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Chapter 1
Introduction to Spectral Methods
for Uncertainty Quantification

João F. Reis, Giulio Gori, Pietro M. Congedo, and Olivier Le Maître

Abstract Spectral methods (SM) for uncertainty quantification are introduced. We
start by introducing the transition between the deterministic and the stochastic
frameworks, using the one-dimensional heat equation as an example. A simple
Monte Carlo (MC) technique to solve the stochastic equation is introduced, together
with its main advantages and drawbacks. The Karhunen–Loéve expansion, a crucial
tool to construct other (SM), is presented. Non-intrusive spectral projection (NISP)
and Galerkin methods are introduced, and comparisons against the MC approach
are discussed. The main differences between NISP and Galerkin methods are also
highlighted. All the sections in the chapter are consistently illustrated with the one-
dimensional heat diffusion problem.

Keywords Uncertainty quantification · Monte Carlo methods · KL expansion ·
Non-intrusive spectral method · Galerkin method

1.1 Motivation

One of the most challenging questions in science is to make predictions about a
physical phenomenon of interest. We face this challenge in everyday life, since
predictions are useful to plan our actions in advance and to optimise our choices
to simplify our lives. Indeed, meteorological predictions help us deciding whether
to organise a holiday trip in the countryside or not. Predictions regarding traffic at
peak hours let us decide for different routes to avoid a long wait in a queue. In
Wall Street, predictions drive brokers in choosing the most profitable investment.
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Engineers pledge their efforts to design devices to make our lives easier, and, to
achieve this goal, they must predict the behaviour of the system they are creating.

Predicting the outcome of a process is a very challenging goal which in general
implies the definition of a mathematical model. The equations included in the model
describe the behaviour of the system under investigation (where the word system is
entailed with its most general meaning), and their solution will yield to a prediction
of the underlying outcome. To provide an example, this process is very much like
translating a book from one language to another. Translation and modelling are so
much alike that they share a common issue: information is lost. Indeed, it might
be difficult to translate an English saying into Chinese. This is due to a different
language structure and, even more subtle, to the fact that a saying is usually strongly
related to the specific culture, which in principle is different from country to country.
Therefore, information is often lost during the translation process.

In the same way, modelling a physical phenomenon is challenging, especially
when its complexity grows. The mathematical equations lack information about the
phenomenon they model, and, rather than an exact, they become an approximate
description of physics.

The discrepancies found between model predictions and the actual phenomenon
are referred to as the model error. The model error can be divided in two types:
the aleatory and the epistemic error. The aleatory error is related to the randomness
of physics under which the phenomenon develops. As exact physical conditions
are impossible to measure, exact predictions of the outcome are also impossible to
obtain. The epistemic error is instead related to a lack of knowledge regarding the
real physics of the event, i.e., it is due to things one could in principle know but
doesn’t in practice. As a consequence, the equations included in the model may
not be suitable to represent reality in a general sense. To make an example, when
Newton wrote his famous equations for classical mechanics, he was not aware of the
relativistic effects. His equations work perfectly in many cases, but they fail when
the system under investigation consists of an object traveling at a velocity close to
the light speed or when the object has a very large mass.

This is due to an epistemic uncertainty; the relativistic effects are not modelled;
that affects Newton’s dynamics, and it was not until Einstein fulfilled this deficiency
that predictions about astronomical phenomena could be accurately made. Of
course, the accuracy gained by modelling relativistic effects would not be worth
the growth in complexity of the model itself in the limit of Newton’s physics.

1.1.1 Typical UQ Questions

In real world applications, there exist many different questions that the methodolo-
gies presented in this chapter help to address.

Starting from the computation of statistical quantities, for instance, the mean and
the variance of the output of a stochastic process, uncertainty quantification (UQ)
techniques span from inference problems to data analysis. In this subsection, we
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will try to summarise the different possible applications, and we will provide the
reader with some thoughtful examples.

The most simple example consists in characterising a quantity of interest (QoI)
within a given process. Roughly speaking, very often engineers are challenged with
designing complex systems that are supposed to behave in a certain manner and
under nominal conditions. One may think, for instance, of an aircraft that flies at
a fixed altitude, with a well-defined cruise speed and with a given payload. The
aircraft thus represents a system which depends on three inputs (air density, speed
and payload), and a QoI may be the fuel consumption rate.

In real world applications, the atmosphere is not a homogeneous continuum.
Turbulence, wind, clouds, and any meteorological phenomena contribute to modify
the atmosphere through which the aircraft is flying, causing local fluctuations.
Moreover, different payloads may be carried on board, possibly due to a different
number of passengers or to a different mission scope.

Engineers are then concerned with the fact that the aircraft they are designing
must face a wide range of different operating conditions. The operating conditions
are not known a priori, if not as just parameter ranges or desired flight envelope.
The goal of engineers is to come up with an aircraft which is able to safely
accomplish the appointed missions, thus tolerating considerable variation of the
operating conditions.

Therefore, engineers may want to understand how the uncertainties on the
nominal flight conditions affect aircraft performances. They may, for instance,
assess how a small variation in the cruising speed affects the efficiency and thus
the fuel consumption. Uncertainty quantification techniques can indeed be used to
propagate uncertainties through a computational fluid dynamics model and help
characterising the QoI. Engineers may estimate the mean fuel consumption rate
and its variance with respect of uncertainties on the value of speed, air density and
payload (Passagers and cargo). This is known as forward uncertainty propagation.

Moreover, UQ techniques may be exploited to carry out sensitivity analysis.
Sensitivity analysis is very useful when one is trying to assess the contribution of
every single source of uncertainty to the variance of the QoI.

With reference to the aircraft example, a sensitivity analysis may be carried out
to understand if the largest variations of fuel burning rate are related more to a
variation in the payload than to the cruising speed. This information drives engineers
during the design phase of the aircraft and allows them to achieve a more robust
configuration.

Nonetheless, UQ techniques have a broad range of applications, and they can
be exploited to compute the reliability of a device (or, more in general, a system).
As known from the control theory, each device can be decomposed (up to a certain
limit) into a collection of interacting sub-systems. A sub-system may be seen as
an independent block that exchanges information through the connections from and
towards other blocks (inputs and outputs). As such, each sub-system may undergo
failures during its lifetime.

Due to the gradual deterioration of its components, the reliability of a device
can be investigated as a time-dependent function, the survival function. This latter
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object maps time to probability of functioning and provides an estimation of the
device reliability in time.

Moreover, Bayesian techniques can be employed to infer quantities that cannot
be directly measured. For instance, a broker working at the Wall Street stock market
may be interested in pricing the assets of a company before deciding to buy/sell its
shares, but there are no exact algorithms that allow to estimate the price of shares of a
certain company. In order to achieve this task, one has to collect as much information
as possible, and, most often, one has to come up with assumptions, as companies
do not release information that are key to their business (such as industrial goals,
market strategies, etc.).

Therefore, the price of shares cannot be measured, but it can only be inferred by
gathering all the available information, including personal assumptions. Bayesian
techniques, such as Bayesian networks [1], Bayesian inference methods and so on,
may then be exploited in asset pricing problems, helping investors in the endeavour
of increasing their capital.

Bayesian techniques also find a very interesting application in medicine. Indeed,
very often doctors need to visualise the interior of a patient’s body system in order
to identify the disease and prescribe the most appropriate therapy. Of course doctors
also aim at stressing the patient as little as possible, so they need to exploit the less
intrusive techniques.

Computed tomography (CT), ultrasound, electrocardiogram (ECG) and Mag-
netic Resonance Imaging (MRI) are just a few examples of how information about
the internal state of the human body is investigated. All these techniques rely on
measurements, electric signals, magnetic-field variations, etc., which are not the
QoI doctors are looking for. Through Bayesian inference techniques, it is possible
to reconstruct images, even three-dimensional models, of an organ and thus provides
information that helps identify the disease.

The examples reported in this section represent of course a small insight of a way
broader world. Uncertainty quantification techniques may find their application in
industrial processes, astronomy, physics, game theory, control theory, sociology and
many others. In the rest of this chapter, we will try to refer to practical examples
whenever it is possible.

1.2 Illustrative Problem

Throughout the chapter, we will make an extensive use of the heat diffusion problem
to illustrate the advantages and the drawback of UQ techniques. This is intended to
guide the reader in the journey of understanding the potential of UQ techniques.

The diffusion of heat through a continuum is of the utmost interest in many
practical applications. The phenomenon has been deeply investigated since long
time ago. A general study of the heat equation with applications can be found in
[2, 3].
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We start by introducing the deterministic model of the heat diffusion problem,
providing a brief discussion about the boundary conditions and about the exact
solution. Then, we evaluate potential sources of uncertainty, and we introduce the
stochastic form of the heat diffusion equation. We close this section by pointing
out some of the classical questions addressed by UQ techniques. We will answer to
some of these questions along the rest of the chapter. Although this all process is
focused on the simple illustrative problem, the same questions and procedures can
be applied to more complex and general problems.

1.2.1 The Deterministic Heat Diffusion Equation

In the following section, we discuss the heat diffusion problem through a solid
continuum. To keep it as simple as possible, we consider the propagation of heat
across a straight beam, or, in other words, we consider a one-dimensional problem.

Assuming that we have a metal rod, our problem consists in modelling the
distribution of the temperature u(x). The one-dimensional heat diffusion problem
reads

ρ (x) Cp(x)∂tu(x, t)− ∂xk(x)∂xu(x, t) = q̇(x, t), (1.1)

where x ∈ (0, 1) and t ∈ (0,+∞). In Eq. (1.1), ρ represents the density of
the matter; Cp is the specific heat capacity, and k is the thermal conductivity.
These are properties of the matter, and the three of them are always positive
(k, ρ, Cp ∈ R

+). These properties may be a function of space, and thus they vary
along the beam, or they may be homogeneous. In general, their value can be inferred
through experiments or predicted exploiting semi-empirical models. The q̇ term in
Eq. (1.1) represents a distributed heat source (or sink) that models the production
(or destruction) of heat within the domain (Fig. 1.1).

Given a thermodynamic system in a non-stable equilibrium state, the law
of thermodynamics implies that if the system is perturbed by an infinitesimal
disturbance, a process will necessarily occur. If the process is irreversible, as it is
always the case in practical applications, after a certain amount of time, the system
will reach a stable state.

Fig. 1.1 Sketch of the heat diffusion along a one-dimensional beam



6 J. F. Reis et al.

Hereafter, we will look for the steady solution of the heat diffusion problem only,
which in fact corresponds to the stable equilibrium state that is necessarily reached
after a sufficient amount of time.

This implies that we will consider the steady problem only, i.e. the system is non-
transient, and the distribution of temperature does not depend on time. Moreover,
we will assume that the source term is constant in time and homogeneous in space
q̇(x, t) = f . Under these hypotheses, the heat diffusion problem reduces to

∂xk(x)∂xu(x) = −f x ∈ (0, 1) (1.2)

Throughout this chapter, we will compute the solution of this differential equation,
using a finite element method based on the Galerkin approach; see [4]. We therefore
define the domain of length l = 1, and we divide it in Nel

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

For a given value of k, it is then possible to compute the deterministic solution
to Eq. (1.2), provided that the boundary conditions are specified. Indeed, in order
to fully specify the heat diffusion problem, we need to complement Eq. (1.2)
with consistent boundary conditions, one for each of the beam edges. Boundary
conditions may be of different types: Dirichlet (D) and Neumann (N). These
boundary conditions have different physical meanings, and more details can be
found in [2, 5]. To keep the problem as simple as possible, we will stick with
Dirichlet boundary conditions, meaning that the temperature is prescribed at both
ends of the beam. This yields the heat diffusion Dirichlet problem,

⎧
⎪⎪⎨

⎪⎪⎩

∂xk(x)∂xu(x) = −f x ∈ (0, 1)
u(0) = u0

u(1) = u1

(1.3)

For a homogeneous medium (k(x) = const), it is possible to retrieve the analytic
solution of Eq. (1.2). Indeed, integrating both sides of the equation twice yields the
following expression:

u(x) = −f x
2

2k
+

(

u1 + 1

2k
− u0

)

x + u0. (1.4)

When the thermal conductivity is not constant, Eq. (1.2) consists in a non-linear
ordinary differential equation, and the analytic solution is not trivial.
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1.2.2 The Stochastic Heat Diffusion Equation

The heat diffusion problem may be affected by a number of uncertainties. For
instance, the temperature at one of the edges of the beam may be known within
a given interval of confidence, or the length of the beam itself may be uncertain.
To account for the uncertainty affecting a quantity, for instance, the temperature
imposed at a boundary, one should avoid using a deterministic value and assign a
probability density function to the variable.

In this section, we consider one source of uncertainty only: the one related to the
thermal conductivity term k. Under the mentioned hypotheses, the stochastic heat
diffusion model reads,

⎧
⎪⎪⎨

⎪⎪⎩

∂xk(x, θ)∂xu(x, θ) = −f x ∈ (0, 1), θ ∈ Θ.
u(0, θ) = u0

u(1, θ) = u1

(1.5)

Equation (1.5) is a generalisation of Eq. (1.3), where k(x, θ) is a random field or a
stochastic field. A random field is a map that receives two types of inputs: a random
variable, in this case θ , and second variable from a deterministic space, in this case
x. In other words, this means that k(x, θ) is a function that does not just depend
in space, but it also depends on the random element θ . This random element θ
could either be a variable or a vector, and it belongs to the set Θ . If θ is, say, a
normal distributed variable, then k(x, θ) is a surface in k(x, θ) : (0, 1) × R → R.
Usually, the complexity of the physics implies thatΘ is a multidimensional set. The
dependency on θ is a choice we make a-priori, and the process to write k(x) w.r.t. θ
is called parametrisation. We will see later in this chapter how this parametrisation
is done and how useful it will be.

In general, we are concerned with the evaluation of a QoI resulting from the
solution of Eq. (1.5) rather than the solution itself. The QoI may be any statistical
value, like the mean and the variance, or any higher statistical momentum. In some
cases one could be interested in assessing the sensitivity of the solution with respect
to an input parameter.

Some of this information can be easily computed when k(x, θ) ≡ k(θ), i.e., k is
homogeneous; thus it does not depend in space. Nevertheless, as a function of two
variables, the fact that k is constant in x does not imply that it is a constant variable.
Indeed, it is still a stochastic space that depends on the random parameter θ . For
instance, using the solution in Eq. (1.4), we can readily compute the mean of higher
moments of u(x, θ). For instance, if we consider a log-normal-distributed variable
k with mean μ and variance σ , the mean solution (Fig. 1.2) is given by,

E [u(x, k)] = − f x2

2E[k] +
(

u1 + 1

2E[k] − u0

)

x + u0, (1.6)
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Fig. 1.2 Plot of the function
in Eq. (1.6). This is the
solution of Eq. (1.5) when
k ∼ lognormal(0; 0, 1).
Space discritazation has 11
points

where u0 and u1 are the left and right hand-side boundary conditions. As stated
above, the solution plotted in Fig. 1.2 is obtained for the particular case k(x, θ) ≡
k ∼ lognormal(0, 0.1). In particular, the equality E[1/k] = 1/E[k] holds for such
distribution. The problem we are referring to is very simple, and there exist well-
established procedures to compute the statistical moments of its solution. On the
other hand, if the problem was too complicated, it would be impossible to retrieve
the very same statistical information through an analytic procedure. The only way
to overcome the complexity of the problem would be to find an approximation of
E [u(x, k)] using techniques, such as the Monte Carlo (MC) or spectral methods
(SM).

1.3 The Sampling Process

The sampling process consists in the selection of one (or more) individual, from
a well-defined set called a population. Each element is usually characterised by
a certain number of properties; these properties are allowed to discriminate the
population, according to specific criteria. For instance, we could be interested in
characterising a country according to the age of its citizens or according to their
educational level. We could be interested in identifying functioning/failed items
in a single batch from an industrial production line, or we could classify flowers
depending on the colour of their petals.

In descriptive statistics, the goal of the sampling process is to obtain a rep-
resentative subset of individuals, the sample set, to estimate characteristics of
the whole population. Indeed, one single sample will give us all the information
about the random element we draw, but it will not tell us much about the whole
population. If a sufficient number (in the statistical sense) of samples are collected,
then the population can be characterised. The characterisation is strictly bound to
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the considered population, and it depends on the property we are looking at, on the
sampling procedure employed and on the size of the sample set.

So far we talked about characterising the population by looking at one property
at a time. Nevertheless, quite often the properties of an individual are somehow
related, like in case we were interested in characterising the population of school
students according to their age and to their height. Not surprisingly, we will likely
find out that people with a similar age will also have a similar height. Moreover, on
average the older students are also the taller ones. This means that the parameters
(age and height) are correlated, and the population is described by a joint probability
distribution of these two variables.

According to the Pearson product-moment correlation coefficient, the definition
of covariance for two random scalar variables takes the form

C(X, Y ) = E[X − E[X], Y − E[Y ]]
σXσY

(1.7)

where X and Y would be indeed the age and the height.
We now take advantage of the concept of stochastic field as an infinite and

ordered collection of random variables. In practice, a random field may be alter-
natively seen as a variable that varies randomly and continuously over a N -
dimensional domain. Velocity fluctuations in a turbulent flow, the height of micro-
scopical ridges over rough surfaces, or the value of the thermal conductivity
coefficient along a metal rod are examples of stochastic fields.

We consider a stochastic field U(x, θ), where x ∈ Ω is the spatial domain and
θ ∈ Θ is the probability (or stochastic) domain. For example, we can have the
pair Ω := [0, 1] and Θ as the space of standard normally distributed variables.
Moreover, we will refer to the response of the system as U(x, θ).

Furthermore, we assume that all θ ∈ Θ are somehow correlated; therefore, under
the assumption that U is continuous in the mean square sense, we can define the
correlation function CUU as

CUU(x, x′) = E[U(x, ·), U(x′, ·)] (1.8)

Therefore, the correlation function describes the statistical correlation between the
values of the field at two different location in Ω . To this extend, the correlation
function sometimes relies on the definition of a distance, the correlation length l =∣
∣x − x′∣∣. The parameter l is defined in a particular domain (for instance, but not
limited to, the temporal, the spatial or the frequency domains), and, in general, the
correlation among two points decreases as their distance increases

lim
|x−x′|→∞

CUU(x, x′) = 0 (1.9)

When the correlation function is relative to the same random variable at two dif-
ferent points, the term autocorrelation function is usually employed. Furthermore,
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when the correlation function is relative to different random variables, it is usually
referred to as cross-correlation function.

A classical example is a surface that is not perfectly flat, for instance, the Earth
crust. We could look at this as a stochastic field where the height varies according to
the terrestrial coordinates. To characterise the crust we could decide to sample the
height of the ground, with respect to the sea level, at different locations.

We will refer to three exemplary cases: a plain flat region, a hill country and a
rocky mountain. Once we map each region, we are left with three large data sets,
and, from each of them, we are able to compute the mean ground altitude and its
standard deviation.

If we look at the dataset related to the flat plain territory, we will find out that
the altitude does not vary significantly in space, and the deviation of each sample
is almost negligible (perhaps in the orders meters). This example is representative
of a very large correlation length; if the altitude at one point is 100 m above the sea
level, then the altitude of each point in the plain must be similar (otherwise it would
not be a plain).

We leave the plain, and we travel to a different location, where the land is
characterised by hills, and we repeat the very same procedure. We found out that
the altitude of the ground can vary quite significantly (even a few hundred meters)
on a very short distance (kilometers). So any measurement will give us an idea of
what is the altitude of the portion of the ground around us. The knowledge about the
altitude of the ground at one point tells us a lot about the altitude of the terrain in
the close proximity of such point, but that will be a meaningless information if we
are interested in the height of a point a few kilometers away. Correlation length is
thus smaller than in the previous case, as the terrain is now more irregular, though
the variation is still smooth.

We now move to the rocky mountains, and, once again, we repeat the mea-
surements. In this case we will face edges, ridges, walls, cracks or cliffs. The
ground altitude can therefore change abruptly, by hundreds of meters on a very short
distance. In this rocky region, knowing the height of the crust at one point doesn’t
really tell us anything about the altitude of the ground around us. For instance, this is
what happens when we are close to the edge of a cliff. The correlation length is then
very small, and, to some approximation, we could assume that our measurements
are uncorrelated.

Therefore, a very short correlation length implies that the information collected
at one point (the altitude of a specific point over the Earth surface) doesn’t give
any information about the surrounding landscape. On the contrary, a very large
correlation length allows us to have a wider perspective on the territory.

Note that the correlation length is not a property of the problem, but it is a
parameter related to our knowledge. In this particular example, it represents the
information that we have regarding the sample set, i.e., the type of territory from
which the samples were taken. To make this point clear, one altitude sample would
be sufficient to characterise an entire plain region, but, to be able to do that, we first
need to know that the sample was taken in a flat territory. Therefore, if we were just
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given the altitude value and not told that it had been sampled in a plain region, we
could not have any idea of what the territory looks like.

It is needless to say that the very same reasoning applies to any stochastic field
that we may find in any kind of application.

1.4 Sampling Techniques

The evolution of a physical process depends on parameters, the inputs, which are
uncertain, and, in general, we are provided with their probability distributions in the
stochastic space.

When we are dealing with a set of independent variables, we can just sample
independently from each probability distribution, to reconstruct the vector of
stochastic inputs. On the other hand, when the random variables are dependent,
we should sample from their joint probability distribution. This is usually not
straightforward, and we generally need to exploit special techniques.

For a jointly distributed set of variables θ ∈ Θ , where Θ is a d-dimensional set,
it is possible to define a (d × d) correlation matrix where each entry corresponds to
the correlation coefficient among the i-th and the j -th variable.

One way to accomplish the sampling of multiple variables could be to decompose
the correlation matrix into the product of a lower triangular matrix L and its
conjugate transpose, according to the Cholesky method. Once L is available, it is
possible to retrieve the input random vector as

θ = Lη (1.10)

where η is a (d × 1)-dimensional vector whose elements can be sampled indepen-
dently from a normal distribution η ∼ N (0, 1).

An alternative way to proceed with the sampling of jointly distributed variables
is to rely on a parametrisation of the stochastic space. This means establishing a
functional relation that maps a set of independent random variables, hereinafter
referred to as the germ, to the initial mutually correlated parameters. Differently than
the Cholesky decomposition approach, which leaves the dimension of the stochastic
space unchanged, in some cases the parametrisation opens the path to an order
reduction of the problem. This is particularly useful when dealing with stochastic
fields.

1.4.1 Karhunen–Loève Expansion

The Karhunen–Loève decomposition (KL), or proper orthogonal decomposition
(POD), was first proposed in the 1940s by Kac and Siegert [6], Karhunen [7] and
Loeve [8]. The main idea upon which the KL expansion relies on is to provide
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a representation of a stochastic model based on the spectral decomposition of its
correlation function.

In general, it is possible to retrieve a linear operator K which is referred to as
the correlation kernel. We will avoid diving into the mathematical details of this
topic, the interested reader may refer to [9] to get a thorough and comprehensive
presentation of the subject. What is relevant here is that K owns some very useful
properties that allow us to retrieve a spectral expansion of the stochastic process U .

In particular, given its properties K has real non-negative eigenvalues λi . For
each λi there exist a finite number of linearly independent eigenvectors ui(x). The
collection of these eigenvectors constitutes the orthogonal basis upon which the KL
expansion is built. Therefore, it is possible to decompose the kernel as follow:

K(x, x′) =
∑

i≥1

λiui(x)ui(x)′ (1.11)

This is a common eigenproblem that can be solved using well-established
approaches.

Once the eigenvalues and their related eigenvectors are known, it is possible to
retrieve the KL expansion of the stochastic problem U which reads

U(x, θ) =
∑

i≥1

√
λiui(x)ηi(θ) (1.12)

It is worth noting that the random variables ηi(θ) that enter in Eq. (1.12) have zero
mean, unit variance, and they are mutually uncorrelated.

This latter point is of the utmost importance. Indeed, if a certain stochastic
process depends on a given set of mutually correlated variables, one could exploit
the KL expansion to get a parametrisation of the stochastic space.

In particular, if the stochastic space includes a random field, the KL expansion
contains an infinite number of terms. In practice, we truncate the expansion, trading
some accuracy in place of a reduction of the dimensions of the stochastic space (and
a reduction of the computational effort). The truncated series in Eq. (1.13) counts a
number of terms at most equal to dimensions of the stochastic space, which in some
case could be very large.

Û (x, θ) :=
NKL∑

i≥1

√
λiui(x)ηi(θ) (1.13)

In order to set the truncation order NKL properly, one should make sure to include
the contribution of all the significant eigenmodes associated with the correlation
kernel. An important aspect that must be taken into account is that the rate of
decay of the eigenvalues is strictly related to the correlation length. Figure 1.3
reports the eigenvalues, normalised w.r.t. the largest one, as resulting from the
KL decomposition for different values of the correlation length l. The smaller



1 Introduction to Spectral Methods for Uncertainty Quantification 13

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9 10

l = 0.016

l = 0.08

l = 0.4

l = 2l = 10

i/
m

ax

Eigenvalue Index

KL Eigenvalues

Fig. 1.3 Karhunen–Loève decomposition: eigenvalue decay rate, for different values of the field
correlation length l

-1

0

1

0 0.2 0.4 0.6 0.8 1

φ
 (x

)

x [-]

KL Eigenmodes for l = 0.1

i 1
i 2
i 3
i 4

0
1

2
3

4 0

0

1

KL Eigenmodes for l = 1e-10

Eigenmode Index

x [-]

φ (x)

Fig. 1.4 Karhunen–Loève decomposition (a) eigenmodes for a covariance length l = 0.1 (b)
eigenmodes for a very limited covariance length l = 1e−10

the correlation length, the slower the eigenvalues decay. Therefore, in order to
truncate the series and yet have a good level of approximation, we need to include a
larger number of eigenmodes. On the other hand, a very large correlation length
is associated with a fast eigenvalue decay which allows us to truncate the KL
expansion at a lower order. To this extent, it is key to point out the fact that the
KL expansion is optimal in the mean square sense, that is, the approximation of the
process U , resulting from a truncated KL expansion, minimises the mean square
error [9]. The reason for this is that the expansion is made onto a set of uncorrelated
(hence, orthogonal) random variables. Moreover, not only the eigenvalue decay rate
strictly depends on the correlation length, but also the shape of the eigenmodes is
affected (Fig. 1.4).

Now that we have a parametrisation of the original stochastic space, we need
to generate samples ηi(θ) in order to get Û (x, θ). Here is where the assumption
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that U is normally distributed is found to be valuable. Indeed, by linearity of
Gaussian random variables, this assumption implies that ηi(θ) are jointly standard
and normally distributed. Since they are uncorrelated, they are also independent,
and to stress this we introduce the notation ξi for jointly normal independent
random variables. Hereinafter, we will refer to ξ := (ξ1, . . . , ξNKL) ∈ Ξ as the
germ. Therefore, the probability space Ξ is the space of all jointly, normally and
independent NKL-dimensional random variables. In this perspective, the truncated
KL expansion of a normally distributed stochastic process reads,

Û (x, ξ) :=
NKL∑

i≥1

√
λiu(x)iξi ≈ U(x, ξ). (1.14)

With particular reference to the conductivity field k(x, ξ) included in our illustrative
problem, the sampling process must implement the steps reported in Algorithm 1

Algorithm 1 Generate a sample set of the conductivity field k(x, ξ) using the
KL expansion

1 Decompose the correlation function according to the KL approach;
2 Establish the truncation order NKL;
3 Generate NKL independent samples ξj of the germ;
4 Evaluate the truncated KL expansion at Nel spatial points xj ;

1.4.2 Mathematical Reformulation of the Dirichlet Problem

The parametrisation of the stochastic field k in independent and identically dis-
tributed (IID) random variables allows us to reformulate the Dirichlet problem
in Eq. (1.5). Indeed, this problem now depends on a set of independent random
variables Ξ and reads,

⎧
⎪⎪⎨

⎪⎪⎩

∂xk(x, ξ)∂xu(x, ξ) = −f x ∈ (0, 1), ξ ∈ Ξ.
u(0, ξ) = u0

u(1, ξ) = u1

(1.15)

As mentioned, the chapter is intended to provide an introduction of the fundamentals
of UQ. To this extent, besides the mathematical aspects, we consider the understand-
ing of the physics of the problem of the utmost importance. We will try to be loyal to
our agreement with the reader, and we will try to keep the mathematical description
at the simplest possible level. Nevertheless, a few essential functional spaces must
be introduced in order to be rigorous.

Functional analysis is essential to UQ. A classic reference is [10], while
applications of functional analysis on UQ can be found in [9, 11]
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Considering the space of stochastic processes,

L2(Ξ) := {ϕ(ξ) :
∫

Ξ

ϕ(ξ)2dμ(ξ) <∞}

where

dμ(ξ) = fΞ(ξ)dξ

and fΞ(ξ) is the probability density function (PDF) of the multivariate standard
Gaussian random variable ξ . Now, because of independence the PDF fΞ(ξ) is
the product of each PDF fΞi (ξi) of each one-dimensional random variable ξi ,
i.e., fΞ(ξ) = ∏N

i=1 fΞi (ξi). This would not happen, if the variable were not
independent. It is important to understand that this makes all the theory much
simpler and saves a great deal of computational effort. Indeed, it is one of many
benefits of choosing a parametrisation, such as the KL expansion for normally
distributed stochastic processes.

Remark 1.1 The notation dμ(ξ) represents the measure of the probability space. If
the measure of Ξ is the one-dimensional standard Gaussian measure then,

∫

Ξ

ϕ(ξ)dμ(ξ) =
∫ ∞

−∞
ϕ(ξ)

1√
2π
e−ξ2/2dξ

Moreover, considering the space,

H 1
0 (0, 1) :=

{

φ(x) :
∫ 1

0
φ2dx <∞ and

∫ 1

0
(φ′)2 <∞ and φ(0) = φ(1) = 0

}

which is a Sobolev space. Spaces, such as H 1
0 (0, 1), are important, because a

function φ ∈ H 1
0 (0, 1) has peculiar properties. For instance, the Lax–Milgram

theorem [5], which gives necessary and sufficient conditions for existence and
uniqueness of solution for Eq. (1.5), is valid. These results are the backbone of UQ
theory, and they should be kept in mind. In the following, superscript 1 implies that
the first derivative of the function is squared and integrable, while the subscript 0
points out that the function vanishes at the boundary. The (0, 1) refers to the domain
in which the function is defined. Finally, we denote the {φi}∞i=1 an orthogonal basis
of the space H 1

0 (0, 1).
The solution of Eq. (1.15) is a stochastic process u(x, ξ) ∈ H 1

0 (0, 1) ⊗ L2(Ξ).
This means that if we focus on the deterministic part of u, i.e., if we freeze the
variable θ and let x free to vary, then u(x, ·) ∈ H 1

0 (0, 1). If we do the opposite and
focus on the probabilistic part of u, then u(·, ξ) ∈ L2(Ξ).

In particular, if we consider the deterministic heat diffusion equation (1.1), the
solution does not have any probabilistic component; therefore u(x) ∈ H 1

0 (0, 1).
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1.5 Monte Carlo Methods

Monte Carlo (MC) methods are a broad class of algorithms that find their application
in a wide variety of engineering fields. For instance, they are exploited to solve
optimisation problems; they can be used to compute complex integrals, or they can
be used to generate draws from a probability distribution.

The MC methods rely on a repeated random sampling to realise a large set of
numerical experiments to obtain statistical information about the stochastic process.
The main idea onto which a MC method is built consists in using randomness to
solve a problem that might be deterministic in principle. In particular, the law of
large numbers allows us to compute a QoI in the statistical sense. For instance, the
expected value of a random variable, like the probability of getting head or tail when
tossing a coin, may be estimated by simply running a large number of independent
experiments (or realisations).

Given their simplicity, MC methods are often used as a brute-force approach to
tackle problems that otherwise would be too difficult, or even impossible, to solve.
Nowadays, there exists a broad family of MC algorithms that are used in science and
engineering; we recall here the importance sampling often employed in statistical
physics, the direct simulation Monte Carlo (DSMC) used in micro-fluidics problems
or the Monte Carlo localisation (MCL) applied in autonomous robotics.

1.5.1 Mean and Variance

The goal of this section is to show how two fundamental QoIs, the mean and
the variance of the model output, can be computed using an MC approach. We
now focus on the heat diffusion equation (Eq. (1.15)) where the uncertainty is
related to the thermal conductivity; k is parametrised using the KL method. Since
a stochastic field is involved, an infinite number of parameters should be used in
this parametrisation. As shown in Sect. 1.4.1, we are sometimes allowed to truncate
the KL series to reduce the dimensions of the stochastic space. In particular, in the
limit of a very large correlation length, we could parametrise the whole field with
respect of a one single random variable, i.e. we could truncate the series at the first
term. Otherwise, we would have faced a slower eigenvalue decay, and, as a result,
we should have included a larger number, though still finite, of terms within the
truncated KL expansion. Nevertheless, the procedure to compute the mean and the
variance would essentially be the same.

The deterministic solution of the heat diffusion equation is found by assigning
specific values of ki at each xi element employed in the Galerkin finite element
approach. As reported in Algorithm 1, the KL expansion can be exploited to
generate a set of Nel correlated ki samples, starting from the germ. As the domain
is represented through a finite discretisation, the dimension of the germ is at most
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equal to the number of elements employed, but it can be reduced if the field is
strongly correlated.

To apply the MC approach, the set of ki is sampled M times, according to its
KL parametrisation. For each m-th sample set, we deterministically compute the
value of temperature U(m) at a specific location, say at the beam mid-point. U(m)

is called the m-th realisation of the MC procedure. By the law of large numbers,
the M realisations can be used to compute the statistical moments of the solution
U . Obviously, from very few realisations, we cannot retrieve sufficient information
to compute statistical meaningful quantities. As we increase their number, we
extend the MC set and therefore improve the quantity of information available. In
Fig. 1.5 we show that the mean and the variance converge to specific values as more
information is gathered. In particular, it takes almost 20,000 realisations before the
convergence is reached. Following this very simple procedure, even higher order
statistical moments could be considered as well. Most importantly, we were able
to retrieve statistical information without bothering about the complexity of the
problem under investigation, although this one is really simple and relatively cheap
to solve. Nevertheless, if our model consisted of a CFD simulation, the MC approach
would still have been successful, but it would have been required to run 20,000
simulations, a task that could be too demanding to accomplish at a reasonable
computational time. Of course, the same procedure may be carried out for any point
along the beam, to obtain the mean temperature distribution and the variance at
different locations.

Figure 1.5 shows how the predicted mean and variance converge to the very same
values even if the MC set is different. Figure 1.6 reports the mean temperature
(a) distribution and the related variance (b), with respect to the x axis. Moreover,
according to the law of large numbers, after a certain number of MC realisations,
the quantity of interest become independent from the sampling set. With reference
to Fig. 1.6b, we can see that the variance follows a similar pattern: the maximum
variability is found at the centre of the domain, while the BC enforces the solution
at the edges so that the variability there is null.
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Fig. 1.5 MC approach: temperature mean (a) and variance (b) at x = 0.5, with respect of the
number of realisations, for different initial seeds. The mean and variance of the stochastic field k
are μ = 1 and σ 2 = 0.1, respectively
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Fig. 1.6 Approximation of the QoI mean (a) and variance (b) using 10,000 MC samples. Same
model and set up as in Fig. 1.2. The values of the mean and variance are, respectively, μ = 1 and
σ 2 = 0.1

Using the Central Limit Theorem, it can be proved that the convergence rate of
MC methods for a well-behaved function corresponds to 1/

√
M . It follows that,

in order to halve the error, one has to multiply by four the number of realisations.
This points out a very slow convergence rate that in some cases it may arise a few
concerns about the strength of the approach.

1.5.2 PDF Reconstruction for Different Correlation Lengths

The MC approach may be employed also to compute the frequency of a QoI and
to reconstruct its PDF. According to the KL expansion procedure, we were able to
parametrise the thermal conductivity field, considering two opposite scenarios. The
first one involves a field endowed with a very small correlation length l << 1,
while in the second case l >> 1. By applying the MC approach, we are able
to draw an histogram with the relative frequencies of a QoI, the value of the
temperature in the middle of the beam. The resulting histograms are reported in
Fig. 1.7 where it is possible to point out how the frequencies are more or less spread
over [0, 1], depending on the magnitude of l. For both histograms in Fig. 1.7, we
have considered k to have a log-normal covariance matrix, with mean μ = 1 and
variance σ 2 = 0.1. We clearly identify two different patterns for the two cases:
a homogeneous conductivity field, i.e. a large correlation length, is characterised
by a distribution of QoI spread over a wide support. On the other hand, a loosely
correlated field is associated with a distribution with a smaller support. Most
notably, the variance is much smaller than that related to a strongly correlated field.

Figure 1.7 also raises the following question: How does each random variable
ξi influences the temperature at the middle point? Of course, there exist ways
to address this question through a MC approach, but, given the usually slow
convergence rate, this implies a great computational effort. In the next section,
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we introduce the Polynomial Chaos Expansions (PCE). These are polynomial
expansions to approximate the solution of a stochastic model. The approach is
somehow similar to what we showed for the KL expansion. In fact, both procedures
are part of a class of methods called Spectral Methods (SM).

1.6 Spectral Methods

Monte Carlo approaches may conceal a very demanding effort, especially if the
deterministic model is complex and if its evaluation requires a considerable amount
of computational resources. Spectral methods represent an alternative approach
to MC techniques. We introduce the concept of surrogate model or simply the
metamodel. Once built, a surrogate represents an object capable of approximating
the behaviour of the deterministic model with a satisfying accuracy and at a lower
computational cost. Figure 1.8 represents the surrogate model as a black-box that
receives a set of random inputs and returns the corresponding QoI, which is what
the solution does itself. There exists different ways to construct a metamodel. In
general, one has to choose a proper basis and to compute a set of coefficients that
weight the chosen basis. For instance, the truncated KL expansion may be seen as
a surrogate model, built over the spectral expansion of orthogonal (uncorrelated)
functions of a stochastic field, being the weighting coefficient the eigenvalues. In
the SM framework, the construction of a surrogate model relies on a polynomial
expansion of the solution u(x, ξ).
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Fig. 1.8 Sketch of the three
stages toward computing a
QoI û. First generate a sample
ξ , then build a surrogate
model that depends on the
germ ξ . Finally, we can use
this surrogate to find û

M(ξ )

ξ (1)

ξ (N)

û(ξ )

1.6.1 Polynomial Chaos Expansion

Polynomial Chaos Expansions (PCE) rely on the a priori assumption that the basis
{Ψs} in Eq. (1.17) is a polynomial of a given structure and order. This differs
from the KL approach, where the basis consists of the eigenvectors related to the
correlation kernel.

Recall the space of stochastic processes L2(Ξ) introduced in Sect. 1.4.2. Denote
the generalised polynomial chaos basis as the collection of the N -dimensional
orthogonal polynomials {Ψs(ξ)}∞s=0 up to order N0 that benefits from the following
property:

E[Ψs1(ξ)Ψs2(ξ)] = γsδmn (1.16)

where s1, s2 ∈ {0, 1, . . . , P } and P is the number of terms in the expansion. Finally,
denote the normalising factor for each polynomial as γs = E[Ψ 2

s (ξ)].
The PCE is the functional dependency of the solution on the set ofN IID random

variables ξ = (ξ1, . . . , ξN ) that reads:

u(ξ) =
∞∑

s=0

usΨs(ξ) (1.17)

where the coefficients us are deterministic. The goal is then to find the coefficients
us of such PCEs.

Equation (1.17) is a polynomial series, and, for practical applications, it should
be truncated at a proper order N0. The advantage of the PCE is that the solution u
can be accurately approximated using a relatively small number of terms.

The number of terms in the expansion, denoted by P , is related to N and N0 by
the following expression,

P + 1 = (N0 +N)!
N0!N ! .

The truncated PCE of the stochastic process then reads
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U(x, ξ) =
P∑

s=0

us(x)Ψn(ξ). (1.18)

The N -dimensional polynomials Ψs are generated from the combination of
one-dimensional polynomials ψs [9]. An example of the expression of a two-
dimensional polynomial up to order 3, therefore Pnisp = 9, is presented in Table 1.1.
The number of terms included in each polynomial increases with the order n. We
are only interested in computing a realisation of Ψs . This means we do not compute
the expression for Ψs(ξ) but rather the realisation (real number) Ψ (ξi). Of course
the us and the Ψs(ξ) exist also for higher orders and larger stochastic spaces. The
integer s is related to a standard multi-index definition [9]. The N -dimensional
polynomials Ψs are defined as a product of N one-dimensional ones. The order of
this product is given by a multi-index related to s. In the previous example, since
N = 2, each integer s corresponds to a two-dimensional vector (ξn1, ξn2). This
means Ψs is given by the product between one-dimensional polynomials of order n1
evaluated at ξn1 and the polynomial of order n2 evaluated at ξn2 . For instance, s = 3
corresponds to the vector (0, 1). For practical purposes, we are not interested in the
dummy variable definition of Ψs(ξ) but rather in realisations of each polynomial for
each order. With reference to Table 1.1, we see that the number of realisations for
each polynomial increases with n. Finally, note that ψ0 = 1, although it is explicitly
reported in the polynomial expansion to highlight the recursive scheme.

There exists a one-to-one correspondence between the probability distribution of
the germ and the type of polynomials one must chose as PCE basis. Table 1.2 reports
the basic choice for different possible distributions of ξ . A more comprehensive
dissertation on this topic may be found in [12].

Since the polynomial are fixed a priori, the goal is to compute the coefficients
us of the expansion. It must be pointed out that SM become less efficient as the
dimension N of the germ increases. This is the so-called curse of dimensionality.
Indeed, the computation of the coefficients us may become too demanding, as

Table 1.1 The coefficients and the corresponding two-dimensional polynomials up to order 3.
Each two-dimensional polynomial corresponds to the product of one-dimensional polynomials

ORDER us Ψs(ξ)

n = 0 [u0] [Ψ0(ξ) := ψ0 = 1]T
n = 1 [u10 u01] [ψ1(ξ1)ψ0 ψ0ψ1(ξ2)]T
n = 2 [u20 u11 u02] [ψ2(ξ1)ψ0 ψ1(ξ1)ψ1(ξ2) ψ0ψ2(ξ2)]T
n = 3 [u30 u21 u12 u03] [ψ3(ξ1)ψ0 ψ2(ξ1)ψ1(ξ2) ψ1(ξ1)ψ2(ξ2) ψ0ψ3(ξ2)]T

Table 1.2 For each
probability distribution
characterising the stochastic
variables, we are required to
select a specific basis

Distribution PCE polynomials Support

Gaussian Hermite (−∞,∞)
Uniform Legendre [a, b]
Gamma Laguerre [0, inf)

Beta Jacobi [a, b]
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the number of realisations required to determine these deterministic coefficients
increases exponentially, with the dimension of the germ. Moreover, the construction
of N -dimensional polynomials gets more complex for higher order polynomials.
This means that the computation complexity also increases with N0. Therefore, we
need to find a balance between the accuracy and the computational cost.

There are several approaches to construct the PCE Eq. (1.17). In the following
sections, we will present two different methods: Non-Intrusive Spectral Projection
(NISP) and Galerkin methods.

As for the MC approach, NISP methods rely on deterministic evaluations of the
considered model, to compute the PCE coefficients and to obtain the surrogate. Once
the coefficients are available, the statistics of the output can be directly retrieved by
established expressions. Indeed, there exist formulae that relate the coefficients to
the statistics of the QoI. For instance, the coefficient u0 is equal to the mean of the
surrogate output.

1.6.2 Non-Intrusive Spectral Projection Methods

The goal of the chapter is to present clever techniques to retrieve certain information
about a stochastic process. In general one could think of a model as a surjective
mapping between the space of the parametrised input parameters and the QoI.

Non-intrusive spectral projection methods rely on the construction of a spectral
expansion of the stochastic process. The surrogate approximates the behaviour of
the original model in the sense that it is able to dictate a surjective mapping, up to a
certain level of accuracy, between the stochastic input space and the output domain.
The input parameters can be thus linked to the output through a functional relation.

The cost of employing NISP approach is associated with the amount of realisa-
tions needed to compute the deterministic coefficients in Eq. (1.18). For instance,
coefficients may be computed using a quadrature formulae which reads,

un ≈ 1

M

M∑

j=1

wjU(x, ξ
(j))Ψn(ξ

(j)). (1.19)

The number of required realisations equals the number of points ξ (j) in the quadra-
ture formulae. These points can be chosen randomly or in a quasi-deterministic way,
as discussion on the different quadrature approaches can be found later.

1.6.2.1 Numerical Approaches for NISP

The NISP algorithm is presented step-by-step in Algorithm 2. From the discussion
above, the first and the fourth steps are intrinsically related. In the following we
are going to discuss different sampling strategies that can be applied at step 1 of
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Algorithm 2 NISP algorithm

1 ChooseM samples of the germ ξ (m) ∈ Ξ with dimension N . The sampling strategy depends
on step 4.

2 Compute theM fields K(m)(x, ξ) using the truncated KL expansions in N terms.
3 ComputeM realisations U(m) = U(x, ξ (m)).
4 Find the coefficients of the spectral expansion, i.e. solve Eq. (1.19).

Algorithm 2. The most straightforward way to evaluate the integral in Eq. (1.19) is
through the MC approach. In order to do this, we impose wm = 1 for all m and
sample ξ (m), randomly. The strength of the MC quadrature approach is that it is not
sensitive to the dimension of the stochastic space. This means that the computational
cost will always be similar. The drawback is that the convergence is very slow,
approximately equal to 1/

√
M; see [13]. Therefore it requires a very large number

of realisations to be unrolled. Nevertheless, there exist improved sampling strategies
that one may employ to generate theM sample sets ξ (m) and that allows to increase
the convergence rate.

Techniques, such as quasi-MC sampling and Latin-hypercube sampling (LHS)
[9, 13], use the same unitary weights as MC methods, but the quadrature points are
chosen in a deterministic way and not sampled randomly. However, these techniques
are affected by the curse of dimensionality, as they depend on the dimension of the
germ, and, as the stochastic dimension increases, their cost increases exponentially.

The LHS consists in forcing the sampler to draw the ξ (m) from equiprobable
bins, in the parameter range. This yields to the construction of a Latin square grid,
or a hypercube, if the stochastic space is multidimensional. In the hypercube there
is one, and only one, sample along each axis-aligned hyperplane containing it. This
LHS strategy allows to generate a near-random sample set of a multidimensional
stochastic space.

Another way of computing the integral in Eq. (1.19) is using a Gauss quadrature
formula where the samples ξ (m) and the weights wm are selected deterministically.
Generally, this yields a much faster convergence rate than a MC quadrature.
However, M is strictly related to the dimension of the stochastic space, and, due to
the curse of dimensionality,M grows exponentially as the dimension ofΞ increases.
Of course, there exist ways to overcome this issue and to reduce the number of
quadrature points. These techniques are called sparse Gauss quadrature formulae
[9]. Another drawback of Gauss formulae is that the set of points and weights for
a quadrature of degree Nq is not contained in the same set of a Nq + 1-degree
quadrature. This means that all the new sets of points must be computed, if a more
accurate quadrature formula is needed. Again, there are techniques, for instance,
adaptive Gauss quadrature, that helps avoiding this by recycling the quadrature
points. See [9, 14] for a discussion on sparse and adaptive Gaussian quadrature.
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1.6.2.2 Linear Regression

The linear regression approach is also widely used. The goal is to find the vector
of coefficients w = (u1, . . . , uS) for Eq. (1.18). To do that, we first compute the
minimisation sample points that solve the minimisation problem

min
ξ (j), j=1,...M

M∑

j=1

(
r(ξ (j))

)2

where r(ξ) := u(x, ξ) − U(ξ). In particular, the residual r(ξ) is orthogonal to the
space of solutions L(Ξ), as the number of samples M increases. In order to use
a small number of samples, some algorithms for the selection of particular sets of
minimisation points are available. The references [9, 14] include good first reviews
on how to choose these minimisation sample set points.

Once the sample sets are chosen, we construct the matrix

� =
⎛

⎜
⎝

1 ψ1(ξ
(1)) · · · ψP (ξ(1))

...
...

. . .
...

1 ψ1(ξ
(M)) · · · ψP (ξ(M))

⎞

⎟
⎠

and the information matrix �T�. Then the coefficients w are given by

w =
(
�T�

)−1
�TU

where U = (U(1) · · ·U(M)).
Usually, the regression method is robust for a number of evaluations of 2P ≤

M ≤ 3P (see [14]) using an appropriate choice to minimise the number of sample
points. On the other hand, the size of the matrix � is very large, at least twice as
the number of PC terms. The matrix is also ill-conditioned, which in practice means
that it is not recommended to be inverted directly.

1.6.3 Galerkin Methods

Similar to what was shown in the previous section, the goal of the Galerkin approach
is to build a surrogate model of the form of Eq. (1.18). Once again, we need to
find the coefficients entering the PCE. As we have seen, NISP methods rely on a
quadrature rule to compute the spectral coefficients. To achieve the very same goal,
the Galerkin approach requires the implementation of two different steps. First, the
stochastic problem must be reformulated, to introduce the PCE of the solution into
the model. The PCE is a spectral expansion of a random process. In a deterministic
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setting, the terms in the spectral sum are a pair or eigenvalues and eigenvectors,
where the latter depend only on the spatial coordinates. In the PCE case, there is a
third term that depends on the probabilistic space. This term is a polynomial, and it is
part of a basis of the probability space. Secondly, the coefficients are computed using
a Galerkin projection: the residuals are computed and projected onto the orthogonal
basis {Ψs}. This procedure yields to the construction of a linear system which must
be solved to retrieve the deterministic coefficients of the PCE.

As mentioned, the stochastic Galerkin method is based on a reformulation of the
problem. Therefore, the approach requires full access to the equations. It is worth to
point out that this is not always granted, and, in some cases, it is even not feasible,
for instance, when we are dealing with a CFD framework. In this latter case, the
model is of the utmost complexity, since it is made up by algorithms, conditional
jumps, specific implementation choices for specific problems and so on. Therefore,
the possibility of exploiting a Galerkin approach for complex problems is often
highly questionable.

In the following, we will focus on our case study, the heat diffusion problem, for
which the Galerkin method is surely a suitable approach.

1.6.3.1 Weak Formulation and Deterministic Discretisation

Recall the mathematical formulation presented in Sect. 1.4.2. The goal of this
subsection is to present the weak formulation and the corresponding finite element
representation for both the stochastic and the deterministic problems. We rewrite the
deterministic model in Eq. (1.3),

{
∂xk(x)∂xu(x) = −f x ∈ (0, 1)
u(0) = u(1) = 0.

(1.20)

The weak formulation [2, 5] reads,

a(u, v) = b(v) for any v ∈ H 0
1 (0, 1) (1.21)

where

a(u, v) =
∫ 1

0
k(x)∇u(x)∇v(x) dx and b(v) =

∫ 1

0
f (x)∇v(x) dx

The weak form is given by

A(u, v) = B(v), for any v ∈ H 0
1 (0, 1)⊗ L2(Θ) (1.22)

where
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A(u, v) = E[a(u, v)] and B(v) = E[b(v)]

We focus one the LHS of weak forms of Eqs. (1.21) and (1.22). The objects a(u, v)
and A(u, v) are called functionals. The functional a(u, v) depends only on the space
H 0

1 (0, 1), since for this case u and v are deterministic functions. On the other hand,
the functional A(u, v) depends on the product of spaces H 0

1 (0, 1)⊗L2(Θ), as now
u and v are stochastic processes.

We proceed with a finite element discretisation to obtain a system of equations.
This is the only discretisation we need to perform for the deterministic case of
Eq. (1.21). However, for Eq. (1.22), we still need to perform a stochastic discreti-
sation, as we will see later. The finite element discretisation is done over Nel points
in (0, 1). Indeed, the weak form of Eq. (1.21) yields the system

Au = B (1.23)

where the entries of A and B are given by

Ai,j :=
∫ 1

0
k(x)∇φi(x)∇φj (x) dx, and Bj =

∫ 1

0
f (x)∇φj (x) dx

Similarly, the stochastic form yields the system

A(θ)u = B (1.24)

where the entries of A(θ) differ from Eq. (1.23). We arrived to the main point of this
description: Eq. (1.23) is a linear system of equations. On the contrary, Eq. (1.24) is
not, since A(θ) is a stochastic matrix. Therefore, we need to discretise the matrix
A(θ). To do that we follow the approach reported in [9] that brings us to the
construction of a finite dimensional matrix A that approximates A(θ).

1.6.3.2 Stochastic Discretisation

Denote u = [u0 u1 . . . uP ] a block-vector where us ∈ R
Nel . The goal is to build a

linear system that returns the coefficients us of the spectral expansion

U(x, ξ) ≈
PG∑

s=0

usΨs(ξ) (1.25)

Recall the orthogonal basis of L2(Θ) given by {Ψs}. First, find a spectral expansion
of the field k(x, θ),



1 Introduction to Spectral Methods for Uncertainty Quantification 27

k(x, θ) ≈
PG∑

s=0

ks(x)Ψs(θ) (1.26)

Moreover, define the third tensor C ∈ R
(PG+1)3 by

Ci,j,s :=
∫

Θ

Ψi Ψj Ψs dμ(θ). (1.27)

Finally, the block matrices Ai,j are given by

Ai,j =
PG∑

s=0

Ms Ci,j,s (1.28)

where Ms
i,j := ∫ 1

0 ks(x)∇φi(x)∇φj (x)dx are matrices of size Nel × Nel . It is
important that the expansion of Eq. (1.26) has the same terms as each block matrix
in Eq. (1.28); otherwise the products are not defined. This yields a linear system of
size Nel(PG + 1)×Nel(PG + 1) given by

Au = B. (1.29)

where the Nel × Nel dimensional vector Bj = B for j = 0, . . . , PG. The system
can be presented as

⎡

⎢
⎢
⎢
⎣

A0,0 A0,0 . . . A0,0

A1,0 A1,1 . . . A1,PG
...

...
...

. . .
...

APG,0 APG,1 . . . APG,PG

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎣

u0

u1
...

uPG

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

B

B
...

B

⎤

⎥
⎥
⎥
⎦

The cost to solve the linear system in Eq. (1.29) is dramatically larger than the cost
required to solve the deterministic one in Eq. (1.23).

1.6.3.3 Computational Cost of Stochastic Galerkin Method

The Galerkin method is the most computationally demanding method presented in
this chapter. A good background on linear algebra and matrix analysis techniques
is a must for reducing the cost of implementing this method. A simple brute-force
approach is usually not an option, even for one-dimensional simple problems, such
as Eq. (1.5). Nevertheless, this is a good starting point for more refined techniques.
In Algorithm 3, we present such brute-force strategy to build the linear system of
Eq. (1.29).
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Algorithm 3 Stochastic Galerkin algorithm to compute the PCE coefficients

1 Compute the coefficients ks(x) of the expansion in Eq. (1.26).
2 Compute matricesMs for each ks(x).
3 Compute the tensor C in Eq. (1.27).
4 Compute the block matrices in Eq. (1.28).
5 Solve the linear system of Eq. (1.29).

One way of computing the coefficients ks(x) is by using the KL expansion of
k(x, ξ). This means we need to write the expansion in Eq. (1.13) in the form of
Eq. (1.26), and then we can use these coefficients to build the matricesMs . However,
there are ways of computing these matrices directly from the KL expansion of
k(x, ξ); see [9]. Next, we need to compute the third order tensor C that has
(PG + 1)3 entries. We can do so by exploiting the orthogonality properties of
the polynomials Ψs(x). This yields a symmetric and sparse tensor that makes the
procedure much more efficient. Finally, after completing step 4 we solve the linear
system in Eq. (1.29). This is a sparse system of size Nel(PG + 1) × Nel(PG + 1).
Again, there are a number of techniques one could exploit to solve this system
in a more efficient way. These include the use of Krylov-based methods and pre-
conditioning techniques [9].

1.6.4 Application of Surrogate Models: A Sensitivity Analysis
Using PC Expansions

We can exploit the coefficients of the PCE of a model to get statistical information
about the QoI, and this is a great improvement in terms of efficiency, if we were
to use a MC approach, instead. In this section, we discuss the computation of the
Sobol indices, a set of parameter which is very useful for sensitivity analysis. We
do not provide a detailed explanation about how to compute Sobol indices, the
interested reader can refer to [15] for details on this. The goal is to present a general
overview about differences in computing the Sobol indices using a MC approach
or a surrogate model approach. We also compute the Sobol indices for a specific
example, using the surrogate model approach, as in [9, 16].

Let ξ := {(ξ1, . . . , ξN } be a sample of the germ, and consider the solution value
at the midpoint of the beam for this particular sample, i.e. u∗ = u(x = 1/2, ξ). We
are interested in the significance of each random variable ξi alone with respect to
the value u∗. This information is provided by the first order Sobol indices.

Let σ 2 be the variance of u∗. This variance accounts for the variability of all
random variables ξi that contributed to the PCE of u∗. The variance σ 2 can be
decomposed into parameters that stress the contribution of each variable to the QoI,
in this case u∗. For instance, consider the stochastic space illustrated in Table 1.1.
Here, we consider a two-dimensional stochastic space, and we decompose the
variance of the solution as follows:
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σ 2 = σ 2
1 + σ 2

2 + σ 2
1,2, (1.30)

where σ 2
1 and σ 2

2 are the contribution to the variance of ξ1 and ξ2, respectively,
which are independent random variables. The term σ 2

1,2 represents a second order
contribution that accounts for combined interaction of the variables of the germ. In
this subsection, we are interested in the first order Sobol indices only, i.e. the values
of σ 2

1 and σ 2
2 .

1.6.4.1 MC Approach

If we ought to compute the values σ 2
1 and σ 2

2 using a MC approach, we would
need to sample M values of ξ1 (being ξ2 fixed) and compute the corresponding
M realisations. Then we could compute the variance of u∗ for each ξ1, using the
corresponding samples. This gives σ 2

1 using the corresponding estimators [15]. A
similar procedure should be done for the second stochastic variable. An example
withM = 5 samples illustrated below.

1. Generate M samples of 4-dimensional points (2d, d = 2) in the unit hypercube
and construct the matrixM:

M =
⎛

⎝
0.3 0.3 0.7 0.3
0.2 0.3 0.8 0.4
0.2 0.1 0.5 0.4

⎞

⎠

2. Define the matrices A and B in the following way. The columns of A are the first
d columns ofM . The columns of B are the remaining columns ofM .

A =
⎛

⎝
0.3 0.3
0.2 0.3
0.2 0.1

⎞

⎠ B =
⎛

⎝
0.7 0.3
0.8 0.4
0.5 0.4

⎞

⎠

3. Construct matrices A(i)B , i = 1, . . . ,M in the following way. The columns of

matrix A(i)B are the columns of matrix A except column i, which is the i-th
column of B.

A
(1)
B =

⎛

⎝
0.7 0.3
0.8 0.3
0.5 0.1

⎞

⎠ A
(2)
B =

⎛

⎝
0.7 0.3
0.8 0.3
0.5 0.1

⎞

⎠

4. Compute the M-dimensional vector U(A), U(B), U(i), where each entry is the
solution of Eq. (1.15) using the points (ξ1, ξ2) of the corresponding matrix. For
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instance,

U(1) =
⎡

⎢
⎣

u(x, ξ
(1)
1 = 0.7, ξ (1)2 = 0.3)

u(x, ξ
(2)
1 = 0.8, ξ (2)2 = 0.3)

u(x, ξ
(3)
1 = 0.5, ξ (3)2 = 0.1)

⎤

⎥
⎦

5. Use the estimators [15] to compute the Sobol indices. For instance, the first order
Sobol indices are given by

Si = Vi

V
(1.31)

where V is some approximation of σ 2 and

Vi = 1

N

M∑

j=1

U
(B)
j

(
U
(i)
j − U(A)j

)
.

It is clear that this turns out to be a quite computationally demanding algorithm
when the number of samples M is high. Indeed, we need to find M(d + 2)
realisations to compute Eq. (1.31). We saw in Sect. 1.5 that the number of samples
needed is of the order of thousands. In the next subsection, we present a different
approach to compute the Sobol indices using the PCE as a surrogate.

1.6.4.2 Surrogate Approach

There are many ways of computing the Sobol indices using a surrogate model. In the
following, we shall consider a PCE obtained using the NISP method. We notice that
the coefficients are obtained using a quadrature rule. We also highlighted that the
number of realisations of the solution is related to the number of quadrature points
used. For a sufficient accurate Gauss–Hermite quadrature rule, the number of points
should be much less than the number of realisations M previously used in the MC
approach; therefore, the number of realisations for NISP should be much less than
M .

In this subsection, we give an explicit formula to compute the Sobol indices. We
also illustrate the meaning of these coefficients with a numerical example. Consider
the multi-index mj = αj · ξ , where the multi-index αj ∈ {0, 1}N is given by

α1 = (1, 0, 0, · · · , 0) αQ1+1 = (1, 1, 0, · · · , 0) · · · αQN = (1, · · · , 1, 1, 1)
α2 = (0, 1, 0, · · · , 0) αQ1+2 = (1, 0, 1, · · · , 0) · · ·

...
...

αQ1 = (0, 0, 0, · · · , 1) αQ2 = (1, 0, 0, · · · , 1) · · ·
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where Qq = ∑q

i=1

(
N
i

)
. As an example, consider N = 3 then m3 = (0, 0, 1) ·

(ξ1, ξ2, ξ3) = (0, 0, ξ3), which means σ 2
m3 := σ 2

3 which is the contribution of the

variable ξ3 to the overall variance σ 2. Finally, we just need to define the set of indices
s ∈ {1, . . . , Pnisp} that are related to the variable(s) in mj , j = 1, . . . ,QN . Before
formally defining this multi-index, we look at the case of Table 1.1. SinceN = 2, we
have 3 multi-indices mj , j = 1, 2, 3. One corresponds to ξ1, the other to ξ2 and the
last to both of them. By construction, the polynomials Ψs(ξ) with index s = 1, 3, 6
depend only on ξ1; the ones with index s = 2, 5, 10 depend only on ξ2; and, finally,
the polynomials with indices s = 4, 7, 8 depend both on ξ1 and ξ2. Therefore, we
can define the following three sets, according to the different dependences in the
germ:

Sm1 := {1, 3, 6}
Sm2 := {2, 5, 9}
Sm3 := {4, 7, 8}

The general definition of Smj is given by

Smj :=
{

s ∈ {1, .., Pnisp} : Ψs =
N∏

i=1

ψmi (ξi)

}

Now, we can write the decomposition of the variance, using this notation:

σ 2 =
QN∑

j=1

σ 2
mj (1.32)

where each σ 2
mj is given w.r.t. the coefficients of the PCE in Eq. (1.18) as

σ 2
mj :=

∑

s∈Smj

u2
s . (1.33)

From Eq. (1.33) one can use the estimators as in [9, 16] to compute the Sobol indices
and even other quantitative indices. In Table 1.3, we can see the first order Sobol
indices of each variable ξi for different correlation lengths l. We have the same
number of stochastic dimension as spatial elements, and therefore, we can clearly
appreciate their importance on the solution. For smaller correlation lengths, all the
stochastic variables have a significant importance on the QoI. This means that the
KL expansion should include all possible terms ξi ; otherwise, the surrogate will
not be accurate. On the other hand, if the correlation length is large, then the only
significant variable is the ξi . This is because the only significant mode in the KL
expansion is exactly the first one.
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Table 1.3 First order Sobol indices for each random variable of the germ w.r.t. the value of the
solution of Eq. (1.5) at the middle of the beam, u∗ = u(x = 1/2/, ξ). The space discretisation with
11 elements. Numerical values for a value of the mean μ = 1 and variance σ 2 = 0.1. The maximum
order of the orthogonal basis is N0 = 2, which gives an expansion with 18,591 terms

l 0.016 0.08 0.4 2 10

S1
1 3.835e − 01 4.761e − 01 9.535e − 01 9.996e − 01 9.999903e − 01

S1
2 7.572e − 03 1.033e − 02 6.187e − 03 2.224e − 04 8.755946e − 06

S1
3 4.610e − 01 4.483e − 01 3.829e − 02 5.235e − 05 8.145184e − 08

S1
4 4.838e − 03 5.332e − 03 7.525e − 06 5.605e − 13 5.386858e − 20

S1
5 6.338e − 02 3.673e − 02 1.332e − 06 4.395e − 11 1.173323e − 16

S1
6 3.1801e − 03 1.403e − 03 2.411e − 10 5.364e − 23 1.067134e − 19

S1
7 4.503e − 02 1.257e − 02 8.945e − 09 4.863e − 17 6.450506e − 20

S1
8 3.712e − 03 3.772e − 04 6.991e − 16 3.020e − 21 3.854629e − 21

S1
9 8.364e − 03 5.787e − 04 3.555e − 12 2.801e − 21 2.506504e − 26

S1
10 3.540e − 03 5.780e − 05 9.602e − 23 2.181e − 26 3.183518e − 26

S1
11 3.641e − 03 1.241e − 04 4.027e − 16 2.445e − 26 2.839943e − 26

1.7 Concluding Remarks

Physical phenomena are intrinsically affected by uncertainties. Therefore, the
mathematical models should also account for these uncertainties. In the chapter,
we provide an elementary example of such physical phenomena—heat diffusion
through a beam—and the corresponding model, Eq. (1.5). We illustrate a few UQ
questions with this example. More than the solution of the model, we are interested
in its QoI. We show two different ways of doing this: à la MC method and using SM.
Spectral methods are appropriate methods to perform these computations, given
their relatively cheap cost. In fact, complex models, such as the ones arising from
fluid dynamics, have many sources of uncertainties, and MC methods are generally
too demanding.

Heat diffusion through a beam may have different sources of uncertainty. In the
chapter, we only consider a random conductivity field, but other uncertainties may
be considered. We chose to parametrise the conductivity field, but other sampling
approaches could have been pursuit. The main reason why we chose to follow this
path is because, given the assumptions on the random field, the KL expansion
provides a parametrisation in independent random variables. This is important,
because this implies that the surrogate given by the PCE is also depending on
independent variables.
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Therefore, SM are usually used, since their exponential rate of convergence
compensates the complexity. However, if the parametrisation of the sources of
uncertainty uses too many random variables, SM can perform poorly, given the
larger complexity of the problem. In this case, MC methods may be better suited,
given that its convergence does not depend on the number of independent variables
in the parametrisation.

One of the main goals of this chapter was to demonstrate the versatility of a
surrogate to find QoI. We demonstrated how this surrogate can be obtained by
SM. Providing that we can parametrise the conductivity field with a small enough
number of random variables, NISP or Galerkin methods are efficient ways to obtain
a PCE of the solution of a model, such as Eq. (1.5). Once making the effort of
computing this surrogate, the QoI is obtained almost “for free” using the coefficients
of the PCE. We illustrate this by computing the Sobol indices w.r.t. to each random
variable of the germ.
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Chapter 2
Introduction to Imprecise Probabilities

Daniel Krpelík and Tathagata Basu

Abstract Since uncertainty is persistent in engineering analyses, this chapter aimed
to introduce methods to describe and reason with under uncertainty in various
scenarios. Probability theory is the most widely used methodology for uncertainty
quantification for a long time and has proven to be a powerful tool for this task.
Nevertheless, the construction of stochastic models relies on very fine information,
such as large amount of observations, which is not always available. Without it, the
constructed models are only very rough approximations of the real laws and may
cause incorrect decisions. In this chapter, we introduce other types of models, based
on the theory of imprecise probability, which we are able to construct and reason
with under situations with limited available knowledge.

Keywords Imprecise probability · Uncertainty · Lower previsions · Robust
inference

2.1 Introduction

The desired outcome of an engineering project is a system which provides the
service it was designed for. But the exact future behaviour of a system in the real
world is, ipso facto, unknown, until the system is built and tested. This also applies
to the use of familiar systems that operate under novel environmental conditions.
However, this poses a dilemma: how to design systems so that they meet our
requirements once deployed? Thus, we need some procedure(s) to help us with the
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design process. Here, we identify two major aspects that should be included in such
a procedure.

The first aspect is the ability to assess consequences of various actions—making
predictions of the future behaviour. Science, per se, is a field that explores relations
between various aspects of reality and constructs models upon which we may base
our predictions. But there is no guarantee that these models are totally accurate.
Mathematical models are usually simplifications of the occurring phenomena,
additional simplifications often various need to be employed to make the compu-
tation tractable, and the numerical evaluation itself may introduce additional error
(e.g. when simulating processes described by differential equations). Furthermore,
another type of error is introduced when providing numerical inputs for the models,
i.e. their parameters. These also come from scientific inference and, therefore, suffer
from similar issues to those of the models themselves. Their usual sources are
measurements with finite resolution, statistical inference from finite dataset and
expert elicitation. All these are subjected to uncertainty. Therefore, regardless of
the chosen model, its predictions are always subject to uncertainty, and this fact
needs to be considered.

The second aspect is how to choose a single design from a set of admissible
possibilities. The usual way to tackle this problem is to describe what it means
when one solution is preferred over the other and then search for a solution which is
preferred over all alternatives. Imagine for a while (and please drop this assumption
later) that we can predict the consequences without a doubt. What would then
constitute an “optimal” design? Most importantly, we would like the system to
provide the service it has been designed for. Designs which ensure this are preferred
over those which do not (see Chap. 4). But such a definition of preference generally
fails to identify a single design because there are usually many ways to ensure the
desired service. One could then introduce other desirable properties; e.g. a system is
preferred over another if it is cheaper to realise, or when it is more environmentally
friendly, or when it is easier to maintain, or when it produces greater volume of
outputs in less time, or due to some other criteria. With such a definition, one can
formulate, mathematically, a constrained optimisation problem and use standard
algorithms to find its solution. But the preference criteria may be contradictory
(e.g. cost vs performance), so the optimisation problem could generally not have
a unique solution, and the procedure would yield a set of incomparable designs.
This happens, for example, during a multi-objective optimisation. The solution to
the multi-objective optimisation problem is a so-called Pareto set, which consists
of solutions which are better than those excluded, but none is strictly preferred over
the others in the set (see Chap. 8). Besides, once we drop the assumption that we can
make perfect predictions, the optimum yield based on the erroneous model might
not be the true optimal design we were searching for.

The main focus of this chapter lies in the first mentioned aspect—how to
model the uncertainty associated with our assessments. Nowadays, this field is
dominated by two complementary theories, probability theory and interval arith-
metic. Although these two allow us to model many scenarios, they suffer from
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several drawbacks, which make their application questionable in practical scenarios.
Interval arithmetic is often overly conservative and fails to capture correlations
among quantities of interest. Probability theory requires us to specify how likely the
occurrence of each possible outcome is, which can be impossible up to the required
level of precision needed to construct the mathematical models.

To overcome the issues with these formalisms, we will demonstrate the theory,
which results from their flourishing marriage. We will introduce imprecise proba-
bility (IP) theory.

The history of imprecision in probabilistic assessments dates back to Boole’s
work on inductive logic [8, Chap. 18]. Imprecise probabilities could also be identi-
fied in several attempts to obtain bounds on probabilistic assessments when precise
values were intractable (e.g. Markov’s, Jensen’s and Chebyschev’s inequalities).
Some early examples may also be found in the field of sensitivity analysis for sta-
tistical inference [6]. Nevertheless, by the mid-twentieth century, a separated theory
of imprecise probabilities began to emerge as a generalisation of probability theory.
This would, not exclusively, include the introduction of non-additive measures by
Choquet [10], generalisation of statistical inference by Dempster [16], Walley’s
work on statistical inference with imprecise probabilities [40], and development of
the theory of lower previsions [39].

In this chapter, we intend to show the basic ideas and structures behind IP theory
together with some examples of its application.

2.2 Some Models of Uncertainty

We intend to begin the chapter with a practical example to show how uncertainty
may be modelled and how it influences the quality of our predictions. This will be
demonstrated on a simple, analytically solvable decision problem. We will show
solutions given by various models and highlight their differences, but also their
similarities.

For the rest of this section, we will be interested in the following scenario.

Example 2.1 Suppose that there exists an area, which is polluted. Such
pollution will slowly deteriorate over time. Our question is, what is the earliest
time when we can send people there without risking their health?

Let this be the set of information available to us without a doubt:

• Pollution level is known at time t = 0, say u(0) = 1.
• The highest pollution level, which does not pose any danger to human

health, us ∈ R, is also known.
• The pollution level decreases according to a known relationship,

(continued)
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Example 2.1 (continued)
dtu(t) = −au(t), (2.1)

where a denotes a model parameter.

We will further explore how the predictions on the pollution level and the
decisions about the time for sending people to the area change by varying the quality
of knowledge about the model parameter a.

2.2.1 A Point Estimate

A common scientific practice is to identify unknown quantities by point estimates.
These represent our best guesses. Model parameters may sometimes be known
without a doubt. In other cases, such form might come from statistical procedures.
If the parameter a from Example 2.1 is regarded as known exactly (is identified as
a single real number), the prediction about the pollutant concentration at any non-
negative time t is given by the unique solution of equation (2.1),

u(t; a) = exp(−at), (2.2)

which is, again, a single, precise value, u(t; a) ∈ R, for each time t ≥ 0.
Thus, what would we do if we were to make a decision with this predictive

model? To guarantee personnel safety, the pollution level must be below the critical
level us . We are looking for the smallest t , which is the earliest time, for which these
criteria are met. This question can be translated into a mathematical optimisation
problem,

min
t≥0

t s.t. u(t) ≤ us. (2.3)

Our model gives us the answer:

• “The smallest safe time t for visiting the area is − ln(us)
a

”.

2.2.2 An Interval

Point estimates may be overly optimistic in many cases. For example, in manu-
facturing processes, the geometry of the final device can be specified only up to
known tolerances and allowed deviations. Similarly, due to discretisation of scales
on our measuring devices, even direct measurement actually provides only bounds
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for possible values of observed quantities. It is also often easier for experts to specify
some “credible bounds” for a parameter, instead of a precise value. In all these
cases, and many others, the uncertain variables of interest are only known to belong
to some set, with no further preferences of credibility among its elements. Let us
therefore return to the previous example and investigate what would happen if we
were to know only that the model parameter a from the Example 2.1 lies in a set
ΩA.

As will be the case also in the next types of uncertain parameter specifications,
the qualitative nature of the parameter will be carried, propagated, through the
model and provide an answer of similar quality. If we propagate an imprecise
parameter through a deterministic model, the model will, generally, give us impre-
cise answers. In Eq. (2.1), it will be a set of credible pollutant levels. Our least
informative assessment about u(t; a) is the image of the union of its arguments’
domains, u(t,ΩA) := {u(t, a)|a ∈ ΩA}. For real-valued functions, considering
that these sets are intervals, and describing the uncertainty by the lower and upper
bounds on the quantity of interest (QoI) often suffice. Translated to u(t) from
Example 2.1, our assessment about u(t) will take the form

u(t) ∈
[

inf
a∈ΩA

u(t; a), sup
a∈ΩA

u(t; a)
]

�= [u(t), u(t)]. (2.4)

Let us assume that we know that a ∈ ΩA = [
a, a

]
. For the process in

Example 2.1, we will exploit that the function u(t; a) is monotone (decreasing) in a
for all t . Thus, the extremes will be attained on the set boundary. Given the explicit
solution (Eq. (2.2)), we may therefore judge that

∀t : u(t) ∈ [u(t;max{a ∈ ΩA}), u(t;min{a ∈ ΩA})]
= [exp(−at), exp

(−at)].
(2.5)

Time evolution of the pollution is presented in Fig. 2.1 via the lower and upper
bounds.

A remark: Through imprecision, we are actually able to model a wider set of
problems without introducing any additional computational complexity. Consider a
dynamical process described by ordinary differential equation dt ũ(t) = −a(t)ũ(t)
with initial condition ũ(0) = 1. The explicit solution is ũ(t) = exp

(
− ∫ t

0 a(x)dx
)

.

Let us further assume that the exponential rate is bounded at each time, i.e. ∀t :
a(t) ∈ [

a, a
]
. Because

ũ(t) = exp

(

−
∫ t

0
a(x)dx

)

< exp

(

−
∫ t

0
adx

)

= exp
(−at) = u(t),
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Fig. 2.1 Bounds for u(t)
when a is only known to
belong to an interval

the bounds for ũ(t)are the same as that for the simpler model. Similar enveloping
properties of interval arithmetic are exploited in IP theory (see, e.g. Chap. 5).

Reasoning with imprecisions introduces some additional challenges. In the case
of precise models, our logic provides clear answers to comparative (e.g. x > y)
and inclusive (e.g., Is x ∈ Ω?) statements, such as the following: they are either
true or false. If we know only that a variable belongs to a set, we may arrive to
indeterminate statements.

Consider that a model predicts that some QoI x ∈ [1, 2]. We can still determinate
precise values of statements, such as x > 0 or x > 5, but we would be indecisive
about, e.g. statement x > 1.5, which is possible, but not certain.

There is no general way to validate these statements for all the cases. Many
computer algorithms require us to provide a means of comparing any two values.
An example might be an optimisation algorithm, which needs to compare multiple
solution proposals (although the problem might be treated as a multi-objective
optimisation; see Chap. 8). A possible solution is to define an artificial ordering
by comparing them by their upper (x > y ⇔ x > y) or lower (x > y ⇔ x > y)
bounds, which is called the Γ -maximax and Γ -maximin criteria, respectively. By
the transitivity of total orderings, both these methods include the determinate case
x > y ⇒ x > y but treat the indeterminate case differently.

Consider that we, again, want to determine the earliest safe time to enter the
contaminated area from Example 2.1. We now assume interval uncertainty about
the input parameter a, so the model predictions also result in intervals, by Eq. (2.5).
We can employ both Γ -maximax or Γ -maximin orderings (because precise values
may also be seen as degenerate intervals) and, depending on our choice, we arrive
to either of the following:

• “The smallest safe time t for visiting the area is − ln(us)
a

” in the pessimistic (Γ -
maximin) case, which actually guarantees compliance with the regulations.
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• “The smallest safe time t for visiting the area is − ln(us)
a

” in the optimistic (Γ -
maximax) case, which provides the earliest time for which compliance with
regulations is possible, but not assured.

2.2.3 A Probability Distribution

Probability theory is a dominant framework to address uncertainty in science and
engineering. When an outcome of an experiment cannot be determined uniquely
from the available information, probability theory aims to formulate a law which
models the behaviour of repeated outcomes from identical trials.

Apart from modelling of the repetition of trials, probability theory also provides a
consistent reasoning framework, an extension to boolean logic [26]. With probabil-
ity theory, we may encode our degree of faith in logical statements as probabilities
(e.g. x ∈ [1, 2] as Pr(x ∈ [1, 2])) and utilise probability theory to also obtain
consistent degrees of faith for derived statements (e.g. Pr(f (X) < 3)). There
are various ways to construct these models, ranging from statistical inference to
elicitation by domain experts.

If a model parameter is a random variable (RV), the model predictions themselves
are treated as RVs too. Especially when neither the random parameter nor the func-
tion are bounded, without further assumptions, we cannot construct any reasonable
bounded set of credible values of the argument to carry out the best–worst case
scenario inferences as in Sect. 2.2.2 (however, a heuristic construction is possible
via confidence intervals and credible sets). Without loss of generality, we can assess
the distribution of our predictions and back our further decisions on probabilistic
logic.

Let us consider Example 2.1 again. Now, we will assume that the parameter a is
a RV, A (denoted by a capital letter), distributed according to the exponential law
PA(·) with rate parameter λ and cumulative distribution function (CDF)

FA(x) := Pr(A < x) = 1 − exp(−λx).

We can straightforwardly express the distribution ofU(t) (again denoted by a capital
letter to emphasise that it is a RV) as

Pr(U(t) ∈ E) = PA({a : u(t; a) ∈ E}).

This will be further formalised in Eq. (2.7). Due to monotonicity, we get a CDF for
every U(t) , the FU(t), as (Theorem 2.1)
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Fig. 2.2 The evolution of quantiles of U(t) (left) and CDFs of U(t) at various times (right)

FU(t)(x) = Pr(U(t) < x) = PA({a : u(t; a) < x})
= Pr(A > u−1

t (x)) = 1 − FA(u−1
t (x))

= exp
(
−λu−1

t (x)
)
= x λt ,

where u−1
t (x) = log x

t
.

Examples of derived CDFs and evolutions of α-quantiles of U(t), the values x
such that FU(t)(x) = α, are depicted in Fig. 2.2.

Since we have drifted away from the crisp true–false values of boolean logic
towards a multi-valued logic in which each statement is assigned a probability,
the degree of faith, the meaning of comparative statements becomes unclear (apart
from some special cases). Several possible orderings are available for pairs of RVs.
We are able to evaluate the probability that they will be ordered once realised,
Pr(X < Y). Another widely used one is the stochastic dominance for which
X ≥st Y iff ∀x : FX(x) ≤ FY (x). Nevertheless, given two RVs X, Y , the order
among their realisations x = X(ω), y = Y (ω) may differ depending on ω ∈ Ω ,
where Ω represents the sample space (Sect. 2.3.1). Generally, there is no unique
way of defining which RV is greater in a pair. For us to be able to compare them in
an optimisation algorithm, we need to redefine the problem, so that we obtain a total
ordering in the range of the objective function (i.e. so that we can compare any pair
of proposals by their fitnesses), and so that we uniquely determine whether possible
constraints of the problem were violated.

Both may be achieved by replacing the RVs with some meaningful functionals
derived from the distribution of the original RV, such as the expected values
(Definition 2.4). This approach is justified in mass production scenarios where
we try to optimise our long-run (financial) gains according to the law of large
numbers (Theorem 2.2). But a different approach should be taken in the case
of robust design optimisation, which is often solved by deriving the worst-case
scenario as the objective function. A crisp worst case may not be available if
the original objective function is a RV, but we can study what is the likely worst
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scenario, a value which will not be exceeded with high probability. This can be
achieved by taking some quantile or a risk measure in general (see Chap. 13) or
[3, Ch. 12] as the new objective. Similarly, for the case of constrained optimisation,
we may, again, demand that the violation will be unlikely, i.e. that the probability
of violation will be low. This would lead to a redefinition of the constraint as
Pr(constraint is violated) ≤ α. In both cases, we need to specify a concrete number
that represents what exactly are these high and low probabilities, a priori.

In the aforementioned cases, the optimised objective is replaced by a real
function, so standard optimization algorithms can be used.

Let us consider that we, again, want to determine the earliest safe time to enter the
contaminated area from Example 2.1, now with the uncertain parameter a modelled
as a RV with exponential law defined earlier in this section.

The objective function (Eq. (2.3)) is unaffected by the uncertainty in the
parameter; thus, we can keep it as it is. The constraints will now have to be
reformulated, because U(t) is a RV.

If we admit that we cannot ensure the safety certainly, we can still aim for a low
probability of encountering the dangerous environment and replace the constraint
by bounding the probability of exceeding the safety limits, Pr(u(t, A) > us), say
by α (= 0.01, 0.001, 0.0001 . . .). The optimisation problem derived from Eq. (2.3)
will be reformulated as

min
t≥0

t s.t. P r(U(t) > us) ≤ α. (2.6)

The explicit solution, due to monotonicity, will be attained for the first t for which
the 1 − α quantile of U(t) will be equal to us . Thus, the answer of the model is

• “The smallest safe time t for visiting the area is λ ln(us)
ln(1−α)”.

Although probability theory provides a convenient modelling framework, it
is difficult to properly encode available information into probabilistic models.
To construct and manipulate the models, we often have to postulate additional
assumptions, which we may not be able to justify (independence of RVs, specific
low-dimensional distribution models, etc.). Also, even if our assumptions were
correct, if we were to construct the models using the methods of statistical inference,
we could only approach the true model asymptotically, as the number of samples
would approach infinity. But in engineering applications, we often have only a small
number of observations, which makes standard inference methods unreliable. Also,
the knowledge elicitation process requires that a domain expert exactly assigns
probabilities to each possible event, which is generally considered impossible.
The situation is, in a sense, analogical to that of providing point estimates, here
for the distributions, and may be solved either by modelling the uncertainty by a
hierarchical stochastic model, or, again, by introducing imprecision.
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2.2.4 A Set of Probability Distributions

In the framework of IP, we will combine the approaches introduced in Sects. 2.2.2
and 2.2.3. The core idea is to consider a set of probability distributions among
which we do not make any further judgements about their likeliness of being the
true model. Including the likeliness, as in the case of hierarchical modelling, would
result in a collapse of the set of admissible distributions into a single one, a mixture
of distributions. With a purely imprecise model, we are again allowed to ask for
expected values and probabilities of events, such as in the precise case, but the
answers are now set-valued (often a simple interval). This is analogical to what had
happened when we asked for the value of a function with an imprecisely specified
parameter in Sect. 2.2.2.

A rigorous approach to IP will be described in the following sections. Let us now,
for the sake of an introduction, just consider what would happen if we only knew
that the parameter a from the Example 2.1 is an imprecise RV A, which follows one
of the distributions PA := {exp(λ) : λ ∈ [λ, λ]}; however, we cannot further specify
which one. We can ask for probabilities of events A ∈ E, derived events u(t;A) ∈
E′ and the expected values. Given that all these depend on the underlying probability
distribution, we can, as in Sect. 2.2.2, consider all the possible values they can attain
over the set of all the admissible distributions PA. For practical reasons, we can just
focus on the lower and upper bounds for P(.) and E [.].

Similarly, as in the case of precise distribution, we would like to assess the CDF
of U(t). In the IP framework, and using monotonicity properties of our example, we
can construct bounds on the inferred CDF of U(t).

F(U(t) < x) ∈
[

min
p∈PA

{1 − Fp(u−1
t (x))}, max

p∈PA
{1 − Fp(u−1

t (x))}
]

=
[
exp

(
−λu−1

t (x)
)
, exp

(
−λu−1

t (x)
)]

=
[

x

(
λ
t

)

, x

(
λ
t

)]

=: [P(U(t) < x), P (U(t) < x)] ,

where P and P are, respectively, the so-called lower and upper probability
measures, which will be properly introduced in Sect. 2.4.

Similarly, we can do with the quantiles. These would again be given as extremes
over the set of admissible distributions. An example of such an inference is depicted
in Fig. 2.3.

The theory of imprecise probabilities provides a more general theoretical frame-
work for modelling different types of uncertainties and the subsequent (consistent)
reasoning. Boolean logic measures statements as true or false, and probabilistic
logic measures each statement by a real number, · ∈ [0, 1], the probability of them
being true. The IP framework introduces a possibility for modelling ignorance. For
each statement, it can supply a probability of it being true and the probability of the
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Fig. 2.3 The evolution of the set of various quantiles (left) and the lower and upper CDFs of U(t)
for various times (right)

its contrary being true. In the probabilistic logic, these would sum to one due to the
axioms of probability measures (Sect. 2.3.1). This is not the case in IP theory. IP
assigns to each statement its lower and upper probabilities, infimum and supremum
of the probabilities assigned by the distributions in the imprecise model P. The sum
of lower probabilities of a statement and its complement may be lesser than one,
and the sum of the upper probabilities may be higher. IP introduces an additional
metric for each statement measuring our ignorance—how much we do not know.
For a statement E, our ignorance is quantified as P(E)− P(E) [18]. Note that our
ignorance is always zero in the precise probability framework.

For the purposes of design optimisation, we need to combine ideas introduced
in Sects. 2.2.2 and 2.2.3. First, the problem needs to be reformulated as it was in
the probabilistic scenario, i.e. all the (imprecise) RVs need to be replaced by some
functionals. Then, we need to select a way to treat the indeterminacies because these
functionals will be interval-valued. Γ -maximin and Γ -maximax may be used, and
more decision-making rules can be found in [3, Chap. 8].

Let us return to the optimisation problem given by Eq. (2.6) derived for the
stochastic formulation. The objective function will remain real-valued, but the
derived constraint violation probability will now be set-valued. Using the Γ -
maximin and Γ -maximax approaches yield either of the following:

• “The smallest (reasonably) safe time t for visiting the area is λ ln(us)
ln(1−α)” in the

pessimistic (Γ -maximin) case, which guarantees compliance with the weakened
(small probability of occurring) form of regulations.

• “The smallest (reasonably) safe time t for visiting the area is λ ln(us)
ln(1−α)” in the

optimistic (Γ -maximax) case, which provides solution in which compliance with
the weakened regulations is possible, but not assured.
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2.3 Probability Theory

In this section, we will review selected topics of probability theory. In the two
following sections, we will do the same for the theory of imprecise probabilities.
Since both these fields cover a vast range of topics, we have decided to focus on
what constitutes the underlying structure of these theories and how they relate to
each other. Special emphasis will be put on extending our (partial) specification of
the model to answer enquiries about derived quantities consistently. This means that
given some claims about some aspects of some RVs, we are interested in what other
claims can be deduced about transformed RVs.

We will show two complementary approaches for building an axiomatic theory
of probability. The first one is based on Kolmogorov’s formulation [27], in which
a probability distribution is represented by a positive additive measure (Sect. 2.3.1).
Such measure, which is a set function, directly encodes the modelled probabilities
of various assertions about the outcomes of random experiments, allows us to
assess an expected value of a RV and also extends the models to derived random
quantities. This approach to probability theory has become dominant across fields
as it offers an intuitive description of random outcomes and enables us to construct
efficient general algorithms for solving many practical problems (Monte Carlo
algorithms, Bayesian inference, etc.). The measure-theoretic formulation will then
be generalised for IP in Sect. 2.4.

Another approach for constructing an axiomatic base for probability theory
is based on a functional representation of random quantities [15, 44]. Here,
each probability distribution is represented by a functional, the prevision, which
corresponds to the expected value operator in the measure-theoretic approach. A
model is specified by assessing the expected values for several selected functions—
the RVs. This allows us to pose less assumptions on the models since the underlying
probability measure does not need to be specified exactly, but also pose limitations
in extending the assessments to derived quantities. These extensions will (mostly)
result only in bounds on the expectations of the derived RVs. The approach will be
fully generalised for imprecise probabilities in Sect. 2.5.

2.3.1 Measure-Theoretic Probability

Suppose that we are to perform an experiment. We will denote the set of all its
possible outcomes as the sample space, Ω . Let us further assume that an outcome
cannot be exactly determined prior to its actual observation—it is uncertain. But
even though the experimental outcome can be random (i.e. we are not able to
predict it using any finite algorithm), multiple repetitions of the same experiment
may follow some predictable law. Probability theory aims to describe these laws.
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Definition 2.1 Let Ω be a sample space and A a σ -field (a collection of
subsets) overΩ . We will call a set function P : A → R a probability measure
if:

• ∀E ∈ A : P(E) ∈ [0, 1].
• P(Ω) = 1.
• ∀Ei ∈ A, which are mutually disjoint, : P(∪∞

i=1Ei) =
∑∞
i=1 P(Ei).

To distinguish the set function P from the ones which will follow, we will call
the tuple K := (Ω,A, P ) from Definition 2.1 a (K-)probability field.

Let us again consider the experiment with the set of possible outcomes Ω . If
the law of outcomes can be described by a probability distribution P , it indicates
that over multiple repetitions of the (exactly the same) experiment, for any chosen
E ∈ A, the relative number of outcomes which will be elements of E, will converge
to P(E) as the number of repetitions increases. The distance can be again described
probabilistically and will be mentioned again in Theorem 2.3.

We will now introduce the RVs.
Informally, consider a sample space which contains “all the possible states of

the universe”, all the possible collapses of wave functions, whimsies of Maxwell
demons, of the gods of four winds, etc. Imagine that there exists a measuring device,
a different one for each of the quantities of our interest, which is able to read the
state of the universe and return the value which our QoI has obtained at the moment.
This is how the RVs work.

Definition 2.2 Let (Ω,A, P ) be a K-probability field and (ΩX,AX) a
measurable space. Any AX-A-measurable function X : Ω → ΩX will be
called a RV (RV).

The above definition puts emphasis on the fact that a RV is a function from the
sample space—like the measuring device from the informal definition. Now, we
are interested in how we can derive the distribution of the RVs. The probability
measure from Definition 2.1 calculates the probabilities of events in the sample
space. We need to propagate this model to assess the statements about RVs. The
answer will also allow us to specify the distributions of other derived quantities,
such as Z = f (X, Y ).

Definition 2.3 For an arbitrary mapping f : X→ Y , for any set E ⊂ Y , we
define its pre-image as

f−1(E) := {a ∈ X : f (a) ∈ E}.
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For a set E ∈ AX, the probability that the RV X obtains a value in E is

P(X ∈ E) = P(X−1(E)) = P({ω : X(ω) ∈ E}) Δ= PX(E). (2.7)

Each RV induces its own probability field (ΩX,AX, PX), where PX = P ◦ X−1.
We will use notation X ∼ PX for denoting that PX is the (induced) measure of X.
For the derived quantities, say Z = f (X, Y ), we may proceed analogically.

Furthermore, the situation is simplified if the sample spaces Ω and ΩX are the
real lines and the mapping defining the new RV is monotone.

Theorem 2.1 Let X : (R,B, P ) → (R,B) be a strictly increasing RV and
[a, b] ⊂ R an interval. Because there exists unique classical inverse X−1 of
X, which is also an increasing function, we can express the distribution of X
as

PX([a, b]) = P(X ∈ [a, b]) = P(X < b)− P(X < a)
= P([X−1(a),X−1(b)]).

And similarly for a decreasingX, where the interval for the pre-image is given
by swapping the bounds, i.e. [X−1(b),X−1(a)].

See that Theorem 2.1 was exploited in the examples presented in Sects. 2.2.3
and 2.2.4.

In probability theory, special attention is given to the CDFs, which represent
the probability that a real-valued RV obtains a value smaller than the argument.
A CDF FX : R → [0, 1] represents, for each a ∈ R, the probability of event
{X ∈ [−∞, a]}. The probability of all the other events in the Borel algebra on the
real line, B, can be derived through the axioms of probability measures. Therefore,
CDF uniquely represents the whole probability measure, which would be intractable
to work with otherwise.

In special cases, the CDF of a derived quantity can be easily derived from
Theorem 2.1. For increasing functions f , the CDF of an extended RV Y = f (X)

can be calculated as

FY (y) = P(f (X) < y) = FX(f−1(y)).

Similarly, for the case of a decreasing function f , where FY (y) = 1−FX(f−1(y)).
Compared with the analysis on the real line, it is convenient to also introduce

some summaries of the RVs. This can be done using the expected value functional
(E : L(Ω)→ R), where L is the space of all real RVs on the sample space Ω . For
that, we need to equip the underlying probability field with an integration operator
(e.g. Lebesgue–Stieltjes integral).
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Definition 2.4 Let X be a RV on (Ω,A, P ). Then,

EPX [X] :=
∫

ΩX

xdPX =
∫

Ω

X(ω)dP

will be called the expected value of RV X. The subscript representing the
underlying distribution (PX) is usually omitted, and we will also do so for
precise RVs. We introduce it due to the necessity of computing expected
values for various probability measures later in the chapter.

The expected value represents a typical value, the limit of average values of
multiple draws. By the law of large numbers, the average of the finite amount of
draws from X will converge towards E [X].

Theorem 2.2 (Law of Large Numbers) Let X1, . . . , Xn be a series of RVs,
such that each of them is distributed according to the same law with a finite
expected value E [X1] =: μ ∈ R. Then,

lim
n→∞

1

n

n∑

i=1

Xi = μ,

where the real number μ can be viewed as a degenerate RVM s.t. ∀ω ∈ Ω :
M(ω) = μ.

The law of large number is the core principle which allows us to perform
statistical inference. It guarantees that we will approach correct assessments about
the sampling distributions (means, other moments, probability statements, etc.) with
increasing number of observations.

Another important result of the probability theory, the central limit theorem,
states what is the asymptotic convergence rate towards these values. It also provides
theoretical guarantee for convergence of Monte Carlo algorithms [28].

Theorem 2.3 (Central Limit Theorem) Let X1, . . . , Xn be a series of RVs,
such that each of them is distributed according to the same law with a finite
expected value E [X1] =: μ ∈ R and a finite variance E

[
(X1 − μ)2

] =:
σ 2 ∈ R

+. Then

(continued)
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Theorem 2.3 (continued)

lim
n→∞

1√
nσ

n∑

i=1

(Xi − μ) ∼ N (0, 1),

where N (0, 1) is the standard normal distribution.

2.3.2 Probability via Expectation

Another approach for building an axiomatic theory of probability is explained by
Whittle [44]. The idea is that, instead of focusing on the probability distributions as
measures on a sample space, we investigate the RVs from the functional perspective.
Whittle therefore describes a system based on axioms posed on the expected
values, instead of that based on the probability measures. He further shows how
to reproduce results of the standard approach (measure-based) to probability theory.

Definition 2.5 Let (Ω,A) be a measurable space and L(Ω) the set of all RVs
on Ω . We will call a functional E : L(Ω)→ R the expected value if

• ∀X ∈ L(Ω) : X ≥ 0 ⇒ E(X) ≥ 0.
• ∀a, b ∈ R,∀X, Y ∈ L(Ω) : E(aX + bY ) = aE(X)+ bE(Y ).
• E(1) = 1.
• if, ∀ω ∈ Ω , a sequence Xn(ω) increases monotonically to X(ω), then

E(X) = limE(Xn).

Starting from the axioms of the expected value functional leads to the same
theoretical system as Kolmogorov’s approach. In the precise probability case,
both the approaches are equivalent, but this is no longer the case with imprecise
probabilities, where the theory of lower previsions (Sect. 2.5) allows us to represent
a larger set of models than the IP extension of the measure-theoretic approach
(Sect. 2.3).

A similar approach for formulating probability theory was also explored by
de Finetti and Savage [15, 35] from a decision-making perspective. A notable
difference introduced by de Finetti is that the expected values are called previsions
but denote the same object. Also, in the notation, de Finetti further does not
distinguish between the symbols for probability of an event, and for an expectation
of a RV, both are P , as there exists a one-to-one mapping between events and binary
RVs. We can obtain the probability of any event E ⊂ Ω by simply calculating the
expected value of its indicator function IE ∈ L(Ω). The meaning is usually evident
from the context.
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IE(ω) :=
{

1, ω ∈ E,
0, ω /∈ E,

P (E) = E(IE).

(2.8)

The prevision terminology was also adapted in the lower prevision theory.
An interesting feature, that both Whittle and de Finetti have presented, is the

possibility to extend our partial knowledge to other RVs. Given a set of known
expectations for RVs K ⊂ L(Ω), we can derive bounds for the expectation of
another RV Y /∈ K. The procedure is called simply an extension.

To do this, we can use corollaries of the expectation axioms. Given two RVs
(mappings from the sample space) s.t. ∀ω ∈ Ω : X(ω) ≤ Y (ω), we can derive, due
to the linearity and positivity of the expectation functional, that E(X) ≤ E(Y ).

Therefore, if we already know the expectations E(Xn) of several RVs Xn,
we trivially know the expectation of their arbitrary countable linear combination
Z = ∑

aiXi , which is E(Z) = ∑
aiE(Xi).

For an arbitrary RV Y , we can obtain the lower bound on its expectation by taking
the supremum over all the RVs in the span of X1, . . . , Xn, which are strictly lower
than Y . Similarly for the upper bound.

Theorem 2.4 LetK = {X1, . . .} be a countably infinite set of RVs with known
expectations andZ := {∑n

i=1 aiXi+b : Xi ∈ K, ai, b ∈ R, n ∈ N} the linear
span ofK∪{1}. The consistent (coherent in de Finetti’s treatment) bounds for
the expected value E(Y ) can be obtained as

sup
Z∈Z,Z≤Y

E(Z) ≤ E(Y ) ≤ inf
Z∈Z,Z≥Y

E(Z),

where by Z ≥ Y , we mean that ∀ω ∈ Ω : Z(ω) ≥ Y (ω).

For Ω,K, which are both finite, where |Ω| = N, |K| = n, the extension is a
linear program.

sup
Z∈Z,Z≤Y

E(Z) = sup
b∈R; a∈Rn

∀ω∈Ω:b+∑n
i=1 aiXi(ω)≤Y (ω)

b +
n∑

i

aiE(Xi).

Its dual is
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sup
Z∈Z,Z≤Y

E(Z) = inf
p∈(R+

0 )
n

∑n
i pi=1

∀Xj∈K:∑n
i=1 piXj (ω)=E(Xj )

n∑

i

piY (ωi),

which effectively means that we are extremising the expectation over some set
of admissible distributions p, which would yield the known expectations for all
Xn ∈ K.

2.4 Imprecise Probabilities

Compared with the point-valued and imprecise specification of the parameter in
Sects. 2.2.1 and 2.2.2, we take the approach for generalising the precise probability
theory by considering sets of precise distribution models for a RV. Analyses in
the IP framework are then conducted by analysing the properties of these sets.
But specifying such sets and working with them are not always as simple as in
Sect. 2.2.4.

In the rest of the chapter, we are going to introduce the underlying mathematical
structures needed for the treatment of imprecisely specified RVs.

2.4.1 A Set of Measures

We begin by introducing an extension to measure-theoretic probability given by
Weichselberger [43] and similarly by Walley [41]. The idea is to assign to every
event E ∈ Ω a pair of real numbers ∈ [0, 1], which represent the lower and
upper bounds for the probability of that event. These bounds will reoccur within
the rest of the theory of imprecise probabilities. They also have an epistemological
interpretation—the lower bound measures the evidence supporting the occurrence
of E, whereas the upper bound measures the evidence, which contradicts E. Their
difference is the measure of our ignorance.

Definition 2.6 An interval-valued set function P on a measurable space
(Ω,A) will be called a R-probability if:

• ∀E ∈ A : P(E) = [L(E),U(E)] s.t. 0 ≤ L(E) ≤ U(E) ≤ 1.
• The set M := {p : p is K-probability ,∀E ∈ A : p(E) ∈ P(E)} �= ∅.

(continued)
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Definition 2.6 (continued)
We will call the tuple R := (Ω,A, L,U) a R-probability field. The set M
from the second axiom is called the structure (Weichselberger) or the credal
set (Walley) of R.

The letter R- indicates reasonable. It corresponds to the property of avoiding sure
loss introduced in Sect. 2.5. The definition directly implies that for an R-probability
P , L(∅) = 0 and U(Ω) = 1 through the non-emptiness of the credal set.

An R-probability is directly connected to a set of precise probabilities via its
credal set. It is also apparent that for any set of precise probabilities, we may
construct an R-probability s.t. this set will be a subset of its credal set, but such
construction may not be unique. To specify an R-probability, we would need to
define the L and R functions for all the elements in the respective algebra A, which
is quite impractical.

Simpler IP models can be used to assess judgements about more complex ones.
If we specify an R-probability via a (possibly finite) set of precise models, we
automatically include all their convex combinations in the structure of such an
R-probability. Given two K-probabilities p, q ∈ M, the credal set of some R-
probability, for all their convex combinations r = λp + (1 − λ)q, λ ∈ [0, 1],
r(E) will take values in between p(E), q(E) for all the events E ∈ A due to the
axioms of probability measures. Thus, L(E) ≤ r(E) ≤ U(E), so r ∈ M.

Therefore, the credal set of an R-probability is equal to its convex hull.
A one-to-one correspondence between probability bounds and the underlying

credal set is a desired feature in IP theory. In Weichselberger’s treatment, this may
be achieved by tightening the requirements on the probability bounds L,U .

Definition 2.7 An R-probability P , which also satisfies

∀E ∈ A :
(

inf
p∈M

p(E) = L(E)
)

∧
(

sup
p∈M

p(E) = U(E)
)

,

is called an F-probability and the corresponding tuple F := (Ω,A, L,U),
the F-probability field.

The letter F- indicates feasible. It corresponds to the notion of coherence
introduced in Sect. 2.5. For every F-probability, we also immediately imply that
L(Ω) = 1 and U(∅) = 0, as this is true for each of the elements of the credal set,
therefore also their infimum and supremum. The axioms of F-probabilities directly
imply a relation which is reoccurring throughout many parts of IP theory and which
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Table 2.1 Example of F-
and R-probabilities on a
simple finite sample space
Ω = {0, 1, 2}

E LF UF P LR UR

∅ 0.00 0.00 0.00 0.00 0.33

{0} 0.33 0.60 0.50 0.33 0.60

{1} 0.30 0.50 0.40 0.30 0.50

{2} 0.00 0.37 0.10 0.00 0.55

{0, 1} 0.63 1.00 0.90 0.00 1.00

{0, 2} 0.50 0.70 0.60 0.00 0.90

{1, 2} 0.40 0.67 0.50 0.00 0.83

{0, 1, 2} 1.00 1.00 1.00 0.50 1.00

enables us to focus our attention solely on either the L or U function. The other
follows through the conjugacy property:

∀E ∈ A : U(E)+ L(Ec) = 1. (2.9)

Since an F-probability defines an underlying credal set and the probability
assessments can be obtained through extremisation over this set, we may also define
the lower and upper expected values for RVs through similar extremisation. The
lower expectation would be given by Eq. (2.10) and the upper one similarly by
taking a supremum instead of the infimum.

E[X] := inf
p∈M

Ep[X]. (2.10)

Example 2.2 An example of F- and R-probabilities is presented in Table 2.1.
LF ,UF and LR,UR correspond to F- and R-probability bounds, respectively.
A K-probability is also shown in column P to demonstrate non-emptiness of
the respective credal sets.

A desirable property of the IP framework is the possibility to derive probability
bounds on all the events E ∈ A from the knowledge of the bounds only for some
events E′ ∈ A′ ⊂ A. This operation is commonly referred to as an extension (with
some adjectives corresponding to the theories and actual definitions).

Definition 2.8 Let (Ω,A) be a measurable space. Denote A′ = A\{∅,Ω},
and let AL,AU ⊂ A′.
If there exists a non-empty set M of probability distributions and set functions
L,U s.t.

• ∀E ∈ AL, p ∈ M : L(E) ≤ p(E),
(continued)
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Definition 2.8 (continued)
• ∀E ∈ AU , p ∈ M : U(E) ≥ p(E),
• L(∅) = U(∅) = 0, L(Ω) = U(Ω) = 1,

then P = (L,U) is called a partially determinate R-probability.
We will call (AL,AU) the support of P .

Definition 2.9 Let (Ω,A, L,U) be a partially determinate R-probability
field with support (AL,AU). If also

• ∀E ∈ AL : L(E) = infp∈M p(E),
• ∀E ∈ AU : U(E) = supp∈M p(E),

then P is called partially determinate F-probability.

For partially determinate F-probabilities, there exists a straightforward way of
calculating probability bounds for events outside of their support. Such procedure
is called normal completion in Weichselberger’s and natural extension in Walley’s
treatment. It simply exploits the extremising property of F-probabilities over their
respective credal sets M, thus

∀E ∈ A : L(A) = inf
p∈M

p(A). (2.11)

Example 2.3 Let us consider a partially determinate F-probability on
Ω = {0, 1, 2}, AL = AU = {{0}, {1}} with L,U on AL given in Table 2.1,
and a credal set M.

For an arbitrary event E ∈ A, we can calculate its lower probability by
solving the optimisation problem

L(E) = min
p∈M

p(E).

Especially, denoting a := P({0}), b := P({1}), c := P({2}),

L({0, 1}) = min
0.33 ≤ a ≤ 0.67

0.1 ≤ b ≤ 0.17

a + b + c = 1

a + b = 0.67.

The bounds for the rest of the events in A are given in Table 2.1.
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Weichselberger’s treatment provides a useful framework to define the lower
and upper probabilities and even the desired extending properties for partial
specifications. Probability bounds given for all the elementary events E ∈ A′ ⊂ Ω
can be extended into bounds for arbitrary event E ∈ Ω by solving a linear
optimisation problem.

For the derived RVs Y = f (X), we may calculate the imprecise probabilities
that they will obtain a value in an element of their respective σ -algebras, similarly
as in the precise case through Eq. (2.7) and Theorem 2.1. The imprecision in the
distributions will also manifest in the imprecision in the expected values. We can
calculate the lower and upper expectations, but for the structures introduced in this
section, we can only do so through by optimising the expected value over the credal
set.

2.4.2 Capacities

Capacities originated in the work of Choquet [10] on the generalisation of measure
theory for non-additive measures. They further provide useful properties and
structure to IP models, which allows us to simplify the specification of the bounds
for arbitrary event E ∈ A and the expectations of RVs.

Definition 2.10 Let (Ω,A) be a measurable space. A set function g : A →
R is called a capacity if it is monotone, i.e.

∀A,B ∈ A : A ⊂ B ⇒ g(A) ≤ g(B).

A capacity g is further called super-additive if

∀A,B ∈ A : A ∩ B = ∅ ⇒ g(A ∪ B) ≥ g(A)+ g(B).

If the inequality is reversed, it is instead called sub-additive.

Note that if the structure M of an F-probability is closed (i.e. arginf belongs to
M), then both L and U are super- and sub-additive capacities, respectively.

Definition 2.11 A capacity g is said to be n-monotone if for any collection
En ⊂ A of n elements

(continued)
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Definition 2.11 (continued)

g

⎛

⎝
⋃

E∈En
E

⎞

⎠ ≥
∑

E⊂En
(−1)|E |+1g

(
⋃

E∈E
E

)

.

If g is monotone for every n ∈ N, then it is called ∞-monotone.

Corollary
Any n-monotone capacity is also n > m-monotone.

Two-monotone capacities are coherent. A pair of super- and sub-additive capac-
ities, such that the sub-additive one dominates the super-additive one, constitute an
F-probability.

Definition 2.12 For a super-additive capacity g defined on a finite space Ω ,
we define, for every event E ⊂ Ω , a function mg : 2Ω → R, the möbius
inverse, as

mg(E) :=
∑

A⊂E
(−1)|E\A|g(A).

The benefit is that an inverse mapping exists, which enables us to reconstruct the
capacity from its möbius inverse as

g(E) =
∑

A⊂E
mg(A). (2.12)

The dual capacity, the upper probability, can be reconstructed as

g∗(E) =
∑

{A∈2Ω :A∩E �=∅}
mg(A). (2.13)

A special class of models is composed of ∞-monotone lower probabilities on
finite spaces. Their möbius inverses (aka the mass functions) are non-negative for
every event. Conversely, any normalised (

∑
m = 1) non-negative function m :

2Ω → R with a finite support induces ∞-monotone lower and upper probabilities
by Eqs. (2.12) and (2.13), respectively. This is explicitly exploited in the evidence
theory (see Chap. 17).
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Example 2.4 Let us assume that we have a collection of open-interval-valued
measurements: {(0.2, 0.6), (0.4, 0.8), (0.1, 0.3)}.

By the Laplace indifference principle, we assign to each of the interval an
equal mass m = 1

3 . With such a mass function, we can construct lower and
upper probabilities via Eqs. (2.12) and (2.13). For example,

L([0.3, 1]) = m((0.4, 0.8)) = 1

3

U([0.3, 1]) = m((0.2, 0.6))+m((0.4, 0.8)) = 2

3
.

Capacities also provide us means for calculating the bounds not only on
probabilities of events but also on the expected values of RVs. If an F-probability is
viewed as a pair of capacities, we can define an integration functional, which will
enable us to compute the bounds on the expected value, similar to which we are
used to from the precise probability theory (Definition 2.4).

Definition 2.13 For a capacity g : A → R and a real-valued function f
measurable on A, the Choquet integral is defined as

(C)

∫

f dg =
∫ ∞

0
g(f ≥ x)dx +

∫ 0

−∞
(g(f ≥ x)− 1)dx,

where the integrals on the right-hand side are Riemann’s and f ≥ x denotes
{t ∈ Ω : f (t) ≥ x}.

Theorem 2.5 For a coherent 2-monotone lower probability g : A → R, the
lower expectation of a function f is given by the Choquet integral.

E(f ) = (C)
∫

f dg.

Remark: if the capacity represents a 2-monotone upper probability, the
integration would yield the upper expectation.
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2.4.3 Neighbourhood Models

One simple way of defining an IP model is by taking a neighbourhood of some
precise one. In the settings of optimisation under uncertainty, such models would
provide a straightforward way for imposing robustness of the results. Such models
may also be directly used for sensitivity analysis and for the analysis of the
robustness of statistical procedures [25].

There are several ways to construct an IP from a baseline precise distribution
P0 [3, Ch. 4]. The Pari–Mutuel model enables us to directly evaluate the lower and
upper probabilities it encodes. It originated with the intention to ensure bookmakers
a positive expected gains from a series of lotteries (i.e. buying tickets cheaper than
their known expected gains and selling them for more). For a fixed baseline P0
and a contamination parameter ε, the lower and upper probabilities of events are
defined as

P(E) = max{(1 + ε)P0(E)− ε, 0}, P (E) = min{(1 + ε)P0(E), 1}.

Another widely used model is the linear-vacuous model, which is directly
defined for the lower and upper expected values (also for probabilities using
Eq. (2.8)). The idea is to construct a mixture of the baseline model P0 and a vacuous
model which assigns the infimum and supremum values of a function as their lower
and upper expectations. For a contamination parameter ε and RV X ∈ L(Ω),

E[X] = (1 − ε)EP0[X] + ε inf
Ω
X(ω)

From the IP point of view, the lower and upper probabilities induced by the
Pari–Mutuel model are 2-monotone, and those from the linear-vacuous one are
∞-monotone capacities. Both models are therefore coherent. Therefore, for the
Pari–Mutuel, the bounds on expectations can be computed using the Choquet
integral (Theorem 2.5).

2.4.4 Random Sets

A set-valued evidence may be encountered in numerous practical scenarios, may it
be the error bounds of measuring devices or an interval-valued expert elicitation.
There exists an approach for handling these within precise probability theory in
the case that we know that the imprecision is not inherent to the actual realisation
of the experiment and only comes as a coarsening of precise values via our
imperfect methods. In such a case, we may introduce an additional assumption on
the stochastic nature of how the coarsening occurs, a conditional model on where
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the actual value lies in the set (e.g. as in the treatment of censored data in reliability
theory Chap. 4). But in some cases, this assumption may be unjustifiable and bias
our assessments. The imprecision may also be caused by the very nature of the of the
experiment, where the random observation itself is set-valued and cannot be treated
using the mentioned method. To rigorously address these situations, probability
theory may be generalised for the set-valued observations into the theory of random
sets [30, 31, 33].

Definition 2.14 Let (Ω,A, P ) be a probability space, S a collection of
subsets of ΩΦ and Φ : Ω → S a map.

If
{ω : Φ(ω) ∩ E �= ∅} ∈ A; ∀ compact K ⊂ ΩΦ ,
then we will call Φ a random set.

The definition of a random set is almost identical to that of a RV (Definition 2.2).
We just need to impose proper measurability properties. Nevertheless, the treatment
of the random sets is slightly different. For a random set Φ, we can assess several
claims.

Definition 2.15 Let Φ : Ω → S ⊂ 2ΩΦ be a random set derived from
probability space (Ω,A, P ). Then, for E ∈ S and x ∈ ΩΦ , we define the
following:

The belief function Bel(E) := P(Φ ⊂ E).
The plausibility function P l(E) := P(Φ ∩ E �= ∅).
The contour function C(x) := P(x ∈ Φ).

The belief and plausibility functions corresponds to lower and upper probabilities
and L and R functions from Sect. 2.3, respectively.

Random set theory is a basis for the Dempster–Shafer theory of evidence,
described in Chap. 17 and some modern statistical methods [29]. Random set
models have also been used for sensitivity analysis [34] and uncertainty modelling
in general [22]. As IP models, the belief and plausibility functions induced by
random sets are ∞-monotone capacities and, therefore, coherent lower probabilities.
Therefore, we also know the form for the derived lower and upper expectations via
Theorem 2.5.

Random sets can be used for statistical inference with little assumptions. The
models can (and have been [34]) be constructed from Chebyshev’s inequality
(Theorem 2.6) if only the population mean and variance are known. This represents
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the tightest bounds for the respective probabilities over all the possible probability
distributions compliant to these assumptions. If the population mean and variance
are unknown, Saw [36] has proposed a variant of the Chebyshev’s inequality based
on their sample estimates.

The construction from Chebyshev’s inequality defines a random set induced by
a uniformly distributed RV, say U ∼ Uni([0, 1]). The random sets, as models for
a RV with mean μ and variance σ 2, are constructed via mapping ΘC(u) := [μ −
σ√
u
, μ+ σ√

u
]. An example of such a constructed random set is depicted in Fig. 2.4.

Theorem 2.6 (Chebyshev’s Inequality) For a RV X with finite expectation
μ = E(X) and finite non-zero variance σ 2 = E((X − μ)2) and ∀a ∈ R :
a > 0,

P(|X − μ| ≥ aσ) ≤ 1

a2 .

Since they are analogical to precise probability theory, some of the useful results
are also available for the theory of random sets. Especially variants of the law of
large numbers (Theorem 2.2) and the central limit theorem (Theorem 2.3) can be
generalised for random sets [31]. Alvarez [1] and Balch [4] provide means on how
to conduct Monte Carlo simulation using random set models by constructing an
empirical random set from drawn samples, such that the approximations of the
Bel and P l functions are unbiased estimates and converge almost surely to the
population ones.
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Fig. 2.4 An example of a random set constructed from Chebyshev’s inequality withμ = 0, σ = 1.
We compare its belief and plausibility function with the CDF of the standard normal distribution
(left) and its contour function with the PDF of the standard normal distribution (right)
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2.4.5 Probability Boxes

A probability box (P-box) is defined by two cumulative distribution functions F ≥
F [20]. The set of probability distributions, which a P-box envelopes, is composed
of all the CDFs which are bounded by F and F . The resulting lower probability P
is ∞-monotone and coherent. In the case that an additional knowledge is available,
additional bounds may also be imposed, e.g. on the mean values and variances of
the enveloped distributions to further narrow the structure. Standard arithmetical
operations can be generalised for P-boxes so they can be used for risk and sensitivity
analysis, similarly to the random sets.

In the multivariate case, multiple assumptions about the correlation of RVs can
be imposed, including the situation when the correlation is regarded as entirely
unknown [21]. An example of inferences from different dependency assumptions
is shown in Fig. 2.5 for the addition of two RVs with a uniform distribution (any
precise distribution is also a P-box with a single element in its credal set). So, P-
boxes allow us to refrain entirely from specifying any assumption about dependency.
The calculation is based on the Frechet inequalities [21].

Uniform distribution U(0,1)
1 1

0.5 0.5

0 0
0 00.5 0.51 1

x x

Frechet Dependency
1 1

0.5 0.5

0 0
0 00.5 0.50.5 0.51 12 2

x x

C
D

F

C
D

F

C
D

F

C
D

F

Uniform distribution U(0,1)

Independence assumption

Fig. 2.5 P-boxes for the sum of two uniform RVs. P-boxes for the uniform RVs are shown at
the top portion, whereas the P-boxes of their sum based on different dependency assumptions are
presented at the bottom part: no assumption (left) and independence assumption (right)
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2.5 Lower Previsions

The theory of previsions starts with the work of de Finetti [14, 15]. Later generali-
sation of prevision to lower prevision occurred in Williams’ work [45, 46] and in a
more developed form in Walley’s work [40]. This is another approach of IP. The the-
ory of lower previsions has a unifying mathematical character that attracted consid-
erable attention. There are several other concepts like probability charges (Bhaskara
Rao, Bhaskara Rao [7]), n-monotone set functions (Choquet [10]), belief functions
(Dempster [16], Shafer [37]), possibility measures (De Cooman [12]), and many
others (De Cooman [13], Denneberg [19], Troffaes [38]). They can also be regarded
as lower expectations with respect to closed convex sets of probability measures.

In this section, we will start with the notion of desirability and then derive
the main theory behind lower previsions. Finally, we will conclude this with a
discussion of duality between lower previsions and credal sets.

2.5.1 Desirability

Suppose we observe an experiment where we have different outcomes and we are
betting on these outcomes for some rewards. Gambles can be seen as these uncertain
rewards on the set of possible outcomes, say Ω . Mathematically, a gamble f is a
real-valued bounded function onΩ . The set of all gambles is denoted by B. We can
add or subtract two gambles as usual.

Example 2.5 Imagine, we are watching a horse race involving three horses:
A, B and C. Therefore, we have the set of outcomes Ω = {A,B,C}, where
the elements denote the events where the corresponding horse wins. The
dealer is offering several gambles on the race. For example, if we consider
the gamble g1, we win 3 if A wins and 5 if B wins. However, we lose 1 if C
wins. We have shown a list of available gambles in Table 2.2.

(continued)

Table 2.2 Gambles for
betting

A B C

g1 3 5 −1

g2 2 −1 5

g3 0 0 −1

g4 4 −2 10

g5 1 4 0

g6 4 9 −1

g7 6 5 5
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Example 2.5 (continued)
We also have additional information that C got injured before the race and

A won the previous race. However, we have no information for B.

2.5.1.1 Axioms

Definition 2.16 (Desirability) We call a gamble desirable if we accept it
depending on the available information about the outcomes.

In our example in Table 2.2, we can see that for g1, we will lose 1 if C wins.
However, based on our information, C is injured and less likely to win the race;
therefore, we can accept this gamble. Conversely, we see that for g2, we can lose
some amount if B wins. But because A won the previous race, we may accept this
gamble.

Besides accepting g1 and g2, we accept or reject a gamble depending on some
rationality criteria. We can see that g3 < 0, that is, we can’t win anything, and
eventually, we may lose some amount if C wins the race. Therefore, we will not
choose this gamble as we cannot win anything; i.e. we want to avoid sure loss.

Here, by g < 0, we mean that g(x) ≤ 0 ∀x ∈ Ω and that there exists at least
one x ∈ Ω , such that g(x) < 0.

Contrarily, for g5, we won’t be losing anything, and we can actually win some if
A or B wins the race. Therefore, g5 is a safe bet for gambling, and we will accept
g5; i.e. we want to accept sure gain.

Now, from the example, it can be also seen that g4 = 2g2 and g6 = g1 + g5.
Therefore, if we are committed to accepting g2, then we should also accept g4;
similarly, if we are committed to accepting g1 and g5, then we should also accept
g6.

We can see the abovementioned rationality criteria as desirability axioms for
gambling. We list these axioms as follows:

1. Avoiding sure loss: For any gamble g, if g < 0, then we don’t accept g.
2. Accepting sure gain: For any gamble g, if g ≥ 0, then we accept g.
3. Positive homogeneity: If we accept a gamble g, then we accept λg for any λ ≥ 0.
4. Combination: If we accept two gambles, g and g′, then we will accept g + g′.

From the abovementioned axioms, we can prove the following statement: If we
accept g and g′ ≥ g, then we accept g′. That is, if g′ is a bounded gamble that
dominates the accepted bounded gamble g, then we accept the bounded gamble g′
too. We can view this as a monotonicity property of desirability [39].
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2.5.2 Lower Previsions

From our example, we see that the dealer is offering five different gambles, which
are listed in Table 2.2. Now, we are willing to buy g1 from the dealer. We are already
informed that C is injured, so the chance of winning for C is less than that of A.
Therefore, we can pay a higher price than the reward on C, as we expect C not to
win. However, forB, we are not sure, as we have no information aboutB. Therefore,
we will not spend more than three, as otherwise, if A wins, then we will end up
losing some amount. However, even if B wins, then we will earn some reward. We
show the transactions in the following Table 2.3.

