to c(x) ≤ 0.

Prerequisite in the application of such a technique is a deep knowledge about
the optimisation problem to be able to assign meaningful target values to
the objectives. The search space is explored by varying the Ti targets, and
convergence to the Pareto front is achieved with a prior knowledge of the
problem, to assign the targets close to the objectives values of the Pareto optimal
points.

7 Introduction to Optimisation 243

• Goal attainment: it is a combination of the previous two techniques. Objectives
goals are assigned as before, together with relative under or over attainment
weight coefficients. The problem becomes

min
x∈Ω

α

subject to c(x) ≤ 0
fi(x) ≤ Ti + αwi, i = 1, . . . , nobj,

where α ∈ R and the weights wi ≥ 0 are normalised so that

nobj∑

i=1

wi = 1.

It is possible to prove that the Pareto front can be covered varying the weight
coefficients and the methodology is able to deal also with non-convex problems
[49].

• The ε constraint method: the objectives are minimised one at a time, constrain-
ing the others below a certain level

min
x∈Ω

fj (x)

subject to c(x) ≤ 0
fi(x) ≤ ε, i = 1, . . . , nobj, i = j.

The main weaknesses of the approach are the same as listed above, computational
efficiency, and a necessary a priori knowledge of the problem for covering the
global Pareto front.

• Lexicographic order: the objectives are sorted by user intervention. The
optimisation problem is divided in nobj subproblems solved sequentially with
a pre-established order and with additional constraints for not violating the
satisfaction of the minimum values of the former subproblems. Assuming that
{f1(x), f2(x), . . . , fnobj(x)} are the ordered objectives and f ∗

i the minimum
value achieved for the i-th objective. Then the i-th subproblem is defined as

min
x∈Ω

fi(x)

subject to c(x) ≤ 0
fj (x) = f ∗

j , j = 1, . . . , i − 1.

To cover the Pareto front, different optimisation runs with different sequences of
objectives must be performed, heavily increasing the overall computational time.

• Game theory: a ‘player’ is assigned to each objective function. The player
has the goal to minimise its objective. Assuming that the players are playing
a non-cooperative game (i.e. the players make decisions independently), the

244 A. Riccardi et al.

intersection of the best strategy of each player is a Nash equilibrium, in the sense
that no player can deviate unilaterally from this point for further improvement of
the proper objective.

• Weighted min-max approach: the deviations from the attained minima, in the
nobj single-objective subproblems are estimated for the i-th objective as

z̄i (x) = ‖fi(x) − f ∗
i ‖2

‖f ∗
i ‖2 , ¯̄zi(x) = ‖fi(x) − f ∗

i ‖2
‖fi(x)‖2

assuming that the objective values do not vanish.
Defining zi(x) = max{z̄i (x), ¯̄zi(x)}, the desirable solution of the multi-

objective problem is the one that gives the smallest values of all increments of all
the objective functions

min
x∈D

max
i∈I

{zi(x)},

where I is the set of the objective indexes. The entire front can be covered by
weighting the deviation function.

Note that some of the scalarisation approaches, such as the weighted sum, the
goal attainment and the ε constraint, can be obtained as particular cases of the
Pascoletti−Serafini scalarisation scheme [50, 51].

The exploitation of the concept of Pareto dominance in the population-based
strategies led in the current years to the development of efficient multi-objective
global optimisation techniques. The particular structure of the algorithms, based on
a family of solutions that evolves at each step, made the introduction of the concept
of Pareto dominance in its ranking process possible [52]. The basic idea is to find
a set of solutions that are Pareto nondominated by the rest of the solutions of the
feasible set, assign to them the highest rank and remove them from the group. The
process then repeats recursively for lower values of the rank. This procedure can be
applied for sorting the solutions of a current iteration and selecting a subgroup from
it to apply the criteria of evolution of the species, resulting in a next generation of
solutions that is different from the previous one and has an average better fitness.

Genetic algorithms are the larger class of evolutionary algorithms. They are
divided in two groups:

• First generation: they are characterised by the introduction of the concept of
Pareto dominance in the process of selection of the population and for the
niching operator to maintain the diversity and avoid premature convergence to
local fronts. Representative algorithms of this class are multi-objective genetic
algorithm (MOGA) [53], nondominated sorting genetic algorithm (NSGA) [54]
and niched Pareto genetic algorithm (NPGA) [55].

• Second generation: they exploit the concept of elitism. This means that they use
an external archive to store the nondominated solutions found in the previous
generation in a way that the best solutions found in every iteration cannot be lost

7 Introduction to Optimisation 245

during successive iterations and a better global minima frontier can be achieved.
The algorithms than differ in the way they interact with the external population.
Representative algorithms of this class are strength Pareto evolutionary algorithm
(SPEA) [56, 57], NSGA2 [58], Pareto archived evolution strategy (PAES) [59],
Pareto envelope-based selection algorithm (PESA) [60, 61] and micro-genetic
algorithm (Micro-GA) [62, 63].

Another group of population-based algorithms not classifiable as genetic algorithms
already mentioned in the previous section gets inspired by natural phenomena such
as the cooling state of a metal or the behaviour of an ant colony in the search of food.
A corresponding reformulation of the already presented algorithms is available for
multi-objective optimisation problems. Namely, they are multi-objective simulating
annealing (MOSA) [64], multi-objective particle swarm optimisation (MOPSO)
[65] and multi-objective ant colony optimisation (MOACO) [66].

7.2.4 Optimal Control

The general statement of an optimal control problem (OCP) requires the definition
of [67]:

• The mathematical model of the dynamic system to control
Usually it is described by a system of ordinary differential equations (ODEs)

in the form ẋ = f(t, x(t),u(t)). The independent variable has been indicated by
t , usually appointed as time, but there is no restriction on its choice. The variables
xi in the vector of x are usually called state variables, while uj in the vector u
are the control variables.

• The performance index J to be minimised (or equivalently maximised)
The performance index in the general form is written as:

J = φ[tf , x(tf)] +
∫ tf

t0

L[t, x(t),u(t)]dt (7.5)

The optimal control problem is in the Bolza form if both the end-cost and the
integral terms are present. If the end-cost term φ is zero, it is known as a Lagrange
problem. On the contrary, if the integral term L is zero, the problem is referred as
a Mayer one. Mathematically these formulations are equivalent and convertible
into each other. For example, a Lagrange problem can be restated as a Mayer one
by simply adding one state variable of the form ẋn+1 = L[t, x(t),u(t)], leading
to J = xn+1(tf). However, [68] states that, even if they are mathematically
equivalent, they are not numerically corresponding. The Lagrange form shall be
preferred as the Mayer form leads to an increased number of state variables,
which are then discretised in numerical methods, leading to a higher size of the
NLP subproblem and a more time-consuming algorithm.

246 A. Riccardi et al.

• Specification of constraints
They are divided into two different classes, i.e. fixed-event or path con-

straints. The first type is described as an algebraic function of the state and
control g

f
L ≤ gf [(t̄j), y(t̄j),u(t̄j)] ≤ g

f
U at a fixed time t̄j . The initial

and final boundary conditions fall into this form for g
f
L = g

f
U . A path

constraint is formulated as an algebraic function of the state and control variables
g

p
L ≤ gp[(t), x(t),u(t)] ≤ g

p
U over a trajectory’s phase. Bounds on the control

magnitude fall into this category as uL ≤ u(t) ≤ uU . This general notation [68]
deals with both equality and inequality constraints, depending on the lower and
upper boundary values.

Once the aforementioned statements have been formulated, the optimal control
problem aims to find the control profile u∗(t), in the space of all admissible controls
U , which minimises the performance criterion J while respecting the differential
model ẋ = f(t, x(t),u(t)) and the specified physical constraints. Briefly stated:

min J = φ[tf , x(tf)] +
∫ tf

t0

L[t, x(t),u(t)]dt, u ∈ U

subject to : ẋ = f(t, x(t),u(t))

gp
L ≤ gp[(t), x(t),u(t)] ≤ gp

U

gf
L ≤ gf [(t̄j), x(t̄j),u(t̄j)] ≤ gf

U

(7.6)

where the Bolza formulation is used to obtain the necessary conditions in the most
general case.

