
Chapter 5
An Introduction to Imprecise Markov
Chains

Thomas Krak

Abstract Stochastic processes in general provide a popular framework for mod-
elling uncertainty about the evolution of dynamical systems. The theory of Markov
chains uses a number of crucial assumptions about the (in)dependence of such
a process on its history that make their analysis tractable. In practice however,
the parameters of a Markov chain may not be known exactly, or there may exist
doubt as to the applicability of these assumptions to the system under study.
This chapter presents an introduction to imprecise Markov chains, which are a
robust generalisation of these models that may be used when parameters are not
known exactly or when such assumptions could be violated. Their treatment is
grounded in the theory of imprecise probabilities. The generalised model can be
interpreted as a set of (traditional) stochastic processes, which may or may not be
Markovian and which may have different and varying parameter values. Inferences
are then performed to ensure robustness with respect to variations within this set.
This chapter assumes no advanced familiarity with Markov chains or imprecise
probability theory. It aims to develop an intuitive and graphical understanding of
(imprecise) Markov chains in discrete and in continuous time.

Keywords Imprecise probabilities · Model uncertainty · Stochastic processes ·
Imprecise Markov chains

5.1 Introduction

In many areas of science and engineering, we are interested in modelling uncertainty
about the behaviour of dynamical systems, that is, systems whose state changes
as time passes. For instance, we may want to model the evolution of the spatial
trajectories of a system in motion; or the performance and reliability of a complex
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composite system as its components wear out, break down and get replaced; or the
spread of pathogens through a population; or the evolution of stock prices—and so
on and so forth.

What all these systems have in common is that there is a dynamic component to
their description—they change over time—and they are, in a sense, hard to describe
exactly. For instance, this difficulty may arise because their behaviour depends on
unknown external influences or because the system cannot reasonably be described
at a sufficiently detailed level. Thus, there arises an uncertainty about how exactly
the system will evolve over time, even if one can model how it will ‘roughly’ behave.
Regardless of the interpretation that we want to assign to this uncertainty, such
systems are modelled using stochastic processes. A stochastic process, then, is a
probabilistic description of the system under study. In this sense, it provides a formal
and integrated description of the system dynamics and the probabilistic uncertainty
of its evolution.

On the other hand, we might also be uncertain about whether such a model
is ‘correct’. For instance, we might not know exactly the numerical values that
the parameters of our model should take. Similarly, we might be aware that our
modelling assumptions lead to simplifications that are not necessarily warranted,
which introduces uncertainty about the accuracy or applicability of any assessments
made on the basis of these models. It is therefore of interest to robustify our models
also against these kinds of ‘meta’, or ‘higher-order’, uncertainties.

In this chapter, we consider stochastic processes for which this higher-order
uncertainty is modelled using the theory of imprecise probabilities (IP). For an
extended introduction to IP, we refer the reader back to Chap. 2. We constrain
ourselves to briefly recalling that such imprecise probabilistic models can be
interpreted as representing a set of traditional probabilistic models. So, in our
current setting, we will be considering sets of stochastic processes. From an
inference point of view, the aim is then to compute inferences which are robust
with respect to variations within such a set. We recall from Chap. 2 that these robust
inferences are captured in general by the lower and upper expectations with respect
to the elements of the set that we are considering.

Our aim with the present chapter is to provide an extensive but intuitive
introduction to the theory of imprecise stochastic processes and of imprecise
Markov chains in particular. To this end, we will intentionally focus on the different
representations of these processes. We will show how each of the different ways
of looking at these models provides its own way of deriving useful properties and
highlights different intuitive ways of reasoning about them. Important results and
properties are stated, but we have made an effort to keep the discussion intuitive.
We try to prevent technicalities and do not provide extended proofs; instead, we will
provide pointers to the literature that the interested reader might pursue herself.

The remainder of this chapter is organised as follows. We start the discussion
by giving a quick introduction to stochastic processes in Sect. 5.2. The first part
basically uses the measure-theoretic approach (albeit in a rather simplified sense)
to pin down some first concepts and notation. We then go on to present three
different and graphical representations of stochastic processes, which can be used
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when the time-dimension is discrete. Specifically, we cover the representation using
probability trees, in Sect. 5.2.1; using Bayesian networks, in Sect. 5.2.2 and using
transition graphs, in Sect. 5.2.3.

Once we have developed these different ways of reasoning about discrete-time
processes, we generalise the discussion to imprecise discrete-time processes in
Sect. 5.3. We use the previously developed graphical notions to provide intuition
about how to reason and compute inferences using these models. The treatment of
(imprecise) continuous-time processes is largely postponed until Sect. 5.4. Here the
graphical and intuitive representations largely break down, but we can then use the
previously developed understanding of the discrete-time case to reason about these
models. To keep the main text as readable as possible, the discussion of the literature
on which the material in this chapter is based is deferred to Sect. 5.5.

5.2 (Precise) Stochastic Processes

We will start the exposition around stochastic processes in a relatively general and
abstract sense but will quickly make things more specific. Throughout the remainder
of this chapter, we will consider some fixed abstract state-space X . A state is
an element x ∈ X and represents uniquely the relevant information about the
underlying system that we are interested in modelling. So as not to complicate
matters, we will assume throughout that X is finite, so that we can identify it
without loss of generality as the set X = {1, . . . , k} ⊂ N. Note that here and
in what follows, we denote with N the natural numbers and will write N0 := N∪{0}
when we include zero. Furthermore, the real numbers are written R, the non-
negative reals are R≥0 and the positive reals are R>0.

Because we are interested in modelling a system whose state x ∈ X changes
over time, we next identify some time-dimension T. A crucial choice to be made
later on is whether we are considering processes in discrete-time, in which case we
identify T = N0, or processes in continuous-time, in which case T = R≥0. For now
we simply keep the discussion general without making this identification.

With the state-space and time-dimension in place, it now makes sense to talk
about the realisation of some (yet to be identified) stochastic process. Such a
realisation is also called a sample path, and it is a function ω : T → X . So,
this ω describes for each point in time t ∈ T the state ω(t) ∈ X that the system
was in at that time. We collect in the set Ω all these sample paths. For technical
reasons, it is sometimes required to restrict attention to paths that satisfy sufficient
smoothness conditions; for instance, when T = R≥0, it is common practice to let
Ω only contain càdlàg functions, that is, paths ω(t) that are right-continuous and
whose left-sided limits exist everywhere.

This set Ω thus contains all possible ways in which the system might behave
over time; it can therefore be considered an outcome space of a stochastic model.
Formally, we will consider some abstract underlying probability space (Ω,F , P ),
where F is some appropriate σ -algebra on Ω and where P is a probability measure
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on (Ω,F ). Given this probability space, we can finally formalise the notion of a
stochastic process as a collection {Xt }t∈T of random variables associated to this
probability space. We will here slightly restrict our definition to the following
specific stochastic process:

Definition 5.1 (Stochastic process) Fix a time-dimension T and consider a prob-
ability space (Ω,F , P ). Then (the corresponding) stochastic process is the collec-
tion {Xt }t∈T of random variables Xt : Ω → X : ω �→ ω(t), t ∈ T, on this
space.

Corollary 5.1 Fix a time-dimension T; consider a probability space (Ω,F , P );
and let {Xt }t∈T be the corresponding stochastic process. Then for all t ∈ T and
x ∈ X , it holds that Pr(Xt = x) = P

({ω ∈ Ω : ω(t) = x}).

Proof Fix t ∈ T, and recall the definition of a random variable: for all x ∈ X , the
probability Pr(Xt = x) of Xt taking the value x is equal to P

(
X−1

t (x)
)
, the measure

of its preimage in Ω . Since Xt(ω) = ω(t), we have X−1
t (x) = {ω ∈ Ω : ω(t) =

x}. �	
The above is a formal way of saying that, and how, these random variables {Xt }t∈T
are associated to the given probability space. In words, for some fixed time t ∈ T,
Xt is a random variable that takes on a value x ∈ X with probability equal to the
measure of the set of paths along which the state at time t is x. Conversely, if we fix
the outcome ω ∈ Ω , then the collection {Xt }t∈T can be considered a deterministic
process, and Xt(ω) = ω(t) for all t ∈ X .

Note, therefore, that all the quantitative information about the probability of the
process taking on certain values at given points in time are completely determined
by the measure P . It is therefore also intuitive to instead consider this measure P to
be ‘the stochastic process’, although this is technically an abuse of terminology. This
is because, for a given probability space (Ω,F , P ), it is possible to define many
different stochastic processes; any T-indexed collection of random variables on this
space satisfies the general definition. However, in a sense, the stochastic process in
Definition 5.1 can be viewed as the ‘canonical’ stochastic process corresponding
to the given probability space, since it specifically and exactly represents the
uncertainty about which states might be obtained at different points in time. We
will therefore, and for notational convenience, often refer to the measure P and its
corresponding stochastic process {Xt }t∈T interchangeably and without confusion.

Next, it will be convenient to have a standardised notation to index a subset of the
random variables of a stochastic process. To this end, for any finite sequence of time
points t = t1, . . . , tn in T, with n ∈ N, we will write Xt = Xt1 , . . . , Xtn . Typically,
these sequences will be taken to be ordered, so that t1 < · · · < tn. Note that each of
the random variables Xti , i = 1, . . . , n takes values in X . Hence, the sequence Xt
takes values (jointly) in X n = ×n

i=1X . An element of this joint state-space is thus
a vector (x1, . . . , xn) ∈ X n. When we are explicitly talking about a sequence t of
n time points, we will also write xt to denote a generic element of X n.
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In what follows, we will be interested in computing the expectation of some real-
valued function, whose value depends on the specific realisation of the stochastic
process. To prevent technical difficulties, we will assume that this function only
depends on a finite number of time points; without loss of generality, we can then
assume that it is a map f : X n → R, with n ∈ N, whose value depends on the
n random variables Xt, with t = t1, . . . , tn in T. We collect in the set L (X n) all
such real-valued functions on X n. The expected value of any such f ∈ L (X n)

on the n time points t is defined as

EP

[
f (Xt)

] :=
∑

xt∈X n

f (xt)P (Xt = xt) , (5.1)

where we have implicitly introduced the intuitive notation for the set

(Xt = xt) :=
{
ω ∈ Ω : (∀i ∈ {1, . . . , n} : ω(ti) = xti

)}
.

In Eq. (5.1), we use the subscript P for the expectation operator EP to make explicit
that it is taken with respect to the measure P ; this will be notationally convenient
further on.

