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Preface

The Australian Society of Operations Research (ASOR) conference and Defence
Operations Research Symposium (DORS) were held in Melbourne, Australia, from
Tuesday 4 December to Thursday 6 December 2018. Both of these events are held
annually, with DORS run by the Defence Science and Technology (DST) Group
within the Australian Department of Defence.

The conference attracted approximately 250 local and international delegates,
making it the largest joint ASOR/DORS conference ever. The conference included
keynote and general presentations on 4 and 5 December, and a number of workshops
onThursday 6December. The programme contained presentations across a vast array
of theoretical and application areas. Application areas covered food and beverage
supply chains, transport and logistics, health care, natural hazards, defence andmore.
The workshops featured the application of cutting-edge Operations research (OR) to
real-world problems, such as real-options testing and last-mile logistics.

The ASOR conference and DORS have been combined on occasions in previous
years.Given the relatively smallAustralianORcommunity across academia, industry
and defence, combining the conferences provides significant benefits through greater
networking and collaborative opportunities. On this occasion, the joint conference
allowedDST to showcase its Strategic Research Investment intoModelling Complex
Warfighting, an internally funded research programme that has strong collaborations
with academia and industry.

The conference featured a brilliant line-up of invited local and international
speakers: arguably the best assembled at an Australian OR conference other than
IFORS 2011 in Melbourne. These speakers included Professor Paolo Toth from
the University of Bologna and Professor John Bartholdi from the Georgia Insti-
tute of Technology. Their topics included optimization applications in transport and
logistics, data analytics, cognitive science and uncertainty modelling.
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vi Preface

The proceedings herein contain 23 full articles from the conference. Each article
was initially reviewed by two external referees and has been further vetted by the
respective session leaders and an editor. We trust that you enjoy these articles that
showcase the best of Australia’s current Operations Research.

Melbourne, Australia
March 2019

Andreas Ernst
Monash University (Chief Editor)

Simon Dunstall
CSIRO Data61

Rodolfo Garcia-Flores
CSIRO Data61

Marthie Grobler
CSIRO Data61

David Marlow
Defence Science and Technology Group



Introduction

The 2018 Australian Society of Operations Research (ASOR) conference and
Defence Operations Research Symposium (DORS) showcased current and forward-
thinking in the field of operational research. These proceedings present a selection
of these high-quality articles, focusing on a variety of Operations Research (OR)
techniques, including data analytics, decision analysis, mathematical programming,
optimisation, scheduling, simulation and stochastic models. These techniques are
applied to defence, transportation, risk analysis, project management, artificial intel-
ligence, telecommunications and others.Within this collection of articles, we present
OR in six main themes, focusing both on the improvement of decision support in
commercial and defence environments.

First, the food industry is crucial to ensure Australia’s economic prosperity, as
the country exports more than half of its production. Increasing the efficiency of
food and beverage supply chains is not only of great economic importance but
also impacts the social and environmental landscape by reducing food losses and
diminishing the amount of resources used for production. These efficiency gains are
translated into increased food availability for human consumption, lower pollution
and environmental impact, reduction of greenhouse emissions and a more rational
use of scarce commodities. Achieving these goals is not of exclusive interest to
Australia, and the 2018 ASOR/DORS featured a dedicated food and beverage
stream in collaboration with the Wine and Food Supply Chain Council, a research
organisation composed of supply chain professionals committed to improving inter-
national supply chains for wine and food, and the University of Newcastle’s Food
andBeverage SupplyChainOptimisation Industrial TransformationTrainingCentre.
The problems tackled include studying the impact of Vendor-Managed Inventory on
a decentralized supply chain using a dynamic lot-sizing model (Evazabadian et al.),
analysing the location of potential plants to process broccoli that would have other-
wise become losses (Garcia-Flores et al.), the analysis of lot-sizing problems with
shelf life constraints for perishable products (Chen et al.) and vessel route plan-
ning for import/export of seasonal products (Accorsi et al.). These articles show the
breadth of interests in optimization for food and beverage supply chains.

vii



viii Introduction

Freight and logistics is an essential component of the national economy and the
timeliness of product and service delivery. Delayed delivery can result in significant
losses to both the sender and the recipient, and therefore advancements in technology,
integration and globalization is a clear game changer for supply chain management.
The efficiency of Australia’s transport and logistics industry can thus be regarded as
vital to the nation’s productivity and wellbeing, with a direct impact on many other
sectors.As such, the 2018ASOR/DORS featured a dedicated transport and logistics
stream to showcase some of the open issues and challenges faced in terms of vehicle
routing. The problems addressed in this stream include studying a branch-and-price
framework for the maximum cover and patrol routing (Chircop et al.), investigating
linear complexity algorithms for visually appealing routes in the vehicle routing
problem (Kilby et al.), comparing selection by marginal analysis and neural nets to
prioritize autonomous supply (Sherman et al.) and planning capacity alignment for
a coal chain (Eskandarzadeh et al.). This stream also considers methodologies and
platforms in the context of situational awareness and industrial operations modelling
(Baumgartner et al.). These articles discuss the alignment and planning abilities
needed within a complex environment to uphold the assured quality and quantity
within the sector.

The 2018 ASOR/DORS further featured a range of practical Operations Research
applications in different scenarios across different sectors. Within this proceed-
ings, these applications are grouped according to non-specific operational scenarios
(largely represented in the ASOR streams and workshops) and combat scenarios
(largely represented in the DORS streams). In the stream on case studies and novel
applications in non-specific operational scenarios, we present research focusing
particularly on decision-making under uncertainty. In the case of dynamic reloca-
tion of aerial firefighting resources to reduce expected wildfire damage, advanced
analytics are applied to minimize expected fire damage (Davey et al.). In the context
of operating room scheduling based on patient priority, a solution is put forward
for master surgical schedule surgical case assignment using integer linear program-
ming and heuristic approaches (Mashkani et al.). Finally, considering non-critical
operational scenarios, mixed integer programming is applied to analyse statistical
performances in theAustralian Football League SuperCoach competition (Edwards).
These research articles all present novel applications of scientificmethods to advance
themanagement and administration of an array of non-specific operational scenarios.

Defence Operations Research covers a vast array of topics and applications. In the
Australian context, this includes providing OR support and advice to all phases of the
CapabilityLifeCycle, such as force structure anddesign, capability acquisition, capa-
bility improvement and sustainability. It also involves the use of techniques such as
simulation, optimization, experimentation andwargaming to test the capability of the
current and future force. Additionally, Australia’s Defence Science and Technology
(DST)Groupisseekingtobothdevelopandexploit the latest technologiesandthinking
in operations research through its StrategicResearch Investment (SRI) intoModelling
Complex Warfighting (MCW). The expected outcome is a revolution in the way that
operations research is conductedandapplied to future forcedesignandanalysis.These
proceedings incorporate contributions from all of these areas. In 2018 ASOR/DORS,
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the stream on defence decision support analysis focusses on the application of the
appropriate Operations Research techniques to address the extant defence problem.
It includes a detailed review of problems considering strategic risk management and
its applications in practice (Filinkov et al.), as well as the ability of the security-based
global petroleum simulations to accurately model conflict scenarios (Calbert). This
stream also puts forward a systems approach to analysing organizational-level adapt-
ability in a critical review of the Australian Army Lessons Network (Omarova et al.).
Other articles use the stochastic multi-criteria decision analysis of combat simulation
data for selecting thebest landcombatvehicleoption (Caoetal.) and theunderstanding
of the impacts of wheels and tracks on operational outcomes for armoured fighting
vehicles in theAustralian context (Tomeckoet al.). Thesepapers provide agoodcross-
sectionof therangeof techniquesthatarerequiredtoget insights intothiscomplexarea.
They including approaches using simulation, optimization andbusinessmanagement,
often used in combination.

Force design activities are ongoing within defence and an essential component
of the development of the Defence White Paper in Australia every five years. Given
that force design is the primary focus of the MCW SRI, the 2018 ASOR/DORS
included a stream dedicated to force design analysis. From this stream, only one
paper was included for publication in the proceedings and added to the section on
data analytics in defence. This uses evolutionary algorithms (Hicks et al.) together
with a simulation-based evaluation to determine promising force structure options.
This has some similarity to the approaches used in the papers by Cao et al. and
Tomecko et al. in the much narrower context of selecting appropriate army vehicle
options.

The last 2018 ASOR/DORS stream on novel applications for defence encom-
passes all other defence-related submissions. It includes two articles considering
machine learning approaches in the context of defence-related problems. The first of
these uses a genetic programming framework to discover novel tactics and behaviours
in air combat scenarios (Masek et al.), while the second develops a method for gener-
ating an “expanded basis set” for a random forests model (Keevers). This section
concludes with an article that tests and proposes various approaches for analysing
intra-run data to explain causal events and support the analysis of closed-loop combat
simulations (Grieger et al.).

Traditionally, OR has focused strongly on deterministic optimization while using
discrete event simulation to examine the effects of uncertainty and randomness
in complex systems. The articles presented at the 2018 ASOR/DORS confer-
ence demonstrate the ongoing trend of combining both optimization and stochastic
modelling.While this ismathematically and computationally challenging, thesemore
complex models are becoming more tractable with advances in both computing and
mathematical methodology.
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Chapter 1
A Dynamic Lot Sizing Model Under
Vendor Managed Inventory (VMI)

Farshid Evazabadian, Regina Berretta, and Mojtaba Heydar

Abstract This paper explores the impact of Vendor managed inventory (VMI) on
a decentralized supply chain by proposing two Mixed-integer linear programming
(MILP) models for a dynamic lot sizing problem. The models describe the decision-
making for lot sizing before and after the implementation of VMI. The proposed
models highlight that VMI takes advantage of centralized decision-making, and can
reduce the cost of the lot sizing by better synchronization of the decisions. Numerical
results, provided to compare the efficiency of VMI with the traditional decentralized
lot sizing, indicate significant cost reduction under VMI. A set of experiments is also
designed to determine the impact on retailers’ cost (ordering and holding) as well as
vendors cost (setup and holding) on the gap.

Keywords Vendor managed inventory · Retailer managed inventory · Lot sizing ·
Mixed-integer linear program

1.1 Introduction

Vendor managed inventory (VMI) is a partnership based on the information shared
between the retailer and the vendor (themanufacturer or the supplier) [3]. InVMI, the
management of the retailer’s inventory is transferred from the retailer to the vendor,
after setting shelf space requirements or service level by the retailer [18]. Therefore,
the retailer’s role changes from managing the inventory to renting the inventory
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4 F. Evazabadian et al.

space [14, 18]. Both retailer(s) and the vendor benefit from VMI implementation.
Vendors benefit from VMI by having direct access to the demand information and
consequently having more accurate forecasts [12]. Retailers benefit from VMI by
increasing their service level and product availability [5, 12], Yao et al. [22].

According to Marquès et al. [13], VMI has three main agreements: partnering
agreement, logistical agreement and production and dispatch agreement. In part-
nering agreement, retailers and vendors decide how to collaborate with each other.
In fact, they agree on issues such as information that should be shared, the period-
icity of transferring information and the timescale of forecasting [13]. In logistical
agreement, parties discuss issues related to transportation and delivery of products,
such as determining the minimum delivery quantity and transport schedule [7, 13].
In production and dispatch agreement, the parties make decisions about produc-
tion planning and shipment scheduling [13]. Production planning contains different
stages, including aggregate planning, detailed planning and lot sizing [9]. Lot sizing
is considered as an operational level decision that aims to identify the quantity
and time of production that minimizes the sum of production, setup and holding
costs [2, 9]. The early developments in lot sizing originate from the Economic order
quantity (EOQ), proposed byHarris [8], and theWagner-Whitin algorithmbyWagner
and Whitin [6, 20].

In this study,we showhow lot sizing can bemodelled underVMI.A review related
to the lot sizing under VMI is presented in the next section. In SectionMathetmatical
Modelling, twomathematicalmodels for the lot sizing problem are introduced,where
only oneworks underVMI. In SectionNumerical Experiments, two sets of numerical
experiments are presented. In the first, the models are tested with a set of generated
instances to show the range of cost reduction under VMI. Next, our study shows the
impact of some of the parameters (retailer setup cost, retailer holding cost, vendor
setup cost and vendor holding cost) on the VMI efficiency. Finally, the conclusion
and directions for future research are presented in Section Conclusion.

1.2 Literature Review

Lot sizingmodels underVMI can be divided into static and dynamicmodels. By static
models, we mean single-period and continuous timescale models, while dynamic
models are multi-period models. In static models, it is assumed that the parameters
of the problem, especially demand, are constant and do not change over the plan-
ning horizon [11]. However, these parameters can change over time in a dynamic
model. Static models can also be divided into deterministic and stochastic models.
According to these two factors: uncertainty of parameters (stochastic-deterministic)
and variation of parameters over time (static-dynamic), four possible categories of
studies can be defined as shown in Table 1.1.

The deterministic-static studies related to lot sizing under VMI first introduced
by Yao et al. [22]. They developed two models based on EOQ to compare the total
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Table 1.1 Classification of
studies for lot sizing under
VMI

Static Dynamic

Deterministic Deterministic-Static Deterministic-Dynamic

Stochastic Stochastic-Static Stochastic-Dynamic

cost of a supply chain under VMI and Retailer management inventory (RMI). Van
der Vlist et al. [19] extended Yao et al. [21] work by considering shipment cost
for the problem. Pasandideh et al. [16] presented an EOQ model with the backlog
and discussed how the backlog can increase the profit of the supply chain. Sadeghi
et al. [17] presented a model for a multi-vendor, multi-retailer and single warehouse,
including a limit for the number of orders and inventory space.

Deterministic-static problems focus on the retailer-vendor competition. Yugang
et al. [26] study a supply chain in which the product has two prices: wholesale price
and end price, the former is determined by the vendor and the latter set by the retailer.
Yu and Huang [25] considered a condition in the supply chain where there are two
games between retailers and vendor. The first game is between retailers to gain
market share and the second game is between vendor and retailers to achieve profit.
They formulated the problem as two Nash games: vertical (between retailers) and
horizontal (between vendor and retailers). Yu et al. [24] developed amodel to identify
which retailers (among several retailers) should be chosen for a VMI partnership to
maximize the profit of supply chain.

Stochastic-static studies consider the condition that the values of some of
the parameters are not known. In the earliest research in this area, Mishra and
Raghunathan [14] considered a supply chain with two vendors and one retailer
in which vendors produce two different but substitutable products (each vendor
produces one product). Yao et al. [21] study the condition which the vendor, instead
of holding a significant amount of the product as inventory, the vendor can pay
the retailers to convert the lost sale to backorder when stock-out occurs. In another
research, Yao et al. [23] extended their study by considering both backorder and lost
sale. Nia et al. [15] developed a Fuzzy programming (FP) model to identify the order
size in a supply chain in which multi-products are produced.

In contrast with single-period models, dynamic lot sizing models under VMI have
gained less attention. All the dynamic studies fall into the deterministic dynamic
category (Table 1.1). In one study, Jaruphongsa et al. [10] developed anMILP model
for the incapacitated lot sizing problem, in which for each period, there is a time
window, during which the demand must be satisfied. Al-Ameri et al. [1] developed
an MILP model for integrated routing and lot sizing problem in a supply chain with
multiple manufacturers and retailers. Archetti et al. [4] proposed an MILP model for
integrated routing and lot sizing problem in a supply chain, in which there is one
vendor, producing one product for several retailers over a time horizon.

As discussed, the majority of the studies related to lot sizing under VMI falls in
the static category and there are a few studies in the dynamic area. Static models,
due to considering the parameters constant, cannot be applicable for the real cases.
Hence, in this study, we present a dynamic lot sizing model under VMI and show
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how VMI can be different from a traditional supply chain. Moreover, we show the
most affecting factors that differentiate VMI from a traditional supply chain.

1.3 Mathematical Modelling

We consider a supply chain including one manufacturer (vendor) and multiple
retailers ( j = 1, 2, . . . , J ). There are multi-products (i = 1, 2, . . . , I ) which each
retailer has a specific demand over a time horizon (t = 1, 2, . . . , T ). It is assumed
that retailers are independent in terms of decision-making, and there is no competi-
tion between them for achieving a higher profit. In other words, the demand di jt for
the product i of retailer j in period t is independent of the other retailers’ demand.
It should be noted that this work considers products with infinite shelf life which
will not perish over the horizon. The retailer’s costs include an ordering fixed cost
sr i j t that does not depend on the quantity of the order, a unit ordering cost oi jt , a
holding cost hri j t for each unit of product and a backorder cost br i j t for each unit of
product, if stock-out occurs. It is also considered an ordering lead time lr i j , which is
the time, measured in number of periods, between placing of an order and receiving
the ordered products. The aim of each retailer is to minimize its total cost, including
ordering, holding and backorder cost.

The vendor’s costs are setup and production costs for each unit denoted by sit
and cit , respectively, a holding cost for each unit (hit ), and if stock-out occurs, a
backorder cost bsit is incurred for each unit. In regards to capacity for production,
it is considered that vit is the necessary time to produce one unit of product i in
period t , fi t is the setup time required to start production, and production lead time li
indicates the time from initiations of production until the products become available.
Similarly, to the retailers, the vendor aims to minimize its total cost, which includes
setup, production and holding costs considering available time (capt ) as a major
limitation. It is assumed that vendor and retailers both have their own warehouse for
holding the products.

In order to respond to the demand, two scenarios are considered. In the first
scenario which is called RMI, retailers decide how to satisfy the demand. For this
purpose, they set some orders and send them to the vendor and based on those orders
the vendor plans the production. In the second scenario which is VMI, retailers share
the information of demand with the vendor and transfer the decision-making to the
vendor. It is assumed that at the beginning of the first period, depends on the scenario,
retailers either share the demand information (VMI case) or send their orders over
the time horizon to the vendor (RMI case).

In the RMI scenario, each party deals with its own optimization problem. There-
fore, in the RMI scenario two mathematical models are required, one for each party
(retailers and vendor). In RMI, first retailers make decision and afterwards vendor.
However, in the VMI scenario, retailers share the demand information and all the
decisions are made by the vendor. Hence, in the second scenario, there is only one
mathematical model and all the decisions are made simultaneously in it.
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First, we describe the mathematical models for the RMI scenario. In RMI there is
one model for retailer j (Model Rj) and one for the vendor (Model V). The notation
used is as follows:

Index

i : index for product i = 1, ..., I.

j : index for the retailer j = 1, ..., J

t : index for time period t = 1, . . . , T .

Parameters:

sr i j t : fixed cost of ordering product i for the retailer j in period t

oi j t : unit ordering cost of product i for the retailer j in period t

hr i j t : unit holding cost of product i for retailer j at the end of period t

di j t : demand of product i for retailer j in period t

lr i j : ordering lead time of product i for retailer j

br i j t : backorder cost incurred for each unit of product i when stock-out for retailer j
occurs in period t

si t : setup cost incurred if product i is produced in period t

cit : unit production cost of product i in period t

hit : unit holding cost for the product i in vendor warehouse at the period t

vit : necessary time to produce one unit of product i in period t

fi t : setup time required to produce product i in period t

li : the production lead time of product i

bsit : the backlogging cost which is incurred for each unit of product when the stock-out
for vendor occurs

M : an upper bound for production

capt : total production time available in period t

Decision variables:

YRi j t ={
1

0

If retailer j orders a batch of product i

Otherwise

XRi jt : The order quantity of product i for retailer j in period t.

I R+
i j t : Overstock inventory of product i for retailer j in period t

I R−
i j t Under-stock inventory of product i for retailer j that backlogged at the end of

period t

Yit =
{
1

0

If the vendor produces product i in period t

Otherwise

Xit : Production quantity of product i in period t

I+
i t : Overstock inventory of product i for the vendor at the end of period t

(continued)
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(continued)

I−
i t Under-stock inventory of product i backlogged for the vendor at the end of period

t

In the following, Models R j (for the retailer j) and V (for the vendor) are
presented.

Model R j (for Retailer j : 1, . . . , J ):

min
∑
i

∑
t

sri j t Y Ri j t +
∑
i

∑
t

hri j t I R
+
i j t +

∑
i

∑
t

bri j t I R
−
i j t +

∑
i

∑
t

oi j t X Ri jt (1.1)

s.t

I R+
i j t − I R−

i j t = I R+
i j t−1 − I R−

i j t−1 + XRi j,t−lri j − di jt , i = 1, ..., I ; t = 1, ..., T,
(1.2)

XRi jt ≤
(∑

t ′
di j,t ′

)
Y Ri jt , i = 1, ..., I ; t = 1, ..., T, (1.3)

I Ri jt , XRi jt ≥ 0, i = 1, ..., I ; t = 1, ...T, (1.4)

Y Ri jt ∈ {0, 1}, i = 1, ..., I ; t = 1, ...T . (1.5)

In model R j , the objective function (1.1) aims to minimize the total cost of retailer
j including ordering, holding and backorder costs. Equation (1.2) is the inventory
balance for the retailer j . Constraint (1.3) are logical constraints that relate the
decision variable Xit to the binary decision variable Yit meaning that whenever an
order quantity is greater than zero, variable YRit must take on value 1. Constraints
(1.4) and (1.5) show the domains of the variables.

Model V (for vendor):

min
∑
t

∑
i

si tYit +
∑
t

∑
i

hit I
+
i t +

∑
t

∑
i

bsit I
−
i t +

∑
t

∑
i

cit Xit (1.6)

s.t

I+
i t − I−

i t = I+
i t−1 − I−

i t−1 + Xi,t−li −
∑
j

X Ri jt , i = 1, ..., I ; t = 1, ..., T, (1.7)

Xit ≤ MYit , i = 1, ..., I ; t = 1, ..., T, (1.8)

∑
i

( fi tYit + vit Xit ) ≤ capt , t = 1, ...T, (1.9)
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Iit , Xit ≥ 0, i = 1, ..., I ; t = 1, ...T, (1.10)

Yit ∈ {0, 1} i = 1, ..., I ; t = 1, ...T . (1.11)

In model V , the objective function (1.6) aims to minimize the sum of holding,
backorder, production and setup costs for the vendor. The Eq. (1.7) is the inventory
balance for the vendor. Constraint (1.8) guarantee that the solution have set up when
it has production. Constraint (1.9) represent the capacity limitation for production.
Constraints (1.10) and (1.11) show the domain of variables.

It should be noted that the decision variables XRi jt in Model R are defined
as an input parameter for Model V . Formulations (1.12)–(1.21) represents the
mathematical model for VMI.

Objective function (1.12) minimizes the summation of retailers and vendor costs.
The constraints (1.13)–(1.16) are similar to constraints (1.2)–(1.5) except the former
is considered for just one retailer (retailer j), but the latter is considered for all
the retailers simultaneously. Finally, constraints (1.17)–(1.21) are similar to the
constraints (1.7)–(1.11).

It is observed that the RMI model is hierarchical, while the VMI model is inte-
grated. In other words, VMI model aggregates all the objective functions as well as
the constraints and centralizes the decision-making. Due to integration in the VMI
model, the performance of the supply chain improves. This issue is discussed in the
Lemma below.

Lemma: VMI offers the optimal solution for the whole supply chain.

Proof . Since under VMI, the objective function is the minimization of the total
cost for the whole supply chain and all the constraints, including retailers and vendor
constraints, are considered simultaneously, the obtained solution offers theminimum
cost for the whole supply chain.

Since VMI offers the optimal solution for the supply chain, it is interesting to
know how much the difference in total cost between RMI and VMI is.

Model VMI

min
∑
i

∑
t

∑
j

sri j t Y Ri j t +
∑
i

∑
t

∑
j

hri j t I R
+
i j t +

∑
i

∑
t

∑
j

bri j t I R
−
i j t +

∑
i

∑
t

∑
j

oi j t X Ri j t

+
∑
t

∑
i

si t Yit +
∑
t

∑
i

hi t I
+
i t +

∑
t

∑
i

bsi t I
−
i t +

∑
t

∑
i

ci t Xit

(1.12)

s.t

I R+
i j t − I R−

i j t = I R+
i j t−1 − I R−

i j t−1 + XRi j,t−lri j − di jt ,

i = 1, ..., I ; j = 1, . . . , J ; t = 1, ..., T,
(1.13)
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XRi jt ≤
(∑

t ′
di j,t ′

)
Y Ri jt , i = 1, ..., I ; j = 1, . . . , J ; t = 1, ..., T, (1.14)

I Ri jt , XRi jt ≥ 0, i = 1, ..., I ; j = 1, . . . , j; t = 1, ...T, (1.15)

Y Ri jt ∈ {0, 1}, i = 1, ..., I ; j = 1, . . . , J ; t = 1, ...T, (1.16)

I+
i t − I−

i t = I+
i t−1 − I−

i t−1 + Xi,t−li −
∑
j

X Ri jt , i = 1, ..., I ; t = 1, ..., T, (1.17)

Xit ≤ MYit , i = 1, ..., I ; t = 1, ..., T, (1.18)

∑
i

( fi tYit + vit Xit ) ≤ capt , t = 1, ...T, (1.19)

Iit , Xit ≥ 0, i = 1, ..., I ; t = 1, ...T, (1.20)

Yit ∈ {0, 1} i = 1, ..., I ; t = 1, ...T . (1.21)

1.4 Numerical Experiments

In the previous section, we showed that the total cost of lot sizing under VMI is
less than or equals to the RMI optimal solution. One important question is how
much the maximum possible cost reduction applied by the VMI is. To answer this
question, a numerical approach is applied. A set of instances is generated based on
the characteristics and parameters depicted in Tables 1.2 and 1.3, respectively. For
generating capacity, the formula (1.22) is used. Each instance is solved under RMI
and VMI, and the relative gap (the difference between the total cost under RMI and
VMI) based on Eq. (1.23) is calculated.

Table 1.2 Instance
characteristics

Group 1 of instance

I × J ×T S1 = 1 × 2 × 10, S2 = 1 × 10 × 10, S3
= 1 × 20 × 10
S4 = 10 × 2 × 10, S5 = 10 × 10 × 10,
S6 = 10 × 20 × 10
S7 = 20 × 2 × 10, S8 = 20 × 10 × 10,
S9 = 20 × 20 × 10

Total 90 (10 instances for each
Si , i = 1, . . . , 9)



1 A Dynamic Lot Sizing Model Under Vendor Managed Inventory (VMI) 11

Table 1.3 Parameters used to
generate instances

Parameters Interval

di j t U[0,100]

sr i j t U[100,200]

oi j t U[1,5]

hri j t U[2,20]

bri j t U[4,40]

sit U[250,1000]

cit U[2,10]

hit U[1,10]

bsit U[2,20]

vit U[1.5,2]

fi t U[150,200]

capt 1.2c1

c1 =
(∑

i

∑
j

∑T−1
t=1 di j,t+1 × vit + ∑T−1

t=1 fi t

(T − 1)

)
(1.22)

gap =
(
Z RMI − ZVMI

Z RMI
× 100

)
. (1.23)

Table 1.4 shows the gap between RMI and VMI for all the generated instances.
It is observed that the range of cost reduction after VMI implementation is between
0 and 6.4%. Since the lot sizing cost can be very high, to reduce to even only 0.1%
can lead to a remarkable saving for the parties.

Table 1.4 % Gap between RMI and VMI total cost for the generated instances

Instances

I × J × T 1 2 3 4 5 6 7 8 9 10 Average

Sizes 1 × 2 × 10 2.3 5.0 4.7 0.3 2.3 0.9 0 1.7 0.6 1.3 1.91

1 × 10 × 10 1.0 0.5 1.1 1.4 6.4 1.4 1.7 0.6 5.3 1.5 2.09

1 × 20 × 10 3.1 1.4 1.5 2.3 0.4 0.9 1.7 1.8 1.4 2.2 1.67

10 × 2 × 10 1.3 3.7 2.0 1.8 1.9 2.1 2.6 2.4 1.9 2.8 2.25

10 × 10 × 10 1.2 1.2 0.9 1.5 1.3 1.4 1.2 1.2 1.5 1.2 1.26

10 × 20 × 10 2.0 1.1 0.9 1.2 1.5 1.4 1.4 2.0 1.3 1.0 1.38

20 × 2 × 10 2.4 1.8 1.5 2.7 2.6 2.6 2.5 2.1 2.6 2.2 2.3

20 × 10 × 10 1.0 1.2 1.7 1.2 1.1 1.2 1.5 1.0 1.3 1.3 1.25

20 × 20 × 10 1.6 1.2 1.3 1.4 1.0 1.5 1.6 1.2 1.2 1.2 1.32
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1.5 Analysis of Variation of Parameters

This section presents a study about the impact of different parameters on the gap
between RMI and VMI. These parameters are: retailer holding cost (hr i j t ), vendor
holding cost (hit ), vendor setup cost (sit ) and retailer fixed cost for ordering (sr i j t ).
As mentioned in the previous section, each parameter is generated in a specific
interval. In order to determine the impact of each parameter, we divide the interval
into three equal sub-intervals and consider only the low and high intervals for these
experiments. The low level refers to the first one third of parameters’ interval, while
the high refers to the last one third of the interval. For example for the parameter
(hri j t ) the low refers to the range [2, 8].

Since we are considering four parameters with two levels (high and low), we have
16 (=24) possible combinations which we consider each of them as a case. In order
to analyse the impact of the parameters on the gap (between RMI and VMI), we
generated two instances for each case in each size. In other words, for each case, we
have 18 (=2 × 9) instances. The average of gap for all of these 18 instances for each
case is shown in Table 1.5. It should be noted in Table 1.5, L and H refer to low and
high levels, respectively.

In order to assess the impact of one specific parameter (target parameter) on the
gap, we need to compare the instances with the same parameter intervals, except the
target parameter. For example, in order to analyse the impact of the retailer holding

Table 1.5 Average gap between RMI and VMI for each case

Case Vendor
setup cost

Vendor
holding cost

Retailer
setup cost

Retailer
holding cost

Gap (%)

1 L L L L 2.83

2 L L L H 5.38

3 L L H L 2.30

4 L L H H 5.24

5 L H L L 0.39

6 L H L H 0.47

7 L H H L 0.36

8 H H H H 0.58

9 H L L L 2.60

10 H L L H 5.34

11 H L H L 3.33

12 H L H H 5.12

13 H H L L 0.35

14 H H L H 0.76

15 H H H L 0.38

16 H H H H 0.70
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cost on the gap, we compare the instances which the other parameters are produced
in the same interval, for example, cases 1 and 2, or cases 3 and 4. The instances
which are required to be compared to assess the impact of each parameter are listed
below.

(a) Retailer holding cost: compared cases are {(1, 2), (3, 4), (5, 6), (7, 8), (9, 10),
(11, 12), (13, 14), (15, 16)},

(b) Retailer setup cost (fixed cost of ordering): compared cases are {(1, 3), (2, 4),
(5, 7), (6, 8), (9, 11), (10, 12), (13, 15), (14, 16)}.

(c) Vendor holding cost: compared cases are {(1, 5), (2, 6), (3, 7), (4, 8), (9, 13),
(10, 14), (11, 15), (12, 16)}.

(d) Vendor setup cost: compared cases are {(1, 9), (2, 10), (3, 11), (4, 12), (5, 13),
(6, 14), (7, 15), (8, 16)}.

Figure 1.1 shows the comparison of the results of paired cases when each param-
eter is set at its low or high level, respectively. In this figure, the Y axis shows the
value of gap (%) for each case.

According to Fig. 1.1, the gap between RMI and VMI increases by increasing
retailer holding cost and vendor’s holding cost. Moreover, it shows that the vendor’s
and retailers’ setup costs do not have a considerable impact on the gap of optimality.
It is also possible to note that lower holding costs lead to lower optimality gap.

1.6 Conclusion

This paper presented two mixed-integer linear mathematical formulations for lot
sizing under RMI and VMI paradigms. First, we developed a model (RMI) in which
each member optimizes its own production plan individually. Then, in the second
model (VMI), retailers share the demand information and transfer the decision-
making to the vendor. Through a lemma, we showed that VMI always outperforms
RMI and our numerical study showed VMI can reduce the total cost of supply chain
by 6.42%, which can be a considerable value in a real-world scale. Our analysis of
variation of parameters showed that the gap between VMI and RMI increases by an
increase in holding costs of the retailer and the vendor and the setup costs do not
have a considerable impact on the gap.
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Fig. 1.1 The impact of parameters on the gap between RMI and VMI: a Retailer holding cost,
b retailer setup cost, c vendor holding cost, d vendor setup cost
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Chapter 2
A Two-Stage Stochastic Model
for Selection of Processing Hubs
to Avoid Broccoli Losses

Rodolfo García-Flores, Elaine LeKhon Luc, Peerasak Sanguansri,
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Abstract It is estimated that, at present, around one third of all food produced is
lost, either in production and distribution or after retail. To further complicate mat-
ters, uncertainty and variability in the commercial and natural environments must
also be taken into account when trying to reduce food losses. The objective of the
present paper is to develop a decision support system to increase the efficiency of the
Australian broccoli supply chain and reduce food losses considering uncertainty. To
that end, we develop a two-stage stochastic mixed-integer linear programmingmodel
to assist Australian broccoli producers in taking the most cost-effective investment
decisions and, at the same time, reduce the losses by producing novel, high value-
added products from produce discarded on the field or during transportation. The
stochastic model we propose selects, in the first stage, the optimal location of pro-
cessing facilities to add value to the produce that would otherwise be considered
as food loss, and suggests transportation operations as the recourse decisions. The
model is solved using Lagrangian decomposition and the subgradient method. The
data used to feed the model was collected on the field through a survey applied to
broccoli growers nationwide. The model suggests near-optimal investment decisions
that are far from the worst possible outcome, had the final market and environmental
conditions turned out to be very adverse. Our results represent viable operations for
the industry in the medium term.
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2.1 Introduction

Food production and distribution are currently undergoing dramatic changes. On
one hand, it is expected that food consumption will continue to grow for at least
the next 40 years [7], driven by a growing population and rising incomes. On the
other hand, this increase in food demand will be constrained by scarcer resources,
more attention to food security and changing dietary habits. It is also estimated that,
at present, around one third of all food produced is lost, either in production and
distribution or after retail. To further complicate matters, uncertainty and variability
in the commercial and natural environments must be taken into account as part of
the planning of all activities. In order to address all these challenges, the industry
must leverage new food processing and digital data capturing technologies, as well
as apply advanced quantitative decision-making techniques.

The objective of the present paper is to develop a decision support system for
reducing food loss (i.e. before retail, as opposed to food waste, which occurs after
retail) in the Australian broccoli supply chain by selecting, among a set of candidate
sites, the most adequate to build processing sites intended to transform the produce
that would otherwise become landfill or animal feed into processed snacks or food
supplements. Broccoli and broccolini are grown in most Australian states, of which
Victoria is the largest producer, with 48% share of total production. Figure 2.1 shows
the amount and value of broccoli in the supply chain: for the year ending in June
2015, 68571 ton were produced, representing $188.7 million in value (all figures in
Australian dollars), with a wholesale value of the fresh supply of $ 210.7 M. Exports
represent $10.5M, 69%ofwhich go to Singapore [9]. Figure 2.2 is amap of the region
under study showing the location, demand and supply of consumers and producers
of broccoli, respectively. Broccoli producers are marked in yellow and consumer

Fig. 2.1 Overview of brassicas production in Australia. For the year ending in June 2015, 68571
ton were produced, representing $188.7 million dollars in value, with the wholesale value of the
fresh supply of $210.7 M. Exports represent $10.5 M, 69% of which go to Singapore [9]
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Fig. 2.2 Locations of broccoli producers (yellow) and consumermarkets (red) in continental south-
east Australia. Candidate processing sites are also producers and are marked in blue. The size of
the circle is proportional to the volume in tonnes of broccoli produced or consumed

markets are marked in red. The producers that can be selected as processing sites are
marked in blue, and the size of the circle is proportional to the volume in tonnes of
broccoli produced or consumed.

Our model addresses the role of uncertainty and variability, which are distin-
guishing features of agricultural supply chains, and which are caused by its biolog-
ical nature (e.g.. the genetics of vegetable varieties), the natural environment (like
changing weather patterns) and socioeconomic factors (such as changes in demand
patterns and government policies). To capture the effect of these factors, we develop
a two-stage stochastic mixed-integer linear programming model to assist Australian
broccoli producers in taking the most cost-effective investment decisions and, at the
same time, reduce the losses by producing novel, high value-added products from
produce discarded on the field or during transportation.

This paper is structured as follows. After a review of existing work, Sects. 2.2
and 2.3 describe the model and its stochastic extension, respectively. Section 2.4
discusses the results and Sect. 2.5 rounds up the discussion. The detailed formulation
of the problem is included in the Appendix.
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2.1.1 Previous Work

Previous research has addressed some aspects of this problem. Regarding the use
of optimization models to manage fruit and vegetable supply chains, in general, the
literature is extensive and we refer the reader to a recent and comprehensive review
on agricultural optimization of supply chains presented in [12]. A review from the
point of view of supply chain risk management is provided by [14]. In what follows,
wewill centre our attention in recent planningmodels using stochastic programming,
modelling of uncertainty in vegetable supply chains, and on relevant projects related
to broccoli production.

Atallah [1] presented a fixed charge location problem [3] that aimed at minimizing
the total production and transportation costs of fresh broccoli, and analysed the effect
of seasonality and of changing the set of production regions, located in the eastern
United States, over these costs. Broccoli was chosen because it is a high-value and
quite an adaptable vegetable, so it is possible to change the regions where it is
produced if new varieties are grown, which makes it ideal to analyse reallocation of
production to different zones. The solution of the model in [1] suggests production
levels and seasonal product flow that minimize overall supply chain costs. Garcia-
Flores et al. [5] and [6] introduced a deterministic model that is the precursor of the
stochastic model described in the present paper.

Regarding models that analyse uncertainty in agricultural production and plan-
ning, [10] developed a two-stage stochastic programming model focused on min-
imizing the costs in a competitive market where companies can rent or contract
farms to grow up fresh vegetables. Mateo et al. [10] model suggest the best set of
farms to contract to the convenience of supermarkets and grocery shops by solving
the stochastic model using parallel Lagrangean decomposition. [2] present a very
complete two-stage stochastic optimization model that maximizes the economic and
environmental benefits of food and biofuel production. These authors use Benders
decomposition to solve, in the first stage, land allocation for different types of food
and energy crops, while the second-stage variables are operational decisions related
to harvesting, budget, location and amounts of different yield types, using also three
plausible scenarios based on productivity. Regarding the importance of handling
uncertainty in agricultural operations, McKeown [11] reported that an increase in
average temperature reduces the yield of broccoli, decreases the contents of vita-
min C, and increases the frequency of health-related plant disorders. McKeown [11]
reached these conclusions through linear regression models using historical data
from the Ontario region.

The mathematical model introduced in the present paper is related to the deter-
ministic model proposed by [1], reviewed above. However, our model differs in that
it emphasizes the need to process the product that is not of the right quality for
retail by determining the optimal location and number of processing facilities, using
relevant production data for the Australian market and supply chain conditions [9].
In addition, our model factors in uncertainty by considering a number of scenarios
based on productivity and costs. These scenarios are assembled using data from a
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survey and other publicly available sources. Like the model presented in [1], our
model does not factor in the cost of substitution if the growers decide to produce
other vegetables with higher value added.

2.2 The Basic Model

The schematic in Fig. 2.3 shows that the broccoli supply chain is composed of
growers, packers and consumers. The solid arrow in the figure indicates that the
growers’ fresh produce is sent to the packers to be put into crates, and then transported
to the clients (markets and supermarkets). A fraction of the fresh produce becomes a
loss at three different points of handling: first, some of the produce does not leave the
growers’ farms, so the broccoli is lost in production. Second, there are losses during
transportation to the packers. Finally, the packers themselves also incur in losses due
to mishandling. The total losses from these three sources are sent to processing hubs
for value addition. These processing hubs are selected from among a set of candidate
sites, which are a subset of the packer sites. Figure 2.3 shows the flow of losses as
a dashed line. Some growers may have packing facilities within their premises, but
this is not always the case. Consumers are, in general, large urban centres away from
the farming areas.

The model addresses the need to process the produce that is not of the right
quality for retail by determining the optimal location and number of processing
facilities, using relevant production data for the Australian market and supply chain
conditions, gathered from a field survey and other data sources. The aim of these
processing facilities is to reduce or eliminate food loss by producing broccoli-based
edible products of high nutritional value such as snacks or food supplement powder.

Fig. 2.3 The flows between sites. Fresh produce goes to packers, losses go to processing hubs,
which are also packers. Losses may occur during production, transportation or packaging (dotted
arrows). Consumers receive value-added products and fresh produce
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The full formulation of the problem can be found in the Appendix; a summary of the
constraints follows:

1. The fresh supply constraints (2.5) ensure that the amount of fresh produce trans-
ported from a grower to a packer is no greater than the amount produced minus
the losses.

2. The processed supply constraints (2.6) ensure that the amount of produce to be
processed (i.e. originating from losses) transported from a grower to a packer
no greater than the losses. Naturally, if there are no losses, there is no supply of
produce to the hub.

3. The yield constraints (2.7) state the maximum amount that can be produced by
a unit of land area.

4. Constraints (2.8) ensure that every grower sends all its produce to be processed
to only one candidate site.

5. The amount of product to be processed that enters the candidates from packers
that were not selected as processing hubs is a fraction of what enters the packers
as fresh produce (2.9).

6. The amount of fresh produce that enters a packer is the same amount that leaves,
minus the packer’s own losses (2.10).

7. The amount of product to be processed that enters a candidate packer, including
the packers’ losses, is the same amount that leaves (2.11).

8. Constraints (2.12) state that food losses must end up in one selected candidate
processing site.

9. The selected candidate sites are constrained in their capacity to process food loss,
as expressed in constraints (2.13). The produce to be processed comes from both
growers and packers.

10. The number of allowed processing sites may be limited, constraint (2.14).
11. The fresh demand constraints (2.15) state that the transported product must

satisfy the demand of the consumers.
12. The processed demand constraints (2.16) state that the transported product must

satisfy the demand of the consumers.

The input data to the model were obtained on the field through a survey applied to
broccoli growers nationwide. This survey provides a snapshot of the current situation
of this economic activity and reveals the extent of the problem and the interest of
stakeholders in solving it.

2.3 The Stochastic Model

The general form of a stochastic optimization problem is

min
z∈Z {g(z) = cT z + E[Q(z, ξ)]} (2.1)

where Q(z, ξ) is the optimal value of the second-stage problem
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Fig. 2.4 Lagrangeandecompositionusing the subgradientmethod.The stepof additionof solutions,
marked with a star, is justified in [8]

min
y

qT y subject to Tz + Wy ≤ h . (2.2)

Here, z selects in the first stage of the stochastic model we propose, the optimal
location of processing facilities to add value to the produce that would otherwise be
considered as food loss, Z is a polyhedral set defined by a finite number of linear
constraints, y is the second-stage decision vector comprising production and amount
transported, and ξ = (q,T ,W, h) contains the data of the second-stage problem [13].
A simplified schematic of the Lagrangean decomposition algorithm and subgradient
method are shown in Fig. 2.4. Full details of the methodology can be found in [4]
and [10], and are not shown here due to space limitations.

The model described in Sect. 2.2 is extended into a two-stage stochastic version,
which must consider a set of scenarios. Scenarios are parameter sets that capture cur-
rently available information about possible realizations of market and environment
conditions, as well as expected future developments. These scenarios are a boom,
fair and poor scenarios. For the purpose of our model, a scenario is defined by the
following parameters:
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1. Yield, which are projections of the productivity of the number of hectares dedi-
cated to broccoli production.

2. Transportation costs, defined per tonne per Km, and production costs per tonne
of produce.

3. Losses at production, transportation and handling, which are estimates of the
relative losses as a percentage.

4. Demand for fresh and processed product, which are estimations of how
favourable the produce will be received commercially. The figures of processed
product, that is, the losses that become higher value-added food, could be refined
by a market analysis of how the consumers will react to new products.

Associated to each scenario is also the probability of its occurrence, which is a figure
provided by experts based on their knowledge of likely developments in the market
and of environmental conditions. The stochastic formulation requires the model
in Sect. 2.2 to be extended with non-anticipativity constraints, which essentially
stipulate that the decision-maker has noway to predict the best scenario, and therefore
the decisions taken in the first stage should be the same regardless of the scenario that
materializes [4]. These complicating non-anticipativity constraints are added to the
objective function with non-negative Lagrangean multipliers. The recourse actions
represent the decision-maker’s opportunity to compensate.

Themodel considers three scenarios: a poor scenario, characterized by decreasing
productivity, high costs, relatively high losses and low demand. In this scenario, the
productivity forecast assumes a linear decrease of 1% in productivity starting from
the average value per state, an increasing transportation cost along with the scenario
from the current figure of $ 0.10/(km ton)–$ 0.15/(km ton), production costs increased
from the current $ 1.28 /kg–$ 1.65 at the end of the 3-year horizon. Next, a fair
scenario, where productivity, costs, losses and demand are approximately the same
as at present. This scenario uses a constant transportation cost of $ 0.10/(km ton)
and a constant production cost of $ 1.28/kg. Finally, a boom scenario defined by
increasing productivity, low costs, small losses and high demand. The productivity
forecast, in this case, is assumed to increase 1% per quarter starting from the average
value per state, a decreasing transportation cost from $ 0.10/(km ton) to $ 0.05/(km
ton) at the end of the time horizon, a decreasing production cost until reaching $
0.92 /kg at the end of the 3 years. The probabilities assigned to poor, boom and fair
scenarios are 0.2, 0.5 and 0.3, respectively.

The objective of the stochastic version of the problem is now to determine the
location of the processing sites that minimize the overall cost of operating the supply
chain along the full time horizon so as to satisfy the uncertain demand amount of
produce losses, the uncertain market conditions and the uncertain availability of
production resources. In order to generate plausible scenarios to feed our model, we
estimate parameter values by means of a survey prepared especially for this purpose,
as well as from data available from publicly available sources.
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Fig. 2.5 Poor scenario

2.4 Results and Discussion

The problem was implemented in version 1.9 of the Clojure1 language with an
Excel interface. We obtained the following results using version 12.4 of the CPLEX2

optimizer in a 64-bit Intel Xeon CPU with two processors of eight cores (2.27GHz)
each and 48 GB of RAM. Each of the scenario subproblems has 16539 variables, of
which 12564 are real and 3975 are binary and 20536 constraints. A typical run takes
around 22min to complete when running the decomposition problems sequentially.

The number of sites selected is limited to three. Figures 2.5, 2.6 and 2.7 shows
the location of the processing hubs, selected from among a set of five candidates that
comprised Adelaide Hills, Werribee, Bairnsdale, Sydney Basin and Toowoomba.
The processing hubs selected as the first stage of the stochastic model correspond
to Werribee, Bairnsdale and Toowoomba and are shown with a dark blue marker. A
link in the map is shown if, during the time horizon, there is at least a period during

1http://clojure.org/, accessed on the 9 of May 2018.
2https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer, accessed on
the 9 of May 2018.

http://clojure.org/
https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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Fig. 2.6 Fair scenario

which the flow through that link was non-zero, which implies that these figures are
a limited representation of the solution since the actual solution provides detailed
season-by-season flows.

It can be seen from the map that the poor scenario with its declining productivity
seems to produce longer connections. As expected, the “middle” regions of Victoria
(the most productive) and New South Wales (with the highest demand) concentrate
much of the activity under all scenarios.

We also analysed the volumes of produce handled by packers or processors and
hubs given the projections for each scenario. Figure 2.8 shows the changes in flows
of fresh broccoli over time for each packer under different scenarios. Bairnsdale is
the packer that handles the largest volume under all scenarios, due to its centrality.
The poor scenario is associated with higher losses, lower yields and longer distances
to packers and markets, and as a consequence, all packers handle lower volumes
of fresh produce under this scenario. Adelaide Hills and Toowoomba pack nearly
identical amounts of fresh broccoli in the boom and fair scenarios, but Toowoomba
does surprisingly well in the poor scenario, even increasing its volume as time goes
by. The worst performer in the poor scenario is Sydney Basin.
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Fig. 2.7 Boom scenario

2.5 Concluding Remarks

It is necessary to increase the efficiency of supply chain operations in order to avoid
food loss. Uncertainty and variability in the commercial and natural environments
are complicating factors that must be considered when improving the efficiency of
agricultural supply chain operations. In the present paper, we introduced a model
capable of robust analysis under uncertainty of the broccoli supply chain in the
eastern states of Australia. The model aims at reducing food losses by processing the
product that is not of the right quality for retail by determining the optimal location
and number of processing facilities, using relevant production data for the Australian
broccoli market and supply chain conditions.

The two-stage stochastic mixed-integer linear programming model is meant to
assist Australian broccoli producers in taking the most cost-effective investment
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Fig. 2.8 Volumes of fresh broccoli handled by packers on each period for each scenario

decisions and, at the same time, reduce the losses by producing novel, high value-
added products from vegetable produce discarded on the field or during transporta-
tion. The solution of the model suggests that the optimal location of these facilities
are Werribee, Bairnsdale and Toowoomba and gives the opportunity to the decision-
maker to compensate by modifying his operations on a second stage, or recourse,
decisions. To illustrate, our results show the optimal flow of produce to the packers
in the cases of different scenario realizations. This means that the results presented
are robust respect to uncertainty in productivity and market conditions.

In combination with the survey applied to the stakeholders, the optimization
model suggests near-optimal investment decisions that are far from the worst pos-
sible outcome, had the final market and environmental conditions turned out to be
very adverse. In summary, our model provides valuable suggestions for practical,
realistic and profitable operations to the industry in the medium term.

Appendix

The problem requires the following decision variables. Let witm the production of
product m at site i and season t; xABijtm the amount of transported product m from
site i to j at season t, where A and B represent the set of the origin and destination
sites, respectively; yABijtm the amount of transported loss m from site i to j at season t,
where A and B represent the set of the origin and destination sites, respectively; zi
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an indicator variable taking the value one if a packer i is selected as a candidate site
and zero otherwise, and vijtm an indicator variable that takes the value one if the loss
m is transported from i to j at season t and zero otherwise.

Let the sum of losses at the production and transport stages of product m from
grower i at season t.

Hitm = TLitm (1 − PLitm) ηitm Aitm + PLitm ηitm Aitm
= (TLitm + PLitm − TLitmPLitm) ηitm Aitm ∀i ∈ S , ∀j ∈ C , ∀k ∈ K . (2.3)

The objective function is

Minimize
∑

i∈G

∑

t∈T

∑

m∈M
PCitm witm

+
∑

t∈T

∑

m∈M
TCtm

[ ∑

i∈G

∑

j∈P
Dij x

GP
ijtm +

∑

i∈P

∑

j∈S
Dij x

PS
ijtm

]

+
∑

t∈T

∑

m∈M
TCtm

[ ∑

i∈G

∑

j∈C
Dij y

GC
ijtm +

∑

i∈C

∑

j∈S
Dij y

CS
ijtm +

∑

i∈P

∑

j∈C
Dij y

PC
ijtm

]

+
∑

i∈C
Fi zi , (2.4)

Subject to

∑

j∈P
xGP
ijtm = witm − Hitm ∀i ∈ G , ∀t ∈ T , ∀m ∈ M . (2.5)

yGC
ijtm = Hitm vijtm ∀i ∈ G , ∀j ∈ C , ∀t ∈ T , ∀m ∈ M . (2.6)

witm ≤ ηitm Aitm ∀i ∈ G , ∀t ∈ T , ∀m ∈ M , (2.7)

where ηitm is the yield in kg per unit of area and Aitm is the land area available for
cultivation.

∑

j∈C
vijtm = 1 ∀i ∈ G , ∀t ∈ T , ∀m ∈ M . (2.8)

∑

j∈C
yPCijtm = KLitm

∑

j∈G
xGP
jitm

∀i ∈ P, ∀t ∈ T , ∀m ∈ M . (2.9)
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∑

i∈G
xGP
ijtm =

∑

i∈S
xPSjitm +

∑

i∈C
yPCjitm

∀j ∈ P, ∀t ∈ T , ∀m ∈ M . (2.10)

∑

i∈G
yGC
ijtm +

∑

i∈P⊃C

yPCijtm =
∑

i∈S
yCSjitm

∀j ∈ C , ∀t ∈ T , ∀m ∈ M . (2.11)

vijtm − zj ≤ 0 ∀i ∈ G , j ∈ C , ∀t ∈ T , ∀m ∈ M . (2.12)

∑

i∈G
yGC
ijtm +

∑

i∈P \C
yPCijtm − Cj zj ≤ 0

∀j ∈ C , ∀t ∈ T , ∀m ∈ M , (2.13)

where Cj is the capacity of candidate processing site j.

∑

i∈C
zi ≤ MAX , (2.14)

where MAX is the maximum number of processing sites allowed.

∑

i∈P
xPSijtm ≥ W fresh

jtm ∀j ∈ S , ∀t ∈ T , ∀m ∈ M . (2.15)

∑

i∈P
yCSijtm ≥ W processed

jtm ∀j ∈ S , ∀t ∈ T , ∀m ∈ M . (2.16)
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Chapter 3
Integrating Shelf Life Constraints
in Capacitated Lot Sizing and Scheduling
for Perishable Products

Shuo Chen, Regina Berretta, Alexandre Mendes, and Alistair Clark

Abstract In this study, we consider a multi-item capacitated lot sizing and schedul-
ing problem for perishable food products, which have a fixed shelf life period due
to depreciation issues, such as physical deterioration or perceived value loss. We
incorporate shelf life constraints within a classical lot sizing and scheduling problem
that considers lot sizing and partial sequencing of production on a single machine
over a finite planning horizon associated with demand in each period. The model
includes setup times and setup costs. Moreover, it considers that disposal occurs
when products reach their shelf life in inventory. We present two variants of this lot
sizing and scheduling problem integrating shelf life constraints and also with and
without disposal. We test the performance of the proposed formulations on a set of
instances from the literature.
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3.1 Introduction

Perishability of products makes food companies arrange their production planning
carefully [9]. When products are subject to perishability or deterioration, the time
these products can spend in storage is limited. In the worst case, such products cannot
be used for their original purpose and need to be disposed of. Perishability within the
food manufacturing industry is responsible for 39% of annual food losses, estimated
at 179kg/head [11].

