
Chapter 11
The Operating Room Scheduling
Problem Based on Patient Priority

Omolbanin Mashkani, F. J. Hwang, and Amir Salehipour

Abstract Anefficient operating theatre schedule contributes significantly to enhanc-
ing the efficiency of hospital operation management and plays a critical financial role
in most hospital settings. In this paper, an operating room scheduling problem based
on patient priority is investigated at tactical and operational levels subject to specific
strategic decisions. At the tactical level, the main goal is to generate a cyclic time
table, known as themaster surgical schedule (MSS) and can be repeated over the plan-
ning horizon of several months to years. Operational level concerns about allocating
patients to operating rooms and determining the day of surgeries, which is called the
surgical case assignment problem (SCAP). To handle the problems at both decision
levels simultaneously, known as theMSS-SCAP problem, an integer linear program-
ming (ILP) model, called MSS-SCAPmodel, and a heuristic approach are proposed.
The objective function is tomaximize the total priority scores of the patients assigned
to the surgical scheduling blocks over a given planning horizon. An adaptive ILP
model is also proposed to solve the SCAP, taking into consideration the dynamics of
the waiting list. The computational experiments are conducted using a set of random
data to evaluate the performance of the proposed MSS-SCAP model and heuristic
algorithm, in terms of solution quality and computation time. Our numerical results
indicate that the proposed ILP is capable of yielded optimal solutions for the small-
scale instances and near-optimal solutions for medium-size instances within 3,600
seconds. The proposed heuristic algorithm can generate quality solutions within 2
seconds for large-scale instances.
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11.1 Introduction

In recent years, the efficiency of the Australian health care system has become an
important area of interest, largely due to the growing costs in health care. Taking into
account ageing population, increasing burden of chronic conditions, and growing
patients’ expectations of health services, it is anticipated that the Australian Gov-
ernment expenditure on health care alone will increase from 4.2% of gross domestic
product (GDP) in 2014–2015 to 5.7% in 2054–2055, or 260 billion in current dollars
[3]. Although the Australian health care system generally has satisfactory outcomes
by international standards, recent studies have revealed that the efficiency of the
health sector could be improved by 20% through making the best use of the available
resources [4].

In a health care system, different stockholders have different interests and priori-
ties. Although health care administrations’ goal is to decrease costs, patients expect
to receive high-quality services as well as low charges and short waiting times. As a
result, to address the efficiency gap and simultaneously satisfy all stockholder expec-
tations, one solution is to employ systematic and evidence-based approaches, which
facilitate significant improvements in quality, efficiency, safety and other aspects
of operations [5]. Despite the fact that the focus of improving health care systems
has largely been on policy, managing hospital operations plays an important role
in enhancing the efficiency. Hospital managers are directly involved in actual care
rather than the context [6].Amongall hospital departments, the operating theatre (OT)
department, which usually consists of several operating rooms (ORs), is the most
crucial and costliest due to its operational complexity and expensive resources. It is
estimated that 60–70% of all hospital admissions are surgical and the OT department
accounts for more than 40% of the total expenses of a hospital [7]. Therefore, any
improvement in OT efficiency contributes to having an efficient health care delivery
system as a whole. Since the current surgical scheduling and planning approaches do
not live up to the hospital management expectations, the OT planning and scheduling
problems have attracted the attention of many researchers recently [8]. In general,
the OT planning and scheduling problem is a highly complex problem that entails
the assignment of OT resources, such as rooms, equipment, nurses and surgeons to
patients with the aim of improving efficiency and reducing patients’ waiting time in
a way that balances all stockholder’s expectations. The problem is getting even more
complex due to different patient characteristics, restricted capacities of upstream and
downstream departments and inherent uncertainty of the surgical procedures. In the
literature, surgeons are classified into the surgeon groups or surgical specialties if they
are homogeneous and have the same medical and procedural requirements [11]. On
the other hand, although elective surgeries can be planned in advance, non-elective
surgeries are unexpected.
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11.1.1 Literature Review

The characteristics of the different hospitals under study and the different national
realities contribute to the diversity of the literature in OT planning and schedul-
ing problems. From the structural point of view, the OT planning and scheduling
decisions are made in three hierarchical levels including strategic, tactical and oper-
ational. These decision levels depend on each other, as the outcome of each level can
affect the decisions on other levels in addition to being the input for the next level [7].
in the following, the main characteristics of these hierarchical levels are introduced.