7.2.4.1 Indirect Methods

Indirect methods are based on Pontryagin’s maximum principle, adapting the sign
convention for minimisation problem. This principle’s derivation employs calculus
of variations techniques, of which comprehensive references are [69] and [70]. The
goal is to convert the optimal control problem as defined in the chapter’s introduction
into a two-point boundary value problem through the statement of the necessary
conditions that a profile shall satisfy to be an optimal solution.

The process starts with the definition of an augmented performance index J̄ ,
in a fashion similar to equality-constrained static optimisation problems, where
Lagrange’s multipliers λj multiplying the dynamical constraints are summed to the
objective function to form the augmented performance index:

J̄ = Φ +
∫ tf

t0

[
L[t, x(t),u(t)] + λT (t)

{
f[t, x(t),u(t)] − ẋ

}]
dt (7.7)

7 Introduction to Optimisation 247

According to the calculus of variation, the necessary conditions for a stationary
extremum is that the first-order variation δJ̄ shall nullify at any instant of time for
any constraint-allowed variation δu(t). The problem Hamiltonian is defined as:

H = L[t, x(t),u(t)] + λT (t)f[t, x(t),u(t)] (7.8)

When path constraints are present, the Hamiltonian shall be augmented with the
constraints’ violation weighted by associated dual variables. After mathematical
manipulation (see [67] for a detailed derivation), the necessary conditions for a
control profile u∗(t) to be a stationary function of the performance index are
represented by the following Euler-Lagrange equations:

ẋ = f(t, x(t),u(t))

λ̇ = −
[
∂H

∂x

]T

0 =
[
∂H

∂u

]T

(7.9)

where the relations in Eq. (7.9)-2 are labelled as adjoint equations and Eqs. (7.9)-
3 as control equations. These differential equations, which a control profile has to
necessarily satisfy to be a stationary solution, are coupled with a set of transversality
conditions:

t0 given ∨ H(t0) = 0

tf given ∨ H(tf) = −∂Φ

∂t

∣∣∣∣
tf

x(t0) given ∨ λ(t0) = 0

x(tf) given ∨ λ(tf) = ∂Φ

∂x

∣∣∣∣
tf

(7.10)

Hence, if any of the boundary conditions is a free parameter, either on time or
state variables, the above conditions complete the minimum required number of
known conditions at the initial or final time. Up to this point, the process defined the
necessary conditions for a solution to be a stationary one. The Legendre-Clebsch
condition about local convexity of the Hamiltonian shall be satisfied to ensure that
the solution is an actual local minimum:

∂2H

∂u2

∣∣∣∣
u∗

≥ 0 (7.11)

248 A. Riccardi et al.

The TPBVP defined by Eq. (7.9), coupled with the conditions (7.10) and (7.11),
has no analytical closed-form solution for complex problems Hence, numerical
methods shall be employed. However, further information can be obtained by
exploitation of the problem’s first integrals. If the functions L and f defined in
the System (7.6) do not depend explicitly on the independent variable t , then the
Hamiltonian is a first integral of the TPBVP along an optimal trajectory [71]. In
general, if a first integral is found, the redundant information that it generates can
be exploited to eliminate one adjoint equation, formally transforming the original
TPBVP into another one of lower dimension, by following the procedure shown by
Visser [67].

7.2.4.2 Direct Methods

A direct method does not require the derivation of the necessary conditions needed
by indirect methods. On the contrary, it aims to find a sequence of profiles which
progressively reduce the non-augmented performance index J and the constraint’s
violation. Direct methods require a parametrisation of the control functional form
over trajectory’s arcs. This is generally achieved by two conceptually different
methods [71]:

• A grid at different times where the control parameters are to be found and the
values within an interval are computed through interpolation.

• A set of orthogonal basis of mathematical functions dependent on time. Usually
Fourier series, Legendre polynomials or the Chebyshev ones.

The goal is then to determine the values of the specified free parameters, either
control values at fixed times in the grid form or the coefficients of the series in the
second case, able to minimise the objective index and to respect the constraints. In
this step, the number of free parameters is reduced from infinite degrees of freedom
to a finite number of parameters, depending on the chosen parametrisation. This
passage could seem a limitation of the direct methods when compared to the indirect
ones. However, as already stated in the previous section, a numerical procedure
is necessary also for indirect methods when dealing with complex cases such as
low-thrust trajectory optimisation. These numerical methods require a so-called
transcription to convert the infinite-dimension optimal problem into a solvable
finite-dimension one. Hence, what seemed a limitation of the direct methods is a
required passage of any technique nonetheless.

A direct method’s solution is generally not an optimal solution itself, i.e.
not a local minimum of the performance index, but just an approximation as
a consequence of the discretisation or interpolation steps. Hence, the necessary
conditions (7.9) and (7.11) can be used as an indicator of how close the found
solution is to the real local optimum [72].

7 Introduction to Optimisation 249

7.2.4.3 Comparison of Direct and Indirect Methods

Loosely comparing an optimal control problem to a static constrained optimisation,
the direct method’s goal is to pinpoint a local minimum of the performance function,
while an indirect method aims to find a root of the necessary conditions. The
latter shall be preferred when a closed-form solution is aimed for. Indeed, indirect
methods allow to extract the control in an analytical way [73, 74]. However, this
is possible only when several approximations are employed or simplified cases are
considered. When a numerical approach is necessary, a direct method often results
to be the simpler choice due to several considerations [68]:

• The quantities

[
∂H
∂x

]T

and

[
∂H
∂u

]T

needed by indirect methods must be analyti-

cally computed and changed when different models are employed Furthermore,
when a problem is divided into phases, these quantities change along the tra-
jectory. This requires an extensive preliminary analytical stage for any different
problem in the matter. On the contrary, a direct method is a flexible approach,
more suitable for black box implementations, and able to handle a problem
divided into different phases.

• Path inequalities, which are quite ordinary in low-thrust applications, represent
a relevant issue for indirect methods. Indeed, a first guess of the active-
inactive sequence is needed for practical methods as it changes the form of the
Hamiltonian, by adding the Lagrange multipliers, the number of constrained arcs
and the junction conditions. However, a priori knowledge of the right series is
quite hard to achieve.

• Another issue with first guesses emerges from the initial estimate of the adjoint
variables λ. As remarked by Bryson and Ho [75], the extremal solutions can
be very sensitive to small changes in the unspecified boundary conditions. As
usually the initial state variables are specified, the transversality conditions (7.10)
show that the initial values of the adjoint variables for the optimal trajectory
are not known. Further, these variables are not representing physical quantities.
Hence, setting the right initial conditions, or even reasonable ones, is very
complex, and a bad initialisation often results in numerically ill-conditioned
solutions. On the contrary, direct methods disregard those variables and require
only initial guesses on the physical state and control variables.

7.2.4.4 Practical Techniques for Optimal Control

As stated in numerous occasions, in general the continuous optimal control problem
does not have a closed-form solution, and practical numerical optimisation methods
come into play. Any numerical technique cannot handle an infinite-dimension
problem, but it needs a discrete problem with a finite set of variables and constraints
to work with. This transition can be performed with conceptually different methods
which will be investigated in the present section. It is important to emphasise that

250 A. Riccardi et al.

the following techniques are applicable to both indirect and direct approaches. A
complete review of the common methods, with a focus on low-thrust trajectory
optimisation, has been compiled by Betts [76], whereas in this section two major
classes will be addressed.

Single Shooting

Typically, the single shooting method does not actually find application in the
field of complex non-linear optimal control. However, it is useful to introduce
the notation and several concepts shared by its extension, the multiple shooting
method. The discretisation grid is composed by only two points, the initial and
final times. Initially, the n free parameters in yT = [x̄1, . . . , ūnc], composed by
the initial conditions and the control parameters, are guessed. Hence, the trajectory
is propagated forward (or equivalently backward) from the starting to the end time,
leading to the final state:

xp
f = x0 +

∫ tf

t0

f(t, x,u)dt

In general the propagated state xp
f will not coincide with the required final one xF .