We finish this first introduction by recalling the notion of conditional probabili-
ties and conditional expectations. For any two finite sequences of time points t and
s in T, the conditional probability of Xt, given Xs, is derived using Bayes’ rule:

P(Xt | Xs) := P(Xs, Xt)

P (Xs)
,

whenever P(Xs) is strictly positive. The necessity of the final condition is obvious;
it leads to a division by zero whenever it does not hold.

Using this notion of conditional probability, we can define conditional expec-
tations analogously. Suppose the sequences s and t are of length n,m ∈ N,
respectively. Then for any f ∈ L (X n+m) on Xs, Xt we define, for all xs ∈ X n,

EP

[
f (Xs, Xt)

∣∣ Xs = xs
] :=

∑

xt∈X m

f (xs, xt)P (Xt = xt | Xs = xs) .

5.2.1 Probability Trees

The preceding discussion introduced stochastic processes in a very general, but
rather abstract sense. We will build further intuition by next offering a different view
and representation, by means of probability trees. In the remainder of this section,
unless otherwise specified, we will focus on discrete-time stochastic processes,
whence we identify T = N0.



146 T. Krak

We next need some notation and definitions for ‘partial paths’, which in this
setting are also called situations. As before, a (full) path is a map ω : N0 → X .
In contrast, a situation is defined as a (finite length) prefix of such a path. In other
words, a situation is an element of a set X n, for some n ∈ N. If w ∈ X n, n ∈ N,
is a situation, we write wi for its (i + 1)-th coordinate, i ∈ {0, . . . , n − 1}, and we
say that its length is |w| = n. Note that the indexing over the coordinates is taken to
start from zero rather than one—this is done for notational consistency with paths
ω. Since we will need to refer to it so often, we introduce the shorthand notation
w� for the last element of w; so if w has length n, then w� := wn−1. The set of all
non-empty situations is X ∗ := ∪n∈NX n, and we define X ∗

� := {�} ∪ X ∗, where
we add the empty situation denoted by �.

As a final point in this notational digression, for any s, t ∈ N0 such that s ≤ t ,
we will introduce the shorthand notation s : t to denote the sequence of time points
s, . . . , t . Using our previously introduced notation, we can then write Xs:t for the
random variables at these time points. Furthermore, for any n ∈ N0 and any situation
w ∈ X n+1, we can then use the previously introduced notation to write X0:n = w;
this is understood to mean that the random variables at time points 0, . . . , n obtained
the states corresponding to the situation w.

We endow the set X ∗
� with the prefix order, denoted ≺, which is a partial order

such that � ≺ v for all v ∈ X ∗ and for all v,w ∈ X ∗ with lengths n = |v|
and m = |w|, it holds that v ≺ w if and only if n < m and vi = wi for all
i ∈ {0, . . . , n − 1}. This is just a rigorous but somewhat obfuscated way of saying
that v ≺ w if ‘v is the beginning of w’ or ‘w is what you can get if v happens first,
and then some other things happen’ or, indeed, ‘v is a prefix of w’.

The important thing to notice is that the ordered set (X ∗
�,≺) induces a graphical

tree structure, with all the situations as its vertices. This tree is what is known as
the event tree. It has � as its root, and, for all v,w ∈ X ∗

�, w is a descendant of v

exactly if v ≺ w. An example of such a tree is shown in Fig. 5.1, which (partially)
shows the event tree corresponding to a binary state-space X = {a, b}.

Such an event tree can be turned into an intuitive representation of a stochastic
process by augmenting it into a probability tree. This is done by assigning to each
situation w ∈ X ∗

� in the tree a local model pw, which is a probability mass function
on X ; that is, it is a map pw : X → R≥0 such that

∑
x∈X pw(x) = 1. An example

of this is again illustrated in Fig. 5.1.

Definition 5.2 (Probability tree) A probability tree is a tuple (X ∗
�,≺, p(·)),

where X ∗
� is the set of all situations, ≺ is the prefix order on X ∗

� and p(·) :
X ∗

� × X → R≥0 represents all local models, so that
∑

x∈X pw(x) = 1 for all
w ∈ X ∗

�.

The mechanism by which a stochastic process obtains a certain realisation
ω ∈ Ω can now be interpreted as performing a weighted, random walk along
this probability tree, starting from �. Following the tree in Fig. 5.1, this is done
as follows: from �, we transition either to a, with probability p�(a), or to b, with
probability p�(b). Suppose we transition to a. From this new situation, the next step
will take us either to aa, with probability pa(a), or to ab, with probability pa(b).
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Fig. 5.1 A (partial) event tree for a binary state-space X = {a, b}. The vertices are situations, i.e.
elements of X ∗

�, and the edges are induced by the prefix order ≺. Dashed lines represent branches
that are not shown in the figure. The tree has been augmented to a probability tree, by assigning to
each w ∈ X ∗ a local model pw . A time axis represents at which point in time the situations can
occur

Proceeding in this fashion, an infinite random walk along this tree generates a full
path ω : N0 → X , where, for all t ∈ N0, the state ω(t) represents the (randomly
chosen) branch that we took along the tree at the (t + 1)-th step.

This ‘path construction’ view allows us also to connect back to the measure-
theoretic definition that we encountered earlier. To obtain this correspondence in
one direction, fix a probability tree (X ∗

�,≺, p(·)) and let (Ω,F ) be an appropriate
measurable space of discrete-time sample paths, on which we will aim to construct
the measure P quantifying, in the measure-theoretic sense, the uncertainty of the
corresponding stochastic process {Xt }t∈N0 on the resulting probability space.

We now reason intuitively by using the ‘random walk’ along the probability tree.
Starting from �, we transition to a first situation x ∈ X with probability p�(x).
From there, we could then perform the entire infinite random walk to generate the
remainder of the path. So, a different way of saying this is that, of all the random
paths ω ∈ Ω that could be generated, a fraction of p�(x) of them will start with
ω(0) = x. Using also the interpretation given by Corollary 5.1, it therefore makes
sense to define the first-step marginal measure P ∗(X0 = x) := p�(x) for all x ∈
X .

Let us now consider the next step, and assume the first step down the tree resulted
in a situation x ∈ X . Then, with probability px(y), y ∈ X , the next situation will
be xy. In terms of paths that could be generated, a fraction of px(y) of the paths that
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satisfy ω(0) = x will furthermore satisfy ω(1) = y. Therefore, we define for the
second-step marginal measure P ∗(X0 = x,X1 = y) := p�(x)px(y).

Proceeding in this manner, for every situation w ∈ X ∗ with length n+1, n ∈ N0,
we can compute the (n + 1)-th step marginal measure as

P ∗(X0:n = w
) := p�

(
w0

) n∏

i=1

pw0···wi−1

(
wi

)
,

or in words, by multiplying all probabilities given by the local models of the
situations encountered on the path from the root of the tree, down to the situation w.

A fundamental result in the measure-theoretic treatment of stochastic processes
(known as the Kolmogorov extension theorem) states that the collection of all these
n-th step marginal measures P ∗ induces (‘coherently’) a probability measure P on
(Ω,F ). Specifically, the finite n-th step marginals of P will correspond exactly to
these n-th step marginal measures that we constructed from the probability tree. This
establishes the connection between probability trees and discrete-time measure-
theoretic stochastic processes, in that the latter can be constructed from the former.

For the other direction, so, to construct a probability tree from a given probability
space (Ω,F , P ), we start with an event tree (X ∗

�,≺) and aim to construct the local
models p(·). Using the intuitive interpretation offered by Corollary 5.1, we start by
setting p�(x) = P(X0 = x) for all x ∈ X . For all other situations w ∈ X ∗ with
length n + 1, n ∈ N0, the local model pw is defined as the conditional measure
constructed from Bayes’ rule, i.e. for all x ∈ X ,

pw(x) = P
(
Xn+1 = x

∣∣X0:n = w
) = P

(
X0:n = w,Xn+1 = x

)

P
(
X0:n = w

) . (5.2)

This also establishes the connection in the other direction. It can be verified that,
by now constructing from this probability tree a measure P ∗, say, in the manner
described above, we obtain again P ∗ = P ; so, we conclude that this yields a one-
to-one correspondence between probability trees and measure-theoretic stochastic
processes.

It should be noted that the second direction in the preceding discussion has one
(rather large) caveat: it does not work when there are partial paths that have zero
probability to occur. This is because then Bayes’ rule cannot define the conditional
measure required to construct the local model for the situation corresponding to that
partial path, since it would result in a division by zero.

To summarise, we can conclude that there is indeed a correspondence between
the two representations that we have seen so far (up to some technical difficulties
surrounding probabilities that are zero). We have seen that the graphical tree
structure allows us to reason intuitively about how a stochastic process generates
a sample path, by ‘walking’ from the root of the tree down its branches. As we will
discuss next, we can also use this structure to ‘reason backwards’: from vertices
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deep down in the tree back to the root. We will see that this allows one to intuitively
derive computational methods for working with stochastic processes.

So, fix n ∈ N0, and let f ∈ L (X n+1) be a real-valued function for which
we aim to compute the expected value with respect to the random variables X0:n
at the time points 0, . . . , n ∈ N0. Note that it suffices to consider this case, in the
sense that any function defined on a subset of the variables X0:n, can always be
trivially extended to a function on all of them. Now first notice the following. For
any situation w ∈ X ∗ with length |w| = n + 1, the value of f in w is easy to
compute; it is simply f (w). Hence in particular, the expected value of f , in w, is
simply

E
[
f (X0:n)

∣∣X0:n = w
] = f (w) .

Recall that the situation w represents a node in the event tree. We will now ‘pull
back’ the above expected value, to the time point n − 1. Consider therefore the
parent situation of w in the probability tree; we will compute the expected value of
f in this parent situation.

This parent is a situation v of length |v|= |w|−1 = n, which entirely coincides
with w: vi = wi for all i = 0, . . . , n − 1. Associated to v is the local probability
model pv which, as we have discussed above, represents the probability with
which a random walk along the tree travels through the various children of v.
In particular, such a random walk goes through the situation w, with probability
pv(w�). Therefore, the contribution of the expected value in w, to the expected
value in v, is the expected value in w weighted by pv(w�). Since this holds for all
children of v, we can write

E
[
f (X0:n)

∣∣X0:(n−1) = v
] =

∑

x∈X
pv(x)E

[
f (X0:n)

∣∣X0:(n−1) = v,Xn = x
]
.