At the strategic level, the main focus is to find out how many time blocks/slots
should be assigned to each surgical specialty to find the ideal composition and volume
of patients in a hospital [7, 9]. A time block is defined as the smallest time unit for
which an operating room can be assigned to a specialty [20]. To this end, strategic
planning is primarily a resource allocation problem and known as the case-mix
planning problem (CMPP). For a detailed survey of literature on the CMPP, we refer
the interested reader to Hof et al. [19].

At the tactical level, the capacity of ORs per day is shared among a variety of
surgical specialties in order to provide a cyclic timetable, which is called the master
surgical schedule (MSS) [14]. The main goal of anMSS is to assign surgical special-
ties, and not individual patients/surgeons, to time blocks [12]. To develop an MSS,
historical data and actual/forecast patients’ demand, in the form of waiting lists, are
utilized as critical inputs. In the literature, to construct an MSS three main strategies
have been used, including block scheduling, open scheduling and modified block
scheduling. In the block scheduling strategy, time blocks are assigned to surgical
specialties, which can arrange their surgical cases only in their own blocks. In the
open scheduling strategy, surgeons fromdifferent specialties can perform surgeries in
the same time block. Moreover, modified block scheduling strategy is a mix of block
and open scheduling strategies, which reserves some of the time blocks and assigns
others to patients or specialties using an open scheduling strategy [11]. Although
the open scheduling strategy is more flexible and provides a better assignment of
the surgical cases in comparison with block scheduling, it is an uncommon strategy
and rarely used in the health care industry. Hence, despite potential inefficiencies
as a result of unbalanced block schedules, block scheduling is widely accepted to
generate the MSS, due to its simplicity for both surgeons and managers [18].

In the literature, developing the MSS has been investigated as a combinatorial
optimization problem. The main objective of this optimization problem is to provide
an OT plan that optimizes the OT and surgical resource allocation and minimize
the patients’ waiting time. A variety of constraints affect the development of MSS
such as availability restrictions of medical staff and equipment, capacity limitation of
resources, e.g. regular openinghours, number of upstreamanddownstream resources,
and the uncertainty of surgical procedures as well as a restriction on the number of
time blocks assigned to each specialty as the result of CMPP [2, 7, 12].
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At the operational level, the assignment of an operating roomand operating time to
each patient, as well as sequencing surgeries in each operating room are determined
over a short-termplanning horizon [9]. To develop an operational plan awide range of
constraints should be taken into account. For example, structural constraints, which
ensure a non-overlapping of surgeries in the same room or surgeons in different
rooms at the same time, and resource constraints such as daily capacity restriction
in each operating room are among the most important ones [1]. In the literature,
generally, theOTplanning and scheduling problems at the operational level have been
solved as twomain subproblems including the advance scheduling and the allocation
scheduling. The advance scheduling,which is also called the surgical case assignment
problem (SCAP) seeks to assign each patient to an operating room and a particular
day for surgery over a planning horizon of 1–2 weeks. The allocation scheduling,
also referred to as the surgical case sequencing problem (SCSP), concentrates on
the timing aspects and sequencing of the assigned surgeries within each OR [15]. To
address the subproblems at the operational level, a variety of solution approaches have
been developed in the literature utilizing mathematical programming techniques,
simulation and scenario-based analysis and analytical procedures. They mainly have
been solved as a combinatorial optimization problem with the aim of achieving a
trade-off among different stockholders’ interests [15, 17, 21].