Hence, the difference between these two quantities becomes a constraint to nullify.
In literature, this constraint is generally labelled as defect:

c(y) = xp
f − xf (7.12)

The numerical values of the violation of the boundary conditions can be exploited
to iteratively adjust the control parameters with NLP algorithms in order to finally
solve the constrained minimisation.
The advantage of this basic method is that the NLP subproblem has only a small
number of variables to optimise, i.e. the initial state guess and control parameters.
However, for long time-scales and non-linear dynamics, even small changes in the
parameters can result in very large defects change, leading to hypersensitivity with
respect to the free parameters.

Multiple Shooting

In order to overcome the drawback of parameter sensitivity, it is possible to segment
the overall time interval into a set ofm−1 smaller steps discretising the interval atm
grid points t0 < t1 < t2 < · · · < tf . Then, each of the segments can be treated as an
independent single shooting method, with continuity constraints added. Therefore,
first guesses of the ns state variables for each intermediate segment are now needed.
The first guess trajectory is usually found by fast and low-fidelity methods. The

7 Introduction to Optimisation 251

state variables at intermediate grid points are now control variables to be optimised.
Hence, the number of control parameters in y increases with respect to the single
shooting method, precisely ny = (m − 1)(ns + nc · np), where ns is the number of
state variables, nc the control components and np the control parameters per each
component. The defect equations can be expressed in the general form as:

c(y) =
⎛

⎜⎝
xp

2 − x2
...

xp
f − xf

⎞

⎟⎠ (7.13)

where again the goal is to nullify c(y). The dimension that the NLP subproblem
shall solve, in order to link the different phases and minimise the objective function,
dramatically increases with an increasing number of steps. However, the effects
of changing a particular parameter are more intuitive for smaller steps, leading
to an improvement of the convergence properties. In addition, the main drawback
of the single shooting is solved, and, when the number of steps is high enough,
the variables related to the first stages of the trajectory do not heavily influence
the last phases. The segment decoupling mathematically translates into very sparse
Jacobian and Hessian matrices, later involved by the NLP algorithm. For example,
the Jacobian gets sparser and sparser as more phases are employed, because
the percentage of non-zero elements is proportional to 1/(m − 1). This sparsity
can be exploited to construct a computationally efficient non-linear programming
subroutine, making the multiple shooting method both robust and competitive [77].

Collocation

The basic goal of collocation methods is to avoid repeated propagations over
each segment. This is achieved by partitioning again the whole trajectory into
m − 1 segments, leading to m grid points. Hence, the trajectory is only represented
by the set of state variables x(tk) and their derivatives f(tk, x(tk),u(tk)) at mesh
points as well as the control profile nodes u(tk). As these values are treated
as NLP variables, gathered in the vector y, the optimal control problem has
been completely transcribed into a finite-dimensional NLP. For this reason, also
collocation methods need a first guess solution, which can be sought with the
aforementioned approaches. The state, state-derivative and control values within
each interval are computed by interpolation through piecewise functions, usually
Hermite (third order), Chebyshev or Lagrange polynomials (see [68] for detailed
schemes) or Fourier series [78], whose coefficients depend on the adjacent grid
points’ state and derivatives. This a priori shape replaces the numerical integration
process of shooting techniques with a much faster analytical propagation.

The differential equations ẋ = f(t, x(t),u(t)) are substituted by a discretised
form, which for a simple Euler scheme takes the following form:

252 A. Riccardi et al.

ẋ = f(tk, xk,uk) ≈ xk+1 − xk

h
(7.14)

where h is the interval size tk+1 − tk . This Euler form is then transformed into a set
of NLP constraints to be nullified:

ck(y) = ‖xk+1 − xk − hf(tk, yk,uk)‖ (7.15)

These constraints, which ensure the equation of motion to be approximately
satisfied, are then coupled with the fixed-event ones and the path constraints, to
construct a continuous trajectory and to respect the requested bounds at the grid
points.

In collocation methods the choice of the interval size is vital because it influences
the accuracy of the interpolated function in representing the true trajectory. An
efficient procedure could be to compute initial estimates with a sparse grid and then
refine it progressively. This implementation makes this technique very robust to
imprecise initial guesses. Also in this method, the sparsity of the matrix shall be
exploited as much as possible to make the algorithm efficient.

The greater drawback of collocation methods is that for problems dominated by
highly non-linear dynamics, a very dense grid is needed to compute an accurate
solution which, when integrated forward for validation, leads to small errors in
the final state. This problem arises from the finite-difference approximation of the
dynamics, as in Eq. (7.14) for an Euler scheme, and from the parametrisation of the
shape. However, a dense grid translates into an expensive matrix inversion during
the NLP subproblem, leading to the degradation of the computational performance.

Pseudospectral methods are a special class of direct collocation where the
optimal control problem is transcribed by parameterising the state and control using
global polynomials and collocating the differential-algebraic equations using the
nodes obtained from a Gaussian quadrature [79, 80]. The terms pseudospectral and
orthogonal collocation are used interchangeably in the literature.

7.3 Combinatorial and Network Optimisation

Until now, all optimisation problems and variables have been continuous, that is,
each design vector has consisted of a set of variables composed of possible values
within a specified range. In this section ‘combinatorial optimisation’ problems
shall be discussed, where some or all of the design variables are restricted to a
discrete set, most commonly binary integers, but also non-negative integers. This
section will also discuss problems with a finite number of possibilities, namely,
problems formulated to find a maximum or minimum of one or more functions, with
many variables, which can be limited by a series of equality constraints, inequality
constraints and bounds. All of these problems are ‘linear problems’ or can be
reformulated as such with the inclusion of some constriction on one or more of the

7 Introduction to Optimisation 253

design variables to ensure that only discrete values can be considered, described as
‘linear integer programs’. If the design vectors are pure (or all) integer, the problem
is classed as a ‘pure integer program’, whereas if at least one (but not all) design
vector integer, the problem is classed as a ‘mixed-integer program’, discussed in
Sect. 7.3.2.1. Alternatively, these problems can be categorised into general non-
negative integer problems or ‘binary’, where the discrete, integer design vectors hold
a value of either 0 or 1. Most mixed-integer problems in practice are binary, and the
use of integer variables, although beneficial in certain circumstances, is much less
common.

Often in ‘combinatorial optimisation’, the phrases ‘combinatorial’, ‘discrete’ and
‘integer’ are used interchangeably with little explanation of the differences between
them. Each of the three terms can be used to describe a problem or optimisation
method formulated for use with integers, as opposed to continuous variables, as
inputs and outputs of the problem or as components of the optimisation process.
Often, the term discrete, when used to describe problems and processes, is used
to simply describe the discrete nature of one or more aspects of said process, i.e. a
‘discrete problem’, as opposed to a continuous problem. It is not accurate to say that
a discrete problem is always an integer problem, e.g. if a problem has discrete design
variables x = 0, 0.3, 0.6, 0.9, 1.2, the problem is considered ‘discrete’, but not
integer. Similarly, the term combinatorial describes the problem formulation but
can also be used to describe the origin or solution of a problem, and is categorised
by the exponential explosion of variables or constraints, often modelled by ‘integer
programming’. Finally, the phrase integeri, with respect to optimisation, is usually
intended to describe the use of integer values in formulation or solution and thus
also modelling. The similarities between these terms allows for a certain degree
of interchangeability, though it is important to know where each term should and
should not be used.

Integer programming was first recognised in the 1940s to 1950s, where the
simplex algorithm (derived in 1948 and published in 1951) described a finite
method suitable for application on any linear objective function subject to a finite
set of linear constraints [81]. It was not until 1955 that Harold Kuhn derived a
combinatorial algorithm for a single, specific integer problem using a dual-primal
linear algorithm. Since then, a number of papers have expanded upon the available
techniques and solving algorithms, introducing these tools to a wider and wider
audience, such that many modern-day application rely on integer programming
techniques.