Our supremum buying price 3 for g1 can be seen as our lower prevision for g1.
We can formulate this behavioural interpretation of lower previsions as follows:

Definition 2.17 (Lower Prevision) Lower prevision P(g) of a gamble can
be seen as the supremum buying price of the gamble. Or in other words, P(g)
is the lowest value, such that we are willing to buy the gamble for all t <
P (g).

Similarly, we associate another map P(g) called upper prevision from the set of
gambles to the real numbers. Here, upper prevision stands for infimum selling price.
That is, if we own a gamble g, then we can sell the gamble for all t > P (g).

For any bounded gamble g, the following conjugacy property holds:

P(g) = −P(−g) (2.14)

This allows us to express one type of functional in terms of the other [39].
Suppose after buying g1, we decide to buy another gamble g2 for 3. Then, we

can see our total rewards in the following table.
We can see from Table 2.4 that we will end up losing some amount irrespective

of the outcome. Therefore, we incur a sure loss.

Definition 2.18 (Avoiding Sure Loss) A lower prevision is said to avoid sure
loss if for every gamble g1, g2, . . . , gn and for all non-negative real numbers

(continued)

Table 2.3 Betting on g1 A B C

Reward on g1 3 5 −1

Buy g1 for 3 0 2 −4

Buy g1 for 5 −2 0 −6
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Table 2.4 Betting on g1
and g4

A B C

Buy g1 for 3 0 2 −4

Buy g2 for 3 −1 −4 2

Total reward −1 −2 −2

Definition 2.18 (continued)
λ1, λ2, . . . , λn, the following relation holds:

sup
n∑

i=1

λi[gi − P(gi)] ≥ 0 (2.15)

Avoiding sure loss can be derived directly from the desirability axioms. Here,
the [gi − P(gi)]’s are desirable gambles because of the interpretation of the lower
prevision. The λi[gi − P(gi)]’s are desirable because of the positive homogeneity.
The

∑n
i=1 λi[gi − P(gi)] is desirable because of the combination of desirable

gambles. Finally, the supremum comes from avoiding sure loss.
Now, if we buy g2 for 1, then we have the following transaction:
Clearly, for this specific consideration, we no longer incur sure loss with the

revised buying price for g2. Avoiding sure loss for the above example can be verified
as follows:

max
ω∈Ω λ1[g1(ω)− 3] + λ2[g2(ω)− 1] ≥ 0 (2.16)

for all λ1, λ2 ≥ 0. We will verify this later after introducing duality in Sect. 2.5.4.

2.5.3 Natural Extension

In between the horse race, the dealer offers a new gamble f on the winner of the
race:

A B C

g 5 4 4

Clearly, we can see that g ≥ g1+g2. Therefore, by the monotonicity property, we
can buy this gamble. Since g ≥ g1 + g2, we can buy it for at least P(g1)+P(g2) =
3 + 1 = 4.
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But 4 is not necessarily the maximum buying price for g. This leads to the idea of
natural extension, wherein we try to assess a new gamble outside the domain based
on our assessment of the gambles inside.

Definition 2.19 (Natural Extension) Let P be a lower prevision and gi ∈
domP for i = 1, 2, . . . , n; then, for any gamble g, we can define the natural
extension E of P as follows:

E(g) = sup

{

a ∈ R : g − a ≥
n∑

i=1

λi[gi − P(gi)], n ∈ N, λi ∈ R≥0

}

(2.17)

The natural extension in Eq. (2.17) can be derived directly from the desirability
axioms. The λi[gi−P(gi)]’s are desirable because of the positive homogeneity. The∑n
i=1 λi[gi − P(gi)] is desirable because of the combination of desirable gambles.

The term g − a is desirable because of the monotonicity of desirable gambles.

Definition 2.20 (Coherence) A lower prevision, P , is called coherent if

P(g) = E(g) (2.18)

for all g ∈ domP .

Coherence means that our supremum buying price of a gamble should not be
raised on the combination of other gambles. For example, in Table 2.2, we can
see that g7 ≥ g1 + g2. Therefore, we can dispose to buy g7 for 4; it also avoids
sure loss. However, clearly, we can buy this gamble for 5 without any loss. This is
against the assumption that 4 is the supremum buying price for g7; therefore, it leads
to inconsistency.

2.5.4 Duality

In the previous section, we derived the natural extension E of P . Now, for a finite
number of gambles g1, g2, . . . , gn and finite set of outcomes Ω ≡ {x1, x2, . . . , xk},
we can write Eq. (2.17) in the following manner:
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max
a∈R

a

subject to,

a+
n∑

i=1

λi[gi(xj )− P(gi)] ≤ g(xj )

λi ≥ 0 i = 1, 2, . . . , n

(2.19)

for j = 1, 2, . . . k. So in this way, we can see it as an optimisation problem, with
a being the objective function. Then, writing Eq. (2.19) in matrix form, we get the
following linear programming problem:

max
v∈R×R

n≥0

cT v

subject to, Av ≤ b

(2.20)

where

v :=

⎡

⎢
⎢
⎢
⎣

a

λ1
...

λn

⎤

⎥
⎥
⎥
⎦

c :=

⎡

⎢
⎢
⎢
⎣

1
0
...

0

⎤

⎥
⎥
⎥
⎦

A :=

⎡

⎢
⎢
⎢
⎣

1 [g1(x1)− P(g1)] · · · [gn(x1)− P(gn)]
1 [g1(x2)− P(g1)] · · · [gn(x2)− P(gn)]

...

1 [g1(xk)− P(g1)] · · · [gn(xk)− P(gn)]

⎤

⎥
⎥
⎥
⎦

and b :=

⎡

⎢
⎢
⎢
⎣

g(x1)

g(x2)
...

g(xk)

⎤

⎥
⎥
⎥
⎦

Then, by the duality principle, we can get following dual of Eq. (2.20):

min
k∑

j=1

pjg(xj )

subject to

k∑

j=1

pjgi(xj ) ≥ P(gi)

k∑

j=1

pj = 1

pj ≥ 0

i = 1, 2, . . . , n j = 1, 2, . . . , k

(2.21)
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Remark Here, the equality in the dual model occurs as a is a free variable in the
original problem.

Here, pj ’s (j = 1, 2, . . . , k) are the probability mass functions. Note that
∑k
j=1 pjg(xj ) is the expectation of gamble g with respect to the probability mass

functions p1, p2, . . . , pn. The feasible region forms a convex set of probability mass
functions. We call this convex set of probability mass functions the credal set. This
duality relation shows the interesting connection between the lower prevision and
credal sets M. It also shows that the natural extension of a lower prevision is the
lower expectation with respect to the credal set.

Theorem 2.7 (Lower Envelope Theorem) Let P be any lower prevision,
and let M be the corresponding credal set. Then, the following statements
are true:

1. P avoids sure loss if M is non-empty.
2. If P avoids sure loss, and then, its natural extension E is the lower

envelope ofM, that is, it satisfies

E(g) = min

⎧
⎨

⎩

k∑

j=1

pjg(xj ) : pj ∈ M j = 1, 2, . . . k

⎫
⎬

⎭
for all g ∈ B

(2.22)
3. P is coherent if it avoids sure loss and for all g ∈ dom P

P(g) = min

⎧
⎨

⎩

k∑

j=1

pjg(xj ) : pj ∈ M j = 1, 2, . . . k

⎫
⎬

⎭
(2.23)

The above theorem is a direct consequence of the duality relation derived from
the natural extension for a finite set of outcomes and a finite domain of P . It shows
that the natural extension of the lower previsions is the lower expectation. This can
also be extended for infinite sets, and the generalisation can be proved using the
Hahn–Banach theorem. This allows us to characterise thee notions of avoiding sure
loss, coherence and natural extension of the lower prevision in terms of their dual
models [40].

We can derive this condition for avoiding sure loss using the example in
Table 2.5. We saw in the example that, we no longer incur sure loss with the
revised buying price. This can be verified with the help of Eq. (2.16). We can write
Eq. (2.16) as follows:
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Table 2.5 Revised betting
on g1 and g4

A B C

Buy g1 for 3 0 2 −4

Buy g2 for 1 1 −2 4

Total reward 1 0 0

Fig. 2.6 Avoiding sure loss

(0,2/3,1/3)

(1.0.0) (2/3,1/3,0) (0,1,0)

(0,0,1)

max
a∈R

−a

subject to,

λ1[g1(xj )− 3] + λ2[g2(xj )− 0] − a ≤ 0

(2.24)

for j = 1, 2, 3. Then, by taking the dual of the above problem, we get the following
set of conditions:

min 0

subject to,

3∑

j=1

pjgi(xj ) ≥ P(gi)

3∑

j=1

pj = 1

p1, p2, p3 ≥ 0

(2.25)

where P(g1) = 3 and P(g2) = 1. For instance, p = (2/3, 1/4, 1/12) satisfies all
the constraints and hence avoids sure loss.

In Fig. 2.6, we see that with the revised buying price, we avoid sure loss within
the area shaded by grey. Here, the triplet (p1, p2andp3) stands for the probability
of winning of the horses A, B and C respectively. The black dot within the feasible
region is p = (2/3, 1/4, 1/12). This shows that if we avoid sure loss, then there
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exists pj ∈ M, such that our expected reward on each gamble is higher than the
supremum buying price of each gamble. That is, M is non-empty.

2.6 Constructing the Laws

The classical interpretation of probability is the relative frequency of occurrence.
Approximate models of the underlying laws may be constructed from finite number
of observations as probability distributions. Conversely, the subjectivistic point
of view does not treat probabilities as objective quantities but rather as a tool
to describe our state of knowledge about quantities and our degrees of belief in
statements. The problem of what probability is and how it can be measured is
more rigorously addressed in [14, 32]. Statistical methods are usually employed
for model construction if observations are available. These seek a way to find a
mathematical form of the probability distribution of the uncertain quantity which
complies with the available information. If observations are not present, we need
to rely on an expert opinion to construct the models via the process of expert
knowledge elicitation. We will omit the expert elicitation process in this chapter.
Some ideas of what can be elicited in the subjective setting can be found in [15] for
precise models or in [40] for IP models.

In this section, we will briefly remind the basics of statistical inference. For
an exhaustive treatment, we refer the reader to [9]. We are going to revise the
basic principles to extract knowledge from the available data. Our main aim was
to introduce how the inferential procedures can be extended for the IP theory.

2.6.1 Statistical Inference with Precise Probabilities

Let us now recall the basic methods of statistical inference for data analysis.
Hereafter, we will assume that we have a set of measurements �x = {x1, . . . , xn},
independent and identically distributed (i.i.d.) samples, which were generated
according to some precise ground-truth distribution P̂ . Our final intention was to
provide probabilities of various events of interest based/conditioned on this dataset.
The common practice is to construct an approximation (model) P of the sampling
distribution P̂ and estimate the desired probabilities from P .

A simple way of inferring probability distributions from a set of samples is
given by non-parametric methods. Here, for an arbitrary event E, the probability
is estimated as P(E) = 1

n
#{xi; xi ∈ E}, the relative ratio of observations which

comply with E. Distributions inferred in this way are usually labelled as empirical
and constitute models with least additional assumptions. An example of an empirical
CDF is depicted in Fig. 2.7 with a label “empirical”.

Alternatives to the non-parametric methods search for an approximative distri-
bution by inverting the model of the sampling process. They look for an answer
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in an apriori-selected set of candidate distributions, say P := {Pθ , θ ∈ Θ}. Based
on the axiomatic theory of probability, precise methods mainly comprise of two
competing methodologies—frequentist and Bayesian. Nevertheless, the common
inference scheme for constructing distributional point estimates, i.e. selecting a
single best-fitting probability distribution, is simply as follows:

1. Choose (subjectively) a set of plausible sampling distributions P.
2. Construct the likelihood function L(θ; �x), which models the probability of

observing the collection �x for each parameter θ .
3. Select θ̂ that best fits the observations and approximate P̂ by P = P

θ̂
(the

frequentist approach), or construct a mixture of distributions from the chosen
family with mixing weights w(θ) ∝ L(θ; �x)π0(θ) and approximate P̂ by
P = w(θ)Pθ (the Bayesian approach; π0 is called the prior distribution).

4. Evaluate the approximations of the desired probabilities from inferred distribu-
tion P .

The samples may come in various forms. Most commonly, they are considered
precisely specified (e.g. real values for a real RV), in which case the likelihood
function for inference from a set of independent samples will take the form

L(θ; �x) =
n∏

i=1

fθ (xi), (2.26)

where fθ is the probability density function of distributions from the chosen family
P indexed by θ .

Example 2.6 Let us assume that we have a set of observations �x :=
{x1, . . . , xN } of a positive RV X. We choose the set of admissible sampling
distributions of the RV X to be the set of all exponential distributions
(F(x; θ) = 1 − exp(−θx)). The frequently used frequentist method is the
so-called maximum-likelihood estimate (MLE). Here, we seek such value of
θ which maximises the likelihood function (Eq. (2.26)). Thus,

θMLE = argmaxθ∈Θ L(θ; �x),

and construct P = PθMLE .
The resulting CDF is depicted in Fig. 2.7 with a label “MLE”.

Example 2.7 Let us assume the same scenario as in Example 2.6. We again
select the set of admissible sampling distributions of the RV X, P, to be

(continued)
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Example 2.7 (continued)
the set of all exponential distributions. But now, we will employ a Bayesian
procedure where we model our knowledge about distribution parameter θ by
a probability distribution instead of selecting just one best-fit value.

First, a prior distribution π0(dλ), which represents our knowledge about λ
before observing the data, has to be elicited. Then, our knowledge is refined
via the Bayes updating rule to construct our posterior knowledge about θ as

w(θ) = p(θ |�x) ∝ L(θ; �x)p0(θ). (2.27)

Equation (2.27) specifies the posterior probability density function (the
mixing weight) up to a normalisation constant. From that, we can construct
the predictive distribution for a future sample Xn+1 as a weighted average of
predictions of all the models in P. Thus,

p(xn+1|�x) =
∫

θ
p(xn+1|θ)p(θ |�x)dθ

Z(�x) , (2.28)

where Z(�x) is a normalisation constant.
An example of the Bayesian inference is depicted in Fig. 2.7 with

CDFs labelled as “prior” and “posterior” for prior and posterior predictive
distributions, respectively.

For particular choices of families of likelihood functions, we can find a family
of prior distributions which is closed under Bayes’ updating. This means that
the posterior distribution lies in the same family, so we only need to update its

Fig. 2.7 Example of precise
probability inferences: an
empirical distribution, a
maximum-likelihood estimate
and prior and posterior
predictive distributions from
the Bayesian inference
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parameters. We call these the conjugated families. For a particular choice of the
exponential model for the observed samples in Example 2.7, the conjugated family
of distributions of θ is the gamma distributions. This class also induces a closed
form for the posterior predictive distribution (Eq. (2.28)), the Lomax distribution. If
no conjugate form can be found for the Bayesian inference, the problem needs to be
solved numerically, generally using Monte Carlo algorithms [28].

2.6.2 Robust Bayesian Inference

One application of the IP theory was to provide means for sensitivity analysis
for various decision-making problems under uncertainty. In the case of Bayesian
inference, it was labelled robust Bayesian analysis [6]. In the Bayesian framework,
we can analyse the sensitivity on both the prior distribution and/or the observation
model, the likelihood function. A straightforward solution is to consider sets of
functions (priors and likelihoods) instead of just a single one in the analysis. The
set of prior distributions would define an F-probability with the respective credal
set. The credal set for the posterior F-probability would be given by the set of all
updated priors. All the assertions of interested would then be given by extremisation
over the posterior credal set (Eq. (2.10)).

Example 2.8 Assume the same observations as in Examples 2.6 and 2.7
and the same set of admissible sampling models, P. This leads to the same
likelihood function (Eq. (2.26)). Now, assume that we cannot properly specify
one prior distribution for the Bayesian analysis as in Example 2.7. Instead, let
us consider a set of prior distributions, again conjugated with our likelihood
(i.e. gamma distributions).

As emphasised in Sect. 2.2.4, while consulting the IP model, we need to
consider answers from all the singular models in the credal set. In the case of
reconstructing the predictive CDFs, we construct the bounds for all the CDFs
from the set of all the updated prior distributions. Therefore,

F(x) := min
π∈Π0

1

Zπ(�x)
∫ x

0

∫

θ

p(xn+1|θ)L(θ; �x)π(θ)dθdxn+1.

An example of a robust Bayesian inference is depicted in Fig. 2.8, where the
lower and upper bounds are given for both the prior and posterior predictive
distributions.

A powerful result of the robust Bayesian inference is a closed-form solution
for the imprecise Dirichlet model [40]. The power lies in two features. First, the
model is constructed for multinomial sample distributions. It can therefore be used
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Fig. 2.8 Bounds for prior
and posterior predictive CDFs
resulting from robust
Bayesian inference compared
with the empirical
distribution of samples

for any inferential scenario with a finite set of outcomes, also for inferences in
general spaces after a finite grouping of its elements. The inferred parameters are
the probability masses for the considered categories. The second feature is that the
imprecise Dirichlet model can model entirely vacuous prior previsions. This means
that the prior F-probability for an observation to be of arbitrary category is (0, 1).
Compare this with Example 2.8, where even though we have used a set of prior
distributions, the prior previsions of P(X < 4) would be approx. (0.2, 1) �= (0, 1).
Imprecise Dirichlet model employs the ideal non-informative prior for Bayesian
inference, which cannot be modelled by any precise probability distribution.

2.6.3 Frequentist Inference with Imprecise Probabilities

Sensitivity analysis, which is similar to the robust Bayesian statistics, was also
explored in the frequentist framework. Frequentist induction, with precise proba-
bilities, assumes that there exists a precise sampling distribution from which the
i.i.d. observations are generated. This assumption may be weakened, as has been
done by [42], who argue for the possibility of imprecise sampling distributions
and describe desirable properties of imprecise frequentist inference. The strong
motivation for this extension is the theoretical impossibility of observing identically
distributed samples due to variability in the experimental setting (although it may be
negligible). Their approach includes precise distributions as a special case, and in
the case of a precise sampling process, the imprecisions in the inferred distributions
converge to zero—the inferred IP law converges to a precise law.

Another line of work in the frequentist inference focuses on the foundations
of statistical inference itself. The core notion of frequentist inference lies in the
construction of statistical procedures with guaranteed qualitative properties, such as
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bounding the type I error in hypothesis testing procedures. Bayesian procedures
can only comply with these asymptotically and can be severely biased by the
information supplied through the prior distribution in cases when only a small
number of observations is available. Conversely, the results of Bayesian procedures,
the posterior distributions, can be propagated in a straightforward manner to obtain
assertions about the derived quantities, f (X). The problem of obtaining similar
distributional estimate in the frequentist framework was studied by Fisher in his
work on fiducial inference [23]. It later inspired the development of the well-known
theory of confidence intervals and hypothesis tests. Nevertheless, fiducial inference
has suffered from various, justified drawbacks and has mostly been forgotten by
mainstream statisticians. Several attempts had been made on the revival of ideas,
and it seems that in order to do so, the inferential results have to be modelled by IP
distributions instead of precise ones.

The recent advancements were enabled by Dempster [16, 17] by his development
of the evidence theory and its application to statistical problems. In [29], a statistical
framework for constructing random set structures, which can be used to obtain
valid confidence intervals on any level of significance and to conduct hypothesis
tests, is presented. The results of these inferences are generally random sets, beliefs
and plausibility functions which can be used to bound the inferences about the
investigated RV. The observations are modelled via a pivotal model, where we
assume that the observed value is a deterministic function of some ancillary RVs
with known distribution, thus extending [24, 47], who aimed at constructing precise
frequentist distributional estimates. Ryan et al. used this pivotal relation to propagate
a random set prediction of the ancillary RV, by which they obtained statistical
procedures with superior properties. Aside from that, they allow us to develop
derived methods for situations with additional knowledge, propagate the resulting
random sets to obtain assessments about derived quantities, and naturally analyse
imprecise observations without additional modelling assumptions.

As another example of a frequentist inferential method, we would like to
present the non-parametric predictive inference (NPI) [11]. The method assumes
exchangeability of the observations and bases its indifference principle on Hill’s
assumption—indifference among all possible orderings. Formally, after the n real-
valued observations �x = {x1, . . . , xn}, the NPI constructs a predictive random set
for the next observation Xn+1 by placing mass 1/(n + 1) on each of the intervals
(xi, xi+1), i = 0 . . . n, where x0, xn+1 are some bounds of the Xn+1 support
(possibly infinite). The corresponding lower and upper probabilities may be derived
by Eqs. (2.12) and (2.13). It was shown that the result of the inference is an ∞-
monotone capacity and an F-probability [2]. The NPI has also been extended to
include situations with censored observations without the need of including any
restrictive censoring assumptions. An example of NPI lower and upper CDFs is
shown in Fig. 2.9 compared with the empirical distribution.
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Fig. 2.9 Lower and upper
cumulative distribution
function obtained via NPI

2.7 Concluding Remarks

We have attempted to provide a concise introduction in the theory and methods of
imprecise probabilities, although numerous interesting topics have been omitted to
keep the text bounded. For a technical overview of the topics of IP theory, we refer
the reader to [3], which includes a wide collection of results, detailed explanations
of the underlying mathematical structures, examples of practical application, and
further references. In addition, a concise overview of the applications of IP in
engineering context is given by Beer et al. in [5].

We have included the most fundamental (from our point of view) technical
structures, which underlie IP models and subsequent analyses in Sects. 2.4 and 2.5,
together with some, hopefully, illuminating examples.

For the purposes of actually working with IP models, the last section was
dedicated to demonstrate how these models can be constructed using the methods
of statistical inference.
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Chapter 3
Uncertainty Quantification in Lasso-Type
Regularization Problems

Tathagata Basu, Jochen Einbeck, and Matthias C. M. Troffaes

Abstract Regularization techniques, which sit at the interface of statistical mod-
eling and machine learning, are often used in the engineering or other applied
sciences to tackle high dimensional regression (type) problems. While a number
of regularization methods are commonly used, the ‘Least Absolute Shrinkage and
Selection Operator’ or simply LASSO is popular because of its efficient variable
selection property. This property of the LASSO helps to deal with problems where
the number of predictors is larger than the total number of observations, as it
shrinks the coefficients of non-important parameters to zero. In this chapter, both
frequentist and Bayesian approaches for the LASSO are discussed, with particular
attention to the problem of uncertainty quantification of regression parameters.
For the frequentist approach, we discuss a refit technique as well as the classical
bootstrap method, and for the Bayesian method, we make use of the equivalent
LASSO formulation using a Laplace prior on the model parameters.

Keywords Statistical modeling · LASSO · Bayesian statistics · Uncertainty
quantification

3.1 Introduction

Statistics is a collection of mathematical concepts to analyze and find the structure
in data. Data can be either numeric- or character-valued (representing a class)
depending on the problem. There are several purposes of statistics; however one
of the main purposes is description of the data and prediction of system behavior
from the observed data. Elements of statistical reasoning have been traced back as
early as 400 AD [14, p. 7] in India. However, the modern-day approach only started
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emerging in the eighteenth century, following advances in the theory of probability
[14, p. 176].

In this chapter, we will discuss statistical regularization and uncertainty quantifi-
cation problems using Least Absolute Shrinkage and Selection Operator (LASSO)
estimators [24, 25]. The LASSO estimator is a popular regularization method due
to its variable selection property. After Tibshirani introduced LASSO in 1996 [24],
numerous authors contributed further to the theory, including Osborne, Presnell,
and Turlach [21] and Efron et al. [6]. Friedman et al. [10] discussed computational
aspects of the LASSO. Park and Casella [22] introduced the Bayesian approach for
LASSO estimators, using a hierarchical mixture model for parameter estimation.
Other notable works deal with the specification of shrinkage parameter by Lykou
and Ntzoufras [18], the Dirichlet LASSO by Das and Sobel [4], and the spike and
slab LASSO by Roc̆ková [23].

First, we will introduce the basic notions behind statistical modeling and
regularization. In Sect. 3.2, we will look at some important concepts of parameter
estimation with and without regularization. Eventually, we will introduce the
LASSO estimators in Sect. 3.3. In Sect. 3.4, we will discuss different uncertainty
quantification methods for the LASSO followed by an extension to the logistic
model in Sect. 3.5. Section 3.6 concludes the chapter.

3.1.1 Statistical Modeling

To make statistical inferences from data, first, we need variables and a model
describing the relations between those variables. We can categorize variables into
response variables and predictor variables:

1. Predictor (or independent) variables are characteristics of the system which
directly control the properties of the system.

2. Response (or dependent) variables are characteristics of the system which depend
on the predictor variables. In other words, they respond to a change of values of
the predictors in some systematic fashion.

Assume we have a dataset containing n independent and identically distributed
(i.i.d.) observations of real-valued responses y1, . . . , yn ∈ R, along with corre-
sponding vector-valued predictors x1, . . . , xn ∈ R

p. We consider each xi to be a
column vector.

Example 3.1 (Gaia Dataset) Gaia is a mission by the European Space Agency
(ESA) to formulate a three-dimensional map of our galaxy [8]. The data depicted
in Fig. 3.1 are part of a dataset which was simulated prior to the launch of the
mission from computer experiments [1, 7]. The data contain essentially spectral
information divided into p = 16 wavelength bands (intervals), along with certain
stellar parameters which are to be inferred from the spectral data. That is, each
observation in the data set represents a stellar object, and the measurement for
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Fig. 3.1 Scatter plot matrix of the Gaia dataset. The variable denoted t (temperature) corresponds
to the response; the variables denoted b1 to b16 (bands) correspond to the predictors. Note that
the plot is symmetric w.r.t. the counterdiagonal

each “band” is the energy flux (photon counts) emitted from that object within that
wavelength interval.

In this example, stellar temperature (in Kelvin scale) is the response variable. In
the dataset that we have available, a total of n = 8286 observations (stellar objects)
are recorded. It can be seen from Fig. 3.1 that the 16 predictor variables are strongly
correlated with each other, suggesting that they carry redundant information.

Often, one of the objectives of statistical modeling is to identify a functional
relationship (“model”) between the responses and the predictor variables:

E(yi |xi ) = φ(xi ,β) (3.1)
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where φ is a function that depends on a parameter vector β. For instance, as will be
described in Sect. 3.1.3 in more detail, in a linear regression context, one typically
has φ(xi ,β) = xTi β. There also exist non-parametric approaches which do not
assume an explicit parametric shape, but most of such approaches achieve this by
simply introducing a large number of parameters, so that they still can be expressed
as in Eq. (3.1).

3.1.2 Statistical Inference

Statistical inference is the process by which we use the available data to gain
knowledge about the model parameters, such as β in Eq. (3.1), as well as their
uncertainties. In a wider sense, it will also include methods by which we quantify
and validate our assumptions on the model. Statistical inference deals with the esti-
mation of parameters that are used to specify the family of probability distributions
which underlie the statistical model for yi |xi . Inference has several applications in
science and engineering. Generally, there are two conceptually different approaches
to statistical inference: the frequentist approach and the Bayesian approach. There
are some other concepts available which are beyond the scope of this chapter but
are addressed in other articles in this volume.

The frequentist approach is the most widely used estimation method. Sometimes
it is referred to as the “classical” approach. The estimation can be a point estimate
where we simply try to find the best guess for the parameter of the parametric model.
Alternatively, we seek an interval which covers the unknown parameter value with
high probability (generally 0.95). We call this a 95% confidence interval.

While several point estimators are available, the maximum likelihood estimator
(or MLE) is among the most popular because of its simple and wide implementabil-
ity and its consistency properties. It finds the parameter value which maximizes
the probability density of the sample given the parameter, i.e., the likelihood. For
linear regression models under normal errors, MLE is equivalent to the ordinary
least squares (OLS).

The Bayesian approach starts from Bayes’ rule for conditional probability.
Denote the data by Y . For example, in our setting, Y is simply the vector of
observed response values (y1, . . . , yn)

T . The statistical model is specified through a
likelihood function p(Y | β). In the context of the regression model in Eq. (3.1), this
likelihood would be considered conditional on the observed values of the predictors,
i.e., the observed values of the predictors are considered as fixed. Finally, we need a
prior distribution p(β) for the model parameters β to incorporate our prior knowl-
edge. Bayes’ rule then tells us that the posterior distribution p(β | Y ) is given by

p(β | Y ) ∝ p(β)× p(Y | β). (3.2)

The normalization constant can be calculated from the law of total probability if
necessary. However, this calculation may not be always trivial so that simulation
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methods, like MCMC, need to be employed. The posterior distribution is then
used for further inference. For instance, we can look at its mean, mode, or other
characteristics.

3.1.3 Linear Models

The linear model is one of the most popular forms for statistical modeling. Here,
the functional relationship between the response and predictor is linear, i.e., yi =
xTi β + εi , where β ∈ R

p, and usually the assumption εi
i.i.d.∼ N(0, σ 2) is made for

the random errors. The linear model can be written in a matrix form for all cases
i ∈ {1, . . . , n} simultaneously as follows:

Y = Xβ + ε (3.3)

where

Y :=
⎡

⎢
⎣

y1
...

yn

⎤

⎥
⎦ X :=

⎡

⎢
⎣

xT1
...

xTn

⎤

⎥
⎦ β :=

⎡

⎢
⎣

β1
...

βp

⎤

⎥
⎦ ε :=

⎡

⎢
⎣

ε1
...

εn

⎤

⎥
⎦ . (3.4)

The matrix X is called the design matrix. Remember that each xi ∈ R
p is

considered as a column vector, so X is an n× p matrix.

3.1.4 Strong Duality and the Karush–Kuhn–Tucker Conditions

In this section, we briefly give the main duality result for nonlinear optimization
that we will apply further. Assume we aim to minimize a function f (β), where
β ∈ B ⊆ R

p subject to a constraint h(β) ≤ 0. In the following sections, we will
have either B = R

p or B = R
p
+ (i.e., the set of non-negative vectors in R

p),
although in principle B can be an arbitrary convex set. So, we try to find

f ∗ := min
β∈B
h(β)≤0

f (β). (3.5)

One may think of the function f (·) as a least square criterion or a negative (log-)
likelihood. Define now the Lagrangian:

�(β, λ) := f (β)+ λh(β) (3.6)

and the Lagrange dual function:
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g(λ) := min
β∈B

�(β, λ). (3.7)

Note that

max
λ≥0

g(λ) = max
λ≥0

min
β∈B

�(β, λ) ≤ max
λ≥0

min
β∈B
h(β)≤0

�(β, λ) (3.8)

≤ max
λ≥0

min
β∈B
h(β)≤0

f (β) = f ∗. (3.9)

This inequality holds in general. Strong duality tells us that, under certain condi-
tions, the inequality becomes an equality [2, §5.2.3].

Theorem 3.1 (Strong Duality) If f and h are convex functions, and h(β) < 0 for
at least one β ∈ B, then

max
λ≥0

g(λ) = min
β∈B
h(β)≤0

f (β) = f ∗ (3.10)

So, under strong duality, to minimize f (β) over β subject to h(β) ≤ 0, we can also
instead maximize the Lagrange dual function over λ ≥ 0. In that case, the Karush–
Kuhn–Tucker conditions provide necessary and sufficient conditions for optimality.

Definition 3.1 (Subgradient) For any function F on B, we say that v ∈ R
p is a

subgradient of F at β whenever

F(β ′)− F(β) ≥ vT (β ′ − β) (3.11)

for all β ′ ∈ B. The set of all subgradients of F at β is denoted by ∂F (β).

Theorem 3.2 (Karush–Kuhn–Tucker) If f and h are convex functions, and
h(β) < 0 for at least one β ∈ B, then f (β) = f ∗ if

0 ∈ ∂f (β)+ λ∂h(β) (3.12)

λh(β) = 0 (3.13)

h(β) ≤ 0 (3.14)

λ ≥ 0 (3.15)

So, Eq. (3.12) is just a fancy way of writing that β is a global minimum of
f + λh, for a fixed value of λ. Equation (3.12) is called the stationarity condition.
Equation (3.13) is called the complementary slackness condition and implies that
either λ = 0 or h(β) = 0. The inequality h(β) ≤ 0 is called primal feasibility, and
the inequality λ ≥ 0 is called dual feasibility.
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To solve the Karush–Kuhn–Tucker conditions, we split the problem into two
cases as per Eq. (3.13), λ = 0 and h(β) = 0. We then solve Eq. (3.12) under each
equality constraint. We throw away any solution that does not satisfy primal or dual
feasibility and then choose the solution that achieves the lowest value.

For the case λ = 0, we need to find the global unconstrained minimum of f . If
the primal feasibility constraint h(β) ≤ 0 is satisfied at the global minimum of f ,
then we have found a solution. Obviously, this solution must be the optimal solution
of the original constrained problem as well.

If h(β) > 0 at the global minimum of f , then we need to find the minimum of
f under the constraint that h(β) = 0. We could do so by finding a joint solution
to the system of equations formed by Eq. (3.12) and h(β) = 0. Alternatively, we
could gradually increase λ until the global unconstrained minimum g(λ) of f + λh
satisfies h(β) = 0. Indeed, due to the form of the objective function, increasing λ
will favor β that have lower values for h(β), so eventually, h(β) = 0. By strong
duality, we also know that finding this λ is equivalent to maximizing the Lagrange
dual function g(λ) over λ ≥ 0.

3.2 Parameter Estimation

In a statistical modeling problem our task is to estimate β from the data Y and X.
There are several methods to estimate these parameters in a linear model. We will
discuss some of them and their properties.

3.2.1 Ordinary Least Squares

In OLS [5], we estimate the parameters by minimizing the sum of the squared errors:

β̂
OLS := arg min

β
R(β) (3.16)

where

R(β) :=
n∑

i=1

ε2
i =

n∑

i=1

(yi − xTi β)2 = ‖Y − Xβ‖2
2. (3.17)

We have used ‖·‖2 to denote the standard Euclidean norm that is ‖z‖2 :=
√∑n

i=1 z
2
i .

A necessary condition to have a minimum for Eq. (3.17) is

∂

∂β
R(β) = −2XT Y + 2(XTX)β = 0. (3.18)
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Therefore, if XTX is invertible (this requires that the number of observations, n, is
larger or equal than the total number of predictors, p), then the OLS estimator is
given by

β̂
OLS = (XTX)−1XT Y , (3.19)

where (XTX)−1XT is the Moore–Penrose inverse of X.
The Gauss–Markov theorem states that when the errors are uncorrelated with

expectation zero and constant variance, then the OLS estimate is the best linear
unbiased estimator.

Two issues that often arise are:

1. If p > n then XTX is singular; hence Eq. (3.18) has no unique solution.
2. Even if p ≤ n, p may still be much larger than needed, and we may wish

to identify sparse solutions where unnecessary parameters are set to zero. In
other words, we may wish to perform variable selection as part of our statistical
inference.

3.2.2 Non-Negative Garrote

The non-negative garrote was introduced by Breiman [3]. It is a two-stage procedure
that gives a sparse solution. It has a close relationship to the LASSO; however
as a starting point of the problem, the OLS estimates are needed. Given the

initial estimate β̂
OLS ∈ R

p, we solve the following optimization problem over
c = (c1, c2, . . . , cp)

T :

ĉ = arg min
c≥0

‖c‖1≤t
‖Y − XCβ̂

OLS‖2
2 (3.20)

where C := diag(c) ∈ R
p×p, and where ‖.‖1 denotes the l1-norm; that is ‖c‖1 =∑p

i=1 |ci |. We get the final non-negative garrote parameter estimate β̂ by setting
β̂i = ĉi β̂OLS

i for each i ∈ {1, 2, . . . , p}.
Equivalently, we can solve the dual problem, by introducing a Lagrangian

multiplier λ for the constraint ‖c‖1 − t ≤ 0 [16], similar to what we discussed
in Sect. 3.1.4:

max
λ≥0

min
c≥0

(
‖Y − XCβ̂

OLS‖2
2 + λ(‖c‖1 − t)

)
(3.21)

Effectively, we thus need to solve
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ĉλ = arg min
c≥0

(
‖Y − XCβ̂

OLS‖2
2 + λ‖c‖1

)
(3.22)

where the Lagrange multiplier λ ≥ 0 can be interpreted as a regularization weight.
If ‖ĉλ‖1 ≤ t for λ = 0, then we are done. Otherwise, λ is calibrated until ‖ĉλ‖1 = t ,
as we discussed in Sect. 3.1.4. This value for λ is also the value that achieves the
maximum in Eq. (3.21). If the columns of the design matrix X are orthogonal (i.e.,
XTX = I ), then the explicit solution of Eq. (3.22) is given by [26]

ĉλi = max

{

0, 1 − λ

(β̂OLS
i )2

}

. (3.23)

Consequently, in this case, if the coefficient β̂OLS
i of a predictor is less than

√
λ, then

ĉλi = 0, and therefore also β̂i = ĉλi β̂
OLS
i = 0. In this way, larger λ will produce

sparser solutions.

The starting point of this method depends on the least square estimates β̂
OLS

.
Therefore, if p > n, then no unique solution is available. However, alternative initial
estimators, such as the LASSO, can be used in this case [26].

3.2.3 Regularization Under lq Penalty

Unfortunately, the non-negative garrote in Eq. (3.20) still fails to deliver when we
have no least square estimate to start from, which happens, for instance, when we
have more predictors than observations. To solve this, we can use a different method,
where no initial estimate is needed. The basic idea is to add a penalty term to the
least square problem, in order to penalize non-zero parameter values. This can be
done in the following way:

β̂λ = arg min
β

(
1

2
‖Y − Xβ‖2

2 + λ‖β‖qq
)

(3.24)

where q ≥ 0 determines the shape of the penalty, and λ ≥ 0 determines the strength
of the penalty. Here,

‖z‖qq :=
{∑n

i=1 |zi |q if q > 0
∑n
i=1 Izi �=0 if q = 0

(3.25)

where Izi �=0 = 1 if zi �= 0 and 0 otherwise. So, ‖z‖0
0 simply counts the number of

non-zero components of z.
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q=2 q=1 q=0.5 q=0.01

Fig. 3.2 Contour plots of different lq penalty functions

For different values of q we have different types of regularization. This leads to
ridge regression for q = 2, LASSO for q = 1, and best subset selection method for
q = 0 [16].

In Fig. 3.2, we illustrate some contour plots of the lq penalty function, for
different values of q. As will be illustrated in Sect. 3.3.1, it is the “spiked” shape of
the contours which leads to sparsity; in other words all penalties with q ≤ 1 will
lead to sparse estimators. However, for q < 1, the lq penalty function is no longer
convex, as can be seen from the contour plots. Therefore, q = 1 is the only value
for which the problem is convex and allows sparse solutions.

3.3 The LASSO

The LASSO estimator was first proposed by Tibshirani [24]. The objective is to
solve the OLS problem but subject to an additional constraint on the 1-norm of the
parameters, as follows:

min
β : ‖β‖1≤t

(
1

2
‖Y − Xβ‖2

2

)

. (3.26)

It is usually assumed that X and Y are standardized to mean 0. Otherwise, they can
always be standardized without any loss of generality.

3.3.1 Solving the LASSO Optimization Problem

By strong duality (see Theorem 3.1 in Sect. 3.1.4), equivalently, we can solve the
dual problem, by introducing a Lagrangian multiplier λ for the constraint ‖β‖1 −
t ≤ 0:

max
λ≥0

min
β

(
1

2
‖Y − Xβ‖2

2 + λ(‖β‖1 − t)
)

. (3.27)
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For the inner minimization problem, we need to find

β̂λ := arg min
β

(
1

2
‖Y − Xβ‖2

2 + λ‖β‖1

)

. (3.28)

From the discussion in Sect. 3.1.4, we know that if ‖β̂0‖1 ≤ t , then the solution

is immediately given by β̂0 (note that β̂0 = β̂
OLS

). If ‖β̂0‖1 > t , then we need find
that value for λ ≥ 0 for which ‖β̂λ‖1 = t , and the solution is then given by the
corresponding β̂λ. In either case, this λ is also the λ which achieves the maximum
in Eq. (3.27) and which solves the Karush–Kuhn–Tucker conditions in theorem 3.2.

Let us derive the stationarity condition (Eq. (3.12) in Sect. 3.1.4) of the Karush–
Kuhn–Tucker equations, specifically for the LASSO. As we saw, along with
complementary slackness (either λ = 0 or ‖β‖1 = t) and feasibility (λ ≥ 0 and
‖β‖1 ≤ t), this condition fully characterizes the optimality of our solution.

For the LASSO, the Lagrangian is given by

1

2
‖Y − Xβ‖2

2 + λ(‖β‖1 − t).

The stationarity condition says that the subgradient with respect to β of this
Lagrangian must contain the origin, i.e., we need that

0 ∈ −XT (Y − Xβ)+ λ∂‖β‖1. (3.29)

It can be shown that [20, §3.1.5]

∂‖β‖1 = sign(β1)× · · · × sign(βp) (3.30)

where

sign(βj ) :=

⎧
⎪⎪⎨

⎪⎪⎩

{−1} if βj < 0

[−1, 1] if βj = 0

{1} if βj > 0.

(3.31)

Therefore, we can write Eq. (3.29) in the following way

XT (Y − Xβ) = λs (3.32)

where s = (s1, s2, . . . , sp) are auxiliary variables subject to the constraint sj ∈
sign(βj ).

When the columns of X are orthogonal (this holds, for instance, when there is
only one predictor) and are standardized such that XTX = I , the solution to this
system can be expressed as a thresholded version of the OLS [16]:
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Fig. 3.3 Soft-thresholding
function Sλ(x) for λ = 1

−4 −2 0 2 4
−

3
−

2
−

1
0

1
2

3

x

S1(x)

Fig. 3.4 Relationship
between the OLS estimate
and the l1 constraint imposed
by the LASSO (red), adapted
from [15]

l β̂
OLS

β̂λj = Sλ(β̂OLS
j ) (3.33)

with soft-thresholding operator (see Fig. 3.3)

Sλ(βj ) := sign(βj )max{0, |βj | − λ}. (3.34)

Otherwise, the solution can still be expressed through an iterative execution of soft-
thresholding operations [16].

The contour lines in Fig. 3.4 illustrate why and how the LASSO works. The
contours refer to the OLS problem, and the diamond corresponds to the constraint

‖β‖1 = t . Remember that β̂
OLS = β̂0, so the figure depicts the case where ‖β̂0‖ >

t . We want the point on the diamond closest to the OLS. This is likely to lie on the
axes, hence setting smaller parameters to 0.
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3.3.2 Cross-Validation

Cross-validation is a commonly used method to identify the optimal value of a
tuning parameter, which is in our case the penalty parameter λ. It is based on
minimizing an estimate of the prediction error. In cross-validation, we use one part
of the data to fit the LASSO model and the other part of the data to validate it [15].

We fix initially a dense grid of values of λ, i.e., λ is discretized with small
step-sizes over a suitable range which reflects the scope of the regularization trade-
off that we are willing to consider. The dataset is then divided into K equally
sized partitions. We assume for simplicity that K is a divisor of n so that each
partition contains n/K elements. For each fixed value of λ of the grid, and the k’th
partition, k = 1, . . . , K , we fit the LASSO model using the remaining K − 1 parts

and calculate the prediction error of the fitted model. Specifically, denote β̂
−k
λ the

parameter vector obtained under a penalty of λ when omitting the k’th partition, so

that xTi β̂
−k
λ is the corresponding fitted model under predictor xi . Then the prediction

error for the k’th partition is

Pk(λ) = K

n

n/K∑

i=1

L(yi, x
T
i β̂

−k
λ ) (3.35)

where, for the linear model (Eq. (3.3)), the loss function L is just the squared error.
We repeat this step for every k = 1, 2, . . . , K and combine the values of Pk(λ) to
find the average prediction error, P(λ) = K−1 ∑K

k=1 Pk(λ). This is then repeated
for every value of λ in the grid, and we choose the value of λ which minimizes P(λ)
[16].

For smaller values of λ, the LASSO estimators contain more predictors which
may lead to an over-fitted model. However, for larger values of λ, the model
has fewer predictors leading to sparsity and producing a more easily interpretable
model.

To avoid misunderstandings, it is noted that the problem of finding the optimal λ
(in the sense of minimal prediction error), as discussed in this subsection, is very
different from, and entirely unrelated to, the problem of maximizing over λ as,
for instance, in Eq. (3.27). The latter is a purely formal operation which ensures
mathematical equivalence of the two dual versions of the LASSO optimization
problem and does not imply any statement on the best choice of λ.

3.3.2.1 Example: Gaia Dataset

Figure 3.5 represents the cross-validation curve for the Gaia dataset. Here we have
taken normalized data to get rid of scalability. The graph is consistent with the
property of cross-validation, i.e., we can see that for smaller values of λ the number
of predictors is higher and for larger values of λ the number of predictors gets
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Fig. 3.5 Cross-validation curve for the Gaia dataset, with the number of selected predictor
variables as a function of log(λ) given on top of the plot

reduced. Here, log(λ) is used as the tuning parameter, increased values of which
lead to reduced numbers of included variables (note that log denotes the natural
logarithm throughout this chapter). From the cross-validation curve, we get the
value of log(λ) to be approximately 0.775 (shown by the solid vertical line), and
hence the prediction error of the LASSO-fitted model is minimal at λ ≈ 2.17. We
use this value to estimate the coefficients of the parameters. Note that the plot for
this dataset is somewhat unusual, as the minimum falls close to the boundary (solid
vertical line); compare further with Fig. 3.11 for a more typical appearance.

Figure 3.6 shows the coefficient path of the parameters, i.e., the change in
coefficients of the predictors as a function of λ. The black vertical line denotes the
value of log(λ) for which the prediction error is minimal. For this particular value of
λ, we see that there are only 11 non-zero parameters, and others are shrunk towards
zero.

For the cross-validation method for LASSO, we have used the glmnet [11]
package in R. It is noted at this occasion that this software by default also draws
a second vertical line in the cross-validation plot (which is dotted in Fig. 3.5), which
indicates the largest value of log(λ) which is less than one standard error (calculated
for each λ from the Pk(λ), k = 1, . . . , K) away from the minimum [16]. Arguably
this gives an even sparser solution which is statistically not distinguishable from the
one obtained under the minimum. We do not follow this line of reasoning in this
exposition and work with the estimator under the “optimal” λ at all occasions.
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Fig. 3.6 Coefficient path of the parameters for the Gaia dataset

3.4 Uncertainty Quantification

3.4.1 Refit-LASSO

The “refit”-LASSO is one of the possible ways to quantify system uncertainty of a
LASSO-fitted model. The simple idea is to use the “important” (non-zero) variables
selected by the LASSO procedure in a subsequent OLS fit.

We implement a slight modification of this idea. We carry out the entire cross-
validation procedure multiple times with random partitions, which gives us different
optimized λ for each run, producing an ensemble of possible estimates of β. We
then let the ensemble vote on the inclusion of the variables into the model. We will
consider variables as important, if they have not been shrunk to 0 for a pre-defined
proportion of the runs. Then we apply an OLS fit on the important variables to
get the refit-LASSO estimates. Standard errors of the j ’th parameter estimate, β̂j ,

are then obtained as s
√
(XTX)−1

j , where the suffix j indicates the j ’th diagonal

element taken after application of the inverse, and s2 denotes the unbiased estimator
of σ 2.
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Fig. 3.7 Relative frequency of occurrence of variables, for refit-LASSO applied on the Gaia
dataset

3.4.1.1 Example: Gaia Dataset

We applied the refit-LASSO on the Gaia dataset. We have taken 100 simulation runs
for the selection of important variables. The result is displayed in Fig. 3.7. We set
the desired proportion of inclusion at 50% as indicated by a horizontal line. Then we
have applied OLS fit on the important variables; in Table 3.1 we show the standard
error of our prediction with its “t-value” and corresponding probability. We also give
a comparison between the refit-LASSO estimates and the original cross-validated
LASSO estimates in the last two columns.

We notice from the Fig. 3.7 that the third variable appeared to be important in
several runs. However, it is not important in most of the runs.

3.4.2 Bootstrap Method

Bootstrap is a general frequentist method to quantify statistical accuracy, where one
randomly draws samples from a given training dataset with replacement, the sample
size being equal to that of the original training dataset. This is done for B times
(often multiples of 1000). Then one fits the model to each of these B datasets and
examines the empirical distributions of the estimated parameters.
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Table 3.1 Summary of refit-LASSO for the Gaia dataset. The column “Estimate” gives the
parameter estimates from the refitted model using the selected variables. “Original” estimates refer
to a (single) initial cross-validated LASSO execution as discussed in Sect. 3.3.2, and “Difference”
refers to the difference between the refit-LASSO and original estimates

Predictors Estimate Std. error t value Pr(>|t |) Original Difference

band1 841.04 140.89 5.97 0.00 823.53 17.51

band2 1001.36 298.78 3.35 0.00 954.10 47.26

band6 8960.42 434.64 20.62 0.00 9169.52 −209.09

band7 −3664.57 257.19 −14.25 0.00 −2992.80 −671.77

band8 2842.23 260.48 10.91 0.00 1995.79 846.44

band9 −987.10 201.13 −4.91 0.00 −651.95 −335.15

band10 −1584.91 213.89 −7.41 0.00 −1088.03 −496.88

band11 150.19 175.58 0.86 0.39 28.85 121.33

band14 685.64 204.44 3.35 0.00 708.89 −23.25

band15 −588.20 234.04 −2.51 0.01 −381.77 −206.43

band16 −641.26 259.41 −2.47 0.01 −401.16 −240.10

3.4.2.1 Bootstrap for LASSO

For the LASSO estimation methodology as outlined in Sects. 3.3.1 and 3.3.2, the
bootstrap technique is applied straightforwardly, but it has to be ensured that the
selection of λ through cross-validation is part of the uncertainty being assessed.
Specifically, for each sample dataset obtained through the aforementioned bootstrap
routine, we perform cross-validation to obtain the minimal prediction error. This
gives us a selected value of λ and hence a parameter estimate β̂λ for each bootstrap
sample. Then, we use these to calculate the bootstrap standard deviations or
empirical distributions of the parameters.

3.4.2.2 Example: Gaia Dataset

At first, we get a one-time LASSO estimate using the cross-validation method.
Then we take 1000 bootstrap replicates of the original Gaia dataset to calculate the
bootstrap statistics. In Table 3.2 we display the summary of our bootstrap result. In
addition to the bootstrap mean, median, and standard deviation, we also calculated
the bootstrap bias using the formula

Bias = Initial Estimate − Bootstrap Mean

In Fig. 3.8, we visualize the bootstrapped distribution of the parameters through
box-plots.

Clearly, it can be seen from Table 3.2 and Fig. 3.8 that band3, band4, band5,
band12, and band13 are the non-important parameters. While the mean for band3
and band13 is not very close to 0, they still act as non-important parameters with
median being 0.
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Table 3.2 Summary of bootstrap estimates for the Gaia dataset. The lower and upper bounds of
the 95% confidence intervals for model parameters are obtained as the 2.5% and 97.5% quantiles
of the empirical bootstrap distributions

Predictors Mean Median Bias SD CI-lower CI-upper

band1 827.98 835.75 9.33 132.04 483.41 1062.81

band2 991.57 986.84 37.78 333.28 350.15 1655.07

band3 10.21 0.00 10.21 64.39 −30.62 182.39

band4 −2.21 0.00 −2.21 27.26 −67.58 46.23

band5 0.25 0.00 0.25 2.50 0.00 0.87

band6 9127.26 9137.34 −49.87 366.25 8421.19 9797.16

band7 −2984.39 −3019.35 −37.65 338.35 −3441.90 −1557.63

band8 1998.24 2059.49 58.57 429.29 0.84 2486.86

band9 −678.97 −692.91 −46.31 188.08 −1013.58 −78.25

band10 −1092.59 −1123.82 −42.44 226.78 −1392.43 −127.41

band11 58.00 21.52 37.91 78.82 −3.37 254.11

band12 −6.95 0.00 −6.95 22.94 −80.57 0.24

band13 22.90 0.00 22.90 32.18 −0.39 102.34

band14 680.22 697.12 −27.19 147.25 215.06 920.35

band15 −400.80 −405.13 −30.81 127.43 −637.49 −139.13

band16 −391.75 −398.42 −8.78 136.66 −638.43 0.00

Fig. 3.8 Bootstrapped distribution of the parameters in the Gaia dataset



3 Uncertainty Quantification in Lasso-Type Regularization Problems 99

3.4.3 Bayesian LASSO

The Bayesian methodology provides a natural way to quantify the model uncertainty
in a LASSO-fitted model. To motivate this approach, recall firstly that, under the
assumption ε ∼ N(0, σ 2I ), we can write the likelihood of model (3.3) in the
following way,

p(Y | X,β) ∝ e− 1
2σ2

∑n
i=1 ε

2
i

∝ e− 1
2σ2 ‖Y−Xβ‖2

2 .

(3.36)

Tibshirani [24] suggested using a Laplace prior

p(β) ∝ e−λ‖β‖1 (3.37)

for the model parameters, yielding the following posterior,

p(β | X,Y ) ∝ p(Y | X,β)× p(β)

∝ e−
(

1
2σ2 ‖Y−Xβ‖2

2+λ‖β‖1

) (3.38)

It is a well-established result that the mode of (3.38), i.e., the posterior mode of β

under Laplace priors, corresponds just to the frequentist LASSO estimate [18, 22,
24]. Draws from this posterior are not necessarily sparse but still can be used to
assess uncertainty of model parameters [16].

The Bayesian LASSO has been implemented in several different facets, which
differ essentially in the way that sparsity is induced and in the way that the
regularization parameter is handled. In 2008, Park and Casella [22] proposed a
hierarchical mixture model for parameter estimation:

Y |μ,Xβ, σ 2 ∼ Nn(μ1n + Xβ, σ 2In),

β|σ 2, τ 2
1 , . . . , τ

2
p ∼ Np(0p, σ 2Dτ )

Dτ = diag
(
τ 2

1 , . . . , τ
2
p

)
,

σ 2, τ 2
1 , . . . , τ

2
p ∼ π(σ 2)dσ 2

p∏

j=1

λ2

2
e
−λ2τ 2

j /2dτ 2
j ,

σ 2, τ 2
1 , . . . , τ

2
p > 0.

(3.39)

After marginalizing over τ 2
1 , . . . , τ

2
p , we get the conditional prior on β of the

following form
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π(β|σ 2) =
p∏

j=1

λ

2σ
e−λ|βj |σ . (3.40)

For the choice of the LASSO penalty parameter, Park and Casella suggested
two different techniques. Firstly, they suggested the possibility of using marginal
maximum likelihood estimates for the choice of λ. They considered a Monte Carlo
EM algorithm which, in iteration k, updates the parameter λ using the iterative
scheme

λk =
√

2p
∑p

j=1 Eλk−1 [τ 2
j |Y ] , (3.41)

where Y is assumed to be centered, and the conditional expectation is estimated via
averages of a Gibbs sample. For p < n, the initial value λ0 was suggested to be

λ0 =
p

√

σ̂ 2
OLS

∑p

j=1 |β̂OLS
j | ,

where σ̂ 2
OLS and β̂OLS

j are OLS estimates. In another approach, they discussed the

possibility of using gamma priors on λ2:

π(λ2) = δr

Γ (r)
(λ2)r−1e−δλ2; λ2 > 0 (r > 0, δ > 0), (3.42)

where r is the shape parameter and δ the rate parameter. Lykou and Ntzoufras
[18] used gamma priors for λ and developed a concept for specification of the
hyperparameters based on Bayes factors which evaluate the evidence for inclusion
of the respective predictor variables.

3.4.3.1 Example: Gaia Dataset

We obtained the posterior distribution of the parameters for the Gaia dataset using
the blasso function from the monomvn [13] package in R. For the choice of the
LASSO penalty parameter λ, we used marginal maximum likelihood estimates, as
mentioned earlier. We drew 1000 posterior samples from this distribution, which are
displayed in Fig. 3.9.

It can be seen that the output from the Bayesian method is similar to that of the
Bootstrap method. For a better comparison between the methods, we also show the
standard errors for the coefficient estimates of each important variable in Fig. 3.10.
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Fig. 3.9 Posterior distribution of the parameters in the Gaia dataset

Fig. 3.10 Standard errors of LASSO-based parameter estimates for the Gaia dataset, obtained
from different methods

3.5 LASSO for Classification

Recall the linear model in a row-wise notation, yi = xTi β+εi , or E(yi |xi ) = xTi β,
which makes the implicit assumption on the distribution of the response variable:



102 T. Basu et al.

yi ∼ N(xTi β, σ 2).

However, this assumption is too restrictive for many real data situations.
One can use generalized linear models to relax the assumption of normality. We

introduce a function g, which acts as a link function such that

g(E(yi |xi )) = xTi β; (3.43)

here, yi can possess any exponential family distribution, such as Poisson, Binomial,
or Gamma. Note that if yi ∈ {0, 1} then

μi ≡ E(yi |xi ) = P(yi = 1|xi ); (3.44)

hence we can (for our purposes) define

Definition 3.2 (Classification) Classification is the process of carrying out a
regression problem with 0/1-valued response and allocating observations to one
of the two classes according to the decision rule μi ≥ 0.5.

3.5.1 Logistic Regression

In logistic regression we start with the logistic model,

log
μi

1 − μi = xTi β (3.45)

with “logit” link function g(μi) = log μi
1−μi . An alternative formulation of

Eq. (3.45) is

P(yi = 1|xi ) = h(xTi β) (3.46)

where the logistic function

h(t) = exp(t)

1 + exp(t)
(3.47)

maps the range (−∞,∞)–[−1, 1]. The parameters in the logistic model are
estimated through an iteratively weighted least squares technique known as “Fisher
Scoring,” for details of which we refer to [9].

Example 3.2 (Sonar Dataset) Gorman and Sejnowski used this dataset in their
study of the classification of sonar signals using a neural network [12]. The
objective of the study was to discriminate between sonar signals bounced off a
metal cylinder and a cylindrical rock. Each observation is a set of 60 numbers
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(serving as predictor variables) in the range 0.0–1.0. Each number represents the
energy within a particular frequency band, integrated over a certain period of time.
The label associated with each response contains the letter “R” if the object is a
rock and “M” if it is a mine (metal cylinder). There are total of 208 observations in
this dataset [17]. Here, due to computational limitations, we have taken the first 48
predictors of the Sonar dataset and used the standardized form to handle numerical
scaling issues, throughout the examples.

3.5.1.1 Cross-Validation

We apply cross-validation onto the Sonar dataset and investigate the achieved
sparsity as compared with the original model with 48 different predictors. The result
of the cross-validation procedure is displayed in Fig. 3.11. The prediction error for
this purpose is calculated as in Eq. (3.35), but now the loss functionL is given by the
deviance (i.e., two times the difference of saturated and model log likelihood [9]).
From Fig. 3.11 we find that the prediction error is minimal when log λ = −3.672,
so λ = 0.0254. Using this value of λ, we calculate the coefficients of the parameters.
For this particular dataset, LASSO eliminates 29 predictors and reduces the number
of retained variables to 19. In Fig. 3.12, we illustrate the coefficient path of the
parameters.

Fig. 3.11 Cross-validation curve for Sonar dataset
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Fig. 3.12 Coefficient path of the parameters for the Sonar dataset

3.5.2 Uncertainty Quantification

Here, we will discuss uncertainty quantification for the LASSO under the logistic
model, by way of application on the Sonar dataset.

3.5.2.1 Refit-LASSO

We applied the refit-LASSO method on the Sonar dataset. We carried out 100
cross-validation runs with randomized partitions to check the behavior of variable
selection. We considered variables as important if they appeared to be non-zero
in 50 or more runs. We illustrate the selection of important variable in Fig. 3.13.
Then we applied logistic regression on the important variables. We used the glm
package in R for model fitting. The corresponding refit-LASSO estimates are given
in Table 3.3.

3.5.2.2 Bootstrap

We applied the bootstrap method on the Sonar dataset with 1000 bootstrap
replicates. The procedure works identically as outlined in Sect. 3.4.2, except that
for the Sonar dataset, the response variable follows a Bernoulli distribution, so
that for model fitting (and refitting), we need to work with the binomial response
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Fig. 3.13 Relative frequency of occurrence of variables, for refit-LASSO applied on the Sonar
dataset

family instead of the normal distribution. The graph in Fig. 3.14 shows the bootstrap
distribution of the estimated parameters.

3.5.2.3 Bayesian Approach

We obtained the posterior distribution of the parameters using the MCMClogit
function from the MCMCpack [19] package in R. We took the Laplace priors
for parameter estimation. We have taken 100,000 MCMC samples with a thinning
interval length of 10 and a Metropolis tuning parameter set at 0.05, yielding 10,000
posterior samples for the assessment of the coefficient distribution. It can be seen
that for the Bayesian approach the variability is almost same as that of bootstrap
method (Fig. 3.15).

For a better comparison between each parameter estimation method, we have
shown the standard errors for the coefficient estimates of each important variable in
Fig. 3.16 indexed according to the refit-LASSO method.
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Table 3.3 Summary of refit-LASSO for the Sonar dataset. The column “Estimate” gives the
parameter estimates obtained after refitting the model using the selected variables. “Original”
estimates refer to a (single) initial cross-validated LASSO execution as discussed in Sect. 3.5.1.1,
and “Difference” refers to the difference between the refit-LASSO and the original estimates

Predictors Estimate Std. error z value Pr(> |z|) Original Difference

(Intercept) −0.49 0.24 −2.01 0.04 −0.24 −0.24

V1 −0.72 0.33 −2.16 0.03 −0.12 −0.60

V4 −0.91 0.39 −2.32 0.02 −0.26 −0.65

V7 0.67 0.30 2.18 0.03 0.00 0.66

V11 −1.10 0.49 −2.24 0.02 −0.53 −0.57

V12 −0.34 0.41 −0.82 0.41 −0.25 −0.09

V16 1.05 0.34 3.14 0.00 0.29 0.76

V20 −0.88 0.57 −1.54 0.12 −0.03 −0.85

V21 0.25 0.57 0.44 0.66 −0.27 0.52

V23 −0.77 0.33 −2.35 0.02 −0.17 −0.60

V28 0.12 0.41 0.30 0.77 −0.10 0.22

V29 −0.63 0.48 −1.31 0.19 0.00 −0.63

V31 0.87 0.31 2.82 0.00 0.14 0.73

V36 1.04 0.58 1.80 0.07 0.58 0.46

V37 0.27 0.56 0.49 0.62 0.05 0.23

V40 0.34 0.33 1.04 0.30 0.01 0.34

V43 −0.03 0.46 −0.06 0.95 −0.07 0.04

V44 −0.80 0.58 −1.37 0.17 −0.14 −0.66

V45 −0.80 0.79 −1.01 0.31 −0.52 −0.28

V46 −0.06 0.64 −0.09 0.93 −0.02 −0.04

V48 −1.23 0.39 −3.16 0.00 −0.38 −0.85

Fig. 3.14 Coefficient distribution of the bootstrap estimates for the Sonar dataset
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Fig. 3.15 Coefficient distribution of the Bayesian LASSO estimates for the Sonar dataset

Fig. 3.16 Standard errors from different methods, for the logistic LASSO applied on the Sonar
dataset



108 T. Basu et al.

3.6 Conclusion

We have presented an overview over commonly used methods for uncertainty
quantification in the context of l1-penalized linear or logistic regression, comprising
refit, bootstrap, and Bayesian approaches.

We have illustrated these methods in the context of two datasets, both of which
have some relevance for aerospace engineering: one dataset relating to the current
Gaia space mission and another dataset involving the analysis of sonar signals.

For both modeling scenarios, we found good agreement of the parameter uncer-
tainties obtained through the different methods. Standard errors of the bootstrap
and refit methods agreed particularly closely, noting however the limitation of the
latter to quantify uncertainty of inclusion as such. The Bayesian standard errors
were of the same magnitude as their frequentist counterparts; however they tended
to be larger and also did show some differences for specific parameters. For the
Sonar dataset, the refit indicated sparser models than Bayes or bootstrap, which
may appear unexpected at first glance but can be explained by the cut-off threshold
of 50% which happened to be just above the relative frequencies of occurrence for
many of the variables.

While the discussed uncertainty quantification methods are well-established and
investigated for the linear model, this is less the case for the logistic model. This is
not only reflected in the abundance of relevant literature, but also in the availability
of statistical software. Since we had not been able to locate an implementation of
the Bayesian logistic LASSO which could handle a model with 60 variables, we had
to reduce this dataset from the start to 48 variables. We did so for all methods, to
ensure comparability.
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Chapter 4
Reliability Theory

Daniel Krpelík, Frank P. A. Coolen, and Louis J. M. Aslett

Abstract Devices are of little use to us if they do not function properly, but whether
they will function or not is subjected to uncertainty. Reliability theory studies the
failure laws, i.e. constructs models and reasons with the chance that a device is
functioning. Once we have obtained such models, we can take the reliability aspects
into account during the design process.

This chapter introduces basics of mathematical reliability theory with emphasis
on how can the reliability depend on design parameters.

Keywords Reliability · Survival analysis · System reliability · Design for
reliability

4.1 Reliability and Risk

Causality is an essential principle which aids us to cope with the complexity of the
world and, at least approximately, and to predict possible consequences of various
actions. Nevertheless, since our understanding of the world comes from idealised
models with limited scope of applicability, the derived predictions will usually
deviate from the observed reality. As a result, we are generally not able to predict
future events with absolute certainty. That is why we need to generalise our methods
of reasoning to release ourselves from the shackles of binary logic and to include
statements about possibilities and their various degrees of credibility, which allows
us to rigorously address notions of “likeliness”, “chance” and “probability”.
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Reliability theory is a field at the interface of mathematics and engineering which
primary interest is to evaluate whether a system (a device, policy, treatment, etc.)
will behave as desired. Historically, since it cannot be predicted with certainty,
a lot of interest was allocated into assessing the validity of the logical statement
the system will work. The natural choice of the validity measure seems to be
probability, since probability theory offers a consistent reasoning apparatus in which
one can, deductively, from a set of basic assessments, derive probabilities of related
statements similarly as in the familiar system of binary logic. But care must be taken
to properly interpret the actual numerical values, probabilities, which this approach
allocates to propositions. Probability theory is commonly used for assessing state-
ments about both the frequency of events and the likeliness of occurrence of specific
outcome in the next conducted trial. The first interpretation focuses on describing the
sampling process, the anticipated relative ratio of occurrences of any particular trait
of outcome and the aleatory uncertainty. If the predictive model is well-calibrated,
the relative frequency tends to be close to the numerical value assigned to it by
the model, where the closeness is understood in a limit of infinitely many trials,
as in the law of large numbers. The second interpretation is also often termed
epistemic uncertainty, since for any particular separate observation, an assigned
numerical value of probability does not correspond to any observable quantity. The
outcome of the next observation is a precise value, and we will perceive it as such,
once the observation have been realised. Probability theory, here, serves as a tool
to describe our state of knowledge, perception of likeliness of occurrence of an
event, and allows us to reason about particular attributes of the future observation,
including what actions we might take in order to improve the chance that the future
observation will have desired properties, like “Is the system more likely to function
if we use component A instead of component B?”. In the epistemic interpretation,
the quality of a reasoning procedure manifests as an observable quantity through
relative frequency of correct decisions in a series of repeated applications and the
quality of the analytic methods rather than of the constructed models.

Both interpretations are relevant for applications of the reliability theory.
Aleatory interpretation plays a role, e.g., for planning processes in which we
assume that components will need to be replaced over time, and we need to
schedule the maintenance and inspection policies (Sect. 4.5.2) or for the statistical
quality control (Sect. 4.4.4). With good enough models, we can assess the long-
time costs associated with operating our systems and also optimise the policies
addressing their manufacture, maintenance and the logistical issues associated
with the replacements. In such scenarios, failures are anticipated. Sometimes, we
may discover that using a lower quality component may be beneficial from an
economical perspective, leading to overall lower costs of the operation.

On the other hand, with some systems, usually the one-of-a-kind ones, we simply
cannot afford them to fail. Some examples are the nuclear power plants, airplanes,
residential buildings and many others. In these cases, we need to “ensure” that either
the system works perfectly or we can detect an upcoming failure in time to mitigate
its consequences. The issue is addressed by the so-called risk analysis which
focuses on enlisting possible undesirable events and constructs measures aimed
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at preventing them. Reliability analysis is used here for quantitative assessment of
whether such a measure is adequate, but the underlying interpretation of probability
is purely epistemic.

In this chapter, we will describe the basic question of reliability theory—
predicting an occurrence of an event—with some further discussion on the engineer-
ing applications. Our choice of modelling tool is the probability theory, which has
been standard in this field, although the magnitude of the uncertainties involved in
some of the applications is better captured by imprecise probability models, which
offer more degrees of freedom in modelling the available information (see Chap. 2).
The issues will mostly be demonstrated on evaluating the probability that a system
will complete its designated task once built and put into operation. The actual
meaning behind the assigned numerical probabilities varies among applications
and is, therefore, upon the particular analysts to translate it for their situation.
For simplicity, we may, hereon, assume the frequency interpretation of probability
measures; thus the probability of system functioning will mean that if we were to
test “infinitely” many instances of the same system, reliability tells us what fraction
of them will be functional. Nevertheless, if any quantity in a model is uncertain in an
epistemic sense, the overall model inherits this interpretation and can further only
be used to describe our degree of belief in the occurrence of an event.

In the second section, we will introduce the basic terminology and interpretation
of the quantities used in reliability theory. In the third section, we will show how
a problem can be decomposed into smaller parts when viewed as a system of
components. In the fourth section, we will show some applications of statistics in
reliability theory, hence how to answer some of the reliability-related questions on
the basis of available observations. In the fifth section, we will show some methods
for increasing reliability of systems by adding redundant components and how
the system maintenance and other policies enable us to operate systems over long
periods of time.

4.2 Mathematical Theory of Reliability

4.2.1 Structural Reliability

Our general aim is to construct a system which will function as desired. Once put
into operation, the system will occupy a specific state x ∈ ΩX. Suppose that in
the set ΩX, we may further distinguish states which we label as being desirable,
ΩM ⊂ ΩX, to represent what we actually mean by if a system functions. This
might represent that the stresses on a bridge are smaller than its resistance so it will
not collapse or that two planes pass at safe distance and will not crash, etc. But
since the system is subjected to interaction with the real world, hence inherits its
intrinsic uncertainties, our knowledge about the actual state will also be uncertain.
Say we model it by a random variable X obtaining values in ΩX. Now, instead
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of precisely determining whether it is functioning (true or false), we must employ
more sophisticated method to measure the validity of statements. Since we have
decided to model uncertainties by the means of probability theory, we will measure
the reliability of a system by the probability that the event {X ∈ ΩM} occurs. The
greater the probability becomes, the greater confidence we have that the system will
actually work once deployed, or, in the frequency interpretation, the larger fraction
of deployed systems will be functional.

In the context of system design, we are interested in selecting the “best” possible
configuration for a system. Say that we may describe all the possible configurations
by a design parameter d ∈ ΩD . Then, the actual state of the device may be
viewed as a function of design parameters ΩD → ΩX. If no uncertainties are
present, we assess whether the system functions or not simply by assessing whether
{x(d) ∈ ΩM} is true or not and further restrict our admissible design space to a
subspace for which the system would function, ΩD(M) := {d ∈ ΩD : x(d) ∈ ΩM}.
But, due to the uncertainties, such crisp restriction of the design space is generally
not possible. In such a case, the design parameters will specify random variables,
representing the system state for different configurations, and for each of them,
we may assess the probability that the system will function, the system reliability,
Rel(X(d)) := Pr(X(d) ∈ ΩM). The design problem, which generally aims to
optimise also other performance measures over ΩD , like the cost or performance,
will have to take this into account by either restricting the design space to a subset
with a priori selected reliability level, ΩD(M) := {d ∈ ΩD : Rel(X(d)) ≥ α}
for a selected level α, or by introducing another objective function to maximise the
Rel(X(d)) and therefore necessarily lead to a multi-objective formulation. In order
to assess the system reliability, one needs to be able to construct the probability
model for the random variable X(d) for any considered design parameters in ΩD .

From the high-level perspective, and for simplicity, we will consider the state of
a system as a binary random variableX ∈ {0, 1}, with 1 representing that the system
functions, that X ∈ ΩM , and 0 otherwise. There is also a possibility to refine our
model to include states of partial failure, or even several degrees of degradation, but
we will omit that, for it would shift our concerns away from the basic reliability
formulation toward general performance prediction.

4.2.2 Survival Analysis

A common property of real devices is their deterioration; their reliability will
gradually decrease in time. But devices are usually required to function over the
whole time periods, w.l.o.g. say the interval [0, T ]. In order to take the time
evolution into account, instead of a single random variableX, we need to investigate
the whole stochastic processX(t), representing the state of the system at time t , and
reformulate the device mission event as {∀t ∈ [0, TM ] : X(t) ∈ ΩM}. Note that this
evolution would still be dependent also on the design d ∈ ΩD as explained in the
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previous subsection, making the system state a function of both t and d. We will
omit the design parameter for the rest of this section.

Much interest in reliability theory lies in modelling this deterioration process
[14, Sec. 6]. An intuitive way is to consider that a device depletes some intrinsic
resources (or equivalently that it is accumulating a “wear out”) and define the
failure state as such with these resources depleted. Let us consider a non-decreasing
function H(t), which models a cumulative depletion of some inner resource, and
H 0 the amount of this resource available to the device. Then we consider the device
functional at time t , if it has not yet depleted its inner resources, i.e. if H(t) < H 0.
Equivalently, we can interpret this as the device not having reached a critical amount
of “wear out”, e.g. accumulation of sediments or overall mass loss due to abrasion.

In order to provide an assessment of reliability, we need to model H(t) and H 0,
which will generally both be uncertain. If these models are available (e.g. based
on physics models), we can, again, employ probability theory to assess probability
of the event of interest. These models may be available for specific problems
(crack formation and abrasion, see [22] for more). If they are not available for the
investigated system, reliability theory aims to provide ways of constructing them by
the methods of statistical inference (some examples are shown in Sect. 4.4 and more
can be found in any statistics textbook, e.g. [6]).

Let us consider a common scenario for a new device put into operation. If we
assume that the device is functioning at time t = 0 (we try to assure this by
post-production testing, but it is possible to generalise the methods for cases with so-
called hidden failures), we can model the time to failure (TTF), the time when the
device depletes its inner resources-thus it fails, as a non-negative random variable.
As a random variable, the TTF can be described by its cumulative distribution
function (CDF) F(t) or, more commonly in the reliability theory context, its
survival function R(t).

FTTF(t) = Pr(TTF < t), RTTF(t) = 1 − FTTF(t).

The advantage of modelling the TTF lies in the straightforward specification of
the probability that a device will be operational over the mission time TM ,

Pr(device fulfils its mission) = Pr(TTF > TM) = R(TM).

The most commonly used distribution to describe the TTF is the exponential
one. This model assumes that the failures occur at random, regardless of how long
the device has already been operational and what was its operational history. For
the exponential distribution, R(t) = exp(−λt), for a failure rate parameter λ.
The exponential distribution is often used just for its mathematical convenience,
although there are situations where its usage is justified, e.g. for modelling devices
during the stable life phase (Fig. 4.1). Other distributions, which provide more
flexible modelling options, are, e.g. Weibull, Cauchy, Log-normal or Gamma
distributions. More about the basic mathematical models can be found in any
introductory text in reliability theory, e.g. in [14, Ch. 3].
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Fig. 4.1 The bathtub curve
demonstrating the evolution
of the failure rate of a
standard device through its
lifetime

An interesting contribution of the reliability theory, convenient to engineers, is
the introduction of the failure rate function (also sometimes called the hazard rate)
λ(t). Failure rate describes an immediate failure probability:

0 ≤ λ(t) := lim
h→0+

Pr(TTF ∈ [t, t + h]|TTF > t)

h · Pr(TTF > t)
= f (t)

R(t)
, (4.1)

where the second equality is valid in cases of absolutely continuous CDFs, and f (.)
denotes the probability density function (PDF) of the TTF.

Using Eq. (4.1), the failure rate is determined by the distribution of the TTF. The
opposite is also true, as one can derive the TTF distribution from the failure rate as

R(t) = exp

(

−
∫ t

0
λ(x)dx

)

.

It can therefore be seen also as the rate of depleting the inner resources H 0, as
described in the section’s introduction. The failure rate also allows us to describe
some qualitative properties of the failure laws. A general model of the evolution of
the failure rate of a device over its lifetime is depicted in Fig. 4.1. During the first
period, failures are mainly caused due to the faults of the manufacturing process
(the infant mortality); in the second, the device experiences random failures due to
the volatile nature of its environment (stable life); and in the last, the failures tend
to be caused by wearing out of parts and components (wear-out phase).

These phases may be mixed during the device lifetime, and often just one is used
to describe device failure law. Mathematically, a failure rate is a combination of the
following phases:

• the failure rate is constant (stable life)—e.g. electrical components are judged to
have constant failure rates.
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• the failure rate is increasing (wear out)—e.g. mechanical components are
subjected to abrasion, etc.

• the failure rate is decreasing (infant mortality)—e.g. software, as bugs are
discovered and fixed during early stages.

4.3 System Reliability

One of the typical attributes of the contemporary world is its complexity. Every
device and service available to us provides us with a building block, an opportunity
to use it for constructing a new system with its own objectives. As a consequence,
many of the devices and services that we rely upon are practically composed of
many interconnected smaller subsystems. We can reflect this by our mathematical
models and use the tools of probability theory to deduce the probability model
for the system behaviour from the probability models for the behaviour of its
components and their mutual interconnection. Exploiting the system structure also
leads to significant savings of resources. If we were to assess the reliability of a
complex system, like a space shuttle, by standard statistical methods, we would
have to design an experiment in which we test (break) multiple copies of the same
system. This would clearly lead to a vast waste of resources in the system design
process. Identifying the system components will, instead, allow us to carry out
cheaper experiments separately for those and even utilise our past experience with
them. Nevertheless, the separate experiments would not allow us to learn about
dependencies among the failure modes of components (common cause failures,
cascading failures) which have to be addressed separately.

The way we carry out inference about complex systems may be decomposed into
three major stages:

• Construct a model of the system consisting of components (subsystems) reflect-
ing dependencies between states of the components and the state of the system
as a whole.

• Gather data and carry out inference about components, based on, for example,
statistical methods or expert elicitation procedures.

• Integrate the acquired models of the components behaviour with the model of
their influence on the system behaviour in order to obtain a model for TTF of the
whole system.

The first stage is a domain of engineers who have to specify the system topology
and carry out risk analyses to identify potential modes of failure and describe how
the system operates. Component models can be obtained by statistical methods and
are also often included in the component specification in the case of sub-contracting,
although, often, only partial specifications are available, in this case like first and
second moments of the component failure laws. In this section, we will further
focus on the first and the third part of the inference process, on how to integrate
the acquired information.
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4.3.1 Structure Function

Description of the dependency among the state of the system and the states of
its components can be provided by a deterministic function. For each possible
combination of components states, functioning or failed, we determine whether the
system is functioning or not. The uncertainty of the system state will then arise
solely due to the uncertainties about the states of its components. Let us denote
the (deterministic) state of the system as xS ∈ {0, 1} and a vector of states of
its N components as �x ∈ {0, 1}N . We will restrict ourselves to systems with
binary components, since it covers many practical scenarios. This restriction can
be dropped if necessary to describe any relationship among the system and its
components but would lead to more complicated mathematical models. We define
the (deterministic) structure function as a function ϕ which maps states of the
components onto the state of the system; thus xS = ϕ(�x). The structure function is
therefore, in our restricted case, a Boolean formula on N variables (an example is
given in Table 4.1).

If an uncertainty about the component states is present, first, we model the states
of the components by a random vector �X. Note the capital letter representing random
variables as usual in the probability theory literature. The state of the system will
inherit the uncertainty from the states of its components and, in the model, becomes
a binary random variableXS . We can now assess the system reliability by taking the
expectation of ϕ(X),

Rel = Pr(XS = 1) = E{ϕ( �X)} =
∑

�x∈{1,0}N
ϕ(�x)P r( �X = �x). (4.2)

Table 4.1 An example of the
structure function for a
N = 4 component system

�x ϕ(�x)
0 0 0 0 0

1 0 0 0 1

0 1 0 0 0

1 1 0 0 1

0 0 1 0 0

1 0 1 0 1

0 1 1 0 0

1 1 1 0 1

0 0 0 1 0

1 0 0 1 1

0 1 0 1 1

1 1 0 1 1

0 0 1 1 1

1 0 1 1 1

0 1 1 1 1

1 1 1 1 1
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The reliability of a system can also be expressed by the reliability function
h : [0, 1]N → [0, 1], which directly models the relation between a vector
representing probabilities that each individual component functions and probability
that the system functions. For example, for a serial system (all components have to
function to consider the system to be functioning) with N = 3 components with
pi := Pr(Xi = 1) being the reliability of component i, it holds that Pr(XS = 1) =
h(p1, p2, p3) = p1 · p2 · p3.

The structure function, as defined here, is dependent only on the current states
of the components and, thus, allows us to separate static structure dependencies
from temporal evolution of component states as described in Sect. 4.2.2. The same
applies for the reliability function, which only depends on the probability that
components function at a given time instance. Generalisations are possible, but the
actual mathematical model is dependent on the investigated scenario. Nevertheless,
even in our restricted case, the evaluation of a system reliability has exponential
complexity. It would require us to sum over all the elements of the state space
(∼ 2N ). The reliability function is also exponentially complex to construct but may
be later used multiple times, e.g. for reconstruction of temporal evolution of system
state (the survival function) or in the problems of statistical inference, and make
these tasks tractable.

The structure function can be generally described by a table, prescribing the state
of the system to every possible configuration, but such a table would be impractical
to construct, work with and inspect for any system of realistic size, because the
number of rows grows exponentially with the number of components. There exist
several alternative ways to specify the structure function. These enable us to present
the structure function graphically which also allows us to analyse it qualitatively by
the tools and notions of the graph theory.

4.3.2 Graphical Models

4.3.2.1 Reliability Block Diagrams

Reliability block diagrams (RBDs) capture how the system components are
connected [17, Ch. 5]. They constitute a natural way for modelling systems whose
function is related to various kinds of transportation and communication (railroads,
computer networks, etc.) but can be generally used to depict any structure function.

For traffic networks, communication networks or also the power networks, an
RBD describes the network topology and allows us to easily construct structure
functions for classes of problems addressing the so-called k-terminal network
reliability. For these problems, we define that a system withN components functions
if the “k” pre-specified components are connected through nodes corresponding to
functioning components. But RBDs do not need to refer to anything physical and
can be used just as a graphical description of the system structure function.
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Fig. 4.2 An example of RBD
equivalent to the structure
function in Table 4.1

C1

C2

C3

C4

Start Terminal

An example of an RBD, equivalent to the structure function in Table 4.1, is shown
in Fig. 4.2. It is a 2-terminal network, where the nodes that need to be connected
in order to consider the system functional are denoted “Start” and “Terminal” and
do not correspond to any physical component of the system. Components of the
system are represented by nodes “C1-4”, where the number indicates the column in
Table 4.1 corresponding to the respective component.

4.3.2.2 Fault Trees

Another way to obtain a graphical description of a system is by the means of a fault
tree analysis (FTA) [11], [14, Sec. 12]. Here, the aim is to, recursively, describe
which causes lead to an event being deconstructed. We start by defining a top-level
event, the event of system failure, and investigate which causes trigger it. The causes
do not have to be directly elicited in terms of states of singular components. The
algorithm recurs to find the causes of these causes and so on as far as we wish up to
so-called terminal events, the finest refinements of the state space. In order to assess
the reliability of the system, it is necessary just to describe the probabilities of the
occurrence of the terminal events. The state of the whole system is then assessed
through a structure function ϕ(�e); arguments of which are vectors denoting the
occurrence or states of the terminal events s.t. ei ∈ {0, 1}, which events are selected
to be the terminal ones is arbitrary, up to an analyst, and they, again, do not need to
be states of the system components.

A fault tree represents a hierarchical Boolean formula. The actual fault tree is
composed of events and gates. The events are events in the sense of probability
theory, subsets of the sample space and logical statements (binary). The gates are
Boolean functions (e.g. AND, OR, K-of-M and NOT) used to describe how the
combination of events induces a macro-event higher in the tree hierarchy.

Once again, a general structure function of a system may be transformed into a
fault tree, which would provide its graphical depiction. An example of a fault tree
corresponding to the structure function in Table 4.1 is shown in Fig. 4.3.

The fault tree methodology provides a way for conducting risk analysis of general
systems where we cannot construct the structure function nor sometimes even elicit
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Fig. 4.3 A fault tree of
example system. “TOP”
represents failure of the
system, “FCx” are failures of
respective components
(terminal events) and “FPx”
are macro-events

all the components and events influencing the state of the system. The reason is
that we advance from the top event to arbitrary depth. As an example take an
automobile. The top event would be that the automobile does not drive you to your
final destination. What could cause that? Maybe there is no gasoline in the tank,
or the ignition malfunctions, or the engine is jammed. Well, what could cause the
engine to be jammed? Maybe it is due to a mechanical displacement, or the oil was
not replaced, or. . . Well, what could cause the mechanical displacement? . . . And so
on, up to the desired level of detail.

The tree, which models the relations between the events and the causes of these
events, may be constructed from expert knowledge, or from fault logs obtained
from deployed systems. The FTA can also easily consider external factors leading
to failure. With the model of dependencies available, we only need to assess the
probabilities of the considered terminal events, not necessarily create stochastic
models for states of all the components (and the environment).

4.3.2.3 Bayesian Networks

The structure function assumes that the dependencies between the components and
the system states are precisely known, but this may not always be the case. It may
be that we did not reach necessary depth when constructing a fault tree to ensure
unique relationship between an event and its triggers. As an example take a railway
trip. One of the trains might be delayed and you miss your connection, but you still
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might be lucky enough to encounter a helpful railroad clerk who will direct you to
an alternative connection or not.

To model such situations, the structure function might be naturally generalised to
include uncertainties about the dependencies among the states of the events in the
fault tree simply by stating the probability of the event obtaining based on the states
of the events lower in the tree hierarchy. A (graphical) tool used to depict these
models is known as the Bayesian network (BN) [5], [13, Ch. 8]. The construction
may be done by the FTA, but now we do not formulate the dependencies between
a macro-event and its causes by Boolean functions but as conditional probabilities.
This is, of course, a much more challenging task, but it also provides an advantage. It
allows us to work with a less detailed models, since we need not to advance the tree
construction up to the level in which all the relations would be deterministic, and
these conditional probabilities can be inferred by statistical methods (also by robust
statistical methods [3, Ch. 9]). Thus the main role of the FTA would be to elicit the
relevant events and the assumptions on the conditional independence. Once the BN
is constructed and the stochastic models are provided, the system reliability may
be assessed, deductively, according to the theory of probability. For �X denoting the
random vector of system components’ states:

Pr(XS = 1| �X = �x) =
∑

y1,y2

Pr(XS = 1|XA = y1, XB = y2)·

· Pr(XA = y1, XB = y2| �X = �x),

where XA,XB are the only macro-events such that the state of the system is
conditionally independent from component states given XA,XB according to our
structural assumptions.

The state of the system can be assessed recursively by marginalising over �X.

Pr(XS = 1) =
∑

�x∈{0,1}N
P r(XS = 1| �X = �x)P r( �X = �x).

Bayesian networks can also be used to model dependencies among the component
failures, e.g. common cause failures, where some external disturbance might affect
multiple components at the same time. In such a case, component reliabilities may
be specified as conditional on the occurrence of this disturbing event, e.g.

Pr(Xi(t) = 1|ED(t) = 0) = Ri(t)
P r(Xi(t) = 1|ED(t) = 1) = 0,

for some disturbing event ED(t). In this scenario, the disturbing event would surely
render the component failed. In order to assess the overall system reliability, the
probability of occurrence of this disturbing event also has to be specified.
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Fig. 4.4 Example of a
Bayesian network with two
macro-events XA,XB and an
event ED disturbing
components 3, 4

An example of a graphical BN is shown in Fig. 4.4. For each of its nodes,
a probability table conditional on its predecessors (unconditional for the terminal
events) has to be specified.

4.3.3 Phased Missions

Some real systems do not operate under the same conditions and with the same
functional requirements during their whole lifetime, and we might be able to identify
different phases of their missions. The physical system may remain the same over
these phases, but the functionalities we require it to provide, or the loads exerted
upon the components may differ among these phases. Such scenarios are known
in the literature as phased mission systems (PMS) [10]. An example might be an
aircraft journey, where the aircraft must take-off, cruise along the flight path and,
finally, land again.

The modelling is performed in two basic steps. First, we need to identify different
phases, and for each of those we construct a model describing what constitutes a
successful operation in this phase. These models may be specified by fault tree or
RBD models. Then we need to link the models of all the phases together. If the
phases are specified by fault trees, this linking will result into a single extended
fault tree characterising the whole mission, similarly with the RBDs. In both cases,
the following treatment is similar to that introduced earlier but with some specifics
which need to be taken into account (Fig. 4.5).

A mission is considered successful if the system did not fail in any of its phases.
From (monotone) structure function point of view, this means that for each time,
which denotes the end of a mission phase, a milestone, the system must be functional
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Fig. 4.5 Transformation of RBDs of mission phases into a RBD of a phased mission according to
the Esary’s identity [10]. The events Ui,j represent the conditional events that a component j does
not fail at phase i given that it is functioning at its beginning. The “Start” and “Terminal” nodes
are omitted

at that time. The monotonicity assures that the system was functional also during the
whole phase. For example, for a mission with K phases and milestones t1, . . . , tK ,
the joint mission structure function is given by

ϕmission( �X(t1), . . . , �X(tK)) :=
K∏

i=1

ϕi( �X(ti)),

where ϕmission represents the structure function of the whole mission (defined as
ϕmission : {0, 1}N ·K → {0, 1} for an N component system) and ϕi are structure
functions in the respective phases (ϕi : {0, 1}N → {0, 1}).

Phased mission models can also be used for an on-line decision making during
the mission execution. Once a model of the mission is constructed, we may not
only assess the probability of successful completion of a mission but, in case we
have modelled them, also the probabilities of completion of mission deviations. This
may be useful in case some disturbances occur, which would endanger the mission’s
completion. In such cases, we may quickly assess risks of possible alternatives and
alter the mission, respectively [1, 2].

4.3.4 Signatures

An important tool for reliability assessment is the structure function, may it be
specified by a RBD, FTA, BN or PMS. One problem with structure functions is their
high dimensionality in practical scenarios (exponential in number of components)
which turns any following reliability analysis into a computationally expensive
process. Signatures allow us to overcome this problem by providing alternative
descriptions of a system in a lower dimensional space, its summary, which is also
often able to separate the mathematical term coming from system structure from the
one corresponding to components’ TTFs.

Given a probability space, we can express the probability of any event via the
law of total probability. Let us have an event S, that the system is working, and an
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arbitrary decomposition of the space of component states {0, 1}N into disjoint sets
D1, . . . , Dk . The probability of event S can then be expressed as

P(S) =
∑

i

P (S|Di)P (Di). (4.3)

The signatures we describe in this section both rely on this formula but differ in the
choice of the underlying decomposition.

The original system signatures were proposed by Samaniego [20] and celebrated
successful applications in the system reliability analysis and system structure
optimisation. On the other hand, they could only be applied to systems with
components with independent identically distributed (i.i.d.) lifetimes, which is
overly restrictive for many practical scenarios, since most of the systems are
composed of heterogeneous components. This limitation was overcome by the
introduction of survival signature [7] by Coolen and Coolen-Maturi which allows
us to model systems with multiple types of components.

4.3.4.1 System Signature

System signature is introduced for systems composed of components with i.i.d.
TTF. The i.i.d. requirement either restricts us to analyse systems consisting of
multiple instances of the same component or to systems for which we assume
that the other components are totally reliable (cannot fail). Nevertheless, many
practical systems can still be analysed using this methodology, like traffic networks,
telecommunication networks, computer components . . .

The system signature is defined as a discrete probability vector q1, . . . , qN ,
where qi denotes the probability that the i-th component failure will result in the
failure of the system. The expression system reliability can be simplified into

P(TTFsys > t) =
N∑

i=1

qiP (TTF(i:N) > t),

where TTF(i:N) denotes the ith order statistic (a random variable describing the
probability distribution of ith failure time in the sample of size N ). In the i.i.d. case,

P(TTF(i:N) > t) =
N∑

r=N−i+1

(
N

r

)

[1 − F(t)]r [F(t)]N−r ,

where F is the common CDF for the component lifetimes.
Samaniego has shown that the system signature may serve as a way of comparing

systems. He provides theorems about how different stochastic orderings of system



126 D. Krpelík et al.

signatures implies stochastic orderings of system TTF [20]. This enables us to
define system optimisation problems as problems of finding systems with optimal
signatures, although not each signature correspond to a physical system.

4.3.4.2 Survival Signature

An extension to system signatures may be made for systems consisting of multiple
types of components. In this scenario, we assume that the TTFs of components of
the same type are exchangeable (i.i.d. implies exchangeability). This allows us to
model more scenarios than the system signature (e.g. network system with both
switch-boards and transmission ducts). The scenario in which the TTF of each of
the components is different is also included as an extreme case.

Let us assume that we have a system withK distinct component types and denote
Gj the set of components of type j andMj the number of components of type j in
the system. We can introduce a natural decomposition of {0, 1}N intoD�l , where �l ∈
⊗Ki=1{0, 1, . . . ,Mi} is a multi-index, and D�l := {�x ∈ ΩX : ∀j : ∑

i∈Gj xi = lj }.
This corresponds to a decomposition into disjoint setsD�l where for each component
type j exactly lj components are functioning. The probability P(S|Di) may be
viewed, due to the exchangeability assumption, as the probability of success in a
Bernoulli trial (the number of favourable events divided by the number of all the
possible events) and may be derived from the structure function as

Φ(�l) := P(S| �X ∈ D�l ) =
|{�x ∈ D�l : ϕ(�x) = 1}|

|D�l |
=

[
K∏

i=0

(
Mi

li

)−1
]

∑

�x∈D�l

ϕ(�x).

The mixing probability, P(Di) from Eq. (4.3), is then

P( �X ∈ D�l ) =
K∏

i=0

(
Mi

li

)

[P(Xi = 1)]li [P(Xi = 0)]Mi−li .

The survival function of the system is therefore separated into a time dependent
(component reliability) and a time independent (system structure survival signature)
factors, and

P(TTFsys > t) =
(M1,...,MK)∑

�l=�0
P(S| �X ∈ D�l )Pt ( �X ∈ D�l ).

If the TTF distribution of the components is independent on all the other compo-
nents, the relation simplifies into
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P(TTFsys > t)

=
(M1,...,MK)∑

�l=�0
Φ(�l)

K∏

k=1

[(
Mk

lk

)

[Pt(Xi(t) = 1)]lk [Pt(Xi(t) = 0)]Mk−lk
]

,

=
(M1,...,MK)∑

�l=�0
Φ(�l)

K∏

k=1

[(
Mk

lk

)

[1 − Fk(t)]lk [Fk(x)]Mk−lk
]

.

Both the system and survival signatures allow us to greatly reduce the amount
of storage necessary to describe a system and, subsequently, to analyse it. It is
still exponentially expensive to calculate the signatures from a structure function,
but, as with the reliability function, it is enough to carry out this computation only
once and, possibly, to communicate the system specification itself solely via the
signatures. Both of the signatures act as system summaries—there is no one-to-one
correspondence between the respective classes of systems and their signatures—
which has a further possible benefit for manufacturers in masking the actual system
topology while still allowing to analyse and compare systems’ performance by sub-
contractors and researchers.

4.4 Statistical Inference in Reliability

As with other stochastic models, we can use the tools of mathematical statistics in
order to infer the failure distributions from (mostly, but not only) empirical evidence.
From observations of the device behaviour in the past, we can estimate possible
behaviours in the future. The random variable of interest is the TTF, and the data
from which we infer are usually the observed TTF of tested components. Since we
demand the devices to operate for large periods of time (years and longer), it takes
significant amount of time to collect the data from real experiments, because we
need to wait for the observed devices to fail. For this purpose, special methodologies
have been developed in reliability theory to help us overcome this difficulty.

4.4.1 Censored Datasets

In many cases, the experiment collecting observations of the failure times needs to
be terminated before all the devices have yet failed. We could discard those units
for which the failure had not occurred during the test in order to proceed with the
analysis, but in such a case, we would lose a lot of acquired information, and it
would also lead to incorrect conclusions because of the omission of the evidence for
longer lifetimes. For these scenarios, the notion of censored data was introduced
in order to build a theory of how to utilise all the available information and avoid
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possible systematic bias caused by omitting part of the information [14, Sec. 8.4],
[21, Sec. 5.4]. Such data may originate either due to the experimental design, i.e.
we terminate the experiment when a pre-specified time Tlim has passed or when
a certain pre-specified number of failures klim has been observed or because of
random influences, e.g. failures due to a different cause than the one analysed or
losing the track of the statistical unit (common to clinical studies).

In reliability theory, a common type of censoring is so-called right censoring,
where we have terminated the experiment before all the devices have failed. Here,
we can combine the censoring times with knowledge that the (not manifested) TTF
is greater than the censoring time. In order to construct a (precise) likelihood which
could be used by standard statistical procedures, an additional assumption needs to
be made. The one usually used is that of a random censoring mechanism which
states that the censoring time is stochastically independent of the failure time. One
may imagine how such an assumption might be violated, for example, in medical
survival studies, where the approaching failure may make the patient to reconsider
his participation in the study. We would need to propose different censoring models
based on the nature of the observations.

Let us assume that we have a set of independent statistical units and have
observed a collection of failure times {t1, . . . , tn} and also a collection of right
censoring times {c1, . . . , ce}. The censoring times denote the supremum time for
which we know the unit has not yet failed, but the exact time of failure is not known.
Assuming the random censoring, the likelihood function, will take the form

L(θ; �x, �c) =
(
n∏

i=1

fθ (ti)

)(
e∏

i=1

Rθ(ci)

)

,

where fθ and Rθ are the PDF and the survival function, respectively, indexed by the
distribution family parameter θ . The inference about the distribution index θ may
then be carried out by both frequentist and Bayesian methods.

4.4.2 Accelerated Life Testing

Another way to decrease the necessary experimental time is accelerated life testing
(ALT) methodology [14, Sec. 8.5], [15], [21, Sec. 5.8]. The core of the method lies
in the idea of exposing devices to harsher conditions in which they will deteriorate
faster. In order to infer the distributions of the TTF in the working conditions, we
must also choose a model for the deterioration speed-up. This model will provide
us with the means of transforming the failure times at higher stress levels to the
working conditions. This transformation model itself may be uncertain, dependent
on some parameters. If that is the case, these parameters also have to be estimated
during the inference process.
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In the inferential scenario, we thus observe several failures from multiple levels
of stress. Usually, the least amount of observations comes from the level with
working stress conditions, because the devices tested on this level are assumed
to deteriorate by the slowest rate. All the observations are then joined together in
by single likelihood function for the model parameters; the model parameters are
inferred, and the desired lifetime distribution for the working stress level is derived
from them.

Accelerated life testing is thus among the methods which enabled practical
testing of highly reliable components. It is dependent on modelling the underlying
physical process which leads to the acceleration of the deterioration process.
Furthermore, the model of acceleration is also inferred and may be utilised in design
optimisation where we could investigate how the design parameters influence the
working conditions of the device and, therefore, its reliability.

We will show how the ALT can be formulated and solved for two commonly
used transformation models based on independent observations.

The Arrhenius law originated for describing how the transition rates changes
for chemical reactions based on the environmental conditions. It may be used as
a transformation model if we include an assumption that the lifetime distributions
on each level are exponential, with constant failure rate, because it prescribes the
relation directly between the failure rates on different levels. Let us parametrise the
exponential PDF with its failure rate so that

f (t |λ) = λ exp(−λt).

Then we can link the mean times to failure at different levels by the Arrhenius law.

μ(V ) = C exp

(
B

V

)

,

where C,B are model parameters which need to be estimated; V is a physical
observation describing the stress upon the component (e.g. electric potential,
temperature, . . . ); and μ(V ) is the mean TTF at level V . The failure rate on each
level can thus be obtained by taking the reciprocal value λV = 1

μ(V )
. Since we can

now precisely specify the distribution at each level conditional on the knowledge of
model parameters B,C, we can also construct the likelihood function for the model
parameters B,C conditional on the observed values. That will take the form (with
the independency assumption)

L(B,C; �t , �v) :=
∏

V

∏

i

f (tV,i |λV ),

where tV ,i denotes i-th observation on level V , f (.|λV ) is the lifetime pdf on
level V , �t are the observed failure times and �v the respective levels on which the
observation had been made (Fig. 4.6).
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Fig. 4.6 An example of an ALT inference with dependency modelled with the Arrhenius law
on 3 level with (C,B) = (1, 1) and amount of observations at respective levels being 3,10 and
25. Curve “GT” represents the sampling distribution for the base level, and “K-M” is a Kaplan–
Meier estimate based on samples from the base level. Results of the inferences are shown by
curves “MLE”, for the maximum likelihood estimate based on the samples from the base level,
and “ALT”, based on the Bayesian inference described in the current subsection. A confidence and
credible intervals respectively are depicted as the shaded areas

Another model used to transform the observations from one level (external
conditions setting) to another is the power-Weibull model. Here we assume that the
distribution of the lifetime at all levels can be modelled by the Weibull distribution.
An important factor is that the shape parameter needs to be the same in each of
the stress levels, because the contrary would signify an introduction of new types
of failure modes; thus failures which would not naturally occur in the working
conditions and thus bias our inference. The PDF of the Weibull distribution,
parametrised by shape β and scale α, is

f (t |α, β) = β

α

(
t

α

)β−1

exp

(

−
(
t

α

)β
)

The transformation from level i to level j might be specified for the scale parameter
α as

αj = αi
(
Vi

Vj

)p

,

where p is another model parameter which will need to be estimated aside from the
common shape parameters β and αV 0, the scale parameter on level V0. From these
three, we can uniquely determine the lifetime distribution for any stress level thus
also construct the likelihood function necessary for the inference of (p, β, αV 0).
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Once we obtain the posterior distribution for the model parameters ((B,C) or
(p, β, αV 0)) (in the Bayesian framework), we can propagate it directly to obtain the
distribution for the TTF at the working level,

Pr(TTF < t) =
∫ t

0

[∫

Ωθ

f
(
x
∣
∣θ

)
dπ(θ |�t, �v)

]

dx,

=
∫

Ωθ

F
(
t
∣
∣θ

)
dπ(θ |�t, �v).

where θ represents the parameters of the chosen model, and F(.|θ) is the lifetime
CDF on the working level.

4.4.3 Proportional Hazards Model

Sometimes, it may be our desire to determine the influence of other available
characteristics on the lifetime distribution. The means of inferring such dependency
require us, similarly as in the case of the ALT, to choose and include a model of
this dependency into the likelihood function. Assume that we observe a series of
failure times �t = (t1, . . .) and also, for each of the statistical units, some value(s) �xi
representing their additional attributes. Now, we are looking for a mapping which
would prescribe the lifetime distribution for any new unit with attributes �x′.

In the statistics literature, a lot of work has been focused on (generalised) linear
models. Such a model was also introduced for solving the above mentioned problem
by Cox, called after him the Cox’s proportional hazards model [9]. As mentioned
in Sect. 4.2.2, a (well-behaved) lifetime distribution may be uniquely specified by its
failure rate function λ(t). Hence Cox has proposed a linear model for the logarithm
of the failure rate function in which, for a vector of d additional attributes �x =
(x1, . . . , xd), the model of the failure rate function takes the form

λ(t |�x) = λ0(t) exp

⎡

⎣
d∑

j=1

βjx
i
j

⎤

⎦ ,

where λ0(t) is a base-line failure rate function which may be inferred later and is
common for the whole population, and β = (β1 . . . βd) are model parameters which
are to be estimated and which capture the influence of the covariates �x (Fig. 4.7).
Cox’s model allows us to determine influential factors and the nature of the influence
also without the need to infer the base failure rate λ0(t) at all, which is why it is often
used in bio-statistics to test hypotheses about sensitivity to a factor variations.

For the full inference, first, we decompose the sampling distribution into a factor
modelling the chance of observing the failures at specified times and a factor
modelling the conditional probability of observing them in specified order given
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Fig. 4.7 An example of
survival functions for units
with varying covariates
inferred via Cox’s
proportional hazard model.
GT stands for “Ground
Truth”, the models from
which the observations were
generated, “R0” and “inferred
R[x, y]” denote inferred
survival functions, and the
vector [x, y] stands for values
of the covariates

when the failures had occurred. The latter conditional distribution will turn out to
be dependent only on the vector �β and can therefore be solved separately. Once we
infer the coefficients β, we may proceed with the inference for λ0.

For the first part, we condition upon the observed failure times �t and construct
a conditional likelihood for the model parameters β. While conditioning upon the
observed failure times, we are only interested in that if a failure happens, what is the
probability that it is unit with covariates �x. Hence we can specify a partial likelihood
for each of the failed units i as

Li ( �β) = λ(ti |�xi)
∑
j :tj≥ti λ(ti |�xj )

=
exp

(
�xi �β

)

∑
j :tj≥ti exp

(
�xj �β

) ,

where the normalisation is carried over all the units at risk at time of the failure of
the i-th unit. This treatment allowed Cox to also apply his method for censored
observations. The censored observations come into play via the normalisation
constant by decreasing the amount of units at risk at observed failure times. The
equations for conditional likelihood remain the same in such case.

Once the partial conditional likelihood is specified for each of the observed
failure times, the full conditional likelihood may be obtained (under the assumption
of independence) by taking their product

L( �β) =
∏

i

Li ( �β).

Once the β coefficients are inferred, we may use the result to specify the
likelihood for λ0| �β. Note that (λ0, �β) define the failure rate function, thus also
the survival function and the likelihood. Cox [9] used some simplifications for the
inference of λ0. The β were estimated by a maximum likelihood estimate. That
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made the computation possible in the time of the publication of his paper. Then,
instead of using the observed covariate vectors, an arbitrary value was permitted. In
the simplest case, all covariates may be assumed �x = �0, which would completely
nullify the covariate contribution into the failure rate function, thus enabling us to
infer it entirely separately. Cox himself has used �x being the mean of the covariates
of the relevant risk set in order to minimise the variance of the non-parametric
estimator he used.

Once the inference is done, the (conditional) survival function can be evaluated
at any time instance as

R(t |�x, �β, λ0) = [R0(t)]
exp

( �β �x
)

=
[

exp

(

−
∫ t

0
λ0(y)dy

)]exp
( �β �x

)

.

4.4.4 Quality Control

Another important inferential task in reliability theory is connected to quality
control [16], [17, Ch. 13]. Imagine that we have a factory producing certain device.
Since, again, the factory itself is a device operating in the real world, its actual
performance may be influenced by environmental disturbances, and the resulting
products may vary in quality. This may also affect the reliability of the products. In
order to assure that a certain quality of the products is met, they need to be regularly
tested. Let us divide the production into batches, sets of products produced under
the same (similar) conditions and in the same time frame. Take a single batch and
assume that all the products in this batch share the same failure time distribution.
We would then be interested whether this common failure distribution meets the
required criteria. Besides the reliability, we might be interested also in other varying
quality measures. Answering this question requires us to find a balance among two
conflicting demands on the testing procedure. The larger amount of products we
subject to testing, the more reliable the answer we will obtain should be. But also,
the less products we test, the more of them we can actually monetise, since the tests
are often destructive.

A certain quality might be required, say that the mean lifetime is larger than some
value or that the geometry is within specified tolerances. Satisfying the requirement
may be viewed as a random event, say H as hypothesis, and in practice may be
solved by formulating a hypothesis test based on a set of observed failure times.
The hypothesis test might result into four different outcomes:

1. H is valid and the test concludes that.
2. H is not valid and the test concludes that.
3. H is valid, but the test concludes otherwise—I. type error.
4. H is not valid, but the test concludes otherwise—II. type error.
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So, again, we cannot determine whether H is valid or not for certain based on the
data only. There is always a possibility that a test would conclude incorrectly, but
the probability that would occur may be controlled. If we were given a fixed set
of observation, we are usually able to control just one of the two types of error.
In practice we usually choose to control the type I. error by selecting the test
significance level accordingly. In the quality testing, the two errors represent the
risks to the producer (type I., the whole batch would be rejected wrongfully) and to
the purchaser (type II., a batch would not meet the requirements although the test
concluded that). In the batch testing procedure, we are able to control both error
levels by selecting a proper amount of products to test, since for fixed I. type error,
the type II. error generally decreases with increasing number of observations. The
question that remains is an economical one, what error levels we deem adequate
given that lowering them could be expensive.

4.5 Designing Highly Reliable Systems

Once we are able to construct mathematical models for the occurrence of failure,
the next logical step is to select the design which best suits our needs. Reliability is
a sidekick to performance. Even if one designs a system with the peak performance,
it would be of little use if it would stay in a failure state most of the time. Generally,
we require the failure probability to be as small as possible. But engineering has its
limits and may only take us so far with constructing reliable devices. This section
is to introduce techniques which might be used to improve reliability of critical
systems other than by improving reliability of its components. It is theoretically
possible to construct devices with any required reliability level, but that is usually
impossible in practice due to the possible correlations among the failure times (when
one failure triggers others) or due to possible failure of switching mechanisms.
Nevertheless, the reliability of a system and its lifetime may be increased drastically.
The pay-off is the cost, spatial dimension and complexity.

4.5.1 Redundancy Allocation

One idea leading to an increase in reliability is to identify and fortify critical
components of the systems [4, Ch. 6], [14, Ch. 9]. If there is a component whose
failure will likely lead to the failure of the whole system and whose reliability
cannot be sufficiently improved by changing its design and construction, we might
consider to introduce additional components which would be able to ease the stress
upon this component (share its load) or which could substitute it in the case of a
failure (redundant spares). Both of these may simply be just replicas of the original
component.
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As indicated in the ALT Sect. 4.4.2, higher stress upon a component might lead to
its faster deterioration. If we introduce another component which takes on part of the
original component’s function, we may be able to achieve increased lifetimes of both
components due to decreased stress, and, even without decrease in load, increased
system lifetime due to the fact that upon the failure of one of these components, the
other can still fulfil the functionality by taking the load of the other (if the system
fails only when all these components fail).

The dependency of lifetime on stress may be examined, for example, by the
proportional hazard model (Sect. 4.4.3) or by an inferred model from accelerated life
tests (Sect. 4.4.2) and taken into account in the system model. Due to the introduced
redundancy, the component together with the introduced support systems may be
modelled as a macro-component with a new TTF given by

TTFload share system = max{TTF1, . . . ,TTFn}, (4.4)

where n is a number of components in this load-share system and TTFi their
respective TTFs (which might be possibly influenced by the failures of other sub-
components by the increase of the remaining components failure rate functions).

In contrast to the load-sharing setting, we can also introduce spares, stand-by
components which do not operate (and we assume that they also do not deteriorate)
until the original component fails, and then they replace its function. This new
configuration of N components may again be viewed as a macro-component itself
with new TTF

TTFsystem with spares =
N∑

i=1

TTFi , (4.5)

where TTFi denotes the TTF of the ith sub-component.
Figure 4.8 depicts how different scenarios of load sharing influence the system

reliability. Stand-by components are not considered there. We consider a system
with single component with exponentially distributed lifetime and compare its sur-
vival function (the curve “Original”) with scenarios where a redundant component
is introduced in the system assuming that the load share:

• does not influence components’ lifetime, so the overall TTF is given by Eq. (4.4)
with the original component TTFs (the curve “Same stress”),

• increases the lifetime of components by decreasing its failure rate and a failure of
one component does not influence the failure rate of the other, so the overall TTF
is given by Eq. (4.4) with TTFs with decreased failure rate (the curve “Decreased
stress”),

• increases the lifetime of components, as in the previous case, but a failure of one
of the components increases stress on the other by imposing the original failure
rate for the rest of its life (the curve “Change of stress”).
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Fig. 4.8 Survival functions for different considered redundant system scenarios. “Original” for a
single component system; “Same stress” for when we assume original stress on both components;
“Decreased stress” for when we assume decreased stress level regardless the state of the other
component; “Change of stress” for when the stress is divided while both components are
functioning, but increased once one of the components fails

Notice also, how the scenario in which the stress upon a component changes after
the other component’s failure can be bounded between the curves corresponding to
situations with the decreased stress and the original level of stress. This is due to the
ordering of the respective new TTFs induced by ordering of their failure rates.

Redundancy allocation is often the key to designing highly reliable devices,
especially important for missions where failure of the system leads to catastrophic
consequences (e.g. life losses or loss of deep space probes). One must compensate
the improvements in reliability with an increase of costs (and weight, size, . . . ).

The task itself leads to an integer optimisation problem—for each of the
components, we may allocate an arbitrary number of redundant ones in various
schemes (load share and spare). The problem is often solved sequentially with the
help of sensitivity analysis, which allows us to locate critical parts of the system
and assign redundant components to them. Then we may iterate until the desired
reliability level is reached.

4.5.2 System Maintenance

Maintenance refers to a set of procedures developed to attend to systems after their
deployment. It enables us to drastically prolong system lifetimes and/or keep it
operational even after its original lifetime by overhauling the systems and replacing
its failed components [12], [14, Ch. 10], [18].
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Whatever we build will eventually fail. Nevertheless, we would like to access
the service that a device is providing for us for any time period we choose. We can
(and do) maximise the lifetime of a device by improving its design, but in order to
enable the service to be prolonged up to an arbitrary amount of time, we sometimes
have to replace the failed device or its parts with new, functioning ones or perform
a repair to make them functional again. Maintenance theory is generally concerned
with the overall system operation, including its economical aspects, like the costs
and logistics of enabling the repair at all. In this section, we will introduce some
basic aspects of the maintenance in the current subsection.

In renewal theory, we are no longer focusing on reliability of a mission—
meaning mission is successful if system does not fail until the mission’s end. We
now admit that a failure may occur and shift our focus to the performance measures
instead—i.e. what proportion of time is the system operational (and possibly how
that influences other performance measures). In this scenario, we assume that once a
system (or its components) fails, a repair process is initiated with a random time to
renewal denoting its duration, a time span after which the system will usually regain
its functionalities. Variations exist when failures are not directly observed, and we
need to plan also for inspections of the system or when the repair does not renew
the system but only make it minimally functional again. The state of the system is
again a random process in time with states {0, 1} as before, but now we pose no
restrictions on monotonicity.

The renewal function N(t) describes the number of repairs in interval [0, t].
It depends on the design of the system and the policies for its maintenance and
directly influences the economical aspects of the system (i.e. how much will it cost
to maintain the operation of the system, or can we supply enough spare parts?).
Because the times to failure are random variables, the renewal function will be a
random process, and mostly, for the sake of simplicity, we focus on its mean value.

Another important performance measure is the function describing the availabil-
ity of a system—the probability that system is functioning at a specific moment in
time. Even though we can replace a failed component, the replacement may not be
immediate so the provided service may be unavailable (not functioning) during the
time of maintenance. The availability is, again, a time dependent function, which
we will denote as A(t) : T → [0, 1].

Specific form of N(t), A(t) and E{N(t)} (the mean value of N(t)) depends on
the qualitative properties of the system, namely on the models of the processes of
maintenance and failure inspection. Many real world systems will fall into one of
the following categories.

• Systems with immediate repair—the maintenance length is negligible so a
renewed unit is considered to start working immediately after the last unit failure.
The system itself is considered operational at all times (A ≡ 1), and we are only
interested in N(t).

• Systems with significant maintenance time—the maintenance length cannot
be neglected, but maintenance still commences right after the failure. The system
may not be operational at any time, since it may be undergoing maintenance.
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• Systems with latent failures—here we can again distinguish based on the
negligibility of maintenance length, but the main aspect is that the maintenance
does not commence directly at the time of a device failure but only at predefined
inspection times. Hence the inspection policy also becomes an aspect of the
system design.

Results of the renewal theory [12], [18, Ch. 1] directly lead to methods for
optimising the overall performance of the service by the means of influencing the
maintenance and inspection policies. The competing objectives are the availability
of the system (preferred maximal), the overall costs of the maintenance (preferred
minimal) and others relevant for the system operation, like the variability of its
performance (preferred minimal).

Approximative results can be derived from the limiting properties of N(t) and
A(t), namely: limt→∞A(t) and limt→∞ N(t)

t
. These describe the behaviour of

maintained devices at times after the initial fluctuations and have enough descriptive
power to reason about long-lasting or permanent systems. For the scenario with
significant repair time, but no latent failures, the asymptotic availability is given by

lim
t→∞A(t) =

MTT F

MT T F +MTTR , (4.6)

where MT T F and MMTR represent the mean TTF and the mean time to
renewal, respectively.

But Eq. (4.6) only describes the asymptotic properties, and for bounded system
life duration, these might not be reached and therefore be misleading. A careful,
usually simulation-based, analysis is necessary in such cases.

4.6 Concluding Remarks

In this chapter, we have attempted to give an overview of the basic notions and
problems reliability theory deals with. For the sake of conciseness, we needed to
omit many interesting topics and sometimes also proper mathematical rigour. Nev-
ertheless, for those interested, several pointers to further literature were provided in
relevant sections.

Regarding the optimal design problem, some aspects of dependency of reliability
on design variables has been emphasised:

• Reliability of a system depends on its structure, so the structure itself becomes a
design parameter (Sect. 4.3).

• The design may influence the working conditions of the system, the stresses on
components and the models, for this may be inferred via accelerated life tests
(Sect. 4.4.2).

• “Linear” dependencies on additional variables may be captured by the propor-
tional hazard model (Sect. 4.4.3).
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• Reliability of a system may be further improved by adding redundant components
and planning for maintenance, which introduces additional design variables
(Sect. 4.5).

Reliability theory also suffers from the same drawback like the general uncer-
tainty quantification, as introduced in Chap. 2. Namely, the available information
is often too scarce to construct precise stochastic models. In reliability engineering,
knowledge often comes in the form of distribution summaries (mean TTF and other
moments supplied by the manufacturer) or only via limited amount of samples (as
with testing highly reliable components). It has been argued [23, 24] that imprecise
probability models are necessary in order to obtain reliable predictions.

The problem of inference with limited assumptions was already tackled also in
the treatment of Barlow and Proschan [4], who had derived several inequalities for
bounding the survival functions based on combination of quantitative (moments
of the lifetime distributions) and qualitative judgements (whether the failure time
distribution has increasing or decreasing failure rate). Further extensions to impre-
cise probability framework have been achieved in the field of robust Bayesian
inference [26], in analysing censored datasets via NPI [8], in ALT through imprecise
transformation of observations to the base level [27] and more in the field of system
reliability where imprecise failure distributions of component lifetimes may be
extended to imprecise reliability of some basic systems [19, 25].
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Chapter 5
An Introduction to Imprecise Markov
Chains

Thomas Krak

Abstract Stochastic processes in general provide a popular framework for mod-
elling uncertainty about the evolution of dynamical systems. The theory of Markov
chains uses a number of crucial assumptions about the (in)dependence of such
a process on its history that make their analysis tractable. In practice however,
the parameters of a Markov chain may not be known exactly, or there may exist
doubt as to the applicability of these assumptions to the system under study.
This chapter presents an introduction to imprecise Markov chains, which are a
robust generalisation of these models that may be used when parameters are not
known exactly or when such assumptions could be violated. Their treatment is
grounded in the theory of imprecise probabilities. The generalised model can be
interpreted as a set of (traditional) stochastic processes, which may or may not be
Markovian and which may have different and varying parameter values. Inferences
are then performed to ensure robustness with respect to variations within this set.
This chapter assumes no advanced familiarity with Markov chains or imprecise
probability theory. It aims to develop an intuitive and graphical understanding of
(imprecise) Markov chains in discrete and in continuous time.

Keywords Imprecise probabilities · Model uncertainty · Stochastic processes ·
Imprecise Markov chains

5.1 Introduction

In many areas of science and engineering, we are interested in modelling uncertainty
about the behaviour of dynamical systems, that is, systems whose state changes
as time passes. For instance, we may want to model the evolution of the spatial
trajectories of a system in motion; or the performance and reliability of a complex
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composite system as its components wear out, break down and get replaced; or the
spread of pathogens through a population; or the evolution of stock prices—and so
on and so forth.

What all these systems have in common is that there is a dynamic component to
their description—they change over time—and they are, in a sense, hard to describe
exactly. For instance, this difficulty may arise because their behaviour depends on
unknown external influences or because the system cannot reasonably be described
at a sufficiently detailed level. Thus, there arises an uncertainty about how exactly
the system will evolve over time, even if one can model how it will ‘roughly’ behave.
Regardless of the interpretation that we want to assign to this uncertainty, such
systems are modelled using stochastic processes. A stochastic process, then, is a
probabilistic description of the system under study. In this sense, it provides a formal
and integrated description of the system dynamics and the probabilistic uncertainty
of its evolution.

On the other hand, we might also be uncertain about whether such a model
is ‘correct’. For instance, we might not know exactly the numerical values that
the parameters of our model should take. Similarly, we might be aware that our
modelling assumptions lead to simplifications that are not necessarily warranted,
which introduces uncertainty about the accuracy or applicability of any assessments
made on the basis of these models. It is therefore of interest to robustify our models
also against these kinds of ‘meta’, or ‘higher-order’, uncertainties.

In this chapter, we consider stochastic processes for which this higher-order
uncertainty is modelled using the theory of imprecise probabilities (IP). For an
extended introduction to IP, we refer the reader back to Chap. 2. We constrain
ourselves to briefly recalling that such imprecise probabilistic models can be
interpreted as representing a set of traditional probabilistic models. So, in our
current setting, we will be considering sets of stochastic processes. From an
inference point of view, the aim is then to compute inferences which are robust
with respect to variations within such a set. We recall from Chap. 2 that these robust
inferences are captured in general by the lower and upper expectations with respect
to the elements of the set that we are considering.

Our aim with the present chapter is to provide an extensive but intuitive
introduction to the theory of imprecise stochastic processes and of imprecise
Markov chains in particular. To this end, we will intentionally focus on the different
representations of these processes. We will show how each of the different ways
of looking at these models provides its own way of deriving useful properties and
highlights different intuitive ways of reasoning about them. Important results and
properties are stated, but we have made an effort to keep the discussion intuitive.
We try to prevent technicalities and do not provide extended proofs; instead, we will
provide pointers to the literature that the interested reader might pursue herself.

The remainder of this chapter is organised as follows. We start the discussion
by giving a quick introduction to stochastic processes in Sect. 5.2. The first part
basically uses the measure-theoretic approach (albeit in a rather simplified sense)
to pin down some first concepts and notation. We then go on to present three
different and graphical representations of stochastic processes, which can be used
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when the time-dimension is discrete. Specifically, we cover the representation using
probability trees, in Sect. 5.2.1; using Bayesian networks, in Sect. 5.2.2 and using
transition graphs, in Sect. 5.2.3.