In the food industry, companies are responsible for placing a date on the food
package to guide how long food can be kept before it begins to deteriorate or may
become unsafe to eat, because of related quality requirements and safety regulations.
Food consumers are susceptible to health and safety issues; they do not like to buy
food after the expiry date or the “best before” date. Food becomes unusable at some
point in time, such as dairy goods [5], considering the desired sensory, chemical,
physical and microbiological characteristics as well as complying with the label’s
declaration of nutritional data. Accordingly, the realization of a specific demandmust
take place within a certain period of time, i.e. within a fixed shelf life. Thus, the shelf
life constraints are considered as the fixed maximum time during which the food can
stay in inventory. During the shelf life period, the value of the product is assumed to
be constant.

There are few lot sizing models in the literature discussing the incorporation of
shelf life constraints in mathematical models for production planning [1, 2, 5, 10,
12, 14]. However, the simultaneous consideration of lot sizing and scheduling is
rare [16]. For reviews on how deterioration and lifetime constraints are integrated
into production and supply chain planning, see Pahl and Voβ [9] and the references
therein.

In this paper, we integrate shelf life constraints into a dynamic capacitated lot
sizing problem with linked lot sizes (CLSP-L). The CLSP-L model considers a
single machine producing multiple products over a finite planning horizon, which
aims at fulfilling all products’ demands within the planning horizon and minimizing
total costs, i.e. setup costs and inventory holding costs. Demand is dynamic and
deterministic, derived from forecasting, and must be satisfied at a given moment
in time without backlogging [15]. A setup (such as the cleaning and warm-up of a
machine) is required when a new product is processed, which results in a setup cost
and a setup time that precedes the processing of each change of product. CLSP-L
allows a setup state to be carried over from one period to the next in order to reduce
cost and time consumption in consecutive periods.

Another important feature considered in this study is food disposal, which is
wastage that occurs when the shelf life of food in inventory is exceeded. It is respon-
sible for the largest food losses in the retail sector. Around one-third of all fresh
fruit and vegetables produced worldwide are lost before reaching consumers [8].
Thus, disposal should be considered in the modelling of perishable products, as it
imposes additional characteristics, such as more frequent deliveries compared to
non-perishable products [7].
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Shelf life constraints on a lot sizing problem were studied by Raiconi et al. [12]
using the Plant location formulation (PLF) and the Shortest path formulation (SPF).
Tempelmeier et al. [16] considered aCLSP-Lmodelwithmultiplemachines and shelf
life constraints using the PLF formulation. Both papers use an index transformation
method that restricts production due to shelf life. The production must be less than
or equal to the sum of demands over the shelf life period [9]. In this paper, instead
of using index transformation, we integrate shelf life constraints into the production
flow balance.

In the rest of this paper, we first present the CLSPL-L base model in Sect. 3.2,
which will be extended to incorporate perishability constraints. We then introduce
two variants (Models 1 and 2) to integrate fixed shelf life constraints into the CLSP-L
model. Next, we extend the models to consider the disposal of products. In Sect. 3.3,
we report computational results where all models are tested on a set of instances
from the literature. Section 3.4 gives the final remarks and conclusion.

3.2 Mathematical Formulations

3.2.1 CLSP-L Model

The CLSP-L assumes multiple products are produced over a finite planning horizon
on a single machine with limited capacity. The finite planning horizon consists of
several periods with the given length. The production of a product incurs a setup
operation resulting in a sequence-independent setup time and setup cost. The triangle
inequality holds for all setup times and costs, which means the direct changeover
between two products is never slower or more expensive than the changeover via
a third product. A setup state for a product in a period can be maintained over
several consecutive periods if there is no other product to process. Table 3.1 shows
the notations for the mathematical models in this paper, followed by the CLSP-L
mathematical formulation (from [6]).

[CLSP-L] Min
P∑

i=1

T∑

t=1

hiIit +
P∑

i=1

T∑

t=1

sci(Yit − Wit) (3.1)

s.t. Ii,t−1 + Qit = dit + Iit ∀i, t (3.2)
P∑

i=1

uiQit +
P∑

i=1

sti(Yit − Wit) ≤ Ct ∀t (3.3)

Qit ≤ UitYit ∀i, t (3.4)
P∑

i=1

Wit ≤ 1 ∀t (3.5)
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Table 3.1 Parameters and variables used in the mathematical formulations

Indices Definition

i, j Index for products, i, j = 1, 2, ...,P

t Index for periods in the planning horizon, t = 1, 2, ...,T

Parameters Definition

ui Capacity needed to produce one unit of product i

hi Unit holding cost of product i

Ct Capacity available in period t

dit Demand for product i in period t

sci Setup cost for product i

sti Setup time for product i

Uit Upper bound for the production of product i in period t

Variables Definition

Iit Inventory for product i at the end of period t

Qit Production quantity for product i in period t

St Single-item production indicator (=0 if at most one product is produced in period
t; otherwise 1 when more than one product is produced)

Yit Setup state (=1 if a setup for product i occurs in period t; otherwise 0)

Wit Carryover state (=1 if a setup state for product i is carried over from period t − 1
to period t; otherwise 0)

Wit ≤ Yi,t−1 ∀i, t = 2, ...,T
(3.6)

Wit ≤ Yi,t ∀i, t = 2, ...,T
(3.7)

1 −
P∑

i=1

Yit + P · St ≥ 0 ∀i, t = 2, ...,T − 1

(3.8)

Wi,t+1 + Wit + St ≤ 2 ∀i, t = 2, ...,T − 1
(3.9)

Qit, Iit ≥ 0 ∀i, t (3.10)

Yit,Wi,t ∈ {0, 1} ∀i, t (3.11)

0 ≤ St ≤ 1 ∀t (3.12)

The objective function (3.1) minimizes the total holding cost and setup cost
over the planning horizon. Constraints (3.2) represent production and inventory bal-
ance and assure the demand dit is fulfilled without backlogging. Constraints (3.3)
ensure that production does not exceed the capacity available in period t, consid-
ering setup time, setup carryover and production time. Constraints (3.4) guarantee
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that production of a product can only take place if the machine is configured for that
product. Constraints (3.5) ensure that only one setup can be carried over from one
period to the next. Constraints (3.6) and (3.7) link the carryover variables to the setup
variables, whereas constraints (3.8) and (3.9) make sure that the setups are calculated
correctly if the same setup is preserved on two consecutive periods. The production
quantity Qit and inventory Iit variables are non-negative, and setup state St , single
production indicator Yit and carryoverWit variables are binary, as indicated in (3.10),
(3.11) and (3.12).

3.2.2 Incorporating Shelf Life Constraints

To extend the model (3.1)–(3.12) in order to integrate shelf life constraints, we first
define a new parameter and two new decision variables as follows:

• θi—shelf life of product i, defined as the maximum number of periods that product
i can be stored in the inventory.

• Qi,t1,t2—disaggregated production quantity, which represents the amount of prod-
uct i produced in period t1 to satisfy the demand in period t2, t2 ≤ t1 + θi.

• Ii,t1,t2—disaggregated inventory, which represents the inventory of product i pro-
duced in period t1 that is kept at the end of period t2, t2 ≤ t1 + θi.

We need to replace only constraints (3.2) with a new set of constraints since shelf
life imposes direct restrictions on inventory rather than capacity and scheduling. In
addition, this replacement makes the shelf life constraints easily transferred to other
lot sizing and schedulingmodels.We present two variants in the next two subsections.

3.2.2.1 Shelf Life Constraints—Model 1

The first approach uses the disaggregated production and disaggregated inventory
variables to track the flow of production and inventory. It takes into account the shelf
life to decide when to produce and when products are used to satisfy the demand.
Constraints (3.2) are replaced by the following constraints:

[Model 1] Qit = Qitt + Iitt ∀i, t (3.13)

Ii,t,t2 = Ii,t,t2−1 − Qi,t,t2 ∀i, t = 1, ..., t2 − 1 (3.14)

dit =
t∑

t1=max{1,t−θi}
Qi,t1,t ∀i, t (3.15)

Iit =
t∑

t1=1

Ii,t1,t ∀i, t (3.16)
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Ii,T = 0 ∀i (3.17)

Constraints (3.13) and (3.14) refer to the inventory balance. Constraints (3.13)
state that product i produced in period t (Qit) can be used to either satisfy demand
(Qitt) or be stored in inventory at the end of this period (Iitt). Constraints (3.14) state
that the inventory of product i produced in period t at the end of period t2 (Ii,t,t2 ) is
composed of the inventory from the previous period t2 − 1, less the disaggregated
productionQi,t,t2 in that period.Constraints (3.15) indicate that the demandof product
i in period t can be met by production over several periods. The demand of product i
in periods t ≤ θi can be satisfied by the production in all previous periods from 1 to
t. The demand of product i in periods t > θi can be satisfied only with the production
in the interval [t − θi, t]. The length of the interval is decided by the shelf life of
product i. The period t − θi denotes the earliest period in which the product i can
be produced and still be used for satisfying demand in period t. Constraints (3.16)
state that the inventory of product i in period t is equal to the inventory of product i
produced in all previous periods and stored until period t. Finally, constraint (3.17)
states the final inventory (Ii,T ) for all products is 0.

3.2.2.2 Shelf Life Constraints—Model 2

The second approach uses the disaggregated quantity to decompose the relationship
between demand, inventory and production. Constraints (3.2) are replaced by the
following constraints:

[Model 2] Ii,t−1 +
min{T ,t+θi}∑

t2=t

Qi,t,t2 = Iit + dit ∀i, t (3.18)

Iit =
t∑

t1=1

min{T ,t1+θi}∑

t2=t+1

Qi,t1,t2 ∀i, t (3.19)

Qit =
min{T ,t+θi}∑

t2=t

Qi,t,t2 ∀i, t (3.20)

Constraints (3.18) represent the inventory balance. Constraints (3.19) indicate
that the inventory of product i in period t is equal to the production in all previous
periods t1 ∈ [1, t] that will be used to satisfy the demand in late periods from t + 1
to the end of the planning horizon or the end of their shelf life (min{T , t1 + θi}),
which imposes the final inventory to be 0. Next, constraints (3.20) state that the total
amount of production of i in period t (Qit) is equal to the total production of i in
period t that is used to satisfy the demand from period t to the end of its shelf life or
the end of planning horizon (Qi,t,t2 ).
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3.2.3 Incorporating Disposal Decisions

In general, food products, such as agricultural products, meat and dairy have a min-
imum production quantity, due to the nature of supply of their raw materials. This
can result in large amounts of waste when products expire while in inventory. In
addition, with the trend towards greater uncertainty of demand and an increase in
the sales of fresh food products, the food industry has to maintain large amounts of
product inventories to satisfy demand on time [13], which can also result in disposal
as waste. This leads to the need to consider the costs of disposal in the mathematical
formulation.

In this section, we extend the two models presented in Sect. 3.2.2 to incorporate
disposal with shelf life constraints into the capacitated lot sizing and scheduling
model. Two additional parameters and an extra variable are introduced to model
disposed quantity and associated cost, as follows:

• Di,t1,t2—disaggregated disposed quantity, which represents the amount of produc-
tion of i in period t1 that is discarded in period t2, where t2 ≥ t1.

• dci—unit disposal cost, which is assumed to be relatively higher than inventory
holding costs, due, for example, to environmental reasons [10].

• Mi—minimum production quantity of product i.

The aim of the new model becomes to determine an optimal production planning
such that the total holding costs, setup costs and disposal costs are minimized. Thus,
the objective function (3.1) is extended as shown in (3.21). In addition, the minimum
production quantity constraint (3.22) is added into the model, which assumes a
minimum production amount is imposed on the lot sizes when a setup occurs even
if the setup state is carried to next period.

Min
P∑

i=1

T∑

t=1

hiIit +
P∑

i=1

T∑

t=1

sci(Yit − Wit) +
P∑

i=1

T∑

t=1

dciDit (3.21)

Qit ≥ Mi(Yit − Wit) ∀i, t (3.22)

In the next two subsections, we extend the set of constraints presented in
Sects. 3.2.2.1 and 3.2.2.2 to incorporate disposal decisions.

3.2.3.1 Incorporating Disposal Decisions in Model 1

When disposal is introduced in the Model 1, the constraints (3.2) are replaced as
follows:
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[Model 1-d] Qit = Iitt + Qitt + Ditt ∀i, t (3.23)

Ii,t,t2 = Ii,t,t2−1 − Qi,t,t2 − Di,t,t2 ∀i, t2 = 2, ...,T , t = 1, ..., t2 − 1
(3.24)

Di,t,t2 ≥ Qit −
t+θi∑

τ=t

Qi,t,τ −
t2−1∑

τ=t

Di,t,τ ∀i, t2 − t ≥ θi (3.25)

dit =
t∑

t1=max{1,t−θi}
Qi,t1,t ∀t (3.26)

Iit =
t∑

t1=1

Ii,t1,t ∀i, t (3.27)

Dit =
t∑

t1=1

Di,t1,t ∀i, t (3.28)

Ii,T = 0 ∀i (3.29)

Constraints (3.23) and (3.24) indicate the inventory balance, which is similar to
constraints (3.13) and (3.14), but allowing disposal. Constraints (3.25) define the
amount of production of i in period t that is disposed in period t2 (Di,t,t2 ). It is
calculated by the amount of production of i in period t subtracted by the sum of used
quantity to satisfy demand in the interval [t, t + θi] and the quantity disposed in the
interval [t, t2 − 1]. Note that the condition t2 − t > θi implies that the production of
i in period t can only be used to meet the demand from period t to t + θi. Constraints
(3.27) state that the inventory of product i in the period t is equal to the disaggregated
inventory of i in all previous periods and stored until period t. Constraints (3.28) state
that the amount of disposal of product i in period t (Dit) is equal to the total amount of
disposal of product i in period t that is produced from period 1 to the current period
t (Di,t1,t). Finally, the inventory at the end of planning horizon for all products (Ii,T )
is set to 0.

It is worthy mentioning that constraint (3.23) reflects an unrealistic disposal of
product i in period t. In the real world, manufactured products are used to satisfy
demand or to store in the inventory, even if the quantity is more than the demand
and the products reach their shelf life limitation in the inventory. In general, dis-
posal happens at the end of the product’s shelf life due to uncertain and fluctuant
demand. However, the setting in constraint (3.23) allows a possible decision for sales
promotion.

3.2.3.2 Incorporating Disposal Decisions in Model 2

Similarly, the equation constraint (3.2) in CLSP-L is replaced by the following equa-
tions to integrate disposal into Model 2.
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[Model 2-d] Ii,t−1 +
min{T ,t+θi}∑

t2=t

Qi,t,t2 = Iit + dit + Dit ∀i, t (3.30)

Iit =
t∑

t1=1

min{T ,t1+θi}∑

t2=t+1

Qi,t1,t2 +
t∑

t1=1

T∑

t2=t+1

Di,t1,t2 ∀i, t (3.31)

Qit =
min{T ,t+θi}∑

t2=t

Qi,t,t2 +
T∑

t2=t

Di,t,t2 ∀i, t (3.32)

Dit =
t∑

t1=1

Di,t1,t ∀i, t (3.33)

Constraints (3.30), (3.31) and (3.32) are similar to constraints (3.18), (3.19) and
(3.20), but include the disposal quantity relationship. Finally, the constraint (3.33)
states that the amount of disposal of product i in period t (Dit) is equal to the total
amount of disposal of product i in period t that is produced from period 1 to the
current period t (Di,t1,t).

3.3 Computational Experiments and Analysis

In this section, we present the computational results to compare the performance of
the mathematical formulations presented in the previous sections (Model 1, Model
2, Model 1-d and Model 2-d). We have used 55 instances from a dataset from the
literature [15], which are grouped as follows:

• Group 1: 5 instances with 4 products and 15 periods.
• Group 2: 5 instances with 6 products and 15 periods.
• Group 3: 5 instances with 8 products and 15 periods.
• Group 4: 5 instances with 12 products and 15 periods.
• Group 5: 20 instances with 10 products and 20 periods.
• Group 6: 10 instances with 20 products and 20 periods.
• Group 7: 5 instances with 30 products and 20 periods.

Since the original instances do not take into account shelf life constraints and
disposal, we added that extra information to run our models. For each instance, we
added different values for shelf life (2, 4, 6 and 10 periods), withminimumproduction
quantity of 100 for each product, and disposal cost of 1.75 times of holding cost for
each product.

All models were implemented using Python 3.6.5 programming language and
solved using Gurobi1 optimization solver. The computational tests were done on an
AMD Opteron(tm) Processor 6386 SE (2.8 gigahertz) workstation with 1 core used

1http://www.gurobi.com/.

http://www.gurobi.com/
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and 6 gigabytes of RAM. The running time was limited to 1h. For all tests, the
relatively mixed-integer programming (MIP) gap tolerance value was set to 0 which
is 1e-4 by default. The results are shown in Tables 3.2-3.4.

In Table 3.2, it is shown how many times the models found an optimal solution
(represented as ‘O’ in the headings), how many times they finished with a feasible
solution that is not the optimal one (represented as ‘F’ in the headings) and howmany
times no feasible solution was found after 1 hour of computational time (represented
as ‘I’ in the headings). From Table 3.2, we can observe that both models can find
optimal solutions in most cases. Model 1 and Model 2 have the same proportion
of optimal, feasible and infeasible solutions (113, 99 and 8, respectively). Model
1-d find the optimal solution in two instances more than Model 2-d (108 vs 106).
However, again, the results are very similar. In particular, the optimal solution is
always found in groups 1–4. In groups 5–7, the small shelf life (when shelf life = 2)
means that the instances are infeasible in some cases. In groups 6 and 7, an optimal
is never encountered for longer shelf lives (when shelf life ≥ 4), perhaps because
the number of variables is larger. However, infeasibility is never encountered since
a longer shelf life maybe provides more inventory flexibility.

Next, Table 3.3 presents the average running time in seconds for each group of
instances (column 1), for each shelf life value (column 2) for each model (columns
3–6). The number in parentheses indicates the quantity of instances where Model 1
was faster than Model 2 (under column Model 1), the quantity of instances where
Model 2 was faster than Model 1 (under column Model 2), and analogously for
columnsModel 1-d andModel 2-d. The last row shows the total number of instances
where the specific model was faster. Note in Table 3.3, when the shelf life increases,
the computational time also increases. One possible reason is that with a higher shelf
life, the model will have more variables (see the definition ofQi,t1,t2 and Ii,t1,t2 ). Note
as well that Model 1 is slightly faster, but Model 1-d is significantly faster in the
number of instances when compared with Model 2 (61 x 60) and Model 2-d (87 x
31), respectively. Groups 3 and 4 are exceptions, whereModel 2 (Model 2-d) is faster
than Model 1 (Model 1-d) in a greater number of instances with higher shelf life (4,
6 and 10).

Table 3.4 compares the objective function for the groups where the model has not
achieved the optimal solution after 1 hour of computational time (groups 5, 6 and 7).
The heading ‘MY xMZ’ indicates the number of instances, whereModel Y achieved
a better solution than Model Z when a feasible solution is found. Note that Models 2
and 2-d (with or without disposal) achieve better solutions than Model 1 and Model
1-d, respectively. However, in groups 5 and 6, Models 2 and 2-d tend to find a better
solution for higher d-values (when there are more variables), but this is not shown
in Group 7 (where maybe the feasible solution is a long way from optimality given
that there are 30 products and 20 time periods).
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Table 3.2 Number of times that the models found an optimal solution (labelled “O”): subopti-
mal, but feasible solutions (labelled “F”); or infeasible solutions (labelled “I”), for each group of
instances. The maximum allowed processing time was 1h for each run

Groups Shelf life Model 1 Model 2 Model 1-d Model 2-d

O/F/I O/F/I O/F/I O/F/I

Group 1 2 5/-/- 5/-/- 5/-/- 5/-/-

4 5/-/- 5/-/- 5/-/- 5/-/-

6 5/-/- 5/-/- 5/-/- 5/-/-

10 5/-/- 5/-/- 5/-/- 5/-/-

Group 2 2 5/-/- 5/-/- 5/-/- 5/-/-

4 5/-/- 5/-/- 5/-/- 5/-/-

6 5/-/- 5/-/- 5/-/- 5/-/-

10 5/-/- 5/-/- 5/-/- 5/-/-

Group 3 2 5/-/- 5/-/- 5/-/- 5/-/-

4 5/-/- 5/-/- 5/-/- 5/-/-

6 5/-/- 5/-/- 5/-/- 5/-/-

10 5/-/- 5/-/- 5/-/- 5/-/-

Group 4 2 5/-/- 5/-/- 5/-/- 5/-/-

4 5/-/- 5/-/- 5/-/- 5/-/-

6 5/-/- 5/-/- 5/-/- 5/-/-

10 5/-/- 5/-/- 5/-/- 5/-/-

Group 5 2 9/7/4 9/7/4 8/8/4 7/9/4

4 5/15/- 5/15/- 5/15/- 5/15/-

6 5/15/- 5/15/- 5/15/- 5/15/-

10 5/15/- 5/15/- 5/15/- 5/15/-

Group 6 2 6/1/3 6/1/3 5/-/5 4/1/5

4 -/10/- -/10/- -/10/- -/10/-

6 -/10/- -/10/- -/10/- -/10/-

10 -/10/- -/10/- -/10/- -/10/-

Group 7 2 3/1/1 3/1/1 -/4/1 -/4/1

4 -/5/- -/5/- -/5/- -/5/-

6 -/5/- -/5/- -/5/- -/5/-

10 -/5/- -/5/- -/5/- -/5/-

Total 220 113/99/8 113/99/8 108/102/10 106/104/10
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Table 3.3 Mean running time (in seconds) for each group of instances for eachmodel with different
shelf life values (in periods). The number in parentheses indicates the number of instances where
Model 1 was faster than Model 2 (and vice versa) and the number of instances where Model 1-d
was faster than Model 2-d (and vice versa)

Groups Shelf life Model 1 Model 2 Model 1-d Model 2-d

Group 1 2 2.48 (4) 2.57 (1) 2.45 (5) 6.76 (0)

4 6.01 (5) 7.29 (0) 5.72 (5) 10.10 (0)

6 7.37 (3) 8.42 (2) 7.71 (4) 11.58 (1)

10 6.66 (4) 7.19 (1) 7.93 (3) 10.97 (2)

Group 2 2 0.30 (4) 0.40 (1) 1.02 (5) 5.19 (0)

4 5.45 (3) 5.03 (2) 7.60 (4) 7.98 (1)

6 7.04 (3) 5.31 (2) 9.53 (3) 8.97 (2)

10 8.73 (3) 6.78 (2) 16.31 (4) 10.97 (1)

Group 3 2 13.54 (2) 13.46 (3) 22.95 (5) 83.47 (0)

4 167.63 (2) 116.71 (3) 171.71 (0) 102.14 (5)

6 195.01 (2) 161.00 (3) 171.61 (2) 127.13 (3)

10 254.61 (1) 146.32 (4) 260.57 (1) 212.76 (4)

Group 4 2 1.64 (3) 1.57 (2) 4.45 (5) 20.31 (0)

4 433.69 (0) 44.41 (5) 384.32 (1) 86.55 (4)

6 331.54 (0) 221.75 (5) 831.26 (5) 83.67 (4)

10 579.25 (1) 192.96 (4) 306.80 (1) 138.57 (4)

Group 5 2 1410.67 (2) 1398.60 (11) 1629.55 (12) 1778.71 (0)

4 2700.04 (5) 2700.09 (0) 2700.15 (5) 2700.39 (0)

6 2700.05 (5) 2700.11 (0) 2700.18 (5) 2700.45 (0)

10 2700.06 (5) 2700.13 (0) 2700.18 (5) 2700.47 (0)

Group 6 2 782.74(4) 868.69 (5) 149.88 (10) 756.28 (0)

4 3600.00 (0) 3600.00 (0) 3600.00 (0) 3600.00 (0)

6 3600.00 (0) 3600.00 (0) 3600.00 (0) 3600.00 (0)

10 3600.00 (0) 3600.00 (0) 3600.00 (0) 3600.00 (0)

Group 7 2 2205.24 (0) 1862.38 (4) 2880.06 (1) 2880.06 (0)

4 3600.00 (0) 3600.00 (0) 3600.00 (0) 3600.00 (0)

6 3600.00 (0) 3600.00 (0) 3600.00 (0) 3600.00 (0)

10 3600.00 (0) 3600.00 (0) 3600.00 (0) 3600.00 (0)

Total 61 60 87 31
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Table 3.4 Performance comparison between each two models in the groups of instances where the
optimal was not achieved after 1 hour of computational time. The heading ‘MY x MZ’ indicates
how many times Model Y achieved a better solution than Model Z, when a feasible solution was
found

Groups Shelf life M1 x M2 M2 x M1 M1-d x M2-d M2-d x M1-d

Group 5 2 5 2 5 5

4 5 8 7 8

6 2 12 4 11

10 8 6 4 10

Group 6 2 1 – 1 –

4 3 4 3 6

6 1 9 3 5

10 3 5 4 6

Group 7 2 1 – 1 2

4 2 3 – 5

6 5 – 3 2

10 2 3 3 2

Total 38 52 38 62

3.4 Conclusion and Further Research

In this work, we consider a CLSP-L model to integrate shelf life constraints. We
present two variants that include shelf life constraints and extend both to include
disposal quantity and its cost. The issue of disposability occurs when raw materials
have to be consumed in batch, such as milk.

Four models are tested on instances belonging to an established dataset avail-
able in the literature [15]. Regarding of the objective function value, the Model 2
(2-d) find a better feasible solution more often than the Model 1 (1-d) but takes more
computational time in a higher number of instances. As the problem size grows
(more products and periods, and longer shelf life), the four models taken an increas-
ing amount of computing time to solve, passing the 1h time limitation.

The models provide valuable insights inyo computationally demonstrating that
shorter shelf lives are associated more often with model infeasibility than longer
shelf lives. This chimes with an operations manager’s instinctive knowledge that a
short shelf life can negatively impact on a producer’s ability to satisfy demand by
limiting the amount of time that products can be kept in inventory to satisfy demand
further in the future. The extent to which demand cannot be promptly satisfied can
be measured by including stockouts as “negative stock” in the model [3, 4].

Further researchwill be focused on developing heuristics andmeta-heuristic algo-
rithms to find (near) optimal solutions for larger instances in a more reasonable time.
More real-world applications, such as the effects of sales promotions and different
deterioration features will be considered to extend our models in this work. In par-
ticular, a sales promotion can significantly affect the demand motivating the need to
address disposal with an additional marketing plan.
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Chapter 4
An Application of a Vessel Route
Planning Model to Second
the Import/Export of Seasonal Products

Riccardo Accorsi, Emilio Ferrari, Riccardo Manzini, and Alessandro Tufano

Abstract The distribution of food products represents a great trade opportunity for
maritime carriers and shipping companies, especiallywithin theMediterraneanBasin
which concentrates many important food processing and consuming countries. Fresh
products, as fruit and vegetables, are characterized by seasonal and climate-driven
volumes, and logistics networks and distribution (i.e. shipping) operations should
be designed and planned in agreement with such trends. In this working paper, an
application of the Vessel Routing Problem with Selective Pickups and Deliveries
(VRPSPD) to the maritime import/export of food seasonal product is illustrated.
The VRPSPD belongs to a well-known class of vehicle routing problems intended
to plan the routes of the maritime distribution of commodities between sources and
destinations. A time-dependent formulation of the VRPSPD is applied in this paper
to maximize the profit of a maritime carrier involved in the import/export of fruits
among Mediterranean ports. A simple numerical example is used to validate the
model and to identify opportunities for future problem investigations in the seaborne
trade of seasonal and perishable products.

Keywords Vessel routing problem · Import/export · Seasonal products ·
Mediterranean routes

4.1 Introduction

As 80% of global trade by volume is carried on ships [1], the design and planning
of vessels distribution networks and maritime operations reach wide interest among
both scholars and logistics practitioners. The liners’ and ports’ shipping connectivity
provide options to connect to overseas markets and to explore trade opportunities
among countries and enterprises. Three are the main actors involved in maritime
transportation: the shipper, the carrier or vessel company, and the supplier. The
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shipper operates at the port with his own docks or warehouses and organizes the
shipments, behaving as an interface between the supplier and the carrier. The supplier
is indeed who provides the goods, while the carrier physically transport the freight
from a port to another.

The relationship between these actors is also influenced by the chosen transport
strategy. Practice suggests three widely adopted strategies: industrial shipping, liner
shipping and tramp shipping. In the industrial shipping, the supplier coincides with
the shipper and the carrier, owns the vessel and serves his clients trying to minimize
the transportation costs from an origin to many destinations. In the liner shipping,
the carrier provides a schedule (i.e. time table) of picking and delivery services and
sells such services to the supplier through the interface of the shipper. Lastly, the
tramp shipping is when the vessel company receives orders from the shippers and
decides whether or not to serve those orders and the routes to follow alike, in order to
maximize the profit with pickup and delivery services. Especially in tramp shipping,
the adequate coordination among these subjects and a shared planning process is
crucial to exploit at best the distribution capacity of the network.

In the market of food commodities and seasonal products, such trading opportu-
nities are often and further underemphasized because of the complex management
of extremely climate- and seasonal-driven volumes. These may require optimization
tools supporting the planning of vessels routes able to address to import/export orders
occurring at different source and destination ports over the seasons.

In such a context, a new formulation of the Vessel Routing Problem with Selective
Pickups and Deliveries (VRPSPD) is necessary to identify the optimal sequence of
ports to visit in a tramp shipping with the goal of maximizing the trade of seasonal
products among ports and the profit of carriers. This working paper formulates a
time-dependent VRPSPD to support the planning of vessel routes that respond to
seasonal needs of pickup and delivery services in agreement with the import/export
flows of fresh food products.

The remainder of this paper is organized as follows. Section 4.2 provides a
short and focused overview of the recent literature in the field. Section 4.3 presents
the problem formulation and explains sets, variables and constraints. Section 4.4
illustrates a small numerical example used to validate the model and to showcase
the potential benefits of real-world and large-scale applications. Lastly, Sect. 4.5
concludes the paper with necessary topics for future research developments.

4.2 Literature Review

The literature on vessels routing problem (VRP) is ample and many formulations
are provided by scholars to address real-world applications. Early, it mainly focuses
on the development of minimal time ship routing analytical models involving ocean
waves and weather conditions [2], while in the last decades, with the intensification
of maritime global trade, papers have been intended to fleets routing, and shipping
liners tours design [3]. The design of time-dependent VRP is quite novel in the
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field and recent formulations are provided to design time-constrained liner shipping
networks and vessel routing with deadlines. Vad Karsten et al. [4] take into account
coordination between a fleet of vessels and time restriction on the cargo flowswith the
goal of maximizing the profit of the vessel company. Their main contribution lies in
the design of an efficient solving algorithm proposed for largemedium and instances.
Wang and Meng [5] formulate a multi-vessels routing problem with deadlines and
implement a column generation-based heuristic to solve the problem in a reasonable
time. Others focus on flow-driven liner shipping network design problems, where the
vessels route is constrained by selective pickups and delivery services to fulfil [6].
Karlaftis et al. [7] use a genetic algorithm to solve a fleet routing problem performing
selective pickups and deliveries with deadlines.

Whilst lots of work has been done on the formulation of original VRPs and on
the development of efficient solving algorithms, ample opportunities remain for the
application of such models in practice to address to new instances and real-world
applications.

4.3 Problem Formulation

The mathematical formulation of the proposed VRPSPD is described as follows.
This formulation, inspired by the recent literature [8, 9], implements the One-to-
Many-to-One (1-M-1) which refers to the case where the origin and destination of
the vessel route coincide. Indeed, as the model is aimed at maximizing the profit of
the vessel company the vessel, which starts at port j: aj = 1, does not need to visit
all the ports but concludes the tour at the origin necessarily. The following notation
describes the sets, the parameters, the decision variables and the problem objective
function and constraints.

Sets

i, j ∈ ℵ Set of ports.
i = 1, . . . , n ∈ ℵ Set of pick-up docks.
i = n + 1, . . . , 2n ∈ ℵ Set of delivery docks.
(i, j) ∈ M Set of feasible arcs.
p ∈ P Set of products.
(p, i, j) ∈ O Set of orders.

Parameters

Spi j Size of order of product p from dock i to j.
Ti j Time (periods) to travel on the arc (i,j).
TF
i Fixed time (periods) spent at port i.

CV
i j Variable costs to travel on the arc (i,j).

CF
i Fixed costs to visit port i.
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vlpi Economic value (price) of product p at port I [e/unit].
ai 1 if route departs from port i; 0 otherwise.
tordpi j time/period the order (p,i,j) is released.
Q Vessel capacity.

Decision variables

xi j 1 if arc the vessel depart from port i along arc (i,j); 0 otherwise.
vi 1 if port i is visited.
touti time/period the vessel leaves port i.
upi j 1 if the order (p,i,j) is served.
lpi Upper bound of pick-up quantity when leaving node i.
ulpi Upper bound of delivered quantity when leaving node i.

Objective function

max
∑

i

∑

j

∑

p

upi j · Spi j · vlpi −
∑

i

CF
i · vi −

∑

(i, j)∈ M

CV
i j · xi j t (4.1)

subject to

∑

j∈ℵ
xi j = vi i ∈ ℵ (4.2)

∑

i∈ℵ
xi j = v j j ∈ ℵ (4.3)

touti = 0 i ∈ ℵ: ai= 1 (4.4)

toutj ≥ touti + Ti j − M · (1 − xi j ) i, j ∈ M, i, j ∈ ℵ\{ j : a j = 1
}

(4.5)

toutj ≤ touti + Ti j − M · (1 − xi j ) i, j ∈ M, i, j ∈ ℵ\{ j : a j = 1
}

(4.6)

v j ≥ upi j (pi j) ∈ O (4.7)

vi ≥ upi j (pi j) ∈ O (4.8)

lpi=
∑

j

Spi j · upi j i ∈ ℵ: ai= 1,p ∈ P (4.9)

lpj − lpi =
∑

k

Spjk · upjk − M · (1 − xi j )i, j ∈ M, i, j ∈ ℵ\{ j : a j= 1
}
,p ∈ P

(4.10)
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ulpi= 0i ∈ ℵ: ai= 1,p ∈ P (4.11)

ulpj − ulpi =
∑

k

Spkj · upk j − M · (1 − xi j )i, j ∈ M, i, j ∈ ℵ\{ j : a j= 1
}
,p ∈ P

(4.12)

0 ≤
∑

p

lpi −
∑

p

ulpi ≤ Q i ∈ ℵ (4.13)

tordpi j · upi j ≤ touti + Ti j (pi j) ∈ O (4.14)

xi j ∈ {0, 1}(i, j) ∈ M (4.15)

vi ∈ {0, 1}i ∈ ℵ (4.16)

upi j ∈ {0, 1}(pi j) ∈ O (4.17)

touti ≥ 0i ∈ ℵ (4.18)

lpi , ulpi ≥ 0i ∈ ℵ , p ∈ P (4.19)

The objective function (4.1) maximizes the profit of the maritime carrier in term
of exported freight values minus the costs of visiting a port i ∈ ℵ and the costs
of travelling along the tour. Some variation of (4.1) can be formulated to address
different goals. As an example, the cost of the pickups can be also removed to the
profit of the vessels company which provides a carrying service for both import
and export flows. Constraints (4.2–4.3) ensure that all visited nodes have just one
inbound and one outbound arc. Constraint (4.4) imposes the starting time of the tour
for the first port. Constraints (4.5) and (4.6) track and control the leaving time from
each served port. Constraints (4.7–4.8) state that either pick-up and delivery orders
cannot be served whether that port is not visited. Constraint (4.9) sets the pick-up
quantity at the first port, while Constraint (4.10) do the same for the following ports.
The same is ensured for delivery quantities by Constraints (4.11) and (4.12).

While Constraint (4.13) control to not exceed the loading vessel capacity,
Constraint (4.14) state that an order can be served if released before a port is
visited. Lastly, Constraints (4.15–4.19) denote the nature and domain of the decision
variables.

This formulation is inspired by the service flow-driven model proposed in [6]
which allowed to find the optimal sequence of port visits (considering even multiple
calls by a port) that maximizes the generated profit of the network. As the problem
remains NP-hard, efficient solving algorithms are necessary to solve large instances,
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while small problems can be solved by using commercial solvers in a reasonable
time, as we did in the following numerical application.

4.4 Numerical Application

The VRPSPD model is applied to a set of instances inspired to the maritime
import/export flows of fruits across the Mediterranean Basin. The maritime trade
across the Mediterranean Sea is growing not just as a consequence of the global
shipping routes, but because of the intensification of policymaking towards a Euro-
Mediterranean free trade area which yet contributes to make Europe the main market
for Mediterranean fruits and vegetables [10].

The following numerical example is developed within the FUTUREMED project
[11], that is aimed at supporting the design and planning of logistics and distribu-
tion channels for food supply chains across the Mediterranean countries. Optimiza-
tion is hence used to study the optimal visiting tours for a tramp shipping vessel
and to explore the impact of choosing potential destinations and serving different
import/export orders on the maximization the carrier’s profit.

We considered the seasonal demand of import and export services which varies
with the port in agreement with the fruits availability and production/consumption
flows. Table 4.1 andFig. 4.1 illustrate the characteristics of the containership involved
and the value of fixed time spent at each port TF

i , respectively.
Four scenarios have been built to study the effect of variable fruits offer and

availability on the seasonal tours of a containership. The four scenarios involve
different ports according to the seasonal availability of apples, pears, strawberries

Table 4.1 Container ship characteristics

Fuel Fuel cost [e/ton] Consumption
[ton/h]

Container ship Capacity [FEUs] Operational
cost [e/day]

HSFO 260 7 Post-Panamax 1800 40,000
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Fig. 4.1 Fixed visiting time (days) per port
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Table 4.2 Cumulated export/import orders (tons/month) (Product legenda: strawberries (s), apples
(a), pears (p), apricots (c))

Export/Import Seasonal 
Orders Spij (tons/month) Winter (February) Spring (May) Summer (July) Autum (October)

From/to Ports
Strawberrie
s

Apple
s

Pear
s

Apricot
s

Strawberrie
s

Apple
s

Pear
s

Apricot
s

Strawberrie
s

Apple
s

Pear
s

Strawberrie
s

Apple
s

Pear
s

Barcelona
Catania 341 3 65 2868 50 42 101 96 7 127 2794 14 28 48

Patrasso 341 3 65 2868 50 42 101 96 7 127 2794 14 28 48
Salerno 341 3 65 2868 50 42 101 96 7 127 2794 14 28 48

Catania
Barcelona 433 32 112 48 47 98 29 21

Patrasso 433 32 112 48 47 98 29 21
Salerno 433 32 112 48 47 98 29 21

Patrasso 165 45 35 20
Barcelona 55 15 12 7

Catania 55 15 12 7
Salerno 55 15 12 7

Salerno
Barcelona 282 144 32 755 1730 19 9 12 16 19 170 194 137 21

Catania 282 144 32 755 1730 19 9 12 16 19 170 194 137 21
Patrasso 282 144 32 755 1730 19 9 12 16 19 170 194 137 21

and apricots from some Mediterranean producing/consuming regions. Values of the
input parameter Spij per each scenario/season and product are reported in Table 4.2
(expressed in tons per month).

The proposed model is applied to establish the optimal routing sequence that
maximizes the profit of the carrier season by season. Themodel is run four times, one
per scenario, and the solutions obtained through branch-and-bound using the solver
Gurobi, run on an Intel i7 3.20 GHz with 32 GB of RAM, with a computational time
of 10,800 s.

The different export and import orders result in modifying the tramp shipping
servicemonth bymonth. Indeed, the optimal visiting sequence varies with the season
as highlighted in the solution networks of Figs. 4.2 and 4.3. The obtained results,
summarized in Table 4.3, identify the distribution of the import/export orders in the
Mediterranean Basin as a key decisional driver for maritime tramp carriers. In the
light of this, decision support models incorporating the variability and uncertainty
of the order profiles in the planning of maritime routes are strongly required.

4.5 Discussion and Future Research Developments

Even though the obtained results are not generalizable, they contribute to conclude
that the routing of a tramp shipping is extremely influenced by the seasonal demand
of maritime import and export services. As a consequence, the Mediterranean Sea,
which concentrates many important producers and consumers of typical seasonal
products as fresh fruits and vegetables, represents an important context of the
application of this and similar models.

As this working paper illustrates just an application of a time-dependent VRPSPD
model to design optimal vessel routes involving some Mediterranean ports, many
are the potential and ongoing, research developments required.
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Solution Network (Winter) Solution Network (Spring)

Solution Network (Summer) Solution Network (Autumn)

Fig. 4.2 Optimal visiting sequence: Seasonal graphs of tours

Fig. 4.3 Optimal seasonal maritime routes for the distribution of fruits across Mediterranean ports
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Table 4.3 Served
import/export orders

Seasons Delivered
orders

Shipped
volume [tons]

Orders served
[%]

Winter
(February)

27 4163 100

Strawberries 12 3335 100

Apples 6 440 100

Pears 9 387 100

Spring (May) 23 12,217 64

Apricots 9 8257 75

Strawberries 8 3679 67

Apples 2 60 33

Pears 4 221 67

Summer
(July)

31 10,158 94

Apricots 12 485 100

Strawberries 4 47 67

Apples 6 439 100

Pears 9 9187 100

Autumn
(October)

24 1473 100

Strawberries 9 710 100

Apples 6 495 100

Pears 9 268 100

First, since we deal with fruits and vegetable products, a new release of the model
will necessarily include a set of linear constraints that manage the perishability of
products and their shelf life decay along shipping [12]. The shelf life of fresh food
may indeed affect the shipping service since productsmust be unloaded and delivered
before they expire. Furthermore, climate conditions may influence energy costs [13]
aswell as routing and shipping operations and can be considered as drivers of analysis
as yet implemented in [8] and in [14] for the case of truck deliveries of food and
temperature-sensitive products.

Other objective functions may refer to the benefits of other maritime trade stake-
holders (e.g. suppliers, importers, regional policymakers, logistics operators), and
cooperative vs. competitive approaches in the vessels routing planning studied
accordingly, as typically done in the truck delivery service.

Lastly, since the development of efficient metaheuristics and solving algorithms
is expected with the increasing complexity of the problem formulation and the deci-
sional levers involved, the authors of this paper believe that future integration of a
hierarchy of vessel routing and truck routing problems will be at the basis of the
design and control of hyper-connected food supply chains according to the physical
internet and Internet-of-things paradigms.
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Chapter 5
A Branch-and-Price Framework
for the Maximum Covering and Patrol
Routing Problem

Paul A. Chircop, Timothy J. Surendonk, Menkes H. L. van den Briel,
and Toby Walsh

Abstract The Maximum covering and patrol routing problem (MCPRP) is con-
cerned with the allocation of police patrol cars to accident hotspots on a highway
network. A hotspot is represented as a time window at a precise location on the
network at which motor vehicle accidents have a high probability of occurring. The
nature of these accidents may be due to speeding, driver fatigue or blind-spots at
intersections. The presence of police units at hotspots serves as an accident preven-
tion strategy. In many practical applications, the number of available cars cannot
cover all of the hotspots on the network. Hence, given a fleet of available units, an
optimization problem can be designed which seeks to maximize the amount hotspot
coverage. The cars must be routed in such a way as to avoid multiple contributions
of the patrol effort to the same hotspot. Each police car is active over a predefined
shift, beginning and ending the shift at a fleet station. In this paper, we introduce a
method for constructing a time-space network of theMCPRPwhich is suitable for the
application of a branch-and-price solution approach. We propose some large-scale
test problems and compare our approach to a state-of-the-art Minimum cost network
flow problem (MCNFP) model. We show that our branch-and-price approach can
outperform theMCNFPmodel on selected large-scale networks for small to medium
fleet sizes. We also identify problems which are too large for the MCNFP model to
solve, but which can be easily handled by our approach.
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Keywords Route planning · Surveillance scheduling · Branch-and-price

5.1 Introduction and Background

The Maximum covering and patrol routing problem (MCPRP) was first studied by
Keskin et al. [10]. Given a set of highway locations and time intervals at which
traffic accidents have a high probability of occurring, the problem is to find patrol
routes for a set of police cars so that the aggregate coverage of all the accident
hotspots is maximized. Each patrol car begins and ends its route at a fleet station on
a predefined shift. Keskin et al. [10] modelled the MCPRP using a Mixed-integer
programming (MIP) formulation and found that state-of-the-art commercial solvers
were not always able to find good quality solutions. Hence, a number of heuristic
techniques (local and tabu search) were introduced and benchmarked on a range of
test problem instances. The test problems solved by Keskin et al. [10] were generated
with randomized and real-world data with up to 40 hotspots and 8 patrol cars. These
test problem instances were created to reflect the circumstances faced by (and the
resources available to) law enforcement agencies in a particular region of the United
States.1 The paper by Keskin et al. [10] reports that the heuristic techniques were
able to produce good quality but not optimal solutions to the larger problem instances
with 40 hotspots.2

The paper published by Çapar et al. [3] showed that significant improvements
could be made to the MIP formulation of [10]. With information on the structure of
candidate routes in an optimal solution, the authors demonstrated that the number of
variables in the formulation of [10] can be reduced. The authors also incorporated a
number of bounds constraints which provide additional strength to their reformula-
tion. The enhanced efficiency given through this reformulation of the MCPRP was
demonstrated on the benchmark instances introduced in the original paper by Keskin
et al. [10].3

More recent work by Dewil et al. [7] has shown that the MCPRP can be modelled
as a Minimum cost network flow problem (MCNFP).4 The MCNFP is solvable in

1The literature review conducted by Keskin et al. [10] notes that the MCPRP bears similarities to
the Team orienteering problem with time windows (TOPTW). However, the distinguishing charac-
teristic of the MCPRP is that the profit associated with visiting a hotspot is not fixed, but is rather
a function of the amount of “dwell time” within that hotspot’s time window. The authors state that
the range of time window lengths used in the problems of their study varied from 1−270minutes
(usually assuming an 8hour shift).
2The results of this study can also be found in the PhD thesis by Li [12].
3Çapar et al. [3] considered a number of extensions to the standard MCPRP paradigm. These
extensions included the incorporation of shift breaks and allowing the patrol vehicles to begin the
shift at different locations, possibly with delayed starting times.
4TheMCNFP possesses the integrality property when the arc capacities are integer (see Ahuja et al.
[1]). This means that the optimal solution is naturally integer if the problem is solved as a linear
program.
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polynomial time, and thus, the authors correct the claim by Keskin et al. [10] that
the MCPRP is NP-hard. The study sets out a time-space network formulation of the
problem on which an MCNFP model is defined. The network formulation divides
individual hotspots into time sections or segments, which are constructed by con-
sidering possible transitions of vehicles which depart from the end of a hotspot (and
arrive at another hotspot) or arrive at the beginning of a hotspot (having departed
from another hotspot). The MCNFP paradigm also permits the time sections to be
weighted differently, thus constituting an extension of the standard MCPRP. The
authors demonstrate the superiority of their approach by comparing their computa-
tional results with those of Keskin et al. [10]. The MCNFP model is extended by the
authors to a Multi-commodity minimum cost network flow problem (MCMCNFP)
model which aims to handle overlapping shifts and different start/end locations for
the patrol vehicles. In order to test the scalability of the model, the authors state that
they could solve a 100 hotspot instance to optimality with up to 23 patrol cars. How-
ever, the authors also report that they could not run a 500 hotspot problem instance,
even with 3 patrol cars.

Given the limitations on theMCNFPmodel to solve large-scale problem instances
of the MCPRP (as reported by Dewil et al. [7]), our paper aims to investigate the
applicability and feasibility of a branch-and-price (column generation with branch-
and-bound) approach to the problem. Given that similar approaches have recently
proved to be effective at solving closely related patrol routing and scheduling prob-
lems, a branch-and-price approach constitutes a natural and promising candidate for
solving large-scale instances of the MCPRP.5

We begin our study by outlining a process for the construction of a time-space
network, which provides an appropriate modelling framework for a path-based lin-
ear programming formulation of the MCPRP. A column generation master prob-
lem, reduced costs, subproblem, seed column construction and pricing strategies are
then subsequently outlined. We then propose a simple branch-and-price paradigm
to obtain integer solutions through the incorporation of branching cuts to the master
problem. The paper concludes with a presentation and discussion of a number of
computational tests performed on a range of benchmark problems, and the results
are compared with the MCNFP model of Dewil et al. [7].

5.2 Preliminary Notation

The patrol operations network is a directed graph GS = (VS, AS), where VS = {0} ∪
{1, . . . , n} is the set of geographical locations and AS ⊆ {(i, j) | i, j ∈ VS, i �= j}
is the set of feasible transitions between the elements of VS . The singleton set {0} is
used to denote the fleet station, whereas the set {1, . . . , n} represents the number of
distinct locations at which hotspots may be found. For each i ∈ VS\{0} there is a set

5For example, see previous work on the Patrol boat scheduling problem with complete coverage
(PBSPCC) by the authors of this paper [5] or the PhD thesis by Chircop [4].
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of non-overlapping hotspots, where each hotspot is represented by a time window
with a start time and an end time. The number of hotspots at location i is given by
hi , and the mth hotspot at location i is denoted by (i, [eim, lim]), where eim < lim for
all m ∈ {1, . . . , hi } and for all i ∈ VS\{0}. Without loss of generality, at any given
location i ∈ VS\{0}, ifm ′ < m ′′, then lim ′ ≤ eim ′′ , wherem ′,m ′′ ∈ {1, . . . , hi }. The set
of all hotspots is given byW and is indexed by �. The opening (start time) of hotspot
� is denoted by min(�) while the close (finish time) of the hotspot is denoted by
max(�). The set of hotspots can be expressed as W := ⋃

i∈VS\{0} W (i), where, W (i)
is the set of timewindows {(i, [ei1, li1]), . . . , (i, [eihi , lihi ])} at location i .We also define
a function ω which maps hotspots to their geographical locations: ω : W → VS\{0}.

5.3 Network Construction

Given GS = (VS, AS), the set of hotspotsW and a shift duration T , we can construct
a time-space network GR = (VR, AR) for the MCPRP according to a transformation
(GS,W, T ) 	→ GR . On this expanded time-space network, we have a set of patrol
arcs AP ⊂ AR , a set of waiting arcs AW ⊂ AR , and a set of transit arcs AT ⊂ AR .
The set of patrol arcs in time window � ∈ W is expressed as AP(�) ⊆ AP. We define
tuv ∈ Z

+ to be the transit time of traversing arc (u, v) ∈ AR . For each v ∈ VR , let
A+(v) be the set of all arcs emanating from v, and let A−(v) be the set of all arcs
terminating at v. The source and sink vertices (representing the fleet station) are s and
τ , respectively. Note that A−(s) = A+(τ ) = ∅. Equipped with the preceding defini-
tions and notation, the time-space network construction begins with an initialization
procedure which creates a source and a sink vertex, along with a layer of vertices for
each spatial location VS\{0}. Each layer will initially contain T + 1 vertices, where
the horizontal spacing between the vertices defines the time discretization. Hence,
each vertex u ∈ VR can be expressed in terms of a location-time pair (i, t), where
i ∈ VS and t ∈ {0, . . . , T }. The initialization procedure can be found in Algorithm1.

Algorithm 1MCPRP: Initialization of a time-space network
1: Input: A spatial network GS = (VS, AS) and a shift length T
2: procedure InitializeTimeSpaceNetwork(GS, T )
3: VR, AR ← ∅

4: Create source vertex s = (0, 0) and sink vertex τ = (0, T )

5: VR ← VR ∪ {s, τ }
6: for i ∈ VS\{0} do
7: for t = 0, . . . , T do
8: Create vertex u with u = (i, t)
9: VR ← VR ∪ {u}
10: return GR = (VR, AR)
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Once the initialization procedure has been executed, the next step is to define the
hotspots on the time-space network. The hotspots for each location are represented
by a series of patrol arcs. The design choice for the hotspots is based on the following
insightful theorem from Keskin et al. [10], which is stated below.

Theorem 5.1 (Keskin et al. [10]) Let K ∗ be an optimal solution to an instance of
the MCPRP. For each hotspot � ∈ W visited by a patrol vehicle k ∈ K ∗, the time
at which k finishes patrolling � is min

{
max(�), T − t{ω(�)}0

}
if � is the last hotspot

visited on k’s route, and max(�) otherwise.

Theorem5.1 states that in an optimal solution to the MCPRP, a given patrol vehicle
will remain at hotspot � until the close of the time window if hotspot � is not the last
hotspot on k’s route. If, on the other hand, the hotspot � is the last hotspot visited
on patrol vehicle k’s route, then k remains at hotspot � until the close of the time
window or until the latest time at which k can leave the hotspot and arrive back at
the fleet station within the shift T . Given this result, we can represent each hotspot
with a series of patrol arcs which collectively terminate at the vertex corresponding
to the end of the time window or at the vertex corresponding to the latest possible
time at which a patrol vehicle must return to the fleet station. The first patrol arc in
the series emanates from the vertex corresponding to the start of the time window,
with the subsequent patrol arc in the series originating at the next chronological
vertex within the time window, and so on. This process is illustrated in Fig. 5.1.
The formal procedure for constructing the patrol arcs over the hotspots on a time-
space network can be found in Algorithm 2. This procedure also includes a test to
check whether a time window lies within, crosses the boundary of or lies outside of
the feasibility interval [t0i , T − ti0]. Any hotspot which crosses the boundary of the
feasibility interval must have its start and end time updated accordingly, while any
hotspot lying entirely outside the feasibility window should be discarded.