Many real-world problems require the evaluation of integer problems; thus
the interest in and knowledge applicable to optimisation of these problems are
highly valued and ever-increasing. Many industries require the use of integer
programming to solve practical problems. Communications, activity management,
resource management, time scheduling and machine sequencing are vital to the
cost minimising, resource management and time management of large commercial
and industrial firms, whereas other problem applications are less grounded in
real-life scenarios, such as high-energy physics and X-ray crystallography. These
problems are generally more difficult to solve than problems that are linear and/or

254 A. Riccardi et al.

continuous. Although the true advantage of combinatorial optimisation methods lies
in the ability to process indivisible, discrete, real-life parameters, this optimisation
category can also be utilised to convert continuous inputs to integer-only inputs
with the intention of providing yes-no output values (which can be formulated as
0-1 integer problems), a particularly useful trait in machinery diagnosis.

Network optimisation is a special form of linear programming, where the
structure of the program allows even faster solution approaches such as network
simplex algorithm, and they are highly valued in their ability to optimise some
of the most common, fundamental problems with minimal cost and a free flow
of data to and from each network node. Analytically, network flow problems can
solve some classes of combinatorial optimisation problems, such as shortest path,
assignment and transportation. Network flow problems, although often complex, are
utilised in the design and analysis of large connected problems, proving to be vital
to the operation of many transportation, communication, manufacturing and social
networks. Network optimisation methods make use of powerful techniques such
as data caching, streamlining of data protocols and even data elimination. These
techniques, when correctly applied, can assist in developing faster data transfers,
accurate transport solutions and improved response times for software applications.

7.3.1 Pure Integer Optimisation

As introduced earlier, integer-only programming is a form of combinatorial optimi-
sation developed for cases where all design vectors are integer, i.e. x ∈ {0, 1, 2 . . .}.
Mathematically speaking, the original problem formulation, shown in the Introduc-
tion section of this chapter, can be altered to describe the case of an integer-only
problem. Integer-only or ‘pure integer’ optimisation can make use of combinatorial
optimisation algorithms since the search space, and hence the number of potential
solutions is finite. Moreover, in a constrained integer-only problem, the number
of potential solutions is limited by the number of possible combinations of every
integer. For smaller problems, an exhaustive search may be used to evaluate each
point in the design space, but this cannot be extended to larger problems due to the
curse of dimensionality. This can be seen visually by Fig. 7.1, a simple integer-
only problem with two integer inputs and three linear inequality constraints, as
formulated in Eqs. (7.16) to (7.19).

x = [x1 x2] ∈ {0, 1, 2 . . .} (7.16)

A = [3 − 1] (7.17)

b = [0 − 10] (7.18)

lb = [0 0]; ub = [10 10]; (7.19)

7 Introduction to Optimisation 255

Fig. 7.1 Integer problem
with linear constraints

This can be seen graphically in Fig. 7.1. We note that the number of points
available for evaluation by the function are extremely limited and clearly seen as
finite and by extension, the number of different values provided by the function
is finite. This is due to the small number of dimensions. As the number of
dimensions increases, the number of possible points increases exponentially. For
simple problems such as this, an exhaustive search can be used. Complications arise
upon the introduction of additional dimensions of the design vector where the size
of the search space increases drastically depending upon the bounds, as described
by the ‘curse of dimensionality’.

7.3.1.1 Special Case: 0-1 Integer Programming

As introduced earlier, 0-1 integer programming or ‘binary programming’, is a
special category of integer-only problem where the design variables are either one
or zero (binary). This problem formulation is most commonly used for decision-
making, when the inputs to a function is one of only two possible values: yes/no,
open/closed, true/false, etc. [82].

Its mathematical formulation is

n∑

j=1

cT
j xj (7.20)

subject to: Ai,jxj ≤ bi (7.21)

xi = {0, 1} (7.22)

256 A. Riccardi et al.

Many real-life decision-making problems involve significant yes/no decisions,
most often at strategic and tactical levels. The knapsack problem is a classic example
of this type of problem. Moreover, other non-binary problems can be converted into
this form if beneficial, where values can be split into ones and zeros to represent
high/low temperatures, fast/slow speeds and other extremes. This can be added
in practice by introducing equality constraints such that 0 = x and 1 = x.
Take a condition monitoring system which uses a temperature input to determine
if a particular part has overheated. Binary programming may be applied where
temperatures above a certain value are considered a failure (1) and temperatures
below this are considered acceptable (0).

7.3.2 Mixed-Integer Programming

Mixed-integer programming, although commonly utilised in many modern-day
problems, was developed following the formulation of the simplex method, devel-
oped by Dantzig in 1951. This was followed by the work from Ford and Fulkerson,
whose earliest contribution to network flow began with ‘maximal flow through
a network’, which is often credited as the original algorithm designed to solve
maximum flow problems, and thus is considered one of the most influential papers in
the development of further algorithms used for solving and analysing network flow
models [83]. The simplex method also gave way to the first pure integer optimisation
algorithm developed by Gomory in 1958. The increase in complexity resulted in
an increase in computational cost, best modelled by a polynomial-time algorithm.
These models allowed for the categorisation of problems into categories depending
on hardness, where integer programming was considered NP-hard in general.

More complex problems may require the use of mixed-integer variables. That
is to say that one or more variables of function f (xm+n) are a set of con-
tinuous variable(s), x1, x2, . . . xm, and other variable(s) that are discrete values
xm+1, xm+2, . . . xn+m.

Mixed-integer problems cannot be solved by a continuous variable-based solver,
as the step size, Δx, may be unsuitable for discrete variables. Take the steepest
descent algorithm as an example: if the step size, λ, is not compatible with the design
variables (in this case, not an integer), this will result in the failure of the algorithm
and thus, no solution. Conversely, discrete solvers may disregard step sizes for
continuous variables that are smaller than one, thus increasing the inaccuracy in the
solver. This acts as a form of proof of the NFL theorem but also highlights the need
for the development and correct application of more integer programming methods
and categories, such as linear and non-linear.

7 Introduction to Optimisation 257

7.3.2.1 MIP vs MINLP

Mixed-integer programming can be further categorised into mixed-integer program-
ming (MIP) and mixed-integer non-linear programming (MINLP). Problems can
be categorised by the nature of the objectives and constraints with respect to the
design vector. Mixed-integer programming follows the standard linear programming
formulation, where the objectives and constraints are linear with respect to the
design variables which, in this case, consist of at least one design parameter
composed of integers (0, 1, 2 . . . n) and at least one design parameter composed
of continuous values, described in Eq. (7.23).

Minimise cT (x) (7.23)

where

Ax ≥ b

x ≥ 0

xj ∈ Z ∀j ∈ I

Commercial solvers such as IBM Ilog Cplex, FICO Xpress and Gurobi as well as
open-source solvers such as COIN-OR all employ the branch-and-bound algorithm
at their core, where the solution is iteratively parted into smaller subproblems,
most commonly referred to as the left and right child problems (with respect to
the original problem), discussed further in Sect. 7.3.2.2. Mixed-integer problems
can also be solved by iteratively solving the so-called separation problem, where
the feasible region of the problem is cut off by adding valid ‘cuts’ (i.e. additional
constraints) and hence by elimination of sections of the design space. This is
commonly known as the ‘cutting plane algorithm’. Where the branch-and-bound
algorithm employs LP relaxation to simplify the subproblems, the cutting plane
algorithm tightens the LP relaxation to find a better approximation of the convex
hull. All MIP solvers employ the so-called branch-and-cut method, which combines
these two major solution methods for a more effective solution process.