Once we have developed these different ways of reasoning about discrete-time
processes, we generalise the discussion to imprecise discrete-time processes in
Sect. 5.3. We use the previously developed graphical notions to provide intuition
about how to reason and compute inferences using these models. The treatment of
(imprecise) continuous-time processes is largely postponed until Sect. 5.4. Here the
graphical and intuitive representations largely break down, but we can then use the
previously developed understanding of the discrete-time case to reason about these
models. To keep the main text as readable as possible, the discussion of the literature
on which the material in this chapter is based is deferred to Sect. 5.5.

5.2 (Precise) Stochastic Processes

We will start the exposition around stochastic processes in a relatively general and
abstract sense but will quickly make things more specific. Throughout the remainder
of this chapter, we will consider some fixed abstract state-space X . A state is
an element x ∈ X and represents uniquely the relevant information about the
underlying system that we are interested in modelling. So as not to complicate
matters, we will assume throughout that X is finite, so that we can identify it
without loss of generality as the set X = {1, . . . , k} ⊂ N. Note that here and
in what follows, we denote with N the natural numbers and will write N0 := N∪{0}
when we include zero. Furthermore, the real numbers are written R, the non-
negative reals are R≥0 and the positive reals are R>0.

Because we are interested in modelling a system whose state x ∈ X changes
over time, we next identify some time-dimension T. A crucial choice to be made
later on is whether we are considering processes in discrete-time, in which case we
identify T = N0, or processes in continuous-time, in which case T = R≥0. For now
we simply keep the discussion general without making this identification.

With the state-space and time-dimension in place, it now makes sense to talk
about the realisation of some (yet to be identified) stochastic process. Such a
realisation is also called a sample path, and it is a function ω : T → X . So,
this ω describes for each point in time t ∈ T the state ω(t) ∈ X that the system
was in at that time. We collect in the set Ω all these sample paths. For technical
reasons, it is sometimes required to restrict attention to paths that satisfy sufficient
smoothness conditions; for instance, when T = R≥0, it is common practice to let
Ω only contain càdlàg functions, that is, paths ω(t) that are right-continuous and
whose left-sided limits exist everywhere.

This set Ω thus contains all possible ways in which the system might behave
over time; it can therefore be considered an outcome space of a stochastic model.
Formally, we will consider some abstract underlying probability space (Ω,F , P ),
where F is some appropriate σ -algebra onΩ and where P is a probability measure
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on (Ω,F ). Given this probability space, we can finally formalise the notion of a
stochastic process as a collection {Xt }t∈T of random variables associated to this
probability space. We will here slightly restrict our definition to the following
specific stochastic process:

Definition 5.1 (Stochastic process) Fix a time-dimension T and consider a prob-
ability space (Ω,F , P ). Then (the corresponding) stochastic process is the collec-
tion {Xt }t∈T of random variables Xt : Ω → X : ω "→ ω(t), t ∈ T, on this
space.

Corollary 5.1 Fix a time-dimension T; consider a probability space (Ω,F , P );
and let {Xt }t∈T be the corresponding stochastic process. Then for all t ∈ T and
x ∈ X , it holds that Pr(Xt = x) = P

({ω ∈ Ω : ω(t) = x}).
Proof Fix t ∈ T, and recall the definition of a random variable: for all x ∈ X , the
probability Pr(Xt = x) ofXt taking the value x is equal to P

(
X−1
t (x)

)
, the measure

of its preimage in Ω . Since Xt(ω) = ω(t), we have X−1
t (x) = {ω ∈ Ω : ω(t) =

x}. #$
The above is a formal way of saying that, and how, these random variables {Xt }t∈T
are associated to the given probability space. In words, for some fixed time t ∈ T,
Xt is a random variable that takes on a value x ∈ X with probability equal to the
measure of the set of paths along which the state at time t is x. Conversely, if we fix
the outcome ω ∈ Ω , then the collection {Xt }t∈T can be considered a deterministic
process, and Xt(ω) = ω(t) for all t ∈ X .

Note, therefore, that all the quantitative information about the probability of the
process taking on certain values at given points in time are completely determined
by the measure P . It is therefore also intuitive to instead consider this measure P to
be ‘the stochastic process’, although this is technically an abuse of terminology. This
is because, for a given probability space (Ω,F , P ), it is possible to define many
different stochastic processes; any T-indexed collection of random variables on this
space satisfies the general definition. However, in a sense, the stochastic process in
Definition 5.1 can be viewed as the ‘canonical’ stochastic process corresponding
to the given probability space, since it specifically and exactly represents the
uncertainty about which states might be obtained at different points in time. We
will therefore, and for notational convenience, often refer to the measure P and its
corresponding stochastic process {Xt }t∈T interchangeably and without confusion.

Next, it will be convenient to have a standardised notation to index a subset of the
random variables of a stochastic process. To this end, for any finite sequence of time
points t = t1, . . . , tn in T, with n ∈ N, we will write Xt = Xt1 , . . . , Xtn . Typically,
these sequences will be taken to be ordered, so that t1 < · · · < tn. Note that each of
the random variables Xti , i = 1, . . . , n takes values in X . Hence, the sequence Xt
takes values (jointly) in X n = ×ni=1X . An element of this joint state-space is thus
a vector (x1, . . . , xn) ∈ X n. When we are explicitly talking about a sequence t of
n time points, we will also write xt to denote a generic element of X n.
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In what follows, we will be interested in computing the expectation of some real-
valued function, whose value depends on the specific realisation of the stochastic
process. To prevent technical difficulties, we will assume that this function only
depends on a finite number of time points; without loss of generality, we can then
assume that it is a map f : X n → R, with n ∈ N, whose value depends on the
n random variables Xt, with t = t1, . . . , tn in T. We collect in the set L (X n) all
such real-valued functions on X n. The expected value of any such f ∈ L (X n)

on the n time points t is defined as

EP

[
f (Xt)

] :=
∑

xt∈X n

f (xt)P (Xt = xt) , (5.1)

where we have implicitly introduced the intuitive notation for the set

(Xt = xt) :=
{
ω ∈ Ω : (∀i ∈ {1, . . . , n} : ω(ti) = xti

)}
.

In Eq. (5.1), we use the subscript P for the expectation operator EP to make explicit
that it is taken with respect to the measure P ; this will be notationally convenient
further on.

We finish this first introduction by recalling the notion of conditional probabili-
ties and conditional expectations. For any two finite sequences of time points t and
s in T, the conditional probability of Xt, given Xs, is derived using Bayes’ rule:

P(Xt |Xs) := P(Xs, Xt)

P (Xs)
,

whenever P(Xs) is strictly positive. The necessity of the final condition is obvious;
it leads to a division by zero whenever it does not hold.

Using this notion of conditional probability, we can define conditional expec-
tations analogously. Suppose the sequences s and t are of length n,m ∈ N,
respectively. Then for any f ∈ L (X n+m) on Xs, Xt we define, for all xs ∈ X n,

EP

[
f (Xs, Xt)

∣
∣Xs = xs

] :=
∑

xt∈X m

f (xs, xt)P (Xt = xt |Xs = xs) .

5.2.1 Probability Trees

The preceding discussion introduced stochastic processes in a very general, but
rather abstract sense. We will build further intuition by next offering a different view
and representation, by means of probability trees. In the remainder of this section,
unless otherwise specified, we will focus on discrete-time stochastic processes,
whence we identify T = N0.
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We next need some notation and definitions for ‘partial paths’, which in this
setting are also called situations. As before, a (full) path is a map ω : N0 → X .
In contrast, a situation is defined as a (finite length) prefix of such a path. In other
words, a situation is an element of a set X n, for some n ∈ N. If w ∈ X n, n ∈ N,
is a situation, we write wi for its (i + 1)-th coordinate, i ∈ {0, . . . , n − 1}, and we
say that its length is |w| = n. Note that the indexing over the coordinates is taken to
start from zero rather than one—this is done for notational consistency with paths
ω. Since we will need to refer to it so often, we introduce the shorthand notation
w% for the last element of w; so if w has length n, then w% := wn−1. The set of all
non-empty situations is X ∗ := ∪n∈NX n, and we define X ∗

� := {�} ∪ X ∗, where
we add the empty situation denoted by �.

As a final point in this notational digression, for any s, t ∈ N0 such that s ≤ t ,
we will introduce the shorthand notation s : t to denote the sequence of time points
s, . . . , t . Using our previously introduced notation, we can then write Xs:t for the
random variables at these time points. Furthermore, for any n ∈ N0 and any situation
w ∈ X n+1, we can then use the previously introduced notation to write X0:n = w;
this is understood to mean that the random variables at time points 0, . . . , n obtained
the states corresponding to the situation w.

We endow the set X ∗
� with the prefix order, denoted ≺, which is a partial order

such that � ≺ v for all v ∈ X ∗ and for all v,w ∈ X ∗ with lengths n = |v|
and m = |w|, it holds that v ≺ w if and only if n < m and vi = wi for all
i ∈ {0, . . . , n − 1}. This is just a rigorous but somewhat obfuscated way of saying
that v ≺ w if ‘v is the beginning of w’ or ‘w is what you can get if v happens first,
and then some other things happen’ or, indeed, ‘v is a prefix of w’.

The important thing to notice is that the ordered set (X ∗
�,≺) induces a graphical

tree structure, with all the situations as its vertices. This tree is what is known as
the event tree. It has � as its root, and, for all v,w ∈ X ∗

�, w is a descendant of v
exactly if v ≺ w. An example of such a tree is shown in Fig. 5.1, which (partially)
shows the event tree corresponding to a binary state-space X = {a, b}.

Such an event tree can be turned into an intuitive representation of a stochastic
process by augmenting it into a probability tree. This is done by assigning to each
situationw ∈ X ∗

� in the tree a local model pw, which is a probability mass function
on X ; that is, it is a map pw : X → R≥0 such that

∑
x∈X pw(x) = 1. An example

of this is again illustrated in Fig. 5.1.

Definition 5.2 (Probability tree) A probability tree is a tuple (X ∗
�,≺, p(·)),

where X ∗
� is the set of all situations, ≺ is the prefix order on X ∗

� and p(·) :
X ∗

� × X → R≥0 represents all local models, so that
∑
x∈X pw(x) = 1 for all

w ∈ X ∗
�.

The mechanism by which a stochastic process obtains a certain realisation
ω ∈ Ω can now be interpreted as performing a weighted, random walk along
this probability tree, starting from �. Following the tree in Fig. 5.1, this is done
as follows: from �, we transition either to a, with probability p�(a), or to b, with
probability p�(b). Suppose we transition to a. From this new situation, the next step
will take us either to aa, with probability pa(a), or to ab, with probability pa(b).
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Fig. 5.1 A (partial) event tree for a binary state-space X = {a, b}. The vertices are situations, i.e.
elements of X ∗

�, and the edges are induced by the prefix order ≺. Dashed lines represent branches
that are not shown in the figure. The tree has been augmented to a probability tree, by assigning to
each w ∈ X ∗ a local model pw . A time axis represents at which point in time the situations can
occur

Proceeding in this fashion, an infinite random walk along this tree generates a full
path ω : N0 → X , where, for all t ∈ N0, the state ω(t) represents the (randomly
chosen) branch that we took along the tree at the (t + 1)-th step.

This ‘path construction’ view allows us also to connect back to the measure-
theoretic definition that we encountered earlier. To obtain this correspondence in
one direction, fix a probability tree (X ∗

�,≺, p(·)) and let (Ω,F ) be an appropriate
measurable space of discrete-time sample paths, on which we will aim to construct
the measure P quantifying, in the measure-theoretic sense, the uncertainty of the
corresponding stochastic process {Xt }t∈N0 on the resulting probability space.

We now reason intuitively by using the ‘random walk’ along the probability tree.
Starting from �, we transition to a first situation x ∈ X with probability p�(x).
From there, we could then perform the entire infinite random walk to generate the
remainder of the path. So, a different way of saying this is that, of all the random
paths ω ∈ Ω that could be generated, a fraction of p�(x) of them will start with
ω(0) = x. Using also the interpretation given by Corollary 5.1, it therefore makes
sense to define the first-step marginal measure P ∗(X0 = x) := p�(x) for all x ∈
X .

Let us now consider the next step, and assume the first step down the tree resulted
in a situation x ∈ X . Then, with probability px(y), y ∈ X , the next situation will
be xy. In terms of paths that could be generated, a fraction of px(y) of the paths that
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satisfy ω(0) = x will furthermore satisfy ω(1) = y. Therefore, we define for the
second-step marginal measure P ∗(X0 = x,X1 = y) := p�(x)px(y).

Proceeding in this manner, for every situationw ∈ X ∗ with length n+1, n ∈ N0,
we can compute the (n+ 1)-th step marginal measure as

P ∗(X0:n = w
) := p�

(
w0

)
n∏

i=1

pw0···wi−1

(
wi

)
,

or in words, by multiplying all probabilities given by the local models of the
situations encountered on the path from the root of the tree, down to the situation w.

A fundamental result in the measure-theoretic treatment of stochastic processes
(known as the Kolmogorov extension theorem) states that the collection of all these
n-th step marginal measures P ∗ induces (‘coherently’) a probability measure P on
(Ω,F ). Specifically, the finite n-th step marginals of P will correspond exactly to
these n-th step marginal measures that we constructed from the probability tree. This
establishes the connection between probability trees and discrete-time measure-
theoretic stochastic processes, in that the latter can be constructed from the former.

For the other direction, so, to construct a probability tree from a given probability
space (Ω,F , P ), we start with an event tree (X ∗

�,≺) and aim to construct the local
models p(·). Using the intuitive interpretation offered by Corollary 5.1, we start by
setting p�(x) = P(X0 = x) for all x ∈ X . For all other situations w ∈ X ∗ with
length n + 1, n ∈ N0, the local model pw is defined as the conditional measure
constructed from Bayes’ rule, i.e. for all x ∈ X ,

pw(x) = P
(
Xn+1 = x ∣

∣X0:n = w
) = P

(
X0:n = w,Xn+1 = x)

P
(
X0:n = w

) . (5.2)

This also establishes the connection in the other direction. It can be verified that,
by now constructing from this probability tree a measure P ∗, say, in the manner
described above, we obtain again P ∗ = P ; so, we conclude that this yields a one-
to-one correspondence between probability trees and measure-theoretic stochastic
processes.

It should be noted that the second direction in the preceding discussion has one
(rather large) caveat: it does not work when there are partial paths that have zero
probability to occur. This is because then Bayes’ rule cannot define the conditional
measure required to construct the local model for the situation corresponding to that
partial path, since it would result in a division by zero.

To summarise, we can conclude that there is indeed a correspondence between
the two representations that we have seen so far (up to some technical difficulties
surrounding probabilities that are zero). We have seen that the graphical tree
structure allows us to reason intuitively about how a stochastic process generates
a sample path, by ‘walking’ from the root of the tree down its branches. As we will
discuss next, we can also use this structure to ‘reason backwards’: from vertices
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deep down in the tree back to the root. We will see that this allows one to intuitively
derive computational methods for working with stochastic processes.

So, fix n ∈ N0, and let f ∈ L (X n+1) be a real-valued function for which
we aim to compute the expected value with respect to the random variables X0:n
at the time points 0, . . . , n ∈ N0. Note that it suffices to consider this case, in the
sense that any function defined on a subset of the variables X0:n, can always be
trivially extended to a function on all of them. Now first notice the following. For
any situation w ∈ X ∗ with length |w| = n + 1, the value of f in w is easy to
compute; it is simply f (w). Hence in particular, the expected value of f , in w, is
simply

E
[
f (X0:n)

∣
∣X0:n = w

] = f (w) .

Recall that the situation w represents a node in the event tree. We will now ‘pull
back’ the above expected value, to the time point n − 1. Consider therefore the
parent situation of w in the probability tree; we will compute the expected value of
f in this parent situation.

This parent is a situation v of length |v|= |w|−1 = n, which entirely coincides
with w: vi = wi for all i = 0, . . . , n − 1. Associated to v is the local probability
model pv which, as we have discussed above, represents the probability with
which a random walk along the tree travels through the various children of v.
In particular, such a random walk goes through the situation w, with probability
pv(w%). Therefore, the contribution of the expected value in w, to the expected
value in v, is the expected value in w weighted by pv(w%). Since this holds for all
children of v, we can write

E
[
f (X0:n)

∣
∣X0:(n−1) = v

] =
∑

x∈X

pv(x)E
[
f (X0:n)

∣
∣X0:(n−1) = v,Xn = x

]
.

This ‘pullback’ operation is graphically illustrated in Fig. 5.2.
Now, observe that the above conditional expectation of f in v is itself a real-

valued function in L (X n). Its value is determined by the states at times 0, . . . , n−
1. We can therefore repeat the above argument; we pull back to the parent of v,
then to the parent of that situation and so on. Eventually, the parent that we are
considering is the empty situation �; we then finish by computing

E
[
f (X0:n)

] =
∑

x∈X

p�(x)E
[
f (X0:n)

∣
∣X0 = x] ,

which is exactly the expected value of f that we started out wanting to compute.
This method to compute the expected value of a function by ‘pulling back’

the ‘local’, or conditional, expected values, uses the interpretation of a stochastic
process as a probability tree. The method relies on a property that is called the
law of iterated expectation, or alternatively the law of total probability. It can be
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Fig. 5.2 Graphical illustration of ‘pulling back’ the expected value of a function f on X0:2, in a
probability tree on a binary state-space X = {a, b}. Top: the function f is entirely determined
by the situations of length 3, i.e. the expected value of the function in those situations is simply
the value of the function evaluated in that situation. Bottom: the result after ‘pulling back’ the
expectations by one step. The resulting conditional expectation is a function whose value is entirely
determined by the situations of length 2. The values are the weighted average of the expectations
in the child nodes, weighted by the local models p(·)

stated formally in the measure-theoretic context, where it is also easily stated for
continuous-time stochastic processes.

Theorem 5.1 Fix a time-dimension T ∈ {N0,R≥0}, and let {Xt }t∈T be a stochastic
process on (Ω,F , P ). Choose any three ordered sequences s = s1, . . . , sn; t =
t1, . . . , tm and u = u1, . . . , u� in T, with n,m, � ∈ N such that sn < t1 and tm < u1.
Then for any real-valued function f ∈ L (X n+m+�) on Xs, Xt, Xu, it holds that

E
[
f (Xs, Xt, Xu)

∣
∣Xs

] = E

[
E
[
f (Xs, Xt, Xu)

∣
∣Xs, Xt

] ∣∣
∣Xs

]
,

whenever P(Xs) and P(Xs, Xt) are everywhere strictly positive.

In this result, the final constraint is required to ensure that the conditional expecta-
tions are all well-defined in the measure-theoretic sense. This point did not arise in
the discussion using probability trees, because there the local (conditional) models
are always properly defined by the model specification.
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Having discussed how to interpret probability trees and how to use them to reason
about the computation of expected values, we now move on to a discussion of their
structural properties. Note that the specification of a probability tree is still relatively
complicated. This is not really due to the structure of the tree; the situations X ∗

� and
prefix order ≺ carry enough information to construct the tree up to any desired level,
and their mathematical specification is straightforward. However, in order to specify
all the local models p(·), we need to provide an infinite number of probability mass
functions on X —one for each situation w ∈ X ∗

�. This is why one often restricts
attention to simpler models, where one needs fewer, and often only finitely many,
local models.

These simplifications can be seen as a matter of degree. At the one extreme, we
have the general definition that we used above, where each situation w ∈ X ∗

� has
a local model pw. This leads to a lot of possible structure but is hard to specify. At
the other extreme is the independent and identically distributed (i.i.d.) process; this
is when we only have a single probability mass function p, and we set pw := p for
all w ∈ X ∗

�. For such a process, no matter what situation we are in, the next branch
will always be chosen according to p. This process is easy to specify, but it does not
yield a lot of structure that can capture the dynamics of the underlying system that
we are trying to model.

A useful step up from the i.i.d. process is reached by the popular class of models
known as homogeneous Markov chains. For a homogeneous Markov chain, the local
model only depends on the last step of the corresponding situation, and not on what
happened before that:

Definition 5.3 (Homogeneous Markov chain as probability tree) A probability
tree (X ∗

�,≺, p(·)) is called a homogeneous Markov chain if pv = pw for all
situations v,w ∈ X ∗ such that v% = w%.

Corollary 5.2 Let (X ∗
�,≺, p(·)) be a homogeneous Markov chain. Then pw = px

for all x ∈ X and all w ∈ X ∗ such that w% = x.
Proof Trivial from Definition 5.3 and the fact that all x ∈ X are also situations.

#$
An example for the binary state-space X = {a, b} is shown in Fig. 5.3.

Additional degrees of freedom can be introduced back into this model by also letting
the local models depend on the corresponding depth of the tree. The dynamics can
then depend on the point in time, but not on the specific history up to that time. This
yields the more general definition of a (non-homogeneous) Markov chain:

Definition 5.4 (Markov chain as probability tree) A probability tree (X ∗
�,≺

, p(·)) is called a Markov chain if pv = pw for all situations v,w ∈ X ∗ for which
|v| = |w| and v% = w%.

An example for the binary state-space X = {a, b} is shown in Fig. 5.4. It can be
verified that a homogeneous Markov chain is a Markov chain, but not—in general—
the other way around. Note that, in contrast to homogeneous Markov chains where
we only needed to specify local models px for all x ∈ X , we now need different
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Fig. 5.3 A homogeneous Markov chain, represented as a probability tree

local models for each level of the tree. So, we are now back to needing an infinite
number of local models in order to fully describe such a model.

These definitions of (homogeneous) Markov chains can also be conveniently
translated back to the measure-theoretic context. We here give the general definition,
for an arbitrary time-dimension (so, either T = N0 or T = R≥0) and multiple steps
into the future:

Definition 5.5 (Markov chain as probability measure) A stochastic process
{Xt }t∈T on (Ω,F , P ) is called a Markov chain if for all s1, . . . , sn, t ∈ T, n ∈ N,
such that s1 < · · · < sn < t , it holds that P(Xt |Xs1 , . . . , Xsn) = P(Xt |Xsn). A
stochastic process that is a Markov chain is said to have the Markov property.

Similarly, the notion of homogeneity can be defined measure-theoretically and for
an arbitrary time-dimension:

Definition 5.6 (Homogeneous Markov chain as probability measure) A
stochastic process {Xt }t∈T on (Ω,F , P ) is called a homogeneous Markov chain if
it is a Markov chain, and if additionally, for all s, t ∈ T such that s < t , it holds that
P(Xt |Xs) = P(Xt−s |X0).

We leave it as an exercise to verify that, when T = N0, Definitions 5.5 and 5.6
correspond to what we would expect from Definitions 5.4 and 5.3, respectively.
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Fig. 5.4 A (non-homogeneous) Markov chain, represented as a probability tree as above

5.2.2 Bayesian Networks

We now move on to a different graphical representation of stochastic processes that
is useful for Markov chains in particular: Bayesian networks (BNs), a specific type
of probabilistic graphical model. While the graphical structure of probability trees
in Sect. 5.2.1 emphasised the partial paths in the realisation of a stochastic process,
the BN representation emphasises the individual random variables Xt .

The BN representation of a discrete-time Markov chain {Xt }t∈N0 is given in
Fig. 5.5. The structure is a directed acyclic graph, with one node associated to
each random variable Xt and arcs representing the dependence of the receiving
node’s random variable’s distribution, on the originating node’s random variable’s
value. Due to the Markov property (c.f. Definition 5.5), each random variable Xn,
n ∈ N, is only (‘directly’) dependent on Xn−1, the value of the random variable
immediately before it. The initial variable X0 is somewhat of a special case, since it
does not depend on any other variables; there are no time points preceding it. Due to
these properties, the graphical structure is that of a chain; this may go some way in
explaining the name ‘Markov chain’. In the remainder of this section, we will refer
to both a node in the BN and to its random variable, using the notation Xt .

It should be emphasised that the graphical structure is not saying that only nodes
which are adjacent in the BN can influence each other. The formal interpretation
is as follows: for any node Xn, n ∈ N, conditional on the value of the parent(s)
of Xn, the distribution of Xn is probabilistically independent of the non-parents,
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Fig. 5.5 Bayesian network representation of a discrete-time Markov chain {Xt }t∈N0 . Nodes
represent random variables. An incoming arc on a node represents that the distribution of the
corresponding random variable is influenced by the originating node of that arc. Correspondingly,
each node associates a probability distribution to its random variable, conditional on the values of
the random variables of the nodes on which it is dependent as before

non-descendants of Xn. This is the general interpretation of the independence
properties of the arcs in a BN. In the special case of Markov chains that we are
considering here, the interpretation vastly simplifies. Notably, the ‘non-parents, non-
descendants’ of any nodeXn are exactly its ‘grandparents’, ‘great-grandparents’ and
so on; it is the set of nodes {Xm : m ∈ N0, m < n− 1}.

Put differently, the value ofXn influences the distribution of all of its descendants
(i.e. the nodes Xm, m > n), so long as we do not know the value of any of those
descendants themselves. We will next consider how we can quantify this.

We start by observing that for each node Xn, n ∈ N, we have the associated
conditional probability P(Xn |Xn−1). Since the state-space X is taken to be finite,
we can conveniently represent these conditional probabilities in a |X |×|X | matrix.
For any t ∈ N0, this matrix Tt is defined, for all x, y ∈ X , as

Tt (x, y) := P(Xt+1 = y |Xt = x) , (5.3)

where the indexing is taken to be row-first. This matrix Tt is called the transition
matrix of the Markov chain at time t . Its elements Tt (x, y) are called the transition
probabilities from x to y, and they are the probabilities that a system that is in state x
at time t will be in state y at time t+1. This explains the subscript-indexing, whereby
the matrix Tt contains the conditional probabilities associated to node Xt+1.

These transition matrices make it easy to connect back to the probability tree
representation of Markov chains that we encountered earlier:

Proposition 5.1 Let (X ∗
�,≺, p(·)) be a probability tree that is a Markov chain, and

let Tt denote the associated family of transition matrices, as defined above. Then for
all t ∈ N and all w ∈ X ∗ such that |w| = t , it holds that pw(y) = Tt (w%, y) for
all y ∈ X .

Proof Use Eq. (5.2), Definition 5.5 and Eq. (5.3). #$
The reason that we represent these probabilities using matrices is that this opens

up the entire toolbox of linear algebra. We will see that this allows us to very
succinctly write down certain relations and properties. For instance, we can now
write the influence of a node on its descendants, using a simple matrix product:



5 An Introduction to Imprecise Markov Chains 155

Proposition 5.2 Let {Xt }t∈N0 be a discrete-time Markov chain, and let Tt be the
associated family of transition matrices, as defined above. Then for all s, t ∈ N0
such that s ≤ t , and all x, y ∈ X , it holds that P(Xt+1 = y |Xs = x) =
[Ts · · · Tt ] (x, y).
Proof We give a proof by induction. For t = s the result is immediate from the
definition of the transition matrix Ts . Now suppose the result is true for t − 1; we
show that it is also true for t :

P(Xt+1 = y |Xs = x) =
∑

z∈X

P(Xt+1 = y,Xt = z |Xs = x)

=
∑

z∈X

P(Xt = z |Xs = x)P (Xt+1 = y |Xt = z, Xs = x)

=
∑

z∈X

[Ts · · · Tt−1] (x, z)P (Xt+1 = y |Xt = z)

=
∑

z∈X

[Ts · · · Tt−1] (x, z)Tt (z, y) =
[
Ts · · · Tt−1Tt

]
(x, y) ,

where the first and second equalities are basic properties of probabilities, the
third equality is due to the induction hypothesis and the Markov property (c.f.
Definition 5.5), the fourth equality uses the definition of the transition matrix Tt
and the final equality uses the definition of a matrix product. #$

Another useful property of this representation is that it allows us to write
conditional expectations of functions f ∈ L (X ) using matrix-vector products.
In particular, again because X is finite, any f ∈ L (X ) can be interpreted as a
vector in R

|X |; the coordinates are simply the values f (x), x ∈ X . Hence:

Proposition 5.3 Let {Xt }t∈N0 be a discrete-time Markov chain, and let Tt be the
associated family of transition matrices. Then, for all f ∈ L (X ), all t ∈ N0 and
all x ∈ X , it holds that E

[
f (Xt+1) |Xt = x

] = [Ttf ] (x).

Proof Simply use the definition of the matrix-vector product:

[Ttf ] (x)=
∑

y∈X

Tt (x, y)f (y)=
∑

y∈X

P(Xt+1=y |Xt=x)f (y)=E
[
f (Xt+1) |Xt=x

]
.

#$
The above properties can be combined to give a simplified version of the law of

iterated expectation (Theorem 5.1) that we encountered in Sect. 5.2.1:

Corollary 5.3 Let {Xt }t∈N0 be a discrete-time Markov chain, and let Tt be the
associated family of transition matrices. Then, for all f ∈ L (X ), all s, t ∈ N0
such that s ≤ t and all x ∈ X , it holds that E

[
f (Xt+1) |Xs = x

] =
[Ts · · · Ttf ] (x).
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Fig. 5.6 Graphical representation of the ‘pulling back’ interpretation of the simplified version of
the law of iterated expectation in Corollary 5.3. The function f , of which we want to compute
the expectation on Xt+1, given Xs , starts at node Xt+1, where its value is trivial. The function is
then ‘pulled back’ to the parent Xt of Xt+1, by taking the local expectation, by left-multiplying
with Tt . This new function Ttf on Xt is then ‘pulled’ back by multiplying with Tt−1 and so forth.
Eventually, the function Ts+1 · · · Ttf is pulled into Xs , by left-multiplying with Ts . The resulting
function on Xs is the conditional expectation of interest as before

Proof Immediate from Propositions 5.2 and 5.3. #$
Note that, where the law of iterated expectation in Theorem 5.1 could be interpreted
as ‘pulling back’ in the associated probability tree, the above simplified version
can additionally be interpreted as ‘pulling back’ the conditional expectations in the
associated BN, through the product of the transition matrices. This is graphically
represented in Fig. 5.6.

5.2.3 Transition Graphs

We now move on to yet another graphical representation: the transition graph of a
homogeneous (discrete-time) Markov chain. We start by noticing the following:

Proposition 5.4 Let {Xt }t∈N0 be a discrete-time homogeneous Markov chain, and
let Tt be the associated family of transition matrices. Then there is a unique matrix
T such that Tt = T for all t ∈ N0.

Proof The matrix of interest can be identified as T := T0. Now, using the definition
of a homogeneous Markov chain (Definition 5.6) and the transition matrix Tt for
any t ∈ N0, it holds for all x, y ∈ X that

T (x, y)=T0(x, y)=P(X1=y |X0=x)
=P(X(t+1)−t=y |X0=x)=P(Xt+1=y |Xt = x) = Tt (x, y) ,

which concludes the proof; uniqueness is trivial. #$
As an aside, note therefore that a discrete-time homogeneous Markov chain can be
characterised (up to the initial distribution P(X0)) by a single transition matrix T . In
particular, this T can be seen as the canonical parameter of the Markov chain. This
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a

c

P(a |a)

P(b |a)

P(c |b)

P(a |c)

P(b |c)

Fig. 5.7 Example transition graph for a discrete-time homogeneous Markov chain with a ternary
state-space X = {a, b, c}. The transition graph is a directed graph, with a vertex for each state and
an arc from the vertex of x to that of y, with x, y ∈ X , whenever T (x, y) = P(X1 = y |X0 =
x) > 0. The arcs are labelled with the corresponding transition probabilities. The figure uses the
shorthand notation P(y|x) for the elements T (x, y) of T as before

relative ease of parameterisation—compared to say an arbitrary stochastic process,
which needs separate parameters for every possible history—is arguably one of the
reasons that make homogeneous Markov chains such convenient and widely used
models.

Moving on, the transition graph of a discrete-time homogeneous Markov chain
is a graphical representation of its associated transition matrix T . In this way,
this representation emphasises the interactions between the states, rather than the
random variables. An example transition graph is shown in Fig. 5.7. The formal
definition is as follows:

Definition 5.7 (Transition graph) Let {Xt }t∈N0 be a discrete-time homogeneous
Markov chain, and let T be its associated transition matrix. Then its associated
transition graph is a directed graph (V ,E) with one vertex for each state, V = X ,
and, for all x, y ∈ X , an arc (x, y) ∈ E whenever T (x, y) > 0.

One of the reasons transition graphs are sometimes useful is that they allow one
to study which parts of a system can be reached from other parts of the system. The
simplest application is that of communicating states:

Definition 5.8 (Communicating states) Let {Xt }t∈N0 be a discrete-time homoge-
neous Markov chain, and let T be its associated transition matrix. For any two states
x, y ∈ X , y is said to be accessible from x if there is some n ∈ N such that
T n(x, y) > 0. Furthermore, x and y are said to communicate if y is accessible from
x, and x is accessible from y.

Note that in the above, the term T n denotes the n-th matrix power of T (c.f.
Proposition 5.2). This has an intuitive graphical interpretation:

Corollary 5.4 Let {Xt }t∈N0 be a discrete-time homogeneous Markov chain. Then
for any x, y ∈ X , y is accessible from x if and only if there is a path from x to y



158 T. Krak

Fig. 5.8 Transition graph of
a Markov chain that is not
irreducible. It has two
communication classes, {a, b}
and {c, d}. The set {c, d}
dominates {a, b} and is the
top (communication) class of
the Markov chain. This
Markov chain is top class
regular

in the associated transition graph. Furthermore, x and y communicate if and only
if there is a cycle in the associated transition graph that contains both x and y.

Proof Trivial from Definitions 5.7 and 5.8. #$
Inspection of the transition graph in Fig. 5.7 shows that, in that example, all
states communicate with each other. When this is the case, i.e. when all states
communicate, the Markov chain is said to be irreducible. A maximal set of states
that all communicate with each other is called a communication class. Hence, an
irreducible Markov chain has only a single communication class, which is equal to
X .

Note that not every Markov chain is irreducible; in general there may be
more than one communication class. An example is given in Fig. 5.8. When a
communication class A ⊂ X is accessible from a different communication class
B ⊂ X , then A is said to dominate B. A communication class which is not
dominated is called maximal. When a Markov chain has only a single maximal
communication class, this is called the top (communication) class.

Investigation of the communicating states in a Markov chain is often useful when
one is interested in the long-term behaviour of the system. After all, while a system
might begin in one state, it need not necessarily always eventually return to that
state; this is the property that is illustrated in Fig. 5.8.

An important concept is that of the regularity of the communication classes of a
Markov chain. A communication class is regular if there is a number n ∈ N such
that it is possible to go from any state in the class to any other state in the class, in
exactly n steps. Of particular importance is the notion of top class regularity:

Definition 5.9 (Top class regularity) Let {Xt }t∈N0 be a discrete-time homoge-
neous Markov chain, and let T be its associated transition matrix. Then the Markov
chain is said to be top class regular if

{
y ∈ X : (∃n ∈ N)(∀x ∈ X ) T n(x, y) > 0

} �= ∅ ,

and in that case the top class Xtop of the Markov chain exists and is equal to this
set. When furthermore Xtop = X , the Markov chain itself is said to be regular.
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The reason that this property is so important is that it provides a sufficient
condition for the long-term behaviour of a Markov chain to converge to a stationary
distribution, regardless of the state in which it started:

Theorem 5.2 Let {Xt }t∈N0 be a discrete-time homogeneous Markov chain, and let
T be its associated transition matrix. Let this Markov chain be regular. Then there
is a probability mass function P∞ : X → R≥0 such that, for all x, y ∈ X ,

P∞(y) = lim
n→+∞ T

n(x, y) .

5.3 Imprecise Discrete-Time Markov Chains

We will now move on to the discussion surrounding imprecise (discrete-time)
Markov chains (IDTMCs). So, we still consider the time-dimension T = N0. We
will generalise each of the representations that we previously encountered to this
new setting, where we roughly follow the same order as in Sect. 5.2.

So, let us start with the ‘measure-theoretic’ representation of imprecise stochastic
processes. In this setting, we consider a set P of probability measures on the
measurable space of paths (Ω,F ). Then for each P ∈ P, we have a probability
space (Ω,F , P ), to which we can associate the precise stochastic process {Xt }t∈N0

as in Definition 5.1. For any function f ∈ L (X n), n ∈ N, we can express the
expected value on the n time points t ⊂ N0 as EP [f (Xt)] as in Sect. 5.2. Recall
from Chap. 2 that in this imprecise probabilistic context, we are more generally
interested in the lower and upper expectation of f , which are defined, respectively,
as

E
P

[
f (Xt)

] := inf
P∈PEP

[
f (Xt)

]
and EP

[
f (Xt)

] := sup
P∈P

EP

[
f (Xt)

]
.

We briefly recall the well-known conjugacy relation EP

[
f (Xt)

] = −E
P

[−f (Xt)
]
,

from which it follows that we can present the remainder of this discussion entirely in
terms of lower expectations; any corresponding results on upper expectations follow
directly through this relation.

Slightly more generally than the above, we will focus on conditional lower
expectations. Similar to the precise case that we discussed before, these are defined
for any f ∈ L (X n+m), n,m ∈ N, any s, t ⊂ N0 such that s and t are of length n
and m, respectively, and any xs ∈ X n, as

E
P

[
f (Xs, Xt)

∣
∣Xs = xs

] := inf
P∈PEP

[
f (Xs, Xt)

∣
∣Xs = xs

]
,

whenever E
P
[Ixs(Xs)] > 0. In this last condition, Ixs is the indicator of xs; for all

ys ∈ X n, Ixs(ys) := 1 if xs = ys and Ixs(ys) := 0, otherwise. Note that then
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0 < E
P
[Ixs(Xs)] = inf

P∈PEP [Ixs(Xs)] = inf
P∈PP(Xs = xs) ,

so this condition guarantees that the conditional expectations are well-defined for
all the precise measures P ∈ P. As before, there are formalisms where this
condition is not strictly required—see, for example, the discussion around the local
models of probability trees—or where it can be weakened. For simplicity, we keep
the condition here to ensure that everything remains well-defined also under the
measure-theoretic interpretation.

We are now ready to give the formal definition of an imprecise discrete-time
Markov chain (IDTMC):

Definition 5.10 (IDTMC as set of processes) An imprecise discrete-time Markov
chain is a set P of probability measures on the measurable space (Ω,F ), with
associated lower expectation operator E

P
as defined above, such that, for all f ∈

L (X ) and all s1, . . . , sn, t ∈ N0 such that s1 < · · · sn < t ,

E
P

[
f (Xt )

∣
∣Xs1 , . . . , Xsn

] = E
P

[
f (Xt )

∣
∣Xsn

]
.

Furthermore, an imprecise discrete-time Markov chain is called homogeneous if,
for all s, t ∈ N0, s < t , and all f ∈ L (X ), it holds that E

P
[f (Xt ) |Xs] =

E
P
[f (Xt−s) |X0].

Let us compare this with Definition 5.5, the measure-theoretic definition of a precise
Markov chain. The first difference is that the imprecise definition above is phrased
in terms of (lower) expectations, whereas the precise definition used probabilities.
We recall that this is because, in the framework of imprecise probability, it does not
suffice to state results in terms of (lower) probabilities; instead the more general
language of (lower) expectation operators is required.

Nevertheless, this definition implies that, in terms of lower probabilities,

inf
P∈PP(Xt = x |Xs1 , . . . , Xsn) = E

P

[
Ix(Xt )

∣
∣Xs1 , . . . , Xsn

]

= E
P

[
Ix(Xt )

∣
∣Xsn

] = inf
P∈PP(Xt = x |Xsn) ,

which displays this imprecise Markov condition in more familiar terms.
One may wonder at this point whether an imprecise Markov chain P is itself a

set of Markov chains; the answer to this question is a resounding no (or at least, not
necessarily). This point deserves the strongest possible emphasis:

An element of an imprecise Markov chain P need not be a Markov chain! So, in general
P(Xt |Xs1 , . . . , Xsn ) �= P(Xt |Xsn) for P ∈ P, with s1 < · · · sn < t in N0.

To clarify, the ‘imprecise Markov condition’ of an imprecise Markov chain is
an ‘independence’ assessment about the lower envelope only. Formally, it is an
assessment of epistemic irrelevance—a specific type of independence that arises in
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imprecise probability theory—which is weaker than strong independence a different
type of independence, and what would hold of all P ∈ P were Markov chains.

In a similar vein, the notion of homogeneity is here only enforced on the lower
envelope. So, for an IDTMC P that is homogeneous, there may be processes P ∈ P

that are neither Markov nor homogeneous.
The reason why we stress this so strongly is twofold. First of all, it implies that

the structural assumptions of an imprecise Markov chain are in fact much weaker
than those of a precise Markov chain—we no longer assume that future events are
fully independent of the history, given the current state, or that their distribution
is independent of the point in time. They might be, of course—there are elements
P ∈ P that satisfy those properties—but it’s not enforced as strictly. In other words,
this model also represents ‘higher-order’ uncertainty about the structural properties
of the system that we are trying to model.

The second reason is that this property is central to all the efficient computational
methods that have been developed for working with imprecise Markov chains. We
will next illustrate this point by moving the discussion to the representation of
IDTMCs as imprecise probability trees.

5.3.1 Imprecise Probability Trees

Recall that for precise probability trees, we associate with each situation w ∈ X ∗
�

a local model pw, which is a probability mass function on X . In contrast, in order
to define imprecise probability trees, we will consider imprecise local models. Such
an imprecise local model Pw is simply a set of probability mass functions on X .
This leads to the following definition:

Definition 5.11 (Imprecise probability tree) An imprecise probability tree is a
tuple (X ∗

�,≺,P(·)), where (X ∗
�,≺) is an event tree and P(·) is a set-valued

function such that, for all w ∈ X ∗
�, Pw is a non-empty set of probability mass

functions on X .

An obvious question is how one should interpret such imprecise probability trees.
As a first step, we consider the (precise) probability trees that are compatible with a
given imprecise probability tree:

Definition 5.12 Let (X ∗
�,≺,P(·)) be an imprecise probability tree. Then a (pre-

cise) probability tree (X ∗
�,≺, p(·)) is called compatible with this imprecise proba-

bility tree, if pw ∈ Pw for all w ∈ X ∗
�.

This immediately lets us connect back to the sets-of-measures that we discussed
before. Specifically, consider an imprecise probability tree (X ∗

�,≺,P(·)), and
suppose the tree (X ∗

�,≺, p(·)) is compatible with it. Then, using the method
outlined in Sect. 5.2.1, we can associate a (precise) measure P to this precise
tree. Collecting in the set P all the associated measures of all precise trees that are
compatible with the imprecise tree, we obtain a set representation as in Sect. 5.3.
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The connection in the other direction is analogous but a bit more subtle. In
particular, if we start from an IDTMC P, then each P ∈ P induces a precise
probability tree. Using the local models of this tree, we can construct set-valued
local models by simply varying P over P. These set-valued local models can then
be used to construct an imprecise probability tree. Clearly, there are then precise
trees that are compatible with this imprecise tree, and each such precise tree induces
a precise measure P ′. However, and this is the crucial observation, it is in general
not guaranteed that such P ′ are included in P!

As a simple example, suppose that X = {a, b} and we start with a set
P containing only two i.i.d. processes, whose local models are given by p, h,
respectively. Then, the induced imprecise probability tree has local models Pw =
{p, h} for all w ∈ X ∗

�. On the other hand, we can easily construct a non-i.i.d.
process such that, for all w ∈ X ∗

�, its local model is pw = p if w% = a and
pw = h, otherwise. Then clearly this process was not in the original set P, but it is
compatible with the imprecise probability tree.

To prevent this from happening, we will require that the set representation P of
the IDTMC is ‘large enough’. Specifically, what we need is that it is already closed
under such ‘recombination’ of local models at different points in time. Whenever
this property holds, we will say that the IDTMC is separately specified. Clearly,
when we start from an imprecise probability tree and construct its set of compatible
processes, this IDTMC will then satisfy this property. In the remainder of this
section, we will assume that a given set P is indeed separately specified. Further
on, when we consider the parametrisation of an IDTMC, we will consider an easy
condition that ensures this will hold.

With this connection between the two representations in place, we can again start
to consider computational methods for lower expectations. Analogous to what we
have seen before, in this context we have a law of iterated lower expectation that we
can use as a computational tool. The imprecise probability tree representation again
provides graphical intuition.

Similar to the exposition in Sect. 5.2.1, we start with a function f ∈ L (X n+1)

of which we want to compute the lower expectation with respect to the states at the
time points 0, . . . , n. Then for any situation w ∈ X ∗ such that |w| = n + 1, the
lower expectation is trivial:

E
P

[
f (X0:n)

∣
∣X0:n = w

] = f (w) .

We then again ‘pull back’ to the parent situation v of w; this is where the main
difference with Sect. 5.2.1 occurs. Notably, we here have an imprecise local model
Pv associated to this node v. The point to the law of iterated lower expectation is
that it suffices to only compute the associated conditional lower expectation locally:

E
P

[
f (X0:n)

∣
∣X0:(n−1)=v

]= inf
pv∈Pv

∑

x∈X

pv(x)EP

[
f (X0:n)

∣
∣X0:(n−1)=v,Xn=x

]
.
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Exactly analogous to the precise case, by repeatedly pulling back until we reach the
root of the tree, we eventually compute

E
P [f (X0:n)] = inf

p�∈P�

∑

x∈X

p�(x)EP

[
f (X0:n)

∣
∣X0 = x] ,

which is the lower expectation of interest.
As before, the need to specify these (imprecise) local models Pw for all

situations w ∈ X ∗
� makes such a model difficult to work with. This is simplified for

imprecise Markov chains; note that we here assume the analogue of homogeneity to
hold implicitly:

Definition 5.13 (Homogeneous IDTMC as imprecise probability tree) An
imprecise probability tree (X ∗

�,≺,P(·)) is called an imprecise homogeneous
discrete-time Markov chain if Pv = Pw for all v,w ∈ X ∗ for which v% = w%.

Corollary 5.5 Let (X ∗
�,≺,P(·)) be a homogeneous IDTMC. Then Pw = Px for

all x ∈ X and all w ∈ X ∗ such that w% = x.
Proof Trivial from Definition 5.13 and the fact that all x ∈ X are also situations.

#$
As above, an IDTMC (X ∗

�,≺,P(·)) has a set of compatible precise probability
trees, each of which induces a measure P , and these are collected in the set P, which
is the measure-theoretic IDTMC representation from Definition 5.10. Observe that a
precise probability tree does not have to be a (homogeneous) Markov chain, for it to
be compatible with a given IDTMC! That is, to be compatible, each local model pw,
w ∈ X ∗

�, should be in the set Pw% , and this set depends only on the most recent
state w% of the situation w. But, while in a different situation v such that v% = w%,
we do require that pv ∈ Pv% = Pw% ; we do not require that pv = pw!

We will next illustrate that the law of iterated lower expectation simplifies
further for imprecise Markov chains. We do this again by considering the imprecise
counterpart of Bayesian networks.

5.3.2 Credal Networks

We here consider the graphical representation of imprecise Markov chains as
credal networks. This is the imprecise generalisation of the Bayesian network
representation that we encountered in Sect. 5.2.2. The graphical structure is as
before, with the notable differences being (i) the local models (which are here
replaced with imprecise local models) and (ii) the interpretation of the independence
properties induced by the arcs. Regarding the second point, it suffices for our present
purpose to note that we interpret the structure as a credal network under epistemic
irrelevance. This then has the same consequence as that stated in the beginning of
Sect. 5.3: given the value of the parent of a node Xt , t ∈ N0, the lower expectation



164 T. Krak

Fig. 5.9 Credal network representation of an imprecise discrete-time Markov chain. An incoming
arc on a node represents that the local uncertainty model of the corresponding variable is influenced
by the originating node of that arc. Correspondingly, each node associates an imprecise probability
model to its variable, conditional on the values of the random variables of the nodes on which it is
dependent

of any function dependent on Xt does not depend on the values of the non-parents,
non-descendants (again, grandparents and so on) of Xt . For reference, the graphical
representation is drawn in Fig. 5.9.

The interpretation in terms of sets of distributions is as would be expected;
the model induces a set P, each P ∈ P of which satisfies P(Xn |Xn−1) ∈
P(Xn |Xn−1) for all n ∈ N, and P(X0) ∈ P(X0). As before, the independence
assumptions are not necessarily required to hold for these compatible precise mod-
els. Conversely, if we are given an IDTMC P, then the local models P(Xn|Xn−1) of
the credal network are constructed by restricting attention to the conditional events
P(Xn |Xn−1) and varying P over P.

Similar to the discussion around the interpretation of imprecise probability
trees, we here also need some ‘closedness’ assumptions to ensure this duality of
representations holds. Specifically, we again require that P is separately specified.
Furthermore, it is assumed that the local models P(Xn |Xn−1) of the credal
network have separately specified rows. This means that these local models are
not arbitrary sets of conditional probabilities. If we let P(Xn |Xn−1 = x) :={
P(Xn |Xn−1 = x) ∈ P(Xn |Xn−1)

}
for all x ∈ X , then what we require is

that

P(Xn |Xn−1) = ×x∈X P(Xn |Xn−1 = x) . (5.4)

Under these conditions, we can straightforwardly switch between representations.
We next generalise the exposition in Sect. 5.2.2 regarding the associated transi-

tion matrices. To this end, fix any t ∈ N0. Then, as in the precise case, each element
P(Xt+1 |Xt) ∈ P(Xt+1 |Xt) induces a transition matrix Tt . So, let us now consider
the set Tt of transition matrices that is induced by the imprecise local models:

Tt :=
{
Tt :

(∀x, y ∈ X : Tt (x, y) = P(Xt+1 = y |Xt = x)
)
,

P (Xt+1 |Xt) ∈ P(Xt+1 |Xt)
}
.

A key insight is that we can use this set of transition matrices to define a convenient
computational tool for lower expectations:
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Definition 5.14 Let P be an IDTMC, and let Tt be the associated family of sets of
transition matrices, as defined above. Then, for each t ∈ N0, the associated lower
transition operator T t : L (X ) → L (X ) is defined, for all f ∈ L (X ) and all
x ∈ X , as

[
T tf

]
(x) := inf

Tt∈Tt

[
Ttf

]
(x) .

This lower transition operator essentially fulfils the same role as the transition
matrices from which it is derived. In particular, we have the following:

Proposition 5.5 Let P be an IDTMC, and let T t be the associated family of lower
transition operators. Then, for all f ∈ L (X ), all t ∈ N0 and all x ∈ X , it holds
that

[
T tf

]
(x) = E

P

[
f (Xt+1) |Xt = x

]
.

Proof Simply use the definitions together with Proposition 5.3:

[
T tf

]
(x)= inf

Tt∈Tt

[
Ttf

]
(x)= inf

Tt∈Tt

∑

y∈X

f (y)Tt (x, y)

= inf
P(Xt+1|Xt )∈P(Xt+1|Xt )

∑

y∈X

f (y)P (Xt+1=y|Xt = x)

= inf
P∈P

∑

y∈X

f (y)P (Xt+1=y|Xt=x)

= inf
P∈PEP

[
f (Xt+1)

∣
∣Xt=x

]=E
P

[
f (Xt+1)

∣
∣Xt=x

]
,

where in the fourth equality, we used the definition of the compatible measures. #$
As in Corollary 5.3, we can now state the simplified law of iterated lower
expectation for imprecise Markov chains, using these lower transition operators:

Theorem 5.3 Let P be an IDTMC that is separately specified, and let T t be the
associated family of lower transition operators. Then, for all f ∈ L (X ), all s, t ∈
N0 such that s ≤ t and all x ∈ X , it holds that

E
P

[
f (Xt )

∣
∣Xs = x

] = [
T s · · · T tf

]
(x) ,

where the right-hand side represents an iterated operator product (composition).

We omit the full proof, but the interested reader can reconstruct the argument by
using the general computational process of iterated lower expectation as explained
in Sect. 5.3.1, the imprecise Markov property from Definition 5.10 and the
interpretation of the lower transition operator from Proposition 5.5.
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5.3.3 Limits of Homogeneous IDTMCs

We conclude the discussion of imprecise discrete-time Markov chains with some
results about their limit behaviour, in analogy to the results in Sect. 5.2.3. We start
again by restricting attention to homogeneous IDTMCs, and notice the following
(we omit the proof, which is straightforward):

Proposition 5.6 Let P be a homogeneous IDTMC, and let T t be the associated
family of lower transition operators. Then there is a unique lower transition
operator T : L (X ) → L (X ), such that, for all f ∈ L (X ), T tf = T f

for all t ∈ N0.

We take a moment here to remark on a property that was already encountered
in Chap. 2: the duality between lower expectation operators and closed and
convex sets of probability measures. Indeed, this correspondence was also used in
Definition 5.14 above, where we used the sets Tt of transition matrices, to construct
the lower transition operator T t . Since, as we have just seen, the dynamics of a
homogeneous IDTMC can be completely described by a single T , it now makes
sense to think about the other direction.

Specifically, corresponding to T , there exists a closed and convex set T of
transition matrices, such that T f = infT ∈T Tf for all f ∈ L (X ). This implies
that (up to the initial distribution at time zero) an IDTMC can also be characterised
by such a set T . So, whereas we noted in Sect. 5.2.2 that a (precise) discrete-
time Markov chain’s canonical parameter is a single transition matrix T , for a
homogeneous IDTMC, the parameter can be understood as a single closed and
convex set T of transition matrices. Moreover, if in this parametrisation we ensure
that T has separately specified rows—essentially, satisfies a property exactly
analogous to Eq. (5.4)—then the corresponding IDTMC will also be separately
specified.

Furthermore, in Sect. 5.2.2 we used a property of the associated transition matrix
T , to state a sufficient condition for the long-term behaviour of the Markov chain
to converge to a distribution over the states, independently of the state in which
it started. We here have a similar result, which starts by introducing the conjugate
upper transition operator T : L (X )→ L (X ) : f "→ −T (−f ).

Now, recall that in the precise case, a homogeneous discrete-time Markov chain
with transition matrix T was said to be regular, if there was some n ∈ N such that
T n(x, y) > 0 for all x, y ∈ X . The interpretation is clear: the Markov chain is
regular if and only if there is some finite number of steps n in which every state x
can reach every state y. This is now generalised to the imprecise case:

Definition 5.15 (Regularity for homogeneous IDTMC) Let P be a homogeneous
IDTMC with associated lower (and upper) transition operator T (and T ). Then the
IDTMC is regular if there is some n ∈ N such that

[
T
n
Iy

]
(x) > 0 for all x, y ∈ X .

Let us consider this definition. One difference with the precise case is the introduc-
tion of the indicator function Iy on the state y ∈ X ; this was introduced because,
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in contrast to matrices, we cannot index the ‘elements’ of the transition operator.
Specifically, using Theorem 5.3, we can interpret the condition as

0 <
[
T
n
Iy

]
(x) = EP

[
Iy(Xn)

∣
∣X0 = x] = sup

P∈P
P(Xn = y |X0 = x) ,

for all x, y ∈ X and some n ∈ N. What regularity asks for, then, is for there to be
some n ∈ N such that is possible for all x, y ∈ X to move from x to y in exactly
n steps, according to some P ∈ P. In particular, the (precise) measure P for which
this needs to be possible can be different for every pair x, y ∈ X . Regularity for
IDTMCs then is in a sense a much weaker—easier to satisfy—condition than that for
precise Markov chains. Nevertheless, the condition is sufficient for the following:

Theorem 5.4 Let P be a homogeneous IDTMC that is separately specified and
regular, with associated lower transition operator T . Then, there is a unique lower
expectation operator E

P
[·(X+∞)] : L (X ) → R such that, for all f ∈ L (X )

and all x ∈ X ,

E
P

[
f (X+∞)

] = lim
n→+∞E

P

[
f (Xn) |X0 = x] = lim

n→+∞
[
T nf

]
(x) .

Furthermore, this is the unique T -invariant lower expectation on L (X ), meaning
that E

P
[f (X+∞)] = E

P

[[T f ](X+∞)
]
for all f ∈ L (X ).

5.4 Imprecise Continuous-Time Markov Chains

We now move on to the discussion about (imprecise) continuous-time Markov
chains. We have already encountered this setting several times in the preceding
discussions but have generally skipped over any details. Let us recall from Sect. 5.2
that continuous-time stochastic processes are identified with a time-dimension
T = R≥0 and that the elements ω of the outcome space of paths Ω are maps
ω : R≥0 → X . The measure-theoretic definition is then as before, where
we consider the abstract probability space (Ω,F , P ), and the stochastic process
{Xt }t∈R≥0 is a family of random variables on this space. Furthermore, measure-
theoretic definitions of (homogeneous) continuous-time Markov chains (CTMCs)
have already been encountered in Definitions 5.5 and 5.6.

How, then, can these models be interpreted? Let us start by considering the
simplest case, viz., a precise and homogeneous Markov chain in continuous-time.
According to the previous definitions, this is a stochastic process such that

1. P(Xt |Xs1 , . . . , Xsn) = P(Xt |Xsn) for all s1 < · · · < sn < t in R≥0, and
2. P(Xt |Xs) = P(Xt−s |X0) for all s < t in R≥0.

The immediate difficulty of moving on from this abstract representation is that the
time-dimension is now, in a sense, too big to use any of the previous representations.
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For instance, we could try to draw a ‘continuous-time’ probability tree, where the
local model of a situation with terminal state w% is given by a probability mass
function P(Xt |X0 = w%). But what is the time t that we should use? When
we were working in discrete-time, the approach was to use the next time point,
as viewed from the current situation. But of course, there is no ‘next’ time t when
working in continuous-time! This difficulty of using graphical representations is
the main reason that we have postponed the treatment of continuous-time processes
until now, thereby hopefully allowing the reader to first develop some graphical
intuition for the discrete-time case.

Nevertheless, all is not lost; the first interpretation that we will consider is to
view continuous-time processes as limits of discrete-time ones. To this end, it will
be convenient to consider the transition-matrix T associated with a homogeneous
DTMC. Let us recall from Sects. 5.2.2 and 5.2.3 that the elements of such a matrix
represent the ‘transition probabilities’ of the system, that is, the probability of
moving from a state x to a state y, in one time step:

T (x, y) = P(X1 = y |X0 = x) .

We can use this formalism to interpret the continuous-time case, by simply ‘fixing
the length of the step’. That is, consider some ‘step size’ Δ > 0. Then, for a
homogeneous CTMC, we known that

P(Xt+Δ |Xt) = P(XΔ |X0) ,

for all t ∈ R≥0, so we can collect these ‘transition probabilities’ in a matrix TΔ:

TΔ(x, y) := P(XΔ = y |X0 = x) for all x, y ∈ X .

Clearly, the elements of TΔ are the probabilities for the system to end up in a state y,
if it is currently in a state x, after a time duration of Δ has elapsed. Provided, then,
that we are not interested in a granularity of the time-dimension that is finer thanΔ,
this representation suffices. The matrix TΔ can be associated with a DTMC, and all
the previous results can be used. For instance, for any multiple n ∈ N of Δ, we use
Proposition 5.2 to find that

P(XnΔ = y |X0 = x) = T nΔ(x, y) .

But, of course, the point of using the continuous-time representation is that we
are interested in an arbitrarily fine granularity of the time-dimension. In particular,
the measure-theoretic definition encodes this arbitrary granularity, and it seems a
waste to only focus on the restriction to a single step size Δ. The ‘trick’, then, is
to take the limit as Δ goes to zero, and somehow usefully represent this limit. It is
hopefully clear from the above discussion that, as we decreaseΔ further and further,
the associated transition matrix TΔ covers increasingly smaller steps along the time-
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dimension. And, for each such positive Δ, we can associate a discrete-time Markov
chain and use all the previous interpretations that we developed.

We first remark that the naive limit does not encode a lot of information; ignoring
possible issues of continuity, it trivially holds that

lim
Δ→0+

P(XΔ = y |X0 = x) = P(X0 = y |X0 = x) =
{

1 if y = x, and

0 otherwise.
(5.5)

In matrix notation this reads as limΔ→0+ TΔ = I , where I denotes the |X | × |X |
identity matrix. Colloquially, we might understand this as saying that ‘if time does
not evolve, the system does not change’. This is clearly an almost tautological
statement to make of what may be interpreted as a dynamical system. So let us
consider how the system does change as time evolves. The natural representation
for this is obviously the derivative of the transition matrix TΔ; this is the limit
interpretation that we shall use. Ignoring technical issues of differentiability, we
have

d TΔ
dΔ

∣
∣
∣
∣
Δ=0

= lim
Δ→0+

TΔ − I
Δ

=: Q, (5.6)

where we have used the previous observation that T0 = I . On the right-hand
side, the term Q is called the transition rate matrix of the homogeneous CTMC
(or sometimes simply the rate matrix). It is clear from the above definition that it
encodes the rate of change of the transition probabilities around time zero. It satisfies
the following properties:

Definition 5.16 (Transition Rate Matrix) A real-valued |X | × |X | matrix Q is
called a transition rate matrix if, for all x ∈ X , it holds that

1. Q(x, y) ≥ 0 for all y ∈ X such that x �= y and
2.

∑
y∈X Q(x, y) = 0.

The elements Q(x, y) of a rate matrix can be interpreted as the ‘speed’ with which
the process moves from the state x to the state y. In the above definition, the two
conditions imply that the diagonal elementsQ(x, x) are always non-positive. On the
other hand, the first condition states that the off-diagonal elements are non-negative.
Combined this can be understood as saying that the system will move ‘out’ of the
current state (the non-positivity of the diagonal elements) and ‘into’ some other
states (the non-negativity of the off-diagonals).

A more concrete way to interpret the rate-matrix is through a linearised approx-
imation of the transition probabilities over a small enough time step. That is, it
follows from Eq. (5.6) that, for ‘small enough’Δ > 0, it holds thatQ ≈ (TΔ−I )1/Δ;
hence also

TΔ ≈ I +ΔQ . (5.7)
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We therefore see that the matrix Q can be used to approximately compute the
transition probabilities over a small enough time step.

An obvious next question is if we can extrapolate this to compute the matrix Tt
that contains the transition probabilities over an arbitrary duration t . Indeed we can,
although it requires a bit of setup. For any t ∈ R≥0, first define the transition matrix
of the CTMC after time t :

Tt (x, y) := P(Xt = y |X0 = x) for all x, y ∈ X .

Then we differentiate in t ; to this end, first fix Δ > 0, and use the Markov property
and homogeneity to derive that Tt+Δ = TtTΔ = TΔTt (c.f. Proposition 5.2). Then
we proceed by using Eq. (5.6):

d Tt
d t

= lim
Δ→0+

Tt+Δ − Tt
Δ

= lim
Δ→0+

TΔTt − Tt
Δ

=
(

lim
Δ→0+

TΔ − I
Δ

)

Tt = QTt .

Using also Eq. (5.5), we can now write the matrix differential equation

d Tt
d t

= QTt , T0 = I ,

whose solution is the matrix exponential ofQt :

Tt = eQt .

We recall from Proposition 5.4 that the dynamic behaviour of a homogeneous
discrete-time Markov chain can be characterised by a single transition matrix T and
that therefore this matrix constitutes the canonical parameter of the process. Because
the matrixQ can be used to (re-)construct the transition matrices of a homogeneous
CTMC over any time duration, it plays the same role here.

Proposition 5.7 Let {Xt }t∈R≥0 be a continuous-time homogeneous Markov chain,
with transition rate matrix Q as defined above. Then for all t ∈ R≥0, the transition
probabilities P(Xt = y |X0 = x), x, y ∈ X after time t are given by the elements
Tt (x, y) of the transition matrix Tt = eQt .

While we do not aim to give a complete treatment on the interpretation of the
matrix exponential, some properties are worth pointing out. First of all, it can be
defined analogously to the exponential function of real numbers, that is, through a
Taylor expansion around zero. Specifically, it holds that

Tt = eQt :=
+∞∑

k=0

tkQk

k! .

Thus, the approximation in Eq. (5.7) can be seen as a first-order truncation of the
series above.
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As a second important point, we can consider the entire family of transition
matrices Tt for all t ∈ R≥0. Then this family constitutes a semi-group of transition
matrices, and Q is the generator of this semi-group. Specifically, it holds that
Tt+s = TtTs for all t, s ∈ R≥0—this is called the semi-group property. Observe
that it is analogous to the result in Proposition 5.2 and that we already used this
property for the matrix Tt+Δ when constructing the derivative.

These properties immediately yield a different representation for the matrix
exponential, which will be convenient further on. We omit the proof.

Proposition 5.8 Let {Xt }t∈R≥0 be a continuous-time homogeneous Markov chain,
with transition rate matrix Q, and let Tt be the associated family of transition
matrices. Then, for all t ∈ R≥0, it holds that

Tt = lim
n→+∞

(

I + t

n
Q

)n

.

One way to think about this is that, for some fixed (but large enough) n ∈ N, each
factor (I + t/nQ) is, due to Eq. (5.7), roughly the ‘small step’ transition matrix Tt/n.
The multiplication of these n terms (I+ t/nQ)n is then analogous to the composition
in Proposition 5.2, whereby we cover the duration t in steps of size t/n. It should be
noted that this only becomes exact in the limit (as the result states), but the intuition
behind it is the same regardless.

Furthermore, let us again remark that the transition-matrix representation is
also convenient in that it offers an alternative representation of the conditional
expectation operator:

Proposition 5.9 Let {Xt }t∈R≥0 be a continuous-time homogeneous Markov chain,
with transition rate matrix Q, and let Tt be the associated family of transition
matrices. Then, for all f ∈ L (X ), all t ∈ R≥0 and all x ∈ X , it holds that
E[f (Xt ) |X0 = x] = [

Ttf
]
(x) .

Proof Analogous to the proof of Proposition 5.3. #$
Let us consider the importance of the homogeneity assumption in the preceding

exposition. Indeed, it is this property that crucially allows the parametrisation to
only require a single rate matrix Q. More generally, we may consider a non-
homogeneous CTMC and consider the derivatives at each time point; first write
the transition matrix for the interval [s, t] as

T ts (x, y) := P(Xt = y |Xs = x) ,

and differentiate to obtain

d T ts
d t

∣
∣
∣
∣
t=s

= lim
t→s+

T ts − I
t − s =: Qs ,
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whence the parametrisation now requires an entire family Qs of rate matrices—
one for each point in time. Note, though, that these matrices are still transition
rate matrices, in that they satisfy the properties in Definition 5.16. However, the
corresponding matrix differential equation is no longer solved by a simple matrix
exponential.

More generally still, for arbitrary continuous-time stochastic processes (that are
neither homogeneous nor Markov) we may consider the transition rates (derivatives)
not only for specific points in time but also for specific histories leading up to that
time. For instance, with s = s1, . . . , sn and t in R≥0 and xs ∈ X n, we may write

d

du
P
(
Xu = y |Xs = xs, Xt = x

)
∣
∣
∣
∣
u=t

=: Qxs,t (x, y) . (5.8)

Thus, the parametrisation requires the specification of a transition rate matrix for
each point in time and for each possible history before that time. It should be clear
that this leads to a rather unwieldy process specification, which again goes some
way in illustrating why homogeneity and Markovianity are such popular simplifying
assumptions.

5.4.1 Imprecise Continuous-Time Markov Chains

With the notation and concepts for precise continuous-time stochastic processes in
place, let us now turn to the imprecise generalisation. In what follows, we will
consider imprecise, homogeneous continuous-time Markov chains (ICTMC). As
before, we start by considering the abstract sets-of-measures definition:

Definition 5.17 (ICTMC as set of processes) An imprecise continuous-time
Markov chain is a set P of probability measures on the measurable space (Ω,F ) of
(continuous-time) paths, with associated lower expectation operator E

P
such that,

for all f ∈ L (X ) and all s1, . . . , sn, t ∈ R≥0 such that s1 < · · · < sn < t , it holds
that

E
P

[
f (Xt )

∣
∣Xs1 , . . . , Xsn

] = E
P

[
f (Xt )

∣
∣Xsn

]
.

Furthermore, an imprecise continuous-time Markov chain is called homogeneous
if, for all s, t ∈ R≥0, s < t , and all f ∈ L (X ), it holds that E

P

[
f (Xt )

∣
∣Xs

] =
E
P

[
f (Xt−s)

∣
∣X0

]
.

As in the discussion about imprecise discrete-time Markov chains, we distinguish
between the definition by epistemic irrelevance—which is what is used above—and
the definition by strong independence, which would imply that all P ∈ P are precise
(homogeneous) Markov chains, and which we are explicitly not using.

Let us now consider the parametrisation of such an ICTMC. We recall that in
the precise case, the canonical parameter is a single transition rate matrix Q. In



5 An Introduction to Imprecise Markov Chains 173

contrast, for the imprecise case, the ‘parameter’ of interest is a set Q of transition
rate matrices. Because a precise homogeneous CTMC is identified with a rate matrix
Q, it is clear that such a set Q induces a set of precise processes: simply consider
all processes for which the associated rate matrix is included in Q. However, this
induced set then only includes homogeneous Markov processes, and, as remarked
above, we aim to relax these independence assumptions. Using the parametrisation
of more general precise processes, we introduce the notion of compatibility with a
given set of rate matrices:

Definition 5.18 Let Q be a set of transition rate matrices. Then a continuous-time
stochastic process P is called compatible with Q if, for all s = s1, . . . , sn and
t ∈ R≥0 such that s1 < · · · < sn < t , and all xs ∈ X n, it holds that Qxs,t ∈ Q,
where Qxs,t is the time- and history-dependent rate matrix associated with P , as in
Eq. (5.8).

It can be verified that this definition includes, as a special case, the compatibility of
homogeneous CTMCs with rate matrixQ, with a given set Q, ifQ ∈ Q. Similarly,
a non-homogeneous CTMC that is parametrised by a family Qt is compatible with
such a set if Qt ∈ Q for all t ∈ R≥0. The ICTMC P corresponding to a given set
Q, then, is taken to be the largest set of continuous-time stochastic processes that
are compatible with this Q. While perhaps not obvious, it can be proven that this set
P is then indeed a homogeneous ICTMC, in the sense that its corresponding lower
expectations satisfy the properties of Definition 5.17.

With this ICTMC in place, let us now again consider the main inferential
challenge: how to compute the corresponding lower expectation. A first attempt
could be to use Propositions 5.7 and 5.9 and optimise over Q; for some fixed
f ∈ L (X ), this would give

inf
Q∈Q

eQtf .

If we think about what this computes, we come to the conclusion that for each
Q ∈ Q, there is a homogeneous CTMC for which the conditional expectation of f
at time t ∈ R≥0 is indeed eQtf . We therefore conclude that this computes the lower
expectation with respect to all homogeneous CTMCs that are compatible with Q.
But what about the non-homogeneous and/or non-Markovian stochastic processes
that we know are also included in P? It turns out that the above expression ignores
their corresponding expectations and hence only yields an upper bound on the actual
lower expectation. In other words, we cannot use this expression to compute the
lower expectation for P.

The way to proceed is analogous to the approach in Sect. 5.3.2; we first define
a local ‘lower’ operator and then find the global lower expectation using repeated
compositions of this operator through the law of iterated lower expectation. To this
end, we associate with the set Q the corresponding lower transition rate operator
Q : L (X )→ L (X ), which is defined for all f ∈ L (X ) and all x ∈ X as
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[
Qf

]
(x) := inf

Q∈Q

[
Qf

]
(x) . (5.9)

Intuitively, for small Δ > 0, we can then approximate the lower expectation as

E
P

[
f (XΔ) |X0

] ≈ inf
Q∈Q

(I +ΔQ)f = (I +ΔQ)f ,

where the approximation is again due to Eq. (5.7). It turns out that we can make this
exact and extend the result to any time t , analogously to Proposition 5.8:

Theorem 5.5 LetQ be a non-empty set of transition rate matrices, and letQ be the
corresponding lower transition rate operator, as in Eq. (5.9). Then, for all t ∈ R≥0,
there is an operator T t : L (X )→ L (X ), such that

T t = lim
n→+∞

(

I + t

n
Q

)n

.

These operators satisfy T 0 = I , T t+s = T tT s for all t, s ∈ R≥0 and d/dtT t = QT t .
Observe that this family of operators T t satisfies in large part the same properties as
the matrix exponentials of Qt—c.f. the discussion after Proposition 5.7—with the
main difference being that they are non-linear operators. We can now finally present
the result that allows the computation of lower expectations for ICTMCs.

Theorem 5.6 Let Q be a non-empty set of transition rate matrices, with corre-
sponding lower transition rate operatorQ, and let P be the corresponding ICTMC.
Suppose that Q is closed, convex and has separately specified rows (i.e. is closed
under recombination of the rows of its elements). Then, for all f ∈ L (X ), all
t ∈ R≥0 and all x ∈ X , it holds that

E
P

[
f (Xt ) |X0 = x] = [

T tf
]
(x) . (5.10)

Observe that this result needs some constraints on the rate matrix set Q. This
can be explained in the sense that the right-hand side of Eq. (5.10) depends,
through Theorem 5.5, on the lower transition rate operator Q. In turn, Q depends
on Q through Eq. (5.9). Conversely, the left-hand side (the lower expectation)
depends on the set P, which in turn depends on Q through the compatibility as
in Definition 5.18. It turns out that for these different dependencies on Q to be
equivalent, we need some regularity conditions on this latter set—these are the
constraints mentioned in the theorem above.
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5.4.2 Limits of ICTMCs

Let us finally consider the long-term behaviour of a given homogeneous ICTMC P

with transition rate matrix set Q and associated lower transition rate operatorQ; we
assume these to be fixed in the remainder of this section. What, then, can we say
about the lower expectation of a function as time goes to infinity?

Recall that, in the discrete-time case, Theorem 5.4 established a sufficient
condition for such a lower expectation to converge. This condition was regularity of
the IDTMC. Essentially, this meant that it was possible for the IDTMC to move from
any state to any other state, in exactly n steps, for some n ∈ N. In the continuous-
time case that we consider here, there is a similar condition: upper reachability
between all pairs of states.

We first remark that this condition is defined using the conjugate upper transition
rate operator defined as Qf := −Q(−f ) for all f ∈ L (X ). The definition of
upper reachability is then analogous to that of accessibility in discrete-time but is
instead defined using the transition rates, rather than probabilities:

Definition 5.19 Let P be an ICTMC with associated upper transition rate operator
Q, as defined above. For any two states x, y ∈ X , y is said to be upper reachable
from x, if there is a sequence x0, . . . , xn ∈ X , n ∈ N, such that x0 = x, xn = y

and, for all i ∈ {1, . . . , n}, it holds that xi �= xi−1 and
[
Q Ixi

]
(xi−1) > 0.

Let us in particular consider the final condition in this definition. From the conjugacy
between the lower and upper transition rate operators, and the definition of the
former, we can rewrite this requirement as saying that

0 <
[
Q Ixi

]
(xi−1) = sup

Q∈Q

[
Q Ixi

]
(xi−1) = sup

Q∈Q
Q(xi−1, xi) .

Thus, upper reachability of y, from x, requires that there exists a sequence of states
from x to y such that, at each step in this sequence, there is some transition rate
matrix Q ∈ Q which assigns strictly positive ‘speed’ of moving from the current
state in this sequence, to the next one. In other words, it should be possible for
these transitions to happen according to some of the models in our set P, but not
necessarily all, and there can be a different model allowing for this possibility at
each step. This can now be used to state the following result:

Theorem 5.7 Let P be an ICTMC and suppose that, for all x, y ∈ X , y is upper
reachable from x. Then, there is a unique lower expectation operator E

P

[·(X+∞)
] :

L (X )→ R such that, for all f ∈ L (X ) and all x ∈ X ,

E
P

[
f (X+∞)

] = lim
t→+∞E

P

[
f (Xt )

∣
∣X0 = x] = lim

t→+∞
[
T tf

]
(x) .
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5.5 Literature and Further Reading

Let us conclude this chapter by providing pointers to the literature on which the
material in this chapter is based. We will also briefly discuss some parts of the
literature that are related but not quite the same as what we covered here.

First of all, there exists an extensive body of literature on (precise) Markov
chains, both in discrete- and in continuous times. It would be nigh impossible to
give a complete overview here, but we think that [1, 38] make excellent introductory
reads. For a broad and general introduction to the theory for imprecise probability,
which lies at the heart of the models that we discussed here, we refer the reader
to [3, 50]. The difference between the notions of strong independence and epistemic
irrelevance—which we have stressed repeatedly and which is a crucial property of
imprecise Markov chains as we treated them here—is discussed, e.g. in [5, 37].

For the interpretation of Markov chains using probability trees, see, for exam-
ple, [13, 18, 32]. This interpretation is also closely related to the game-theoretic
formalisation of probabilities using the theory of martingales (which we did not
cover here). The interested reader may want to pursue [13, 32, 49].

For an account of the general theory of Bayesian networks, see [39]. For their
imprecise generalisation—credal networks—references [2, 6, 7, 9, 11] discuss a lot
of the general theory.

Imprecise discrete-time Markov chains are discussed, e.g. in [15, 17, 27]. For
imprecise continuous-time Markov chains, see [30, 44]. A treatment of the matrix
exponential, which is crucial to computational methods for CTMCs, is given in [48].
Reference [19] discusses the current state-of-the-art to efficiently compute the
imprecise generalisation of the matrix exponential, which we have seen is crucial
for computing inferences in ICTMCs.

Detailed treatments on the long-term (limit) behaviour in IDTMCs can be found
in [14, 16, 26, 45]. Reference [10] provides the necessary and sufficient conditions
for the limit behaviour of ICTMCs, and [19] also discusses computational methods
to numerically approximate this limit. We remark that Theorems 5.4 and 5.7 in this
chapter are stated in a simplified form compared to their statement in the literature.
In particular, the results in [10, 14] are stronger; for instance, [10] in fact provides
necessary and sufficient conditions for the convergence of an ICTMC, whereas
Theorem 5.7 only states a sufficient condition.

Some examples of the merits of imprecise Markov chains in applications are
provided by [40, 46, 47]. A domain for which the applicability of (imprecise)
Markov chains has been extensively studied, is queueing theory [8, 33–36].

A generalisation of Markov chains that we have not discussed, but which is
nevertheless important in many practical applications, is hidden Markov chains.
There, the stochastic process cannot be observed directly, but only through a noisy
measurement model. Their imprecise treatment is discussed, e.g. in [4, 12, 31].

Fields that are closely related to the theory of imprecise Markov chains are
controlled Markov processes [21] and Markov decision processes [22, 28, 41, 51].
There also, the process under study has its parameters changed over time. However,
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the goal there is not to represent uncertainty and change these parameters to compute
robust bounds on quantities of interest. Rather, their aim is to optimise the process
evolution towards some operational target.

Finally, we again emphasise that our treatment uses epistemic irrelevance, which
we distinguish from using strong independence. There is, however, an extended
body of literature also on the latter. These alternative models are known as Markov
chains under strong independence, e.g. in [27], as interval Markov chains [20, 29,
42, 43] or as Markov set chains [23–25].
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Chapter 6
Fundamentals of Filtering

Cristian Greco and Massimiliano Vasile

Abstract Accurately estimating the state of a dynamical system is of fundamental
importance in a variety of applications, from engineering challenges to everyday
life. This task is complex because uncertainties typically affect the dynamical
behaviour as well as the available observations of the (hidden) state. The goal
of this chapter is to provide a comprehensive overview, from the probabilistic
problem statement to methods for its solution. In particular the focus will be on
filtering problems for time-continuous state evolution equations and time-discrete
observations. It will be shown that, except for very few cases, the filtering problem
has no closed-form solution, which is generally infinite-dimensional. Hence, several
practical algorithms to find an approximate solution are presented.

Keywords State estimation · Uncertainty propagation · Inference · Navigation ·
Filtering algorithms

6.1 The State Estimation Problem

Filtering theory addresses the problem of estimating the state of a system given
an uncertain knowledge of its dynamical equations and noisy indirect observations.
Being a mathematical branch of the general stochastic processes theory, it finds
wide application in several fields spanning from engineering to physics, from
biology to medical sciences. Among the most notable examples of application
there are the Global Positioning System (GPS) technology, brain imaging methods,
signal processing techniques, the prediction of the evolution of (potential) infectious
diseases or environmental catastrophes and any other system modelled by stochastic
differential equations [51].

Modern filtering techniques combine the dynamical and measurement informa-
tion in order to optimally estimate a system state or some model parameters, where
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the concept of optimality will be formalized in Sect. 6.1.3. This process is nothing
more than an inversion problem of the measurements equations y = h(t, x) + ε—
where y and x are, respectively, the observation and state vector, h is the observation
model function and ε is the measurement error—taking into account an initial
estimate of the state and the equations governing the state evolution. Historically,
this step has been tackled from two conceptually different perspectives:

• Probabilistic approach: the errors in the dynamics and the observations are
characterized as random variables with known probability distributions. Hence,
the goal is to compute the conditional probability p(xk|y1:k), whose knowledge
represents the complete solution to the filtering problem. Indeed, in the general
nonlinear case, the filter state is infinite-dimensional and represented by the con-
ditional density function [29]. Assumptions need to be made on the distributions
of random variables x and y to obtain a finite-dimensional solution, as will be
shown in Sect. 6.3. Out of the conditional probability density function, common
choices for the optimal estimate of the state are the distribution mean, median,
mode and so on.

• Statistical approach: the errors in the dynamics and the observations are con-
sidered as unknown but deterministic; the goal is then to minimise a chosen
performance index which is a function of the deviation between the obtained
measurements and the computed observations (through the deterministic part
of the observation model). The dynamical equations are then formulated as
constraints of the minimisation procedure. A well-known statistical approach for
which this optimisation step has a closed-form solution is the (possibly recursive)
weighted least squares method [58] which minimizes the sum of the weighted
square deviations. In general, different performance indices result in different
estimates of the state.

In general, this chapter pursues the probabilistic approach to state estimation in its
theoretical developmentHowever, when looking at the practical implementation of
filtering methods, often this boundary starts to fade. This results from the different
possible derivations and interpretations of the same method. As an example, the
time-discrete linear Kalman filter (see Sect. 6.3.1) can be derived starting either from
a probabilistic reasoning [29] or from a statistical approach [58], leading to the same
final algorithm.

Often, engineering books focus on the latter approach as it gives a simpler
high-level interpretation to the filtering step, i.e. as a constrained optimisation.
Moreover, it requires little or no knowledge of probability and allows for a direct
focus on the filter implementation. On the other hand, the probabilistic approach
provides solid mathematical justification to each assumption and step at the cost
of increased theoretical complexity. Indeed, the knowledge of probability theory
is essential and an understanding of stochastic differential equations often useful.
In this chapter the latter approach will be pursued to provide a comprehensive
awareness of filtering theory and the advantages and approximations resulting from
a selected filter. Nonetheless, the following development will attempt to simplify
the mathematically formal description retaining the minimum set of fundamental
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concepts needed to have a comprehensive understanding of filtering theory. For a
more formal mathematical treatment, the reader should refer to the classical work
from Jazwinski [29].

The remainder of the chapter is structured as follows. Section 6.1 will present the
framework of state estimation problems for time-continuous systems and introduce
the needed working mathematical concepts. As the probabilistic approach is
pursued, Sect. 6.2 will discuss the exact and approximated methods for propagating
probability distributions through generic nonlinear transformations, which in this
setting are the dynamical equations and the observation model. Finally, Sect. 6.3
introduces several practical algorithms to compute the (often approximated) solution
of the filtering problem, each more suitable under different working conditions and
assumptions. To summarise the chapter, Sect. 6.4 provides a final overview of the
presented topics.

6.1.1 Building Blocks

Generally in aerospace applications, ‘filtering’ and ‘state estimation’ are inter-
changeable to indicate the process of propagating the state distribution knowledge
through a dynamical model, and updating this estimate when new observations
are available, potentially decreasing (filtering) the noise contributions. On the
other hand, in mathematical applications, the filtering problem defines only the
update step, when prior information and noisy measurements are combined. For the
notation employed in this book, a filter is a model handling both the propagation and
the update; therefore, the two aforementioned names shall be considered synonyms.

Modern filtering theory employs a general framework to handle a great variety
of mathematical problems. A requirement of the system to be filtered is to be a
stochastic process with possibly hidden (unobserved) states in the most general
cases. In addition, some a priori estimate of the initial state should be available.
Therefore, three main elements are necessary components to define a filter:

• Dynamical model: a set of equations mapping the state at time ti to the state at
time tj . Generally in the continuous-time case, the dynamical model is described
by a set of differential equations. In line with the applications outlined, the
conventional set of dynamical equations will be described as first-order ordinary
differential equations in the state space form:

ẋ = f(t, x)+G(t, x)w , (6.1)

where f is the deterministic system dynamics, w is a white Gaussian noise and
G is its coefficient matrix. Usually, the stochastic term is introduced to model
possible approximation errors. It is worth clarifying that with this formulation we
intend to encompass the full range of dynamical models and we do not restrict to
natural dynamics only. For example, while control forces u are usually included
in this notation writing ẋ = f(t, x,u), in this chapter the explicit dependency
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will be hidden, without introducing any restriction, for the sake of clarity.
In state estimation, the interest often lies in the computation of conditional
probability distributions on the propagated state. Section 6.2 will introduce
several approximate methods employed to numerically compute this distribution
from the general dynamics in Eq. (6.1).

• Observation model: a set of nonlinear equations describing how a state is mapped
to the measurements taking into account a noise term ε modelling the error:

y = h(t, x)+ ε . (6.2)

In this chapter, the noise is considered to have zero-mean and to be additive for
simplicity, whereas similar derivations can be achieved with non-additive noise
[51].

The deterministic term is employed to compute the error-free predicted
observations (or often called computed observations), an important concept both
in the statistical perspective and in practical algorithm formulation [58]. Real
observations are naturally subject to noise and biases dependent on the particular
type of measurement, which should be modelled as well to provide the filter with
more information on the observation received.

• Initial distribution: the a priori knowledge of the state probability distribution
at the initial time, generally assumed independent of any dynamical or observa-
tional noise:

p(x0) . (6.3)

Once these components are defined, the goal of the estimation process is to compute
the optimal combination of generally conflicting information from dynamical
knowledge and received observations (Fig. 6.1).

This optimal combination—called inference in the Bayesian approach—is math-
ematically formulated as a nonlinear inverse problem. Let’s assume we have a
time-ordered measurement vector y1:l = [y1(x1), . . . , yk(xk), . . . , yl (xl )]. The
complete solution of the state estimation problem is given by the state joint
probability distribution conditional on all the observations:

p(x0:T |y1:l ) , (6.4)

where l is the number of observations and T is the number of times at which the state
should be estimated. This state distribution captures all the statistical information
provided both by the measurements and the prior state knowledge [29].

Fig. 6.1 Scheme of hidden
dynamical system with
discrete observations [51]
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However, this posterior is expensive to compute as it is a joint distribution over
all xk , conditionally dependent on all the observations y1:l . Furthermore, in real-
time scenarios, every time a new observation is available, the full joint posterior
distribution needs to be computed again.

6.1.1.1 State Marginalization

The major computational complexity in Eq. (6.4) stems from the joint nature of
the posterior distribution. Indeed, whenever a new observation is available for
a different time step, the posterior distribution’s dimensionality will increase,
degrading the computational efficiency severely. If the main interest concerns the
computation of the state estimate xk at a specific time step, like in real-time
applications, this excessive numerical burden can be reduced by computing the
marginal distribution instead:

p(xk|y1:l ) . (6.5)

This approach reduces dramatically the posterior dimensionality and, therefore,
improves the computational performance.

6.1.1.2 Markov and Independence Assumptions

Given the knowledge of xk , a Markov process links the future process probability
law for t > tk only to xk , independently of how this state was reached. This is
analogous to an ordinary differential equation which links the state rate ẋk only
to simultaneous time tk , state xk (and possibly parameters) [29]. If we restrict
to this nevertheless wide class of models, the system dynamics in Eq. (6.1) is a
Markov process and the time-ordered collections of states x1:T a Markov sequence.
More formally, this class respects the Markov property which simplifies the state
dependency:

p(xk | x0:k−1) = p(xk | xk−1) . (6.6)

Also measurements can be included in the Markov model. Then, the previous
property can be generalised as [51]:

p(xk | x0:k−1, y1:k−1) = p(xk | xk−1) . (6.7)

As a consequence of these two assumptions, xk does not depend on anything which
happened before the time tk−1 given xk−1.

Another traditional assumption is to consider the measurement yk to be condi-
tionally independent of previous state history or observations:
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p(yk | x0:k, y1:k−1) = p(yk | xk) . (6.8)

In the next sections, these assumptions will be key in further reducing the
complexity of the computation of joint probability distributions.

6.1.2 Filtering Problem Formulation

The estimation problem can be divided in different categories according to which
subset of measurements is considered in the computation of the marginal conditional
posterior distribution in Eq. (6.5).

Depending on the application, the state to be estimated xk could be at a previous,
contemporary or later time step than the time of the last observation yl . Hence,
for each scenario, different observations should be taken into account in the
computation of the conditional distribution in Eq. (6.5).

The estimation problem is called smoothing when tk < tl . As an example, this
problem is faced in post-processing applications, when all the measurements in time
are available, and the interest is computing the best estimate possible of the state
using also later observations. The marginal posterior distribution is p(xk|y1:l ).

The estimation problem is labelled filtering when tk = tl . This case is
typical of real-time applications, when the state estimate is to be updated after a
new observation is available. To distinguish the notation, the marginal posterior
distribution can be written as p(xk|y1:k).

Lastly, if tk > tl , the estimation problem is called prediction. The dynamical
information is used to predict the state distribution at times after the last observation.
The marginal distribution to be computed is p(xk+Δ|y1:k), where Δ indicates a
future time step after tk .

The main focus of this chapter is on real-time applications; therefore, the filtering
framework will be presented together with filter algorithms. On the other hand, most
of the theoretical and algorithmic notions that will be introduced have shared cores
with smoothing and prediction. Therefore, the concepts presented in this chapter are
easily transferable to the other two problem scenarios.

6.1.3 Bayesian Approach for Filtering

For filtering applications, the full joint posterior distribution p(x0:k|y1:k) in Eq. (6.4)
can be computed by Bayesian inference:

p(x0:k|y1:k) = p(y1:k|x0:k)p(x0:k)
p(y1:k)

. (6.9)
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With the Markov assumption, the terms in the numerator of the right-hand side
have convenient properties which simplify the dependencies. Indeed, the joint prior
distribution on the states p(x0:k) is simplified as:

p(x0:k) = p(x0)

k∏

j=1

p(xj |x0:j−1) = p(x0)

k∏

j=1

p(xj |xj−1) , (6.10)

where the first identity comes from the definition of joint probability distribution
and the second from the Markov property in Eq. (6.6).

In addition, the joint probability on observations can be manipulated as:

p(y1:k|x0:k) =
k∏

j=1

p(yj |x0:k) =
k∏

j=1

p(yj |xj ) . (6.11)

The first identity stems from the measurements’ independence as a result of the
functional relationship in Eq. (6.2) and the random nature of the associated noise,
while the second identity comes from the conditional independence in Eq. (6.8).

The denominator of Eq. (6.9) has no dependency on the state to be estimated.
Therefore, it can be seen as a normalization factor, which is therefore possible to
discard in some algorithmic implementations [51]. All these simplifications result
in Eq. (6.9) to be reformulated as:

p(x1:k|y1:k) ∝
k∏

j=1

p(yj |xj ) · p(x0)

k∏

j=1

p(xj |xj−1) . (6.12)

However, the computation of this joint posterior is still numerically demanding.
As introduced in Sect. 6.1.1.1, if we shift the goal on finding the marginal probability
distribution, the complexity of the distribution reduces dramatically. Therefore, with
this restriction, the posterior to be computed reduces to:

p(xk|y1:k) = p(y1:k|xk) · p(xk)
p(y1:k)

. (6.13)

A different formulation to compute the probability in Eq. (6.13), which will prove
key in the next section, is obtained by applying Bayes rule only with respect to the
last observation:

p(xk|y1:k) = p(xk|y1:k−1, yk)

= p(yk|xk, y1:k−1) · p(xk|y1:k−1)

p(yk|y1:k−1)

= p(yk|xk) · p(xk|y1:k−1)

p(yk|y1:k−1)
,

(6.14)
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where the last identity stems from the conditional independence of the observations
again.

It is straightforward to see how the latter suits a sequential formulation, where
the prior p(xk|y1:k−1) of the current step is computed by propagating the posterior
p(xk−1|y1:k−1) of the previous one

The first term in the right-hand side numerator is the conditional probability
of the measurements yk given the state xk , at time step tk . By recalling the
observation measurements in Eq. (6.2) and dropping the explicit time dependence,
this probability can be written as:

p(yk|xk) = p(h(xk)+ εk|xk) = pε(yk − h(xk)) , (6.15)

where the latter term is the density of the error evaluated at yk − h(xk). Intuitively,
this result states that for a given state xk , the probability of receiving a specific
measurement only depends on the discrepancy between the modelled observation
h(xk) and the received one yk . From the relation in Eq. (6.15), it is straightforward
to derive useful relations for the posterior distribution moments, which could also
serve as an argument for the latter equality (for a formal proof, see Jazwinski [29]).
The conditional expectation is simply given by the computed observations:

E{yk|xk} = E{h(xk)|xk} + E{εk|xk} = h(xk) , (6.16)

where the first equality results from the linearity of the expectation operator,
whereas the second comes from a well-known property of conditional expectations
E{f(x)|x} = f(x) (see Theorem 2.9 of Jazwinski [29]) and from the null mean of
the white noise. The second-order central moment can be derived as:

E
{
(yk − E{yk|xk})(yk − E{yk|xk})T |xk

}
=

E
{
(h(xk)+ εk − h(xk))(h(xk)+ εk − h(xk))T |xk

}
=

E
{
εkε

T
k

}
= Rk ,

(6.17)

where the conditioning on xk dropped because of the measurement error indepen-
dence from the state. Similarly, it can be easily shown that higher-order central
moments of this posterior distribution coincide with the same moments of the
distribution on εk .

The denominator of Eq. (6.14) can be computed with the law of total probability
[54]:

p(yk|y1:k−1) =
∫

p(yk|xk)p(xk|y1:k−1)dxk . (6.18)

Therefore, Eq. (6.14) can be written as:
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p(xk|y1:k) = p(yk|xk) · p(xk|y1:k−1)
∫
p(yk|xk) · p(xk|y1:k−1)dxk

. (6.19)

It has been shown above that the first term in the integral is computed by using the
observation model and the associated error probability function.

However, a tool to propagate the conditional probability in the time interval
between successive measurements, i.e. from p(xk−1|y1:k−1) at tk−1 to p(xk|y1:k−1)

at tk , is still needed. To this end, the differential equations governing the conditional
probability evolution will now be introduced.

6.1.3.1 Conditional Probability Evolution Between Observations

The missing bit of information to compute the posterior distribution in Eq. (6.19)
is how to obtain the new prior p(xk|y1:k−1). This distribution characterises how the
state at time tk is influenced by previous observations, from tk−1 backwards. For its
computation, we suppose that the previous step in the sequential filtering scheme
has been solved, and therefore the probability p(xk−1|y1:k−1) is known. The goal of
this section is to present tools for the propagation of this conditional density from
tk−1 to tk when no new observations are received:

p(xk−1|y1:k−1)→ p(xk|y1:k−1) . (6.20)

In the framework of Markov processes generated by stochastic differential
equations like Eq. (6.1), Kolmogorov derived equations for the exact evolution of
the density function p(t, x), characterising the process state, and for the process
transition density p(t, xt |τ, xτ ), characterising the process state evolution. The
Kolmogorov forward equation, also known as Fokker-Planck or Kolmogorov-
Fokker-Planck, is a partial differential equation that, for Markov diffusion processes,
is given by Challa and Faruqi [13] and Risken [47]:

∂p

∂t
= −

∑

i

∂pfi

∂xi
+ 1

2

∑

i

∑

j

∂2p
(
GQGT

)

ij

∂xi∂xj
, (6.21)

where Q is the stochastic noise process covariance and the dependencies have
not been explicitly written. It goes without saying that Eq. (6.21) holds under
existence and continuity assumptions on the involved partial derivatives. It is worth
underlining again that the equation above holds for both p(t, x) and p(t, x|τ, x).
This equation has a closed-form solution in a limited number of simplified cases
[6]. Nonetheless, Kolmogorov equation remains a powerful tool for theoretical
development, as well as nonlinear filtering techniques which solve it by numerical
approaches [12–15, 53]. This equation has been generalised to include more general
stochastic perturbations other than the Gaussian white noise [50], and a correspond-
ing estimation algorithm based on perturbation theory has been developed [40].
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One important consequence of the Kolgomorov equation is the possibility to
write down equations of motion for the density moments. The first two moments’
evolution is described by Challa and Faruqi [13]:

dE{xt }
dt

= E{f(t, xt )} (6.22)

dP

dt
=

(
E
{

xt fT (t, xt )
}
− E{xt }E{f(t, xt )}T

)

+
(
E
{

f(t, xt )xTt
}
− E{f(t, xt )}E{xt }T

)
+ E

{
GQGT

}
, (6.23)

where P(t) = E{(x − E{x})(x − E{x})T } is the covariance matrix at time t . In the
general nonlinear case, these equations are not ordinary differential equations and
involve dependencies on higher-order moments through the expectation operator.
However, these equations could be simplified if approximations on the probability
distribution are introduced, leading to important schemes for numerical algorithms.

In the absence of new observations, i.e. between two measurements times,
the evolution of the conditional density p(t, x|y) equals the prior density p(t, x)
[29]. Hence, Kolmogorov forward equation can be used to propagate directly the
conditional probability (see Eq. (6.20)). Equivalently, this density can be computed
by the Chapman-Kolmogorov equation which links the conditional probabilities at
tk−1 and tk through the transition probability p(xk|xk−1) [51]:

p(xk|y1:k−1) =
∫

p(xk, xk−1|y1:k−1)dxk−1

=
∫

p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1

=
∫

p(xk|xk−1)p(xk−1|y1:k−1)dxk−1 ,

(6.24)

where the first equality follows from the definition of marginal densities, the second
equality stems from the definition of the joint probability with respect to conditional
one and the latter comes from the Markov property in Eq. (6.7). As already stated,
the process transition density evolution is described by Kolmogorov equation.

The exact nonlinear Bayesian Filtering description of the marginal conditional
density is now complete. The Filtering equations can be summarised as follows:

• Between observations:
p(t, x|y) evolves according to the Kolgomorov Equation (6.21) or Chapman-
Kolmogorov Equation (6.24).

• At an observation:
p(t, x|y) is updated by Bayes’ rule according to Eq. (6.19).

Section 6.2 will describe practical methods for the propagation of the density
distribution through the dynamical system and the update step.
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6.1.4 Batch Processor vs. Sequential Filtering

As seen in the previous section, one alternative in the inverse problem solution
is to consider a set of observations y1:k at once instead of sequentially (see
Eq. (6.13)). This approach, called batch processor, employs the dynamical model
to map observations at different times to tk , usually by means of the state transition
matrix and linearized observation models [58]. In smoothing applications, one
advantage of this procedure is that all the available information is exploited, also
the knowledge coming from possible measurements later in time. On the other
hand, the batch processor becomes intractable when the number of observations
becomes sufficiently high, leading to a high-dimensional and highly overdetermined
inversion problem if we consider all the measurements at once. By a probabilistic
perspective, it requires the computation of a new full posterior distribution for each
instant of time tk when the state estimate is desired [51]. When a new batch of data is
available, algorithms for using the previous computed estimate as prior are available
[58].

This concept can be generalised to the case when the observation batch has
dimension 1 in the so-called sequential filtering approach, which will be the focus
of the remainder of the chapter. The state probability distribution is updated after
each new observation yk , using the previous knowledge of p(xk|y1:k−1). The update
formula after a new observation is reported in Eq. (6.14). Therefore, it is directly the
pre-computed conditional state distribution at tk−1 to be mapped at tk , accordingly
propagated with the dynamical equations, rather than the observations at different
times as in the batch processor. Hence, in filtering applications, this approach
results in numerical schemes, as it will be shown in detail in Sect. 6.3, able to
employ efficient rules to compute the posterior p(xk|y1:k) using the only current
observation yk and the estimate at a previous time p(xk−1|y1:k−1), i.e. without
directly taking into account the set of observations y1:k−1 and without the need to
update p(xk−1|y1:k−1)with yk . Therefore, the inversion problem dimension depends
only on the number of new observations. This characteristic dramatically alleviates
the computational burden associated to the computation of the posterior distribution,
resulting in an efficient approach for dynamic estimation problems.

6.1.5 Optimal Estimate

The posterior conditional distribution is the solution of the filtering problem
combining the a priori dynamical knowledge with the obtained measurements.
According to the selected approach, this posterior could be a joint distribution, as in
Eq. (6.4), or the marginal probability, in Eq. (6.5). In the general nonlinear case, this
solution is infinite-dimensional.
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Generally, this complete solution is not obtainable; hence a finite-dimensional
approximation is sought. Furthermore, for many practical applications, a single best
estimate, approximating the true state, is required out of the posterior distribution.

Intuitive choices for this statistical estimator could be the posterior’s expectation,
mode, median or any other statistical quantity that is faithfully representative of the
true state in the statistical sense. To formalise this decision process, a loss function
is defined as a real-value function L(̃xk) quantifying a penalty (or gain) of choosing
an estimate x̂k rather than another when approximating the true state xk . Ideally, x̃k
is the deviation from the true state x̃k = xk−xk , which however is unknown. Hence,
it will be used to denote deviations from the estimate:

x̃k � xk − x̂k . (6.25)

Jazwinski [29] requires the loss function to satisfy the following properties:

L(0) = 0

ρ
(
x̃2
k

) ≥ ρ(x̃1
k

) ≥ 0 ⇒ L
(
x̃2
k

) ≥ L(x̃1
k

) ≥ 0

ρ non-negative convex .

(6.26)

An intuitive choice for ρ is to be a distance measure from the zero-error origin.
Given a specific loss function L, the optimal statistical decision can be formulated
as an optimisation process with the goal to find the optimal estimate x̂∗k , minimising
the expectation of the loss function. It is worth remarking that minimising the
expectation is not the only possible choice, it is just a natural and intuitive choice,
likewise the most used historically. Since the true value of xk is not known, the
expectation is formulated with respect to the posterior distribution p(xk|y1:k) [51]:

x̂∗k = min
x̂k
E{L(̃xk)|y1:k} = min

x̂k

∫

L(̃xk)p(xk|y1:k)dxk . (6.27)

This minimisation is equivalent to minimise the expectation of L(̃xk) [29].
With this framework set, the choice of the loss function is the only factor

to discriminate a specific statistical quantity. Cox [16] introduced the linear loss
function:

L(̃xk) =
∑

i

ci |̃xk| . (6.28)

Plugging this loss function in Eq. (6.27), it can be shown that the i-component of
the optimal estimate x̂∗k is the median of the marginal distribution for i-component
of xk conditional to the observations y1:k .

One of the most used estimator is the quadratic loss function:

L(̃xk) = x̃Tk W x̃k . (6.29)
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The optimal estimate of this estimator with W being the identity matrix is the
conditional expectation x̂∗k = E{xk|y1:k} of the posterior distribution. In linear
filtering, under Gaussian assumptions, this estimate coincides with the conditional
mode and median. This state estimate is also called minimum variance estimate,
because it minimises the variance for any conditional probability, or minimum mean
squared error, as it can be derived by minimising the least square errors between
computed and received observations [58].

Still Cox introduced a loss function that weights deviations larger than a set
threshold equally in order to avoid few very dispersed samples to spoil the estimate,
which in this framework tends to the mode of the conditional distribution.

L(̃xk) =
{
||̃xk||2 if ||̃xk||2 ≤ c
a if ||̃xk||2 > c .

(6.30)

The mode of the conditional distribution is exactly the state best estimate when
the Dirac’s delta δ(·) is used in the loss function [37]:

L(̃xk) = 1 − δ(̃xk) =
{

0 if xk = x̂k
1 if xk �= x̂k .

(6.31)

This loss function choice yields the maximum a posteriori (MAP) estimator as the
minimising point is the peak of the posterior distribution. This can be seen as a
particular case of the function in Eq. (6.30), when no loss is associated to the correct
point and equal loss to any deviation from it.

For the scalar case, Kalman [36] introduced a quartic loss function L(̃xk) = ax̃4
k

and an exponential one L(̃xk) = a[1 − exp
(−x̃2

k

)].
If p(xk|y1:k) is symmetric about its conditional expectation and unimodal, the

optimal state estimation is the conditional expectation x̂∗k = E{xk|y1:k} for every
loss function L satisfying the properties in Eq. (6.26) [29]. Therefore the conditional
expectation is the chosen estimate for a large variety of filtering problems.

During this theoretical development, the process of deriving an optimal estimate
relied on the assumption that a full posterior distribution p(xk|y1:k) would be
available. However, in the general nonlinear filtering case, it is often impracticable
to derive the full posterior distribution. To deal with this issue, practical methods
to efficiently compute the first moments of p(xk|y1:k) have been developed, and
they will be presented in later sections. Hence, if the state estimate is chosen as
the conditional expectation, no further calculation is needed as x̂∗k coincides with
the first moment of the posterior distribution. On the other hand, we cannot just
look for the conditional mean. First, it often depends on higher-order moments.
Second, higher-order moments are an indication of how the probability is dispersed
around the mean value, therefore providing a measure of how accurate the estimate
represents the distribution. In the words of Jazwinski: ‘It can be argued that
knowledge of the second-order moment is just as important as knowing the estimate
itself. An estimate is meaningless unless one knows how good it is.’
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6.2 Probability Distribution Propagation

This section will present practical tools for the computation of the evolution of
density functions, presented in the previous theoretical section, when propagated
through arbitrary transformations. In particular, the main difficulty stems from the
general nonlinearity of the dynamical equations f(t, x) and observation relationships
g(t, x). Indeed, in the linear case, the probability propagation has a closed-form
solution, as it will be shown in Sect. 6.2.1. On the other hand, there is no analytical
solution for the general nonlinear case, and approximations shall be introduced to
compute a solution, as shown in Sect. 6.2.2.

6.2.1 Linear Transformation

In the linear time-varying case, the equations describing the evolution of the
distribution moments take a simplified form. Indeed, if the dynamical equations
can be written as

ẋ = F(t)x +G(t)w , (6.32)

with w the white Gaussian noise, the Eqs. (6.22) and (6.23) simplify without
approximations to:

dx̂
dt

= F(t)x̂ (6.33)

dPx

dt
= F(t)Px + PxFT (t)+G(t)QG(t)T , (6.34)

where again Q is the covariance of the dynamical noise w. This form describes the
exact evolution of the first two moments of the density function in a linear system,
and it is the basis of the linear filtering (see Sect. 6.3.1). It is worth noting that
these are ordinary differential equations and therefore are relatively easy to integrate
numerically. Specifically, the first equation implies that the mean of the propagated
distribution is the propagated mean of the initial distribution. The second equation
describes in compact matrix notation how the covariance matrix evolves as result of
the deterministic term and the process noise.

In linear filtering, also the observation model is linear:

y = H(t)x + ε . (6.35)

Hence, the probability p(yk|xk) of the measurements conditional to the state for
Gaussian distributions (see also the reasoning in Sect. 6.1.3 for general density
functions) is given by:
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p(yk|xk) ∼ Nyk (H(tk)xk, Rk) , (6.36)

where Rk is the covariance of the measurement noise.
If the prior density function is Gaussian,

x0 ∼ N (x̂0, P0) , (6.37)

all the densities in the update step via Bayes’s rule (see Eq. (6.14)) are Gaussian as
well. Therefore, the first two moments’ evolutions between observations, and at an
observation update, completely characterise the distributions.

6.2.2 Nonlinear Transformation

In the majority of applications, the filtering model involves nonlinear dynamical
equations and observation relationships. The major drawback for filtering is that
when a Gaussian density is plugged in a nonlinear relationship, it loses its
Gaussianity. In general, for x a random variable with px(x), the random variable
z = g(x) has density function [29]:

pz(z) = px
(
g−1(z)

)
∣
∣
∣
∣ det

(
∂g−1(z)
∂z

)∣
∣
∣
∣ , (6.38)

for invertible g. Generally, it is not possible to solve directly for this non-Gaussian
distribution. Often, numerical filter techniques rely on the Gaussian approximation
of this density to simplify the filtering computation. As a Gaussian distribution
is completely defined by its mean and covariance, a variety of methods exist to
compute directly these first two moments of the derived distribution. In this section,
the relation g(x) indicates an arbitrary function, which can represent both the
observation model and the discrete dynamical transition step. In the latter case, this
can be a state transition operator or the result of a numerical integration scheme.

This section will first present methods based on Taylor’s expansion of the non-
linear transformation, in Sect. 6.2.2.1. Then, methods based on sample propagation
will be shown, specifically with deterministic sampling in Sect. 6.2.2.2 and with
random sampling in Sect. 6.2.2.3.

6.2.2.1 Taylor Expansion

The nonlinear transformation g can be expanded in Taylor’s series about the
expected value x̂ = E{x}:
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z = g(x) = g(x̂)+∇xg
∣
∣
x̂(x − x̂)+ 1

2

∑

i

(x − x̂)T H(i)xx

∣
∣
x̂(x − x̂)ei + O

(
(x − x̂)3

)
,

(6.39)
where ∇xg

∣
∣
x̂ is the Jacobian matrix of g, while H(i)xx

∣
∣
x̂ is the Hessian matrix of

i−component of g, both evaluated at x̂, and ei is a unit vector pointing along the
i−coordinate axis.

Truncating at the first order, the random variable z has now a simple expression
for its mean [51]:

ẑ ≈ E{g(x̂)+∇xg
∣
∣
x̂(x − x̂)}

= E{g(x̂)} + E{∇xg
∣
∣
x̂(x − x̂)}

= g(x̂)+ ∇xg
∣
∣
x̂E{(x − x̂)}

= g(x̂) .

(6.40)

This result shows that, at first-order approximation, the expected value of the
transformed distribution is the expected value of the input distribution propagated
through the nonlinear equation. Using this approximation, the covariance matrix
becomes:

Pz = E
{
(g(x)− ẑ)(g(x)− ẑ)T

}

≈ E
{
(∇xg

∣
∣
x̂(x − x̂))(∇xg

∣
∣
x̂(x − x̂))T

}

= ∇xg
∣
∣
x̂E

{
(x − x̂)(x − x̂)T

}
∇xg

∣
∣T
x̂

= ∇xg
∣
∣
x̂ Px ∇xg

∣
∣T
x̂ .

(6.41)

This first-order approximation is the basis for the classical version of the extended
Kalman filter (see Sect. 6.3.2).

However, when the model is highly nonlinear or the deviations (x − x̂) are
significant, this approximation can become too inaccurate for the application
requirements. To better capture the nonlinear function’s behaviour, second-order
terms in the Taylor expansion can be retained. Hence, the expected value becomes:

ẑ ≈ g(x̂)+ E
{

1

2

∑

i

(x − x̂)T H(i)xx

∣
∣
x̂(x − x̂)ei

}

= g(x̂)+ 1

2

∑

i

tr
(
H(i)xx

∣
∣
x̂ Px

)
ei .

(6.42)
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The trace operator appears as the quadratic form is a scalar quantity, and its
cyclic property is exploited to obtain the final form. For a detailed derivation, see
Mathai and Provost [41]. In this case, the expected value of the transformed density
depends on the second-order moment of the initial distribution through second-order
derivatives of the nonlinear function g, under the obvious assumption that g is twice
differentiable. The covariance matrix of z is [27]:

Pz ≈ ∇xg
∣
∣
x̂ Px ∇xg

∣
∣T
x̂ + 1

2

∑

i,j

tr
(
PxH

(i)
xx

∣
∣
x̂PxH

(j)
xx

∣
∣
x̂

)
eieTj . (6.43)

These terms could be used as compensation for the neglected quadratic effects in
the classical extended Kalman filter.

6.2.2.2 Unscented Transform

The Taylor expansion, and the consequent Extended Kalman Filter, involves the
linearisation of the dynamics. This can cause poor performance or filter divergence
when the dynamics is highly nonlinear or the initial conditions are known with
low accuracy. Furthermore, the Taylor expansion requires the explicit derivation of
derivatives, which is not always possible. Even when the functional dependencies
of g are explicitly known, this requirement makes the numerical system error-prone.

To solve these issues, Julier and Uhlmann developed a new technique to
approximate nonlinear transformations of the probability distribution functions.
They started from the intuition that it should be easier to approximate a normal
distribution than an arbitrary nonlinear function [31]. Indeed, instead of expanding
the transformation g(x), the considered alternative is to approximate the output
distribution p(z) directly based on a set of response samples.

This recent technique, named unscented transformation, fits a discrete distribu-
tion of Nσ sigma points xi to the initial density p(x). A weight wi , positive or
negative, is associated to each sigma point with the condition

∑
i wi = 1 to have an

unbiased estimate. Once this set of deterministic samples has been selected, they are
propagated through the nonlinear function zi = g(xi ), and from them the posterior
density moments are reconstructed [34]:

ẑ ≈
Nσ∑

i=1

wi zi (6.44)

Pz ≈
Nσ∑

i=1

wi (zi − ẑ)(zi − ẑ)T . (6.45)

As computing the moments of the resulting distribution is rather straightforward,
the key passage turns out to be the selection process of the sigma points and the
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associated weights. In the general approach, this selection process can be seen as
a constrained optimisation problem where the number of samples, the associated
weights and their position are the free variables [10]. The constraints are imposed
to meet the requirement that the discrete distribution, generated by the selected
weights and sigma points, reproduces important statistical characteristics of p(x).
As generally the number of free parameters can be higher than the number of
constraints, the remaining parameters can be used to minimise a penalty function,
e.g. higher-order moments deviation.

This general approach resulted in the birth of numerous variants of unscented
filters. The computational cost of the unscented transformation is proportional to
the number of sigma points employed, so there is a propensity to choose schemes
with only few degrees of freedom. Among them, the simplex unscented approach
requires a minimum number of Nx + 1 samples to match the mean and covariance
of a Nx dimensional normally distributed random vector x [30, 33]. On the other
hand, additional sigma points can be introduced to reproduce higher-order moments
of a Gaussian distribution, e.g. 2N2

x + 1 points are required to match up to the
fourth-order moment (kurtosis) with a penalty function minimising the sixth-order
moment [32]. The most used variant relies on the use of 2Nx + 1 sigma points [31].
This unscented transformation is able to approximate a Gaussian distribution up to
the third-order, while errors appear as a result of fourth-order cross-kurtoses terms.
In the derivation by Wan and Van Der Merwe, the points and weights are selected
symmetrically around the mean value as [63]:

x0 = x̂

xi = x̂ +
√

(Nx + λ)P (i)x for i = 1, . . . , Nx

xi = x̂ −
√

(Nx + λ)P (i−Nx)x for i = Nx + 1, . . . , 2Nx

(6.46)

w0 = λ/(Nx + λ)
wi = 1/[2(Nx + λ)] for i = 1, . . . , 2Nx ,

(6.47)

where λ is a scaling parameter and P (i)x is the i-th column of the covariance matrix
of x. The free scaling parameter can be chosen to minimise the deviation of the
kurtosis. This parameter is often rewritten as λ = α2(Nx + k) − Nx to better
control the covariance positive definiteness [10], where α tunes the sigma point
spread about the mean, while k can be used either to incorporate knowledge about
higher moments of the starting distribution or to minimise their deviation. This
reparameterisation causes a change in the weight for the central sample, which now
is w(m)0 = λ/(Nx + λ) when computing the mean, therefore used in Eq. (6.44),

while w(c)0 = λ/(Nx + λ)+ (1 − α2 + β), used in Eq. (6.45). The parameter β can
be used to incorporate a priori knowledge on the distribution of the initial variable,
e.g. β = 2 for Gaussian x [60, 63]. In the case of Gaussian initial distribution, the
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sigma points of this variant faithfully capture the mean and covariance, while the
transformed probability distribution reconstructed from the propagated samples has
exact mean for polynomial g(x) up to degree three and exact covariance for g(x)
linear [51].

The main advantage of the unscented transformation is that it does not require
differentiability, or derivative information, of the nonlinear mapping g but only
the propagation of a limited number of deterministic samples. It is worth stressing
that the Gaussianity approximation on the prior and updated distributions is not a
required assumption of the unscented transformation. Nonetheless, the majority of
practical filters employ this transformation with Gaussian distributions only, mainly
because of the simplification in the Bayes’ step.

6.2.2.3 Monte Carlo Methods

Another large family of techniques to approximate the posterior density is Monte
Carlo methods. Unlike unscented transformation methods, the set of samples is
generated randomly according to a given distribution. Therefore, this method does
not require any linearity or Gaussian assumption on the model. Furthermore, unlike
deterministic methods, the number of samples required for the mean to converge is
theoretically independent of the problem’s dimensionality [38]. With the propagated
samples, the moments are estimated as [27]:

ẑ ≈ 1

N

N∑

i=1

zi = 1

N

N∑

i=1

g(xi ) (6.48)

Pz ≈ 1

N − 1

N∑

i=1

(zi − ẑ)(zi − ẑ)T . (6.49)

In this conventional Monte Carlo, it is evident to infer how crucial it is to properly
select the random samples xi in accordance to the original probability distribution
p(x). This is numerically straightforward when p(x) is Gaussian or belongs to any
simple distribution family. However, in Bayesian filtering, it is usually numerically
demanding to sample directly from the required density because of its complex
functional form (see Eq. (6.19)).

Markov chain Monte Carlo techniques are a class of efficient methods to generate
the random samples from a distribution p(x). The basic concept is to replace
the target density sampling by a Markov chain which has p(x) as equilibrium
distribution, and sample a realisation of this instead. In the literature, there is an
abundance of algorithms, mainly differing by the transition Kernel used for the
Markov chain. The first example is the notable Metropolis algorithm [44]. Extensive
references are provided by Gilks et al. [23] or Brooks et al. [8].

Another class of methods is importance sampling, which draws from an approx-
imated density π(x), simpler to sample, instead of the original p(x). Then, the
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moments can be computed as in Eqs. (6.48) and (6.49) by weighting each sample
with a measure of the deviation between the original and sampled distribution. The
requirement on the importance density is that its support should be greater or equal
to the one of p(x) [38]. To compute the weight, we can decompose the expectation
formula as [51]:

E{z} = Ep{g(x)} =
∫

g(x)p(x)dx

=
∫

g(x)
p(x)
π(x)

π(x)dx = Eπ
{

g(x)
p(x)
π(x)

}

.

(6.50)

Therefore, as the samples xi are generated using π(x), their function evaluation
should be weighted by p(x)/π(x). The approximation of the expected value of z
now becomes:

ẑ ≈ 1

N

N∑

i=1

zi = 1

N

N∑

i=1

p(xi )
π(xi )

g(xi ) =
N∑

i=1

wig(xi ) . (6.51)

Hence, the weight of the ith sample is:

wi = 1

N

p(xi )
π(xi )

. (6.52)

Intuitively, the weights correct the bias associated to the samples selected from a
nonideal distribution. Clearly, the closer the importance distribution is to the original
one, the smaller the required bias correction is, i.e. wi ≈ 1/N . The same weights
computed for the expected value can be used for the covariance or higher-order
moment approximation. Liu [38] suggests to use the normalised weights:

w∗
i =

wi
∑
i wi

. (6.53)

The resulting estimate, although biased, often results in a smaller mean squared
error. The same weight choice is found in Sarkka [51] when deriving the importance
sampling form for conditional probabilities (see Sect. 6.3.5).

Indeed, this framework applies also for the density functions in the sequential
filtering algorithms, where p(x) and π(x) are substituted by conditional distribu-
tions. In an attempt to connect the generic notation above to the filtering problem of
interest, the vector x can be decomposed as x = x0:k = [x0, . . . , xk]. Hence, looking
at Eq. (6.50) with x0:k and substituting a density conditional on measurements
y1:k , we obtain the importance sampling approximation to the expectation operator
of the sequential filtering posterior distribution. However, the basic importance
sampling approach is not well-suited for sequential filtering approaches. Indeed,
when computing p(x0:k|y1:k) by the importance distribution π(x0:k|y1:k), it would
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be advantageous to exploit the previous density π(x0:k−1|y1:k−1). The same holds
for the marginal distribution with respect to the current state. For this reason,
sequential filters employ the sequential importance sampling variant [20]. Given
the decomposition of x = x0:k , the joint target density can be written as the product
of conditional densities as in Eq. (6.10). The importance distribution can be written
in a similar form:

π(x0:k) = π(x0)

k∏

j=1

π(xj |x0:j−1) . (6.54)

Hence, the formula for the weight for a specific sample is given by:

wk =
p(x0)

∏k
j=1 p(xj |x0:j−1)

π(x0)
∏k
j=1 π(xj |x0:j−1)

, (6.55)

where the multiplicative constant has been ignored for now. It is straightforward
to see how this approach suits the sequential estimation case. Indeed, by defining
w0 = p(x0)/π(x0), the recursive formula immediately follows:

wk = wk−1
p(xk|x0:k−1)

π(xk|x0:k−1)
. (6.56)

An equivalent approach can be derived for probabilities conditional on measure-
ments, as needed by filtering approaches [10], which will be presented in Sect. 6.3.5.

One major and quite frequent issue encountered in sequential importance
sampling is the degeneracy of the weights, i.e. when most of the particles have
an irrelevant weight. This effect is caused by the increase of the weight variance
with iterations [18]. Resampling routines add to the sequential importance sampling,
a step in which a subset of particles is substituted by new ones drawn from the
current weighted approximation of the density function. The resampling approach
for optimal filtering with a sequential importance algorithm has been introduced
by Gordon with the Bootstrap filter [24]. Plenty of variants exist, both on the
importance distribution selection and on the resampling techniques, in the broad
family of Sequential Monte Carlo methods. This class is well-suited for sequential
filtering problems in which the density functions rapidly vary in time [18]. A
detailed discussion is beyond the scope of this chapter, yet the interesting reader
can consult the existing comprehensive literature, e.g. Liu [38] or Doucet [20].

6.3 Filtering Algorithms

If the dynamical equations and observation model are time-varying linear and the
prior density distribution of x0 is Gaussian, all the involved probabilities between
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observations and after an observation update will retain a normal distribution
(see Sect. 6.2.1). This precious characteristic and the simple combination rules
of Gaussian distributions result in a closed-form exact solution of the filtering
equations called Kalman filter (KF), introduced in Sect. 6.3.1. However, in the
majority of real-world applications, the involved transformations are nonlinear, and
a closed-form solution does not exist in the general case. Nonetheless, the Gaussian
approximation of the conditional density proves sufficient for a wide range of
practical applications. To approximate the Gaussian evolution through a nonlinear
transformation, the techniques introduced in the previous section shall be used.
Specifically, the extended Kalman filter (EKF), presented in Sect. 6.3.2, expands
the nonlinear function in Taylor series and retains only the first terms, whereas the
unscented Kalman filter (UKF), described in Sect. 6.3.3, approximates the posterior
distribution using the unscented transformation deterministic approach.

The basic idea of approximating the probability density function as being
normally distributed has been embedded in the general framework of Gaussian
filtering. This denomination encloses a family of algorithms employing moment
matching approximations, and usually explicit cubature rules for computing the
integrals required by the expectation operator. As it turns out, the general Gaussian
filtering framework can be seen as a generalisation of the Kalman filter and some of
its extensions presented in this chapter. This framework will be shortly outlined in
Sect. 6.3.4.