11.1.2 Contribution of this Research

Much literature has investigated just onedecision level ofOTplanning and scheduling
problems. In otherwords, they solved the problemusingmulti-stage approaches,with
each stage dealing with just one decision level [11]. The main reason is that solving
the overall problem of all decision levels as multi-stage problems decreases the
complexity of the problem. However, the three hierarchical decision levels depend
on each other and the outcome of each level can be utilized as input to the other levels.
Therefore, solving the problems on different decision levels concurrently provides
more effective procedures and solutions. In some studies, all decision levels were
investigated at the same time [10]. Other studies coped with the problems at tactical
and operational levels simultaneously [2, 11, 16]. Despite the fact that recent studies
have focused on the integrated MSS and SCAP scheduling problems at both tactical
and operational levels, the proposed exact methods could not live up to medium-
or large-size instances. This study investigates the integrated MSS-SCAP based on
patient priority, which is the indicator of a patient’s surgery urgency. The main
novelty of the integrated MSS-SCAP problem in this paper is the consideration of
three fundamental factors altogether including consideration of patients’ priorities,
strategic decisions and solving both MSS and SCAP problems concurrently. An ILP
model, called MSS-SCAPmodel, is proposed to produce robust surgical scheduling.
TheMSS-SCAPmodel can optimally assign time blocks to specialties and determine
the OR and surgery date for each patient over the planning horizon of medium term.
To cope with the large-size instances, a heuristic approach is developed to provide
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high-quality solutions for theMSS-SCAP. Then to adapt operation-related dynamics
and any unpredicted changes in the waiting list, given an MSS, an adaptive ILP
is proposed to solve the SCAP as the multiple knapsack problem (MKP) over the
planning horizon of one to several weeks.

The remainder of this paper is organized as follows. Section 11.2 introduces the
problemstatement, the assumptions aswell as themathematicalmodels. In Sect. 11.3,
the details of heuristic approach are provided. Computational experiments, which
indicate the performance of the MSS-SCAP model and the heuristic approach, are
reported in Sect. 11.4. Finally, the conclusion of the study and further research
directions are presented in Sect. 11.5.

11.2 Problem Statement and Mathematical Models

In this section, the problem definition and assumptions are given. The mathematical
models are then provided to solve the MSS-SCAP and SCAP. It should be noted
that for the sake of integrity and simplicity, the symbols and definitions similar to
[2] are used.

11.2.1 Problem Definition

The goal of the integrated MSS-SCAP is to provide a cyclic time table that allo-
cates the time blocks of each OR and each day to the specialties, in addition to the
determination of the OR and the surgery date per patient over the planning horizon.
In this study, the block scheduling strategy is utilized to allocate specialties to time
blocks. Although the duration of time blocks can vary, it is determined in advance.
Pre-emption is not allowed, which means that, once a surgery starts, it cannot be
interrupted. It is assumed that all surgeries of each specialty can be performed by
any surgeon of that specialty and all ORs can be used by all specialties. The number
of nurses, upstream and downstream resources such as number of ICU andward beds
are enough and do not force any bottleneck or restriction on the planning process. It
is also assumed that the minimum and maximum OR times to be assigned to each
specialty, as the output of CMPP at the strategic level, are given. Moreover, the surg-
eries can be scheduled during the working days from Monday to Friday (we only
consider elective surgeries), which means that each week of the planning horizon
includes 5 days. Table 11.1 summarizes the notations used in the paper.
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Table 11.1 Nomenclature

Notation Definition

Bmax Number of time blocks in a working day

Dmax Number of working days in the planning horizon

Pmax Number of patients on the waiting list at the start of the planning horizon

Smax Number of surgical specialties

Tmax Number of operating rooms

B The set of time blocks in a working day, indexed by b ∈ B = {1, . . . , Bmax}
D The set of working days in the time horizon, indexed by d ∈ D = {1, . . . , Dmax}
P The set of patients on the waiting list at the start of the planning horizon, indexed

by p ∈ P = {1, . . . , Pmax}
S The set of surgical specialties, indexed by s ∈ S = {1, . . . , Smax}
T The set of operating rooms, indexed by t ∈ T = {1, . . . , Tmax}
L p The surgery duration of patient p in minutes, ∀p ∈ P

τb The length of time block b in hours, ∀b ∈ B

N−
s The minimum number of OR hours assigned to specialty s over the planning

horizon, ∀s ∈ S

N+
s The maximum number of OR hours assigned to specialty s over the planning

horizon, ∀s ∈ S

Ips Binary parameter, which is 1 if surgery of patient p can be performed by
specialty s, and 0 otherwise, ∀p ∈ P , s ∈ S