A mixed-integer non-linear programming problem consists of at least one design
parameter composed of discrete integers (0, 1, 2 . . . n) and at least one design
parameter composed of continuous values, similar to MIP. However, in this case,
either the objective or at least one of the constraints is non-linear with respect to
design vectors. These problems follow the form:

Minimise f (x) (7.24)

where

Ai(x) = 0 ∀i ∈ E (7.25)

258 A. Riccardi et al.

bi(x) ≤ 0 ∀i ∈ I (7.26)

x ∈ {x1, x2 . . . xn+m} (7.27)

where x1, x2 . . . xn are integer variables and xn+1, xn+2 . . . xn+m are continuous
variables. These problems are particularly complex, combining the combinatorial
difficulty of integer optimisation with non-linear functions, and so few algorithms
have been designed specifically for use with these problems. Most solution algo-
rithms for MINLPs fall into one of the two categories: single-tree and multi-tree
methods [84]. MINLPs can be solved using a generalised Benders’ decomposition
(multi-tree), where a general MIP problem is employed with non-linear program-
ming subproblems, and a modified branch-and-bound method (multi-tree), where
modifications are made to improve the performance of the algorithm. Complications
arise during the optimisation of a non-convex MINLP since even after relaxation of
the integer design variables to continuous design variables, the function can remain
non-convex, resulting in many local minima.

Many MINLP methods break the problem into their MIP and NLP components
and solve the overall problem iteratively.

7.3.2.2 Methods

The algorithm applied to solve a combinatorial problem is dependent largely on the
possible formulation of the problem and the requirements of the user. As per the
‘no free lunch’ theorem, a single algorithm cannot find the best possible solution
to all possible problems. To find the most suitable solution method, the basic
problem formulation must be considered: linear/non-linear, small/large, single-
objective/multi-objective and binary/integer/mixed-integer.

Similarly to integer-only and continuous-only programming, combinatorial prob-
lems can be categorised as linear and non-linear. Also similarly to integer-only and
continuous-only problems, linear problems are typically less complex than non-
linear problems. As a result, fairly large, moderately complex problems can be
solved using ‘exact’ methods, where every part of the problem and its subproblems
are solved either explicitly or implicitly. For larger, more complex problems,
‘heuristic’ methods may be used. Heuristics use intuitive techniques to find a ‘rough’
solution to any given problem to a certain degree of accuracy.

Exact Methods

With relatively simple problems with low computational costs, exact methods can
be used to solve combinatorial problems. These methods, unlike heuristic methods
described in Sect. 7.3.2.2, guarantee an optimal solution and thus are the ideal
choice. These solution methods can be placed into one of the two categories:
implicit enumeration or explicit enumeration. Explicit solution methods are often

7 Introduction to Optimisation 259

the simplest way of solving a problem using all possible solutions (an extensive
search), but due to the ‘curse of dimensionality’, the complexity of the problem rises
exponentially with the increasing number of dimensions within the design vector.
As such, explicit enumeration is a valuable tool for small integer problems where
dimensionality is limited. For larger problems, implicit enumeration is used.

Within explicit enumeration, the optimisation algorithm builds all the possible
solutions to find the optimal solution. This is typically more costly than implicit
enumeration, where all possible solutions are considered in some manner without
explicit evaluation. Implicit enumeration methods consist of a wide variety of
possible optimisation algorithms, where the most common are ‘divide-and-conquer’
methods, where a problem is divided into sets of m groups of problems iteratively
until a subproblem is simple enough to be solved, and the branch-and-bound
method, as discussed below.

Branch and Bound
In 1960, Alison Doig and Ailsa Land published a paper entitled ‘An Automatic
Method for Solving Discrete Programming Problems’, introducing the concept
of branch-and-bound algorithms. Although first intended to solve combinatorial
optimisation problems, many improvements have been made to generalise the
algorithm to solve continuous problems and improve the efficiency.

When solving MIP problems, the branch-and-bound method does not consider
integer design variables as discrete values but rather converts these discrete values
to continuous values by relaxation of the integer restrictions. This simplifies
manipulation of the problem and thus, decreases the difficulty to solve.

The ‘branch-and-bound’ method consists generally of three main techniques:
branching, bounding and searching.

• Branching

– This step splits the continuous search space into several smaller subspaces,
eliminating infeasible parts of the continuous space through application of
necessary conditions for integer solutions.

• Bounding

– The method of bounding depends on whether the objective function is to
be maximised or minimised. If this function is to be maximised, an upper
bounding strategy is used, and if minimised, a lower bounding strategy is
applied.

• Searching

– The process of searching each subspace for an optimal solution, preferably the
most promising region first.

To begin the branching process, the search space S is split into a number of
smaller and mutually disjoint subsets S1, S2, . . . Sr . Following this partition, each
subspace is analysed to find a local, feasible minimum, where each subset is also
a set of feasible solutions of a ‘candidate problem’, which is found by imposing

260 A. Riccardi et al.

additional constraints on the original function. The search space thought to contain
the ‘best solution’ is then analysed. If the optimal solution is found, the subspace,
and thus also the candidate problem, is fathomed. If not, the problem only contains
a lower bound for the minimum objective value in it, and this subspace is divided
into yet smaller subspaces (or candidate problems), and the process is repeated. This
process can be adapted for specific problems. Consider problems with 0-1 variables.
To branch these problems, extra constraints can be added to constrict x1 = 0 or x1 =
1, creating two candidate subproblems. In this case, x1 is known as the branching
variable

The ‘bound’ step of the branch-and-bound algorithm is dependent on the
objective of the objective function. Assuming that the objective function z is to
be minimised, lower bounding strategies are required. Any lower bounding strategy
should be simple, efficient and run with a low computational cost. In any case, a
lower bounding method should bound closest to the minimum value of z, which can
be handled using one of the many strategies [85].

• Relaxation of constraints: All difficult or computationally costly constraints
are relaxed, and z is minimised for only the remaining constraints. Using this
method, the minimum value of z is equal to the lower bound for zmin in the
original problem.

• Modification of the objective function: In this case, the modified objective
function is created such that f ≤ z for all feasible solutions. Furthermore, f

should be easy to minimise subject to the original constraints. Subject to these
properties, f is a lower bound to zmin of the original problem.

• Lagrangian Relaxation: A Lagrangian multiplier is created where u in L(u, x)

is associated with the relaxed constraints. In this case, the optimum z is a lower
bound of zmin of the original problem.

• Branch-and-cut: Otherwise known as ‘cutting planes’, this iterative method
solves the LP relaxation at each solution, and depending on if the solution is
optimal or not, it is either accepted (if optimal) or a linear constraint is found that
excludes the LP solution and no others. This constraint is referred to as a ‘cut’.

The branch-and-bound algorithm is searched using a ‘search tree method’. In
this case, the original solution is analysed and branched, splitting the problem into
two candidate problems. These two problems are bound, analysed and branched.
Candidate problems which do not contain an optimal solution are not branched and
become terminal nodes. Candidate problems which contain an optimal solution are
further branched, and the process repeats. Terminal nodes may be required in further
iterations of the algorithm. This search method continues to branch until an optimal
solution is found.

Since its introduction in 1960, the branch-and-bound method has been slightly
altered for improved results on specific problems. One such example of this is the
‘Beale and Small’ method [86]. This method uses a different bounding strategy,
includes the termination of particularly non-optimal subspaces and includes a
heuristic ‘worst alternative’ branching method.

7 Introduction to Optimisation 261

For any strategy, the lower bound must be fairly close to the minimum objective
value and generate candidate problems where the lower bounds are as high as
possible. The computational time of the strategy, including calculation of the lower
bounds for every candidate problem, must be low enough that the algorithm can be
iterated many times.

Heuristic Methods

Methods to solve combinatorial optimisation problems discussed so far have been
exact, i.e. finding the global solution is guaranteed (if there is a feasible solution).
When heuristics are involved, this is not the case. Heuristics provide alternative
methods for finding solutions to challenging problems (in particular in real-world
settings) that do not guarantee an optimal solution (some of them only in statistical
way). We note that this is different than approximation algorithms, which provide
a performance guarantee such as maximum deviation from the optimal solution.
Conversely to deterministic sampling, heuristic sampling requires a distribution of
sample points over the search space with a higher density of points in areas of
particular interest. Common heuristics include (a) relaxation-based heuristics and
(b) rounding-based heuristics.