When the assumption of normal densities is too restrictive or not representative,
other techniques should be employed to approximate the underlying real distribution
in a finite-dimensional basis. Among the several existing methods, the particle
filter employs sampling methods, hence resulting in a discrete distribution. As
a sampling-based method, the particle filter is highly flexible and capable of
approximating posterior distribution of any nature, when the number of samples
is selected appropriately. This filter will be introduced in Sect. 6.3.5.

6.3.1 Kalman Filter

In the linear case, the filtering model is described by the linear equations of
motion and observation model. In general, linear systems are rather easy to
characterise and often allow closed-form solutions. On the other hand, they can
model only simplified problems, as real-world systems generally involve complex
nonlinearities. Nonetheless, the closed-form solution of an associated linear system
can be used to construct an approximation of the original one, or in general can
provide useful insight in some of its properties.

The Kalman filter is the closed-form algorithm for the evolution of the condi-
tional probability density in a sequential linear filtering problem. The model for the
linear filtering problem definition (see Sect. 6.1.1) is formulated as:
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ẋ = F(t)x +G(t)w
y = H(t)x + ε

x0 ∼ Nx0(x̂0, P0) .

(6.57)

At time t0, before any observation, the conditional distribution coincides with the
prior distribution

p(x0|y0) = p(x0) = Nx0(x̂0, P0) , (6.58)

where y0 has been introduced for notation’s consistency, but it is a fictitious quantity.
For generality, the derivation process will be carried out starting from a generic
time tk−1 and distribution p(xk−1|y1:k−1) after an observation has been processed,
which could be also the initial time for k = 1 thanks to the fictitious observation
introduced.

The density distribution can be propagated to represent the state probability
distribution at a given time of interest. In the general case, the Kolmogorov partial
differential equation should be used (see Eq. (6.21)). However, in Sect. 6.2.1, it
has been shown how the first two moments evolve according to simple ordinary
differential equations in the linear case. As the initial condition is given by a
normally distributed density, the first two moments fully capture the statistics of the
conditional density. Therefore, when propagating at the time of the next observation,
the conditional probability is [29]:

p(xk|y1:k−1) = Nxk (x̂
−
k , P

−
k ) , (6.59)

where the superscript {·}− has been introduced to describe a quantity at an
infinitesimal time before tk , i.e. just before the observation update. Similarly, the
superscript {·}+ will be used to identify a quantity at an infinitesimal time after
tk , i.e. immediately after the update with a new measurement. The moments x̂−k
and P−

k can be obtained by numerical propagation of the ordinary differential
equations (6.33)–(6.34), respectively, with initial conditions x̂k−1 and Pk−1.

When an observation is available, this new knowledge is combined with the
dynamically propagated distribution to obtain a better estimate of the state. The
Kalman filter updates the conditional state distribution through Bayes’ rule, in the
sequential filtering form of Eq. (6.14). The second probability in the numerator
is computed as in Eq. (6.59). The density of the observation, conditional on the
state immediately before the observation, is given by Eq. (6.36), written here as
p(yk|xk) = Nyk (H(tk)xk, Rk). Lastly, the denominator could be decomposed as in
Eq. (6.18). However, instead of computing the quantity p(yk|y1:k−1) by integration,
we can first exploit a well-known property for computing the joint distribution of
two Gaussian random variables with conditional dependencies [51]:
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p(yk, xk|y1:k−1) = p(yk|xk, y1:k−1)p(xk|y1:k−1)

= p(yk|xk)p(xk|y1:k−1)

= Nyk (H(tk)xk, Rk)Nxk (x̂
−
k , P

−
k )

= Nxk,yk

((
x̂−k

H(tk)x̂
−
k

)

,

(
P−
k P−

k H
T
k

HkP
−
k HkP

−
k H

T
k + Rk

))

.

(6.60)
Then, as their joint distribution is Gaussian, the marginal distribution of yk is simply
computed as:

p(yk|y1:k−1) = Nyk

(
H(tk)x̂

−
k ,HkP

−
k H

T
k + Rk

)
. (6.61)

This simple marginalisation rule stems from the definition of multivariate normal
distributions and the linear algebra operators involved. With all the densities in
Eq. (6.14) derived, the resulting distribution via Bayes’ inference can be derived
by multiplication and division rules between normal distributions, leading to the
following result [29]:

p(xk|yk) =
Nyk (H(tk)xk, Rk) · Nxk

(
x̂−k , P

−
k

)

Nyk

(
H(tk)x̂

−
k ,HkP

−
k H

T
k + Rk

) = Nxk

(
x̂+k , P

+
k

)
, (6.62)

where

x̂+k =
(
HTR−1H + P−−1

k

)−1(
HT R−1

k ȳk + P−−1

k x̂−k
)

(6.63)

P+
k =

(
HTR−1H + P−−1

k

)−1
. (6.64)

These equations express the update step in the linear sequential filtering algorithm
after the observation value ȳk is received. However, this form requires the inversion
of a square matrix of dimension equal to the number of state variables. By matrix
operations, the update step can be reduced to:

x̂+k = x̂−k +Kk(ȳk −H x̂−k ) (6.65)

P+
k = P−

k −KkHP−
k , (6.66)

where Kk is the well-known Kalman gain defined as:

Kk = P−
k H

T
(
HP−

k H
T + Rk

)−1 . (6.67)

This algorithmic variant requires the inversion of a square matrix of a dimension
equal to the number of new observations, which in practical applications is smaller
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than the state dimension. Furthermore, if the observations are uncorrelated, i.e. ifRk
is diagonal, the observations can be processed one by one, therefore requiring only
a scalar division, eventually leading to the same estimate obtained by processing
the batch ȳk at once [29]. Therefore, for observations the algorithm can now be
schematised as in Algorithm 1. The Kalman Filter is one of the very few closed-

Algorithm 1 Kalman Filter
Given the filtering model in Eq. (6.57)

1: Initialise tk−1 = t0, x̂+k−1 = x̂0, P+
k−1 = P0, tk = t1

2: for Observation times do
Prediction step: compute p(xk |y1:k−1) = Nxk (x̂

−
k , P

−
k )

3: Propagate mean with ˙̂x = F x̂
x̂+k−1 → x̂−k

4: Propagate covariance with Ṗ = FPx + PxFT +GQGT
P+
k−1 → P−

k

Update step: after observation ȳk compute p(xk |y1:k) = Nxk (x̂
+
k , P

+
k )

5: Compute Kalman gain
Kk = P−

k H
T (HP−

k H
T + Rk)−1

6: Update mean with observation information
x̂+k = x̂−k +Kk(ȳk −H x̂−k )

7: Update covariance with observation covariance
P+
k = P−

k −KkHP−
k

8: Update quantities for loop iteration
x̂+k−1 = x̂+k , P+

k−1 = P+
k , k = k + 1

9: end for

form solutions of the general sequential filtering equations. Although it relies on
restrictive assumptions, historically it had a crucial role in the development of
approximated numerical techniques which are employed in real-world applications.
This version of the Kalman filter is likely the most simple for gaining insight in
its prediction-update sequential scheme. However, for actual numerical implemen-
tation, Algorithm 1 is not the most robust alternative. Indeed, numerical errors
could cause the covariance matrix to lose its symmetry and positive definiteness
properties [58]. Rather than Eq. (6.66), alternative updates for the covariance matrix
are proposed to have a better numerical stability [4, 7, 9, 58] . For a specialised and
instructive overview on the practical algorithm variants for the Kalman filter, the
reader is reminded to specific references [25].

One formulation that is worth to discuss is the one employing the state transition
matrix to propagate the state. Indeed, as anticipated in the previous section, the
dynamics of a linear system can be formulated by integral equations as [29]:

xk = Φ(tk, tk−1)xk−1 +
∫ tk

tk−1

Φ(tk, τ )G(τ)dw . (6.68)
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where the integral term has zero-mean. The state transition matrix evolution is given
by:

Φ̇(t, tk−1) = F(t)Φ(t, tk−1), with Φ(tk−1, tk−1) = I . (6.69)

In this formulation, Eqs. (6.33) and (6.34) can be reformulated as [58]:

x̂k = Φ(tk, tk−1)x̂k−1

Px(tk) = Φ(tk, tk−1)Px(tk−1)Φ
T (tk, tk−1)

+
∫ tk

tk−1

Φ(tk, τ )G(τ)Q(τ)G
T (τ)ΦT (tk, τ )dτ .

(6.70)

When w is approximated to be a random sequence, i.e. piecewise constant w(t) =
wk for tk−1 ≥ t ≥ tk , with covarianceQk−1, Eq. (6.68) can be written as:

xk = Φ(tk, tk−1)xk−1 + Γ (tk, tk−1)wk−1 , (6.71)

with Γ (tk, tk−1) = ∫ tk
tk−1
Φ(tk, τ )G(τ)dτ which can be computed by quadrature.

The second term of Eq. (6.70) becomes:

Px(tk) = Φ(tk, tk−1)Px(tk−1)Φ
T (tk, tk−1)+ Γ (tk, tk−1)Qk−1Γ

T (tk, tk−1) ,
(6.72)

where Γ (tk, tk−1) is called process noise transition matrix [58].
The corresponding algorithm for the state transition matrix approach is schema-

tised in Algorithm 2. This procedure and its corresponding algorithm show that a
linear filtering problem with continuous dynamics and discrete observations can be
translated into an equivalent fully discrete linear filtering problem. This equivalence
in linear filtering problems stands as an intuitive, although not formal, proof of
the applicability of the techniques for nonlinear transformation approximation
introduced in the previous section to the continuous-discrete filtering problem.

As a final note of the discussion on the Kalman filter, it is worth discussing the
nature of the noise term in the practical applications. Indeed, since in aerospace
applications the dynamics is regarded as deterministic, although not completely
known or modelled, the term w is not a proper Gaussian noise. Nonetheless, in such
cases, it is just a useful tool for taking into account errors arising from unmodelled
terms, neglected nonlinearities, numerical errors and so on [29].

In statistical derivations, this term is often left out, resulting in the covariance
matrix evolution being determined exclusively by the deterministic terms (step 4 of
Algorithm 1, step 5 of Algorithm 2). Then, a rightful doubt could arise whether the
term w is actually necessary for similar applications. Clearly, it introduces analytical
difficulties in the filter derivation and numerical complexity in the algorithm.
Nevertheless, it turns out that the additive term in the covariance propagation
helps the filter accuracy and general performance. Indeed, without the random
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Algorithm 2 Kalman Filter with state transition matrix
Given the filtering model in Eq. (6.57)

1: Initialise tk−1 = t0, x̂+k−1 = x̂0, P+
k−1 = P0, tk = t1

2: for Observation times do
Prediction step: compute p(xk |y1:k−1) = Nxk (x̂

−
k , P

−
k )

3: Propagate state transition matrix Φ̇(t, tk−1) = F(t)Φ(t, tk−1)

I → Φ(tk, tk−1)

4: Propagate mean estimate
x̂−k = Φ(tk, tk−1)x̂

+
k−1

5: Propagate covariance matrix
P−
k = Φ(tk, tk−1)P

+
k−1Φ

T (tk, tk−1)+ Γ (tk, tk−1)Qk−1Γ
T (tk, tk−1)

Update step: after observation ȳk compute p(xk |y1:k) = Nxk (x̂
+
k , P

+
k )

6: Compute Kalman gain
Kk = P−

k H
T (HP−

k H
T + Rk)−1

7: Update mean with observation information
x̂+k = x̂−k +Kk(ȳk −H x̂−k )

8: Update covariance with observation covariance
P+
k = P−

k −KkHP−
k

9: Update quantities for loop iteration
x̂+k−1 = x̂+k , P+

k−1 = P+
k , k = k + 1

10: end for

term, the state covariance matrix Pk could approach zero when the number of
processed observations is quite large. In such cases, the covariance trace slightly
increases during propagation between observations, and it drops during the update
step by the quantity tr(KkHP

−
k ), i.e. depending on the accuracy of the processed

observation [58]. A high number of accurate observations could therefore result in
an asymptotically zero state covariance matrix, i.e. the belief that the state estimate
is extremely accurate. This results directly in a small Kalman gain and therefore
causes the filter state estimate to become insensitive to new observations. This will
cause the filter to diverge due to neglected dynamical nonlinearities (introduced in
the next section) or unmodelled terms [52]. On the other hand, if the noise term
is employed, the state covariance matrix will asymptotically approach the non-
zero noise covariance value. Hence, the filter state estimate will always remain
sensitive to new observations. Intuitively, in practical applications, the process noise
expedient is used to account for the neglected dynamics by explicitly telling the filter
that its dynamical knowledge is imperfect.

6.3.2 Extended Kalman Filter

Real-world state estimation problems usually involve nonlinear dynamical and
measurement models, and the Kalman filter cannot be directly applied. In the pre-
vious section, several methods for approximating nonlinear transformation where
introduced. One straightforward approach is to linearise these transformations and
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apply the Kalman filter to the corresponding linearised system. Many filters have
been developed following the linearisation procedure [35]. In this section, one
approach based on the first-order truncation of the Taylor series (see Sec. 6.2.2.1)
will be presented. This technique extends the Kalman filter application to filtering
problems with differentiable nonlinear functions, and therefore it is named extended
Kalman filter [21, 43, 56]. It is clear that this method will fail if the true state is not
close enough to the reference point of the expansion, i.e. when the nonlinear terms
cannot be reasonably neglected.

The nonlinear filtering problem considered here is defined by the following
model:

ẋ = f(t, x)+G(t)w
y = h(t, x)+ ε

x0 ∼ Nx0(x̂0, P0) .

(6.73)

The nonlinear transformations f(t, x) and h(t, x) can be expanded around the
reference trajectory generated by the deterministic term in the equations of motion
with initial condition x̄k:

˙̄x(t) = f(t, x̄)

x̄(t0) = x̄0 .
(6.74)

Therefore, the equations for the deviation δx = x − x̄ evolution from the reference
trajectory can be approximated as:

δẋ = f(t, x)− f(t, x̄)+G(t)w
= f(t, x̄)− f(t, x̄)+ ∇xf

∣
∣
x̄δx + O

(
δx2)+G(t)w

≈ ∇xf
∣
∣
x̄δx +G(t)w .

(6.75)

Similarly, the observations can be defined as deviation δy = y−ȳ with respect to the
deterministic measurements that would result from x̄. The resulting approximated
model follows as:

δy = h(t, x)− h(t, x̄)+ ε

= h(t, x̄)− h(t, x̄)+ ∇xh
∣
∣
x̄δx + O

(
δx2)+ ε

≈ ∇xh
∣
∣
x̄δx + ε .

(6.76)

For both the linearised dynamics and observation model, the partial derivative
Jacobian matrix is evaluated along the reference trajectory x̄. The prior distribution
of the corresponding linear system follows from the linearity of the expectation
operator and the fixed deterministic nature of the initial reference state:
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δx0 ∼ Nδx0(x̂0 − x̄0, P0) . (6.77)

This property on the covariance holds at any time Pδx = Px because the reference
point x̂ is deterministic and fixed. The linearised system can be solved directly with
the Kalman filter.

There is freedom in the choice of the reference point x̄0, and the obvious choice is
x̄0 = x̂0. In this case, from Eq. (6.77) and Eq.(6.33), it is straightforward to see that,
before any observation update, E{δx} = δ̂x = 0. This is a valuable characteristic as
the linearised model results accurate only for relatively small deviations. However,
when an observation comes in, the update step changes the best estimate to x̂+k from
the reference value x̄k = x̂−k . In particular, when the covariance matrix of the state
P−
k is large, i.e. the estimate is not a proper measure of the distribution, the Kalman

gain is large, and therefore the update step will cause the new estimate to deviate
significantly from the reference state. In sequential filtering, the workaround is to re-
linearise the trajectory around the new best estimate x̂+k after an observation update.
Indeed, if we assume that an observation is improving our knowledge of the state,
then it is natural to linearise around a point supposedly closer to the true state to
have smaller nonlinearity-induced errors. With this procedure, the expectation of
the state deviation will be zero δ̂x = 0 after the update step as well. The resulting
numerical procedure is schematised in Algorithm 3.

Algorithm 3 Extended Kalman filter
Given the filtering model in Eq. (6.73)

1: Initialise tk−1 = t0, x̄+k−1 = x̂+k−1 = x̂0, P+
k−1 = P0, tk = t1

2: for Observation times do
Prediction step: compute p(xk |y1:k−1) = Nxk (x̂

−
k , P

−
k )

3: Propagate reference trajectory with ˙̂x = f(t, x̄)
x̄+k−1 → x̄−k

4: Propagate covariance with Ṗ = ∇xf
∣
∣
x̄Px + Px∇xf

∣
∣T
x̄ +GQGT

P+
k−1 → P−

k

Update step: after observation ȳk compute p(xk |y1:k) = Nxk (x̂
+
k , P

+
k )

5: Compute Kalman gain

Kk = P−
k ∇xh

∣
∣T
x̄ (∇xh

∣
∣
x̄ P

−
k ∇xh

∣
∣T
x̄ + Rk)−1

6: Compute difference between received and predicted observations
δȳk = ȳk − h(tk, x̄

−
k )

7: Update deviation mean and state estimate with observation information
δx̄+k = Kkδȳk , x̂+k = δx̄+k + x̄−k

8: Update covariance with observation covariance
P+
k = P−

k −Kk∇xh
∣
∣
x̄ P

−
k

9: Update quantities for loop iteration
x̄+k−1 = x̂+k−1 = x̂+k , P+

k−1 = P+
k , k = k + 1

10: end for

In the prediction step, the reference trajectory is integrated exactly with the
deterministic terms of the nonlinear dynamics. On the other hand, the linearised
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dynamics is used to propagate the covariance information. In the same fashion,
the nonlinear observation model is used to compute the difference between the
received and predicted observations, while the linearised measurement model is
used to update the state estimate and its corresponding covariance matrix. All the
Jacobian matrices are evaluated at the reference trajectory {·}|x̄ propagated as in step
3 of Algorithm 3. This reference state is updated after each update step to the best
estimate.

As in the classic Kalman filter, the extended Kalman filter can be derived in the
state transition notation. However, the procedure and resulting algorithm are similar
to the classic case, and it will not be presented here. Another possible derivation
is achieved by expanding directly the involved nonlinear transformations in Taylor
series [51]. The same result can be generated by a statistical reasoning with least
squares approach [58].

Several variants and heuristics exist to improve the basic extended Kalman filter.
A solid improvement to this filter is realised with local iterations of the update steps
5–8 when the measurements of nonlinearity are critical [17, 29]. The iterations are
called local as they are realised at a fixed time. Iterating is a regular tool for solving
nonlinear problems with linear sub-steps. In the same fashion, the original update
routine would involve a nonlinear measurement model, but there is no closed-form
solution unless a linearisation is performed. Therefore, after the updated estimate
and covariance are computed, the reference values can be updated to their values
x̄−k = x̂+k and P−

k = P+
k and steps 5–8 repeated linearising with respect to these

quantities until the changes in the optimal estimate are under a certain threshold.
In Sect. 6.2.2.1, it was shown that if the quadratic term is retained, additional

terms should be included in the mean and covariance propagation (see Eqs. 6.42
and 6.43) through the nonlinear transformations, resulting in the so-called second-
order extended Kalman filter. The higher order in the Taylor expansion helps
to cope with the neglected system nonlinearities, at the expense of increased
preliminary analytical derivations and increased computational burden. For the
complete derivation, see Särkkä [51].

Plenty of variants and heuristics have been developed for generic or specific
problems. In the vast literature, extensive references with a particular focus on the
practical approaches are available [26, 66]. The extended Kalman filter is widely
applied in navigation and orbit determination problems for space applications due
to its simplicity and effectiveness [51, 58]. However, the filter may fail if the initial
guess is far from the real state, a situation in which the linearised dynamics is not
properly representative of the true trajectory evolution. Another drawback is that
usually this method relies on the explicit derivative computation of the dynamical
and measurement models, requiring rather lengthy and error-prone derivations.
Therefore, generally the extended Kalman filter is not suitable for black box
systems. Numerical finite-difference schemes can be implemented for the derivative
computation, however resulting in worse computational performance.
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6.3.3 Unscented Kalman Filter

The unscented Kalman filter (UKF) works directly with the nonlinear filtering
model, i.e. without approximating the nonlinear transformations. Hence, the deriva-
tion presented for the Kalman filter and adapted for the extended version needs to
be updated for nonlinear functions.

In particular, the mean and covariance of the density functions p(xk|y1:k−1) and
p(yk|xk) can be computed by a direct application of the unscented transform. On
the other hand, Eq. (6.60) should be rewritten for a general nonlinear observation
relationship. In a generic notation, for y = h(x) + ε (neglecting the explicit
dependency on time), x ∼ N (x̂, P ) and ε ∼ N (0, R), under the application of
the unscented transform with posterior Gaussian, it holds that [51]:

p(x, y) = Nx,y

((
x̂
ŷ

)

,

(
P C

CT S

))

, (6.78)

where ŷ is the expected value of the observations, S the observation’s covariance
matrix and C the cross covariance between state and observations. These quantities
are computed using the unscented transformation samples xi and yi = h(xi ).
Specifically, ŷ is computed directly using Eq. (6.44), whereas S is obtained by
Eq. (6.45) with the addition of the additive noise covariance as:

S ≈
Nσ∑

i=0

wi (yi − ŷ)(yi − ŷ)T + R . (6.79)

The cross covariance matrix is computed by the samples and corresponding
responses deviations from the reference value:

C ≈
Nσ∑

i=0

wi (xi − x̂)(yi − ŷ)T . (6.80)

Adapting Eq. (6.78) for conditional probabilities in the sequential filtering
framework, comparing it with Eq. (6.60) and repeating the same marginalisation
procedure as in Sect. 6.3.1, the Kalman gain can be equivalently defined for the
unscented Kalman filter as [51, 55]:

Kk = CkS−1
k . (6.81)

With these new definitions, the update step of the unscented Kalman filter is
reformulated as:

x̂+k = x̂−k +Kk(ȳk − ŷk) (6.82)
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P+
k = P−

k −KkSkKTk . (6.83)

The algorithm of the unscented Kalman filter therefore follows as schematised in
Algorithm 4, where the formulation with 2Nx + 1 sigma points is used.

Algorithm 4 Unscented Kalman filter
Given the filtering model in Eq. (6.73)

1: Initialise tk−1 = t0, x̂+k−1 = x̂0, P+
k−1 = P0, tk = t1

2: for Observation times do
Prediction step: compute p(xk |y1:k−1) = Nxk (x̂

−
k , P

−
k )

3: Select sigma points and relative weights from Eq. (6.47) (or modified w(m)i , w(c)i )
⎧
⎪⎪⎨

⎪⎪⎩

x0(tk−1) = x̂+k−1

xi (tk−1) = x̂+k−1 +
√

(Nx + λ)P+(i)
k−1 for i = 1, . . . , Nx

xi (tk−1) = x̂+k−1 −
√

(Nx + λ)P+(i−Nx )
k−1 for i = Nx + 1, . . . , 2Nx

4: Propagate samples with nonlinear dynamics ẋi = f(t, xi ) for i = 0, . . . , 2Nx
xi (tk−1)→ xi (tk)

5: Compute predicted state mean and covariance
x̂−k = ∑2Nx

i=0 w
(m)
i xi (tk), P−

k = ∑2Nx
i=0 w

(c)
i (xi (tk)− x̂−k )(xi (tk)− x̂−k )T

Update step: after observation ȳk compute p(xk |y1:k) = Nxk (x̂
+
k , P

+
k )

6: Select new sigma points
⎧
⎪⎪⎨

⎪⎪⎩

x0(tk) = x̂−k
xi (tk) = x̂−k +

√

(Nx + λ)P−(i)
k for i = 1, . . . , Nx

xi (tk) = x̂−k −
√

(Nx + λ)P−(i−Nx )
k for i = Nx + 1, . . . , 2Nx

7: Propagate samples with nonlinear observation model yi = h(t, xi ) for i = 0, . . . , 2Nx
xi (tk)→ yi (tk)

8: Compute predicted observation mean, covariance and state observation cross covariance
ŷk = ∑2Nx

i=0 w
(m)
i yi (tk),

Sk = ∑2Nx
i=0 w

(c)
i (yi (tk)− ŷk)(yi (tk)− ŷk)T , Ck=∑2Nx

i=0 w
(c)
i (xi (tk)−x̂−k )(yi (tk)− ŷk)T

9: Compute Kalman gain
Kk = CkS−1

k

10: Update mean with observation information
x̂+k = x̂−k +Kk(ȳk − ŷk)

11: Update covariance with observation covariance
P+
k = P−

k −KkSkKTk
12: Update quantities for loop iteration

x̂+k−1 = x̂+k , P+
k−1 = P+

k , k = k + 1
13: end for

Since the approximation is performed on the distributions directly, the unscented
Kalman filter does not require differentiability or derivative knowledge of the
nonlinear transformations. Therefore this method is suitable for black box imple-
mentation. In general, the unscented transformation is more accurate in propagating
the density mean and covariance through a nonlinear function than Taylor-based
linearisation for a comparable computational cost [34, 55]. Julier and Uhlmann [31]
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claimed that overall the unscented Kalman filter is a more direct generalisation of the
Kalman filter rather than the extended Taylor series one. Indeed, the same reasoning
addressed at the beginning of the section on the definition of linear filtering arises.
There is no theoretical need of linearity on the dynamical and measurement models
to approximate the posterior as a normal distribution, and the unscented transform is
a powerful tool to achieve such approximation by only evaluating a set of Gaussian
moment equations for the selected propagated samples [26].

As for the other filters, plenty of variants, heuristics and generalisations were
developed for the unscented Kalman filter. Among them, some involve the use of
different numbers of sigma points resulting in higher-order techniques, as already
outlined in Sect. 6.2.2.2. An alternative filter can also be formulated to account
for a non-additive noise contribution, by augmenting the state vector with process
and observation noises before using the unscented transformation [34, 51]. For the
difference in the derivations by state augmentation, see Wu et al. [64]. Extensive
references for the original unscented filter and its numerous extensions can be found
in the literature [59].

Although historically developed and extensively employed with Gaussian priors
and posteriors, which provide a clear and simple result, it is worth to recall that
there is no need to rely on the Gaussianity assumption at all in the unscented
transformation.

6.3.4 Gaussian Filter Framework

The current section dealt entirely with filtering techniques which, directly or indi-
rectly, approximate the posterior distribution p(xk|y1:k) as Gaussian. The extended
Kalman filter constructs indirectly a Gaussian posterior by linearising the nonlinear
transformations, therefore ensuring the conservation of the distribution’s Gaussian
nature (see Sec. 6.2.1). The unscented Kalman filter directly fits a Gaussian distri-
bution to the propagated samples by matching the first two moments of the resulting
discrete density.

The latter idea was shown to be a particular case of a general framework for
Gaussian assumed density filter [28, 42, 51, 65]. The goal is again to approximate the
posterior density p(xk|y1:k) as Gaussian, regardless of the nonlinearity properties of
the dynamical and measurement models.

For a general nonlinear transformation z = g(x), with x ∼ N (x̂, Px), the
moment matching approximation is constructed as in Eq. (6.78). Now, the moments
are computed by the expectation operator. Explicitly:

p(x, z) = Nx,z

((
x̂
ẑ

)

,

(
P C

CT S

))

,

where now:
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ẑ =
∫

g(x)Nx(x̂, Px)dx

S =
∫

(g(x)− ẑ)(g(x)− ẑ)TNx(x̂, Px)dx

C =
∫

(x − x̂)(g(x)− ẑ)TNx(x̂, Px)dx .

(6.84)

From the moment matching formulation, a Gaussian can be fit to all the
probability densities involved in the prediction and update step by using the
definition of expectation. By defining the integral equations of motion as

x(tk) = F(xk−1) �
∫ tk

tk−1

f(t, x)dt + x(tk−1). (6.85)

the general algorithm for the Gaussian filter is schematised in Algorithm 5, using
the same form of update equations as presented for the UKF [51].

Algorithm 5 Gaussian filter
Given the filtering model in Eq. (6.73)

1: Initialise tk−1 = t0, x̂+k−1 = x̂0, P+
k−1 = P0, tk = t1

2: for Observation times do
Prediction step: compute p(xk |y1:k−1) = Nxk (x̂

−
k , P

−
k )

3: Compute mean estimate
x̂−k = ∫

F(xk−1)N (x̂+k−1, P
+
k−1)dxk−1

4: Propagate covariance matrix
P−
k = ∫

(F(xk−1)− x̂−k )(F(xk−1)− x̂−k )TN (x̂+k−1, P
+
k−1)dxk−1

Update step: after observation ȳk compute p(xk |y1:k) = Nxk (x̂
+
k , P

+
k )

5: Compute predicted observation mean, covariance and state observation cross covariances
ŷk =

∫
h(tk, xk)N (x̂−k , P

−
k )dxk

Sk =
∫
(h(tk, xk)− ŷk)(h(tk, xk)− ŷk)TN (x̂−k , P

−
k )dxk

Ck =
∫
(xk − x̂−k )(h(tk, xk)− ŷk)TN (x̂−k , P

−
k )dxk

6: Compute Kalman gain
Kk = CkS−1

k

7: Update mean with observation information
x̂+k = x̂−k +Kk(ȳk − ŷk)

8: Update covariance with observation covariance
P+
k = P−

k −KkSkKTk
9: Update quantities for loop iteration

x̂+k−1 = x̂+k , P+
k−1 = P+

k , k = k + 1
10: end for

All the methods developed previously can be rederived from this general form
depending on how the integrals above are solved. Indeed, this is the generalisation
for general nonlinear functions of Eq. (6.60), used to derive the KF. The EKF is
obtained by approximating g(x) at the first order in Eq. (6.84), which then can be
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solved analytically. In addition, it can be shown that Eqs. (6.79)–(6.80), used in
the UKF derivation, are the result of a Gauss-Hermite cubature rule application to
Eq. (6.84) [28].

Recently, numerous novel filtering techniques have arisen from this general
moment matching formulation, as it allows to use any approximation rule for the
integral computation. Among the deterministic methods, Gauss-Hermite quadrature
and spherical cubature are efficient schemes [2, 28, 51, 65]. Also nondeterministic
methods can be used, such as the often employed Monte Carlo family sampling
techniques.

6.3.5 Particle Filter

The nonlinear model in Eq. (6.73), or its non-additive noise counterpart, can be
used to compute the conditional probabilities p(xk|xk−1) and p(yk|xk), whose
distribution depends on the assumed probability density function of the process
and observation noises. Therefore, these quantities are assumed to be given in the
problem formulation tackled in this section [51].

The particle filter is a state estimation technique based on sequential Monte Carlo
methods (see Sect. 6.2.2.3). As the name implies, it relies on a set of weighted
random particles to approximate the posterior distribution [3, 24]:

p(xk|y1:k) ≈
∑

i

w
(i)
k δ

(
xk − x(i)k

)
, (6.86)

where δ(·) is the Dirac delta function. From this distribution, the expectation of a
generic function, and therefore its moments, can be computed by the weighted sum
[51]:

E{g(xk)|y1:k} ≈
∑

i

w
(i)
k g

(
x(i)k

)
. (6.87)

The sample and weights are computed using the sequential importance sampling
technique adapted to account for the observations. With the help of the importance
distribution π , the weights at step k are defined by:
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w
(i)
k =

p
(

x(i)0:k|y1:k
)

π
(

x(i)0:k|y1:k
) =

p
(

yk|x(i)0:k, y1:k−1

)
p
(

x(i)0:k|y1:k−1

)
/p

(
yk|y1:k−1

)

π
(

x(i)k |x(i)0:k−1, y1:k
)
π
(

x(i)0:k−1|y1:k−1

)

≈
p
(

yk|x(i)k
)
p
(

x(i)k |x(i)0:k−1, y1:k−1

)
p
(

x(i)0:k−1|y1:k−1

)

π
(

x(i)k |x(i)0:k−1, y1:k
)
π
(

x(i)0:k−1|y1:k−1

)

=
p
(

yk|x(i)k
)
p
(

x(i)k |x(i)k−1

)

π
(

x(i)k |x(i)0:k−1, y1:k
)

p
(

x(i)0:k−1|y1:k−1

)

π
(

x(i)0:k−1|y1:k−1

)

= w(i)k−1

p
(

yk|x(i)k
)
p
(

x(i)k |x(i)k−1

)

π
(

x(i)k |x(i)0:k−1, y1:k
) ,

(6.88)
where the Markov properties (6.7)–(6.8) have been used. The normalisation quantity
p(yk|y1:k−1) has disappeared because when the weights are normalised to sum
to unity, w(i)∗k = w

(i)
k /

∑
j w

(j)
k , it cancels out regardless. From the problem

formulation in Eq. (6.73), and because π(·) should be chosen to be simple to
sample from, it is straightforward to evaluate this weight update equation. As in
Sect. 6.2.2.3, the importance sampling was chosen to decompose as:

π
(

x(i)0:k|y1:k
)
= π

(
x(i)k |x(i)0:k−1, y1:k

)
π
(

x(i)0:k−1|y1:k−1

)
. (6.89)

This choice is key in the sequential algorithm, as the sample x(i)0:k from π(x(i)0:k|y1:k)
can be obtained by simply augmenting x(i)0:k−1 from π(x(i)0:k−1|y1:k−1) with x(i)k from

π(x(i)k |x(i)0:k−1, y1:k), avoiding therefore to sample the full joint distribution [3].
With the developed sequential framework, the general scheme of a particle filter

algorithm is given in Algorithm 6. There are infinite ways to choose the importance

Algorithm 6 Particle filter (no resampling)
Given the filtering model in Eq. (6.73)

1: Draw N particles x(i)0 ∼ p(x0), with equal weights w(i)0 = 1/N
2: for k=1:Observation times do
3: Sample new particles x(i)k and augment vector x(i)0:k = [x(i)0:k−1, x

(i)
k ]

x(i)k ∼ π(xk |x(i)0:k−1, y1:k)
4: Compute corresponding weights w(i)k and normalise to w(i)∗k

w
(i)
k = w(i)k−1 · p(yk |x(i)k )p(x(i)k |x(i)k−1)/π(x

(i)
k |x(i)0:k−1, y1:k)

w
(i)∗
k = w(i)k /

∑
j w

(j)
k

5: end for
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distribution. Obviously, good properties are the simplicity to draw samples from it
and the ease to evaluate the probability density associated to a particle.

The Bootstrap filter is a particle filter which employs the transitional density as
importance distribution [24]:

π = p(xk|xk−1) . (6.90)

This particular choice leads to the simplification of the weight update equation to:

w
(i)
k = w(i)k−1 p

(
yk|x(i)k

)
. (6.91)

The resulting algorithm, the first particle filter ever, is simple, intuitive and modular.
Indeed, the samples are simple to draw from the transitional density, and the
weight update requires the evaluation of the observation’s conditional density,
given by problem formulation. On the other hand, it draws samples according to
the dynamical information only. Hence, when there is little overlap between the
predicted and the observation distributions, most of the particles will be associated
to small importance weights, and the posterior distribution’s approximation will
be dominated by a very limited number of particles with large weights [48].
Since each particle requires the same amount of computational load, this filter
implementation is often inefficient as it requires a high number of particles for
accurate approximations.

It is clear how a trade-off between the resemblance of the importance distribution
to the true posterior and the computational efficiency is the key of particle filters.
Plenty of research has been, and still is, focused on the selection of optimal impor-
tance distributions. As a general rule, it is advantageous to retain the conditionality
on the last measurement [48].

One alternative which minimises the variance of the importance weights is [19]:

π = p(xk|xk−1, yk) . (6.92)

This importance density leads to the weight update equation:

w
(i)
k−1 = w(i)k−1 p

(
yk|x(i)k−1

)
. (6.93)

However, both the equations cannot be directly used. When this is the case, local
linearisation techniques, e.g. EKF or UKF, can be employed to create suitable
importance distribution [19, 51, 61].

As introduced in Sect. 6.2.2.3, and discussed for the Bootstrap filter, one issue
often encountered is the weight degeneracy as a result of sampling from an
inappropriate importance distribution. Therefore, another way to improve computa-
tional efficiency is to introduce resampling techniques, which remove low-weighted
particles and replace them with duplicates of the high-weighted samples. As it
is often a matter of heuristics when and how this resampling step should be
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performed, numerous alternatives have been studied in the literature. The Bootstrap
filter performs a resampling step after each observation update, which substitutes
the particles with a new set of particles according to the current discrete density
in Eq. (6.86) and re-initialises the weights to w(i)k = 1/N . Alternatively, the
resampling step can be performed after n weight updates. Another alternative
requires the introduction of a check step in which the variance of the weights is
assessed, leading to the so-called adaptive resampling. If this variance becomes too
high, or equivalently its inverse too low, the particles are resampled [39]. In general,
this approach helps to better distribute the samples in the zones where the weights
are higher, and therefore the resampling step is always present in particle filters [51].

However, along with its advantages, the resampling step introduces an undesired
phenomenon called sample impoverishment [49]. Indeed, the resampling technique
replicates, possibly several times, particles associated with high weights after a
filter iteration. Then, these samples are propagated via the importance distribution,
and they are supposed to diversify as a result of the process noise. However, if
the process noise is small, the same initial particles will end up to be close after
propagation. Eventually, in degenerate cases, all the particles will collapse to the
same point [55]. Several techniques exist to mitigate this issue: roughening, which
adds random noise to the particle just after the resampling process [20, 24]; prior
editing, using roughening on the prior samples with small weights [24, 55]; regular-
ized particle filtering, which performs resampling from a continuous approximated
auxiliary density function [20, 49]; Markov chain Monte Carlo resampling [22, 49]
and auxiliary particle filtering [46].

The particle filter suffers from the so-called curse of dimensionality, as several
studies have shown that the number of particles needed for a successful filtering
process scales exponentially with the state dimension [5, 57, 62]. When some
components of the state vector follow a linear evolution and they are Gaussian,
while the others are non-Gaussian, the computational burden can be reduced by
evaluating part of the filtering equations analytically, while the rest still require
sampling techniques [26, 51]. The resulting algorithm is called Rao-Blackwellized
particle filter [1, 11, 45].

Although relatively recent, there exists an extensive literature on particle filters,
its variants and associated heuristics. Mainly, this topic can be found in the literature
focused on sequential Monte Carlo methods in general [20, 38], or on filtering
techniques in particular [10, 49, 55].

6.4 Conclusions

State estimation theory is of crucial importance for a great variety of fields. In
this framework, the time-varying state of a hidden dynamical system is sought by
combining uncertain evolution knowledge with noisy observations.
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This chapter introduced both the fundamental concepts of state estimation in
general, and filtering theory in particular, through its probabilistic development, and
practical techniques for computing its solution.

In Sect. 6.1, the general mathematical statement was introduced with the building
blocks which are necessary for the filtering problem discussed in this chapter:
time-continuous dynamical equations, an observation model and a known initial
distribution of the state. Within the class of state estimation, the main focus was
filtering theory, which aims at computing the state distribution at the time of the
last received observation. Hence, filtering is appropriate for real-time applications.
The inference step needed to combine dynamical and measurement information
was solved by Bayes’ rule. Its application to the current setting was presented,
and two mathematically equivalent update rules were derived. One of them suits
a sequential scheme convenient for real-time applications (sequential filtering),
while the other processes a whole set of observations at once (batch processor).
As the chapter focused on the former, key importance was given on analytical and
numerical techniques to compute the corresponding update step. The section ended
with a discussion on which estimate should be used as representative of the state
probability conditional distribution. A general method to compute optimal statistical
estimators via loss functions was presented. Among the alternatives, specific loss
functions allow to select the conditional distribution mean, mode, median, etc.

For any filtering algorithm, one necessary step is to be able to describe, or
approximate, how the state distribution evolves through the dynamical equations
and measurement model. In Sect. 6.2, the methods for propagating probability
distributions through a transformation were presented. Initially, the exact solution
for linear dynamics, linear observation model and zero-mean Gaussian noises was
presented: if the input random variable is normally distributed, the transformed
variable is still Gaussian with mean and variance analytically computed. Moreover,
the case of a generic nonlinear function was considered and methods to approximate
the transformed distribution introduced. Specifically, the Taylor expansion and the
unscented transform approximate, respectively, the transformation and the posterior
to have a final normal distribution, whereas Monte Carlo methods are able to
describe generic posteriors using sampling-based discrete distributions.

Lastly, in Sect. 6.3, practical algorithms to compute or approximate the filtering
solution were derived, described and schematised. Specifically, when linear dynam-
ics, linear observation model and Gaussian prior and noises are considered, the
Kalman filter is the closed-form solution of the filtering problem. However, most
state estimation problems involve nonlinear transformations, and a general analyt-
ical solution is not available. When the Gaussian assumption (or approximation)
is retained, a family of methods exists to obtain a normal posterior distribution.
In detail, the Taylor expansion approximation results in the extended Kalman
filter, while the unscented transform is the basis for the unscented Kalman filter.
To conclude the family of Gaussian filtering methods, the general framework of
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Gaussian filters, which approximate the posterior as Gaussian via moment matching
approximations, was sketched. Lastly, the sampling-based particle filter was derived
as a general practical method to compute the filtering solution when the assumptions
of the previous methods are too restrictive, e.g. when distributions other than
Gaussian are involved.
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Chapter 7
Introduction to Optimisation

Annalisa Riccardi, Edmondo Minisci, Kerem Akartunali, Cristian Greco,
Naomi Rutledge, Alexander Kershaw, and Aymen Hashim

Abstract This chapter gives a brief introduction to the formulation of optimisa-
tion problems and solving algorithms. After mentioning the different classes of
problems, such as continuous/discrete, local/global and single-/multi-objective, and
introducing some of the useful terminology, the chapter is split in two main parts:
(1) formulations and algorithms for continuous problems, including optimal control,
and (2) formulations and algorithms for integer and mixed-integer problems. Both
sections first consider standard deterministic methods that have been derived starting
by optimality criteria, then more recent heuristics derived by experience and
sometimes inspired by nature. This gives the basis to better read and understand
some of the following chapters on more advanced topics.

Keywords Optimisation · Optimal control · Network optimisation ·
Multi-objective · Continuous variables · Combinatorial variables

7.1 Introduction

Optimisation, derived from the Latin word optimus meaning ‘the best’, is the general
name used to characterise the process of finding the best possible solution for a
problem given a measure of ‘goodness’. This is, for example, the problem of finding
the shortest or fastest route between two points or the best investment in the stock
market that minimises risk and maximises return.

People have been optimising since the beginning of the humankind era, but the
roots for modern-day mathematical and engineering optimisation can be traced to
the Second World War, where optimisation processes were formalised, implemented
and applied to practical operational problems. The term operational research (OR)
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originated from the activities performed by teams of multidisciplinary experts in the
armed forces that were using advanced analytical methods to devise better decisions.
Applications in the service industries did not begin until the mid-1960s, where the
knowledge generated during the war was applied to logistic-related problems.

The term ‘programming’ is often used in relation to optimisation: mathematical
programming, linear programming, non-linear programming, mixed-integer pro-
gramming, etc. In principal, the original use of the word ‘programming’ has little to
do with modern-day computer programming. Before the days of computing, a set of
values which represented a solution to a problem was referred to as a programme.
Nowadays, software is programmed to find a set of optimal values (or ‘programme’)
for your problem. The intention of optimisation in modern-day programming is
to maximise or minimise an objective function (performance measure indicator)
with respect to a set of variables (optimisation variables) subject to one or more
constraints. Modern mathematical optimisation can be used in a wide array of
fields and disciplines, ranging from the design of aircrafts, the planning of routes
and schedules, to the design of a control profile for an operating machine. In any
optimisation problem, there are formulation and programming challenges that must
be overcome to find an optimal solution. Some of them are discussed in the next
section.

7.1.1 Solving an Optimisation Problem

There are three main challenges, or steps, to be addressed when facing a general
optimisation problem: problem formulation, problem characteristics and algorithm
selection.

• Problem formulation: the problem, originally described in general terms, needs
to be translated into its mathematical formulation, including the identification of
the set of optimisation variables and constant problem parameters, definition of
objectives and constraints.

• Problem characteristics: the dimension of the design vector space (number of
optimisation variables) and its nature (continuous or discrete), dimension of
the objectives and constraints space (number of performance measures and
constraints functions), their degree of non-linearity, their smoothness, their
landscape as well as their computational cost.

• Algorithm selection: from the pool of available algorithms the most suitable
algorithm needs to be selected to solve the formulated problem.

Without loss of generalisation we can restrict ourselves to discuss only the case of
minimisation: find x∗ ∈ Ω ⊆ R

nx

f (x∗) = min
x∈Ω f (x)
subject to c(x) ≤ 0,
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where f : Ω → R
nobj is the objective function and c : Ω → R

m the constraints
function.

The set of points satisfying the constraints is called the feasible region

D = {x ∈ Ω | c(x) ≤ 0}.

The problem can be rewritten as

min
x∈D f (x).

Depending on the nature of the objective function and constraints (linear or non-
linear, single or multi-objective) of the search space (continuous or discrete), the
optimisation problems can be divided in different classes

• Continuous or discrete: the optimisation variables belong to a feasible set that
is a subset of the real space

x ∈ D ⊆ R
n.

In some problems the variable x represents integer values. Such problems are
defined as integer programming problems, and the variables are in a feasible
set such that

x ∈ D ⊆ Z
n.

A subset of integer programming problems is the binary programming prob-
lems where

x ∈ D = {0, 1}n.

If some of the variables in the problem are not restricted to be integer variables,
the problem is called mixed-integer programming problem

x = (xr , xd) ∈ D ⊆ R
nr × Z

nd , with nr + nd = n.

• Constrained or unconstrained: if there are no constraints on the design
variables (m = 0), the problem is unconstrained. For constrained optimisa-
tion, instead m > 0. Unconstrained problems arise also as reformulations of
constrained optimisation problems, in which the constraints are added to the
objective function as penalisation terms.

• Linear or non-linear: if the objective function and all the constraints are linear
functions of x, the problem is called linear programming problem. Otherwise
if some of the constraints or the objectives are non-linear functions, the problem
is a non-linear programming problem.
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• Global or local: many algorithms for non-linear optimisation problems find only
a local solution, i.e. a point at which the objective function is smaller than
all the other feasible points in a neighbourhood. They do not always find the
global solution, which is the point that has the lowest function value among
all the points of the feasible region. Only for linear programming problems
and convex programming problems, the local solution is also the global one.
An objective function that presents a large number of local optima is called
multimodal function.

• Single- or multi- or many-objective: if the objective function is a scalar function,
that is

nobj = 1

the problem is said to be single-objective. In many engineering applications, one
is seeking a trade-off between different objectives; f is in this case a vectorial
function with

nobj > 1

and the problem is called a multi-objective optimisation problem (1 < nobj ≤ 3)
or many-objective optimisation problem (nobj > 3). Multi-objective optimisa-
tion problems can be transformed into single-objective problems, for example,
by means of aggregating functions, condensing all objectives in a single-cost
function with the use of weights coefficients, or by using alternatives such as
the ε−constrained, and the goal-attainment methods. More details are given in
Sect. 7.2.3.

To apply the most suitable algorithm, the problem must first be understood and
categorised. An algorithm suitable for linear problems may not be suitable for non-
linear problems, and vice versa. By incorrectly categorising a problem, an unsuitable
optimisation category can be chosen, leading to invalid results, for example, a
convex problem. This is a problem where the constraint functions are all convex,
all minimising objectives are convex, and all maximising objectives are concave.
These problems typically have only one optimal solution, and so every local solution
is also a global solution. Using a global algorithm on a convex problem is generally
computationally more expensive than a local one while still leading to the correct
solution.

When selecting an algorithm, it should be noted also that there is not a single
most effective algorithm that can be applied to all optimisation problems. Each
algorithm has benefits and drawbacks. The main theorem of optimisation, the no free
lunch theorem (NFL) [1]), states: if any algorithm A outperforms another algorithm
B in the search for an extreme of an objective function, then algorithm B will
outperform A over some other desired trait such as computational cost, accuracy
or complexity. The NFL theorem suggests that the average performance overall
possible objective functions is the same for all search algorithms. All algorithms
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for optimisation will give the same average performance when averaged overall
possible functions, which means that the universally best method does not exist for
all optimisation problems. This theorem proves the importance of applying problem-
specific information when deciding upon an appropriate algorithm to achieve better
than average results.

7.1.2 Local vs Global Optimisation

There are two categories of optimal solutions that can be found as a result of an
optimisation process: local solutions and global solutions. Mathematically, a local
solution is a solution for which an optimal solution x∗local is better than all other
values of x in its neighbourhood. A global solution describes an optimal solution
x∗global which is better than all other values of x across the whole search space. As
a result, all global minima are also local minima. This distinction highlights the
importance of a correct problem formulation. For a linear, convex problem, a local
solution is a global solution. In the case of a complex, non-convex problem, a local
solution is not necessarily a global one. In this case the choice of the initial guess,
from which the optimisation algorithm performs the search, can be crucial for the
performance of the algorithm itself because of the possibility of converging into one
of the local optima close to the initial guess rather than the global one. Hence global
optimisation algorithms are designed with particular strategies that are aiming at
avoiding being trapped in local optima.

7.1.3 Single- vs Multi-Objective

The objective functions drive the optimisation algorithm to find an optimum value,
depending on whether the result has to be minimised or maximised. In single-
objective optimisation, the main goal is to find the ‘optimal’ solution for only one
objective function.

For a problem with more than one objective, there is rarely one solution that is
the optimal solution for each of the objective functions. In this case, a set of optimal
solutions is found. Finding the optimum solution for multiple objective functions
can be difficult and computationally expensive. One method of simplification is
to reduce the number of objective functions. Multiple objective functions can be
lumped into one objective functions through a weighted sum approach, where the
function outputs are scaled then multiplied a constant representing its importance
relative to the other objectives. It should be noted that, although conceptually
easy, the weighted sum approach only finds solution on the convex regions of
the Pareto front and are difficult to implement when the objective functions have
different orders of magnitude. Another method is the ε-constraint one, which
considers all objectives except one, as constraints in the optimisation process.
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These constraints are assigned different constants based on the importance of their
respective objective functions (e.g. minimum reliability levels, maximum price), and
multiple solution of a single-objective problem are found for different satisfaction
levels of each constraint. A deeper discussion into multi-objective strategies is
provided in Sect. 7.2.3.

7.2 Continuous Optimisation

7.2.1 Local Optimisation

Local optimisation algorithms are exact methods that guarantee the convergence to
the local optimum in a neighbourhood of search. They are the most investigated
optimisation techniques and have their roots in the calculus of variations and the
work of Euler and Lagrange. The development of linear programming falls back to
the 1940s, and it was the base of the modern optimisation theory that rapidly grew
and then was developed in the last 70 years.

As already defined in the previous section, the general optimisation problem is
defined as

min
x∈D f (x)

where D = {x ∈ Ω | c(x) ≤ 0}, f : Ω → R and c : Ω → R
m are sufficiently

smooth functions. It must be pointed out that local optimisation techniques restrict
their field of application to single-objective optimisation problems with continuous
variables. To extend the use to multi-objective optimisation problems, one of the
aggregate techniques presented above must be taken into consideration.

Before introducing the optimality results, some definitions need to be stated.

Definition 7.2.1 The real function L : Ω × R
m → R defined as

L (x, λ) = f (x)− λT c(x)

is the Lagrangian, and the coefficients λ ∈ R
m are called Lagrange multipliers.

Definition 7.2.2 Given a point x in the feasible region, the active set A (x) is
defined as

A (x) = {i ∈ I | ci(x) = 0},

where I = {1, . . . , m} is the index set of the constraint.

Definition 7.2.3 The linear independence constraint qualification (LICQ) holds if
the set of active constraint gradients {∇ci(x), i ∈ A (x)} is linearly independent,
that is,
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rank(∇ci(x), i ∈ A (x)) = |A |.

Note that if this condition holds, none of the active constraint gradients can be zero.

7.2.1.1 Optimality Conditions

These definitions allow the statement of the following optimality conditions (refer
to [2], for a proof of the Theorems).

Theorem 7.2.1 (First-order necessary condition) Suppose that x∗ is a local solu-
tion of the constrained non-linear programming (NLP) problem and that the LICQ
holds at x∗. Then a Lagrange multiplier vector λ∗ exists such that the following
conditions are satisfied at the point (x∗, λ∗)

∇xL (x∗, λ∗) = 0, (7.1)

c(x∗) ≤ 0, (7.2)

λ∗ ≥ 0, (7.3)

(λ∗)T c(x∗) = 0. (7.4)

These conditions are known as the Karush-Kuhn-Tucker (KKT) conditions.

Remark 7.2.1 The last condition implies that the Lagrange multipliers correspond-
ing to inactive inequality constraints are zero; hence it is possible to rewrite the first
equation as

0 = ∇xL (x∗, λ∗) = ∇f (x∗)−
∑

i∈A (x∗)
λ∗i ∇ci(x∗).

The optimality condition presented above gives information on how the derivatives
of objective and constraints are related at the minimum point x∗. Another fundamen-
tal first-order necessary condition that gives additional information on the gradient
of the objective function in the optimal point can be stated. For this an additional
definition is needed.

Definition 7.2.4 Given a feasible point x ∈ D, a sequence {xk}∞k=0 with xk ∈ Ω is
a feasible sequence if, for all k ∈ N, xk ∈ D\{x∗} and

lim
k→∞ xk = x.

Given a feasible sequence, the set of the limiting directions w ∈ Ω\{0}

lim
k→∞

xk − x
‖xk − x‖2

= w

‖w‖2

is called the cone of the feasible directions, C(x).



230 A. Riccardi et al.

Moving along any vector of this cone (with vertex in a local minimum point x∗)
either increases the objective value or keeps it the same.

Theorem 7.2.2 (First-order necessary condition) If x∗ is a local solution of the
optimisation problem and f is differentiable in x∗, then

∇f (x∗) · w ≥ 0 ∀w ∈ C(x∗).

For the directions w for which ∇f (x∗) ·w = 0, it is not possible to determine, from
first derivative information alone, whether a move along this direction will increase
or decrease the objective function. It is necessary to examine the second derivatives
of the objective function and constraints to see whether this extra information
resolves the issue. The directions for which the behaviour of f is not clear from
the first derivative form the following set:

Definition 7.2.5 Given a pair (x∗, λ∗) satisfying the KKT conditions

C(λ∗) = {w ∈ C(x∗) | ∇ci(x∗) · w = 0, for all i ∈ A (x∗) ∩ I , with λ∗i > 0}

is called the critical cone.

Indeed for w ∈ C(λ∗) from the first KKT condition it follows that

∇f (x∗) · w =
∑

i∈A (x∗)
λ∗i ∇ci(x∗) · w

= 0.

If x∗ is a local solution, then the curvature of the Lagrangian along the directions in
C(λ∗)must be non-negative in the case of qualified constraints. A positive curvature
is instead a sufficient condition for a local optimum.

Theorem 7.2.3 (Second-order necessary condition) Let f and c be twice contin-
uously differentiable; x∗ is a local solution of the constrained problem and that the
LICQ condition is satisfied. Let λ∗ ∈ R

m be the Lagrange multiplier for which the
pair (x∗, λ∗) satisfies the KKT conditions. Then

wT ∇2
xxL (x

∗, λ∗) w ≥ 0, ∀w ∈ C(λ∗)

Theorem 7.2.4 (Second-order sufficient condition) Let f and c be twice contin-
uously differentiable; x∗ is a feasible point, λ∗ ∈ R

m such that (x∗, λ∗) satisfies the
KKT conditions and

wT ∇2
xxL (x

∗, λ∗) w > 0, ∀w ∈ C(λ∗), w �= 0.

Then x∗ is a strict local minimum of the constrained problem.
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7.2.1.2 Algorithms

In the last 50 years, a variety of approaches have been developed to solve NLP
problems, first tackling the most simple unconstrained NLP problem and then
expanding their application also to the constrained case. A starting point, denoted
by x0, is always provided to the algorithm by the knowledge of the user or
left to the optimiser. The optimisation process iterates exploiting information on
the objective, constraints, their derivatives and the previous iterates to terminate
whenever no further progress can be made or the optimal solution is approximated
with acceptable accuracy.

The algorithm for unconstrained NLP is presented first. They are divided into
two groups: line search based and trust region.

• Line search: the algorithm determines a search direction pk and searches along
this direction from the current iterate xk for a new iterate with a lower function
value. The step length to move along pk can be found by approximately solving
the minimisation problem

min
α>0

f (xk + αpk).

At the new point, a new search direction and step length are computed, and the
process is repeated until convergence.

• Trust region: the algorithm constructs a model function mk whose behaviour
near the current iterate xk is similar to that of the actual objective function f .
The iteration direction of search p is found as the solution of the problem

min
p∈Ω mk(xk + p),

where xk + p lies inside the trust region. If the solution does not produce a
sufficient decrease in f, it means that the trust region is too large. In this case the
trust region is shrunk and the minimisation problem is solved again. Usually the
trust region is the ball

‖p‖2 ≤ Δ, where Δ is the trust region radius

and the model mk is usually a quadratic function of the form

mk(xk + p) = f (xk)+ pT∇f (xk)+ 1

2
pT H(xk)p

where H is the Hessian matrix of the Lagrangian.

The two approaches differ in the way they choose the direction and the distance of
the move: line search based fixes the direction pk and optimises the length of the
step. Thrust region instead first chooses the maximum distance of the move, the trust
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region radius, and then seeks for the best move to attain the best improvement of the
objective function.

As an example for line search methods, there are (refer to [2] for the details about
the methods):

• Steepest descent method: it chooses as search direction the descent one pSDk =
−∇f (xk).

• Newton methods: the search direction is the solution of the Newton equation
pNk = −H(xk)−1∇f (xk).

• Non-linear conjugate gradient methods: where the search direction is defined
as pCGk = −∇f (xk)+ βkpk−1 with βk ∈ R.

• Quasi-Newton methods: they don’t require the computation of the second-
order derivatives but use an approximation of it (B), pQNk = −B(xk)−1∇f (xk);
quasi-Newton methods significantly increase convergence speed compared with
Newton ones.

Newton and quasi-Newton methods are the ones that attain a superlinear rate of
convergence, but they require the computation (or approximation) and the storage
of the Hessian matrix. On the other hand, the methods that rely just on the gradient
information are slower at convergence.

Most of the methods have a counterpart for the thrust region approach. In
the quadratic model, the Hessian matrix is substituted by the one used by each
method (identity matrix for the steepest descent, Hk for the Newton method and
its approximation Bk for quasi-Newton methods). It is possible to prove that the
resulting search direction is defined as in the line search methods and its length
constrained by the trust region radius.

The presentation of the algorithms for the unconstrained case was necessary
to introduce the techniques for solving constrained NLP problems as parts of
them rely on the idea of converging to the solution of the constrained problem by
approximating it with a sequence of unconstrained problems.

The algorithms for constrained NLP problems can be grouped in:

• Penalty, barrier, augmented Lagrangian methods and sequential linearly
constrained methods: they solve a sequence of simpler subproblems (uncon-
strained or with simple linearised constraints) related to the original one. The
solutions of the subproblems converge to the solution of the primal one either in
a finite number of steps or at the limit.

• Newton-like methods: they try to find a point satisfying the necessary conditions
of optimality (KKT conditions in general). The sequential quadratic program-
ming (SQP) method is part of this class.

The penalty methods combine the objective function and constraints into a penalty
function α(x) which is null for feasible points and positive otherwise. The problem
to be minimised is the unconstrained problem

min
x∈Ω f (x)+ μα(x)
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for a series of increasing values of the penalty parameter μ, such that μα(x)→ 0 as
μ→ ∞, until the solution of the constrained optimisation problem is identified with
sufficient accuracy. From a computational point of view, superlinear convergence
rates might be achieved, in principle, by applying Newton’s method to solve
the minimisation problem (or its variants such as quasi-Newton methods). The
algorithmic behaviour is strictly related to the choice of the penalty parameter. Ifμ is
large, more importance is given to the feasibility than the optimality, and the iterates
could move to feasible regions far from the optimum, causing slow convergence and
premature termination.

The barrier methods or interior-point methods add terms to the objective function
that act as a barrier and prevent the iterates from leaving the feasible region. For
example, in the case of inequality constrained problems, a barrier problem can be
formulated as

min
x∈Ω θ(μ),

where μ ≥ 0 and θ(μ) = inf{f (x) + μb(x) : ci(x) < 0,∀i ∈ I }. The barrier
function b should be non-negative and continuous on the feasible region and go
to infinity as the boundary is approached from the interior. This would guarantee
that the iterates do not leave the domain. The starting point must be chosen in the
interior of the feasible region, and the Newton or quasi-Newton methods can solve
the successive barrier problem.

In the augmented Lagrangian methods, a penalty functions is added to the
Lagrangian:

LA(x, λ, μ) = f (x)− λT c(x)+ 1

2μ
‖c(x)‖2

2

Fixing λ to some estimate of the optimal Lagrange multipliers and μ > 0 to some
positive value, it is possible to find a value of x that approximately minimises
LA(·, λ, μ). Then the process is repeated updating λ and μ with the information
from the previous x-iterate.

In sequential linearly constrained methods, at every iteration, a Lagrangian is
minimised subject to a linearisation of the constraints.

The sequential quadratic programming has instead a completely different
approach. It employs Newton-like methods to solve directly the KKT conditions
of the original problem. The problem turns out to be a minimisation problem of
a quadratic approximation of the Lagrangian subject to a linear approximation of
the constraints. The search direction pk at the iterate (xk, λk) is the solution of the
problem

min
p

1
2p
T∇2

xxL (xk, λk)p +∇f (xk) · p
s.t. ∇ci(xk) · p + ci(xk) ≤ 0, i ∈ I .



234 A. Riccardi et al.

A trust region constraint can be added to the algorithm to control the length of the
step, and a quasi-Newton approximation of the Hessian can be used instead of the
second derivatives of the Lagrangian.

7.2.2 Global Optimisation

The effectiveness of the traditional local optimisation techniques on multimodal
objective functions strongly depends on the initial guess solution given to a method.
If a previous knowledge of the problem is available, the designer can provide a
good initial guess to the algorithm to ensure convergence to the global optimum.
Otherwise the algorithm will mostly fail in the global search, getting trapped in one
of the multiple local minima.

The purpose of global optimisation is to find the best solution of a non-linear
optimisation problem,

min
x∈D f (x)

in the presence of multiple optima and a non-smooth objective function.
Nevertheless, local optimisation techniques will often play an important role also

in global optimisation strategies since some promising global approaches combine
both global and local strategies of search. This is the case, for example, for memetic
algorithms (MA) [3] that combine gradient-based technique with evolutionary
algorithms: the global search generates a set of trial points over the feasible region
(solutions of the evolutionary strategy), and the local algorithm performs local
descent search from the best available points, in an iterative loop that alternates
the two steps till convergence. Obviously the best compromise between global and
local strategies and the effectiveness of their use depends on the characteristic of the
problem such as the geometry of the feasible region, the number of local minima and
the sharpness of the objective function in the neighbourhood of the global solution.
However, the collaborative use of the global exploration capabilities of the first
algorithm to prune the search space narrowing the area of search and the exploitation
of local strategies to converge to the exact location of the global minimum is a very
simple but effective approach for the local refinement of the selected global optimal
solutions.

The limit of combining the two optimisation approaches may be related to the
inefficiency of the local strategies in dealing with multiple-objective problems,
especially when proper scalarisations are not considered. First, a brief overview
to the available global optimisation algorithms and to the historical background that
made them evolving to the actual state of the arts is given (see [4, 5] for a complete
survey).

The methods that were first used in global optimisation were deterministic
techniques. They were introduced in the late 1950s with the advent of the first
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electronic computers into the research community. They are mostly based on the
idea of trying to construct a sequence of approximate solutions which converge to
the exact one by dividing the problem into smaller subproblems or approximations
of the original one. With the evolution of the computational power at the beginning
of the 1990s, different probabilistic global optimisation approaches were affirmed
as new strategies. Among them it is worth to mention simulated and nested
annealing [6, 7] and the large family of evolutionary strategies [8]. They are in
general computationally less efficient than deterministic techniques, but due to their
structure, they are able to tackle a wider range of problems, and no assumptions
on the model regularity and smoothness is required. For these reasons they are
considered as one of the most promising techniques for solving also global discrete
non-linear optimisation problems.

There are several classifications of global optimisation strategies. One is the
already mentioned division between deterministic and stochastic algorithms. In
the first category, the model and the optimisation variables are completely known,
and the algorithm performs through predefined steps. The stochastic component
of the latter group instead lies either on the random sampling of the trial points,
random parameters of the algorithm itself that made the single step not predictable,
or on the use of a stochastic model for the objective function. Another division can
be made between exact methods and heuristic methods. Exact methods provide a
mathematical proof that the optimal solution can be found, while heuristic methods
are not based on convergence theories. In most of the cases, no guarantee of finding
the optimal solution can be provided and used to stop the search process: the
optimisation process is constituted of iterative steps that improve the candidate
solutions based on a measure of the quality of their fitness, a function that combines
indexes of optimality and feasibility.

An overview of the relevant methods is given below according to the first
classification deterministic or stochastic with an internal differentiation between
exact and heuristic methods. The objective of the section is to give a comprehensive
overview of the available methodologies. For details about a specific algorithm,
please refer to the corresponding bibliography. The extension of the methodologies
to the multi-objective case is discussed in the next section.

7.2.2.1 Deterministic Strategies

The first group are deterministic and exact global optimisation strategies [9]. It
means that no randomness is involved in the optimisation process and the algorithm
will always produce the same solutions for the same starting condition or initial
state. The optimisation steps are predictable and a proof of convergence exists.

• Uniform grid search [4]: it is a trivial search strategy that makes use of a grid
over the search domain to evaluate cost and constraints functions. Local search
from a point in each element of the grid can be performed, and the feasible
local minimum with lowest objective function is the approximation of the global
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optimum. The success of the local search obviously depends on the finesse of the
search grid, and global convergence can be trivially guaranteed by the fact that
the mesh can be made arbitrarily dense. Such a simple scheme however rapidly
becomes inefficient with the enlargement of the bounds on the optimisation
variables and the raising of the dimension. The computational load will increase
as an exponential function of the dimensionality of the problem.

• Complete (enumerative) search [5]: it is based on the simple principle of
searching through all potentially optimum points in the search space, through
enumeration of the possible candidates and evaluation of the objective. If, for
example, the feasible region D is a polyhedra and the objective function is
concave, then it is possible to prove that the problem must have a global optimal
solution which is a corner of D. Since D has a finite number of extreme points,
the problem could be solved by enumerating the extreme points of D in an
appropriate way until an optimal solution is found [10]. Enumerative methods
have few applications in continuous optimisation. Convergence properties are
trivially provable.

• Homotopy and trajectory methods [11, 12]: the two strategies have the
ambitious objective of visiting all stationary points of the objective function on
the feasible domain, tracing the paths on the feasible space that include them.
The solutions are then explored through enumeration techniques and evaluation
of the objective. The two methods differ in the way of constructing their paths: the
homotopy method makes use of homotopy transformations between the solution
of a simplified problem and the original one; the trajectory problem solves a set
of ordinary differential equations. The methodologies are applicable to smooth
problems with continuous variables, and the enumeration techniques employed
guarantee convergence to the optimum.

• Sequential approximation (relaxation) methods [13]: the idea is to build and
solve a series of approximate (or relaxed) optimisation subproblems converging
to the exact (or approximate) global optimum. A classification of such methods
is based on the target of the approximation (relaxation), either specific model
parameters or the entire system and subsystem models in a non-decomposed or
decomposed problem, and the method employed to perform the approximated
model fitting (response surface methodology (RSM), Taguchi methods, kriging
[14]). The methods can be applied to a wide range of optimisation problems
with continuous and discrete variables, and they are particularly suitable for
expensive or noisy simulation models as a complete analysis is performed
only in the experimental data points of the metamodeling techniques. The
methods form a subset of the derivative-free optimisation techniques, based on
model approximation, as they are completely free from derivative computation
or approximation. Method-specific convergence theories are available in the
suggested reference.

• Interval arithmetic methods [15]: it is possible to develop a complete theory
based on interval entities analogous to the real one. The strength of exploiting the
global information over large domains given by interval analysis in optimisation
methods ensures the convergence to all global optima. The idea is to start with
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an initial box and to delete the sub-boxes that cannot contain the global solution
by a branch-and-bound procedure. The process terminates, when the bounds on
the solutions and on the global minimum are below a predefined tolerance. The
main drawback of the interval approach is its computational complexity. It is
applicable to MINLP problems and non-smooth functions.

On the other hand, there is no proof of exactness for the following global
deterministic strategy.

• Sequential improvements of local optima [16]: the basic idea is to generate an
improving sequence of local minima. Deflection techniques, tunnelling and filled
function methods are examples of this approach. The tunnelling method consists
of two phases: seek for a local minimum and apply a tunnelling function to find a
point in the domain that has the same value of the objective function. The newly
formed point is the starting point for the next iteration. The process terminates
when it is not possible to detect any point during the second phase. The last
found local optimum is also the global one. There is no rigorously established
convergence theory associated with these methods, and they are applicable only
to smooth continuous optimisation problems.

7.2.2.2 Stochastic Strategies

Stochastic strategies are methods that contain not deterministic elements, either
random generated algorithm parameters or stochastic approximations of model
functions. As expected it is difficult to develop a rigorous convergence theory for
such a class of algorithms, due to the randomness introduced in the optimisation
process. However two of them provide a convergence proof based on probabilistic
theories, and they can be classified as exact methods.

• Random search methods [17]: the objective of these search methods is to
find the global minimum with an adaptive-probabilistic distribution of random
points over the feasible region. These algorithms ensure that the global minimum
will be found with probability one as the sample size grows to infinity. The
difference to the deterministic grid search algorithm lies in its adaptivity. The
number of experimental points doesn’t need to be decided in advance, but it is
generated in the successive steps. These methods are applicable to both discrete
and continuous global optimisation problems with very mild assumptions on the
model regularity.

• Random function approach [18, 19]: also known in literature as Bayesian
methods, they are the stochastic counterpart of the sequential approximation
approach with an adaptive probabilistic model for the approximation of the
objective function. They are suitable for cost functions that have a highly
computational load. They can deal with continuous and discrete variables and
non-smooth functions. A theoretical convergence to the global optimum is
guaranteed only by generating a dense set of search points.
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The larger group of stochastic optimisation techniques are heuristic. They are most
widely applied in practice, but in general no mathematical proof of convergence
exists. However, some results on convergence for evolutionary methods, provided
that the method satisfies some very general conditions, have been published for
single- [20] and multi-objective [21] problems.

• Two-phase methods [22]: they are the stochastic counterpart of the deterministic
grid search technique. They combine two phases of search: a global one and
a local one. The process starts with a random sampling of the feasible space
followed by the application of a local refinement. Multistart [22], clustering
methods [23] and multilevel single linkage [24] are the examples. The range
of applications for the technique is constrained to the local search used. The
greedy global strategy is suitable for both continuous and discrete variables with
no assumptions on the model structure.

• Simulated annealing [25]: the technique is based on the analogy between
minimising a cost function and the cooling process of a material till it reaches
its state of low energy equilibrium. The algorithm iteratively brings the actual
state (optimisation variables) to a lower level of the internal energy of the system
(objective function). The changes between the states are done probabilistically.
The new configuration is constructed by imposing a random displacement at each
step. If the energy of the new state is lower than the previous one, the change
is accepted. If the energy is greater, the new configuration is accepted with a
probabilistic value. The probabilistic acceptance of upward moves is aiming to
avoid the convergence to the local minima. It is able to tackle global optimisation
problems with discrete and continuous variables under mild assumptions on the
model regularity.

• Genetic algorithms (GAs) [26]: are stochastic search methods that take their
inspiration from natural selection and survival of the fittest in the biological
world. Each iteration of a GA involves a competitive selection that eliminates
poor solutions. The solutions with high fitness are recombined with other solu-
tions by swapping parts of a solution with another. The solutions are also mutated
by making a small change to a single element, or a small number of elements,
of the solution. Recombination and mutation are used to generate new solutions
that are biased towards the regions of the space for which good solutions have
already been seen. GAs were born and are well suited, to solve discrete problems,
and they have been successfully applied to continuous problems as well. Most of
their efficacy is due to a powerful recombination operator, which, for this reason,
becomes the main operator. The recombination operation used by GAs requires
that the problem can be represented in a manner that makes combinations of the
two solutions likely to generate interesting solutions. Selecting an appropriate
representation is a challenging aspect to properly apply these methods. Usually
a binary coding is used, and many applications have demonstrated the validity of
this approach.

• Estimation of distribution algorithms (EDA): with the idea that probabilistic
modelling may offer a more efficient/effective way to treat real problems,
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instead of using standard genetic operators used in traditional EAs, in EDAs
new candidate solutions to the problem are generated using regression, i.e.
estimating a probabilistic model based on the statistics collected from the set
of candidate solutions (regression), and sampling the achieved probabilistic
model, bringing a new paradigm in evolutionary computation. Because of the
different natures of both optimisation and probabilistic modelling in discrete
and continuous domains, developed EDAs also have differences depending on
the representation type they use for the problem. Many of the early continuous
EDAs as well as their recent improvements are based on the assumption that
design variables can be characterised by Gaussian distribution. The continuous
population-based incremental learning (PBILC) [27] extends the original discrete
version to continuous domains by updating a vector of independent Gaussian dis-
tributions. The continuous univariate marginal distribution algorithm (UMDAC)
[28] uses maximum likelihood estimation to learn the parameters of the Gaussian
distribution for each variable from the population of solutions. The continuous
mutual information maximisation for input clustering (MIMICC) [28] learns the
chain structured probabilistic model for continuous variables by adapting the
concept of conditional entropy for univariate and bivariate Gaussian distributions.

Other probabilistic models estimate a non-parametric distribution for the
variables have also been used in continuous EDAs. The multi-objective Parzen-
based estimation of distribution (MOPED) [29] uses a Parzen estimator to build
the probabilistic model. Both Gaussian and Cauchy kernels are used alternatively
during evolution to exploit their complementary characteristics.

A review of methods and their characteristics can be found at [30].
• Differential evolution (DE) [31]: it is an optimisation method particularly

suitable for multidimensional multimodal functions, belonging to the class of
evolution strategy (ES). The main idea is to generate a variation vector by taking
the weighted difference between two other solution vectors randomly chosen
within a population of solution vectors and to add that difference to the vector
difference between the considered solution and a third solution vector.

An approach used to create new algorithms is to hybridise existing ones
by appropriately mixing some of their building blocks. By following this
approach, and based on some new theoretical results on the convergence of
DE, the inflationary differential evolution algorithm (IDEA) [32] was proposed,
combining DE with the restarting procedure of monotonic basin hopping (MBH)
algorithm [33, 34]. Although IDEA showed very good results when applied to
problems with a single or multi-funnel landscape, its performance was found to
depend on the parameters controlling both the convergence of DE and MBH and
the inflationary stopping criterion used to terminate the DE search.

Despite its simplicity, the standard DE alone shows good performance on
a broad range of problems featuring multimodal, separable and non-separable
structures, but the performance is strongly influenced by three parameters: the
population size, npop; the crossover probability, CR; and the differential weight
(or step parameter), F . In addition, it was reckoned that the chosen strategies for
mutation and crossover [35] plays an important role.
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The need of self-adapting techniques especially for these two parameters
has been widely recognised in the literature. In [36] the authors introduced a
fuzzy adaptive differential evolution algorithm using fuzzy logic controllers to
adapt the parameters for the mutation and crossover operators. The self-adaptive
DE (SADE), described in [37], incorporates a mechanism that self-adapts both
the parameters CR and F and the trial vector generation strategy. In [38] an
adaptation strategy is proposed for parameter F , while CR is kept constant. In
[39] both control parameters are added to each individual of the population and
evolve with it. An alternative approach for the on-line adaptation of both CR and
F parameters and embedded into the general framework of IDEA is proposed
in [40]. The proposed approach uses the Parzen kernel method to build a joint
probabilistic representation of the most promising region of the bivariate CR−F
space. The resulting probability density function (PDF) is updated during the
optimisation process on the basis of obtained results. A further development of
AIDEA is multi-population adaptive inflationary differential evolution algorithm
(MP-AIDEA) [41] where multiple populations are initialised in the search space
and exchange information during the optimisation process.

• Particle swarm optimisation (PSO) [42]: it is a population-based stochastic
optimisation technique developed by Eberhart and Kennedy in 1995 [43],
inspired by the social behaviour of bird flocking or fish schooling. In PSO, the
potential solutions, called particles, fly through the problem space by following
the current optimum particles. Each particle keeps track of its coordinates in the
problem space, which are associated with the best solution it has achieved so far.
The particle swarm optimisation concept consists of, at each iteration, changing
the velocity of each particle i according to a close-loop control mechanism.

7.2.3 Multi-Objective Optimisation

The problem of optimising concurrently two or more objective functions falls
into the category of multi-objective optimisation problems. In contrary to single-
objective optimisation, the purpose is not to find a unique global optimal solution
but rather a set of solutions representing the compromise (trade-offs) between the
different objectives.

Also in multi-objective optimisation, as in single-objective, it is possible to
distinguish between local and global solutions: they will be referred as global
frontier and local frontier.

The generic multi-objective optimisation problem is defined as

min
x∈Ω f (x)

subject to c(x) ≤ 0
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where x is the optimisation variables vector, f : Ω → R
nobj , with nobj > 1, the

objective function and c : Ω → R
m the constraints function. As before the set of

feasible points is denoted by D.
To extend the methodologies presented for global optimisation to the multi-

objective case, it is necessary to introduce some definitions.

Definition 7.2.6 A point x1 ∈ D Pareto dominates x2 ∈ D if

fi(x1) ≤ fi(x2), i = 1, . . . , nobj

and there is at least one component j ∈ {1, . . . , nobj} such that

fj (x1) < fj (x2).

This is indicated by

x1 ( x2.

Definition 7.2.7 A point x∗ ∈ D is Pareto optimal if it isn’t dominated by any
x ∈ D,

x ( x∗.

In other words, a solution is said to be Pareto optimal, or equivalently nondominated,
if there is no other point in the feasible space for which a decrease in one objective
will not cause a simultaneous increase of at least one of the other objectives.

Definition 7.2.8 For a multiple objective optimisation problem, the Pareto optimal
set is defined as

P∗ = {x ∈ D | � ∃x′ ∈ D x′ ( x}.

Definition 7.2.9 The union of the objective values of all Pareto optimal points is
called Pareto front or equivalently

PF ∗ = {f (x) ∈ R
nobj | x ∈ P∗}.

The Pareto front is the set of all solutions in the feasible space that are not
dominated by any other possible solution. The minima in the sense of Pareto will
lie on the boundary of the feasible region or in the tangent points of the objective
functions. Generally it is not possible to derive analytically the equation of the front.
Approximation techniques have been developed during the years to approach the
Pareto frontier by successive iterations or to solve in parallel a sequence of single-
objective optimisation problems.

A comprehensive survey of multi-objective optimisation techniques is given
in [44–46], the last two focusing mainly on global evolutionary multi-objective
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strategies. Evolutionary programming is the area of multi-objective optimisation
research that in the last years registered the fastest growth. This is due to the
intrinsic structure of the evolutionary algorithms, population based, well suited for
an extension to multi-objective problems.

The multi-objective approaches are divided in methods that use the concept of
Pareto dominance for the selection mechanism of the next iterates and methods that
develop a special handling of the objective functions for reformulating the problem
as single objective. The latter techniques are applicable to all the presented global
optimisation strategies, while the former are typically for evolutionary algorithms.

The aggregation of the multiple objectives into a common single objective
can be achieved by the different techniques presented below, outlining their main
advantages and disadvantages.

• Weighted sum approach: the objectives are aggregated into a single function
using weighting coefficients. The optimisation problem becomes

min
x∈Ω

∑nobj
i=1wifi(x)

subject to c(x) ≤ 0,

where wi ≥ 0 and it is usually assumed that

nobj∑

i=1

wi = 1.

By varying the values of the coefficients, different solutions on the Pareto front
are traced. To cover the entire front, a sequence of single-objective optimisation
problems needs to be solved, making the procedure very inefficient from a
computational point of view. Moreover, this technique has the drawback of not
generating proper Pareto optimal solutions in the presence of non-convex search
spaces [47]. Additionally, there is no a priori knowledge about how a change in
the weights will affect the position on the Pareto front of the new solution.

• Goal programming [48]: the designer has to assign targets to the objectives, and
the optimisation problem is transformed in the problem of minimising the sum
of the norms of the deviations from the targets

min
x∈Ω

∑nobj
i=1 ‖fi(x)− Ti‖2

subject to c(x) ≤ 0.

Prerequisite in the application of such a technique is a deep knowledge about
the optimisation problem to be able to assign meaningful target values to
the objectives. The search space is explored by varying the Ti targets, and
convergence to the Pareto front is achieved with a prior knowledge of the
problem, to assign the targets close to the objectives values of the Pareto optimal
points.
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• Goal attainment: it is a combination of the previous two techniques. Objectives
goals are assigned as before, together with relative under or over attainment
weight coefficients. The problem becomes

min
x∈Ω α

subject to c(x) ≤ 0
fi(x) ≤ Ti + αwi, i = 1, . . . , nobj,

where α ∈ R and the weights wi ≥ 0 are normalised so that

nobj∑

i=1

wi = 1.

It is possible to prove that the Pareto front can be covered varying the weight
coefficients and the methodology is able to deal also with non-convex problems
[49].

• The ε constraint method: the objectives are minimised one at a time, constrain-
ing the others below a certain level

min
x∈Ω fj (x)

subject to c(x) ≤ 0
fi(x) ≤ ε, i = 1, . . . , nobj, i �= j.

The main weaknesses of the approach are the same as listed above, computational
efficiency, and a necessary a priori knowledge of the problem for covering the
global Pareto front.

• Lexicographic order: the objectives are sorted by user intervention. The
optimisation problem is divided in nobj subproblems solved sequentially with
a pre-established order and with additional constraints for not violating the
satisfaction of the minimum values of the former subproblems. Assuming that
{f1(x), f2(x), . . . , fnobj(x)} are the ordered objectives and f ∗

i the minimum
value achieved for the i-th objective. Then the i-th subproblem is defined as

min
x∈Ω fi(x)

subject to c(x) ≤ 0
fj (x) = f ∗

j , j = 1, . . . , i − 1.

To cover the Pareto front, different optimisation runs with different sequences of
objectives must be performed, heavily increasing the overall computational time.

• Game theory: a ‘player’ is assigned to each objective function. The player
has the goal to minimise its objective. Assuming that the players are playing
a non-cooperative game (i.e. the players make decisions independently), the
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intersection of the best strategy of each player is a Nash equilibrium, in the sense
that no player can deviate unilaterally from this point for further improvement of
the proper objective.

• Weighted min-max approach: the deviations from the attained minima, in the
nobj single-objective subproblems are estimated for the i-th objective as

z̄i (x) = ‖fi(x)− f ∗
i ‖2

‖f ∗
i ‖2

, ¯̄zi(x) = ‖fi(x)− f ∗
i ‖2

‖fi(x)‖2

assuming that the objective values do not vanish.
Defining zi(x) = max{z̄i (x), ¯̄zi(x)}, the desirable solution of the multi-

objective problem is the one that gives the smallest values of all increments of all
the objective functions

min
x∈D max

i∈I
{zi(x)},

where I is the set of the objective indexes. The entire front can be covered by
weighting the deviation function.

Note that some of the scalarisation approaches, such as the weighted sum, the
goal attainment and the ε constraint, can be obtained as particular cases of the
Pascoletti−Serafini scalarisation scheme [50, 51].

The exploitation of the concept of Pareto dominance in the population-based
strategies led in the current years to the development of efficient multi-objective
global optimisation techniques. The particular structure of the algorithms, based on
a family of solutions that evolves at each step, made the introduction of the concept
of Pareto dominance in its ranking process possible [52]. The basic idea is to find
a set of solutions that are Pareto nondominated by the rest of the solutions of the
feasible set, assign to them the highest rank and remove them from the group. The
process then repeats recursively for lower values of the rank. This procedure can be
applied for sorting the solutions of a current iteration and selecting a subgroup from
it to apply the criteria of evolution of the species, resulting in a next generation of
solutions that is different from the previous one and has an average better fitness.

Genetic algorithms are the larger class of evolutionary algorithms. They are
divided in two groups:

• First generation: they are characterised by the introduction of the concept of
Pareto dominance in the process of selection of the population and for the
niching operator to maintain the diversity and avoid premature convergence to
local fronts. Representative algorithms of this class are multi-objective genetic
algorithm (MOGA) [53], nondominated sorting genetic algorithm (NSGA) [54]
and niched Pareto genetic algorithm (NPGA) [55].

• Second generation: they exploit the concept of elitism. This means that they use
an external archive to store the nondominated solutions found in the previous
generation in a way that the best solutions found in every iteration cannot be lost
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during successive iterations and a better global minima frontier can be achieved.
The algorithms than differ in the way they interact with the external population.
Representative algorithms of this class are strength Pareto evolutionary algorithm
(SPEA) [56, 57], NSGA2 [58], Pareto archived evolution strategy (PAES) [59],
Pareto envelope-based selection algorithm (PESA) [60, 61] and micro-genetic
algorithm (Micro-GA) [62, 63].

Another group of population-based algorithms not classifiable as genetic algorithms
already mentioned in the previous section gets inspired by natural phenomena such
as the cooling state of a metal or the behaviour of an ant colony in the search of food.
A corresponding reformulation of the already presented algorithms is available for
multi-objective optimisation problems. Namely, they are multi-objective simulating
annealing (MOSA) [64], multi-objective particle swarm optimisation (MOPSO)
[65] and multi-objective ant colony optimisation (MOACO) [66].

7.2.4 Optimal Control

The general statement of an optimal control problem (OCP) requires the definition
of [67]:

• The mathematical model of the dynamic system to control
Usually it is described by a system of ordinary differential equations (ODEs)

in the form ẋ = f(t, x(t),u(t)). The independent variable has been indicated by
t , usually appointed as time, but there is no restriction on its choice. The variables
xi in the vector of x are usually called state variables, while uj in the vector u
are the control variables.

• The performance index J to be minimised (or equivalently maximised)
The performance index in the general form is written as:

J = φ[tf , x(tf )] +
∫ tf

t0

L[t, x(t),u(t)]dt (7.5)

The optimal control problem is in the Bolza form if both the end-cost and the
integral terms are present. If the end-cost term φ is zero, it is known as a Lagrange
problem. On the contrary, if the integral term L is zero, the problem is referred as
a Mayer one. Mathematically these formulations are equivalent and convertible
into each other. For example, a Lagrange problem can be restated as a Mayer one
by simply adding one state variable of the form ẋn+1 = L[t, x(t),u(t)], leading
to J = xn+1(tf ). However, [68] states that, even if they are mathematically
equivalent, they are not numerically corresponding. The Lagrange form shall be
preferred as the Mayer form leads to an increased number of state variables,
which are then discretised in numerical methods, leading to a higher size of the
NLP subproblem and a more time-consuming algorithm.
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• Specification of constraints
They are divided into two different classes, i.e. fixed-event or path con-

straints. The first type is described as an algebraic function of the state and
control gfL ≤ gf [(t̄j ), y(t̄j ),u(t̄j )] ≤ g

f
U at a fixed time t̄j . The initial

and final boundary conditions fall into this form for gfL = g
f
U . A path

constraint is formulated as an algebraic function of the state and control variables
g
p
L ≤ gp[(t), x(t),u(t)] ≤ gpU over a trajectory’s phase. Bounds on the control

magnitude fall into this category as uL ≤ u(t) ≤ uU . This general notation [68]
deals with both equality and inequality constraints, depending on the lower and
upper boundary values.

Once the aforementioned statements have been formulated, the optimal control
problem aims to find the control profile u∗(t), in the space of all admissible controls
U , which minimises the performance criterion J while respecting the differential
model ẋ = f(t, x(t),u(t)) and the specified physical constraints. Briefly stated:

min J = φ[tf , x(tf )] +
∫ tf

t0

L[t, x(t),u(t)]dt, u ∈ U

subject to : ẋ = f(t, x(t),u(t))

gpL ≤ gp[(t), x(t),u(t)] ≤ gpU

gfL ≤ gf [(t̄j ), x(t̄j ),u(t̄j )] ≤ gfU

(7.6)

where the Bolza formulation is used to obtain the necessary conditions in the most
general case.

7.2.4.1 Indirect Methods

Indirect methods are based on Pontryagin’s maximum principle, adapting the sign
convention for minimisation problem. This principle’s derivation employs calculus
of variations techniques, of which comprehensive references are [69] and [70]. The
goal is to convert the optimal control problem as defined in the chapter’s introduction
into a two-point boundary value problem through the statement of the necessary
conditions that a profile shall satisfy to be an optimal solution.

The process starts with the definition of an augmented performance index J̄ ,
in a fashion similar to equality-constrained static optimisation problems, where
Lagrange’s multipliers λj multiplying the dynamical constraints are summed to the
objective function to form the augmented performance index:

J̄ = Φ +
∫ tf

t0

[

L[t, x(t),u(t)] + λT (t)
{
f[t, x(t),u(t)] − ẋ

}
]

dt (7.7)
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According to the calculus of variation, the necessary conditions for a stationary
extremum is that the first-order variation δJ̄ shall nullify at any instant of time for
any constraint-allowed variation δu(t). The problem Hamiltonian is defined as:

H = L[t, x(t),u(t)] + λT (t)f[t, x(t),u(t)] (7.8)

When path constraints are present, the Hamiltonian shall be augmented with the
constraints’ violation weighted by associated dual variables. After mathematical
manipulation (see [67] for a detailed derivation), the necessary conditions for a
control profile u∗(t) to be a stationary function of the performance index are
represented by the following Euler-Lagrange equations:

ẋ = f(t, x(t),u(t))

λ̇ = −
[
∂H

∂x

]T

0 =
[
∂H

∂u

]T

(7.9)

where the relations in Eq. (7.9)-2 are labelled as adjoint equations and Eqs. (7.9)-
3 as control equations. These differential equations, which a control profile has to
necessarily satisfy to be a stationary solution, are coupled with a set of transversality
conditions:

t0 given ∨ H(t0) = 0

tf given ∨ H(tf ) = −∂Φ
∂t

∣
∣
∣
∣
tf

x(t0) given ∨ λ(t0) = 0

x(tf ) given ∨ λ(tf ) = ∂Φ

∂x

∣
∣
∣
∣
tf

(7.10)

Hence, if any of the boundary conditions is a free parameter, either on time or
state variables, the above conditions complete the minimum required number of
known conditions at the initial or final time. Up to this point, the process defined the
necessary conditions for a solution to be a stationary one. The Legendre-Clebsch
condition about local convexity of the Hamiltonian shall be satisfied to ensure that
the solution is an actual local minimum:

∂2H

∂u2

∣
∣
∣
∣
u∗

≥ 0 (7.11)
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The TPBVP defined by Eq. (7.9), coupled with the conditions (7.10) and (7.11),
has no analytical closed-form solution for complex problems Hence, numerical
methods shall be employed. However, further information can be obtained by
exploitation of the problem’s first integrals. If the functions L and f defined in
the System (7.6) do not depend explicitly on the independent variable t , then the
Hamiltonian is a first integral of the TPBVP along an optimal trajectory [71]. In
general, if a first integral is found, the redundant information that it generates can
be exploited to eliminate one adjoint equation, formally transforming the original
TPBVP into another one of lower dimension, by following the procedure shown by
Visser [67].

7.2.4.2 Direct Methods

A direct method does not require the derivation of the necessary conditions needed
by indirect methods. On the contrary, it aims to find a sequence of profiles which
progressively reduce the non-augmented performance index J and the constraint’s
violation. Direct methods require a parametrisation of the control functional form
over trajectory’s arcs. This is generally achieved by two conceptually different
methods [71]:

• A grid at different times where the control parameters are to be found and the
values within an interval are computed through interpolation.

• A set of orthogonal basis of mathematical functions dependent on time. Usually
Fourier series, Legendre polynomials or the Chebyshev ones.

The goal is then to determine the values of the specified free parameters, either
control values at fixed times in the grid form or the coefficients of the series in the
second case, able to minimise the objective index and to respect the constraints. In
this step, the number of free parameters is reduced from infinite degrees of freedom
to a finite number of parameters, depending on the chosen parametrisation. This
passage could seem a limitation of the direct methods when compared to the indirect
ones. However, as already stated in the previous section, a numerical procedure
is necessary also for indirect methods when dealing with complex cases such as
low-thrust trajectory optimisation. These numerical methods require a so-called
transcription to convert the infinite-dimension optimal problem into a solvable
finite-dimension one. Hence, what seemed a limitation of the direct methods is a
required passage of any technique nonetheless.

A direct method’s solution is generally not an optimal solution itself, i.e.
not a local minimum of the performance index, but just an approximation as
a consequence of the discretisation or interpolation steps. Hence, the necessary
conditions (7.9) and (7.11) can be used as an indicator of how close the found
solution is to the real local optimum [72].
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7.2.4.3 Comparison of Direct and Indirect Methods

Loosely comparing an optimal control problem to a static constrained optimisation,
the direct method’s goal is to pinpoint a local minimum of the performance function,
while an indirect method aims to find a root of the necessary conditions. The
latter shall be preferred when a closed-form solution is aimed for. Indeed, indirect
methods allow to extract the control in an analytical way [73, 74]. However, this
is possible only when several approximations are employed or simplified cases are
considered. When a numerical approach is necessary, a direct method often results
to be the simpler choice due to several considerations [68]:

• The quantities

[
∂H
∂x

]T

and

[
∂H
∂u

]T

needed by indirect methods must be analyti-

cally computed and changed when different models are employed Furthermore,
when a problem is divided into phases, these quantities change along the tra-
jectory. This requires an extensive preliminary analytical stage for any different
problem in the matter. On the contrary, a direct method is a flexible approach,
more suitable for black box implementations, and able to handle a problem
divided into different phases.

• Path inequalities, which are quite ordinary in low-thrust applications, represent
a relevant issue for indirect methods. Indeed, a first guess of the active-
inactive sequence is needed for practical methods as it changes the form of the
Hamiltonian, by adding the Lagrange multipliers, the number of constrained arcs
and the junction conditions. However, a priori knowledge of the right series is
quite hard to achieve.

• Another issue with first guesses emerges from the initial estimate of the adjoint
variables λ. As remarked by Bryson and Ho [75], the extremal solutions can
be very sensitive to small changes in the unspecified boundary conditions. As
usually the initial state variables are specified, the transversality conditions (7.10)
show that the initial values of the adjoint variables for the optimal trajectory
are not known. Further, these variables are not representing physical quantities.
Hence, setting the right initial conditions, or even reasonable ones, is very
complex, and a bad initialisation often results in numerically ill-conditioned
solutions. On the contrary, direct methods disregard those variables and require
only initial guesses on the physical state and control variables.

7.2.4.4 Practical Techniques for Optimal Control

As stated in numerous occasions, in general the continuous optimal control problem
does not have a closed-form solution, and practical numerical optimisation methods
come into play. Any numerical technique cannot handle an infinite-dimension
problem, but it needs a discrete problem with a finite set of variables and constraints
to work with. This transition can be performed with conceptually different methods
which will be investigated in the present section. It is important to emphasise that
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the following techniques are applicable to both indirect and direct approaches. A
complete review of the common methods, with a focus on low-thrust trajectory
optimisation, has been compiled by Betts [76], whereas in this section two major
classes will be addressed.

Single Shooting

Typically, the single shooting method does not actually find application in the
field of complex non-linear optimal control. However, it is useful to introduce
the notation and several concepts shared by its extension, the multiple shooting
method. The discretisation grid is composed by only two points, the initial and
final times. Initially, the n free parameters in yT = [x̄1, . . . , ūnc ], composed by
the initial conditions and the control parameters, are guessed. Hence, the trajectory
is propagated forward (or equivalently backward) from the starting to the end time,
leading to the final state:

xpf = x0 +
∫ tf

t0

f(t, x,u)dt

In general the propagated state xpf will not coincide with the required final one xF .
Hence, the difference between these two quantities becomes a constraint to nullify.
In literature, this constraint is generally labelled as defect:

c(y) = xpf − xf (7.12)

The numerical values of the violation of the boundary conditions can be exploited
to iteratively adjust the control parameters with NLP algorithms in order to finally
solve the constrained minimisation.
The advantage of this basic method is that the NLP subproblem has only a small
number of variables to optimise, i.e. the initial state guess and control parameters.
However, for long time-scales and non-linear dynamics, even small changes in the
parameters can result in very large defects change, leading to hypersensitivity with
respect to the free parameters.

Multiple Shooting

In order to overcome the drawback of parameter sensitivity, it is possible to segment
the overall time interval into a set ofm−1 smaller steps discretising the interval atm
grid points t0 < t1 < t2 < · · · < tf . Then, each of the segments can be treated as an
independent single shooting method, with continuity constraints added. Therefore,
first guesses of the ns state variables for each intermediate segment are now needed.
The first guess trajectory is usually found by fast and low-fidelity methods. The
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state variables at intermediate grid points are now control variables to be optimised.
Hence, the number of control parameters in y increases with respect to the single
shooting method, precisely ny = (m− 1)(ns + nc · np), where ns is the number of
state variables, nc the control components and np the control parameters per each
component. The defect equations can be expressed in the general form as:

c(y) =
⎛

⎜
⎝

xp2 − x2
...

xpf − xf

⎞

⎟
⎠ (7.13)

where again the goal is to nullify c(y). The dimension that the NLP subproblem
shall solve, in order to link the different phases and minimise the objective function,
dramatically increases with an increasing number of steps. However, the effects
of changing a particular parameter are more intuitive for smaller steps, leading
to an improvement of the convergence properties. In addition, the main drawback
of the single shooting is solved, and, when the number of steps is high enough,
the variables related to the first stages of the trajectory do not heavily influence
the last phases. The segment decoupling mathematically translates into very sparse
Jacobian and Hessian matrices, later involved by the NLP algorithm. For example,
the Jacobian gets sparser and sparser as more phases are employed, because
the percentage of non-zero elements is proportional to 1/(m − 1). This sparsity
can be exploited to construct a computationally efficient non-linear programming
subroutine, making the multiple shooting method both robust and competitive [77].

Collocation

The basic goal of collocation methods is to avoid repeated propagations over
each segment. This is achieved by partitioning again the whole trajectory into
m− 1 segments, leading to m grid points. Hence, the trajectory is only represented
by the set of state variables x(tk) and their derivatives f(tk, x(tk),u(tk)) at mesh
points as well as the control profile nodes u(tk). As these values are treated
as NLP variables, gathered in the vector y, the optimal control problem has
been completely transcribed into a finite-dimensional NLP. For this reason, also
collocation methods need a first guess solution, which can be sought with the
aforementioned approaches. The state, state-derivative and control values within
each interval are computed by interpolation through piecewise functions, usually
Hermite (third order), Chebyshev or Lagrange polynomials (see [68] for detailed
schemes) or Fourier series [78], whose coefficients depend on the adjacent grid
points’ state and derivatives. This a priori shape replaces the numerical integration
process of shooting techniques with a much faster analytical propagation.

The differential equations ẋ = f(t, x(t),u(t)) are substituted by a discretised
form, which for a simple Euler scheme takes the following form:
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ẋ = f(tk, xk,uk) ≈ xk+1 − xk
h

(7.14)

where h is the interval size tk+1 − tk . This Euler form is then transformed into a set
of NLP constraints to be nullified:

ck(y) = ‖xk+1 − xk − hf(tk, yk,uk)‖ (7.15)

These constraints, which ensure the equation of motion to be approximately
satisfied, are then coupled with the fixed-event ones and the path constraints, to
construct a continuous trajectory and to respect the requested bounds at the grid
points.

In collocation methods the choice of the interval size is vital because it influences
the accuracy of the interpolated function in representing the true trajectory. An
efficient procedure could be to compute initial estimates with a sparse grid and then
refine it progressively. This implementation makes this technique very robust to
imprecise initial guesses. Also in this method, the sparsity of the matrix shall be
exploited as much as possible to make the algorithm efficient.

The greater drawback of collocation methods is that for problems dominated by
highly non-linear dynamics, a very dense grid is needed to compute an accurate
solution which, when integrated forward for validation, leads to small errors in
the final state. This problem arises from the finite-difference approximation of the
dynamics, as in Eq. (7.14) for an Euler scheme, and from the parametrisation of the
shape. However, a dense grid translates into an expensive matrix inversion during
the NLP subproblem, leading to the degradation of the computational performance.

Pseudospectral methods are a special class of direct collocation where the
optimal control problem is transcribed by parameterising the state and control using
global polynomials and collocating the differential-algebraic equations using the
nodes obtained from a Gaussian quadrature [79, 80]. The terms pseudospectral and
orthogonal collocation are used interchangeably in the literature.

7.3 Combinatorial and Network Optimisation

Until now, all optimisation problems and variables have been continuous, that is,
each design vector has consisted of a set of variables composed of possible values
within a specified range. In this section ‘combinatorial optimisation’ problems
shall be discussed, where some or all of the design variables are restricted to a
discrete set, most commonly binary integers, but also non-negative integers. This
section will also discuss problems with a finite number of possibilities, namely,
problems formulated to find a maximum or minimum of one or more functions, with
many variables, which can be limited by a series of equality constraints, inequality
constraints and bounds. All of these problems are ‘linear problems’ or can be
reformulated as such with the inclusion of some constriction on one or more of the
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design variables to ensure that only discrete values can be considered, described as
‘linear integer programs’. If the design vectors are pure (or all) integer, the problem
is classed as a ‘pure integer program’, whereas if at least one (but not all) design
vector integer, the problem is classed as a ‘mixed-integer program’, discussed in
Sect. 7.3.2.1. Alternatively, these problems can be categorised into general non-
negative integer problems or ‘binary’, where the discrete, integer design vectors hold
a value of either 0 or 1. Most mixed-integer problems in practice are binary, and the
use of integer variables, although beneficial in certain circumstances, is much less
common.

Often in ‘combinatorial optimisation’, the phrases ‘combinatorial’, ‘discrete’ and
‘integer’ are used interchangeably with little explanation of the differences between
them. Each of the three terms can be used to describe a problem or optimisation
method formulated for use with integers, as opposed to continuous variables, as
inputs and outputs of the problem or as components of the optimisation process.
Often, the term discrete, when used to describe problems and processes, is used
to simply describe the discrete nature of one or more aspects of said process, i.e. a
‘discrete problem’, as opposed to a continuous problem. It is not accurate to say that
a discrete problem is always an integer problem, e.g. if a problem has discrete design
variables x = 0, 0.3, 0.6, 0.9, 1.2, the problem is considered ‘discrete’, but not
integer. Similarly, the term combinatorial describes the problem formulation but
can also be used to describe the origin or solution of a problem, and is categorised
by the exponential explosion of variables or constraints, often modelled by ‘integer
programming’. Finally, the phrase integeri, with respect to optimisation, is usually
intended to describe the use of integer values in formulation or solution and thus
also modelling. The similarities between these terms allows for a certain degree
of interchangeability, though it is important to know where each term should and
should not be used.

Integer programming was first recognised in the 1940s to 1950s, where the
simplex algorithm (derived in 1948 and published in 1951) described a finite
method suitable for application on any linear objective function subject to a finite
set of linear constraints [81]. It was not until 1955 that Harold Kuhn derived a
combinatorial algorithm for a single, specific integer problem using a dual-primal
linear algorithm. Since then, a number of papers have expanded upon the available
techniques and solving algorithms, introducing these tools to a wider and wider
audience, such that many modern-day application rely on integer programming
techniques.

Many real-world problems require the evaluation of integer problems; thus
the interest in and knowledge applicable to optimisation of these problems are
highly valued and ever-increasing. Many industries require the use of integer
programming to solve practical problems. Communications, activity management,
resource management, time scheduling and machine sequencing are vital to the
cost minimising, resource management and time management of large commercial
and industrial firms, whereas other problem applications are less grounded in
real-life scenarios, such as high-energy physics and X-ray crystallography. These
problems are generally more difficult to solve than problems that are linear and/or
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continuous. Although the true advantage of combinatorial optimisation methods lies
in the ability to process indivisible, discrete, real-life parameters, this optimisation
category can also be utilised to convert continuous inputs to integer-only inputs
with the intention of providing yes-no output values (which can be formulated as
0-1 integer problems), a particularly useful trait in machinery diagnosis.

Network optimisation is a special form of linear programming, where the
structure of the program allows even faster solution approaches such as network
simplex algorithm, and they are highly valued in their ability to optimise some
of the most common, fundamental problems with minimal cost and a free flow
of data to and from each network node. Analytically, network flow problems can
solve some classes of combinatorial optimisation problems, such as shortest path,
assignment and transportation. Network flow problems, although often complex, are
utilised in the design and analysis of large connected problems, proving to be vital
to the operation of many transportation, communication, manufacturing and social
networks. Network optimisation methods make use of powerful techniques such
as data caching, streamlining of data protocols and even data elimination. These
techniques, when correctly applied, can assist in developing faster data transfers,
accurate transport solutions and improved response times for software applications.

7.3.1 Pure Integer Optimisation

As introduced earlier, integer-only programming is a form of combinatorial optimi-
sation developed for cases where all design vectors are integer, i.e. x ∈ {0, 1, 2 . . .}.
Mathematically speaking, the original problem formulation, shown in the Introduc-
tion section of this chapter, can be altered to describe the case of an integer-only
problem. Integer-only or ‘pure integer’ optimisation can make use of combinatorial
optimisation algorithms since the search space, and hence the number of potential
solutions is finite. Moreover, in a constrained integer-only problem, the number
of potential solutions is limited by the number of possible combinations of every
integer. For smaller problems, an exhaustive search may be used to evaluate each
point in the design space, but this cannot be extended to larger problems due to the
curse of dimensionality. This can be seen visually by Fig. 7.1, a simple integer-
only problem with two integer inputs and three linear inequality constraints, as
formulated in Eqs. (7.16) to (7.19).

x = [x1 x2] ∈ {0, 1, 2 . . .} (7.16)

A = [3 − 1] (7.17)

b = [0 − 10] (7.18)

lb = [0 0]; ub = [10 10]; (7.19)
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Fig. 7.1 Integer problem
with linear constraints

This can be seen graphically in Fig. 7.1. We note that the number of points
available for evaluation by the function are extremely limited and clearly seen as
finite and by extension, the number of different values provided by the function
is finite. This is due to the small number of dimensions. As the number of
dimensions increases, the number of possible points increases exponentially. For
simple problems such as this, an exhaustive search can be used. Complications arise
upon the introduction of additional dimensions of the design vector where the size
of the search space increases drastically depending upon the bounds, as described
by the ‘curse of dimensionality’.

7.3.1.1 Special Case: 0-1 Integer Programming

As introduced earlier, 0-1 integer programming or ‘binary programming’, is a
special category of integer-only problem where the design variables are either one
or zero (binary). This problem formulation is most commonly used for decision-
making, when the inputs to a function is one of only two possible values: yes/no,
open/closed, true/false, etc. [82].

Its mathematical formulation is

n∑

j=1

cTj xj (7.20)

subject to: Ai,jxj ≤ bi (7.21)

xi = {0, 1} (7.22)
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Many real-life decision-making problems involve significant yes/no decisions,
most often at strategic and tactical levels. The knapsack problem is a classic example
of this type of problem. Moreover, other non-binary problems can be converted into
this form if beneficial, where values can be split into ones and zeros to represent
high/low temperatures, fast/slow speeds and other extremes. This can be added
in practice by introducing equality constraints such that 0 = x and 1 = x.
Take a condition monitoring system which uses a temperature input to determine
if a particular part has overheated. Binary programming may be applied where
temperatures above a certain value are considered a failure (1) and temperatures
below this are considered acceptable (0).

7.3.2 Mixed-Integer Programming

Mixed-integer programming, although commonly utilised in many modern-day
problems, was developed following the formulation of the simplex method, devel-
oped by Dantzig in 1951. This was followed by the work from Ford and Fulkerson,
whose earliest contribution to network flow began with ‘maximal flow through
a network’, which is often credited as the original algorithm designed to solve
maximum flow problems, and thus is considered one of the most influential papers in
the development of further algorithms used for solving and analysing network flow
models [83]. The simplex method also gave way to the first pure integer optimisation
algorithm developed by Gomory in 1958. The increase in complexity resulted in
an increase in computational cost, best modelled by a polynomial-time algorithm.
These models allowed for the categorisation of problems into categories depending
on hardness, where integer programming was considered NP-hard in general.

More complex problems may require the use of mixed-integer variables. That
is to say that one or more variables of function f (xm+n) are a set of con-
tinuous variable(s), x1, x2, . . . xm, and other variable(s) that are discrete values
xm+1, xm+2, . . . xn+m.

Mixed-integer problems cannot be solved by a continuous variable-based solver,
as the step size, Δx, may be unsuitable for discrete variables. Take the steepest
descent algorithm as an example: if the step size, λ, is not compatible with the design
variables (in this case, not an integer), this will result in the failure of the algorithm
and thus, no solution. Conversely, discrete solvers may disregard step sizes for
continuous variables that are smaller than one, thus increasing the inaccuracy in the
solver. This acts as a form of proof of the NFL theorem but also highlights the need
for the development and correct application of more integer programming methods
and categories, such as linear and non-linear.
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7.3.2.1 MIP vs MINLP

Mixed-integer programming can be further categorised into mixed-integer program-
ming (MIP) and mixed-integer non-linear programming (MINLP). Problems can
be categorised by the nature of the objectives and constraints with respect to the
design vector. Mixed-integer programming follows the standard linear programming
formulation, where the objectives and constraints are linear with respect to the
design variables which, in this case, consist of at least one design parameter
composed of integers (0, 1, 2 . . . n) and at least one design parameter composed
of continuous values, described in Eq. (7.23).

Minimise cT (x) (7.23)

where

Ax ≥ b

x ≥ 0

xj ∈ Z ∀j ∈ I

Commercial solvers such as IBM Ilog Cplex, FICO Xpress and Gurobi as well as
open-source solvers such as COIN-OR all employ the branch-and-bound algorithm
at their core, where the solution is iteratively parted into smaller subproblems,
most commonly referred to as the left and right child problems (with respect to
the original problem), discussed further in Sect. 7.3.2.2. Mixed-integer problems
can also be solved by iteratively solving the so-called separation problem, where
the feasible region of the problem is cut off by adding valid ‘cuts’ (i.e. additional
constraints) and hence by elimination of sections of the design space. This is
commonly known as the ‘cutting plane algorithm’. Where the branch-and-bound
algorithm employs LP relaxation to simplify the subproblems, the cutting plane
algorithm tightens the LP relaxation to find a better approximation of the convex
hull. All MIP solvers employ the so-called branch-and-cut method, which combines
these two major solution methods for a more effective solution process.

A mixed-integer non-linear programming problem consists of at least one design
parameter composed of discrete integers (0, 1, 2 . . . n) and at least one design
parameter composed of continuous values, similar to MIP. However, in this case,
either the objective or at least one of the constraints is non-linear with respect to
design vectors. These problems follow the form:

Minimise f (x) (7.24)

where

Ai(x) = 0 ∀i ∈ E (7.25)
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bi(x) ≤ 0 ∀i ∈ I (7.26)

x ∈ {x1, x2 . . . xn+m} (7.27)

where x1, x2 . . . xn are integer variables and xn+1, xn+2 . . . xn+m are continuous
variables. These problems are particularly complex, combining the combinatorial
difficulty of integer optimisation with non-linear functions, and so few algorithms
have been designed specifically for use with these problems. Most solution algo-
rithms for MINLPs fall into one of the two categories: single-tree and multi-tree
methods [84]. MINLPs can be solved using a generalised Benders’ decomposition
(multi-tree), where a general MIP problem is employed with non-linear program-
ming subproblems, and a modified branch-and-bound method (multi-tree), where
modifications are made to improve the performance of the algorithm. Complications
arise during the optimisation of a non-convex MINLP since even after relaxation of
the integer design variables to continuous design variables, the function can remain
non-convex, resulting in many local minima.

Many MINLP methods break the problem into their MIP and NLP components
and solve the overall problem iteratively.

7.3.2.2 Methods

The algorithm applied to solve a combinatorial problem is dependent largely on the
possible formulation of the problem and the requirements of the user. As per the
‘no free lunch’ theorem, a single algorithm cannot find the best possible solution
to all possible problems. To find the most suitable solution method, the basic
problem formulation must be considered: linear/non-linear, small/large, single-
objective/multi-objective and binary/integer/mixed-integer.

Similarly to integer-only and continuous-only programming, combinatorial prob-
lems can be categorised as linear and non-linear. Also similarly to integer-only and
continuous-only problems, linear problems are typically less complex than non-
linear problems. As a result, fairly large, moderately complex problems can be
solved using ‘exact’ methods, where every part of the problem and its subproblems
are solved either explicitly or implicitly. For larger, more complex problems,
‘heuristic’ methods may be used. Heuristics use intuitive techniques to find a ‘rough’
solution to any given problem to a certain degree of accuracy.

Exact Methods

With relatively simple problems with low computational costs, exact methods can
be used to solve combinatorial problems. These methods, unlike heuristic methods
described in Sect. 7.3.2.2, guarantee an optimal solution and thus are the ideal
choice. These solution methods can be placed into one of the two categories:
implicit enumeration or explicit enumeration. Explicit solution methods are often
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the simplest way of solving a problem using all possible solutions (an extensive
search), but due to the ‘curse of dimensionality’, the complexity of the problem rises
exponentially with the increasing number of dimensions within the design vector.
As such, explicit enumeration is a valuable tool for small integer problems where
dimensionality is limited. For larger problems, implicit enumeration is used.

Within explicit enumeration, the optimisation algorithm builds all the possible
solutions to find the optimal solution. This is typically more costly than implicit
enumeration, where all possible solutions are considered in some manner without
explicit evaluation. Implicit enumeration methods consist of a wide variety of
possible optimisation algorithms, where the most common are ‘divide-and-conquer’
methods, where a problem is divided into sets of m groups of problems iteratively
until a subproblem is simple enough to be solved, and the branch-and-bound
method, as discussed below.

Branch and Bound
In 1960, Alison Doig and Ailsa Land published a paper entitled ‘An Automatic
Method for Solving Discrete Programming Problems’, introducing the concept
of branch-and-bound algorithms. Although first intended to solve combinatorial
optimisation problems, many improvements have been made to generalise the
algorithm to solve continuous problems and improve the efficiency.

When solving MIP problems, the branch-and-bound method does not consider
integer design variables as discrete values but rather converts these discrete values
to continuous values by relaxation of the integer restrictions. This simplifies
manipulation of the problem and thus, decreases the difficulty to solve.

The ‘branch-and-bound’ method consists generally of three main techniques:
branching, bounding and searching.

• Branching

– This step splits the continuous search space into several smaller subspaces,
eliminating infeasible parts of the continuous space through application of
necessary conditions for integer solutions.

• Bounding

– The method of bounding depends on whether the objective function is to
be maximised or minimised. If this function is to be maximised, an upper
bounding strategy is used, and if minimised, a lower bounding strategy is
applied.

• Searching

– The process of searching each subspace for an optimal solution, preferably the
most promising region first.

To begin the branching process, the search space S is split into a number of
smaller and mutually disjoint subsets S1, S2, . . . Sr . Following this partition, each
subspace is analysed to find a local, feasible minimum, where each subset is also
a set of feasible solutions of a ‘candidate problem’, which is found by imposing
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additional constraints on the original function. The search space thought to contain
the ‘best solution’ is then analysed. If the optimal solution is found, the subspace,
and thus also the candidate problem, is fathomed. If not, the problem only contains
a lower bound for the minimum objective value in it, and this subspace is divided
into yet smaller subspaces (or candidate problems), and the process is repeated. This
process can be adapted for specific problems. Consider problems with 0-1 variables.
To branch these problems, extra constraints can be added to constrict x1 = 0 or x1 =
1, creating two candidate subproblems. In this case, x1 is known as the branching
variable

The ‘bound’ step of the branch-and-bound algorithm is dependent on the
objective of the objective function. Assuming that the objective function z is to
be minimised, lower bounding strategies are required. Any lower bounding strategy
should be simple, efficient and run with a low computational cost. In any case, a
lower bounding method should bound closest to the minimum value of z, which can
be handled using one of the many strategies [85].

• Relaxation of constraints: All difficult or computationally costly constraints
are relaxed, and z is minimised for only the remaining constraints. Using this
method, the minimum value of z is equal to the lower bound for zmin in the
original problem.

• Modification of the objective function: In this case, the modified objective
function is created such that f ≤ z for all feasible solutions. Furthermore, f
should be easy to minimise subject to the original constraints. Subject to these
properties, f is a lower bound to zmin of the original problem.

• Lagrangian Relaxation: A Lagrangian multiplier is created where u in L(u, x)
is associated with the relaxed constraints. In this case, the optimum z is a lower
bound of zmin of the original problem.

• Branch-and-cut: Otherwise known as ‘cutting planes’, this iterative method
solves the LP relaxation at each solution, and depending on if the solution is
optimal or not, it is either accepted (if optimal) or a linear constraint is found that
excludes the LP solution and no others. This constraint is referred to as a ‘cut’.

The branch-and-bound algorithm is searched using a ‘search tree method’. In
this case, the original solution is analysed and branched, splitting the problem into
two candidate problems. These two problems are bound, analysed and branched.
Candidate problems which do not contain an optimal solution are not branched and
become terminal nodes. Candidate problems which contain an optimal solution are
further branched, and the process repeats. Terminal nodes may be required in further
iterations of the algorithm. This search method continues to branch until an optimal
solution is found.

Since its introduction in 1960, the branch-and-bound method has been slightly
altered for improved results on specific problems. One such example of this is the
‘Beale and Small’ method [86]. This method uses a different bounding strategy,
includes the termination of particularly non-optimal subspaces and includes a
heuristic ‘worst alternative’ branching method.
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For any strategy, the lower bound must be fairly close to the minimum objective
value and generate candidate problems where the lower bounds are as high as
possible. The computational time of the strategy, including calculation of the lower
bounds for every candidate problem, must be low enough that the algorithm can be
iterated many times.

Heuristic Methods

Methods to solve combinatorial optimisation problems discussed so far have been
exact, i.e. finding the global solution is guaranteed (if there is a feasible solution).
When heuristics are involved, this is not the case. Heuristics provide alternative
methods for finding solutions to challenging problems (in particular in real-world
settings) that do not guarantee an optimal solution (some of them only in statistical
way). We note that this is different than approximation algorithms, which provide
a performance guarantee such as maximum deviation from the optimal solution.
Conversely to deterministic sampling, heuristic sampling requires a distribution of
sample points over the search space with a higher density of points in areas of
particular interest. Common heuristics include (a) relaxation-based heuristics and
(b) rounding-based heuristics.

These methods are valid for only convex or small-scale non-convex MINLPs.
There is no method yet that can reliably solve large-scale MINLPs, and, when
compared, the algorithms that exist to solve convex MINLPs do not show a
clear ‘best algorithm’, as can be expected. Where MINLP algorithms lack in
computational speed and other desirable characteristics, a mixed-integer problem
(MIP) is often used as a replacement for large-scale, real-world problems. Even
without non-linear constraints, these problems can still be extremely hard, actual
NP-hard [87].

The nearest neighbour heuristic and the Christofides algorithm [88] are well-
known start heuristics for the TSP. The k-OPT-algorithm is an improvement
heuristic which was originally designed for the TSP, but variants of this are used
for several other combinatorial optimisation problems. It also formed the basis for
the Lin-Kernighan heuristic [89] which is one of the most common algorithms
used to find good solutions for TSPs. Balas and Martin [90] presented the pivot-
and-complement that was developed for binary programs (BPs) and is based on
the observation that, in the nomenclature of the simplex algorithm, an LP-feasible
solution of which all basic variables are slack variables is also integer feasible. It
performs pivot operations which drive the integer variables out of the basis and the
slacks into the basis. The same authors [91] developed another method called pivot-
and-shift that can be applied to general MIPs. The method was further improved
with more pivot types and new rules for selecting them, as well as an extension of
the shifting procedure, and a neighbourhood search related to local branching [92].

Another method is the so-called heuristic ceiling point algorithm, which was
restricted to integer problems (IPs) without equality constraints. Scatter search with
star paths is a diversification heuristic [93] that creates a couple of points which are
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then linked by paths along which feasible solutions are searched. The main goal of
Scatter search is to diversify the set of solutions and not improving the incumbent.

The Octahedral Neighbourhood Enumeration (OCTANE) search is a heuristic
for BPs based on a ray shooting algorithm starting at the LP-optimum and hitting
the facets of the octahedron dual to the unit hypercube [94].

In more recent years, some large neighbourhood search heuristics have been pre-
sented, such as the local branching [92] and the relaxation Induced Neighborhood
Search (Rins) [95].

7.3.3 Network Optimisation

Network optimisation is a special type of linear programming, where variables
are represented as flows in a network. Many real practical problems can be
formulated as a ‘network optimisation’ problem, most commonly very large
problems including the study of traffic, train and population flow, distribution
analysis and communication problems. Consequently, many optimisation non-
specialists understand the importance of these optimisation algorithms, which led
to the widespread use of network optimisation in the testing and devising of new
theories. This problem-solving method can be used to solve a series of combinatorial
problems, for example [96, 97]:

• Space-time networks [98]

– Traffic flow simulating, airline scheduling [85]

• Physical networks

– Designing of streets and pipelines [99] to best manage flow

• Route networks

– Vehicle route flows, map route optimisation (e.g. bus routes) [100]

• Constructing matches

– Bipartite matching, survey design

Please note that problems such as TSP, VRP and scheduling may be represented
using a network, but that does not mean they are network optimisation problems.
Network optimisation is still LP and does not contain any integer variables; then the
problems can be solved very effectively.

Standard Network Flow Formulation and Notation

A typical ‘network’ is a series of nodes (or vertices) connected by arcs (or edges),
where each node is associated with a new design value and each arc is associated
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with some category of moving value. To minimise unnecessary problem evaluations,
it is assumed that no points are part of any ‘self-loop’, and so an arc from one point
cannot lead back to the same point. A problem with many arcs and/or edges can be
categorised into one of three forms: ‘directed network’, where only arcs are present;
‘undirected network’, where only edges are present; or ‘mixed network’ if there is a
combination of arcs and edges [85]. In literature, arcs and edges are often considered
as the same entity, and, in the following, they will be generally referred to as lines.

This problem formulation can be optimised for different specific problem
requirements. This option to include specification of algorithm type allows for
maximisation of accuracy and efficiency, as per the NFL theorem. Problems best
suited for network optimisation include:

• Shortest path problem

– Shortest path problems are some of the most commonly encountered network
optimisation problems both in transportation and in communication.

• Maximum flow problem (as discussed)

– Find a feasible flow path from a single source to a single sink, such that the
flow is maximised.

• Minimum weight spanning tree

– This problem requires each node to connect to every other node. If the links
between nodes are expensive, it may be desirable to have each node connect
to only two other nodes.