This ‘pullback’ operation is graphically illustrated in Fig. 5.2.
Now, observe that the above conditional expectation of f in v is itself a real-

valued function in L (X n). Its value is determined by the states at times 0, . . . , n−
1. We can therefore repeat the above argument; we pull back to the parent of v,
then to the parent of that situation and so on. Eventually, the parent that we are
considering is the empty situation �; we then finish by computing

E
[
f (X0:n)

] =
∑

x∈X
p�(x)E

[
f (X0:n)

∣∣ X0 = x
]
,

which is exactly the expected value of f that we started out wanting to compute.
This method to compute the expected value of a function by ‘pulling back’

the ‘local’, or conditional, expected values, uses the interpretation of a stochastic
process as a probability tree. The method relies on a property that is called the
law of iterated expectation, or alternatively the law of total probability. It can be
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Fig. 5.2 Graphical illustration of ‘pulling back’ the expected value of a function f on X0:2, in a
probability tree on a binary state-space X = {a, b}. Top: the function f is entirely determined
by the situations of length 3, i.e. the expected value of the function in those situations is simply
the value of the function evaluated in that situation. Bottom: the result after ‘pulling back’ the
expectations by one step. The resulting conditional expectation is a function whose value is entirely
determined by the situations of length 2. The values are the weighted average of the expectations
in the child nodes, weighted by the local models p(·)

stated formally in the measure-theoretic context, where it is also easily stated for
continuous-time stochastic processes.

Theorem 5.1 Fix a time-dimension T ∈ {N0,R≥0}, and let {Xt }t∈T be a stochastic
process on (Ω,F , P ). Choose any three ordered sequences s = s1, . . . , sn; t =
t1, . . . , tm and u = u1, . . . , u� in T, with n,m, � ∈ N such that sn < t1 and tm < u1.
Then for any real-valued function f ∈ L (X n+m+�) on Xs, Xt, Xu, it holds that

E
[
f (Xs, Xt, Xu)

∣∣Xs
] = E

[
E

[
f (Xs, Xt, Xu)

∣∣ Xs, Xt
] ∣∣∣ Xs

]
,

whenever P(Xs) and P(Xs, Xt) are everywhere strictly positive.

In this result, the final constraint is required to ensure that the conditional expecta-
tions are all well-defined in the measure-theoretic sense. This point did not arise in
the discussion using probability trees, because there the local (conditional) models
are always properly defined by the model specification.
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Having discussed how to interpret probability trees and how to use them to reason
about the computation of expected values, we now move on to a discussion of their
structural properties. Note that the specification of a probability tree is still relatively
complicated. This is not really due to the structure of the tree; the situations X ∗

� and
prefix order ≺ carry enough information to construct the tree up to any desired level,
and their mathematical specification is straightforward. However, in order to specify
all the local models p(·), we need to provide an infinite number of probability mass
functions on X —one for each situation w ∈ X ∗

�. This is why one often restricts
attention to simpler models, where one needs fewer, and often only finitely many,
local models.

These simplifications can be seen as a matter of degree. At the one extreme, we
have the general definition that we used above, where each situation w ∈ X ∗

� has
a local model pw. This leads to a lot of possible structure but is hard to specify. At
the other extreme is the independent and identically distributed (i.i.d.) process; this
is when we only have a single probability mass function p, and we set pw := p for
all w ∈ X ∗

�. For such a process, no matter what situation we are in, the next branch
will always be chosen according to p. This process is easy to specify, but it does not
yield a lot of structure that can capture the dynamics of the underlying system that
we are trying to model.

A useful step up from the i.i.d. process is reached by the popular class of models
known as homogeneous Markov chains. For a homogeneous Markov chain, the local
model only depends on the last step of the corresponding situation, and not on what
happened before that:

Definition 5.3 (Homogeneous Markov chain as probability tree) A probability
tree (X ∗

�,≺, p(·)) is called a homogeneous Markov chain if pv = pw for all
situations v,w ∈ X ∗ such that v� = w�.

Corollary 5.2 Let (X ∗
�,≺, p(·)) be a homogeneous Markov chain. Then pw = px

for all x ∈ X and all w ∈ X ∗ such that w� = x.

Proof Trivial from Definition 5.3 and the fact that all x ∈ X are also situations.
�	

An example for the binary state-space X = {a, b} is shown in Fig. 5.3.
Additional degrees of freedom can be introduced back into this model by also letting
the local models depend on the corresponding depth of the tree. The dynamics can
then depend on the point in time, but not on the specific history up to that time. This
yields the more general definition of a (non-homogeneous) Markov chain:

Definition 5.4 (Markov chain as probability tree) A probability tree (X ∗
�,≺

, p(·)) is called a Markov chain if pv = pw for all situations v,w ∈ X ∗ for which
|v| = |w| and v� = w�.

An example for the binary state-space X = {a, b} is shown in Fig. 5.4. It can be
verified that a homogeneous Markov chain is a Markov chain, but not—in general—
the other way around. Note that, in contrast to homogeneous Markov chains where
we only needed to specify local models px for all x ∈ X , we now need different
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Fig. 5.3 A homogeneous Markov chain, represented as a probability tree

local models for each level of the tree. So, we are now back to needing an infinite
number of local models in order to fully describe such a model.

These definitions of (homogeneous) Markov chains can also be conveniently
translated back to the measure-theoretic context. We here give the general definition,
for an arbitrary time-dimension (so, either T = N0 or T = R≥0) and multiple steps
into the future:

Definition 5.5 (Markov chain as probability measure) A stochastic process
{Xt }t∈T on (Ω,F , P ) is called a Markov chain if for all s1, . . . , sn, t ∈ T, n ∈ N,
such that s1 < · · · < sn < t , it holds that P(Xt | Xs1 , . . . , Xsn) = P(Xt | Xsn). A
stochastic process that is a Markov chain is said to have the Markov property.

Similarly, the notion of homogeneity can be defined measure-theoretically and for
an arbitrary time-dimension:

Definition 5.6 (Homogeneous Markov chain as probability measure) A
stochastic process {Xt }t∈T on (Ω,F , P ) is called a homogeneous Markov chain if
it is a Markov chain, and if additionally, for all s, t ∈ T such that s < t , it holds that
P(Xt | Xs) = P(Xt−s | X0).

We leave it as an exercise to verify that, when T = N0, Definitions 5.5 and 5.6
correspond to what we would expect from Definitions 5.4 and 5.3, respectively.
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Fig. 5.4 A (non-homogeneous) Markov chain, represented as a probability tree as above

5.2.2 Bayesian Networks

We now move on to a different graphical representation of stochastic processes that
is useful for Markov chains in particular: Bayesian networks (BNs), a specific type
of probabilistic graphical model. While the graphical structure of probability trees
in Sect. 5.2.1 emphasised the partial paths in the realisation of a stochastic process,
the BN representation emphasises the individual random variables Xt .

The BN representation of a discrete-time Markov chain {Xt }t∈N0 is given in
Fig. 5.5. The structure is a directed acyclic graph, with one node associated to
each random variable Xt and arcs representing the dependence of the receiving
node’s random variable’s distribution, on the originating node’s random variable’s
value. Due to the Markov property (c.f. Definition 5.5), each random variable Xn,
n ∈ N, is only (‘directly’) dependent on Xn−1, the value of the random variable
immediately before it. The initial variable X0 is somewhat of a special case, since it
does not depend on any other variables; there are no time points preceding it. Due to
these properties, the graphical structure is that of a chain; this may go some way in
explaining the name ‘Markov chain’. In the remainder of this section, we will refer
to both a node in the BN and to its random variable, using the notation Xt .

It should be emphasised that the graphical structure is not saying that only nodes
which are adjacent in the BN can influence each other. The formal interpretation
is as follows: for any node Xn, n ∈ N, conditional on the value of the parent(s)
of Xn, the distribution of Xn is probabilistically independent of the non-parents,
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Fig. 5.5 Bayesian network representation of a discrete-time Markov chain {Xt }t∈N0 . Nodes
represent random variables. An incoming arc on a node represents that the distribution of the
corresponding random variable is influenced by the originating node of that arc. Correspondingly,
each node associates a probability distribution to its random variable, conditional on the values of
the random variables of the nodes on which it is dependent as before

non-descendants of Xn. This is the general interpretation of the independence
properties of the arcs in a BN. In the special case of Markov chains that we are
considering here, the interpretation vastly simplifies. Notably, the ‘non-parents, non-
descendants’ of any node Xn are exactly its ‘grandparents’, ‘great-grandparents’ and
so on; it is the set of nodes {Xm : m ∈ N0, m < n − 1}.

Put differently, the value of Xn influences the distribution of all of its descendants
(i.e. the nodes Xm, m > n), so long as we do not know the value of any of those
descendants themselves. We will next consider how we can quantify this.

We start by observing that for each node Xn, n ∈ N, we have the associated
conditional probability P(Xn | Xn−1). Since the state-space X is taken to be finite,
we can conveniently represent these conditional probabilities in a |X |×|X | matrix.
For any t ∈ N0, this matrix Tt is defined, for all x, y ∈ X , as

Tt (x, y) := P(Xt+1 = y | Xt = x) , (5.3)

where the indexing is taken to be row-first. This matrix Tt is called the transition
matrix of the Markov chain at time t . Its elements Tt (x, y) are called the transition
probabilities from x to y, and they are the probabilities that a system that is in state x

at time t will be in state y at time t+1. This explains the subscript-indexing, whereby
the matrix Tt contains the conditional probabilities associated to node Xt+1.

These transition matrices make it easy to connect back to the probability tree
representation of Markov chains that we encountered earlier:

Proposition 5.1 Let (X ∗
�,≺, p(·)) be a probability tree that is a Markov chain, and

let Tt denote the associated family of transition matrices, as defined above. Then for
all t ∈ N and all w ∈ X ∗ such that |w| = t , it holds that pw(y) = Tt (w�, y) for
all y ∈ X .

Proof Use Eq. (5.2), Definition 5.5 and Eq. (5.3). �	
The reason that we represent these probabilities using matrices is that this opens

up the entire toolbox of linear algebra. We will see that this allows us to very
succinctly write down certain relations and properties. For instance, we can now
write the influence of a node on its descendants, using a simple matrix product:
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Proposition 5.2 Let {Xt }t∈N0 be a discrete-time Markov chain, and let Tt be the
associated family of transition matrices, as defined above. Then for all s, t ∈ N0
such that s ≤ t , and all x, y ∈ X , it holds that P(Xt+1 = y | Xs = x) =
[Ts · · · Tt ] (x, y).