These methods are valid for only convex or small-scale non-convex MINLPs.
There is no method yet that can reliably solve large-scale MINLPs, and, when
compared, the algorithms that exist to solve convex MINLPs do not show a
clear ‘best algorithm’, as can be expected. Where MINLP algorithms lack in
computational speed and other desirable characteristics, a mixed-integer problem
(MIP) is often used as a replacement for large-scale, real-world problems. Even
without non-linear constraints, these problems can still be extremely hard, actual
NP-hard [87].

The nearest neighbour heuristic and the Christofides algorithm [88] are well-
known start heuristics for the TSP. The k-OPT-algorithm is an improvement
heuristic which was originally designed for the TSP, but variants of this are used
for several other combinatorial optimisation problems. It also formed the basis for
the Lin-Kernighan heuristic [89] which is one of the most common algorithms
used to find good solutions for TSPs. Balas and Martin [90] presented the pivot-
and-complement that was developed for binary programs (BPs) and is based on
the observation that, in the nomenclature of the simplex algorithm, an LP-feasible
solution of which all basic variables are slack variables is also integer feasible. It
performs pivot operations which drive the integer variables out of the basis and the
slacks into the basis. The same authors [91] developed another method called pivot-
and-shift that can be applied to general MIPs. The method was further improved
with more pivot types and new rules for selecting them, as well as an extension of
the shifting procedure, and a neighbourhood search related to local branching [92].

Another method is the so-called heuristic ceiling point algorithm, which was
restricted to integer problems (IPs) without equality constraints. Scatter search with
star paths is a diversification heuristic [93] that creates a couple of points which are

262 A. Riccardi et al.

then linked by paths along which feasible solutions are searched. The main goal of
Scatter search is to diversify the set of solutions and not improving the incumbent.

The Octahedral Neighbourhood Enumeration (OCTANE) search is a heuristic
for BPs based on a ray shooting algorithm starting at the LP-optimum and hitting
the facets of the octahedron dual to the unit hypercube [94].

In more recent years, some large neighbourhood search heuristics have been pre-
sented, such as the local branching [92] and the relaxation Induced Neighborhood
Search (Rins) [95].

7.3.3 Network Optimisation

Network optimisation is a special type of linear programming, where variables
are represented as flows in a network. Many real practical problems can be
formulated as a ‘network optimisation’ problem, most commonly very large
problems including the study of traffic, train and population flow, distribution
analysis and communication problems. Consequently, many optimisation non-
specialists understand the importance of these optimisation algorithms, which led
to the widespread use of network optimisation in the testing and devising of new
theories. This problem-solving method can be used to solve a series of combinatorial
problems, for example [96, 97]:

• Space-time networks [98]

– Traffic flow simulating, airline scheduling [85]

• Physical networks

– Designing of streets and pipelines [99] to best manage flow

• Route networks

– Vehicle route flows, map route optimisation (e.g. bus routes) [100]

• Constructing matches

– Bipartite matching, survey design

Please note that problems such as TSP, VRP and scheduling may be represented
using a network, but that does not mean they are network optimisation problems.
Network optimisation is still LP and does not contain any integer variables; then the
problems can be solved very effectively.

Standard Network Flow Formulation and Notation

A typical ‘network’ is a series of nodes (or vertices) connected by arcs (or edges),
where each node is associated with a new design value and each arc is associated

7 Introduction to Optimisation 263

with some category of moving value. To minimise unnecessary problem evaluations,
it is assumed that no points are part of any ‘self-loop’, and so an arc from one point
cannot lead back to the same point. A problem with many arcs and/or edges can be
categorised into one of three forms: ‘directed network’, where only arcs are present;
‘undirected network’, where only edges are present; or ‘mixed network’ if there is a
combination of arcs and edges [85]. In literature, arcs and edges are often considered
as the same entity, and, in the following, they will be generally referred to as lines.

This problem formulation can be optimised for different specific problem
requirements. This option to include specification of algorithm type allows for
maximisation of accuracy and efficiency, as per the NFL theorem. Problems best
suited for network optimisation include:

• Shortest path problem

– Shortest path problems are some of the most commonly encountered network
optimisation problems both in transportation and in communication.

• Maximum flow problem (as discussed)

– Find a feasible flow path from a single source to a single sink, such that the
flow is maximised.

• Minimum weight spanning tree

– This problem requires each node to connect to every other node. If the links
between nodes are expensive, it may be desirable to have each node connect
to only two other nodes.

This can be formulated mathematically by considering a graph or directed
network G = (N,A), where N is a series of nodes (otherwise known as ‘points’
or ‘vertices’) such that N = {1, 2, 3 . . . m} and A is a series of lines A =
{a1, a2, a3 . . . an} [96, 101], with a cost ci,j and a capacity associated with every
line or arc (i, j) ∈ A. These problems can be shown pictorially by placing all nodes
and connecting lines on a plane, as can be seen in Fig. 7.2.

This problem can also be described mathematically using a graph. Unless
otherwise specified, it can be assumed that the edges are distinct such that if
a = (i, j) then i = j , this would generate a ‘simple’ graph. Many network problems
can be formulated in this way, where N could be a set of locations, A a set of

Fig. 7.2 Visual
representation of a network

264 A. Riccardi et al.

potential routes between these cities and c a set of distances. Typically, network
problems are bound by both flow constraints and flow bounds. The upper flow
bound or ‘capacity’ of an arc is denoted commonly by kij , describing the maximum
possible quantity of material that can be moved across each node.

lij ≤ fij ≤ kij (7.28)

For any given problem, there is a ‘balance’ constraint for each node, where
basically the net flow from this node (i.e. outflow-inflow) will be equal to the
‘supply’ of this node. The supply bi of node i is either positive (e.g. if this node
is a location providing entries into the network), negative (e.g. if this node is a client
with a demand) or zero (if the node plays a location for transhipment). Then, the
balance constraint will be in the following form [102]:

∑

j∈N

fij −
∑

j∈N

fji = bi Flow Balance Equations (7.29)

Provided the network follows these bounds and constraints, and the supplies of the
nodes are balanced, the network will be valid.

7.4 Summary

This chapter gives a brief introduction to optimisation problem formulations and
solution methods. After a general overview of different problems, the chapter is
mainly divided in two main sections: continuous problems and methods and discrete
problems and methods.

The first section on continuous problems is further divided into four parts, related
to local methods, optimal control, global methods and multi-objective optimisation.
On the other hand, the section on discrete problems is composed by three parts on
pure integer optimisation, mixed-integer optimisation and network optimisation.

This chapter is meant to give an accessible introduction to formulation and
solving methods. The reader is kindly invited to use the list of references and read
the following chapters, to know more about the methods and to see what are the
most recent advances in the field.

References

1. D.H. Wolpert, W.G. Macready, No Free Lunch Theorems for Optimization (IEEE, Piscataway,
1997)

2. J. Nocedal, S.J. Wright, Numerical Optimisation (Springer, Berlin, 1999)

7 Introduction to Optimisation 265

3. J. Knowles, D. Corne, Memetic Algorithms for Multiobjective Optimization: Issues, Methods
and Prospects (IEEE Press, Piscataway, 2000), pp. 325–332

4. J.D. Pintr, Global Optimization in Action (Springer, Berlin, 1996)
5. R. Horst, P.M. Pardalos, H.E. Romeijn, Handbook on Global Optimization: Nonconvex

Optimization and Its Applications (Springer, Berlin, 1995)
6. S. Rajasekaran, On simulated annealing and nested annealing. J. Glob. Optim. 16, 4356 (2000)
7. M. Locatelli, Simulated annealing algorithms for continuous global optimization. J. Optim.