This can be formulated mathematically by considering a graph or directed
network G = (N,A), where N is a series of nodes (otherwise known as ‘points’
or ‘vertices’) such that N = {1, 2, 3 . . . m} and A is a series of lines A =
{a1, a2, a3 . . . an} [96, 101], with a cost ci,j and a capacity associated with every
line or arc (i, j) ∈ A. These problems can be shown pictorially by placing all nodes
and connecting lines on a plane, as can be seen in Fig. 7.2.

This problem can also be described mathematically using a graph. Unless
otherwise specified, it can be assumed that the edges are distinct such that if
a = (i, j) then i �= j , this would generate a ‘simple’ graph. Many network problems
can be formulated in this way, where N could be a set of locations, A a set of

Fig. 7.2 Visual
representation of a network
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potential routes between these cities and c a set of distances. Typically, network
problems are bound by both flow constraints and flow bounds. The upper flow
bound or ‘capacity’ of an arc is denoted commonly by kij , describing the maximum
possible quantity of material that can be moved across each node.

lij ≤ fij ≤ kij (7.28)

For any given problem, there is a ‘balance’ constraint for each node, where
basically the net flow from this node (i.e. outflow-inflow) will be equal to the
‘supply’ of this node. The supply bi of node i is either positive (e.g. if this node
is a location providing entries into the network), negative (e.g. if this node is a client
with a demand) or zero (if the node plays a location for transhipment). Then, the
balance constraint will be in the following form [102]:

∑

j∈N
fij −

∑

j∈N
fji = bi Flow Balance Equations (7.29)

Provided the network follows these bounds and constraints, and the supplies of the
nodes are balanced, the network will be valid.

7.4 Summary

This chapter gives a brief introduction to optimisation problem formulations and
solution methods. After a general overview of different problems, the chapter is
mainly divided in two main sections: continuous problems and methods and discrete
problems and methods.

The first section on continuous problems is further divided into four parts, related
to local methods, optimal control, global methods and multi-objective optimisation.
On the other hand, the section on discrete problems is composed by three parts on
pure integer optimisation, mixed-integer optimisation and network optimisation.

This chapter is meant to give an accessible introduction to formulation and
solving methods. The reader is kindly invited to use the list of references and read
the following chapters, to know more about the methods and to see what are the
most recent advances in the field.
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Chapter 8
An Introduction to Many-Objective
Evolutionary Optimization

Dani Irawan and Boris Naujoks

Abstract This chapter describes the differences between single-objective, multi-
objective, and many-objective optimization problems. In multi- and many-objective
optimization, often the objectives are conflicting; hence there is no single best
point, and a trade-off between the objectives must be considered. Many-objective
optimization problems can be more difficult than multi-objective problems mainly
because of the curse of dimensionality and because it is also difficult to visualize the
trade-off between the objectives. To solve many-objective optimization problems,
some algorithms are designed with the challenges in consideration. These algo-
rithms are also described in this chapter, including surrogate-assisted algorithms.
Furthermore, several benchmark problems to test and compare the algorithms are
discussed.

Keywords Many-objective optimization · Evolutionary algorithms ·
Benchmarking · Surrogate model · High-dimension visualization

8.1 Introduction

Optimization is the process to bring some things (referred to as objectives) to its best
state, i.e., maximum or minimum [2]. Mankind has been optimizing since antiquity.
The oldest known record of optimization dates back to 300 BC on works made by
Euclid [31].

In this chapter we will consider minimization problems. A maximization prob-
lem can be transformed into minimization simply by taking its negative. Often the
system is limited by some conditions, known as constraints. The general form of a
regular optimization problem is
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minimize
x

f : X ⊂ R
n −→ Y ⊂ R,

subject to g(x) ≤ 0 ∀x ∈ X
h(x) = 0 ∀x ∈ X

(8.1)

Here, x is a vector (with size n) of decision variables inside the decision space X .
The objective function f maps x into the objective space Y . The two functions g(x)
and h(x) are constraints, known as inequality constraint and equality constraint,
respectively.

8.1.1 From Single- to Many-Objective Optimization

In single-objective problems, as the name suggests, only one objective needs to be
optimized. When dealing with more objectives, we move on to multi- and many-
objective problems. In formal notation, we make a slight change to Eq. (8.1):

minimize
x

F : X ⊂ R
n −→ Y ⊂ R

m, F (x) = (f1(x), . . . , fm(x))

subject to g(x) ≤ 0 ∀x ∈ X
h(x) = 0 ∀x ∈ X

(8.2)

So, instead of a scalar objective value, we have a vector of it (of size m).
If the problem has two or three objectives (1 < m < 4), it is then referred to as a

multi-objective problem; if it has four or more objectives (m ≥ 4), then it is a many-
objective problem [21]. As the number of objectives increases, so are the challenges
on solving it [7]. Methods applicable on multi-objective problems are anticipated to
have difficulties in many-objective cases [43].

8.1.2 Optimality in Multi- and Many-Objective Optimization

When dealing with several objectives, defining “optimality” is a bit different and
more complicated. In some cases, when one objective is optimized, the other
objectives are also optimized, but, generally, this does not happen. Most often,
increasing the quality of one objective will deteriorate one or several other objectives
[18]. To compare if a solution is better than other solutions, Pareto dominance is
defined. A solution x∗ dominates another solution x:

x∗ <p x ⇐⇒ ∀i : fi(x∗) ≤ fi(x), i = 1, . . . , m

∃j : fj (x∗) < fj (x), j = 1, . . . , m
(8.3)
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Fig. 8.1 Illustration of Pareto dominance in two-dimensional objective space

An illustration of Pareto domination relation is presented in Fig. 8.1. In Fig. 8.1,
points x1 and x3 do not dominate each other, and neither are x2 and x3 because
the first requirement in Eq. (8.3) is not fulfilled. However, x1 is dominated by x2
because f1(x2) ≤ f1(x1) and f2(x2) ≤ f2(x1); thus all requirements are fulfilled.

In multi- and many-objective problems, we are concerned with Pareto optimality:
points in the design space where the improvement of one of its corresponding
objective values can only be achieved by worsening at least another objective [33].
In formal notation, this means that point x∗ is Pareto optimal if and only if

�z ∈ X : z <p x∗ (8.4)

All such x∗ form the Pareto set, and their map in the objective space is the Pareto
front. An example of a Pareto front is presented in Fig. 8.2.

8.2 Evolutionary Algorithm

Evolutionary computation is a field which uses various aspects of biological
evolution in computation. Techniques for evolutionary computation date back to
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Fig. 8.2 Example of a Pareto front. The figure shows a two-dimensional objective space. The
objective values lie on the blue line, and the corresponding Pareto front is highlighted in red

the 1950s [22]. These techniques have been used to study biological processes, arts,
and music and to solve some complex engineering problems [4]. We will focus on
the application of evolutionary computation for engineering problems.

In nature, organisms attempt to keep, change, or adapt their attributes or
characteristics to increase their survivability. This process is optimization in a sense:
finding the best configuration of attributes to achieve the best way to survive.
Engineers attempted to mimic the evolution process into algorithms for optimization
problems in general: replacing “organism attributes” with “free variables” and
“survivability” with a more general “fitness function.” These algorithms are called
evolutionary algorithms (EAs). This set of algorithms is a subset of evolutionary
computation [42].

8.2.1 Base Algorithm

Evolutionary algorithms are population-based, meaning that they always generate
a set of solutions or design points with their respective objective values, and the
best (optimum) solutions are picked from the set. EAs follow a common, general
algorithm (Algorithm 1) [5].

In Algorithm 1, t is the generation/iteration counter, P(t) is the population at
generation t , P ′(t) is the offspring after some variation operator on P(t), and λ is
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Algorithm 1 Evolutionary algorithm
t = 0
P(t)← Initial population of size μ
Evaluate P(t)
while Stopping criteria not fulfilled do

while |P ′(t)| < λ do
P ′(t)← variation P(t)

Evaluate P ′(t)
P (t + 1)← selection fromQ ∪ P ′(t)
t = t + 1

the intended offspring count. Q is either the empty set or the set of parents that
might be considered for selection (more on this in Sect. 8.2.4).

So the algorithm can be read as follows: starting with an initial population,
do variation to create offspring, evaluate the whole combined population, select a
number of individuals to keep for the next generation, and repeat until a stopping
criterion is fulfilled. This is the basic algorithm; however, there are variations on the
implementation as it will be discussed further in this chapter.

The solutions/design points in EA are called individuals, and a set of individuals
form a population. Each individual is represented by a sequence of genes which
form a chromosome. The chromosome encodes or represents the variable values.
Encoding is how the variables are represented in the EA [44]. The most common
encoding is either binary (all variables are represented by only ones or zeros) or
real-valued.

In Algorithm 1, the genetic operator that will improve solutions is variation.
Usually this is done in the form of recombination or mutation [5]. Recombination
is the mixing of chromosomes from several different individuals (called parents)
through a selection procedure to create offspring. Mutation is the process of
randomly changing the chromosome information within an individual.

The last step of the algorithm is selection. This step is done by keeping good
individuals based on some performance metrics and using them for further iterations
while the rest of the population is discarded. This step is used to keep the population
at a manageable size and to foster progress.

8.2.2 Recombination

Recombination is one of the operators used to modify the individuals in EA.
Recombination is intended to combine characteristics of several individuals (par-
ents) to produce offspring with new, different characteristics. Note that the number
of parents can be more than two [5].

In EA, recombination is done simply by taking the chromosome of at least two
parents and using these values to create new individuals with different chromo-
somes. The procedure can be performed using several possible methods. The most
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Fig. 8.3 Example of recombination: the single point crossover. Part of the chromosomes from two
parents (left) are switched resulting in two offspring (right) with different chromosome sequences

Fig. 8.4 Recombination using uniform crossover. The crossover can happen anywhere within the
chromosome

Fig. 8.5 Recombination using uniform crossover on real values. Similar with the binary counter-
part, but instead of the bits, each block is a variable by itself

common one is by swapping gene values. More generally, some transformation
functions are applied to gene values, like in the case in which the new recombining
gene is obtained taking the average value of the corresponding genes belonging to
the parents. One of the most widely used recombination operator is the simulated
binary crossover (SBX) (see [1]).

The simplest recombination operation is single point crossover in binary encod-
ing. In single point crossover, starting from a crossover point, the bit value of
two parent chromosomes is swapped (see Fig. 8.3). In the bit swapping shown in
Fig. 8.3, the offspring genes before the crossover point are unchanged, while after
the crossover point, the genes are swapped. Another variant is uniform crossover
[5] where the crossover is triggered for each bit in the chromosome as shown in
Fig. 8.4.

The recombination operator is also available in real encoding. In principle, the
requirement for a crossover operator is that the offspring are a combination of their
parents. An example of real-valued crossover is the discrete crossover [5] where
the variable values are swapped, similar with the binary chromosome, but instead of
bits, the real values are swapped, illustrated in Fig. 8.5.
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Fig. 8.6 Example of bit switching mutation. A random point on the chromosome of an individual
value is changed

The recombination operation is intended to explore the search space locally
around the parents’ population. Even though the offspring are different from their
parents, they would still retain some degree of similarity with their parents.

8.2.3 Mutation

Mutation is an operator intended to keep the diversity of the population and prevent
the population from gathering in a local optimum.

Usually, mutation is programmed to happen randomly within the population, fol-
lowing a probability distribution. If mutation happens, the individual’s chromosome
is modified. In binary encoding EA, this can easily be done by bit switching of the
genes (see Fig. 8.6). In real-valued EA however, things get more complicated.

In binary-encoded EAs, each gene has only two possible values; hence, the
mutation will change the gene value to its complement, i.e., zero to one or vice versa.
In real-valued EA, unlike in binary-encoded one, there are many possible values the
gene can have after the mutation. Mutation in real-valued EA is done by changing
the genes’ values to other real numbers. The new values can be any number.
However, because each real-valued gene encodes more information than a binary-
valued one, usually the changes allowed to the chromosome are limited and known
as creep mutation [44]. The creep mutation allows the mutated values to follow
some distribution around the original values. Some commonly used distributions
are the uniform (shown in Fig. 8.7), Gaussian [15, 44], or polynomial distribution
[10].

8.2.4 Selection

Recombination and mutation introduce new individuals to the population. With
each addition, the population size grows; and when implemented on a computer
program, this means more memory consumption. Nowadays, however, with the
growth of computation technology and memory capacity, people are less concerned
with memory consumption.

Another problem with keeping all individuals is the probability of regressing.
Older population members are supposed to have worse qualities than the new
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Fig. 8.7 Example of the
creep mutation with uniform
distribution. The initial point,
i.e., the parent, is located at
x0; after creep mutation it
could take any point between
x′min and x′max with equal
probability. Without creep
mutation, the probability
density is spread over xmin
and xmax instead

generations. If the old individuals are always kept, there are chances that the
population will return to an older state through recombination, thus regressing
instead of progressing to a better state.

The solution to these problems is to truncate (cut off) the population. However,
a new question arises, “which individuals should be kept and which should be
removed?” The answer to this question is defined in the selection operator. Selection
operator will foster progress by removing individuals which are considered to be bad
and will increase the chance to create better offspring.

We may want to keep all the “best” individuals, but, actually, selection operators
should not always favor the most fit individuals as it would easily lead to stagnation
[15, 44]. So, basically, the selection operator has multiple purposes: prevent
stagnation, foster progress, and avoid making the population too large. Also note
that the population does not have to be at a constant size, some algorithms do use a
varying or adaptive population size such as the GAVaPS [3], or the growing SMS-
EMOA [23].

The population on which the selection is conducted is determined by the selection
scheme. There are two selection schemes: the plus and comma schemes. The plus
scheme is where both the parents and offspring are considered to be kept, while the
comma scheme disregards the parents [15, 17], i.e., the parents are always discarded.
The schemes are usually written as (μ + λ) and (μ, λ) for the plus and comma
schemes, respectively, where μ is the number of parents and λ is the number of
offspring.

After choosing the selection scheme, then the rule on how to select the individ-
uals need to be decided (known as the selection mechanism [15, 17]). Examples of
selection mechanism are tournament selection [44], fitness-proportional selection
[5, 44], and non-dominated sorting [12].
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The choice of the scheme and mechanism usually differentiates the EAs. For
example: SMS-EMOA uses (μ + 1) scheme with non-dominated sorting and S-
metric selection, NSGA-II uses (μ + μ) scheme with non-dominated sorting and
crowd-distance selection, and NSGA-III uses (μ + μ) non-dominated sorting and
reference-point distance. These operators will be discussed further in Sect. 8.3.3.

8.3 Multi-Objective Optimization

This section will discuss how to solve multi-objective optimization problems.
Several methods as well as some performance metrics to compare solutions will
be described.

8.3.1 Method Classifications Based on Preference-Imposing
Timing

In Sect. 8.1.2, it was mentioned that in multi- and many-objective problems, we are
concerned with the solutions in the Pareto set. This would imply that in a decision
making process, decision makers must choose the “best” design from the Pareto set
considering his/her preference on the trade-off between the objectives (the Pareto
front). The preference can be imposed before (a priori), after (a posteriori), or
progressively within the optimization loop.

8.3.1.1 A Priori Method

A priori methods simplify the problem by transforming the problems into one or
a series of single-objective optimization problems (SOP). Several methods that fall
into this category are described below.

Lexicographic Method

The lexicographic method considers an absolute importance order [16]. The method
is similar with the process of sorting words in dictionaries [28]:

• Sort by the first letter
• For the same first letter, then sort by the second letter
• Continue to the next letters until all items have different ranks or all letters in the

word are used
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Analogously, in optimization, the method is the same; however, instead of letters,
we have objectives, and the number of objectives is always the same for all designs.
The objectives must be ordered by importance.

Aggregation Method

Another way to deal with the ambiguity of optimality in many-objective problems
is by summing up the objective values, thus transforming the problem into a single-
objective problem. Preference is imposed by weight factors, i.e.

minimize
x

F(x) =
m∑

i=1

fi(x)wi, (8.5)

Usually the weight w should sum up to 1:

m∑

i=1

wi = 1, (8.6)

After the aggregation of the objective functions, it is then only a matter of solving
single-objective optimization problems. If the method is run in series with different
weights, it will form the Pareto front and set. However, this method has a major
weakness that it cannot find points on the concave regions of the Pareto front [34,
46].

Note that when the objectives have different orders (e.g., one objective in
hundreds, the other in millions), assigning weights would be difficult because
objectives with a higher order would be considered very important compared to
objectives with lower order. When this happens, a normalization factor which
transforms the objectives into similar order and range should be used.

8.3.1.2 A Posteriori Methods

In a posteriori methods the decision makers will be given a set of solutions (the
Pareto set) and their corresponding objective values (the Pareto front). The decision
makers can then choose their preferred designs from the given solutions.

With regard to Sect. 8.2.1, it was mentioned that EAs are population-based
methods. Population-based method will have several candidate solutions, each
represented by an individual. Using appropriate genetic operators, the candidate
solutions can be guided to find different trade-offs in the objective space. This
means, from a single optimization loop, instead of obtaining a single solution, the
Pareto front could be approximated. It is then interesting to use EAs to solve multi-
and many-objective optimization problems. Some EAs are described in Sects. 8.3.3
and 8.4.2.
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8.3.1.3 Progressive Methods

In the two sections above, we have mentioned that the decision makers can
input their preferences before or after the optimization loop. The other possibility
is to input their preferences during the optimization. The decision making and
optimization are intertwined, i.e., within the optimization loop, the decision makers
need to give preference information [41].

One way to do this is by generating a set of solutions and requiring the decision
makers to pick their most favorite. These favorite solutions are taken to update the
preference information, and then new solutions are generated. The process could be
repeated until a stopping criterion is reached.

8.3.2 Solution Quality Assessment

Comparing solutions in multi- and many-objective problems is not a trivial task
because what we have is a set of non-dominated solutions instead of only one
solution. This would imply that we need to define what makes a non-dominated set
better than another non-dominated set. These measurements are called performance
metrics or performance indices.

Performance metrics are usually based on three criteria: cardinality, accuracy,
and diversity [35, 36]. Cardinality simply means the number of points in the
non-dominated set; accuracy measures convergence to the real Pareto front; and
diversity measures how well spread the solutions are in the objective space. A
performance metric can measure more than one criteria simultaneously.

The number of performance metrics currently available is vast. This section will
only introduce the top two most used metrics between 2005 and 2013: hypervolume
and generational distance. Some other metrics are also described in Sects. 8.3.3
and 8.4.2; the metrics in the section are used to rank solutions within the population;
e.g., the crowding distance, non-dominated ranking, etc. Other popular metrics are
the ε-indicator [48] and R-metric [24] which can compare performances of a pair of
solution sets in all three aforementioned criteria simultaneously [36].

8.3.2.1 Hypervolume

The hypervolume is the most widely used performance metric [36]. Hypervolume
is a generalization of the area (2D), or volume (3D) in higher dimensions. In a
biobjective problem, the hypervolume is measured as the area covered by the non-
dominated set with respect to a reference point (see Fig. 8.8).

The maximum hypervolume can only be achieved by the real (possibly continu-
ous) Pareto front, thus maximizing hypervolume is a straightforward and general
goal to approach the real Pareto front [43]. The hypervolume can also measure
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Fig. 8.8 Example of
hypervolume measure in a 2D
minimization case with a
reference point in the top
right (large f1 and f2). The
hypervolume (yellow) is then
formed by connecting lines to
the non-dominated set (green
dots)

Fig. 8.9 How diversity affects hypervolume. A well-spread non-dominated set (red circles), while
the other set (blue rectangles) has a cluster of solutions placed in the area with small f1. The
red areas are the areas dominated only by the circles; the blue areas are dominated only by the
rectangles; and the purple area is dominated by both sets. Larger hypervolume can be achieved
when the non-dominated set is well spread

diversity because different distributions of non-dominated sets will give different
hypervolume measurements (see Fig. 8.9).

8.3.2.2 Generational Distance

Generational distance (GD) [8, 40] is the second most used performance metric.
To measure generational distance, the real Pareto front must be known. This
requirement limits the use of GD to be used only on test problems; it is not
applicable to general problems where the real Pareto front is unknown.

However, when new methods are proposed, traditionally, the methods are
compared against previously known methods on benchmarking test functions (see
Sect. 8.6). In these cases, GD can serve as a performance metric to compare the
methods.
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Fig. 8.10 GD is calculated as
distance from each
non-dominated points (blue
star) to the closest reference
point (red circle)

Fig. 8.11 The
non-dominated points are not
well spread, but the GD
measure is good (small value)

GD is calculated as the average (usually Euclidean) distance of all non-
dominated points to its closest reference point. Regularly, the reference points are
spread all over the real Pareto front (see Fig. 8.10).

It should be noted that the reference points in GD serve different purposes
compared to the reference point in hypervolume measurement. In hypervolume
measurement, the reference point has quite a bad quality in terms of convergence to
the real Pareto front; hence, it is only used as a limit of how far away the edges of
the hypervolume are. In GD, the reference points are actually target points, placed
on the Pareto front.

A small GD implies that all non-dominated points (i.e., the map of our best
solutions in the objective space) are located near the real Pareto front which is
what we want to achieve. However, a small GD does not imply the non-dominated
points are well spread because it could be that all the points are gathered (converged)
around a single reference point (see Fig. 8.11).
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Fig. 8.12 IGD is the inverse
of GD, calculated as distance
from each reference point
(red circle) to the closest
non-dominated points (blue
star)

To measure diversity it is better to use the inverse GD (IGD) [8]: instead of
calculating the average distance of the solutions to its nearest reference point,
we calculate the average distance from all reference points to their closest non-
dominated point (Fig. 8.12). Similar to GD, a small IGD is desirable. However, this
is a completely different measure because if all non-dominated points converge to a
single reference point, other reference points will have a large minimum distance to
non-dominated point. Hence, the GD would be small, but the IGD will be large.

8.3.3 Algorithms Designed for Multi-Objective Optimization
Problems

Some EAs are actually designed to tackle the problem of finding the Pareto front
of multi-objective problems. These algorithms are called EMOAs (evolutionary
multi-objective optimization algorithms) or MOEAs (multi-objective evolutionary
algorithms).

8.3.3.1 NSGA-II

NSGA-II is the elitist non-dominated sorting genetic algorithm by Deb et al.
[12]. Currently it is well-known and the most frequently used EMOA. In NSGA-
II, broadly speaking, any recombination and mutation method can be used. The
defining feature of NSGA-II is its selection methods. The primary selection method
is called non-dominated sorting:

1. The non-dominated front is ranked as the first front.
2. Remove the first front; the second front is the non-dominated individuals when

the first front is removed.



8 An Introduction to Many-Objective Evolutionary Optimization 283

Fig. 8.13 Illustration of
non-dominated sorting in a
2D objective space. The stars,
pentagons, and circles are
members of the first, second,
and third fronts, respectively

3. Remove the first and second front; the third front is the non-dominated individu-
als when the first and second front are removed.

4. Continue removing and ranking until all points are ranked.

The ranking goes on until all individuals assigned a rank. An example is shown in
Fig. 8.13.

Starting from a population/parent P with size μ, a set of offspring P ′ with
same size μ is created. Non-dominated sorting is then applied to the combined
P

⋃
P ′. After assigning ranks, individuals that will be used on the next generation

are selected. The member of each ranked front is counted, and these counts are
summed from the first front to lower ranks until it is equal or exceeds μ, and we
call the final sum result as K . All other fronts will not be used as parents for the
next generations; hence, they are discarded. If the sum of the counts K is equal to
μ, no further selection is required, and we have the parents for the next generation.
However, if K is larger than μ, i.e., we still have too many population member, a
further, secondary selection is conducted.

NSGA-II uses a secondary selection called crowding distance. The crowding
distance is calculated as the sum of distances to the next higher and lower values
in each dimension (Fig. 8.14). The individuals with the smallest distances to its
neighbors will be removed. The overall runtime for NSGA-II is O(μ logd−1 μ) per
generation [43]; we can see that the number of dimension d causes an exponential
increase for the runtime.

As a summary, the NSGA-II algorithm is shown in Algorithm 2. Notice that the
NSGA-II algorithm follows the base algorithm shown in Sect. 8.2, only expanding
the selection procedure right after P ′(t) is evaluated. Ri in the algorithm are the
individuals with non-dominated sorting rank i.

8.3.3.2 SMS-EMOA

SMS-EMOA stands for S-metric selection EMOA by Emmerich et al. [19]; the
goal is to maximize the S-metric value of the population. S-metric is simply the
hypervolume.
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Fig. 8.14 Illustration of the
crowding distance in a 2D
objective space. The light
blue point will be removed
because its distances to the
neighboring points are the
smallest
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Algorithm 2 NSGA-II
t = 0
P(t)← Initial population of size μ
Evaluate P(t)
while Stopping criteria not fulfilled do

while |P ′(t)| < μ do
P ′(t)← variation P(t)

Evaluate P ′(t)
Non-dominated sorting on P(t)

⋃
P ′(t)

i ← 1
K ← 0
while K < μ do
P(t + 1)← Ri
i ← i + 1
K ← K + |Ri |

if K > μ then
Crowding distance selection on P(t + 1)

t = t + 1

SMS-EMOA uses a steady-state selection scheme, meaning that only 1 new
individual is produced from the mating procedure and from the parents and 1
offspring, 1 point is removed. The parents selection for mating is equiprobable. As
the primary selection operator, SMS-EMOA uses non-dominated sorting as used in
NSGA-II. The worst ranked front from non-dominated sorting can still have several
points in it; thus a secondary selection is conducted: the removed point should
have the smallest contribution on the worst-front hypervolume. Figure 8.15 depicts
a front where secondary selection is conducted. The top-left point is the smallest
contributor to the total hypervolume; thus it will be removed from the population.
Note that the contribution of the edge points can be larger or smaller depending on
the reference point location; hence different reference points could lead to different
selections.
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Fig. 8.15 Illustration of
SMS-EMOA selection
procedure in a 2D objective
space. Each box is the
contribution of a single point
to the total hypervolume
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Algorithm 3 SMS-EMOA
t = 0
P(t)← Initial population of size μ
Evaluate P(t)
while Stopping criteria not fulfilled do

while |P ′(t)| < 1 do
P ′(t)← variation P(t)

Evaluate P ′(t)
Non-dominated sorting on P(t)

⋃
P ′(t)

i ← 1
K ← 0
while K < μ do
P(t + 1)← Ri
i ← i + 1
K ← K + |Ri |

if K > μ then
Smallest contributor removal from P(t + 1)

t = t + 1

The hypervolume contribution of a point x is defined as the hypervolume loss
when x is removed from the non-dominated set. The simplest method to measure
it is by comparing the hypervolume size before and after removing the point. With
μ + 1 number of points, μ + 2 hypervolume calculation must be conducted (once
for the whole non-dominated set and μ + 1 times for removal of each point) using

this algorithm. The runtime of a generation of SMS-EMOA is O(μ
d
2 +1) [43]; the d

also is the exponential factor for the runtime.
The algorithm is shown in Algorithm 3 [19]. Again, it follows the base algorithm.

It is even similar to NSGA-II, with changes on the size of P ′(t), which is only one
in SMS-EMOA, and on the secondary selection.
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8.4 Many-Objective Optimization

8.4.1 Challenges in Many-Objective Optimization

First, recall that in many-objective optimization problems, at least four objective
functions are considered (Sect. 8.1). There are several complications when dealing
with many-objective problems. First, methods applicable on single-objective prob-
lems can only be used if the original many-objective problem is transformed into a
single-objective by using aggregation methods mentioned before (see Sect. 8.3.1.1).
Furthermore, even methods applicable on multi-objective problems may have bad
performance or are even not feasible to use in many-objective cases. The reason for
the latter problem usually stems from the so-called curse of dimensionality. In other
cases it is due to the problems being too expensive to evaluate.

8.4.1.1 Curse of Dimensionality

Curse of dimensionality is a term which expresses how an increased dimension
leads to an extremely high increase of cost or deterioration of solution quality. In
the previous section, it has been shown that the number of dimensions d is the
exponential factor for runtime. Hence increasing d leads to an exponential increase
in the runtime.

Curse of dimensionality can be mitigated by reducing the problem size. The
methods to reduce the size can simply be done by ignoring some objectives (similar
to what was done in lexicographic method mentioned in Sect. 8.3.1.1) or using
model reduction methods such as principal component analysis (PCA) [39].

Another problem with dimensionality in many-objective optimization is the
loss of pressure to find the Pareto front. With increasing dimensionality, non-
dominatedness is easier to achieve [29]. With low pressure, the population will
converge to the Pareto front only slowly.

8.4.1.2 Expensive Evaluation

Expensive evaluation means that the evaluations have very high cost. However,
“cost” here is not limited to financial cost. Sometimes, it is indeed the monetary cost
that is expensive, but it can also be other kinds of costs. The cost can be evaluation
time, manpower or computational power required, etc. For example, when the
function evaluated is actually a result of a simulation, each of the simulation can
take several minutes, hours, or even days. If a single simulation takes a long time
to finish, the whole optimization process—which requires several simulations to be
run—will also consume a lot of time to finish. Another example is when to evaluate
a design, a prototype must be manufactured. This implies costs in both time and
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money. In these cases it is impossible or inefficient to evaluate all required points to
find the Pareto front.

Expensive evaluation is not an exclusive problem which is only applicable
to many-objective optimization. Even a single-objective optimization task would
consider expensive evaluation as a challenge. A popular solution is using surrogate
model/function which is applicable on single-, multi-, and many-objective optimiza-
tion problems. The surrogate model is a prediction and simplification of the real
model, based on some early samples. Further explanation of surrogate models is
available in the other chapters, while a specific application of surrogate modelling
in multi- and many-objective optimization is available in Sect. 8.5.

8.4.1.3 Visualization Challenge

When the number of objectives exceeds 3, visualization becomes a problem. The
regular visualization using scatterplot is limited to view a three-dimensional system
projected into a plane (two dimensions). Some recent researches attempt to take
it further to view four-dimensional systems by using a projection onto a three-
dimensional space [6]; however, it does not change the fact that visualization will
be limited. Some methods to visualize the objective space in a higher dimension are
presented in Sect. 8.4.3.3.

8.4.2 Algorithms Designed for Many-Objective Optimization
Problems

Due to the challenges posed by many-objective problems, MOEAs for multi-
objective problems are difficult to use. Researchers around the world devise new
EAs specifically designed for many-objective problems. The algorithms are called
MOEAs or EMOAs.

8.4.2.1 MOEA/D

MOEA/D is the MOEA based on decomposition proposed by Zhang and Li [46].
Decomposition means transforming the many-objective problem into finite number
μ of SOPs by using some aggregation methods. Zhang and Li use the weighted
sum and the Tchebycheff method to decompose the many-objective problem. The
Tchebycheff method (see Fig. 8.16) has the advantage of being able to find points
in the non-convex region of the Pareto front [46].

Each subproblem will lead to a single point in the Pareto front, so in the end μ
solutions will be obtained. The algorithm limits mating only between T number
of neighbors with equal probabilities (equiprobable selection). Diversity is not



288 D. Irawan and B. Naujoks

Fig. 8.16 Illustration of the
Tchebycheff decomposition
method for MOEA/D in a
two-dimensional weighted
objective space. The
Tchebycheff method aims to
minimize the maximum
weighted distance �wifi of
all objectives i with respect to
the ideal point z∗, therefore
pulling the solution closer to
the Pareto front

“preserved” in the run, rather it is set at the beginning by choosing different weight
vectors for aggregation in each of the μ subproblems.

For the final result, MOEA/D maintains an external population, i.e., all the
best results are kept separately. Every time a better solution is found, the external
population is updated. In terms of non-dominated sorting, all evaluated solutions are
collected, and only the individuals ranked 1 from this large set are kept.

Compared to NSGA-II, the relative expected runtime for MOEA/D has a factor
of O(T )/O(μ) per generation [46]. Using the NSGA-II runtime in Sect. 8.3.3, we
can determine that the overall runtime per generation is O(T logd−1 μ). Generally
T is lower than μ; hence it is faster than NSGA-II and was expected to be applicable
on many-objective problems.

The algorithm is presented in Algorithm 4. In the algorithm, z is the ideal point,
taking the best values attained in each objective. EP is the aforementioned external
population. Also, instead of dealing with population P(t), MOEA/D considers each
individual Pi(t) separately.

Algorithm 4 MOEA/D
t = 0
EP =
for i = 1, . . . , μ do

Define neighbour Bi of size T
Pi(t)← Initial individual
Assign weight vector wi for individual Pi(t)
Evaluate Pi(t)
Qi(t)← Pi(t)× wi

Initialize z
while Stopping criteria not fulfilled do
P ′
i (t)← variations from Bi

Evaluate P ′
i (t)

Update z
Update Neighbour Solutions using P ′

i (t)× wj , j ∈ Bi
Update EP
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8.4.2.2 NSGA-III

NSGA-III by Deb et al. [11] is a recent addition to the library of MOEA algorithms.
As the name suggests, it has a similarity with NSGA-II. In fact, NSGA-II is also
invented by Deb and his colleagues [12].

As a note, originally, NSGA-III can work well only on many-objective problems.
However, Seada [37] together with Deb modified the algorithm to work on lower
dimensions in their subsequent publication on unified NSGA-III (UNSGA-III). This
section, however, only describes the original NSGA-III.

NSGA-III starts with recombination and mutation to generate offspring P ′, then
uses the same non-dominated sorting as in NSGA-II and SMS-EMOA, but that
is where the similarity ends. For the secondary selection operator, NSGA-III is
more akin to MOEA/D: it uses reference points. While in MOEA/D we use one
reference point with multiple search directions based on the weight vectors (i.e., for
each weight, one optimization loop is conducted), NSGA-III opts to use multiple
reference points representing different weights of the objectives (i.e., in a single
optimization loop, all weights are considered).

The number and locations of reference points can vary depending on preference,
Deb and Jain [11] showed that the method can work with both structured and
unstructured reference points. For the structured reference points, Deb and Jain
place the reference points on a normalized hyperplane which is equally inclined to
all objective axes and has an intercept of one on each axis (Fig. 8.17). If we consider
an M-objective problem, and each objective-axis is divided into p partitions, the
total number of reference points is

(
M+p−1
p

)
. Each of the reference point, paired

with the ideal point, will create a reference line which becomes the basis for the
secondary selection.

In NSGA-III, the number of offspring is set to be the same as the size of the parent
population μ, so for the selection we have 2μ individuals to be considered. The
difference with NSGA-II starts after the non-dominated sorting when the population
count after non-dominated sorting is larger than μ. This is when we need to conduct
a secondary selection. The secondary selection in NSGA-III is based on the distance

Fig. 8.17 An example of the
structured reference point on
a normalized hyperplane used
in NSGA-III. A
three-dimensional objective
space is divided into four
regions in each axis giving
(3+4−1

4

) = 15 points. Each
reference point, paired with
the normalized origin, forms
a reference line creating 15
reference lines
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of the last ranked front to a reference line instead of the distances to its neighbor.
So instead of comparing distances of K − μ individuals to all other 2μ − 1 points
in each dimension, NSGA-III only needs to calculate distances between the K − μ
individuals to

(
M+p−1
p

)
reference lines.

The algorithm is presented in Algorithm 5. As mentioned before, the change
from NSGA-II starts in the secondary selection. Instead of crowding distance, the
distances to reference points are checked. It may look more complicated due to the
frequent distance measurement.

Algorithm 5 NSGA-III
t = 0
P(t)← Initial population of size μ
define reference lines L of size H
Evaluate P(t)
while Stopping criteria not fulfilled do

while |P ′(t)| < μ do
P ′(t)← variation P(t)

Evaluate P ′(t)
Non-dominated sorting on P(t)

⋃
P ′(t)

i ← 1
K ← 0
while K + |Ri | ≤ μ do
P(t + 1)← Ri
i ← i + 1
K ← K + |Ri |

Measure distance from P(t + 1) to all L
Associate each individual in P(t + 1) to nearest L
Cj ← Count of assoc. solutions from P(t + 1) for line j, j ∈ 1, . . . , H
Measure distance from Ri to all L
Associate each individual in Ri to nearest L
cj ← Count of assoc. solutions from Ri for line j, j ∈ 1, . . . , H
while K < N do
jleast ← argmin

j∈1,...,H
(Cj )

if cjleast = 0 then
Remove line Ljleast from consideration in current t

else
A← nearest member of Ri to line Ljleast
P (t + 1)← P(t + 1)

⋃
A

Ri ← Ri \ A
cjleast ← cjleast − 1
Cjleast ← Cjleast + 1

t = t + 1

8.4.3 High-Dimension Visualization Techniques

To express how difficult it is to visualize a space with dimension higher than 3, let
us review how we normally see an image, namely, the scatterplot visualization. The
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visualizations, often presented on paper or screen, appears on a 2D media, which
also means it is limited to only show anything in 2D. What we normally do in
single or multi-objective optimization is to present the objective space on a Cartesian
coordinate system. With this method, we can easily view 1D and 2D spaces, and, by
using projection methods, 3D space can also be viewed on a 2D plane. The problem
is, physically, we cannot construct or observe higher dimensions [45].

In many-objective optimization, the number of objectives is higher than 3. This
implies that using the scatterplot method would limit us to only view 3D or lower
dimension spaces.

8.4.3.1 Bubble Chart

A bubble chart is an extension of the usual scatterplot. Instead of only using the
position of the points to visualize the objective space, a bubble chart also utilizes
other properties of the points, e.g., point sizes and colors [38].

By using different point sizes, the fourth dimension can be visualized, i.e., larger
points indicate larger fourth axis value. Colors can also be used with the help of a
color scale. An example of a bubble chart is shown in Fig. 8.18. In the figure, the
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Fig. 8.18 Example of a bubble chart with five points. The bubble chart visualizes a 4D problem
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Fig. 8.19 Example of a
parallel plot. The figure
depicts a six-objective
problem with normalized
objective values

first three axes are indicated by the x, y, and z axes, while the fourth axis is indicated
by the point sizes. This technique has the advantage of being a very easy extension
of the scatterplot. It offers all the properties of a scatterplot plus the possibility of
visualizing additional dimensions. However, as the fourth and higher dimensions
are visualized by the properties of the point, it may be more difficult to discern
domination relations, i.e., whether one solution dominates other solutions. Further,
when the number of vectors to be displayed is large, the plot will be easily cluttered
by points with large sizes.

8.4.3.2 Parallel Plot

In parallel plots, all objective functions are represented by parallel lines. Points in
each line represent the magnitude (usually normalized) of their corresponding objec-
tive value. A line connecting the points represents the objective value realizations
of a solution. An example is shown in Fig. 8.19. In the figure, the horizontal line
with all values at zero (red) represents the ideal point; the horizontal line with all
values at one (blue) represents the nadir point. Each of the other three lines (green,
turquoise, and purple) represents objective value realizations of a solution.

This visualization method is very easy to use and simple to understand. When
used to view a non-dominated front, the domination relation and spread can be
observed, but not the shape (convex/non-convex, linear, etc.) [38].

The domination relation can be observed as shown in Fig. 8.20. The blue line has
a higher value in all objectives compared to the red line, i.e., the red line dominates
blue (minimization case). When the objective vector does not dominate each other,
the lines will cross each other at least once.

The downside of this visualization method is when the number of vectors to be
shown is large, the figure becomes cluttered. It would be difficult to see and trace
the lines; as an example, see Fig. 8.21. It is still possible to differentiate the lines in
the figure, but imagine if more and more lines are added, the figure would be more
difficult to comprehend.
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Fig. 8.20 The red line
dominates the blue line

Fig. 8.21 Parallel plot of six
similar solutions (not
necessarily non-dominated)

8.4.3.3 Glyph Plot

A glyph plot is also known as radar, spider, or star plot. Glyph plots can be
considered similar to parallel plots, except that in glyph plots, each axis has different
directions as opposed to parallel lines. A glyph plot can be considered as a parallel
plot that has been bent and connected. Examples are shown in Figs. 8.22 and 8.23.
For minimization case, a solution is dominated when all points of the glyph are
farther away from the center compared to other glyphs.

Due to the similarities between glyph and parallel plots, the advantages and
disadvantages are also similar. Both plots are simple and easy to use, and they
can show domination relations, but they can be easily cluttered. For Pareto front
visualization, this technique also cannot distinguish the front shape.

8.5 Surrogate Model in Multi- and Many-Objective
Optimization

Let’s recall one of the challenges mentioned in Sect. 8.4.1: expensive evaluation.
When the evaluation of the objective functions has a high cost, the number of
evaluations must be kept low. In multi- and many-objective problems, this is even
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Fig. 8.22 An example of star
plot for a six-objective
problem. In the plot, three
solutions are drawn, each
forming a glyph with
different stroke styles (solid,
dash, dots)

Fig. 8.23 The domination
relation in glyph plot. The
solid glyph dominates the
dashed glyph
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more important because instead of a single solution, we are looking for a set of
them—the Pareto front—which increases the number of evaluations needed.

Surrogate modelling is an attempt to describe or approximate an unknown
function based on a number of previous samples. In optimization, it is a popular
method to approximate an expensive evaluation, replacing it with a much cheaper
function. A more detailed explanation of surrogate modelling can be found in
Chap. 12.

In the same vein as the problem described above, typically, EAs require a lot of
function evaluations to be successful. The number of function evaluations depends
on the problem and on which EA is being used, but normally, the number of
evaluations ranges from hundreds to thousands. Often, the available budget is not
enough to evaluate the objective that many times, and surrogate models have to be
used. This leads to methods known as surrogate-assisted EAs.

Surrogate-assisted EA for a single-objective problem is quite straightforward; it
replaces the objective function with a surrogate model. However, when we move on
to multi- and many-objective problems, there is a complication: how do we make
the surrogate model for several objectives? This section provides an answer to that
question, describing surrogate-assisted EAs applied in multi- and many-objective
problems.

In this section we will use the abbreviation MOP for multi- and many-objective
problems because surrogate model can be applied to both classes of problems in the
same way.

8.5.1 ParEGO

ParEGO [32] is a modification from a single-objective surrogate-assisted method
named EGO [30] (efficient global optimization). Originally, EGO was proposed
to handle single-objective problems with expensive evaluation. ParEGO stands for
Pareto EGO, which clearly indicates how it is different from the original EGO: it
searches for the Pareto front instead of a single optimum point.

To explain ParEGO, it is better if we start by describing what EGO does. EGO
is intended to be used on expensive black-box functions. EGO starts with a set of
initial designs obtained from Latin hypercube sampling, one of the several available
sampling methods. Based on these initial samples, the EGO creates a DACE kriging
model [30, 32], i.e., we try to fit the unknown function to a standard model. Using
the model, a new design is suggested based on its expected improvement.

Expected improvement is the expectation of a random variable called improve-
ment I by Jones et al. [30]. From the initial samples that we have, we will obtain our
initial best design which has smallest or largest objective value (for minimization
and maximization problem, respectively). Let us call this best design x∗ and its
objective value f (x∗). The DACE kriging model will then provide a prediction and
standard error on all possible design points x. We then treat the objective function
f (x) as a normally distributed random variable Y with mean and standard deviation
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provided by the DACE predictor and standard error, respectively. The improvement
I(x) is calculated from Y using the following equation:

I (x) = max(f (x∗)− Y, 0) for minimization problem

I (x) = max(Y − f (x∗), 0) for maximization problem
(8.7)

The expected improvement is then obtained simply by taking the expectation of I(x):
E(I (x)).

EGO uses the point with the largest expected improvement, evaluates the
objective value, and then rebuilds the kriging model with the new design point.
We can opt to use all evaluated designs or take a smaller set, as long as we build a
new kriging model every time a new point is evaluated. The process is repeated in
a loop until a stopping criteria is met (it can be minimum expected improvement,
maximum iteration, etc.).

Now, ParEGO extends this to MOP by using an aggregation method. A set of
weight vectors W is built at the start; at each iteration, one of the weight vectors
is picked randomly and used for aggregation. At each iteration, different weight
vectors will be used but will always be from the set W. The original ParEGO uses the
augmented Tchebycheff aggregation method (see [32] for details). As the problem
is now transformed into single-objective problem, we can follow the original EGO
algorithm for further steps.

To summarize, the ParEGO implementation is nearly the same as the original
EGO, except that at every iteration, the objective function is changed (due to the
changes in aggregation weights). The changing objective function is not a problem
because EGO works on a black-box function, i.e., it does not care what the objective
function is, it only cares for the objective values.

8.5.2 Prescreening Method

Another approach of using surrogate model in (evolutionary) MOP is by applying
the surrogate and exact evaluation tool in cooperation [20]. In ParEGO, the
optimization searches the design space for the best improvement solely based on the
surrogate model; the exact evaluation is only used for enriching the data. ParEGO-
like methods use the surrogate model as the optimizer.

In the prescreening method, the exact evaluation is used to improve efficiency
for local search. In essence, it uses a traditional optimizer, guided by the surrogate
model. The role of the surrogate model as a guide is achieved similarly with what
happened in ParEGO-like methods which search for points with “improvement.”
In ParEGO, the expected improvement is used, but other improvement metrics are
actually available as mentioned in [20]. These improvement metrics are then used
to prescreen the offspring, i.e., pick several candidate-offspring with maximum
improvement metrics. This effectively reduces the number of required exact eval-
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uations. After the offspring are preselected, the optimizer continues as it would
normally. The algorithm is presented in Algorithm 6 [20].

Algorithm 6 Prescreening algorithm
t = 0
P(t)← Initial population with size μ
Evaluate P(t) and database of evaluated points D
while Stopping criteria not fulfilled do

while |P ′(t)| < λ do
P ′(t)← variation P(t)

Evaluate P ′(t) using surrogate model based on D
while |P ′′(t)| < λ′ do
P ′′(t)← P ′

best (t), P
′
best (t) : member of P ′(t) with max improvement

P(t + 1)← selection fromQ ∪ P ′′(t)
t = t + 1

8.5.3 Taxonomy of Surrogate Models for MOP

As we have seen above, introducing surrogate modelling to MOP can be done in
many ways. Deb et al. [14] classified the methods by how many surrogates are used
to treat the objectives and constraints. Deb classified them into six groups with the
first two groups having two sub-groups (Tables 8.1 and 8.2).

Independent means that for each objective/constraint, one surrogate model is
built. In an M-objective problem with N constraints, M + N surrogate models are
built for class M1-1. Combined means that only one surrogate model is built for
the objectives/constraints, e.g., for class M1-2 M + 1 surrogates are built, M for
the objectives and 1 for the constraints. This can be done by aggregation or other
scalarizing methods.

The optimization method differentiates how the optimization loop looks for the
best solution. A decomposed method makes an aggregation for the objectives and

Table 8.1 Taxonomy of the surrogate models in many-objective optimization

Obj. treatment Cons. treatment Opt. method Class

Independent Independent Decomposed M1-1

Independent Independent Multi-objective M1-2

Independent Combined Decomposed M2-1

Independent Combined Multi-objective M2-2

Combined Independent 1 combined-objective M3

Combined Combined 1 combined-objective M4

Together Decomposed M5

Together Multi-objective M6
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Table 8.2 Available shape
and transformation function
in the WFG test kit

Shape Bias

1. Linear 1. Polynomial

2. Concave 2. Flat region

3. Convex 3. Parameter dependent

4. Mixed concave/convex

5. Disconnected

Shift Reduction

1. Linear 1. Non-separable

2. Deceptive 2. Weighted sum

3. Multi-modal

transforms the problem into several single-objective optimization problems. In turn,
the optimization loop needs to be run several times to find different points on the
Pareto front. A multi-objective method tries to find the Pareto front simultaneously.
Most evolutionary algorithms can be used in this class.

For class M3 and M4, because the objectives are combined into a single surrogate
model, we cannot treat it as a multi-objective problem. In these classes, the
surrogates are built after the objectives are scalarized.

For class M5 and M6, only one surrogate model is built. In M5, one surrogate
model is used to find one point in the Pareto front, while in M6 the single surrogate
model is used to find multiple Pareto optimum solutions.

Regarding the taxonomy, ParEGO would fall into class M1-1, while prescreening
would fall to M1-2.

8.6 Test Problems for Many-Objective Optimization

As the field is becoming more and more researched, many new algorithms are
proposed. To assess the quality of these algorithms, some benchmarking methods
are needed. This is done by means of academic test functions.

The test functions are designed as functions that have their Pareto front and
Pareto set known in advance or easy to generate, but believed to give optimization
algorithms some degrees of difficulties. The difficulties can stem from noise,
deceptiveness, bias, etc. [9, 27].

8.6.1 Biobjective Test Problems

We start with problems commonly used for testing multi-objective optimization
algorithms, specifically biobjective problems. The ZDT and Black-Box Optimiza-
tion Benchmarking (BBOB) test problems are well known and fall to this category.
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8.6.1.1 ZDT

ZDT is proposed by Zitzler, Deb, and Thiele [47] hence its name. It consists of
six test functions with same structures but different shapes and difficulties. The
problems are defined as follows:

minimize
x

(f1(x1), f2(x))

subject to f2(x) = g(x2, . . . , xm)h(f1(x1), g(x2, . . . , xm))

where x = (x1, x2, . . . , xm)

(8.8)

The structure above says that the first objective is dependent only on the first
parameter, while the second objective can be affected by all parameters (due to the
h function).

Each of the six ZDT problems has a different number of parameters m and
also different sets of underlying function f, g, and h. However, the problems are
designed such that the true Pareto front can always be found when g(x) = 1.
With this information, the true Pareto fronts can be generated and be used to assess
performance of optimization methods.

8.6.1.2 Black-Box Optimization Benchmarking

Black-Box Optimization Benchmarking (BBOB) is a collection of commonly used
test problems. The test problems are categorized in the BBOB function definition
[25] to indicate their difficulty factors. However, as the name suggests, even though
the functions and their derivatives are known, the test problems should be treated as
black-box functions. Black-box functions are mappings in which the users do not
know their inner working. The users only interaction with the functions is giving a
set of input variables and receiving the output data.

The original BBOB consists of single-objective problems. Two objective prob-
lems are also defined in the biobjective BBOB by combining certain pairs of the
single-objective problems. The Pareto front of all the biobjective test problems are
known and easy to construct or take samples.

The interesting feature of BBOB is any user can use the test problems, report
their results, and compare it with the current best algorithm of the specific problem.
In other words, the BBOB allows the user to do benchmarking against the best and
possibly becoming the new best method.

8.6.2 Scalable Test Problems

With the rise of research on many-objective optimization methods, the biobjective
test problems become obsolete because although the number of parameters can be
tuned, the number of objectives is fixed in the problems.
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Deb et al. [13] proposed that test problems should have scalability in both
objective and design spaces and be easy to implement and the real Pareto front
must be easy to comprehend. Scalability means that the test problems should have
both their number of objectives and number of variables easily tunable. If the test
problems are scalable, algorithms can be tested on standard/test cases with varying
dimensionality easily.

8.6.2.1 DTLZ

As a trivia, DTLZ is developed by the same group who suggested the ZDT test
functions. It is also an acronym of their name with the addition of Laumanns.

The DTLZ [13] test suite consists of seven test problems. Each of the test
problems is designed to be able to take the number of objectives and number of
variables as an input to construct the complete problem, making it scalable. Each
of the seven test problems has different characteristics; for example, DTLZ1 has a
linear Pareto front, while DTLZ2 to DTLZ4 have convex forms. Other problems
introduce different complicating features such as degenerated or disconnected
Pareto front.

The interesting feature of all DTLZ test problems, aside from its scalability, is
that the real Pareto fronts are easy to construct. Examples of the DTLZ real Pareto
fronts are shown in Fig. 8.24 (DTLZ1) and Fig. 8.25 (DTLZ2, DTLZ3, DTLZ4).
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Fig. 8.24 Pareto front for DTLZ1 test problem in 3D objective space. The Pareto front always lies
on the hyperplane:

∑
f(x) = 0.5, and all objective values are positive
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Fig. 8.25 Pareto front for DTLZ2 to DTLZ4 test problems in 3D objective space. The Pareto front
lies on the hyperplane

∑
f2(x) = 1 (hypersphere with radius 1) and all objective values at positive.

This is also the real Pareto front for WFG4 to WFG9 (after normalization)

Because the Pareto fronts are easy to construct, it is also easy to obtain reference
points on the Pareto front to calculate performance metrics that requires references
on the Pareto front, such as the GD in Sect. 8.3.2.2.

8.6.2.2 WFG

The WFG test kit [26] is a relatively recent work on test problems done by the
Walking Fish Group. The WFG test kit has an interesting feature: on top of
scalability, the WFG suggests that the difficulties of test problems should also
be tunable. The WFG test kit allows users to tune the test problems by adding
transformation functions which should increase their difficulties.

The WFG test kit is made of some building blocks called the shape functions
and transformation functions. The shape function is the test functions’ base shape.
Each of the objectives can have one of the shape functions, i.e., all objectives can
have different shapes, but only use one shape function for each objective fi . The
transformation function will then transform (i.e., make changes to) the base shape
in form of bias, shift, and reduction.
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Although completely tunable, it would not make sense if all researchers use
different problems, all tuned by themselves, to compare algorithms’ performances.
To address this, the WFG also created nine standard test problems (collectively
termed as “WFG test suite”) so researchers can use this for comparing algorithms.

The nine standard test problems have predefined shape and transformation
functions. Users can still tune the number of objectives and variables to some extent
(there are still some requirement on the variables).

8.7 Summary

In this chapter we learned about the difference between single- , multi- , and
many-objective optimization problems. We also mentioned the challenges which
makes many-objective problems much more difficult to solve than multi-objective
problems. We also learned the basics of evolutionary algorithms and the building
blocks: recombination, mutation, and selection.

Furthermore, we learned how evolutionary algorithms can solve multi- and
many-objective optimization problems. Several well-known algorithms were
explained. For multi-objective problems, NSGA-II and SMS-EMOA can be used.
Both algorithms use non-dominated sorting as their primary selection operator.
Their secondary selection operator differs. NSGA-II uses crowding distance, while
SMS-EMOA uses S-metric selection. Another difference is that NSGA-II uses
(μ+μ) selection scheme, while SMS-EMOA uses the steady-state (μ+1) scheme.

For many-objective problems, MOEA/D and NSGA-III can be used. The first
algorithm, MOEA/D, decomposes the many-objective problem into many single-
objective problems. The second algorithm, NSGA-III, is an algorithm based
on NSGA-II. The difference lies in the secondary selection method: instead of
crowding distance, NSGA-III uses reference points which represent the preferences
and weights of different objective functions. Surrogate models which are used in
multi- and many-objective problems were also mentioned in this chapter.

In the last section, benchmarking problems for comparing algorithms are
explained. These benchmarking problems are predefined functions which are
intended to test how well an algorithm can solve problems with different
characteristics and difficulties. Some test problems are designed to be scalable,
meaning that the number of objective functions and variables can be changed. This
feature is especially valuable for researches in many-objective optimization.
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Chapter 9
Multilevel Optimisation

Margarita Antoniou and Peter Korošec

Abstract This chapter is a short introduction to multilevel optimisation problems.
The simplest multilevel problem is the one that has two levels, where one optimisa-
tion problem has as part of its constraints a second optimisation problem, known as
bilevel problem. Even this simple version of the problem is from a mathematical
point of view, complicated and difficult to solve. Therefore, approaches and
examples of bilevel problems, as well as special cases and extensions of this problem
that are used widely in literature, are presented. The most common methodologies
used to solve multilevel problems are then described, with more extended reference
to metaheuristic methods.

Keywords Multilevel optimisation · Bilevel · Hierarchical optimisation ·
Minimax problem · Metaheuristic methods

9.1 Introduction

The standard optimisation problem is the one that has a single-objective function
that needs to be optimised while satisfying some constraints and can be considered
as a single-level optimisation problem. Unfortunately, some real-world applications
cannot be represented in this way; therefore it has been extended in its form and
complexity, so it can have more objectives, different constraints, different types of
variable vectors, etc. [1]. One extension is to have multiple levels of optimisation
tasks instead of just one. A large number of application problems require more than
one level of optimisation, where one optimisation task is nested inside the other [2].
In its simplest form, the nested optimisation problem constitutes two levels. These
problems are known as bilevel optimisation problems.
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The first formulation of bilevel problem was documented in 1973 by Bracken
and McGill [3], and the definition of bilevel and multilevel programming was
used for the first time some years later by Candler and Norton in [4]. Since
then, both classical and evolutionary optimisation communities have studied bilevel
optimisation problems. These problems are intrinsically difficult to solve, so it is no
surprise that most of the proposed solution methods are either computationally very
expensive or applicable only to the simplest cases of bilevel optimisation problems
that have some nice mathematical properties [5].

One can find in literature the usage of multilevel optimisation referring to an
optimisation approach. While multilevel optimisation problems present a hierarchy
in the way the decision-solutions are taken, the multilevel paradigm is used to
describe the approach in optimisation that presents a hierarchy in the procedure
of the optimisation. The most common practice of solving an optimisation problem
is computing/evaluating solutions in some iterative process. In many applications,
such as in engineering, FEM or CFD computations, this can become really
expensive in terms of computational time. With the multilevel approach, one targets
into the minimisation of the expensive evaluations, by allowing for less accurate
computing by using computationally cheaper models of the problem or by reducing
solutions search space that needs to be explored. Both approaches heavily depend on
managing the balance between accuracy and computational time, so the best results
are achieved in a shorter time. The general multilevel strategy can be found in the
literature with several names and definitions. Though there are some differences in a
couple of aspects of each word, the main idea of the hierarchical method is the same.
Therefore, we can say that multilevel can be also found as multi-fidelity, multi-scale,
multi-grid or multistage optimisation approaches. Much more on this topic a reader
can find in [6–12].

In the following sections, we will focus only on multilevel and bilevel problems
by giving definitions, presenting a simple example of a linear bilevel optimisation
and its comparison to biobjective optimisation. Also, special cases of bilevel
problems are shown, providing an idea to the reader on how multilevel problems can
be found and/or formulated in different applications. Moreover, the main solution
algorithms with a special reference to metaheuristic solution methods found in the
literature are presented. The chapter ends by giving some examples of applications
solved as bilevel optimisation problems.

9.2 Multilevel Optimisation Problem

In the following of the chapter, we will consider minimisation problems without the
loss of generality since min =−max. The general multilevel optimisation problem
(P ) can be formulated as follows:

(P1) min
x1∈X1

f1(x1, x2, . . . , xk)
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subject to

g1(x1, x2, . . . , xk) ≤ 0

where P2 solves

(P2) min
x2∈X2

f2(x1, x2, . . . , xk)

subject to

g2(x1, x2, . . . , xk) ≤ 0

. . .

. . .

where Pk solves

(Pk) min
xk∈Xk

fk(x1, x2, . . . , xk)

subject to

gk(x1, x2, . . . , xk) ≤ 0

where P1 is called the first (upper) level problem and corresponds to the highest
level in the hierarchy; x1 is the solution, composed of n1 variables, of the first level
problem from the set of solutions X1 ∈ Rn1 ; x2 is the solution, composed of n2
variables, of the second level problem from the set of solutions X2 ∈ Rn2 ; and
xk is the solution, composed of nk variables, of the k-th level problem from set of
solutionsXk ∈ Rnk . At this level, the decision maker controls the decision variables
x1, and his/her objective is to minimise the function f1. Consequently, Pk is the
k-th level problem, which corresponds to the lowest level in the hierarchy [13]. Let
us assume that each of the levels corresponds to a decision maker, which we call
player from now on. Each player has control over its own set of variables and aims
to optimise its own objective function f . Each objective function can also depend
on the variables of other players [14]. Variable value choices of each player should
be such that there exists a sequence of choices for the other, following players that
all satisfy their constraints. Players are playing in a hierarchical order, meaning the
first player (first level) chooses first and the k-th (last) player plays last.

Multilevel optimisation problem presents a nested formulation. Finding a polyno-
mial algorithm, capable of obtaining the global optimum for even the simplest case
of linear optimisation problems with only two levels, is highly unlikely. For this
reason, we will refer to instances and solution algorithms of bilevel optimisation for
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the rest of the chapter, as we believe that this is the best way for an introduction to
multilevel optimisation problems.

9.3 Bilevel Optimisation Problem

From a mathematical point of view, bilevel optimisation problem (BOP) consists
of two levels of optimisation tasks. Two different sets of variables belong to each
of these tasks. The level corresponds to the hierarchy of the problem, meaning
that there exists an upper and lower level optimisation problem. The mathematical
representation is as follows:

min
xu∈Xu,xl∈Xl

F(xu, xl)

subject to

Gk(xu, xl) ≤ 0, k = 1, . . . , K,

where K is the number of constraint functions of the upper level and xl is the
solution of the lower level problem from the set of solutions Xl ∈ Rn, with regard
to solution from upper level xu from set of solutions Xu ∈ Rm, according to:

min
xl∈Xl

f (xu, xl)

subject to

gj (xu, xl) ≤ 0, j = 1, . . . , J,

where J is the number of constraint functions of the lower level. F represents the
first (upper) level optimisation problem and corresponds to the highest level in the
hierarchy. At this level, the decision maker controls the decision variables xu, and
his/her objective is to minimise the function F . Consequently, f represents the
second level of the optimisation problem, which corresponds to the lowest level
in the hierarchy [13]. Note that in some sections we also use notation F(x, y) for
the upper level and f (x, y) for the lower level, where x is the solution of the upper
level and corresponds to xu and y is the solution of the lower level and corresponds
to xl. The basic notations and definitions of a bilevel optimisation problem are the
following as found in [5]:

• Decision vectors: xu ∈ XU (or x ∈ X) corresponds to the leader’s (upper level)
decision variable and decision space and xl ∈ XL (or y ∈ Y ) corresponds to the
follower’s (lower level) decision variable and decision space.
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• Objectives: F is the leader’s (upper level) objective functions. f is the follower’s
(lower level) objective functions.

• Constraints: Gk, k = 1, . . . , K are the leader’s (upper level) constraint
functions. gj , j = 1, . . . , J are the follower’s (lower level) constraint functions.

• Lower level feasible region: Ω : XU -⇒ XL, Ω(xu) = {xl : gj (xu, xl) ≤
0 ∀ j} represents the lower level feasible region for any given upper level
decision vector.

• Constraint region (relaxed feasible set): Φ = {(xu, xl) : Gk(xu, xl) ≤ 0 ∀ k,
gj (xu, xl) ≤ 0 ∀ j} represents the region satisfying both upper and lower level
constraints.

• Lower level/rational reaction set: Ψ : XU -⇒ XL,

Ψ (xu) = {xl : xl ∈ arg min
xl∈XL

f (xu, xl) : xl ∈ Ω(xu)},

represents the lower level optimal solution(s) for an upper level decision vector.
• Inducible region (feasible set):

I = {(xu, xl) : (xu, xl) ∈ Gk(xu, xl) ≤ 0, xl ∈ Ψ (xu)}

represents the set of upper level decision vectors and corresponding lower level
optimal solution(s) belonging to feasible constraint region.

• Choice function: ψ : XU → XL, ψ(xu) represents the solution chosen by the
follower for any upper level decision vector. It becomes important in case of
multiple lower level optimal solutions.

• Optimal solution: A solution (x∗u, x∗l ) ∈ I is an optimal solution if ∀(xu, xl) ∈
I, F (x∗u, x∗l ) ≤ F(xu, xl).
A general sketch of the bilevel problem, inspired by [2], can be seen in Fig. 9.1, in

which the variable spaces of upper and lower levels are illustrated. For one decision
variable of the upper level, one lower level optimal solution is represented.

Bilevel optimisation problems can be also interpreted as non-cooperative static
Stackelberg game, as was first introduced by von Stackelberg in 1934 in the context
of unbalanced economic markets [15]. A bilevel problem is considered a game
where two decision makers follow a hierarchy. The upper and the lower levels
are termed as the leader and the follower, respectively. The leader is the first to
perform an optimisation step (decision) for his/her objective function. The follower
reacts having full knowledge of the leader’s choice. The follower’s decision, though,
affects the leader’s decision in an implicit manner, since it changes some of the
variables used by the leader [16, 17].

The main characteristic of the bilevel optimisation problem is its nested nature.
Hansel et al. have proved that bilevel programming is strongly NP-hard [18]. More-
over, bilevel optimisation problems are typically non-convex and disconnected. In
general, solving an optimisation problem produces one or more feasible solutions.
In the case that at the lower level there are multiple global optimal solutions,
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Fig. 9.1 A general sketch of
a bilevel problem, inspired by
[2]

bilevel optimisation problem has to cope with additional challenges. With regard
to the selection of one solution, two positions are distinguished, according to the
assumption that the two levels are cooperating or conflicting [19]. These positions
are the following:

• Optimistic position: The upper level expects the lower one to choose such a
solution from the optimal set that leads to the best objective function value at
the upper level. This assumes cooperation between the two levels. Due to its
tractability compared to the pessimistic approach, most of the literature treats the
bilevel optimisation problem as optimistic.

• Pessimistic position: In this case, upper level optimisation is ready for the worst
case. The upper level assumes that the lower level will choose a solution from
the optimal set that leads to the worst objective function value at the upper level
[5].

9.3.1 Linear Bilevel Optimisation Example

For a better understanding of the bilevel optimisation problem, an example of a
linear bilevel optimisation problem is presented in this section. Let us consider the
following continuous linear BOP, where x represents upper level and y lower level
solution:
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Fig. 9.2 Bilevel optimisation example and its feasible region

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x≥0

F(x, y) = x − 8y

subject to min
y≥0

f (y) = y

subject to

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−x − y ≤ −4

−x + y ≤ 0

3x + y ≤ 10

−3x + 2y ≥ −3
(9.1)

Figure 9.2 illustrates the feasible region considering the lower level constraints.
Additionally, one can see the direction in which the upper level problem is
minimising its values. More specifically, the objective function values are shown,
as a contour plot with values described in the right contour legend. The inducible
region is shown in Fig. 9.3 of the problem which is represented by the lines created
from points A-B-C. Along these lines, the optimal solution of the linear BOP is
point C (2.56, 2.33), with F = −16.31 and f = 2.33 as it also minimises the upper
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Fig. 9.3 Bilevel optimisation example and its inducible region

level. Point A can be considered as a solution to the bilevel problem, just not the
optimal one.

9.4 Bilevel vs Biobjective Optimisation Problem

An optimisation problem can have more than one objective. In this case, we talk
about a multiobjective optimisation problem. The one with two objectives is called
biobjective optimisation problem and has the following formulation:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

min
x,y
F (x, y)

subject to G(x, y)

min
x,y
f (x, y)

subject to g(x, y)

(9.2)
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where F and f are the two objectives to be optimised, x and y are the decision
variables, and G and g are the constraints of the first and second objectives,
respectively. In single-objective optimisation problems, relations between solutions
(better/worse) are easily determined through comparison of their objective values. In
biobjective optimisation, this is not so obvious. Here the superiority of the solutions
is determined by the dominance. According to [1], a solution x1 is said to dominate
x2 solution, if solution x1 is no worse than x2 in all objectives and solution x1
is strictly better than x2 in at least one objective. Given this definition, the non-
dominated set of solutions in the feasible region1 is called the Pareto-optimal set,
and the boundary marked of the solution objectives values of this set is called Pareto-
optimal front.

Many researchers tried to investigate the relationship between the bilevel and
biobjective optimisation problem [20, 21]. It has been shown that, while in some
special cases and examples the BOP can be formulated as a biobjective optimisation
problem and results can be found that way, there are no conditions that an optimal
solution of a BOP is in the Pareto-optimal front of its equivalent biobjective
optimisation problem.

For better understanding the differences between the two problems a comparison
of the two different problems are made, inspired by Talbi in [22], using the
example from the previous section. We will show that a BOP does not necessarily
have an equivalent corresponding biobjective problem composed of the upper
level and the lower level objectives. Consequently, the optimal solution of the
BOP is not automatically a Pareto-optimal solution of the biobjective problem
and vice versa. For this reason, finding a solution by reformulating the bilevel as
biobjective optimisation problem and using the Pareto dominance will not work.
Let us reformulate the previous bilevel problem as a biobjective one as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
x≥0

F(x, y) = x − 8y

min
y≥0

f (y) = y
subject to − x − y ≤ −4

−x + y ≤ 0

3x + y ≤ 10

−3x + 2y ≥ −3

, (9.3)

where F and f are the previous upper and lower level objectives, but now they are
optimised independently and on a single level.

In Fig. 9.4, a scatterplot of the feasible decision space of the biobjective problem
is shown. It is obvious that the feasible space is formulating a trapezium, identical
to the one in the bilevel example. Figure 9.5 is a scatterplot of the corresponding

1Feasible region is consisting of the set of all solutions that satisfy all the constraints.
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objective space of the biobjective problem. The red point in Fig. 9.5 inside the
feasible objective space corresponds to the optimal solution of the bilevel example.
One can easily notice that this solution is dominated by many other solutions
to the biobjective optimisation problem. More specifically, the red-filled triangle,
shown in Fig. 9.6, which is formed by constraint lines and the upper and lower
level objectives, represents the region of solution of the biobjective problem that
is dominating the bilevel optimal solution (point C). From this, one can state that
bilevel and the corresponding biobjective problem are two completely different
concepts and referring to two different kinds of problems.

9.5 Special Cases of Bilevel Optimisation Problems

Bilevel optimisation problems can occur in real-world applications with different
formulations and characteristics. A good overview paper that refers to these different
cases of BOPs is [17]. In this section the most popular special cases are presented,
so the reader can have a general idea of the range of formulations a BOP can have.
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Fig. 9.5 Feasible objective space

Bilevel multiobjective, bilevel multileader/multifollower, bilevel under uncertainty,
and minimax as a bilevel optimisation problem are introduced as special cases of
the BOP.

9.5.1 Bilevel Multiobjective Optimisation Problems

It is possible that upper and/or lower levels have multiple objectives. The mathemat-
ical definition of such problem is:

min
xu∈XU,xl∈XL

F(xu, xl) = (F1(xu, xl), . . . , Fp(xu, xl))

subject to

xl ∈ arg min
xl∈XL

l) = (f1(xu, xl), . . . , fq(xu, xl)) :
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Fig. 9.6 Bilevel vs biobjective optimisation example. The red triangle represents the region of
solution of the biobjective problem that is dominating the bilevel optimal solution (point C)

gj (xu, xl) ≤ 0

Gk(xu, xl) ≤ 0

where

Gk : XU ×XL → R, k = 1 . . . , K

denote the upper level constraints and K is the number of upper level constraints
and

gj : XU ×XL → R, j = 1 . . . , J

represent the lower level constraints and J is the number of lower level constraints,
respectively [5]. F and f are the upper and lower level objectives, respectively,
where p is the number of upper level objectives and q is the number of lower
level objectives. Also, XU ∈ Rn and XL ∈ Rm, where n and m are the number
of variables for upper and lower levels, respectively.
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For more information on the bilevel multiobjective problems, the reader can
refer to [23, 24]. An example of a bilevel multiobjective problem can be found in
[25], where it was applied in a transportation system planning problem and solved
using genetic algorithm. Another example can be found in [26] where a ‘proba-
bilistic bilevel linear multiobjective programming problem’ and its application in
enterprise-wide supply chain planning problem was approached and solved with a
fuzzy programming technique.

9.5.2 Bilevel Multileader and/or Multifollower Optimisation
Problems

In many applications, a bilevel optimisation problem may involve multiple decision
entities (decision makers) on the upper level. The bilevel problem, in this case, has
many leaders that may have their individual decision variables, objective functions
and/or constraint conditions. This kind of bilevel decision problem is called a bilevel
multileader problem [27]. A general definition of the bilevel multileader problem is
[17]:
For xi ∈ Xi ⊂ Rpi , y ∈ Y ⊂ Rq , i = 1, 2, .., L, in which L is the number of
leaders and one follower

min
xi∈Xi

Fi(x, y)

subject to

Gi(x, y) ≤ 0,

where for each x = (x1, x2, . . . , xL) given by the first level, y solves

min
y∈Y f (x, y)

subject to

g(x, y) ≤ 0,

where L is the number of leaders, while xi and y are the decision variables of the
i-th leader and the follower, respectively. Fi, f : Rp1 × . . . × RpL × Rq → R1

are the objective functions of the i-th leader and the follower, respectively. Gi :
Rp1 × . . .×RpL ×Rq → Rmi , g : Rp1 × . . .×RpL ×Rq → Rn are the constraint
conditions of the i-th leader and the follower, respectively. The sets Xi and Y can
induce upper and lower bounds on the decision variables, restricting the problem
even more. In general, in this problem the leaders have to take into consideration the
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reaction of the followers along with the decision results given by their counterparts
at the upper level.

A bilevel decision problem may involve multiple decision makers at the lower
level, formulating a bilevel multifollower problem. These followers may have
different reactions for a possible decision made by the leader. These followers may
share decision variables, objectives and/or constraints. The reactions of individual
followers and their relationships will affect the leader’s decision [27].

A definition of the multifollower problem is [17]: For x ∈ X ⊂ Rp, yi ∈ Yi ⊂
Rqi , i = 1, 2, .., K , in which one leader and K followers are involved

min
x∈X F(x, y)

subject to

G(x, y) ≤ 0,

where for each x given by the upper level, y = (y1, y2, . . . , yK) solves the i-th
follower’s problem

min
yi∈Yi

fi(x, y)

subject to

gi(x, y) ≤ 0,

where x and yi are the decision variables of the leader and the i-th follower,
respectively. F, fi : Rp ×Rq1 × . . .×RqK → R1 are the objective functions of the
leader and the i-th follower, respectively and G : Rp × Rq1 × . . . × Rqk → Rm,
gi : Rp×Rq1 × . . .×RqK → Rni the constraint conditions of the leader and the i-th
follower, respectively. In this problem, the followers have to take into consideration
the decision results of their counterparts when making their individual decisions,
after knowing the leaders’ decision.

In literature, these problems have been accounted for problems with several
leaders and one follower, one leader and more followers and combination with more
than one leaders and followers. Papers tackling these problems are [28–30].

9.5.3 Bilevel Optimisation Problem Under Uncertainty

Decision variables of bilevel optimisation problems can present uncertainties at
both levels. Each level has different importance to the overall result of a bilevel
optimisation problem. Therefore, the impact of the uncertainties of upper and lower
level variables on the final robust solution of the problem is expected to be different,
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too. The nested nature of the bilevel optimisation problems makes the search of
robust solutions substantially more challenging compared to single-level optimisa-
tion problems [5, 31]. Suggested definitions of bilevel optimisation problems under
uncertainties and ideas for tackling variable uncertainty are presented in [31]. Test
problems can be found in [32].

9.5.4 Minimax (Worst-Case Scenario) as Bilevel Optimisation
Problem

In many real-world applications, uncertainties occur that are impossible to avoid,
and they might be due to several reasons such as reduced accuracy of the simu-
lations, manufacture tolerances, unknown conditions of the problem, etc. A way
to manage these uncertainties is robust optimisation2, by taking into consideration
these uncertain parameters. One way to do this is by transforming them into decision
variables. Having that said, these uncertain parameters must be optimised so that
they can respond to the worst-case scenario they are able to describe (where as
scenario we mean a specific realisation of all parameters of the problem) [34].

In the worst-case scenario, the set of possible scenarios is described, and the
objective is to find a solution that performs reasonably well for all scenarios. This
solution is the one that has the best “worst-case” performance and performs well
even in the most hostile scenario [35].

Using minimax [36] as an approach to tackling uncertainty, the optimisation of
the worst-case scenario can be translated into solving a bilevel optimisation problem
where the worst case is defined as a maximum in the uncertain space (uncertain
parameters) and the optimal design corresponds to the minimum of all the maxima
in the design space (candidate solutions) [37, 38].

The minimax problem can be described as:

min
x∈X f (x, y)

where

f (x, y) = max
y∈Y f (x, y)

and X ∈ Rm represent the set of candidate solutions and Y ∈ Rn the set of
all possible scenarios [39]. Note that the upper and the lower levels have the
same objective function f (x, y), where the upper level is minimising according to
the actual variables x and the lower level maximising according to the uncertain

2Note that this is one approach of robust optimisation. A practical guide for robust optimisation is
given by [33].
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Fig. 9.7 Minimax
optimisation (worst-case
scenario)

parameters y of the problem. If the actual problem is a minimisation problem,
then the worst-case scenario given by the uncertain variables y can be found by
maximising f (x, y). The minimax optimisation schema is shown in Fig. 9.7.

In the literature, one can find many approaches to solving this problem. Lung
et al. [39] approached minimax optimisation problem by means of evolutionary
algorithms, using a differential evolution algorithm for numerical optimisation.
Recently, Ortega et al. [38] proposed a novel heuristic to solve multiobjective
minimax problems, approximating the worst-case Pareto-optimal front at a very
reduced cost with respect to approaches based on nested optimisation. Zhou et
al. [40] proposed a surrogate-assisted evolutionary algorithm for tackling minimax
optimisation problems. In this minimax algorithm, a surrogate model based on
the Gaussian process is built to approximate the relationship between the decision
variables and the objective value. In each generation, most of the new solutions are
evaluated using the surrogate model, and only the best one is evaluated by the actual
objective function, reducing the computational cost and time. In [34] a variable
neighbourhood search algorithm is proposed and was applied to a black box wing-
shaped optimisation problem, giving good preliminary solutions. An example of a
constrained minimax approach can be found in Chap. 17 of the OTS book.

9.6 Solution Algorithms

Bilevel optimisation problems have been studied widely by the scientific commu-
nity, both from a theoretical and mathematical approach, and more recently, by
the metaheuristic and evolutionary research community. In this section, we will
focus on the metaheuristic approaches and algorithms that have been developed to
solve bilevel optimisation problems, while some of the classical approaches will be
mentioned.
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9.6.1 Classical Approaches

Well-behaved bilevel optimisation problems are formulated in the literature in
order to be solved with classical approaches, due to their inherent complexity.
Assumptions about the nature of the equations, such as that they are linear, quadratic
or convex, are made. The main classical approaches are listed, along with some
references for the reader that wants to find out more about the topic, as a more
detailed report of them is out of the scope of this chapter.

• Single-level reduction [16]
• Smoothing methods [16]
• Descent algorithm [41]
• Penalty methods [42]
• A trust region method [43]

9.6.2 Metaheuristic Approaches

Many metaheuristics algorithms have been so far applied to bilevel optimisation,
with most of the approaches using nested strategies. Evolutionary algorithms
(EAs), a popular subset of metaheuristics, are an efficient way of solving bilevel
optimisation problems since no implementable mathematical optimality conditions
exist [44]. To use classical numerical optimisation methods, various simplifying
assumptions are made, such as continuity, differentiability and convexity of the
problem. These assumptions though do not represent most of the real-world
problems. EA’s population-based approach, along with the flexibility of its operators
and without the need for simplifying the objective functions, leads to acquiring
better solutions of the BOPs [45]. Most of the times, the solutions of the lower/upper
level are multimodal, making the use of surrogate modeling very promising, since
a simpler approximation of the problem is solved, making the procedure faster [5].
Last but not the least, many bilevel optimisation problems are multiobjective, where
both levels require to find and maintain multiple optimal solutions, and EAs are
known to be good for these cases [19]. According to the classification of Sinha et al.
[5] and Talbi [22], the metaheuristic approaches can be categorised as follows:

• Nested methods: the lower level optimisation problem is solved in a nested way,
meaning that for each upper level solution, a lower level solution is obtained
and evaluates the solutions generated at the upper level of the BOP. In nested
strategies for every upper level solution, a lower level optimisation task is
executed, as seen in Fig. 9.8. This usually means that they are computationally
expensive and not practical for large-scale bilevel optimisation problems. We
refer the reader to the following papers [46, 47] for more detailed information.

• Single-level reduction: the BOP is reduced into a single-level optimisation
problem, and then any traditional evolutionary algorithm can be used to solve the
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Fig. 9.8 Nested method

Fig. 9.9 Singe level
reduction method

problem. A general schema is shown in Fig. 9.9. Karush-Kuhn-Tucker (KKT)
conditions3 applied to the lower level have been often used in the evolutionary
computation community to reduce the bilevel optimisation problem into a single-
level optimisation problem. This approach is able to solve problems that adhere

3Karush-Kuhn-Tucker (KKT) conditions: when the lower level problem has some conditions, such
as that is convex and regular, it can be replaced with its KKT conditions. KKT conditions on the
lower level problem are generally used as constraints in the formulation of the KKT conditions of
the upper level optimisation problem [45]. This involves the second derivatives of the objectives
and constraints of the lower level problem as necessary conditions of the upper level optimisation
problem [22]. That way, the problems are reduced to a single-level optimisation problem. More
about this the reader can find in [48].
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to certain regularity conditions at the lower level because of the requirement of
the KKT conditions. The upper level objective function and constraints, however,
can be more general and complex, as the reduced single-objective problem is
solved with an evolutionary algorithm. For example, Wang et al. reduced the
bilevel optimisation problem into a single-level optimisation problem using KKT
conditions and tested the algorithm in a number of standard test problems [49].
The algorithm managed to handle non-differentiability only at the upper level
objective function. Later, Wang et al. improved this algorithm, enabling it to
handle non-convexity of the lower level problem and thus obtaining better results
than their previous approach [50]. A serious drawback of both methods though is
the high number of function evaluations (requiring 100,000 function evaluations
for 2–5 variable bilevel optimisation problems).

• Meta-modeling-based methods: Meta-modeling-based methods are usually
used for optimisation problems when each true evaluation—meaning the exact
solution—is computationally expensive. Meta-model or surrogate model can be
defined as an approximation function of an actual model, which is simpler and
easier to evaluate. The surrogate model is trained and used in the optimisation,
based on a limited sample of true evaluations of the actual model. A relevant
review on the use of fitness approximation in the context of evolutionary
computation has been reported by Yin [47]. Since the bilevel optimisation
problems are inherently complex, the number of evaluations needed is large,
making meta-modeling, especially when used with population-based algorithms,
a very promising alternative [2]. Algorithms published until today, according to
Islam et al. [51], that use approximation models during the evolutionary bilevel
search are shown in Table 9.1.

• Co-evolutionary approaches: these approaches constitute the most general
methodology to solve multilevel optimisation problems. Many metaheuristics,
usually one for each level, are solving different levels of the problem in parallel
while they exchange information between them during the optimisation process.

Table 9.1 Meta-modeling-based algorithms

Meta-modeling-based methods

Modified NBLEA [52] NBLEA is a basic nested algorithm in which each of the levels
is optimised using an EA and the lower level problem is first
modeled as a quadratic programming problem

BLEAQ [53] BLEAQ is an efficient bilevel EA based on quadratic approx-
imations, where the optimal lower level variable values are
approximated as a function of the upper level variables

Surrogate-assisted BIDE [54] BIDE uses an extensive differential evolution algorithm at both
levels, with a surrogate model that is built by approximating
the relationship between the upper level variables and the
corresponding lower level optimum

SABLA [51] SABLA uses surrogate models of multiple types, in order
to provide the flexibility of approximating different types of
functions more accurately
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Fig. 9.10 Co-evolutionary approach for solving BOPs. The two metaheuristics evolve in parallel
and cooperate via information exchange [22]

Since in BOP there are two levels, we are referring to two different evolutionary
algorithms, one for upper and lower levels, respectively. Figure 9.10 represents
the general idea of this approach.

One attempt to solve bilevel optimisation problems with co-evolutionary
method was proposed by [55], named BiGA (bilevel genetic algorithm). The
algorithm solved two optimisation problems iteratively. One was optimising
the leader (upper) level problem for all the x variables and a subset of the
y variables associated with the optimal basis of the follower’s (lower) level
problem. The other was optimising the follower problem with all the x variables
fixed. In order to explore the optimal basis of the follower’s problem, x was
fixed, and then the corresponding ‘optimal’ y variables were returned to the
leader problem. The basic genetic algorithm and its full operators is used in a
dual population environment to solve both leader and follower problems. The
algorithm was tested on four test functions, and the results showed that the
BiGA approach was robust for solving different classes of BOP with reasonable
performance. Recently, Legillon et al. [56] presented CoBRA, a parallel co-
evolutionary algorithm for bilevel optimisation. Extending on the idea behind
BiGA algorithm, it is a co-evolutionary metaheuristic algorithm consisting of
two improving subpopulations, each corresponding to one level and periodically
exchanging information with the other. The CoBRA approach was applied to
solve a bilevel transportation problem, and the results found were better than
those found by a classical hierarchical approach.

9.7 Applications

Bilevel optimisation is used in a wide area of applications. In structural optimisation
or optimal shape design, the formulation of bilevel problems is very common. More
specifically, it is common that the minimisation of the weight or cost of a structure
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can be considered as an upper level objective with the decision variables such
as the shape of the structure, choice of materials, amount of material, etc. being
the lower level [2]. In [57], the minimisation of the final mass of the structure is
defined as the upper level and the location of the nodes and struts as the lower level.
In aerospace engineering, an example of bilevel formulation of a problem can be
found in [58], where a bilevel optimisation strategy for wing design was developed.
Optimisations of the wing planform and wing airfoil shapes were decoupled from
each other, formulating a bilevel optimisation problem. In [59] the formulation of
the truss topology problem with additional constraints on the displacements was
approached as a bilevel problem. There, satisfying the displacement constraint was
defined as the upper level problem and the minimisation of the compliance as
the lower level problem. Herskovits et al. [60] formulated the problem of shape
optimisation of nonlinear elastic solids in contact, as a bilevel problem, optimising
simultaneously the shape and the nonlinear contact analysis, by taking the cost
function minimisation with respect to the design variables as the upper level and,
the minimisation of the elastic energy.

In a completely different research area, a very interesting application was
proposed by Sinha et al. [61], where the parameter tuning of optimisation algorithms
was presented as a bilevel problem. They tested this approach on two commonly
used optimisation algorithms, differential evolution and Nelder-Mead, and they
found that the approach converges towards the efficient parameters. This is very
promising, as a suitable choice of parameters can have an important impact on the
efficiency of the algorithm. More research in this area is needed though.

Other areas where bilevel optimisation is applied can be found in transport,
for solving the toll setting problem, in the chemical industry, in environmental
economics, in seller-buyer strategies, in optimal design, etc. A recent list of areas of
application can be found in [5].

9.8 Summary

This chapter is a short introduction to multilevel and especially to bilevel optimi-
sation problems. For a better understanding, a bilevel linear example is presented
and compared to a biobjective equivalent. Moreover, special cases of bilevel
problems are introduced, namely, multiobjective, multileader/multifollower and
bilevel optimisation, under uncertainty problems along with minmax (worst-case
scenario) as bilevel optimisation problem. The main solution algorithms categories,
the classical and metaheuristic approaches are noted. More focus is given to
metaheuristic approaches, providing a list of the algorithms that can be found in
the literature. Last but not the least, some applications that have been formulated
and solved as bilevel problems are shortly mentioned.



328 M. Antoniou and P. Korošec

Acknowledgments This work is funded by the European Commission’s H2020 programme,
through the UTOPIAE Marie Curie Innovative Training Network, H2020-MSCA-ITN-2016, Grant
agreement number 722734, and through the SYNERGY Twinning project, H2020-TWINN-2015,
Grant agreement number 692286.

References

1. K. Deb, D. Kalyanmoy, Multi-Objective Optimization Using Evolutionary Algorithms (Wiley,
New York, NY, 2001)

2. A. Sinha, Z. Lu, K. Deb, P. Malo, Bilevel Optimization based on Iterative Approximation of
Multiple Mappings. Feb. 2017 [Online]. arXiv:1702.03394 [math]. Available http://arxiv.org/
abs/1702.03394

3. J. Bracken, J.T. McGill, Mathematical programs with optimization problems in the constraints.
Oper. Res. 21(1), 37–44 (1973)

4. W. Candler, R. Norton, Multi-Level Programming and Development Policy (The World Bank,
Washington, DC, 1977)

5. A. Sinha, P. Malo, K. Deb, A review on bilevel optimization: from classical to evolutionary
approaches and applications. May 2017 [Online]. arXiv:1705.06270 [cs, math]. Available
http://arxiv.org/abs/1705.06270

6. A. Valejo, M.C. Ferreira de Oliveira, G.P.R. Filho, A.D.A. Lopes, Multilevel approach for
combinatorial optimization in bipartite network. Knowledge-Based Systems, March 2018
[Online]. Available http://www.sciencedirect.com/science/article/pii/S0950705118301539

7. W.W. Hager (ed.), Multiscale Optimization Methods and Applications. Nonconvex optimiza-
tion and its applications, vol. 82 (Springer, New York, 2006)
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Chapter 10
Sequential Parameter Optimization for
Mixed-Discrete Problems

Lorenzo Gentile, Thomas Bartz-Beielstein, and Martin Zaefferer

Abstract Mixed-discrete optimization deals with mathematical optimization prob-
lems with multiple types of variables: discrete (nominal) taking values from a
not-sortable set of possible elements, integer variables and variables taking values
in a continuous domain. Mixed-discrete problems appear naturally in many contexts
such as in the real world in the engineering domain, bioinformatics and data
sciences, and this has led to an increased interest in the design of strong algorithms
for different variants of the problem. Much effort has been spent over the last
decades in studying and developing new methodologies, but unfortunately mixed-
discrete optimization problems are much less understood then their “non-mixed”
counterparts. In this chapter we will focus on the rather new approaches to handle
mixed-discrete problems by means of surrogate methods.

Keywords Optimization · Mixed-discrete optimization · Sequential parameter
optimisation

10.1 Introduction

Many real-world optimization problems consider the optimization of ordinal inte-
gers, categorical integers, binary variables, permutations, strings, trees or graphs
structures in general. These real-world problems pose complex search spaces which
require a deep understanding of the underlying solution representations. Some of
them, for example, integers, are more suitable to be treated by classic optimization
algorithms. Others, such as trees, have to be handled by specifically developed
optimization algorithms. In general, solving these kinds of problems usually
necessitates a significant number of objective function evaluations. However, in
many engineering problems, a single evaluation is based either on experimental or
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numerical analysis. This causes significant costs with respect to time or resources.
Surrogate model-based optimization (SMBO) aims to handle the complex variable
structures and the limited budget simultaneously. Sequential parameter optimization
(SPO) pursues the identification of global optima, making advantage of a budget
allocation process that maximizes the information gaining in promising regions.
This chapter aims to show an efficient method to face mixed-discrete optimization
problems utilizing SPO. Particularly, the chapter is structured as follows: Sect. 10.2
introduces the problem definition, Sect. 10.3 describes the challenges that are
common in this problem domain, Sect. 10.4 contains a thorough description of
SPO, and finally an application of SPO on real-world discrete-mixed optimization
problem is presented in Sect. 10.5.

10.2 Problem Definition

Optimization can be seen as the process of searching for the best candidate solution
in the search space, which maximizes or minimizes an objective function. Without
loss of generality, we refer to optimization as a minimization process. In this
chapter, we will focus on describing problems including real-valued variables,
ordinal integers, and categorical (uncountable) variables.

Let f : Rnr × Z
nz × D

nd → R denote the objective function to be optimized,
gj : R

nr × Z
nz × D

nd → R, 1 ≤ j ≤ ng the inequality constraints and hk :
R
nr × Z

nz × D
nd → R, 1 ≤ k ≤ nh the equality constraints.

The problem of mixed-discrete optimization can be formalized as follows:

min
x
f (x) where x ∈ R

nr × Z
nz × D

nd

subject to

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

gj ≤ 0, 1 ≤ j ≤ ng
hk = 0, 1 ≤ k ≤ nh
ri ∈ [rmin

i , rmax
i ], 1 ≤ i ≤ nr

zi ∈ [zmin
i , zmax

i ], 1 ≤ i ≤ nz
di =

{
d1
i , . . . , d

Ni
i

}
, 1 ≤ i ≤ nd

(10.1)

where rmin
i and rmax

i define the lower and upper bounds that the nr real variables
ri can assume, zmin

i and zmax
i define the lower and upper bounds that the nz integer

variables zi can assume, di is the set of the possible values that the i-th discrete
variable can assume and finally nd is the number of discrete variables. The input
variables will be referred to design variables.
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10.3 Challenges in Real-World Optimization

10.3.1 Problem Features

Over the years, a large number of optimization methods have been proposed, and
new algorithms are developed every day to improve their general performance.
However, it has been stated by Wolpert and Macready [57] that any algorithm’s
improved performance over one class of problems is offset by a performance loss
over another class. Hence, the identification of problem features becomes a crucial
stage in the development and selection of optimization algorithms. Among all
potential problem features, the ones that mostly affect the performances in mixed-
discrete optimization can be listed as follows: high dimensionality, uncertainties,
computationally expensive evaluations, complex landscapes and black-box prob-
lems [55].

Here, “black-box” implies that no knowledge about the function is available and
any knowledge can only be derived by evaluating the function itself. It is often
impossible to predict the response of the function because the physical phenomena
are not fully understood or the modeling strategy leads to bias and undesired,
unknown sensitivities. The integration of optimization methodologies with com-
putational analysis and simulations is of some importance in this context. This
lack of knowledge is especially problematic when function evaluations are expen-
sive: Black-box optimization processes inherently require numerous evaluations of
objective functions [28]. Therefore, although numerous non-gradient optimization
methods are available for cheap black-box functions, more sophisticated methods
are necessary to deal with limited evaluation budgets.

Determining whether the best solution currently known is a local or a global
optimum is often difficult. This issue typically arises for multi-modal problems
(if the function has multiple maxima and minima). Moreover, difficult fitness
landscapes may exhibit deceptiveness [10]. Deceptive objective functions can trap
the optimizer by a large basin of attraction, which leads the search process away
from the global optimum in favour of a local one.

If an area with a better average fitness compared to other regions has been
found, the optimization algorithm will consider it as promising and will focus on
the exploration of this region. This assumes that such areas are likely to contain the
true optimum. Hence, developing an algorithm that is able to interpret the function
response correctly is a demanding task.

In many cases, this problem can be solved by choosing the correct optimization
strategy and performing a preliminary algorithm tuning. For example, a population-
based optimizer’s ability to distinguish the global optimum from a local optimum
often relies on the chosen population size. Moreover, maintaining diversity in the
population helps to avoid premature convergence [55]. It is also clear that the
optimality of the algorithms’ parameters changes during the optimization process
in case of multi-modal problems: In the beginning, algorithms should be more
explorative. This leads to the fastest identification of all the promising areas and
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would help escaping misleading local minima. On the contrary, at the end of
the process, exploitation would gain more importance, assuming that the most
promising area has already been identified. For these reasons, algorithms able to
auto-tune (i.e. perform on-the-fly parameter control) all along the optimization
process, such as [31, 40], can be a promising choice. More details on auto-tune
can be found in Chap. 11. The combination of these features strongly increases the
problem difficulty. Optimization algorithms need to be designed to solve specific
problems, presenting different combinations of these features. We will focus on two
essential problems in this chapter, namely, the dimensionality and the uncertainty.

10.3.2 High Dimensionality

The dimensionality of the search space is defined by the number of design variables.
Referring to the notation in Eq. (10.1), we define the dimensionality as n = nr +
nz + nd . It is intuitive that a large number of variables pose a demanding challenge
that affects many algorithm’s aspects. Dealing with this particular problem requires
a great modeling capability, a huge amount of acquired data and, consequently, a
large budget of objective function evaluations. Every modeling technique requires a
sufficiently large dataset such that an accurate model can be trained.

Furthermore, high dimensionality leads to severe practical issues in the devel-
opment of surrogate models as well. Kriging, besides linear regression, is one of
the most popular techniques in SMBO, see [8]. For example, depending on the
employed distance measures [1], it is widely recognized that Kriging may perform
poorly for problems with more than approximately 20 variables [19].

A spectrum of countermeasures to these issues comes from different fields of
engineering and data analytics. Most commonly, methods attempt to use some
screening or mapping approach. The former attempts to remove insignificant
variables, while the latter attempts to map the original search space to a low-
dimensional subspace.

10.3.2.1 Screening

In the effort of reducing the problem complexity and dimensionality, screening
identifies and retains important input variables and interaction terms. Screening is
often implemented via sampling and the analysis of sampling results [46].

Sensitivity analysis studies how the variability of a function’s output responds to
changes of its inputs. It includes local and global sensitivity analyses. The local
sensitivity indicates the variability of the output with respect to input variable
changes at a given point; in other words it evaluates the numeric partial derivatives.
The global sensitivity, contrarily, explains the global variability of the output over
the entire design space, which provides an overall view of the impact of input
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variables on the output. One example of sensitivity analysis applied to aircraft
design is given in [48].

A classic method for screening and sensitivity analysis using experimental
designs is the modeling and analysis of regression models [14]. Common examples
are the analysis of p-values in linear regression, mean decrease impurity in random
forests [12] and the theta values of Kriging models [19].

For example: We consider a simplified variant of the optimization problem
introduced in Eq. (10.1). The input variables are real-valued, and no equality
and inequality constraints are imposed. In this situation we obtain the following
optimization problem:

min
�x∈R2

f (�x)

with �x = (x1, x2) we obtain the linear regression model

f̂ (x1, x2) = β0 + β1x1 + β2x2

The coefficients β1 and β2 are interpreted as the estimated change in the objective
function corresponding to one unit change in a variable, when all the other variables
are held constant [36]. The p-values [36] for the coefficients indicate whether these
relationships are statistically significant. Intuitively, it is possible to set a threshold
value for the p-values over which the corresponding variables are considered
uncorrelated to the objective function and, thus, can be neglected. In the scope of
linear regression, screening designs have been developed, which are applicable in
the context of small function evaluation budgets [52].

A model-independent approach for variable screening that varies one factor at a
time has been proposed by Morris [38]. This method, unlike the stepwise variable
selection [24], requires a number of model evaluations that are linearly dependent
by the number of design variables. This strategy aims to estimate the overall effect
of the variables and the ensemble of the second-order and higher-order effects
addressing two sensitivity measures per design variable [43].

Screening processes can be also directly integrated in the metamodel building. A
cross-validated moving least squares approach in which one variable of the problem
design represented the screening has been proposed in [52]. However, there is the
risk of reducing accuracy due to the omitted dimensions.

10.3.2.2 Mapping

Mapping has a broad meaning including projection, nonlinear mapping and param-
eter space transformation. A mapping procedure transforms a set of correlated
variables into a smaller set of new uncorrelated ones that retain most of the original
information. One popular approach that relies on linear analyses is the principal
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component analysis (PCA). This method is especially used for problems with only
continuous variables [13].

Contrarily, other methods are based on nonlinear mapping and projection. Space
mapping (SM) intends to map the design space of a “coarse” and low-dimensional
model to a fine, “expensive” and higher-dimensional one [5]. A good survey of
related approaches is given in [46].

Another class of dimensionality reduction approaches is based on unsupervised
learning. Two promising examples are autoencoders and self-organizing maps.
Autoencoders are neural networks that aim to reconstruct their own inputs. As
such, an encoder network maps from the high-dimensional space to the coded
space. Then, a decoder network maps back to the high-dimensional space, with
as little loss of information as possible. By constraining the coded space to have
a smaller dimension than the input space, the autoencoder is forced to learn the
most salient features of the input data [42]. Self-organizing maps are a particularly
interesting class of unsupervised systems that are based on competitive learning.
The output neurons compete among themselves to be activated. Hence, only one
is activated at one particular time. This competitive system forces the neurons to
organize themselves. Commonly, self-organizing maps target to map from the high-
dimensional space to one- or two-dimensional space [29].

10.3.3 Uncertainty

A large variety of optimization problems in scheduling, finance, transportation and
engineering design requires that decisions are made in the presence of uncertainty.
Uncertainties are present in all real-world application problems, e.g. due to inac-
curacies in the manufacturing process, uncertain operating conditions or system
component failures. However, different forms of uncertainties can be distinguished;
a good overview can be found in [26]. In the following a description of the
most common forms of uncertainty in real-world application problems, noise and
robustness, will be given.

An optimization problem is considered subjected to noise if the objective func-
tion is perturbed. This can be due to several factors such as sensor measurements
errors or heuristic simulations. Mathematically, noise is often assumed normally
distributed with zero mean and variance [26].

In other cases, perturbation can afflict the design variables. Therefore, it is often
required that the optimal solution should still work satisfactorily when the design
variables change slightly, e.g. due to manufacturing tolerances [26].

In these cases, successfully performing global optimization means facing a
variety of challenging issues. Resources have to be allocated to perform an
uncertainty analysis in order to direct the research to stable and robust optima.

The correct balance between exploitation, exploration and uncertainty quantifica-
tion has to be addressed. Furthermore, adopting surrogate model-based optimization
in noisy functions causes an additional problem. The use of derivative-based
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optimization techniques can lead to regions with seemingly good function caused by
a misinterpretation of the noisy data. This issue appears if surrogate models confuse
noise with the actual behaviour of the objective function.

Thus, finding efficient methods to deal with uncertainty appears to be a non-
trivial problem. A popular approach is searching for robust optima. This is done
by replacing the deterministic objective function f in favour of a modified f̃ that
feeds an estimation of f back to the optimizer. This is evaluated observing the
response of f a number of times with the same design solution. Popular examples
of f̃ are the expected value, expected value + k standard deviation (the importance
of the standard deviations in respect of the mean is weighted by the coefficient
k) or the 95% quantile. The obvious drawback of this method is the considerable
number of repetitions of f that are needed to make an accurate prediction of the
robust objective function. However, researchers are proposing methods to mitigate
the computational effort in estimating f̃ replacing classic uncertainty quantification
methods, such as quasi-Monte Carlo quadrature, in favour of polynomial chaos with
coefficients determined by sparse quadrature and by point collocation, radial basis
function or Kriging models [32].

10.4 Sequential Parameter Optimization

The sequential parameter optimization toolbox (SPOT) [6] is an optimization
framework which is based on surrogate model-based optimization. The aim of
SMBO is to train a cheap numerical model that approximates the objective function
and utilize it to reduce the computational effort.

Initially proposed for algorithm tuning of metaheuristics, SPOT is a sophisticated
tool capable of handling both continuous and mixed-discrete problems [8]. SPOT
spends the available budget in a sequential manner to maximize information gain
and is particularly efficient for expensive problems. SPOT finds improved solutions
in the following way (see Algorithm 1): First, the search space is sampled with an
experimental design plan (see Sect. 10.4.1). With these samples, a first surrogate
model is constructed. Then, an infill criterion is optimized on the surrogate to find
new promising candidate solutions. The suggested candidates are evaluated with the
real objective function, and the surrogate is updated with the observed information.
In the following we will describe the fundamental steps of the SPOT methodology.
A more detailed description of SPOT can be found in [9].
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Algorithm 1 Sequential parameter optimization
1: t = 0.
2: Initialize a number of k samples Pt = {xi , 1 ≤ i ≤ k}.
3: Select a suitable surrogate modelMt(x).
4: Evaluate Pt on f to get observations Ot = {(xi , yi ), 1 ≤ i ≤ k}.
5: while not Termination Criterion do
6: Build a modelMt with Ot
7: OptimizeMt infill criteria to get x∗t
8: Evaluate x∗t on f to get y∗t
9: Update dataset Ot+1 = {Ot , (x∗t , y∗t )}.

10: t = t + 1.
11: end while

10.4.1 Initial Design

10.4.1.1 Strategies for Design of Experiment

The first step of SPOT (see Algorithm 1) is the determination of the initial dataset
that will be used to train the first surrogate model. In order to build a moderately
accurate model, the initial design should cover, if possible, the complete feasible
search space. To that end, we rely on sampling methods.

Sampling methods can be classified as deterministic and stochastic methods.
Examples of pure deterministic sampling are grid designs, full factorial designs
and Sobol sequences [49]. Stochastic methods try to create unbiased subsets of the
original search space. They often optimize a certain criterion such as D-optimality
or I-optimality [36]. This class includes basic random sampling, stratified sampling
(e.g. Latin hypercube sampling) and fractional factorial designs.

10.4.1.2 Latin Hypercube Sampling

As a representative of stratified sampling, one of the most commonly employed
methods is Latin hypercube sampling (LHS) [34]. LHS creates multidimensional
designs. Given the number of samples n, all nr+nz+nd dimensions are divided into
n intervals. LHS samples a point from each stratum. Different variants for choosing
a point in each stratum exist. For example, median LHS uses the median value of
each interval, while random LHS selects a random point within each interval.

This procedure has to be adapted to also treat categorical and discrete variables.
One of the simplest solutions for ordinal variables is assuming that all variables are
continuous and then using floor, ceiling or rounding operations. Dummy variables
may be employed for categorical parameters. Or else, categorical parameters may
be mapped to ordinal integers.
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Fig. 10.1 Example of three
different sampling methods in
creating an initial design of
size 4 in a two-dimensional
space: Sobol sequence (red
triangles), Latin hypercube
(black crosses) and full
factorial design (blue circles)

10.4.1.3 Factorial Designs

In the field of design of experiments, a set of statistically well-profound designs
have emerged, which are commonly applied to analyse and optimize industrial
problems. Common designs of this field are full factorial, fractional factorial, Box-
Behnken and central composite [36]. All these designs are designated to fit linear
models for the response surface methodology, commonly with second-order and
quadratic effects. For example, in a full factorial design for two variables with two
levels for each design variable, a set of 22 evenly spaced points is determined. In
case of continuous variables, they are determined by [rmin, rmax]. With this design,
we are able to analyse main and second-order effects. For quadratic effects, centre
points need to be added. A full factorial design has the disadvantage of requiring an
exponentially increasing number of experiments with rising number of variables. To
prohibit an infeasible number of experiments, usually optimized fractional factorial
or other screening designs are utilized.

From Fig. 10.1, one can see that, contrary to LHS and the Sobol sequence, a full
factorial sampling exhibits a particular grid structure that eases distinguishing the
effects of all design variables on the objective function.

10.4.2 Modeling

10.4.2.1 Modeling in Mixed-Integer Space

Once the first dataset has been created and observed, it is used to train a surrogate
model that aims to replicate the behaviour of the objective function (see Algo-
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rithm 1). In SPOT, a surrogate model is used to determine promising candidate
solutions. To that end, it aims to learn the relation between problem variables and
the corresponding function’s response.

Compared to their frequent use for real-valued problems, surrogate model-driven
approaches are less often used in mixed optimization [27]. According to Bartz-
Beielstein and Zaefferer [8], few expensive, real-world optimization problems of
this type have been brought to the science community’s attention, e.g. in the engi-
neering domain [3, 50, 51, 54], bioinformatics [41] or data science [47]. One reason
for the scarce use of discrete surrogate model-based optimization is the availability
of suitable methods. Bartz-Beielstein and Zaefferer [8] identified six strategies for
surrogate modeling in mixed-discrete search spaces: the naive approach, customized
models, inherently discrete models, feature extraction, mapping and similarity-
based models. These strategies explain how modeling techniques can be used in
the general cases. The six strategies are not mutually exclusive. Some methods may
belong to several categories or combine different strategies. Here, we focus on three
of the six strategies: the naive approach, inherently discrete models and similarity-
based models since these are more commonly used.

10.4.2.2 The Naive Approach

The naive approach to discrete modeling is to ignore the discrete nature of the search
space. Standard continuous methods are applied to solve the optimization problem.
An application of this approach can be found in [7]. There, the authors faced an
expensive parameter tuning problem and employed Kriging models. Especially
if the discrete variables are of an ordinal nature, the naive approach may be
successful. Indeed, this strategy could even be adopted to deal with categorical
variables: Addressing an arbitrary order would create a one-to-one correlation
between categorical variables and ordinal values. Several potential drawbacks can
arise if this strategy is employed for problems that are too complex:

• Large areas of redundancy in the model’s input space
• Creation of infeasible solutions
• Degeneration of performance due to bias caused by a misinterpretation of

variables

The naive approach is attractive, due to its ease of use and the ability to stick to
continuous variable handling methods. Practitioners have to carefully evaluate if
this option suits the characteristics of the problem under study.

10.4.2.3 Inherently Discrete Models

There are models that are discrete in their design and hence need no further
adaptation to discrete variables. For example, tree-based models, like regression
trees or random forests, are inherently discrete models. A representative application
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of this strategy can be found in [25], where an optimization process based on random
forest models has been employed for a high-dimensional algorithm tuning problem.
On the one hand, inherently discrete models are easy to use, since they require
no additional work to adapt them to discrete problems. On the other hand, in a
mixed-variable case, a tree-based model would not be well-suited to represent the
continuous parameters in the mixture. Also, tree-based models may not provide the
useful features that models like Kriging has. For example, uncertainty estimates can
be derived from random forests, but unlike Kriging, these estimates do not go to
zero at observed sample locations.

10.4.2.4 Similarity-Based Models

Similarity-based modeling is a promising strategy that is gaining more and more
interest. Here, suitable measures of similarity are used to model discrete data. With
respect to their interpretation and use, the measures are referred to as similarity
measures, dissimilarity measures, distance measures, correlation measures or ker-
nels. Although this approach is potentially very powerful, it requires the definition
of proper measures. This may be problematic if these measures have to fulfil
further requirements, e.g. definiteness, and if the problem involves different types
of variables.

Fonseca et al. [18] defined similarity-based models that keep a memory of
solutions and estimate the performance of new samples by comparing them to
that memory. Three models from this class are of particular interest: radial basis
function networks (RBFN), support vector machine (SVM) and Kriging. Various
model-based variants applied to different optimization problems can be found in
the literature, e.g. [4, 16, 21, 22, 25, 30, 37, 58]. Several of these works involve the
development of appropriate similarity measures for discrete or mixed search spaces.

As these previous developments indicate, similarity-based models like Kriging
are very promising approaches towards handling mixed and discrete variables.
Hence, we focus on Kriging in the following.

10.4.2.5 Handling Factor Variables in Kriging Model

Kriging is a similarity-based model and assumes that the data follows a multi-
variate Gaussian distribution, where errors are spatially correlated. A detailed and
comprehensible description of Kriging is given by Forrester et al. [19].

We consider a simplified variant of the optimization problem defined in
Eq. (10.1):

min
�x∈Rn

f (�x)
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and no equality and inequality constraints are used. Importantly, the spatial correla-
tion of the data is encoded within a kernel or correlation function. A frequently
employed correlation function that models the correlation between samples (or
candidate solutions) is the Gaussian kernel k(x, x′) = exp

(−∑n
i=1θi |xi − x′i |2

)
.

Here, n is the number of modeled variables (search space dimension) and θi is a
parameter of the kernel (determined by maximum likelihood estimation (MLE)).
Furthermore, x as well as x′ are potential candidate solutions (or samples).
Employing such a kernel, a Kriging model produces the following predictor:

ŷ(z∗) = μ̂+ kTK−1(y − 1μ̂), (10.2)

where y are the training observations, ŷ(z∗) is the predicted function value of a new
sample z∗, μ̂ represents the process mean determined by MLE, 1 is a vector of ones,
K is the matrix that collects all pair-wise correlations of the training samples Z and
k is the column vector of correlations between the set of training samples Z and
the new sample z∗. After appropriate training, such a predictor may be employed to
replace an expensive objective function.

The success of Kriging in the field of real-world application problems mostly
relies on the possibility to estimate the uncertainty of the predictor. This feature
assumes a prominent role in applications in which the limited number of obser-
vations that can be performed inhibits an exhaustive exploration of the search
space. In these cases, the estimate of the uncertainty can be used to balance
exploration and exploitation by computing the expected improvement (EI) of
candidate solutions [35]. The uncertainty of the model is computed with

ŝ2(z∗) = σ 2
process(1 − kTK−1k), (10.3)

where σ 2
process is the process variance, determined by MLE. If the uncertainty is

zero, the EI is also zero. Else, the uncertainty is non-zero, and the EI is

EI(z∗) = yimp 
(

yimp
ŝ(z∗)

)

+ ŝ(z∗)φ
(

yimp
ŝ(z∗)

)

,

where yimp = min(y) − ŷ(z∗).  () indicates the normal cumulative distribution
function. Respectively, φ() is the probability density function.

It has to be noted that the above description of Kriging presents an interpolating
model, which assumes zero error at already observed locations. Clearly, this does
not take noise or uncertainty into account. One way to account for noise is to
introduce the so-called nugget effect. This essentially adds a constant value η to
the diagonal of the kernel matrix K. The parameter η is determined by MLE. The
nugget effect enables the model to regress the observed data and hence smoothens
noisy observations.

Until now, we discussed Kriging in the context of real-valued search spaces. It
is also applicable to “mixed” search space, where an appropriate kernel is available.
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With respect to mixed or discrete problems, Kriging is actually very flexible. By
changing the kernel (or correlation) function, any search space may be modeled
with Kriging [8, 59]. The flexibility of this modeling method renders Kriging one
of the most promising mixed-variable models. Take for example a typical problem
characterization from algorithm tuning: Parameters like mutation rates may be real-
valued, and the choice between different mutation operators may be a categorical
parameter. Hence, if xi (the i-th dimension of a parameter configuration �x) is a factor
variable, Hamming distance can be used, otherwise the absolute deviation may be
used for real-valued variables. The reader is referred to the discussion in [8].

10.4.3 Optimization Algorithms for the Metamodel

As shown in Algorithm 1, the next step in the SPOT methodology, after constructing
a model, consists in the employment of optimizers that search for promising
candidate solutions. Standard techniques from mathematical programming [56], the
so-called mixed-integer nonlinear programming methods [17], are commonly not
applicable to deterministic optimization of real-world application problems. These
methods, such as outer approximation [15], branch and bound [11], and generalized
Benders decomposition [20], have difficulties with the mixed design space, multi-
modality, uncertainty in the observations and unknown black-box properties. A
consolidated alternative consists in the employment of metaheuristics for mixed-
discrete optimization [31]. These strategies propose to heuristically determine
solutions that improve the objective function value.

In cases where mathematical programming techniques are not flexible enough
to yield satisfying results, heuristic search for solutions that improve the objective
function value can lead to interesting results. Metaheuristics for mixed-discrete
optimization are generally categorized in two classes:

• Hierarchical approaches solve problems with continuous variables together and
discrete variables by considering the original optimization as a bi-level problem.
The discrete variables are optimized by the upper level optimization process and
the continuous parameters are optimized in the lower level [33, 53].

• Simultaneous approaches optimize discrete and continuous parameters simul-
taneously. In this approach, we consider that a similarity of parameter vectors
due to an appropriate metric is equivalent to being positively correlated to the
similarity in function values [31, 44].

In the following we will highlight the peculiarities of an algorithm from the
class of simultaneous approaches. These algorithms are a better choice for our
purposes. They need fewer observations and consider correlations between discrete
and continuous variables. This is in contrast to the hierarchical approaches where
variables of different type are strictly separated from each other. Particularly, we
will discuss the mixed-integer evolution strategy (MIES) proposed in [31].
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10.4.4 MIES

Evolution strategies (ES) are metaheuristics that follow the concept of natural
evolution. An individual in an ES contains the information about one solution
candidate. This individual is subject to recombination, mutation and selection
operations. By evolving sets, or populations of individuals, the ES try to find
improved solutions.

In MIES, an individual contains information about real-valued variables, ordinal
integer variables and categorical variables. Parameters of the probability distribution
used in the mutation operator (such as standard deviations or step sizes) are also
stored in the individual for the purpose of self-adaptive parameter control. The latter
parameters are referred to as strategy parameters. As a consequence the domain of
an individual I can be expressed as follows:

I = R1 × . . .× Rnr × Z1 × . . .× Znz ×D1 × . . .×Dnd × As (10.4)

with As = R
nσ+nζ
+ × [0, 1]np being the domain of the strategy variables.

Correspondingly, an individual of a population can be represented as

�a = (r1, . . . , rnr , z1, . . . , znz , d1, . . . , dnd , σ1, . . . , σnσ , ζ1, . . . , ζnζ , p1, . . . , pnp )

(10.5)
The so-called design variables r1, . . . , rnr , z1, . . . , znz, d1, . . . , dnd determine the
objective function value and thus the fitness of the individual. The strategy variables
σ1, . . . , σnr are standard deviations used in the mutation of the real-valued variables,
and ζ1, . . . , ζnz denote mean step sizes in the mutation of the integer parameters.
Finally, p1, . . . , pnp denote mutation probabilities (or rates) for the nominal discrete
object parameters. MIES is considered a self-adaptive process because the strength
of the mutation parameters continuously evolves during the optimization. Hence,
the mutation strength itself is also governed by an evolutionary process. The
philosophy behind self-adaptation is that the evolutionary process can solve two
problems simultaneously: the determination of the best strategy variables and the
determination of the best object variables. More details on self-adaptation can be
found in Chap. 11.

The first population P(0) of μ individuals is generated by uniform random
sampling from I. Then, the main loop of the MIES algorithm starts. In a first step,
the algorithm generates the set of λ new offspring individuals with the following
procedure. Two parents are randomly selected from the population, and an offspring
is generated by recombination and mutation. The recombination operator can be
subdivided into two steps, selection of the parents and recombining the selected
parents. The two parents c1, c2 ∈ I are selected randomly, from the parental
generation for each of the offspring individuals. In MIES, two different types of
recombination are used: dominant and intermediate [45]. The first one is adopted
for solution variables and consists of a random selection of one of the corresponding
parental parameters for each offspring vector position. The latter is used for
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recombining the strategy parameters and computes the mean of both parental
vectors. The mutation of the offspring relies on operators acting differently on real,
integer and discrete variables, all respecting the requirements for a mutation strategy
in the search spaces: accessibility, feasibility, symmetry, similarity, scalability, and
maximal entropy [31].

The MIES achieves this by adding normal distributed noise to real-valued
variables. For integer variables, the distribution is based on the difference of two
geometrical distributions. Categorical variables are simply re-sampled (uniform
randomly) with some probability p [31].

In the next step of the iteration, the λ offspring individuals are ranked on the
basis of the objective function. The μ best individuals out of the union of the λ
offspring individuals and the μ parental individuals are selected. The generational
loop is repeated until the number of evaluation exceeds the budget.

10.5 Case Study: Optimization of Composite Multi-Layered
Plate

In this section, a mixed-discrete problem based on a real-word application is
discussed. The problem consists in the design optimization of a composite multi-
layered plate. Our idea is to demonstrate the difficulties that researchers and
practitioners encounter when facing black-box, time-consuming, mixed-discrete
problems under uncertainty through an illustrative example. A performance com-
parison between the MIES and a general purpose optimizer is also given.

10.5.1 Overview

The objective of the optimization problem is to find the materials (represented
by categorical variables) and lamination angles (continuous variables) in order to
minimize the bending of a loaded plate composed of five layers.

The available materials and their properties are reported in Table 10.1. As one
can see, the list includes orthotropic and isotropic materials. In case of orthotropic
materials, the stiffness of the material is crucially affected by the lamination
angle. Contrarily, isotropic materials have equal in-plane and out-of-plane Young’s
modulus. Hence, the lamination angle of isotropic materials does not affect the
material behaviour. The use of both types of materials considerably increases the
difficulty of the problem from the modeling perspective: The importance of the
continuous parameters depends on the value of the categorical variables.

The plate has been loaded by a lifting load, which is linearly distributed along
the length of the plate applied on the nodes in the centreline. An encastre at the root
of the plate has been enforced as shown in Fig. 10.2. With the intent to reproduce
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Table 10.1 Properties of the material used in this study

Young’s Young’s In-plane Poisson’s

Properties Modulus 0 Modulus 90 Shear modulus ratio

Symbols E1 E2 G12 v12 Density

Units GPa GPa GPa g/cc

CF Vf 50% 70 70 5 0.10 1.60

HMCF Vf 50% 85 85 5 0.10 1.60

E glass Vf 50% 25 25 4 0.20 1.90

Kevlar Vf 50% 30 30 5 0.20 1.40

Std CF Vf 60% 135 10 5 0.30 1.60

HMCF Vf 60% 175 8 5 0.30 1.60

M55** Vf 60% 300 12 5 0.30 1.65

E glass Vf 60% 40 8 4 0.25 1.90

Kevlar Vf 60% 75 6 2 0.34 1.40

Boron Vf 60% 200 15 5 0.23 2.00

Steel S97 207 207 80 0.3 7.85

AL L65 72 72 25 0.3 2.7

** Calculated figures

Fig. 10.2 Load and boundary constrains applied to the multi-laminate plate

uncertainty due to manufacturing tolerances and measurement conditions, pertur-
bations to the nominal values have been added to both lamination angles and load
magnitudes.

The purpose of this test case is to point out the difficulties of handling an “expen-
sive” (≈10 s for each run), multi-modal, mixed-integer, “high-dimensional” (5
continuous + 5 categorical variables) problem under uncertainty with an extremely
limited budget (150 evaluations).

10.5.2 Optimization Problem

The objective of the problem is the minimization of the displacement along the
loaded axis of one of the vertices of the multi-layered plate tip st (red point in the
corner of the plate in Fig. 10.3). The optimization problem is defined as



10 Sequential Parameter Optimization for Mixed-Discrete Problems 349

Fig. 10.3 Contour of the displacement in the loaded direction in the best configurations obtained
employing DE (a) and MIES (b)

min
x∈R5,y∈D5

f (x, y) = st

subject to

⎧
⎪⎪⎨

⎪⎪⎩

ri ∈ [−89, 90], 1 ≤ i ≤ 5

D
5 = D1 × . . .×D5

di =
{
d1
i , . . . , d

12
i

}
, 1 ≤ i ≤ 12

,

where d1
i , . . . , d

12
i are the 12 available materials [39]. The first five variables

correspond to the lamination angles, and the latter five describe the material of each
ply as categorical variables. The categorical variables are mapped to integers from
1 to 12 to allow a numerical optimizer based on differential evolution (DE) [2] to
handle them.

Since the mass of each ply has been fixed, the thickness will be dependent on the
material density.

10.5.3 Methodology

To perform the optimization process, we take advantage of surrogate modeling
techniques and rely on the SPOT R package. The experiments have been conducted
employing MIES and DE as optimizers (on the surrogate model). As shown in
the previous sections, MIES is dedicated to handling mixed variables, including
categorical variables. Contrarily, DE is not designed to handle discrete or categorical
variables. In order to compute an accurate estimation of the plate maximal displace-
ment, the finite element analysis solver Abaqus [23] has been employed. Therefore,
the optimization problem requires a coupling between SPOT and Abaqus.

The process follows the algorithm described in Algorithm 1: Initially a design
is created by LHS. All the candidates in the design are then evaluated with the
objective function (via Abaqus). This function receives the candidate solutions that
describe the characteristics of the plate and feeds the corresponding displacement
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back to the optimizer. Nevertheless, to simulate the uncertainty, the nominal
lamination angles and loads magnitudes are perturbed randomly by Gaussian
perturbations with mean 0 and variance, respectively, 1 and 0.1. The candidates
and the function responses are used to train a Kriging model. Then, an optimizer
searches for the most promising candidate solution by optimizing an infill criterion
based on the model. Here, the criterion is the expected improvement. Based on the
assumption of expensive function evaluations, a very small budget of 150 function
evaluations has been used.

10.5.4 Results

The obtained results clearly highlight that mixed-discrete problems present peculiar
challenges. Such issues are unlikely to be resolved by continuous optimizers. A
convergence plot is shown in Fig. 10.5. It can be seen that the best configuration
found by MIES outperforms the one found by DE. Although the processes have
been started from the same design, the results differ by around 80% (Table 10.2).
However, to have a statistically meaningful comparison, we should repeat the
analyses with the two best designs in order to quantify the effect of the uncertainties.