Proof We give a proof by induction. For t = s the result is immediate from the
definition of the transition matrix Ts . Now suppose the result is true for t − 1; we
show that it is also true for t :

P(Xt+1 = y | Xs = x) =
∑

z∈X
P(Xt+1 = y,Xt = z | Xs = x)

=
∑

z∈X
P(Xt = z | Xs = x)P (Xt+1 = y | Xt = z, Xs = x)

=
∑

z∈X
[Ts · · · Tt−1] (x, z)P (Xt+1 = y | Xt = z)

=
∑

z∈X
[Ts · · · Tt−1] (x, z)Tt (z, y) = [

Ts · · · Tt−1Tt

]
(x, y) ,

where the first and second equalities are basic properties of probabilities, the
third equality is due to the induction hypothesis and the Markov property (c.f.
Definition 5.5), the fourth equality uses the definition of the transition matrix Tt

and the final equality uses the definition of a matrix product. �	
Another useful property of this representation is that it allows us to write

conditional expectations of functions f ∈ L (X ) using matrix-vector products.
In particular, again because X is finite, any f ∈ L (X ) can be interpreted as a
vector in R

|X |; the coordinates are simply the values f (x), x ∈ X . Hence:

Proposition 5.3 Let {Xt }t∈N0 be a discrete-time Markov chain, and let Tt be the
associated family of transition matrices. Then, for all f ∈ L (X ), all t ∈ N0 and
all x ∈ X , it holds that E

[
f (Xt+1) | Xt = x

] = [Ttf ] (x).

Proof Simply use the definition of the matrix-vector product:

[Ttf ] (x)=
∑

y∈X
Tt (x, y)f (y)=

∑

y∈X
P(Xt+1=y | Xt=x)f (y)=E

[
f (Xt+1) | Xt=x

]
.

�	
The above properties can be combined to give a simplified version of the law of

iterated expectation (Theorem 5.1) that we encountered in Sect. 5.2.1:

Corollary 5.3 Let {Xt }t∈N0 be a discrete-time Markov chain, and let Tt be the
associated family of transition matrices. Then, for all f ∈ L (X ), all s, t ∈ N0
such that s ≤ t and all x ∈ X , it holds that E

[
f (Xt+1) | Xs = x

] =
[Ts · · · Ttf ] (x).
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Fig. 5.6 Graphical representation of the ‘pulling back’ interpretation of the simplified version of
the law of iterated expectation in Corollary 5.3. The function f , of which we want to compute
the expectation on Xt+1, given Xs , starts at node Xt+1, where its value is trivial. The function is
then ‘pulled back’ to the parent Xt of Xt+1, by taking the local expectation, by left-multiplying
with Tt . This new function Ttf on Xt is then ‘pulled’ back by multiplying with Tt−1 and so forth.
Eventually, the function Ts+1 · · · Ttf is pulled into Xs , by left-multiplying with Ts . The resulting
function on Xs is the conditional expectation of interest as before

Proof Immediate from Propositions 5.2 and 5.3. �	
Note that, where the law of iterated expectation in Theorem 5.1 could be interpreted
as ‘pulling back’ in the associated probability tree, the above simplified version
can additionally be interpreted as ‘pulling back’ the conditional expectations in the
associated BN, through the product of the transition matrices. This is graphically
represented in Fig. 5.6.

5.2.3 Transition Graphs

We now move on to yet another graphical representation: the transition graph of a
homogeneous (discrete-time) Markov chain. We start by noticing the following:

Proposition 5.4 Let {Xt }t∈N0 be a discrete-time homogeneous Markov chain, and
let Tt be the associated family of transition matrices. Then there is a unique matrix
T such that Tt = T for all t ∈ N0.

Proof The matrix of interest can be identified as T := T0. Now, using the definition
of a homogeneous Markov chain (Definition 5.6) and the transition matrix Tt for
any t ∈ N0, it holds for all x, y ∈ X that

T (x, y)=T0(x, y)=P(X1=y | X0=x)

=P(X(t+1)−t=y | X0=x)=P(Xt+1=y | Xt = x) = Tt (x, y) ,

which concludes the proof; uniqueness is trivial. �	
As an aside, note therefore that a discrete-time homogeneous Markov chain can be
characterised (up to the initial distribution P(X0)) by a single transition matrix T . In
particular, this T can be seen as the canonical parameter of the Markov chain. This
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b

a

c

P(a |a)

P(b |a)

P(c |b)

P(a |c)

P(b |c)

Fig. 5.7 Example transition graph for a discrete-time homogeneous Markov chain with a ternary
state-space X = {a, b, c}. The transition graph is a directed graph, with a vertex for each state and
an arc from the vertex of x to that of y, with x, y ∈ X , whenever T (x, y) = P(X1 = y | X0 =
x) > 0. The arcs are labelled with the corresponding transition probabilities. The figure uses the
shorthand notation P(y|x) for the elements T (x, y) of T as before

relative ease of parameterisation—compared to say an arbitrary stochastic process,
which needs separate parameters for every possible history—is arguably one of the
reasons that make homogeneous Markov chains such convenient and widely used
models.

Moving on, the transition graph of a discrete-time homogeneous Markov chain
is a graphical representation of its associated transition matrix T . In this way,
this representation emphasises the interactions between the states, rather than the
random variables. An example transition graph is shown in Fig. 5.7. The formal
definition is as follows:

Definition 5.7 (Transition graph) Let {Xt }t∈N0 be a discrete-time homogeneous
Markov chain, and let T be its associated transition matrix. Then its associated
transition graph is a directed graph (V ,E) with one vertex for each state, V = X ,
and, for all x, y ∈ X , an arc (x, y) ∈ E whenever T (x, y) > 0.

One of the reasons transition graphs are sometimes useful is that they allow one
to study which parts of a system can be reached from other parts of the system. The
simplest application is that of communicating states:

Definition 5.8 (Communicating states) Let {Xt }t∈N0 be a discrete-time homoge-
neous Markov chain, and let T be its associated transition matrix. For any two states
x, y ∈ X , y is said to be accessible from x if there is some n ∈ N such that
T n(x, y) > 0. Furthermore, x and y are said to communicate if y is accessible from
x, and x is accessible from y.

Note that in the above, the term T n denotes the n-th matrix power of T (c.f.
Proposition 5.2). This has an intuitive graphical interpretation:

Corollary 5.4 Let {Xt }t∈N0 be a discrete-time homogeneous Markov chain. Then
for any x, y ∈ X , y is accessible from x if and only if there is a path from x to y
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Fig. 5.8 Transition graph of
a Markov chain that is not
irreducible. It has two
communication classes, {a, b}
and {c, d}. The set {c, d}
dominates {a, b} and is the
top (communication) class of
the Markov chain. This
Markov chain is top class
regular

in the associated transition graph. Furthermore, x and y communicate if and only
if there is a cycle in the associated transition graph that contains both x and y.

Proof Trivial from Definitions 5.7 and 5.8. �	
Inspection of the transition graph in Fig. 5.7 shows that, in that example, all
states communicate with each other. When this is the case, i.e. when all states
communicate, the Markov chain is said to be irreducible. A maximal set of states
that all communicate with each other is called a communication class. Hence, an
irreducible Markov chain has only a single communication class, which is equal to
X .

Note that not every Markov chain is irreducible; in general there may be
more than one communication class. An example is given in Fig. 5.8. When a
communication class A ⊂ X is accessible from a different communication class
B ⊂ X , then A is said to dominate B. A communication class which is not
dominated is called maximal. When a Markov chain has only a single maximal
communication class, this is called the top (communication) class.

Investigation of the communicating states in a Markov chain is often useful when
one is interested in the long-term behaviour of the system. After all, while a system
might begin in one state, it need not necessarily always eventually return to that
state; this is the property that is illustrated in Fig. 5.8.

An important concept is that of the regularity of the communication classes of a
Markov chain. A communication class is regular if there is a number n ∈ N such
that it is possible to go from any state in the class to any other state in the class, in
exactly n steps. Of particular importance is the notion of top class regularity:

Definition 5.9 (Top class regularity) Let {Xt }t∈N0 be a discrete-time homoge-
neous Markov chain, and let T be its associated transition matrix. Then the Markov
chain is said to be top class regular if

{
y ∈ X : (∃n ∈ N)(∀x ∈ X ) T n(x, y) > 0

} �= ∅ ,

and in that case the top class Xtop of the Markov chain exists and is equal to this
set. When furthermore Xtop = X , the Markov chain itself is said to be regular.
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The reason that this property is so important is that it provides a sufficient
condition for the long-term behaviour of a Markov chain to converge to a stationary
distribution, regardless of the state in which it started:

Theorem 5.2 Let {Xt }t∈N0 be a discrete-time homogeneous Markov chain, and let
T be its associated transition matrix. Let this Markov chain be regular. Then there
is a probability mass function P∞ : X → R≥0 such that, for all x, y ∈ X ,

P∞(y) = lim
n→+∞ T n(x, y) .

5.3 Imprecise Discrete-Time Markov Chains

We will now move on to the discussion surrounding imprecise (discrete-time)
Markov chains (IDTMCs). So, we still consider the time-dimension T = N0. We
will generalise each of the representations that we previously encountered to this
new setting, where we roughly follow the same order as in Sect. 5.2.

So, let us start with the ‘measure-theoretic’ representation of imprecise stochastic
processes. In this setting, we consider a set P of probability measures on the
measurable space of paths (Ω,F ). Then for each P ∈ P, we have a probability
space (Ω,F , P ), to which we can associate the precise stochastic process {Xt }t∈N0

as in Definition 5.1. For any function f ∈ L (X n), n ∈ N, we can express the
expected value on the n time points t ⊂ N0 as EP [f (Xt)] as in Sect. 5.2. Recall
from Chap. 2 that in this imprecise probabilistic context, we are more generally
interested in the lower and upper expectation of f , which are defined, respectively,
as

E
P

[
f (Xt)

] := inf
P∈PEP

[
f (Xt)

]
and EP

[
f (Xt)

] := sup
P∈P

EP

[
f (Xt)

]
.

We briefly recall the well-known conjugacy relation EP

[
f (Xt)

] = −E
P

[−f (Xt)
]
,

from which it follows that we can present the remainder of this discussion entirely in
terms of lower expectations; any corresponding results on upper expectations follow
directly through this relation.

Slightly more generally than the above, we will focus on conditional lower
expectations. Similar to the precise case that we discussed before, these are defined
for any f ∈ L (X n+m), n,m ∈ N, any s, t ⊂ N0 such that s and t are of length n

and m, respectively, and any xs ∈ X n, as

E
P

[
f (Xs, Xt)

∣
∣Xs = xs

] := inf
P∈PEP

[
f (Xs, Xt)

∣
∣Xs = xs

]
,

whenever E
P
[Ixs(Xs)] > 0. In this last condition, Ixs is the indicator of xs; for all

ys ∈ X n, Ixs(ys) := 1 if xs = ys and Ixs(ys) := 0, otherwise. Note that then
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0 < E
P
[Ixs(Xs)] = inf

P∈PEP [Ixs(Xs)] = inf
P∈PP(Xs = xs) ,

so this condition guarantees that the conditional expectations are well-defined for
all the precise measures P ∈ P. As before, there are formalisms where this
condition is not strictly required—see, for example, the discussion around the local
models of probability trees—or where it can be weakened. For simplicity, we keep
the condition here to ensure that everything remains well-defined also under the
measure-theoretic interpretation.