Theory Appl. 104, 121–133 (2000)
8. T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary

Programming, Genetic Algorithms (Oxford University Press, Oxford, 1996)
9. C.A. Floudas, Deterministic Global Optimization (Springer, Berlin, 2000)
10. P.M. Pardalos, Enumerative techniques for solving some nonconvex global optimization

problems. OR Spektr. 10, 29–35 (1988)
11. W. Forster, Homotopy Methods. Handbook of Global Optimization: Nonconvex Optimization

and Its Applications (Kluwer, Dordrecht, 1995), pp. 669–750
12. I. Diener, Trajectory Methods in Global Optimization. Handbook of Global Optimization:

Nonconvex Optimization and Its Applications (Kluwer, Dordrecht, 1995), pp. 649–668
13. R. Horst, H. Tuy, Global Optimization: Deterministic Approaches, 3rd edn. (Springer, Berlin,

1996)
14. T.W. Simpson, J. Peplinski, P.N. Koch, J.K. Allen, Metamodels for computer-based engineer-

ing design: survey and recommendations. Eng. Comput. 17(2), 129–150 (1995)
15. E.R. Hansen, G.W. Walster, Global Optimization Using Interval Analysis (CRC Press, Boca

Raton, 2003)
16. A.V. Levy, S. Gomez, The tunneling method applied to global optimization, in Numerical

Optimization (SIAM, Philadelphia, 1985), pp. 213–244
17. F.J. Solis, R.J.-B. Wets, Minimization by random search techniques. Math. Oper. Res. 6, 19–

30 (1981)
18. H.J. Kushner, A versatile stochastic model of a function of unknown and time varying form.

J. Math. Anal. Appl. 9, 379–388 (1962)
19. J. Mockus, On bayesian methods of optimization, in Toward Global Optimization, ed. by

L.C.W. Dixon, G.P. Szegö (North Holland, Amsterdam, 1975)
20. G. Rudolph, Convergence of evolutionary algorithms in general search spaces, in IEEE

International Conference on Evolutionary Computation (1996), pp. 50–54
21. G. Rudolph, Evolutionary search under partially ordered fitness sets, in International

Symposium on Information Science Innovations in Engineering of Natural and Artificial
Intelligent Systems (ISI 2001) (2001), pp. 818–822

22. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic methods for global optimization. Am. J. Math.
Manag. Sci. 4, 7–40 (1984)

23. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods, part I: clustering
methods. Math. Program. 39, 27–56 (1987)

24. A.H.G. Rinnooy Kan, G.T. Timmer, Stochastic global optimization methods, part II: multi
level methods. Math. Program. 39, 57–78 (1987)

25. J.M. Laarhoven Peter, H.L. Aarts Emile, Simulated Annealing (Springer, Berlin, 1987)
26. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1998)
27. M. Sebag, A. Ducoulombier, Extending population-based incremental learning to continuous

search spaces, in 5th International Conference on Parallel Problem Solving from Nature
(PPSN V). Lecture Notes in Computer Science, vol. 1498 (Springer, Berlin, 1998), pp. 418–
427

28. P. Larrañaga, R. Etxeberria, J. Lozano, J. Peña, Optimization in continuous domains by
learning and simulation of Gaussian networks, in Conference on Genetic and Evolutionary
Computation (GECCO00) Workshop Program, pp. 201–204. (Morgan Kaufmann, SanMateo,
2000)

266 A. Riccardi et al.

29. M. Costa, E. Minisci, MOPED: a multi-objective Parzen-based estimation of distribution
algorithm for continuous problems, in Evolutionary MultiCriterion Optimisation 2003.
Lecture Notes in Computer Science, vol. 2632 (Springer, Berlin, 2003), p. 71

30. P. Larrañaga, H. Karshenas, C. Bielza, R. Santana, A review on probabilistic graphical models
in evolutionary computation. J. Heuristics 18(5), 795–819 (2012)

31. K.V. Price, R.M. Storn, J.A. Lampinen, Differential evolution, in A Practical Approach to
Global Optimization, Natural Computing Series (Springer, Berlin, 2005)

32. M. Vasile, E. Minisci, M. Locatelli, An inflationary differential evolution algorithm for space
trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011)

33. D.J. Wales, J.P.K. Doye, Global optimization by basin-hopping and the lowest energy
structures of Lennard-Jones clusters containing up to 110 atoms. J. Phys. Chem. A 101, 5111–
5116 (1997)

34. B.Addis, M. Locatelli, F.Schoen, Local optima smoothing for global optimization. Optim.
Methods Softw. 20, 417–437 (2005)

35. S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art. IEEE Trans.
Evol. Comput. 15(1), 4–31 (2011)

36. J. Liu, J. Lampinen, A fuzzy adaptive differential evolution algorithm. Soft Comput. A Fusion
Found. Method. Appl. 9(6), 448–462 (2005)

37. A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with strategy
adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13(2), 398–417
(2009)

38. M.M. Ali, A. Trn, Population set based global optimization algorithms: some modifications
and numerical studies. Comput. Oper. Res. 31(10), 1703–1725 (2004)

39. J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in
differential evolution: a comparative study on numerical benchmark problems. IEEE Trans.
Evol. Comput. 10(6), 646–657 (2006)

40. E. Minisci, M. Vasile, Adaptive inflationary differential evolution, in Congress on Evolution-
ary Computation (CEC2014), July 6–11, Beijin (2014)

41. M. Di Carlo, M. Vasile, E. Minisci, Multi-population adaptive inflationary differential
evolution algorithm with adaptive local restart, in Congress on Evolutionary Computation
(CEC2015) (2015)

42. M. Clerc, Particle Swarm Optimization (ISTE, London/Newport Beach, 2006)
43. J. Kennedy, R. Eberhart, Particle swarm optimization, in Proceedings of the IEEE Interna-

tional Conference on Neural Networks, vol. 4 (1995), pp. 1942–1948
44. K. Miettinen, Nonlinear Multiobjective Optimization (Springer, Berlin, 1999)
45. C.A. Coello Coello, A comprehensive survey of evolutionary-based multiobjective optimiza-

tion techniques. Knowl. Inf. Syst. 1, 269–308 (1998)
46. C.M. Fonseca, P.J. Fleming, An overview of evolutionary algorithms in multiobjective

optimization. Evol. Comput. 3(1), 1–16 (2007)
47. J. Brian, J. Ritzel, E. Wayland, S. Ranjithan, Using genetic algorithms to solve a multiple

objective groundwater pollution containment problem. Water Resour. Res. 30(5), 1589–1603
(1994)

48. Y. Ijiri, Management Goals and Accounting for Controls (North-Holland Publishing Com-
pany, Amsterdam, 1965)

49. Y. L. Chen, C.C. Liu, Multiobjective VAR planning using the goal attainment method. IEE
Proc. Gener. Transm. Distrib. 141(3), 227–232 (1994)

50. L.A. Ricciardi, C.A. Maddock, M. Vasile, Direct solution of multi-objective optimal control
problems applied to spaceplane mission design. J. Guid. Control. Dyn. 42(1), 30–46 (2019)

51. M. Vasile, Multi-objective optimal control: a direct approach, in Satellite Dynamics and Space
Missions, ed. by G. Baú, A. Celletti, C. Gales, G. Federico Gronchi (Springer, Berlin, 2019)

52. D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning
(Addison-Wesley, Boston, 1989)

7 Introduction to Optimisation 267

53. C.M. Fonseca, P.J. Fleming, Genetic algorithms for multiobjective optimization: Formulation,
discussion and generalization, in Genetic Algorithms Proceedings of the Fifth International
Conference, San Mateo (1993), pp. 416–423

54. N. Srinivas, K. Deb, Muiltiobjective optimization using nondominated sorting in genetic
algorithms. Evol. Comput. 2(3), 221–248 (1994)

55. J. Horn, N. Nafpliotis, Multiobjective optimization using the Niched Pareto Genetic algo-
rithm, IlliGAL Report n.93005, University of Illinois (1993)

56. E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and
the strength Pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

57. E. Zitzler, M. Laumanns, L. Thiele, SPEA2: improving the strength Pareto evolutionary
algorithm, TIK-Report 103 (2001)

58. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist Multi-Objective Genetic
Algorithm: NSGA-II, KanGAL Report No. 200001 (2000)

59. J.D. Knowles, D.W. Corne, Approximating the nondominated front using the Pareto Archived
Evolution Strategy. Evol. Comput. 8(2), 149–172 (2000)