The displacements of the two best plate configurations are shown in Fig. 10.3
with the same scale and magnification factor. Figure 10.4 shows that the con-
figurations differ significantly, concerning both the continuous and categorical
variables. Particularly, it is worth to focus on the effect of the lamination angles:
The configuration found using DE presents materials that are mostly aligned with
the plate. This configuration would lead to the maximal uniaxial stiffness. In this
case, the displacement would be equal for all the nodes lying on the tip. However, the

Table 10.2 Optimal design achieved using DE and MIES

Optimal design Displacement x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

DE 169.49 0.35 15.04 −23.496 5.18 75.43 9 4 9 7 6

MIES 303.34 −5.79 −89.00 −89.00 −35.27 −7.15 7 1 7 9 7

Fig. 10.4 Best lamination configuration (lamination angles, materials and thickness) obtained
employing DE (a) and MIES (b)
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Fig. 10.5 Evolution of the best observation during the optimization processes

object of the optimization is the displacement in the corner of the plate, which is at
some distance from the centreline of the plate. This means that another minimum is
present, besides the local minimum resulting from the maximization of the stiffness
in the direction of the plate. The second minimum is the global one. It consists in
the perfect balance between the stiffness in both the directions in the plane of the
plate. The balance is determined on the basis of the ratio between the length and the
height of the plate. As a result, the overall displacement at the tip will be higher, but
the displacement at the corner will be lower (Fig. 10.5).

In fact, in the configuration resulting from MIES, two plies are laminated with
angles that are orthogonal to the direction of the plate. In light of this observation,
we can say that this problem is clearly multi-modal in regard to the continuous
variables. The multi-modality of the function derives from the dependence of both
the mechanical properties and the ply thickness on the chosen material. This is also
reflected in Fig. 10.6, where the interactions of four important variables are depicted.
In each plot, two variables are varied, while the remaining two are fixed to their opti-
mal values. The red dots represent the observed values. The dataset used to train this
model is composed of the observations made during the optimization process using
MIES. In Fig. 10.6a and b, the interaction between the lamination angles and the
materials for both the plies are shown. In both the cases, two distinct regions of well-
performing configurations are present. In Fig. 10.6c and d, the interaction between
the materials and their lamination angles of the two plies are represented. The figures
clearly show a complex and multi-modal search landscape. In light of these consid-
erations, one can see the complexity involved in this, apparently, simple problem.

In the last section of this chapter, an example of the application of SPOT on a
real-world optimization problem has been reported and analysed. The complexity of
mixed-discrete real-world optimization problems has been addressed in this chapter.
Despite the difficulties, more efficient ways to handle them have been developed.
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Fig. 10.6 Visualizations of the objective function landscapes in respect of variable combinations
concerning Ply 1 and Ply 5. For each individual plots, variables that are not shown are fixed to the
respective optimal values. (a) Material and lamination angle of Ply 1. (b) Material and lamination
angle of Ply 5. (c) Lamination angles of Ply 1 and Ply 5. (d) Materials of Ply 1 and Ply 5

Nevertheless, despite the cutting-edge algorithms, these problems still appear very
complex to tackle.
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Chapter 11
Parameter Control in Evolutionary
Optimisation
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Abstract Finding the global optimum of a complex function is one of the long-
standing goals of applied mathematics and numerical analysis. Evolutionary algo-
rithms have become a popular way of solving demanding and expensive optimisa-
tion problems. These algorithms are composed of several control parameters that
need to be set, for the procedure of searching for the optimum of an objective
function to be successful. Parameter setting is a challenging topic, since control
parameter values affect significantly the performance of the algorithm. Moreover,
the control parameters may interact with each other in an unpredictable way. On
top of this, at different stages of optimisation process, different control parameters
may be needed. In this chapter, we introduce some basic control parameters that
can be modified and the main methods of parameter settings, i.e. parameter tuning
(offline) and parameter control (online). More focus is given on parameter control
and the three different strategies used to implement it: the deterministic, the adaptive
and the self-adaptive parameter control. In addition, a short comparison between
parameter tuning and parameter control is given, based on the current literature. The
last section refers to the improvement that parameter control can bring in some of
the most complex instances of real-world optimisation problems, such as dynamic
or problems under uncertainty, when using EAs to solve them and some of the
strategies that can be used in each instance.
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11.1 Evolutionary Optimisation

Finding the exact solution of an optimisation problem with a deterministic method
guarantees the optimality of this solution. For example, running an exhaustive search
of all the combinations of the variables of a function, until the best solution is
obtained, is one of these approaches. As one can understand, this is prohibitive
to problem instances above a number of variables, since the runtime complexity
grows exponentially, the search space becomes huge and the needed computational
resources are not yet available. Moreover, one should consider that usually what is
being optimised (especially in real-world applications) is actually a model of the
problem, a representation of reality, which already is an approximation. Therefore,
trying to find an exact solution is not always useful, since finding a solution near
to optimal or a better than known so far can be sufficient enough. Stochastic
algorithms that use random sampling for directing the search process [1] cannot
prove the convergence to a global optimum, but can provide a sufficiently good
solution and alternative for this kind of complex problems within a reasonable
time [2]. Moreover, metaheuristic algorithms make few or no assumptions about
a problem and may apply a deterministic method to explore the search space.
A metaheuristic algorithm may implement single solution or population-based
searches. In a single solution approach, one single candidate solution is being
improved, whilst in population-based methods a number of candidate solutions are
taken into consideration to guide the search [3]. One of the most popular branches
of population-based metaheuristics is evolutionary algorithm (EA).

11.1.1 Evolutionary Algorithms

Evolutionary algorithms (EAs) are nature-inspired approaches, imitating the Dar-
winian evolution of species or other similar phenomena. They occupy an important
position amongst optimisation techniques when solving difficult optimisation prob-
lems, being non-linear, non-convex, multimodal or non-differentiable in the variable
search space, or might even require considering multiple contradictory objectives.
They are typically used to provide good solutions to problems that cannot be solved
easily using other techniques. When it may be too computationally intensive to find
an exact solution, a near-optimal solution might be sufficient. EAs do not guarantee
to find an optimal solution, but they often find a good and acceptable solution if it
exists [4].

EAs apply principles of evolution found in nature, such as reproduction, muta-
tion, recombination and selection. In an EA a number of artificial individuals
(candidate solutions to the optimisation problem) search simultaneously over the
problem search space [5]. The shared environment dictates the fitness or perfor-
mance of each individual in the population. The individuals compete continually
with each other to discover optimal areas of the search space. It is expected that
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Fig. 11.1 Simplified flowchart of an evolutionary algorithm: (a) Parents are selected from the
population and produce offspring, through mutation and recombination. The most suitable are
selected to form the next population (inspired by [4]). (b) The chromosomes of two parents, the
yellow and red dots, are recombined and mutated to produce two unique offspring

over time the most successful of these individuals will evolve to discover the
optimal solution. Each iteration of an EA involves a competitive selection that
filters out weak solutions. The fittest individuals are more likely to be chosen for
reproduction and being modified by crossover and mutation, eventually leading
potentially to superior ones. The selected solutions are recombined with other
solutions by swapping parts of a solution with another (crossover). The solutions
can further be mutated by making a small change to a single element of the solution
(mutation).

A simplified flowchart of one of the most popular EA, i.e. genetic algorithm
(GA), is shown in Fig. 11.1, along with the concept of chromosome representation
of a candidate solution, crossover, and mutation in an illustrative way.

11.1.2 Exploration and Exploitation

Exploration and exploitation are the two main aspects of evolutionary problem-
solving [6]. The exploration and exploitation of a search space must be addressed
by every search algorithm. Exploration is the process of visiting completely new
regions of a search space, while exploitation is the process of visiting those regions
of a search space within the neighbourhood of previously visited points (see
Fig. 11.2). A search algorithm needs to establish a good ratio between exploration
and exploitation in order to be successful.

Different metaheuristics present unique exploration and exploitation capabilities,
i.e. they have various forms of exploring and exploiting the search space. What
works to solve a particular problem may be not good for tackling another one.
Moreover, each problem can demand a particular set of control parameters for each
algorithm. In this context, adaptive algorithms have appeared trying to solve as
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Fig. 11.2 Difference between exploration and exploitation: (a) During the exploration the entire
search space is checked and some promising regions are detected (i.e. darker dots that present
better solutions). (b) During the exploitation the search focus is on the promising region and the
nearby of the promising (better) solutions is further investigated to find even better solutions

many problems as possible with no algorithm code changes. Today, approaches deal
with adaptation of operators [7] or parameters [8]. When dealing with operators, the
adaptation tries to identify which operator (or its implementation) is more suitable to
the problem, whilst in parameters, the algorithm attempts to discover the best control
parameter value. Both adaptation situations are usually implemented separately (not
concurrently in the same algorithm), but they are both executed on-the-fly, during
the optimisation process. This chapter covers only the latter case of the control
parameter setting.

11.1.3 The Role of Control Parameters

The EAs are driven by control parameters (examples in Sect. 11.2), which are crucial
for their efficient performance [9]. The best control parameter values depend on
the problem and by the smart encoding of the variables the level of the problem
difficulty might change. In addition, the EAs should be robust, i.e. the control
parameter configuration should allow stable behaviour regardless of the problem
instance.

The control parameters can be either tuned offline (before the actual optimi-
sation process) or adapted online (during the optimisation process); see details
in Sect. 11.3. Whilst the fine-tuned algorithm’s control parameters allow robust
behaviour (especially for static problems), dynamic modifications are required on
control parameters to more effectively exploit and explore the search space [10].
The latter case includes adaptive mechanisms on control parameters, since the best
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algorithm control parameter values depend on the current state of the optimisation
process and thus change over time [11, 12].

As the adaptation of the algorithm control parameters depends on different
scenarios, one should consider their influence (further details are available in
Sect. 11.4): deterministic (time-dependent, feedback-free), self-adaptive (encoding
control parameters with other variables) and adaptive (using statistical feedback
from the optimisation process). The automatic setup of algorithms and their control
parameters is one of the prerequisites to allow ease of use of the complex industrial
optimisation tools.

One should differentiate between control parameter (Sect. 11.2), which denotes
the parameter of the algorithm that drives the algorithm’s behaviour, and the
parameter control (Sect. 11.3), which denotes the online process of changing the
control parameter(s). The main goals of parameter control are the identification of
good control parameter values on-the-fly and tracking of good control parameter
values as they change during the optimisation process [13].

11.2 Control Parameters

This section presents typical control parameters that can be found in evolutionary
algorithms, along with their characteristics. This is followed by a description of their
influence on the algorithm’s performance and also the interdependence amongst
different control parameters is presented.

11.2.1 Typical Control Parameters

There are obviously different control parameters [14], with different effects, for dif-
ferent optimisation algorithms. As an example, for the most typical implementations
of EAs, one can adapt:

• Population size

– Also referred as μ.
– The number of individuals (solutions) that are considered (and evaluated) in

parallel and are combined to form new solutions.
– In general, larger population size gives larger variability within the population,

but increases the computational time and slows down the convergence (when
the number of generations remains the same).

• Offspring size

– Also referred as λ.
– The number of offspring (resulting solutions) that are produced at each

generation.
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– In general, larger offspring size speeds up the search process and increases the
diversity of solutions (in earlier stages of the optimisation process).

• Mutation rate or mutation probability

– Also referred as pm.
– The frequency of new mutations in a single gene (variable representation) or

individual (solution representation) over time.
– In general, higher mutation rate increases the versatility of the solutions within

the population, but it also increases the amount of randomness in the search.

• Mutation step size

– Also referred as σ .
– The size of the change of mutation rate compared to its previous value. In the

case of real-valued search spaces, mutation is usually performed by adding a
normally distributed random value to each optimised variable.

– In general, higher mutation step size has a similar influence as the higher
mutation rate.

• Crossover rate or crossover probability

– Also referred as pc.
– The probability that crossover is performed between two chosen solutions.
– In general, lower crossover probability prevents exchange of genetic material

and causes slower convergence.

• Selection pressure

– It is the degree to which the better individuals are favoured. Which solutions
will provide the individual with an increased chance of surviving over others,
i.e. to be forced to contribute to the next generation. Therefore, individuals
with certain phenotypes have an advantage when it comes to survival and
reproduction.

– The higher the selection pressure, the more good solutions are kept from
generation to generation. It is related to elitism strategy, which ensures good
solutions to proceed to the next generation.

• Tournament size

– Tournament selection involves running tournaments amongst pairs (or groups)
of individuals chosen at random from the population. The winner of each
tournament (the one with the best fitness) is selected for the next phase (i.e.
crossover).

– When tournament size is higher, the weaker solutions have a smaller chance
to be selected.

• Number of generations

– Also referred as ng .
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– The number of iterations for reproduction and recombination of solutions
during the optimisation process.

– It is very often connected to the population size, especially when the total
number of evaluations is limited.

– In general, when using a higher number of generations, it is more probable
that the optimisation process will converge towards a better/optimal solution,
but also the computational time is increased.

Whenever some control parameter or other component of the optimisation
algorithm is changed, then, depending on the implementation, it can influence either
an individual solution, or it can influence the whole population of solutions.

11.2.2 What Else can be Adapted

Further on, to respond to changes and to improve the optimisation convergence, one
can also adapt:

• Fitness function

– Sometimes it is needed either to adapt to changing environment with modified
fitness function, or it is needed to add some constraints into the fitness function
(e.g. penalty terms for constraints) [15].

• The representation of the problem

– The representation of the solution can be changed to reflect either the
simplifications due to already optimised parts of the solution or to increase
the force of promising parts for the next generations.

– The proper encoding (representation of the problem) ensures that the opti-
mised variables are modified efficiently and that the heuristics can be easily
applied during the optimisation. Different representations of the same problem
can give a different insight into the properties, including redundant encodings,
synonymity, locality and connectivity, as well as their interrelationships [16].

• The components of the algorithm

– An evolutionary algorithm can use different combinations of parent selection,
crossover operators, mutation operators, survival selection and termination
condition [17]. For example, the implemented versions of crossover and muta-
tion operators influence the way how the encoded information is modified.
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Fig. 11.3 Influence of
different algorithm setting on
its performance. The same
components (selection,
crossover, mutation) and
random seeds are used, but
different values of control
parameters result in faster
convergence (blue line), or an
algorithm may reach higher
fitness value (red line)

11.2.3 Influence on Algorithm Performance

The performance of an optimisation algorithm can be measured in terms of execu-
tion time, robustness of solutions, resource utilisation, convergence, etc. Besides the
control parameters the performance of an evolutionary algorithm also depends on
interactions with other issues (representation, components).

An exemplary Fig. 11.3 presents the general comparison of fitness convergence
for two different control parameter settings of the algorithm. Even if the same
components (selection, crossover, mutation) are used and the same random seed
is used for EA, different values of control parameters may result in faster initial
convergence (blue line), or an algorithm may reach a higher fitness value (red line).

11.2.4 Interaction of Control Parameters

Based on [18], Fig. 11.4 presents the fitness convergence for several different
settings of the control parameters (see Table 11.1 for details). The achieved fitness
is different depending on different probabilities of crossover and mutation, whilst
number of generations and population size are fixed. For a given problem of opti-
mising the design of integrated circuit (i.e. elliptic filter consisting of 34 operations),
it is shown that the optimal tuned control parameters might be μ = 10, ng = 100,
pc = 0.7 and pm = 0.01. Other combinations of control parameter values might
not give such good results. Therefore, optimal setting of the optimisation algorithm
is preferred; however, finding these optimal values is a difficult, but important, task.
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Fig. 11.4 Interdependence
between probabilities of
crossover and mutation (with
fixed number of generations
and population size). For
optimising the design of an
elliptic filter [18], it is shown
that the optimal tuned
(ensuring highest quality)
control parameters might be
μ = 10, ng = 100, pc = 0.7
and pm = 0.01

Table 11.1 Control
parameter settings as used in
[18]

Control parameter Values

Population size μ = 10

Number of generations ng = 100

Probability of crossover pc = 0.5, 0.6, 0.7, 0.8, 0.9

Probability of mutation pm = 0.01, 0.03, 0.05, 0.07, 0.09

11.3 Setting Approaches

The setting of the control parameters can be classified into two major approaches
[19], as presented in Fig. 11.5. The first one is parameter tuning, where the
parameters are tuned in advance of the actual optimisation process. The second one
is parameter control, where the parameters are modified online, during the optimi-
sation process. In the latter case there are different strategies for the adaptation of
the control parameters.

Note that some newer works [13] suggest a slightly modified classification for
parameter control. Instead of making a distinction only amongst deterministic, adap-
tive and self-adaptive strategy, they suggest a classification into state-dependent,
success dependent, learning-dependent, self-adaptive and hyper-heuristics strate-
gies. As currently most of the literature still relyies on the initial classification of
[19], this chapter follows that one, too.

For parameter tuning (see Sect. 11.3.1 for details) a large amount of literature
on finding good static control parameter values exists [20–23]. There are even
some frameworks to allow easy parameter tuning, a reference list of which is
being mentioned in the section below. The so-called parameter tuning mechanisms
involve checking several combinations and evaluating their efficiency. However,
optimal static parameter values for one problem may be much different for other
similarly looking problems. Namely, a small change in one parameter can cause
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Fig. 11.5 Classification of parameter setting [19]

huge performance gaps. For example, changing the mutation rate by a small constant
factor might drastically (exponentially) change the running time.

Within parameter control (see Sects. 11.3.2 and 11.4 for details) the best
control parameter values depend on the current state of the optimisation process
and thus change over time (non-static control parameter). There are several
simple methods for allowing algorithms to set good control parameter values by
themselves, e.g. (1+1) EAα [24], PLES [12], CMA-ES [25] and jDE [26] (more
details in Sect. 11.4).

11.3.1 Parameter Tuning

A lot of research exists on analysing ways to tune parameters in a smart, efficient
and effective way. Mostly they suggest/recommend some values, which have turned
to be robust enough for the tested problems. The recommendations for population
size, mutation and crossover probabilities, selection strategies, etc. are either:

• Absolute values, which are independent of problem class or problem size [27]
[28]. For example, for a problem with five variables, the population size should be
10, and the number of generations should be 100, whilst crossover and mutation
probabilities should be 0.8 and 0.02, respectively.

• Relative values, which depend on some property of the problem [29], e.g. 1/n
as mutation rate for problems of lengths n (i.e. chromosome with encoded n
variables), or the ratio μ/λ ≈ 1/4 [30].

This approach works well for a broad range of problems, but unfortunately
problem size is not the only feature that influences the efficiency of the search.
Some more modern tuning approaches run a number of initial tests and observe
the performance of different control parameter values, and finally they choose the
control parameter values that seem to be the most promising. The list of such
parameter tuning tools include:
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• irace—a software package with a number of automatic configuration procedures.
Its iterated procedures have been used to automatically configure various algo-
rithms [31].

• SPOT—the sequential parameter optimisation package for R is a toolbox for
tuning and understanding simulation and optimisation algorithms [32]; see also
Chap. 10 for details.

• GGA—the gender-based genetic algorithm configurator, integrated with surro-
gate model for predicting high-performance regions in the parameter space [33].

• ParamILS—an automatic framework for the identification of performance-
optimising parameter settings [34].

• SMAC—the framework constructs explicit regression models to describe the
dependence of target algorithm performance on control parameter settings [35].

• Spearmint—software package to perform Bayesian optimisation which can be
used to find appropriate control parameter values in as few runs as possible [36].

The automated identification of control parameter values that these tools possess
recommends efficient values for static problems, where unchanged values of control
parameters are used through the whole optimisation process.

11.3.2 Parameter Control

The efficiency of optimisation with specific control parameter values depends on
the characteristics of the search space landscape. Some parameter values might be
good for separable functions, others for multimodal, convex, discontinuous and so
on. Usually, when population moves through the search space, such characteristics
change. For example, at the beginning of optimisation, the fitness landscape might
appear highly multimodal and irregular, but then the population converges towards
a region that contains a very narrow valley. In order for the algorithm to follow
this narrow valley efficiently, it needs to employ a different strategy than when
the landscape appeared multimodal. In this case different control parameter values
are appropriate for different stages of the optimisation process. This indicates that
no globally optimal control parameters exist and that one should use non-static
parameters that adapt during the search/optimisation process.

Moreover, different stages of the optimisation process require different control
parameter values [37]. It can be easily shown that exploration and exploitation
phases of the search process require different values of control parameters:

• In the beginning, in the exploration phase, large mutation rates and small
selective pressure are needed to make large jumps across the search space and
discover different areas of the search space.

• Towards the end, in the exploitation phase, small mutation rates and high selec-
tive pressure are required to focus the search around the promising discovered
regions of the search space.
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The right choice of control parameter values depends on the problem and even the
problem instance that is solved and the algorithm that is employed for the search. So,
whenever a new optimisation problem or its new/different instance is introduced or
a new optimisation algorithm is employed, a new set of control parameter values is
needed. Surely, some preliminary experiments are often conducted to find (i.e. tune)
reasonable initial control parameter values. However, based on the implementation
of the adaptation, such tuning might not even be necessary since some types of
parameter control can find appropriate control parameter values in the early stage
of optimisation by themselves. The next section presents more details on different
adaptation strategies.

11.4 Parameter Control Strategies

When deciding on the proper parameter control strategy, several decisions have to
be made. First, one needs to decide what is the update trigger, which can be one of
the following:

• Number of fitness evaluations performed
• Time elapsed
• Progress in terms of absolute or relative fitness values
• Diversity measures

Next, it should be decided which strategy should be used to update the control
parameter values (their details are presented in the following sections):

• Deterministic (or time-dependent)

– It is usually time-dependent and the algorithm does not consider any feedback
from the optimisation process.

• Adaptive

– Here some statistical feedback from the optimisation process is used to
determine the direction and magnitude of change of the control parameter
value.

• Self-adaptive

– It treats control parameters as part of the optimisation (being a complex
optimisation problem) and EAs are used to find good values of the control
parameters (i.e. control parameters are encoded together with other variables
and are concurrently optimised).
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Fig. 11.6 A conceptual model of deterministic parameter control in EAs. The updates are
following a predefined pattern, with no feedback from the optimisation process

11.4.1 Deterministic Parameter Control

In case of deterministic parameter control (see Fig. 11.6), the updates follow some
predefined pattern and have no feedback from the optimisation process. Changing
of the control parameters is therefore based on the elapsed time, measured in terms
of the number of generations or the number of fitness evaluations or the wall-clock
time, etc. The update rule is determined before the algorithm run; thus, finding the
optimal deterministic update rules requires their tuning. The disadvantage of the
static control parameter values is bypassed with this deterministic approach, but the
algorithm is not able to identify the good control parameter values by itself.

Below some representative examples of deterministic parameter control are
presented:

• Rule for the mutation strength of a GA, based on the dimension of the
configuration space and the population size [38].

• Size of the actual population is changed (increased or decreased) every N fitness
evaluation [39].

• Mutation rate changes in every iteration [40].
• Linear decrease of population size with occasional re-initialisation of the popu-

lation size [41].
• Changing population sizes through specific wave function (i.e. inverse saw-tooth

function) [42].
• In every iteration, random step size is used for a multi-valued problem [43].

11.4.2 Adaptive Parameter Control

During an optimisation process, various data are available that can give clues about
the characteristics of the fitness landscape. This data can be used to guide parameter
control so that optimisation is more efficient, given the current landscape. This
approach is called adaptive parameter control. Its main trait is the feedback from the
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optimisation process that changes the parameters according to some pre-described
rule.

The following list presents some of the adaptive algorithms:

• (1+1) EAα—a multiplicative, comparison-based update rule to adjust the muta-
tion probability of a (1+1) Evolutionary Algorithm [24].

• PLES—the control parameters (population size, recombination, mutation) are
calculated during the optimisation process according to the progress (best value
and standard deviation) of the search [12].

• CMA-ES—the shape of mutation distribution is generated according to a
covariance matrix C, which is adapted during evolution [25].

• SHADE—the control parameters for are drawn from a distribution, shape of
which is guided by the values of control parameters that previously produced
high-quality candidates [44].

Model of Adaptive Parameter Control

Parameter control requires searching for optimal control parameter values during
the run. The optimisation starts with suboptimal control parameter values that are
adapted during the progress of the algorithm. The parameter control derives the
best next control parameter value such that the influence on the performance of the
algorithm is optimised.

In this section we refer to the model and its main conceptual steps of the adaptive
parameter control strategy and their classifications, based on [11].

Fig. 11.7 A conceptual model of adaptive parameter control. The four main steps that are
performed, namely (1) feedback collection, (2) effect assessment, (3) quality attribution and (4)
parameter update, are represented as shaded boxes [11]
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In Fig. 11.7 the conceptual model of this procedure is shown. During the
optimisation, another iterative process is taking place that refers to the control
parameters. The main steps of this process are (1) feedback collection, (2) effect
assessment, (3) quality attribution and (4) parameter update. The success of each
step depends on the others.

• Feedback collection: This is the starting step of the adaptive parameter con-
trol. This feedback measures certain properties of an EA, which indicate the
algorithm’s behaviour. According to [11], there are five different feedback
categories:

– Phenotype feedback: Feedback referring to the observed behaviour or quality
of a solution. Most of the times, the fitness improvement of the solutions as an
indication for the performance of the algorithm is used.

– Relative phenotype feedback: Feedback referring to the relative quality of the
solutions, most commonly using entropy as a measure.

– Genotype feedback: This kind of feedback relates to the components of a
single solution.

– Genotype diversity feedback: Feedback as to how much population diversity
is maintained for increasing search coverage and for dealing with fitness
landscape change.

– Feasibility feedback: Feedback about the amount of violation of constraints.

• Effect assessment: based on the feedback collection strategy, the effect of the
parameter values on the performance of the algorithm is estimated. The distinc-
tion of current available parameter effect assessment methods is how the progress
of the parameter values is defined, meaning what is evaluated as good perfor-
mance for the algorithm. In Table 11.2 the different effects are depicted, depend-
ing on what solution is used as reference. For example, the ancestor effect uses
as a reference to the solution of the parents and measures the improvement with
the current solution, the population effect uses the solution of the population, etc.

• Quality attribution: Using the effect measured in previous iterations, a quality
measure is defined to make a better choice of suitable control parameter value in
the next iterations. According to what kind of change is taken into account, there
exist the immediate which assumes that the change in the solution properties is
directly related to the use of certain control parameter values, the average which

Table 11.2 List of effect assessments depending on the reference solution

Effect assessment Reference solution

Ancestor effect Solution of the parents

Population effect Solution of the population

Best effect Best solution of the population

Worst effect Worst solution of the population

Median effect Median solution of the population

Current effect Current solution directly as effect (e.g. its fitness)
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considers the average improvement in the properties of all the solutions in the
population, the extreme which refers to outliers and learned quality attribution
using other learning-based techniques, such as machine learning.

• Parameter update: The final step of adaptive parameter control is the update
mechanism. The update of the parameters is a settlement between control
parameter values with high quality and exploring new values. The categories
are the following:

– Quality proportionate: Each control parameter value is assigned with a
probability, which defines how frequently it is used in future iterations.

– Quality proportionate with minimum probability: The same as above, but
each control parameter value has a minimum probability. That way, a value
that is not performing well is not lost completely, as it can be successful in
future iterations.

– Greedy: The best control parameter value is selected to be used in the next
iteration.

– Deterministic: A rule depending on the current value is used to update the
control parameter values of the next iteration.

Therefore, designing a good adaptive parameter control strategy requires some
consideration. The difficulty of designing a good parameter control strategy is
strongly connected to the problem of landscape analysis [45]. We can see parameter
control as performing some sort of landscape analysis during optimisation, and on
top of that, the features of the landscape are mapped to control parameter values that
work well in such landscapes. One approach to circumvent these design difficulties
is to let a machine learning model guide the parameter control [46]. By this method
only the feedback collection step needs to be designed, whilst other steps are left
to the machine learning model. Using a sufficient amount of data, the model could
learn good rules for parameter control and in essence design remaining steps of
parameter control based on which rules worked well during training of the model.

Reinforcement learning is especially suitable to find such rules for optimisation
parameter control. This type of machine learning was found to be extremely
successful to construct agents that are capable of playing various games [47]. In
this regard, optimisation parameter control can be viewed as an agent playing a
game. In the setting of parameter control being a game, a player performs actions
(propose new values of optimisation parameters) that influence the behaviour of the
optimisation process. At the end, the score of the player’s actions is equivalent to
the fitness found by the optimisation process. In this way, Zhang and Lu devised
an evolutionary algorithm that uses a mutation operator proposed by a machine
learning model trained using reinforcement learning [48]. However, this type of
parameter control construction is still in its infancy and is currently an active area
of research.
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Fig. 11.8 A conceptual model of self-adaptive parameter control. The parameters are co-evolving
with the solutions of the problem

11.4.3 Self-Adapting Parameter Control

A search for good parameter values for an optimisation process is by itself an
optimisation problem. On the other hand, an optimisation algorithm that is being
tuned can be used to find good parameter values. A given optimisation algorithm
is designed to perform optimisation well and why not use it to find its own control
parameter values. Self-adjusting parameter control is a method where the search
for good control parameter values is performed simultaneously with the search of
optimal problem values, by encoding the control parameters into the chromosome
(as additional variables) (see Fig. 11.8).

In the case of EA, self-adjusting parameter control can be achieved by including
the control parameters in the chromosome alongside the decision variables. In this
way, an EA is able to try various control parameters and, through variation and
selection, choose control parameter values that are the most appropriate in a given
stage of optimisation. If some control parameter values lead the optimisation process
to candidate solutions with higher fitness, these control parameter values are more
likely to be inherited in the next generation. Control parameters that can be adjusted
in such a way include the type of evolutionary operators used and parameters
that determine their behaviour. For example, when using Gaussian mutation, the
chromosome can include the individual’s probability for mutation and the variance
of mutation [49].

One disadvantage of self-adjusting parameter control in EA is that the inclusion
of control parameters in the chromosome increases its size. This means that
chromosome modifications become computationally more expensive [50]. One way
to circumvent this issue is to use two populations. One population has individuals
with chromosomes consisting of decision variables, whilst the other population has
individuals with chromosomes consisting of control parameter values. This reduces
the complexity of the optimisation by splitting the search space into two smaller
search spaces.

Like the adaptive control, the self-adjusting control also uses feedback from the
optimisation and searches for parameter values that are optimal for the region of
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decision space that the population occupies. In that regard, this control adjusts the
control parameters that are suitable for the current landscape. Consequently, this
makes such an optimisation dynamic (see Sect. 11.5.2), and the optimal values of
control parameters change during optimisation process.

The following list presents some of the self-adaptive implementations:

• Self-adaptation mechanism of mutation rates in GA [51]
• jDE—self-adaptive control parameter settings of differential evolution (DE)

algorithm [26, 52]
• Self-adaptive refinement of mutation rates in EA [10]
• Self-adaptive mutation rate in the (1,λ) EA [53]

11.4.4 Tuning vs. Control

Deciding whether to perform parameter tuning or to use some type of parameter
control or to use some combination of both approaches (see combinations in
Fig. 11.9) depends on the problem class and on how often optimisation problems
need to be solved. Both parameter tuning and parameter control have their own
advantages and drawbacks.

Parameter tuning can take a considerable amount of time, especially when there
are many control parameters. Obtaining good control parameter values requires the
use of an optimisation method that searches the values for which the algorithm has
statistically the best performance. This performance measure of the optimisation
algorithm is typically subjected to noise, and several runs need to be executed for the
same control parameter values. The landscape of parameter tuning optimisation is
usually non-separable and multi-dimensional. The optimal parameters can typically
not be found in a sequential fashion, because of their complex interactions.

Fig. 11.9 Different
combinations of using
parameter tuning and
parameter control [8]
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By performing a proper parameter tuning, we get values for control parameters
that are good for the optimisation problems chosen in the tuning process. To reduce
the computational burden of tuning, simpler, synthetic problems are often used that
might not reflect the characteristics of real-world problems for which the tuned
algorithm will be used. It was also shown that good control parameter values for one
problem can behave poorly on similarly looking problems [8]. This is connected to
the fact that the optimisation algorithm performance is usually quite sensitive with
respect to control parameter values. A small change in control parameter value can
result in great changes in algorithm overall performance.

A potential advantage of the static approach is that the process of parameter tun-
ing is pre-described and theoretically well founded since tuning is an optimisation
problem. From a design point of view, this is not the case for parameter control.
Searching for an optimal control strategy can be considered an optimisation problem
in infinite dimensional search space. Therefore, how to develop suitable update
rules for parameter control is theoretically still an open question. Nevertheless,
optimisation parameter control is a very active area of research that brought great
performance improvements to several optimisation algorithms [11, 13].

Parameter control can also introduce additional parameters on its own. Such
parameters determine how parameter control behaves. Therefore, the use of param-
eter control does not necessarily bring parameterless optimisation algorithms.
However, parameter control rules should be designed in a way that the additional
parameters (so called meta-parameters) of the parameter control are much less
sensitive compared to original parameters of the optimisation algorithm [4, 54].

An advantage of the non-static parameter approach is the gain of flexibility and
the possibility to adjust the parameter values to the current state of the search
process. Since characteristics of the fitness landscape change during optimisation, it
is much more efficient to change parameters during optimisation and use appropriate
control parameter values in each stage of the optimisation. Another advantage
of parameter control is that it can reduce the need for parameter tuning. If
adaptive or self-adaptive parameter control is used, at the first stage of optimisation,
the algorithm discovers the proper parameters itself, without tuning. This can
slightly prolong the optimisation, but it can eliminate the need for time-consuming
parameter tuning.

The choice of whether to use parameter tuning, or some combination of tuning,
and control (see Fig. 11.9), depends on the complexity of the problems and in what
frequency these particular optimisation problems are solved. If the problem is very
hard and needs to be solved only once, parameter tuning represents an enormous
overhead. If a hard problem needs to be solved over and over again, parameter
tuning can represent a negligible overhead and can reduce the optimisation time
considerably. In some cases it might be useful to first search for fine-tuned initial
values and then to use parameter control. This way the tuning gives the advantage
of tailoring to a specific problem class and the control offers the benefits of
dynamically varying parameter values [8].
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11.5 Real-World Optimisation

Real-world optimisation problems occur in many applications such as engineering
design, scientific modelling, image processing, etc. In general, these problems
contain non-linear objective functions of mixed design variables i.e. continuous and
discrete, with linear as well as non-linear constraints. These problems might have
several local optima, causing trouble to heuristic methods, as these methods do not
guarantee to locate the global optimum. For a wide range of real-world optimisation
problems, though, a near-optimal or a better-than-known solution is considered a
satisfactory result of an optimisation problem.

Real-world systems are, in general, large and very complex. They require to
process a large amount of data, to perform complex optimisation and make decisions
fast [55]. Real-world optimisation problems consist of several characteristics that
increase the complexity of the optimum solution search. Some of the characteristics
of the problems for which parameter control in optimisation could appear advanta-
geous are the following:

• Number and type of variables: Large number of decision variables, with problems
that are known as large-scale global optimisation (LSGO) problems [56]. Also,
mixed-integer problems, where different types of variables are optimised.

• Dynamic problems: Problems that are changing over time.
• Problems under uncertainty: The variables of the problem have some uncertainty.
• Number of objectives: Problems that require optimising more than one objective

function simultaneously and need to be solved by a multi/many-objective
approach.

• Nested problems: Multi-/bilevel optimisation, where one optimisation problem
has another optimisation problem as a constraint.

As mentioned before properly defined control parameters play a crucial role
in effectively handling the above characteristics and solving such problems. For
example, with increasing dimensionality of the problem, its landscape complexity
grows and the search space increases exponentially. However, an optimisation
algorithm must be able to explore the entire search space efficiently.

11.5.1 Large-Scale Global Optimisation

LSGO, where the problem dimension D (the number of variables to be optimised)
has an order of magnitude of around D = 1000, is an active research field
due to the growing number of large-scale optimisation problems in engineering,
manufacturing and economy applications (such as bio-computing, data or web
mining, scheduling, vehicle routing, etc.) [57, 58]. Most engineering problems
have an exponential increase in the number of required decision variables [59].
Advances in machine learning and the wide use of deep artificial neural networks
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result in optimisation problems with over a billion variables [60]. Large-scale
optimisation is also present with many data analytic and learning problems [61]. The
problems range from shape design optimisation for aircraft wings and turbine blades
[62], satellite layout design [63] and parameter calibration of water distribution
system [64] to seismic waveform inversion [65]. A major challenge of large-scale
optimisation is the exponential growth in the size of the search space with respect
to the number of decision variables [56].

In recent years, LSGO gained attention and attracted wide interest from
researchers and practitioners as well as mathematicians and engineers. The
challenges motivated the design of many kinds of efficient, effective and robust
kinds of metaheuristic algorithms to solve LSGO problems with high-quality
solutions and high convergence performance as well as with low computational cost
[66].

To achieve acceptable results even for the same problem, different parameter set-
tings along with different reproduction schemes at different stages of optimisation
process are needed. Therefore, several techniques (e.g. [67, 68]) have been designed
to adjust control parameters in an adaptive or self-adaptive manner instead of a trial-
and-error procedure.

11.5.2 Dynamic Optimisation

Real-world optimisation problems are usually subject to changing conditions over
time. The effects of these changes could influence several aspects of the problem,
such as the objective function, the problem instance, its constraints etc. Therefore,
the optimal solution to the problem might change over time. These problems, when
solved by an optimisation algorithm on-the-fly, are called dynamic optimisation
problems (DOPs) [69].

One can understand that optimising dynamic problems is not a simple task. The
algorithm is expected to be able to track the current optimal solution as well as the
changing optimal solution over time. Therefore, the optimisation procedure has to
be able to detect these changes and react quick enough. This also requires dynamic
change of the ratio for exploration and exploitation parts of the search. Both adaptive
[70] and self-adaptive [71] parameter control can be used.

Based on a comprehensive survey [72], four different strategies can be used to
help population-based algorithms to adapt in dynamical environments:

• Increasing diversity of the population after a change is detected, e.g. by increas-
ing mutation rate every N generations

• Maintaining diversity throughout the run, to avoid convergence of the population
on one point

• Memory-based approaches, taking into consideration older solutions and some-
times making predictions based on historical data
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• Multi-population approaches, where many small populations track their own
peaks as the environment changes

The above strategies require a parameter control approach.

11.5.3 Optimisation Under Uncertainty

The presence of a range of uncertainties has to be taken into account for solving
many real-world applications with EAs. Jin and Branke [73] categorise the uncer-
tainties that influence EA performance into four types:

• When noise occurs in the fitness function
• In case of design and environmental parameters subject to changes after the

optimisation
• When fitness function is an approximation
• When the optimum changes over time (as in dynamic optimisation, see

Sect. 11.5.2)

Methodologies to addressing noisy fitness function are explicit averaging by
calculating the average of the fitness values over a number of randomly sampled dis-
turbances (see, e.g., [74, 75]), implicit averaging sample size as an inverse function
of the population size [76], fitness inheritance where the offspring inherits also the
mean and standard deviation of the objective value [77] and selection modification
[78]. These methods assume that the search space follows a homogeneous noise
distribution such as a uniform or a normal distribution [79].

11.5.4 Multi-objective Optimisation

Multi-objective and also many-objective optimisation (see details in Chap. 8)
approaches are used for optimisation problems where several criteria need to be
optimised that are equally treated and not merged (e.g. by weights) into one single
objective. The output of multi-objective optimisation is a set of solutions that
approximates the Pareto front. The main difference here is that there is no unique
measure that would indicate how good a current approximation of the Pareto front is.
Unlike in single-objective case where fitness can be used to measure this. Therefore,
in multi-objective case, adaptive parameter control is a bit more complicated to
design and additional considerations are needed to design the phenotype feedback
collection part.

One possibility for assessing in what stage the optimisation process is, is to
monitor the proportion of non-dominated solutions in the population [80], or
convergence detection [81]. This quantity typically increases during optimisation
process and can be used to guide the parameter control. The most common
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indicators that are also used as input to parameter control are the crowding distance
and the contributing hypervolume [82, 83]. Other metrics can also be applied such
as ε-dominance, generational distance, delta indicator, two-set coverage and so on
[84]. Compared to adaptive control, self-adaptive control is easier to design and
implement because less modifications are needed to upgrade an existing multi-
objective optimisation algorithm [85, 86].

In general, the multi-objective optimisation approach is able to find high-
quality solutions by adapting to specific dynamic conditions through selection of
appropriate solutions from Pareto front [55]. To further improve its performance,
the control parameter values should also be adapted to lead the search through the
changing system.

11.5.5 Multilevel Optimisation

In many real-world processes, there is a hierarchy of decision-makers and therefore
decisions are taken at different levels [87]. The constraint domain associated with
a multilevel problem is implicitly determined by a series of optimisation problems
that must be solved in a predetermined sequence. The simplest form of a multilevel
problem is the one with two levels, called bilevel optimisation problem. The
optimisation of such problem aims to achieve the optimum solution of the upper (in
hierarchy) level, whilst the optimum of the lower optimisation level is also taken into
account. This forms a challenging complex problem, as for every upper-level vector,
a whole optimisation task of the lower level problem is required. This usually leads
to a problem that is non-linear and non-convex and in general does not follow any
simplified assumptions. Since the lower-level landscape changes for every upper-
level vector, parameter control when using EAs to tackle with this problem can be
useful. More details about multi-/bilevel optimisation and how it is solved can be
found in Chap. 9.

Another very interesting application of bilevel optimisation that was developed
recently and is connected to parameter tuning was formulating the parameter
tuning of EAs as bilevel optimisation problem. In [88] the authors proposed the
parameter tuning problem as an inherently bilevel programming problem involving
algorithmic performance as the objective(s), introducing an evolutionary bilevel
algorithm for parameter tuning. They tested it to few commonly used optimisation
algorithms (differential evolution and Nelder-Mead) and it was found to obtain a fast
convergence to the most efficient control parameter values. In the same vein, [89]
created a bilevel framework for parallel tuning of optimisation control parameters
and compared it to irace proving that it can be competitive. Bilevel control parameter
tuning can be used to design a parameter control mechanism [90].
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11.6 Summary

This chapter provides an insight into parameter control strategies in EA. The concept
of evolutionary algorithms is introduced, along with the control parameters that need
to be set for this kind of algorithms, their mutual interactions and their influence
on the algorithm performance. Parameter tuning and parameter control, the two
categories of parameter settings, are then explained. More focus is given to the
three strategies of parameter control, i.e. deterministic, adaptive and self-adaptive
parameter control. It also discusses when and why it is more appropriate to use
either parameter tuning or parameter control strategies. Last but not least, it outlines
the motivation of using parameter control for solving some instances of real-world
optimisation problems, like the ones with a large number of variables, dynamic
changes, multiple objectives, multiple levels and uncertainty.
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Chapter 12
Response Surface Methodology

Péter Zénó Korondi , Mariapia Marchi , and Carlo Poloni

Abstract Response Surface Methods (RSMs) are statistical and numerical models
that approximate the relationship between multiple input variables and an output
variable. This chapter introduces the methodology and its importance for engineer-
ing design optimisation. The basic steps to build RSMs and validate the model
accuracy are explained. An overview of three classical methods (Least Squares,
Radial Basis Functions, and Kriging) is provided. A simple wing structure design
optimisation problem is used to illustrate the different phases of the response surface
methodology and its application to design optimisation. This example also includes
the case of noisy data.

Keywords Response surface method · Radial basis function · Kriging ·
Surrogate model · Quality indicators · Design optimisation

12.1 Introduction

Response Surface Methodology refers to statistical and numerical techniques to
model the relationship between multiple input variables and an output variable. A
Response Surface Method (RSM) can be considered as a multidimensional surface
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fitting of the output variable based on the observed data in multidimensional input
space.

Generally speaking, a response surface model (a.k.a. surrogate model or meta-
model) is used to replace expensive numerical or physical experiments with a
computationally cheap and sufficiently accurate model. In engineering, decisions
are made on information obtained from various kinds of analyses, as pointed out by
Forrester in his book [1]. One way to get information and increase the knowledge
of a problem is to conduct experiments; however, in many cases the cost and
complexity of the experiments is so high that only a limited number, if any, of
observations is feasible. For example, in aerospace engineering, experiments can
be very expensive (e.g. extra-territorial missions) or can take a long time (e.g. run
high-fidelity simulations). Consequently, models are built to increase the knowledge
gained from the observations and to predict performance values which cannot be
directly observed.

RSMs are a valuable tool for making decisions during the life-cycle of a physical
asset or process. In early-stage design phases, RSMs can give fast and cheap
predictions about the cause–effect relationship of the design inputs and outputs.
In Robust Design Optimisation and Reliability Based Design Optimisation, RSMs
can be used to substitute expensive performance analyses to provide enough data
for statistical calculations. In operational phases, RSMs can provide additional
data, information for digital twins, operators and artificial intelligence algorithms
to facilitate the control of the process. In recent decades, engineering design
has become increasingly collaborative and multi-disciplinary. In many cases, the
parameters of an expensive numerical experiment depend on the output of one
or more other expensive numerical experiments of different disciplines. In this
context, the RSM of a numerical experiment can provide response data for input
parameter predictions of numerical solvers of other disciplines, facilitating the use
of parallel discipline analyses [2]. Moreover, RSMs are able to handle possibly noisy
experimental results.

The accuracy of RSMs can be controlled by the configuration of the RSM
algorithm; however, speed and accuracy often conflict: and a compromise has to be
made. The task of choosing the most appropriate RSM is challenging and requires
expertise.

This chapter is organised as follows. Section 12.2 introduces the pragmatical
stages and steps of the RSM construction. Section 12.3 provides a brief overview of
some selected RSMs: Least Squares Method (LSM), Radial Basis Functions (RBF),
and Kriging. Section 12.4 shows the application of the RSMs in an uncertainty
analysis of a simplified wing design problem.

For a more detailed review on RSMs see one of the following books [1, 3, 4].
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12.2 Response Surface Model Construction

12.2.1 Objective

The objective of RSMs is to map the behaviour of an output variable based on the
known values of the input variables. In mathematical terms,

y = f (x), (12.1)

where x is the vector of input variables, f is the mapping function, and y is the
output variable.

In practice, the perfect map cannot be found, except in some simple problems. A
RSM provides only an approximate map between the output and inputs:

ŷ = f̂ (x), (12.2)

where f̂ is the RSM and ŷ is the predicted output, which usually deviates from its
real value,

y = ŷ + ε, (12.3)

where ε represents the error with respect to the real output value.

12.2.2 Classification

RSMs can be divided into two main categories: regression methods and interpola-
tion methods.

Regression RSM (or approximation method) is typically a polynomial function
or nonlinear model with coefficients that are set to minimise the error between the
predicted surface and the sample points of the training data set. Approximation
methods are particularly useful for modelling ill-conditioned problems or in case
of low quality training data (e.g. noisy data sets).

Interpolating RSM passes through the points of the training data set. In other
words, the interpolating surface and the real response surface are equal at the
locations of the training data. Hence, interpolation is well-suited to deterministic
computer experiments where the simulation error is negligible. The choice of
inappropriate interpolation methods can result in oscillatory surfaces (e.g. when
there is a large number of model parameters). Consequently, extrapolation based
on an interpolated response surface with many model parameters is not suggested
without additional validation of the extrapolated predictions.
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12.2.3 Construction Stages

The construction of a response surface model can be divided into four stages: data
preparation, algorithm choice, parameter tuning, and model validation. Each stage
consists in multiple steps described in more detail in the following sections. The
descriptions are not immutable. For example, the first stage can be skipped if a
sufficient amount of data is available. The stages do not necessarily have to be
performed sequentially. In numerous applications these stages are done iteratively.
The training data can be refined in regions where the model validation phase
indicates lower accuracy and models can be recalculated after the introduction of
new sample instances.

12.2.3.1 Data Preparation

The first step is to identify the relevant design variables and responses based on
available knowledge or sensitivity analysis [5]. The region of interest (i.e. the ranges
of the design variables) should also be defined.

The second step consists in sampling the design space. The number of possible
sample points is constrained by the cost of the experiments. Different techniques
have been developed to obtain the maximum amount of information using the
minimal amount of resources. These techniques are called Design of Experiments
(DOE) [6]. Many DOE techniques solve an optimisation problem to achieve a well-
distributed sample data set. It should not contain data points that are too close to
each other or large areas not covered by any points. Two basic quality measures are
introduced below and shown in Fig. 12.1: the Separation Distance index and Fill
Distance index.

The Separation Distance q is the distance between the two closest training points
and is defined as,

q = min
i �=j ||xi − xj ||, (12.4)

where xi and xj is any pair of sample points and the norm || . . . || is the Euclidean
distance in a multidimensional space. Training points that are too close to each
other can lead to numerical instabilities in the generation of the RSM, hence, the
Separation Distance should be maximised.

The Fill Distance index h is a metric to quantify how well the training points
cover the investigated domainΩ of the variables. In case of a two-variable domain,
the Fill Distance gives the radius of the biggest possible circle that can be drawn in
the domain without having any training point inside the circle.

h = max
xεΩ

min
1≤j≤n ||x − xj ||. (12.5)
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Fig. 12.1 Separation
distance q and fill distance h
for a two-dimensional sample
of training points

q

h

Fig. 12.2 Examples of model fitting to the training data set. (a) Underfitting. (b) Correct fitting.
(c) Overfitting

The Fill Distance should be minimised in order to increase the quality of the
RSM prediction. For example, a good quality training data set can be achieved by
maximising the q

h
relationship.

12.2.3.2 Algorithm Choice

The challenge of finding the appropriate algorithm for predicting the true system
response with an RSM (see Fig.12.2b) is a task that, given the great amount
of possible RSMs, requires expertise. Consequently, physical insight into the
investigated problem can help to find the most appropriate algorithm. For instance,
the aerodynamic lift coefficient of an airfoil or an aircraft wing depends on the
angle-of-attack (a-o-a) and can be approximated by a linear model for a certain
regime of a-o-a values. The assumption of such simple RSM, however, blurs away
the fine details of the lift-a-o-a relation and can lead to underfitting (see Fig.12.2a).
In light of this, complex models with high flexibility are preferable as they can adapt
to simple and complex surfaces, provided that the model parameters are chosen well.
Inversely, having too many model parameters with respect to the training points can
add significant spurious noise and can result in overfitting (see Fig.12.2c).

12.2.3.3 Model Training

In this stage, model parameters are tuned, or set, to fit the chosen RSM to the training
data.
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In interpolation, the model parameters are typically found by solving a linear
system of equations defined by the interpolation condition.

For regression models, parameter tuning is typically carried out by minimising
an error measure calculated with respect to the deviation of the predicted surface
from the true response. From a statistical point of view, the parameters can be set by
maximising the probability that the response values of the observation data set are
generated by the RSM, see [1].
In the RSM, ŷ = y+ε, ε is the prediction error. With the assumption of independent
and normally distributed errors εi , with zero mean and standard deviation σ , the
probability P that the RSM yields yi + εi as the response to the input xi can be
written as,

P = 1
(
2πσ 2

)
n/2

n∏

i=1

⎧
⎨

⎩
exp

⎡

⎣−1

2

(
yi − f̂ (xi )

σ

)2
⎤

⎦ εi

⎫
⎬

⎭
, (12.6)

where n is the number of observations. Alternatively, the maximisation problem can
be turned into a minimisation problem by calculating the negative natural logarithm
of the above probability,

min
α

⎡

⎢
⎣

n∑

i=1

(
yi − f̂ (xi )

)2

2σ 2 − n ln εi

⎤

⎥
⎦ . (12.7)

12.2.3.4 Model Validation

Model validation is important for getting insight into the model fidelity. In the
model training stage, the optimal model parameters are found. This stage, however,
assesses the quality of the RSM by quantifying the error between the predicted and
the true response on new data points that are different from the training points.

Some of the most used performance indices of RSM validation are introduced in
Table 12.1.
Residuals are the differences between actual response values yi and those predicted
by the model on the data points. Residuals, as in the RSA and RSS measures, can be
used to assess the quality of the fit. The smaller the RSA or RSS measures, the better
the fit. TSS is the sum of the deviations of the observed responses from their sample
average ȳ. The maximum value of R2 is 1 in case of a perfectly interpolating model
(RSS = 0). The closer the R2 to the maximum value 1, the better the fit. However,
the R2 measure can be misleading. If the number of model parameters is too high
compared to the number of observations available, R2 increases to a value close
to 1 because of overfitting. The surrogate model will provide good results only in
the proximity of the observation points. It is therefore important to use metrics that
penalise the number of degree of freedom p of the model, as in the case of the R2

adj ,
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Table 12.1 Performance indices

Performance index Abbreviation Definition

Residual ε εi = yi − ŷi
Residual sum of absolute error RSA RSA = ∑ |yi − ŷi |
Residual sum of squares RSS RSS = ∑

(yi − ŷi )2

Total sum of squares T SS T SS = ∑
(yi − ȳi )2

Coefficient of determination R2 R2 = 1 − RSS
T SS

Adjusted coefficient of determination R2
adj R2

adj = 1 − n−1
n−p

RSS
T SS

Akaike information criterion AIC AIC = n ln RSS
n

+ 2p

Bayesian information criterion BIC BIC = n ln RSS
n

+ p ln n

AIC and BIC. Similarly to R2, the closer the R2
adj to 1 the better the fit, but this

measure also has an n−1
n−p term to penalise overfitting. AIC and BIC can assume

negative values. Models with the smallest AIC or BIC values are preferable.
The above performance indices give a biased quality measure if they are

calculated on the training data. Common practice is to divide the sample data into
a training data set and a validation data set. Typically one quarter of the data is
kept for validation. When separating this data, it requires great care to produce two,
well-distributed data sets.

In the event of limited sampling data, the Leave-One-Out or Prediction Error
Sum of Squares (PRESS) cross-validation techniques are recommended in that they
use all sample points for training. These techniques systematically leave out sample
instances or a group of samples and quantify the error between the trained response
surface and the excluded observation data,

PRESS =
n∑

i

(yi − ŷ(i))2, (12.8)

where ŷ(i) is the response predicted by leaving out the ith observation form the
training set.

12.3 Examples of Response Surface Models

12.3.1 Least Squares Method

The Least Squares Method (LSM) minimises the RSS of RSM regression in that it
minimises the sum of squared distances of the RSM and the true response evaluated
in the training points.
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Assuming the following form for the RSM function:

ŷ = f̂ (x,α), (12.9)

where f̂ (x,α) is the RSM function, x = [x1, . . . , xm] is the vector of independent
input variables, and α = [α1, . . . , αp] is the vector of model parameters to be
adjusted, the LSM problem can be formulated as follows:

min
α

n∑

i=1

(yi − f̂ (xi ,α))2, (12.10)

where n is the number of observations and yi are the actual responses. The sum in
Eq. (12.10) corresponds to the RSS index.

The parameters of the RSM can be determined according to the general minimum
condition equation. The RSS index will reach its minimum where its first derivative
equals zero,

∂RSS

∂αj
= −2

n∑

i=1

(yi − f̂ (xi ,α))∂f̂ (xi ,α)
∂αj

= 0, j = 1, . . . , p. (12.11)

Further details on LSM can be found in Cavazzuti’s book [3].
In case of a Linear Least Squares Problem (Linear LSM) the regression model

can be written as,

ŷ = Xα, (12.12)

where X is a matrix of functions containing the basis functions that depend only
on input variables. The model is linear because it is a linear combination of the
basis functions: it is linear in the model coefficients, while the basis functions can
be nonlinear.

By introducing the linear model of Eq. (12.12) in Eq. (12.10), the Linear Least
Squares Problem is formulated as,

min
α

n∑

i=1

(yi − Xα)2. (12.13)

According to Eq. (12.11) the model parameters can be obtained from the following
equation:

∂

∂α
(y − Xα)T (y − Xα) = −2XT y + 2XTXα = 0. (12.14)

The coefficients of the RSM can be given in closed form,
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α = (XTX)−1XT y. (12.15)

In the case of a Nonlinear Least Squares Problem the Eq. (12.11) is approximated
and the coefficients are traditionally found by an iterative method such as the Gauss–
Newton, Levenberg–Marquardt or Genetic Algorithms.

12.3.2 Radial Basis Functions

Radial Basis Function models are linear combinations of functions centred at the
location of the training points,

f̂ (x) =
n∑

j=1

αjφ(||x − xj ||/δ), (12.16)

where φ(.) is the radial basis function which depends on the Euclidean distance
from the centres xj and δ is a scaling parameter.

RBF models are typically used for interpolation, hence the coefficients of the
model are determined by solving the interpolation equation,

f = Aα, (12.17)

where Aij = φ(||xi − xj ||/δ) are the entries of the collocation matrix, A,
representing the value of the j th basis function evaluated in the location of the ith

point of the training dataset.
The collocation matrix must be positive definite to solve the above equation.

Otherwise, when it is a conditionally positive definite collocation matrix, the radial
basis functions are supplemented by an additional polynomial term,

f̂ (x) =
n∑

j=1

αjφ(||x − xj ||/δ)+ pm(x), (12.18)

pm(x) =
q∑

j=1

βjπj (x), q =
(
m+ d
d

)

, (12.19)

where m is the maximum polynomial degree and d is the number of variables
and πj (x) are the polynomial basis functions and βj are the coefficients of the
polynomials. In the augmented RBF formulation, Eq. (12.19) is the so-called
moment condition of the coefficients and it is necessary to determine the unknown
coefficients in the interpolation equation.
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Table 12.2 Typical basis functions for RBF models

Function type Abbreviation Definition

Gaussian G φ(r) = exp−r2

Thin plate splines TPS φ(r) = r2 log(r)

General polyharmonic
splines

PS φ(r) =
{
rk for k odd

rk log(r) for k even

Multi-quadrics MQ φ(r) = (1 + r2)1/2

Inverse multi-quadrics IMQ φ(r) = (1 + r2)−1/2

Wendland compactly
supported

W2 φ(r) =

⎧
⎪⎨

⎪⎩

(1 − r)3+(3r + 1) for d = 1

(1 − r)4+(4r + 1) for d = 2, 3

(1 − r)5+(5r + 1) for d = 4, 5

The optimal model parameters are obtained by solving the augmented system of
equations,

{
f
0

}

=
[

A P
PT 0

]{
α

β

}

, (12.20)

where Pij = πj (xi ) are the entries of P, denoting the j th polynomial basis function
evaluated at xi and β = [β1, . . . , βq ] is the vector of polynomial coefficients.

The complexity of RBF is ruled by the complexity of the matrix inversion and
depends on the number of nodes, which tend to be proportional to the condition
number of the matrix. Typically, RBF is characterised by a fast rate of convergence.
For smooth RBFs the convergence rate is O(−Cl

h
), where Cl is a constant and h is

inversely proportional to n. Some typical basis functions for RBF models are given
in Table 12.2, where (.)+ denotes an ordinary ramp function and k is an arbitrarily
chosen integer parameter.

12.3.3 Kriging

The Kriging algorithm is commonly used to build interpolating response sur-
faces based on Gaussian Processes (GP). The Kriging algorithm was devised for
Geostatistical purposes [7] but it has taken root in many other fields of science
and engineering. Kriging provides a response surface prediction to model spatial
variability. Since the prediction is characterised by stationarity, the estimated
response depends only on the spatial distances of the predicted point and the training
points. Therefore, Kriging is most accurate when in close proximity to the training
points.

There are several versions of Kriging in literature. They are members of the GP
regression model family, which is an extensively studied field. For further details
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see the work of Rasmussen and Williams [8]. Forrester et al. book [1] discusses
the methodology from an engineering point of view, whereas Cressie [9] puts the
discussion into the original geostatistical context.

A GP regression model approximates the response as a stochastic process,

f̂ (x) ∼ GP(μ(x), k(x, x′)), (12.21)

where GP(.) means a Gaussian Process function, i.e. any finite linear combination
of random variables with Gaussian joint probability density function. μ(x) denotes
the trend or the mean and represents the global variations of the response, while
k(x, x′) is the covariance function and represents the local variations of the response.
In principle, any GP can be completely described by its second-order statistics,
i.e. the mean and covariance functions. In addition to the global trend and local
departure, the model can be extended by a white noise term in the event of noisy
observations, in which case, the RSM can be formulated as follows:

f̂ (x) = μ(x)+ δ(x)+ ε(x), (12.22)

where μ(x) is the global trend, δ(x) is the local departure, and ε(x) is the white
noise function, respectively. Both local departure and white noise terms have zero
mean and constant variance.

In Ordinary Kriging, the mean function is constant and the local departure is
stationary and depends only on the spatial difference of the samples. In practice, the
white noise term is incorporated into the local departure term through an offset of
the variogram, which is discussed in Sect. 12.3.3.1. Ordinary Kriging interpolates
the response values as a linear combination of the observed values,

f̂ (x) = λT f, (12.23)

where λ are the weight parameters so that
∑
λi = 1. The weights contain the term

of local departure and as a result depend on the spatial difference of the training
points and the predicted points. The optimal weights are computed by looking for
the Best Linear Unbiased Estimator by minimising the Mean Squared Error of the
predictor,

min
λ
E[|f̂ (x∗)− f (x∗)|2], (12.24)

where x∗ is the location of the predicted value. The unbiasedness means that the
approximation model and the true function evaluations have the same expected
value (see Ref. [10]).
The general condition for the minimum yields the optimal weights [9],

λopt = C−1
[

c + 1
1 − 1TC−1c

1TC−11

]

, (12.25)
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where C is the stationary covariance matrix calculated on the observed values having
entries Cij = cov(xi , xj ) for all i, j = 1, . . . , n. c is the vector of the stationary
covariance between the predicted value and the observed points having entries ci =
cov(x∗, xi ). They are determined by the variogram. 1 is the vector of ones.

The stationary covariance function is usually unknown and it is estimated by
defining a variogram such that,

cov(xi , xj ) = C(h) := σ − γ (h), (12.26)

where h = ||xi − xj || is the spatial distance of xi and xj . γ (h) is the variogram
and σ is the so-called sill which represents the maximum (global) variance of the
observation data.

By substituting Eq. (12.25) into Eq. (12.23) the interpolation surface is

f̂ (x) = μ̂+ cTC−1(f − μ̂1), (12.27)

where the mean is

μ̂ = 1TC−1f

1TC−11
, (12.28)

and the squared standard deviation of the RSM is

σ̂ 2 = (f − μ̂1)TC−1(f − μ̂1)
n

. (12.29)

12.3.3.1 Variogram

The variogram models the variance of random data at the given separation vector h,
as it was defined by [11].

The empirical variance of a data set can be calculated:

s2 = 1

2

1

n(n− 1)

∑

i �=j
(yj − yi)2. (12.30)

The following experimental variogram is obtained by substituting yi = y(xi ) and
yj = y(xi + h) in the above equation:

γ (h) = 1

2

1

N(h)

N(h)∑

i=1

(yj − yi)2, (12.31)
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Fig. 12.3 Variogram

where N(h) is the number of observed (yi, yj ) pairs separated by h vectors. In
practice, isotropy is considered. The observations are grouped according to spatial
distance categories whereas the variance of the observed data, at given separation
distances, is calculated as follows:

γ (h) = 1

2

1

N(h)

N(h)∑

i=1

(yj − yi)2, (12.32)

where h = ||h||.
The experimental variogram γ (h) can be approximated by various models;

however, some common characteristics should be respected. By definition, the
variogram gives zero if the separation distance is zero. The variogram is defined
only for positive separation distance values. For values higher than zero, it increases
monotonically from C0 to C0 + C1. The lower bound C0 (a.k.a. nugget) represents
the white noise error term of Eq. (12.22). If C0 = 0, no error is assumed in the
observation data and Kriging interpolates the training data. On the other hand a high
C0 value results in a smooth response surface, even for noisy data. The upper bound
is the sill represents the maximum (global) variance of the observation data. In other
words, the variance of the response increases as the distance from the observation
point increases until the global variance is reached. A general variogram curve can
be seen on Fig. 12.3. The range is the separation distance measured when the sill
is reached. If the sill is an asymptote of variogram model (as it is in exponential
variograms), a practical range can be defined as the distance h for which γ (h)
is 95% of the sill. The range is inversely proportional to the problem complexity.
Small ranges result in sudden response variations, while large ranges result in slow
response variations. In special cases, the characteristics of the variogram can differ
from the above described properties.

For commonly used variogram models see Table 12.3 and Fig. 12.4, where L is
the range and K1 is a first order Bessel function of the second kind.
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Table 12.3 Typical variogram models

Variogram model Definition

Linear

γ (h) =

⎧
⎪⎨

⎪⎩

0 for h = 0

C0 + C1
(
h
L

)
for 0 < h < L

C0 + C1 for h ≥ L

Exponential
γ (h) =

⎧
⎨

⎩

0 for h = 0

C0 + C1

(
1 − e− h

L

)
for h > 0

Gaussian
γ (h) =

⎧
⎨

⎩

0 for h = 0

C0 + C1

(

1 − e− h2

L2

)

for h > 0

Circular

γ (h) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for h = 0

C0 + C1

(
2
π
h
L

√

1 − (
h
L

)2 + 2
π

arcsin
(
h
L

)
)

for 0 < h < L

C0 + C1 for h ≥ L
Bessel

γ (h) =
{

0 for h = 0

C0 + C1
(
1 − h

L
K1

(
h
L

))
for h > 0

Fig. 12.4 Typical variograms
(scaled to have range L = 1)
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12.4 Wing Structure Design Using Response Surface Models

12.4.1 Design Problem

A radically simplified wing design optimisation problem is introduced in this section
to show the use of RSMs in optimisation.

The chosen optimisation problem aims at finding the optimal angle-of-attack (α)
which maximise the ratio of the lift CL and drag CD coefficients of a Beechcraft
Baron 58 aircraft [12]. The optimisation problem is formulated as:

max
α

CL(α)
CD(α)

s.t. 0 ≤ α ≤ 10 [◦] .
(12.33)

The angle-of-attack can be defined using various reference lines. Here, it is defined
as the angle between the velocity vector of the aircraft and the chord line of the
airfoil of the wing section. Further, it is assumed that the wing has the same airfoil
section, chord length and twist through the entire wingspan. The twist of the wing
is optimised for level flight when the longitudinal axis of fuselage of the aircraft is
horizontal, see Fig. 12.5.

12.4.2 Analytical Model

The lift coefficient of a finite 3-D wing is calculated according to the following
equation:

CL = a(α − αL=0), (12.34)

where αL=0 is the angle-of-attack resulting in zero-lift and the slope a of the lift
curve of the finite 3-D wing is obtained according to the Helmbold formula [12]:

a = a0
√

1 + ( a0
π AR )

2 + a0
π AR

, (12.35)

where a0 is the slope of the lift curve of the 2-D airfoil section and considered to
be equal to its theoretical value 2π . AR denotes the aspect ratio of the wing (i.e. the

Fig. 12.5 The wing design
problem (left side view)

�
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Fig. 12.6 Analytical curve
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ratio of the square of the wingspan divided by the wing area). The drag coefficient
is calculated as a sum of the zero-lift drag coefficient Cd and the induced drag,

CD = Cd + C2
L

π AR
. (12.36)

Therefore, the objective of the optimisation problem is

CL

CD
= a(α − αL=0)

Cd + a2(α−αL=0)
2

π AR

, (12.37)

which is plotted in Fig. 12.6.
The optimal angle-of-attack of the Beechcraft Baron 58 aircraft is

αopt = 0.0658 [rad] = 3.768
[◦] , (12.38)

and provides a lift to drag ratio CL
CD

= 29.647 by analytically calculating the
optimum from Eq. (12.37), where αL=0 = −0.0175 [rad], Cd = 0.0068 [−] and

a0 = 2π
[

1
rad

]
.

12.4.3 Comparison of Response Surface Models

Suppose that the analytical model is not available but by measurement for any α
the corresponding lift to drag ratio can be calculated. The resources are limited such
that only n = 25 observations can be conducted. Therefore, 25 randomly sampled α
values were generated and the corresponding lift to drag ratio was acquired. With the
available observation points three RSMs, namely Linear LSM, Kriging, and RBF,
were built to make an approximation of the entire design space, see Fig. 12.7b, c, d.

The trainings of RSMs were performed using the multi-disciplinary optimisation
software tool modeFRONTIER with default parameters [13].
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Fig. 12.7 Lift to drag ratio ( CL
CD

) as a function of the angle-of-attack (α): analytical model response
(a) and RSMs (b)–(d)

According to Fig. 12.7, there is no significant difference between the RSMs. This
fact is supported by the quality indicators shown in Table 12.4, where an additional
database of 10 Uniform Latin Hypercube Sampling (ULHS) samples was used for
validation. All the RSMs have an R2 value close to 1 given the simplicity of the
investigated problem. Therefore, in this case the R2 value does not provide enough
information about the quality of the RSMs to differentiate between them.

RBF has the lowest AIC value and thus it provides the most accurate approxi-
mation; however, the Linear LSM and Kriging have AIC value of the same order
of magnitude. The Linear LSM is evaluated slightly better than Kriging as Linear
LSM uses less parameters to achieve a comparable error magnitude.
In the investigated RSMs not only the number of the parameters but also the choice
of the basis functions is an important factor for the quality of the approximation.
For the case of Linear LSM, the performance of different polynomial orders was
studied. Results are summarised in Table 12.5, where it is shown that higher
polynomial orders result in better approximations. The 10th order was selected for
the benchmark of Table 12.4. Analogously, RBF and Kriging can produce different
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Table 12.4 Performance indices of RSMs of lift to drag ratio by using a validation set of 10
samples generated with ULHS, where RSA

n
is the mean absolute error (averaged over n validation

points)

RSM RSA
n

R2 AIC

Linear LSM (10th order) 1.07E−4 1.000 −1.54E2

Ordinary Kriging (Gaussian) 2.61E−5 1.000 −1.41E2

RBF (Hardy MQ) 3.55E−7 1.000 −2.34E2

Table 12.5 Comparison of various basis functions of Linear LSM by using a validation set of 10
samples generated with ULHS, where RSA

n
is the mean absolute error

Linear LSM RSA
n

R2 AIC

1st order 3.92 5.08E−2 3.57E1

2nd order 1.67 8.62E−1 1.84E1

5th order 3.04E−2 1.000 −5.13E1

10th order 1.07E−4 1.000 −1.54E2

Table 12.6 Optimal designs obtained with different RSMs and the analytical response. A column
with the relative errors calculated with respect to the analytical optimal results is provided for the
angle-of-attack (third column) and lift to drag ratio (fifth column)

Model α [◦] Rel. error CL
CD

Rel. error

Analytical 3.767906 – 29.647141 –

Linear LSM (10th order) 3.764428 −0.092% 29.647104 −1.25E−4%

Ordinary Kriging 3.773268 0.142% 29.647122 −6.41E−5%

RBF 3.766315 −0.042% 29.647139 −6.75E−6%

outputs with different basis functions or variograms; however, in this simple case
the differences are not significant. The default basis functions of modeFRONTIER
were applied.

The RSMs found above were used as a black-box for design evaluations to
optimise the problem (12.33). Three optimisation runs were performed, one for
each RSMs. The analytical optimum αopt of Eq. (12.38) was used as a reference.
All the optimisations were performed with the NSGA-II algorithm [14] available
in modeFRONTIER with default parameters, 50 generations, and the same initial
population of 10 individuals generated with a ULHS algorithm.

Table 12.6 shows the difference in the optimal designs found. Interestingly,
Kriging provides a better approximation (compared to Linear LSM) for the lift to
drag ratio; however, the optimal angle-of-attack is better approximated by the Linear
LSM. In our case we are more interested in the optimal angle-of-attack. Therefore,
Linear LSM is preferred over Kriging in our case. The optimal value prediction
performed with RBF is superior to Linear LSM and Kriging. This agrees with the
provided RSM ranking by the AIC values.
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Table 12.7 Performance indices of different RBF models of the lift to drag ratio. The validation
set consists of 10 samples generated with ULHS

RSM RSA
n

R2 AIC

RBF-25 (random) 3.55E−7 1.000 −2.34E2

RBF-50 (random) 5.47E−8 1.000 −2.16E2

RBF-100 (random) 9.05E−9 1.000 −1.63E2

Fig. 12.8 Comparison of random sampling (a) and ULHS (b) for Kriging (100 samples)

If the available resource is increased to acquire more samples, it is expected
to have a more accurate RSM. To check this expectation, two additional data sets
were generated containing, respectively, 50 and 100 randomly sampled observation
points. These data sets were used to construct two RBF models, called RBF-50 and
RBF-100 in the following, while the RBF model previously constructed on the 25
data point set is named RBF-25. The performance indicators of the RBF models
are presented in Table 12.7. As expected the mean absolute error decreases as n
increases. The number of parameters in the RBF model increases with n, because
the size of the collocation matrix increases proportionally to that number. Therefore,
the AIC indicator deteriorates.

In the previous example, the sample data were generated randomly which
provided a sufficiently good data source for the RBF. However, there are RSMs
which are more sensitive to the distribution of the sample data. For example,
constructing a Kriging RSM by using the 100 randomly sampled data points results
in a distorted curve shown in Fig. 12.8a. The reason for this is that the randomly
sampled data points are not well distributed. The distance between some points
are very small which cause an ill-conditioned covariance matrix. This problem can
be solved by generating the samples with ULHS which provides a well-distributed
sample data and thus a better data source for Kriging, as shown in Fig. 12.8b.
Alternatively, Universal Kriging can be used which is a regression method and
would result in a smoother approximation as well [15].
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12.4.4 RSM Construction on Noisy Data

In the previous section, the problem was considered uncertainty-free. In this section
the applicability of RSM to noisy data is investigated. RSMs on noisy response data
have to be treated carefully and the devoted literature should be studied [16]. Here,
RSM training on stochastic data is not dealt with in its full deepness; only a limited
sense of this wide topic is presented for the reader.

To mimic a stochastic problem, an additional random term was assumed
stemming from various sources of uncertainty:

CL

CD
= a(α − αL=0)

Cd + a2(α−αL=0)
2

π AR

+ ε, (12.39)

where ε takes values between −0.5 and 0.5 randomly.
Here, analogously to previous case, the lift to drag ratio is the only measured

value. Similarly, the resources are limited and 100 data points are available for

Fig. 12.9 Lift to drag ratio ( CL
CD

) as a function of the angle-of-attack (α): analytical model response
(a) and RSMs (b)–(d)



12 Response Surface Methodology 407

Table 12.8 Performance indices of RSMs built on noisy data (the validation set of 25 samples were
drawn with ULHS from the analytical) function

RSM RSA
n

R2 AIC

Linear LSM (10th order) 7.53E−2 9.99 −9.88E1

Ordinary Kriging (Gaussian) 3.75E−1 9.86 1.67E2

RBF (Hardy MQ) 2.38E−1 9.95 1.37E2

Table 12.9 Optimal designs obtained with different RSMs built on noisy data and the optimal
analytical response value

Model α [◦] Rel. error CL
CD

Rel. error

Analytical 3.767906 – 29.647141 –

Linear LSM 3.663040 −2.78% 29.755548 0.37%

Ordinary Kriging 3.760577 −0.19% 30.804586 3.90%

RBF 3.414064 −9.39% 30.135911 1.65%

RSM training. In this case, the validation set size is 25 and drawn from the
analytical function with ULHS. In reality, the validation set is usually also loaded
with uncertainty but for better comparison the analytical function is used here for
validation. The 100 observation points were generated with ULHS and evaluated
with Eq. 12.39. The results form a well-distributed noisy data-cloud around the
analytical curve as it can be seen in Fig. 12.9a. The RSMs generated from this
noisy data are obviously less accurate than their uncertainty-free counterparts. From
Table 12.8 we can see that all three RSMs have performance indices of the same
magnitude. The only exception is the AIC value of the Linear LSM which indicates
a better approximation than the other two RSMs as it has a significantly smaller
number of model parameters. The decreased accuracy of the RSMs can be also
observed in the obtained optimal values as shown in Table 12.9. The optimisation
runs were performed with the same criteria as in Sect. 12.4.3. Following the RSM
ranking of the AIC values Linear LSM provides the best approximation for the
lift to drag ratio and Kriging is slightly worse than RBF. The obtained RSMs are
plotted in Fig. 12.9b, c, d. We can see that Kriging and RBF provide oscillatory
curves as they are interpolators of the data. Typically, interpolation RSM is not
suggested on raw noisy data. The noisy data should be filtered and the filtered data
can be approximated by an interpolation method. Regression, however, can provide
a viable option even on noisy data as it inherently filters the noise [1].

12.4.5 Case-Study Conclusion and Take-Home Message

The analytical optimal value for the angle-of-attack of the wing of the Beechcraft
Baron 58 (Fig. 12.10) could not be obtained by any RSMs without error. The RSM
based optimal values, however, provided good approximations of the true optimal
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Fig. 12.10 Beechcraft Baron
58 (illustration)

value. In case of an expensive experiment or numerical analysis, RSM techniques
are highly valuable mathematical tools. For a small decrement in the accuracy,
RSMs can save great amount of time solving a complex problem.

The best approximation of the uncertainty-free problem showed 0.042% error
using RBF while the Kriging performed the worst. By considering uncertainty,
the Linear LSM proved to be a slightly better tool to approximate the optimal
angle-of-attack. In case of uncertainty, the interpolation methods, Kriging and RBF,
resulted in an oscillatory curve which is typically avoidable. Therefore, in case of
uncertainty, regression methods are favoured or an additional data filtering stage is
required.

In real-world applications, the problems are typically more complex and there-
fore the quality of the RSM is more difficult to assess. Performance indices like R2

or AIC help to improve our understanding of the accuracy and quality of RSMs;
however, deeper analysis is often required, particularly in a problem affected by
uncertainty. RSMs are important techniques in many fields. The proper choice of
which RSM algorithm to use is non-trivial and depends on the investigated problem.
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Chapter 13
Risk Measures in the Context of Robust
and Reliability Based Optimization

Elisa Morales Tirado and Domenico Quagliarella

Abstract The base concepts of robust optimization are described and detailed in
this chapter. In particular, the approach based on risk measurements is introduced,
after a first quick review of the classical deterministic approach. In this context,
the use of some special classes of risk measures, used in financial engineering, is
reported along with the main advantages and drawbacks related to their mathemati-
cal features. The usage of these risk measures will be then illustrated in an example
problem of robust aerodynamic design optimization. The focus is also given to
advanced techniques for error and confidence interval estimations and how they
can be used in the context of robust optimization to improve the overall efficiency
and effectiveness of the process.

Keywords Risk measure · Robust optimization · Aerodynamic shape design ·
Coherent risk measure

13.1 Introduction

Solving optimization problems in the presence of uncertainty is of fundamental
importance in many research and application fields ranging from economics [20]
to engineering [14] to decision theory. Uncertainty can be present at various
levels in an optimization problem and influence its solution in different ways. An
important and significant source of uncertainty can be, to begin with, intrinsic to the
mathematical model adopted to describe the physical [7], biological or economic
system on whose parameters one wants to intervene to alter its behaviour by
adapting it to their needs. This one is a case of epistemic uncertainty, which has
distinct characters respect to stochastic uncertainty. The latter originates in the
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indeterminacy invariably present in the initial and operating conditions [21] of the
system to be controlled.

Furthermore, in an industrial product, there are often manufacturing tolerances or
deviations from the nominal characteristics of the components that are not quickly
and economically eliminable. Therefore, an optimization process that allows taking
into account the sources of uncertainty and their effects on the performance to
be improved is often vital for many fields of human activities, from logistics to
economics to engineering and medicine. There are many approaches to robust
optimization, and some are well established. However, the focus of scientific
literature is often on improving the computational performance of the optimization
processes in conditions of uncertainty [10, 19]. Indeed, in this type of procedure, the
quantity of interest is a statistical measure that requires the evaluation of a sample
of the population elements, often quite large to reach acceptable reliability.

Here, instead, rather than on efficient sampling processes, the focus is on the
robust optimization problem definition itself. In particular, the primary theme is
the use of the so-called risk functions and their choice according to the robust
optimization problem at hand. In particular, the use of the Value-at-Risk (VaR)
and the Conditional Value-at-Risk (CVaR) is introduced. These risk functions were
introduced and are still widely used in financial engineering. However, as this
chapter illustrates, they are well suited to describe and formalize optimization
problems in different engineering sectors [13]. In particular, their versatility is here
demonstrated by applying CVaR to the performance improvement of a wing section.

13.2 Optimization Under Uncertainty

Optimization problems are mathematically defined using the minimization formu-
lation referred below:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min f (z)
z ∈ S
s.to :

ci(z) ≤ 0 i = 1, . . . , m
S ⊆ R

n

(13.1)

where the objective function is f (z) and the vector z is referred to as the vector of
design variables. Furthermore, the objective function may be subject to constraint
functions, expressed by ci(z). Constraints functions can be linear or nonlinear
functions of the design variables, and these functions can be either explicit or
implicit in z. A quite common convention, which does not affect the generality of
the formulation, is to represent all the inequalities as non-positive ones. In addition,
the problem (Equation 13.1) has been presented as a minimization problem, but
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some optimization problems might require maximization. Indeed, the maximization
of f (z) is always equivalent to the minimization of −f (z) [18].

However, in most of the engineering problems, unknowns or future states must be
considered. Moreover, they must account for the stochastic nature of the system and
processes to be designed. For example, industrial manufacturing processes and real
operating conditions inevitably introduce tolerances in the production and uncer-
tainties in the working conditions, respectively, that will lead to deviations from the
considerations taken at design stage. Hence, random variables are introduced, and
a stochastic optimization problem is defined to correctly model the process under
investigation.

A random variable is defined as a measurable function X : Ω "→ R that maps
possible outcomes Ω to a measurable space R, with (Ω,F , P ) a properly defined
probability space, with ω ∈ Ω , F = 2Ω , and P a probability measure [4].

Mathematically, the direct introduction of random variables into the optimization
problem (Eq. 13.1) introduces a functional dependency that has to be properly
treated to avoid inconsistencies. Indeed, the introduction of random variables leads
to the following problem formulation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min f (z, X)
z ∈ S
s.to :

ci(z, X) ≤ 0 i = 1, . . . , m
S ⊆ R

n

(13.2)

where the objective function and the constraints are now functionals. Therefore, a
way to recast the problem into an optimization one must be searched. Herein, several
approaches are shown.

Best Estimate A particular outcome is chosen ω̄ ∈ Ω as the best estimate of the
unknown status. As a consequence, the problem is reconstructed as a deterministic
optimization:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min f (z, X(ω̄))
z ∈ S
s.to :

ci(z, X(ω̄)) ≤ 0 i = 1, . . . , m
S ⊆ R

n

(13.3)

Although attractive for its simplicity, this kind of alternative is very risky, as the
choice of the typical outcome ω̄ is somewhat arbitrary and might not reflect at all
what happens in the reality.

Worst Case Contrary to the best estimate strategy, the worst possible outcomes are
identified for the unknown status. This leads to the following minmax problem:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min supf (z, X(ω))
z ∈ S ω ∈ Ω
s.to :

ci(z, X(ω)) ≤ 0 i = 1, . . . , m
S ⊆ R

n

(13.4)

Two main disadvantages of this method are that minmax problems are generally
very computationally expensive and that the obtained solution is too conservative.
In addition, there is a high probability to face a nonfeasible problem.

Expected Values with Safety Margins In this case, expectations, as well as standard
deviations are introduced in a weighted sum. Therefore, the robust design problem
is cast in the following form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

min E[f (z, X)] + λ0σ(f (z, X))
z ∈ S
s.to :

E[ci(z, X)] + λiσ (ci(z, X)) ≤ 0 i = 1, . . . , m
S ⊆ R

n

(13.5)

In this formulation, weighted sums of standard deviations can be interpreted as
safety margins. Furthermore, this approach is widely used, although it can lead to
serious problems such as the convergence to sub-optimal solutions due to the use
of expectations that penalize favourable and unfavourable candidate solutions in the
same way.

Performance Index on Cumulative Distribution Function (CDF) This approach is
based on the definition of an ad hoc performance index (or risk measure) as a
function of the Cumulative Distribution Function related to the quantity of interest
under investigation. For the sake of completeness, let us give the definition of
the Cumulative Distribution Function (CDF): the CDF gives the area under the
probability density function from minus infinity to x. It describes the probability
that a real-valued random variable X with a given distribution will be found at a
value less than or equal to x. Mathematically, this is expressed by Eq. 13.6.

FX(x) = P(X ≤ x) (13.6)

A performance index (or risk measurement) allows the comparison of different
CDF shapes according to the risk criterion defined by the user. In this chapter, the
risk measures used are the Value-at-Risk (VaR) and the Conditional Value-at-Risk
(CVaR), also known as quantile and superquantile, respectively (their definitions are
given in Sect. 13.3).
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13.3 Risk Measures

When random events are modeled by random variables, as in the context of
optimization under uncertainty, a way to measure risk should be figured out. With
this purpose, a functional ρ(X) is going to be defined for risk level quantification.
Subsequently, an acceptable level of risk C must be decided, considering that there
will, inevitably, be adverse events. Thus, the next inequality equation can be defined:

ρ(X) ≤ C (13.7)

Then, if the random variables representative of the cost depend on a deterministic
decision vector x of size m, the following minimization problem can be stated:

⎧
⎪⎪⎨

⎪⎪⎩

min ρ0(X0(x))

x ∈ S ⊆ R
n

s.to :
ρi(Xi(x)) ≤ ci i = 1, . . . , m

(13.8)

Within this framework, different definitions for risk functional can be established.
This will lead to different approaches of facing optimization problems under
uncertainty. The most immediate and familiar alternative of risk measure is the
expected value. This means that, on average, it should be X ≤ C:

μ(X) ≤ C → ρ(X) = μ(X) = EX (13.9)

Being more stringent, a condition on the standard deviation or on variance could be
imposed if there is a need to reduce the variation range of the quantity of interest:

μ(X)+ λσ(X) ≤ C → ρ(X) = μ(X)+ λσ(X) (13.10)

μ(X)+ λσ 2(X) ≤ C → ρ(X) = μ(X)+ λσ 2(X) (13.11)

Indeed, classical robust design problem formulation is based on mean, μ, and
variance, σ 2 [11], which can be treated as separated objectives in a multi-objective
framework [9], as a weighted combination, or even cast into a constrained optimiza-
tion format. However, the use of this classical approach may often generate some
problems, since mean and variance are not independent measures, and it might be
difficult to decide how much the mean must be penalized to get the desired reduction
of variance.

Alternative risk measures are available that offer a better control on the desired
features of the cumulative distribution function of interest. Here, in particular, the
Value-at-Risk or the Conditional Value-at-Risk are introduced and used.

LetX be a random variable and FX(x) = P(X ≤ x) the Cumulative Distribution
Function of X. Thus, the inverse CDF of X can be defined as F−1

X (γ ) = inf {x :
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Fig. 13.1 Value-at-Risk

1
0

FX(x) ≥ γ }. This function gives the minimum value of x that makes the CDF of
X to be greater than or equal to γ . Hence, α-VaR, i.e. the Value-at-Risk for a given
α ∈ (0, 1), is given by

να = F−1
X (α) (13.12)

In other words, VaR is the maximum loss that can be exceeded only in a (1 −
α)100% of cases. In its definition, the infimum is used since CDFs are, usually,
weakly monotonic and right-continuous. The α-VaR is shown in Fig. 13.1.

The definition of Conditional Value-at-Risk is given below. Let X be a random
variable, the α-CVaR ofX can be thought of as the conditional expectation of losses
that exceed qα . From a mathematical point of view, CVaR is given by a weighted
average between α-VaR and the losses exceeding it. The comparison of VaR and
CVaR shows that the latter is more sensitive to the shape of the upper tail of the
cumulative distribution. Summing up, the CVaR is expressed as:

cα = 1

1 − α
∫ 1

α

νβdβ (13.13)

The area measured by the integral of the α-CVaR formula is highlighted in Fig. 13.2.
CVaR has the advantage, with respect to VaR, of being a coherent risk measure.

The definition of coherency for a risk measure is a rigorous and well-defined
mathematical concept that the interested reader can find in [2].
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Fig. 13.2 Conditional
Value-at-Risk

1
0

The properties that a risk measure must fulfil for being coherent [2] are
enumerated below.

1. ρ(C) = C for all constants C
2. Convexity: ρ(1 − λ)X + λ′ ≤ (1 − λ)ρ(X)+ λρ(X′) for λ ∈ (0, 1)
3. Monotonicity: ρ(X) ≤ ρ(X′) if X ≤ X′.
4. Closedness: ρ ≤ c when Xk → X with ρ(Xk) ≤ c
5. Positive homogeneity: ρ(λX) = λρ(X) for λ > 0.

From this last condition, the subsequent properties are derived:

– Translation invariance: ρ(X + C) = ρ(X)+ C.
– Sub-additivity: ρ(X +X′) ≤ ρ(X)+ ρ(X′).

Coherency properties offer several advantages in a robust optimization problem,
and an actual robust aerodynamic shape design problem is here used to illustrate
their meaning. The problem regards the improvement of the drag performance of
a natural laminar flow wing and is described in detail in [12]. Monotonicity means
that if the laminar performance of a generic wing X2 is always better than X1,
then the risk of X2 is always inferior to the risk of X1. Translation invariance
condition implies that a global delay of laminar to turbulent transition reduces the
risk. Moreover, for a natural laminar flow wing-body, sub-additivity means that
having two independent sources of laminarity (upper and lower wing surfaces) can
only decrease risk. Summing up, coherency offers a mean to take into account the
effect of desirable physical features in the risk measure used to formalize the robust
design optimization problem to be solved.
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Conversely, the Value-at-Risk is not a coherent measure since it does not respect
the sub-additivity property.

13.4 Robust Optimization Problem Using Risk Functions

Risk measures, likewise expectations and variance, are unknown parameters of a
statistical model (estimands), which can be only approximated using estimators
and finite samples of data. Consequently, the robust optimization problem has to
be defined in terms of estimates of the risk functions within the framework of multi-
objective optimization. Therefore, Eq. 13.8 becomes

⎧
⎪⎪⎨

⎪⎪⎩

min ρ̂i;n(z) i = 1, . . . p
z ∈ Z ⊆ R

n

s.to :
ρ̂i;n(z) ≤ ci i = p + 1, . . . , p + q

(13.14)

where ρ̂i;n is an estimate of the generic risk measure ρi obtained using a sample
of size n and a proper estimator. Moreover, the constraints are also given taking
into consideration a set of inequalities which are defined in terms of q further risk
measure estimates.

In addition, it must be mentioned that the quality of the risk function estimate will
directly influence the results of the optimization problem. Hence, some guidelines
should be followed when formulating a robust optimization problem [12]:

• when estimating risk functions, use the largest possible number of samples
considering the computational budget;

• use advanced techniques for sampling (i.e. multilevel Monte Carlo or Control
Variates);

• a low accuracy of the estimate can be perceived by the optimization algorithm
as noise, thus select an optimization algorithm the least sensitive to noise as
possible;

• employ advanced statistical methods for the evaluation of the estimate accuracy
and confidence intervals. In particular, the bootstrap method will be adopted here
(see Sect. 13.4.3).

The estimates of risk functions are here made either using the Empirical
Cumulative Distribution Function (ECDF) or the Weighted Empirical Cumulative
Distribution Function (WECDF), and the bootstrap is used to obtain accuracy and
confidence intervals.
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13.4.1 Estimation of Risk Functions Using ECDF

The Empirical Cumulative Distribution Function (ECDF) is the distribution function
associated with the empirical measure of a sample. Moreover, it can be seen as a
step function that jumps up by 1/n at each of the n data points. It takes as value the
fraction of observations of the variable that are less or equal to the specified value
[16].

Mathematically speaking, letX : Ω "→ R
d a random variable, xi = (xi1, . . . , xid )

a random sample of X, μ a probability measure, and t = (t1, . . . , td ) a generic
vector in R

d . The ECDF is defined in Eq. 13.15 for n samples {x1, . . . , xn}.

F̂ nμ = number of elements in the sample ≤ t
n

= 1

n

n∑

i=1

1{xi ≤ t} (13.15)

where 1{A} is the indicator of event A:

1A(x) :=
{

1 if x ∈ A
0 if x /∈ A (13.16)

and xi ≤ t meaning xij ≤ tj , j = 1, . . . , d. The last relation defines a partial order

and if it is true, then xi is either dominated by t or equal to it.
The estimation of Value-at-Risk and Conditional Value-at-Risk by means of the

ECDF is explained in the following subsections.

13.4.1.1 Value-at-Risk (Quantile) Estimation Using ECDF

Value-at-Risk for a scalar random variable X at a given confidence level α can be
directly computed from Eq. 13.15. Hence, if X1, X2, . . . , Xn are n independent and
identically distributed observations of the random variable X, then the estimation of
the α-VaR of X is given by

ν̂α;n = X.nα/:n = F̂−1
n (α) (13.17)

where Xi:n is the i-th order statistic from the n observations, and

F̂n(t) =
n∑

i=1

1{Xi ≤ t} (13.18)

is the empirical CDF constructed from the sequence X̃ of x1, x2, . . . , xn. Note that
the hat symbol ( ˆ) indicates estimated quantities.
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13.4.1.2 Cumulative Value-at-Risk (Superquantile) Estimation Using
ECDF

Regarding the estimation of the superquantile, according to [15], cα can also be
written as a stochastic program:

cα = inf
t∈R

{

t + 1

1 − αE[X − t]+
}

(13.19)

with [a]+ = max{0, a}. The set of optimal solutions to the stochastic program is
T = [να, uα] with uα = sup t : F(t) ≤ α. In particular, να ∈ T , so

cα = να + 1

1 − αE[X − να]+ (13.20)

When X has a positive density in the neighbourhood of να , then να = uα . Under
these conditions, the above formula can be also directly derived from Eq. 13.13.
So, in the case of finite number of samples, with X1, X2, . . . , Xn independent and
identically distributed (i.i.d.) observations of the random variable X, the estimation
of cα is given by:

ĉα;n = ν̂α;n + 1

n(1 − α)
n∑

i=1

[Xi − ν̂α;n]+ (13.21)

13.4.2 Estimation of Risk Functions Using WECDF

It was above stated that the ECDF is a step function that jumps up a fixed quantity,
1/n, for each data point belonging to the sorted set of samples. Conversely, the
WECDF can be considered as a step function that has a variable size jump, wi :

F̂ nμ;w(t) =
n∑

i=1

wi1{xi ≤ t} (13.22)

with the related constraint

n∑

i=1

wi = 1 (13.23)

The formula for VaR estimation starting from a WECDF is a generalization of
Eq. 13.18, and requires two steps. Firstly, the kα index of the sorted sample set
has to be chosen according to the following inequalities:
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kα∑

k=1

wk ≥ α >
kα−1∑

k=1

wk (13.24)

then ν̂α;n (α-VaR) is simply given by choosing the kth
α element of ordered set:

ν̂α;n(x) = x(kα) (13.25)

Similarly, ĉα;n(x) (α-CVaR) is given by

ĉα;n(x) = 1

1 − α

⎡

⎣

(
kα∑

k=1

wk − α
)

x(kα) +
n∑

k=kα+1

wkx(k)

⎤

⎦ (13.26)

The use of WECDF becomes important in cases in which the statistical sample
has to be corrected or re-elaborated with some post processing steps. This, for
example, is the case of importance sampling, where the data set is sampled
according to distributions that may differ substantially from those of the underlying
random variables. Indeed, one of the possible approaches to the correct input
distributions is the assignment of a different weight to each sample. In statistics,
this method is called change of probability measure. In this field, several techniques
have been developed [3], and, among these techniques, the one based on WECDF
is thoroughly described in [1].

13.4.3 Bootstrap Error Analysis

As it was previously mentioned, the results of the robust optimization problem
are influenced by the quality of the risk function estimate. A possible approach
to deal with this problem is the use of computational statistics methods, like the
bootstrap, developed by Efron in 1979 [6]. As a general term, bootstrapping can
be defined as an operation that will allow a system to self-generate from its small
subsets. Hence, confining the definition to the statistical field, it is a computational
re-sampling technique that provides the confidence intervals of statistics without a
prior assumption about the type of the distribution function. In this work, it is used
to assess the quality of the risk function estimates used in the optimization process.

Given a statistic T (x1, x2, . . . , xn) evaluated on a set of data {x1, x2, . . . , xn}, the
method consists of the following steps:

– Forming new sample sets {x∗1 , x∗2 , . . . , x∗n}, also known as bootstrap samples,
of the same size of the real sample by performing a random selection of
the original observation with replacement. Usually, the same observation is
introduced several times in the bootstrap samples.
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– Then, the statistic of interest T (x∗1 , x∗2 , . . . , x∗n) is calculated for these new
samples.

This statistic will show a probability distribution of its own. Thus, from this
distribution, the confidence intervals of the risk functions, like VaR or CVaR, are
obtained. In other words, the evaluation of confidence intervals would require
repeated samples of a given population, but only one sample is available. Thus, the
bootstrap method treats the real sample as a population and the repeated samples
needed for confidence interval estimation are obtained by re-sampling it with
replacement.

Finally, it must be mentioned that, although very attractive for its simplicity,
the bootstrap technique has also several disadvantages, thoroughly discussed in
scientific literature. Maybe the main drawback is that the bootstrap samples are
related to the original (real) sample in the same manner that the original sample
is related to the unknown population. Hence, if the original population sample is
not sufficiently representative of the whole population features, then the confidence
intervals computed by bootstrap might be completely misleading.

13.5 Application Example

This section is aimed to give a simple but significant example of robust aerodynamic
design optimization problem focused on an airfoil in incompressible conditions
subject to geometric and aerodynamic constraints. The goal is the improvement of
the airfoil performance by changing its shape. When a robust version of this problem
is faced, an optimal solution that is less vulnerable with respect to uncertainties
in operating conditions and geometric shape is obtained. The baseline airfoil is
the NACA 2412. The design conditions assumed are Mach = 0 and Reynolds =
0.5 × 106.

The airfoil performance is measured by a quantity of interest Q defined by
drag coefficient cd plus some constraints that are here considered as penalties.
Consequently, the robust optimization problem requires the minimization of the α-
CVaR of Q, with α set to 0.9. The equality constraints are the lift coefficient (cl),
which is fixed to 0.5, and the maximum thickness (t), which is fixed to the 12% of
the airfoil chord (c). The inequality constraints are the trailing edge angle (T EA),
which must be greater than or equal to 13◦, the leading edge radius (LER), that
must be greater than or equal to 0.7% of the chord, and the boundary layer transition
point on the airfoil lower surface (XTRLOW ) that cannot be located at x/c greater
than 0.95. A constraint on the pitching moment was not considered. In addition, an
ERROR variable is set to 1 when the solver does not converge. In summary, the
problem constraints are reported below:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cl = 0.5
t/c = 0.12
XTRLOW ≤ 0.95c
T EA ≥ 13◦
LER ≥ 0.007c

(13.27)

Hence, the robust optimization problem is formulated as:

min
z∈Z⊆Rn

CV aR(Q) (13.28)

with

Q = cd + p+(T EA, 13◦)+ p+(LER, 0.007c) (13.29)

In this case the constraints regarding the leading edge radius and the training edge
angle are treated as quadratic penalties:

p+(x, y) =
{

0 if x ≥ y
(x − y)2 if x < y

(13.30)

Instead, the constraints on the cl and on the thickness do not appear because they
are automatically satisfied by the computation procedure by changing the angle of
attack and by re-scaling the airfoil thickness to the assigned value.

The robust optimization problem is built by introducing uncertainties in the
airfoil section shape that is parametrized as a linear combination of an initial geom-
etry (x0(s), y0(s)), and some modification functions yi(s). Moreover, to describe
geometry uncertainties, further zj (s) modification functions are introduced. So, the
airfoil shape, including uncertainties, is described by

x(s) = x0(s), y(s) = k
(

y0(s)+
n∑

i=1
wiyi

)

+
m∑

j=1
Ujzj (13.31)

where the airfoil shape is controlled by the design parameters wi and by the scale
factor k. The uncertainty on shape and thickness of the airfoil is described by the Uj
random variables. In this optimization problem 20 uniform random variables, in the
range [−0.1, 0.1], have been used. Moreover, the population is generated by means
of a Mote Carlo algorithm and it has size equal to 100. It is important to note that
the airfoil is rescaled to the assigned thickness before the application of the random
variables that describe the uncertainty in shape.

The performances of the parametric airfoil obtained by using Eq. 13.31 are
computed by an aerodynamic analysis code, namely Prof. Drela’s XFOIL code [5].
It is based on a second order panel method interactively coupled to a boundary layer
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Table 13.1 Optimization parameters for the optimization

Maximum evaluations Population size Initial standard deviation

7000 20 0.1

integral module. Moreover, the laminar to turbulent flow transition is predicted using
the eN method [17].

The optimization algorithm selected for solving the described design problem
is the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [8], which is a
stochastic optimization algorithm based on self-adaptation of the covariance matrix
of a multi-variate normal distribution. It is mainly used for design optimization
problems up to a few hundreds of design variables. The parameters used for
the optimization algorithm are the maximum number of allowed evaluations, the
population size λ, and the initial standard deviation σ . The parameters set for this
problem are reported in Table 13.1.

Furthermore, it was mentioned that in case of non-convergence of the solver an
ERROR flag was set equal to 1. When robust optimization is faced, the treatment
of these cases is crucial for the optimization process. The quantity of interest to
be minimized, CV aR, depends on the upper tail of the Cumulative Distribution
Function. As a consequence, assigning a high value to the objective in the cases
where convergence is not achieved implies a too high CV aR value that could be
detrimental for the optimization algorithm behaviour. Hence, a proper value of the
objective in these cases must be decided. In particular, in this optimization problem,
the worst objective value selected between the properly converged cases, is assigned
to those in which the error flag is set. Numerical tests lead to conclude that this was
the setup with lowest impact on the optimization process behaviour.

13.5.1 Results

The obtained results are here commented and compared with the baseline airfoil
and the equivalent deterministic solution of the optimization problem. Firstly, in
Fig. 13.3, the airfoil shape of the robust optimized airfoil (dotted line) is compared
with the baseline airfoil (solid line) and the deterministic optimized airfoil (dashed
line).

In addition, the Cumulative Distribution Function obtained by introducing
uncertainties in the airfoil shape are reported in Fig. 13.4 for the initial NACA 2412
airfoil (solid line), for the deterministic optimized airfoil (dashed line), and for the
robust optimized airfoil (dotted line).

The comparison of the CDFs related to the deterministic and robust optimized
airfoils highlights that the robust optimal solution is less vulnerable to uncertainties
in geometric shape with respect to the deterministic one. This can be also deduced
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Fig. 13.3 Airfoil shape comparison of the robust optimized airfoil (· · · ), deterministic optimized
airfoil (- - -) versus the baseline NACA 2412 airfoil (—)

Fig. 13.4 CDF obtained by the variation in airfoil shape using the robust optimized airfoil (· · · ),
the deterministic optimized airfoil (- - -), and the baseline NACA 2412 airfoil (—)
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Table 13.2 Risk measurement based on the obtained cumulative distribution functions

0.9 − V aR · 104 0.9 − CV aR · 104

Baseline NACA 2412 airfoil 74.5 75.0

Deterministic optimized airfoil 63.4 64.8

Robust optimized airfoil 62.2 62.5

by the observation of the value Value-at-Risk and Conditional Value-at-Risk with
α = 0.9 provided in Table 13.2.
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Chapter 14
Best Practices for Surrogate Based
Uncertainty Quantification in
Aerodynamics and Application to Robust
Shape Optimization

Christian Sabater

Abstract This chapter introduces the use of aerodynamic shape optimization
applied to industrial problems, motivates the use of a robust approach over the
classical deterministic optimization, and presents different alternatives for the
robust-based and reliability-based problems. The use of surrogates for the Uncer-
tainty Quantification of operational and geometrical uncertainties is a cost-effective
solution for high dimensional models if the gradient information is introduced by
means of the adjoint method. Finally, the proposed methodology is applied through
the reliability-based optimization of an airfoil under operational uncertainties.

Keywords Aerodynamic robust design · Quantile optimization · Surrogate based
Uncertainty Quantification · CFD

14.1 Introduction

Aerodynamic shape optimization, the improvement the aerodynamic aircraft per-
formance by modifying its external shape, plays a key role to reduce aircraft direct
operating costs, noise and emissions of the greenhouse gases [1]. This is an active
field of research linked to improvements in Computational Fluid Dynamics and the
development of high performance computing capabilities for numerical methods.
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14.1.1 Deterministic Optimization

A typical optimization setup aims to obtain the “best” solution to a given problem.
This “best” solution does not need to be the global optimum of the problem,
but is most cases it being sufficiently superior is enough, a local optimum that
satisfies the design requirements and constraints. In the case of aerodynamic shape
optimization problems, due to the complex nature of computational fluid dynamics,
the optimization must be performed within realistic run times according to the
computational resources. Usually the objective is to minimize the drag coefficient
of an aircraft under several constraints at given operating conditions.

J ∗(X∗) = min
X
CD(X,A0) (14.1)

where CD is the drag coefficient depending on the design variables X at a given
operating conditions A0. These are usually the Mach number, M0, Reynolds
number, Re, and lift coefficient, CL.

However, Eq. (14.1) is not an accurate representation of reality, especially if the
geometry or operating conditions are not fixed and are subject to uncertainty.

14.1.2 Motivation of Robust Design

Traditionally, the use of simulation-based design optimization in aerodynamics has
been carried out in a deterministic fashion, neglecting uncertainty. In this case both
the design variables (shape parameters) and operating conditions (Mach number and
lift coefficient) are fixed in each iteration of the optimization process.

However, the sensitivity of the final solution to small changes in the wing
geometry due to manufacturing tolerances can affect the real performance of
the aircraft. In this case, tightening the manufacturing tolerances may not be a
feasible solution due to the increase in the production cost. It is also impossible
to maintain the same shape during the flight operations due to wear and tear.
Also, fluctuations in the operating conditions such as the Mach number (velocity,
air density, temperature) or lift coefficient (change in aircraft weight) cannot be
avoided.

In practice, deterministic optimization can result in serious performance losses
when accounting for the uncertainty. The main problem is the weak problem
formulation of Eq. (14.1). The different trade-offs between the design parameters
at different operating conditions must be considered through a robust optimization
method. As a result, it is necessary to directly assess the effect in the objective
function of relatively small aleatory (or irreducible) uncertainties [2].



14 Best Practices for Surrogate Based Uncertainty Quantification in. . . 431

14.2 Robust Design Approaches for Aerodynamic Shape
Optimization

Historically, several approaches have been available for robust aerodynamic shape
optimization. In this section, they are briefly introduced.

14.2.1 Multi-Point Optimization

Multi-point optimization is the most widely used approach in aerodynamic shape
optimization to reduce the sensitivity to the operating conditions. The optimization
takes into account discrete points through the replacement of the original formula-
tion of the objective function (evaluated at one condition), by a weighted average of
m cost functions at given operating conditions Ai . This is commonly used to reduce
the drag at both landing and cruise or at a given Mach range.

J ∗(X∗) = min
X

m∑

i=1

wi CD(X,Ai) (14.2)

where wi are weights given to the objective function at a given operating conditions
Ai . The main disadvantage is the strong point optimization effect [3]. The optimum
configuration strongly depends on the chosen operating conditions, and its perfor-
mance is usually worse at intermediate ones that are completely ignored by the
optimizer. A possible solution is to make the number of operating conditions larger.
Another alternative, in case that the optimum configuration is expected to operate at
a given Mach interval, is to randomly choose the operating conditions [3]

14.2.2 Worst-Case Approach

It consists of the determination of a geometry whose maximum drag is minimum. It
is solved by the Min–Max approach, as in each optimization iteration the maximum
drag (worst case) must be solved first.

J ∗(X∗) = min
X

max
Ai

CD(X,Ai) (14.3)

where Ai represent the different operating conditions. These can either be determin-
istic or follow a probabilistic distribution. For a given geometry, the drag coefficient
must be evaluated at all the possible operating conditions, in order to obtain its
maximum value (that will be minimized). The optimization does not take into
account the fluctuations of the objective function following the geometrical or
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operational uncertainties. It only focuses on the operating condition with larger
drag (usually at high Mach and/or lift coefficients). As a result of not taking into
consideration the global behavior but the worst-case scenario, it is more appropriate
for Structural Optimization field rather than for Aerodynamic Shape Optimization
problems. In this case, a very conservative design will be obtained. For example, the
solution can be optimal with respect to very high Mach numbers, while during the
rest of the flight envelope the opportunity of further reducing drag is lost, leading
towards an increase in fuel consumption. In addition, this approach is dependent on
the choice of operating condition Ai .

14.2.3 Interval Analysis

This methodology is used if the uncertainty in the parameters is recognized but
cannot be quantified in statistical terms. It is a two objective optimization problem
focused on the minimization of the median of the objective function value and the
extent of its interval [4].

min
X

{
CDmax (X)+CDmin (X)

2

CDmax (X)− CDmin(X)
(14.4)

This case is similar to the worst-case approach: it requires also a Min–Max
approach, and it takes into consideration only extreme events, instead of the
variation of the objective function within the interval.

14.2.4 Statistical Approach

In the statistical approach the operating conditions and geometrical uncertainties are
modelled as random variables, whose statistical moments (mean, standard deviation,
etc.) are defined. Instead of fixed flight conditions Ai , they are random variables ξ .
As a result the objective function also follows a random variable.

14.2.4.1 Characterization of Input Uncertainty

The characterization of the random variables follows either engineering empirical
experience or gathering of experimental data. When the mean and standard deviation
are known, the most common approach is to characterize them as Gaussian
Distributions following the maximum entropy theory [3]. In case that only the upper
and lower bounds are known, a uniform distribution is preferred [3].
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It is also common to characterize input uncertainties as Beta distributions [3],
as they offer the flexibility of representing either truncated Gaussian Distributions
(symmetric beta distributions), uniform distributions, and non-symmetrical beta
distributions. This is attained by increasing or decreasing the relative importance of
the uncertain parameter along the desired interval through its probability distribution
function.

14.2.4.2 Definition of Objective Function (I), Robust Design

Robust optimization techniques deal with the influence of operative fluctuations
on the overall design, assuming no catastrophic failures. In this case the main
goal is to obtain an optimum design that produces the best performance for all
possible combinations of the uncertain operating conditions. It is equivalent to
minimizing the performance loss due to the uncertainties in the geometry or
operating conditions.

Following the Von Neumann–Morgenster decision theory [5], the design with
the lowest expected value of the objective function should be chosen. This is also
known as the Maximum Expected Value criterion:

J ∗(X∗) = min
X
μCD =

∫

ξ

CD(X, ξ)PDFξ (ξ)dξ (14.5)

This approach is equivalent to the multi-point, where the weights wi are
substituted by the probability density function PDFξ .

Not only the minimum expected value of the drag is usually considered, but also
its variability with respect to the variation of the uncertain parameters. A second
criterion commonly added is based on the minimization of the variance of the drag
coefficient:

J ∗(X∗) = min
X
σ 2
CD

=
∫

ξ

(
CD(X, ξ)− μCD

)
PDFξ (ξ)dξ (14.6)

A common approach of the trade-off between the expected value and the
variability of the objective function is the minimization of the weighted sum of
mean and standard deviation:

J ∗(X∗)min
X
w0μCD + w1σ

2
CD

(14.7)

As a result, it is possible to consider not only uncertainties (random fluctuation)
of the operating conditions and geometry, but also the frequency of occurrence,
following the PDFs. Events with the highest probability of occurrence will have a
larger influence in the optimization process. Instead of weights, the non-dominated
solutions can be obtained and shown in a Pareto chart.
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14.2.4.3 Definition of Objective Function (II) Reliability Based

Another popular formulation follows from the minimization of the 90% or 95%
quantile function (also called inverse cumulative distribution function), of the drag
coefficient by means of the Empirical Cumulative Distribution Function (ECDF) [6].
This approach has been previously implemented in optimization under uncertainty
problems for aerodynamic shape optimization [6, 7]. It is also called reliability-
based approach.

J ∗(X∗, ξ) = min
X,ξ
CD95%(X, ξ) (14.8)

It is equivalent to minimizing the maximum drag that can be obtained with a
certain probability. In contrast to Min–Max problems that are too conservative,
this approach allows for a certain margin by accounting for the probability of
occurrence.

The quantile is obtained from the inverse of the ECDF.

ECDFn(CD) = number of elements in sampling ≤ CD
n

= 1

n

n∑

i=1

I (CDi ≤ x)
(14.9)

where n is the number of sampling points and I is the indicator function defined as:

I (CDi ≤ CD) =
{

1, if CDi ≤ x
0, if CDi > CD

(14.10)

Following the Glivenko–Cantelli theorem [8], the ECDF converges to the CDF
when the number of samples is large enough.

This definition of the objective function (Eq. (14.8)) is similar to that of the worst-
case approach presented in Eq. (14.3). The difference is that the robust objective
function includes a probabilistic formulation and the worst-case accounts for the
maximum drag. The optimum configuration is strongly conditioned by the selection
of the quantile [9]. It is possible to perform a multi-objective optimization with
different quantiles as objective functions [6].

14.2.4.4 Evaluation of Statistics

A limitation on the implementation of Eqs. (14.5), (14.6), and 14.9 is that in
each optimization iteration, a full numerical integration of the statistics of the
Quantity of Interest is required through Monte Carlo or Quasi Monte Carlo. This
is a problem because the determination of the drag through Computational Fluid
Dynamics (CFD) is computationally expensive. As a result, several alternatives are
available, such as the analytical approximation through Taylor series expansion
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of the statistical moments, the use of sparse sampling techniques or the use of
approximations of the cost function.

The use of surrogate models, approximations of the CFD solution that can be
cheaply evaluated, has acquired importance in the last years for aerodynamic shape
optimization [4, 7], and will be explained with more detail in the following section.

14.3 Surrogate Models for Uncertainty Quantification

This section introduces the use of surrogate models for robust aerodynamic shape
optimization with special focus on Uncertainty Quantification. The benefits of
surrogate models with respect to other uncertainty quantification methods are
outlined. Finally, Gradient-Enhanced Kriging surrogate technique is shown to break
the curse of dimensionality in situations where the gradient information is cheaply
available.

14.3.1 Surrogate Models Overview

In modern engineering design problems, the use of expensive simulations makes
unfeasible the full exploration of the design space. It is not always possible to
analyze all the competing options, especially in the aerospace industry, where the
modelling of fluid dynamics through numerical methods is one of the most compu-
tationally demanding fields [4, 10]. When dealing with CFD based optimization, a
deterministic solution is already a computationally expensive approach. In case of
robust aerodynamic shape optimization, i.e. with optimization under uncertainty, the
high cost of quantifying the uncertainty in each iteration of the optimization process
makes necessary the use efficient uncertainty quantification methods, especially for
high dimensional problems.

Surrogate models, also called response surfaces or meta-models, are approx-
imations of expensive high fidelity models that represent the physical quantity
of interest (for example, drag, weight or cost), as a function of the design or
uncertainty parameters. In the case of aerodynamic shape optimization, usually
surrogate models of the drag are built as a function of the geometrical parameters.
These continuous, multi-dimensional models based on sampled data, require of a
one-time upfront investment in order to get instant, online evaluation of the data.

Surrogate models have effectively been applied in global aerodynamic shape
optimization problems [11] following an iterative process by balancing exploitation
and exploration of the design landscape. Due to the capability of approximating the
quantity of interest, another possibility is to use surrogate models as an attractive
non-intrusive method to perform uncertainty quantification, especially in the context
of Computational Fluid Dynamics.
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14.3.1.1 Design of Experiments

One of the key elements for the construction of surrogate models is the initial
sampling strategy, the Design of Experiments (DoE). Both for optimization and
uncertainty quantification, the choice of sampling strategy must follow from:

• The design landscape is fully explored.
• The sampling must follow minimum discrepancy, i.e. the sampling plan must be

based on uniform partitions of the unit interval but not regular.
• The projections of the sampling points to the axis of each variable are uniform.
• The number of expensive simulations/full order model evaluations to achieve this

complete exploration should be minimum.
• The number of samples should not be fixed. The addition of more points can be

used to further refine the surrogate without the need of recomputing the previous
ones.

One of the most common sampling approaches is the use of Latin Hypercube
Sampling developed by Mckay [12]. However, Quasi Monte Carlo techniques that
employ deterministic low discrepancy sequences [13] can prove to be more effective
to obtain an even sampling distribution [14].

A Sobol Sequence is a low discrepancy, quasi-random sequence that uses a base
of two to successively create fined uniform partitions [15]. As a result, it is possible
to improve its accuracy as more samples are added, and it is possible to reuse the
existing points.

The surrogate accuracy can be improved for uncertainty quantification if the DoE
follows the distribution of the input uncertainties [7, 16, 17]. Sampling points should
then be added in areas that are prone to be sampled along the mean, rather than
in the tails of the input uncertainties. When direct integration is performed on the
surrogate, the accuracy will increase in regions that were sampled more often.

14.3.1.2 Refinement Strategy for Uncertainty Quantification

Commonly, in surrogate based optimization, the refinement strategy follows an
equilibrium between exploration and exploitation. In the first one, the location of
the maximum expected improvement [18] or maximum surrogate error is sampled.
In the latter stage, regions around the current optimum are investigated by validating
the surrogate optimum in the full order model or through trust-region methods. For
a more details on a refinement strategy for optimization, refer to [19].

In a similar manner, it is possible to refine surrogate models to be applied in
uncertainty quantification. In case the objective function follows Eq. (14.8), the
reliability-based approach, refinement along the 95% quantile can be achieved as
in standard optimization, by means of expected improvement [2, 20].

Otherwise, the refinement strategy follows from a global exploration of the
uncertain landscape. The most common criteria is sampling the location with the
maximum product of the surrogate error with the probability density function of the
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Table 14.1 Suitability of surrogate models for Uncertainty Quantification

Surrogate model Scattered data Error available Use of gradient
Convenient for high
dimensions

Kriging Y Y Y Y

Radial basis functions Y N N Y

Spline Y N Y N

Polynomial regression Y N Y N

Sparse grid N N N N

input uncertainties [21]. This approach focuses on regions that are often sampled
through Monte Carlo (addition of input PDFs) and have a high surrogate error.
This refinement strategy is in line with the DoE sampling strategy of adding more
points in regions that are sampled more often, as eventually the surrogate error is
proportional to the distance among the points.

14.3.2 Advantages of Surrogate Modelling for Uncertainty
Quantification

Following [10], the engineering requirements for an effective uncertainty quantifi-
cation technique are:

• Require no more than 100 evaluations of the full order model,
• Scattered evaluation positions can be obtained,
• Possibility to incorporate pre-existing evaluations of the quantity of interest in

the uncertainty quantification,
• Robustness towards failure in the evaluation of the objective function (the sample

points should not be fixed). This is cannot be possible with fixed integration rules
where the sampling distribution is fixed beforehand,

• Availability of the exploitation of error estimation and error reduction techniques,
• Possibility to extend to high dimensional problems.

Based on these points, it is possible to construct Table 14.1 with the suitability
of the different surrogate models for Uncertainty Quantification with a special focus
on aerodynamic shape optimization problems:

According to these requirements, surrogate methods are an attractive approach
for the efficient quantification using CFD. Among the different surrogates, Kriging
has become one of the most used ones in engineering [19]. It follows a probabilistic
framework according to Bayesian statistics, featuring a built-in measure of the
prediction error [19, 22]. In contrast with Polynomial Chaos Expansion, Kriging
interpolation works well with nonlinear functions such as the drag coefficient.
Finally, by using surrogate models, arbitrary locations of the samples can be chosen
in contrast of sparse grid techniques.
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14.3.3 Gradient-Enhanced Surrogates for Efficient UQ

When dealing with optimization problems, one of the benefits of surrogate mod-
elling is that the gradients of the objective function are not required. Having
available the gradients, it is possible to directly choose a gradient descent approach
[23]. However, if a global search is desired, the addition of the gradients can enhance
the accuracy of the surrogate model. In the case of surrogate based uncertainty
quantification this is crucial, as the addition of gradients can improve the global
representation of the design or uncertain landscape for a more accurate integration
through classical Monte Carlo Methods.

The main drawback of gradient-enhanced surrogate models is the increase in
complexity of the model and the increase in size of the correlation matrix, leading
to lengthier surrogate parameter estimation. This is the cost to pay in order to have
more accurate predictions.

14.3.3.1 Gradient-Enhanced Kriging

The use of Gradient-Enhanced Kriging (GEK) [19] is especially useful when a
large number of uncertain variables is present. Following [10, 20], it is shown that
employing GEK using gradient information that is cheaply evaluated, is as effective
as common integration methods such as probabilistic collocation and sparse grid
techniques. With the increase in dimensionality, it is expected that GEK will be
more efficient, as the cost of the gradients is kept constant. The increase in accuracy
obtained with GEK w.r.t. Kriging is shown in Fig. 14.1 for an analytical function
with 15 samples following Sobol sequences. By obtaining the gradients in addition
to the function value, the representation of the landscape is more accurate.

The gradients must only be added to the surrogate if these can be cheaply
evaluated. Otherwise, it is more useful to enhance the meta-model by simply
evaluating more points of the full order model. The use of traditional methods to
obtain the gradients (finite differences or complex step differentiation) should be
then substituted by others more advanced such as the adjoint method or algorithmic
differentiation.

14.3.3.2 The Adjoint Method: Breaking the Curse of Dimensionality

The adjoint method computes the partial gradients with respect to all design
parameters or uncertainties at the cost of about one flow solution; in other words, the
cost of the adjoint method is independent of the number of parameters. It provides
an effective method to build the Gradient-Enhanced Kriging model of the response
surface.
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Fig. 14.1 Comparison of Kriging and Gradient-Enhanced Kriging for a given set of sampling
points

14.3.4 Computing Statistics on Surrogate Models

Despite the reduced computational cost to evaluate the statistic of interest using
surrogate models, the use of Monte Carlo for the evaluation of statistics may be
impractical due to its low convergence rate.

A possible alternative is the use of Quasi Monte Carlo techniques [13], as they
have a faster convergence rate. The sampling is predefined (derandomized) through
Sobol Sequences [14] and the stochastic space is evaluated more efficiently.

14.4 Optimization of RAE2822 Airfoil Under Uncertainty

This section focuses on the application of the concepts previously introduced to
the aerodynamic shape optimization under uncertainty of the RAE2822 airfoil at
transonic conditions.
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14.4.1 Problem Definition

The deterministic and uncertain optimization problems are introduced below. The
formulations are based on previous studies focused on the robust design of an airfoil
at cruise conditions [2, 7].

14.4.1.1 Deterministic Optimization

The deterministic optimization follows the classical aerodynamic shape optimiza-
tion formulation and will be compared with the robust optimum. The transonic
airfoil RAE2822 whose shape is dependent on the design vector X is optimized
for minimum drag CD at constant operating conditions A0. For structural con-
siderations, the airfoil thickness distribution is kept constant by using an implicit
constraint in the parametrization.

J ∗(X∗) = min
X
CD(X,A0) (14.11)

A0 =
{
M0 = 0.76

CL = 0.5
(14.12)

14.4.1.2 Optimization Under Uncertainty

The transonic airfoil RAE2822 is optimized under aleatory operating uncertainties
ξ (lift coefficient and Mach number) following a Reliability-Based Design Opti-
mization (RBDO). The 95% quantile of the drag, CD95% is minimized. From all the
possible values of drag due to the uncertainties, this will be smaller or equal to the
quantile with a 95% probability.