As we will see in a later section, a set of packing constraints is required in the
column generationmaster problem to avoidmultiple contributions to the patrol effort
in each hotspot. By adopting the patrol arc construction shown in Fig. 5.1, only one

Fig. 5.1 Part a corresponds to a hotspot which lies entirely within the timespan [t0i , T − ti0]. Part
b is indicative of a time window which has a closing time greater than T − ti0. The green arc in
part b is the transit arc which traces back to the fleet station
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Algorithm 2MCPRP: Patrol arc construction for hotspots
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure ConstructPatrolArcs(GS,W, T )
3: GR ← InitializeTimeSpaceNetwork(GS, T )
4: AP ← ∅

5: for � ∈ W do
6: AP(�) ← ∅

7: if
(
max(�) < t0{ω(�)}

)∨ (
min(�) > T − t{ω(�)}0

)
then

8: continue
9: else
10: if min(�) < t0{ω(�)} then
11: min(�) ← t0{ω(�)}
12: if max(�) > T − t{ω(�)}0 then
13: max(�) ← T − t{ω(�)}0
14: for t = min(�), . . . ,max(�) − 1 do
15: Create arc (u, v) with u = (ω(�), t) and v = (ω(�),max(�))
16: AP ← AP ∪ {(u, v)}
17: AP(�) ← AP(�) ∪ {(u, v)}
18: AR ← AR ∪ AP

19: return GR = (VR, AR)

packing constraint is required per hotspot. Without the insight of Theorem5.1, a
naive alternative would be to construct a patrol arc for each time interval in each
hotspot, with a corresponding packing constraint for the patrol arcs in the master
problem. Such a naive construction would increase the runtime for the solution of
both the master problem and subproblem.

Once the hotspots have been identified and constructed on the time-space network,
the next step is to create transit arcs between the source vertex and each location. In
addition, another set of transit arcs is required to connect each geographical location
with the sink vertex. Following the construction of these transit arcs, a set of waiting
arcs is required for each layer of vertices in the time-space network. Waiting arcs
correspond to dead time, where a patrol vehicle is stationed at a geographical location
but is not actively contributing to the patrol effort. First, waiting arcs are constructed
between the end of each time window and the start of all subsequent time windows
at the same location. Second, a set of waiting arcs is created to connect a location’s
arrival vertex with the start of each time window at that location. Finally, waiting arcs
are constructed which connect the end of each time window at a given location with
that location’s termination vertex.6 The procedure is fully described in Algorithm3.

Following the construction of the primary transit and waiting arcs, we need to
account for secondary transit and waiting arcs which correspond to potential move-

6The arrival vertex at location i ∈ VS is the vertex v ∈ VR such that v = (i, t0i ). The termination
vertex at location i ∈ VS is the vertex u ∈ VR such that u = (i, T − ti0).
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Algorithm 3MCPRP: Primary transit and waiting arc construction
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure ConstructTransitWaitingArcs(GS,W, T )
3: GR ← ConstructPatrolArcs(GS,W, T )
4: AT, AW ← ∅

5: for i ∈ VS\{0} do
6: Create arcs (s, v) and (u, τ ) with v = (i, t0i ) and u = (i, T − ti0)
7: AT ← AT ∪ {(s, v), (u, τ )}
8: for � ∈ W (i) do
9: Create arcs (v,w) and (x, u) with w = (i,min(�)) and x = (i,max(�))
10: AW ← AW ∪ {(v,w), (x, u)}
11: for �′ ∈ W (i) do
12: if min(�′) > max(�) then
13: Create arc (y, z) with y = (i,max(�)) and z = (i,min(�′))
14: AW ← AW ∪ {(y, z)}
15: AR ← AR ∪ AT ∪ AW

16: return GR = (VR, AR)

Algorithm 4MCPRP: Secondary transit and waiting arc construction
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure ConnectLocations(GS,W, T )
3: GR ← ConstructTransitWaitingArcs(GS,W, T )
4: for i ∈ VS\{0} do
5: for � ∈ W (i) do
6: for j ∈ VS\{0, i} such that bi j = 1 do
7: if max(�) + ti j ≤ T − t j0 then
8: Create arc (u, v) with u = (i,max(�)) and v = ( j,max(�) + ti j )
9: AT ← AT ∪ {(u, v)}
10: if ∃ �′ ∈ W ( j) such that min(�′) ≤ max(�) + ti j ≤ max(�′) then
11: continue
12: else
13: for �′ ∈ W ( j) do
14: if min(�′) > max(�) + ti j then
15: Create arc (v,w) with w = ( j,min(�′))
16: AW ← AW ∪ {(v,w)}
17: AR ← AR ∪ AT ∪ AW

18: return GR = (VR, AR)

ments of patrol vehicles between different geographical locations. For the end of each
time windowmax(�) at a given geographical location i ∈ VS\{0}, a set of transit arcs
is created to link location i with all other locations j ∈ VS\{0, i} for which a feasible
transit lane exists, that is, for all j such that bi j = 1 and max(�) + ti j ≤ T − t j0,
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Algorithm 5MCPRP: Post processing of the time-space network
1: Input: A spatial network GS = (VS, AS), a shift length T , a set of hotspots W
2: procedure PostProcessing(GS,W, T )
3: GR ← ConnectLocations(GS,W, T )
4: Vtemp, Atemp ← ∅

5: for (u, v) ∈ AP do
6: if (A−(u) = ∅) ∧ (u �= s) then
7: Atemp ← Atemp ∪ {(u, v)}
8: else
9: continue
10: for u ∈ VR\{s, τ } do
11: if A−(u) = ∅ then
12: Vtemp ← Vtemp ∪ {u}
13: else
14: continue
15: VR ← VR\Vtemp, AR ← AR\Atemp, AP ← AP\Atemp

16: return GR = (VR, AR)

where (bi j )i, j=1,...,n is the adjacency matrix of the spatial network. For each feasible
transit arc constructed between u = (i,max(�)) and v = ( j,max(�) + ti j ), we need
to check if there exists an �′ ∈ W ( j) such that min(�′) ≤ max(�) + ti j ≤ max(�′). If
this condition is satisfied, then the connecting transit arc between i and j hits a hotspot
at location j , and no further work is required. However, if the condition is not satis-
fied, then a series of waiting arcs are required to connect node v = ( j,max(�) + ti j )
with each node w = ( j,min(�′)) such that �′ ∈ W ( j) and min(�′) > max(�) + ti j .
The procedure to construct the secondary transit andwaiting arcs is formally outlined
in Algorithm4.

The final stage of the time-space network construction is a post-processing phase.
At this final stage, any vertices in the time-space network which do not contain any
incoming arcs are deleted. In other words, a vertex u ∈ VR\{s, τ } will be deleted if
A−(u) = ∅. In addition, all arcs (u, v) ∈ A+(u) which proceed from such a vertex
must be deleted from the network. These arcs, if they exist, will be patrol arcs,
since all waiting and transit arcs are constructed from vertices with non-empty in-arc
sets. The post-processing phase is illustrated in Fig. 5.2 and formally summarized in
pseudocode in Algorithm 5.

5.4 Master Problem

The time-space network GR = (VR, AR) constructed according to the procedures of
the previous section can be used to formulate theMCPRPas a linear program, suitable
for the application of column generation. Let P be the set of all feasible paths through
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Post Processing

Fig. 5.2 (TOP) Construction of secondary transit and waiting arcs on the time-space network. The
yellowvertices correspond to the end times of hotspots fromwhich transit (blue) arcs are constructed.
If a transit arc emanating from a yellow vertex does not land within a hotspot at another location,
waiting (red) arcs are constructed from the target vertex to the opening of all subsequent hotspots.
Additional waiting arcs are constructed between the closing of a hotspot and the opening of the
following hotspot at the same geographical location. (BOTTOM) The time-space network after
the post-processing phase (deletion of superfluous arcs and vertices). A vertex, with or without an
outgoing patrol (black) arc, is deleted if there are no arcs pointing to it

the network GR from s to τ . For each p ∈ P , let xuvp = 1 if path p uses arc (u, v) ∈
AR and xuvp = 0 otherwise.As the time-space networkGR contains no cycles,we can
express the integral flow xuv ∈ Z

+ over an arc (u, v) ∈ AR in terms of path variables
λp ∈ {0, 1} for all p ∈ P , where λp = 1 if path p is used and λp = 0 otherwise.
Hence, we can write xuv = ∑

p∈P xuvpλp. Denote c̄p = ∑
(u,v)∈AP

tuvxuvp to be the
total time spent on patrol for path p ∈ P , and c̄pi = ∑

�i∈W
∑

(u,v)∈AP(�i )
tuvxuvp to

be the time path p ∈ P spends on patrol in location i ∈ VS\{0}, where �i ∈ {� ∈
W | ω(�) = i}. Moreover, let a�p = ∑

(u,v)∈AP(�)
xuvp for all p ∈ P and � ∈ W , so

that a�p = 1 if p ∈ P patrols hotspot � ∈ W and a�p = 0 otherwise. By relaxing the
integrality constraints on the path variables, that is, setting λp ≥ 0 for all p ∈ P , we
can formulate a master linear programming problem for the MCPRP as follows:
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maximize
∑

p∈P

c̄pλp, (5.1)

subject to
∑

p∈P

a�pλp ≤ 1, ∀� ∈ W, [π�] (5.2)

∑

p∈P

c̄pλp ≤ C̄, [α] (5.3)

∑

p∈P

c̄piλp ≤ C̄i , ∀i ∈ VS\{0}, [βi ] (5.4)

∑

p∈P

λp ≤ κmax, [γ ] (5.5)

λp ≥ 0, ∀p ∈ P. (5.6)

The objective function (5.1) seeks tomaximize the aggregate time spent on hotspot
patrol. The statement of the objective is followed by a series of packing constraints
given through (5.2). There is a single packing constraint for each hotspot � ∈ W .
The packing constraints are included to ensure that each hotspot is patrolled by
at most one vehicle, thereby prohibiting multiple contributions to a single hotspot.
The constraints (5.3) and (5.4) are optional bounds constraints for the formulation.
Constraint (5.3) stipulates an upper bound C̄ on the aggregate patrol time delivered
by the vehicles across all hotspots on the network. The constraints given by (5.4) use
a set of values {C̄i | i ∈ VS\{0}} to enforce upper bounds on the aggregate patrol
effort delivered to all the hotspots at each geographical location. The upper bounds
C and C̄i are given through (5.7) below. Constraint (5.5) provides an upper bound
on the number of available patrol vehicles through κmax. Finally, the constraints (5.6)
enforce non-negativity conditions on the flow of each vehicle over each arc in the
time-space network.

C̄ :=
n∑

i=1

hi∑

m=1

(
lim − eim

)
, C̄i :=

hi∑

m=1

(
lim − eim

)
, ∀i ∈ VS\{0}. (5.7)

If the set P of feasible paths through the time-space network is large, then it
may not be practicable to write out the full master problem (5.1)–(5.6). In such
cases, the problem can be initialized with a subset of paths P ′ ⊂ P to form an
initial Restricted master problem (RMP). Columns representing paths of negative
reduced cost can then be added to the RMP in an iterative fashion by feeding the dual
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variables7 of theRMP to a columngeneration subproblem.8 A candidate initialization
procedure for the RMP of the MCPRP is proffered in Sect. 5.6, while the nature of
the column generation subproblem is discussed in Sect. 5.5.

5.5 Reduced Costs and Subproblem

Paths of negative reduced cost are determined by solving a pricing subproblem
over the underlying time-space network GR . Uncovering the algebraic form of the
reduced cost of a path p ∈ P naturally leads to revealing the structure of the pric-
ing subproblem. First, we can construct some useful surjective mappings in order
to define the reduced cost of a path: φ : AP → W ′ and ψ : AP → VS\{0}. The set
W ′ = {1, . . . , |W |} is an integer-valued index set corresponding to the hotspots on
the network. Thus, for each patrol arc, φ maps to the hotspot index, while ψ maps
to the geographical location. The reduced cost r̄ p of a path p ∈ P through the time-
space network GR is given through r̄ p := υTAp − c̄p, where υT is a row vector of
the dual variables of the master problem (5.1)–(5.6),Ap is the column corresponding
to variable λp, and c̄p is the cost coefficient of λp in the objective function (5.1).
Therefore, the reduced cost r̄ p of a path p ∈ P through the time-space network GR

can be written in terms of the underlying arc variables as follows:

r̄ p = υTAp − c̄p, (5.8)

=
( ∑

�∈W
π�a�p

)

+ αc̄p + βi c̄pi + γ − c̄p, (5.9)

=
( ∑

�∈W
π�

∑

(u,v)∈AP(�)

xuvp

)

+ α

( ∑

(u,v)∈AP

tuvxuvp

)

+
( ∑

(u,v)∈AP

βψ(u,v)tuvxuvp

)

(5.10)

+ γ

( ∑

(s,v)∈A+(s)

xsvp

)

−
( ∑

(u,v)∈AP

tuvxuvp

)

,

=
( ∑

(u,v)∈AP

[
πφ(u,v) + (

α + βψ(u,v) − 1
)
tuv

]
xuvp

)

+
( ∑

(s,v)∈A+(s)

γ xsvp

)

.

(5.11)

7The dual variables of the RMP can be found in square parentheses along the right-hand side of
(5.1)–(5.6).
8This essentially describes the column generation technique for solving prohibitively large linear
programs (see [6] for a comprehensive introduction). The fundamental insight of the column gen-
eration approach is to generate the columns of the constraint matrix on-the-fly by recourse to an
optimization subproblem. The idea was originally suggested by Ford and Fulkerson [8], but was
first implemented by Gilmore and Gomory [9].
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Hence, the reduced cost of path p ∈ P can be expressed as r̄ p = ∑
(u,v)∈p μuvxuv,

where the coefficients μuv are given through: μuv = πφ(u,v) + (α + βψ(u,v) − 1)tuv
if (u, v) ∈ AP, μuv = γ if (u, v) ∈ A+(s) and μuv = 0 otherwise. Therefore, the
pricing subproblem can be written as a shortest path problem over GR as follows:

minimize
∑

(u,v)∈AR

μuvxuv, (5.12)

subject to
∑

(s,v)∈A+(s)

xsv = 1, (5.13)

∑

(u,v)∈A−(v)

xuv =
∑

(v,w)∈A+(v)

xvw, ∀v ∈ VR\{s, τ }, (5.14)

∑

(u,τ )∈A−(τ )

xuτ = 1, (5.15)

xuv ∈ {0, 1}, ∀(u, v) ∈ AR . (5.16)

Given thatGR is a directed acyclic graph, the shortest path problem given through
(5.12)–(5.16) can be solved by first applying the dual costs from the RMP and then
performing edge relaxation over a topologically sorted list of the vertices inGR . This
procedure is given through DAG-SP(GR, μ, s, τ ), which outputs a shortest path p
through GR from s to τ assuming the cost structure μ and the associated path cost
δp(s, τ ). The entire shortest path procedure is summarized in Algorithm 6.

Algorithm 6MCPRP: Dual based shortest path through a time-space network
1: Input: A time-space network GR = (VR, AR) with source s ∈ VR and sink

τ ∈ VR , vector of dual variables υ

2: procedure MCPRP_DualShortestPath(GR, s, τ,υ)
3: for (u, v) ∈ AP do
4: μuv ← πφ(u,v) + (

α + βψ(u,v) − 1
)
tuv

5: for (u, v) ∈ A+(s) do
6: μuv ← γ

7: for (u, v) ∈ AR\ (AP ∪ A+(s)) do
8: μuv ← 0
9: (p, δp(s, τ )) ← DAG- SP(GR, μ, s, τ )
10: r̄∗

p ← δp(s, τ )

11: return (p, r̄∗
p)
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5.6 Seed Columns

The path-based linear programming formulation of theMCPRP is of set packing type,
and thus, the problem of constructing a feasible initial primal basis is not onerous
(since the patrol coverage constraints are non-binding). We have chosen to adopt a
Randomized shortest path heuristic (RSPH) to generate a set of candidate paths for
the initialization of the RMP. The random cost structure derived from the RSPH is
intended to produce an initial set of paths which share the patrol coverage effort as
evenly as possible. This was preferred to a straightforward application of a greedy
shortest path heuristic inwhich the hotspots are equallyweighted. For large fleet sizes
relative to the number of hotspots on the network, the application of a straightforward
greedy heuristic would most likely produce an initial basis consisting of both good
and bad quality columns. This would be an undesirable outcome compared to an
initial basis in which the patrol effort is more evenly distributed. Hence, the RSPH
was implemented in an attempt to increase the likelihood of producing initial basis
sets of better quality.

The RSPH first applies a cost μi j = −T to each patrol arc (i, j) ∈ AP and cost
μi j = 0 to each arc (i, j) ∈ AR\AP. For each hotspot � ∈ W in the time-space net-
work, a patrol arc (i, j) is chosen at random from the set AP(�). The time index t at the
tail of arc (i, j), denoted by (i, j)t , is then multiplied by a random number r̃ drawn
from the uniform probability distribution U(0, 1). This value is then negated and
added to the cost of each patrol arc in the hotspot. Once the patrol arc costs have been
updated in this manner, a shortest path is invoked over the time-space network. By
examining the returned shortest path p, we can determine all arcs (i, j) ∈ p such that
(i, j) ∈ AP. We then update the costs of all (u, v) ∈ AP such that φ(u, v) = φ(i, j)
according to μuv = T . On the other hand, if (i, j) ∈ p and (i, j) ∈ AR\AP, then the
arc cost is updated through μi j = 0. A new shortest path is subsequently returned
from the network with the updated cost structure, and the heuristic continues in a
cyclical manner, terminating when the aforementioned procedure has been called
κmax times. The procedure is formally outlined in Algorithm7.

5.7 Pricing Out Candidate Paths

The column generation procedure is initialized by running the randomized construc-
tion heuristic presented in Algorithm7 over the time-space network. Starting from
the initial basis produced by the construction heuristic, columns are generated one-
at-a-time by solving the pricing subproblem using the dual costs from the current
iteration of the RMP. As long as paths of negative reduced cost are returned from
the pricing subproblem, the procedure continues on in a cyclical fashion and the
paths are added as columns/variables to the RMP. The column generation procedure
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Algorithm 7 MCPRP: Randomized shortest path heuristic for column generation
initialization
1: Input: A time-space network GR = (VR, AR) with source s ∈ VR and sink τ ∈

VR

2: procedure RSPH(GR, s, τ )
3: for (u, v) ∈ AR\AP do
4: μuv ← 0
5: for � ∈ W do
6: Randomly select an arc (i, j) ∈ AP(�)

7: for (u, v) ∈ AP(�) do
8: μuv ← −T − r̃(0, 1) × (i, j)t
9: P ′ ← ∅

10: for k = 1, . . . , κmax do
11: (p, δp(s, τ )) ← DAG- SP(GR, μ, s, τ )
12: P ′ ← P ′ ∪ {p}
13: for (i, j) ∈ p do
14: if (i, j) ∈ AP then
15: for (u, v) ∈ AP such that φ(u, v) = φ(i, j) do
16: μuv ← T

17: return P ′

terminates once the reduced cost of a path returned from the pricing subproblem is
non-negative.9 A straightforward implementation of the procedure is summarized in
Algorithm8.

5.8 Branch-and-Price

As column generation is directly applicable to real variable problems, it can be
embedded within a branch-and-bound tree structure in order to solve large-scale
integer programming problems. This augmented application of column generation
is known as branch-and-price (see [2]). In this section, we propose a straightfor-
ward branch-and-price approach to the MCPRP on the time-space network outlined
heretofore. If the application of column generation at the root node fails to return an
integer solution, we can impose branching cuts to the RMP with respect to the most

9By solving the RMP as a linear program and obtaining its dual variables, a subproblem can be
solved to determine a new column (variable) to add to the RMP. The subproblem can accomplish
this by casting the pricing step of the simplex algorithm (find a variable with negative reduced
cost to enter the basis) as an optimization problem. The process iterates between the RMP and the
subproblem, terminating when no variable can price-out favourably.
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Algorithm 8MCPRP: Column generation procedure
1: Input: A time-space network GR = (VR, AR) with source s ∈ VR and sink τ ∈

VR

2: P ′ ← RSPH(GR, s, τ )
3: procedure MCPRP_GenerateColumns(GR, s, τ )
4: Construct RMP from P ′ with associated variables {λp | p ∈ P ′}
5: Solve the RMP to get dual variables υ

6: (p, r̄∗
p) ← MCPRP_DualShortestPath(GR, s, τ,υ)

7: if r̄∗
p ≥ 0 then

8: break
9: else
10: Add new variable λp and associated column to RMP
11: P ′ ← P ′ ∪ {p}
12: goto 4

fractional transit arc in the time-space network.10 The procedure works as follows.
Assume we have a fractional (non-integral) solution to the MCPRP with a basis
defined by a set of paths P ′ ⊂ P . Let (u, v) ∈ AT. The flow F over the arc (u, v) is
given by the sum of the path variables in the current basic solution which use that arc,
that is, F(u, v) := ∑

p∈{q∈P ′ | (u,v)∈q} λp. The most fractional transit arc in the current

non-integral solution is therefore given by (u, v)∗ := argmin(u,v)∈AT
F̃(u, v), where

we have:

F̃(u, v) :=
{

1
2 − (F(u, v) − �F(u, v)�) if F(u, v) − �F(u, v)� < 1

2 ,
1
2 − (�F(u, v)� − F(u, v)) otherwise.

(5.17)

Once the most fractional transit arc has been identified, we can create left and right
disjunctive branches under the current fractional solution (a node in the exploratory
tree). Therefore, new restricted master problems are required for each branching
decision on the left and right. A new RMP created from a branching decision inherits
the form of its antecedent tree node with the addition of the following constraint
(cut):

∑

p∈{q∈P ′ | (u,v)∗∈q}
λp ≤ �F((u, v)∗)� (LEFT), (5.18)

∑

p∈{q∈P ′ | (u,v)∗∈q}
λp ≥ �F((u, v)∗)� (RIGHT). (5.19)

10An investigation of alternative branching strategies, for example, selecting various combinations
of arc variables at a time, is beyond the scope of this paper, but is recommended for future research.
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Note that the incorporation of a branching cut (5.18)/(5.19) to the master problem
requires that the subproblem’s cost structure be modified by adding a dual penalty
cost to the arc (u, v)∗.

Branching cuts are added to various fractional nodes in the tree in order to find an
integer solution to the full problem. The search tree maintains a best (relaxed) upper
bound zUB and a best (integer) lower bound zLB. Given a list of unfathomed nodes,
we select the node with objective z′ such that zUB − z′ is a minimum. Ties between
nodes with the same objective can be broken by preferring the node with the greatest
ratio of integral non-zero arc variables to the number of non-zero arc variables. In
the event that this ratio is unity, we have an integral solution over the arc variables
of the underlying network. However, integrality of the network arc variables is not a
sufficient condition for the integrality of the path variables. There may be tree nodes
for which a solution has xuv ∈ Z

+ for all (u, v) ∈ AR , where λp /∈ {0, 1} for some
p ∈ P ′.11 Therefore, integrality of the path variables must be checked at each node
in order to obtain a feasible integer solution. Any nodes which are arc integral but not
path integral are pruned from the tree. When a new integer solution has been found,
it can be checked against the current best integer lower bound zLB. If the new integer
solution is better than the current best lower bound, the lower bound is updated.
Otherwise, the newly found integer solution can be pruned from the tree. When the
gap between the best relaxed upper bound and the best integer lower bound is closed,
and if complementary slackness and feasibility conditions are satisfied, an optimal
solution z∗ has been found, and the branch-and-price procedure can be terminated.

5.9 Computational Results

5.9.1 Results on Sample Test Problems

In order to benchmark our proposed branch-and-price approach to the MCPRP, we
randomly generated a set of 40 geographical networks to be used as the basis for
the design of a broad range of test problem instances. Two grid sizes were used to
generate the test networks: 30 × 30min and 60 × 60min.12 Given a grid structure,
the test problems were generated by randomly placing hotspot locations within the
grid, and then assigning time windows of various lengths to each location.13

11Vanderbeck [13] notes that this phenomenon (i.e. fractional path flows translating to integral arc
flows) can occur when the subproblem is a shortest path problem, which is precisely our case. To
see why this is so, recall that xuv = ∑

p∈P xuvpλp for all (u, v) ∈ AR . It is straightforward to see
that if λp ∈ {0, 1} for all p ∈ P , then xuv ∈ Z

+ for all (u, v) ∈ AR , since xuvp ∈ {0, 1} for each
(u, v) ∈ AR and p ∈ P . However, the converse does not hold. That is, it is mathematically possible
to find a set of paths taking fractional values which translates into an integral arc flow solution.
12For a grid structure of size 30 × 30min, a patrol vehicle will traverse the breadth/length of the
structure in 30min.
13In total, we generated 8 networks with 40 hotspots, 8 networks with 60 hotspots, 16 networks
with 80 hotspots and 8 networks with 100 hotspots. Each test network was randomly generated over
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In total, 478 separate test problem instances were run, where the number of cars
ranged from 2 to atmost 35.14 The branch-and-price approachwas always able to find
a provably optimal integer solution. The identification of optimality came through
the observation that the objective function value at the root node (which is an upper
bound on the objective of the optimal integer solution) always matched the objective
function value of the integer solution found in each test problem instance. Given the
observed absence of an intergrality gap, we can conclude that the time-space network
construction of the subproblem is obviously a strong formulation for the MCPRP.

A general observation is that when the vehicle flow on the underlying time-space
network was small, that is, when the fleet size was small compared to the number of
hotspots to be covered, the branch-and-price approach consistently produced integer
root node solutions. The amount of branching required generally increased as the
number of vehicles increased, as did the CPU runtime. Another general trend is
that for an equivalent number of patrol vehicles, small grid sizes with short hotspot
durations were harder to solve (in terms of the number of branching decisions and
the CPU runtime) than larger grid sizes with long hotspot durations. This can be
attributed to the increased number of routing choices for instances with short hotspot
durations and shorter travel times between hotspots (especially given that the shift
duration was constant across the entire problem space).

The test problem instances for the 80 hotspot network included 8 test problems
containing 80 locations with a single hotspot affixed to each location and another 8
test problems with 40 locations and 2 hotspots for each location. The general runtime
trend was better for the second set of instances (that is, the ones with two hotspots per
location). Again, this can be attributed to the increased number of routing choices
incurred with an increased number of locations on the network grid. This highlights
the importance of distinguishing the number of locations from the number of hotspots
on the network. The results for the 80 hotspot category suggest that this distinction
is non-trivial.

Finally, we observed that the RSPCH was able to solve the 1min time window
problem instances at the root node, that is, no additional columns needed to be
generated and no branching was required, even for instances with fleet sizes yielding
complete patrol coverage. We note that a problem instance of theMCPRPwith 1min
time windows constitutes a special rendering of the Team Orienteering Problem
(TOP). This special case is called the TOPTW, in which the profit is 1 for each
vertex visited, but with additional constraints imposing strict visiting times for profit
collection at the vertices (see [14]).

a grid structure of size 30 × 30min or 60 × 60min. The time window length of the hotspots was
either 1min, 5−15min, 30min or 30−90min. All test problem instances were run with an 8 hour
shift (that is, 480min) and a time discretization of 1min.
14The computational results of all test problem instances can be found in Appendix G of the PhD
thesis by Chircop [4].
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5.9.2 Benchmarking Against the MCNFP Model of Dewil et
al. [7]

In order to benchmark and validate our branch-and-price approach to the MCPRP,
we compared its performance on the test problem instances of the previous section
against the MCNFP model presented in [7]. The MCNFP model was implemented
with the network simplex algorithm from the open-source LEMON C++ libraries
(see [11]). For each of the test problems, the MCNFPmodel produced the same opti-
mal objective as the branch-and-price approach. This provides a strong validation
for the correctness of the time-space network construct outlined in this article.15 The
MCNFP model demonstrated superior runtime performance to the branch-and-price
approach on almost all of the test problem instances. The performance differential
became more apparent when the number of patrol cars started to saturate the under-
lying time-space network. These particular instances required a considerable amount
of branching with the branch-and-price approach, and hence, the runtime increased
with the number of patrol cars. This demonstrates that the MCNFP formulation of
the MCPRP is still the gold standard for networks of the scale tested here.

5.9.3 Large-Scale Problem Instances

In addition to the small- to medium-scale networks of the previous section, we also
designed two large-scale problems for which the branch-and-price approach could
outperform the MCNFP model over a broad range of fleet sizes. The first large
scale network consisted of 200 hotspots over a 100 × 100min grid, with the time
window lengths ranging between 30 and 90min. The second network, designed over
the same grid size, contained 250 hotspots, with the time window lengths ranging
between 30 and 60min. For both networks, we considered fleet sizes from 2 to 25
patrol cars. On these problem instances, the branch-and-price approach was able
to outperform the MCNFP model, with the exception of a small number of cases.
Figure5.3 shows the results for the 200 hotspot case, while Fig. 5.4 contains the
results for the 250 hotspot case. These problem instances correspond to situations
in which the underlying time-space network is unsaturated with patrol cars, and so
many of the integer solutions found with the branch-and-price approach solve at
the root node in a shorter time frame than the MCNFP model. However, when we
increased the fleet size beyond 25 patrol cars, more intensive branching was required

15The computational results for the branch-and-price approach to the MCPRP were produced on a
2.70GHz dual-core processor on a 32-bit operating system with 4.00GB of RAM. All primal and
dual solutions to the linear programs were obtained with CPLEX 12.6. The column generation and
shortest path algorithms, along with the required data structures for the master problem and the
time-space network, were coded using the Java programming language and the Eclipse Integrated
development environment (IDE). The MCNFP model was run from an executable (on the same
operating system) compiled from source code supplied by the authors of [7] and the LEMON C++
libraries using the Microsoft Visual Studio (2012) IDE.
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Fig. 5.3 Comparison of the runtime performance of the MCNFP model with the branch-and-price
approach on a 200 hotspot test problem. The time windows range between 30 and 90min, the fleet
size ranges from 2 to 25 patrol cars and the amount of time window coverage is shown on the
right-hand vertical axis

for the branch-and-price approach, and the MCNFP model began to exhibit better
runtime performance. In fact, we observed that the solution time for the MCNFP
was independent of the number of patrol cars, in contrast to the branch-and-price
approach.

Finally, we generated some further test problem instances on two large-scale
networks which could not be solved by the MCNFP model of [7], but which could
be easily handled by the branch-and-price approach.16 These test problems are the
largest instances of theMCPRP solved to-date. The size of the network grid structure
was 100 × 100min for both networks. The first network (H300_a) contained 300
spatial locations and 300 hotspots, with timewindow lengths in the range 30−90min.
The second network (H500_a) contained 250 locations with 500 hotspots of length
30min, with two hotspots allotted to each location on the network grid.17 The results
are summarized in Table5.1 for problem instances with 2−25 patrol vehicles.18 The
majority of these problem instances were solved at the root node (no branching

16The MCNFP model crashed (due to memory capacity constraints) when we attempted to solve
these large-scale instances.
17The aggregate duration of all the hotspots in H300_a was 17,606min. The aggregate duration
for H500_a was 15,000min. The shift duration in both cases was 8 hours (480min).
18The headings used in Table5.1 are as follows: Car—the number of vehicles. R.Obj.—the objective
function value at the root node. R.Ti.—theCPU time (seconds) at the root node. R.Col.—the number
of columns generated at the root node.No.—the number of nodes explored (fathomed) in the branch-
and-price tree. S.Ti.—the CPU time (seconds) taken to find the integer solution. Hot.—the number
of hotspots visited.
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Fig. 5.4 Comparison of the runtime performance of the MCNFP model with the branch-and-price
approach on a 250 hotspot test problem. The time windows range between 30 and 60min, the fleet
size ranges from 2 to 25 patrol cars and the amount of time window coverage is shown on the
right-hand vertical axis

required). However, given the extremely large size of the underlying time-space
networks, the column generation process was much slower than the previously tested
networks. For example, when H500_a was solved with 25 cars, only two branching
decisionswere required to find an integer solution, but the runtimewas approximately
5min. We again observed that more intensive branching was required as the number
of cars began to saturate each network. For example, we tested H500_a with 48
vehicles, which took approximately 40min to solve with 22 branching decisions
required.

5.10 Conclusions and Future Work

This paper has introduced a branch-and-price framework, underpinned by a specially
tailored time-space network, for obtaining solutions to the MCPRP. We introduced
a number of test problems for benchmarking, consisting of different numbers of
hotspots, time window durations and grid sizes. These test problems were used to
validate our approach against the MCNFP model of [7]. While the MCNFP model
outperforms the runtime efficiency of the branch-and-price approach on small- to
medium-scale problems, it was shown that on large-scale problem instances with
certain fleet sizes, the branch-and-price approach can outperform theMCNFPmodel.
We also introduced two large-scale problems, onewith 300 hotspots and another with
500 hotspots, which could not be solved by the MCNFP model, but which could be



5 A Branch-and-Price Framework for the Maximum … 79

Table 5.1 Summary of computational results for two large-scale networks
Car Test problem H300_a Test problem H500_a

R.Obj. R.Ti. R.Col. No. S.Ti. Hot. R.Obj. R.Ti. R.Col. No. S.Ti. Hot.

2 735 0.6 7 0 0.6 13 676 2.2 16 0 2.2 27

3 1,085 1.3 12 0 1.3 19 995 2.6 20 0 2.6 41

4 1,434 2.2 23 0 2.2 26 1,312 3.6 28 0 3.6 52

5 1,767 3.2 33 0 3.2 32 1,623 7.5 54 0 7.5 63

6 2,096 4.5 48 0 4.5 38 1,930 10.1 74 0 10.1 76

7 2,423 5.2 56 0 5.2 45 2,234 13.6 100 0 13.6 87

8 2,745 5.7 56 2 11.0 51 2,533 16.4 118 0 16.4 98

9 3,067 5.7 60 0 5.7 56 2,829 22.3 155 0 22.3 108

10 3,385 8.1 86 0 8.1 63 3,123 22.8 162 0 22.8 121

11 3,696 7.1 79 1 10.2 68 3,411 27.3 192 0 27.3 131

12 4,007 9.7 105 0 9.7 73 3,695 32.7 229 1 50.5 143

13 4,308 10.7 119 0 10.7 79 3,973 39.1 271 0 39.1 154

14 4,609 14.0 136 0 14.0 83 4,246 44.1 306 3 84.6 166

15 4,900 14.1 152 0 14.1 89 4,519 49.9 346 0 49.9 176

16 5,189 16.6 176 0 16.6 96 4,789 67.0 447 0 67.0 187

17 5,477 18.1 191 0 18.1 103 5,053 63.6 436 0 63.6 198

18 5,764 16.7 180 0 16.7 108 5,313 73.8 507 0 73.8 207

19 6,048 20.5 213 0 20.5 113 5,572 94.4 633 0 94.4 216

20 6,325 23.9 247 0 23.9 117 5,829 93.2 636 0 93.2 229

21 6,602 27.2 279 0 27.2 121 6,083 117.0 764 1 140.5 238

22 6,872 27.4 280 0 27.4 126 6,332 105.8 727 0 105.8 247

23 7,140 27.6 290 0 27.6 130 6,579 130.7 888 0 130.7 258

24 7,408 30.6 316 1 37.2 136 6,823 160.3 1,019 1 201.5 266

25 7,673 27.4 288 0 27.4 140 7,065 224.4 1,374 2 301.4 274

easily handled with the branch-and-price framework. These large-scale problems are
the largest instances of the MCPRP solved to-date.

One avenue for further research of solution approaches to the MCPRP is to inves-
tigate the applicability of the branch-and-price framework to the network model
developed by Dewil et al. [7]. Utilizing the model of [7] within a branch-and-price
framework would not significantly change the structure of the master problem intro-
duced in this paper, except that the packing constraints would correspond to time
sections of the hotspots. The master problem’s objective function would also need
to be modified to incorporate any weights applied to the time sections. The branch-
and-price approach could also be applied to variants of the MCPRP which account
for overlapping shifts and/or different start/end locations for the patrol cars. The con-
sideration of a heterogeneous fleet for the MCPRP is another possible growth path
for the framework introduced in this paper. In this case, we hypothesize that separate
subproblems on distinct and specially tailored time-space networks would need to
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be considered for each vehicle type. We note that if the patrol vehicles do not share
a single transit speed, then Theorem5.1 (see [10]) is no longer valid, and therefore,
the patrol arc construct for the hotspots introduced in this paper would need to be
revised.

Acknowledgements The authors would like to sincerely thank Dr Reginald Dewil (KU Leuven)
for supplying the source code of the Minimum cost network flow problem (MCNFP) model at short
notice.
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3. Çapar İ, Keskin BB, Rubin PA (2015) An improved formulation for the maximum coverage
patrol routing problem. Comput Oper Res 59:1–10

4. Chircop PA (2017) Column generation approaches to patrol asset scheduling with complete
and maximum coverage requirements. PhD thesis, University of New South Wales, Sydney,
Australia

5. Chircop PA, Surendonk TJ, van denBrielMHL,Walsh T (2013) A column generation approach
for the scheduling of patrol boats to provide complete patrol coverage. In: Piantadosi J, Ander-
ssen RS, Boland J (eds) Proceedings of the 20th international congress on modelling and
simulation. Modelling and Simulation Society of Australia and New Zealand, pp 1110–1116

6. Desrosiers J, Lübbecke ME (2005) A primer in column generation. In: Desaulniers G,
Desrosiers J, Solomon MM (eds) Column generation. Springer, US, pp 1–32

7. Dewil R, Vansteenwegen P, Cattrysse D, Oudheusden DV (2015) A minimum cost network
flow model for the maximum covering and patrol routing problem. Eur J Oper Res 247:27–36

8. Ford LR, Fulkerson DR (1958) A suggested computation for maximal multi-commodity net-
work flows. Manag Sci 5:97–101

9. Gilmore PC, Gomory RE (1961) A linear programming approach to the cutting-stock problem.
Oper Res 9:849–859

10. Keskin BB, Li SR, Steil D, Spiller S (2012) Analysis of an integrated maximum covering and
patrol routing problem. Transp Res Part E(mohana) Logist Transpo Rev 48:215–232

11. Király Z, Kovács P (2012) Efficient implementations of minimum-cost flow algorithms. Acta
Univ Sapientiae, Inform 4:67–118

12. Li SR (2012)Vehicle routingmodels in public safety and health care. PhD thesis, TheUniversity
of Alabama TUSCALOOSA

13. Vanderbeck F (2005) Implementing mixed integer column generation. In: Desaulniers G,
Desrosiers J, Solomon MM (eds) Column generation. Springer, US, pp 331–358

14. Vansteenwegen P, SouffriauW, Van Oudheusden D (2011) The orienteering problem: a survey.
Eur J Oper Res 209:1–10



Chapter 6
Linear Complexity Algorithms
for Visually Appealing Routes
in the Vehicle Routing Problem

Philip Kilby and Dan C. Popescu

Abstract The vehicle routing problem consists of finding cost-effective routes for
fleets of trucks to serve customers. Logistics managers often prefer routes to also
be “visually appealing” because of the better flexibility they provide in coping with
small alterations, required due to last-minute or unforeseen events. Compactness of
the routes is a key desirable feature, and it can be accomplished by minimizing the
area enclosed by the routes. A common approach in the literature relies on imposing a
penalty on the area of the convex hull. We propose to use new features which are well
correlated with the convex hull area but are significantly easier to implement, having
O(n) computational complexity instead of O(nlogn). By accepting only a minimal
loss of quality with respect to a primary objective function, like the routes’ total
length, we show that area-type penalties can be effective in providing good guidance:
construction methods which are based on insertion are naturally steered towards
routes displaying more attractive shapes. Used in conjunction with an adaptive large
neighbourhood search, our new proposed features lead to routes that exhibit similar
compactness compared to using a convex hull area penalty. We also achieve good
separation between routes.

Keywords Behaviour tree, Air combat, Genetic programming

6.1 Introduction

The Vehicle routing problem (VRP) consists of making optimal use of a fleet of
vehicles, in order to serve a pool of clients for their delivery needs. Optimality is
generally defined in terms of minimizing a cost function. Typically, the cost incor-
porates measures of variable quantities such as distance travelled, elapsed time, fuel
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consumption. The VRP is an important and well-studied problem and has received
much attention in the literature. See [1] or [2] for an overview of this research.

Minimal cost may not be the only desirable feature for the routes of a VRP
solution. It is often desirable for the routes to also display several features of visual
appeal: to be either non-overlapping or have small intersections; to be compact and
roundish; and not self-crossing. These additional features are therefore important and
in practice fleet logistics managers often prefer to slightly sacrifice cost efficiency in
order to get VRP solution with such “nice looking” routes.

The area of the convex hull covering all points in the route is a common measure
of route compactness [3]. The convex hull is the smallest simple polygon covering
all customers in the route, excluding the depot. However, the best-known algorithms
for computing the convex hull area have O(nlogn) computational complexity. Clas-
sical examples include Graham’s scan [4] and Jarvis’s March [5] algorithms. The
monograph by Preparata and Shamos [6] contains a comprehensive overview of the
topic, and also shows that the related problem of finding the diameter of a set of point
has similar computational complexity.

We are not aware of any measures which specifically address the “roundness” of
a route. This paper does not deal with self-crossing.

Several solutions have been proposed in the literature to address the problem of
shape quality for VRP. They are based on the general idea of imposing some addi-
tional penalties—so-called soft constraints—on routes, in order to favour the desired
shape characteristics. Soft constraints could include linear compactness measures,
such as assessing for each route how much locations deviate from the route centre,
or measures to estimate the extent of the areas covered by individual routes, or some
topological features like the number of self-crossings of the routes. While those fea-
tures have proven useful in achieving good outcomes for properly shaping resulting
routes, they can also have higher computational complexity, which can become a
drawback when dealing with VRP problems of large size.

In this paper, we propose several features of low computational cost, aimed at act-
ing as soft constraints for “nice looking” routes. Our paper is organized as follows.
Section6.2 contains a brief literature review. We present in detail our new proposed
soft constraints in Sect. 6.3 and in Sect. 6.4 we outline how they are integrated into
the optimization process. Section6.5 describes our VRP solver Indigo used for con-
ducting the experiments, and the experimental results are analysed in Sect. 6.6. We
present our conclusions in Sect. 6.7.

6.2 Existing Methods

Soft constraints aimed at improving the visual attractiveness of routes resulting from
a VRP solution are proposed in [7] by Poot et al. Several measures for compactness
and low overlap for routes are derived with reference to the geometric (or gravity)
centre of the routes. One measure consists of counting how many locations have
another route centre closer than their own route centre; ideally this number should
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be as low as possible. In a similar vein, one could aim to minimize either the average
distance to the centre of the route, or the average distance between all locations in a
route. Another measure of overlap counts the number of locations that are contained
within the convex hulls of a different route. Topological measures proposed in the
same paper include the number of self-crossings within routes and the number of
crossings between different routes. The measures are evaluated separately from the
classical measures such as time or distance travelled, and prove to provide routes
with more clustered locations.

In [8] the compactness of a route is assessed with respect to a differently defined
centre, chosen from existing locations to be served by that route. This centre, termed
median of the route, is defined as the location that minimizes the sum of the distances
of all other locations in the route to this particular location. Using the median centre
one can derive shape measures, such as the number of locations that are closer to the
median of another route than to the centre of their own route, or average distance to the
route centre. This paradigm has the advantage of working in a coordinate-free setup
when only distances between locations are known and no coordinates are available.
However, it may also raise some problems due to the possible lack of stability of the
median to small variations in location positions. This could be the case, for example,
if the locations on a route are evenly distributed on a circular path. These measures
are incorporated into an interactive procedure, which allows an experienced operator
to initialize a solution and then iteratively guide it towards an optimal one, which
would satisfy both cost efficiency and visual attractiveness constraints.

The paradigmproposed in [9] is to incorporate both the standard efficiency costs of
a route and the visual attractiveness costs of a route into a single scalar function. This
objective function is then used in conjunction with a guided local search algorithm
[10] to produce VRP routes with visual attractiveness, at the expense of only minor
deviation from optimality.

6.3 Linear Complexity Soft Penalties

In this section, we describe several soft constraints of low computational cost, which
can be used to influence the shapes of the routes. In the following we assume that a
route R is a path through a set of n planar locations L : {Li = (xi, yi), 1 ≤ i ≤ n},
where xi, yi are the spatial coordinates. Let x̄ = 1

n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi denote

the coordinates of the geographic centre of L . We denote by D(L ) the Euclidean
distance matrix of the set L : D(L )ij = ||Li − Lj||, where ||.|| denotes the usual
Euclidean norm. All our proposed constraints have linear complexity as a function
of the number of locations,O(n). The first fourmeasures presented are proxies of area
estimation, while the last two are estimators of “roundness”. Figure6.1 encapsulates
pictorial representations corresponding to the first three area features in the top row,
and of the two roundness features in the bottom row.
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Fig. 6.1 Illustrations of soft constraint features. Top row, left to right: rotated bounding box,
maximal quadrilateral area and covariance ellipse. Bottom row, left to right: differential area and
eccentricity

6.3.1 Rotated Bounding Box Area

The bounding box of the setL is the rectangle [xmin, xmax] × [ymin, ymax], where
xmin = minni=1(xi), xmax = maxni=1(xi) and similarly ymin = minni=1(yi), ymax = maxni=1
(yi). Because the bounding box establishes tight limits on both the x and y directions,
its area gives a reasonable estimate of the area covered by the points in the set L .
Nevertheless, because this estimate is only made with respect to two pre-defined
orthogonal directions, the area of the bounding box can misrepresent the area ofL .
This can be easily seen from the example shown in the top row leftmost diagram
of Fig. 6.1, where the rectangular bounding box, drawn in black colour, is covering
considerably more area than the set of four points it bounds. This situation could
be improved upon if we were allowed to gradually rotate the bounding box sides,
such that they do not necessarily align with the coordinate axes. Computing a rotated
bounding box by angle θ is easy, by taking the same min an max coordinate limits
on the rotated set of points:Lθ = (xicosθ + yisinθ,−xisinθ + yicosθ), 1 ≤ i ≤ n}.
We remark that because the set L lies inside any such rotated bounding box, the
area of the bounding box will always be larger than, or equal to, the area spanned
by L . Therefore, if we compute several rotated bounding boxes, the best area esti-
mate would result from the minimum area of all estimates. One such rotated box is
shown in the same diagram, drawn with dash lines. Ideally, we may wish to rotate
the bounding box continuously, to find an optimal estimate. In practice, for com-
putational efficiency reasons, we need to settle for just a few discrete rotations. We



6 Linear Complexity Algorithms for Visually Appealing … 85

propose to use just two bounding boxes: the original box (no rotation) and one more
box with 45◦ rotation. Our choice is motivated by the observation that, by allowing
for the extra 45◦ rotation, the underestimation of the diameter of the setL is reduced
from a worst case of 41% (as exemplified by the box drawn with continuous line) to a
worst case of about 8%. The only computational penalty is the approximate doubling
of the O(n) time, to compute two bounding boxes instead of just one.1

6.3.2 Approximate Square Diameter

The diameter of the setL is defined as the largest distance between any pair of points
in the set. As previously pointed out, an exact computation of the diameter has com-
putational complexity O(nlogn). We propose to use an “approximate diameter” of
computational complexityO(n) by using the previously defined approximate bound-
ing box. This is defined as the maximum of two distances: the distance between the
two points ofL defining the limits of the x direction of the box, and the distance of
the two points ofL defining the y direction of the box. For example, with reference
to the diagram in the leftmost position in the top row of Fig. 6.1 this would lead to the
distance between points P1 and P3. While this is an approximation, in practice the
error turns out to be quite small. Our tests over more than 10,000 simulated random
sets of point, of sizes ranging from 10 to 100, indicate that on average the error in
estimating the true length of the diameter is less than 2%. In fact, in more than 70%
of the cases the approximate diameter method actually found the real diameter.

We could use this approximate diameter as a soft constraint feature. However, in
this study we prefer to use the square of this approximate diameter, which we denote
by Diam2 as a soft feature, to obtain an area-like feature similar to the other soft
constraints we propose.

6.3.3 Maximal Quadrilateral Area

The idea of the Maximal Quadrilateral Area soft penalty is to approximate the area
covered by the set of points L by the area of a more suitably fitted quadrilateral
than a rectangular bounding box. This is exemplified by the diagram in the middle
of the top row in Fig. 6.1, for a set of six points. First, we determine two points
D1 and D2 which define the approximate diameter of the set L , as described in the
previous section. The straight line throughD1 andD2 splits the plane into two halves.
Assuming there are points of L in each of those two half planes, we then choose

1We could of course continue this process of angle orientation refinement. However, it turns out that
adding one more level of angle subdivision would require considering another four rotations, then
another eight rotations for the next level of refinement and so on. We believe any such additional
computational effort is not justified for achieving no more than 8% additional accuracy.
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from each half plane the point that is farthest away from the line through D1 and
D2, thus getting two new points, say R1 and R2. The points D1,D2,R1,R2 define the
vertexes of the maximal quadrilateral. For those cases when one of the half planes
does not contain any point of L , our maximal quadrilateral reduces to a triangle.

6.3.4 Covariance Ellipse Area

The covariance ellipse is a “best fitting” ellipse to the set of locations of the route.
It is a concept often used in pattern recognition problems for shape and orientation
estimation, see for example [11]. The ellipse is derived from the positive definite
matrix CL , the covariance matrix of L :

CL = 1

n

[
mxx mxy

mxy myy,

]

(6.1)

where

mxx =
n∑

i=1

(xi − x̄)2 myy =
n∑

i=1

(yi − ȳ)2 mxy =
n∑

i=1

(xi − x̄)(yi − ȳ)

are the second-order central moments of the coordinates. The centre of the ellipse
is located at (x̄,ȳ). The eigenvectors of the covariance matrix give the orientations
of the two axes of the ellipse, and the square roots of the corresponding eigenvalues
determine the sizes of the axes. The area of the covariance ellipse is given by

AL = 2π

n

√
mxxmyy − m2

xy (6.2)

and has O(n) computational complexity, which is the complexity for calculating the
first- and second-order moments. We remark in passing that the covariance ellipse
area can also be calculated directly from the Euclidean distance matrix D(L ), how-
ever with the penalty of increasing the computational cost to O(n2). This could be
useful in situations when only distances between locations would be available, and
no coordinates are known.

The covariance ellipse corresponding to a set of six locations is shown in the
leftmost diagram of the top row in Fig. 6.1.

6.3.5 Differential Area

The differential area is an estimator of “roundness” which is also sensitive to scale.
It is defined as the difference between the area of the smallest circle that contains the
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covariance ellipse of the set of location and the largest circle that can fit inside the
same ellipse. The two circles defined above have as diameters the major and minor
axes of the covariance ellipse and have their centres at the centre of the ellipse.
The differential area is therefore the area of the circular crown bounded by the two
circles. It measures roundness because low values for this feature indicate roundish
shapes, while higher values indicate elongated shapes. If the geometric configuration
defined by the points inL is spread out unevenly, therewill be a significant difference
between the sizes of the two axes of the covariance ellipse. In such a case, like the
one pictured in left diagram in the bottom row of Fig. 6.1, the differential area will
be relatively large. Conversely, if the pattern ofL is evenly spread in all directions,
the covariance ellipse will be close to a circle; its two axes will be approximately
equal and therefore the differential area would be relatively small. It is nevertheless a
feature that takes scale into account: if the patternL scales up uniformly by a linear
scaling factor s, then the differential area scales up by s2. The differential area of
L can be easily computed in terms of the central moments defined in the previous
section as

dAL = 2π

n

√
(mxx − myy)2 − 4m2

xy = 2π

n

√
�, (6.3)

where we have used the abbreviated notation � = (mxx − myy)
2 − 4m2

xy.

6.3.6 Eccentricity

The eccentricity of the setL is another measure of roundness, also derived from the
covariance ellipse. It is defined as the eccentricity of the corresponding covariance
ellipse. This is a classical geometry notion defined as

EL =
√

1 − b2

a2
, (6.4)

where a and b are the lengths of the major and minor axes of the ellipse, respectively,
as shown in the rightmost diagram of the bottom row in Fig. 6.1. The values of the
eccentricity are in the range [0, 1], with values close to 1 indicative of an elongated
shape and values close to 0 indicative of a roundish shape. As opposed to the dif-
ferential area, the eccentricity value is insensitive to scale. With the notations of the
previous sections, the eccentricity of the set of locations L can be computed from
the central moments as

EL =
√

2
√

�

mxx + myy + √
�

, (6.5)

which again involves only O(n) computational complexity.
The two diagrams of Fig. 6.2 illustrate a comparison of all area-based soft con-

straints, for both a set of 6 locations (upper diagram) and a set of 14 locations (lower
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Fig. 6.2 Comparative illustration of the soft features for a 6 points set (upper diagram), and a 14
points set (lower diagram)

diagram). The convex hull area has also been included, shown with magenta colour.
We notice that the rotated bounding box generally tends to overestimate the area
covered by the set of locations L . The convex hull is better at establishing tighter
border limits, while the maximal quadrilateral has a tendency of underestimating
the spread of L . The covariance ellipse is quite good at estimating the spread of
when the point in L is concentrated around the border, as in the case in the upper
diagram of Fig. 6.2. It can however underestimate area when there are many interior
points, as is the case in for the example in the lower diagram of Fig. 6.2, because the
corresponding central moments of the covariance matrix are drawn towards lower
values by the interior points.

In the end of this section, we point out that all soft features analysed so far
are characterized by a non-negative value, and that the minimization of this value
generally leads to more appealing shapes: either more compact or more roundish.

6.4 VRP Guided by Features

We use the features outlined in the previous section to guide VRP solutions towards
more appealing routes. Our aims are as follows:

1 : To have a very simple and efficient computational model. Therefore, just one
of the features presented in the previous section is calculated for all generated
routes and used to guide the quality of a VRP. No crossmeasures between routes,
such as area overlaps or crossing points between different routes are calculated
during the search.