We are now ready to give the formal definition of an imprecise discrete-time
Markov chain (IDTMC):

Definition 5.10 (IDTMC as set of processes) An imprecise discrete-time Markov
chain is a set P of probability measures on the measurable space (Ω,F ), with
associated lower expectation operator E

P
as defined above, such that, for all f ∈

L (X ) and all s1, . . . , sn, t ∈ N0 such that s1 < · · · sn < t ,

E
P

[
f (Xt )

∣∣ Xs1 , . . . , Xsn

] = E
P

[
f (Xt )

∣∣ Xsn

]
.

Furthermore, an imprecise discrete-time Markov chain is called homogeneous if,
for all s, t ∈ N0, s < t , and all f ∈ L (X ), it holds that E

P
[f (Xt ) | Xs] =

E
P
[f (Xt−s) | X0].

Let us compare this with Definition 5.5, the measure-theoretic definition of a precise
Markov chain. The first difference is that the imprecise definition above is phrased
in terms of (lower) expectations, whereas the precise definition used probabilities.
We recall that this is because, in the framework of imprecise probability, it does not
suffice to state results in terms of (lower) probabilities; instead the more general
language of (lower) expectation operators is required.

Nevertheless, this definition implies that, in terms of lower probabilities,

inf
P∈PP(Xt = x | Xs1 , . . . , Xsn) = E

P

[
Ix(Xt )

∣∣ Xs1 , . . . , Xsn

]

= E
P

[
Ix(Xt )

∣∣ Xsn

] = inf
P∈PP(Xt = x | Xsn) ,

which displays this imprecise Markov condition in more familiar terms.
One may wonder at this point whether an imprecise Markov chain P is itself a

set of Markov chains; the answer to this question is a resounding no (or at least, not
necessarily). This point deserves the strongest possible emphasis:

An element of an imprecise Markov chain P need not be a Markov chain! So, in general
P(Xt | Xs1 , . . . , Xsn ) �= P(Xt | Xsn) for P ∈ P, with s1 < · · · sn < t in N0.

To clarify, the ‘imprecise Markov condition’ of an imprecise Markov chain is
an ‘independence’ assessment about the lower envelope only. Formally, it is an
assessment of epistemic irrelevance—a specific type of independence that arises in



5 An Introduction to Imprecise Markov Chains 161

imprecise probability theory—which is weaker than strong independence a different
type of independence, and what would hold of all P ∈ P were Markov chains.

In a similar vein, the notion of homogeneity is here only enforced on the lower
envelope. So, for an IDTMC P that is homogeneous, there may be processes P ∈ P

that are neither Markov nor homogeneous.
The reason why we stress this so strongly is twofold. First of all, it implies that

the structural assumptions of an imprecise Markov chain are in fact much weaker
than those of a precise Markov chain—we no longer assume that future events are
fully independent of the history, given the current state, or that their distribution
is independent of the point in time. They might be, of course—there are elements
P ∈ P that satisfy those properties—but it’s not enforced as strictly. In other words,
this model also represents ‘higher-order’ uncertainty about the structural properties
of the system that we are trying to model.

The second reason is that this property is central to all the efficient computational
methods that have been developed for working with imprecise Markov chains. We
will next illustrate this point by moving the discussion to the representation of
IDTMCs as imprecise probability trees.

5.3.1 Imprecise Probability Trees

Recall that for precise probability trees, we associate with each situation w ∈ X ∗
�

a local model pw, which is a probability mass function on X . In contrast, in order
to define imprecise probability trees, we will consider imprecise local models. Such
an imprecise local model Pw is simply a set of probability mass functions on X .
This leads to the following definition:

Definition 5.11 (Imprecise probability tree) An imprecise probability tree is a
tuple (X ∗

�,≺,P(·)), where (X ∗
�,≺) is an event tree and P(·) is a set-valued

function such that, for all w ∈ X ∗
�, Pw is a non-empty set of probability mass

functions on X .

An obvious question is how one should interpret such imprecise probability trees.
As a first step, we consider the (precise) probability trees that are compatible with a
given imprecise probability tree:

Definition 5.12 Let (X ∗
�,≺,P(·)) be an imprecise probability tree. Then a (pre-

cise) probability tree (X ∗
�,≺, p(·)) is called compatible with this imprecise proba-

bility tree, if pw ∈ Pw for all w ∈ X ∗
�.

This immediately lets us connect back to the sets-of-measures that we discussed
before. Specifically, consider an imprecise probability tree (X ∗

�,≺,P(·)), and
suppose the tree (X ∗

�,≺, p(·)) is compatible with it. Then, using the method
outlined in Sect. 5.2.1, we can associate a (precise) measure P to this precise
tree. Collecting in the set P all the associated measures of all precise trees that are
compatible with the imprecise tree, we obtain a set representation as in Sect. 5.3.
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The connection in the other direction is analogous but a bit more subtle. In
particular, if we start from an IDTMC P, then each P ∈ P induces a precise
probability tree. Using the local models of this tree, we can construct set-valued
local models by simply varying P over P. These set-valued local models can then
be used to construct an imprecise probability tree. Clearly, there are then precise
trees that are compatible with this imprecise tree, and each such precise tree induces
a precise measure P ′. However, and this is the crucial observation, it is in general
not guaranteed that such P ′ are included in P!

As a simple example, suppose that X = {a, b} and we start with a set
P containing only two i.i.d. processes, whose local models are given by p, h,
respectively. Then, the induced imprecise probability tree has local models Pw =
{p, h} for all w ∈ X ∗

�. On the other hand, we can easily construct a non-i.i.d.
process such that, for all w ∈ X ∗

�, its local model is pw = p if w� = a and
pw = h, otherwise. Then clearly this process was not in the original set P, but it is
compatible with the imprecise probability tree.

To prevent this from happening, we will require that the set representation P of
the IDTMC is ‘large enough’. Specifically, what we need is that it is already closed
under such ‘recombination’ of local models at different points in time. Whenever
this property holds, we will say that the IDTMC is separately specified. Clearly,
when we start from an imprecise probability tree and construct its set of compatible
processes, this IDTMC will then satisfy this property. In the remainder of this
section, we will assume that a given set P is indeed separately specified. Further
on, when we consider the parametrisation of an IDTMC, we will consider an easy
condition that ensures this will hold.

With this connection between the two representations in place, we can again start
to consider computational methods for lower expectations. Analogous to what we
have seen before, in this context we have a law of iterated lower expectation that we
can use as a computational tool. The imprecise probability tree representation again
provides graphical intuition.

Similar to the exposition in Sect. 5.2.1, we start with a function f ∈ L (X n+1)

of which we want to compute the lower expectation with respect to the states at the
time points 0, . . . , n. Then for any situation w ∈ X ∗ such that |w| = n + 1, the
lower expectation is trivial:

E
P

[
f (X0:n)

∣∣ X0:n = w
] = f (w) .

We then again ‘pull back’ to the parent situation v of w; this is where the main
difference with Sect. 5.2.1 occurs. Notably, we here have an imprecise local model
Pv associated to this node v. The point to the law of iterated lower expectation is
that it suffices to only compute the associated conditional lower expectation locally:

E
P

[
f (X0:n)

∣
∣ X0:(n−1)=v

] = inf
pv∈Pv

∑

x∈X
pv(x)E

P

[
f (X0:n)

∣
∣ X0:(n−1)=v,Xn=x

]
.
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Exactly analogous to the precise case, by repeatedly pulling back until we reach the
root of the tree, we eventually compute

E
P [f (X0:n)] = inf

p�∈P�

∑

x∈X
p�(x)E

P

[
f (X0:n)

∣∣ X0 = x
]

,

which is the lower expectation of interest.
As before, the need to specify these (imprecise) local models Pw for all

situations w ∈ X ∗
� makes such a model difficult to work with. This is simplified for

imprecise Markov chains; note that we here assume the analogue of homogeneity to
hold implicitly:

Definition 5.13 (Homogeneous IDTMC as imprecise probability tree) An
imprecise probability tree (X ∗

�,≺,P(·)) is called an imprecise homogeneous
discrete-time Markov chain if Pv = Pw for all v,w ∈ X ∗ for which v� = w�.

Corollary 5.5 Let (X ∗
�,≺,P(·)) be a homogeneous IDTMC. Then Pw = Px for

all x ∈ X and all w ∈ X ∗ such that w� = x.

Proof Trivial from Definition 5.13 and the fact that all x ∈ X are also situations.
�	

As above, an IDTMC (X ∗
�,≺,P(·)) has a set of compatible precise probability

trees, each of which induces a measure P , and these are collected in the set P, which
is the measure-theoretic IDTMC representation from Definition 5.10. Observe that a
precise probability tree does not have to be a (homogeneous) Markov chain, for it to
be compatible with a given IDTMC! That is, to be compatible, each local model pw,
w ∈ X ∗

�, should be in the set Pw� , and this set depends only on the most recent
state w� of the situation w. But, while in a different situation v such that v� = w�,
we do require that pv ∈ Pv� = Pw� ; we do not require that pv = pw!

We will next illustrate that the law of iterated lower expectation simplifies
further for imprecise Markov chains. We do this again by considering the imprecise
counterpart of Bayesian networks.

5.3.2 Credal Networks

We here consider the graphical representation of imprecise Markov chains as
credal networks. This is the imprecise generalisation of the Bayesian network
representation that we encountered in Sect. 5.2.2. The graphical structure is as
before, with the notable differences being (i) the local models (which are here
replaced with imprecise local models) and (ii) the interpretation of the independence
properties induced by the arcs. Regarding the second point, it suffices for our present
purpose to note that we interpret the structure as a credal network under epistemic
irrelevance. This then has the same consequence as that stated in the beginning of
Sect. 5.3: given the value of the parent of a node Xt , t ∈ N0, the lower expectation
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Fig. 5.9 Credal network representation of an imprecise discrete-time Markov chain. An incoming
arc on a node represents that the local uncertainty model of the corresponding variable is influenced
by the originating node of that arc. Correspondingly, each node associates an imprecise probability
model to its variable, conditional on the values of the random variables of the nodes on which it is
dependent

of any function dependent on Xt does not depend on the values of the non-parents,
non-descendants (again, grandparents and so on) of Xt . For reference, the graphical
representation is drawn in Fig. 5.9.