J ∗(X∗) = min
X
CD95%(X, ξ) (14.13)

14.4.2 CFD Solver and Numerical Grid

The aerodynamic performance of the airfoil is calculated by solving the Reynolds
Average Navier Stokes (RANS) equations with the DLR TAU solver [24]. The
selected turbulence model is negative Spalart–Allmaras. The solution is obtained
through a 3v multigrid circle, with the lower/upper symmetric Gauss–Seidel
implicit method for time integration in backward Euler solver and a central flux
discretization. Convergence of the solution is set when the density residual is
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Fig. 14.2 CFD Mesh used in the optimization problem

lower than 1e-8. The unstructured mesh has 29,000 grid nodes, and is quasi two-
dimensional, hybrid with tetrahedral, and prism elements, as shown in Fig. 14.2.

14.4.3 CFD Process Chain

The evaluation of the drag (objective function in deterministic optimization, and
used for UQ in the optimization for uncertainty) follows the process of Fig. 14.3.

At each iteration j the geometry is given by the design vector Xj . The change
in geometry due to a perturbed design vector is translated to the CFD mesh by
means of a radial basis functions mesh deformation tool developed by DLR [25].
The boundary conditions are introduced in the preprocessing and then the solver
obtains the solution field. In the postprocessing the aerodynamic forces acting on the
surface of the airfoil are integrated in the direction of the incoming flow to obtain the
drag coefficient. The complete process chain is handled by Flow Simulator through
Python [26].

14.4.4 Parametrization of Deterministic Design Variables

The airfoil camber line is modified by means of five Hicks-Henne bump functions
[27]. As a result it is possible to modify the airfoil shape while satisfying the
thickness distribution constraint.

The vertical displacement of the chamber line zi due to the bump function i
is controlled by the design variable Xi . A total of five (nX) design variables Xi
compose the design vector X.



442 C. Sabater

Design Vector 

Obtain new
Geometry 

Obtain surface mesh
node displacements
w.r.t. Baseline 

Deformed Mesh

Apply BC 
(Mach, )

Store
Flowfield 

MESH DEFORMATION PREPROCESSING SOLVER POSTPROCESSING

Convert to
Tecplot 

TAU Solver

TAU Solu�on

Drag Coefficient

Deformed Mesh TAU Solver

TAU Solu�on

Apply Mesh
Deforma�on 

Run TAU
Preprocessor 

Obtain Surface
Solu�on 

Run TAU
Flow Solver

Fig. 14.3 CFD Process Chain used to evaluate the drag coefficient for a given design vector and
operating conditions

Fig. 14.4 Top: Five Hicks-Henne Bump Function used for the parametrization, in its maximum
value Xi = 0.015. Bottom: RAE2822 shape and camber line

zi = Xi
[
sin

(
πxm

)]3 (14.14)

m = log(0.5)
i+1
nX+4

(14.15)

The five Hicks-Henne bump functions along the airfoil are shown in Fig. 14.4. As
a result, each of them is responsible for modifying a given section of the airfoil. The
five design variables Xi range between Xi = ±0.015 and are normalized between
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Table 14.2 Characterization
of operational uncertainties

Mach number Lift coefficient

Mean 0.76 0.5

Standard deviation 0.0033 0.00333

0 and 1, corresponding to its minimum and maximum value, respectively. They
control the amplitude (positive or negative) of the deformation.

14.4.5 Parametrization of Uncertainties

The operational uncertainties (the freestream Mach number and lift coefficient)
present in the day to day of the airfoil operations are considered. These are
modelled as symmetric beta distributions with mean and standard deviation fol-
lowing Table 14.2. Values are representative of the uncertainty in the operating
conditions as in [7]. The main advantage of a beta distribution is its capability to
represent a truncated normal distribution. The truncation facilitates the surrogate
based uncertainty quantification by limiting the bounds of the uncertain landscape
and surrogate model. The uncertainties are centered around the nominal conditions
of the deterministic optimization.

14.4.6 Optimizer

The gradient-free Subplex method of Rowan [28] is used to optimize the objective
function. It effectively decomposes the design space into low dimensional subspaces
and searches for the convex hull. It is more efficient than the Simplex method [29]
by linearly scaling with the dimensionality and can be applied to noisy functions.

14.4.7 Robust Design Framework

At a given optimization iteration j , the characterization of the stochastic space is
necessary. As explained in Sect. 14.3.1, to effectively evaluate the statistics of the
drag coefficient, a Surrogate Based Uncertainty Quantification approach is followed
as shown in Fig. 14.5.

The Surrogate Modelling for Aero-Data Toolbox (SMARTy) developed by DLR
is used for the DoE and the construction of the Kriging model [30].

The DoE with 17 samples follows a Quasi Monte Carlo Sobol sequence
normalized to the input uncertainties. The number of samples for an accurate
uncertainty quantification is determined a priory and validated a posteriori with
the optimum configuration with respect to converged Quasi Monte Carlo statistics,
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Fig. 14.5 Framework for the Optimization under Uncertainty

as will be shown in Sect. 14.4.8. At each sampling point of the DoE, the drag
coefficient with respect to the operational uncertainties ξ at a given design vectorXj

is obtained. Then, direct Quasi Monte Carlo integration [13] with 1 million samples
is performed in the surrogate to obtain the statistic of interest. From the sampling it
is possible to obtain the Empirical Cumulative Distribution Function from Eq. (14.9)
and the 95% quantile within the required accuracy.

14.4.8 Validation of the Framework

The Surrogate Based Uncertainty Quantification requires an initial number of
sampling points to construct an accurate enough surrogate to evaluate the statistics.
This number is obtained before the robust optimization based on the baseline
configuration. As shown in Fig. 14.6, the 95% drag quantile is converged with 800
samples with direct integration (Quasi Monte Carlo). This reference is compared to
the convergence of the Surrogate Based Uncertainty Quantification. It is shown that
17 samples are enough to construct a surrogate that is able to calculate the reference
quantile with an error smaller than 0.5 drag counts. Therefore, 17 samples are used
in each iteration of the optimization for the uncertainty quantification stage.

The relevance of the surrogate model is further understood in Fig. 14.7. By using
17 samples for direct integration, the Empirical Cumulative Distribution Function
and the 95% quantile is considerably different from the benchmark, obtained with
800 samples. However, if a surrogate model is constructed with those 17 samples
(that have been selected following Quasi Monte Carlo) and a full integration is done
over the surrogate, the accuracy of the ECDF and quantile reaches the level of the
benchmark. It can be seen that the surrogate model improves the accuracy of the
Cumulative Distribution Function.

From these results, 17 samples are evaluated using the full order model to
perform the surrogate based uncertainty quantification at each iteration of the
optimization, under the assumption that the accuracy of the surrogate is kept
constant along the optimization. This is validated a posteriori with the robust
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Fig. 14.6 Convergence history of the drag quantile under uncertainties with direct integration, and
comparison with surrogate based approach, baseline configuration

Fig. 14.7 CDF for drag coefficient of the baseline configuration under uncertainties computed
with direct integration (17 and 800 samples) and with Surrogate Based approach

optimum configuration, as shown in Fig. 14.8. With 17 samples an error smaller
than 0.1 drag counts is obtained when compared with the converged statistics. As
a result, the surrogate is able to provide an accurate determination of the statistics
along the optimization at a reduced number of function evaluations, validating the
proposed approach.
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Fig. 14.8 Convergence history of the drag quantile under uncertainties and comparison with
surrogate based approach, robust optimum configuration

Fig. 14.9 Pressure coefficient for baseline and deterministic optimum configurations

14.4.9 Deterministic Results

The deterministic optimum solution (at nominal operating conditions) is found
after 106 evaluations of the objective function (CFD computations). The optimum
configuration reduces drag by 22% (31.36 drag counts), from 142.4 to 111.04
drag counts. As shown in Fig. 14.9 from the surface pressure coefficient, the new
airfoil shape replaces the normal shockwave of the upper surface by an isentropic
compression and reduces the wave drag.
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14.4.10 Robust Results

Figure 14.10 shows the convergence history of the optimization under uncertainty.
The optimum configuration is obtained after 87 iterations which corresponds to
1479 CFD evaluations, as for each iteration 17 samples are evaluated with CFD
to build a surrogate model which in turn is used to evaluate the 95% quantile of the
drag coefficient.

The robust optimum configuration reduces the value of the 95% quantile of the
drag coefficient by 28.48% (45.77 drag counts).

The airfoils obtained with the robust and deterministic configurations are similar
as shown in Fig. 14.13. However, looking at its Cumulative Distribution Function
(CDF) and histogram in Fig. 14.11 it is shown that the robust configuration
outperforms the deterministic in the 95% quantile as it has a smaller upper tail.

The mean pressure coefficient field represented in Fig. 14.12 with direct inte-
gration of 800 samples shows that on average, a strong shock wave is present in
the baseline configuration. In the robust optimum configuration the shock wave is
dissipated (the pressure increase is more gradual, isentropic) and therefore, the drag
is reduced during most of its operating time.

With regard to the standard deviation field, the shock wave location of the
baseline configuration is fixed in a small region of the airfoil. However, in that
location the standard deviation is higher than of the robust optimum. When taking
into account operational uncertainties, the robust optimum presents a shock wave
more evenly distributed along the airfoil but with similar strength in all the cases
(lower value of standard deviation).

Fig. 14.10 Convergence history of the design parameters and objective function for the Optimiza-
tion under Uncertainty
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Fig. 14.11 Uncertainty quantification results for baseline, deterministic optimum, and robust
optimum. Top: Histogram. Bottom: CDF

It can be concluded that a robust configuration (in terms of drag) is effective in
reducing the strength of the normal shockwave while having a larger longitudinal
displacement along the airfoil. Opposite to intuition, the robust configuration does
not fix the shock wave location but spreads it, in order to reduce drag.

The configurations resulting from the deterministic and robust optimization are
shown in Fig. 14.13 together with the baseline RAE2822. In order to avoid the
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Fig. 14.12 Mean and standard deviation for the pressure coefficient field for baseline and robust
optimum configuration

Fig. 14.13 Airfoil shape for baseline, deterministic optimum, and robust optimum configurations
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acceleration of the flow and the shockwave at the single design condition, the
deterministic configuration decreases the curvature of the upper surface of the
airfoil. The robust configuration decreases it even further, in order to mitigate the
stronger shockwaves happening at higher lift coefficients and Mach numbers due to
the uncertainty. As a trade-off, the drag reduction will not be as good at lower Mach
and lift coefficients. As a result, the robust configuration is effective in reducing the
upper tail of the CDF of Fig. 14.11.

Table 14.3 summarizes the results of the deterministic and robust optimization.
The use of a robust approach further reduces the 95% quantile by 3.5 drag counts,
compared to the classical deterministic optimization.

14.5 Conclusions

Traditionally, the use of simulation-based design optimization in aerodynamics has
been carried out neglecting uncertainty, in a deterministic fashion. In practice,
deterministic optimization can lead to a mismatch between computational and
experimental results and serious performance losses due to aleatory uncertainties.
The uncertainties in the design conditions must be considered through a robust
optimization framework in order to come up with a realistic configuration that is
less sensitive to such uncertainties.

To deal with optimization under uncertainty, a statistical approach must be
followed in which the operating conditions and geometrical uncertainties are
modelled as samples of independent random variables. The objective function
becomes either a combination of statistical moments such as mean or standard
deviation of a quantity of interest or a quantile. In both cases, a full representation
of the stochastic space is necessary to evaluate the uncertainty.

A possibility to reduce the computational cost for an efficient uncertainty
quantification is the approximation of the output response through surrogate
models. Kriging is especially appropriate for this task as it allows the use of
scattered sampling, provides a measure of its prediction error, is convenient for
high dimensional problems, and allows the incorporation of gradients through
Gradient-Enhanced Kriging. This is specially attractive when the sensitivities can
be efficiently evaluated through a discrete adjoint method.

To validate the surrogate based uncertainty quantification for aerodynamic shape
optimization, the RAE2822 airfoil is optimized under operational uncertainties.
The Subplex optimizer is used and the statistics are evaluated at each iteration
using Kriging meta-models. The optimum configuration is able to reduce the 95%
quantile of the drag by 28% with respect to the baseline configuration. The optimum
configuration is effective in reducing the average strength of the normal shockwave
while having a larger longitudinal displacement along the airfoil. The framework is
able to provide an accurate estimation of the statistics at a reduced computational
cost.
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Future work includes the use of more efficient Surrogate Based Optimization
methods for the optimization stage, and the combination of the uncertainty and
design spaces with the use of gradients in order to further reduce the computational
time.
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Chapter 15
In-flight Icing: Modeling, Prediction, and
Uncertainty

B. Arizmendi, M. Morelli, G. Parma, M. Zocca, G. Quaranta,
and A. Guardone

Abstract In-flight Icing consists of the accumulation of ice over the surfaces of
flying crafts, namely aircraft and helicopters. It occurs when those fly through
visible moisture, i.e., clouds, at temperatures below the freezing point. This
phenomenon is undesirable because it compromises the safety and performance of
the flying crafts. The physics of the phenomenon is complex, and it is still behind its
full comprehension. Moreover, the characterization of the icing environments and
their replication in experimental facilities is subject to large uncertainties. These
might arise from phenomena like the complex physics of clouds, the accuracy of the
measuring devices, or the resolution to reproduce flight and cloud properties, among
others. This entails a reduction on the predictive accuracy of numerical models that
seek to reproduce ice shapes and to assess the performance of ice protection systems.
For these reasons, this research field could greatly benefit from the deployment of
Uncertainty Quantification (UQ) techniques to account from epistemic and aleatory
uncertainties in model predictions. In this chapter, an overview of the study field is
presented to motivate collaborations between practitioners of UQ and researchers of
the field. First, an overview of the physical phenomenon is introduced. Moreover,
research methodologies are described with their identified sources of uncertainty.
Next, the state-of-the-art modeling techniques are described together with their
capabilities of replication of experiments. The characteristic modeling equations
are presented as well. Finally, technologies for ice protection systems are deployed
with the current regulation for flying in icing conditions.
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15.1 Introduction

The requirement for aircraft to be able to safely operate in diverse flight conditions
has never been more prominent than it is now with increasing demand for fast
and reliable transport. With this, the industry faces major dilemmas, that to this
day, have yet to be resolved. For instance, aircraft and helicopters are occasionally
exposed to atmospheric conditions which lead to the accumulation of ice, namely
ice accretion. In-flight icing occurs when an aircraft or rotorcraft goes through a
supercooled cloud at a temperature below 0 ◦C containing supercooled liquid water
droplets. The droplets might freeze when impacting with the surface of the aircraft
depending on the values of the influencing variables such as the temperature and the
size of the droplets. The formation of ice on the surfaces is problematic because it
alters the shape of control surfaces dropping their performance. In addition, it can
cause the gathering and provision of inaccurate data to the pilot and the blockage of
the mechanisms of control moving parts when accreted in those. Consequently, ice
accretion presents a major threat to safety and performance of aircraft and rotorcraft
which could lead to catastrophic accidents as it happened in the past.

In-flight icing has introduced a new challenge for manufacturers because they
need to ensure safety and performance over different flight conditions. To this pur-
pose, nowadays flying crafts are equipped with ice protection systems to eliminate
or avoid the formation of ice in critical parts of the aircraft. The adequate design of
these systems requires a holistic understanding of the icing phenomena and icing
environments. Furthermore, the design must comply with existing regulation. Over
the years, several research methods were utilized for understanding and predicting
the process of ice accretion. Experimental tests were performed both in-flight and
in wind and ice tunnels. The icing conditions are often replicated by spraying
supercooled droplets into aircraft surfaces. The characterization of icing conditions
is limited due to the vast amount of different icing scenarios and the resources
available for these purposes. Physical models and their corresponding numerical
models help understand the physics of the phenomena. These models need a
thorough experimental validation in order to extrapolate the obtained conclusions
into reality.

There are large uncertainties on the understanding and characterization of the ice
accretion phenomenon. The replication of real icing conditions presents a major
challenge due to the variability of the aforementioned conditions, to the large
number of influencing parameters, to diverse icing conditions, and to the ability
of the experimental facilities available to reproduce them. This would require a
very large number of tests which would imply infeasible costs. In addition, flying
under icing conditions exposes the flight crew and passengers to unwanted risk
situations. These uncertainties lead to ambivalence on the replication of these
conditions in icing wind tunnel tests and the consequent ice shapes accreted in the
aircraft components. They also influence the data for experimental validation of the
numerical models whose input is also subject to uncertainty. To conclude, there are
many and large sources of uncertainties in the study of in-flight icing. Collaborations
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and discussions within the Marie Skłodowska-Curie ITN UTOPIAE on Uncertainty
Treatment and Optimization in Aerospace Engineering can enlighten the study of
the ice accretion phenomenon by providing methods to identify and quantify the
sources of uncertainty and to quantify the uncertainty of the model output. This
can provide more robust predictions of ice shapes on aerodynamic surfaces and
consequently derive more efficient and optimized designs of ice protection systems.
The treatment of the uncertainty will help enhance the robustness of the obtained
results reducing the needs for expensive experimental and flight tests.

The first section of this chapter presents an overview of the ice accretion
phenomenon. It starts with an introduction of the icing conditions and environments,
then it describes special icing interactions. The identified uncertainties will be
introduced. Then, the diverse types of ice are described as well as the research
methods applied and the impacts on the performance of aircraft. The second
section explains the approaches for the physical and numerical modeling of the ice
accretion phenomenon. The following section describes the available ice protection
technologies. Next, the regulation in ice protection is described. Finally, the
concluding remarks regarding uncertainties in in-flight icing are included.

15.2 In-Flight Ice Accretion

Ice accretion consists of the accumulation of ice on man-made structures when
interacting with supercooled clouds, ice crystals, hoar, frost, and freezing precip-
itations such as snow, freezing rain, and freezing drizzle. Supercooled clouds are
made of droplets whose temperature is lower than the water freezing point but
still remain in the liquid phase. This is due to the lack of an external perturbation
causing nucleation. These droplets can freeze following an interaction (impact)
with structures causing the accretion of ice over the structures themselves. The
behavior of water and ice in the ice accretion process is still subject to large
uncertainties in the characterization and replication of icing conditions. Several
man-made structures designed to work outdoors at high altitudes and in alpine
environments are prone to experience ice accretion. Aircraft and helicopters fly
at high altitudes and probably through clouds. Wind turbines, power lines, and
antennas can be placed at high altitudes. The severity of ice accretion is dependent
on the size of the cloud droplets, the amount of liquid water and the time of the
exposure to icing conditions. In the case of aircraft, the encounter of large amounts
of supercooled large droplets in clouds was found to be the most critical scenario
[1]. Ice accretion causes the exposed structures to operate under different conditions
than the designed ones. Intuitively, ice increases their weight causing additional
loads. Furthermore, ice alters the geometry of the structures and this modifies the
interaction with the surrounding airflow and the aerodynamic forces experienced
by the structure, thus severely increasing drag and reducing lift. The consequences
might be unexpected and they depend on the severity of the icing encounter. In any
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case, those consequences are always unwanted and always imply a performance
penalty.

For aircraft, which will be the focus of this chapter, the consequences of a
malfunctioning go beyond economic and reliability issues. Fatal aircraft crashes
caused by in-flight icing caused life losses in the past as it is evidenced in accident
investigations [2–4]. Many aircraft are equipped with ice protection systems,
especially those which will be allowed to fly in icing conditions. However, aircraft
can be exposed to very different icing conditions and the adequate performance of
the protection systems must be ensured [5]. There are large uncertainties regarding
the icing conditions which lead to large uncertainties on the study of the ice
accretion phenomenon. The challenge intended to be addressed by the analysis and
study of ice accretion is to ensure any aircraft is protected against the most harmful
possible icing condition [6]. Deep knowledge in this field will help on the design of
more efficient icing systems.

This section presents an overview of the in-flight icing phenomena. It starts with
an introduction to the scenarios where aircraft icing occurs. Then, the icing relevant
parameters are described together with their impact on the severity of icing and
the identified uncertainties. Depending on the values of these parameters, the ice
accreted will present different characteristics that are described in the following
section. Later, possible interactions between the droplets and the aircraft surfaces
are explored. The different methods for investigating ice accretion are shown and
finally the effects that the aircraft icing has on the performance and safety of the
aircraft are described.

15.2.1 Icing Environment

Ice accretion can be caused by flying through supercooled clouds. But it can also
be caused by the impact of snow or by freezing rain, where supercooled large
droplets fall from the clouds. Furthermore, hazardous in-flight ice accretions are
caused when large droplets are encountered.

15.2.1.1 Cloud Formations

Clouds are clusters of small visible droplets. Their formation requires an uplift
air motion of humid air. The portion of raising air cools down and the moisture
condenses forming small droplets. If the temperature of the cloud decreases and
the water droplets contain no crystallization nuclei, the droplet will remain in a
liquid state below the melting temperature in a metastable phase called supercooled
[7]. Any perturbation such as impacts on the aircraft surface will alter this stability
causing the total or partial freeze of the droplets.
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Fig. 15.1 Temperature dependent icing threats. For temperatures lower than −40◦C or greater
than 0◦C the icing threat is minimum. Source: weather.gov

The clouds are classified according to their shape in three main blocks that are
cumulus, stratus, and cirrus. Cumulus look like cotton balls and they are generated
by vertical convective moist air motion. These clouds extend vertically and their
bases are found at altitudes of around 2 km [8]. Cumulus can contain a high liquid
water content and this potentially causes severe ice accretions when aircraft go
through the supercooled ones. Stratus are stratified clouds which are generated by
progressive uplifting of layers of air extended horizontally. This clouds commonly
present low water content. Nevertheless, they can contain large drizzle drops [9]
which poses a major hazard for aircraft safety and performance, as presented in the
Sect. 15.2.6.1. Cirrus are clouds formed at very high altitudes of approximately 7 km
[8]. Due to the low temperatures found, cirrus are formed by solid ice crystals. These
crystals bounce back and do not accumulate on the surface of the aircraft when they
impinge on it [10], as it is depicted in Fig. 15.1.

15.2.1.2 Supercooled Large Droplets

Supercooled large droplets (SLD) comprise those of a size between 50 and 500 μm
according to the FAA [11]. A particular field of interest in research is the ice
accreted in SLD conditions because it was claimed to be the cause of several aircraft
accidents [2, 3] which were equipped with ice protection systems. SLD are also
encountered in freezing drizzle and freezing rain. Freezing drizzle consists of large
size droplets contained in clouds that are formed by coalescence of smaller droplets.

When the droplets impact on the aircraft surface they totally or partly freeze.
Freezing rain consists of supercooled precipitating rain which also freezes when
impacting with the aircraft frame. This implies that ice accretion can occur even

weather.gov
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when flying through clouds is avoided. This kind of ice accretion might cause an
increase on the surface roughness or the generation of prominent ridges or horns in
the region of the leading edge or downstream [1].

Since the droplets are larger in size, inertia forces predominate to aerodynamic
ones and that make the droplets follow ballistic trajectories which increase the effi-
ciency of water collection near the leading edge [12]. In addition, the impingement
point is aft the stagnation point and those can accumulate in unprotected areas. Large
droplets are associated with a larger amount of latent heat. If the supplied cooling
upon impact is not sufficient for complete freezing, a portion of the droplet will
remain in liquid state and will run back and freeze. This may generate glaze ice
ridges on the surface of the wing which might freeze in unprotected areas, and this
poses a hazard for the performance and safety of the aircraft [13].

The study of the ice accretion caused by SLD presents a challenge due to the
complicated physics which includes droplet shape and size changes, splashing,
bouncing, and gravity effects [6]. All these respects need to be considered in the
numerical modeling for accurate predictions. Furthermore, it is more likely that the
droplets partially freeze because the available cooling is lower than the released
latent heat of solidification. The liquid fraction runs downstream driven by the
airflow and generates complex shapes of challenging prediction [14].

15.2.1.3 Ice Crystals

As the flight altitude increases and the static temperature drops, the likelihood of
finding supercooled liquid droplets significantly decreases. Instead, ice crystals can
be encountered. Ice crystals do not present a major threat for the aerodynamic
performance of the aircraft, since the ice crystals bounce off the surface of the
aircraft and they do not attach to the airframe because they are removed by
aerodynamic forces. However, high densities of ice particles, which can present
diverse sizes are associated with engine power losses and damages [15]. Past studies
[16] reported that ice crystals melted due to relative higher temperatures attained
in the compressors and that water froze in static surfaces such as the compressor
second stage stator or the core of the engine. This icing type can cause obstruction
of the airflow which entails working under very different conditions to the designed
ones [17].

15.2.1.4 Snow

The presence of snow can also entail icing in man-made structures. Snow consists
of formations of ice crystals that precipitate from the clouds. Two different types
were identified in research, namely dry and wet snow. Dry snow is produced when
the water from the ice crystals is in a solid state at a very low temperature. The ice
crystals present very low adhesion forces among them and with surfaces. Therefore,
usually there is no ice accretion from dry snow [18]. Furthermore, the crystals
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might bounce off the surface and then are eventually removed by aerodynamic
forces. In contrast, wet ice is formed when ice crystals fall into a higher temperature
atmospheric layer and they partially melt. The range of temperatures in which wet
ice can occur is between −7 ◦C and 3 ◦C. Adhesion forces are higher than in the
case of the dry ice and therefore ice accretion is possible [19]. The formed ice
consists of a porous mixture of ice, liquid water, and air that presents a low density.
The impinging water can travel through the pores and freeze generating complex
accretions.

Wet snow accretion in power lines has been an active field of research. Its effects
include high mechanical stresses that can produce overload and failure with the
potential risk of blackout or collapse [18–20]. On a different note, limited research
was found in the field of aircraft snow accretion, and only very recently the topic
is being addressed. Nevertheless, in order to comply with the icing regulations
for certification, aircraft must be protected against snow icing envelopes which is
presented in the Sect. 15.4.3.

15.2.2 Icing Relevant Parameters

Aircraft icing entails very complex physical processes which are highly depen-
dent on many interrelated parameters. Those describe characteristics of the icing
environment, the aircraft design and operation, and the interaction between those
two. In addition, the duration of the icing encounter determines its severity being
the longer the encounter the more severe. This section presents the environmental
parameters (cloud liquid water content, ambient temperature, and droplet size), and
the operational parameters (flight speed and altitude) that dictate the characteristics
and severity of the icing encounter together with typical values for those parameters.

15.2.2.1 Outside Air Temperature

The main parameter influencing the accretion of ice from supercooled clouds is the
steady ambient air temperature termed the outside air temperature (OAT) [12]. It
is relatively easy to monitor but it implicitly only represents part of the accretion
physics. Its value influences several phenomena: the convective heat transfer from
the impinging droplets to the aircraft surface and the temperature of the aircraft
surface. The convective heat loss over a control volume Q̇ can be calculated as
follows:

Q̇ = hcA(Ts − T∞), (15.1)

where hc is the convective heat transfer coefficient, A is the surface area, Ts is the
surface temperature, T∞ is the freestream temperature or Outside air temperature
(OAT), and A is the surface area considered. As it is shown in Eq. (15.1), low OAT
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increases the available convective cooling, which takes a larger amount of latent
heat that the droplets release when they change phase. Thus, lower OAT values
increase the likelihood of the droplets freezing when impacting on the surface. The
requirement for the ice to accrete on the surface is that the surface temperature is
maintained below 0 ◦C. Some ice protection systems raise the surface temperature
over the freezing temperature to avoid ice accretion. Based on icing encounter
measurements, Politovic [13] stated the common range of temperatures measured
was between 0 ◦C and −25 ◦C with an average of −10 ◦C. However, very few
encounters were found at temperatures below −20 ◦C and greater than −5 ◦C.

It is also important to acknowledge that the occurrence of a total temperature
greater than 0 ◦C alone at the surface of the body does not suffice to ensure that ice
accretion will not take place. For the global computation of the energy balance, the
evaporative heat Q̇e for a certain control volume can be calculated as follows:

Q̇e = ṁeLE, (15.2)

where ṁe is the mass of water evaporated and LE is the latent heat of evaporation.
ṁe can be calculated as:

ṁe = 0.7

Cp
hcA

pv,s − RHpv,e
pe

, (15.3)

where Cp is the specific heat at constant pressure, pv,s is the saturation pressure at
the surface, RH is the relative humidity, pv,e is the saturation pressure of air, and
pe is the absolute pressure. Several droplets absorb latent heat to evaporate, thus
reducing the surface temperature and allowing ice accretion even at temperatures
greater than 0 ◦C.

The static air temperature can be measured by means of thermocouples. One of
the challenges to obtain precise readings is that the probe should be sheltered from
any airflow such as the main stream or the exhaust from the motors. The outside
temperature can be also computed from the total air temperature subtracting the
heating provided by the airspeed.

15.2.2.2 Liquid Water Content

In addition to the temperature, the liquid water content (LWC) is a critical parameter.
The LWC measures the mass of liquid water that can be present within certain
volume of a cloud. It is expressed as the grams of liquid water per cubic meter
of air. The heat rate of freezing Q̇l , for a certain control volume over a dry surface
can be quantified as:

Q̇l = ṁf rLf , (15.4)
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where ṁf r is the mass of freezing water and Lf is the latent heat of fusion. The
mass of freezing water is dependent on the LWC of the cloud and so does the type
of ice accreted. Consequently, the larger the value of LWC, the greater the amount of
latent heat which must be removed from the impinging droplets to freeze on impact.
If part of the water remains in liquid state, this will run downstream by aerodynamic
forces.

Higher rates of ice accretion can occur when the clouds present higher values
of LWC. Typical values are in the range of 0.3–0.5 g/m3 for the 90% of the
stratiform clouds and between 0.5 and 0.7 g/m3 for convective clouds [13]. The
maximum LWC value the authors found was of 1.3 g/m3. It was also noted from
icing encounter reports that at very low temperatures, large droplets were rarely
encountered.

Hot wire probes are widely used to measure LWC in-flight. The hot wire is kept at
100 ◦C and the LWC is proportional to the amount of heat needed to fully evaporate
the impinging droplets. The uncertainty of these measurements ranges 20–30%,
increasing the larger the LWC and the MVD. This is caused by partial evaporation
of large droplets or high values of LWC. Further details can be found in [21].

15.2.2.3 Airspeed

Although not strictly itself an icing parameter, the airspeed has a significant
influence in determining the rate of accretion. The higher the airspeed, the greater
the intercepted volume of air per unit time and hence the larger the amount of mass
of water available to accumulate on the body [12]. In addition, the heat transfer
coefficient hc that determines the convective heat flux on the surface of the aircraft
for laminar flow could be alternatively computed by the expression

hc = 0.296K
√
μ
ρ

√
V 2.87∞∫ s

0 V
1.87ds

, (15.5)

where V∞ is the freestream velocity,K is the thermal conductivity of the air,μ is the
freestream viscosity, ρ is the freestream density, and s is the surface distance from
the stagnation point. The available convection is dependent on the airspeed, thus the
transfer of latent heat to the air stream. This can influence the total or partial freeze
of the impinging droplets.

Another phenomenon is the so-called aerodynamic heating. This consists of
the raise in temperature of bodies exposed to a significant boundary-layer friction
caused by high air speed. The kinetic energy of the fluid is transformed into heat
through friction and this significantly increases the temperature of the surface to the
point that it can keep a surface outside of icing conditions even when the temperature
of the outside air is below freezing [22]. The contribution of the aerodynamic
heating Q̇a to the energy balance can be accounted as:



464 B. Arizmendi et al.

Q̇a = hcA V
2∞

2Cp
. (15.6)

The raise in temperature increases the value of the heat flux from the surface to the
water impinging or the ice accreted and this reduces the chances of the ice to accrete.
In reference [22] the authors claim that an aircraft flying at Mach number greater
than 0.6 is exempt from the most severe icing conditions due to the aerodynamic
heating.

15.2.2.4 Altitude

Along with the airspeed, the altitude is also not directly a relevant icing parameter.
It does, however, indirectly influence many parameters which affect ice accretion
rates. That is, critical combinations of icing parameters are found at certain altitudes.
Most notably, the atmospheric air temperature decreases with altitude to a nearly
constant value, which is called the lapse rate. Hence, for a particular range of
altitudes, there is an increased potential for condensation of water droplets and their
supercooling. At very large altitudes, cirrus clouds are found which are conformed
by dry ice and this does not pose a major risk for the aircraft as discussed in the
Sect. 15.2.1.1. The measurements of the altitude can be derived from the static
pressure which can be measured by flushed-mounted static ports. These readings
are generally rather precise because they indicate the exact position of the aircraft
that is to be reported for control purposes.

15.2.2.5 Droplet Size

The droplet size also influences the rate and type of ice accretion. In general, the
larger the droplet size, the greater the quantity of water that impacts on the aircraft
over time. The droplet size can also affect the collection efficiency of drops on the
airframe. Collection efficiency is defined as the ratio of the actual mass of impinging
water to the maximum value that would occur if the droplets followed straight line
patterns [23], further details can be found in Sect. 15.3.3.2. Droplets with a smaller
diameter and mass tend to follow the stream lines. Droplets with larger diameters
and mass are able to cross airflow streamlines resulting in the possibility of ice
accretion further downstream when there is dominance of inertia forces. Hence, the
ratio of the inertia to the aerodynamic forces determines whether the droplet impacts
on a surface. An example of the comparisons between the droplet size can be shown
in Fig. 15.2.

Within any single cloud, the diameter of droplets is not uniform and can differ
greatly. The spectrum of droplets that exists in practice is frequently characterized
by the (MVD) described in Sect. 15.2.2.2. The approximation of the spectrum



15 In-flight Icing: Modeling, Prediction, and Uncertainty 465

ice
stagnation

point

ice

stagnation

point

Fig. 15.2 Streamlines and droplet trajectories comparing relatively small and large droplet
trajectories. The lighter lines are the streamlines and the darker lines are the trajectories. (a)
Relatively small droplet size. (b) Relatively large droplet size

by means of the MVD was proven to deliver equivalent values of the collection
efficiency [24]. Therefore, the expected accreted ice should be similar.

Spectra of clouds droplets can be measured by optical probes such as the Forward
Scattering Spectrometer probe (FSSP-100). The probe computes the size of the
droplets by means of the light that they scatter from a laser beam. The counted
droplets are binned depending on their size and then the concentrations of droplets
for several range of sizes are obtained. Diverse uncertainties were identified for
the readings obtained such as dead time losses or coincidence of droplets. MVD
values can be computed from the concentration values for the different droplet sizes.
The expected uncertainty on MVD readings from the FSSP-100 lays around 12%.
Further details on the probe can be found in literature [25].

15.2.3 Icing Types

Depending on when and how the supercooled droplets freeze, and the combination
of values of the relevant parameters, the ice accreted will have different character-
istics. This section presents the three different types of ice that can accrete, namely
rime, glaze, and mixed ice types. Furthermore, the typical scenarios where those can
occur and the properties of each type of ice are presented.

15.2.3.1 Rime Ice

Rime Ice is characterized by an opaque appearance and low density. This is due
to air bubbles becoming trapped during the phase changing process. Rime Ice
largely dominates during conditions where temperatures below −25 ◦C exist, where
supercooled water droplets instantaneously experience phase change into ice when
impacting on a surface. Rime Ice is particularly prevalent at low speed, when
there is low kinetic heating and for low values of LWC [13]. In these scenarios,
the likelihood of encountering supercooled liquid water droplets is high. In such
conditions, it is expected that ice crystals would not contribute to ice accretion. This
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Fig. 15.3 Rime and glaze ice accretion types. Depicting the differences in their formation showing
particularly the “spearhead” characterized by rime ice accretion and the upper and lower “horns”
a result of glaze ice accretion. Source: NASA. (a) Rime. (b) Glaze

is due to the hard particles bouncing off the hard rime surface during impact. In the
event of large ice accretions, the rime ice profile may take the form of a pointed
“spearhead.” This can happen because of large exposure to icing conditions or high
collection efficiency values. In Fig. 15.3(a), a typical Rime Ice formation over a
wing is shown.

15.2.3.2 Glaze Ice

Glace Ice presents a transparent look as that of the ice cubes. Glaze Ice dominates
at temperatures closer to melting point, with the presence of a higher liquid water
content. It is prevalent at higher speeds, due to high kinetic heating and high cloud
water content. Here, water droplets first hit the surface, all the amount of latent
heat cannot be transferred and consequently a portion of the water will still remain
in liquid state. Then, the liquid portion flows over the wing before freezing. The
resulting liquid film is usually referred to as runback water. In Glaze Ice the air
bubbles are allowed to separate from the water generating a more uniform structure.
As a consequence, its density is usually higher than that of rime ice. It is possible
that during the brief period before the water freezes while retaining its liquid flow
properties, it may accumulate aft, producing localized thickening of the ice profile
into a characterized “horn” appearance on each of the upper and lower surfaces of
the blade or wing. In Fig. 15.3(b), a typical glaze ice formation over a wing is shown.

15.2.3.3 Mixed Ice Conditions

Due to the variations in local velocities it is possible that both rime and glaze ice
accretion are present at the same time. For example, in helicopters rime ice can
accumulate at inward radial stations, while glaze ice can form further outward on
the rotor.
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15.2.4 Aircraft Icing Interactions

Water in solid and liquid phases interacts with the aircraft frame when it goes
through icing conditions and after the icing encounter. This section aims to describe
several interactions that present a complex physics, which have been studied in the
literature. Surface interaction describes the dependence of the surface properties
on the behavior of the droplets over it. Accordingly, ice shedding studies aim to
understand the physics and effects of the detachment of ice from the surfaces. Drop
impact studies intend to understand the process of collision and evolution of the
water droplet shape when colliding with a surface. Finally, crystal bouncing presents
the interaction of ice crystals present on clouds with the airframe.

15.2.4.1 Surface Interaction

Of particular interest for ice accretion is the study of the interaction of the
supercooled water liquid droplets-ice accreted with the surfaces to which they
collide/ adhere to. The characteristics of the interaction of liquid droplets with
a given surface depend on the wettability of the surface itself. The wettability
describes the spread of a droplet when contacting a certain surface. It can be
characterized by the contact angle (θc) which is the angle to which a sessile droplet
meets the surface of the solid which is depicted in Fig. 15.4. The contact angle is
unique for each liquid/solid/gas system and those can be classified as follows:

• Superhydrophilic systems if θc < 5◦
• Hydrophylic systems if 5 < θc < 90◦
• Hydrophobic if 90 < θc < 150◦
• Superhydrophobic if θc > 150◦

The above contact angle is defined in static conditions (static contact angle)
and it generally differs from the so-called dynamic contact angle defined for
droplets in relative motion with respect to the surface. The use of super-hydrophobic
materials has been recently investigated experimentally to reduce the formation
of ice on aircraft surfaces because the liquid droplets present low adhesion to the
surfaces. Among others, Antonini et al. attempted to understand experimentally the

Fig. 15.4 Contact angle θc
between a fluid and a
hydrophilic surface. Source:
Wikipedia
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behavior of droplets impinging in super-hydrophobic tilted surfaces [26]. It was
discovered that under certain surface angle and velocity, the droplets rebounded after
impacting. Furthermore, it was found that the implementation of super-hydrophobic
coatings over the surface of the wings could reduce the rate of ice accretion [27].
However, it was acknowledged that the use of these types of coatings required
additional ice protection means due to the physical degradation of the surface
itself. Further research from Antonini and collaborators found out that the use of
super-hydrophobic coatings could decrease the energy consumption of the fully
evaporative thermal anti-ice protection systems [28]. From a review of literature it is
concluded that the use of coatings could support the performance of ice protection
systems by decreasing the amount of icing over critical surfaces.

On a related note, the adhesion of ice to solid surfaces has also been investigated
over more than 50 years which highlights the relevance of the field [29]. This
research has been mainly conducted experimentally, to understand the mechanisms
of ice adhesion. Over the so-called icephobic materials, the ice accreted presents
low adhesion and therefore, if the layer of ice is large enough it detaches from
the surface and sheds. Research intended to link “icephobia” to wettability of the
surface. However, the link is not clear since some contemporaneous authors claim it
is independent [30] and other authors relate the two properties [31].

15.2.4.2 Ice Shedding

Ice shedding consists of the detachment of the accreted ice on a surface of, e.g.,
aircraft, rotating propellers, and helicopters. The study of the trajectories of large
ice particles is critical because those can impact over distant surfaces and cause
damages. With regards to the ice accreted over aircraft leading edge, the shed
particles can be ingested by the engines aft and cause damages. The stresses on
the accreted ice layer that cause the shedding are originated by inertia forces,
aerodynamic pressure forces, thermal stresses, and also flexing of the aircraft wings.
The numerical studies of ice shedding conducted by Scavuzzo concluded that there
is a critical value of the aircraft Mach number to which the aerodynamic forces are
significant enough to cause shedding in typical aeronautic applications [32].

Ice shedding in aircraft was studied by means of numerical models, for instance,
Zhang et al. developed a Finite Element Analysis (FEA) model to study ice
mechanics by means of a fracture mechanics framework [33]. It was concluded that
the shape of the ice strongly influences the shedding onset. In addition, Papadakis
et al. performed a complete study to model the trajectories of the ice shed by means
of a multi-body dynamic solver and CFD [34]. Moreover, included experimental
aerodynamic characteristics of the ice particles into the numerical model. The
authors acknowledged the randomness of the process. Consequently, they performed
a Monte Carlo approach to quantify the probability of the icing trajectories and to
find the most likely ones. The numerical modeling of the trajectories of ice particles
shed can help the design of de-icing systems to ensure those particles do not impact
on critical components or surfaces.
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15.2.4.3 Drop Impact

The research on the behavior of the impact of drops over solid surfaces or over fluid
films is a very active field. Although the first paper dates back to 1908, the process is
not fully understood [35]. Drop impact is very relevant on the field of ice accretion
study because it can describe in detail the interaction of the droplets with the aircraft
surfaces. In addition, it is key to the development of super-hydrophobic materials or
coatings that decrease the adhesion of the supercooled droplets on the surfaces of
the aircraft and thus the ice accreted. The characteristics of the impact are unique
for each fluid/gas/surface system [35]. Furthermore, the related parameters are the
density, viscosity, diameter, surface tension of the droplet, and impact velocity of the
droplet. The surface roughness and the wettability are also relevant to characterize
impact on solid surfaces [36]. The governing non-dimensional parameters are the
Weber number, the Reynolds number, and the Ohnesorge number. The Weber
number relates the droplet inertia and surface tension,

Wep = ρV 2l

σ
, (15.7)

where l is a characteristic dimension of the model and σ is the surface tension of the
droplet. The Reynolds number which describes the relationship between the inertia
and viscous forces on the droplet,

Rep = ρDpV

μ
, (15.8)

where D is the diameter of the parcel. The Ohnesorge number of the particle
(Oh) relates viscous forces with inertia and surface tension of the droplet and it
is computed as:

Oh =
√
Wep

Rep
. (15.9)

Experimental studies were conducted by using high resolution cameras to capture
the evolution over time of the shape of the droplet when colliding with a surface.
For instance, the work reported in [36], which characterized six different types of
impacts that are the deposition, prompt splash, corona splash, receding breakup,
partial breakup, and rebound. Numerical investigation has been conducted, for
instance, Yarin and Weiss [37] who developed a mathematical model to describe
the evolution of the radius of the crown generated by the impact of the drop.
Furthermore, computational studies were performed to numerically model the
behavior of the droplets. Brambilla and Guardone [38] used the Navier-Stokes
equations with a “Volume of Fluid” approach to study oblique droplet impact on
liquid films. One of the identified challenges is capturing secondary droplets in the
corona splash.
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15.2.4.4 Crystal Bouncing

The numerical replication of the crystal bouncing phenomenon is challenging.
Ice crystals bounce back on the surfaces of the aircraft and they do not adhere
to them. Ice crystal bouncing has a complicated physics due to factors such as
orientation, disintegration at extremely high velocities, and the circumstances post
crystal impact. Various experiments quantified the bouncing criterion for particles
impacting on wet surfaces [39]. Notably Davis et al. [40] identified that on a wet
surface the tangential velocity component of the impacting particle shows negligible
changes, while the losses in post-impact velocities are attributed to the significant
changes in the normal velocity.

15.2.5 Existing Research Methods for Ice Accretion

To date several methods are devised to help predict and understand the physics
of ice accretion. These ranging from experimental tests to numerical simulations.
Experimental tests which are performed either in-flight or in wind tunnels are
presented in the first subsection. Then, the numerical approaches will be presented
and described. Both approaches are complementary and often used in synergy to
address the complex ice accretion problem.

15.2.5.1 Flight Test and Wind Tunnel Experiments

The phenomenon of in-flight ice accretion requires further efforts to be fully under-
stood. Physical replication of icing scenarios could increase the understanding on
the physics and could provide datasets for the validation of numerical models. Very
complete reviews of the research methodologies for aircraft icing were developed
by Kind et al. [41] and Bragg [42]. In this section we will focus on the available
experimental methodologies. Depending on the location of the experiments, they
are divided into ground tests and in-flight tests. Ground tests entail the use of wind
or icing tunnel which vary depending on the components being tested such as fixed
wings, engines, or propellers. This approach is convenient because it enables the
focus on the physics of certain specific parts and requires less time and cost than in-
flight testing. In addition, operating in-ground does not compromise the safety of the
flight crew or the aircraft. However, this leads to uncertainties that will be presented
later in the section. The main ground tests approaches described in literature [41]
are:

• Dry tests—These tests are performed in a regular wind tunnel. The expected or
critical ice shapes are simulated separately and then attached to the components
of interest. The objective is to understand the effects of the icing on the aircraft
performance and aerodynamics that is the performance degradation entailed if ice
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is accreted on the aircraft. Examples of these research approach were performed
by Lee [43] and Gurbacki [44].

• Icing tests—These tests are performed in icing tunnels which are equipped with
spraying water system to replicate the clouds and an acclimatization system to
reach temperatures below 0 ◦C. They can gather data from the droplet trajectories
and their thermodynamic effects as well as the complex behavior of the runback
water. Also the approach is used to further understand the ice shapes generated
under a range of conditions and the effects of every ice shape on the aircraft
performance. Furthermore, this methodology is used to test the performance of
ice protection systems. This approach was taken by Olsen [45] and Whalen [46]
in their investigations of the ice accretion phenomenon.

• In-Flight tests—In-flight tests provide a realistic representation of the actual icing
conditions encountered. These icing scenarios can be natural or simulated and
this approach was identified as the most representative on the testing of the
performance of the ice protection systems. In-flight tests are also crucial for
certification, since the aircraft are expected to be able to adequately perform in
these conditions, and this can only be tested in-flight to some extent. However,
in-flight tests are more costly than wind tunnel tests and in addition they can
compromise the safety of the flight crew. Very little material has been published
in this matter, since the test outcome is usually protected as manufacturer
intellectual property. These tests were classified [41] in the following manner:

– Dry tests—They are analogous to the ground dry tests where the ice shapes
are replicated. In addition, these tests intend to assess the in-flight handling
qualities in iced aircraft which is generally not possible to be measured in
wind tunnels.

– Water spray tests—A tanker aircraft flights in front of the tested aircraft.
The tanker contains a water tank and sprays water to replicate the real icing
envelopes. Also, the aircraft can have water tanks and devices to spray water
near the critical regions. These tests can be used to assess the performance
of the ice protection systems and the performance of engine operation under
icing conditions.

– Flight in natural icing conditions—It consists in the controlled approach
to real icing conditions. It is the most precise testing procedure since it
fully replicates actual icing scenarios, however, it is rather costly and might
compromise the safety of the pilots (Fig. 15.5).

15.2.5.2 Uncertainties in Icing Tunnel Experiments

Icing tunnels are a type of wind tunnels where it is possible to reproduce icing
conditions to study ice accretion in different components. The airflow is cooled
down and then water droplets are sprayed to represent icing envelopes. Epistemic
uncertainties arise from the flow and the sprayed droplets attained within the tunnel.
They reflect the ability of the devices to replicate the intended icing envelopes
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Fig. 15.5 Icing tunnel tests
on the NASA Lewis research
center. Tests of a reduced
model of a commuter aircraft.
Source: NASA

including airspeed, angle of attack, LWC, or MVD. Some of these uncertainties
could be reduced by further testing and retrofitting the tunnel design such as the
study conducted by Arrington [47] to improve the flow quality. In addition, effects
of the blockage on the icing tunnel, i.e., ratio of the airfoil chord to the test-section
height and the wall-wing interaction are found to increase the uncertainties of the
reproduced shapes [48].

A common practice to study the uncertainties in the icing wind tunnels is the
performance of repeatibility tests. The objective of the tests was to assess the quality
and robustness of the results. Repeatability over several runs of a test is defined as
the maximum percent deviation found from the mean value of the results. In diverse
research, the repeatability of icing tests ranges between 10 and 30% [49]. The
repeatability of the spray clouds was found as the main source of uncertainty [50].
The development and implementation of sophisticated mathematical tools which
have been presented throughout the pages of this book could help handling these
large uncertainties.

15.2.5.3 State-of-the-Art Computational Ice Accretion Methods

In the past, various numerical methods were developed to simulate ice accretion
on aircraft. Tran et al. [22] developed a numerical method to help aid in predicting
ice modification on airfoils including the thermodynamic effects. Using a Eulerian
approach for flow theory Cao et al. [51] described a numerical simulation method
in which predicting the ice accretion on three-dimensional fixed wings. While
researching icing models, Tsao and Rothmayer [52] investigated the formation
of surface roughness on the surface of airfoils through the stability analysis of
air/liquid and water/ice on substrate interfaces. Fortin et al. [53] created a new
analytical model for the calculation of roughness heights and a new geometric ice
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addition model based on bisection of angle between adjacent panels. Blackmore and
Lozowski [54] and Blackmore et al. [55] introduced an icing model used to describe
spongy atmospheric icing, and a dendritic-growth layer was assumed to correlate the
microscopic ice growth with macroscopic mass/energy conservation. Kong and Lui
[56] introduced a method for predicting supercooled icing in which influences of
the flow velocity on ice growth were taken into account.

Currently respective prediction codes for ice accretion also exist, namely
LEWICE [57], ONERA [58], FENSAP-ICE [59], and PoliMIce [60] and others.
These codes are built as modelling frameworks in which aerodynamic solvers are
coupled to ice formation models. In addition, they solve energy and mass balances
in order to determine the amount of ice formed and its shape. Further details can be
found in Sect. 15.3.

15.2.6 Ice Accretion and Performances

The accumulation of ice in-flight on aircraft surfaces modifies the interactions
between the aircraft and the environment. For instance, ice accreted shapes change
the shape of the wing aerodynamic profiles and this influences the performance of
the aircraft. It is highlighted that ice accretion is always unwanted and it hinders its
operational performance and the safety. For this reason, aircraft must be effectively
protected against ice. This section will present an overview of the most important
effects of ice accretion on the performance and safety of the aircraft.

15.2.6.1 Fixed-Wing Icing Environment

Ice accumulates in all the aircraft surfaces that are exposed to the environment.
The study of the impact on the performance is crucial because of the number of
accidents which were proven to be caused by ice accretion in both ice protected and
unprotected aircraft [61]. The understanding of these effects supports the design of
better systems and the elaboration of more robust certification procedures.

The accumulation of ice, regardless of the severity, modifies the shape of
aerodynamic surfaces such as wings and stabilizers and therefore alters the flow
and the pressure distribution [62]. In the case of the aircraft wings it leads to a
dramatic increase in drag and a drop in lift. In addition, the maximum lift coefficient
decreases as well as the maximum angle of attack. The stall speed is also increased.
The change in shape experienced by the stabilizers, particularly the horizontal
stabilizer, decreases its critical angle of attack and reduces the amount of negative
lift it generates. This decreases its ability to compensate the nose-down pitching
moment which can undermine the aircraft stability [5]. Aircraft control surfaces
are located at the wings and stabilizers. The changes in the pressure distribution
over their surface alter the hinge moment and consequently the force required to
operate them. Furthermore, with the increased profile drag from ice accretion, a
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corresponding increase in power consumption is expected. The limitation of these
effects is crucial in the critical flight stages, which include take off, approaching,
and landing. In critical missions, the limitation of thrust available can cause severe
concerns and may not suffice to satisfy regulated margin of safety requirements.

Bragg [63] elaborated a high order model which physically represents the effects
of ice on aircraft flight. The value of any aircraft performance, stability, or control
parameter if ice has been accreted can be calculated as follows:

C(A),iced =
(
1 + ηicek′CA

)
C(A), (15.10)

where C(A) and C(A)iced represent any arbitrary performance, stability or control
parameter to be derived under the uniced and iced aircraft. ηice represents the
severity of the icing encounter and k′CA measures the aerodynamic effects of ice
accretion on the parameter of interest, which is constant for a given aircraft and
it is dependent on the presence of ice protection systems, on the geometry and
configuration of the aircraft and on the specific icing conditions. The severity
parameter depends on the collection efficiency, the accumulation factor, and the
freezing fraction that will be presented next. The freezing fraction represents the
type of ice that it is formed and it can be obtained as follows:

f = mass of water freezing

mass of water impinging
. (15.11)

Freezing fractions close to the unit represent rime ice formation, whereas values
close to zero correspond to no accretion. Then, the accumulation parameter Ac is a
non-dimensional parameter that corresponds to the width of ice that would accrete
over a flat plate placed perpendicular to the free stream over a time t . It can be
calculated as follows:

Ac = V∞ LWC t

ρicec
, (15.12)

where t represents the time and c represents the chord length of the airfoil and LWC
accounts for the liquid water content. The collection efficiency β will be explained
in more detail in the Sect. 15.3.3.2. It can be calculated as:

β = Mass of water droplets impinging

Mass of water in the body projected area
. (15.13)

The general form for the increase in drag ΔCD has the following general form:

ΔCD = Z1 AC β g(f ), (15.14)

where Z1 is a constant and the function g decreases linearly as f differs from
0.2, where it presents a peak. Since the curve is linearly dependent on Acβ
then the performance drop will increase over time if no ice protection system is
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deployed. The authors concluded that further considerations need to be included
into the model. Moreover, when ice accumulates in probes and in sensors, the
readings provided can be altered and this can provide misleading information about
the current flying situation. For instance, if ice accumulates in the outside air
temperature sensor, the reading will provide the temperature of the ice accreted
rather than the actual air temperature. Some other sensors are not designed to work
in icing conditions and the reading can be misleading and hinder the assessment of
the operating condition [11].

15.2.6.2 Rotating-Wing Icing Environment

Rotorcraft flight in icing environments is indeed a notoriously challenging phe-
nomenon in which the formation of the ice is inherently unpredictable. This, coupled
with the complex multi-body rotorcraft aerodynamics, makes it infamously difficult
to prognosticate, not to mention the extent of time required to do so. If such
a scenario occurs, the presence of ice on the blades of the main rotor can lead
to severely damaging consequences to the helicopters’ performance capabilities,
becoming a serious threat to flight safety [64] and the cause of several aircraft
icing accidents [4]. It can prompt drastic alterations to the geometry and increase
the surface roughness thus, resulting in the increase of drag, reduction of lift and
premature onset stall. These aerodynamic changes invariably have implications
on the helicopter stability, flight condition, power and torque characteristics, and
component loading [65, 66]. The buildup of ice on the rotor blades can also alter the
trim conditions due to disturbing the blades balanced weight as well as modifying
the inertia and aero-elastic properties of the blades themselves [60].

15.3 Modeling Ice Accretion

This section will discuss the various numerical methods used to compute an in-
flight ice accretion simulation described in Sect. 15.2. It will briefly describe the
development of the methods in order to obtain an accurate solution. An in-flight
ice accretion computation is conventionally performed using a multi-stage process,
including a feedback loop to iteratively update the iced geometry as shown [67]:

• Flow Solver: Used to determine the flow field around the aerodynamic body.
• Droplet Solver: Required for computing the water droplet trajectories for the

local and global collection efficiency.
• Ice Accretion Solver: Necessary to predict the final ice shape around the

aerodynamic body.
• Mesh Morphing: Implemented for updating the newly accreted iced geometry

into the flow solver.
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Fig. 15.6 Flowchart of the PoliMIce solver simulation depicting the process of an ice accretion
simulation taken from Gori et al. [60]

Gori et al. [60] provide an exemplary framework for in-flight icing simulations
displayed in Fig. 15.6. Here, the initial clean airfoil geometry is required to be
meshed. This geometry is then passed on to the aerodynamic solver where the
flow field is computed around the imported geometry. This work utilized the
multi-physics capabilities of both SU2 [68] and OpenFOAM [69] for this purpose.
These required data determining the flight and cloud information. The flow field
information is then passed onto the particle tracking software PoliDrop which
computes the trajectories of the water droplets. This allows the collection efficiency
to be calculated by counting the number of droplets collected in each cell. An
interface then links the collection efficiency data to the ice accretion software. The
ice accretion software PoliMIce [60] was then able to compute the new ice thickness
from the amount of liquid in each cell. The airfoil geometry is then updated by a
mesh morphing algorithm and fed back to the start of the process which repeats
itself for the extended period of icing.

15.3.1 Flow Field Determination

A precise modeling of the flow field around and on the aerodynamic surface and
growing ice shape serves two important purposes. The incoming flow field affects
the location of the impinging water droplets due to its influence on the particles
trajectories, while the viscous flow characteristics on the surface are imperative to
understand the convective heat transfer fluxes, which have a major impact on ice
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accretion rates. Physical phenomenon such as the transition of the boundary layer
as well as its detachment have an effect of the convective heat transfer fluxes. The
study of these factors should be carefully considered [6]. However, determining the
most accurate method for modeling the aerodynamic flow field in icing conditions is
under discussion. Ideally, the prerequisite for the solver should be that it is capable
of handling complex aircraft and ice geometries and complicated flows. Severe
ice accretion scenarios that present complex and large ice formations poses a big
challenge for the develompent of computational models. An example are the ice
horns such as the ones described in Sect. 15.2.3, pose large challenges for many
computational methods. The abnormally large and inherently irregular increase in
roughness also something that methods should be able to account for.

15.3.1.1 Flow Solver

Commonplace aerodynamic flow field prediction methods implement various ways
of modeling. Examples of these techniques are linear panel methods with integral
boundaries [70], interactive boundary layer representation [71] and Reynolds-
Averaged Navier-Stokes simulations (RANS) [72]. These metods present different
levels of complexity and accuracy. Precise predictions of flow features for a range
of geometries and flow conditions are a mandatory goal for flow solvers. For
icing purposes, the flow solver is required to reliably predict separation onsets
and progressions in highly curved surfaces [6]. With complex ice structures,
such as horns, this becomes very challenging. RANS simulations are the most
widespread modeling approach for fast and generally reliable predictions of flow
field. Reynolds-Averaged Navier-Stokes (RANS) equations require a turbulence
model. This decomposition of the Navier-Stokes equations into the RANS equations
introduces a set of unknowns called Reynolds Stresses, which are functions of
the velocity fluctuations and utilize a turbulence model for closure of the system
[73, 74]. The time-average Navier-Stokes equations of motion for a stationary,
incompressible fluid can be written as:

ρūj
∂ūi

∂xj
= ρf̄i + ∂

∂xj

[

−p̄δij + μ
(
∂ūi

∂xj
+ ∂ūj

∂xi

)

− ρu′iu′i
]

, (15.15)

where ū is the average velocity, u
′

are the velocity fluctuation values, ρ is the
density, f̄i are the surface forces, μ is the dynamic viscosity. Every turbulent flow
is unsteady. As the time-averaging of the RANS equations is based on a stationary
stochastic process, parameters such as mean and variance of the flow properties
change over time, this means that if the flow has a large scale periodicity such as
vortex shedding RANS cannot be used. Unsteady simulations like that of helicopters
during forward flight must hence use unsteady RANS computations to solve the flow
field while maintaining the use of turbulence models for closure.
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Each RANS simulation requires the correct turbulence model dependent upon
the properties and behavior of the flow. Ice accretion is highly sensitive to the
flow field thus, modeling it accurately is crucial. Moreover, with different types
of ice formation comes different flow characteristics and such is the case that one
type of turbulence model may not be appropriate for all icing scenarios. Some
models such as the Spalart-Allmaras turbulence model maybe a good compromise
between stability and accuracy, however, it may also over predict heat fluxes if
assumptions such as fully turbulent flow are made. Hence, understanding the flow
is essential to apprehend which turbulence model is best suited for accurately
simulating ice accretion. Dunn et al. [75] investigated large droplet ice shapes on
airfoil aerodynamics with the one equation Spalart-Allmaras turbulence model and
found that lift and drag predictions were in good agreement with the experimental
results of Lee et al. [76] until the point where the flow was fully separated. The
results worsened with increasing incidence and were ascribed to the turbulence
models inadequately in predicting the amount of entrainment in the shear layer. A
further study from Marques et al. [77] on the same experimental data from Lee
et al. [76] later found the discrepancies in the Spalart-Allmaras and the k − ω

turbulence models at high angles of incidence. It found that generally the k − ω
turbulence model under predicted the suction peak downstream of the ice shape and
both models demonstrate difficulties in capturing the correct suction levels upstream
of the ice shape.

15.3.2 Governing Equations for Multiphase Flows

Modeling the mass, momentum, and energy balance properties of the incoming
supercooled water droplets on a surface will now be discussed taking into consider-
ation the conservation of both mass and momentum. Aforesaid, the incoming liquid
may not instantaneously freeze upon impact but run downstream until freezing
in certain conditions, known as glaze ice. This process is strongly related to
the mass and heat transfer, surface roughness, skin friction, etc. over cells. The
freezing fraction over a control volume can be computed applying the first law of
thermodynamics with knowledge of the mass flux and a heat balance. This, together
with the droplet impingement rates are required to estimate the ice thickness.

15.3.2.1 Mass Balance

The ambient temperature determines the ice type. At low temperature Rime Ice
conditions dominate and the surface is effectively dry, as the water droplets freeze
on impact. At higher temperatures, however, Glaze is the primary source of icing.
At Glaze conditions, there are mass and energy flows on the surface of the airfoil
that should be accounted for. Consequently, the motion of the droplets on impact
as runback water is important. An illustration of a control volume impacted by
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Fig. 15.7 Schematic
illustration of mass balance
for a control volume

incoming water droplets is shown in Fig. 15.7, where the mass flow rate of water
running from one cell to another is allowed. This is typically computed from one
glaze cell to another, however, the modeling of mass transfer from a glaze to rime
cells has also since been established [78].

15.3.2.2 Energy Balance

Initially, it was assumed that once the droplet impingement characteristics were
established, the actual ice accretion process was governed almost exclusively by the
convective heat transfer at the surface [6]. This early formulation for ice accretion
was developed by Tribus et al. [79] in the late 1940s, before being developed further.
Now it is apparent that the energy balance of the system has to incorporate all the
possible heat fluxes, where an illustration of this is shown in Fig. 15.8. In terms
of aerospace icing applications the heat flux into the system includes: heat added
due to the latent heat of fusion, kinetic heating by the water droplets and viscous
or kinetic air heating. Conversely, the heat flux out of the system includes: heat
lost due to convection, evaporation, or sublimation and warming of the droplets.
These have to be calculated for each control volume. The surface boundary layer
has a strong influence on the heat transfer rates, for example, depending if the
flow is laminar, transitional, turbulent, or separated [6]. Subsequently, these flow
regimes are characterizations which strongly dependent upon the Reynolds number,
surface and importantly ice geometry, surface roughness, free stream turbulence
and in-flight pressure, and velocity conditions. Contributing to the concealed nature
of this complex phenomenon, the majority of tests are conducted with small
scaled models at relatively low Reynold numbers in wind tunnels. Even 2-D test
measurements have documented minimal increases in Reynolds number result in
significant increases in heat transfer rates over and just downstream of ice roughness
[80], where the heat fluxes here were primarily described by Messinger [81] in a
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Fig. 15.8 Illustration of the
heat exchange terms involved
in Messinger model
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model for solving the Stefan condition, which is now the basis of many ice accretion
solvers and will be later described during Sect. 15.3.4.

15.3.3 Droplet Solver

Computing the droplet impingement is the second step of an ice simulation process.
Once the flow solution is known, a droplet trajectory calculation is required to
determine the total collection efficiency, local collection efficiency, and impinge-
ment limits of the water droplets impacting on the aerodynamic body. The process
for simulating ice accretion occurs when aircraft penetrate a cloud containing
supercooled water droplets, freezing drizzle, or freezing rain. The fundamental
mathematical investigation of water droplet trajectories was developed by Langmuir
and Blodgett [82]. Since then, however, there have been various frameworks
implemented with a number of alterations such as Bourgault et al. [83] Eulerian
approach to supercooled droplets impingement calculations. The trajectory of a
droplet is ascertained by integrating a differential equation representing the force
balance on the droplet containing the inertial, drag, buoyancy, and gravitational
forces which are tracked from the incoming free stream until either impacting with
or bypassing the surface. Essentially there now remain two major difference in
paradigms when considering particle tracking being, the Eulerian and Lagrangian
approaches which will later be discussed in this section. There are also a number of
schemes available for the calculation of the collection efficiency from predetermined
particle tracks. All methods relate initial cross-sectional area of the droplet stream
tube to the area at impact on the surface. For the method described by Gent [84],
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where two-dimensional flow conditions are modeled, the process evaluates two
additional trajectories, each a small displacement either side of the trajectory. This
is the method used by LEWICE, FENSAP, and PoliMIce.

15.3.3.1 Eulerian and Lagrangian Specifications for Particle Tracking

Although several codes exist for simulating ice accretion, all have been developed
using different methodologies for solving the complex issue of icing, each with
their own strengths and weaknesses. The majority have either used Eulerian or
Lagrangian particle tracking frameworks to model the physics of ice accretion.
FENSAP-ICE solves the particle governing equations using an Eulerian approach
[59], meanwhile PoliMIce [60] and ONERA [58] use a Lagrangian particle tracking
solver to compute the droplet trajectories. In classical field theory the Lagrangian
specification of the field is a way of looking at fluid motion where the observer
follows an individual fluid parcel as it moves through space and time [85]. The
position of particles through time gives the path line of these particles. These fluid
particles have mass, momentum, internal energy, and other properties. Mathematical
laws can then be written for each fluid particle. The Eulerian paradigm of the flow
field is a way of looking at fluid motion that focuses on specific locations in the space
through which the fluid flows as time passes [85]. In the Eulerian specification of a
field, it is delineated as a function of position, x, and time, t . For instance, the flow
velocity can be characterized by a function,

u(x, t). (15.16)

On the contrary, with the Lagrangian paradigm, individual fluid parcels are followed
through time. The fluid parcels are denoted by a time-independent vector field, x0.
More often than not x0 is described as being the center of mass of the parcels at
some initial time, t0 to account for the possible changes of shape over time. Hence,
the center of mass is a good parametrization of the flow velocity, u of the parcel. The
flow given by a Lagrangian specification is described by the following function. This
gives the position of the parcel labeled x0 at time t .

X(x0, t). (15.17)

Both Eulerian and Lagrangian flow specifications are related as each side describes
the velocity of the parcel denoted x0 at time t .

u(X(x0, t), t) = ∂X

∂t
(x0, t). (15.18)
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Fig. 15.9 Lagrangian and
Eulerian specification of a
flow field. (a) Lagrangian. (b)
Eulerian

The Lagrangian and Eulerian specifications of the kinematics and dynamics of the
flow field are associated by the material derivative. In relation to acceleration it can
be expressed as,

Dv
Dt︸︷︷︸

Lagrangian acceleration

= ∂v
∂t︸︷︷︸

Eulerian acceleration

+ v · �v︸ ︷︷ ︸
Material derivative

(15.19)

The Eulerian method accounts for the effects of diffusion and is better suited for
problems that involve interfaces such as shocks and rarefaction fans. Albeit the
Lagrangian formulation is highly able to be parallelized since all particles are
advected independently and is easier to develop higher-order methods. A schematic
view of these two approaches is depicted in Fig. 15.9.

15.3.3.2 Collection Efficiency

The collection efficiency is ratio of mass flux of droplets impinging on the
surface to the mass flux at the free stream. A schematic view of the collection
efficiency is depicted in Fig. 15.10. The collection efficiency is vitally important
for understanding the ice accretion rates. In 3D the collection efficiency β can be
expressed as,

β = dA∞
dAi

, (15.20)

where dA∞ is the symbolic form of the free stream area of the droplet flux tube
and dAi is the notation for the impacted area on the surface of the droplet flux
tube.
Values of collection efficiency can range between 0 and 0.8, where the lower limit
represent a clean surface and the upper limit represent high rates of ice accretion
around the stagnation points. Whether a droplet does or does not impact the surface
depends on the ratio of the inertia to the aerodynamic forces on the droplet. The
collection efficiency is influenced by many parameters, however, small streamlined
geometrical designs such as the short chord length and small leading edge radius



15 In-flight Icing: Modeling, Prediction, and Uncertainty 483

Fig. 15.10 3D Schematic
defining the total and local
collection efficiency [12]

induce high rates of ice accretion and are to be avoided if possible [12]. This,
however, is not always possible, for instance, helicopter rotor blades which require
a relatively short chord length making them particularly susceptible to icing.

15.3.4 Unsteady Ice Accretion

Calculating ice accretion is the final stage of the simulation process. Various
complexities of ice accretion models will be discussed, mentioning how they have
been developed beginning with their early stages through to the current methods
used today. Their influencing parameters such as the outside air temperature,
altitude, crystal bouncing, droplet size, liquid water content and rime and glaze icing
types will also be discussed with how they affect the severity of icing.

15.3.4.1 Development of Ice Accretion Models

Likewise with the different frameworks, different complexities of ice accretion
models exist. The first mathematical formulation of the liquid water-ice two-phase
problem was given by J. Stefan in 1889 describing the phase changes of physical
systems. This was later relevant in aeronautical applications with Messinger’s
proposed formulation of Stefan’s problem in 1953 [81]. More recently, Meyers
developed a formulation which better accounts for the two different mechanisms
associated with rime and glaze ice formation in 2001 [86].

15.3.4.2 The Stefan Problem

The Stefan problem is a set of four partial differential equations describing the
evolution of a single-component two-phase system during a phase change. Its
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Fig. 15.11 Elementary cell
for the discrete ice problem.
The cell reference system is
also depicted. Over each
elementary cell composing
the entire surface the Stefan
problem is solved

complete solution gives the temperature distribution within the solid (T ) and the
liquid layers (ϑ), the height of the ice layer (h), and the thickness of the water layer
(B). This kind of problem belongs to the family of the so-called moving-boundary
problems as the position of the solid-liquid interface is unknown and depends on
the time and on the solution itself. Considering the reference system in Fig. 15.11,
one-dimensional Stefan problem can then be expressed as,

⎧
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, (15.21)

where ρ corresponds to the density, K is the thermal conductivity, and C is the
specific heat. Moreover the subscripted index s and l stands for the solid and the
liquid phase and the z coordinate is aligned along the normal of the surface. ṁin
and ṁout are the runback water mass fluxes to the control volume.

The first and second equations described in Eq. 15.21 represent the heat diffusion
within the solid and the liquid phase, respectively. The third equation explains the
continuity relationship and enforces the mass conservation law. While the fourth
term is the so-called Stefan condition and it is an energy balance relating all the
heat fluxes involved in the phase change at the solid-liquid interface. It ensures that
the latent heat caused by the phase change is equal to the net flux of heat from and
towards the upper and the lower layers.
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15.3.4.3 Messinger Model

Messinger model [81], proposed in 1953, suggested an analysis of the equilibrium
temperature reached by an unheated surface in several icing conditions. It was
based on the energy balance between the water (or ice) layer and the atmosphere
surrounding the surface and where it solves only the Stefan condition in Eq. 15.21
which can be rewritten as,

Q̇l = Q̇c + Q̇e + Q̇d − Q̇k − Q̇a. (15.22)

The heat fluxes involved in the phase change process, Q̇l , in Eq. 15.22 are: the
heat entering related to air friction, Q̇a , the heat entering related to droplet kinetic
energy, Q̇k , the heat exiting related to convection, Q̇c, the heat exiting either from
evaporation (glaze regime) or from sublimation (rime ice), Q̇e, and the heat exiting
related to the droplet latent heat, Q̇d .

15.3.4.4 Myers Model

Myers model is an extension of the original Messinger model previous outlined,
where it takes into account the conduction of the heat in the ice layer. The hypothesis
introduced by Myers can now be simplified under the following assumptions: The
physical properties of ice and water do not depend on the temperature; the substrate
is at constant temperature, usually assumed to be equal to the air temperature for
aerodynamic purposes; the phase change from the water to ice occurs at a specified
fixed temperature, assumed to be the freezing temperature; droplets are in thermal
equilibrium with the surrounding air, so their temperature is supposed to be equal to
the air temperature; the temperature profile in both the ice and water layers can be
approximated as a linear function of the distance from the substrate and in aerospace
applications the water layer is usually assumed to be isothermal due to the very small
thickness. The simplified Stefan problem can thus be written with the following
assumptions as,
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In his formulation, Myers introduced the so-called rime limit thickness Bg as a
criterion for the selection of the proper accretion law, thus allowing for a smooth
transition between the rime and the glaze regimes.

The heat flux can be observed from Fourier’s law as the thermal conductivity
times the temperature, where its derivative at the phase changing interface under a
steady temperature profile in the ice layer can be approximated as,

∂2T

∂z2
= 0. (15.24)

Confined to the glaze regime, this is associated with the subsequent linear tempera-
ture profile within the ice layer,

T (z) = Tf reezing − Twall
B

z+ Twall (15.25)

thus leading to,

Q̇down = Ki ∂T
∂z

= Ki Tf reezing − Twall
B

. (15.26)

The ice accretion law for the rime regime can therefore be wrote as,

Rime :
∂B

∂t
= βLWCV∞

ρri
. (15.27)

The ice accretion law for the glaze regime mean while reads,

Glaze :
∂B

∂t
= 1

ρgiLF
(Q̇down + Q̇up), (15.28)

where Q̇down and Q̇up are the heat fluxes exchanged between the phase changing
interface and ice and water or air, respectively. The rime ice limit thickness
describing the condition at which the glaze regime can first appear, and hence the
first instant at which water begins to accumulate on the surface can now be defined.
It is calculated using the Stefan condition and the mass conservation law in which
the water height is set to zero and is given by,

Rime limit thickness : Bg = A Ki (Tf reezing − Twall)
A LF β LWC V∞ − Q̇up

. (15.29)

In this model of Myers, the ice accretion laws can be governed by:

• B < Bg or Bg < 0 : the rime ice accretion law is used,
• B > Bg : the glaze ice accretion law is used.
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15.3.4.5 An Improved Myers Model

A new modified Myers model derived from the Stefan problem introduced by
Parma et al. [78] explicitly accounts for the mass flux related to sublimation. Here,
an improved method of describing the liquid film flow above the ice surface is
introduced; permitting not only water flowing from one glaze cell into another
adjacent glaze cell but also mass transfer from a glaze to a rime cell. This ensures to
maintain the mass transfer criterion. To model this mass transfer an additional term
is included for rime ice accretion.

Finally, the third modification concerns the description of the heat diffusion
problem through the ice phase in the glaze regime. It introduces a modification in
the temperature distribution within the ice layer which better respects the hypothesis
of the high thermal conductivity of the wall. The linear temperature profile is
replaced by an assigned parabolic shape function, namely T (z) = a√z + b, where
a and b are two coefficients defined by the boundary conditions T (0) = Twall and
T (B) = Tf reezing to obtain,

T (z) = Twall + Tf reezing − Twall√
B

√
z. (15.30)

The new modified model for the ice accretion law for the rime regime hence reads
as,

Rime :
∂B

∂t
=

[
ṁd + ṁin − ṁs

Aρri

]

, (15.31)

where ṁd accounts for the mass rate of impinging droplets, ṁin is the runback water
mass rate coming into a control volume, and ṁs is the mass rate lost due sublimation.
A modified ice accretion law for the glaze regime is defined as,

Glaze :
∂B

∂t
= 1

ρgLF

[

Ki
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2B
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A

]

,

(15.32)
where the limiting thickness can now be defined as,

Rime limit thickness :
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)

2
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s

)
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Q̇c + Q̇s + Q̇d − Q̇k − Q̇a

)] .

(15.33)
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15.3.4.6 An Unsteady Ice Accretion Model

A model based on the exact solution of the Stefan problem accounts for the unsteady
glaze ice accretion which closely follows the Myers formulation. As previously
discussed in aeronautical working conditions the water film is very thin, thus
justifying the assumption of infinite conduction through the water. The temperature
of the liquid film can then be assumed as approximately constant and equal to the
freezing temperature of water. Dirichlet boundary conditions are then imposed on
the supposedly infinitesimally thin water layer resulting in the water layer being
discarded from the Stefan problem which reduced to,
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An unsteady exact solution of this Stefan problem then uses a similarity approach
in order to determine the temperature profile in the ice layer and the glaze ice
accretion rate. A similarity approach requires that the boundary conditions which,
in this case, the temperature of the wall and at the ice-water interface are specified.

This yields the exact glaze ice temperature profile,

T (z, t) = Twall +
(
Tf reezing − Twall

) erf
(

z
2
√
αi t

)

erf(λ)
, (15.35)

where λ and α are reduction variables. The solution here is not well defined as
it depends on the interface position B(t), which is still unknown. This is as the
parameter B(t) appears as a function of the parameter λ. In order to close the
problem the Stefan condition is applied and a procedure to calculate the derivatives
of the temperature and of the position of the ice-water interface is formulated. The
derivatives of the Stefan problem are hence required to be calculated and the Stefan
condition is recalled for convenience,
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. (15.36)

The calculation of the temperature gradient in the water layer at the interface
requires initially to analyze the thin film approximation as previously discussed.
The final form of the temperature gradient at the water-air interface is,
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= H̄1(Tf reezing − T∞)+ H̄2(Tf reezing − Tlocal)− (Q̇aw + Q̇k)
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(15.37)

= Q̇
(n)
up

Kw
, (15.38)

where H̄1 = (H̄aw + χe0), being Haw is the convective heat flux and χe0
are a proportionality factor for evaporation, and H̄2 = β LWC V∞ Cw.
Alternatively from Myers formulation, the heat fluxes expressing the heat exchanged
by convection and by evaporation at the water-air interface, Q̇aw, include the local
temperature, Tlocal , of the airflow outside the boundary layer instead of the free
stream temperature.

The calculation of the temperature gradient in the ice layer at the interface is
evaluated at z = B(t)− , leading to the temperature gradient at the ice-water
interface which is given by,
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The calculation of the ice accretion rate from the exact temperature solution requires
an iterative procedure such as, the Newton-Raphson method for it to be solved. This
is as the ice accretion rate is a function of λ. For time t = tn it takes the form,
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(15.40)

15.3.5 Mesh Morphing

It is recognized that ice accretion is an inherently unsteady phenomenon. Multi-shot
approaches have hence been used to observe ice shape features more accurately over
heuristically prescribed time intervals. During these time intervals a feedback loop
is incorporated consisting of a mesh morphing process which iteratively updates
the newly iced geometry and passes this information back into the flow solver for
the following time step calculation. Mesh morphing uses complicated algorithms to
calculate the deformed geometries and these may depend whether the components
are stationary or moving. The different algorithms that may be favored for each will
now be described:

1. Stationary components: May use algorithms to deform and move the mesh at
each time step. Since the deformations caused to the surface geometry from icing
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are slight robust and expensive algorithms are not required. More cost-effective
methods can hence be used like those based on the Laplacian operator, such as
the spring or elastic methods [87].

2. Moving components: May use algorithms to continuously stitch the mesh. Here
two grid domains are considered: The first being fixed around the stationary
object, for example, the fuselage and the second rotating with the moving
components, for example, the blade. The domains are then separated by a small
gap in space which is constantly being re-meshed or stitched with tetrahedral
elements. Stitching algorithms may be based on simplified advancing front
techniques [88].

Mesh deformation algorithms such as these, however, usually require solving
a system of equations which can become computationally intensive for complex
three-dimensional applications. For aircraft icing simulations this can become
problematic. PoliMIce hence implements an explicit mesh motion algorithm based
on Inverse Distance Weighting interpolation [89], which does not lead to solving a
system of equations. This results in a much faster mesh motion algorithm which
is much easier to implement. An example of this Inverse Distance Weighting
interpolation implemented by PoliMIce can be shown in Fig. 15.12. Numerically
this can be described by the interpolation function u(x) where u is the interpolated
value at a given point x based on samples ui = u(xi) for i = 1, 2, ..., N and is given
by,

Fig. 15.12 Inverse Distance Weighting interpolation algorithm used to acquire the newly formed
iced geometry in PoliMIce [60]. Here, the airfoil surface remains unmeshed while the original
undeformed mesh follows it closely represented by the lighter lines. Once the surface is iced,
however, the mesh deforms to follow the new profile and is represented by the darker lines



15 In-flight Icing: Modeling, Prediction, and Uncertainty 491
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(15.41)

where wi(x) = 1

d(x, xi)p
is a weighting function as defined by Shepard [89] and

d(x, xi) represents the distance between the points x and xi .

15.3.6 Numerical Results

The numerical results of the different fidelity levels of ice accretion simulations
will now be compared against experimental data. These will also be displayed
throughout the different ice regimes where different ice shapes are present and for
large ice accretion time. Gori et al. [60] have demonstrated this with results from
the PoliMIce solver resembling closely to experimental data.

The first simulation was on a symmetric NACA0012 airfoil at zero angle of
attack. The test conditions here were to assess icing during the rime ice regime and
representative of winter conditions at low altitude. The results from this are shown
in Fig. 15.13 and compared against that from the LEWICE code, the Myers model,
and experimental data from Ruff et al. [90].

The second simulation was conducted with an angle of attack of 4◦ during
the glaze ice regime and is shown in Fig. 15.14. This was also on a symmetric
NACA0012 airfoil, however, the angle of attack now meant that the ice formation
was not symmetric. It used the same experimental data [90].

Fig. 15.13 Comparison of both PoliMIce and LEWICE solvers and Myers model against experi-
mental ice accretion shapes during the rime ice regime on a symmetric NACA0012 [60]
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Fig. 15.14 Comparison of both PoliMIce and LEWICE solvers and Myers model against experi-
mental ice accretion shapes during the glaze ice regime on a symmetric NACA0012 with an angle
of attack of 4◦ [60]

Fig. 15.15 Comparison of the PoliMIce solver and NASA IRT experimental ice accretion shapes
at a long icing time on a GLC-305 airfoil at an angle of attack of 6◦ [60]

The third simulation was conducted over a long period of time meaning the ice
thickness is large and is shown in Fig. 15.15. This simulation was compared against
the experimental results presented by Addy et al. [91] in the NASA IRT wind tunnel
facility. This simulation was conducted on a non-symmetric GLC-305 airfoil at an
angle of attack of 6◦.

15.4 Ice Protection Systems and Certification

The accretion of ice over aircraft surfaces has been found as a major hazard for
the performance and safety of aircraft as it was presented in the Sect. 15.2. The
UK’s Civil Aviation Authority [10] encouraged the pilots to have a clear situational
awareness to avoid or minimize the exposure to icing conditions. However, in some
occasions the exposure is unavoidable and consequently it is crucial to equip aircraft
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with ice protection systems. Nowadays most of the aircraft include ice protection
systems (IPS) to minimize the impact caused by the encounter of icing conditions
in-flight.

Ice protection systems are deployed into aircraft to delay or to remove any
ice accumulation on its surface and its components and therefore to maintain
the performance and safety. The IPS can be classified into anti-icing or de-icing
depending on whether they allow the ice to build on the aircraft. Anti-icing systems
prevent the formation of ice, whereas de-icing technologies remove the already
formed ice. They are implemented in several critical parts of the aircraft which are
susceptible to build ice, such as the wings leading edge, the leading edge slats,
the stabilizers, the engine nacelle, the wind screens, and the sensors [92]. Different
technologies can be combined within the same aircraft for accomplishing the most
convenient holistic protection. In this section, first the most mature IPS technologies,
which are widely implemented [93–95], will be presented. Those can be classified
into pneumatic thermal, de-icing boot, chemical, and electrical. Then, new IPS
technologies will be briefly described and finally the regulations for certification
to flight on icing conditions will be introduced.

15.4.1 Mature Protection Technologies

15.4.1.1 Pneumatic-Thermal Protection

This technology is widely used and it has been deployed in numerous commercial,
defense, and business aircraft from different manufacturers such as Airbus A320
[93], Bombardier Challenger 300 [96], or Piaggio p.180 Avanti II [97]. Aircraft
engines contain bleed air ports where pressurized hot air can be conveniently
extracted from the compressor. A schematic view is presented in Fig. 15.16. The air

Fig. 15.16 Schematic view
of a wing with a thermal
anti-icing system. Source:
FAA Aviation Maintenance
Technician Handbook [92]
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Fig. 15.17 Capture of
runback ice occurring
downstream the ice protection
systems. Source: NASA

stream is rooted through pipes, manifolds, and valves to the required protected areas
from leading edges or slats, stabilizers, and engine lips. The hot air is injected into a
perforated pipe called piccolo tube (De-icing air duct in Fig. 15.16). The pressurized
air moves across the perforations which are directed to the areas intended to be
protected, heating the outer surface and melting the ice. In the case of the leading
edge, it includes an inner skin layer through which the bleed air can escape after
heating the surfaces. In addition, a temperature control is included together with an
air intake to regulate the temperature within the leading edge. The availability and
quality of bleed air depends on the power required by the engines and their size
[98]. Thermal ice protection can be used as an anti-icing or de-icing technology
depending on if it is activated before or after the ice is built.

Several research efforts focused on the mathematical modeling of those systems
and their implementation of numerical models [99]. The protected areas are limited
and when the formed ice is melted, the water runs downstream driven by the
aerodynamic forces forming rivulets [100]. Since the temperature of the aircraft
surfaces can be below freezing, the water might freeze aft in unprotected areas, and
this can compromise the reliability and performance of the aircraft. The so-called
runback water from anti-iced aircraft surfaces has been investigated [101, 102]. An
example of a runback ice formation is depicted in Fig. 15.17. To mitigate the risk
of freezing downstream some thermal protections systems are designed to fully or
partially evaporate the impinging water. However, this technology requires a large
energy consumption.

15.4.1.2 De-icing Boot Protection

This technology was first developed in 1930 [61], consequently it is a mature and
proven technology. These systems are widely implemented in several commercial
and business aircraft such as the Saab 2000 [95] and the TBM700 from Socata
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[103]. They are commonly deployed near the stagnation point on the leading edges,
stabilizers, and propeller wings. The boots are normally oriented spanwise [104],
although they can be deployed chord-wise or in certain critical surfaces. De-icing
boot IPS consist of a set of sudden inflatable rubber boots positioned in the protected
surfaces which are cyclically inflated and deflated according to the protection needs.
They are de-icing systems because they remove an already formed layer of ice
from the surfaces where they are implemented. Depending on the type of aircraft,
boots are inflated with bleed air from the engines or an additional pneumatic system
is included for that purpose [104]. Following the rupture of the ice, aerodynamic
forces completely remove the ice from the surface [105]. The boots are made out of
rubber and they require a supply of vacuum to avoid self-inflation. To improve the
performance of these systems, chemical solutions that reduce the ice adhesion to the
boot can be sprayed over the rubber boots.

Their activation time is critical. The more ice is accumulated in the surface, the
more effective the system is. However, a compromise in performance and safety
is to be found. In addition, late activation was claimed to cause the Comair flight
3272 fatal plane crash in 1997 [106]. An example of this technology is depicted
in Fig. 15.18. Early activation of the boots it is a more conservative approach
although it could cause “bridging.” Bridging occurs when ice dampens the sudden
forces and remains attached. Nevertheless, this issue was solved by increasing the
inflation pressure and letting a small layer of ice to accumulate. Residual ice can
remain attached to the surfaces after the inflation and deflation of the boot which is
eliminated in the subsequent cycles [61].

One of the drawbacks of the technology is the degradation of the rubber boots and
consequently of the performance caused by interaction with extreme environmental
conditions, such as very low temperatures, UV radiation, and atmospheric moisture.
Therefore, very frequent maintenance and replacement is mandatory to ensure
reliability and adequate performance. Current research is focused on materials with
enhanced resistance to environmental factors.

Fig. 15.18 Pneumatic
de-icing boot system attached
to a wing leading edge.
Source: Wikipedia
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Research in the field of de-icing boot system was conducted to characterize the
effects on aircraft performance of the residual and inter-cycle ice [107, 108]. For
instance, Broeren conducted an experimental study based on wind tunnel tests using
airfoils equipped with de-icing boots. The study concluded that the effects of the
inter-cycle ice in the test conditions are more severe in terms of drag increase, lift
decrease, and stall angle reduction than those of the residual ice after operating the
de-icing boots. Plus, the authors observed that a little amount of ice was left on the
airfoil after the inflation and deflation of the boots.

15.4.1.3 Thermo-Electric protection

These systems use the heat generated by an electric current going through a resistive
component. The resistor component can present different schemes such as internal
coil wires, externally wrapping blankets, tapes, conductive films, and heating rods.
This technology has been implemented on the wing of the Boeing 787 [109]. They
can be anti-icing systems if they do not allow the ice to build up or de-icing that
operate when a layer of ice has been formed. De-icing systems break the adhesion
between the surface of the aircraft and the built layer of ice. In a similar manner
as the thermo-pneumatic systems, the electric ice protection systems can run fully
evaporative or wet runback [110]. In the former approach, the impinging water is
rapidly evaporated when impinging on the protected surfaces. In the latter approach,
the ice is melted and the runback water is driven downstream by aerodynamic
forces. The evaporative systems, however, require a larger power consumption. The
resistive components can be mounted inside or outside the protected element or they
can be built into it. This is the preferred method for the protection of rotorcraft [111]
because it presents the best fit to the design, due to the relatively small thickness
of the blades. In addition, electric protection means are implemented in the vast
majority of aircraft to protect probes from icing such as the Pitot tube or the angle of
attack probes [93, 94, 96, 97, 103]. Since the probes are usually small protuberances
from the aircraft surface, they are very susceptible to ice.

Numerical and mathematical models [112, 113] have been developed in order
to increase the understanding of the performance of the protection systems and to
accurately predict the effects. The goal is to forecast possible effects and to help
on the design of more effective ice protection systems. Moreover, some authors
investigated the use of new conductive materials to improve the efficiency of the
systems and the combination of thermal-electrical systems with super-hydrophobic
coatings to decrease the energy consumption [28]. Also, layers of carbon nano-tubes
have been investigated due to their electrical properties such as high current density
and low heat capacity [114].
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Fig. 15.19 Micro-perforated
leading edge of an aircraft
protected with chemical
anti-icing system Source:
Wikimedia commons.
Source: Wikimedia commons

15.4.1.4 Chemical Protection

This technology was also deployed in the Hawker 800XP from Raytheon [94].
Chemical systems are usually implemented to protect leading edges of the wings,
stabilizers, wind shields, and propellers. These solutions (mainly glycol based
[115]) are flushed into the protected areas to reduce the fusion temperature of
water. They can be used as anti-icing or de-icing systems depending on if the
solution is distributed before or after the ice formation. When operating in de-icing
mode, the solution breaks the adhesion of the ice from the aircraft surface which
is then removed by aerodynamic forces. When operating in anti-icing mode, the
solution prevents the liquid droplets to freeze so the water is advected downstream
by aerodynamic forces. In the case of the leading edge, a micro-perforated panel
is attached to/ built into the leading edge whose perforated diameters can measure
63 μm [104]. Behind the panel there is a reservoir created by a back panel where the
solution is stored within an external tank and it is pumped by means of an electrical
pump. A membrane is attached to the porous surface to evenly distribute the solution
over the surface of the porous material. When the system is activated, the solution is
pumped to the reservoir and distributed outwards through the micro-perforations.
In Fig. 15.19, one can see a micro-perforated leading edge of an aircraft wing.
These systems are known as wiping wing or TKS in reference to the trade mark
of the systems. One of the drawbacks is that the aircraft protection is dependent
on the availability of the solution, that is when the solution is finished the aircraft is
unprotected. In addition, the tank and the solution increase the weight of the aircraft.

15.4.2 Alternative Protection Technologies

The described mature ice protection systems present several drawbacks. There
are alternative technologies available and under development which are meant
to provide more reliable and cost-effective solutions. These technologies take
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advantage of special properties of the materials or physical principles. Regarding
the special properties, super-hydrophobic materials are investigated for anti-icing
and de-icing purposes to decrease the adhesion of the impinging droplets on
aerodynamic surfaces [116]. In addition, graphite is studied as well due to its
high thermal inertia [117]. Furthermore, shape memory alloys change their shape
when energy is supplied to them, generally external heating. This property has
been exploited to crack a surface of ice in a similar manner as the de-icing boots
[117]. Electromagnetic forces have been investigated to induce sudden motions on
elements that hit the protected surface and detach the ice [118]. These forces are
investigated to modify the shape of a surface in a similar manner as the shape
memory form alloys [117]. Finally, ultrasounds are under investigation [119]. Sound
waves are used to create stress on the layer of ice and to detach it from the surface.

15.4.3 Regulations and Certification

The regulations related to ice accretion seek to ensure the safe and reliable
operation of aircraft equipped with ice protection systems when those are exposed
to atmospheric icing conditions. On another note, an ice envelope consists of a
combination of atmospheric parameters that describe an atmospheric icing scenario
such as LWC, MVD, and OAT and cloud length. Certification for aircraft effective
protection against icing effects is attained by ensuring the aircraft can fly safely
through a predetermined set of icing envelopes. Next the most relevant regulations
and certifications are presented.

15.4.3.1 FAA Code of Flight Regulations

The American Federal Aviation Administration (FAA) belongs to the U.S. depart-
ment of transportation whose mission is to ensure fast, safe, reliable, and efficient
transport. Within the FAA, the Aviation Safety department (AVS) is in charge of
elaborating regulations for the certification of commercial and civil aircraft, namely
Code of Federal Regulation (CFR). The regulations for flight in icing conditions
can be found in the section 25 of the chapter 14 of the CFR. The Appendix C of
this section presents a range of icing envelopes that aircraft should be protected to,
which are divided into two:

• Continuous maximum icing: Set of icing envelopes which characterize long dura-
tion encounters found when aircraft fly through stratiform clouds. These clouds,
as presented in the Sect. 15.2.1.1, generally present low liquid water content
and largely extend in the horizontal direction. The values of the atmospheric
parameters can be found from the graphs depicted in Figs. 15.20 and 15.21, for a
reference cloud length of 17.4 nautical miles. In addition, on the regulation one
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Fig. 15.20 Atmospheric
icing conditions for
continuous maximum
exposure. Outside air
temperature (OAT) and
pressure altitude. Source:
FAA Regulations

Fig. 15.21 Atmospheric icing envelops for continuous maximum exposure. Mean Volume Diam-
eter (MVD), Liquid water content (LWC), and Outside air temperature (OAT). Source: FAA
Regulations
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can find an additional a procedure to extrapolate the icing envelopes to any cloud
length.

• Intermittent maximum icing: Icing envelopes that characterize severe short
encounters occurring when the aircraft flies through cumulus clouds. Cumulus
clouds extend vertically and commonly contain high liquid water content. Large
amounts of ice accreted on the surface of the aircraft are expected. The values
of the atmospheric parameters can be found in the regulations code which are
analogous to Figs. 15.20 and 15.21.

In addition, Appendix C presents aircraft operation stages that must be studied
from the icing effects point of view. To reduce the number of tests required while
ensuring the protection under all the envelopes, it is accepted the study of the most
critical conditions. The Appendix O includes SLD icing envelopes for droplets
larger than 40 μm in a similar manner as it was presented in Figs. 15.20 and 15.21.
The icing envelopes include freezing drizzle and freezing rain conditions, which are
found when an aircraft is flying through or below a stratiform cloud. The fulfilment
of the protection against SLD is critical since the SLD accretions have been claimed
the cause of aircraft crashes.

To attain certification to fly in icing conditins, an aircraft must be able to “safely
operate” in both maximum continuous and intermittent conditions and in freezing
rain and drizzle. The full description of the conditions is described in Sections
25.1419 and 25.1420. The “safe operation” should be ensured in all the phases of
flight, including take off, holding, descent, landing and go-around. This must be
assessed by in-flight or laboratory test of aircraft, parts or models exposed to the
critical ice envelopes presented in the Appendices C and O. In these tests, the ice
protection systems must be operated according to the operations flight manual and
ice detections systems or procedures must be available. Additionally, in the case of
SLD ice encounters, the aircraft must be able to safely exit them.

Snow and mixed icing conditions are included in a set of envelopes presented in
the appendix D to Part 33. Those are defined by the altitude of the encounter, the
total water content (TWC) in g/m3, and the ice crystal size median mass dimension
(MMD). Section 25.1093 states that the aircraft must be able to operate in all the
envelopes presented in Appendixes C, D, and O and in the presence of falling or
blowing snow. In addition, the aircraft design must ensure the avoidance of ice
accumulations that lead to faulty engine operation, loss of power or stall.

15.4.3.2 EASA Certification Specifications

The European Aviation Safety Agency (EASA) is accountant for all the European
civilian aviation safety. Among their missions is the aircraft certification for all
the state members and collaboration with other international agencies to promote
worldwide standards and achieve the highest safety level. The corresponding
certification department developed a set of regulations to ensure aircraft reliability
and safety when encountering icing conditions, which is described in section 25.
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The European regulations are found to be analogous to the FAA ones presented in
the Sect. 15.4.3.1. The icing envelopes are presented in appendices C, D, and O and
the regulation and certification it is described in the sections 25.1419, 25.1420, and
25.1093.

15.5 Concluding Remarks

An overview of the in-flight icing phenomena has been presented, including its
physics, research methods, and ice protection systems. Within the research methods
the replication of ice shapes, whether experimental, numerical, or analytical is sub-
ject to uncertainties. Input data for models gathered in-flight presents uncertainties
related to the accuracy of the measuring devices. For instance, the error of the King
probe, which measures the cloud mean volume diameter, can reach up to 30%.
Although the technology of the measuring devices has evolved, some published data
was gathered in field campaigns several years ago. This data still needs to be used
since, in some cases, it is the only data available. It has been used for validation
purposes to replicate icing shapes, as model inputs or to elaborate regulation to
derive possible existing icing envelopes. The uncertainties need to be addressed, to
measure their individual and overall effect on the discrepancies between models and
real phenomena.

Physical reproduction of in-flight icing phenomena in icing tunnel tests presents
also uncertainties related to the replication of actual airflows and cloud properties.
The cloud-related uncertainties are also applicable to in-flight tests in which the
studied aircraft is preceded by a water tank that sprays water droplets. It was found in
literature that the replicability of the same icing test could reach up to 30% in some
cases, when ideally it should be 0%. Some of these uncertainties can be reduced
by further testing, regular calibration of the devices and retrofitting facilities and
devices, however, this implies further efforts.

There has been a huge progress on the numerical modeling of in-flight icing as
it has been presented in the part Sect. 15.3. Some of the numerical models present
really good agreement with experimental results. However, additional studies are
required to capture intricate ice shapes. Further work would entail the quantification
of the uncertainties in model inputs and in analytical and numerical models
themselves to assess the global uncertainty of the results. Then, the uncertainties
could be rated depending on their importance in the overall uncertainty of the results
and further efforts could be conducted in the reduction of the largest epistemic
uncertainties. In addition, input and model uncertainties could be propagated
through the models to predict the uncertainty of the modeling results and elaborate
more robust predictions. Improved capture of the in-flight icing phenomena can lead
to the design of more robust ice protection systems, which can ensure safety still in
a more efficient manner.
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Chapter 16
Uncertainty Treatment Applications:
High-Enthalpy Flow Ground Testing

Anabel del Val, Olivier Chazot, and Thierry Magin

Mach number is like aborigine counting: one, two, three, four,
many. Once you reach many, the flow is hypersonic.

H. K. Beckmann

Abstract In this chapter, the operating principles of two major types of high-
enthalpy facilities are reviewed. Both groups of facilities are complementary to
reproduce high-speed flows and high thermal loads. The description focuses on the
main elements and basic functioning of these wind tunnels, as well as the mea-
surement techniques involved, including an analysis of experimental uncertainties.
The physico-chemical models are then introduced and explained in detail giving an
account of the complexities facing uncertainty quantification methods applied to this
particular system. Computational tools to simulate flow conditions in inductively-
coupled plasma facilities are described in detail providing mesh examples of the
different fields involved. Finally, conclusions and remarks concerning uncertainty
quantification challenges for atmospheric entry flows are discussed with special
emphasis on the multi-physics and high-dimensionality aspects of the system. A
recount on the state of the art on safety margins is given as well.

Keywords High-enthalpy flows · Uncertainty quantification · Atmospheric
entry · Ground testing

16.1 Atmospheric Entry: A Complex Problem

After the successful crewed missions to the Moon and many probe entries into
the atmosphere of outer planets, the next challenges of space exploration include
bringing samples back to Earth by means of robotic missions, as well as continuing

A. del Val (�) · O. Chazot · T. Magin
von Karman Institute for Fluid Dynamics, Rhode-St-Genèse, Belgium
e-mail: delvalbeni@vki.ac.be; chazot@vki.ac.be; magin@vki.ac.be

© Springer Nature Switzerland AG 2021
M. Vasile (ed.), Optimization Under Uncertainty with Applications to Aerospace
Engineering, https://doi.org/10.1007/978-3-030-60166-9_16

507

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60166-9_16&domain=pdf
mailto:delvalbeni@vki.ac.be
mailto:chazot@vki.ac.be
mailto:magin@vki.ac.be
https://doi.org/10.1007/978-3-030-60166-9_16


508 A. del Val et al.

the crewed space program to send human beings to Mars and bring them home
safely. Space agencies are also facing technological problems when dealing with
residues of space flight. More than 30,000 space debris constitute today threats for
space systems in orbit, such as the International Space Station and active satellites
for observation and communication, as well as for humankind when debris, not fully
destroyed during re-entry, impact the Earth. Facing these problems requires in-depth
knowledge of the systems and phenomena involved.

Orbital velocities were predicted by Newton in the seventeenth century when
conceiving the equations for motion under gravitational forces. These equations
imply the existence of a velocity threshold above which an object could fly forever
(ideally). Low Earth Orbits (LEO) are the most common among satellites and space
stations with an average orbital velocity of 7 km/s. Traveling beyond the orbit of our
planet means more energy, interplanetary velocities are of the order of 11 km/s. All
this amount of kinetic and potential energy, dictated by orbital mechanics, will be
dissipated when a space vehicle enters dense planetary atmospheres. The bulk of this
energy is exchanged during the entry phase by converting the kinetic energy of the
vehicle into thermal energy in the surrounding atmosphere through the formation
of a strong bow-shock ahead of the vehicle. In general, about 90% of the energy
dissipated to the atmosphere is carried away from the vehicle through convection
and radiation, leaving about 10% to be absorbed back into the vehicle as thermal
energy. A Thermal Protection System (TPS) is used to mitigate this heat load and
ensure that the temperature limits of critical components on board are not exceeded
during the entry phase.

The aerothermal environment surrounding a vehicle during atmospheric entry is
extremely complex. As such, prediction of the heating rate which is experienced
by the thermal protection system remains an imperfect art, leading to very large
safety margins for the vehicle design. Failing to correctly predict the heat loads
and associated material response of the TPS during the design phase can lead to
catastrophic mission failure.

To address this problem, experimental facilities capable of generating high-speed
and plasma flows are developed to study different aspects of atmospheric entry
flows, together with physico-chemical models used to describe the state of the
flow at a given time and conditions. Numerical methods as well are constantly
improved to obtain approximate solutions of this complex system. The delicate
interplay of experiments, models, and numerical methods represents the main source
of knowledge about the system and its coupling mechanisms among the different
physical phenomena present.

Uncertainties on the margin definition are present at every step of the design
chain posing a high need for uncertainty quantification methods to analyze our
results, validate our models and give us the way for improvement and research to be
done.
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Fig. 16.1 Testing methodology for high-speed re-entry TPS sizing

16.1.1 Aerothermodynamics Testing

Ground testing is essential for the development and design of aerospace vehicles
[1]. Firstly, it represents a convenient step in the testing procedure at reduced
cost, compared to a real flight experiment. Secondly, ground tests allow a better
control of the environment and a direct application of the measurement techniques
to investigate the complexities present in high-speed flows. They also have a very
practical use to assess the performance of TPS materials, to determine their surface
and in-depth properties, and to characterize their high temperatures response when
exposed to dissociated flows.

In the particular case of atmospheric entry flows, the different time scales related
to each physical phenomenon at play force us to use a set of facilities to fully
characterize the flow and material response. Thermal environment is duplicated
in plasma facilities while radiation and non-equilibrium effects are reproduced
in hypersonic wind tunnels. Figure 16.1 shows the complex intricacies present
when we aim at fully evaluating the TPS performance, both numerically and
experimentally.

The missing link between these facilities and the real flight conditions is the
extrapolation methodology used to define the testing conditions correspondent to
certain atmospheric entry conditions when all the phenomena are taken into account
and coupled together.
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16.2 Ground Testing in High-Enthalpy Facilities

In order to provide relevant data, the severe environment encountered by a spacecraft
during re-entry has to be reproduced in ground based facilities. High-speed flows
and high thermal loads must be provided simultaneously which represents a
limitation for our current technical capabilities as briefly explained in the previous
section [2]. Facilities able to provide high Mach number flows are characterized
by limited test time, insufficient to reproduce the characteristic heat loads for
thermal protection material performance testing. Plasma wind tunnels instead allow
long duration heating tests, but flow Mach numbers are limited. To overcome this
limitation, testing methodologies have been elaborated to simulate high temperature
effects in hypersonic flows in high-enthalpy wind tunnels, like binary scaling [3–5]
and the Local Heat Transfer Simulation (LHTS) [6, 7] for plasma flows. Figure 16.2
shows the different key regions that are formed during a re-entry flight, roughly, the
shock and post-shock relaxation regions on one hand, and the thermal boundary
layer on the other. A complete understanding of the real flight must coordinate
efforts in both high enthalpy and plasma wind tunnels facilities.

The following subsections are dedicated to describe in more detail the two main
types of ground testing facilities: Plasma facilities and hypersonic wind tunnels.

Ground testing
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Fig. 16.2 Ground testing strategy for high-speed re-entry simulation
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Fig. 16.3 Typical test configuration for plasma flow experiment

16.2.1 Inductively-Coupled Plasma Facilities

Inductively-coupled plasma facilities can generate a plasma discharge by electro-
magnetic induction. Initial ignition normally comprises the injection of argon in
the torch due to its ability to generate electromagnetic discharge, which prevent
free electrons to have long lifetime. An initial electrical spark, created by the
strong electric field currents, introduces free electrons into the argon gas stream,
which are then captured by the electromagnetic field and colliding with argon
atoms, promoting further ionization. This process balances the creation of new
electrons through collisions and the recombination of electrons with argon ions.
The dissociated gas accelerates out of the torch in the form of a plasma jet and can
be then switched to the desired test gas. Once being in equilibrium, this process
can run uninterruptedly given that enough electricity, supply gas, and cooling are
provided. Because the gas is heated by induction through a coil, it is creating a high
purity plasma flow in the absence of eroding electrodes. In the sketch of Fig. 16.3 a
common testing set-up of a plasma flow experiment is shown. In it, measurements
of stagnation pressure using a Pitot probe, and of heat flux, using a calorimeter, can
be taken.

The flow regime for ground testing is typically subsonic, even though supersonic
conditions can be reached. Calorimetric probes are used for the determination of
plasma conditions together with emission spectroscopy. Optical techniques like
pyrometry, radiometry or infrared thermography are applied for the observation of
the thermal protection materials response under plasma flow conditions.
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Fig. 16.4 Phenomenology of thermal protection material response. Credit: Scoggins [8]

16.2.1.1 Material Characterization

The materials used to protect planetary entry capsules from the harsh environment
encountered during atmospheric entry can be classified in two main groups: reusable
and ablative materials depending upon the principle they rely on to dissipate (or not
absorb) the heat.

1. Reusable heat shields are passively cooled by re-radiating a significant amount
of energy from the hot surface back into the atmosphere (qrad = εσT4). They can
survive multiple atmospheric entries at moderate orbital speed (7.9 km/s) without
major changes of mass and material properties.

2. Ablative heat shields, in contrast, transform the thermal energy into decompo-
sition and removal of the material. They are typically designed for one single
entry, especially at velocities exceeding 10 km/s, and are generally composed
of a rigid composite, reinforced with a matrix of organic resins to serve as a
pyrolyzing binder, producing a char that forms on the surface followed by its
ablation while the remaining solid material insulates the vehicle substructure
(details are depicted in Fig. 16.4).

Different testing techniques for both types of materials are depicted hereafter.
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Fig. 16.5 Idealized gas-surface interactions for reusable materials

Reusable Materials

The interaction of the dissociated gas with this protection system describes the
behavior of the material to act as a catalyst for recombination reactions of the atomic
species in the surrounding mixture (see Fig. 16.5). Since surface reactions release a
considerable quota of the heat flux to the wall one can state that the heat flux can be
halved by choosing an ideal non-catalytic material [9].

A general approach to the characterization of these materials is by the determi-
nation of the so-called catalytic recombination coefficient (γ ) [10]. This parameter
can be simply defined as the ratio between the flux of recombining atoms of species
i over the flux of impinging atoms on a surface. If the same catalytic parameter is
assumed for every recombining specie, then a unique coefficient γ can be used.

Among the experimental procedures for the catalytic parameter determination
one can distinguish between measurements taken in conditions close to the actual
flight and under ideal laboratory conditions. The method used on typical induction
facilities usually measures the catalytic activity on relevant flight conditions by
a calorimetric method [11]. Strictly speaking, the combination of catalycity and
chemical accommodation coefficient, that is the effective catalycity, is determined.
Other facilities can derive the catalytic parameter through the detection of species
distribution in the vicinity of TPS samples. Eventually both measurement techniques
are combined with heat transfer investigations yielding a chemical accommodation
coefficient.

Ablative Materials

Most research on ablative materials in the frame of the Apollo program has been
carried out in arc-jet facilities, and several authors describe early experiments on
various types of ablators [12–14]. They were mainly carried out in order to classify
the ablative capabilities of a material to the incident heat flux, relating the surface
recession rate to the surface temperature as a first step. These experiments provided
a quick estimate of the amount of ablated material at steady-state recession. The
averaged experimental data in use today consists of recession rates, mass loss, and
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temperatures which are then used to extract thermophysical properties of the heat
shield material [15]

For a comprehensive study of the properties of interest in ablators, different
experimental set-ups and techniques can be used [16]:

– High-speed cameras provide a precise estimate of the recession rate of the
material and can determine spectrometer probing locations.

– Infrared radiometers and pyrometers give information on the thermal behavior of
the test sample by detecting the electromagnetic radiation emitted. Assuming
Planck’s law for black body spectral radiance, the surface emissivity and
temperature can be derived providing insightful information about the surface
radiometry.

Away from the sample, it is important to study the gas-phase in the boundary
layer. Identification of erosion products as a function of the plasma parameters are
performed by means of optical emission spectroscopy in front of the test specimen.
Tracking ablation products in-situ during high-enthalpy testing offers an insight
on volatilization effects at the surface and in the boundary layer. The moving
surface and highly reactive boundary layer, absorbing and emitting light in multiple
spectral ranges, complicate high-precision spectroscopic measurements, such as,
for example, laser-induced spectroscopy. However, one can profit from the strong
emission of several radiators produced by the pyrolysis gases and surface ablation
for analysis of the high temperature, reacting flow, and boundary layer.

16.2.1.2 Free Stream Characterization for Validation

Validation is a vital part of any design and engineering process. Free stream
conditions in ground testing facilities are used to define the flight extrapolation
parameters and link experiments with their respective flight conditions. They are
normally rebuilt through a combination of numerical and experimental methods
resulting in their dependence upon the models used in the computational tools
employed. Ground testing facilities can also provide the experimental data needed
to validate the different simulation tools.

Experiments using optical emission spectroscopy are performed to determine
optically and non-intrusively the temperature and composition at which the spectra
detected is produced, providing the free stream conditions from experimental
diagnostics when there is no probe in the testing chamber [17]. Additional data
about the free stream can be obtained by using a high definition camera from an
optical access window to study the fluctuations of the flow and the formation of the
Mach disk in the jet during supersonic tests.

The data obtained in this manner are then processed to be used to validate the
computational models for plasma flow simulations.



16 Uncertainty Treatment Applications: High-Enthalpy Flow Ground Testing 515

16.2.2 Hypersonic Wind Tunnels

Hypersonic wind tunnels represent a large group of facilities that can operate with
high velocity flows ranging from Mach 5–20. A wide variety of solutions exist to
provide a source of gas at sufficiently large pressure and temperature to use it as
a working fluid for a hypersonic wind tunnel. Excellent reviews of the different
types of hypersonic wind tunnels together with a historical perspective are given in
[18, 19]. A detailed analysis of the limiting parameters of hypersonic facilities can
be found in [20]

The conventional design of closed-circuit supersonic wind tunnels can hardly be
extended to reach larger flow enthalpies/velocities. In order to reach the lower range
of hypersonic Mach numbers, numerous wind tunnels use instead the blowdown
principle: the test gas is stored in a reservoir at high pressure and high temperature
and subsequently released through a nozzle for a test duration of few seconds up to
few minutes depending on the amount of gas initially stored and the test conditions.

For Mach numbers larger than 6 or so, the blowdown technique is again rarely
applicable and other ways to achieve hypersonic flows have been sought, leading to
the impulse-type of wind tunnels. Typically, kinetic, thermal, electrical or chemical
energy is stored over a long period of time with a low input power and rapidly
released. In sum, hypersonic wind tunnels allow to produce high-enthalpy flows but
with a reduced run time, of the order of milliseconds.

16.2.2.1 Non-equilibrium Effects

Simulating the features of non-equilibrium post-shock environment in high-
enthalpy facilities for forebody stagnation regions is an important aspect of testing
in hypersonic wind tunnels. Considering a blunt body at a velocity of 7 km/s, the
temperature immediately after the shock is around 14,000 K, and around 8000 K
downstream the shock, where the flow may return to equilibrium. At such high
temperatures, thermo-chemical effects have a significant influence on the flow.

These remarks remind that the experimental hypersonic simulation for studying
non-equilibrium phenomena requires an accurate understanding of the ground
testing facility operation and a careful interpretation of the experimental data. To
give typical reference for air at a pressure of 1 atm, vibrational excitation begins at
800 K, O2 begins to dissociate at 2500 K and is fully dissociated for 4000 K, point
for which N2 begins to dissociate. At 9000 K, N2 is fully dissociated and ionization
begins. In the aim at reproducing high temperature flow phenomena in ground
testing facilities one need to consider the conservation of mass when taking into
account thermo-chemical reactions that produce and/or destroy different chemical
species.

Different testing techniques are used in these facilities to gather data on several
aspects of the flow around the entry body where non-equilibrium effects can take
place [21]. The estimation of the free stream static pressure, for instance, is normally
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derived from other measurements and often based on the assumption of an isentropic
flow expansion. However, this is a severe assumption which is violated as soon as
non-equilibrium effects are present in the flow due to the irreversibilities introduced.
Non-equilibrium effects easily occur in hypersonic wind tunnels having stagnation
temperatures large enough to excite the vibrational modes of the gas species. A
dedicated free stream static pressure probe can be used to directly calibrate the free
stream conditions in the chamber.

Stagnation probes are set up to obtain measurements of the heat flux and pressure
that are mainly used to derive the total enthalpy of the free stream based on a
series of assumptions about the flow in the facility. Optical diagnostics have been
also developed for these facilities as a mean to obtain qualitative information about
different flow features of interest concerning transition on the boundary layer and
shock formation among others [22].

16.2.2.2 Shock Layer Radiation

In addition to dissociation and ionization, collisional excitation, which comprises
the phenomenon of excitation of atoms and molecules by means of collisional
energy, may lead to thermal radiation. Excited atoms and molecules can sponta-
neously emit photons and drop to lower energy states. The radiant energy can then
be absorbed by other atoms and molecules in the flowfield, causing particles to jump
to higher energy levels, or directly absorbed by the surface of the vehicle.

Emission and absorption from bound levels to other bound levels is referred to
as bound-bound radiation. The emission and absorption spectra of bound-bound
processes is highly oscillatory in nature due to the many transitions between discrete
internal energy levels of atoms and molecules. For sufficiently energetic atoms
and molecules, absorption of a photon may lead to dissociation or ionization.
In particular, the photo-dissociation of O2 and photo-ionization of N and O are
common in air. These processes are called bound-free since the particles in question
begin the process bound to one another and are separate or free at the end. The
reverse processes are likewise termed free-bound. Finally, free electrons may also
contribute to radiation. As an electron passes through the electric field of another
charged particle, it may undergo a deceleration and emit a photon with energy
equal to the difference between the kinetic energy of the electron before and after
the collision. This process is known as Bremsstrahlung from the German words
bremsen for to brake and strahlung for radiation. Bremsstrahlung is also called free-
free radiation, since transitions occur between two unbound electrons. Bound-free
and free-free processes exhibit a continuous spectrum, since the energy transitions
are not limited to discrete jumps. Figure 16.6 gives illustrations of the different
processes.

To experimentally assess the relative importance of these radiative processes,
hypersonic wind tunnels can use optical diagnostics to detect the emission or
absorption spectra in different parts of the flowfield, especially the post-shock
region. The data gathered through spectrometers is used to validate radiation models
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that are coupled with flow solvers to simulate the complex environment of the re-
entry [23].

16.2.3 Aleatory Uncertainties

The physical processes described in this section occurring in both high velocity and
high temperature laboratory flows are complex and we still struggle to obtain a full
detailed description of their behavior. Experiments of these kinds are constantly
shedding light on the underlying physical processes that take place at the various
levels.

Learning from experiments implies knowing the reliability faced when perform-
ing measurements. Information cannot be obtained from unreliable sources as they
cannot be trusted. To this end, uncertainty quantification provides a framework to
analyze our data in this complex system and estimate uncertainty levels [24].

An example of the seemingly randomness that dominates the measurements
performed in the aforementioned facilities is depicted below in Fig. 16.7.

This time-resolved measurement of stagnation pressure in the test section of
a hypersonic wind tunnel fails to be a smooth curve with time, with observable
wrinkles along the way. Traditionally, a probabilistic approach is used to quantify
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Fig. 16.7 Hypersonic wind
tunnel experimental data
(Credit: G. Grossir, VKI
Longshot)

the mean and deviation of the pressure values with time that can be then properly
treated by uncertainty quantification codes as inputs to propagate or infer model
parameters uncertainties. In this probabilistic framework, Gaussian or normal
distributions are often assumed for the experimental uncertainties models in which
a given measurement (one point in time) should be considered a sample from this
distribution rather than the mean value itself for which the fluctuations with time
will have to converge.

Another example of typical measurements obtained in plasma wind tunnels can
be seen in Fig. 16.8 where the probe surface temperature is recorded with time.

The random fluctuations of the sensor, in this case a pyrometer, can be more
clearly appreciated.

To this end, we can say that in the physical systems studied here, two basic
kinds of uncertainty are considered: systematic, reproducible errors affecting the
whole experiment, and random uncertainties associated with intrinsic variations in
the experimental conditions, in the sensor readings or deficiencies in defining the
quantity being measured. Not considering the statistical variability, stemming from
random uncertainties, when assessing the reliability of the measurements can lead to
erroneous conclusions. A more realistic approach to treat experimental uncertainties
needs to be studied and developed in order to have a better characterization of our
inputs and model parameters. In turn, this will produce better predictions, improving
the solutions for our engineering systems.

16.3 Physico-Chemical Models and Computational Tools

Important research efforts have been conducted towards the development of numer-
ical simulation tools for high-enthalpy flows. Physico-chemical models are con-
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Fig. 16.8 Plasma wind tunnel experimental data (Credit: B. Helber, VKI Plasmatron)

stantly being improved and implemented into computational fluid dynamics codes,
essentially dealing with Earth re-entries. In particular, thermodynamic and transport
properties of Earth atmosphere as well as chemical data are normally gathered
in a dedicated library. Thermo-chemical non-equilibrium effects are studied and
simulated for the different experimental facilities for model validation. Gas-surface
interactions and their influence on the wall heat flux are also investigated for general
hypersonic re-entry flows and also chemically reacting boundary layers.

Computational methods implement these theoretical models into simulation
frameworks to provide solutions and predict certain system behaviors. The reliable
prediction of heat fluxes to hypersonic vehicles remains a challenge. Heat fluxes
require accurate predictions of temperature gradients at the vehicle surface, which
are considerably more sensitive to the surface-normal grid resolution than other
quantities, such as the surface pressure. At least as important is the presence of
strong shock waves to which a significant quota of the error is attributed when the
grid is not shock-aligned. This is particularly obvious in stagnation regions. If the
error dominates the flowfield, the shock can lean outward and develop a catastrophic
breakdown of the solution.

The resolution of the temperature field and other gradients across the boundary
layer and at the vehicle surface present additional challenges to the numerical
methods, the near-wall grid spacing must be very tight so as to resolve key gradients.
Atmospheric entry flows are also characterized by complex processes taking place
within the gas and as the gas interacts with the surface. At high pressures or
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relatively slow flow conditions, the thermo-chemical state adjusts rapidly to the
flow state and is close to thermal and chemical equilibrium. However, in many
applications, the chemical kinetics and relaxation time scales are similar to the flow
motion scales, defining a state of non-equilibrium. In this state, equations for the
different chemical species must be additionally solved adding complexity to the
system. Boundary conditions are also complicated because of their dependence on
the surface material and flow conditions, injecting ablation species into the boundary
layer.

The coupling of the different mechanisms in the flow together with the difference
in time scales of the processes involved makes this system an ideal place to develop
and improve numerical methods that can provide accurate and fast predictions.
A particular example of a computational model for atmospheric entry flows is
described in Sect. 16.3.1.1.

Hereafter follows a review of the most important theoretical aspects and models
used to describe the system.

16.3.1 Governing Equations for Atmospheric Flows

Fluid dynamics allows to describe macroscopically a plasma flow. To that aim,
the Navier–Stokes equations deal with the conservation of mass, momentum, and
energy in a small element of volume of plasma. Transport phenomena occur at
the volume surface. First, diffusion of chemical species and heat fluxes arise
through the interface. Second, shear stresses applied on the surface participate to
the equilibrium of the forces acting on the volume. The transport fluxes can be
interpreted at a microscopic scale by studying binary collisions among particles
of the plasma. The Boltzmann transport equation is the fundamental governing
equation for non-equilibrium flow systems. The link between both macro and
microscales is established by means of the kinetic theory.

The dimensionless quantity Knudsen number (Kn) is quite often the criterion
that distinguishes the continuum and rarefied gas regimes both present in atmo-
spheric entry flows. The Knudsen number is defined as follows:

Kn = 1

vtf
(16.1)

where v represents the intermolecular collision rate and tf the characteristic flow
time. Fig. 16.9 shows the different numerical methods used to describe atmospheric
entry flows over a wide range of Knudsen numbers.