60. J.D. Knowles, D.W. Corne, M.J. Oates, The Pareto Envelope-Based Selection Algorithm for
Multiobjective Optimization. Lecture Notes in Computer Science (2000), pp. 839–848

61. D.W. Corne, N.R. Jerram, J.D. Knowles, M.J. Oates, PESA-II: region based selection in
evolutionary multiobjective optimization, in Proceedings of the Genetic and Evolutionary
Computation Conference (2001)

62. C.A. Coello Coello, G. Toscano Pulido, A Micro-Genetic Algorithm for Multiobjective
Optimization. Lecture Notes in Computer Science (2001), pp. 126–140

63. C.A. Coello Coello, G. Toscano Pulido, The Micro Genetic Algorithm 2: Towards On-Line.
Adaptation in Evolutionary Multiobjective Optimization. Lecture Notes in Computer Science
(2003), pp. 75

64. P. Czyzak, Pareto Simulated Annealing, a meta-heuristic technique for multiple objective
combinatorial problems. J. Multi-Criteria Decis. Anal. 7(1), 34–47 (1998)

65. C.A. Coello Coello, G. Toscano Pulido, M.S. Lechuga, Handling multiple objectives with
Particle Swarm Optimization. IEEE Trans. Evol. Comput. 8, 256–279 (2004)

66. K. Socha, M. Dorigo, Ant colony optimization for continuous domains. Eur. J. Oper. Res.
185(3), 1155–1173 (2008)

67. H.G. Visser, Aircraft Performance Optimization. Delft University of Technology (2014)
68. J. Betts, Practical Methods for Optimal Control Using Nonlinear Programming, 1st edn.

(Society for Industrial & Applied Mathematics, Philadelphia, 2001)
69. H. Goldstein, Classical Mechanics, 3rd edn. (Pearson, London, 2001)
70. G. Bliss, Lectures on the Calculus of Variations, 1st edn. (University of Chicago Press,

Chicago, 1946)
71. S. Kemble, Interplanetary Mission Analysis and Design, 1st edn. (Springer, Berlin, 2006)
72. B.A. Conway, Spacecraft Trajectory Optimization (Cambridge University Press, New York,

2010)
73. R.H. Bishp, D.M. Azimov, Analytical space trajectories for extremal motion with low-thrust

exhaust-modulated propulsion. J. Spacecr. Rocket. 38(6) (2001)
74. J.A. Kechichian, Optimal low-thrust transfer using variable bounded thrust. Acta Astronaut.

36(7) (1995)
75. A. Bryson, Y. Ho, Applied Optimal Control (John Wiley & Sons, Hoboken, 1975)
76. J. Betts, Survey of numerical methods for trajectory optimization. J. Guid. Control. Dyn.

21(2), 193–207 (1998)
77. C. Greco, Variational multiple shooting: theory and applications. Delft University of Tech-

nology (2017)
78. F. Zuiani, M. Vasile, Direct transcription of Low-Thrust trajectories with finite trajectory

elements, in 61st International Astronautical Congress, Prague (2010)
79. C. Canuto, M.Y. Hussaini, A.M. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics.

Springer Series in Computational Physics (Springer, Berlin, 1988)

268 A. Riccardi et al.

80. B. Fornberg, A Practical Guide to Pseudospectral Methods (Cambridge University Press,
Cambridge, 1998)

81. M. Jnger, T.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank, G. Reinelt, G.
Rinaldi, L.A. Wolsey, 50 Years of Integer Programming 1958–2008: From the Early Years
to the State-of-the-Art (Springer, Berlin, 2009)

82. A. Kaufmann, A. Henry-Laborder̀e, Integer and Mixed Programming: Theory and Applica-
tions, vol. 137 (Elsevier, Amsterdam, 1977)

83. M. Josefsson, M. Mützell, Max Flow Algorithms Ford-Fulkerson, Edmond-Karp, Goldberg-
Tarjan Comparison in regards to practical running time on different types of randomized flow
networks. KTH Computer Science and Communication, Stockholm (2015)

84. P. Belotti, C. Kirches, S. Leyffer, J. Linderoth, J. Luedtke, A. Mahajan, Mixed-integer
nonlinear optimization. Acta Numer. 22, 1–131 (2013)

85. K. Murty, Linear and Combinatorial Programming (John Wiley & Sons, Inc., New York,
1976)

86. J. Abadie, Integer and Nonlinear Programming (North-Holland Pub. Co., Amsterdam, 1970)
87. A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency (Springer, Berlin, 2003)
88. N. Christofides, Worst-case analysis of a New Heuristic for the travelling salesman problem.

GSIA report 388, Carnegie-Mellon University (1976)
89. S. Lin, B.W. Kernighan, An effective heuristic algorithm for the travelling-salesman problem.

Oper. Res. 21, 498–516 (1973)
90. E. Balas, C.H. Martin, Pivot-and-complement: a heuristic for 0-1 programming. Manag. Sci.

26(1), 86–96 (1980)
91. E. Balas, C.H. Martin, Pivot-and-Shift: A Heuristic for Mixed Integer Programming (GSIA,

Carnegie Mellon University, Pittsburgh, 1986)
92. M. Fischetti, A. Lodi, Local branching. Math. Program. 98(1), 23–47 (2003)
93. F. Glover, A. Lkketangen, D.L. Woodruff, Scatter search to generate diverse MIP solutions,

in OR Computing Tools for Modeling, Optimization and Simulation: Interfaces in Computer
Science and Operations Research (2000)

94. E. Balas, S. Ceria, M. Dawande, F. Margot, G. Pataki, Octane: a New Heuristic for pure 0-1
programs. Oper. Res. 49(2), 207–225 (2001)

95. E. Danna, E. Rothberg, C.L. Pape, Exploring relaxation induced neighborhoods to improve
MIP solutions. Math. Program. 102, 71–90 (2005)

96. G.L. Nemhauser, A.G.H. Rinnooy Kan, M.J. Todd, Optimization, vol. 1 (North Holland,
Amsterdam, 1989)

97. D. Bertsekas, Network Optimization: Continuous and Discrete Models (Athena Scientific,
Belmont, 1998)

98. N. Shah, S. Kumar, F. Bastani, I.L. Yen, A space-time network optimization model for traffic
coordination and its evaluation, in 2008 IEEE International Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC 2008), Taichung (2008), pp. 177–184

99. South Staffs Water, Network Optimisation and Energy Management Business Strategy (2013)
100. C. Sun, L. Cheng, T. Xu, Range of user-equilibrium route flow with applications. Procedia.

Soc. Behav. Sci. 138, 86–96 (2014)
101. G.L. Nemhauser, L.A. Wolsey, Integer and Combinatorial Optimization (Wiley, Hoboken,

1999)
102. K. G. Murty, Network Programming (Prentice Hall, Upper Saddle River, 1992)

	7 Introduction to Optimisation
	7.1 Introduction
	7.1.1 Solving an Optimisation Problem
	7.1.2 Local vs Global Optimisation
	7.1.3 Single- vs Multi-Objective

	7.2 Continuous Optimisation
	7.2.1 Local Optimisation
	7.2.1.1 Optimality Conditions
	7.2.1.2 Algorithms

	7.2.2 Global Optimisation
	7.2.2.1 Deterministic Strategies
	7.2.2.2 Stochastic Strategies

	7.2.3 Multi-Objective Optimisation
	7.2.4 Optimal Control
	7.2.4.1 Indirect Methods
	7.2.4.2 Direct Methods
	7.2.4.3 Comparison of Direct and Indirect Methods
	7.2.4.4 Practical Techniques for Optimal Control
	Single Shooting
	Multiple Shooting
	Collocation

	7.3 Combinatorial and Network Optimisation
	7.3.1 Pure Integer Optimisation
	7.3.1.1 Special Case: 0-1 Integer Programming

	7.3.2 Mixed-Integer Programming
	7.3.2.1 MIP vs MINLP
	7.3.2.2 Methods
	Exact Methods
	Heuristic Methods

	7.3.3 Network Optimisation
	Standard Network Flow Formulation and Notation

	7.4 Summary
	References