ρp The priority score of patient p, ∀p ∈ P

Ps The set of patients in the current waiting list of the surgical specialty s

Qtsdb Binary parameter, which is 1 if block b of operating room t is assigned to
specialty s on day d, and 0 otherwise, ∀t ∈ T , s ∈ S, d ∈ D, b ∈ B

Xtsdb Binary decision variable, which is 1 if block b of operating room t is assigned to
specialty s on day d, and 0 otherwise, ∀t ∈ T , s ∈ S,d ∈ D, b ∈ B

Ytpdb Binary decision variable, which is 1 if block b of operating room t is assigned to
operate surgery of patient p on day d, and 0 otherwise, ∀t ∈ T , p ∈ P , d ∈ D,
b ∈ B

11.2.2 The MSS-SCAP Model

In this section, the MSS-SCAP model is proposed to allocate the time blocks to
specialties and assign patients to ORs as well as days over the planning horizon.
Despite the fact that hospital managers assign time blocks to the specialties based
on the equity and fairness criteria [10], the priority of a patient contributes to the
urgency and importance of performing his/her surgery. In other words, in assignment
of patients to ORs and dates, the patient with higher priority have precedence to be
operated, which means that the larger priority score, the higher priority of surgery.
Thus, to generate a distribution of time blocks among the specialties, patient priority
should be taken into account. Nevertheless, only a few researches have taken patient
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prioritization into consideration [18]. To this end, the objective function of this study
is to maximize the summation of assigned patient priority scores to ORs. The MSS-
SCAP model is formalized as below:

Maximize
∑

t∈T

∑

p∈P

∑

d∈D

∑

b∈B
ρpYtpdb

s.t.

∑

s∈S
Xtsdb ≤ 1 ∀t ∈ T, d ∈ D, b ∈ B (11.1)

IpsYtpdb ≤ Xtsdb ∀t ∈ T, p ∈ P, s ∈ S, d ∈ D, b ∈ B (11.2)

∑

t∈T

∑

d∈D

∑

b∈B
Ytpdb ≤ 1 ∀p ∈ P (11.3)

∑

t∈T

∑

d∈D

∑

b∈B
τbXtsdb ≤ N+

s ∀s ∈ S (11.4)

∑

t∈T

∑

d∈D

∑

b∈B
τbXtsdb ≥ N−

s ∀s ∈ S (11.5)

∑

p∈P

L pYtpdb ≤ 60τb ∀t ∈ T, d ∈ D, b ∈ B (11.6)

Xtxdb,Ytpdb ∈ {0, 1} ∀t ∈ T, p ∈ P, d ∈ D, b ∈ B (11.7)

The objective function is to maximize the summation of priority scores of assigned
patients to ORs over the planning horizon. Using constraint (11.1), it is not possible
to share a block between different specialties as per the block scheduling strategy.
Based on constraint (11.2), patient p can be operated in block b of an operating room
t during day d only if that time block is assigned to its specialty. Constraint (11.3)
determines that a patient can be operated at most once during the planning horizon.
Constraints (11.4) and (11.5) enforce the restrictions on the maximum and minimum
numbers of hours that can be assigned to each specialty as the result of strategic
decisions. Using Constraint (11.6), the total processing time of all assigned patients
to a time block must not be greater than the duration of that time block. Constraint
(11.7) is related to the definition of binary decision variables.
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11.2.3 The Adaptive SCAP Model

AnMSS usually is constructed to cover a planning horizon of one to several months.
Then, considering this MSS, hospital administrations determine the staff rostering
and equip ORs with required instruments. Making these decisions and providing
the equipment entail spending lots of time and negotiating with different surgical
specialties as well as going to great expense. Hence, hospital administrations do not
tend to change the MSS over the planning horizon of medium term. On the other
hand, in the real world, even excluding the uncertainty factors, the waiting list is
dynamic due to the arrival of other elective patients with high priorities. One of
the good approaches to handling this dynamic process is to generate a new SCAP
solution, for each planning horizon of one to several weeks. Therefore, the MSS
solution, which is provided by MSS-SCAP model, is kept constant but the SCAP
solution will be updated. In other words, given the MSS, the SCAP solution takes
into account new elective patients and will be updated whenever it is necessary.