The interpretation in terms of sets of distributions is as would be expected;
the model induces a set P, each P ∈ P of which satisfies P(Xn | Xn−1) ∈
P(Xn | Xn−1) for all n ∈ N, and P(X0) ∈ P(X0). As before, the independence
assumptions are not necessarily required to hold for these compatible precise mod-
els. Conversely, if we are given an IDTMC P, then the local models P(Xn|Xn−1) of
the credal network are constructed by restricting attention to the conditional events
P(Xn | Xn−1) and varying P over P.

Similar to the discussion around the interpretation of imprecise probability
trees, we here also need some ‘closedness’ assumptions to ensure this duality of
representations holds. Specifically, we again require that P is separately specified.
Furthermore, it is assumed that the local models P(Xn | Xn−1) of the credal
network have separately specified rows. This means that these local models are
not arbitrary sets of conditional probabilities. If we let P(Xn | Xn−1 = x) :={
P(Xn | Xn−1 = x) ∈ P(Xn | Xn−1)

}
for all x ∈ X , then what we require is

that

P(Xn | Xn−1) = ×x∈X P(Xn | Xn−1 = x) . (5.4)

Under these conditions, we can straightforwardly switch between representations.
We next generalise the exposition in Sect. 5.2.2 regarding the associated transi-

tion matrices. To this end, fix any t ∈ N0. Then, as in the precise case, each element
P(Xt+1 | Xt) ∈ P(Xt+1 | Xt) induces a transition matrix Tt . So, let us now consider
the set Tt of transition matrices that is induced by the imprecise local models:

Tt :=
{
Tt : (∀x, y ∈ X : Tt (x, y) = P(Xt+1 = y | Xt = x)

)
,

P (Xt+1 | Xt) ∈ P(Xt+1 | Xt)
}

.

A key insight is that we can use this set of transition matrices to define a convenient
computational tool for lower expectations:
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Definition 5.14 Let P be an IDTMC, and let Tt be the associated family of sets of
transition matrices, as defined above. Then, for each t ∈ N0, the associated lower
transition operator T t : L (X ) → L (X ) is defined, for all f ∈ L (X ) and all
x ∈ X , as

[
T tf

]
(x) := inf

Tt∈Tt

[
Ttf

]
(x) .

This lower transition operator essentially fulfils the same role as the transition
matrices from which it is derived. In particular, we have the following:

Proposition 5.5 Let P be an IDTMC, and let T t be the associated family of lower
transition operators. Then, for all f ∈ L (X ), all t ∈ N0 and all x ∈ X , it holds
that

[
T tf

]
(x) = E

P

[
f (Xt+1) | Xt = x

]
.

Proof Simply use the definitions together with Proposition 5.3:

[
T tf

]
(x)= inf

Tt∈Tt

[
Ttf

]
(x)= inf

Tt∈Tt

∑

y∈X
f (y)Tt (x, y)

= inf
P(Xt+1|Xt )∈P(Xt+1|Xt )

∑

y∈X
f (y)P (Xt+1=y|Xt = x)

= inf
P∈P

∑

y∈X
f (y)P (Xt+1=y|Xt=x)

= inf
P∈PEP

[
f (Xt+1)

∣∣ Xt=x
]=E

P

[
f (Xt+1)

∣∣ Xt=x
]
,

where in the fourth equality, we used the definition of the compatible measures. �	
As in Corollary 5.3, we can now state the simplified law of iterated lower
expectation for imprecise Markov chains, using these lower transition operators:

Theorem 5.3 Let P be an IDTMC that is separately specified, and let T t be the
associated family of lower transition operators. Then, for all f ∈ L (X ), all s, t ∈
N0 such that s ≤ t and all x ∈ X , it holds that

E
P

[
f (Xt )

∣
∣ Xs = x

] = [
T s · · · T tf

]
(x) ,

where the right-hand side represents an iterated operator product (composition).

We omit the full proof, but the interested reader can reconstruct the argument by
using the general computational process of iterated lower expectation as explained
in Sect. 5.3.1, the imprecise Markov property from Definition 5.10 and the
interpretation of the lower transition operator from Proposition 5.5.



166 T. Krak

5.3.3 Limits of Homogeneous IDTMCs

We conclude the discussion of imprecise discrete-time Markov chains with some
results about their limit behaviour, in analogy to the results in Sect. 5.2.3. We start
again by restricting attention to homogeneous IDTMCs, and notice the following
(we omit the proof, which is straightforward):

Proposition 5.6 Let P be a homogeneous IDTMC, and let T t be the associated
family of lower transition operators. Then there is a unique lower transition
operator T : L (X ) → L (X ), such that, for all f ∈ L (X ), T tf = T f

for all t ∈ N0.

We take a moment here to remark on a property that was already encountered
in Chap. 2: the duality between lower expectation operators and closed and
convex sets of probability measures. Indeed, this correspondence was also used in
Definition 5.14 above, where we used the sets Tt of transition matrices, to construct
the lower transition operator T t . Since, as we have just seen, the dynamics of a
homogeneous IDTMC can be completely described by a single T , it now makes
sense to think about the other direction.

Specifically, corresponding to T , there exists a closed and convex set T of
transition matrices, such that T f = infT ∈T Tf for all f ∈ L (X ). This implies
that (up to the initial distribution at time zero) an IDTMC can also be characterised
by such a set T . So, whereas we noted in Sect. 5.2.2 that a (precise) discrete-
time Markov chain’s canonical parameter is a single transition matrix T , for a
homogeneous IDTMC, the parameter can be understood as a single closed and
convex set T of transition matrices. Moreover, if in this parametrisation we ensure
that T has separately specified rows—essentially, satisfies a property exactly
analogous to Eq. (5.4)—then the corresponding IDTMC will also be separately
specified.

Furthermore, in Sect. 5.2.2 we used a property of the associated transition matrix
T , to state a sufficient condition for the long-term behaviour of the Markov chain
to converge to a distribution over the states, independently of the state in which
it started. We here have a similar result, which starts by introducing the conjugate
upper transition operator T : L (X ) → L (X ) : f �→ −T (−f ).

Now, recall that in the precise case, a homogeneous discrete-time Markov chain
with transition matrix T was said to be regular, if there was some n ∈ N such that
T n(x, y) > 0 for all x, y ∈ X . The interpretation is clear: the Markov chain is
regular if and only if there is some finite number of steps n in which every state x

can reach every state y. This is now generalised to the imprecise case:

Definition 5.15 (Regularity for homogeneous IDTMC) Let P be a homogeneous
IDTMC with associated lower (and upper) transition operator T (and T ). Then the
IDTMC is regular if there is some n ∈ N such that

[
T

n
Iy

]
(x) > 0 for all x, y ∈ X .

Let us consider this definition. One difference with the precise case is the introduc-
tion of the indicator function Iy on the state y ∈ X ; this was introduced because,
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in contrast to matrices, we cannot index the ‘elements’ of the transition operator.
Specifically, using Theorem 5.3, we can interpret the condition as

0 <
[
T

n
Iy

]
(x) = EP

[
Iy(Xn)

∣
∣ X0 = x

] = sup
P∈P

P(Xn = y | X0 = x) ,

for all x, y ∈ X and some n ∈ N. What regularity asks for, then, is for there to be
some n ∈ N such that is possible for all x, y ∈ X to move from x to y in exactly
n steps, according to some P ∈ P. In particular, the (precise) measure P for which
this needs to be possible can be different for every pair x, y ∈ X . Regularity for
IDTMCs then is in a sense a much weaker—easier to satisfy—condition than that for
precise Markov chains. Nevertheless, the condition is sufficient for the following:

Theorem 5.4 Let P be a homogeneous IDTMC that is separately specified and
regular, with associated lower transition operator T . Then, there is a unique lower
expectation operator E

P
[·(X+∞)] : L (X ) → R such that, for all f ∈ L (X )

and all x ∈ X ,

E
P

[
f (X+∞)

] = lim
n→+∞E

P

[
f (Xn) | X0 = x

] = lim
n→+∞

[
T nf

]
(x) .

Furthermore, this is the unique T -invariant lower expectation on L (X ), meaning
that E

P
[f (X+∞)] = E

P

[[T f ](X+∞)
]

for all f ∈ L (X ).

5.4 Imprecise Continuous-Time Markov Chains

We now move on to the discussion about (imprecise) continuous-time Markov
chains. We have already encountered this setting several times in the preceding
discussions but have generally skipped over any details. Let us recall from Sect. 5.2
that continuous-time stochastic processes are identified with a time-dimension
T = R≥0 and that the elements ω of the outcome space of paths Ω are maps
ω : R≥0 → X . The measure-theoretic definition is then as before, where
we consider the abstract probability space (Ω,F , P ), and the stochastic process
{Xt }t∈R≥0 is a family of random variables on this space. Furthermore, measure-
theoretic definitions of (homogeneous) continuous-time Markov chains (CTMCs)
have already been encountered in Definitions 5.5 and 5.6.

How, then, can these models be interpreted? Let us start by considering the
simplest case, viz., a precise and homogeneous Markov chain in continuous-time.
According to the previous definitions, this is a stochastic process such that

1. P(Xt | Xs1 , . . . , Xsn) = P(Xt | Xsn) for all s1 < · · · < sn < t in R≥0, and
2. P(Xt | Xs) = P(Xt−s | X0) for all s < t in R≥0.

The immediate difficulty of moving on from this abstract representation is that the
time-dimension is now, in a sense, too big to use any of the previous representations.
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For instance, we could try to draw a ‘continuous-time’ probability tree, where the
local model of a situation with terminal state w� is given by a probability mass
function P(Xt | X0 = w�). But what is the time t that we should use? When
we were working in discrete-time, the approach was to use the next time point,
as viewed from the current situation. But of course, there is no ‘next’ time t when
working in continuous-time! This difficulty of using graphical representations is
the main reason that we have postponed the treatment of continuous-time processes
until now, thereby hopefully allowing the reader to first develop some graphical
intuition for the discrete-time case.

Nevertheless, all is not lost; the first interpretation that we will consider is to
view continuous-time processes as limits of discrete-time ones. To this end, it will
be convenient to consider the transition-matrix T associated with a homogeneous
DTMC. Let us recall from Sects. 5.2.2 and 5.2.3 that the elements of such a matrix
represent the ‘transition probabilities’ of the system, that is, the probability of
moving from a state x to a state y, in one time step:

T (x, y) = P(X1 = y | X0 = x) .