2 : To continue to place emphasis on the original objective function of the VRP
optimization model, which is typically a cost associated with the size of the
routes. However, in order to accommodate adjustment towards better values of
the soft constraints, we are prepared to sacrifice the optimality of this objective
function by a small amount.
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Suppose a VRP solution consists of a set on m routes Ri, 1 ≤ i ≤ m. Without any
soft constraints, a typical primary objective function to minimize would be

O =
m∑

i=1

|Ri|, (6.6)

where |Ri| denotes the length of route i.
We propose to incorporate the soft constraints by minimizing instead a “blended”

objective function Ob defined as

Ob = O + αS , (6.7)

where S could be any of the soft features previously described, and α is a positive
weight controlling the degree of blending. MinimizingOb does not, in general, result
in a minimization of the primary objective O; however, we show that, by allowing
for a small increase in the value ofO , one can achieve routes displaying significantly
better visual appeal. Quantitatively, we measure the visual appeal by two factors: the
area size of the mutual intersections of the routes and the total area of the convex
hulls of the routes. While the optimization formulation of (6.7) does not explicitly
incorporate any of those twomeasures, our experiments show that with proper choice
of the blending weight α significant decreases for both intersections and convex hulls
can be obtained. However, due to the dependence on the magnitude of the objective
value, some care is required in the selection of α.

6.5 Experimental Context

The performance of these “visual appeal” measures was tested within the context
of a VRP solver called Indigo [12]. The operation of Indigo is essentially identical
to the Adaptive large neighbourhood search (ALNS) procedure described by Ropke
and Pisinger [13]. Although Indigo is capable of more specialized visit selection and
ordering heuristics, it was tuned in a manner that replicates the ALNS procedure of
[13].Although [13] focuses on the Pickup andDelivery problemwithTimeWindows,
the ALNS procedure has been shown to be effective in a large number of vehicle
routing contexts [15–22].

Starting with a solution created using a construction technique, ALNS then uses
a “destroy and reconstruct” iteration to improve the solution. In the destroy phase, a
number of visits are removed from their current position in the solution. A reconstruct
technique is then used to re-insert them back into the solution. The destroy phase
can use one of a number of methods to select visits for removal. For instance, one
method is based on geographic neighbourhood. One visit is chosen at random as a
starting point. Visits are then chosen at random with a bias inversely proportional to
the distance from the originally selected visit. More details are available in [13].
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Oneof a number of reconstruction techniques can be selected to repair the solution.
A simulated annealing [14] procedure is then used to conditionally accept the new
solution as incumbent. The destroy and re-create iteration is repeated until a stopping
criteria is met. In the runs reported here, we use the same as [13]: 25,000 iterations.
Both the original construction and the subsequent reconstructions, use a successive
insert procedure.At each iteration, oneunscheduled customer is selected, and inserted
into the solution. The visit to be inserted is chosen by heuristics. The visit is then
inserted in the position that increases the objective by the smallest amount.

A number of heuristics are available to choose the visit to be inserted. For instance,
the method may choose the visit that increases the objective by the least amount
(the so-called min insert cost selection. Ropke and Pisinger also use “regret”-based
methods. A 2-regret method looks at the difference between the best and second
best insertion points for a customer. The customer to be inserted is the customer
with the maximum regret—i.e. the one with the most to lose if they don’t get their
preferred position. In 3-regret, the costs of best, second best and third best positions
are taken into account. A 4-regret is defined analogously. The other insert heuristic
used by Ropke and Pisinger is a random selection of customer to insert. All customer
insertion procedures insert the customer in the position that increases the cost by the
smallest amount.

The only difference between the standard ALNS algorithm and our “visually
appeal” algorithm is that a penalty term is added to the objective. That is, when the
minimum insert cost or regret feature considers the insert cost, it looks at the blended
objective function defined in (6.7), rather than the usual objective defined in (6.6).

Note that in order to select the best customer to insert and the best position
to insert that customer, we must calculate the change in cost for insertion of that
customer at the given position.Using the standard objective (6.6), this is a simpleO(1)
calculation. Using objective (6.7), however, requires us to calculate the change in our
areameasures induced by including the new customer. This may involve determining
whether the customer is within the convex hull and if not then the increase in the
area of the convex hull if the point were to be included. Using a true convex hull,
these are O(n) and O(n log n) calculations. Using our surrogate methods, these can
both be achieved in constant time.

We use the term guidance to describe the way that augmenting the objective with
a term based on the incremental penalty defined by the features we have described
can guide the (re-)construction heuristic towards a solution that exhibits the desired
property.

6.6 Experimental Results

We have applied the minimization strategy of (6.7) for several VRP scenarios taken
from Taillard et al. [23] and also for several time-constrained Solomon instances
[24], using the features described in Sect. 6.3.
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Indigo requires the number of vehicles available as input. For the Taillard
instances, this number is set at the number of vehicles in the best-known solution, as
reported in CVRPLIB [25]. Only the “Random” (“R”) instances of the Solomon
set were used for testing; the solutions to the clustered (“C”) instances already
exhibit compact, non-overlapping structure. Similarly, the random/clustered (“RC”)
solutions already exhibit good “visual appeal”. The number of vehicles available
was based on best-known values from [26]. However, due to the way the Solomon
instanceswere created, using only theminimumnumber of vehicles in these instances
sometimes severely limits the pool of feasible routes, which in turn limits the extent
to which solutions can exhibit visual appeal. Therefore, one additional vehicle was
made available in each instance.

For each scenario a range of blending weights α was used, starting from α = 0
which corresponds to “no blending”. The values of the parameters for the base case
(α = 0) have then been used to normalize all relevant parameters, in order to make
the interpretation of the results corresponding to values of (α > 0) more intuitive.

For each experiment, an upper tolerance limit, typically between 1 and 15%,
was imposed on how much increase in the value of the primary objective function
was acceptable. Only the VRP solutions for weight values α that met this limit
were considered. In viewing these solutions, it was observed that the reduction in
convex hull area was very similar. However, even though not directly encouraged,
the methods also reduced the overlap between convex hulls. As this is also a highly
desirable feature of visually appealing routes, we favoured routes with minimal
intersection area. We use αopt to designate the value of the weight giving the solution
with minimal convex hull intersection. Our experiments show that the value αopt

depends on the type of soft feature selected. A reasonable value can be obtained in
a few run of the solver. This value can be used for similar instances but must be
recalculated, for instances, with different characteristics, e.g. time windows.

We ran experiments over 13 VRP problems without time windows and over 23
problems with time windows. The results in each category have followed similar
trends. We generally found that when the blending feature S was chosen to be an
“area-like” feature, we were able to obtain significantly better looking routes, both in
terms of routes’ intersection area and routes’ total convex hull area, for modest losses
in primary objective optimality. However, when the blending featureS was chosen
to be a “roundness” feature—either eccentricity or differential area—the routes did
not improve in quality, even for significant losses in primary objective optimality.
The figures below show in detail two of the optimization results using the function
Ob, for the value of the weight αopt for all area-like featuresS . In these experiments,
the upper limit increase allowed on the primary objective function O was 5%.

In Fig. 6.3 are shown the original, unbiased results of a VRP problemwithout time
windows, having 150 locations to be served. The diagrams on the left-side display
the corresponding routes, which start at the depot location and generally follow
minimal geometric paths, because of the absence of time window constraints. For
clarity purposes, the last leg of each route, which consists of the vehicle returning
to the depot, has not been marked. The corresponding diagrams on the right-side
display the convex hulls of the routes. A comparison of the diagrams in the left
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Fig. 6.3 Optimization
results corresponding to the
problem in file r150b

Pure primary objective (no blending)

Objective blended with Convex Hull Area

Objective blended with Box Area

Objective blended with Diam2

Objective blended with Quadrilateral Area

Objective blended with Ellipse Area
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Table 6.1 Parameters corresponding to the optimization results of Fig. 6.3

Feature αopt Objective Inters Conv hull Ecc

Conv hull 0.5 1.045 0.06 0.24 1.01

Box area 0.5 1.047 0.05 0.29 0.96

diam2 0.05 1.048 0.05 0.30 0.91

Quad area 1.00 1.048 0.01 0.26 1.02

Ell area 0.0075 1.014 0.28 0.66 1.01

column reveals that indeed, as imposed, there is no significant change in the value
the primary objective function—the routes’ total length. However, both the routes’
convex hull mutual intersections and the total area of the routes’ hulls have been
significantly decreased by optimizing the function Ob, as opposed to the primary
functionO . This is clearly seen by comparing the first diagram in the second column
of Fig. 6.3 against the other diagrams in the second column. The results in Table6.1
briefly quantify these results. It is most interesting to remark that all area-like features
help in achieving a spectacular reduction in the routes intersection area. It may look,
based on this particular example, that the ellipse area feature is less suitable than the
other area-like features at driving an attractive looking solution. This, however, turns
out to be just an artefact of imposing the 5% limit on the loss of primary objective
optimality, which is admittedly a bit artificial. If an 8% limit is imposed instead, the
results for all features, including the ellipse area turn out to line up in pretty much the
same range: more than 95% drop in intersection area, more than 70% drop in total
convex hulls area.

Figure6.4 shows the optimization results for a VRP problem with time windows,
on 100 locations. As expected, the time window constraints are reflected in the
geometrically more intricate routes, with lots of self crossings. With respect to the
visual aspect of the routes, we notice that the results are in the same vein as those
of the unconstrained problem of Fig. 6.3: that is, an optimal blending of area-like
features into the optimization function brings considerable improvements in both
the routes’ intersection areas and the routes convex hulls total area. The quantitative
results of the optimization results for this VRP problem are summarized in Table6.2.
We notice that the general improvement in intersection area is again by more than
90%, while the drop in total convex hull area is still relevant, around 40%.

The last column in Tables6.1 and 6.2 reveal that roundness, as defined by the
eccentricity soft feature, does not correlate well with the decrease in area. For the
optimal solutions, there is either insignificant appreciation ormore often, somedepre-
ciation of the roundness factor.

Statistics on the originalVRP solutions for all experiments are shown in the graphs
of Figs. 6.5, 6.6, 6.7 and 6.8. Figure6.5 shows the average decrease in the routes
intersection area for the originalVRPsolution, for all problemswithout timewindows
constraints. The plots are drawn for several thresholds of acceptable increase in
the primary objective function, ranging from 1 to 15%. We can see that for less
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Pure primary objective (no blending)

Objective blended with Convex Hull Area

Objective blended with Box Area

Objective blended with Diam2

Objective blended with Quadrilateral Area

Objective blended with Ellipse Area

Fig. 6.4 Optimization results corresponding to the problem in file r210
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Table 6.2 Parameters corresponding to the optimization results of Fig. 6.3

Feature αopt Objective Inters Conv hull Ecc

Conv hull 0.2 1.034 0.00 0.50 1.15

Box area 0.05 1.025 0.03 0.54 1.03

diam2 0.02 1.039 0.04 0.59 1.07

Quad area 0.1 1.035 0.03 0.53 1.10

Ell area 0.0075 1.038 0.08 0.61 1.10

Fig. 6.5 Average
normalized intersection area
of original routes, over
solutions of VRP without
time windows
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than a 5% increase in the primary objective function all area-based soft features
help towards guiding towards VRP solutions on significantly smaller intersection
of mutual routes. In fact, with the exception of the ellipse area, all other features
help reduce the intersection, on average, by more than 90%. The slightly different
performance of the ellipse area soft feature can be explained by the fact that it
underestimates bounding area by incorporating interior points in the area count,
which may drive the separation of adjacent regions at lower speeds. Figure6.6 shows
the corresponding average decrease in convex hull areas for the same set of VRP
scenarios. As expectedwe notice that using the convex hull area itself as a soft feature
gives the best results, but this comes at the expense of having to compute a feature
having O(nlogn) computational complexity. We can also remark that quite similar
results are obtained by using either the box area, quadrilateral area or the Diam2

feature, all of which have O(n) computational complexity.
Figures6.7 and 6.8 show the similar statistics over the 23 problems with time

window constraints. Again we notice the very significant drop in the routes’ inter-
section areas if an extra penalty of about 5% in the primary objective function can
be tolerated. The bounding box area is performing almost as well as the convex hull
area, followed closely by the quadrilateral area. There is also improvement in the
total area of the convex hulls of the routes, as can be seen from the graphs in Fig. 6.8,
although the decrease is less steep than for the unconstrained scenarios of Fig. 6.6.
Overall, the statistics for both types of problems recommend the box area as the pre-
ferred choice of soft constraint with O(n) computational complexity, for obtaining
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Fig. 6.6 Average
normalized convex hull area
of original routes, over
solutions of VRP without
time windows
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Fig. 6.7 Average
normalized intersection area
of original routes, over
solutions of VRP with time
windows
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Fig. 6.8 Average
normalized convex hull area
of original routes, over
solutions of VRP with time
windows
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routes of good visual appeal. It is followed closely by the quadrilateral area, while
Diam2 still appears to be a reasonable choice.

When we have run experiments similar to those summarized in Figs. 6.5, 6.6, 6.7
and 6.8 using both eccentricity and differential area, for the soft penalty featureS of
(6.7). The results have not been encouraging. By using the eccentricity soft features,
hardly any improvement has been achieved both in terms of intersection area or total
convex hull area, by accepting a deterioration in the primary objective function of
15%. Under the same conditions, the differential area feature has performed slightly
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better, however only relatively modest gains were achieved: on average, less than
25% decrease in intersection area, and less than 10% decrease in total convex hull
area. This is not very surprising, as the roundness measures do not directly penalize
area, and hence cannot provide guidance towards compact routes.

To summarize, we propose the following paradigm for generating VRP solutions
with an increased visual appeal:

1 : Choose an acceptable threshold of depreciation in the primary objective function
O to be minimized, and a low computational cost soft constrained feature S
(e.g. box area).

2 : Run the VRP optimization on the primary objective to get the best solution
without soft constraints.

3 : Run the VRP optimization on the blended objective function Ob for a discrete
number of the weight α, suitably chosen to match the problem. Choose the best
visually appealing VRP solution that still matches the depreciation threshold
on O .

6.7 Conclusions

Wehaveproposed anewparadigm for generatingVRPsolutions havingvisual appeal.
The visual appeal ismeasured primarily in terms of low intersection between the areas
covered by different routes, and also by the total size of the convex hulls of the routes.

Our method requires the calculation of soft constraints, which have O(n) com-
putational complexity and can therefore easily be integrated into intensive ALNS
search. The soft features are used to adjust the primary objective function, which
helps guide the search towards routes with better visual appeal. Our soft features are
also much easier to implement than the canonical convex hull.

We have also described how insertion-based reconstruction techniques embedded
in an ALNS method can be guided by our measures of visual appeal to construct
solutions that exhibit the desired properties.

Our experimental results show that by using area-type soft constraints to adjust
the objective function to be optimized, very significant gains in visual appeal can be
obtained for only minor losses in optimality as defined by the VRP primary objective
function. The experiments have also demonstrated that the use of roundness features
as soft constraints does not guide the search towards VRP solutions of increased
visual appeal.
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Chapter 7
Prioritizing Autonomous
Supply—Comparing Selection
by Marginal Analysis and Neural Nets

Gregory D. Sherman and Mitchell Mickan

Abstract When managing inventory or supply systems, it is important to make
good choices about which stock to prioritize over others. We can improve the overall
availability of the supplied systems by making optimal choices on which inventory
items should be allocated to meet demands. In this paper, we will show howmachine
learning algorithms can be used to prioritize inventory. The developed algorithms
were tested on a real data set and the improvement in inventory allocation measured.
Machine learning is a powerful technique for transforming inputs to outputs in order
to best achieve a set goal. It has many applications in areas where there is an abun-
dance of data, and where the resulting decisions can be measured. As such inven-
tory management is a suitable area of application, in particular the prioritization of
supply. Such an approach is even more relevant to those inventory models that repre-
sent autonomous processes. The models we are interested in are those relating to
system availability and that use item backorder calculations. These models rely on a
traditional prioritization approach known as marginal analysis, otherwise known as
a process of marginal allocation using a greedy algorithm. Because marginal anal-
ysis does not take into account performance over time, nor complex relationships in
data sets, there may be potential for a machine learning algorithm to provide better
results if it can learn to exploit both temporal and relationship data. The benefit of
such an improvement is the value of availability generated and cost savings made in
the supply network.
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7.1 Introduction

This paper briefly reports on an exploration of various artificial neural network
machine learning (ML) algorithms and applies it directly to the prioritization process
that allocates stock in supply chains. This differs from many other approaches in the
literature [1] that tend to apply machine learning to demand forecasting and then
apply marginal analysis as a prioritization method. We hope to find when or under
what conditions (given exemplar data sets) the machine learning approach of item
selection performs better than marginal analysis at supporting system availability.

The inventory models we focus on are those system based spares provisioning
models that attempt tomaximize availability across a collectionof items. Suchmodels
are commonly found indefence supply chains, the aerospace industry, health industry,
disaster relief and large-scale maintenance sustainment practices. These models do
this by trying to reduce the expected backorder (EBO) of items. A backorder is an
order for a good or service that cannot be filled at the current time due to a lack of
available supply. There is usually a delay (lead time) involved in getting this item to
stock and ready supply.

We describe the types of modelling that together allow experimentation to test the
efficacy of machine learning in the prioritization domain of supply. There are four
parts to themodelling; the abstraction of the physical system to bemodelled, the simu-
lation of the queueing and backordering processes, the prioritizationn component and
the ML algorithms.

7.1.1 The Modelling of a Simple Physical System

Figure 7.1 shows the flow of items between inventory and the supply line which is for
our purposes the delivery system to the end user for consumption. The autonomous
vehicle is used to ready supplies (items) for the supply line. We have a demand data
set that the supply line requires. There are two parts to the problem: stocking the
inventory—known methods exist (may begin with infinite supply for simplicity) and
loading the autonomous vehicle (which items to load) set by a constraint (defined
by data and requirements of the supply line). The latter is the one we focus on here

Inventory Autonomous vehicle Supply line

Fig. 7.1 Flow of items from inventory to supply line
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but use an inventory stocking method from spares provisioning. The question should
then arise about how to prioritize the selection and movement of items (in each time
step) for the autonomous vehicle. The prioritization selection method could include
either marginal analysis, random selection, one based upon machine learning or a
combination of these.

7.1.2 Queueing and Backordering Modelling

In this section, we break down the problem to bemodelled into its processing compo-
nents. The models here are intended to simulate over a set discretized time period
(usually 120 time steps). In each time step, there is a new set of demands and, over
the entire time period, there will be a complete set of these for the time realization.
However, in this model, there is expected to be at times unmet demand from previous
time steps. This is because there is a constraint on howmuch the autonomous vehicle
can move in a particular time step. Given the two sources of demand, we need to
prioritize which items can be moved in the next time period by the vehicle that leads
to the best performance of the system. This leads to two important calculations that
need to be defined, the performance measure itself and the metric that determines
selection.

An important metric here is the expected backorder which in our model is denoted
EBOi for an item i. The EBO value is calculated using the following equation:

EBOi(s) =
∞∑

x=s+1

(x − s)P{DI = x}, (7.1)

where P{DI = x} is the probability of having x orders due in. This is calculated using
a Poisson probability mass function (PMF) and the value s in this case represents the
number of items that should be ready for delivery [3]. To avoid summing to infinity
EBOi is approximated by summing up to the maximum order size for item i, with
little loss of accuracy. The equation for system availability is taken from “Optimal
Modelling of Inventory Systems” [2] which is given by

A =
I∏

i=1

(
1 − EBOi(si)

NZi

)Zi

. (7.2)

However, due to model restrictions, we make an approximation of this avail-
ability calculation. We first assume the values of Zi are all set to 1. This means each
item has an independent failure and replacement requirements and is reasonable
because we do not know how they are to be used in service. The second is by using
logarithm approximation in which the equation for availability can be calculated
by using a logarithmic version and converting back to avoid numerical errors (i.e.
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log(1−a) = −a−0.5a2… can be approximated by dropping terms a2 and higher).
Lastly, the value for N which represents the number of systems does not matter as it
is simply a scalar multiplier. We can assume we are supporting one system. Hence,
if we maximize the following simplified backorder calculation, then we are maxi-
mizing availability. An analogue for availability is the backorder equation given in
the following approximation.

−
I∑

i=1

EBOi(si). (7.3)

We now use this expression for availability for the purposes of this paper. By
using this approximation, some model accuracy is lost. However, the overall goal of
the project is not to have a highly accurate model but to compare the performance of
marginal analysis versus a machine learnt algorithm.

Marginal analysis is a method for decision-making that simply takes the value
of an expected return and divides it by some cost to get the return per cost value
([4]—MALLOC). After applying this to all possible decisions the decision that has
the highest return per cost is chosen. This is repeated until you have reached the total
allowed cost. In our case, we use the availability as the value metric and substitute
cost as either the weight or just the number of items (depending on the simulation
being run). Reducing the dependency to only the backorder calculations focuses on
the significance of any findings of improvement in a ML algorithm for this marginal
analysis (that uses EBO values for items).

7.1.3 The Simulation

To accurately measure the performance of various stock allocation methods, an inde-
pendent simulation had to be created. The simulation was coded in Python using
additional specific packages Pandas, Numpy and Tensorflow (as well as common
additional parsing modules for input and output). The simulation has three regular
prioritization algorithms built into it for allocating stock.

The ordered item number algorithmwas implemented first as a baseline algorithm
with a simple prioritization method. This algorithm simply allocates all the unmet
demand for each item in ascending order of the item numbers until all demands are
met or the maximum limit is reached. This means items at the end of the list are likely
to suffer starvation. The secondmethod is to randomly select items commonly known
as the “simple naïve method”, however, for this paper, the results are not shown. This
method and the average results of using realizations of this method are often used as a
benchmark for performance against other algorithms. The third method was the one
using marginal analysis for prioritizing allocation, this is important for our analysis.
The last method of allocating stockwas themainmethod used for comparison against
theMLalgorithms. The algorithm for calculating priority uses the followingmarginal
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benefit measure as follows:

EBOi(s) − EBOi(s + 1)

Ci ∗ µi
, (7.4)

where for item number i, Ci represents the cost (weight) of an item, µi represents the
mean demand of an item. There is a difference between the calculation used here and
traditional marginal analysis (where more types of data are available). In our case,
the marginal benefit is inversely proportional to the mean demand of an item—we
had made this assumption based upon weights of items types being the same to begin
with.

This algorithm was originally formulated for ‘Push’ supply systems however it
can be adapted to work well for a ‘Pull’ system with a base stock assumption. In the
calculations for availabilities, it was assumed that each item has a base amount of
stock and when supply is reduced below this level, demand is issued. This current
stock level of an item is calculated as follows:

Stocki = µi + EBOi(µi) − Ui, (7.5)

where µi is the mean demand of item i (per time step), EBOi(µi) is the expected
backorders for µi = s in Eq. (7.1) and Ui is the current amount of unmet orders
for item i. The justification for this is that it would be expected that the inventory
aims to stock the mean demand amount for each item plus a safety amount. This
safety amount is simply set to be the expected backorders at a mean demand stock
level. Unmet orders are then subtracted as this represents the number of orders the
inventory is behind for the given item. In the event where unmet orders exceed the
mean plus the safety stock then a stock level of zero is assumed and any extra unmet
orders beyond this is added to the EBOi(s) value.

The simulation used aggregated demand data (time step aggregated) as input to
the model. The input consists off a simple CSV file that contained three columns
indicating the time step, the stock index and the amount of that stock ordered. This
data would be used as the demands received for the simulation. The simulationwould
then begin for the given time step. It would then calculate the priority of each item
based on the marginal analysis benefit measure and choose to allocate the one with
the highest value. This item would then be added and the state of the simulation
would be updated. This would continue until either the maximum allowed load is
exceeded or all current unmet demands have been met. This signals the end of the
current time step and current unmet demands (aggregate unmet demands as well as
individual order amounts) and met demands are logged. The availability for each
item and the average across all items are calculated for these time steps and logged
form part of the model output. After all the data is logged, the demands from this
time step are added to the system and the process is repeated until all time steps have
been completed. The whole model is based on the concept of being a ‘pull’ system
and only meeting demands as they are received and not pre-allocating demand.
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7.1.4 The Machine Learning Method

To improve upon the existing methods, machine learning was looked into to develop
an alternate prioritization algorithm with the goal of achieving higher availability
rates. The method of creating a model that would develop this algorithm came
with many design decisions which will be detailed in this section along with their
justifications.

Initially, fully connected neural networks were looked into to provide a prioritiza-
tion algorithm. There were several design challenges that were necessarily addressed
which included what the inputs and outputs would be and how the network would
learn time dependencies.

An important consideration for the architecture was what sort of inputs would be
fed into it and what outputs would be received. The output was the most important
consideration as this would determine what the inputs would need to be. It was
decided that the best method would be to simply output all demands to be allocated
at the current time step at once. This was chosen over outputting individual priorities
for each item as it was suspected that this would be more difficult for the network to
learn from as the relation between this priority and the availability is more distant. In
this case, the output is the demands to be met and input simply becomes the current
unmet demands.

The inspiration for choosing machine learning was the hope that a model would
be able to pick up relationships between demands over time that help maximize its
performance. As such the architecture needs to learn according to performance over
time rather than just at themoment. To address this, the initially proposed architecture
was a neural network whereby the output would be the demands to be allocated at
that time step. This output would then be used in calculating the new unmet demands
and would feed into another neural network repetitively a variable number of times.
The average of the availability at each time would be used to calculate performance.

The amount of hidden layers and their sizes as well as the number of neural
networks feeding into the availability were left as hyper-parameters and tuned
according to performance. This flexible architecture was not ideal as it required
constructing many individual neural networks which means it would likely be quite
prone to overfitting. Despite this, it served as a good method to develop an initial
model to test the potential of machine learning in this problem.

To improve upon the initial model architecture, ways to reduce the need for
multiple neural networks were looked into as well as methods to improve themodel’s
ability to learn time relationships. To handle these situations, a recurrent neural
network (RNN) architecture was investigated as an alternative approach (Fig. 7.2).

The architecture is similar to a neural network however it includes a component
that acts as the network’s memory and helps it to form time-dependent relationships.
It does this by using the component to keep a record of themodel’s state via a variable.
The recurrent neural network has both the unmet demands and the state (variable)
as an input. The state is initially set to zero however over time the state changes and
is repeatedly fed into the next stage of the network. The presence of a state variable
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Unmet
Demands

Availability

Fig. 7.2 High-Level overview of the initial neural network model architecture

greatly improves a neural networks ability to capture time dependencies which was
the main inspiration between choosing to implement this type of network. To allow
the model to represent more complex relationships several RNN cells were stacked
on top of each other to achieve a similar effect to adding hidden layers in a traditional
fully connected neural network. The actual recurrent cell in an RNN cell is what gives
the network its memory and acts as the state of the network. The actual architecture
of this cell can vary and there are several commonly used cells that were tested. The
simplest of these cells is the basic RNN cell which simply combines the input and
previous state through a sigmoid gate and propagates this through as the next state.

Regardless of architecture used a cost function would need to be decided upon
that allows the network to learn. There were design decisions to consider when
implementing a cost function that would best maximize performance. The most
logical choice of cost function was to simply use the availability measure directly.
This was the function that was used in the end, however, it has several downsides.
The main one is that it is a difficult function to learn from, due to its complex
calculation that includes doing many Poisson PMF calculations, as well as a large
weighted sum of these values to get the EBO. Further experimentation could look
into a simplified version of this function to learn from and see if it yields better
results. The other downside is that due to this complexity, training speed is greatly
affected. The outputs of the networks represent which demands to meet at a given
time step. Therefore such outputs cannot be any given value initially and must meet
certain constraints. The most obvious constraint is that they can’t be negative. This
is simply handled by applying a rectified linear unit to the output. Other constraints
were more difficult to meet in such a way that provided optimal performance and
required weighing up several design options.

There were several types of RNN’s that seemed suitable for this task. These
included Gated recurrent unit (GRU) and Long short-term memory (LSTM) varia-
tions with the GRU and LSTM versions being more complex and having a better
ability to capture time relationships. These involved advanced cell types for which
in the case of GRU enables choice in which parts of the state to update and what
to reset (allowing more complex expression of the network). The LTSM cell type is
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Fig. 7.3 Averaged item availability over 30 time steps: GRU versus RNN

more complex than the GRU and is designed to capture long- and short-term rela-
tionships. Experimentation found that both the GRU and LSTMwere better than the
traditional RNN cell which is likely due to them beingmore capable at capturing time
series relationships. Performance between theGRU and LSTMcells was very similar
with GRU slightly better and simpler to implement. Figure 7.3 shows a comparison
between average item availability on two realizations over 30 tested time steps (part
of the small data set in the next section) comparing the GRU cell type and the other
recurrent neural net cases. Hence, it was used as the cell of choice in the network for
producing results for our main experiments.

7.2 Experimentation and Results

Experiments results were calculated using the programmed simulation to allow for a
consistent environment between various tests. Results were compared between those
generated by variousmachine learningmodels, traditionalmethods and combinations
of both.

Initial performance of the ML model was found to yield very poor results. After
closer inspection, it was found that this was due to the algorithm only allocating
approximately 40–50% of the fully allowed amount. TheMLmodel found it difficult
to learn an algorithm that allowed it to allocate large amounts of stock across all time
stepswhile not violating the given constraints. An algorithmdesign decisionwas then
made in response: the allocations suggested by the ML model were to be combined
with the marginal analysis technique that it was being compared to. The ML model
would indicate how to allocate stock and then based on the given constraints make
a selection of the stock item types that would then employ this method in each
time sample. The remaining stock items would have their allocation determined by
marginal analysis.

Two different data sets were used. The smaller data set contained 100 items and
60 time steps and was split evenly between test and training sets. It totalled approx-
imately 12,000 individual item demands across time. The larger data set contained
200 items and 261 time steps with one third being the test set and the rest being the
training set. This set had approximately 106,000 individual demands.
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The results for the data set are split between the performance on the training and
the test data sets. The training data set is the set from which the ML algorithm learnt
from which would be expected to have a better performance. The test data set is a
subset of the original whole data set that was not used for training.

Generally, the difference between the performances of the ML algorithm and the
marginal analysis (MA) algorithm decreased as the maximum model throughput
load (this is the amount of items or weight of items that can be carried in each time
step) allowed was increased. Due to the way the availability metric is calculated, a
value of 100% is not achievable, because we used a pull model where we would
not allocate stock until a demand is received. As such getting 100% availability
was impossible as we cannot stock items in advance (throughput constraints of the
problem), and also because of the influence of the adjusted Poisson probability mass
function (logarithmic approximation) in determining EBO values for each item type.
The maximum reachable possible availability was 33.67% for the small training set,
29.70% for the small test set, 45.68% for the larger training set and 37.09% for the
larger testing set. We also display performance as a percentage of these maximum
achievable availability metrics.

Performance improvements on the small data set shown in Tables 7.1 and 7.2
were very minor and the data set itself involved very sporadic demands. The lack
of data in this set would likely have been a large contributor to its performance as
without sufficient data ML algorithms struggle to learn anything meaningful.

The large data set had slightly better results as shown in Tables 7.3 and 7.4
compared to those resulting from the smaller data set. This supports the idea that
more data is beneficial meaning similar improvements may be seen if even more data
is gathered.

Table 7.1 Training data set results—small data set

Max load Marginal analysis
(MA) availability
(%)

Machine learning
(ML) availability
(%)

Difference (ML
– MA) availability
(%)

Ratio of (ML/MA)
availability

6000 33.19
[90.51]

33.25
[90.67]

0.06
[0.16]

1.0018

12,000 34.11
[93.02]

34.12
[93.05]

0.01
[0.03]

1.0002

18,000 34.54
[94.19]

34.54
[94.19]

0.00
[0.00]

1.0000

24,000 34.86
[95.53]

35.03
[95.53]

0.17
[0.47]

1.0049

30,000 35.06
[95.61]

35.06
[95.61]

0.00
[0.00]

1.0000

*Values in [] represent as a percentage proportion of maximum availability that is achievable based
on the experimental demand
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Table 7.2 Testing data set results—small data set

Max load Marginal analysis
(MA) availability
(%)

Machine learning
(ML) availability
(%)

Difference (ML
– MA) availability
(%)

Ratio of (ML/MA)
availability

6000 26.21
[88.25]

26.08
[87.81]

−0.13
[−0.44]

0.9950

12,000 27.46
[92.46]

27.53
[92.69]

0.07
[0.23]

1.0025

18,000 28.04
[94.41]

28.02
[94.34]

−0.02
[-0.07]

0.9993

24,000 28.47
[95.86]

28.54
[96.09]

0.07
[0.23]

1.0025

30,000 28.80
[96.67]

28.81
[97.00]

0.01
[0.03]

1.0003

Table 7.3 Training data set results—large data set

Max load Marginal analysis
(MA)
availability (%)

Machine learning
(ML) availability
(%)

Difference (ML
– MA) availability
(%)

Ratio of (ML/MA)
availability

6000 24.41
[53.44]

24.94
[54.6]

0.53
[1.16]

1.0217

12,000 33.00
[72.24]

33.20
[72.68]

0.20
[0.44]

1.0061

18,000 36.92
[80.82]

37.11
[81.24]

0.19
[0.42]

1.0051

24,000 39.00
[85.38]

39.04
[85.46]

0.04
[0.08]

1.0010

30,000 40.36
[88.35]

40.43
[88.51]

0.07
[0.16]

1.0017

Table 7.4 Testing data set results—large data set

Max load Marginal analysis
(MA) availability
(%)

Machine learning
(ML) availability
(%)

Difference (ML
– MA) availability
(%)

Ratio of (ML/MA)
availability

6000 11.90
[32.08]

11.53
[31.08]

−0.37
[−1.00]

0.9689

12,000 19.82
[53.44]

20.28
[54.68]

0.46
[1.24]

1.0232

18,000 24.44
[65.89]

24.78
[66.81]

0.34
[0.92]

1.0139

24,000 26.59
[71.69]

26.48
[71.39]

−0.11
[−0.30]

0.9959

30,000 27.93
[75.30]

28.19
[76.00]

0.26
[0.70]

1.0093
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The machine learnt algorithm tended to have better performance on the training
set (as shown in Tables 7.1 and 7.3) rather than the test set as expected. Test perfor-
mance showed at least similar results to the marginal analysis indicating that the ML
algorithmwas not doing anything overly detrimental to performance. Comparing the
differences between the ML algorithm and the MA algorithm, there is a very small
net gain for the case of the test sets.

Generalization of the algorithm would likely improve more with larger data sets
as the ML algorithm would have to learn to be more versatile to a large variety of
data meaning it will adapt better to the test set.

7.3 Conclusion and Future Work

This investigation found that a minor improvement of availability could be achieved
under certain circumstances by combining the ML algorithm with the traditional
approach. The results showed minor improvements in performance on the training
set, and on average minor improvements in the test set. This is a useful result because
it shows that the ML algorithm is able to learn appropriate stock to choose given the
availability function. However, this algorithm struggles to generalize its performance
beyond the data it was trained on. The fact that better performance is achieved on
the training data means that there was some success, as the model is able to capture
complex relationships in the data and exploit them. More investigation using larger
data sets or changes to the model could solve the generalization issue and allow the
algorithm to perform well beyond the training data set.

The availability metric for performance was adapted to be suitable for our use
case and as such may not be perfect. However, for the real-world case, it does still
work as a suitable metric to determine if a machine learning approach is beneficial
to stock allocation as it is directly related to expected backorders. Sherbrooke’s text
[2] further explains why this is a suitable measure.

Further research into how to get a ML model to deal with constraints and rewards
for filling capacity could also provide gains in performance hence verify if ML is
more suitable for this type of problem. Looking at the effects of larger data sets
would be beneficial to continue this research and different techniques such as rein-
forcement learning. This may give insight into fixing bottlenecks or whether the ML
performance continues to improve.
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Chapter 8
Capacity Alignment Planning for a Coal
Chain: A Case Study

Saman Eskandarzadeh, Thomas Kalinowski, and Hamish Waterer

Abstract We study a capacity alignment planning problem for a coal chain. Given
a set of train operators, a set of train paths and a terminal comprising of a dump
station and a set of routes from the dump station to the stockyard, we seek a feasible
assignment of train operators to train paths, to time slots at the dump station, and to
routes. The assignment must maximize the number of system paths in the resulting
schedule and the schedule should perform well with respect to various performance
criteria. We model the problem as a mixed-integer conic program (MICP) with mul-
tiple objectives which we solve using a hierarchical optimization procedure. In each
stage of this procedure, we solve a single objective MICP. Depending upon whether
we evaluate the associated performance criteria under a 2- or 1-norm, we reformulate
theMICP as either a mixed-integer second-order cone program or as a mixed-integer
linear program, respectively, and can streamline the hierarchical optimization pro-
cedure by exploiting properties of the model or observed behaviour on practical
instances. We compare the performance of the procedure under the different norms
on a real instance of the problem and find that the quality of the solutions found by
the faster 1-norm procedure compares well to the solution found under the 2-norm.
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8.1 Introduction

Aurizon is a large rail freight operator that owns, operates and manages, the Central
Queensland Coal Network, Australia’s largest coal rail network. A central planning
problem that they face is the alignment of the available capacity of the various
components of coal chain infrastructure so as to maximize the opportunity for trains
to haul coal from the mines to the ports where the coal is unloaded and stockpiled
for export. The available capacity of the rail network is measured in terms of train
paths, but a train path is only usable if it can be linked to loading and unloading slots
at the mine and port, and the unloaded coal can then be stacked onto a stockpile.
These so-called system paths are the true measure of the available capacity of a coal
chain. We consider the capacity alignment planning problem in which a schedule of
feasible system paths is sought that performwell with respect to various performance
criteria.

Related literature includes a review by Abril et al. [1] on maximizing the number
of trains which can be scheduled on a single track rail network and the work of
Caprara et al. [2] on the train scheduling problem. Liu and Kozan [3] and Masoud
et al. [4] also consider the optimization of the capacity of coal rail networks in the
Australian setting.

Before formally defining our capacity alignment planning problem, we introduce
some terminology. The Central Queensland Coal Network is comprised of four main
rail corridors, each of which forms the backbone of what is referred to as a coal
system. Each system has one or more terminals. A terminal is a facility where the
railed coal is unloaded and stockpiled. A terminal is located at a port and is connected
by rail to the rail network.

In our setting, we consider a single terminal that serves two systems. Adjacent
to the terminal is a rail yard. The rail yard is a facility through which the trains
loaded with coal must pass in order to reach the terminal from either rail corridor.
Upon arriving at the yard, some trains must undergo provisioning operations such as
servicing and refuelling before continuing to the terminal.

We define a train path along a rail corridor to be the 3-tuple (system, departure
time, arrival time). There are two types of train paths: loaded and empty. Loaded
train paths permit travel along the rail corridor in the direction of the terminal. The
train path originates at the far end of the rail corridor at departure time and terminates
at the terminal at arrival time. Empty train paths serve the opposite direction.

Loaded train paths are typically used by loaded trains hauling coal from a mine
to the terminal. Upon arriving at the terminal, the loaded train enters a dump station
and the coal is unloaded into a pit, where it is then transported by conveyor belt to
a pad in the terminal stockyard where it is stockpiled. The path taken by the coal
from the pit to the pad is termed a route. Typically, a dump station has several pits,
not all routes are accessible from every pit, and there are restrictions on using some
route combinations simultaneously. An unload slot is a 3-tuple (pit, start time, finish
time). If an unload slot is assigned to a train, the train must arrive at the pit and begin
unloading at start time and depart the pit no later than finish time.
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We define a system path to be the 5-tuple (train path, train operator, provisioning
state, unload slot, route). If a system path is used by a train, then the train must
follow train path, be operated by train operator, be provisioned if provisioning state
is true, use unload slot, and the unloaded coal will be transported to a pad via route.
For a system path, waiting time is defined as the time difference between the end of
provisioning and start time of the unload slot.

A schedule is a set of system paths. The problem is to find one or more schedules
that are feasible with respect to a set of constraints and perform well against a set of
performance criteria. In the remainder of this section, we define the problem input,
the constraints and the performance criteria.

8.1.1 Problem Input

The problem input is the following:

1. A planning horizon of four weeks or equivalently 28days.
2. A set of train operators.
3. A set of systems.
4. The provisioning times for each train operator.
5. The maximum waiting time of a train following provisioning.
6. The set of routes in the terminal. There are five routes A, B, E, G, J.
7. The set of pits at the dump station. The dump station has three pits 1, 2 and 3.
8. The pit-route access mappings which determine the routes each pit has access

to. Pits 1 and 2 have access to routes A, B, E and G. Pit 3 has access to routes
B, E, G and J.

9. A set of available loaded train paths.
10. The unloading times at the dump station. These are fixed at 2h and 25min.
11. The total demand for each week in the planning horizon for the system paths cor-

responding to each (system, operator) combination. A system path corresponds
to the combination (system, operator) if its train path belongs to system and its
nominated operator is operator.

12. The target route utilizations. These are the desired fraction of system paths
corresponding to each (system, operator, route) combination in a schedule.

8.1.2 Constraints

The constraints or business rules of the problem are the following:

1. For each system path:

(a) the start time of its unload slot is no earlier than the finish time of its provi-
sioning; and
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(b) the associated pit of its unload slot has access to its route.

2. For eachweek in theplanninghorizon, the number of systempaths in the schedule
for each (system, operator) combination is at least equal to the loaded train path
demand for that system, operator, andweek.A systempath is counted as a system
path of a given week if the start time of its unload slot occurs in that week.

3. The schedule must respect the pit-route access mappings.
4. Each train path and unload slot can only be used in at most one system path in

the schedule.
5. Since there is only single-track access to the dump stations at the terminal there

must be at least 45min separation between two consecutive arrivals. Therefore,
for every two system paths in the schedule, the start times of their unload slots
must be at least 45min apart.

6. Two system paths with unload slots that overlap in time cannot have the same
pit or the same route.

7. The waiting time of any system path in the schedule cannot be greater than the
maximum waiting time.

8. Routing rules:

(a) Each route can be served by at most one pit at any time.
(b) Each pit can serve at most one route at any time.
(c) Pits 1 and 2 cannot serve routes E and G at the same time.

8.1.3 Performance Criteria

The performance criteria for the problem are the following:

1. The number of system paths is maximized.
2. For each week of the planning horizon, the fraction of system paths for each

(system, operator) combination is close to the associated contract share. The
contract share corresponding to (week, system, operator) is defined as the ratio of
the demand for systempathswhich belong toweek and correspond to the (system,
operator) combination over the total demand. Furthermore, the deviations over
(system, operator) combinations should be balanced, that is, they should be as
close to each other as possible.

3. The system paths for each (system, operator) combination are evenly distributed
over each week of the planning horizon. The deviations over (system, operator)
combinations should be balanced.

4. For each week of the planning horizon, the fraction of system paths for each
(system, operator, route) combination is close to the desired route utilization.
Furthermore, the deviations over (system, operator, route) combinations should
be balanced.

5. The total waiting time at the yard is minimized.
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6. The system paths corresponding to each (system, operator) combination allow
provisioning with the given frequency. For example, with respect to departure
times, every second systempath from each system, for each train operator, allows
for provisioning. The schedule should be balanced regarding this performance
criterion in the sense that the deviations from the ideal frequency over (system,
operator) combinations and all intervals are balanced. Continuing the example,
the schedule should not contain two disjoint intervals, each with four system
paths, in which all the system paths of one interval allow for provisioning, while
all of the system paths of the other interval do not.

8.2 Problem Formulation

Without loss of generality, the time horizon isH = [1, h] = [1, 40,320], where each
time period corresponds to a minute. A system path belongs to the time horizon H
if its unload start time is in H . The departure time of some of the system paths is in
the day before the planning horizon starts. We represent the day before the planning
horizon starts by the interval [−1439, 0]. The planning horizon is for scheduling all
system paths with unload start times in the planning horizon. Note that all data time
periods are in the range [−1439, 40,320].

8.2.1 Parameters and Variables

We define the following parameters for the given planning horizon based on the input
data:

– Y : Set of systems.
– P: Set of available loaded train paths. Each train path p ∈ P is described by a
departure time td ∈ H , a system, an arrival time ta. The destination of all train
paths is the yard and there exists a unique origin per each system.

– O: Set of train operators.
– R: Set of routes.
– D: Set of pits.
– B = {0, 1}: Set of provisioning states in which the True state is indicated by 0
and the False state is indicated by 1.

– U : Set of all available unload slots. Each unload slot is described by a pit, and a
start time and an end time. The end time depends just on the start time. Therefore,
each unload slot can be identified by its pit and its start time. For example, unload
slot (1,100) refers to the unload slot which starts at pit 1 at time 100, and finishes
2 hours and 25min later at time 245.

– S: Set of all valid system paths which their unload start time is in H . According
to the definition, each system path, i, is described by 5-tuple (p, o, e, u, r) ∈ S.
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LetHd , Ha, Hs denote the sets of departure times, arrival times and unload start
times, respectively. More formally,

Hd = {t′ : ∃y ∈ Y and ta ∈ [−1439, 40,320] (y, t′, ta) ∈ P},
Ha = {t′ : ∃y ∈ Y and td ∈ [−1439, 40,320] (y, td , t′) ∈ P},
Hs = {t′ ∈ H : ∃� ∈ D (�, t′) ∈ U }.

Let S1 = Y , S2 = Hd , S3 = Ha, S4 = O, S5 = B, S6 = D, S7 = Hs and S8 = R.
Note that S ⊆ P × O × B ×U × R, P ⊆ Y × Hd × Ha, and U ⊆ D × Hs. For a
subset J ⊆ {1, 2, . . . , 8}, we define map SJ : ∏

i∈J Si → 2S as follows:

SJ ((si)i∈J ) = {((s′1, s′2, s′3), s′4, s′5, (s′6, s′7), s′8) ∈ S : s′j = sj for all j ∈ J }

Furthermore, for Q ⊆ ∏
j∈J Sj, let SJ (Q) = ⋃

s∈Q SJ (s). We say that system path
i ∈ S has property s ∈ ∏

j∈J Sj if i ∈ SJ (s). Analogously, for Q ⊆ ∏
j∈J Sj we say

that system path i has property Q, if i ∈ SJ (Q). For ease of exposition and read-
ability, we define new subscripts for maps SJ . More specifically, let SYOHs = S{1,4,7},
SP = S{1,2,3}, SU = S{6,7}, SHs = S{7}, SR = S{8}, SYOHs = S{1,4,7}, SYOHsR = S{1,4,7,8},
SYHdO = S{1,2,4} and SYHdOB = S{1,2,4,5}.

We denote the decision of choosing or not choosing system path i ∈ S in a sched-
ule by binary variable xi, that is, xi = 1 indicates that system path i is chosen and
xi = 0 indicates otherwise. Let xJ (Q) = ∑

i∈SJ (Q) xi denote the summation of the
variables corresponding to system paths that have property Q. We similarly define
new subscripts for maps XJ .

8.2.2 Constraints

We formulate the constraints as follows:
Constraint sets 1 and 7: The constraint sets 1 and 7 are implicit in the construction
of the set of system paths S.
Constraint set 2: Let the demand for the system paths with property (y, o) ∈ Y × O
in week j of the planning horizon be denoted by dqj. The system path i = (p, o, e, u =
(�, ts), r) ∈ S belongs to week j ∈ W = {1, 2, 3, 4} if the start time of its unload slot,
i.e. ts, is in the jth week, i.e. ts ∈ Ij = [10,080(j − 1) + 1, 10,080j], where 10,080
is the number of minutes in a week and discrete interval Ij describes week j. Then

xYOHs(y, o, Ij) ≥ dyoj for all y ∈ Y , o ∈ O and j ∈ W. (8.1)

Variable xYOW (y, o, Ij)which denotes x{1,4,7}({y} × {o} × Ij) is the number of system
paths in the given schedule x = (xi)i∈S with property (y, o), where their unload slots
u = (�, ts) ∈ U belong to week j, i.e. ts ∈ Ij.
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Constraint sets 3 and 6: Let At(r), r ∈ R, t ∈ H be the set of all system paths i ∈
SR(r) such that their unload slots overlap time t ∈ H . For each r ∈ R, we denote the
collection of all distinct setsAt(r) over all t ∈ H by S0(r). To define it more formally,
we have:

At(r) = {(p′, o′, e′, u′, r′) ∈ SR(r) : u′ = ((�, p), t′), t ∈ [t′, t′ + 144]},
S0(r) = {At(r) : t ∈ H ,∀t′ ∈ H At(r) 	⊂ At′(r), |At(r)| > 1}.

Similarly, let Dt(�), � ∈ D be the set of all system paths i ∈ SD(�) such that their
unload slots overlap time t ∈ H . For each � ∈ D, we denote the collection of all
distinct setsDt(�) over all t ∈ H by S1(l). Let Bt, t ∈ H be the set of all system paths
i ∈ S such that

(a) their pits are either pit 1 or 2;
(b) their routes are either route E or G; and
(c) their unload slots overlap time t ∈ H .

We denote the collection of all distinct such sets Bt over interval H by S2. Or more
formally,

Bt ={(p′, o′, e′, u′, r′) ∈ S : r′ ∈ {E,G}, u′ = ((�′, p), t′), (�′, p) ∈ {1,2}, t ∈ [t′, t′ + 144]},
S2 ={Bt : t ∈ H ,∀t′ ∈ H Bt 	⊂ Bt′ , |Bt | > 1}.

Then

∑

i∈Q
xi ≤ 1 for all r ∈ R,Q ∈ S0(r), (8.2)

∑

i∈Q
xi ≤ 1 for all l ∈ D,Q ∈ S1(l), (8.3)

∑

i∈Q
xi ≤ 1 for all Q ∈ S2. (8.4)

Constraint set 4:

∑

i∈SP(p)

xi ≤ 1 for all p ∈ P, (8.5)

∑

i∈SU (u)

xi ≤ 1 for all u ∈ U, (8.6)

Constraint set 5:Constraint 5 is equivalent to this constraint that in a feasible schedule
in every 45min interval in the planning horizon, at most one unload slot starts.
There are 40,276 45min intervals in a planning horizon and the last interval starts at
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time 40,276. More formally, for t ∈ [1, 40,276], let S>45(t) = SW ([t, t + 44]) and
let S>45 = {S>45(t) : t ∈ [1, 40,276]}, then

∑

i∈Q
xi ≤ 1 for all Q ∈ S>45. (8.7)

8.2.3 Performance Criteria

We formulate the performance criteria as follows:
Criterion 1: The number of system paths is equal to

∑
i∈S xi. Let z(1) = −∑

i∈S xi.
The goal is to maximize this measure.
Criterion 2: Let dj denote the total demand over week j ∈ W . The associated con-
tract share for (system, operator) combination (y, o) ∈ Y × O in week j ∈ W is
equal to dyoj/dj. We want the share of system paths with property (y, o) in week
j, i.e. xYOHs(y, o, Ij)/xHs(Ij) is as close as possible to the associated contract share
or equivalently xYOHs(y, o, Ij) is as close as possible to xHs(Ij)dqj/dj. Therefore, the
associated deviation vector is z(2) = (z(2)

yoj)(y,o,j)∈Y×O×W where

z(2)
yoj = xYOHs(y, o, Ij) − dqj/djxHs(Ij) (8.8)

for all (y, o, j) ∈ Y × O × W .
Criterion 3: Assume we have n system paths in week j. One plausible interpretation
of performance criteria 3 is that the number of system paths in each day to be as close
as possible to n/7. The deviation vector is z(3) = (z(3)

yoji)(y,o,j,i)∈Y×O×W×[1,7] where

z(3)
yoji = xYOHs(y, o, bji) − xYOHs(y, o, Ij)/7 (8.9)

for all (y, o, bji) ∈ Y × O × W × [1, 7], and bji = [10,080(j − 1) + 1440(i − 1) +
1, 10,080(j − 1) + 1440i] describes day i ∈ [1, 7] of week j.
Criterion 4: Let fyoj(r) be the desired route r ∈ R utilization by system paths with
property (y, o) ∈ Y × O (i.e. system paths which are from system y and are operated
by operator o) in week j ∈ W , where fyoj(r) is a real number between zero and one.
In other word, 100 × fyoj(r) per cent of total number of system paths in week j from
system y which are operated by operator o, are assigned to route r. The deviation
vector is z(4) = (z(4)

yojr)(y,o,j,r)∈Y×O×W×R, where

z(4)
yojr = xYOHsR

(
y, o, Ij, r

) − fyoj(r)xYOHs(y, o, Ij) (8.10)

for all (y, o, j, r) ∈ Y × O × W × R.
Criterion 5: Let wi denote the waiting time for system path i ∈ S, then the total
waiting time is equal to z(5) = ∑

i∈S wixi. The goal is to minimize this measure.
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Criterion 6: Let g(y, o, I) be the desired fraction of system paths with property
(y, o) which their departure times are in the interval I ⊆ H1 = [−1439, 40,320]
and they are allowed to be provisioned. One suitable choice for g(y, o, I) is to be
defined as equal to 1/k. LetHd

y = {t′ ∈ H1 : ∃ta ∈ [−1439, 40,320] p = (y, t′, ta) ∈
P} includes all departure times of system paths from system y. Let H ′d

y = {[t1, t2] :
t1, t2 ∈ Hd

y , t1 ≤ t2}. We define the deviation vector as z(6) = (z(6)
yoI )(y,o,I)∈Y×O×H ′d

y
,

where

z(6)
yoI = xYHdOB (y, I , o, 1) − g(q, I)xYHdO(y, I , o) (8.11)

for all (y, o, I) ∈ Y × O × H ′d
y . One of the main improvements one can make to

make the above measure less computationally expensive is to reduce the number of
values which set I can take. If we know which intervals contain exactly k system
paths in the optimal solution, then we just need to consider those intervals. However,
since we do not know the optimal schedule before solving the model, we need to
consider intervals of all lengths which can contain k consecutive system paths in any
possible optimal schedule.

The deviations associated with Criteria 2–4 and 6 are vectors. In order to measure
these criteria, we need to formalize notions of deviation and unbalancedness. Let
z = (zi)i∈n denote such a deviation vector. Then each element zi is the deviation of
component i of this criterion from some target value. We define the deviation of z
to be D(z) = ‖z‖p and the unbalancedness of z to be B(z) = minz0∈R{‖z − z0e‖p}
where p ∈ {1, 2} and e = (1, . . . , 1)T . Thus, the length of the vector z is the measure
of deviation and the shortest distance between z and a point on the line z1 = z2 =
· · · o = zn is the measure of unbalancedness. For each of these criteria, we wish to
minimize both the deviation and the unbalancedness.