In summary, at the first stage, the MSS-SCAP is solved and the assignment of
time blocks to surgical specialties is considered as the MSS solution. Then, given
this MSS solution, it is assumed that the SCAP solution can be updated to adapt
the real-world dynamic conditions. Therefore, the overall SCAP is decomposed into
several subproblems similar to the MKP, one for each surgical specialty, in which
the patients correspond to the items and the blocks to the knapsacks.

The adaptive SCAP model per specialty s is illustrated as follows. Note that the
parameter Qtsdb is determined by the MSS solution, which can be the result of the
MSS-SCAP model.

Maximize
∑

t∈T

∑

p∈P

∑

d∈D

∑

b∈B
ρpYtpdb

s.t.

∑

t∈T

∑

d∈D

∑

b∈B
YtpdbQtsdb ≤ 1 ∀p ∈ Ps (11.8)

∑

p∈P

L pYtpdb Ips ≤ 60τbQtsdb ∀t ∈ T, d ∈ D, b ∈ B (11.9)

Ytpdb ∈ {0, 1} ∀t ∈ T, p ∈ P, d ∈ D, b ∈ B (11.10)

The objective function is to maximize the total priority scores of assigned patients to
ORs and dates over the planning horizon of one to several weeks. Constraint (11.8)
indicates that a patient can be operated at most once during the planning horizon.
Constraint (11.9) restricts the processing time of all assigned patients, which belong
to specialty s, to a time block that must not be greater than that time block duration.
Based on constraint (11.10), all decision variables are binary.
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Both of the proposed mathematical models focused on maximizing the total pri-
ority scores of assigned patients. However, in the real world, patients with higher
priorities should be scheduled as soon as possible.

11.3 The Proposed Heuristic Algorithm

In order to generate high-quality solutions for MSS-SCAP in a reasonable amount of
time and for large-scale instances, this study proposes a heuristic algorithm, which
consists of the following steps:

Step 1: Sort all patients in a non-increasing order of their priority scores.
Step 2: Select patient p among unscheduled patients with the highest priority score. If there
are some patients with the same priority scores, select the one with longer processing time. If
their processing times are equal, select one of them randomly. Schedule the selected patient
considering the following rules:

– Using the first-fit strategy, assign the patient to the first available time block b,
which belongs to the specialty of patient p. If the patient p is the first patient who
is assigning to time block b, then by assigning this patient to time block b, its
specialty is also assigned to that time block.

– In each time block, only the patients with the same specialty s can be assigned.

– By assigning patient p to a time block b, the total processing time of all patients
assigned to that block must not exceed the capacity of that block.

– The total amount of assigned hours to specialty s must not exceed the maximum
number of OR hours that can be assigned to that specialty.

– The time blocks containing assigned patients are considered prior to the unoccu-
pied ones. This criterion seeks to reduce idle time and minimize the number of
open ORs.

Step 3: Repeat Step 2 until all patients are scheduled or there is no available time in blocks
over the planning horizon.

The numbers of operations in Steps 1 and 2 areO(Pmax log Pmax) andO(BmaxDmax

Pmax), respectively. Thus, the run time of the proposed heuristic is O(Pmax log Pmax +
BmaxDmaxPmax).

11.4 Computational Results

To evaluate the performance of the proposed mathematical models and the heuristic
algorithm, a numerical study is designed. The models were implemented via Gurobi
8.0.0 and the heuristic algorithm was coded by using Python Anaconda 3.6. The
numerical study is carried out on a PC equipped with Intel Core i5 3.2 GHz CPU and
8GBofRAMunder LinuxUbuntu operating system. To generate the instances, some
of the data are adopted from a data set provided by Spratt and Kozan [2]. The number
of patients in the data set is 2802. Thus, in the present study the number of patients
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Table 11.2 Performance comparisons between the MSS-SCAP model and heuristic algorithm for
Tmax = 2