The local Knudsen number being less than Kn < 0.01 defines the state of
continuum flows when the average distance a molecule travels before colliding with
another molecule (defined as mean free path) is smaller than a characteristic length
related to the physical characteristics of the flowfield in question.
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Fig. 16.9 General description of physical models used for different Knudsen number flow regimes

In the particular case of atmospheric entry flows discussed here, the continuum
regime is encountered when dissipating the high kinetic energy of the high-speed,
hypersonic flow along the regions of the lower atmosphere in the case of Earth re-
entries. The way of dissipating this large amounts of energy is by the influence of
friction within the boundary layer. The extreme viscous dissipation is responsible for
the excitation of internal energy modes within molecules and to cause dissociation
and ionization.

The set of conservation equations used to describe an unsteady, compressible,
three-dimensional flow under viscous forces is a particularization of the Navier–
Stokes equations and they take the following form in equilibrium conditions:

Global Continuity Equation

∂ρ

∂t
+ ∇ · (ρv) = 0 (16.2)

Momentum Conservation Equation

∂

∂t
(ρv)+ ∇ · (ρv ⊗ v)+ ∇ ·P − nqE’ − j × B = 0 (16.3)

Global Energy Conservation Equation

∂

∂t
(ρe)+ ∇ · (ρev)+ ∇ · q − j · E’ + P : ∇v = 0 (16.4)

with density ρ, stress tensor P = ∑
j∈S Pj , hydrodynamic velocity v, energy e,

and heat flux q under the effects of an electric field described in the hydrodynamic
frame E’ = E+v×B with mixture charge q = ∑

j∈S xj qj and mixture conduction
current j = ∑

j∈S jj (being ji = niqiVi)
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For a dissociated, ionized gas, the system is not closed. Extra equations describ-
ing the species continuity and energy conservation including a diffusion term, must
be implemented to fully describe the system [25]

Species Continuity Equation

∂ρi

∂t
+ ∇ · (ρiv)+ ∇ · (ρiVi ) = 0, i ∈ S (16.5)

with the additional constraint
∑
j∈S ρjVj = 0

Species Energy Conservation Equations

∂

∂t
(ρiei)+∇·(ρieiv)+∇·(qi )−ji ·E’+ρiVi · ∂

∂t
v+Pi : ∇v = 0, i ∈ S (16.6)

Being Vi the diffusion velocity of species i.
Simulating re-entry flows in inductively-coupled plasma facilities requires and

extra effort to model the electromagnetic field as seen in the previous equations.
In this case, the Maxwell equations [26] are solved to obtain the electromagnetic
field, playing a role in the flowfield through the effect of the Lorentz force and
Joule heating [27]. In Section 16.3.1.1, a particular computational model that
implements these continuity and conservation equations for a plasma wind tunnel
is introduced for its role in determining experimental conditions and other non-
measured parameters of the flow field.

16.3.1.1 Resistive Magneto-Hydrodynamics (MHD) Model

In the particular case of inductively-coupled plasma facilities, the hydrodynamic and
electromagnetic equations (MHD) are discretized and solved. The physical descrip-
tion incorporates various kinetic, chemical, thermodynamic, and mathematical tools
developed in the previous chapters. The following hypothesis are assumed to be
satisfied in the plasma flow:

f << fp The plasma frequency fp = n
1/2
e qe/[2π(ε0me)

1/2] represents the
oscillation frequency of the free electrons about their equilibrium positions [28].
The displacement current can be neglected in the plasma provided that the torch
frequency f is lower than the plasma frequency [25].

LC << λEM The current in the inductor generates electromagnetic waves of
length λEM = 1/[f (ε0μ0)

1/2]. When the coil length LC is smaller than the
electromagnetic wavelength, the displacement current in the inductor remains
negligible in the computation of the electromagnetic field.

LTE Local Thermodynamic Equilibrium is a strong hypothesis. The composition
of the mixture of the various species present in the plasma is considered to
instantaneously adapt itself to changes in the flow, such that the plasma can be
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Fig. 16.10 Inductive plasma wind tunnel: torch, coil, and probe (Credit: T. Magin [27])

thought of as a single gas of defined composition or a gas in chemical equilibrium
[29]. The pressure and temperature of the gas are sufficient to uniquely define the
distribution of the species, which is therefore not dependent on the history of the
flow, and a single temperature can be used to describe the flow. The gas is said to
be in thermal equilibrium. In this hypothesis, when the flow is considered both in
chemical and thermal equilibrium, the gas is defined as being in a state of local
thermodynamic equilibrium.

No Elemental Demixing The elemental demixing consists in the separation of
chemical elements by diffusion. This phenomenon, encountered in situations of both
chemical non-equilibrium [30, 31] and equilibrium [32]. The elemental fraction is
assumed constant in the flow.

Low Re In the jet, the Reynolds number Re = ρvL0/η remains sufficiently low in
the probe measurement area to avoid turbulence effects.

Low M In our applications, the Mach number M = v/a is found to be low such
that the flow remains subsonic. This information is important to design a suitable
discretization scheme for the convective fluxes.

No Radiation and Steady State The Navier–Stokes equations are averaged in time
over an oscillation period of the electromagnetic field. A steady-state solution of
these equations is sought.

The geometry of an inductive plasma wind tunnel is shown in Fig. 16.10. An
axisymmetric configuration is retained to model the facility. Symmetry implies that
derivatives in the θ direction cancel, ∂/∂θ = 0. The inductor is represented by nr
parallel coil rings considered infinitely thin.

The coupling of the electromagnetic forces governed by the Maxwell equations
to the Navier–Stokes equations which describe the flow field is realized by the
Lorentz forces acting on the charged particles subject to the electromagnetic field,
the Joule dissipation which heats up the plasma, and the temperature dependency
of the electrical conductivity of the plasma. Figure 16.11 shows graphically the
coupling between both sets of equations.
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Fig. 16.11 Coupling between hydrodynamic and electromagnetic field equations

16.3.2 Closure Models

The governing equations described in the previous section require the evaluation of
mixture and species thermodynamic properties, transport fluxes, chemical kinetics,
and internal energy. In particular, energy and enthalpy are explicitly necessitated
by the conservation of energy. Thermodynamic properties are depicted hereafter
followed by the transport, chemistry, and energy transfer terms as they require the
evaluation of the first in their formulation.

16.3.2.1 Thermodynamic Properties

To properly describe the behavior of the flow around a re-entry vehicle, it is
necessary to derive the properties of a mixture of gases, where different species
coexist at a given time, that can chemically react with each other due to the high
temperatures encountered in this process.

For a better understanding, we will proceed by looking at the behavior of pure
gases (perfect gas consisting of a single species) and extend it to a general mixture
of gases for which the models are depicted and explained.

Thermodynamics of Pure Perfect Gases

Quantum mechanics dictates that atoms and molecules are permitted only discrete
energy levels [33]. For atoms, this energy is contained within translational and
electronic energy modes. Molecules have two additional energy storage modes via
rotation and vibration of the molecule. In general, all energy modes are coupled.
For weakly interacting particles (dilute gases), however, translational energy may
be considered decoupled from the internal energy. Note that this use of internal
energy should not be confused with the typical fluid dynamics description of the
internal energy of a gas, which includes translational energy. Here, internal energy
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Fig. 16.12 Energy modes of
a generic molecule

is meant to differentiate between energy associated with the translation of the
center of mass of a particle and the energy associated with the relative motion
of its constituents (nuclei and electrons). While translational energy levels are
discrete, the spacing between levels is extremely small. For all practical purposes,
this permits a semi-classical approach in which translational energy is assumed
continuous while internal energy is left discrete. Furthermore, it is assumed that
the populations of internal energy levels satisfy Maxwell–Boltzmann statistics,
such that the quantum effects differentiating bosons (Bose–Einstein statistics) and
fermions (Fermi–Dirac statistics) are negligible [33]. The rigid rotator and harmonic
oscillator approximations for molecules are considered in the ground state. The
electronic levels of atoms and molecules are selected based upon a simple cut-off
criterion [27].

In a gas composed of independent particles that are identical, let us assume that
the total energy of level I for a molecule is given by its translational, rotational,
vibrational, and electronic contributions.

If we combine the different modes depicted in Fig. 16.12, the total energy of the
molecule is obtained:

εI = εT
I + εR

I + εV
I + εE

I , I = 1, 2, . . . (16.7)

The total energy of a system of identical particles NI is
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∑

I

NI εI = E (16.8)

Statistical derivation of thermodynamic properties can be found in standard
textbooks [34]. The models for the different energy modes are depicted for a mixture
as a generalization of this particular case.

Mixture of Inert Perfect Gases

In a mixture of different species, the same principles apply. The equations for the
thermodynamic properties of the different energy modes are depicted hereafter for
the species i of the mixture:

eT
i = 3

2

kBT

mi
(16.9)

hT
i = eT

i +
kBT

mi
(16.10)

sT
i = hT

i

T
+ kB

mi
ln

⎡

⎢
⎣
kBT

p

(
2πmikBT

h2

)3

2

⎤

⎥
⎦ (16.11)

Electronic energies, enthalpies, and entropies of atoms and molecules read

eEi = hEi =
kB

mi

∑
n ginθEi,n exp

(−θEi,n

T

)

∑
n gin exp

(−θEi,n

T

) (16.12)

sEi =
hEi

T
+ ln

∑

n

gin exp

(−θEi,n

T

)

(16.13)

Quantity gin stands for the degeneracy of the electronic level n of the species
i ∈ H and θEin for its energy (in K unit). The number of electronic levels retained
is limited for mathematical and physical standpoints [35].

For linear molecules, rotational energies, enthalpies, and entropies are expressed
as:

eRi = hRi =
kBT

mi
(16.14)
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sRi =
hRi

T
+ kB

mi
ln

(
T

σiθRi

)

(16.15)

where θRi stands for the rotational characteristic temperature (it is assumed that
T >> θRi). The symmetry number σi = 1 or 2 depending on whether the molecule
is heteronuclear (CO,NO,NO+) or homonuclear (CO2, N2,O2, N+2,O+2).
Diatomic molecules possess one single vibrational mode. Vibrational energies,
enthalpies, and entropies read

eVi = hVi =
kB

mi

∑

m

θVi,m

exp

(
θVi,m

T

)

− 1
(16.16)

sVi =
hVi

T
− kB

mi

∑

m

ln

[

1 − exp

(
θVi,m

T

)]

(16.17)

where θV im stands for the vibrational characteristic temperature associated to the
vibrational mode m. To account for the energy released in the gas by chemical
reactions between the species, a common level from which all the energies are
measured is established by means of the formation enthalpy hFi at 0 K. Gathering
contributions of the various degrees of freedom, species enthalpies are written:

hi = hTi + hEi + hFi , for atoms (16.18)

hi = hTi + hEi + hRi + hVi + hFi , for molecules (16.19)

he = hTe + hFe , for electrons (16.20)

The formation entropy at 0 K is zero, therefore species entropies read

si = sTi + sEi , for atoms (16.21)

si = sTi + sEi + sRi + sVi , for molecules (16.22)

se = sTe +
kB

mi
ln 2, for electrons (16.23)

The thermodynamic properties of the mixture are readily obtained by weighting
the species properties by species mass densities, ρh = ∑

j∈S ρjhj and e = h−p/ρ.
The contribution of the entropy of mixing is added to evaluate the mixture entropy,
ρs = ∑

j∈S ρj sj + kB
∑
j∈S nj ln(1/xj ).

For a mixture of reacting gases where chemical reactions take place, the
production and deletion of species must be taken into account in the models.
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16.3.2.2 Transport Phenomena

Closure of the transport fluxes is derived through a multiscale Chapman–Enskog
perturbative solution of the Boltzmann equation as explained in Sec. 16.3.1. The
fluxes considered are the stress tensor, the diffusion fluxes, and the heat flux which
play a major role in hypersonic flows.

Stress Tensor

P = p I − η
[
∇v + (∇v)T

]
−

(

κ − 2

3
η

)

∇ · v I (16.24)

where η and κ are the dynamic (shear) and bulk (volume) mixture viscosities. In an
expansion or compression of a gas, the work done by the pressure alters immediately
the translational energy of the molecules. Bulk viscosity arises from a time-lag
necessary to reequilibrate the translational and internal energies through inelastic
collisions. This term is nearly always neglected in hypersonic flow calculations
under the assumption that κ/η << 1. However, in [36], Giovangigli et al. have
shown that this assumption is not always valid for larger polyatomic gases.

The dynamic viscosity η is obtained from the first Laguerre–Sonine polynomial
approximation of the Chapman–Enskog expansion [27].

Diffusion Fluxes

Species diffusion velocities can be obtained from the multicomponent diffusion
coefficient matrix Dij by

Vi = −
∑

j∈S
Dij (dj + kh

j ∇ln Th + ke
j ∇ln Te) (16.25)

where dj are the species specific driving forces defined as:

dj = ∇pj
nkBTh

− yjp

nkBTh
∇ lnp − κjE (16.26)

with κj = xjqj /kBTh − yjq/kBTh, q the mixture charge and E the electric field.
The multicomponent diffusion coefficient matrix Dij is a function of the species
binary collision integrals and compositions [8].
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Heat Flux

The heat flux vector in Eq. (16.4) accounts for the energy transferred through
diffusion, thermal diffusion, and conduction, such that:

q =
∑

j∈S
ρjhjVj + nkBTh

∑

j∈S
(kh
j + ke

j )Vj −
∑

m∈M

λm∇Tm (16.27)

where kh
Tj

and ke
Tj

are heavy particle and electron thermal diffusion ratios and

λm = λtm + λintm is the effective thermal conductivity of the global energy mode
m ∈ M which can be split into translational λt

m and internal λint
m components. The

heavy particle translational thermal conductivity is obtained from the second order
Laguerre–Sonine polynomial approximation of the Chapman–Enskog expansion.
Finally, the thermal conductivity associated with the internal energy of mode m ∈
M , is given by the so-called Eucken corrections [37].

16.3.2.3 Chemistry and Internal Energy

Plasma flows are generally reactive: particles dissociate, recombine, and ionize.
Furthermore, molecules rotate and vibrate, and the electronic configuration of atoms
and molecules vary. To capture these aspects of atmospheric entry flows, the species
conservation equations depicted in Sect. 16.3.1.1 have to be modified by adding
additional terms to balance off the equations:

Species Continuity Equation

∂ρi

∂t
+ ∇ · (ρiv)+ ∇ · (ρiVi ) = ẇi, i ∈ S (16.28)

Species Energy Conservation Equation

∂

∂t
(ρiei)+ ∇ · (ρieiv)+ ∇ · (qi )− ji · E’ + ρiVi · ∂

∂t
v + Pi : ∇v = ΔEi, i ∈ S

(16.29)

The chemical production source term, ẇi , found in Eq. (16.28) accounts for
the production and destruction of individual species through elementary chemical
reactions. A rigorous derivation of the chemical production rate from kinetic theory
yields an expression of the form:

ẇi = ẇ0
i + ẇ1

i (16.30)

where ẇ0
i is the zero-order Maxwellian production rate and ẇ1

i is a first-order
perturbation [38].



530 A. del Val et al.

For the energy exchange rate, different models must be adopted for each
individual internal energy mode. In general, energy transfer mechanisms fall
into two categories: energy relaxation processes and chemical energy exchange
processes. Energy relaxation is the process in which two distributions of energy
states exchange energy through elastic and inelastic collisions and relax to a final
equilibrium distribution: Vibration-translation, free electron-vibration, vibration-
vibration, elastic energy exchange between free electrons and heavy particles,
etc. Chemical energy exchange processes result from reactive collisions between
particles in which energy is transferred in order to promote the reaction. Important
coupling mechanisms and energy relaxation processes are described in detail in [8].

16.3.3 Radiative Heating: A Coupled Phenomenon

Each radiative mechanism discussed in the previous section contributes to the net
emission and absorption of photons. The energy carried by a photon at wavenumber
σ is given by hcσ . Therefore, emission and absorption of photons results in a net
energy transfer between points in the flowfield or from the flowfield to the vehicle
surface, heating it up.

The radiant intensity Iσ (x, ŝ) is defined as the photon energy flux per unit area,
per elementary solid angle, per wavenumber, in the direction ŝ at wavenumber
σ and position x. In the absence of scattering, the steady Radiative Transport
Equation (RTE) describes the variation of spectral intensity Iσ along a ray with
length parameter s as:

dIσ

ds
= ŝ · ∇Iσ (ŝ) = ησ − κσ Iσ (ŝ) (16.31)

where ησ and κσ are the local emission and absorption coefficients at point s along
the ray.

Photons may be emitted in any direction. Therefore, the spectral emission
coefficient is independent of direction and represents the total photon energy
emitted per volume, per time, per wavenumber, and per elementary solid angle.
The absorption coefficient represents the fraction of photon energy absorbed by the
gas over a unit distance, and is independent of direction as well. In general, these
coefficients are functions of the local energy level populations of the participating
gaseous species. More details about boundary conditions for this equation and
modeling can be found in [39].

Once the intensity field is known, the solution must be coupled back to the mass
and energy transport equations previously depicted via the radiative surface heat
flux, power, and species mass production rates due to photochemical processes.
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16.3.4 Gas-Surface Interactions

As with gas-phase chemistry mechanisms describe previously through the term ẇj ,
heterogeneous chemistry plays an important role in the description of the thermo-
chemical environment surrounding hypersonic vehicles. In particular, an accurate
prediction of the heat flux to the surface of a vehicle may depend strongly on the
correct solution of catalysis and ablation processes occurring at the gas-surface
interface, known in general as gas-surface interactions (GSI). These processes may
strongly affect the composition of the boundary layer, which in turn may alter the
convective or radiative heating at or near the vehicle surface. For Martian entries,
these effects have also been shown to be important downstream as ablated species
radiate and increase the radiative flux to the back-shell of the vehicle. Typically, GSI
models are implemented as boundary conditions along the vehicle surface.

For non-ablating thermal protection systems, catalysis may play an important
role in the heating to the surface of the TPS. In particular, for Earth entries, catalytic
recombination of the N2, O2, and NO at the surface are well known. Catalytic
reactions do not participate in the surface mass balance but can promote substantial
heat transfer. As an example, the reactions described above release approximately
950, 500, and 630 kJ per mole of product, respectively.

Surface participating reactions involve both heat and mass transfer between the
surface and surrounding gas. As such, these reactions always include reactants
originating from the TPS material. Examples include the nitridation or oxidation
of solid carbon C(s), the passive and active oxidation of silicon carbide, and the
sublimation of solid carbon to form C, C2, or C3. In general, there are two types of
models which are used to describe surface chemistry:

Specified Reaction Efficiency Models Perhaps the most widely used GSI model in
hypersonic for its easy implementation. These models describe the mass production
rate of a species at the surface as the product of the mass flux of the reactant
impinging on the surface Γi and a reaction efficiency γr which takes a value between
0 and 1. This model is especially relevant for reusable material protection systems
[30].

Finite-Rate Models The model presented above assumes that gas-surface reactions
occur in a single step, however, in reality these reactions are the result of multiple
processes which occur at finite rates. In general, surface reactions are only allowed
at a finite number of active sites on the surface. These active sites are highly
dependent on the topology and chemical structure of the surface and are reaction
dependent (see Fig. 16.5). Finite-rate surface chemistry models describe the net
surface reactions as a series of the elementary processes [40, 41].

Each of these processes may occur at different temperature dependent rates.
Furthermore, the reverse processes are related to the forward reaction through an
equilibrium constant. The heat flux to the surface of a material is then related to
the rate of change in the density of active sites. Thus, a finite-rate surface chemistry
model ensures the conservation of mass and energy at the surface.
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16.3.5 Epistemic Uncertainties

Epistemic uncertainty (also known as reducible uncertainty or incertitude) is defined
as a potential deficiency that is due to a lack of knowledge [42]. It can arise
from assumptions introduced in the derivation of the mathematical model or
simplifications related to the correlation or dependence between physical processes.
It is obviously possible to reduce the epistemic uncertainty by using, for example,
a combination of calibration, further inference from experimental observations and
improvement of the physical models. Epistemic uncertainties can be incorporated in
a Bayesian framework where a calibration of the model parameters can be carried
out. The resulting uncertainties tell us what should be improved in the system to have
significant reliability in our results and how we can achieve that through experiments
by looking at the optimal testing conditions. This calibration of model parameters
represents an important step towards a more unified framework that incorporates
simulation results and experiments and their best possible reliability by giving us
confidence in our results. Typical examples of sources of epistemic uncertainties in
hypersonic flows are surrogate chemical kinetics models and the use of γ models
for catalytic effects.

It is important to notice that in most cases the epistemic uncertainty is not well
characterized by probabilistic approaches. The reason is that it might be difficult
to infer any statistical information due to the nominal lack of knowledge, i.e. the
suitability of the model that is being used to calibrate the parameters is not properly
known. To cope with this, other frameworks are put in place. Simulations using
different plausible models are evaluated and the largest possible confidence margins
are defined.

When we explore the differences between measurements uncertainties and epis-
temic uncertainties, we have to remark that the former are regarded as frequentist,
meaning that repetitions of a certain measurement give you a measure of the
randomness of the measurement process (producing a Probability Distribution
Function (PDF) that can be used in our tools). Epistemic uncertainties do not have a
basis to define their PDFs. One way of tackling this issue is by adopting a Bayesian
framework, as explained before, in which with sufficient prior knowledge and data, a
PDF can be assigned to the various parameters inferred in this manner in our model
[43].

16.4 Putting It All Together: Extrapolation to Flight

In the design phase of aerospace vehicles some questions need to be addressed
experimentally in order to have a more accurate representation of the reality
encountered during flight. As scaled-down models cannot reproduce all aspects
of atmospheric entry flight, extrapolation methodologies exist for both types of
facilities reviewed in Sect. 16.2.
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The end part of all the design process is when all the experiments and simulations
converge into the actual flight conditions and we are able to put safety margins to
what has been tested and simulated to express our confidence in our tools. What
follows is a review of the most widely used methodology for extrapolation from
plasma wind tunnels and an account of the uncertainties we face when performing
such extrapolation to flight.

16.4.1 Local Heat Transfer Simulation Methodology

When facing a design challenge, engineers look at critical values that constrain
the parameters considered for the particular subsystem. When we look at the
thermal protection system for space vehicles, one of the most critical and important
parameters is the type of thermal protection materials we are going to use and (in
case of ablative materials) the thickness. These design parameters are intrinsically
associated to the heat flux absorbed by the vehicle surface while on the entry
trajectory.

To address this problem, one must identify the highest possible heat flux to
be encountered along the particular entry trajectory and use it as the limit to be
withstood. On the different points of the vehicle surface, one can identify the
stagnation region as the most likely part to suffer from the highest heat loads. It
is because of this that we aim at reproducing in the wind tunnel the same heat flux
on the stagnation point of our vehicle than that of the flight.

Following this line of thought, it is time to introduce the Local Heat Transfer
Simulation (LHTS) methodology depicted in Fig. 16.13

According to the literature in [9, 44–46], the heat flux equation can then be
generalized as:

qw = A Pr−2/3 (ρwμw)
B(ρeμe)

C
√
ρeμeβe (He − hw) = f (He, ρe, βe, hw)

(16.32)
A direct consequence of this fact is that the ground testing of the heat flux is

possible without a complete reproduction of the flight conditions. Indeed, as the
enthalpy, pressure and density are directly related, Kolesnikov [6] selects only three
different parameters to be matched in the ground testing facilities and in flight in
order to have the same stagnation point heat flux. These parameters are the total
enthalpy, total pressure, and velocity gradient at the edge of the boundary layer of
the vehicle/probe.

H t
e = H f

e pt
e = pf

e β t
e = βf

e (16.33)

where β denotes the velocity gradient ∂u/∂x as a measure of the velocity deflection
when adapting aerodynamically to the vehicle shape with u and x as the transversal
component to the stagnation line of the velocity and space, respectively.



534 A. del Val et al.

Fig. 16.13 Concept of the local heat transfer simulation (Credit: P. Solano)

One can notice that four parameters are needed in order to compute the wall
heat flux according to the generalized expression depicted before (Eq. 16.32). The
wall enthalpy, hw, has a second order effect on the heat flux and should only be
taken into account in the form of wall temperature if catalytic effects are unknown.
According to [9], this parameter is a function of the rest of the parameters when
catalysis effects are known (γ is characterized). On top of all that, it is widely
accepted that He >> hw as an argument to not consider this fourth parameter in
the flight extrapolation problem.

16.4.2 Flight Extrapolation Uncertainties

The physico-chemical models used to describe different phenomena involved
in atmospheric entry flows: radiation, flowfield, electromagnetic field, and gas-
surface interactions among others, must undergo a validation campaign against
experimental data. Due to the nature of this problem, experimental data can be
gathered separately for each phenomena depending on the facility dedicated to the
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study as seen in Sect. 16.2. According to this, each aspect of the problem has to be
validated separately on ground testing facilities with occasional access to full flight
data if the budget allows, but even in this situation the data is quite sparse to be
validated against.

A question remains unanswered: how to identify and treat the uncertainties con-
cerning the coupling involved in real flight when each model for each phenomenon
has been validated separately in dedicated facilities?

Uncertainty quantification studies could help understand the intricacies of the
different models and how this reflects on real-scale cases when put it all together in
an extrapolation framework as seen in Sect. 16.4.1.

The interplay between the physical phenomena studied in the two types of
facilities has to be assessed when referring to three different parameters to be
reproduced on ground and in flight in such a way that the uncertainty of taking
into account the correlated effects is far lower than otherwise. By doing so, we can
approach the design problem with confidence intervals in the domain of the flight
conditions as desired by the engineers as our final objective.

16.5 Conclusions and Remarks

Numerical simulations and experiments of atmospheric entry flows pose a challenge
full of complexities.

Ground testing of entry vehicles cannot be achieved in a single facility and
different aspects of the atmospheric entry flight have to be tested in dedicated
facilities allowing different types of flow and testing times.

The mathematical description of the system, the physico-chemical models,
reveals traces of non-linearities, coupling phenomena, and complex mechanisms
whose knowledge still rests upon experimental correlation. High-speed and high
temperature effects turn an otherwise well-characterized system, into a choice of
models and descriptions. It is this lack of knowledge that leads to urge the commu-
nity to undertake uncertainty quantification analyses for design and safety purposes.

The numerical methods depicted here clear their way through the complexities
and stiffness of the equations to find approximate solutions. Uncertainty quantifica-
tion must deal with the different aspects that make these flows so complex:

• Intricate multi-physics and non-linearities of the system when coupling flow,
radiation and ablation in the same problem.

• High dimensionality of stochastic space when chemical reactions have to be
taken into account. Each reaction is characterized through reaction constants and
additional parameters to account for the production/deletion of species.

• The computational cost of these CFD solutions is high. The computational
domain with refined mesh close to the boundaries together with possible non-
equilibrium states where equations for the different species must be additionally
solved are some of the issues slowing down the convergence.
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• Non-smooth solutions in physical space imposing a shock-capturing numerical
scheme.

• Sparse experimental data making more difficult a probabilistic treatment of
the uncertainties while urging the numerical methods to be more refined in the
solutions.

16.5.1 Current Margin Policies: Where Are We?

Models, particularly in aerosciences and material response, have largely undefined
uncertainty levels for many problems (limited validation). Without well-defined
uncertainty levels, it is difficult to assess the system risk and to trade risk with other
subsystems. The result is typically (but not automatically) overdesign.

Safety factors for entry vehicles rank among the highest ones in engineering
systems with an average value of 2. In atmospheric entry systems, the most critical
design parameter, concerning the high heat loads encountered, is the thermal
protection system thickness which directly relates to the vehicle weight. Under these
premises, an over-estimation of the protection material thickness leads to higher
constraints on payload weights or in a much more expensive vehicle to fly.

The opposite side of the spectrum is the underestimation of safety margins and
the exposure of the crew to fatal disaster or to the robotic mission to a catastrophic
end.

An example of the importance of these margins is the Galileo probe sent to
Jupiter to enter the Jovian atmosphere (Fig. 16.14).

Fig. 16.14 NASA Galileo
probe heatshield (Dec 1995)



16 Uncertainty Treatment Applications: High-Enthalpy Flow Ground Testing 537

The stagnation point material recession was less than predicted but the recession
in the afterbody region was much higher than expected. In this case, the physical
phenomena was not well-captured by the simulation tools.

The policy of safety margins must be replaced by state-of-the-art uncertainty
quantification techniques for predictive engineering with benefits for the design
without compromising the safety of the mission.
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Chapter 17
Introduction to Evidence-Based Robust
Optimisation

Gianluca Filippi and Massimiliano Vasile

Abstract This chapter introduces the concept of Evidence-Based Robust Optimi-
sation (EBRO) and a few computational methods that allow calculating a robust
solution when uncertainty is modelled with Dempster–Shafer Theory of evidence
(DST). The chapter provides the basic elements of DST and the framework in which
DST can be introduced in the robust optimisation of engineering systems. The main
interest is in using DST to quantify extreme cases of epistemic uncertainty. EBRO
inserts DST within an optimisation loop to generate a solution that maximises a
given performance index (the quantity of interest) and the belief in its value at the
same time. The chapter introduces also a decomposition approach that allows one
to calculate an approximation to Belief and Plausibility in polynomial time.

Keywords Robust optimisation · Epistemic uncertainty · Evidence theory ·
Network model · Efficient approximation

17.1 Introduction

In the early phase of the design of an engineering system, there is a degree of
uncertainty on its parts and configurations. This uncertainty is often epistemic in
nature and translates into an uncertainty in the performance of the system as a whole.
In order to account for this, it is common practice to add margins at system and
sub-system level. This way of proceeding is commonly called margin approach.
The margin approach evaluates the quantity of interest (for example, the mass)
associated to a proposed nominal design solution, called Best Estimate (BE), and
adds to it, and to each sub-system quantity of interest, a margin often called the
contingency or safety factor. The safety factor accounts for the expected variations
of all uncertain components. For example, a margin is added to the power demand
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when sizing the solar arrays on a spacecraft. The value of the quantity of interest
at system level, after margins are applied, is often called the Maximum Expected
value (ME). The difference between the ME and the Maximum Possible value (MP)
is generally considered to be a further margin that accounts for the unexpected
variation of all uncertain components [1–3]. These traditional methods, however,
lack an appropriate quantification of uncertainty. As a consequence, there can be an
overestimation or an underestimation of the effect of uncertainty which can lead to
either an increase in costs and development time or to the occurrence of undesirable
events. As it was recognised during the Columbia Accident Investigation Board
(CAIB) [4], the classic pattern that brings to failure, common to many other tragic
accidents [5], is the combination of production pressure, that pushes to reduce
the safety margins, and a fragmented problem solving that lacks a system level
understanding. Hence one can argue that there is the need to incorporate a proper
quantification of uncertainty within any systems engineering approach [6, 7].

In this direction, the research field based on the synergy of optimisation
algorithms and uncertainty quantification theories that is known as Optimisation
Under uncertainty (OUU) [8], Uncertainty-Based Design (UBD) [9], etc. is of
increasing importance and interest. In particular, it is used to quantify and optimise
different uncertainty measures: robustness, reliability and in the last years also
resilience. They have brought, respectively, to the approaches of Robust Design
Optimisation (RDO) [10], Reliability Based Design Optimisation (RBDO) [11] and
Resilience Based Design Optimisation (ReBDO) [12, 13]. Moreover, due to the
complexity of engineered systems [14, 15], a further important step is given by
the application of holistic system-level view and multidisciplinary principles within
UBD. Uncertainty-Based Multidisciplinary Design Optimisation (UMDO) theory
[16] covers for this research direction.

If one looks at the different types of uncertainty that a system can be subject
to, two macro-categories can be identified: aleatory uncertainty and epistemic
uncertainty [17]. Aleatory uncertainty is natural randomness which cannot be
reduced. Epistemic uncertainty is due to the lack of information or incomplete data.
This type of uncertainty is reducible by acquiring more knowledge on the problem.

This chapter introduces a methodology to account for epistemic uncertainty in
the design for robustness of complex engineering systems. The concept proposed
in this chapter is called Evidence-Based Robust Optimisation (EBRO). In EBRO,
epistemic uncertainty is modelled with Dempster–Shafer Theory of Evidence (DST)
[18, 19]. DST offers a natural way to assign degrees of belief to the expected
performance of a system and to rigorously quantify the impact of epistemic
uncertainty on the associated quantities of interest. In EBRO the system design is
then optimised to maximise performance under epistemic uncertainty.

As generally recognised [16] most of the effort in UMDO community should
be spent in developing complexity-reduction methods to be applied within the
optimisation strategies. This is particularly true when non-probabilistic uncertainty
theories, for example, DST, are adopted. Some approaches for the reduction of
computational complexity of UQ with DST can be found in [20–22]. Recent
approaches of UMDO with the use of DST have been proposed in [23–25]. In
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particular, the work in [23], that is focused on RBDO, suggests a sequential method
that incorporates mixed aleatory-epistemic uncertainty. The computational cost
remains, however, exponentially complex with the problem dimension. Other works,
as [25], make the assumptions of normally distributed epistemic parameters. [24]
also could be intractable with high order problems.

The chapter introduces different formulations of Evidence-Based Robust Opti-
misation both with single and multiple objectives. It then proceeds with some
techniques to efficiently compute robust solutions and with the definition of a par-
ticular model, presented in Sect. 17.4.4.1, called Evidence Network Model (ENM),
that translates a complex engineering system into a non-directed graph. In this graph
each node represents a sub-system or component and the associated uncertainty
is quantified with basic belief assignments. Exploiting the ENM properties, a
decomposition procedure is explained that reduces the computational cost to a
polynomial complexity with respect to the number of interacting components.

The framework presented in this chapter finds applicability to the design and opti-
misation of complex aerospace systems, composed of a number of interconnected
components, the behaviour of which cannot be inferred only by the behaviour of
each of its parts.

17.1.1 A Classification of Uncertainty

Uncertainty comes in different forms and the nature of uncertainty suggests how
it should be modelled and treated. It is, therefore, useful to classify the types of
uncertainty:

• Aleatory uncertainties are non-reducible uncertainties that depend on the very
nature of the phenomenon under investigation. They can generally be captured
by well-defined probability distributions as one can apply a frequentist approach,
e.g. measurement errors.

• Epistemic uncertainties are reducible uncertainties and are due to a lack of
knowledge. Generally they cannot be quantified with a well-defined probability
distribution and a more subjectivist approach is required. Two classes: a lack of
knowledge on the distribution of the stochastic variables or a lack of knowledge
of the model used to represent the phenomenon under investigation.

• Structural (or model) uncertainty is a form of epistemic uncertainty on our
ability to correctly model natural phenomena, systems or processes. If we accept
that the only exact model of Nature is Nature itself, we also need to accept that
every mathematical model is incomplete. One can then use an incomplete (and
often much simpler and tractable) model and account for the missing components
through some model uncertainty.

• Experimental uncertainty is generally aleatory but if one consider the uncer-
tainty associated to measurements it can be considered epistemic as it incor-
porates the possible lack of knowledge on the performance of the sensor.
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Furthermore, a lack of measurements is in itself an epistemic uncertainty. When
this uncertainty is aleatory, it is probably the easiest to understand and model, if
enough data are available on the exact repeatability of measurements.

• Geometric uncertainty is a form of aleatory uncertainty on the exact repeatability
of the manufacturing of parts and systems.

• Parameter uncertainty can be either aleatory or epistemic and refers to the
variability of model parameters and boundary conditions.

• Numerical (or algorithmic) uncertainty, also known as numerical errors, refers
to different types of uncertainty related to each particular numerical scheme, and
to the machine precision (including clock drifts).

• Human uncertainty is difficult to capture as it has both aleatory and epistemic
elements and is dependent on our conscious and unconscious decisions and
reactions. It includes the possible variability of goals and requirements due to
human decisions.

Uncertainty can be associated to the purpose for which the system is created
(uncertainty in the requirements and objectives), in its operations and function-
alities, in the phase of its development or in its temporal evolution. Finally, it is
important to distinguish between uncertainty affecting functional and physical con-
straints, and thus defining the feasibility or reliability of a system, and uncertainty
affecting the cost or objective function that quantifies the performance of a system.
This latter uncertainty defines the robustness of a system. In the following we will
consider more specifically epistemic uncertainty in cost function and constraints.

17.1.2 From Design by Analysis to Robust Design Optimisation

In the classical approach to engineering design, Design by Formula, the active
work of engineers was required throughout the whole design process. In the more
recent Design by Analysis [26] approach, the development of software analysis
tools (numerical methods) shortened the design process and enabled a better
understanding of the problem without the use of expensive experimental analyses.
The design and associated decision-making process were still performed by engi-
neers, but the analysis of different configurations was automatised by numerical
procedures. A further advancement was introduced with Design by Optimisation
[27], where numerical optimisation tools were coupled with numerical simulations
to automatically identify globally, or locally, optimal design solutions. Finally, in
the last two decades an increasing attention has been devoted to tackle optimisation
under uncertainty. Design for Reliability and Robustness [10, 11, 28–31] is radically
changing systems engineering, making designers and decision makers able to handle
higher degrees of complexity.

Design for robustness means to look for a solution for which the value of the
objective function/s (or performance index/es) is optimal under uncertainty while
design for reliability means to look for a solution that increases the probability of



17 Introduction to Evidence-Based Robust Optimisation 545

satisfying the constraints under uncertainty. In both cases, from a computational
point of view, uncertainty can be treated in two different ways

1. deterministically, where the quantity of interest is computed for a deterministic
variation of, for example, the uncertain parameters within some deterministically
defined sets;

2. non-deterministically, where some uncertainty measures are computed as a
function of the uncertain parameters;

Consider now a generic deterministic optimisation problem associated to the
design of a system characterised by the performance index f and decision vector d:

min
d∈D f (d) (17.1)

subjected to

gj (d) ≤ 0 j = 1, . . . , r (17.2)

where D is a design space and gj are constraint functions. If the system is affected
by some form of uncertainty, characterised by the uncertainty vector u ∈ U , with U
the uncertainty space, the problem can be re-formulated as:

min
d∈D φ(d,u) (17.3)

subjected to

γj (d,u) ≤ 0 j = 1, . . . , r (17.4)

where φ and γj are some measures that account for the effect of u, respectively,
on the quantities of interest f and gj . If uncertainty is treated deterministically and
there are no constraints, then φ in problem (17.3) can be written as:

φ(d,u∗) = supu∈Uf (d,u) (17.5)

where u∗ is the uncertain vector for which f attains the maximum value. This
approach is called robust regularisation in [32]. In [32] the function φ is defined as
the worst case scenario in a neighbourhoodU(ε)where ε is called the regularisation
parameter. This approach can also be found in [33–36] and can be generalised, as
in Eq. (17.5), to include the whole uncertainty space. In this case the value φ is the
global worst case scenario.

If there is enough information to model uncertainty with probability distributions,
a probabilistic approach can be used. Two examples of probabilistic measures of
robustness are:
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1. The conditional expectation E of a utility function φ(f ):

Fφ(d) = E[φ(f )|d] (17.6)

where the value of the expectation is conditional to the choice of the design (or
decision) vector d. Different definitions of the function φ have been proposed in
the literature, see [37] and [38] for some examples. When the utility function is
simply f one can account for both the expected value of f and its variance σ
with the two-objective problem:

mind E(f |d)
mind σ(f |d) . (17.7)

Methods for solving problem (17.7) can be found in [38–42].
2. The probabilistic threshold, where, for a given threshold q, the conditional

probability that the function f assumes values lower than q is maximised:

max
d
Pr(f < q|d). (17.8)

This approach can be easily extended by adding q as an objective function to be
minimised.

Note that these two approaches are in fact equivalent if one takes the utility function
φ = f < q. In this case the utility function is the indicator function and the
expectation of the indicator is the probability that f < q.

When there is not enough information to quantify uncertainty with a probability
distribution, alternative theories have been used to derive a proper quantification.
In this chapter we will focus on the use of Evidence Theory (or DST) already
introduced by previous authors in the context of engineering applications [43].

However, it is here worthwhile to briefly mention another approach using
Fuzzy Set Theory. Fuzzy Set Theory describes the feasibility of a solution by
the membership function μc (in the interval [0 1]) instead of using the extremes
values 0 or 1 as with the crisp sets. Simoes [44] and Campos et al. [45] propose
to use μc and an other membership function μf for the objective function f ,
considering μf = 1 for the unconstrained optimum and μf = 0 for the worst
case. Finally the robust solution can be found maximising the minimum of the two
defined membership functions:

max(min[μc,μf ]) (17.9)

17.2 Evidence Theory

Evidence Theory, known also as Dempster–Shafer Theory (DST) and as Theory of
Belief functions, was developed by Shafer (1976) in [19] starting from Dempsters
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original work [18]. DST belongs to the class of Imprecise Probabilities Theories
that generalise the classical concept of probability by considering the different
nature and manifestations of uncertainty. DST allows one to treat both aleatory and
epistemic uncertainty with partial information and lack of knowledge. A discussion
on the main advantages and disadvantages of DST can be found in [46] and will
not be presented in this chapter. On the contrary, this chapter is only concerned with
the computation of robust and reliable solutions once uncertainty is quantified with
DST.

The central idea of DST can be understood with the following example. Imagine
that a spacecraft S, initially in orbit around the Earth, falls down in a not precise
zone of Europe. The defence commission recruits a group of m experts, Em =
{E1, E2, . . . , Em}, to predict where the spacecraft will fall. Imagine that a subset
of them, En ⊂ Em, believes that S will fall in some crash area Li ∀i | Ei ∈ En
and the others Em−n believe that the S will fall in the ocean Lj = ∅ ∀j | Ej ∈
Em−n. The question posed by the commission is: “What is evidence in support that
S will fall in the specific land-area A?” Each expert, considering all the available
information and their knowledge, gives one of these three possible answers: (i) the
whole crash area is included in A (Li ⊂ A), (ii) S could fall in A (Li ∩ A �= ∅)
or (iii) is not possible for the S to fall in A (Li ∩ A = ∅). Imagine that q experts
in Em agree with (ii) and in particular k of them answer (i), where q ≥ k ∈ Em.
The commission can then reconstruct the belief that S will fall inside A, k

m
, and the

plausibility, q
m

, that S might fall inside A. In this case the commission assumes that
all experts are equally credible, i.e. that the evidence they provide has equal weight.
If m− n experts do not believe there is a dangerous situation, belief and plausibility
became: Bel = k

n
and P l = q

n
. If some experts are recognised to be more reliable

than others, the commission can use a set of weights, ω1, ω2, . . . , ωn, to assign more
or less belief to the statement of each expert. In this case the cumulative belief and
plausibility values become

Bel = 1

K

∑

ωi |Li⊆A
ωi (17.10)

P l = 1

K

∑

ωi |Li∩A�=∅
ωi (17.11)

where K is the normalising factor:

K = 1 −
∑

j

ωj , Ej ∩ A �= ∅ (17.12)

Note that the true probability P of the satellite to fall in A is expected to be Bel ≤
P ≤ P l. However, no expert has an exact quantification of this probability, hence
the commission can only rely on their informed opinions and in the credibility of
each expert. In DST the weights are called basic probability assignment or bpa.
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17.2.1 Frame of Discernment, Power Set and Evidence

There are three concepts at the basis of DST: the Frame of Discernment, the
Power Set and the Evidence. The frame of discernment Θ is the set of all the
mutually exclusive and collectively exhaustive elementary events (or hypothesis)
θi , i = 1, . . . , |Θ|:

Θ = {
θ1, θ2, . . . , θi , . . . , θ|Θ|

}
(17.13)

All the possible events (or hypotheses) could be overlapping or nested, but in the
frame of discernment only the finest division of them is considered. The frame of
discernment Θ could be thought as the finite sample space in general Probability
Theory. From the frame of discernment one can define the power set 2Θ = (Θ,∪)
by considering all possible combinations of the elements of Θ:

Ω = 2Θ = {∅, {θ1} , . . . ,
{
θ|Θ|

}
, {θ1, θ2} , . . . , {θ1, θ2, . . . , θi} , . . . , {θ1, θ3} ,Θ

}

(17.14)
where the generic element ω = {θ1, . . . , θj } of Ω = 2Θ is a proposition that states
the truth of only one of the events θ1, . . . , θj without specifying which one.
The degree of belief, or evidence, is quantified by the bpa that assigns a value m ∈
[0, 1] to each subset of Ω:

m : 2Θ → [0, 1] (17.15)

where the function m has to satisfy the following conditions:

m(ω) ≥ 0,∀ω ∈ Ω (17.16)

m(ω) = 0,∀ω /∈ Ω (17.17)

m(∅) = 0 (17.18)
∑

A∈2Θ

m(A) = 1 (17.19)

Each subset of the power set 2Θ with a non-zero bpa is called a Focal Element
(FE) and the pair 〈F,m〉, where F is the set of all FEs and m the corresponding
bpas, is called Body of Evidence.

An interesting feature of DST is the ability to properly model ignorance and
to differentiate between pure randomness and lack of knowledge. Furthermore, as
in the example presented in the previous section, one can very naturally quantify
uncertainty through expert opinions without a precise probability assignment.

Consider for example, that only two events θ1 and θ2 are possible. In probability
theory the knowledge on the probability of the realisation of one of the two events
is sufficient to make a statement on the realisation of the other event. In other
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words m(θ1) + m(θ2) = 1. DST, instead, does not make any assumption on
the information available for each of the two events and contemplates also the
ignorance statement θ1 ∪ θ2, or m(θ1) + m(θ2) ≤ 1. For this reason, in DST the
additive rule (m({θ1, θ2}) = m({θ1}) + m({θ2})) does not hold and is replaced by
a super-additive (m({θ1, θ2}) > m({θ1}) + m({θ2})) or sub-additive (m({θ1, θ2}) <
m({θ1}) + m({θ2})) rule. The immediate consequence is that m(A) + m(¬A) ≤ 1,
i.e. the probability on a set and on its negation do not sum to one.

17.2.2 Belief and Plausibility

At the beginning of this section we already informally introduced the idea of belief
Bel and plausibility P l with a simple example. Now that frame of discernment,
power set and bpa are defined, one can more formally calculate the belief and
plausibility associated to a particular quantity of interest f : U → R, where U
is the uncertain space and is here considered to be equal to the power set: U = 2Θ .
CallingΦ a target region for the quantity of interest f , one is interested in measuring
the degree of belief in the realisation of f (x) ∈ Φ. If one defines the preimage:

A = {x ∈ U |f (x) ∈ Φ}, (17.20)

the total degree of belief associated to (17.20) can be computed by collecting all the
pieces of evidence that either fully or partially support that statement. Given the set
A defined in (17.20) and the focal elements ω, the cumulative functions Bel and P l
are defined as:

Bel(A) =
∑

ωi⊆A
m(ωi) (17.21)

P l(A) =
∑

ωi
⋂
A�=∅

m(ωi) (17.22)

where ωi is the generic FE inside 〈F,m〉 and the plausibility measure P l is the dual
function of the belief measure Bel:

P l(A) = 1 − Bel(A) (17.23)

with A is the complement to A. From Eq. (17.21) one can see that the Bel function
is the sum of all the pieces of evidence that completely support the statement f ∈
Φ, whereas the P l function is the sum of all the pieces of evidence that partially
support the statement f ∈ Φ: this means that m(ωi) is added to Bel only if all
possible realisations of x ∈ ωi belong to A, on the contrary m(ωi) is added to P l
if at least one realisation of x ∈ ωi belongs to A. This suggests that the Evidential
Interval (EI ) [Bel P l] is a measure of the degree of ignorance on the probability
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of a realisation of x. When enough information is available, the distribution of x is
known and one can exactly quantify if a realisation of x belongs to A or not. In this
case all FEs collapse to singletons and the following condition holds true:

Bel = P l = P (17.24)

The functions Bel and P l are monotonic non-additive measures and have
following properties:

1. Bel(∅) = 0;
2. Bel(U) = 1;
3. For every positive integer n and every collection θ1, . . . θn of subsets of Θ:

Bel(θ1∪. . .∪θn) ≥
∑

i

Bel(θi)−
∑

i<j

Bel(θi∩θj )+−. . .+(−1)n+1Bel(θ1∩. . .∩θn)

and

1. P l(∅) = 0;
2. P l(U) = 1;
3. For every positive integer n and every collection θ1, . . . , θn of subsets of Θ:

P l(θ1∩. . .∩θn) ≥
∑

i

Bel(θi)−
∑

i<j

P l(θi∪θj )+− . . .+(−1)n+1P l(θ1∪. . .∪θn)

Due to conditions 3, Belief and Plausibility are also called monotone capacities
of order ∞.

17.3 Robust Optimisation with Evidence Theory

The central idea underneath Evidence-Based Robust Optimisation is to maximise
the belief in statement (17.20). This condition alone, however, is not enough to
qualify the realisations of f . In fact, imagine that f is a performance indicator, then
the condition f ∈ Φ alone would not say much on the optimality of the values of
f .

Consider now the simple case in which Φ = {f |f ≤ ν} and f : U × D → R

is a function of some decision vector d ∈ D ⊆ R
nd and some uncertain vector

u ∈ U ⊆ R
nu . If f is a performance index, it is now easy to define the optimality

condition:

minν∈R ν
s.t.

f (d,u) ≤ ν
(17.25)
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that leads to the robust optimisation problem [47]:

maxd∈D Bel(f (d,u) ≤ ν)
minν∈R ν

(17.26)

Problem (17.26) can be extended to include constraints in three different forms:

maxd∈D Bel(f (d,u) ≤ ν)
minν∈R ν
s.t.

C(d,u) ≤ νc
(17.27)

maxd∈D Bel(f (d,u) ≤ ν)
minν∈R ν
s.t.

Bel(C(d,u) ≤ νc) > 1 − ε
(17.28)

maxd∈D Bel(f (d,u) ≤ νf )
maxd∈D Bel(C(d,u) ≤ νc)
minνf ∈R νf
minνc∈Rnc νc

(17.29)

Problem (17.27) introduces the deterministic constraint vector function C,
problem (17.28) introduces a set of constraints on the belief that the constraints
are satisfied, while problem (17.29) tries to maximise the belief that the constraints
are satisfied. Note that problem (17.28) might not have any solution even if
problem (17.27) has a solution because the constraint on the belief of the satisfaction
of the constraints implies that constraints need to be satisfied for a set of values and
not for a single one. Because of condition (17.23) it is clear that one can derive an
equivalent formulation with P l.

Although the formulation of an evidence-based robust optimisation problems
looks simple, the solution even of the unconstrained problem (17.26) is far from
trivial. In fact the computation of Bel presents two major difficulties:

1. In order for a focal element ω to be included in the calculation of the belief, the
following condition must be true:

max
u∈ω f ≤ ν (17.30)

which implies solving a number of (global) maximisation problems equal to the
number of focal elements.
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2. Because focal elements can be either fully included or fully excluded from
the calculation of Bel, the function Bel(d) is generally discontinuous, non-
differentiable and presents plateaus that make it unsuitable for a gradient-method.

In [48] the authors present three approaches to solve problem (17.26):

• The direct approach uses a multi-objective optimiser to find the trade-off between
the threshold ν and corresponding Bel(f < ν) where the standard dominance
index is defined as:

Ii = |{j |Bel(dj ) > Bel(di ) ∧ νj < νi, j = 1, . . . , npop ∧ j �= i}| (17.31)

with |.| the cardinality and npop the number of design vectors. But this approach
has two main problems: each design vector in (17.31) is related to a Belief—ν
curve, and different design vectors could give the same Pareto front.

• The step method reduces the computational effort solving a single objective
problem: an initial d is chosen that corresponds to a threshold ν1 with Bel = 1
and then the threshold is reduced step by step running, for each new νk , a local
optimisation and maximising the corresponding Belief. The new optimisation is
started from the previous optimal d configuration and a local optimiser is used;
this reduces the possibility to evaluate the real global optimum, but it is on the
other hand a necessary simplification to avoid the explosion in computational
time.

• The cluster approximation, finally, looks at the whole search space (design and
uncertainty) and for different thresholds νi clusters all the possible sets, in D×U,
that satisfy the condition: f < νi . For each νi and design, then, the belief can
be easily evaluated adding the FEs included in the cluster and finally the d that
maximise the belief approximation is chosen.

One can circumvent the difficulties with the calculation of Bel by taking a
particular value of ν such that Ω = U -⇒ Bel(Ω) = 1. From the point of view
of the performance index f , this is the worst case scenario because it corresponds
to the situation in which f ≤ ν ∀u ∈ U , in other words ν is a global maximum for
f .

Problem (17.26) then translates in the classical min-max (robust optimisation)
problem:

min
d∈Dmax

u∈U f (d,u) (17.32)

or

mind∈D f (d)
s.t.

f (d) = maxu∈U f (d,u)
(17.33)

If Ω �= U , one can still write the constrained min-max problem:
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mind∈D maxu∈U f (d,u)
s.t.

C(d,u) ≤ 0
(17.34)

where this time Ω = {u|C(d,u) ≤ 0} and C : U ×D → R
nc is a vector function.

In this case, the value of Bel is not 1 and the Bel associated to the solution of
problem (17.34) needs to be evaluated a posteriori. If one requires the problem to be
globally reliable and not just globally robust, then the constrained min-max problem
becomes

mind∈D maxu∈U f (d,u)
s.t.

maxu∈U C(d,u) ≤ 0
(17.35)

with Ω = {u|maxu∈U C(d,u) ≤ 0}. Note that problem (17.34) is not equivalent to
problem (17.26). In fact, consider the constrained problem:

mind∈D maxu∈U f (d,u)
s.t.

f (d,u)− ν ≤ 0
(17.36)

In this case the optimal solution does not necessarily correspond to a maximum Bel
value because the Bel value is the sum of all focal elements that satisfy f ≤ ν while
the minimisation with respect to d would only consider a single realisation of u.

Problems (17.34) can be readily extended to the case in which f =
[f1, f2, . . . , fm]T is a vector function, as follows:

mind∈D[maxu∈U f1,maxu∈U f2, . . . ,maxu∈U fm]T
s.t.

maxu∈U C(d,u) ≤ 0
(17.37)

Likewise one can extend problem (17.26) to the multi-Belief case:

maxd∈D Bel(f1 ≤ ν1)

maxd∈D Bel(f2 ≤ ν2)

. . .

maxd∈D Bel(fm ≤ νm)
minν1∈R ν1

minν2∈R ν2

. . .

minνm∈R νm

(17.38)

Note that the dual to problem (17.37) is the minimisation problem:
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mind∈D[minu∈U f1,minu∈U f2, . . . ,minu∈U fm]T
s.t.

maxu∈U C(d,u) ≤ 0
(17.39)

In both problem (17.37) and (17.39) the assumption is that the realisations of u that
maximise or minimise the components of f are independent.

17.3.1 Optimising the Worst Case Scenario

In the literature, a number of optimisation techniques have been proposed to solve
problem (17.32). Some are based on mathematical programming [49–60] while
others are using heuristic methods [61–64]. In particular, interesting results have
been obtained with evolutionary algorithms (EAs). As in [65], three main categories
can be identified:

• algorithms for discrete min-max problems evaluating all [66] or a subset [67, 68]
of the uncertain scenarios;

• algorithms directly solving the nested problem maxu∈U f (d,u) within
Eq. (17.33) [69, 70]. This approach is highly expensive for costly objective
functions;

• the last approach defined in [65] is the co-evolution strategy: it emulates the
dynamic evolution driven by natural selection where each organism has to
continuously adapt to the other: two different populations are developed in
parallel while information is shared between them. Some ideas are developed
in [71–73] and [74] extends the previous three papers for problems that are
not constrained to satisfy the symmetrical condition mind∈D maxu∈U f (d,u) =
maxu∈U mind∈D f (d,u).

Furthermore some hybrid methods exist that mix evolutionary strategies and
mathematical programming. Given the considerable computational cost required
to solve problem (17.32) some authors proposed methods to reduce the number of
function evaluations through the use of surrogate models: [65, 75, 76] are Surrogate-
Assisted Evolutionary Algorithms (SAEA) and [77] proposes a kriging surrogate.

The algorithm proposed in this section solves the more general constrained
problem (17.35) using a combination of optimisation and restoration loops similar
to what can be found in [77]. An extensive description of the approach and its
performance can be found in [78].

The optimisation loop minimises maxue∈A f (d,ue) over the decision vector d
and the restoration loop maximises f (d∗,u) over the uncertainty vector u for d∗ =
arg mind maxue∈A f (d,ue). The vectors ue are taken from the space of the maxima
over U . The constraint vector C defines the admissible set for both d and u. In
particular, in order for the solution to be robust against all realisations of u one has
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to ensure that the maximum value of C over U is admissible. The optimisation and
restoration loops then become as follows:

1. [Optimisation] Given a set of maxima A = Au
⋃
Ac, solve the constrained

minimisation problem:

mind∈D maxu∈A f (d,u)
s.t.

maxu∈A C(d,u) ≤ 0
(17.40)

where Au is the set of maxima of f and Ac is the set of maxima of C.
2. [Restoration] Given the solution of problem (17.40), d∗ , solve the two maximi-

sation problems:

maxu∈U f (d∗,u)
s.t.

C(d,u) ≤ 0
(17.41)

max
u∈U C(d

∗,u) (17.42)

The solution of problem (17.41), ua,f , is added to the archive Au and the
solution of problem (17.42), ua,C is added to Ac if maxu∈U C(d,u) > 0.
Note that problem (17.42) has to be understood as a maximisation for every
constraint function in C and not as a vector optimisation. This approach pushes
the optimiser to find design solutions that are feasible for all values of the
uncertain variables. If a feasible solution cannot be found, the constraints are
relaxed (line 15), by defining the new constraint C∗ = C+ε with ε the minimum
constraint violation over U .

The optimisation and restoration loops are repeated one after the other for a
prescribed number of iterations and all d∗ and associated maxima A are stored
in a global archive Ag . The global archive is then used to perform a cross-check
of the solutions. Given a finite number of iterations, one might obtain a solution d∗
associated to non-globally optimal value of ue ∈ A. In order to mitigate this problem
one can evaluate f and C taking multiple pairs d∗,ue taken from the archive A.
The overall procedure is summarised in Algorithm 1. First the design vector d̄ and
the archives—Au, Ac, Ad—are initialised and a constrained maximisation over the
uncertain domain U is run kipping fixed d̄ (lines 1 and 2). Then the inner and outer
loops are alternated until the maximum number of iteration is reached (lines 3–
22). In particular, the archive of the design vectors d, Ad , is updated after each
outer loop (line 6) while the archives of the uncertainty vectors uF—from the
maximisation of the objective function—and uC—from the maximisation of the
constraint violation—are updated after each inner loop (respectively, in lines 10
and 13) if they are not already saved in the archives. During the last loops of the
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algorithm the relaxation procedure could be activated if the condition expressed in
line 13 is satisfied: a fixed number of iterations—arbitrarily lower that the maximum
allowed—has to be reached and none of the solution saved in the whole archive
A = AF ∪ AC has to be feasible in all the uncertainty domain U . If this happens, a
small violation ε of the constraint C is accepted and increased as long as a feasible
solution is obtained. The relaxation procedure is helped by the elimination from
the archive AC of all the vectors u previously saved with to a constraint violation
smaller than the actual ε (line 17).

Algorithm 1 Constrained minmax

1: Initialise d̄ at random and run ua = argmaxF(d̄,u) s.t. C(dmin,u) ≤ 0
2: Au = Au ∪ {ua}; Ac = ∅; Ad = ∅
3: while Nfval < Nmaxf val do
4: Outer loop:
5: dmin = argmind∈D{maxu∈Au∪Ac F (d,u)} s.t.

maxu∈Au∪Ac C(d,u) ≤ 0
6: Ad = Ad ∪ {dmin}
7: Inner loop:
8: ua,F = argmaxu∈UF(dmin,u) s.t. C(dmin,u) ≤ 0
9: ua,C = argmaxu∈UC(dmin,u)

10: Au = Au ∪ {ua,F }
11: if Nfval < Nrelaxationf val ∨ ∃d ∈ Ad t.c. maxu∈U C(d,u) ≤ 0 then
12: if maxu∈U C(dmin,u) > 0 then
13: Ac = Ac ∪ {ua,C}
14: end if
15: else
16: update ε
17: Ac = {Ac \ ua,C | C(dmin,u) ≤ ε}
18: if maxu∈U C(dmin,u) > ε then
19: Ac = Ac ∪ {ua,C}
20: end if
21: end if
22: end while

17.4 Belief Curve Reconstruction

The solution of the worst case scenario provides some key information on the system
under investigation. It defines the range of variability of ν for problem (17.26), it
provides a quantification of the extreme case and a possible countermeasure and
explores the space of the maxima over U which represents the set of extreme cases
for f and C. However, the most robust solution is also the most conservative and
does not account for the belief associated to each event. The solution of (17.26)
requires, instead, an efficient calculation of Bel for events different from the worst
case. In this section we consider a few approaches to calculate an approximated
value of Bel for a range of values of ν. We can group these approaches in
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three categories: sampling methods, dimensionality reduction methods and outer
approximation methods.

17.4.1 Belief Estimation by Sampling

In the literature one can find a handful of sampling-based methods for the
computation and estimation of Bel [22, 79–81]. As a representative example, in
[22], the authors suggest the use of the density function:

dj (uj ) =
n(j)∑

k=1

δ(uj |Ijk)bpajk(Ijk)/(bjk − ajk) (17.43)

for the j -th dimension of the uncertain space, if the intervals for the uncertain
parameters are given in the form Ijk = {uj : aik ≤ uj ≤ bjk}. Here n(j) is
the number of intervals in the j -th dimension and

δ(xj |Ijk) =
{

1 if xj ∈ Ijk
0 otherwise;

(17.44)

then the sampling distribution is

d(x) =
nU∏

j=1

dj (uj ) (17.45)

Distribution (17.45) explores adequately the uncertain space giving more impor-
tance to the focal elements with higher bpa and then sampling uniformly inside
them. Samples can be generated with a Latin Hypercube scheme and propagated
through the system model in order to build a response surface, for example, through
a non-parametric regression model, that can either directly approximate the Bel or
the quantity of interest from which one can calculate the Bel.

The main problem with sampling is that a correct calculation of the Bel requires
the maximisation of the quantity of interest within each focal element. If sampling
is used to directly estimate the Bel one obtains a potentially efficient approach
but an approximation that can be significantly poor. Furthermore, this type of
approximation provides estimated Bel values that are always better than the actual
ones, leading to an overconfidence in the realisation of an event. A possible
mitigation of this problem was recently proposed in [82] to address the solution
of optimal control problem under epistemic uncertainty. In [82] the value of the Bel
was approximated with the surrogate of a weighted integral obtained by sampling
the space of the focal elements. The integral was elevated to an exponent factor
k, the higher k the more the integral was resembling the actual Bel. Furthermore,
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the surrogate was periodically updated to identify the threshold values where the
approximation was the closest to the true Bel. These two improvements allow one
to insert selected values of the surrogate in the optimisation loop and improve the
Bel at a discrete number of thresholds ν.

If sampling is used to build a surrogate of the quantity of interest, the com-
putational cost due to the maximisation over all the focal elements is only
partially mitigated, as the cost of each optimisation is reduced but the number of
optimisations might remain very high and could still scale exponentially with the
number of dimensions of the uncertainty space U .

17.4.2 Dimensionality Reduction

Another class of approaches tries to reduce the number of focal elements upfront.
The general idea is to define criteria to sort the FEs by their importance and then
approximate the m-function in Eq. (17.15) to a m′-function with a lower number of
FEs. A few examples follow:

• The Bayesian approximation proposed by Voorbraak’s [83] produces a discrete
probability distribution: the new mass function m′ considers only the singleton
subsets θi in the Power Set 2Θ .

• Dubois and Prade’s consonant approximations [84]
• The k-l-x method proposed by Tessem [85] uses the bpa’s as sorting criterion.

The approximating m′=mklx then includes only the p FEs with higher bpa,
where k < p < l, and such that the sum of the masses of the deleted FEs is
less than x. A normalisation method is finally used to redistribute the total mass
of the deleted FEs to the remaining ones.

• The summarisation method takes the first p focal elements with the highest bpa,
as in [85], and lumps together all the remaining ones in a single focal element
with a bpa that is the sum of their bpa’s .

• The D1 method [86] beside the criteria ofmass introduces also the cardinality.
• The Batch approximation method and Iterative approximation method [87]

suggest, instead, that mass and cardinality are not sufficient to discriminate
which FE to take and which one to discard. Then in the paper a non-redundancy
measure is presented based on the definition of distance between two FEs as
proposed by Denœux in [88].

• for some heuristic methods refer to [89].

17.4.3 Outer Belief Estimation via Evolutionary Binary Tree

It is generally desirable to have a method that produces estimated values of Bel that
are lower than the actual one. We call these estimated values: outer approximations.
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Furthermore, it is desirable to have a method that iteratively converges to the exact
value with a sequence of outer approximations.

In [20], Bel and P l functions were approximated, for any threshold ν ∈
[νmin, νmax], with an Evolutionary Binary Tree (EBT ) algorithm. EBT consists
in an iterative bisection of the uncertainty space U , where U is the collection of all
the focal elements into a unit hypercube. The assumption is that focal elements are
formed from a number of disjoint or overlapping intervals along every dimension.
The mapping between the uncertainty space U and the unit hypercube U is given
by an affine transformation.

Every time a subset Bi,j of U is bisected (where i represents the level of the tree
and j the index of the branch at level i) the maximum of f in one of two new halves
is computed. The other half inherits the maximum of f in Bi,j . At every iteration,
subsets are pruned from the tree if the maxima belonging to those subset are below
the threshold ν and the cumulative bpa associated to those subsets is added to the
calculation of Bel. In the original formulation in [20] a subset was bisected along
the longest edge and along the extreme of the interval that was closest to the middle
point of the edge. Thus the partitioning rule was agnostic of the distribution of focal
elements.

The partition of the unit hypercube eventually reduces to all the focal elements
whose maxima are above the threshold ν. Hence this method eventually converges
to the true Bel and produces better and better outer approximations of its value as
the partitioning process progresses.

In [21] a more sophisticated and efficient partitioning scheme was proposed that
exploits the distribution of the maxima and the bpa associated to each focal element.
The method is based on the variance of the distribution of the maxima in the subsets
Bi,j generated by the partitioning of U . The partitioning rule bisects the subset
along the edge (or dimension) where distribution of the maxima displays the highest
variance. The process is finally stopped when a maximum number of evaluations of
f is reached or when the difference between the value of Bel after two subsequent
iterations is below a given tolerance.

17.4.4 Outer Belief Estimation via Decomposition

In some cases the structure and nature of the function f can be exploited to
drastically reduce the computation of Bel(f ≤ ν) in (17.26). In particular, in this
section we consider the model introduced in [90] and the decomposition method
proposed in [90–92].

17.4.4.1 Evidence Network Models

Consider a generic complex system with N sub-systems connected with a known
topology. We model this complex system as a non-directed graph or network where
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node i is characterised by the value function gi and exchanges information with
node j via the exchange function hij . Following the definition of the design vector
d and uncertain vector u introduced in the previous sections, one can define the total
value of the network as:

f (d,u) =
N∑

i=1

gi(d,ui ,hi (d,ui ,uij )) (17.46)

where hi (d,ui ,uij ) is the vector of scalar functions hij (d,ui ,uij ), j ∈ Ji and Ji is
the set of indexes of nodes connected to the i-th node; ui are the uncertain variables
of sub-system i not affecting any other sub-systems and uij are the uncertain
variables affecting both sub-systems i and j . Please note that accordingly to our
notation uij = uj i .

As an example, a fully connected network with 3 nodes can be represented as in
Fig. 17.1, the value function f in this case is

f (d,u) = g1(d,u1, h12(d,u1,u12), h13(d,u1,u13)))

+g2(d,u2, h21(d,u2,u12), h23(d,u2,u23)))

+g3(d,u3, h31(d,u3,u13), h32(d,u3,u23)).

(17.47)

We then call ui uncoupled variables because they influence only sub-system i

and uij coupled variables because they influence sub-systems i and j ; if the same
parameters are shared between nodes i, j and k is uij = uik = ujk .

We now consider the pair (f,Ω) where f : Ω → R. Furthermore we introduce
the two sets Ωx and Ωy such that Ω = Ωx ×Ωy . Consider now two partitions Dx
and Dy , respectively, of Ωx and Ωy . Given δΩpx ∈ Dx and δΩqy ∈ Dy we compute

y0 = arg max
δΩ

q
y

f (x0, y) (17.48)

for an arbitrary initial x0 ∈ Ωx and the iteration:

xk = arg max
δΩ

p
x

f (x, yk−1) (17.49)

yk = arg max
δΩ

q
y

f (xk, y) (17.50)

Fig. 17.1 Evidence network
model of a generic system F
composed of three
sub-systems with coupled
variables u12, u13 and u23

g1(d,u1,u12,u13)

g2(d,u2,u12,u23) g3(d,u3,u13,u23)

u12 u13

u23
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We say that the pair (f,Ω) is M-decomposable if, given an M > 0, for k > M we
have that:

(xk, yk) = arg max
δΩpq

f (x, y) (17.51)

with δΩpq = δΩpx × δΩqy .
The ENMs has been constructed under the following properties:

1. The contribution of the coupled variable uij to the value f manifests through the
scalar functions hij and hji .

2. The pair (f, U) is M-decomposable. In particular in this chapter we consider the
case in whichM = 0.

17.4.4.2 Decomposition Method

The decomposition algorithm aims at decoupling the sub-systems over the uncertain
variables in order to optimise only over a small subset of the Focal Elements
(Algorithm 2); this procedure requires the following steps:

1. Solution of the optimal worst case scenario problem:

min
d∈Dmax

u∈U F(d,u) (17.52)

2. Maximisation over the coupled variables and computation of Belc(A).
3. Maximisation over the uncoupled variables.
4. Reconstruction of the approximation B̃el(A).

Point 1 has been already discussed in Sect. 17.3.1. In the following the solution
of problem (17.52) is represented by the values d̃ and u and it is assumed that d̃ is
already available.

For each coupled vector uij a maximisation is run over each Focal Element
θk,ij ⊆ Θij ⊆ U , given d̃ and keeping fixed all the other components to uk and
ulm ∀k, l,m \ {l, m} = {i, j}. Taking again the example in Fig. 17.1 we have

ûk,12 = arg max
u12∈θk,12

F (̃d,u1,u2,u3,u12,u13,u23),∀θk,12 ⊂ Θ12

ûk,13 = arg max
u13∈θk,13

F (̃d,u1,u2,u3,u12,u13,u23),∀θk,13 ⊂ Θ13

ûk,23 = arg max
u23∈θk,23

F (̃d,u1,u2,u3,u12,u13,u23),∀θk,23 ⊂ Θ23 (17.53)

For easiness in the notation we will indicate with

F(uij ) := F(d̃,u1, . . . ,uij , . . . ,ui+1j , . . .).
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Algorithm 2 Decomposition
1: Initialise
2: Uncoupled vectors uu = [u1,u2, . . . ,ui , . . . ,umu ]
3: Coupled vectors uc = [u12,u13, . . . ,uij , . . . ,umc ]
4: for a given design d̃ do
5: Compute (̃d,uu,uc) = arg maxF (̃d,uu,uc)
6: for all uij ∈ uc do
7: for all Focal Elements θk,ij ⊆ Θij do
8: F̂k,ij = maxuij∈θk,ij F (̃d,uu,uij )
9: ûk,ij = argmaxuij∈θk,ij F

10: Evaluate bpa(θk,ij )
11: Evaluate partial Belief curve Bel(F (uij ) ≤ ν)
12: end for
13: for number of samples do
14: Evaluate ΔBelq , ûk,ij and F̂k,ij
15: end for
16: end for
17: for all the combinations of samples do
18: for all ui ∈ uu do
19: for all Focal Elements θk,i ⊆ Θi do
20: Run

Fmax,k,i = maxθk,i F (̃d, ûc,ui )
21: Evaluate bpa(θk,i )
22: end for
23: end for
24: for all the combinations of Focal Elements

θt ∈ Θ1 ×Θ2 × . . .×Θmu do
25: Evaluate Fmax,k ≤ ν
26: Evaluate bpak
27: end for
28: Evaluate the Belief for this sample by constructing collection Γν
29: end for
30: Add up all belief values for all samples
31: end for

We can then compute the partial belief associated only to the coupled variables with
index ij :

Bel(F (uij ) < ν) =
∑

θk,ij |maxuij ∈θk,ij F (uij )≤ν
bpa(θk,ij ) (17.54)

The calculation of the partial belief can be found in Algorithm 2, line 6. Once
the partial belief curve, for each coupled vector, is available, one can sample these
curves, by taking a succession of {ν1, . . . , ν

q, . . . , νNS = ν} values, and find the
corresponding values of the coupled vectors ûqk,ij . These values will be used in the
next step to decouple the functions gi (gj ) and compute the maxima of each gi (gj )
with respect to the uncoupled variables ui (uj ).
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For each level q, given a fixed value of the coupling functions, one can study each
gi independently of the others. The idea is to run an optimisation for each function
gi over only the uncoupled vector ui . With the example in Fig. 17.1 in mind, having

ĥ
q
ij (ui ) := hij (d̃,ui , ûqij )

where ûqij := ûqk∗,ij : k∗ = arg maxk F (û
q
k,ij ), is one of the maxima attained by the

coupled variable uij . For every Focal Element θk,i ∈ Θi we have

ûqk1,1
= arg max

u1∈θk,1
g1(̃d,u1, ĥ

q

12(u1), ĥ
q

13(u1)),∀θk1,1 ⊂ Θ1

ûqk2,2
= arg max

u2∈θk,2
g2(̃d,u2, ĥ

q

21(u2), ĥ
q

23(u2)),∀θk2,2 ⊂ Θ2

ûqk3,3
= arg max

u3∈θk,3
g3(̃d,u3, ĥ

q

31(u3), ĥ
q

32(u3)),∀θk3,3 ⊂ Θ3 (17.55)

with the corresponding values ĝqk1,1
, ĝqk2,2

and ĝqk3,3
.

Once all the maxima over the focal elements of the uncoupled variables are
available for each sample q one can calculate an approximation of Bel(F (d,u) <
ν) as follows. From Eq. (17.55), for each sample q the maximum associated to the
FE θk = θk1,1×θk2,2×θk3,3, for k = 1, . . . NFE,1 ·NFE,2 ·NFE,3, given the condition
of positive semidefinition of gi , is

max
(u1,u2,u3)∈θk

F (d̃,u1,u2,u3, û
q

12, û
q

13, û
q

23) = ĝqk1,1
+ ĝqk2,2

+ ĝqk3,3
(17.56)

with associated basic probability assignment:

bpaq(θk) = bpa(θk1,1)bpa(θk2,2)bpa(θk3,3)ΔBel
q (17.57)

where ΔBelq = ∏
ij ΔBel

q
ij are the contributions of the partial belief curves

in (17.54): the generic ΔBelqij is the difference of belief between sample q and
q−1 in the partial belief curve Belc about the coupled uncertain vector uij. In other
words, the bpa of each θk is the product of all the bpa’s of the FE of each uncoupled
variable scaled with the product of the belief values of the samples drawn from the
partial belief curves (Line 18). The approximation of the belief is then computed as:

B̃el(F (d,u) ≤ ν) =
∑

q

∑

k

bpaq(θk) (17.58)
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17.4.4.3 Complexity Analysis

The number of optimisation for the exact curve reconstruction (equal to the total
number of FE) for a problem with m uncertain variables, each defined over Nk
intervals, is

NFE =
m∏

k=1

Nk. (17.59)

In terms of coupled and uncoupled uncertain vectors we can write

NFE =
⎛

⎝
mu∏

i=1

pui∏

k=1

Nui,k

⎞

⎠

⎛

⎝
mc∏

i=1

pci∏

k=1

Nci,k

⎞

⎠ s (17.60)

where pui and pci are the number of components of the i-th uncoupled and coupled
vector, respectively, and Nui,k and Nci,k are the number of intervals of the k-th
components of the i-th uncoupled and coupled vector, respectively.

The total number of FE that needs to be explored in the decomposition is instead:

NDecFE = Ns
mu∑

i=1

NuFE,i +
mc∑

i=1

NcFE,i (17.61)

considering the vector of uncertainties ordered as

u = [u1, . . . ,umu︸ ︷︷ ︸
uncoupled

,u1, . . . ,umc︸ ︷︷ ︸
coupled

]

where Ns is the number of samples of the partial belief curves, NcFE,i =
∏pci
k=1N

c
i,k

andNuFE,i =
∏pui
k=1N

u
i,k . This means that the computational complexity to calculate

the maxima of the function F within the focal elements is polynomial with the
number of sub-systems and remains exponential for each individual uncoupled or
coupled vector.

17.4.5 Example

Some examples are proposed in this section to better clarify our approach to
robust optimisation with particular emphasis to the decomposition approach used
for uncertainty quantification within Dempster–Shafer Theory of Evidence (DST ).
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The multidisciplinary nature of a generic complex system is captured by the Evi-
dence Network Model (ENM) described in Sect. 17.4.4.1 where the component’s
QoI contribute to the overall performance as stated in Eq.(17.46).

The analytical function f = ∑
i gi is here used as test case. The i-th node’

performance and the generic coupling function hij between couples of nodes are,
respectively, formulated as:

gi = di +
NuFE,i∑

k=1

sinuik −
(∣
∣
∣

NuFE,i∑

k=1

uik

∣
∣
∣+

mc∑

k=1

hik

)3
(17.62)

hik =
NuFE,i∑

k=1

sin
(
uik

)+ uik

f is multi-modal with respect of Θu and Θc separately while monotonic with
respect of the coupling functions h.

The scaling behaviour of the method is tested applying f to the different network
topology represented in Fig. 17.4. In particular, each i-node depends on a pair of
uncoupling uncertain variables uu,i = [u1

u,i , u
2
u,i] and each link shares between two

nodes a pair of coupling uncertain variables uc,ij = [u1
c,ij , u

2
c,ij ]. Then, being n the

number of nodes and l the number of links for a selected topology, the total number
of uncertain variables is: nu,tot = 2(n+ l).

The robust optimisation approach first evaluates the optimal design configu-
ration dopt solving the constrained min-max optimisation problem described by
Eq. (17.35) by means of Algorithm 1. Figure 17.3 presents, for example, the
convergence of the algorithm for f applied to topology (c) where the constraint
function has been defined as:

C(d,u) = −
∑

i

di + 5
∑

i

(
sin(diui)

) ≤ 0 (17.63)

The figure shows the convergence of the algorithm to the optimal solution trading
the conflict between the performance indicator

fmax = max
u∈U f (d,u) (17.64)

and the constraint function

cmax = max
u∈U c(d,u) ≤ 0 (17.65)

At convergence, dopt gives the minimum worst case value of fmax while pushing
cmax at the edge of the feasible set ] − ∞, 0]. The curve c, instead, represents
the value of the constraint function corresponding to dopt and the worst uncertain
scenario for f .
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The network’ topology is then exploited with Algorithm 2 to propagate epistemic
uncertainty and calculate at a reduced computational cost the Belief and Plausibility
curves corresponding to dopt . For this purpose, the Frame of Discernment as defined
in Sect. 17.2.1 is constructed assigning to each uncertain variable u two possible
intervals and their bpa. The total number of focal elements is then nf e = 2nu,tot .
The number of optimisations required for exact quantification of the Belief curve is
nopt,exact = nf e while the number required by the decomposition approach follows
Eq. (17.60).

Table 17.1 collects the results of the simulations for the different network’
topology. It is shown the gain in computational cost offered by the decomposition
approach together with the generated error. The error has been evaluated as the
ratio (Aexact − Adec)/Adec where Aexact and Adec are the integral of the exact
and decomposition curve, respectively. For problems satisfying the conditions in
Sect. 17.4.4.1, the decomposition approach assures to quantify exactly the DST’
measures of probability when the partial curves are entirely sampled. For example,
considering the topology (c) and using 64 samples (all the combinations for the 4
samples for each of the 3 coupled curve), we obtain an error equal to zero running a
number of optimisations that is 19% of total number of focal elements. Furthermore,
the smaller is the number of samples, the lower is the computational cost but the
higher the error. For example, for the same problem, a single sample brings to a
cost that is 0.59% of the exact evaluation increasing the error, however, to 187%.
Between these two extreme positions we can make a trade-off between cost and
accuracy.

Figure 17.2 shows instead the plots of the partial curves and the final curves
calculated with the decomposition strategy and also the exact curves calculated
running an optimisation for each focal element for f applied to topology (c).

It has been noticed that sampling very close points in the space of the maxima
in Fig. 17.2a brings to negligible contribution to the error reduction in Fig. 17.2b.
Then, future works will show how a careful selection of the samples can improve
the algorithm performance mitigating both the error (possibly bringing it to zero)
and the cost under the condition that the user is not interested in the entire curve
but only in the value assumed by belief and plausibility at some specific thresholds.
This is particularly important when the decomposition strategy is nested within an
optimisation loop, for example, in the approach presented in Eq. (17.39).

17.5 Conclusions

In this chapter we described the importance of uncertainty quantification in real
world modern problems and its challenge due to the computational cost, an overview
of the uncertain probability theory and a deeper insight in Evidence Theory. Two
novel tools have been described to do a rigorous uncertainty quantification when the
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Fig. 17.2 Belief and Plausibility curves for f . Sub-figures (a, b) refer to topology (c), while sub-
figures (c, d) refer to topology (d). Sub-figures (a, c) plot the partial curves evaluated only in
the subspace of the coupling uncertain variables. Each colour corresponds to a single link in the
network. Sub-figures (b, d) show the final curves calculated with the decomposition approach
where each colour refers to a different sampling. They show also the exact belief and plausibility
evaluated running an optimisation for each focal element

Fig. 17.3 Convergence to the
optimal solution of the
constrained min-max problem
for Algorithm 1 with f
applied to topology (c). For
each design solution
proposed by the algorithm at
each new iteration, it is here
plotted the worst case
scenario in the uncertain
space for the objective
function fmax and for the
constraint violation cmax . It is
also plotted the value of the
constraint c corresponding to
the worst scenario for fmax
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Fig. 17.4 Network topology applied to T C1 and T C2 for the study of the scalability of the
decomposition method. (a) Simple graph with dimension of the uncertain space dimu = 6. (b)
Triad ∧ with dimu = 10. (c) Triangle K3 with dimu = 12. (d) Graph with dimu = 22

problem is affected by lack of knowledge and described by Imprecise Probability
Theories in order to overcome the limits imposed by the widely used contingencies
and margins approach. The min-max algorithm [78] has been presented to do a
conservative and robust optimisation under uncertainty and finally a novel Evidence
Network Model [90, 91] has been described to decompose a complex system and
propagate uncertainty to evaluate the cumulative Belief and Plausibility curves.

References

1. V. Larouche, NASA mass growth analysis - spacecraft & subsystems, in 2014 NASA Cost
SymposiumLaRC, August 14, vol. 117 (2014)

2. S. Division, Space engineering. Engineering design model data exchange (CDF) (2010)
3. ANSI/AIAA, S-120A-201X Draft for public review American national standard mass

properties control for space systems (2015)
4. D. Woods, Creating foresight: how resilience engineering can transform NASAs approach to

risky decision making. Work 4, 137–144 (2003)
5. A.M. Madni, S. Jackson, Towards a conceptual framework for resilience engineering. IEEE

Syst. J. 3(2), 181–191 (2009). https://doi.org/10.1109/JSYST.2009.2017397
6. A.W. Wymore, Model-Based Systems Engineering (U. of A. series editor A. Terry Bahill, Ed.)

(C. Press, Boca Raton, Florida, 1993)
7. S.A. Sheard, Twelve Systems Engineering Roles. INCOSE Int. Symp. 6, 478–485 (2014).

https://doi.org/10.1002/j.2334-5837.1996.tb02042.x
8. N.V. Sahinidis, Optimization under uncertainty: state-of-the-art and opportunities. Comput.

Chem. Eng. 28, 97–183 (2004). https://doi.org/10.1016/j.compchemeng.2003.09.017
9. T.A. Zang, M.J. Hemsch, M.W. Hilburger, S.P. Kenny, J.M. Luckring, P. Maghami, et

al., Needs and opportunities for uncertainty-based multidisciplinary design methods for
aerospace vehicles. NASA Tech Reports Serv 211462:paste (2002)

https://doi.org/10.1109/JSYST.2009.2017397
https://doi.org/10.1002/j.2334-5837.1996.tb02042.x
https://doi.org/10.1016/j.compchemeng.2003.09.017


570 G. Filippi and M. Vasile

10. H.G. Beyer, B. Sendhoff, Robust optimization - a comprehensive survey. Comput. Methods
Appl. Mech. Eng. 196, 3190–3218 (2007). https://doi.org/10.1016/j.cma.2007.03.003

11. E. Zio, Reliability engineering: old problems and new challenges. Reliab. Eng. Syst. Saf. 94,
125–141 (2009). https://doi.org/10.1016/j.ress.2008.06.002

12. G. Punzo, A. Tewari, E. Butans, M. Vasile, A. Purvis, M. Mayfield, et al., Engineering resilient
complex systems: the necessary shift toward complexity science. IEEE Syst. J. 14, 3865–3874
(2020). https://doi.org/10.1109/jsyst.2019.2958829

13. S.N. Naghshbandi, L. Varga, A. Purvis, R. Mcwilliam, E. Minisci, M. Vasile, et al., A review
of methods to study resilience of complex engineering and engineered systems. IEEE Access
44, 11 (2020). https://doi.org/10.1109/access.2020.2992239

14. C.N. Calvano, P. John, Systems engineering in an age of complexity. Syst. Eng. 7, 25–34
(2004). https://doi.org/10.1002/sys.10054

15. S.A. Sheard, A. Mostashari, Principles of complex systems for systems engineering. Syst.
Eng. 12, 295–311 (2009). https://doi.org/10.1002/sys.20124

16. W. Yao, X. Chen, W. Luo, M. van Tooren, J. Guo, Review of uncertainty-based multidisci-
plinary design optimization methods for aerospace vehicles. Prog. Aerosp. Sci. 47, 450–479
(2011). https://doi.org/10.1016/J.PAEROSCI.2011.05.001

17. J.C. Helton, J.D. Johnson, W.L. Oberkampf, C.J. Sallaberry, Representation of analysis results
involving aleatory and epistemic uncertainty. Int. J. Gen. Syst. 39, 605–646 (2010). https://
doi.org/10.1080/03081079.2010.486664

18. A.P. Dempster, Upper and lower probabilities induced by a multivalued mapping. Ann. Math.
Statist. 38(2), 325–339 (1967)

19. G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, Princeton, 1976)
20. M. Vasile, E. Minisci, F. Zuiani, E. Komninou, Q. Wijnands, Fast evidence-based space

system engineering, in IAC (2011)
21. C.O. Absil, G. Filippi, A. Riccardi, M. Vasile, A variance-based estimation of the resilience

indices in the preliminary design optimisation of engineering systems under epistemic
uncertainty, in EUROGEN (2017)

22. J.C. Helton, J.D. Johnson, W.L. Oberkampf, C.B. Storlie, A sampling-based computational
strategy for the representation of epistemic uncertainty in model predictions with evidence
theory. Comput. Methods Appl. Mech. Eng. 196, 3980–3998 (2007). https://doi.org/10.1016/
j.cma.2006.10.049.

23. W. Yao, X. Chen, Y. Huang, Z. Gurdal, M. Van Tooren, Sequential optimization and mixed
uncertainty analysis method for reliability-based optimization. AIAA J. 51, 2266–2277,
(2013). https://doi.org/10.2514/1.J052327

24. H. Agarwal, J.E. Renaud, E.L. Preston, D. Padmanabhan, Uncertainty quantification using
evidence theory in multidisciplinary design optimization. Reliab. Eng. Syst. Saf. 85, 28194
(2004). https://doi.org/10.1016/J.RESS.2004.03.017

25. Z.P. Mourelatos, J. Zhou, A design optimization method using evidence theory. J. Mech. Des.
Trans. ASME 128, 901–908 (2006). https://doi.org/10.1115/1.2204970

26. P. Pedersen, C.L. Laureen, Design for minimum stress concentration by finite elements
and linear programming. J. Struct. Mech. 10, 375–391 (1982). https://doi.org/10.1080/
03601218208907419

27. M. Nicolich, G. Cassio, System models simulation process manangement and collaborative
multidisciplinary optimization, in CEUR Workshop Proceedings, Rome, vol. 1300 (2014), pp.
1–16

28. G.J. Park, T.H. Lee, K.H. Lee, K.H. Hwang, Robust design: an overview. AIAA J. 44, 181–
191 (2006). https://doi.org/10.2514/1.13639

29. M. Kalsi, K. Hacker, K. Lewis, A comprehensive robust design approach for decision trade-
offs in complex systems design. J. Mech. Des. Trans. ASME 123, 1–10 (2001). https://doi.
org/10.1115/1.1334596

30. X. Du, W. Chen, Towards a better understanding of modeling feasibility robustness in
engineering design. J. Mech. Des. Trans. ASME 122, 385–394 (2000). https://doi.org/10.
1115/1.1290247

https://doi.org/10.1016/j.cma.2007.03.003
https://doi.org/10.1016/j.ress.2008.06.002
https://doi.org/10.1109/jsyst.2019.2958829
https://doi.org/10.1109/access.2020.2992239
https://doi.org/10.1002/sys.10054
https://doi.org/10.1002/sys.20124
https://doi.org/10.1016/J.PAEROSCI.2011.05.001
https://doi.org/10.1080/03081079.2010.486664
https://doi.org/10.1080/03081079.2010.486664
https://doi.org/10.1016/j.cma.2006.10.049
https://doi.org/10.1016/j.cma.2006.10.049
https://doi.org/10.2514/1.J052327
https://doi.org/10.1016/J.RESS.2004.03.017
https://doi.org/10.1115/1.2204970
https://doi.org/10.1080/03601218208907419
https://doi.org/10.1080/03601218208907419
https://doi.org/10.2514/1.13639
https://doi.org/10.1115/1.1334596
https://doi.org/10.1115/1.1334596
https://doi.org/10.1115/1.1290247
https://doi.org/10.1115/1.1290247


17 Introduction to Evidence-Based Robust Optimisation 571

31. X. Zhuang, R. Pan, L. Wang, Robustness and reliability consideration in product design
optimization under uncertainty, in IEEE International Conference on Industrial Engineering
and Engineering Management (IEEE, Piscataway, 2011), pp. 132–159. https://doi.org/10.
1109/IEEM.2011.6118131

32. A. Lewis, Robust regularization, Technical Report, Simon Fraser University, Vancouver
(2002)

33. M. Trosset, Taguchi and robust optimization, Technical Report, 96-31, Department of
Computational & Applied Mathematics, Rice University (1996)

34. M. McIlhagga, P. Husbands, R. Ives, A comparison of search techniques on a wing-box
optimisation problem, in Parallel Problem Solving from Nature ed. by H.-M. Voigt, W.
Ebeling, I. Rechenberg, H.-P. Schwefel, vol. 4 (Springer, Berlin, 1996), pp. 614–623

35. J. Herrmann, A genetic algorithm for minimax optimization problems, in Proceedings of the
Congress on Evolutionary Computation, vol. 2 (IEEE Press, New York, 1999), pp. 1099–1103

36. L. El Ghaoui, H. Lebret, Robust solutions to least-squares problems with uncertain data.
SIAM J. Matrix Anal. Appl. 18(4), 1035–1064 (1997)

37. H.-G. Beyer, M. Olhofer, B. Sendhoff, On the behavior of μ/μI , λ-ES optimizing functions
disturbed by generalized noise, in Foundations of Genetic Algorithms, ed. by K. De Jong, R.
Poli, J. Rowe, vol. 7 (Morgan Kaufman, San Francisco, 2003), pp. 307–328

38. I. Das, Robustness optimization for constrained, nonlinear programming problems, Tech.
Rep. TR97-01, Technical Reports, Department of Computational & Applied Mathematics,
Rice University, Houston, TX (1997)

39. J. Mulvey, R. Vanderbei, S. Zenios, Robust optimization of large-scale systems. Oper. Res.
43(2), 264–281 (1995)

40. W. Chen, M. Wiecek, J. Zhang, Quality utility a compromise programming approach to robust
design. ASME J. Mech. Des. 121(2), 179–187 (1999)

41. N. Rolander, J. Rambo, Y. Joshi, J. Allen, F. Mistree, An approach to robust design of
turbulent convective systems. J. Mech. Des. 128(4), 844–855 (2006)

42. Y. Jin, B. Sendhoff, Trade-off between performance and robustness: an evolutionary mul-
tiobjective approach, in Evolutionary Multi-Criterion Optimization: Second International
Conference, EMO 2003, ed. by C. Fonseca, P. Fleming, E. Zitzler, K. Deb (Springer,
Heidelberg, 2003), pp. 237–251

43. W.L. Oberkampf, J.C. Helton, Investigation of evidence theory for engineering applications,
in Fourth Non-Deterministic Approaches Forum, vol. 1569 (AIAA, Reston, 2002)

44. L. Simoes, Fuzzy optimization of structures by the two-phase method. Comput. Struct.
79(2628), 2481–2490 (2001)

45. F. Campos, J. Villar, M. Jimenez, Robust solutions using fuzzy chance constraints. Eng.
Optim. 38(6), 627–645 (2006)

46. J. Liu, J.-B. Yang, J. Wang, H.S. Sii, Review of uncertainty reasoning approaches as guidance
for maritime and offshore safety-based assessment. J. UK Saf. Reliab. Soc. 23(1), 63–80
(2002)

47. M. Vasile, Robust mission design through evidence theory and multiagent collaborative
search. Ann. New York Acad. Sci. 1065, 152–173 (2005)

48. N. Croisard, M. Vasile, S. Kemble, G. Radice, Preliminary space mission design under
uncertainty. Acta Astronaut. 66, 5–6 (2010)

49. R.W. Chaney, A method of centers algorithm for certain minimax problems. Math. Program.
22(1), 202–226 (1982)

50. R. Klessig, E. Polak, A method of feasible directions using function approximations, with
applications to min max problems. J. Math. Anal. Appl. 41(3) 583–602 (1973)

51. V. Panin, Linearization method for continuous min-max problem. Cybernetics 17(2), 239–243
(1981)

52. Y. Danilin, V. Panin, B. Pshenichnyi, On the Shannon Gapacity of a graph. Notes Control Inf.
Sci. 23(30), 51–57 (1982)

53. V.F. Damyanov, VN Malozemov (Wiley, New York, 1974)

https://doi.org/10.1109/IEEM.2011.6118131
https://doi.org/10.1109/IEEM.2011.6118131


572 G. Filippi and M. Vasile

54. D. Agnew, Improved minimax optimization for circuit design. IEEE Trans. Circuits Syst.
28(8), 791–803 (1981)

55. J. Shinn-Hwa Wang, W. Wei-Ming Dai, Transformation of min-max optimization to least-
square estimation and application to interconnect design optimization, in Proceedings of
ICCD’95 International Conference on Computer Design. VLSI in Computers and Processors
(IEEE Computer Society Press, Washington, 1995), pp. 664–670

56. B. Lu, Y. Cao, M. Yuan, J. Zhou, Reference variable methods of solving minmax optimization
problems. J. Global Optim. 42(1), 1–21 (2008)

57. M. Sainz, P. Herrero, J. Armengol, J. Veh, Continuous minimax optimization using modal
intervals. J. Math. Anal. Appl 339, 18–30 (2008)

58. Y. Feng, L. Hongwei, Z. Shuisheng, L. Sanyang, A smoothing trust-region Newton-CG
method for minimax problem. Appl. Math. Comput. 199(2), 581–589 (2008)

59. P. Parpas, B. Rustem, An algorithm for the global optimization of a class of continuous
minimax problems. J. Optim. Theory Appl. 141, 46–173 (2009). https://doi.org/10.1007/
s10957-008-9473-4

60. H. Aissi, C. Bazgan, D. Vanderpooten, Min-max and min-max regret versions of combinato-
rial optimization problems: a survey. Eur. J. Oper. Res. 197, 427–438 (2009)

61. T.M. Cavalier, W.A. Conner, E. del Castillo, S.I. Brown, A heuristic algorithm for minimax
sensor location in the plane. Eur. J. Oper. Res. 183(1), 42–55 (2007)

62. D. Ahr, G. Reinelt, A tabu search algorithm for the min-max k-Chinese postman problem.
Comput. Oper. Res. 33(12), 3403–3422 (2006)

63. A.M. Cramer, S.D. Sudhoff, E.L. Zivi, Evolutionary algorithms for minimax problems in
robust design. IEEE Trans. Evol. Comput. 13(2), 444–453 (2009)

64. R.I. Lung, D. Dumitrescu, A new evolutionary approach to minimax problems, in IEEE
Congress on Evolutionary Computation (CEC), 5–8 June 2011, New Orleans (2011), pp.
1902–1905. https://doi.org/10.1109/CEC.2011.5949847

65. A. Zhou, Q. Zhang, A surrogate-assisted evolutionary algorithm for minimax optimization,
in IEEE Conference on Evolutionary Computation (CEC) (2010)

66. E.C. Laskari, K.E. Parsopoulos, M.N. Vrahatis, Particle swarm optimization for minimax
problems, in Proceedings of the 2002 Congress on Evolutionary Computation (IEEE Press,
New York, 2002), pp. 1582–1587

67. W. Conner, Comparison of evolutionary algorithms on the minimax sensor location problem.
The Pennsylvania State University, 310.

68. A.M. Cramer, S.D. Sudhoff, E.L. Zivi, Evolutionary algorithms for minimax problems in
robust design. IEEE Trans. Evol. Comput. 13, 444–453 (2009). https://doi.org/10.1109/
TEVC.2008.2004422

69. D. Agnew, Improved minimax optimization for circuit design. IEEE Trans. Circuits Syst.
28(8), 791–803 (1981)

70. A.V. Sebald, J. Schlenzig, Minimax design of neural net controllers for highly uncertain
plants. IEEE Trans. Neural Netw. 5(1), 73–82 (1994)

71. H.J.C. Barbosa, A coevolutionary genetic algorithm for a game approach to structural
optimization, in Proceedings of the 7-th International Conference on Genetic Algorithms
(1997), pp. 545–552

72. H.J.C. Barbosa, A coevolutionary genetic algorithm for constrained optimization, in Proceed-
ings of 1999 Congress on Evolutionary Computation, ed. by P. Angeline et. al. (1997), pp.
1605–1611

73. J.W. Herrmann, A genetic algorithm for minimax optimization problems, in Proceedings of
1999 Congress on Evolutionary Computation, ed. by P. Angeline et. al. (1997), pp. 1099–1103

74. T.M. Jensen, A new look at solving minimax problems with coevolutionary genetic
algorithms, in Metaheuristics: Computer Decision-Making. Applied Optimization, vol. 86
(Springer, Boston, 2003), pp 369–384

75. Y.S. Ong, P.B. Nair, A.J. Keane, K.W. Wong, Surrogate-assisted evolutionary optimization
frameworks for high-fidelity engineering design problems, in Knowledge Incorporation in
Evolutionary Computation (Springer, Berlin, 2004), pp. 307–332

https://doi.org/10.1007/s10957-008-9473-4
https://doi.org/10.1007/s10957-008-9473-4
https://doi.org/10.1109/CEC.2011.5949847
https://doi.org/10.1109/TEVC.2008.2004422
https://doi.org/10.1109/TEVC.2008.2004422


17 Introduction to Evidence-Based Robust Optimisation 573

76. Y. Jin, A comprehensive survey of fitness approximation in evolutionary computation. Soft
Comput. 9(1), 3–12 (2005)

77. J. Marzat, E. Walker, H. Piet-Lahanier, Worst-case global optimization of black-box functions
through kriging and relaxation. J. Global Optim. 55, 707–727 (2013)

78. G. Filippi, M. Vasile, A memetic approach to the solution of constrained min-max problems,
in 2019 IEEE Congress on Evolutionary Computation (CEC) (2019), pp. 506–513. https://
doi.org/10.1109/CEC.2019.8790124

79. J.C. Helton, J. Johnson, W.L. Oberkampf, C. Sallaberry, Sensitivity analysis in conjunction
with evidence theory representations of epistemic uncertainty. Reliab. Eng. Syst. Saf. 91(10–
11), 1414–1434 (2006)

80. C. Joslyn, J.C. Helton, Bounds on belief and plausibility of functionality propagated random
sets, in 2002 Annual Meetings of the North American Fuzzy Information Processing Society,
Proceedings, ed. by J. Keller, O. Nasraoui, June 2002, New Orleans, vol. 2729 (IEEE,
Piscataway, 2002), pp. 412–417

81. C. Joslyn, V. Kreinovich, Convergence properties of an interval probabilistic approach to
system reliability estimation. Int. J. Gen. Syst. 34(4), 465–482 (2005)

82. M. Di Carlo, M. Vasile, C. Greco, R. Epenoy, Robust optimisation of low-thrust interplanetary
transfers using evidence theory, in 29th AAS/AIAA Space Flight Mechanics Meeting (2019)

83. F. Voorbraak, A computationally efficient approximation of Dempster-Shafer theory. Int. J.
Man-Mach. Stud. 30, 525–536 (1989)

84. D. Dubois, H. Prade, Consonant approximations of belief functions. Int. J. Approx. Reason.
4, 419–449 (1990)

85. B. Tessem, Approximations for efficient computation in the theory of evidence. Artif. Intell.
61(2), 315–329 (1993)

86. M. Bauer, Approximations for decision making in the Dempster-Shafer theory of evidence,
in Proceedings of Twelfth International Conference on Uncertainty in Artificial Intelligence
(1996), pp. 73–80

87. D. Han, J. Dezert, Y. Yang, Two novel methods for BBA approximation based on focal
element redundancy, in 18th International Conference on Information Fusion (2015), p. 428–
434

88. T. Denux, Inner and outer approximation of belief structures using a hierarchical clustering
approach. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 9(4), 437–460 (2001)

89. D. Harmanec, Faithful approximations of belief functions, in Proceedings of 15th Conference
on Uncertainty in Artificial Intelligence (1999), p. 2718

90. M. Vasile, G. Filippi, C. Ortega, A. Riccardi, Fast belief estimation in evidence network
models, in EUROGEN 2017 (2017)

91. S. Alicino, M. Vasile, Evidence-based preliminary design of spacecraft, in 6th International
Conference on Systems & Concurrent Engineering for Space Applications SECESA 2014
(2014)

92. G. Filippi, M. Vasile, D. Krpelik, P.Z. Korondi, M. Marchi, C. Poloni, Space systems
resilience optimisation under epistemic uncertainty. Acta Astronaut. 165, 195–210 (2019).
https://doi.org/10.1016/j.actaastro.2019.08.024

https://doi.org/10.1109/CEC.2019.8790124
https://doi.org/10.1109/CEC.2019.8790124
https://doi.org/10.1016/j.actaastro.2019.08.024

	Contents
	1 Introduction to Spectral Methods for Uncertainty Quantification
	1.1 Motivation
	1.1.1 Typical UQ Questions

	1.2 Illustrative Problem
	1.2.1 The Deterministic Heat Diffusion Equation
	1.2.2 The Stochastic Heat Diffusion Equation

	1.3 The Sampling Process
	1.4 Sampling Techniques
	1.4.1 Karhunen–Loève Expansion
	1.4.2 Mathematical Reformulation of the Dirichlet Problem

	1.5 Monte Carlo Methods
	1.5.1 Mean and Variance
	1.5.2 PDF Reconstruction for Different Correlation Lengths

	1.6 Spectral Methods
	1.6.1 Polynomial Chaos Expansion
	1.6.2 Non-Intrusive Spectral Projection Methods
	1.6.2.1 Numerical Approaches for NISP
	1.6.2.2 Linear Regression

	1.6.3 Galerkin Methods
	1.6.3.1 Weak Formulation and Deterministic Discretisation
	1.6.3.2 Stochastic Discretisation
	1.6.3.3 Computational Cost of Stochastic Galerkin Method

	1.6.4 Application of Surrogate Models: A Sensitivity Analysis Using PC Expansions
	1.6.4.1 MC Approach
	1.6.4.2 Surrogate Approach


	1.7 Concluding Remarks
	References

	2 Introduction to Imprecise Probabilities
	2.1 Introduction
	2.2 Some Models of Uncertainty
	2.2.1 A Point Estimate
	2.2.2 An Interval
	2.2.3 A Probability Distribution
	2.2.4 A Set of Probability Distributions

	2.3 Probability Theory
	2.3.1 Measure-Theoretic Probability
	2.3.2 Probability via Expectation

	2.4 Imprecise Probabilities
	2.4.1 A Set of Measures
	2.4.2 Capacities
	2.4.3 Neighbourhood Models
	2.4.4 Random Sets
	2.4.5 Probability Boxes

	2.5 Lower Previsions
	2.5.1 Desirability
	2.5.1.1 Axioms

	2.5.2 Lower Previsions
	2.5.3 Natural Extension
	2.5.4 Duality

	2.6 Constructing the Laws
	2.6.1 Statistical Inference with Precise Probabilities
	2.6.2 Robust Bayesian Inference
	2.6.3 Frequentist Inference with Imprecise Probabilities

	2.7 Concluding Remarks
	References

	3 Uncertainty Quantification in Lasso-Type RegularizationProblems
	3.1 Introduction
	3.1.1 Statistical Modeling
	3.1.2 Statistical Inference
	3.1.3 Linear Models
	3.1.4 Strong Duality and the Karush–Kuhn–Tucker Conditions

	3.2 Parameter Estimation
	3.2.1 Ordinary Least Squares
	3.2.2 Non-Negative Garrote
	3.2.3 Regularization Under lq Penalty

	3.3 The LASSO
	3.3.1 Solving the LASSO Optimization Problem
	3.3.2 Cross-Validation
	3.3.2.1 Example: Gaia Dataset


	3.4 Uncertainty Quantification
	3.4.1 Refit-LASSO
	3.4.1.1 Example: Gaia Dataset

	3.4.2 Bootstrap Method
	3.4.2.1 Bootstrap for LASSO
	3.4.2.2 Example: Gaia Dataset

	3.4.3 Bayesian LASSO
	3.4.3.1 Example: Gaia Dataset


	3.5 LASSO for Classification
	3.5.1 Logistic Regression
	3.5.1.1 Cross-Validation

	3.5.2 Uncertainty Quantification
	3.5.2.1 Refit-LASSO
	3.5.2.2 Bootstrap
	3.5.2.3 Bayesian Approach


	3.6 Conclusion
	References

	4 Reliability Theory
	4.1 Reliability and Risk
	4.2 Mathematical Theory of Reliability
	4.2.1 Structural Reliability
	4.2.2 Survival Analysis

	4.3 System Reliability
	4.3.1 Structure Function
	4.3.2 Graphical Models
	4.3.2.1 Reliability Block Diagrams
	4.3.2.2 Fault Trees
	4.3.2.3 Bayesian Networks

	4.3.3 Phased Missions
	4.3.4 Signatures
	4.3.4.1 System Signature
	4.3.4.2 Survival Signature


	4.4 Statistical Inference in Reliability
	4.4.1 Censored Datasets
	4.4.2 Accelerated Life Testing
	4.4.3 Proportional Hazards Model
	4.4.4 Quality Control

	4.5 Designing Highly Reliable Systems
	4.5.1 Redundancy Allocation
	4.5.2 System Maintenance

	4.6 Concluding Remarks
	References

	5 An Introduction to Imprecise Markov Chains
	5.1 Introduction
	5.2 (Precise) Stochastic Processes
	5.2.1 Probability Trees
	5.2.2 Bayesian Networks
	5.2.3 Transition Graphs

	5.3 Imprecise Discrete-Time Markov Chains
	5.3.1 Imprecise Probability Trees
	5.3.2 Credal Networks
	5.3.3 Limits of Homogeneous IDTMCs

	5.4 Imprecise Continuous-Time Markov Chains
	5.4.1 Imprecise Continuous-Time Markov Chains
	5.4.2 Limits of ICTMCs

	5.5 Literature and Further Reading
	References

	6 Fundamentals of Filtering
	6.1 The State Estimation Problem
	6.1.1 Building Blocks
	6.1.1.1 State Marginalization
	6.1.1.2 Markov and Independence Assumptions

	6.1.2 Filtering Problem Formulation
	6.1.3 Bayesian Approach for Filtering
	6.1.3.1 Conditional Probability Evolution Between Observations

	6.1.4 Batch Processor vs. Sequential Filtering
	6.1.5 Optimal Estimate

	6.2 Probability Distribution Propagation
	6.2.1 Linear Transformation
	6.2.2 Nonlinear Transformation
	6.2.2.1 Taylor Expansion
	6.2.2.2 Unscented Transform
	6.2.2.3 Monte Carlo Methods


	6.3 Filtering Algorithms
	6.3.1 Kalman Filter
	6.3.2 Extended Kalman Filter
	6.3.3 Unscented Kalman Filter
	6.3.4 Gaussian Filter Framework
	6.3.5 Particle Filter

	6.4 Conclusions
	References

	7 Introduction to Optimisation
	7.1 Introduction
	7.1.1 Solving an Optimisation Problem
	7.1.2 Local vs Global Optimisation
	7.1.3 Single- vs Multi-Objective

	7.2 Continuous Optimisation
	7.2.1 Local Optimisation
	7.2.1.1 Optimality Conditions
	7.2.1.2 Algorithms

	7.2.2 Global Optimisation
	7.2.2.1 Deterministic Strategies
	7.2.2.2 Stochastic Strategies

	7.2.3 Multi-Objective Optimisation
	7.2.4 Optimal Control
	7.2.4.1 Indirect Methods
	7.2.4.2 Direct Methods
	7.2.4.3 Comparison of Direct and Indirect Methods
	7.2.4.4 Practical Techniques for Optimal Control
	Single Shooting
	Multiple Shooting
	Collocation


	7.3 Combinatorial and Network Optimisation
	7.3.1 Pure Integer Optimisation
	7.3.1.1 Special Case: 0-1 Integer Programming

	7.3.2 Mixed-Integer Programming
	7.3.2.1 MIP vs MINLP
	7.3.2.2 Methods
	Exact Methods
	Heuristic Methods

	7.3.3 Network Optimisation
	Standard Network Flow Formulation and Notation


	7.4 Summary
	References

	8 An Introduction to Many-Objective Evolutionary Optimization
	8.1 Introduction
	8.1.1 From Single- to Many-Objective Optimization
	8.1.2 Optimality in Multi- and Many-Objective Optimization

	8.2 Evolutionary Algorithm
	8.2.1 Base Algorithm
	8.2.2 Recombination
	8.2.3 Mutation
	8.2.4 Selection

	8.3 Multi-Objective Optimization
	8.3.1 Method Classifications Based on Preference-Imposing Timing
	8.3.1.1 A Priori Method
	8.3.1.2 A Posteriori Methods
	8.3.1.3 Progressive Methods

	8.3.2 Solution Quality Assessment
	8.3.2.1 Hypervolume
	8.3.2.2 Generational Distance

	8.3.3 Algorithms Designed for Multi-Objective Optimization Problems
	8.3.3.1 NSGA-II
	8.3.3.2 SMS-EMOA


	8.4 Many-Objective Optimization
	8.4.1 Challenges in Many-Objective Optimization
	8.4.1.1 Curse of Dimensionality
	8.4.1.2 Expensive Evaluation
	8.4.1.3 Visualization Challenge

	8.4.2 Algorithms Designed for Many-Objective Optimization Problems
	8.4.2.1 MOEA/D
	8.4.2.2 NSGA-III

	8.4.3 High-Dimension Visualization Techniques
	8.4.3.1 Bubble Chart
	8.4.3.2 Parallel Plot
	8.4.3.3 Glyph Plot


	8.5 Surrogate Model in Multi- and Many-Objective Optimization
	8.5.1 ParEGO
	8.5.2 Prescreening Method
	8.5.3 Taxonomy of Surrogate Models for MOP

	8.6 Test Problems for Many-Objective Optimization
	8.6.1 Biobjective Test Problems
	8.6.1.1 ZDT
	8.6.1.2 Black-Box Optimization Benchmarking

	8.6.2 Scalable Test Problems
	8.6.2.1 DTLZ
	8.6.2.2 WFG


	8.7 Summary
	References

	9 Multilevel Optimisation
	9.1 Introduction
	9.2 Multilevel Optimisation Problem
	9.3 Bilevel Optimisation Problem
	9.3.1 Linear Bilevel Optimisation Example

	9.4 Bilevel vs Biobjective Optimisation Problem
	9.5 Special Cases of Bilevel Optimisation Problems
	9.5.1 Bilevel Multiobjective Optimisation Problems
	9.5.2 Bilevel Multileader and/or Multifollower Optimisation Problems
	9.5.3 Bilevel Optimisation Problem Under Uncertainty
	9.5.4 Minimax (Worst-Case Scenario) as Bilevel Optimisation Problem

	9.6 Solution Algorithms
	9.6.1 Classical Approaches
	9.6.2 Metaheuristic Approaches

	9.7 Applications
	9.8 Summary
	References

	10 Sequential Parameter Optimization for Mixed-DiscreteProblems
	10.1 Introduction
	10.2 Problem Definition
	10.3 Challenges in Real-World Optimization
	10.3.1 Problem Features
	10.3.2 High Dimensionality
	10.3.2.1 Screening
	10.3.2.2 Mapping

	10.3.3 Uncertainty

	10.4 Sequential Parameter Optimization
	10.4.1 Initial Design
	10.4.1.1 Strategies for Design of Experiment
	10.4.1.2 Latin Hypercube Sampling
	10.4.1.3 Factorial Designs

	10.4.2 Modeling
	10.4.2.1 Modeling in Mixed-Integer Space
	10.4.2.2 The Naive Approach
	10.4.2.3 Inherently Discrete Models
	10.4.2.4 Similarity-Based Models
	10.4.2.5 Handling Factor Variables in Kriging Model

	10.4.3 Optimization Algorithms for the Metamodel
	10.4.4 MIES

	10.5 Case Study: Optimization of Composite Multi-Layered Plate
	10.5.1 Overview
	10.5.2 Optimization Problem
	10.5.3 Methodology
	10.5.4 Results

	References

	11 Parameter Control in Evolutionary Optimisation
	11.1 Evolutionary Optimisation
	11.1.1 Evolutionary Algorithms
	11.1.2 Exploration and Exploitation
	11.1.3 The Role of Control Parameters

	11.2 Control Parameters
	11.2.1 Typical Control Parameters
	11.2.2 What Else can be Adapted
	11.2.3 Influence on Algorithm Performance
	11.2.4 Interaction of Control Parameters

	11.3 Setting Approaches
	11.3.1 Parameter Tuning
	11.3.2 Parameter Control

	11.4 Parameter Control Strategies
	11.4.1 Deterministic Parameter Control
	11.4.2 Adaptive Parameter Control
	Model of Adaptive Parameter Control

	11.4.3 Self-Adapting Parameter Control
	11.4.4 Tuning vs. Control

	11.5 Real-World Optimisation
	11.5.1 Large-Scale Global Optimisation
	11.5.2 Dynamic Optimisation
	11.5.3 Optimisation Under Uncertainty
	11.5.4 Multi-objective Optimisation
	11.5.5 Multilevel Optimisation

	11.6 Summary
	References

	12 Response Surface Methodology
	12.1 Introduction
	12.2 Response Surface Model Construction
	12.2.1 Objective
	12.2.2 Classification
	12.2.3 Construction Stages
	12.2.3.1 Data Preparation
	12.2.3.2 Algorithm Choice
	12.2.3.3 Model Training
	12.2.3.4 Model Validation


	12.3 Examples of Response Surface Models
	12.3.1 Least Squares Method
	12.3.2 Radial Basis Functions
	12.3.3 Kriging
	12.3.3.1 Variogram


	12.4 Wing Structure Design Using Response Surface Models
	12.4.1 Design Problem
	12.4.2 Analytical Model
	12.4.3 Comparison of Response Surface Models
	12.4.4 RSM Construction on Noisy Data
	12.4.5 Case-Study Conclusion and Take-Home Message

	References

	13 Risk Measures in the Context of Robust and Reliability Based Optimization
	13.1 Introduction
	13.2 Optimization Under Uncertainty
	13.3 Risk Measures
	13.4 Robust Optimization Problem Using Risk Functions
	13.4.1 Estimation of Risk Functions Using ECDF
	13.4.1.1 Value-at-Risk (Quantile) Estimation Using ECDF
	13.4.1.2 Cumulative Value-at-Risk (Superquantile) Estimation Using ECDF

	13.4.2 Estimation of Risk Functions Using WECDF
	13.4.3 Bootstrap Error Analysis

	13.5 Application Example
	13.5.1 Results

	References

	14 Best Practices for Surrogate Based Uncertainty Quantification in Aerodynamics and Application to Robust Shape Optimization
	14.1 Introduction
	14.1.1 Deterministic Optimization
	14.1.2 Motivation of Robust Design

	14.2 Robust Design Approaches for Aerodynamic Shape Optimization
	14.2.1 Multi-Point Optimization
	14.2.2 Worst-Case Approach
	14.2.3 Interval Analysis
	14.2.4 Statistical Approach
	14.2.4.1 Characterization of Input Uncertainty
	14.2.4.2 Definition of Objective Function (I), Robust Design
	14.2.4.3 Definition of Objective Function (II) Reliability Based
	14.2.4.4 Evaluation of Statistics


	14.3 Surrogate Models for Uncertainty Quantification
	14.3.1 Surrogate Models Overview
	14.3.1.1 Design of Experiments
	14.3.1.2 Refinement Strategy for Uncertainty Quantification

	14.3.2 Advantages of Surrogate Modelling for Uncertainty Quantification
	14.3.3 Gradient-Enhanced Surrogates for Efficient UQ
	14.3.3.1 Gradient-Enhanced Kriging
	14.3.3.2 The Adjoint Method: Breaking the Curse of Dimensionality

	14.3.4 Computing Statistics on Surrogate Models

	14.4 Optimization of RAE2822 Airfoil Under Uncertainty
	14.4.1 Problem Definition
	14.4.1.1 Deterministic Optimization
	14.4.1.2 Optimization Under Uncertainty

	14.4.2 CFD Solver and Numerical Grid
	14.4.3 CFD Process Chain
	14.4.4 Parametrization of Deterministic Design Variables
	14.4.5 Parametrization of Uncertainties
	14.4.6 Optimizer
	14.4.7 Robust Design Framework
	14.4.8 Validation of the Framework
	14.4.9 Deterministic Results
	14.4.10 Robust Results

	14.5 Conclusions
	References

	15 In-flight Icing: Modeling, Prediction, and Uncertainty
	15.1 Introduction
	15.2 In-Flight Ice Accretion
	15.2.1 Icing Environment
	15.2.1.1 Cloud Formations
	15.2.1.2 Supercooled Large Droplets
	15.2.1.3 Ice Crystals
	15.2.1.4 Snow

	15.2.2 Icing Relevant Parameters
	15.2.2.1 Outside Air Temperature
	15.2.2.2 Liquid Water Content
	15.2.2.3 Airspeed
	15.2.2.4 Altitude
	15.2.2.5 Droplet Size

	15.2.3 Icing Types
	15.2.3.1 Rime Ice
	15.2.3.2 Glaze Ice
	15.2.3.3 Mixed Ice Conditions

	15.2.4 Aircraft Icing Interactions
	15.2.4.1 Surface Interaction
	15.2.4.2 Ice Shedding
	15.2.4.3 Drop Impact
	15.2.4.4 Crystal Bouncing

	15.2.5 Existing Research Methods for Ice Accretion
	15.2.5.1 Flight Test and Wind Tunnel Experiments
	15.2.5.2 Uncertainties in Icing Tunnel Experiments
	15.2.5.3 State-of-the-Art Computational Ice Accretion Methods

	15.2.6 Ice Accretion and Performances
	15.2.6.1 Fixed-Wing Icing Environment
	15.2.6.2 Rotating-Wing Icing Environment


	15.3 Modeling Ice Accretion
	15.3.1 Flow Field Determination
	15.3.1.1 Flow Solver

	15.3.2 Governing Equations for Multiphase Flows
	15.3.2.1 Mass Balance
	15.3.2.2 Energy Balance

	15.3.3 Droplet Solver
	15.3.3.1 Eulerian and Lagrangian Specifications for Particle Tracking
	15.3.3.2 Collection Efficiency

	15.3.4 Unsteady Ice Accretion
	15.3.4.1 Development of Ice Accretion Models
	15.3.4.2 The Stefan Problem
	15.3.4.3 Messinger Model
	15.3.4.4 Myers Model
	15.3.4.5 An Improved Myers Model
	15.3.4.6 An Unsteady Ice Accretion Model

	15.3.5 Mesh Morphing
	15.3.6 Numerical Results

	15.4 Ice Protection Systems and Certification
	15.4.1 Mature Protection Technologies
	15.4.1.1 Pneumatic-Thermal Protection
	15.4.1.2 De-icing Boot Protection
	15.4.1.3 Thermo-Electric protection
	15.4.1.4 Chemical Protection

	15.4.2 Alternative Protection Technologies
	15.4.3 Regulations and Certification
	15.4.3.1 FAA Code of Flight Regulations
	15.4.3.2 EASA Certification Specifications


	15.5 Concluding Remarks
	References

	16 Uncertainty Treatment Applications: High-Enthalpy Flow Ground Testing
	16.1 Atmospheric Entry: A Complex Problem
	16.1.1 Aerothermodynamics Testing

	16.2 Ground Testing in High-Enthalpy Facilities
	16.2.1 Inductively-Coupled Plasma Facilities
	16.2.1.1 Material Characterization
	16.2.1.2 Free Stream Characterization for Validation

	16.2.2 Hypersonic Wind Tunnels
	16.2.2.1 Non-equilibrium Effects
	16.2.2.2 Shock Layer Radiation

	16.2.3 Aleatory Uncertainties

	16.3 Physico-Chemical Models and Computational Tools
	16.3.1 Governing Equations for Atmospheric Flows
	16.3.1.1 Resistive Magneto-Hydrodynamics (MHD) Model

	16.3.2 Closure Models
	16.3.2.1 Thermodynamic Properties
	16.3.2.2 Transport Phenomena
	16.3.2.3 Chemistry and Internal Energy

	16.3.3 Radiative Heating: A Coupled Phenomenon
	16.3.4 Gas-Surface Interactions
	16.3.5 Epistemic Uncertainties

	16.4 Putting It All Together: Extrapolation to Flight
	16.4.1 Local Heat Transfer Simulation Methodology
	16.4.2 Flight Extrapolation Uncertainties

	16.5 Conclusions and Remarks
	16.5.1 Current Margin Policies: Where Are We?

	References

	17 Introduction to Evidence-Based Robust Optimisation
	17.1 Introduction
	17.1.1 A Classification of Uncertainty
	17.1.2 From Design by Analysis to Robust Design Optimisation

	17.2 Evidence Theory
	17.2.1 Frame of Discernment, Power Set and Evidence
	17.2.2 Belief and Plausibility

	17.3 Robust Optimisation with Evidence Theory
	17.3.1 Optimising the Worst Case Scenario

	17.4 Belief Curve Reconstruction
	17.4.1 Belief Estimation by Sampling
	17.4.2 Dimensionality Reduction
	17.4.3 Outer Belief Estimation via Evolutionary Binary Tree
	17.4.4 Outer Belief Estimation via Decomposition
	17.4.4.1 Evidence Network Models
	17.4.4.2 Decomposition Method
	17.4.4.3 Complexity Analysis

	17.4.5 Example

	17.5 Conclusions
	References