8.2.4 Model Formulation

The aforementioned constraints and performance criteria gives rise to the following
mixed-integer conic program (MICP) with multiple objectives:

min
(
z(1), z(2D), z(2B), z(3D), z(3B), z(4D), z(4B), z(5), z(6D), z(6B)

)

=
(
z(1),D(z(2)),B(z(2)),D(z(3)),B(z(3)),

D(z(4)),B(z(4)), z(5),D(z(6)),B(z(6))

)

subject to (8.1)–(8.11), xi ∈ {0, 1} for all i ∈ S.

We now make several observations about this model that we will use to our
advantage when solving it. For Criteria 2–4 and 6, we note that for any deviation
vector z, the optimal value for z0 is the average of the components of z under the 2-
norm, the median of the components of z under the 1-norm, and that B(z) ≤ D(z) for
either norm. Furthermore, for a feasible deviation vector, the sum of the components
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of z is equal to zero.Thus, under the 2-norm,B(z) = D(z) and so aminimumdeviation
solution also minimizes unbalancedness. Consequently, we can omit the objective
functions z(·B) under the 2-norm.

8.3 Solution Methodology

To solve the multi-objective MICP described in the previous section, we employ a
hierarchical optimization procedure in which we solve successive single-objective
MICPs. The order in which the criteria were presented reflects their relative impor-
tance toAurizon andminimizing deviation ismore important thanminimizing unbal-
ancedness.

To begin the hierarchical optimization, we optimize the MICP with respect to
the first objective function z(1). Let z(1)∗ denote the value of the best integer solution
found and suppose that in a solution to the multiple objective MICP we require that
the value of z(1) degrades by a factor of at most a(1), where a(1) ≥ 0. We refer to
a(1) as the degradation factor and add the threshold constraint z(1) ≤ z(1)∗ (1 + a(1))

to the current MICP. In the next stage, we optimize the current MICP with respect
to the second objective function z(2D) and then add the corresponding threshold
constraint z(2) ≤ z(2)∗ (1 + a(2)) to the current MICP. The above process is repeated
until all objective functions z(i) for i ∈ {1, 2D, 2B, 3D, 3B, 4D, 4B, 5, 6D, 6B} have
been considered.

Each single-objectiveMICP can be reformulated as a mixed-integer second-order
cone program under the 2-norm, and it can be reformulated as a mixed-integer linear
program under the 1-norm.

8.4 Computational Investigation

In this section, we investigate the performance of the hierarchical optimization pro-
cedure to solving the multi-objective MICP on an instance of realistic size. The
investigation is carried out on a machine with dual oct core 3.33GHz Intel Xeon
E5-2667 v2 processors and 256 GB of RAM. The number of threads used is 13 out
of available 16 threads. We use Gurobi v8.0.0 via the Python API and Python v3.6.4.
The time limit for solving each single objective MICP is 600s. The instance has the
following characteristics:

– The maximum waiting time is 60min.
– There are two train operators named op1 and op2 and two systems named s1
and s2.

– The demand for each week is given in Table8.1.
– The unload slots are generated with consideration of constraint set 5 and the
implication of constraint set 6 for unload slots. The maximum number of unload
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Table 8.1 Weekly demand

System Train operator Demand

s1 op1 98

s1 op2 21

s2 op1 21

s2 op2 0

slots which can be used in each day is 27. Note that the constraint set 5 is implicit
in the construction of unload slots and is therefore not coded.

– The departure times of train paths from systems s1 and s2 are 20min and 90min
apart, respectively. Some of these train paths are cancelled due to maintenance
activities.

– The desired provisioning frequency for system paths from system s2 is one per
two and for system paths from system s1 is one per one (i.e. we prefer all system
paths from system s1 to allow provisioning).

– The route utilization ratios are shown in Table8.2. The route utilization ratios for
system s2 and train operator op2 are zero.

The performance statistics under each norm are shown in Tables8.3 and 8.4. Each
row in the table corresponds to a single-objective MICP and we use the following
notation:

– Relax: the objective function value of the initial MICP relaxation.
– Root: the objective function value of the final MICP relaxation solved at the root
node of the branch-and-bound tree.

– BestBnd: the objective function value of the best MICP relaxation found during
the branch-and-bound search.

– BestFeas: the objective function value of the best feasible solution found during
the branch-and-bound search.

– Gap: the optimality gap of the best feasible solution which we define to be
|BestFeas − BestBnd|/BestFeas.
Under the 2-norm, Gurobi finds an optimal solution to each single objectiveMICP

associated with Criteria 1 and 2, and finds a solution within 1% of the optimal value
for 5. However, it cannot find good solutions for the other criteria within 600s. It is
not that surprising that the 1-norm leads to much better performance than what was
observed under the 2-norm. Gurobi solves the single-objective MICPs associated
with Criteria 1–3 and 5 to optimality. The quality of the solutions is much better
for Criteria 4 and 6, much worse for Criterion 5, and about the same for the other
criteria. The reason that the solution for Criterion 5 under the 1-norm is much worse
than the solution under the 2-norm is that the threshold constraint associated with
Criterion 4 under the 2-norm is not restrictive compared to that under the 1-norm.
In Table8.3, the value of the best integer solution found under Criterion 4 is 10,090
which is likely to be far from optimal.
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Table 8.2 Weekly route utilization

System Train operator Route Route utilization

s1 op1 A 19/98

B 22/98

E 15/98

G 34/98

J 8/98

s1 op2 A 3/21

B 2/21

E 0

G 2/21

J 14/21

s2 op1 A 13/21

B 5/21

E 0

G 0

J 3/21

Table 8.3 Performance statistics under the 2-norm

Objective Degrad
(%)

Relax Root BestBnd BestFeas Gap (%) Time (s)

1 0 756 – 756 756 0 <1

2D 10 0 0 2.5 2.5 0 49

3D 10 0 0 0 3.4 100 600

4D 10 – – 0 10,090 100 600

5 10 5406 5618 5640 5698 1 600

6D – – – 0 4204 100 600

One interesting observation is that the best integer solution values of the deviation
and unbalancedness objectives associated with Criteria 2–4 and 6 are equal. This
implies that the median of the components of each deviation vector is zero and that
the minimum deviation solution also minimizes unbalancedness. We believe that
this is an artefact of the instance rather than the model and so, in general, we cannot
omit the unbalancedness objectives as we did under the 2-norm. However, we have
reason to believe that this could be a common occurrence when solving practical
instances and so revised the hierarchical optimization procedure to skip minimizing
unbalancedness if the median of the deviation solution is zero.
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Table 8.4 Performance statistics under the 1-norm

Objective Degrad
(%)

Relax Root BestBnd BestFeas Gap (%) Time (s)

1 0 756 – 756 756 0 <1

2D 10 0 0 5.2 5.2 0 26

2B 10 0 0 5.2 5.2 0 30

3D 10 0 – 0 0 0 4

3B 10 0 – 0 0 0 3

4D 10 0 0 12 12 0 162

4B 10 0 0.3 9.8 12 18 600

5 10 5986 6025 6085 6088 0.05 600

6D 10 1153 1303 1399 1516 8 600

6B – 1153 1165 1170 1516 22 600

Table 8.5 Revised performance statistics under the 1-norm

Objective Degrad
(%)

Relax Root BestBnd BestFeas Gap (%) Time (s)

1 0 756 – 756 756 0 <1

2D 10 0 0 5.2 5.2 0 18

3D 10 0 0 0 0 0 4

4D 10 0 0 12 12 0 108

5 10 5987 6025 6085 6088 0.05 220

6D – 1218 1391 1483 1512 2 600

Table 8.6 Comparison under the 2-norm of the deviations of the final multiple objective MICP
solutions

Norm 1 2 3 4 5 6

2-norm 756 2.7 3.4 6441 5698 4204

1-norm 756 2.9 0 4.5 6688 1591

Revised
1-norm

756 2.9 0 5.5 6688 1610

The performance statistics of the revised procedure are shown in Tables8.5 and
8.6 compares for each criterion, the deviation of the final multiple objective MICP
solutions when evaluated under the 2-norm. Overall the solutions found under the
1-norm are better quality and can be found comparatively quickly using the revised
hierarchical optimization procedure.
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8.5 Conclusion

We consider a capacity alignment planning problem for a coal chain that is faced
by our industry partner Aurizon in which a schedule of system paths are sought
that perform well with respect to various performance criteria. For many of these
criteria, the schedule should not only minimize the deviation from some prescribed
targets but also the deviations should be well balanced. We model the problem as a
mixed-integer conic program (MICP) with multiple objectives which we then solve
using a hierarchical optimization procedure. In each stage of this procedure, a single-
objectiveMICPmust be solved. Depending upon whether we evaluate the associated
performance criteria under a 2- or 1-norm, we reformulate the problem as either a
mixed-integer second-order cone program or as a mixed-integer linear program,
respectively.

A property of the model is that a minimum deviation solution for a given criterion
measured under the 2-norm also minimizes the unbalancedness for that criteria.
While this is not a property of the model under the 1-norm, we believe that it will
frequently be the case when solving practical instances. Consequently, we revised
the hierarchical optimization procedure to omit the unbalancedness objectives under
the 2-norm, and check for their redundancy under the 1-norm.

A computational investigation on a real instance of the problem reveals, not unsur-
prisingly, that the hierarchical optimization procedure under the 1-norm finds good
solutions much faster than under the 2-norm. Moreover, the quality of the solutions
found by the procedure under the 1-norm compares well to the solution found under
the 2-norm when the 1-norm solutions are evaluated for each criterion using the
2-norm.

Future work will include improved modelling of bottleneck performance criteria
such as Criterion 6, improved solution procedures such as customized branching
for the single-objective MICPs within the hierarchical optimization procedure, and
extending the problem considered to include additional practical considerations such
as dynamic start times for unload slots.
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Chapter 9
Situational Awareness for Industrial
Operations

Peter Baumgartner and Patrik Haslum

Abstract The smooth operation of industrial or business enterprises rests on con-
stantly monitoring, evaluating and projecting their current state into the near future.
Such situational awareness problems are not well supported by today’s software
solutions, which often lack higher level analytic capabilities. To address these issues,
we propose a modular and re-usable system architecture for monitoring systems in
terms of their state evolution. As a main novelty, states are represented explicitly
and are amenable to external analysis. Moreover, different state trajectories can be
derived and analysed simultaneously, for dealing with incomplete or noisy input
data. In the paper, we describe the system architecture and our implementation of a
core component, the state inference engine, through a shallow embedding in Scala.
The implementation of our modelling language as an embedded domain-specific lan-
guage grants the modeller expressive power and flexibility, yet allows us to abstract a
significant part of the complexity of themodel’s execution into the common inference
engine core.

Keywords Industrial operations modelling · Situational awareness · Supply
chains

9.1 Introduction

The smooth operation of industrial or business enterprises like supply chains, assem-
bly lines or warehouses critically depends on maintaining situational awareness. In
our context, situational awareness is the problem of gathering changes in the opera-
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tion’s environment, aggregating them for deriving the current state of the operation
at a semantically high level, projecting the current state into the near future, alerting
the user of potential problems and proposing corrective action if required.

Situational awareness in this sense currently lacks software tool support. While
database systems and ERPs can help human operators gain situational awareness,
they do not offer a complete solution with integrated analytic capabilities. In this
paper, we address this issue by proposing an architecture for a novel situational
awareness software platform.

This architecture has its origin in a situational awareness and scheduling system
for the factory floor of an industrial client, which we generalize to be applicable in
a variety of domains, ranging from local operations, such as factory floor assembly
lines or warehouse management, to large-scale and distributed operations, such as
national or international supply chains or the Array of Things [2]. We also describe
a concrete realization of one core component, the state inference engine.

The state inference engine maintains a current state which is updated whenever
an external event comes in. In the current implementation, state update is described
in terms of rules that are triggered by such events. It offers a modelling paradigm
that assigns rule sets to (parallel) processes, one process for each entity of interest,
and message channels connecting these processes. The execution of the processes’
rules enables inference about aspects of the state that are not directly observable,
including disjunctive reasoning about alternative states and execution histories.

While themodel is domain-dependent, the interpreter is universal. It is, in essence,
a forward-chaining rule engine and is realized via a shallow embedding in Scala. The
main advantage of this design is that it gives access to the full power of the Scala
language to represent process states and express conditions, functions and transfor-
mations on them. It provides expressive power and flexibility, at little implementation
cost. It is this modelling language and inference engine implementation that we put
forward as the main contribution of this paper. Due to modularity, our architecture
allows for transparently substituting another method of state inference, e.g. conflict-
directed diagnosis [10], with its associated modelling formalism.

We emphasize that we do not intend to replace existing systems, e.g. ERPs or
tailored scheduling systems. Instead, we want to capitalize on their functionality
by integrating and augmenting them with inference capabilities for the purpose of
gaining a more holistic view. An important feature of our system is the explicit and
externally analysable state representation, enabling it to simultaneously represent and
explore different state trajectories, for example, to assess their plausibilities andwhat-
if reasoning. This ability is essential to deal with noisy or unreliable data sources.

9.2 Related Work

Supply chains have become complex networks with automated transitions to manage
the manufacturing and flow of goods. Techniques like service-oriented architectures
(SOAs) and business process modelling (BPM) [24] are instrumental for automating
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and optimizing supply chains with respect to life cycle management, procurement,
logistics and order management. BPM comprises methods for making business oper-
ations explicit, such as BPMN [20], which is intended mainly for manual use. Such
explicit models are typically not designed from the ground up for situational aware-
ness, but they may well inform models for situational awareness. Software designs
like SOAs or model-driven architectures do not lead to situational awareness by
themselves but may integrate situational awareness capabilities.

The basic principle of Industry 4.0 is to connect machines, workpieces and
business management systems in intelligent networks for controlling each other
autonomously. Examples are machines that can predict failures and trigger mainte-
nance processes autonomously, or self-organized logistics which react to unexpected
changes in production [15]. Companies like Oracle and SAP have proposed to go
further and leverage the new technologies for situational awareness. The underlying
observation is that automation is not enough, the overall system should be conscious
and knowledgeable of its surroundings [19]. Indeed, some commercial “business
intelligence” information systems [21] offer event management functionality that
allows users to monitor and measure supply chain activities. However, existing sys-
tems lack the capability to perform deeper inference, for instance, about unobserved
events or completion of missing data.

Derigent and Thomas [9] expressed the need for situational awareness in the con-
text of the Internet of Things (IoT). They propose a corresponding architecture and
identify key functionalities. Similar proposals were made by Lee, Ardakani, Yang
and Bagheri [17], and by Singh and Tripathi [23]. They all remain somewhat incon-
crete regarding the realization of their proposals. Ghimire, Luis-Ferreira, Nodehi and
Jardim-Goncalves [11] go further and mention a situational awareness module that
makes use of formal knowledge representation and semantic web technologies such
as OWL (Ontology Web Language). From their description, however, it seems that
the module is currently under implementation and no instantiation of their architec-
ture is yet available.

One of the key uses of formalized business models is monitoring their execu-
tion for conformance to the model. Cook and Wolf [7] developed techniques for
uncovering and measuring the discrepancies between models and executions. They
utilize rather high-level metrics for that. In contrast, and closer to our work, Chesani,
Mello, Montali, Riguzzi, Sebastianis and Storari [5] propose a framework for per-
forming conformance checking of process execution traces w.r.t. expressive reactive
business rules. Rules are mapped to Logic Programming, using Prolog to classify
execution traces as compliant/non-compliant. Our approach is rule-based as well but
additionally offers processes and channels as a modelling paradigm. DeGiacomo,
Maggi, Marella and Sardina [8] also address conformance checking, by modelling
process rules in the declarative Planning domain definition language (PDDL) and
applying an off-the-shelf automated planner. They also attempt to identify the miss-
ing or superfluous activities in non-conformant traces, which is a special case of the
general problem of diagnosis of discrete dynamical systems [6, 18].

Formalmodelling languages, such as Petri nets or the Promela language embodied
in the Spin model checker [13], are used for modelling business processes or work-
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flows as well as concurrent processes in (embedded) computer systems. However,
these languages do not support modelling processes whose internal state or messages
are made up of complex data types.

In the runtime verification area, Kauffman, Havelund and Joshi [16] propose a
more specialized Scala DSL for monitoring event streams over Allen’s temporal
interval logic [1]. For a different application, Havelund and Joshi [12] propose a
Scala DSL based on hierarchical state machines. These approaches overlap with our
approach in terms of implementation (Scala DSL) but differ conceptually. In par-
ticular, our approach supports explicit candidate model computation via disjunctive
rules and backtracking.

Outline of the paper. The rest of this paper is structured as follows: in Sect. 9.3 we
present an overview of our system architecture. This is needed to provide context for
our process modelling language and how it is executed. This is explained in Sect. 9.4.
We conclude in Sect. 9.5 with a brief summary and future work.

9.3 System Architecture

The system architecture is depicted in Fig. 9.1. Its components may run in parallel,
and may be distributed across sites. We use the term “message” for the information
flowing between the components.

Reports, sensor output and message handling The situational awareness system
is driven by and reacts to external events. These may come from sensors, such as
RFID and video (e.g. on a factory floor) or they may be reports filed by humans (e.g.
orders and dockets in a sales business).

We do not assume that the environment provides complete information, e.g. sen-
sors can fail and workers forget to report or report incorrectly. However, we assume
an abstraction mechanism, the “Message Handling” which preprocesses input mes-

Sensor
Output

Message
Handling

Inference
Engine

State
Maintenance

Forecasting

Scheduler

Alarm
Generation

Reports
Operator

Fig. 9.1 System architecture
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sages into a uniform message format. It may also carry out other operations, such as
adding a timestamp, sorting or filtering.

Inference engine In addition to sensor and report input being unreliable, one can-
not expect a complete model of the world under consideration. It is the task of the
inference engine to use the information at a given time to derive a more complete
description of the current overall state. This may involve inferring missing informa-
tion, what-if reasoning and auto-correction.

The inference engine is general and needs to be equipped with a concrete model.
In our current realization, the model is given by processes connected via message
channels. Execution is stateful, with user-supplied rules governing state transitions.
(See Sect. 9.4 for more details.) The inference engine receives a windowed sequence
of message, and, as a result, derives one or more plausible current states. Analysing
this state or states in context with the state history is the responsibility of the state
maintenance module. Figure 9.2 gives an overview of these dynamic aspects of the
inference engine and the state maintenance module.

State maintenance The state maintenance module manages a set of execution paths,
or just paths. A path is a time-finite sequence of states obtained by successive runs
of the inference engine. The set of execution paths naturally forms an execution tree,
cf. again Fig. 9.2. The execution tree is meant to represent possible executions of the
modelled system. The state maintenance constructs the execution tree based on new
states coming in from the inference engine, and it informs the inference engine by
telling it the next state to continue with. We emphasize that this next state does not
have to be among the input states, it could be any state derived from the execution
tree so far.

The full generality of execution trees may not be needed in all applications. Some
immediate special cases and variations come to mind:

• Markovian: no histories; every branch is a singleton, the most recent state.
• Deterministic: the tree has only one branch.
• Focused: only some branches, e.g. the most plausible states, are kept.

P1

P2
P3

C2C1

C3

Events . . . C0 States
S0

S1 S2

S3 S4 S5 S6

State MaintenanceInference Engine

Cout

Cin

Fig. 9.2 Inference engine and state maintenance. Events are coming in from the channel C0. The
inference engine has processes P1, P2, P3 and internal channels C1,C2,C3. The channels Cin and
Cout connect the two components for exchanging states. The state maintenance module maintains
possible execution paths in terms of states derived by the inference engine
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• Probabilistic: assign each state a probability distribution over its children.

While state maintenance could in principle be done by the inference engine, there are
arguments to keep it separate. Because the nodes along a path are temporally ordered,
execution trees can be analysedwith temporal logic.Onewould express (un)desirable
properties with logics such as linear temporal logic (LTL), computational tree logic
(CTL) and apply verification methods to them. (See [3] for a textbook on temporal
verification.) Particularly relevant are runtime verification methods capable of han-
dling structured data like those developed by Havelund and Peled [14]. For instance,
one could formulate a temporal LTL safety constraint for monitoring travel times
between waypoints for fresh goods and raise an alarm if violated. Also, techniques
for log analysis seem applicable. For instance, Brandt et. al. [4] propose an expressive
ontology-based framework on top of metric temporal logic.

Scheduler The scheduler provides the timeline for future events so that a mission
can be accomplished. In a supply chain domain, it could be route planning, among
others (we consider the term “Scheduler” loosely).

Forecasting The components described so far are backward-looking in time. The
forecasting module is concerned with projecting the current state into the near or
medium future, and thus requires additional information, e.g. the current schedule
stored in a database. Even a simple approximate prediction can be useful in practice.
In a supply chain domain, for instance, forecasting may combine current vehicle
locations with the routes yet to be travelled.

Alarm generation Generating alarms or notifying the user of deviations of the
expected state is a core functionality of situational awareness systems. In our cur-
rent implementation, this functionality is provided by the inference engine, which is
poised for doing this as it has at its disposal (a) the current state, (b) the current sched-
ule and (c) the forecast. Incoherencies between (a), (b) and (c) are thus detectable.
Conceptually, however, alarm generation is a different activity from state inference,
as it involves a judgement about whether the state merits human attention, and not
only what the state is.

Operator The operator receives notifications from the system, in particular alarms,
and interacts with the state maintenance system to achieve faithful state representa-
tion. The operator invokes scheduling when needed, e.g. in case of alarms.

9.4 The Process Modelling Language

The main rationale behind our modelling language is to provide a natural framework
formapping actors in the realworld—physical or conceptual ones, like schedules—to
corresponding modelling entities. Our modelling approach supports object-oriented
design principles like abstraction, polymorphism, encapsulation and inheritance. The
main entities are processes, which run (conceptually) in parallel and exchange infor-
mation throughmessages. Themessage-passing paradigmwas inspired in part by the
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a b c

a b c

d e f

C

C.subscribe()

C.subscribe()
C buffer

blocked if frozen

Fig. 9.3 The channel subscription model. In this example, an external channel C has already
received data items a, b and c. Then C was frozen and incoming data d was put into the buffer for
now, while e and f have not arrived yet. The data a, b and c already received is actually copied and
forwarded to all subscribing channels. In the example, the upper subscribing channel has a being
read from, and the lower subscribing channel has a and b being read from

Spin model checker and its modelling language Promela [13]. Spin is geared towards
model checking, i.e. the problem of proving or disproving that all possible runs of the
system satisfy some property. Unlike Spin, our system is tailored towards situational
awareness, which analyses one run (the “reality”) and it supports object-oriented
design principles.

Processes Processes are models of the entities of the system at hand. The entities
could be physical entities, such as machines producing goods and workers sched-
uled for work, or abstract entities, such as schedules and rosters. Processes can
be created and scheduled for execution dynamically, and they can be stopped and
destroyed dynamically. Processes are stateful, where a process’ state is given by a
user-declarable set of local variables and their current values. It is the collection of
the states of all processes that is sent to the state maintenance component at certain
times.

The computation inside a process is described by a set of rules. A rule is an if-then
statement whose condition may involve reading a channel. If a message is available
at the time and the rule’s condition is met then the rule is executable. Otherwise, the
rule fails. The conclusion of a rule typicallymodifies local variables and/or sends data
to other processes. The conclusion can be disjunctive, which allows for branching
into alternative possible states that may be consistent with the current, incomplete
state.

Messages and channelsChannels are used for sendingmessages into and out of pro-
cesses. Messages can be of any type as long as they can be serialized. We distinguish
between internal and external channels. Internal channels connect processes, while
external channels connect processes with the outside world.1 External channels can
be frozen, which means that incoming data is deferred into a buffer until the channel
is unfrozen again. Channels are lossless and can be used for m-to-n communication.
Any number of processes can subscribe to a channel. This has the effect that incom-
ing messages are duplicated to all subscribers so that multiple processes can receive
and deplete the channel individually without interfering with each other, cf. Fig. 9.3.

1External channels must be equipped with deserialization for their message type.
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Inference engine The inference engine executes the models written in our language.
This is done in rounds of scheduling and running its processes. At the beginning
of each round, all external channels are frozen, so that incoming messages are tem-
porarily buffered, cf. Fig. 9.3. A scheduler then selects in a fair way the next process
for execution among the scheduled processes. This process is executed by trying its
rules, once, in the given order. A failed rule application has no effect, i.e. it never
modifies a state or consumes channelmessages. The conclusion of the first executable
rule is executed. If the conclusion is a disjunction, the first alternative is executed and
the second alternative is put away together with the current state, and later restored
for execution. That is, disjunctions require maintaining a tree of execution sequences
over saved states and channel data. The execution of a conclusion (case) may also
explicitly fail.2 In this case, process and channel states are restored to what they were
before.

In each round, this selection of processes is repeated until all channels are depleted
or a user-defined cutoff number of rule executions has been reached. This results in
one or more derived states. These are sent, via the dedicated external channel, to
the state maintenance module, whose task is to derive from them some state that is
sent back to the inference engine as the new current state for the next round. Finally,
the external channels are unfrozen so that messages arrived in the meantime become
available, and the next round starts.

9.4.1 Illustrative Example

As an example, we consider a highly simplified food supply chain, which we model
the supply as a set of interacting processes. A process may correspond to an actor
in the supply chain (such as a distributor), or an actor may be modelled as several
interacting processes (for example, a distributor may be decomposed into inventory,
transportation and contracting processes). It is also possible for processes to model
interfaces between actors (such as a shipment). Processes act according to their
internal logic, which is codified in the model, and interact via message channels.
The channel mechanism is necessary to model the synchronization of processes (e.g.
between a delivery and an inventory process).

Processes There are goods (apples and oranges) of specific origin (Riverina and
Batlow) which are transported between warehouses (Sydney, Goulburn, Canberra)
by trucks (TruckA, TruckB and TruckC). “Truck” and “Warehouse” are process
classes in our model, and each truck and each warehouse is an instance of its class.3

Messages and channels Occasionally, waypoints for the trucks are available (say
by GPS) in terms of time and location. There are dockets for goods and their origins,
and the goods are loaded on trucks at a warehouse. These events are sent as messages

2Similar to Prolog’s fail statement.
3As an object-oriented language, Scala gives us the class/instance paradigm for free.
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into an external input channel and then dispatched into internal channels typed for
“waypoint” notifications and “loading” activities.
Process rules The process logic supports that waypoints are not noticed and that
occasionally the origin of goods is not recorded. That is, not all events find their way
into the system, or some remain partially specified. In general, the system should try
its best to complete missing information or deal with it in another reasonable way.
This is obviously a domain-dependent task. For the sake of illustration, we use the
following rules for trucks:

1. If a current waypoint message specifies a location L for truck T then L is recorded
as T ’s current location.

2. If a current loading message specifies that goods have been loaded on truck T
at location L and the current location recorded with T is different to L then a
waypoint message is broadcast, specifying that T is at L .

3. If a current loading message specifies that goods have been loaded on truck T
with “unknown” origin that loading message with “unknown” is replaced by
“Riverina” or that loading message with “unknown” is replaced by “Batlow”
through broadcasts.

Rule (1) is the normal way of recording locations of trucks. Rule (2) infers a missing
waypoint message. Notice that Rule (2) does not simply set the current location of
T to L but sends a message instead. This allows other processes listening for way-
point messages (the warehouse processes, in our example) to also be informed about
the inferred waypoint. Rule (3) branches into alternatives for resolving the missing
information bymaking it concrete. Each case will be investigated in a separate strand
of computation and may trigger further consequences (“what-if” reasoning).

9.4.2 Shallow Embedding in Scala

Our approach to process modelling is implemented in Scala [22]. Scala is a modern
high-level programming language that combines object-oriented and functional pro-
gramming styles. Scala comes with a comprehensive data structure library and runs
on the Java virtual machine, allowing Scala code to use existing Java libraries in a
straightforward way.

Scala has functions as first-class objects and supports user-definable pre-, post-
and infix syntax. With these features, Scala is suitable as a host language for embed-
ding domain-specific languages (DSLs). (See, e.g. [12] for a Scala DSL for runtime
verification.) In our case, we embed a DSL for modelling the processes and channels
from above. The embedding is shallow, i.e., the source constructs of the DSL are
actual Scala code with DSL-specific classes and methods, which then needs to be
compiled by the Scala compiler to be executable. Scala’s (optional) call-by-name
parameter passing style enables us to take statements as data and, hence, to explicitly
invoke their execution, or not. This feature was instrumental for implementing rules
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as partial functions, where rule applicability reduces to partial function definedness
and rule execution reduces to statement execution.

Listings 1, 2 and 3 show concrete excerpts of our food supply chain example
written in our DSL. A shallow embedding, it is comprised mostly of standard Scala.
The DSL-specific language constructs are underlined.

Listing 9.1 Channels and message types. package and include declarations are not shown.
Here and below, the dots indicate “glue code” for serialization and deserialization.

1 // Waypoint: observed time and location of a specific truck
2 case class Waypoint(time: LocalDateTime, truck: String, location: String)
3 object WaypointChannel extends Channel[Waypoint]("Waypoint") { ... }
4

5 // Loading: time and location of goods from a specific origin loaded on a truck
6 case class Loading(time: LocalDateTime, truck: String, location: String,
7 goods: String, origin: String)
8 object LoadingChannel extends Channel[Loading]("Loading") { ... }
9

10 // Input: sole external channel for receiving messages in Json
11 object Input extends Channel[JsObject]("Input", withInputPort = 5554, window = 1)

Listing 1 defines the main message types—Waypoint and Loading—and cor-
responding internal channels. The message types are ordinary Scala case classes.
Input is an external channel whose messages are deserialized and dispatched into
the other two channels. We use JSON as the format of external messages, but any
other format can be used in its place. The declaration withInputPort=5554
specifies that the channel’s messages are received over TCP. The window size says
howmany messages are taken from the input queue for the next round of processing.

Listing 9.2 The Truck processes, one for each truck.

1 class Truck(Id: String) extends Process("Truck") {
2 // Keeps track of the current location and load of this truck
3 var location = "unknown"
4 var load = Set.empty[(String, String)] // Items on this truck, as (goods, origin)
5

6 stateVar("location", ..., ...) // The Process state is comprised of location and load
7 stateVar("load", ..., ...)
8

9 val waypointChannel = WaypointChannel.subscribe() // Channel subscriptions
10 val loadingChannel = LoadingChannel.subscribe()
11

12 rules (
13 waypointChannel −−> {
14 case Waypoint(_, Id, loc) if location != loc =>
15 location = loc // Update current location
16 case _ => () // All other cases ignored



9 Situational Awareness for Industrial Operations 135

17 },
18 loadingChannel −−> {
19 case p @ Loading(time, Id, loc, _, _) if location != loc =>
20 // Infer waypoint from this Loading message and inform all processes
21 WaypointChannel <−− Waypoint(time, Id, loc)
22 LoadingChannel <−− p // Send Loading message again in order not to loose it
23 case Loading(time, Id, loc, goods, origin) if origin != "unknown" =>
24 // Fully specified loading
25 load += ((goods, origin)) // Add to current load
26 case Loading(time, Id, loc, goods, origin) if origin == "unknown" =>
27 // Partially specified loading
28 // Branch out into two cases, replacing unknown origin by concrete places
29 or ( LoadingChannel <−− Loading(time, Id, location, goods, "Riverina"),
30 LoadingChannel <−− Loading(time, Id, location, goods, "Batlow") )
31 case _ => ()
32 }
33 )
34 }

Listing 2 defines the Truck process class. The main program (not shown here)
schedules instances by statements like Scheduler.schedule(new Truck
("TruckA")). A truck’s state is given by its location and current load. Lines
3 and 4 are the local variables, lines 6 and 7 declare them as the process’ externally
visible state. Lines 9 and 10 subscribe to the two channels of interest for the process.
The rules-statement in line 12 defines two rules.

The first rule reads the WaypointChannel via the –> method. A case state-
ment defines a partial function by pattern matching. The first case sets the current
location to the location given by the Waypoint message. The second case is a
catch-all to make sure that the channel will not be blocked if the first case does not
apply.

The second rule deals with Loading messages. The first case infers a (pos-
sibly missing) Waypoint message from the Loading message and sends it to
the Waypoint channel. It will be picked up later by the first rule and processed
as described above. The second case applies to complete Loading messages, and
updates the load variable. The third case applies when the origin of the goods
is “unknown”. By its disjunctive conclusion, the or-statement, state generation
branches out by replacing “unknown” with concrete alternatives.

Listing 9.3 The Warehouse processes, one for each warehouse.

1 class Warehouse(Location: String) extends Process("Warehouse") {
2 // Keeps track of the set of trucks currently at this warehouse
3 var trucks = Set.empty[String]
4 stateVar(‘‘trucks’’, ..., ...)
5

6 val waypointChannel = WaypointChannel.subscribe()
7 rules (
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8 waypointChannel −−> {
9 case Waypoint(time, truck, Location) if
10 (! (trucks contains truck)) => trucks += truck
11 case Waypoint(time, truck, loc) if loc != Location &&
12 (trucks contains truck) => trucks −= truck
13 case _ => ()
14 }
15 )
16 }

Finally, Listing 3 shows a second process class that subscribes to the Waypoint
channel. AWarehouse process instance readsWaypointmessages to trackwhich
trucks are currently at the warehouse. Note that this process will also see Waypoint
messages inferred by a Truck process.

9.5 Conclusions

We introduced a novel architecture for situational awareness for industrial operations.
As our main contribution in this paper, we presented a design and implementation
of one core component, the inference engine and its associated process modelling
language, via a domain-specific embedding into Scala. We illustrated our approach
with a small example from the food supply chain domain. Our implemented system
runs this example as described in the main part of the paper, but we did not include a
log here for space reasons. We have also been gathering experience with our system
on more elaborate food supply chain, factory floor and data cleaning applications.
In each of these, we have found our modelling approach of processes, rules and
channels confirmed to be viable in practice. Notwithstanding this promising experi-
ence, we need to further mature our system as a prerequisite for wider impact. We
envisage a number of things: enriching the modelling language by an ontological
component, e.g. a description logic, for added declarative domain modelling and
reasoning; employing a declarative, temporal-logic-based system for state mainte-
nance as indicated in Sect. 9.3; model-checking the process models (this will be
possibe only for controlled subsets of Scala); and probabilistic reasoning based on
distributions for conclusions of disjunctive rules.
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Chapter 10
Dynamic Relocation of Aerial
Firefighting Resources to Reduce
Expected Wildfire Damage

Nicholas Davey, Simon Dunstall, and Saman Halgamuge

Abstract Aerial firefighting resources are an integral part of modern wildfire sup-
pression strategies. Inmany locations around theworldwherewildfires pose a serious
threat, firefighting authorities have access to fleets of different aircraft. These can be
used to provide support to land-based resources during the extended attack of exist-
ing fires or to quickly suppress recent spark events during the initial attack phase.
As the amount of time that a fire has been burning is a predictor of the amount of
damage it causes, fast aerial response times are critical. Therefore, there is significant
value in dynamically repositioning aircraft to airbases and fires over the course of a
fire day or fire season. In this paper, we devise one such approach based on model-
predictive control to make relocation decisions at various times over a single day.
These relocation decisions are based on solving an underlying Mixed-integer linear
program (MILP) so as to minimize expected damage over a lookahead horizon. The
inputs to this program are updated at each of these decision times based on prevailing
stochastic weather conditions, the current state of fires in the region, and the current
assignment of aircraft to bases and fires. The expected fire damage profiles used in
this model are based on empirical data that is pre-computed for the region of inter-
est. We apply our model to a scenario in Central Chile and show that with careful
parameter selections it is possible to make improved relocation decisions to reduce
the expected fire damage in a region using this approach.
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10.1 Introduction

The demand for firefighting resources to combat wildfires has steadily increased over
the past century [1, 2]. This can be attributed to both climate change [2], which is
increasing the frequency and severity of outbreaks, and land use patterns that place
communities close to fire-prone areas [3]. This is evident from the destruction caused
by many recent high-profile disasters [4]. Unfortunately, many fire-prone locations
throughout theworld are experiencingwetter winters and hotter and drier summers—
a potentially disastrous combination that will literally “add fuel to the fire” of future
ignition events and increase the damage they cause [5].

Aerial resources such as tankers and helicopters play a pivotal role in mitigating
this damage and can be used in both extended and initial attack phases when sup-
pressing wildfires. In extended attack, air tankers and helicopters provide support to
ground crews to keep existing fires under control. Their capabilities include laying
firebreaks ahead of fires or providing direct suppression of portions of the blaze to
try and extinguish them [6]. During initial attack, aerial resources can suppress fires
before they grow too large. They are particularly useful in areas that are inaccessible
to ground crews or that are too far away for ground crews to reach in an acceptable
amount of time [7]. As only a small percentage of established fires are responsible
for the vast majority of total damage [8, 9], prompt aerial responses (typically within
20–30min) that extinguish fires early can dramatically reduce the total damage across
a region.

However, deciding how to assign aircraft to bases and fires is a difficult question
that depends on many factors such as expected fire weather, existing fire severities,
expected suppression success and current resource availability and location through-
out the region [10]. This has important implications on both the strategic level of
how many aircraft to charter and of what type, as well as tactical level decisions of
where and when to deploy these aircraft [1]. These two tasks are typically performed
by a centralized command [11].

According to Calkin [9], initial attack is generally quite effective, with most fires
being extinguishedbefore they reach a critical size.However, thefires that doprogress
beyond this initial phase may also require aerial support, thus creating a competing
need for a finite number of resources. Unfortunately, regions to be covered are large,
and the fire danger can vary dramatically both spatially and temporally throughout a
fire season. Therefore, the optimal dynamic allocation of aerial resources to airbases
and fires throughout a fire season can have a large effect on the total fire damage
incurred.

Firefighting agencies are well aware of the need for optimal management of
resources. In fact, they have used Operations Research (OR) techniques to manage
resources as early as the 1960s [12]. The earliest known application ofORspecifically
related to air tankers was in 1984 [13]. In this study, the authors used a simulation
model to make aircraft stationing decisions.

Later works have regularly applied linear programming techniques. For example,
in [14], the authors used a mixed-integer linear program (MILP) to make strategic



10 Dynamic Relocation of Aerial Firefighting Resources … 143

home base assignment decisions for aircraft. A number of more recent studies have
investigated ways to deploy fire resources to bases to specifically improve initial
attack success. Donovan and Rideout [15] developed a multi-period MILP model to
assign fire trucks to locations so as to minimize the growth of a single fire over a
certain period of time. This technique was subsequently applied to multiple fires in
[16, 17]. The aforementioned models all sought to minimize the contained area of
fires and therefore included detailed models of the fire line over time.

Recently,MILPmodels have been extended to account for the inherent uncertainty
in the relocation decision process.Haight andFried [18] developed a stochasticmodel
that assigned a fixed number of resources to bases, which they solved with a two-
stage MILP. This model sought to minimize the number of fires that progressed
beyond the initial attack phase through the optimal stationing of aircraft to these
bases. Wei et al. [19] developed a comprehensive two-stage model that also sought
to minimize the number of fires that are not contained over a given timeframe. They
explicitly modelled fire containment, similar to earlier studies, but also used a two-
stage, chance-constrained MILP, similar to Haight and Fried [18] in order to account
for uncertainty.

While the above models are able to account for uncertainty, they mainly focus
on terrestrial vehicles that have fixed home bases at the start of a season. However,
aerial resources have a greater opportunity to relocate between bases than land-
based resources due to their ability to cover large distances in a short period of
time. This is an opportunity for firefighting authorities to pre-emptively relocate
aerial resources to be based in areas with greater fire danger. However, realizing the
value of relocation presents a number of computational challenges. In fact, a full
analysis of its advantages would require the use of stochastic dynamic programming
approaches that can be computationally intractable [12]. Two studies that addressed
this dynamic relocation problem were [20, 21]. In the former, the authors used a
queueing model to manage redeployment decisions and a heuristic to deal with
computational tractability. In the latter, the authorsmade static relocation decisions at
daily intervals using a “chance-constrained”p-median relocation linear programming
model. The parameter inputs of [21] that reflected the fire danger throughout the
region were updated using a rolling horizon and managed using model-predictive
control (MPC). The overall objective in their model was to minimize the expected
costs of relocation as opposed to reducing the expected damage caused by fires.

In this paper, we develop an approach to dynamically relocate aircraft over time
so as to minimize expected fire damage over the course of a single fire season. We
use a model predictive control approach, similar to [21] to dynamically resolve an
MILP. However, we also integrate the concepts of expected damage, which is similar
to other studies such as [18, 19]. Therefore, the parameters of the program presented
in this paper are updated at each future time period based on stochastic fire danger
and expected fire damage growth probabilities.

Thepaper is organized as follows. Section10.2 outlines the formulation of the opti-
mization problem and the model-predictive framework. Section 10.3 then describes
the embedded MILP that is updated at each time step, while Sect. 10.4 applies the
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model to a case study. Finally, Sect. 10.5 concludes the paper and presents an agenda
for future work.

10.2 Problem Description

The problem investigated in this paper consists of optimally updating the assignments
of a fixed number of helicopters and tankers to bases and active fires over the course
of a single fire day. These relocations are performed so as to minimize expected
fire damage, D. The aircraft must also be available at short notice to suppress new
outbreaks if they occur. Finally, there is an additional operational requirement that
no aircraft can exceed its maximum flying hours for the day.

Let θ t = [
φt ,β t ,Gt

]
represent the state of the system at time t , where φt is the

vector of severities of currently burning fires, β t is the vector of the fire danger index
in each patch and Gt is the cumulative flying hours recorded for each aircraft. In
addition, let vectors X t and Y t represent the binary assignments of aircraft to bases
and fires, respectively. Their respective components are denoted Xr,b (aircraft r is
assigned to base b), and Yr,m (aircraft r is assigned to firem). The minimum expected
damage for the remainder of the day, D (t, θ), given the current time step and state,
is found by solving for X t ,Y t in the Bellman equation:

D (t, θ) = min
X t ,Y t

{
f
(
t, θ t ; X t ,Y t

) + �
(
t, θ t ; X t ,Y t

)}
, (10.1)

where

�
(
t, θ t ; X t ,Y t

) = E

{
T∑

u=t

f
(
u, θu; X̂u

, Ŷ
u
)
∣
∣∣∣∣
θ t , X t ,Y t

}

(10.2)

is the conditional expectation of future fire damage until the end of the day assuming
that optimal assignment decisions (X̂

u
, Ŷ

u
) are made at all future time periods.

Additionally, f
(
u, θu; X̂u

, Ŷ
u
)
represents the expected single period fire damage

given the prevailing state and chosen assignments.
Solving Eq. 10.1 optimally requires the use of stochastic dynamic programming

over all possible states and assignments, which would be computationally intractable
[12]. As a compromise, we adopt a model predictive approach with a rolling horizon,
in a manner similar to [21]. Within this framework, at each time step, an MILP is
solved to find the best aircraft assignments to make given the fire danger forecast
over a lookahead horizon and the current state of the system. This MILP uses the
expectations of fire damage over the lookaheadwindow tomake relocation decisions.
Wedenote the expecteddamage at time t of an existingfire,m by δE,t

m,κ and the expected
damage for potential fires at location n by δP,t

n,κ . These expectations are conditional
upon the forecast fire danger index over the lookahead horizon ((βm)T and (βn)T ),
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and the aircraft configuration applied to the fire/patch at time t , κ . They are computed
at each time step using the following equations, which can be obtained by analysing
empirical data for the study region:

δE,t
m,κ : δE,t

m,κ

(
φt
m, (βm)T

)
(10.3)

δP,t
n,κ : δP,t

n,κ

(
(βn)T

)
. (10.4)

The parameter κ is an index corresponding to a single aircraft configuration
from a finite set of possible configurations. A valid configuration is defined by
the number of helicopters and tankers that are within a 20 min travel time to the
fire/location (early arrivals), and the numbers outside a 20 min travel time (late
arrivals). Therefore, a configuration can be represented by an encoding of the form
T E(X)HE(X)T L(X)HL(X), where T E , HE , T L and HL refer to early tankers,
early helicopters, late tankers and late helicopters, respectively. The X ’s are the cor-
responding numbers of aircraft of each component in the configuration.

10.3 MILP Relocation Model

The embedded MILP updates aircraft assignments at time t so as to minimize the
expected fire damage over the lookahead horizon, T . It does this by explicitly
accounting for expected damage given the burning index throughout the region (β t ),
the severity of existing fires (φt ), and the current assignments of aircraft to bases
(X t ) and existing fires (Y t ).

We first define the following sets that are used in the MILP:

R Set of all aerial resources r ∈ {1, . . . , rmax }
B Set of bases b ∈ {1, . . . , bmax }
M Set of active fires at time t m ∈ {

1, . . . ,mt
max

}

N Set of patches n ∈ {1, . . . , nmax }
T Set of time periods over lookahead horizon τ ∈ {t, . . . , t + T }
K Set of possible attack configuration indices κ ∈ {1, . . . , κmax }
C Set of indices of the components of configurations c ∈ {1, 2, 3, 4}

In addition to the parameters introduced in Sect. 10.2, we also define the following
extra parameters that are used in the MILP:

• λ is a user input between 0 and 1 that weights the cost of relocation versus keeping
aircraft in their current configuration.

• d1
r,b is the distance between aircraft r and base b.

• d2
r,m is the distance between resource r and fire m.

• d3
b,n is the distance between base b and patch n.

• 	E
m,κ is a binary variable that indicates whether firem is assigned configuration κ .
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• 	P
n,κ is a continuous variable between 0 and 1 that indicates the rate at which to

apply configuration κ to patch n over the lookahead.
• Ar,b is a binary variable that indicates whether resource r is available to fight fires
from base b.

• Qκ
c is the number of aircraft in component c of κ required to satisfy configuration

κ .
• ηc

b is the expected number of fires within a 20 min radius of base b that will break
out over the lookahead horizon. If the expected number is less than 1, ηc

b is set
to 1.

• 1c (d) is an indicator function that equals 1 if the travel distance d satisfies com-
ponent c of the configuration encodings.

• Gt
r is the number of flying hours at time t logged by aircraft r . The maximum

number of daily hours for the same aircraft is given by Gmax
r .

Using the parameters defined in Sect. 10.2 and those defined above, we can now
state the MILP. All t superscripts except for those relating to accumulated flying
hours have been suppressed for improved legibility.

Objective Function

D (t, θ) = min
X,Y

⎧
⎨

⎩
λ

⎡

⎣
∑

K

∑

N

δPn,κ	P
n,κ +

∑

K

∑

M

δEm,κ	E
m,κ

⎤

⎦ + (1 − λ)
∑

B

∑

R

d1r,bXr,b

⎫
⎬

⎭

(10.5)

Constraints

Qκ
c	

E
m,κ ≤

∑

R

1c
(
d2
r,m

)
Yr,m ∀κ, c,m (10.6a)

Qκ
c	

P
n,κ ≤

∑

B

∑

R

1c
(
d3
b,n

)
Ar,b

/

ηc
b ∀κ, c, n (10.6b)

Ar,b ≤ Xr,b ∀r, b (10.6c)

∑

B

Ar,b +
∑

M

Yr,m = 1 ∀r (10.6d)

∑

B

Xr,b = 1 ∀r (10.6e)

∑

M

Yr,m ≤ 1 ∀r (10.6f)

∑

κ

	E
m,κ = 1 ∀m (10.6g)
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∑

κ

	P
n,κ = 1 ∀n (10.6h)

∑

M

d2
r,mYr,m +

∑

B

d1
r,bXr,b ≤ Gmax

r − Gt−1
r ∀r (10.6i)

Xr,b, Ar,b ∈ {0, 1} ∀r, b; Yr,m ∈ {0, 1} ∀r,m; (10.6j)

	E
m,κ ∈ {0, 1} ∀m, κ; 	P

n,κ ∈ [0, 1] ∀n, κ (10.6k)

Constraint set (10.6a) specifies that a particular aircraft configuration at fire m
can only be met if the correct number of aircraft to satisfy each of the components,
c, in configuration κ are available. Constraint set (10.6b) is the same constraints
for potential fires at patch n. It also considers the expected number of aircraft that
each base will see, which is captured by ηc

b. This accounts for the fact that aircraft
may be needed to fight multiple potential fires over the lookahead horizon. Con-
straints (10.6c) ensure that aircraft r can only be available from base b if it is actually
stationed at b. Constraint set (10.6d) ensures that each aircraft is either available at a
base or is assigned to a fire. Constraint set (10.6e) ensures that aircraft r is assigned
to one and only one base. Constraints (10.6f) ensure that an aircraft can only be
allocated to at most one fire. Constraints (10.6g) and (10.6h) ensure that each patch
and fire must only be assigned one configuration. Constraint (10.6i) makes sure that
the total number of flying hours for each aircraft is below the maximum permissible
hours for the day. Finally, (10.6j) and (10.6k) are binary and bounds constraints on
all decision variables.

10.4 Numerical Example

We apply our model to a case study in Central Chile based on the 2017 megafire
season. This fire season was the worst on record for the country, with over 518,000
Ha of land burned, 10 deaths, over 3000 homes destroyed and over $370m spent to
fight the fires [3].

The inputs used in this example are the fire danger parameters and the conditional
probabilities that are dependent upon them. The growth rates in the absence of any
firefighting efforts were estimated using AMICUS [24]. The values for different
configurations of early and late aircraft were assumed to reduce with the number of
aircraft in the configuration.

Our numerical example consists of 17 identical fixed-wing tankers (cruising speed
of 356 km/hr) that are required to provide fire coverage to the 16 provinces within
the regions of Maule, Bío Bío, Araucanía, Los Ríos, and Los Lagos, as shown in
Fig. 10.1. For each of these provinces, one air strip was selected for basing the air-
craft. Our example uses 16 possible attack configurations, consisting of all possible
combinations of (0/1/2/3+) aircraft arriving within 20 min and (0/1/2/3+) aircraft
arriving after 20 min, and are applied to both initial and extended attacks. No heli-
copters are used in this example. In addition, the embedded relocation model uses
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Fig. 10.1 Region of interest
showing province boundaries
and the location of air strips
used in the example

a forward horizon of 5 hours. Finally, each sample run begins with the same seven
fires, as represented by the circles in Fig. 10.1.

Input Parameters and Initial Fires The main predictors of expected damage are the
McArthur Forest Fire Danger Index (FFDI, β) and the configurations applied to each
patch and fire. The FFDI values were computed from raw weather data for the three
sample days tested (17/12/2017, 19/12/2017 and 21/12/2017). Due to the short time
horizon of a single day, the FFDIs at all time steps of the model are assumed to be
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Table 10.1 Conditional probabilities for growth rates and initial sizes used in the numerical example

Forecast Burning Index (βT )

5 10 15 20 25 30

Ignitions /103 km2/h Poisson
Param.

0.006 0.012 0.018 0.024 0.030 0.036

Config.

Expected Damage, Initial
Attack (δE , Ha/hr)
Mean (Std. Dev.)

TE0TL0 1.9 (0.4) 20.1 (4.0) 29.2 (5.8) 41.2 (8.2) 48.1 (9.6) 60.9 (12.2)

TE1TL0 0.1 (0.0) 1.9 (0.4) 4.2 (0.8) 7.7 (1.5) 11.1 (2.2) 13.8 (2.8)

TE2TL0 0.0 (0.0) 0.6 (0.1) 1.4 (0.3) 2.6 (0.5) 3.7 (0.7) 4.6 (0.9)

TE3TL0 0.0 (0.0) 0.2 (0.0) 0.3 (0.1) 0.6 (0.1) 0.9 (0.2) 1.2 (0.2)

TE0TL1 0.9 (0.2) 9.4 (1.9) 13.7 (2.7) 19.3 (3.9) 22.5 (4.5) 28.6 (5.7)

TE1TL1 0.0 (0.0) 0.9 (0.2) 2.0 (0.4) 3.6 (0.7) 5.2 (1.0) 6.5 (1.3)

TE2TL1 0.0 (0.0) 0.3 (0.1) 0.7 (0.1) 1.2 (0.2) 1.7 (0.3) 2.2 (0.4)

TE3TL1 0.0 (0.0) 0.1 (0.0) 0.2 (0.0) 0.3 (0.1) 0.4 (0.1) 0.5 (0.1)

TE0TL2 0.4 (0.1) 4.4 (0.9) 6.4 (1.3) 9.0 (1.8) 10.5 (2.1) 13.3 (2.7)

TE1TL2 0.0 (0.0) 0.4 (0.1) 0.9 (0.2) 1.7 (0.3) 2.4 (0.5) 3.0 (0.6)

TE2TL2 0.0 (0.0) 0.1 (0.0) 0.3 (0.1) 0.6 (0.1) 0.8 (0.2) 1.0 (0.2)

TE3TL2 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.2 (0.0) 0.3 (0.1)

TE0TL3 0.2 (0.0) 2.0 (0.4) 3.0 (0.6) 4.2 (0.8) 4.9 (1.0) 6.2 (1.2)

TE1TL3 0.0 (0.0) 0.2 (0.0) 0.4 (0.1) 0.8 (0.2) 1.1 (0.2) 1.4 (0.3)

TE2TL3 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.3 (0.1) 0.4 (0.1) 0.5 (0.1)

TE3TL3 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0)

Growth Rate, Extended
Attack (δE , km/hr)

TE0TL0 0.3 (0.1) 0.9 (0.2) 1.0 (0.2) 1.2 (0.2) 1.3 (0.3) 1.5 (0.3)

TE1TL0 0.1 (0.1) 0.3 (0.2) 0.3 (0.2) 0.4 (0.2) 0.5 (0.3) 0.6 (0.3)

TE2TL0 0.0 (0.1) 0.0 (0.2) 0.1 (0.2) 0.1 (0.2) 0.2 (0.3) 0.2 (0.3)

TE3TL0 −0.1 (0.1) −0.2 (0.2) −0.2 (0.2) −0.2 (0.2) −0.2 (0.3) −0.1 (0.3)

TE0TL1 0.2 (0.1) 0.8 (0.2) 1.0 (0.2) 1.1 (0.2) 1.2 (0.3) 1.4 (0.3)

TE1TL1 0.1 (0.1) 0.2 (0.2) 0.3 (0.2) 0.3 (0.2) 0.4 (0.3) 0.5 (0.3)

TE2TL1 0.0 (0.1) 0.0 (0.2) 0.0 (0.2) 0.0 (0.2) 0.1 (0.3) 0.1 (0.3)

TE3TL1 −0.1 (0.1) −0.2 (0.2) −0.2 (0.2) −0.3 (0.2) −0.2 (0.3) −0.2 (0.3)

TE0TL2 0.2 (0.1) 0.8 (0.2) 0.9 (0.2) 1.1 (0.2) 1.1 (0.3) 1.3 (0.3)

TE1TL2 0.0 (0.1) 0.2 (0.2) 0.2 (0.2) 0.3 (0.2) 0.3 (0.3) 0.4 (0.3)

TE2TL2 0.0 (0.1) −0.1 (0.2) −0.1 (0.2) 0.0 (0.2) 0.0 (0.3) 0.0 (0.3)

TE3TL2 −0.1 (0.1) −0.3 (0.2) −0.3 (0.2) −0.3 (0.2) −0.3 (0.3) −0.3 (0.3)

TE0TL3 0.2 (0.1) 0.7 (0.2) 0.8 (0.2) 1.0 (0.2) 1.1 (0.3) 1.2 (0.3)

TE1TL3 0.0 (0.1) 0.1 (0.2) 0.1 (0.2) 0.2 (0.2) 0.2 (0.3) 0.3 (0.3)

TE2TL3 0.0 (0.1) −0.1 (0.2) −0.1 (0.2) −0.1 (0.2) −0.1 (0.3) −0.1 (0.3)

TE3TL3 −0.1 (0.1) −0.3 (0.2) −0.4 (0.2) −0.4 (0.2) −0.4 (0.3) −0.4 (0.3)

known with certainty at the start of the day. Therefore, the uncertainties that remain
are fire occurrences, growth rates and success rates under different combinations
of aircraft configuration and FFDI. These are shown in Table 10.1. The occurrence
rates are assumed to follow a Poisson distribution, while the remaining conditional
probabilities are all assumed to follow truncated normal distributions. While the
probabilities used are synthetic, they reflect the fact that earlier arrivals, more aircraft
and lower FFDI values result in higher success rates and lower expected damage.
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Table 10.2 Expected fire damage (1,000 Ha) and standard deviations for various values of λ as
well as for the fixed base assignment case

Test Mean (Std. Dev.) Damage, 1000 Ha

17/12/2017 19/12/2017 21/12/2017

Initial 14.3 (10.3) 35.6 (19.1) 32.9 (21.3)

λ = 0.1 5.8 (3.9) 27.6 (16.8) 39.6 (19.5)

λ = 0.3 9.7 (8.1) 37.6 (18.0) 55.5 (22.6)

λ = 0.5 14.7 (12.2) 70.0 (25.5) 46.9 (22.5)

λ = 0.7 13.1 (9.0) 43.2 (25.0) 64.2 (26.7)

λ = 0.9 19.1 (8.3) 57.9 (22.9) 70.7 (26.0)

10.4.1 Results and Discussion

In total, six different tests were performed for each sample weather day. The first of
these is a semi-static location model where aircraft base assignments are fixed at the
first time period. These assignments are made based on solving the embedded MILP
using expected weather over the entire day. The remaining tests are for different
values of λ. For each test, 20 runs were performed and the average fire damages and
standard deviations were computed. These are summarized in Table 10.2.