Pmax Smax TimeH T imeopt APE Gap

20 1 0 0 0 0

50 3 0 226 0.01 0

100 4 0.01 1800 0.03 0

150 5 0.01 2700 0.05 0

200 5 0.02 >3600 0.1 0.02

300 5 0.03 >3600 0.16 0.02

400 5 0.05 >3600 0.21 0.02

500 7 0.06 >3600 0.23 0.02

1000 8 0.17 >3600 0.36 0.02

1500 8 0.3 >3600 0.42 0.02

2000 10 0.49 >3600 0.44 0.03

2802 12 0.85 >3600 0.52 0.04

is selected from the set {20, 50, 100, 150, 200, 300, 400, 500, 1000, 1500, 2000,
2802}. In the data set of [2], the ratio of patients to specialties, i.e. Ips , is given.
As a result, the number of specialties is selected from the set {3, 5, 8, 10, 12}. The
number of operating rooms is selected from {2, 4, 5, 10, 15, 20}. The number of days
to plan the surgeries is selected from {5, 10, 15, 20}, meaning that the planning hori-
zon ranges between 1 and 4weeks. Each day of planning horizon consists of two time
blocks and each block is 5 hours. Furthermore, surgery durations per each specialty
are generated randomly from the lognormal distribution (the mean and variance are
given in the data set [2]). Since the duration of each time block is 5hours, the lognor-
mal distribution is truncated at 5hours to ensure that each surgery fits in a time block.
The integer priority scores were also generated from a discrete uniform distribution
of [1,100].

To evaluate the capability of the mathematical models and the heuristic algorithm,
two types of experiments were performed. The first experiment includes only two
operating rooms. Table 11.2 shows the results of this experiment. The average per-
centage of error (APE) for the heuristic is calculated as FOpt−FH

FOpt
, where FOpt is the

objective value of the model as reported by Gurobi, and FH is the objective value of
the heuristic algorithm. The solution gap, which is provided by Gurobi, is presented
as Gap. In addition, the average computation time of the heuristic and the model are
presented as T imeH and T imeOpt (the maximum runtime for Gurobi is set to 3,600
seconds; in column T imeOpt , − means that the time limit has been reached).

For the second experiment, the computational efficiency of the heuristic was
investigated by increasing the number of patients and ORs. Table 11.3 shows the
average times of the heuristic algorithm for different numbers of patients and ORs.
As it is indicated, the average execution time of the heuristic algorithm is less than
two seconds even for Pmax = 2802 and Tmax = 20. Therefore, the heuristic algorithm
is quite efficient to solve the large-scale instances of the MSS-SCAP.
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Table 11.3 Average times of the heuristic algorithm for different numbers of Pmax and Tmax

Pmax Tmax = 2 Tmax = 4 Tmax = 5 Tmax = 10 Tmax = 15 Tmax = 20

20 0 0 0 0 0 0

50 0 0 0 0 0 0

100 0.01 0.01 0.01 0.01 0.01 0.01

150 0.01 0.01 0.01 0.01 0.01 0.01

200 0.02 0.02 0.02 0.02 0.02 0.02

300 0.03 0.04 0.04 0.04 0.05 0.05

400 0.04 0.06 0.06 0.07 0.08 0.08

500 0.06 0.09 0.09 0.11 0.11 0.11

1000 0.16 0.23 0.25 0.32 0.35 0.36

1500 0.3 0.41 0.44 0.58 0.46 0.67

2000 0.49 0.36 0.68 0.87 0.97 1.04

2802 0.84 1.06 1.11 1.44 1.66 1.68

11.5 Conclusion and Future Work

This paper investigates the OR scheduling problem at tactical and operational lev-
els concurrently, called MSS-SCAP, for maximizing the total priorities of assigned
patients. The block scheduling strategy is used to allocate time blocks to special-
ties. To solve the MSS-SCAP, an ILP model and a heuristic algorithm have been
proposed. In addition, an adaptive ILP model is suggested to solve the SCAP and
cope with the dynamics of the real-world waiting list, given an MSS. To evaluate the
proposedMSS-SCAPmodel and the heuristic algorithm, a numerical study has been
developed. The computational results have shown that the heuristic algorithm has
the capability to solve large-scale instances efficiently. Further research works will
include the uncertainty of surgery durations and the restriction on the downstream
facilities like the number of beds in the ICU Department. In addition, the problem
can be extended to include a restriction on the availability of surgical teams on the
days of surgery.