We can use this formalism to interpret the continuous-time case, by simply ‘fixing
the length of the step’. That is, consider some ‘step size’ Δ > 0. Then, for a
homogeneous CTMC, we known that

P(Xt+Δ | Xt) = P(XΔ | X0) ,

for all t ∈ R≥0, so we can collect these ‘transition probabilities’ in a matrix TΔ:

TΔ(x, y) := P(XΔ = y | X0 = x) for all x, y ∈ X .

Clearly, the elements of TΔ are the probabilities for the system to end up in a state y,
if it is currently in a state x, after a time duration of Δ has elapsed. Provided, then,
that we are not interested in a granularity of the time-dimension that is finer than Δ,
this representation suffices. The matrix TΔ can be associated with a DTMC, and all
the previous results can be used. For instance, for any multiple n ∈ N of Δ, we use
Proposition 5.2 to find that

P(XnΔ = y | X0 = x) = T n
Δ(x, y) .

But, of course, the point of using the continuous-time representation is that we
are interested in an arbitrarily fine granularity of the time-dimension. In particular,
the measure-theoretic definition encodes this arbitrary granularity, and it seems a
waste to only focus on the restriction to a single step size Δ. The ‘trick’, then, is
to take the limit as Δ goes to zero, and somehow usefully represent this limit. It is
hopefully clear from the above discussion that, as we decrease Δ further and further,
the associated transition matrix TΔ covers increasingly smaller steps along the time-
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dimension. And, for each such positive Δ, we can associate a discrete-time Markov
chain and use all the previous interpretations that we developed.

We first remark that the naive limit does not encode a lot of information; ignoring
possible issues of continuity, it trivially holds that

lim
Δ→0+ P(XΔ = y | X0 = x) = P(X0 = y | X0 = x) =

{
1 if y = x, and

0 otherwise.
(5.5)

In matrix notation this reads as limΔ→0+ TΔ = I , where I denotes the |X | × |X |
identity matrix. Colloquially, we might understand this as saying that ‘if time does
not evolve, the system does not change’. This is clearly an almost tautological
statement to make of what may be interpreted as a dynamical system. So let us
consider how the system does change as time evolves. The natural representation
for this is obviously the derivative of the transition matrix TΔ; this is the limit
interpretation that we shall use. Ignoring technical issues of differentiability, we
have

d TΔ

d Δ

∣
∣∣∣
Δ=0

= lim
Δ→0+

TΔ − I

Δ
=: Q, (5.6)

where we have used the previous observation that T0 = I . On the right-hand
side, the term Q is called the transition rate matrix of the homogeneous CTMC
(or sometimes simply the rate matrix). It is clear from the above definition that it
encodes the rate of change of the transition probabilities around time zero. It satisfies
the following properties:

Definition 5.16 (Transition Rate Matrix) A real-valued |X | × |X | matrix Q is
called a transition rate matrix if, for all x ∈ X , it holds that

1. Q(x, y) ≥ 0 for all y ∈ X such that x �= y and
2.

∑
y∈X Q(x, y) = 0.

The elements Q(x, y) of a rate matrix can be interpreted as the ‘speed’ with which
the process moves from the state x to the state y. In the above definition, the two
conditions imply that the diagonal elements Q(x, x) are always non-positive. On the
other hand, the first condition states that the off-diagonal elements are non-negative.
Combined this can be understood as saying that the system will move ‘out’ of the
current state (the non-positivity of the diagonal elements) and ‘into’ some other
states (the non-negativity of the off-diagonals).

A more concrete way to interpret the rate-matrix is through a linearised approx-
imation of the transition probabilities over a small enough time step. That is, it
follows from Eq. (5.6) that, for ‘small enough’ Δ > 0, it holds that Q ≈ (TΔ−I )1/Δ;
hence also

TΔ ≈ I + ΔQ . (5.7)
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We therefore see that the matrix Q can be used to approximately compute the
transition probabilities over a small enough time step.

An obvious next question is if we can extrapolate this to compute the matrix Tt

that contains the transition probabilities over an arbitrary duration t . Indeed we can,
although it requires a bit of setup. For any t ∈ R≥0, first define the transition matrix
of the CTMC after time t :

Tt (x, y) := P(Xt = y | X0 = x) for all x, y ∈ X .

Then we differentiate in t ; to this end, first fix Δ > 0, and use the Markov property
and homogeneity to derive that Tt+Δ = TtTΔ = TΔTt (c.f. Proposition 5.2). Then
we proceed by using Eq. (5.6):

d Tt

d t
= lim

Δ→0+
Tt+Δ − Tt

Δ
= lim

Δ→0+
TΔTt − Tt

Δ
=

(
lim

Δ→0+
TΔ − I

Δ

)
Tt = QTt .

Using also Eq. (5.5), we can now write the matrix differential equation

d Tt

d t
= QTt , T0 = I ,

whose solution is the matrix exponential of Qt :

Tt = eQt .

We recall from Proposition 5.4 that the dynamic behaviour of a homogeneous
discrete-time Markov chain can be characterised by a single transition matrix T and
that therefore this matrix constitutes the canonical parameter of the process. Because
the matrix Q can be used to (re-)construct the transition matrices of a homogeneous
CTMC over any time duration, it plays the same role here.

Proposition 5.7 Let {Xt }t∈R≥0 be a continuous-time homogeneous Markov chain,
with transition rate matrix Q as defined above. Then for all t ∈ R≥0, the transition
probabilities P(Xt = y | X0 = x), x, y ∈ X after time t are given by the elements
Tt (x, y) of the transition matrix Tt = eQt .

While we do not aim to give a complete treatment on the interpretation of the
matrix exponential, some properties are worth pointing out. First of all, it can be
defined analogously to the exponential function of real numbers, that is, through a
Taylor expansion around zero. Specifically, it holds that

Tt = eQt :=
+∞∑

k=0

tkQk

k! .

Thus, the approximation in Eq. (5.7) can be seen as a first-order truncation of the
series above.
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As a second important point, we can consider the entire family of transition
matrices Tt for all t ∈ R≥0. Then this family constitutes a semi-group of transition
matrices, and Q is the generator of this semi-group. Specifically, it holds that
Tt+s = TtTs for all t, s ∈ R≥0—this is called the semi-group property. Observe
that it is analogous to the result in Proposition 5.2 and that we already used this
property for the matrix Tt+Δ when constructing the derivative.

These properties immediately yield a different representation for the matrix
exponential, which will be convenient further on. We omit the proof.

Proposition 5.8 Let {Xt }t∈R≥0 be a continuous-time homogeneous Markov chain,
with transition rate matrix Q, and let Tt be the associated family of transition
matrices. Then, for all t ∈ R≥0, it holds that

Tt = lim
n→+∞

(
I + t

n
Q

)n

.

One way to think about this is that, for some fixed (but large enough) n ∈ N, each
factor (I + t/nQ) is, due to Eq. (5.7), roughly the ‘small step’ transition matrix Tt/n.
The multiplication of these n terms (I + t/nQ)n is then analogous to the composition
in Proposition 5.2, whereby we cover the duration t in steps of size t/n. It should be
noted that this only becomes exact in the limit (as the result states), but the intuition
behind it is the same regardless.

Furthermore, let us again remark that the transition-matrix representation is
also convenient in that it offers an alternative representation of the conditional
expectation operator:

Proposition 5.9 Let {Xt }t∈R≥0 be a continuous-time homogeneous Markov chain,
with transition rate matrix Q, and let Tt be the associated family of transition
matrices. Then, for all f ∈ L (X ), all t ∈ R≥0 and all x ∈ X , it holds that
E[f (Xt ) | X0 = x] = [

Ttf
]
(x) .

Proof Analogous to the proof of Proposition 5.3. �	
Let us consider the importance of the homogeneity assumption in the preceding

exposition. Indeed, it is this property that crucially allows the parametrisation to
only require a single rate matrix Q. More generally, we may consider a non-
homogeneous CTMC and consider the derivatives at each time point; first write
the transition matrix for the interval [s, t] as

T t
s (x, y) := P(Xt = y | Xs = x) ,

and differentiate to obtain

d T t
s

d t

∣∣
∣∣
t=s

= lim
t→s+

T t
s − I

t − s
=: Qs ,
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whence the parametrisation now requires an entire family Qs of rate matrices—
one for each point in time. Note, though, that these matrices are still transition
rate matrices, in that they satisfy the properties in Definition 5.16. However, the
corresponding matrix differential equation is no longer solved by a simple matrix
exponential.

More generally still, for arbitrary continuous-time stochastic processes (that are
neither homogeneous nor Markov) we may consider the transition rates (derivatives)
not only for specific points in time but also for specific histories leading up to that
time. For instance, with s = s1, . . . , sn and t in R≥0 and xs ∈ X n, we may write

d

d u
P

(
Xu = y | Xs = xs, Xt = x

)
∣∣∣∣
u=t

=: Qxs,t (x, y) . (5.8)

Thus, the parametrisation requires the specification of a transition rate matrix for
each point in time and for each possible history before that time. It should be clear
that this leads to a rather unwieldy process specification, which again goes some
way in illustrating why homogeneity and Markovianity are such popular simplifying
assumptions.

5.4.1 Imprecise Continuous-Time Markov Chains

With the notation and concepts for precise continuous-time stochastic processes in
place, let us now turn to the imprecise generalisation. In what follows, we will
consider imprecise, homogeneous continuous-time Markov chains (ICTMC). As
before, we start by considering the abstract sets-of-measures definition:

Definition 5.17 (ICTMC as set of processes) An imprecise continuous-time
Markov chain is a set P of probability measures on the measurable space (Ω,F ) of
(continuous-time) paths, with associated lower expectation operator E

P
such that,

for all f ∈ L (X ) and all s1, . . . , sn, t ∈ R≥0 such that s1 < · · · < sn < t , it holds
that

E
P

[
f (Xt )

∣∣ Xs1 , . . . , Xsn

] = E
P

[
f (Xt )

∣∣ Xsn

]
.

Furthermore, an imprecise continuous-time Markov chain is called homogeneous
if, for all s, t ∈ R≥0, s < t , and all f ∈ L (X ), it holds that E

P

[
f (Xt )

∣∣ Xs

] =
E
P

[
f (Xt−s)

∣
∣ X0

]
.

As in the discussion about imprecise discrete-time Markov chains, we distinguish
between the definition by epistemic irrelevance—which is what is used above—and
the definition by strong independence, which would imply that all P ∈ P are precise
(homogeneous) Markov chains, and which we are explicitly not using.