The six cases with different λ values were chosen to test different ratios for
weighting the relocation component of the objective function relative to the expected
damage component in the MILP. The most effective model among all of the cases
tested isλ = 0.1.This is closely followedbyλ = 0.3 and the casewhere aircraft bases
are fixed at time 0. The cases with larger λ values performed poorly in comparison.
This suggests that relocations in response to short-term spatial variations in fire
weather are undesirable, particularly if they may differ from expected fire weather
further into the future. This is supported by the fact that the fixed location model
takes into account the fire weather over the entire day, whereas the other three models
only consider a 5 hours lookahead. Together with the fact that all models are able
to assign aircraft to nearby fires as they occur, this puts the fixed base assignment
model at an unrealistic advantage.

It was also observed that the model with λ = 1 performed noticeably better in the
first Scenario (17/12/2017) but had limited to no benefit in the other two scenarios
tested. This suggests that the parameter setting is dependent on the specific fire day
encountered. The underlying weather for Scenario 1 was not as severe as that for
the other two scenarios but it also varied less throughout the region over the course
of the day. Future tests should therefore investigate the effect of spatial variation
in FFDI on the best λ setting to use and consider ways to dynamically alter this
parameter as well.
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This example has a number of simplifying assumptions. First, the patches used
are at the province level and are fairly large. The next smallest level (comunes)
consists of 150 patches. A more fine-grained approach such as this may provide a
better spatial representation of both fire weather and fire damage. Second, only one
air strip was used for each patch. Once again, there are over 150 possible bases in
Central Chile, which may provide better relocation options for the embedded MIP.
Finally, synthetic data was used for conditional probabilities. Future work aims to
use probability distributions derived from analysing actual historical fire data from
the region.

Finally, one drawback of the embedded MILP is that it seeks to minimize the sum
of expected fire damage over the horizon plus the sum of relocation costs, weighted
by the parameter λ. As the latter of these two components does not measure expected
damage (which is what the model ultimately seeks to minimize), it may dominate in
the objective function, preventing relocations thatmay in fact reduce overall expected
damage. Future work should address this drawback.

10.5 Conclusion

In this paper, we developed an approach for dynamically repositioning aerial fire-
fighting resources to reduce expected fire damage over a fire season. In it, we imple-
mented aMPC framework using a rolling horizon that we used to update assignments
of aircraft to bases and fires. Our model explicitly accounts for success probabilities
of extinguishing fires once these relocation decisions are made. Using a properly
tuned scaling parameter, it is possible to reduce the expected damage over that of
a static model where assignments are made at the start of the horizon. Preliminary
results suggest that the expected damage is dependent on this scaling parameter.
Future work will look at performing a sensitivity analysis across a range of scaling
parameters for a larger sample of test scenarios as well as alternative formulations
of the embedded MILP.
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Chapter 11
The Operating Room Scheduling
Problem Based on Patient Priority

Omolbanin Mashkani, F. J. Hwang, and Amir Salehipour

Abstract Anefficient operating theatre schedule contributes significantly to enhanc-
ing the efficiency of hospital operation management and plays a critical financial role
in most hospital settings. In this paper, an operating room scheduling problem based
on patient priority is investigated at tactical and operational levels subject to specific
strategic decisions. At the tactical level, the main goal is to generate a cyclic time
table, known as themaster surgical schedule (MSS) and can be repeated over the plan-
ning horizon of several months to years. Operational level concerns about allocating
patients to operating rooms and determining the day of surgeries, which is called the
surgical case assignment problem (SCAP). To handle the problems at both decision
levels simultaneously, known as theMSS-SCAP problem, an integer linear program-
ming (ILP) model, called MSS-SCAPmodel, and a heuristic approach are proposed.
The objective function is tomaximize the total priority scores of the patients assigned
to the surgical scheduling blocks over a given planning horizon. An adaptive ILP
model is also proposed to solve the SCAP, taking into consideration the dynamics of
the waiting list. The computational experiments are conducted using a set of random
data to evaluate the performance of the proposed MSS-SCAP model and heuristic
algorithm, in terms of solution quality and computation time. Our numerical results
indicate that the proposed ILP is capable of yielded optimal solutions for the small-
scale instances and near-optimal solutions for medium-size instances within 3,600
seconds. The proposed heuristic algorithm can generate quality solutions within 2
seconds for large-scale instances.
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11.1 Introduction

In recent years, the efficiency of the Australian health care system has become an
important area of interest, largely due to the growing costs in health care. Taking into
account ageing population, increasing burden of chronic conditions, and growing
patients’ expectations of health services, it is anticipated that the Australian Gov-
ernment expenditure on health care alone will increase from 4.2% of gross domestic
product (GDP) in 2014–2015 to 5.7% in 2054–2055, or 260 billion in current dollars
[3]. Although the Australian health care system generally has satisfactory outcomes
by international standards, recent studies have revealed that the efficiency of the
health sector could be improved by 20% through making the best use of the available
resources [4].

In a health care system, different stockholders have different interests and priori-
ties. Although health care administrations’ goal is to decrease costs, patients expect
to receive high-quality services as well as low charges and short waiting times. As a
result, to address the efficiency gap and simultaneously satisfy all stockholder expec-
tations, one solution is to employ systematic and evidence-based approaches, which
facilitate significant improvements in quality, efficiency, safety and other aspects
of operations [5]. Despite the fact that the focus of improving health care systems
has largely been on policy, managing hospital operations plays an important role
in enhancing the efficiency. Hospital managers are directly involved in actual care
rather than the context [6].Amongall hospital departments, the operating theatre (OT)
department, which usually consists of several operating rooms (ORs), is the most
crucial and costliest due to its operational complexity and expensive resources. It is
estimated that 60–70% of all hospital admissions are surgical and the OT department
accounts for more than 40% of the total expenses of a hospital [7]. Therefore, any
improvement in OT efficiency contributes to having an efficient health care delivery
system as a whole. Since the current surgical scheduling and planning approaches do
not live up to the hospital management expectations, the OT planning and scheduling
problems have attracted the attention of many researchers recently [8]. In general,
the OT planning and scheduling problem is a highly complex problem that entails
the assignment of OT resources, such as rooms, equipment, nurses and surgeons to
patients with the aim of improving efficiency and reducing patients’ waiting time in
a way that balances all stockholder’s expectations. The problem is getting even more
complex due to different patient characteristics, restricted capacities of upstream and
downstream departments and inherent uncertainty of the surgical procedures. In the
literature, surgeons are classified into the surgeon groups or surgical specialties if they
are homogeneous and have the same medical and procedural requirements [11]. On
the other hand, although elective surgeries can be planned in advance, non-elective
surgeries are unexpected.
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11.1.1 Literature Review

The characteristics of the different hospitals under study and the different national
realities contribute to the diversity of the literature in OT planning and schedul-
ing problems. From the structural point of view, the OT planning and scheduling
decisions are made in three hierarchical levels including strategic, tactical and oper-
ational. These decision levels depend on each other, as the outcome of each level can
affect the decisions on other levels in addition to being the input for the next level [7].
in the following, the main characteristics of these hierarchical levels are introduced.

At the strategic level, the main focus is to find out how many time blocks/slots
should be assigned to each surgical specialty to find the ideal composition and volume
of patients in a hospital [7, 9]. A time block is defined as the smallest time unit for
which an operating room can be assigned to a specialty [20]. To this end, strategic
planning is primarily a resource allocation problem and known as the case-mix
planning problem (CMPP). For a detailed survey of literature on the CMPP, we refer
the interested reader to Hof et al. [19].

At the tactical level, the capacity of ORs per day is shared among a variety of
surgical specialties in order to provide a cyclic timetable, which is called the master
surgical schedule (MSS) [14]. The main goal of anMSS is to assign surgical special-
ties, and not individual patients/surgeons, to time blocks [12]. To develop an MSS,
historical data and actual/forecast patients’ demand, in the form of waiting lists, are
utilized as critical inputs. In the literature, to construct an MSS three main strategies
have been used, including block scheduling, open scheduling and modified block
scheduling. In the block scheduling strategy, time blocks are assigned to surgical
specialties, which can arrange their surgical cases only in their own blocks. In the
open scheduling strategy, surgeons fromdifferent specialties can perform surgeries in
the same time block. Moreover, modified block scheduling strategy is a mix of block
and open scheduling strategies, which reserves some of the time blocks and assigns
others to patients or specialties using an open scheduling strategy [11]. Although
the open scheduling strategy is more flexible and provides a better assignment of
the surgical cases in comparison with block scheduling, it is an uncommon strategy
and rarely used in the health care industry. Hence, despite potential inefficiencies
as a result of unbalanced block schedules, block scheduling is widely accepted to
generate the MSS, due to its simplicity for both surgeons and managers [18].

In the literature, developing the MSS has been investigated as a combinatorial
optimization problem. The main objective of this optimization problem is to provide
an OT plan that optimizes the OT and surgical resource allocation and minimize
the patients’ waiting time. A variety of constraints affect the development of MSS
such as availability restrictions of medical staff and equipment, capacity limitation of
resources, e.g. regular openinghours, number of upstreamanddownstream resources,
and the uncertainty of surgical procedures as well as a restriction on the number of
time blocks assigned to each specialty as the result of CMPP [2, 7, 12].
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At the operational level, the assignment of an operating roomand operating time to
each patient, as well as sequencing surgeries in each operating room are determined
over a short-termplanning horizon [9]. To develop an operational plan awide range of
constraints should be taken into account. For example, structural constraints, which
ensure a non-overlapping of surgeries in the same room or surgeons in different
rooms at the same time, and resource constraints such as daily capacity restriction
in each operating room are among the most important ones [1]. In the literature,
generally, theOTplanning and scheduling problems at the operational level have been
solved as twomain subproblems including the advance scheduling and the allocation
scheduling. The advance scheduling,which is also called the surgical case assignment
problem (SCAP) seeks to assign each patient to an operating room and a particular
day for surgery over a planning horizon of 1–2 weeks. The allocation scheduling,
also referred to as the surgical case sequencing problem (SCSP), concentrates on
the timing aspects and sequencing of the assigned surgeries within each OR [15]. To
address the subproblems at the operational level, a variety of solution approaches have
been developed in the literature utilizing mathematical programming techniques,
simulation and scenario-based analysis and analytical procedures. They mainly have
been solved as a combinatorial optimization problem with the aim of achieving a
trade-off among different stockholders’ interests [15, 17, 21].

11.1.2 Contribution of this Research

Much literature has investigated just onedecision level ofOTplanning and scheduling
problems. In otherwords, they solved the problemusingmulti-stage approaches,with
each stage dealing with just one decision level [11]. The main reason is that solving
the overall problem of all decision levels as multi-stage problems decreases the
complexity of the problem. However, the three hierarchical decision levels depend
on each other and the outcome of each level can be utilized as input to the other levels.
Therefore, solving the problems on different decision levels concurrently provides
more effective procedures and solutions. In some studies, all decision levels were
investigated at the same time [10]. Other studies coped with the problems at tactical
and operational levels simultaneously [2, 11, 16]. Despite the fact that recent studies
have focused on the integrated MSS and SCAP scheduling problems at both tactical
and operational levels, the proposed exact methods could not live up to medium-
or large-size instances. This study investigates the integrated MSS-SCAP based on
patient priority, which is the indicator of a patient’s surgery urgency. The main
novelty of the integrated MSS-SCAP problem in this paper is the consideration of
three fundamental factors altogether including consideration of patients’ priorities,
strategic decisions and solving both MSS and SCAP problems concurrently. An ILP
model, called MSS-SCAPmodel, is proposed to produce robust surgical scheduling.
TheMSS-SCAPmodel can optimally assign time blocks to specialties and determine
the OR and surgery date for each patient over the planning horizon of medium term.
To cope with the large-size instances, a heuristic approach is developed to provide
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high-quality solutions for theMSS-SCAP. Then to adapt operation-related dynamics
and any unpredicted changes in the waiting list, given an MSS, an adaptive ILP
is proposed to solve the SCAP as the multiple knapsack problem (MKP) over the
planning horizon of one to several weeks.

The remainder of this paper is organized as follows. Section 11.2 introduces the
problemstatement, the assumptions aswell as themathematicalmodels. In Sect. 11.3,
the details of heuristic approach are provided. Computational experiments, which
indicate the performance of the MSS-SCAP model and the heuristic approach, are
reported in Sect. 11.4. Finally, the conclusion of the study and further research
directions are presented in Sect. 11.5.

11.2 Problem Statement and Mathematical Models

In this section, the problem definition and assumptions are given. The mathematical
models are then provided to solve the MSS-SCAP and SCAP. It should be noted
that for the sake of integrity and simplicity, the symbols and definitions similar to
[2] are used.

11.2.1 Problem Definition

The goal of the integrated MSS-SCAP is to provide a cyclic time table that allo-
cates the time blocks of each OR and each day to the specialties, in addition to the
determination of the OR and the surgery date per patient over the planning horizon.
In this study, the block scheduling strategy is utilized to allocate specialties to time
blocks. Although the duration of time blocks can vary, it is determined in advance.
Pre-emption is not allowed, which means that, once a surgery starts, it cannot be
interrupted. It is assumed that all surgeries of each specialty can be performed by
any surgeon of that specialty and all ORs can be used by all specialties. The number
of nurses, upstream and downstream resources such as number of ICU andward beds
are enough and do not force any bottleneck or restriction on the planning process. It
is also assumed that the minimum and maximum OR times to be assigned to each
specialty, as the output of CMPP at the strategic level, are given. Moreover, the surg-
eries can be scheduled during the working days from Monday to Friday (we only
consider elective surgeries), which means that each week of the planning horizon
includes 5 days. Table 11.1 summarizes the notations used in the paper.
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Table 11.1 Nomenclature

Notation Definition

Bmax Number of time blocks in a working day

Dmax Number of working days in the planning horizon

Pmax Number of patients on the waiting list at the start of the planning horizon

Smax Number of surgical specialties

Tmax Number of operating rooms

B The set of time blocks in a working day, indexed by b ∈ B = {1, . . . , Bmax}
D The set of working days in the time horizon, indexed by d ∈ D = {1, . . . , Dmax}
P The set of patients on the waiting list at the start of the planning horizon, indexed

by p ∈ P = {1, . . . , Pmax}
S The set of surgical specialties, indexed by s ∈ S = {1, . . . , Smax}
T The set of operating rooms, indexed by t ∈ T = {1, . . . , Tmax}
L p The surgery duration of patient p in minutes, ∀p ∈ P

τb The length of time block b in hours, ∀b ∈ B

N−
s The minimum number of OR hours assigned to specialty s over the planning

horizon, ∀s ∈ S

N+
s The maximum number of OR hours assigned to specialty s over the planning

horizon, ∀s ∈ S

Ips Binary parameter, which is 1 if surgery of patient p can be performed by
specialty s, and 0 otherwise, ∀p ∈ P , s ∈ S

ρp The priority score of patient p, ∀p ∈ P

Ps The set of patients in the current waiting list of the surgical specialty s

Qtsdb Binary parameter, which is 1 if block b of operating room t is assigned to
specialty s on day d, and 0 otherwise, ∀t ∈ T , s ∈ S, d ∈ D, b ∈ B

Xtsdb Binary decision variable, which is 1 if block b of operating room t is assigned to
specialty s on day d, and 0 otherwise, ∀t ∈ T , s ∈ S,d ∈ D, b ∈ B

Ytpdb Binary decision variable, which is 1 if block b of operating room t is assigned to
operate surgery of patient p on day d, and 0 otherwise, ∀t ∈ T , p ∈ P , d ∈ D,
b ∈ B

11.2.2 The MSS-SCAP Model

In this section, the MSS-SCAP model is proposed to allocate the time blocks to
specialties and assign patients to ORs as well as days over the planning horizon.
Despite the fact that hospital managers assign time blocks to the specialties based
on the equity and fairness criteria [10], the priority of a patient contributes to the
urgency and importance of performing his/her surgery. In other words, in assignment
of patients to ORs and dates, the patient with higher priority have precedence to be
operated, which means that the larger priority score, the higher priority of surgery.
Thus, to generate a distribution of time blocks among the specialties, patient priority
should be taken into account. Nevertheless, only a few researches have taken patient
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prioritization into consideration [18]. To this end, the objective function of this study
is to maximize the summation of assigned patient priority scores to ORs. The MSS-
SCAP model is formalized as below:

Maximize
∑

t∈T

∑

p∈P

∑

d∈D

∑

b∈B
ρpYtpdb

s.t.

∑

s∈S
Xtsdb ≤ 1 ∀t ∈ T, d ∈ D, b ∈ B (11.1)

IpsYtpdb ≤ Xtsdb ∀t ∈ T, p ∈ P, s ∈ S, d ∈ D, b ∈ B (11.2)

∑

t∈T

∑

d∈D

∑

b∈B
Ytpdb ≤ 1 ∀p ∈ P (11.3)

∑

t∈T

∑

d∈D

∑

b∈B
τbXtsdb ≤ N+

s ∀s ∈ S (11.4)

∑

t∈T

∑

d∈D

∑

b∈B
τbXtsdb ≥ N−

s ∀s ∈ S (11.5)

∑

p∈P

L pYtpdb ≤ 60τb ∀t ∈ T, d ∈ D, b ∈ B (11.6)

Xtxdb,Ytpdb ∈ {0, 1} ∀t ∈ T, p ∈ P, d ∈ D, b ∈ B (11.7)

The objective function is to maximize the summation of priority scores of assigned
patients to ORs over the planning horizon. Using constraint (11.1), it is not possible
to share a block between different specialties as per the block scheduling strategy.
Based on constraint (11.2), patient p can be operated in block b of an operating room
t during day d only if that time block is assigned to its specialty. Constraint (11.3)
determines that a patient can be operated at most once during the planning horizon.
Constraints (11.4) and (11.5) enforce the restrictions on the maximum and minimum
numbers of hours that can be assigned to each specialty as the result of strategic
decisions. Using Constraint (11.6), the total processing time of all assigned patients
to a time block must not be greater than the duration of that time block. Constraint
(11.7) is related to the definition of binary decision variables.



162 O. Mashkani et al.

11.2.3 The Adaptive SCAP Model

AnMSS usually is constructed to cover a planning horizon of one to several months.
Then, considering this MSS, hospital administrations determine the staff rostering
and equip ORs with required instruments. Making these decisions and providing
the equipment entail spending lots of time and negotiating with different surgical
specialties as well as going to great expense. Hence, hospital administrations do not
tend to change the MSS over the planning horizon of medium term. On the other
hand, in the real world, even excluding the uncertainty factors, the waiting list is
dynamic due to the arrival of other elective patients with high priorities. One of
the good approaches to handling this dynamic process is to generate a new SCAP
solution, for each planning horizon of one to several weeks. Therefore, the MSS
solution, which is provided by MSS-SCAP model, is kept constant but the SCAP
solution will be updated. In other words, given the MSS, the SCAP solution takes
into account new elective patients and will be updated whenever it is necessary.

In summary, at the first stage, the MSS-SCAP is solved and the assignment of
time blocks to surgical specialties is considered as the MSS solution. Then, given
this MSS solution, it is assumed that the SCAP solution can be updated to adapt
the real-world dynamic conditions. Therefore, the overall SCAP is decomposed into
several subproblems similar to the MKP, one for each surgical specialty, in which
the patients correspond to the items and the blocks to the knapsacks.

The adaptive SCAP model per specialty s is illustrated as follows. Note that the
parameter Qtsdb is determined by the MSS solution, which can be the result of the
MSS-SCAP model.

Maximize
∑

t∈T

∑

p∈P

∑

d∈D

∑

b∈B
ρpYtpdb

s.t.

∑

t∈T

∑

d∈D

∑

b∈B
YtpdbQtsdb ≤ 1 ∀p ∈ Ps (11.8)

∑

p∈P

L pYtpdb Ips ≤ 60τbQtsdb ∀t ∈ T, d ∈ D, b ∈ B (11.9)

Ytpdb ∈ {0, 1} ∀t ∈ T, p ∈ P, d ∈ D, b ∈ B (11.10)

The objective function is to maximize the total priority scores of assigned patients to
ORs and dates over the planning horizon of one to several weeks. Constraint (11.8)
indicates that a patient can be operated at most once during the planning horizon.
Constraint (11.9) restricts the processing time of all assigned patients, which belong
to specialty s, to a time block that must not be greater than that time block duration.
Based on constraint (11.10), all decision variables are binary.
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Both of the proposed mathematical models focused on maximizing the total pri-
ority scores of assigned patients. However, in the real world, patients with higher
priorities should be scheduled as soon as possible.

11.3 The Proposed Heuristic Algorithm

In order to generate high-quality solutions for MSS-SCAP in a reasonable amount of
time and for large-scale instances, this study proposes a heuristic algorithm, which
consists of the following steps:

Step 1: Sort all patients in a non-increasing order of their priority scores.
Step 2: Select patient p among unscheduled patients with the highest priority score. If there
are some patients with the same priority scores, select the one with longer processing time. If
their processing times are equal, select one of them randomly. Schedule the selected patient
considering the following rules:

– Using the first-fit strategy, assign the patient to the first available time block b,
which belongs to the specialty of patient p. If the patient p is the first patient who
is assigning to time block b, then by assigning this patient to time block b, its
specialty is also assigned to that time block.

– In each time block, only the patients with the same specialty s can be assigned.

– By assigning patient p to a time block b, the total processing time of all patients
assigned to that block must not exceed the capacity of that block.

– The total amount of assigned hours to specialty s must not exceed the maximum
number of OR hours that can be assigned to that specialty.

– The time blocks containing assigned patients are considered prior to the unoccu-
pied ones. This criterion seeks to reduce idle time and minimize the number of
open ORs.

Step 3: Repeat Step 2 until all patients are scheduled or there is no available time in blocks
over the planning horizon.

The numbers of operations in Steps 1 and 2 areO(Pmax log Pmax) andO(BmaxDmax

Pmax), respectively. Thus, the run time of the proposed heuristic is O(Pmax log Pmax +
BmaxDmaxPmax).

11.4 Computational Results

To evaluate the performance of the proposed mathematical models and the heuristic
algorithm, a numerical study is designed. The models were implemented via Gurobi
8.0.0 and the heuristic algorithm was coded by using Python Anaconda 3.6. The
numerical study is carried out on a PC equipped with Intel Core i5 3.2 GHz CPU and
8GBofRAMunder LinuxUbuntu operating system. To generate the instances, some
of the data are adopted from a data set provided by Spratt and Kozan [2]. The number
of patients in the data set is 2802. Thus, in the present study the number of patients
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Table 11.2 Performance comparisons between the MSS-SCAP model and heuristic algorithm for
Tmax = 2

Pmax Smax TimeH T imeopt APE Gap

20 1 0 0 0 0

50 3 0 226 0.01 0

100 4 0.01 1800 0.03 0

150 5 0.01 2700 0.05 0

200 5 0.02 >3600 0.1 0.02

300 5 0.03 >3600 0.16 0.02

400 5 0.05 >3600 0.21 0.02

500 7 0.06 >3600 0.23 0.02

1000 8 0.17 >3600 0.36 0.02

1500 8 0.3 >3600 0.42 0.02

2000 10 0.49 >3600 0.44 0.03

2802 12 0.85 >3600 0.52 0.04

is selected from the set {20, 50, 100, 150, 200, 300, 400, 500, 1000, 1500, 2000,
2802}. In the data set of [2], the ratio of patients to specialties, i.e. Ips , is given.
As a result, the number of specialties is selected from the set {3, 5, 8, 10, 12}. The
number of operating rooms is selected from {2, 4, 5, 10, 15, 20}. The number of days
to plan the surgeries is selected from {5, 10, 15, 20}, meaning that the planning hori-
zon ranges between 1 and 4weeks. Each day of planning horizon consists of two time
blocks and each block is 5 hours. Furthermore, surgery durations per each specialty
are generated randomly from the lognormal distribution (the mean and variance are
given in the data set [2]). Since the duration of each time block is 5hours, the lognor-
mal distribution is truncated at 5hours to ensure that each surgery fits in a time block.
The integer priority scores were also generated from a discrete uniform distribution
of [1,100].

To evaluate the capability of the mathematical models and the heuristic algorithm,
two types of experiments were performed. The first experiment includes only two
operating rooms. Table 11.2 shows the results of this experiment. The average per-
centage of error (APE) for the heuristic is calculated as FOpt−FH

FOpt
, where FOpt is the

objective value of the model as reported by Gurobi, and FH is the objective value of
the heuristic algorithm. The solution gap, which is provided by Gurobi, is presented
as Gap. In addition, the average computation time of the heuristic and the model are
presented as T imeH and T imeOpt (the maximum runtime for Gurobi is set to 3,600
seconds; in column T imeOpt , − means that the time limit has been reached).

For the second experiment, the computational efficiency of the heuristic was
investigated by increasing the number of patients and ORs. Table 11.3 shows the
average times of the heuristic algorithm for different numbers of patients and ORs.
As it is indicated, the average execution time of the heuristic algorithm is less than
two seconds even for Pmax = 2802 and Tmax = 20. Therefore, the heuristic algorithm
is quite efficient to solve the large-scale instances of the MSS-SCAP.
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Table 11.3 Average times of the heuristic algorithm for different numbers of Pmax and Tmax

Pmax Tmax = 2 Tmax = 4 Tmax = 5 Tmax = 10 Tmax = 15 Tmax = 20

20 0 0 0 0 0 0

50 0 0 0 0 0 0

100 0.01 0.01 0.01 0.01 0.01 0.01

150 0.01 0.01 0.01 0.01 0.01 0.01

200 0.02 0.02 0.02 0.02 0.02 0.02

300 0.03 0.04 0.04 0.04 0.05 0.05

400 0.04 0.06 0.06 0.07 0.08 0.08

500 0.06 0.09 0.09 0.11 0.11 0.11

1000 0.16 0.23 0.25 0.32 0.35 0.36

1500 0.3 0.41 0.44 0.58 0.46 0.67

2000 0.49 0.36 0.68 0.87 0.97 1.04

2802 0.84 1.06 1.11 1.44 1.66 1.68

11.5 Conclusion and Future Work

This paper investigates the OR scheduling problem at tactical and operational lev-
els concurrently, called MSS-SCAP, for maximizing the total priorities of assigned
patients. The block scheduling strategy is used to allocate time blocks to special-
ties. To solve the MSS-SCAP, an ILP model and a heuristic algorithm have been
proposed. In addition, an adaptive ILP model is suggested to solve the SCAP and
cope with the dynamics of the real-world waiting list, given an MSS. To evaluate the
proposedMSS-SCAPmodel and the heuristic algorithm, a numerical study has been
developed. The computational results have shown that the heuristic algorithm has
the capability to solve large-scale instances efficiently. Further research works will
include the uncertainty of surgery durations and the restriction on the downstream
facilities like the number of beds in the ICU Department. In addition, the problem
can be extended to include a restriction on the availability of surgical teams on the
days of surgery.
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Chapter 12
Analyzing Fantasy Sport Competitions
with Mixed Integer Programming

Steven J. Edwards

Abstract A fantasy sport competition is an online competition in which partici-
pants act as the coach and selector of their own fantasy team of real players. These
competitions are remarkably popular with currently over 5.5 million teams in the
major competition of the English Premier League. A fantasy team scores points
based on the statistical performances of the team’s players in their real-world sport-
ing matches. The objective for each coach is to finish the season with the highest
total number of points. During the season, coaches must manage a budget as well
as trade players in and out of the team subject to a number of constraints. Due to
their well-defined nature, as well as the simple objective function, these competitions
lend themselves very naturally to analysis by Mixed Integer Programming (MIP).
In this paper, we consider three different problems for the 2018 season of the AFL
SuperCoach competition, modelling and solving each with MIP. The aim of each
problem is to highlight the gap between what was achieved by real players and what
was theoretically possible. The first problem is to determine all the decisions that a
coach should have made to obtain the highest score possible. The second problem is
to determine the lowest starting budget from which it would have been possible to
win the competition. The third problem is to determine whether it would have been
possible for a team that was set up at the start of the competition and completely
forgotten about to win the competition.
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12.1 Introduction

A fantasy sport competition is a competition in which participants act as the coach
and selector of their own fantasy sporting team. These fantasy sporting teams consist
of real-world players from a professional sporting league such as the English Premier
League (EPL), National Basketball Association (NBA), National Football League
(NFL), or the Australian Football League (AFL). Players obtain scores based on the
statistics of their performance in the real-world league games. Fantasy teams then
obtain scores based on the scores of the individual players in their team.

There are many different formats of fantasy sport competitions. In this paper,
we consider the format that is typically referred to as the Classic format. In this
format, a fantasy competition is run in parallel to a real professional league. Each
of the fantasy competitions in the Classic format have their own unique set of rules;
however, in general tend to have the following in common. Coaches are given a
starting budget with which they select a side. Players have different prices depending
on their previous performances and this price changes throughout the season. To help
manage injuries and poor form, coaches are allowed to make a certain number of
trades throughout the season as long as the trades respect their remaining budget.

The Classic format contrasts to the two other most popular formats: the Draft
format and Daily format. The key difference between the Classic and Draft formats
is that for the latter at the start of the season all the coaches in the same fantasy
league perform a draft. Teams take it in turns to select players. Hence no two teams
in the same league can have ownership over the same player. Furthermore, players
are traded between teams only at the approval of both coaches in the trade. As the
choices of coaches are influenced by the choices of other coaches in the same league,
the analysis completed in this paper is not appropriate for competitions in the Draft
format.

Daily sport competitions are an accelerated version of traditional fantasy com-
petitions. Competitions are conducted over a short time period such as a week or
a single day. Within daily competitions, there are many different formats such as a
daily version of both the Classic and Draft formats. Due to the short time period
these, competitions do not need to consider aspects of the Classic format such as
trades, price changes and so on.

Due to their well-defined nature, fantasy sport competitions lend themselves very
naturally to techniques used in Operations Research. Hunter et al. [5] consider the
problem of selecting a portfolio of entries of fixed cardinality for a winner take
all contest such that the probability of one of the entries winning is maximized
and develop a greedy integer programming formulation, which they apply to daily
fantasy sport contests. They show that this approach works well in practice and even
comes first place in a number of competitions with thousands of entries. Newell [6]
develops a stochastic integer program that optimizes the expected payout in a tiered
daily fantasy sport contest. This model is based on assigning a normal distribution of
the score of each player and aims to determine the team of players with the highest
mean.



12 Analyzing Fantasy Sport Competitions with Mixed Integer Programming 169

In this paper, we use Mixed Integer Programming (MIP) to analyze a fantasy
sport competition in retrospect to highlight the gap between what was achieved by
players and what was theoretically possible. We consider the fantasy competition of
the AFL, SuperCoach (SC). In Australia this competition is remarkably popular with
just under 200k (199, 243) teams in the 2018 competition. This paper considers the
following three problems:

1. What was the highest score that was theoretically possible to obtain?
2. What was the lowest starting budget from which it was possible to win the com-

petition?
3. Was it possible that a team that was set up at the start of the competition and

completely forgotten about wins the competition? These teams are commonly
referred to as ‘ghost’ teams.

Due to their popularity, these competitions provide a great opportunity to demon-
strate the sort of problems thatMIP and Operations Research, in general, can solve to
a general audience. This research has already resulted in a number of articles written
in newspapers and on popular websites [1–4]. These articles provide a more detailed
analysis of the results of the problems. This paper focusses on the MIP models that
were developed to solve these problems.

12.2 Problem Description

The rules of SC are as follows: Each coach is in charge of selecting and managing
their own team of players. A team consists of 30 players spread across four lines of
positions: defence (DEF), midfield (MID), ruck (RUC) and forward (FWD). These
lines of positions are an intuitive generalization of the positions in AFL. In each line,
the position is divided into scoring positions and substitute positions to make a total
of eight different positions. Each of the eight positions have a certain number of spots
that need to be filled by players. The setup of these positions is shown in Fig. 12.1.

Coaches select their 30-player team from any of the current professional AFL
players. In 2018, there were 806 players to choose from. Players are only eligible to
be placed in certain positions. The eligible positions try to replicate the position that
a player plays in real life. For example, a player who plays only in the ruck in real
life will only be eligible to be placed in the ruck slots in the fantasy competition.
Likewise, a player who plays sometimes in the forward line and sometimes in the
midfield in real life, may be eligible to be placed in both the midfield and forward
lines in the fantasy competition. Note that no player is eligible to be placed in more
than two positions, with the vast majority of players only being eligible to play in a
single position. These position eligibilities do not change throughout the season.

A price is assigned to each of the players at the start of the season. This price is
based on how well the players have scored in previous seasons as well as a number
of other factors. The players who are expected to score the most are assigned a high
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Fig. 12.1 Summary of the different positions of a SC team. Positions are separated into four lines
and further divided into scoring and substitute positions

price, up to ≈$700 k, whereas players who are yet to play their first AFL game are
assigned a low price, ≈$100 k. At the start of the season, each coach is allocated a
starting budget of $10m. This budget forces the coaches to select a range of premium,
mid-priced and rookie players.

Each round players score points. These points are calculated based on the on-field
statistics of the players in the real-world games, which act as a proxy to quantify
how well an individual player performed. If a player does not play then they obtain 0
points. The very best players average around 130 points per game, with scores over
100 typically considered good performances.

Each round the fantasy team obtains a score based on the scores of the individual
players in the team. In general the score of the team is determined based on the scores
of the players in the scoring positions. There are a number of exceptions to this that
will be discussed in the following sections.

Before each round, the coach will assign one of the players in the team to be the
captain, and one player to be the vice captain. Both of these players must be in a
scoring position. The points scored by the captain are counted twice in the team’s
score. In the situation where the captain scores zero points, the points scored by the
vice captain are counted twice. If the captain scores above zero points then the vice
captain is no different to any other on-field player.
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Before each round the coach can select up to four players in substitute positions
to be emergency. The points scored by an emergency can be counted if a player in a
scoring position on the same line as the emergency scores zero points. In the situation
where multiple emergencies are selected on the same line and fewer players in the
scoring positions score zero points, the points of the lower scoring emergencies will
be counted. For example, if two emergencies are selected in the midfield, where one
scores 100 points the other scoring zero, if only one player in the scoring midfield
position scores zero points then the points from the emergency who scored zero will
count and not the emergency who scored 100.

During the season, the price of a player changes depending on their recent scores.
The pricing formula is based on the average of each player’s previous three non-zero
scores. This average is then compared to the score expected by someone with the
current price of the player. The player’s price changes proportionate to the difference
between the player’s three round average and this indicator score. A common strategy
used by coaches is to trade in players at a low price and trade them out at a high price
and then use the profit to invest in other players.

To account for injuries and bad form, coaches canmake up to 30 trades throughout
the season. A trade means that a player in the fantasy team is traded out and replaced
by a player who was not previously in the team. When a player is traded out, the
remaining budget is increased by the current price of the player. Whereas when a
player is traded in, the remaining budget is decreased by the current price of the
player. Thus due to the different prices of the players, the ability to perform a trade
depends on whether the coach has enough remaining budget. In general, coaches can
only complete at most two trades per round.

Throughout the real AFL season each team has a bye round where the team does
not play. These bye rounds occur across three rounds in the middle of the season with
the aim of giving the players a rest. The rules of the fantasy competition are slightly
different during these bye rounds. Before each bye round, coaches are allowed to
make up to three trades. These trades are still counted towards the season limit of 30
trades. Furthermore, during the bye rounds only the points scored from 18 players
will be counted—instead of the typical limit of 22 (the scoring positions). In the
situation where a team has more than 18 players whose points would normally be
counted the highest 18 scores are counted.

The objective of the coaches is to finish the seasonwith themost number of points.

12.3 Mathematical Models

First, we introduce the notation used by all the mathematical models. Table 12.1
defines all of the required sets. Table 12.2 defines the notation used for the parameters.
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Table 12.1 The definition of the different set notation

Index Set Description

p P Set of all players

q Q Set of all positions, Q = Qsub ∪ Qscore

Qscore Set of scoring positions
Qscore = {DEF, MI D, RUC, FWD}

Qsub Set of sub positions
Qsub = {DEF sub, MI Dsub, RUCsub, FWDsub}

p Pq Set of all players p ∈ P who are allowed to play in
position q ∈ Q

q Qp Set of all positions q ∈ Q, where player p ∈ P is
allowed to play. Note Qsub

p = Qp ∩ Qsub and
Qscore

p = Qp ∩ Qscore

r R Set of all rounds R = {1, . . . , 23}

Table 12.2 The definition of the different parameter notations

Parameter Description

ψp,r The points scored by player p ∈ P in round r ∈ R

vp,r The price (value) of player p ∈ P in round r ∈ R

B The starting budget for the season

Cq The number of available spots (capacity) of position q ∈ Q

Xr The number of players whose scores count towards the score of the
team in round r ∈ R

T total The maximum number of trades that can be used across the season

Tr The maximum number of trades that can be used in round r ∈ R

12.3.1 Optimal Team

In this section, we introduce a MIP model that determines all the decisions a coach
should have made to obtain the best score possible (OT-MIP). The decision variables
are defined in Table 12.3. It is important to note that the OT-MIP does not need
to consider the vice captain assignment, as an optimal strategy is to always assign
the captain to the highest scoring player in the team each round. Likewise, the OT-
MIP does not need to consider emergencies in the substitute positions, as an optimal
strategy is to always have the highest scoring players in scoring positions. These two
observations greatly simplify the problem.

The OT-MIP can now be expressed as follows:



12 Analyzing Fantasy Sport Competitions with Mixed Integer Programming 173

Table 12.3 Decision variables used in the optimal team model

Variable Type Description

xp,q,r Binary If player p ∈ P is in position q ∈ Q for round r ∈ R

x p,r Binary If the score of player p ∈ P is included in round r ∈ R

cp,r Binary If player p ∈ P is captain for round r ∈ R

t inp,r Binary If player p ∈ P is traded into the team for round
r ∈ R : r > 1

toutp,r Binary If player p ∈ P is traded out of the team for round
r ∈ R : r > 1

br Cont. Remaining budget at round r ∈ R

max
∑

p∈P

∑

r∈R

ψp,r (x p,r + cp,r ) (12.1)

s.t.
∑

p∈P

∑

r∈R:r>1

t inp,r ≤ T total (12.2)

∑

p∈P

t inp,r ≤ Tr ∀r ∈ R : r > 1 (12.3)

∑

q∈Qp

(xp,q,r − xp,q,r−1) = t inp,r − toutp,r ∀p ∈ P; r ∈ R : r > 1 (12.4)

∑

p∈P

cp,r = 1 ∀r ∈ R (12.5)

cp,r ≤
∑

q∈Qscore
p

x p,q,r ∀r ∈ R; p ∈ P (12.6)

∑

p∈Pq

xp,q,r = Cq ∀r ∈ R; q ∈ Q (12.7)

∑

q∈Qp

xp,q,r ≤ 1 ∀r ∈ R; p ∈ P (12.8)

x p,r ≤
∑

q∈Qscore
p

x p,q,r ∀p ∈ P; r ∈ R (12.9)

∑

p∈P

x p,r ≤ Xr ∀r ∈ R (12.10)

b1 +
∑

p∈P

∑

q∈Qp

vp,1 · xp,q,1 = B (12.11)

br = br−1 +
∑

p∈P

vp,r · toutp,r −
∑

p∈P

vp,r · t inp,t ∀r ∈ R : r > 1. (12.12)
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The objective function (12.1) maximizes the score obtained by a team across the
season. Constraints (12.2) and (12.3) ensure that the season and weekly trade limits
are not exceeded, respectively. Constraints (12.4) are trade consistency constraints,
which enforce that one of the following four scenarios holds

– if a player is in the team in round r–1 but not in the team in round r then they have
been traded out,

– if a player is not in the team in round r–1 but in the team in round r then they must
have been traded in,

– if a player is in the team in both round r–1 and r then either they have been both
traded out and in in round r , or they have neither been traded out nor in,

– if a player is not in the team in both rounds r–1 and r , then either they have been
both traded in and then out in round r , or they have neither been traded in nor out.

Constraints (12.5) and (12.6) ensure that each week there is only one captain and
the captain is in a scoring position, respectively. Constraints (12.7) and (12.8) ensure
that the number of spots in each position are filled and that each player can only
play in one position per round, respectively. Constraints (12.9) ensure that a player
must be in a scoring position in order to have their score counted. Constraints (12.10)
ensure that only the appropriate number of players’ points count towards the total of
the team each week. Constraint (12.11) ensures that the value of the initial side plus
the remaining budget in the first round is equal to the starting budget. Constraints
(12.12) are budget constraints which ensure that the current budget equals the budget
from the previous round plus the value of the players traded out for the current round
minus the value of the players traded in for the current round.

From the results of the OT-MIP, it is possible to understand the difference between
the scores obtained by normal coaches in the competition and what was theoretically
possible. Another way to understand this gap is to consider what the lowest starting
budget would be from which it is theoretically possible to have won the competition.

12.3.2 Budget Team

In this section we introduce a MIP model that determines the lowest starting budget
from which it is theoretically possible to win the competition (B-MIP). A single
continuous variable β is introduced to represent the initial starting budget, i.e. instead
of the parameter B. The score obtained by the winning team of the competition is
denoted Swin.

The B-MIP can now be expressed as follows:



12 Analyzing Fantasy Sport Competitions with Mixed Integer Programming 175

min β (12.13)

s.t.
∑

p∈P

∑

r∈R

ψp,r (x p,r + cp,r ) ≥ Swin + 1 (12.14)

b1 +
∑

p∈P

vp,1 · xp,q,r = β (12.15)

(2) − (10), (12).

The new objective (12.13) is to minimize the starting budget variable. Many
constraints are the same as OT-MIP. Constraint (12.14) ensures the score obtained
across the season is better than the winning score. Constraint (12.15) ensures that the
budget left over after the initial team is selected plus the value of the initial squad is
equal to the starting budget.

12.3.3 Ghost Team

In this section, we describe the MIP model that determines the highest score that
a ghost team can obtain (G-MIP). Recall that a ghost team is one where the team
does not change at all after it is set for the first round. This problem is considerably
different to the previous two problems. In a ghost team, no trades are used and thus
the decision variables representing the trades and the budget are not required. On the
other hand, the vice captain and emergency assignments must be considered as it is
not possible to change these decisions in a ghost team.

The emergencies are non-trivial to take into account. Recall that if multiple emer-
gencies are selected on the same line, then only the lowest scoring emergencies
will be considered. Hence for each substitute position q ∈ Qsub the possible slots,
Sq := {0, . . . ,Cq − 1}, are enumerated. The intuition behind the slots is as follows.
If an on-field player scores a zero then the first slot is opened up and filled by the
lowest scoring emergency (if one exists) in the substitute position on the same line.
If two on-field players score a zero then the first two slots are opened, the first slot
is filled by the lowest scoring emergency and the second slot is filled by the sec-
ond lowest scoring emergency assuming at least two emergencies are assigned on
this line. This continues until the number of on-field zeros exceeds the number of
emergencies on the same line.

The decision variables for G-MIP are defined in Table 12.4. The G-MIP can now
be expressed as follows:
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Table 12.4 Additional decision variables required by G-MIP

Variable Type Description

xp,q Binary If player p ∈ P is in position q ∈ Q

x p,r Binary If the score of player p ∈ P is included in round r ∈ R

ccapp Binary If player p ∈ P is captain

cvicep Binary If player p ∈ P is vice captain

cvicep,r Binary If the score of vice captain p ∈ P is included in round
r ∈ R

yp,q,r,s Binary If player p ∈ P is in slot s ∈ Sq of position q ∈ Qsub
p in

round r ∈ R

ep,q Binary If player p ∈ P is set as an emergency in position
q ∈ Qsub

p

max
∑

p∈P

∑

r∈R

ψp,r (x p,r + ccapp + cvicep,r ) (12.16)

s.t.
∑

p∈P

czp = 1 ∀z ∈ {cap, vice} (12.17)

czp ≤
∑

q∈Qscore
p

x p,q ∀p ∈ P; z ∈ {cap, vice} (12.18)

∑

p∈Pq

xp,q = Cq ∀q ∈ Q (12.19)

∑

q∈Qp

xp,q ≤ 1, ∀p ∈ P (12.20)

ep,q ≤ xp,q ∀p ∈ P; q ∈ Qsub
p (12.21)

∑

p∈P

∑

q∈Qsub
p

ep,q ≤ E (12.22)

∑

p∈Pq

yp,q,r,s ≤ 1 ∀q ∈ Qsub; r ∈ R; s ∈ Sq (12.23)

∑

s∈Sq
yp,q,r,s ≤ ep,q ∀p ∈ P; q ∈ Qsub

q ; r ∈ R (12.24)

∑

p∈Pq

∑

s∈S f (q)

yp, f (q),r,s ≤
∑

p∈Pq
ψp,r=0

xp,q ∀q ∈ Qscore; r ∈ R (12.25)
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∑

p∈Pq

(yp,q,r,s − yp,q,r,s−1) ≤ 0 ∀q ∈ Qsub; r ∈ R; s ∈ S+
q

(12.26)
∑

p′∈P:
ψp′,r<ψp,r

ep′,q +
∑

s∈Sq
(|S| − s)yp,q,r,s ≤ |S| ∀q ∈ Qsub; r ∈ R; p ∈ Pq

(12.27)
∑

p∈P

∑

q∈Qp

vp,1 · xp,q ≤ B (12.28)

x p,r ≤
∑

q∈Qscore
p

x p,q +
∑

q∈Qsub
p

∑

s∈Sq
yp,q,r,s ∀p ∈ P; r ∈ R (12.29)

∑

p∈P

x p,r ≤ Xr ∀r ∈ R (12.30)

cvicep,r ≤ cvicep ∀p ∈ P; r ∈ R (12.31)
∑

p∈P

cvicep,r ≤
∑

p′∈P:
ψp′,r=0

ccapp′ ∀r ∈ R. (12.32)

The objective (12.16) is to maximize the number of points scored across the
season. Constraints (12.17) ensure that there is only one captain and one vice captain.
Constraints (12.18) ensure that the captain and vice captain have to be in a scoring
position. Constraints (12.19) ensure that the number of players in each position is
equal to the capacity of those positions. Constraints (12.20) ensure that each player
can only be in at most one position at a time. Constraints (12.21) ensure that a player
can only be an emergency if they are playing in that position. Constraint (12.22)
constrains the maximum number of emergencies, E , which can be assigned each
round.

Constraints (12.23) ensure that each player can only be in a single slot. Constraints
(12.24) ensure that a player can only be a candidate for a slot if they are an emergency.
Constraints (12.25) ensure that each week the number of players who are playing
in the corresponding scoring position q ∈ Qscore who scored a zero represent the
maximum number of scoring bench slots in the corresponding substitute position
f (q), where f : Qscore → Qsub is a bijective mapping from the scoring positions
Qscore to their corresponding substitute positions Qsub. For example, f (DEF) =
DEF sub. Constraints (12.26) ensure that the lower indexed slots are used before
the higher indexed slots, where S+

q represents the set of all slots for position q ∈
Qsub except index 0, i.e. Sq \ {0}. Constraints (12.27) enforce the ordering on the
emergencies in the corresponding slots. An emergency can only be allocated to a
slot if the index of the slot is greater or equal to the number of other emergencies in
the same position who scored less than that player in the same round. For example,
a player can go in slot zero only if no other emergency in the same position scored
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less than that player. A player can go in slot index one only if there is at most one
other emergency in the same position who scored less than that player and so on.

Constraint (12.28) ensures that the value of the team is within the initial budget.
Constraints (12.29) ensure that a player’s score can count towards the total if they are
either in a scoring position or a scoring emergency. Constraints (12.30) ensure that
only the scores of an appropriate number of players count towards the team score.
Constraints (12.31) ensure that that a player can only be a scoring vice captain if they
are the vice captain. Constraints (12.32) ensure that a player can only be a scoring
vice captain in a round if the captain does not score any points that round.

12.4 Results

Data was obtained through the SuperCoach website with permission from the Herald
Sun for the 2018 competition. The models were implemented in Gurobi 7.5.0 and
executed on the MonARCHHPC Cluster. The processors are Intel Xeon E5-2667 v3
3.2GHz, 20M Cache, 9.60GT/s QPI, Turbo, HT, 8C/16T (135W). 32GB of memory
and 6 CPUs were requested.

A summary of the solve statistics is given in Table 12.5. The Bin., Cont. and
Constr. columns represent the number of binary variables, continuous variables and
constraints, respectively. The objective of the OT-MIP and G-MIP are the total score
obtained by the teams at the end of the season where the objective for the B-MIP is
the minimum budget from which it is possible to win.

A summary of the scores per round for the teams associated with the optimal solu-
tions is given in Table 12.6. The Optimal, Ghost and Budget columns represent the
teams associated with optimal solutions to the OT-MIP, G-MIP and B-MIP, respec-
tively. For each model both the score (score) obtained in each round, as well as a
cumulative total (cum.) is given. Note that there might be multiple teams associated
with each optimal solution; however, we only report the one team here. The High
Score column represents the highest score obtained by any of the real players in the
competition. The Round Leader column represents the score of the player who was
currently leading after each round. Hence note that the score of 53,825 obtained by
the leader after the final round is the score that won the competition.

Table 12.5 A summary of the solve statistics for the models on the 2018 SC data

Model Bin. Cont. Constr. Wall time
(HH:MM:SS)

Nodes
explored

Objective

OT-MIP 239,382 23 244,233 1:58:27 308,283 62,208

B-MIP 239,382 24 244,234 37:23:31 863,712 $5,137,200

G-MIP 90,895 0 111,892 2:52:05 11,180 52,935
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Table 12.6 Summary of the team scores through the 2018 SC season

Round Optimal Ghost Budget High
score

Round
leader

score cum. score cum. score cum.

1 2,558 2,558 2,413 2,413 1,747 1,747 2,629 2,629

2 2,747 5,305 2,324 4,737 2,069 3,816 2,605 4,996

3 2,539 7,844 2,322 7,059 1,965 5,781 2,479 7,335

4 2,627 10,471 2,249 9,308 2,078 7,859 2,548 9,582

5 2,626 13,097 2,196 11,504 2,049 9,908 2,505 11,834

6 2,633 15,730 2,369 13,873 2,077 11,985 2,471 14,026

7 2,813 18,543 2,280 16,153 2,251 14,236 2,603 16,343

8 2,738 21,281 2,324 18,477 2,160 16,396 2,499 18,612

9 2,834 24,115 2,348 20,825 2,366 18,762 2,581 20,967

10 2,754 26,869 2,368 23,193 2,315 21,077 2,677 23,473

11 2,632 29,501 2,221 25,414 2,254 23,331 2,508 25,751

12 2,245 31,746 1,467 26,881 1,977 25,308 2,285 27,476

13 2,302 34,048 1,731 28,612 1,936 27,244 2,305 29,416

14 2,283 36,331 1,992 30,604 2,124 29,368 2,340 31,254

15 2,839 39,170 2,527 33,131 2,689 32,057 2,639 33,501

16 2,927 42,097 2,519 35,650 2,799 34,856 2,711 36,044

17 2,772 44,869 2,354 38,004 2,580 37,436 2,751 38,444

18 2,783 47,652 2,365 40,369 2,715 40,151 2,812 41,016

19 2,862 50,514 2,480 42,849 2,686 42,837 2,705 43,474

20 3,196 53,710 2,548 45,397 3,057 45,894 2,907 46,043

21 2,805 56,515 2,299 47,696 2,652 48,546 2,679 48,462

22 2,972 59,487 2,754 50,450 2,718 51,264 2,842 51,102

23 2,721 62,208 2,485 52,935 2,602 53,866 2,892 53,852

The optimal team score of 62,208 would have beaten the winning team by 8,356
points. This is a remarkable amount given that the top 5,000 teams finished with
over 51,406 points. Even more remarkably, the optimal team outperforms a team
made by all of the weekly highscores, which would have obtained a score of 59,973
points. This is quite an achievement as the optimal team still needs to accommodate
the trade limitation constraints and there are almost 200k teams in the competition.