References

1. Addis B, Carello G, Tànfani E (2014) A robust optimization approach for the Advanced
Scheduling Problemwith uncertain surgery duration in Operating RoomPlanning- an extended
analysis, working paper or preprint

2. Agnetis A, Coppi A, Corsini M, Dellino G, Meloni C, Pranzo M (2012) Long term evaluation
of operating theater planning policies. Oper Res Health Care 1:95–104

3. Agnetis A, Coppi A, Corsini M, Dellino G, Meloni C, Pranzo M (2014) A decomposition
approach for the combined master surgical schedule and surgical case assignment problems.
Health Care Manag Sci 17:49–59



166 O. Mashkani et al.

4. Aringhieri R, Landa P, Soriano P, Tnfani E, Testi A (2015) A two level metaheuristic for the
operating room scheduling and assignment problem. Comput Oper Res 54:21–34

5. Australian Government, Productivity Commission (2006) Potential Benefits of the National
Reform Agenda. Research Paper, Canberra, Australia

6. AustralianGovernment, ProductivityCommission (2015) Efficiency inHealth. Research Paper,
Canberra, Australia

7. Erdogan SA, Denton BT (2011) Surgery planning and scheduling. American Cancer Society,
Wiley Encyclopedia of Operations Research and Management Science

8. Fei H, Chu C, Meskens N (2008) Solving a tactical operating room planning problem by a
column-generation-based heuristic procedure with four criteria. Ann Oper Res 166:91

9. Guerriero F, Guido R (2011) Operational research in the management of the operating theatre:
a survey. Health Care Manag Sci 14:89–114

10. GuidoR, Conforti D (2017)A hybrid genetic approach for solving an integratedmulti-objective
operating room planning and scheduling problem. Comput Oper Res 87:270–282

11. Hof S, Fügener A, Schoenfelder J, JO B (2017) Case mix planning in hospitals: a review and
future agenda. Health Care Manag Sci 20:207–220

12. Hussung T (2016) The role of hospital management in transforming healthcare. Husson Uni-
versity, Bangor, Canada

13. Jebali A, Diabat A (2017) A Chance-constrained operating room planning with elective and
emergency cases under downstream capacity constraints. Comput Ind Eng 114:329–344

14. Kaplan G, Bo-Linn G, Carayon P, Pronovost P, RouseW, Reid P, Saunders R (2013) Bringing a
Systems Approach to Health. National Academy of Medicine, Discussion Paper, Washington,
America

15. Koppka L, Wiesche L, Schacht M, Werners B (2018) Optimal distribution of operating hours
over operating rooms using probabilities. Eur J Oper Res 267:1156–1171

16. Ma G, Beliën G, Demeulemeester E, Wang L (2009) Solving the strategic case mix problem
optimally by using branch-and-price algorithms, In: proceeding paper

17. Marques I, Captivo ME (2015) Bicriteria elective surgery scheduling using an evolutionary
algorithm, operations research for health care, ORAHS 2014. In: The 40th international con-
ference of the EURO working group on operational research applied to health services, vol 7,
pp 14–26

18. Marques I, Captivo ME, Vaz Pato M (2015) A bicriteria heuristic for an elective surgery
scheduling problem. Health Care Manag Sci 18:251–266

19. Sieber T, Leibundgut D (2002) Operating room management and strategies in Switzerland:
results of a survey. Eur J Anaesthesiology 19:415–423

20. Spratt B, Kozan E (2016) Waiting list management through master surgical schedules: a case
study. Oper Res Health Care 10:49–64

21. Testi A, Tanfani E, Torre G (2007) A three-phase approach for operating theatre schedules.
Health Care Manag Sci 10:163–172


	11 The Operating Room Scheduling Problem Based on Patient Priority
	11.1 Introduction
	11.1.1 Literature Review
	11.1.2 Contribution of this Research

	11.2 Problem Statement and Mathematical Models
	11.2.1 Problem Definition
	11.2.2 The MSS-SCAP Model
	11.2.3 The Adaptive SCAP Model

	11.3 The Proposed Heuristic Algorithm
	11.4 Computational Results
	11.5 Conclusion and Future Work
	References