Let us now consider the parametrisation of such an ICTMC. We recall that in
the precise case, the canonical parameter is a single transition rate matrix Q. In
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contrast, for the imprecise case, the ‘parameter’ of interest is a set Q of transition
rate matrices. Because a precise homogeneous CTMC is identified with a rate matrix
Q, it is clear that such a set Q induces a set of precise processes: simply consider
all processes for which the associated rate matrix is included in Q. However, this
induced set then only includes homogeneous Markov processes, and, as remarked
above, we aim to relax these independence assumptions. Using the parametrisation
of more general precise processes, we introduce the notion of compatibility with a
given set of rate matrices:

Definition 5.18 Let Q be a set of transition rate matrices. Then a continuous-time
stochastic process P is called compatible with Q if, for all s = s1, . . . , sn and
t ∈ R≥0 such that s1 < · · · < sn < t , and all xs ∈ X n, it holds that Qxs,t ∈ Q,
where Qxs,t is the time- and history-dependent rate matrix associated with P , as in
Eq. (5.8).

It can be verified that this definition includes, as a special case, the compatibility of
homogeneous CTMCs with rate matrix Q, with a given set Q, if Q ∈ Q. Similarly,
a non-homogeneous CTMC that is parametrised by a family Qt is compatible with
such a set if Qt ∈ Q for all t ∈ R≥0. The ICTMC P corresponding to a given set
Q, then, is taken to be the largest set of continuous-time stochastic processes that
are compatible with this Q. While perhaps not obvious, it can be proven that this set
P is then indeed a homogeneous ICTMC, in the sense that its corresponding lower
expectations satisfy the properties of Definition 5.17.

With this ICTMC in place, let us now again consider the main inferential
challenge: how to compute the corresponding lower expectation. A first attempt
could be to use Propositions 5.7 and 5.9 and optimise over Q; for some fixed
f ∈ L (X ), this would give

inf
Q∈Q

eQtf .

If we think about what this computes, we come to the conclusion that for each
Q ∈ Q, there is a homogeneous CTMC for which the conditional expectation of f

at time t ∈ R≥0 is indeed eQtf . We therefore conclude that this computes the lower
expectation with respect to all homogeneous CTMCs that are compatible with Q.
But what about the non-homogeneous and/or non-Markovian stochastic processes
that we know are also included in P? It turns out that the above expression ignores
their corresponding expectations and hence only yields an upper bound on the actual
lower expectation. In other words, we cannot use this expression to compute the
lower expectation for P.

The way to proceed is analogous to the approach in Sect. 5.3.2; we first define
a local ‘lower’ operator and then find the global lower expectation using repeated
compositions of this operator through the law of iterated lower expectation. To this
end, we associate with the set Q the corresponding lower transition rate operator
Q : L (X ) → L (X ), which is defined for all f ∈ L (X ) and all x ∈ X as
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[
Qf

]
(x) := inf

Q∈Q
[
Qf

]
(x) . (5.9)

Intuitively, for small Δ > 0, we can then approximate the lower expectation as

E
P

[
f (XΔ) | X0

] ≈ inf
Q∈Q

(I + ΔQ)f = (I + ΔQ)f ,

where the approximation is again due to Eq. (5.7). It turns out that we can make this
exact and extend the result to any time t , analogously to Proposition 5.8:

Theorem 5.5 Let Q be a non-empty set of transition rate matrices, and let Q be the
corresponding lower transition rate operator, as in Eq. (5.9). Then, for all t ∈ R≥0,
there is an operator T t : L (X ) → L (X ), such that

T t = lim
n→+∞

(
I + t

n
Q

)n

.

These operators satisfy T 0 = I , T t+s = T tT s for all t, s ∈ R≥0 and d/dtT t = QT t .

Observe that this family of operators T t satisfies in large part the same properties as
the matrix exponentials of Qt—c.f. the discussion after Proposition 5.7—with the
main difference being that they are non-linear operators. We can now finally present
the result that allows the computation of lower expectations for ICTMCs.

Theorem 5.6 Let Q be a non-empty set of transition rate matrices, with corre-
sponding lower transition rate operator Q, and let P be the corresponding ICTMC.
Suppose that Q is closed, convex and has separately specified rows (i.e. is closed
under recombination of the rows of its elements). Then, for all f ∈ L (X ), all
t ∈ R≥0 and all x ∈ X , it holds that

E
P

[
f (Xt ) | X0 = x

] = [
T tf

]
(x) . (5.10)

Observe that this result needs some constraints on the rate matrix set Q. This
can be explained in the sense that the right-hand side of Eq. (5.10) depends,
through Theorem 5.5, on the lower transition rate operator Q. In turn, Q depends
on Q through Eq. (5.9). Conversely, the left-hand side (the lower expectation)
depends on the set P, which in turn depends on Q through the compatibility as
in Definition 5.18. It turns out that for these different dependencies on Q to be
equivalent, we need some regularity conditions on this latter set—these are the
constraints mentioned in the theorem above.
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5.4.2 Limits of ICTMCs

Let us finally consider the long-term behaviour of a given homogeneous ICTMC P

with transition rate matrix set Q and associated lower transition rate operator Q; we
assume these to be fixed in the remainder of this section. What, then, can we say
about the lower expectation of a function as time goes to infinity?

Recall that, in the discrete-time case, Theorem 5.4 established a sufficient
condition for such a lower expectation to converge. This condition was regularity of
the IDTMC. Essentially, this meant that it was possible for the IDTMC to move from
any state to any other state, in exactly n steps, for some n ∈ N. In the continuous-
time case that we consider here, there is a similar condition: upper reachability
between all pairs of states.

We first remark that this condition is defined using the conjugate upper transition
rate operator defined as Qf := −Q(−f ) for all f ∈ L (X ). The definition of
upper reachability is then analogous to that of accessibility in discrete-time but is
instead defined using the transition rates, rather than probabilities:

Definition 5.19 Let P be an ICTMC with associated upper transition rate operator
Q, as defined above. For any two states x, y ∈ X , y is said to be upper reachable
from x, if there is a sequence x0, . . . , xn ∈ X , n ∈ N, such that x0 = x, xn = y

and, for all i ∈ {1, . . . , n}, it holds that xi �= xi−1 and
[
Q Ixi

]
(xi−1) > 0.

Let us in particular consider the final condition in this definition. From the conjugacy
between the lower and upper transition rate operators, and the definition of the
former, we can rewrite this requirement as saying that

0 <
[
Q Ixi

]
(xi−1) = sup

Q∈Q
[
Q Ixi

]
(xi−1) = sup

Q∈Q
Q(xi−1, xi) .

Thus, upper reachability of y, from x, requires that there exists a sequence of states
from x to y such that, at each step in this sequence, there is some transition rate
matrix Q ∈ Q which assigns strictly positive ‘speed’ of moving from the current
state in this sequence, to the next one. In other words, it should be possible for
these transitions to happen according to some of the models in our set P, but not
necessarily all, and there can be a different model allowing for this possibility at
each step. This can now be used to state the following result:

Theorem 5.7 Let P be an ICTMC and suppose that, for all x, y ∈ X , y is upper
reachable from x. Then, there is a unique lower expectation operator E

P

[·(X+∞)
] :

L (X ) → R such that, for all f ∈ L (X ) and all x ∈ X ,

E
P

[
f (X+∞)

] = lim
t→+∞E

P

[
f (Xt )

∣∣X0 = x
] = lim

t→+∞
[
T tf

]
(x) .
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5.5 Literature and Further Reading

Let us conclude this chapter by providing pointers to the literature on which the
material in this chapter is based. We will also briefly discuss some parts of the
literature that are related but not quite the same as what we covered here.

First of all, there exists an extensive body of literature on (precise) Markov
chains, both in discrete- and in continuous times. It would be nigh impossible to
give a complete overview here, but we think that [1, 38] make excellent introductory
reads. For a broad and general introduction to the theory for imprecise probability,
which lies at the heart of the models that we discussed here, we refer the reader
to [3, 50]. The difference between the notions of strong independence and epistemic
irrelevance—which we have stressed repeatedly and which is a crucial property of
imprecise Markov chains as we treated them here—is discussed, e.g. in [5, 37].

For the interpretation of Markov chains using probability trees, see, for exam-
ple, [13, 18, 32]. This interpretation is also closely related to the game-theoretic
formalisation of probabilities using the theory of martingales (which we did not
cover here). The interested reader may want to pursue [13, 32, 49].

For an account of the general theory of Bayesian networks, see [39]. For their
imprecise generalisation—credal networks—references [2, 6, 7, 9, 11] discuss a lot
of the general theory.

Imprecise discrete-time Markov chains are discussed, e.g. in [15, 17, 27]. For
imprecise continuous-time Markov chains, see [30, 44]. A treatment of the matrix
exponential, which is crucial to computational methods for CTMCs, is given in [48].
Reference [19] discusses the current state-of-the-art to efficiently compute the
imprecise generalisation of the matrix exponential, which we have seen is crucial
for computing inferences in ICTMCs.

Detailed treatments on the long-term (limit) behaviour in IDTMCs can be found
in [14, 16, 26, 45]. Reference [10] provides the necessary and sufficient conditions
for the limit behaviour of ICTMCs, and [19] also discusses computational methods
to numerically approximate this limit. We remark that Theorems 5.4 and 5.7 in this
chapter are stated in a simplified form compared to their statement in the literature.
In particular, the results in [10, 14] are stronger; for instance, [10] in fact provides
necessary and sufficient conditions for the convergence of an ICTMC, whereas
Theorem 5.7 only states a sufficient condition.

Some examples of the merits of imprecise Markov chains in applications are
provided by [40, 46, 47]. A domain for which the applicability of (imprecise)
Markov chains has been extensively studied, is queueing theory [8, 33–36].

A generalisation of Markov chains that we have not discussed, but which is
nevertheless important in many practical applications, is hidden Markov chains.
There, the stochastic process cannot be observed directly, but only through a noisy
measurement model. Their imprecise treatment is discussed, e.g. in [4, 12, 31].

Fields that are closely related to the theory of imprecise Markov chains are
controlled Markov processes [21] and Markov decision processes [22, 28, 41, 51].
There also, the process under study has its parameters changed over time. However,
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the goal there is not to represent uncertainty and change these parameters to compute
robust bounds on quantities of interest. Rather, their aim is to optimise the process
evolution towards some operational target.

Finally, we again emphasise that our treatment uses epistemic irrelevance, which
we distinguish from using strong independence. There is, however, an extended
body of literature also on the latter. These alternative models are known as Markov
chains under strong independence, e.g. in [27], as interval Markov chains [20, 29,
42, 43] or as Markov set chains [23–25].
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