The ghost team finishes with a score of 52,925 points which would equate to 77th
position in the competition. Although it would not have won, given that not a single
trade is used, the captain and vice captains are not changed, the positions are not
changed and the emergencies are not changed this is still a very impressive result.

The scores of the Budget team significantly improve throughout the season. The
initial budget of the team is only $5,137,200, which is 51.372% of the usual amount.
As the value of the team increases throughout the season so too does the scoring
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Table 12.7 Summary of the team value and remaining budget through the 2018 SC Season

Round Optimal Ghost Budget

value ($) budget ($) value ($) budget ($) value ($) budget ($)

1 9,998,500 1,500 9,996,000 4,000 5,137,200 –

2 9,998,500 1,500 9,996,000 4,000 5,137,200 –

3 9,998,500 1,500 9,996,000 4,000 5,137,200 –

4 11,086,600 61,700 10,662,700 4,000 6,392,900 6,200

5 11,956,100 67,700 11,072,900 4,000 7,415,200 19,500

6 12,362,000 166,300 11,337,100 4,000 8,109,400 59,800

7 12,831,700 86,100 11,632,100 4,000 8,861,000 18,300

8 13,365,800 1,200 11,856,200 4,000 9,333,000 77,800

9 13,752,300 300 12,029,300 4,000 9,946,800 38,000

10 13,926,700 224,100 12,219,100 4,000 10,516,200 31,100

11 14,381,500 28,300 12,366,100 4,000 10,937,500 18,000

12 14,502,300 40,500 12,442,000 4,000 11,158,900 99,400

13 14,643,100 14,200 12,524,300 4,000 11,270,300 216,100

14 14,554,400 161,200 12,476,500 4,000 11,641,600 46,900

15 14,695,800 116,500 12,587,700 4,000 11,889,300 93,900

16 14,815,700 116,500 12,768,200 4,000 12,352,500 64,700

17 15,035,400 116,500 12,998,000 4,000 12,928,100 1,900

18 15,151,800 220,500 13,143,300 4,000 13,336,300 1,900

19 15,205,800 220,500 13,173,000 4,000 13,592,900 1,900

20 15,167,700 278,100 13,217,400 4,000 13,711,600 57,000

21 15,363,400 263,900 13,280,000 4,000 13,963,900 57,000

22 15,525,000 263,900 13,190,300 4,000 14,092,800 57,000

23 15,777,000 263,900 13,220,900 4,000 14,230,000 57,000

output. In fact, towards the end of the season the scores obtained by the Budget
team outscore the weekly high score on three occasions (rounds 15, 16 and 20). This
allows the Budget team to eventually catch the competition leaders and finish with a
final score that would have won the competition by 14 points.

A summary of the team value and remaining budget for the teams associated with
the optimal solutions is given in Table 12.7. The value column represents the total
price of all the players current in the team, whereas the buget column represents the
remaining budget that can be used for trades.

An optimal solution to the B-MIPmust have at least one round where there is zero
remaining budget otherwise a team with a better objective function could be found
by simply reducing the initial starting budget by the minimum remaining budget of
any of the rounds. This is reflected in the first three rounds where the Budget team
has zero remaining budget. It is interesting to note that despite starting with just over
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half of the initial budget, the team value of the Budget team at the end of the season
of $14,230,000 is actually significantly more than the final team value of the winning
team of $13,671,100.

The remaining budget of theGhost team does not change at all during the season.
Again this is to be expected as the remaining budget only changes when players are
traded in and out of the team. As the ghost team does not use a single trade then the
remaining budget is never changed.

The Optimal team finishes with a large remaining budget of $263,900. The com-
bination of the final team value and remaining budget of over $16m is significantly
larger than any player in the competition. Although the objective function of the
OT-MIP is to score the most points possible, clearly there is a correlation between
teams that score well and teams that are valued highly.

12.5 Conclusion and Future Work

This paper demonstrates a novel application of MIP that of analyzing fantasy sport
competitions. Due to their well-defined nature and increasing popularity, fantasy
sport competitions provide the perfect sandpit to demonstrate the sort of questions
that MIP can answer to the general public. This paper used three different MIP
models to highlight the difference between what real players achieved and what was
theoretically possible for the 2018 season of SC.

The first MIP model (OT-MIP) determines the highest score that was theoreti-
cally possible (62,208), which is vastly more than the competition winner (52,852).
To provide an alternative way to communicate how significant this difference is,
the second MIP model (B-MIP) shows that it was theoretically possible to win the
competition starting with only 51.37% of the typical starting budget. Both the OT-
MIP and B-MIP benefit from being able to make many changes each round based
on information that could not be known at the time. To avoid this, the third model
(G-MIP) shows that a team in which not a single change is made after round one
could have finished the competition in 77th position. As the competition has just
under 200k teams (199,243) this is perhaps the most remarkable result of the three
problems.

The main fantasy competition of the EPL, the Fantasy Premier League (FPL), has
significantly more users than SC, 5.5 million teams (5,596,712). Hence determining
the optimal teams for the FPL would be a logical extension of this work to reach
an even larger audience. The FPL has a number of additional challenges that make
modelling the problem non-trivial, such as taxing of profits made on players and
special tokens that can be used once a season to, for example, change all the players
in the team with no cost in a single round.

Another way of extending this work is to use it to try and win the competition.
Instead of obtaining data and analyzing the competition retrospectively, the OT-MIP
model can be used to convert forecast data into actionable decisions. This approach is
clearly fundamentally limited by the inability to perfectly forecast results. However,
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as very clearly highlighted by the results in this paper, there is currently a significantly
large gap between the results obtained by actual teams in the competition and the
theoretically best score possible. A forecaster would only need to outperform real
teams.

The types of problems modelled and solved in this paper would provide practical
assignment problems for graduate-level students in an introduction toMIPmodelling
class. Each fantasy competition has their own unique set of rules and thus different
models are required. Typically data is freely available online and the rules of the
competition are both well-defined and readily understood. Furthermore, a number of
constraints such as the linking constraints (12.4) in the OT-MIP and the slot ordering
constraints (12.27) in the G-MIP can be quite challenging to determine.

Finally, it is worth mentioning that some of the decisions that are required by the
teams found by the MIP models in this problem would have been extremely counter-
intuitive at the time the decision would need to have been made. For fans of these
sorts of competitions these results can be both very interesting as well as extremely
frustrating.
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Chapter 13
Strategic Risk Management in Practice

Hossein Seif Zadeh, Terence Weir, Alexei I. Filinkov, and Steven Lord

Abstract Contemporary risk management methodologies are typically used for
identification and prioritisation of strategic risks. The International Risk Manage-
ment standard, ISO 31000:2009, is the world-wide basis for best practice in strategic
level risk processes. However, due to the qualitative and subjective nature of strategic
risk, its analysis requires a more nuanced approach than that used in more tactical
or operational settings and this paper discusses the need to understand the range and
nature of strategic threats, and how to represent risk assessments. As such, a particular
focus of this work is on how to incorporate best practices in strategic risk analysis,
and operations research into the design and application of strategic risk management
in the Defence context. A number of steps are recommended incorporating interna-
tional risk management best practices within the context and uncertainties unique
to strategic risk management for Defence (as opposed to tactical or engineering risk
management).

Keywords Strategic risk management · Risk management practice · Strategic
resilience

13.1 Introduction

The International RiskManagement standard, ISO 31000:2009 [1], is theworld-wide
basis for best practice in strategic level risk processes. This paper discusses the need
to understand the range and nature of strategic threats and how to represent strategic
risk assessments. Because of the qualitative and subjective nature of strategic risk,
when compared to typical engineering type approaches to risk management, best
practice for strategic analysis requires a more nuanced approach than that used in
more tactical or operational settings. This work focuses on how to incorporate best
practice in strategic risk analysis and operations research into the design of strategic
risk management in the Defence context.
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13.2 Best Practice in Strategic Risk Assessment

Joint Directive 30/2015 by the Chief of the Defence Force and the Secretary of the
Department of Defence directs that risk management be integrated into all decision-
making processes in Defence, at all levels. The International RiskManagement stan-
dard, ISO 31000:2009 [1], is the world-wide basis for best practice in strategic level
national security risk processes [2–6]. Figure 13.1, taken from [1] depicts the princi-
ples, framework and process of risk management. The process of risk management
under ISO 31000:2009 may, in essence, be summarised in a few key steps (see right
hand panel in Fig. 13.1):

• “Establishing the context” and “Risk identification” to identify threat (source of
potential risk in specific context including intent where relevant);

• “Risk analysis” to make assessment:

– identify vulnerabilities (to specific threats);
– assess the vulnerabilities; and
– determine the risk (anticipated likelihood and consequences of specific threads

actually occurring);

Fig. 13.1 ISO31000:2009 [superseded]: Relationships between the risk management principles,
framework and process [1]. © Standards Australia Limited. Copied by the lead author with the
permission of Standards Australia under Licence CL1506DoD
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• “Risk evaluation” and “Risk treatment” to developmitigation strategies that either
seek to reduce those risks (either the likelihood or consequence, or both), or to
tolerate the level of risk as it stands; and

• “Monitoring and review” (in parallel to all the above steps) to prioritise risk
mitigation measures.

It is important to note, however, that the ISO standard is not prescriptive on the
methodology of risk assessment, it merely provides guidance [7, 8]. It is argued
that while a ‘standard risk matrix’ approach to assess risks, accompanied with short
narrative description of threats and assignment of a likelihood and consequence is
common in tactical (e.g. engineering) practice, it is not best-practice for strategic
risk assessment, as it can lead to under- or over-estimation of strategic risk. Other
errors observed in strategic risk assessment include lack of stakeholder involve-
ment, possible false-positive risk scenarios, rigid multi-criteria impact evaluation
and inconsistent likelihood estimation [9]. When applied to rare events, particularly
those at the strategic or enterprise levels, the context within which any potential event
occurs is of critical importance. Given the complexity of strategic risk in the Defence
context, it is imperative to understand the range and nature of strategic threats. For
instance, the threat posed by an earthquake extends beyond magnitude, and may
include location, population density and dispositions (e.g. density might vary at
different times of the day or night), seasonal issues, and underlying infrastructure
and community preparedness or resilience (Fig. 13.2).

In cases where the nature and extent of a threat is driven by a conscious decision,
the intent of those responsible for the threat should also be considered. Furthermore
the vulnerabilities inherent in the system under investigation and their potential for
exploitation need to be considered. This provides a basis for understanding how
risk might manifest itself given potential threats and intents. Before undertaking
any assessment of likelihood or impact, an analysis of threat-intent-vulnerability
relationships must be explored. For instance, as well as specific targets, a belligerent

Fig. 13.2 National security risk methodology. Adapted from [22]
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entity can choose the intensity and duration of a particular aggressive action; their
choices likely aligning with the strategic ends they are seeking, mediated by the
‘cost’ of such actions, both to them and to us.

In other words, strategic risks do not have a single impact and a single likeli-
hood, but a range of impacts and likelihoods, the spectrum of which need to be
considered. To ignore these ranges of possibilities could result in risk misrepresen-
tation, overconfidence, or bias estimates of likelihood and impact to either an overly
positive or negative extreme [10, 11]. Additionally, quantification of likelihood and
impact requires an appreciation of differences between strategic risk management
and that found in operational or tactical management. For instance, probability of
rare, but catastrophic events suggests a logarithmic (rather than a linear) scale should
be used to better capture large differences. Furthermore, purely narrative, rather than
more structured, representations of risks often make these ranges of likelihood and
consequence ambiguous.

The combination of these factors, even when ambiguity is reduced, means that
each ‘threat’ or ‘risk’ can have a range of different chances of occurringwith different
levels of impact. Imprecision in defining risks generally leads to reducing the assess-
ment to merely the two extreme cases of the most likely and the most impactful.
Best practice in strategic risk assessment suggests risk posed by a threat should be
represented as a range of impact, rather than a singular point that is often represented
in (engineering) risk matrices [12–20]. For quantification of likelihood and impact,
a rigorous and consistent approach is critical. For instance, an actuarial approach
to assigning probability of rare events suggests a logarithmic scale, rather than a
linear scale is more appropriate [21] because it avoids range compression where
discrete categorization lumps together very dissimilar risks. Similarly, assessing
impact requires a clear articulation of the implications on the achievement of strategic
objectives.

13.3 An Analytical Perspective to Strategic Risk
Management Process

In line with the literature [22–34], for a mature strategic risk process the production
of two distinct elements are proposed: a comprehensive foresight analysis; and an
assessment of the implications for Defence. Figure 2 shows a simplified strategic risk
process that illustrates features common to the cited literature. Best-practice method-
ology of identifying issues and assessing risks over a planning horizon consists of
three broad aspects:

• establishing and building up over time the underlying evidence base, e.g. thematic
analysis across previous reviews;

• employing expert elicitation processes to identify evolving and emerging issues;
and

• an appropriate Strategic Risk Assessment approach for those issues.
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It is important to ensure a strategic risk management process provides a bridge
between:

• the immediate strategic risk outlooks;
• the medium term ones so that mitigations identified can be enacted; and
• the longer term ones so that the strategic direction underpinning long-lasting

decisions can adapt to changing circumstances in a considered manner.

13.4 Building the Underlying Evidence Base

The foresight process consists of identification and monitoring of issues, trends,
developments and changes in the domestic and international environments that could
impact policies and programs. Regardless of how uncertainties are captured, there
is general agreement in the relevant body of academic literature that the quality
and representativeness of experts, selection and development of scenarios and the
conduct of data collection are critical elements of the process [35].

It was recommended that the foresight process use a standard methodology for
horizon scanning [36–39], where emerging issues, trends, developments and changes
are broken down and mapped to key elements.

Another important step is to determine where and how to capture subject matter
expertise. One approach is to employ a workable set of STEEPV variables (social,
technological, economic, environmental, political and values, framed originally as
PEST or STEP [25, 40–42]) may be used to create a ‘panel of experts’ with diverse,
but relevant and complementary, expertise. Care should be taken to identify and
recruit internal and external experts and stakeholders based on the focus areas and/or
STEEPV domains.

13.5 Expert Elicitation

There are a plethora of techniques, such as Delphi, to bring together experts to
identify, assess andprioritise strategic risks.Given the complexity of the environment,
it is recognised that no single expert would have the capacity to make informed
judgements across all areas [43]. Best practise to elicit such judgments from expert
communities should be focused on specific questions relevant to the expertise of the
individuals [44]. This is illustrated by examples such as the World Economic Forum
Global Risks Report series which demonstrate the practice of issue selection, expert
elicitation and strategic risk assessment [45].

A sound and proven elicitation approach is the combination of expert work-
shops and asynchronous communication [46]. The Investigate-Discuss-Estimate-
Aggregate (IDEA) approach for structured expert judgement, developed by the
University of Melbourne [47] is such an approach.
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We also note that there is consensus in the literature that improved assessments
occur when this is augmented with a scenario-planning process [44, 46, 48–50] to
better understand relative impact(s). It has been demonstrated that multiple distinct
scenarios, augmented byminor counterfactuals should be used to explore the strategic
space [50]. It has been demonstrated in United States’ Defence Strategic Planning,
that without this, there is the danger that risk assessment in making strategic choices
is undermined [11]. To that end the following observations are noted:

• Evidence demonstrates that expert panels are better at forecasting rare events
than inexpert ones [46]. However, this comes with caveats [51, 52], as experts
are prone to cognitive and motivational bias, require calibration, and ‘expertise’
or ‘standing’ are not necessarily an indicator of accuracy [53, 54]. We note that
composition of panels betweenDefence and externals is known to affect outcomes
[55].

• Evidence suggests that human experts are superior for qualitative predictions
(‘if’ something will happen), while quantitative forecasting performs better on
predictions of howmuch andwhen [56].Methodology and time horizon have been
identified in some studies as the most sensitive factors affecting prediction [57].
Other nations and large corporations are developing computer-based forecasting
systems [26, 58, 59], but there is currently limited evidence whether a forecasting
system improves the quality of foresight or narrows foresight through implicit
standardisation. Strategic foresight is an area where it is difficult to determine
value and effectiveness because of 1) the nature of the difference between foresight
and forecasting; and 2) the timeframes and complexity of attributing strategic
success or failure to one component of a strategic process such as horizon scanning
[60–62].

• Care should be taken not to get carried away with technology-hype resulting
in over-estimating the impact of emerging technologies. The expected speed at
which different technologiesmaturemust form part of the discussion; for example
technological advances in heavymanufacturingmay require years before they can
materially impact capability, whereas technological advances in software may
mature to a useable state in fraction of the time.

13.6 Strategic Risk Analysis

Having gained independent expert judgments about the tracking of issues, trends
and other signals, and developed a sense of the ‘likelihood’ of these maturing in
the relevant time, the next step is to synthesize this information within the strategic
context. In effect, this requires an understanding of the implications for Defence. We
recommended running ‘implications’ workshops that bring together ‘suitable repre-
sentation’ of experts and Defence stakeholders, in order to assess the implications for
Defence strategic planning and decisions. This would be commenced by bringing a
number of experts together for a face-to-facemeeting with key Defence personnel, as
this would likely limit any corruption or biasing of the information-content of those
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earlier judgments, and likely strengthen the validity of the facilitated discussions
[63]. This process has been developed and is successfully being used by Defence
Science and Technology Group [64].

13.7 Recommendation

Defence Science and Technology Group has conducted work focussed on under-
taking strategic risk assessment [65]. In these works, as in this paper, and following
well recognised standards, the importance of understanding threat and vulnerability
is emphasised as a basis for making such an assessment, as well as using a structured
approach to capturing the assessments. Similarly, assessing impact requires a clear
articulation of the implications on achieving strategic objectives.

With this in mind, we recommend organisations perform ‘issues identification’
and ‘risk assessment’ through a three-step process:

• Establish the strategic risk context in the near-, mid-, and long-term timeframes
by identifying, analysing and challenging the assumptions of the organisation’s
strategic documents (e.g. strategic plan, etc.). This informs the determination of
those topics and themes that require further investigation, both to assure that
the contexts identified in those documents remain current, and to help capture
emerging threats/intents and vulnerabilities;

• Analyse these topics/themes by engaging an asynchronous expert elicitation
approach. This requires groups of subject matter experts for each theme/topic
to work through a Delphi-like approach. The output of this activity is the provi-
sion of evidence and assumptions to inform assessment of the strategic risks. It
is noted that in addition to analysing these topics and themes, the subject matter
experts may also identify ‘weak signals’ that may warrant further analysis and
attention; and

• Synthesise these findings through a strategic risk assessment process which repre-
sents in a structured way the progression of threats to impacts. This may involve
two iterations: (1) risk-based short listing of issues (i.e. risks emerging in specific
contexts), and (2) detailed assessment to produce outcomes that can be used to
explore the implications to policy and organisational design.

To undertake such a sophisticated approach requires time and resources. It is
recommended that a level of rigour be maintained when limiting the scope in line
with the available time and resources. Given strategic risk management is not a once-
off product, but a repeating activity, future iterations could then update the now-extant
elements while developing newer threads in order to improve rigour of the process.

Acknowledgements Authors thank Dr. Nigel McGinty and Mr. Richard Bartholomeusz from the
Defence Science and Technology for useful discussions and comments.
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Chapter 14
A Security Focused Global Petroleum
Trading Model

Gregory Calbert

Abstract Without liquid petroleum, either jet fuel, diesel, or other products such as
lubricants and fuel oil, theDefence force ceases to function. Furthermore, the national
support base, the bed-rock of the Defence force stops as well. Petroleum products
will continue to form an energy source of choice for Defence because of superior
energy density for decades to come. While Australia is seen as a regional power, its
energy resilience is in a state of change and is generally seen as declining. Currently
the Government sees market forces as providing petroleum supply security, given the
nation stores 50–55 days of stocks which is below the mandatory 90 days required by
the International Energy Agency. With this context, the Defence Science and Tech-
nology (DST) Group has developed a security-based global petroleum simulation,
called SPECULA, in order to model the effects of regional and global changes in oil
production, refining, shipping or distribution of petroleum products during conflict or
significant environmental events. SPECULA is a simulationmodel, where petroleum
is transported globally, based on regional variations in price. Price here is modelled
as a “pseudo-price” which has a global component and a regional component. The
global component is based on the difference between global supply and demand.
The regional component is based on the regional inventory level. If the inventory
level is low, the regional price rises. Trading, or the movement of petroleum from
one region to another occurs because of inter-regional price differences, commonly
known as arbitrage. The SPECULA model is spatial, as tankers move cargos along
inter-regional seaborne routes. This paper briefly describes the security context of
the petroleum supply chain in the Asian region. Then previous economic models of
Australia’s petroleum supply security are reviewed and critiqued in terms of their
ability to model conflict scenarios. The SPECULA model is then described along
with model parameters and outputs. Finally, the future challenges of this model are
addressed in the discussion/conclusion.
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14.1 Introduction

Apart from bases where electricity and gas are the energy sources, nearly all Defence
energy requirements are sourced from liquid fuels. Liquid diesel has an energydensity
of approximately 48 mega-joules per kilogram [1]. While battery research aims
at increasing storage energy density, perhaps two or threefold, the latest lithium
ion batteries have an energy density of no more than 2 mega-joules per kilogram.
According to recent reviews, battery energy densities are unlikely to significantly
increase in the short-medium term [2]. Other energy sources, such as hydrogen from
ammonia-based fuel cells are promising, but have yet to show significant uptake.
Therefore, at least at the time of writing this paper, liquid petroleum-based fuels will
probably be the mainstay, or be used in hybrid form for Defence energy, especially
for systems with high mobility, for many decades to come.

Australia has relied on the market as the source of energy security for liquid
petroleum products. In the 2011 National Energy Security Assessment (NESA), the
last undertaken by the Australian government, liquid fuels were assessed as having
high, trending to moderate security over the medium term [3]. The NESA in 2011
stated that supply diversity and efficient markets underscored supply security.

Since 2011, the trend of refinery closures has continued with only four local
refineries in operation nationally. New South Wales, the largest consumer of
petroleum products in all categories, has moved to a product-import only business
model, closing the Kwinana and Clyde refineries. Australia is the only Interna-
tional Energy Agency partner, not to comply with its 90-day net import rule, as
only 50–55 days of net imports are stored [4].

Within a regional context, it is well recognised that the Asian region has become
the key strategic vulnerability point for oil security [5]. There are a number of reasons,
which compound each other, that lead to this conclusion. These reasons relate to:
the high rates of regional growth; strong dependency on the Middle East for crude
supply; lack of crude production; long supply chain distances; and a lack of a regional
energy security alliances. So significant is the issue of energy security in the eyes of
Chinese strategists, compounded by choke points in the Hormuz andMalacca straits,
that it is termed the “Malacca dilemma” [6].

Energy supply chains may be interdicted or storage destroyed in conflict [7]. This
occurs at all intensity levels of warfare, including the recent conflict with Daesh
on the Iraqi-Syrian border [8]. Thus, from a Defence perspective it is important to
understand how conflict could alter the petroleum supply chain and its implications
for Defence sustainment.

The Security-Based PetroleumTradingModel, called SPECULA1 in being devel-
oped at DST Group with this background in mind. Given petroleum trading and
petroleum supply chains are global in extent, in SPECULA, thirteen regions, for
example North America and South America trade fuel. Each region has a fuel
price. The regional price is a function of overall global petroleum availability, when
compared to global demand, and the region’s inventory level. If the regional inventory

1The acronym SPECULA is loosely based on the words “security”, “petroleum” and “speculation.”
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level falls below some norm, the price increases in comparison to other regions. A
state-machine simulates tankers moving petroleum cargos between regions. Tankers
load cargo at regions with excess inventory, that are geographically proximate, and
discharge at regions where the proximity and price are ideal. SPECULA is a spatial
model, and tankers move between inter-regional seaborne routes.

Following this introduction, we describe and summarise some modelling
approaches to the global oil/petroleum supply chain. These approaches motivated
the development of the SPECULA model which is discussed in Sect. 3. Section 4
describes the outputs of the model, and the discussion-conclusion in Sect. 5
summarises future challenges and developments.

14.2 Global Petroleum Modelling

There are many publications on global petroleum models. Different models have
distinct aims. The overarching theme of most is to form some predictive model
of oil prices as a function of the parameters that affect the price of oil [9]. Such
parameters are extensive, and include supply; demand, production; cartel behaviour,
such as with the Organisation of Petroleum Exporting Countries (OPEC); the futures
market; geopolitical events; and government policies. The success, or lack of success,
of forecasting prices is aptly summarised by Michael Lynch in 2002, when he wrote
“The history of oil forecasting has been a sorry one” [10]. Many papers focus on the
role of OPEC in setting production targets in order to optimise the price formaximum
profitability [11].

Modelling conducted by the Australian Government makes extensive use of the
generalised computable equilibrium modelling (GCE) [12]. While a specialist disci-
pline in macro-economics, GCE modelling seeks to model consumers’ optimal
consumption levels of different commodities subject to price constraints. Producers
in turn seek to maximise profit, which in turn is subject to the consumers demand,
and other producers’ demands for the commodity produced and the cost of other
factors such as labour and technology. At equilibrium one solves for commodity
production levels, commodity prices and labour costs. In the context of the global
oil market, changes in production or supply cause one to re-calculate ripple through
effects, such as changes in price and production levels in other industry sectors.
This approach has been used by the Australian government to assess energy security
over oil supply shocks over a number of scenarios [13]. The Australian government
assessed a closure of Singapore refineries for one month and the closure of the Strait
of Hormuz for one month.

The use of GCE modelling essentially focuses on price rises in the market. Oil
demand or supply shocks induce price rises, and demand-supply elasticity respond
accordingly, surging production anddecreasing demand, in short, themarket balances
itself out. However, there are a number of issues associated with the scenarios and
models used to assess petroleum security.
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First, the scenarios, developed through the Department of Energy and the Envi-
ronment, fall short of conflict, where sea lines of communication may be blocked,
refining destroyed and inventory storage damaged. Overall, the logistics of the supply
chain, including the restrictions on sea-borne tanker numbers and the inventory levels
are ignored in the GCE model. In conflict or during environmental events (such as
a hurricane destroying port infrastructure), seaborne tankers can alter routes, with
commensurate changes in the delays of oil or product flows. As important nations
may choose to hoard stocks, regardless of the oil price.

Regarding the economic assumptions of the GCEmodels, the supply and demand
elasticity of oil and petroleum are uncertain parameters. For example, Caldara et al.
review estimates of the supply elasticity to be between 0 and 0.25 and the demand
elasticity to be between−0.9 and−0.03 [14]. Such variation in these parameters can
significantly alter the modelling results.

The reasons outlined above provide sufficient impetus for the development of
alternative models of the global petroleum supply chain, which have sufficient flex-
ibility to include spatial constraints and other factors which influence the supply for
oil or product.

14.2.1 The Security-Based Model

With this background in mind the paper now discusses developing the SPECULA
model. This model aims to take the intermediate ground between detailed econo-
metric models of price and a logistics simulation model. It is global in scope, and
subdivides the world into 13 regions, across which crude oil and petroleum prod-
ucts are traded. These regions are North America, South America, China, Russia,
the Commonwealth of Independent States,2 Japan, India, the Middle East and North
Africa, Africa, Singapore, Australia and New Zealand, and the Other Asia Pacific
nations.

These regions induce a sea-based distance matrix. Seaborne tankers, either for
crude or petroleum product, transport fuel (either oil or product) between regions,
according to a “proxy-price” model. The basic idea behind the proxy-price model is
that it reflects both global attributes of price, excess global inventory or a shortfall,
production and also regional price components. The regional price component is
driven by local inventory levels and regional production. If the regional inventory
level is below an average level, the price rises, and if the inventory level is above
the average the price falls. Price differentials between regions generate arbitrage and
affect the shipping patterns in the model.

Formally, let the 13 regions be denoted by i ∈ {1, 2, . . . , R} and the simulation
time be denoted by t ∈ {1, . . . , T }, then the inventory levels for crude oil and
petroleum product at any time t are denoted by I ci,t , I

r
i,t . With these definitions one

2The Commonwealth of Independent States are the former Soviet territories (Armenia, Azerbaijan,
Kazakhstan, Kyrgyzstan, Moldova, Turkmenistan, Tajikistan and Uzbekistan).
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can define the proxy-price of either crude or product at region i at time t as

pi,t =
∑R

i=1 I
c,r
i,0

∑R
i=1 I

c,r
i,t

+ max

(

K

(

1 −
(
I c,ri,t

I c,ri,0

))

, 0

)

. (14.1)

Readerswill notice that equation one has the following properties. First as the total
global inventory decreases compared to the start of the simulation, the proxy-price
overall “global price” rises. Regionally, if I c,ri,t → 0, the “arbitrage” component of
the proxy-price also rises. Thus, in some sense, the proxy-price represents a regional
“attractive force” that when high in a region compared to other regions, encourages
the flow of full tankers to improve that region’s inventory position. The approach
of using an inter-regional proxy price is not dissimilar to the approach taken by
Beyeler, Corbet and Hobbs, where flows in a pipeline network are not modelled
by inter-regional prices, rather, by differences in “potentials” between regions [15].
In this model, it is assumed that the demand elasticity is zero, reflecting a risk-
averse approach to assessing shortfalls in the supply chain. Furthermore, at this stage
of research, the arbitrage component of the proxy price is assumed to be linear.
Non-linear versions will be considered in subsequent forms of the model.

Having defined the price model, the transport of crude or petroleum product is
now addressed. It is assumed that tankers are either full with cargo or empty. A tanker
that is full seeks a region to supply fuel both geographically close and with a high
price of fuel. In turn a tanker that is empty seeks to load petroleum cargo at a port
that is geographically proximate, with a lower price of fuel. For simplicity, at this
stage of the modelling process, it is assumed that seaborne tankers don’t travel to
intermediate nodes. Thus, full tankers will discharge at a port, and then decide which
subsequent port is optimal for loading. There are no intermediate decisions on-route,
a full tanker will decide where to discharge and an empty tanker where to load. Let
di j , i, j ∈ {1, . . . , R} denote the sea distance between two regions, ρ denote the
daily cost of tanker transport and V be the cargo volume. A full tanker at region i
seeks a set of regions j ∈ J such that

j = argmaxk
(−ρdik + pk,tV

)
. (14.2)

Similarly, an empty tanker seeks regions that minimise
(
ρdik + pk,tV

)
. For crude

transport, an additional rule restricts the possible destinations of full tankers. Full
tankers do not travel to regions with excess crude production (for example Russia and
theMENA regions). For this initial version of the model, decisions by the tankers are
made myopically, that is the next port is chosen, not a sequence of ports. Subsequent
versions of the model will consider such methods as depth search.

With these two rules for the evolution of global/regional proxy-prices and desti-
nations for crude, product, full and empty tankers, one has the foundations for an
executable simulation model, also termed a state machine. Each tanker has its own
internal state { f ull, empty}, {loadingatport, dischargingatport, intransi t} and
the state transition diagram is displayed in Fig. 14.1.
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Fig. 14.1 Dynamics of full and empty tankers in the SPECULA simulation

The movement of crude or product via seaborne tankers, the production of crude,
refining and finally consumption, generate the global inventory dynamics of the
system. If Ict ,I

r
t denotes the vector of crude/refined (product) inventory globally, c is

the regional crude production rate, r is the refining rate, Cons is the consumption
rate, then the inventory dynamics for crude and refined product are simply

Ict+1 = Ict + c − r + Vnc
in,t − Vnc

out,t , (14.3)

Irt+1 = Irt + r + Vnrin,t − Vnc
out,t − Cons. (14.4)

Here, nr,cin,t ,n
r,c
out,t denotes the number of full crude or product tankers offloading

cargo at time t and the number of empty crude or product tankers loading cargo at
time t.

With this core model, one is able to make the oil production, refining rates,
consumption, or even inter-regional distances dynamic to explore the effects on
stocks of various scenarios. The core parameters of the model as listed in Table 14.1.

14.3 Preliminary Results

In this section the outputs of the model are described. The computer code for
SPECULA is currently written in the R language. Simulation time steps are taken
as days. The inter-regional seaborne distance parameters are taken as days sailing,
assuming tanker speed of 12 knots. Both the crude and product taken volume is
assumed to be 100 mega-litres, approximately the size of a long-range type one
(LR1), or long-range type two tanker (LR2), which are typical tanker sizes for inter-
regional transport [16]. The parameters for crude production, refining and product



14 A Security Focused Global Petroleum Trading Model 201

Table 14.1 Core parameters of the SPECULA model

Symbol Meaning

i Region in the simulation

t Time measured in days

R Number of regions

T Maximum simulation time

di j Seaborne distance between regions i and j

ρ Daily price of seaborne tanker transport

V Volume held by each petroleum tanker, crude or refined, in barrels

pi Price at region i

pi,t Price at region i at time t

I c,ri,t Crude (c), refined (r) inventory level in region i at time t

K Maximum regional price rise

ci Crude production in region i

ri Refined production in region i

nc,rin,i,t Number of Crude (c), refined (r) tankers offloading cargo in region i at time t

nc,rout,i, Number of Crude (c), refined (r) tankers loading cargo in region i at time t

Consi Refined petroleum consumption in region

consumption are taken from the 2016 BP Annual Statistical Review [17]. Inventory
capacities for various regions are estimated through the United States Energy Infor-
mation Agencies (EIA) various country reports. The daily rate for tanker transport
was taken at $20,000, and the price of oil was taken as $1.20 per litre. The simulation
was done over 200 days.

One simulation, over the period of one year takes approximately 3min to compute
on an ASUS Quad core laptop. Therefore, a risk based model will require significant
computational processing, when exploring sensitivities over the parameter space.

Figure 14.2 plots the inventory levels over the 13 regions assuming the simulation
parameters shown.

Figure 14.2 shows a general rise in inventory levels globally in 2016. During this
period, the oil price (West Texas intermediate) was at its lowest level since 2009,
after the global financial crisis, because of a crude oil inventory glut, induced by
shale production in the United States [18]. Therefore, at least in this first instance of
running the SPECULA model with its input parameters, there is some congruence
with the activity of the global market as a whole.

In the SPECULA model, both the crude and product trading dynamics can be
visualised. Figure 14.3 shows a visualisation of a weighted trade matrix between
regions for the flow of full crude tankers, over the simulation period.

Similarly, refined product trade in the SPECULA can be visualised, as is shown
in Fig. 14.4.
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Fig. 14.2 Inventory levels across 13 regions in the SPECULA simulation model

Again, there is some model congruence with actual petroleum product trading
in that inter-regional trading is far more uniform that crude oil trading, where the
flows from Russia and the Middle East North Africa and South America dominate
the trading routes, because they are the largest nett exporters of crude.

14.4 Discussion and Conclusion

The SPECULAmodel is in its nascent stages of development, and there are a number
of challenges. First, the proxy-price model needs to be improved to better reflect
the actual statistical patterns of global trading observed in data sourced from such
bodies as the International Energy Agency. The model should include some look
ahead in which tankers plan a sequence of ports to visit. In a highly dynamic situa-
tion, decisions regarding which port to load/unload could be made on a daily basis.
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Fig. 14.3 Visualisation of the trading dynamics for crude cargoes between regions in the SPECULA
model. NA- North America, SA- South America, Euro-Europe, Russ-Russia, CIS- Commonwealth
of Independent States, ME-Middle East and North Africa, Afri-Africa, Aust-Australia and New
Zealand, Chin-China, Ind-India, Jap-Japan, Sing-Singapore, OAP-Other Asia Pacific

Fig. 14.4 Refined product trading in the SPECULAmodel, as is visualised by the number of refined
tankers transiting across regions during the simulation model

In Asia, petroleum cargoes are typically not re-sold on-route, however in a crisis
situation, decisions may be more dynamic. Even under normal circumstances, in
Europe, petroleum cargoes are bought and sold a number of times on-route, because
many ports are proximate [19]. This is the current subject of DST research, and a
number of approaches may be taken drawing from non-linear optimisation methods
to machine learning approaches, where such methods as reinforcement learning and
value function approximation could be applied.

Another quite simple challenge is sourcing the data on fuel inventories and stocks.
Generally, the nations that form part of the alliance that is the International Energy
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Agency (including Australia) are quite transparent regarding their stocks and publish
inventory levels. However, large petroleum consumers, such as China do not publish
their data, and their inventory levels can only be estimated within some set of bounds
[20].

GCE models estimate economic damage, through lost productivity, associated
with oil shocks. In progressing the research of the SPECULA model, the aim is to
communicate how changes in oil/product supply affect the national support base,
and in turn military capability. More work is required on how this is done.

Given there is so much uncertainty with the parameters applied in the modelling,
ideally Monte-Carlo sampling should be conducted to estimate risk profiles.
SPECULA lends itself to parallel computing and this will be a subject of future
research.

While the oil/petroleum supply chain is of strategic significance to Defence and
the nation as a whole, it is not the only commodity. Australia also depends heavily on
imports of fertiliser and fertiliser products for its agricultural productivity. Therefore,
in the long-term SPECULA modelling may move to include other commodities, for
an analysis of their respective strategic significance during conflict.

In summary, this paper has argued that there is a key modelling gap in the analysis
of the global oil/petroleum supply chain. While GCE models are useful in this area,
as with any other analytic endeavour, alternative modelling approaches will yield
other insights. SPECULA attempts to bridge the gap between economic modelling,
in its formulation of regional proxy prices, and direct supply chain modelling, given
that seaborne tankers move oil/product. In its nascent stages, the next steps in its
development include improving the proxy-pricingmodel and the testing of themodel
on various scenarios.
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Chapter 15
A Systems Approach to Analysing
Organisational-Level Adaptability:
Review of the Australian Army Lessons
Network as a Case Study

Amina Omarova, Matthew Richmond, and Vernon Ireland

Abstract This paper describes a methodology for reviewing organisational-level
adaptability from a systems perspective. Taking an action learning approach, we
reviewed the Australian Army Lessons Network (ALN) as a case study in order to:
(i) develop practical options for improvement of the ALN, (ii) reflect on the review
methodology and identify options for improving its effectiveness in subsequent
reviews, and (iii) demonstrate the utility of adaptive review and lay the foundations
for its further application.

Keyword Organisational adaptability

15.1 Introduction

This paper describes an approach for analysing organisational-level adaptability
from a systems perspective; i.e. by defining and mapping the relationships between
the components of the system, to highlight shortfalls in the system structure and
processes.We define highly adaptable organisations to be those that have the capacity
to successfully modify themselves in response to a wide range of environmental
changes (internal or external, current or unforeseen) by employing a structured
process of variation generation, test and evaluation to underpin implementation.
The objective of this work was to initiate the development of a methodology for
reviewing organisational-level adaptability. We took an agile approach to its devel-
opment, building on action learning principles; i.e. an approach based on iterative and
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incremental development, where requirements and solutions evolve through collab-
oration between analysts and stakeholders. In this paper we describe a review of the
Australian Army Lessons Network (ALN), which has been used as a case study to
trial and improve the methodology iteratively.

15.2 Context

In 2008, Australian Army launched an ambitious program of putting its entire
organisation on an adaptive footing, resulting in over 40 separate initiatives over
the following 12 months [1]. Furthermore, the Directives at the time stressed that
“realising these goals for Adaptive Army requires specific targets for the improved
outcomes to be set and regularly reviewed by Functional Commanders”, and that
interdependencies between these areas were to be addressed explicitly to “…allow
us to adapt the ongoing prioritisation of effort and resources to the best effect, and
avoid diminishing returns and negative cross-impacts”. A key to achieving the goals
is the ability to improve the effectiveness of the adaptive processes themselves, by also
subjecting them to adaptive review. As a step towards this, a limited scope review
was initiated of one aspect of the Adaptive Army: effectiveness of the processes,
structures and systems that comprise the Army Lessons Network.

A recent ANAO report reviewed “The Australian Defence Force’s Mechanisms
for Learning fromOperational Activities” [2]. It found that Army has a sound process
for learning immediate and short term lessons fromoperations and has effective struc-
tures to ensure these lessons are captured and communicated; however, it suggested
that the learning loop model appears less suitable for medium and longer term
lessons. It went on to point out that “for these higher levels of analysis a stronger
framework of measurement and evaluation would provide more robust information
for decision-makers and planners” [2]. This review only made broad recommenda-
tions which advocated consistent methods, a structured approach, and cross-service
lessons sharing, supported by well-scoped and integrated knowledge management
repositories.

15.3 Background

Our current research was initiated from the idea that by combining concepts from
adaptability frameworks with those from decision-making cycles a methodology
could be developed to underpin appraisals of organisational adaptability. At this
point there appear to be no published methodologies to practically support this need.
This section provides background on the published literature most relevant to a
methodology.
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15.3.1 Organisational Change and Adaptation

Increases in the level of complexity and the rate of change of operating environments,
especially due to technological advances, make organisational adaptation a critical
research area. Organisational adaptation is an internal property of organisations that
facilitates successful organisational change. The literature related to organisational
change is extensive and stems from several disciplines including political science,
anthropology, biology, physics, psychology, as well as the business and manage-
ment sciences [3–5]. Reviewing existing theories of organisational change, we have
focused on complexity theory which has “presented a way of better describing and
understanding dynamics and processes of change found in a range of physical and
biological phenomena” [6].

Among a number of frameworks devoted to organisational adaptation [7], we have
identified the Conceptual Framework for Adaptation (CFA) as the most relevant to
our research objectives [8, 9]. The CFA is a framework to review organisational
adaptability and builds on biological evolution and complexity theories and claims
to provide “a generic model of adaptation, natural and hybrid types of adaptivemech-
anism, four classes of adaptation, five levels at which adaptation can be applied, and
a discussion of the health of an adaptivemechanism, the levels of scale at which it can
operate, and the factors that influence its effectiveness” [8]. However, it has not been
operationalised so that it can be readily applied to practically support organisational
adaptability appraisal. Note that the CFA model is not regarded as an empirically
tested and validatedmodel but rather a conceptual approach to support understanding
and therefore resides more in the interpretive research paradigm than the positivist
one. The conceptual and descriptive nature of theCFA to revieworganisational adapt-
ability was seen as a flexible and comprehensive approach to understand and analyse
characteristics of adaptability of a complex system such as the ALN.

15.3.2 Learning Cycles and Organisational Learning

We have considered two decision-making/learning cycles; Observe-Orient-Decide-
Act (OODA) and Act-Sense-Decide-Adapt (ASDA) [10, 11]. Notwithstanding the
differences between the OODA and ASDA loops, it is recognised that the two
concepts have significant similarities and both can be used to assist in under-
standing and appraising continuous learning and adaption of organisations operating
in rapidly changing environments [12]. There are also a number of theories that
describe learning as a cycle. For example, Kolb’s experiential learning, Deming’s
cycle of plan-do-check-act, Kofman’s cycle of observe-assess-design-implement and
Argyris’s and Schon’s a discovery-intervention-production-generalization cycle of
learning [13]. The learning cycle approach is very close to the OODA and ASDA
concepts; however, none of these cycles aim to build a system view of organisational
learning processes and nor do they describe the necessary processes and principles
that underpin organisational adaptation.
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Complementing learning cycle concepts, Huber’s framework of organisational
learning provides a good foundation for understanding and describing processes
of organisational adaptation. Huber argues that “An entity learns if, through its
processing of information, the range of its potential behaviors is changed” [14]. He
divided his framework into several parts: sensing and interpreting the environment,
organisational decision-making, organisational learning and knowledge acquisition,
knowledge managing, innovation and organisational culture [15]. Huber argues that
in order to survive, an organisation should continuously change and adapt to newenvi-
ronmental conditions.Moreover, continuous adaptation requires constant innovation;
this is not possible without obtaining new knowledge through learning. Therefore,
we see Huber’s approach to organisational learning as assisting to inform the relevant
processes necessary for organisational learning and, more specifically, adaptation.

15.3.3 Systems Thinking

Conceptually, systems thinking “has shifted from structure (reflected in the use of
modularization to deal with complexity), to organization or form (accentuated in the
cybernetic approaches) to the network dynamics of adaptation and transformation
(within the paradigm of complex systems science)” [16] and the modern idea of
systems thinking is based on a belief that “systems cannot be understood by anal-
ysis—the properties of the parts can only be understood within the larger context
of whole” [16]. Two approaches that were used to support this review are: (i) busi-
ness architecture which “identifies its purpose, vital functions, active elements, and
critical processes and defines the nature of the interaction among them” [17]; and
(ii) business process modelling which provides a formal means to describes business
processes in a flow-chart format, which assists visualisation and understanding those
processes, including any issues or gaps with them.

15.4 Methodology

15.4.1 Approach

The review approach contains two main steps and is based on a combination of
process modelling, action learning and conceptual analysis. In the first step: the
system’s business processes and information flows that facilitate organisational
change to improve operational processes are described formally in process diagrams.
The diagrams are used to support a gap analysis to identify both system’s weaknesses
and misalignment with the learning processes of the theoretical model. Noting that
the quality of the processes is not assessed at this point, but only if they exist or
not. In the second step, workshops are organised with key stakeholders to: (i) obtain
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their insights on the identified gaps in the processes, (ii) critically review processes
described in the systems diagrams and assess their effectiveness, and (iii) engage
managers/users/operators of the system in the analysis process to facilitate their
ownership of any recommendations. Analysis of data from the workshops underpins
the definition of key issues, which are corroborated with the analysis of historical
examples of the organisation’s responses to environmental changes and data anal-
ysis of process performance, leading to recommendations to improve the system’s
adaptability.

15.4.2 Theoretical Model of Organisational Adaptation

We have developed a theoretical model of organisational adaptability by combining
aspects of learning cycles (OODA andASDA), the Conceptual Framework for Adap-
tation (CFA) [9] and Huber’s model of organisational learning [14, 15]. A list of
desirable elements for a highly adaptable system is presented below which can be
used to build a system view of learning processes in an organisation. At this stage
the characteristics are used to identify the existence of the required processes only,
but not to evaluate their quality.

Sense

• Sense information: data collection team; process/methods to support data collec-
tion; periodic sensing/monitoring process; data repository; process to observe
triggers; and process to obtain feedback on prior adaptive changes.

• Conduct preliminary analysis: data analysis team; data repository for anal-
ysed data; periodic process/methods to analyse data from triggers to derive
themes; periodic process/methods to analyse data from feedback; and process
to report analysed information (including identification of possible variations) to
appropriate decision authorities.

Analyse and Decide

• Analyse and Decide: decision-making authority; authority to direct tasking; the
ability to influence indirect tasking; documentation of tasks; structured process
of decision-making for variations approval (incl. documentation of reasons and
guidance for further analysis); and data repository for decisions.

• Formulate Feedback: process to inform data collection teams about decisions and
areas impacted; and define impact expected from decisions.

Adapt

• Implementation: process to capture parameters of implementation; process
to capture conditions of implementation; data repository for implementation
information; and process to support implementation information sharing.
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• Formulate Feedback: process to inform data collection teams about expected
impact of the implementation.

15.4.3 Gap Analysis Using Theoretical Models

Initially systems diagrams are developed, making use of the structure of a learning
cycle mentioned in the previous section. Leveraging the ASDA learning cycle, we
describe the business processes and information flows. There are two perspectives:

(i) The designed view: i.e. description of the functional workings of the system
based on formal documentation; the diagrams describe the business processes,
products and information flows between the relevant parts of the network; by
explicitly documenting system diagrams we avoid any misinterpretations or
misunderstandings when analysing and communicating the system processes.

(ii) The as-is view: i.e. how the system functions in reality. Stakeholders and
operators are interviewed to obtain feedback on how the system functions in
practice.

The designed and as-is views are initially compared to each other and implementa-
tion/institutionalisationweaknesses in the existing processes identified. The designed
and as-is views are then compared with the theoretical model to provide insights into
system deficiencies in terms of the key attributes of organisational adaptability.

15.4.4 Stakeholder Engagement

This step of the analysis focuses on obtaining input from stakeholders on adapta-
tion processes, where issues highlighted during the gap analysis are used to initiate
discussion. We employed the TOWS method as described by Coyle [18]. It provides
a well-defined, structured approach to: (i) source insights from key stakeholders on
relevant processes; (ii) develop options for overcoming/exploiting external threats
and opportunities; and (iii) develop strategic plan, i.e. options for organisational
change that can be traced back to the stakeholder’s insights. TOWS is an extended
version of SWOT (Strengths–Weaknesses–Opportunities–Threats) analysis, where
the first part involves the running of workshops with key stakeholders to facilitate
their input into “thinking about the threats and opportunities of the external world
before considering the internalweaknesses and strength” and the second part involves
the development of a “TOWS table … to compare, contrast and combine Ts, Os, Ws
and Ss, in various ways, so that action plans which, say, use one of the strengths to
exploit an opportunity [will] emerge” and guide strategic insight development [18,
p. 89]. The first part only of TOWS (i.e. SWOT) analysis is applied in this step of
the methodology; where the development of an action plan and strategic insights
supports the final step of the methodology (Sect. 15.4.6).



15 A Systems Approach to Analysing Organisational-Level … 213

15.4.5 Data Analysis Using the CFA

• Historical analysis. Historical analysis on organisational responses to environ-
mental changes to provide evidence for the issues highlighted in the previous step
and to clarify/characterise them more fully. The data set is categorised by classes
and levels of adaptation, as well as by the scales and areas of the organisation,
highlighting deficiencies (defined within the CFA) [9]:

(i) Scales of adaptation.Organisational adaptation is a combination of different
adaptive processes aimed at achieving a common level of success. Thus,
organisational adaptation is a network of adaptive processes at various
organisational scales. The organisational learning literature highlights three
main levels of organisational learning: individual, group and organisational.
Reviewof historical examples of learning and adaptation incorporates scales
of adaptive processes as an integral part of the appraisal.

(ii) Levels of adaptation. The CFA describes five levels of adaptation: action in
the world, learning, learning-to learn, define success and co-adaptation.

(iii) Classes of adaptation represents possible organisational responses to an
external change. Taking a ‘black box’ perspective, this part of the CFA
uses classes of adaptation to identify how an organisation responds to
different types of unexpected changes. These classes are: agility, flexibility,
responsiveness and robustness.

• Quantitative data analysis. The second type of analysis is quantitative data anal-
ysis of individual process performance to gather evidence for how well processes
function. This analysis should be based on statistical analysis of operational
performance and possible surveys of system users; for example, (i) to assess
the process effectiveness, efficiency, and timeliness from a user perspective, and
(ii) to assess whether relevant employees are aware of the process and use of it.

15.4.6 Synthesis of Analysis Leading to Recommendations

This step culminates with a key set of recommendations to improve the adaptive
processes. The SWOT analysis should lead to a list of the key issues that require
amelioration and also support a comparison of the internal weaknesses and strengths
of the adaptive process with the external threats and opportunities of the environment
leading to actions to improve the adaptive processes.At this point the outputs from the
data analysis are used to provide evidence for issues and to support the development
of actions. Actions are combined into strategic insights which are used to provide
an indication of the main directions for change and to underpin the development
recommendations.

Although the focus of thismethodology is on systemanalysis, clearly other aspects
of organisational learning are important and may constrain the operation of adaptive
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processes. This is especially true of cultural aspects. It is at this point of the method-
ology that any research on these aspects should be incorporated to ensure that any
final recommendations are feasible and accommodate the culture and behaviours
of the organisation. Issues and recommendations combined inputs from the SWOT
workshops, data analysis and cultural studies.

The synthesis will lead to clarification of the issues which have been identified
during the gap analysis and TOWS workshops. Results of the synthesis are: a list
of explicitly expressed issues of the current system work supported by examples
from historical and quantitative data analysis as well as from social/cultural perspec-
tive, and a list of recommendations aimed at improving the adaptive system which
are feasible and practical. The final step of the synthesis is to clarify issues and
recommendations with key stakeholders to obtain their feedback and acceptance.

15.5 Case Study

15.5.1 Process Models

This review has focused on the Army Learning Network (ALN) from a systems
perspective. Formally, the ALN is divided into four temporal learning domains,
referred to as learning loops: immediate learning loop (ILL), short learning loop
(SLL), medium learning loop (MLL) and long learning loop (LLL). With the excep-
tion of the immediate learning loop, we investigated each of these areas with a
focus on how these temporal organisational learning dimensions combine to address
Army’s overall learning. We have concentrated on identifying any gaps/overlaps,
with the aim of developing proposals for practical improvements.

In order to analyse the effectiveness of the ALN, initially a systems model of each
learning mechanism was developed based on available documentation; including the
business processes, products and information flows between the relevant parts of
the network. Stakeholders and operators were then interviewed to obtain feedback
on how the system functions in practice. These data were mapped into diagrams
making use of Act-Sense-Decide-Adapt learning loop and the CFA [9, 10]. Diagrams
represent a system-of-systems view, generating two perspectives:

(i) The designed view: i.e. description of the functional workings of the ALN based
on the formal documentation. The general viewof processes supporting learning
from operations contains a description of each of the three learning loops (SLL,
MLL, LLL) and connections between them. Each loop is divided into the four
steps of the ASDA loop. The development of the designed view was based on
reference documents.

(ii) The as-is view: i.e. how the ALN functions in reality, including both formal
and informal processes. The as-is view was created based on information from
discussions during visits to four different parts of the Army.
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   SENSE    DECIDE    ADAPT

‘A WAR’
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ACT

OANs (advice)
(AWB Handbook)

Data Collection
(FCPD 08-03-01)
SO2 AKM collects inputs/insights 
from:
- ACMS trends and patterns 
supplied by the G3
- observations, insights and PIRS 
supplied by CAL 

Brigades

TE

Formulate Feedback (measures of effectiveness) for periodic reviews (DI(A) 10-1)
G7 (the FGLB Secretariat) – preparation and monitoring of subsequent tasks and 

subsequent actions (FCPD 08-03-01)

References:
1. DI(A) 10-1, Army Lessons Policy
2. CA Directive 06/06, CAL, SOPs
3. Adaptive Warfare Branch Lessons Learned Handbook 2013
4. FCPD 08-03-01, Force Generation Lessons Board (FGLB)
5. CAL, Active lessons collection handbook, Edition 1, 2001

Variations – 
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COMD FORCOMD issues directives 
(FCPD 08-03-01)
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(FCPD 08-03-01)
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learning loop decision 
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MEDIUM LEARNING LOOP (MLL)
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Fig. 15.1 Systems model of the medium learning loop of the Army Lessons Network—designed
view

Figures 15.1 and 15.2 show the diagrams for the MLL designed and as-is views,
respectively. They are included for illustrative purposes only, in order to give readers
an idea of the style of the diagrams that were produced. The diagrams illustrate the
links between the MLL and the other two learning loops (SLL and LLL) across the
ASDA decision making/learning cycle.

15.5.2 Gap Analysis

The designed view and as-is view were compared to each other to identify any gaps
or implementation weaknesses, and also any gaps when compared with the learning
processes of the theoretical model were highlighted. These gaps formed the starting
point for stakeholder workshops to (i) ascertain whether the stakeholders agreed, (ii)
explore the issues in more detail and (iii) to stimulate discussion of related issues.
The gaps are summarised below:

• Inconsistent processes for: (i) monitoring of decisions during implementation
including defining expectations and setting goals to support feedback to decision-
makers and decisions on any refinement required; (ii) developing options for
decision-makers; (iii) prioritisation to focus data collection; and (iv) analysis
methods.
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   SENSE    DECIDE    ADAPT

‘A WAR’
MLL

‘FUTURE WAR’
LLL

‘THE WAR’
SLL

Variation generation, test & evaluation and 
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ct
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Data Collection formal / 
informal?
(FGLB meeting notes 16 Oct 2012)

Brigades

TE

Formulate Feedback: as decisions left FGLB, it is units/schools/etc. responsibility  to 
implement and evaluate them. However, G7 does not track the res ults of implementation and 

does not have skills to formulate the matrix for evaluation of implemented decisions.

Preliminary Analysis
SO1 lessons develops a lessons 
collection plan, which is briefed to 
the FGLB for feedback (FGLB 
meeting notes 16 Oct 2012)

Formulate Feedback: 
- formulating feedback happens in action points from the previous minutes 

and follow-up on these actions points.
- FGLB meeting prior to EX HAMEL provides guidance on areas on which to 

focus lessons collection activities 
(Notes from G7 interview)

HQ JOC

Informal data 
collection

HQ FORCOMD – EX HAMEL / 
TALISMAN SABRE (Active 
collection). G7 prepare and manage 
lessons from brigade level.

Brigades – collective training 
exercise
- at the Brigade level there is external 
certification of BGs prior to EX HAMEL; 
- only 3BDE have a dedicated lessons 
staff;
- limited transfer of lessons between 
brigades due to siloed info systems;
- PARs are inputted to ACMS but 
generally do not describe lessons/insights/
observations. CAL has initiated training as 
an effort to overcome this issue.
 (Notes from G7 interview).

Passive collection: CAL has not been 
leveraged into medium term lessons although 
systems are in place to collect lessons (Notes 
from G7 interview)

HQ FORCOMD – EX 
HAMEL / TALISMAN 
SABRE
G7 analyse lessons and trends, 
then prepare a brief for FGLB as 
“Recommended lessons”.

Brigades
Brigades analyse lessons and 
trends identified during collective 
training.

- Brigades – collective 
training exercise: NO 
information has been 
obtained on how brigades 
make change on their 
collective training activities.

Lessons collection activities consist of a 
6-8 members (led by 2 LTCOLs), 
structured interviews for every unit at EX 
HAMEL (including Cos to allow RSMs 
etc.), conducted approx. 2 weeks after 
EX time for reflection).

References:
1. Notes from G7 interview – 20.03.2013
2. DSTO-CR-2011-draft – Army’s Short Loop Adaptation Process
3. Notes from CAL interview – May 2013
4. CAL post interview feedback – May 2013
5. FGLB meeting notes 6 Oct 2012

OANs (advice)
External Verification – NO formal 
mechanism exists for tracking 
implementation and outcomes (DSTO-
CR-2011-draft)

ARMY LESSONS FROM OPS – AS-IS VIEW
MEDIUM LEARNING LOOP (MLL)

Variations – implementation
Relevant parts of FORCOMD are 
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Analyse
- HQ FORCOMD – EX HAMEL / TALISMAN SABRE (Active 
collection): SO1 lessons briefs FGLB on each of key lessons items, 
explaining how the issue displayed itself on EX HAMEL and key 

decision points (FGLB meeting notes 16 Oct 2012).
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more detail for 
FGLB 
consideration

directive

Decide

- FGLB meeting after EX HAMEL 
provides implementation plan  
(Notes from G7 interview)
- Recommendations, decisions 
and actions are made during the 
FGLB meeting (FGLB meeting 
notes 16 Oct 2012).
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FGLB 
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and sign directive
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Brigades recommendations 
are collected before FGLB
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on particular aspects of 

collective training performed 
by CTC to validate skills at 

brigades level

Fig. 15.2 Systems model of the medium learning loop of the Army Lessons Network—as-is view

• Limited coordination between lesson loops including processes that support
information flows, across them.

• Services provided by lessons agencies are not always well integrated into the
broader Army; e.g. quick look report production, ALIAS database as a knowledge
repository to support Army strategic planning etc.

• Lessons from individual training and sub-unit collective training did not appear
to be formally incorporated into business processes.

15.5.3 Stakeholder Engagement

The next step of the analysis focused on obtaining Army staff inputs on learning
processes, where gaps highlighted in the first step were used to initiate discus-
sion. Input was also sought in regards to the interaction of the ALN with capability
development processes.

15.5.4 Data Analysis Using the CFA

• Analysis of historical examples—ALIAS lessons database. Data regarding the
number of lessons and insights which have been identified over the lifespan of the
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Army lessons database were provided. These data were classified, by two analysts
independently, against 5 criteria; (i) data source that initiated the insight, (ii) the
lessons loop where the insight would most likely lead to an action being imple-
mented, (iii) FIC (Fundamental Inputs to Capability), (iv) classes of adaptation
and (v) levels of adaptation. This analysis was used to corroborate issues and to
support development of actions. Care must be taken not to over interpret these
results as, first, they are not assessing the impact of the implementation of the
lessons only a count (i.e. impact was not assessed) and, second, it is unclear what
the distribution of issues should be for a highly adaptive organisation given the
environment. Nonetheless, this data analysis does give an indication of the areas
of focus for the lessons network. General observations from the results indicate
that: (i) there were very few strategic lessons (for example, the Command and
Management and Organisation FICs each make up less than 10% of the insights),
(ii) few lessons are sourced from outside of operations or major exercises (i.e.
few lessons from individual training or from sources external to Army), (iii) few
insights relate to resilience (i.e. the ability to maintain core functions), and (iv)
levels of adaptation primarily relate to levels 1 and 2 (i.e. actions in the world and
the mechanisms to improve them).

• Quantitative data analysis. No quantitative data analysis of the core ALN busi-
ness processes identifiedwas conducted as unfortunately it was not feasiblewithin
the scope of the review.However, if the time and resourceswere available, it would
have been useful to quantify how many personnel across Army are aware of the
services that are available via theALNand howmany personnelmake use of them.
This type of analysis would provide insight into the effectiveness of individual
processes and highlight areas for improvement.

15.5.5 Synthesis of Analysis Leading to Recommendations

• Cultural perspective. The Army Learning Organisation (ALO) team from the
Land Division of DST Group had been studying Army’s organisational learning
properties for a number of years. To garner insights from the ALO studies on the
issues related to the ALN, a workshop was run with the ALO team members.
During the workshop we provided the ALO team a background brief on the
methods and process employed in our review and then discussed each of the
main issues and recommended actions in turn. The ALO team highlighted any
constraints and other relevant information from ALO studies from a cultural
perspective which added an additional dimension to review findings as well as
often reinforcing them. We view ALO insights as a way of triangulating the ALN
review results.

• General synthesis. The development of strategic actions and drivers was
completed using the data from the stakeholder workshops and data analysis to
provide evidence for any issues highlighted.
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15.5.6 Findings

• Issues. There were 13 main issues identified during the review. The major issues
highlighted during this review of the ALN can be characterised into four main
categories: (i) ALN structures and processes, (ii) cultural issues, (iii) technical
issues and (iv) Joint & Strategic issues. The main issues were listed for each
category including evidence gathered that led to them being highlighted.

• Recommendations. The review resulted in 12 practical recommendations for
improvement,whichwerepresented at an internalArmyadvisoryboard inOctober
2013. Six recommendations were approved for implementation.

15.6 Conclusion

The implementation of the adaptive review process systematically studied the units
and individuals within Army who collect, analyse or disseminate lessons and how
theALN contributes to Army becomingmore adaptive at an organisational level. The
issues identified detailed some limitations within the ALN. However, although this
review has focussed on possible improvements to the ALN, there are many strengths
of the ALN that became apparent during the review; including, the resilience and
motivation of the personnel and units that make up the ALN, the well-developed
processes internal to each of the learning domains, the strong international reputation
of the ALN and a commitment fromArmy to support a mature organisational lessons
capability.

15.7 Improvements to Methodology

• Improvements to methodology. There are a number of areas to improve the
methodology:

1. Description of the adaptation cycle and its properties should contain qualita-
tive characteristics to make it possible to appraise processes.

2. Application of a standardised approach to describing organisational processes,
e.g. application of the Business Process Maturity Model (BPMN), which
provides a formal means to describe business processes in a flow-chart format,
which assists business managers to visualise and understand those processes,
including any issues or gaps with them [19].

3. A general view of a Capability Maturity Model (CMM) should be developed.
CMM broadly refers to a process improvement approach that is based on a
process model [20].
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Chapter 16
Stochastic Multi-criteria Decision
Analysis of Combat Simulation Data for
Selecting the Best Land Combat Vehicle
Option

Thang Cao and Dion Grieger

Abstract Land Combat Vehicles (LCVs) are a critical fighting capability of the
Australian Army. The operational effectiveness of a LCV is usually modelled via
combat simulation in which the multi-criteria metrics are measured from the simula-
tion output. Consequently, it is important to develop amulti-criteria decision-making
procedure to support upcoming acquisition decisions for future vehicle options. Cri-
teria measurements in combat simulation and decision-makers’ preference often
involve uncertainties; however, option ranking and selection procedures from simu-
lations are normally limited to a single response metric or deterministic preference
for themultiple metrics in the current literature. In this paper, we address these uncer-
tainties by using a probability distribution function and Monte Carlo simulation in
the stochastic multi-criteria acceptability analysis (SMAA) model for aiding this
decision-making problem. Additionally, all uncertain preference information from
DMs are represented as feasible weight space (FWS) and are used in combination
with other weighting techniques such as analytical hierarchy process (AHP). The aim
of this paper is to describe the application of SMAA, FWS and AHP to the results
generated in a close-loop combat simulation, such that the options with uncertain
data can be evaluated and analyzed, and the best option can be selected for a specific
task or scenario. To the best of our knowledge, this combined approach has been
applied for the first time to deal with the defence decision analysis problems with
uncertainty and interdependency.
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16.1 Introduction

Operational characteristics, future design and configuration options of Land Combat
Vehicles (LCVs) have been investigated and explored by Defence Science and Tech-
nology Group (DST). The design of suitable LCVs for Australian Army’s intended
purposes necessarily should be influenced by close combat capability factors which
can be established by subject matter experts (SMEs) and combat simulations. To
this end, the operational effectiveness of key vehicle characteristics, such as lethal-
ity and survivability of combined arms teams, is studied in the context of close
combat for varying levels of environmental complexity and enemy threat. Various
metrics are used to provide an assessment of each option’s lethality, survivability,
signature and knowledge acquisition capabilities. The metrics have been selected to
provide insights into specific characteristics of the vehicle equipped combat teams. In
this paper, a multi-criteria analysis of operational effectiveness is established which
combines all of the individual metrics together with associated SME weightings
for these metrics.

Inmulti-criteria decision-making (MCDM), themost preferred alternative(s) from
a set ofm alternatives is often chosen by decision-makers (DMs) based on the evalu-
ated n weighted criteria. The weights on these criteria are elicited from the subjective
preferences of the DMs. Often the criteria are themselves composed of pi weighted
sub-criteria. The scores of the alternatives on the criteria or sub-criteria may be
determined by interviews, surveys or activities with SMEs; direct measurements; or
through the outputs of mathematical models or simulations. Whatever the sources of
the scores (and there may be several in a MCDM problem) most real-world appli-
cations must cope with both uncertain and incomplete data. The weights are also
frequently uncertain and occasionally incomplete. Particularly in our study, the cri-
teria and preference weights are evaluated by combat simulation and a group of DMs,
respectively, where both criteria and preference weights are uncertain. Ranking and
selecting the “best option” from simulation has been extensively studied [14] for a
single responsemetric, and there are a fewstudies [5, 6]which apply differentMCDM
methods to address multi-criteria problems. However, all methods were restricted to
using a deterministic weighting. Consequently, we propose to represent the uncertain
criteria and weight information by probability distributions. This provides a general
and flexible way to represent various forms of uncertain information.

Lahdelma et al. [13] succinctly describe that there are severalMCDMmethods that
support the handling of uncertain criteria information by way of various techniques
including that threshold models are used in ELECTRE [16] and PROMETHEE [4],
and that probability distributions are used in multi-attribute utility theory (MAUT)
[10] and in Stochasticmulti-criteria acceptability analysis (SMAA)methods (see e.g.
[11, 12]). The use of probability distributions facilitates the handling of dependencies
between the uncertainties in criteria and preference weights. Most relevant in this
paper is that inMCDMdefence problems andAHPweighting approach has been used
successfully [5, 15]. This success is attributable to the approach enabling the weights
of attributes to be decided upon in a manner which is consistent and robust. It also
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allows DMs to check the consistency and consensus of the rankings of the relative
importance among the involved criteria in group decision-making. We propose a
MCDM procedure based on the concept of feasible weight space (FWS), rather than
based in deterministic weight vectors, since the weights should incorporate the DMs’
preference information to the greatest possible extent. The FWS concept is not new,
but it is compatible and helpful in ourMCDMmethod. It is indeedmuchmore flexible
than having deterministic weight vectors for the purpose of MCDM. Consequently,
we use AHP weighting method and the uncertainty interval to obtain the FWS in this
paper. Additionally, we combine these approaches with SMAA for the multi-criteria
comparisons of different vehicle options based on representative combat simulation
data.

16.2 Evaluation Criteria of LCVs in Combat Simulation

The evaluation of LCVs in this study is based on a mission which required the rapid
seizure of an urban fringe area. The Blue force (the side for which the different
vehicle options were being assessed) was a Combat Team (CT) consisting of three
infantry platoons, a Tank troop and two direct fire support vehicles. The Red (enemy)
force was approximately one third the size of Blue and its mission was to delay Blue
by 24h. Other key aspects of this scenario were

– The CT assembly area was located approximately 10km from the objective within
a heavily vegetated area

– There was only one viable road-based approach to the objective
– Red had some indirect fire support options
– Red planned an ambush on the road-based approach

Three options considered here were

– Option A = Wheeled, 30mm Cannon, Armour X
– Option B = Tracked, 35mm Cannon, Armour Y
– Option C = Tracked, 30mm Cannon, Armour Y.

Armour Y, in theory, offers slightly more protection than Armour X but both offered
similar protection against the calibre of munitions encountered in this study. A num-
ber of metrics were used to provide an assessment of each option’s lethality, pro-
tection, signature and knowledge acquisition capabilities. Protection was assessed
by comparing casualty rates of infantry and various levels of vehicle damage. Sim-
ilarly, the lethality-based metrics considered the same effects on enemy platforms
and infantry. The signature metrics measured the total number of unique Blue force
entities that were detected during the simulation and also the range at that each Pla-
toon was first acquired. The knowledge metrics captured the same information in
relation to acquisitions of Red entities by the Blue force. In addition, a binary mis-
sion success metric was used to determine whether Blue achieved its mission. In this
case, mission success was based on the successful seizure of its objective within 24h
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and before reaching certain attrition thresholds to critical assets. SMEs were con-
sulted in order to extract the appropriate plans and tactics for both the Blue and Red
forces to undertake their respective missions. These plans were then encoded in the
COMBATXXI simulation, a stochastic, entity-based closed-loop combat simulation
developed by theUnited StatesArmy [3]. The simulationwas replicated 10,000 times
for each of the three vehicle options in order to allow for statistically robust analysis
of the results. Each replication terminated either when Blue successfully completed
its mission or reached one of the defined failure thresholds described earlier. In order
to illustrate the methodology and to simplify the evaluation process, we limit our
scope to survivability and lethality ‘catastrophic kill’ metrics only in this paper and
note that it is straightforward to extend the process to include many more metrics.
The considered metrics are described as below:

1. Blue Infantry Fighting Vehicle (IFV) K Killed: The number of Blue IFV vehi-
cles which suffered a catastrophic kill, and this is a descending metric for blue
survivability.

2. Blue Tank K Killed: The number of Blue tanks which suffered a catastrophic kill,
and this is a descending metric for blue survivability.

3. Blue Infantry Killed: The number of Blue tanks which suffered a kill, and this is
a descending metric for blue survivability.

4. Red IFVKKilled: The number of Red IFV vehicles which suffered a catastrophic
kill, and this is an ascending metric for blue lethality.

Fig. 16.1 Metrics representation by mean and standard deviation
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5. Red Tank K Killed: The number of Red tank which suffered a catastrophic kill,
and this is an ascending metric for blue lethality.

6. Red Infantry Killed: The number of Red infantry which suffered a kill, and this
is an ascending metric for blue lethality.

The criteria representing metrics 1–6 are denoted by c1, c2, . . . , c6, respectively,
where c1, c2, c3 are descending and c4, c5, c6 are ascending criteria for Blue force
mission effectiveness. The mean and standard deviation of the metrics are shown in
Fig. 16.1.

16.3 Stochastic Multi-criteria Acceptability Analysis

The evaluation and ranking of LCVs is a MCDM problem in which information
in both criteria performance metrics and preference weighting is uncertain. Conse-
quently, SMAA is applied here to handle this problem. SMAA was developed in
[11] and extended to SMAA-2 in [12]. This family of models is based on the utility
theory for quantitative and qualitative problems. The logic and notation for SMAA is
developed in a clear manner in [20], and we adopt without modifying the mathemat-
ics and notation from that paper. Combined Heat and Power units were evaluated in
[20], whereas in this paper we analyze and rank the LCV options. At the core of the
method, Monte Carlo simulations are used to calculate the multi-dimensional inte-
grals for the stochastic variables of rank acceptability indices, holistic acceptability
indices, central weight vectors and confidence factors.

16.4 Weighting Method by Analytic Hierarchy Process

The preference choice byDMs is usually represented by theweighting process which
structure and quantify the subjectivity of DMs. There are numerous methods devel-
oped to assess weights for multi-criteria evaluation, and as previously outlined in
[5], the following are widely used:

– Direct Weight: subjective weights are entered directly.
– SMART and SMARTER methods [7]: defines relative importance using “swing
weights”.

– Trade-off method [18] using pairwise trade-offs between criteria to define the
weights.

– Pairwise Weight Ratios Method [2]: similar to the trade-off method, instead of
defining a complete trade-off, simply enter the ratio between the two criteria
weights.

– AHP Weight Method [17]: using criteria pairwise comparison hierarchically and
obtaining priority weights via eigenvector method.

We apply the AHP weight assessment method to generate the relative weights
associated with the criteria considered in this study, in which all criteria of the same
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Table 16.1 AHP judgement
scale for pairwise
comparisons [17]

Verbal scale Numerical values

Equally important 1

Moderately more important 3

Strongly more important 5

Very strongly more important 7

Extremely more important 9

Intermediate values 2, 4, 6, 8

hierarchical level are pairwise compared with respect to the corresponding criteria
in the next higher level, and a matrix of pairwise comparisons is obtained. In order
to represent the relative importance of one element over another, a judgement scale
for pairwise comparisons is introduced in [17]. For this relative comparison, the
judgement scale of Table 16.1 is used. It allows the quantifying of verbal comparisons
to be expressed into the corresponding numbers. Particularly in our study for the LCV
priorityweight evaluation, a n-by-nmatrix A of pairwise comparisons is constructed.
The components ai j (i, j = 1, 2, . . . , n) of the matrix A are numerical entries by the
pairwise judgement scale which reflect the relative importance of the criteria i over j
with respect to the LCV mission effectiveness. The relative priority weights among
the n elements of the matrix A is computed via the principal eigenvector method
and is normalized to obtain the priority vector. We prefer to use the AHP weighting
method in this study because the consistency and consensus of the DM’s judgements
in group decision-making are measured.

16.4.1 Consistency of DM’s Preferences

It was shown in [17] that the pairwise judgement formatrix A is consistent if ai ja jk =
aik for all i, j and k. However, human judgement is not always consistent. For
example, one provides a12 = 3 (C1 is moderately more important thanC2) and a23 =
5 (C2 is strongly more important than C3). It should follow that a13 = 15. If the
numerical value of the judgement a13 is different from 15 then there would be a
certain level of inconsistency in the pairwise comparison matrix. The question is
howmuch inconsistency is acceptable. In order to address this issue, AHP calculates
the Consistency Ratio CR = C I/RI , by comparing

– TheConsistency IndexC I = (λmax − n)/(n − 1), where λmax is the largest eigen-
value of the matrix A, with

– TheRandomconsistency Index RI of a randompairwise comparisonmatrixwhere
the judgements have been entered randomly, and therefore it is expected to be
highly inconsistent [17]

It has been shown that a CR of 0.1 or less is acceptable to continue the AHP anal-
ysis [17]. If the consistency ratio is greater than 0.10, it is required to revise the
judgements to address the inconsistency. In our study, we have applied AHP for
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group decision-making situations. Consequently, it is necessary to analyze individ-
ual judgement as well as to measure the consensus of the group judgements. The
group judgements are aggregated by geometric mean rather than arithmetic mean
because arithmetic aggregation procedure violates the property of reciprocity [17]
so that inconsistent matrices arise. Other advantage is that geometric mean can com-
pensate for the individual inconsistent matrices to consistent group judgements [1].
Let m be the number of DMs and a(k)

i j —the element of the individual matrix A(k)

elicited from DMk . We define

A∗ def= (a∗
i j ), where a∗

i j =
( m∏

k=1

a(k)
i j

) 1
m

Shannon entropy defined in [8, 9] is usedwith its two independent components (alpha
and beta diversity) to derive an AHP consensus indicator (S∗). Denote by w(k) =
{w(k)

i | i = 1, . . . , n} the weights resulting from the individual pairwise comparison
matrix A(k) elicited from DMk . Consensus indicator (S∗) is calculated as follows:

– Shannon alpha entropy:

Hα = 1

m

m∑
k=1

n∑
i=1

−w(k)
i lnw(k)

i

– Shannon gamma entropy:

Hγ =
n∑

i=1

−w(avg)
i lnw(avg)

i , where w(avg)
i = 1

m

m∑
k=1

w(k)
i

– Shannon beta entropy: Hβ = Hγ − Hα

– Consensus indicator: S∗ = n exp(−Hβ) − exp(Hmin
α )

n − exp(Hmin
α )

with Hmin
α = −

(
M

n+M−1

)
ln

(
M

n+M−1

)
−

(
n−1

n+M−1

)
ln

(
1

n+M−1

)
,

s (M = 9 for the fundamental AHP scale)

No consensus (high diversity of judgement) when S∗ < 50% while high consensus
(excellent agreement of judgement) when S∗ ≥ 80%.

16.5 Uncertainty in Criteria Evaluation and Preference
Information

Uncertain criteria values can be represented as a probability distribution and the
most widely used distributions are uniform and normal [12]. For simplicity, we
apply the discrete distribution to represent uncertain measurements in this paper.



228 T. Cao and D. Grieger

Preference information from DMs can be uncertain and imprecise in most MCDM
problems. Although this preference information can be represented by an arbitrary
probability distribution in SMAA,DMsmay prefer to express the preferences in term
of constraints for the weight space. Consequently, the FWS is represented as a n − 1
dimensional simplex. Here, we consider the following types of weight constraints
which were recommended in [12]:

1. Weight intervals wj ∈ [wmin
j ,wmax

j ]
2. Weight ratios interval for trade-offs wj/wk ∈ [wmin

jk ,wmax
jk ]

3. Linear inequality constraints Aw ≤ c
4. Nonlinear inequality constraints f (w) ≤ 0.
5. Partial or complete weights order (wj > wk)

In this study,we examine the FWSwith different constraints, for example, the interval
constraint from the AHP priority weight vector and its uncertainty bound. The FWS
idea presented here provides the flexibility and potentially the ability to improve the
weight elicitation process in MCDM studies. We obtained one “consistent” AHP
weighting priority vector for the LCV, and we then assume an interval of ±50% to
obtain an FWS as shown in Table 16.2. As in [20], 10000 iterations of Monte Carlo
simulation were used for the estimation of the stochastic variables that are needed
for the application of the SMAA-2 method utilizing the FWS.

16.6 Result and Analysis

For simplicity to illustrate the proposed methodology, we use linear utility func-
tion and discrete probability distributions for criteria values. Note that there is no
constraint on probability distribution of criteria values which can be Gaussian, Beta,
Weibull, etc. The criteria values are scaled by the best and worst criteria values as fol-
lows: ui j = (xi j − xworsti j )/(xbesti j − xworsti j ). Additionally, we consider four different
kinds of criteria weights as below:

1. No weighting preference. This type of weight is chosen in case the DMs are not
able to give a preference statement.

2. Ordinal weighting is used in case that the DMs are only willing to make the order
preference statement.

3. Exact weighting is obtained by AHP for consistency and consensus from DMs.
4. Interval weighting is obtained by extending the consolidated AHP weighting to

±50% to obtain an FWS.

SMAA-2 with 10000 Monte Carlo iterations was used in the simulation, and the
expected error limits are less than 0.01 [19]. The weighting input is shown in
Table 16.2 for comparing the conclusions based on these weighting methods.

The stochastic acceptability and holistic rank indices calculated by using SMAA-
2methodwith different types of FWS is shown in Table 16.3. The ah column presents
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Table 16.2 Criteria weighting input for FWS

Metrics or criteria Ordinal weight AHP weight AHP interval weight

Blue IFV Killed 2 0.247 (0.124, 0.371)

Blue Tank Killed 1 0.38 (0.19, 0.57)

Blue Infantry Killed 3 0.165 (0.083, 0.248)

Red IFV Killed 5 0.073 (0.037, 0.11)

Red Tank Killed 4 0.102 (0.051, 0.153)

Red Infantry Killed 6 0.035 (0.018, 0.053)

Table 16.3 Stochastic acceptability and holistic rank index

Weight type Option b1 b2 b3 ah

No preference Option A 0.17 0.26 0.57 0.39

Option B 0.43 0.36 0.21 0.63

Option C 0.40 0.37 0.22 0.61

Ordinal weight Option A 0.16 0.31 0.53 0.40

Option B 0.43 0.34 0.23 0.65

Option C 0.41 0.35 0.24 0.62

AHP weight Option A 0.16 0.31 0.53 0.40

Option B 0.42 0.35 0.23 0.62

Option C 0.42 0.34 0.23 0.62

AHP interval weight Option A 0.16 0.31 0.53 0.40

Option B 0.43 0.34 0.23 0.62

Option C 0.41 0.36 0.23 0.62

holistic acceptability indices, and the columns b1, b2, b3 are the rank acceptability
indices. Centroidmeta-weights are used to calculate the holistic acceptability indices.
Additionally, central weights and confidence factors are calculated and shown in
Table 16.4 for better discrimination. The confidence factors indicate that option A
should be rejected due to very low probability of achieving the first rank. It is very
hard to discriminate option B and C based on rank acceptability indices, holistic
ranks, however, indicate that option B is very marginally better than option C. Note
that AHP and AHP interval weight methods produce almost identical results which
confirm that there is no random effect on the ranking result by varying the weights in
this case. It is simpler to implement AHP weight; however, uncertainty in weighting
is a common problem for group decision-making, and we, therefore, recommend
using SMAA in combination with AHP for the problem with uncertain weighting.
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Table 16.4 Stochastic central weights and confidence factor

Weight type Option w1 w2 w3 w4 w5 w6 pc

No preference Option A 0.15 0.18 0.16 0.17 0.17 0.17 0.15

Option B 0.17 0.17 0.17 0.17 0.16 0.17 0.43

Option C 0.17 0.16 0.17 0.16 0.16 0.17 0.42

Ordinal weight Option A 0.16 0.24 0.41 0.06 0.10 0.03 0.15

Option B 0.16 0.24 0.41 0.06 0.10 0.03 0.42

Option C 0.16 0.24 0.41 0.06 0.10 0.03 0.43

AHP weight Option A 0.25 0.38 0.16 0.07 0.10 0.03 0.16

Option B 0.25 0.38 0.16 0.07 0.10 0.03 0.42

Option C 0.25 0.38 0.16 0.07 0.10 0.03 0.42

AHP interval weight Option A 0.24 0.39 0.16 0.07 0.10 0.03 0.16

Option B 0.25 0.38 0.16 0.07 0.10 0.04 0.42

Option C 0.25 0.38 0.16 0.07 0.10 0.03 0.42

16.7 Conclusion

In this paper, three Land Combat Vehicle (LCV) options representing different con-
figurations are considered for multi-criteria evaluation including the criteria of Blue
force survivability and lethality. Mission effectiveness metrics of these options were
calculated by the closed-loop combat simulation. Ranking and selection methods
to determine the “best option” are often restricted to a single response metric or
to deterministic weight for multiple metrics. Here, we address these shortcomings
by using the SMAA model to account for uncertainties and imprecision in criteria
evaluation and weightings, and the FWS to represent feasible preference information
from DMs. An AHP weight and the interval are used to determine the FWS. Conse-
quently, four different FWSs are used for the evaluation and ranking of LCV options.
The first one is the general weight space which assume the DMs have no preference
information, the second is the FWS with ordinal weight, the third is the aggregated
deterministic weight from AHP, and the fourth is interval constraints on criteria base
on AHP weight. The results show option A is well below option B and C on every
SMAA measures for all types of weights and should be eliminated. It is impossible
to separate options B and C based on the included metrics, scenarios and SMAA
analysis. Option B and C are very similar so it may not be possible to separate them
in a simulated environment. We also may need to introduce more design parameters,
effectiveness metrics and scenarios to gain more insight of LCV operational effec-
tiveness. Our conclusion is that the combination of the FWS, AHP group weighting
and SMAAcanmake uncertainmulti-criteria evaluation and ranking results a reliable
and robust approach to the LCV MCDM problem.
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Chapter 17
The Wheels Versus Tracks Problem
for Armoured Fighting Vehicles
in the Australian Context

Nikoleta Tomecko and Kasia Krysiak

Abstract In armoured fighting vehicle design, the Iron Triangle concept describes
the design tensions that exist between the three primary characteristics of these
vehicles: mobility, protection and lethality. Traditionally, wheels and tracks represent
two different trade-off instances between different aspects of these three factors and
are suited to different operational conditions. To provide some clarity to the wheels
vs tracks argument for the ADF, a wheels vs tracks study was undertaken in the
Australian context. This study collated results of previous studies and performed a
meta-analysis, synthesizing the results to produce an understanding of the impacts
of wheels and tracks on operational outcomes, analyzing the current evidence of
the strengths and weaknesses of wheels and tracks, and interprets these in different
contexts characterized by environmental and operational variables. The results of
the meta-analysis show that overall a tracked vehicle will offer a greater operational
capability advantage more often. Out of the 72 different contexts defined, 62 show an
operational advantage for tracked vehicles. Only nine contexts had an overall utility
skewed towards a wheeled vehicle, and in one context wheeled and tracked vehicles
were judged as equal. The analysis identified 14 contexts with an intensity rating of
extreme, and in all of those contexts tracked vehicles had an operational advantage
over wheeled vehicles. In 15 of the 20 contexts judged to be most likely, tracked
vehicles had an operational advantage over wheeled vehicles, while the remaining
five showed an operational advantage for wheeled vehicles.

Keywords Vehicle mobility · Armoured fighting vehicles
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17.1 Introduction

The wheels versus tracks question which arises as part of design tensions that exist
between the three primary characteristics of armoured fighting vehicles, mobility,
protection and lethality, continues to be a contentious issue. Traditionally, wheels
and tracks represented two different design trade-offs between different aspects of
these three factors, hence they are suited to different operational conditions. Any
capability decision regarding the choice between wheels and tracks must be made in
the context of what operational conditions the vehicle will be used in.

The LAND 400 Project faced such a decision, as it is replacing the armoured
vehicle fleets currently in service in the Australian Army, ASLAV and M113, with
modern Armoured Fighting Vehicles in the Cavalry Reconnaissance Vehicle and
Infantry Fighting Vehicle roles [1]. The capability developers needed to make the
wheels versus tracks decision for each vehicle role that is being acquired.

A difficulty in the wheels versus tracks argument is being able to quantify the
overall impact of the various strengths and weaknesses of the two mobility classes
on the operational outcomes. Any analysis is unlikely to be universally applicable, as
different armies have different operational concepts for armoured fighting vehicles.
To further complicate the assessment, the operational concept aims to make best use
of the available capability, hence the operational concept of a wheeled vehicle is
going to be different to that of a tracked one.

This study aimed to assist the decision-making for LAND 400 by providing some
clarity for the wheels versus tracks argument in the Australian context, based on
already existing evidence.

17.2 Methodology

17.2.1 Introduction

A two-step approach was adopted: Step 1 (previous studies) involved conducting
complementary individual studies focused on summarizing the state of knowledge,
and Step 2 (this paper) consisted of an over-arching study that analyzed and inter-
preted the collated data to highlight advantages or disadvantages of wheeled or
tracked suspensions, as they apply to armoured fighting vehicles in the Australian
context.

The individual studies focussed on different aspects of the wheels versus tracks
argument:

• Literature review of wheels versus tracks studies identifying the performance
differences of the vehicle types [2],

• Operational Lessons learnt extracting the mission impacts of these physical
differences [3],



17 The Wheels Versus Tracks Problem for Armoured Fighting … 235

• Constructive simulation comparing wheels versus tracks [4].

Quantitative meta-analysis has long been successfully used in medical research
to systematically assess the results of previous research to derive conclusions about
that body of research [5, 6]. Selected parts of the reported results of multiple primary
studies are used to generate a single data set and formal statisticalmethods are applied
to this data. Meta-analysis is increasingly being used to analyze and reinterpret
qualitative data from multiple studies, with synthesis approaches such as thematic
analysis, content analysis and framework synthesis being utilized [6–8].

For this study, the data from individual studies was synthesized using a semi-
quantitative method. Firstly, the operational contexts where armoured fighting vehi-
cles might operate in the Australian context were defined. Secondly, the evidence
presented in each of the studies relevant to each context was reviewed, and an assess-
ment of the relative advantage offered by wheeled or tracked vehicles within that
context was performed. Finally, the broader implications of the likelihood of oper-
ating within each of the contexts were analyzed through a most likely and most
dangerous analysis.

This study focused on operational performance. Other considerations that are
essential to capability decision-making such as the combat logistics implications of
deploying vehicles, the costs of operating each fleet or other fundamental inputs to
capability (FIC) considerations (e.g. training or support) have not been considered.

17.2.2 Data Set Description

To establish a comparison of the relative operational advantage that one type of
vehicle could offer over the other vehicle type, three separate studies were conducted,
each providing a different lens on the problem:

Study 1: Argument Diagramming the Tracked versus Wheeled Debate.

This study conducted a literature review of studies that investigated the differences
between wheeled and tracked vehicles. It provided a comprehensive review of the
physical attributes of the vehicles and howwell they performed tactically in a variety
of conditions. The findings were presented as a series of argument maps.

Study 2: Operational lessons learnt.

Study 2 looked at the recent operational lessons learnt, regardingwheeled and tracked
vehicles and the associated trafficability, performance and protection across different
terrain types and threats. Growth potential for emerging capabilities and its potential
impact on the current operational performance of tracked and wheeled vehicles was
also assessed in light of these lessons learnt. Close combat vehicle performance was
assessed within the context of how the Australian Army intends to use such vehicles.

Study 3: Constructive simulation model.
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This study performed a detailed analysis of how wheeled and tracked vehicles
compare in a scenario specifically designed to bring out the differences between
tracked and wheeled vehicles. The analysis was done using Combat XXI, a closed-
loop simulation tool. The scenariowas based around aCombatTeam (CT) completing
a rapid seizure of an urban fringe area.

17.2.3 Context Definition

Scenario-based analysis is a recognized method for dealing with uncertainty espe-
cially in future planning such as capability development. In future planning, a number
of possible situations are represented as scenarios. Capability recommendations are
usually made on the basis of being able to handle the most dangerous and most likely
possibilities, based on rigorously testing capability options against a small number
of selected scenarios.

The aim of this study was to go beyond a detailed analysis against a small set of
scenarios, but rather to cover as many potential scenarios as possible. This shifted
the focus from specific instances of using a particular vehicle configuration, to a
generic assessment of the relative operational advantage each vehicle would offer
given its capabilities. This required scenarios are to be defined not in terms of specific
missions, but in terms of the different sets of conditions that affect how wheeled and
tracked vehicles can be used.

In order to define these generic operational contexts, amorphological analysis was
conducted with the aim of describing the different operational conditions relevant
to the tracks versus wheels comparison in the Australian context. Morphological
analysis was selected as it aims to describe all possible states of a multi-dimensional
problem. In order to establish all states, a set of dimensions was determined. The
dimensions and the values of the dimensions were established using the following
sources:

– The Australian Capability Context Scenarios (ACCS)
– The three studies described above
– The LAND 400 OCD [1].

Each of these sources provided a different way of defining the scenario dimen-
sions. A comparison was done of the various categories and several combinations
of the dimensions were tested for their comprehensiveness and interpretation. The
final set of contexts were needed to be comprehensive to cover as many different
situations as possible; however, manageable enough to enable individual analysis
and interpretation of results.

The final set of dimensions after consolidation is shown in Table 17.1. It defines
84 different combinations of these factors. Each generated context was assessed for
feasibility,with infeasible contexts removed from further consideration. This resulted
in 72 unique context descriptors for analysis.
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Table 17.1 Dimensions used
to define operational contexts
in wheels versus tracks study

Environment type Season Operation type

• Desert • Dry • Joint land combat

• Savannah • Wet • Irregular warfare

• Jungle • Snow • Peacekeeping

• Mountainous • Disaster relief

• Modern urban

• Rural urban

17.2.4 Performance Comparison

17.2.4.1 Operational Capability Metrics

Avalid comparison ofwheeled and tracked vehiclesmust take into account all aspects
of vehicle performance and their individual and combined impact on the overall
operational performance of the vehicles. Two main sources were used to generate
a set of operational capability metrics, which collectively captured the performance
aspects that differ betweenwheeled and tracked armoured fighting vehicles, resulting
in different operational performance. These were the LAND 400 OCD and Study 1
described above (Argument Diagramming the Tracked versus Wheeled Debate).

Study 1 used the available evidence collected from literature to define the opera-
tional capability metric hierarchy shown in Error!Reference source not found. This
structure captured only those aspects of operational performance that were relevant to
the differences between wheeled and tracked armoured fighting vehicles. Protection
and Lethality are wrapped up under the broader concepts of Survivability and Fight-
ability, which describe the whole-of-system nature of vehicle operations. Despite the
removal of characteristics that do not impact the wheels versus tracks argument, the
metric hierarchy used in Study 1 is consistent with the hierarchy used in the LAND
400 OCD, and was adopted for the meta-analysis (Table 17.2).

17.2.4.2 Operational Capability Assessment

In order to assess the overall operational capability of wheeled versus tracked vehi-
cles in each context, each metric was examined to assess the available evidence as
shown by the three studies. In general, Study 1 provided the evidence of vehicle
performance differences in each context, and Study 2 and Study 3 provided the
operational impacts of these differences in performance characteristics. An overall
judgement of whether each context is more favourable towards wheels or tracks was
made using the following scale:

2 Tracked vehicles represent a significant capability advantage for the commander
as their performance characteristics in the assessed metric make them particu-
larly suited to the environment.
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Table 17.2 Operational metrics of argument map

Mobility

Trafficability Obstacles Agility

• Natural terrain • Natural • Acceleration/dash

– Clay soil • Constructed • Stopping

– Sand • Gaps • Sustained speed

– Snow • Vertical steps • Maximum speed

• Man-modified terrain • Vegetation • Slaton (turn/pivot)

• Man-made terrain • Craters

– Road • Rubble/debris

– Bridges • Walls/building

– Canals • Vehicle roadblocks

– Tunnels

Fightability

Threat defeat Human factors

• Accuracy—stationary • Crew fatigue

• Accuracy—on the move • Dismount fatigue

• Firepower

Survivability

Susceptibility Vulnerability Recoverability

• Visual signature • Damage resistance • Repair

• Infrared signature – Driveline • Replacement

• Acoustic signature – Structure

• Shaping • Damage tolerance

• Damage control

1 Tracked vehicles represent a slight capability advantage for the commanderwith
better performance characteristics in the assessed metric in this environment.

0 Wheeled and tracked vehicles are equal, as the impact of performance charac-
teristics that are important for this metric are evenly spread between wheeled
and tracked vehicles.

−1 Wheeled vehicles represent a slight capability advantage for the commander
with better performance characteristics in the assessed metric in this environ-
ment.

−2 Wheeled vehicles represent a strong capability advantage for the commander as
their performance characteristics in the assessed metric make them particularly
suited to the environment.

The choice of ± to represent wheels and tracks is arbitrary and does not affect
the results. During evaluation, half-points on the scale were permitted where it was
felt that a choice between the predefined levels could not be made. An example of
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Table 17.3 Example rating of relative operational capability for a given context

Effectiveness
aspect

Mobility Obstacles Agility Susceptibility Vulnerability Threat
defeat

Human
factors

Context A 2 2 2 −1.5 −1 1 1

Context B 2 2 1 −0.5 −1 0 0

an assessment for two different contexts is shown in Table 17.3. In this example, in
Context A, a tracked vehicle would have a strong capability advantage in Mobility,
while a wheeled vehicle would have a slight advantage in vulnerability. In Context B,
in this example, tracked and wheeled vehicles are equal with respect to threat defeat
and human factors, with neither offering an operational advantage.

17.2.4.3 Overall Operational Capability Assessment

In order to provide an easier interpretation of the relative benefit of acquiring a
wheeled versus a tracked armoured fighting vehicle, each contextwas assessed for the
overall degree to which a tracked or a wheeled vehicle has an operational advantage,
based on the individual scores.

A heatmap visualizationwas chosen, since it allowed an intuitive way of assessing
the trade-off in performance offered by wheeled or tracked vehicles, and enabled the
use of a single heatmap table containing all the contexts. Contexts in which wheeled
vehicles were favoured were shaded green, while those in which tracked vehicles
were preferredwere shaded red. The entire heat map provides a quick overview of the
proportion of contexts in which it is much more advantageous for the commander to
have a wheeled vehicle (green cells), the proportion where it is advantageous to have
a tracked vehicle (red cells) and the proportion where both vehicles are comparable
(white cells).

Since the individual assessments used an ordinal scale, a series of overall utility
measures was used in order to achieve a ranking of all contexts. A number of overall
utility scores were considered for their suitability, examining their ability to convey
the operational impact relationships identified in Study 2 and Study 3. Three metrics
were selected for comparison of the contexts is as follows:

• Total third powers. Sumof squares is a utility score often used in situationswhere
the assessment scale is not linear. Based on the operational impact relationships
identified in Study 2, the operational impact of a vehiclewith a strong performance
advantage is disproportionately greater than the impact of a vehicle with a slight
advantage. Third power rather than square of individual scores was used as the
scale is centred on zero, with positive and negative signs used to signify preference
for tracks and wheels, respectively.1

1This has no impact on the ranking, and is used purely to streamline the calculations.
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• Median score. Median is the most appropriate measure where ordinal scores are
used or when the distribution of individual measurements is skewed, and both of
these situations apply here. In this case a distribution skewed to one side indicates
a relative advantage, making the median a potential metric.

• Total of individual scores. A simpleweighted average is themost commonly used
utility function due to its simplicity and ease of interpretation. In this case, a non-
weighted average was used. This is because the individual scores already include
a weighted component, as each individual assessment includes consideration of
the relative importance of the performance characteristic in each context.

A ranking of all contexts was produced using these three metrics together using
the following outranking rules:

• A context outranks another where all three metrics individually resulted in the
same ranking of the two contexts.

• A context outranks another where there are any two metrics that individually
produce the same ranking.

• Given two metrics that produce an identical ranking (i.e. they are unable to distin-
guish between the contexts), a context outranks another based on a comparison
of the third metric.

• Given twometrics at odds with each other, and a third that cannot differentiate, the
metrics are used to inform outranking in the following order: total third powers
metric, median score, total score.

As this produced an ordering of all the contexts, no further rules were developed.

17.3 Results

17.3.1 Overall Operational Effectiveness

A comparative analysis shows that the total utility of all the contexts is skewed, with
more assessments favouring tracks. This means that, overall, a tracked vehicle will
offer a greater operational capability advantage more often, i.e. the differences in
favour of tracked vehicles are greater and there are more of them.

Figure 17.1 shows the overall scale of the difference for all contexts. Contexts
are ranked with decreasing operational advantage for tracked vehicles, with blue
and white shaded groups representing clusters of the same overall operational effec-
tiveness. The area above the line represents the contexts where tracked armoured
fighting vehicles have an operational advantage. The area below the line represents
the contexts with an advantage for wheeled vehicles. It is clear that tracked armoured
fighting vehicles offer a greater operational advantage in many more situations.

Examining the utility as indicated through the metrics used, in 62 out of the 72
scenarios the overall utility was skewed towards a tracked vehicle. There would
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Overall 
advantage 
to wheels

Overall 
advantage 
to tracks

Equal

Greatest 
advantage 
to tracks

Greatest 
advantage 
to wheels

Fig. 17.1 Visualization of the scope of relative advantage of tracks (in red) versus wheels (in green)
in all contexts
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be a risk to achieving mission success if a wheeled vehicle was used in situa-
tions that are represented by these 62 contexts. Only nine contexts had an overall
utility skewed towards a wheeled vehicle. There was only one context where all total
utility measures were 0, i.e. where the individual performance characteristic differ-
ences between wheeled or tracked vehicles would equalize, despite having different
individual advantages or disadvantages.

The analysis showed that in most contexts the advantage for tracks lies in their
ability to cope with different types of soil especially in the wet, and their ability to
negotiate obstacles without a dramatic reduction to speed. The ability to negotiate
obstacles in particular offers a strong advantage in over half the contexts. Based on
the literature, there are no circumstances where wheeled vehicles would outperform
tracked vehicles on their ability to negotiate obstacles. In a contested environment
with an active adversary, this would present a significant operational advantage.

Further examination of the metrics revealed that a tracked armoured fighting
vehicle had an overall operational advantage on all except the human factors metric.
The strongest advantage was in their ability to deal with obstacles. On this metric,
a tracked armoured fighting vehicle always had an operational advantage in all
contexts. The remaining two submetrics of mobility: trafficability, agility and the
two survivability submetrics (vulnerability and susceptibility) all showed approxi-
mately the same level of advantage towards the tracked vehicle, followed by threat
defeat. The human factors submetric was the only one where a wheeled vehicle
had an overall advantage, though the margin of that advantage was smaller than the
margin of the tracked vehicle on the threat defeat submetric.

With respect to individual scores, there were only five individual instances where
a wheeled vehicle was judged to have a strong operational advantage over a tracked
vehicle, with four of those scores on the human factors submetric, offering smoother
rides on roads and more space inside the hull to accommodate better ergonomics,
which translated to an operational advantage in a specific context.

17.3.2 Most Dangerous and Most Likely Analysis

The contexts were given a score by a military SME relating to the likelihood and
intensity of the situation described by each context. A four-point scale was used for
both of these ratings.

The contexts rated the most dangerous (i.e. those that had the highest rating of
extreme on their Intensity) and their assessments of the relative advantage for the
two platform types is shown in Table 17.4. The contexts rated the most likely (i.e.
those that had the rating of Likely on their Likelihood) and their assessments of the
relative advantage for the two platform types are shown in Table 17.5. There were
20 such contexts out of the total 72. In fifteen of those contexts, tracked vehicles had
an operational advantage over wheeled vehicles, while the remaining five showed
an operational advantage for wheeled vehicles. However, two of those (one showing
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an advantage for tracks and one for wheels) might be considered as showing no
advantage for either platform type due to close scores.

Table 17.4. There were 14 such contexts out of the total 72, and in all of those 14
contexts, tracked vehicles had an operational advantage over wheeled vehicles.r

Except for the context defined by rural urban - joint land combat - snow, the
contexts rated as extreme in their intensity all appear in the top 50% when ordered
according to the level of operational advantage for a trackedvehicle. Fromacapability
development point of view, this means that a fleet of wheeled vehicles would accept
a greater level of operational risk than a tracked fleet while operating in all those
environments.

The contexts rated the most likely (i.e. those that had the rating of Likely on their
Likelihood) and their assessments of the relative advantage for the two platform types
are shown in Table 17.5. There were 20 such contexts out of the total 72. In fifteen of
those contexts, tracked vehicles had an operational advantage over wheeled vehicles,
while the remaining five showed an operational advantage for wheeled vehicles.
However, two of those (one showing an advantage for tracks and one for wheels)
might be considered as showing no advantage for either platform type due to close
scores.

17.3.3 Additional Considerations

The analysis focussed on the documented differences and similarities between the
operational performanceofwheeled and tracked armouredfightingvehicles, i.e. those
that there is evidence for either in scientific literature or operations lessons learnt, as
described in the three studies. There is a large body of evidence in the domain, which
covers many aspects of vehicle characteristics, and the three individual studies made
an explicit effort to ensure there are no gaps. Additional effort was made to cross-
reference themetricswithin the studywith the consolidated operational needs defined
for armoured fighting vehicles within the LAND 400 Project. This comparison found
no gaps in the three studies, i.e. no operational performance metrics for which there
was no evidence at all.

Nevertheless, it is possible that there are differences in the operational perfor-
mance between the vehicles that have not been investigated, and have thus not been
included in the study, or that additional studies will include conflicting or contradic-
tory evidence. Similarly, technology advances might result in making some of the
current evidence obsolete for a new generation of armoured fighting vehicles. If that
occurs, the analysis with respect to the affected operational performance metrics will
need to be re-evaluated.
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Table 17.4 Contexts rated Extreme in their Intensity
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17.4 Conclusion

A meta-analysis of three studies comparing wheeled and tracked armoured fighting
vehicles was conducted. The studies were designed to be complementary: an argu-
mentmap of the current state of knowledge of differences betweenwheels and tracks,
a closed-loop simulation looking at impacts on mission success and operational
implications of these differences.

The results of the meta-analysis have shown that overall, a tracked vehicle
will offer a greater operational capability advantage more often. An overwhelming
majority of the defined contexts favoured a tracked vehicle, and a force option where
this capability is unavailable would face a distinct operational disadvantage.
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Chapter 18
Evolutionary Algorithms for Force
Structure Options

Connor Hicks, Elizabeth Kohn, and Thitima Pitinanondha

Abstract A modern Defence Force consists of a diverse range of capabilities to
supportmissions at the tactical, operational and strategic levels. Designing a balanced
and affordable force structure to meet Government strategic objectives and assure
national security has always been a challenge. Force design is a centralized and
enduring process within the Australian Defence Organisation that seeks to trans-
late Government strategic objectives into a coherent force structure within specified
time and budget envelopes. This process increasingly relies on analytical approaches
and tools such as wargaming, simulation and optimization techniques. This paper
investigates evolutionary algorithms (EAs) as a potential tool for generating and eval-
uating force structure options. EAs can evaluate an extremely large solution space of
force mixes at a much faster rate than human cognition to determine a balanced and
affordable force structure option according to an objective function. This paper also
discusses the implementation of a software framework, dubbed “FORCESIGHT”,
which can be customized by developers to model any scenario where the use of EAs
is appropriate. Based on the outcomes of a trial of FORCESIGHT, it is clear that the
EAs approach could provide a result of respectable quality. It is demonstrated that
EAs can lead to large increases in efficient evaluation of potential improvements to
the Force-in-Being and Future Force.
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18.1 Introduction

A modern Defence Force consists of a diverse range of capabilities to support
missions at the tactical, operational and strategic levels. Designing a balanced and
affordable force structure tomeetGovernment strategic objectives and assure national
security has always been challenging due to budgetary constraints and likely future
threats and challenges. This process increasingly relies on analytic approaches and
tools such as wargaming, simulation and optimization techniques.

Force design is a centralized and enduring process within the Australian Defence
Organisation (ADO) which seeks to translate Government strategic objectives into
a coherent force structure within specified time and budget envelopes. The Force
Design Division within the Australian Defence Force Headquarters (ADFHQ) is
responsible for the overall design of themilitary capability to provide theGovernment
a capable, agile and potent force. This is achieved by continuous testing of the Force-
in-Being and planned force, and guiding the design and development of a balanced
and affordable Future Force.

Simulation is a powerful tool for exploration of future force structures. However,
even when a simulation is available for a particular scenario, finding the balanced
and affordable force is not trivial. Evolutionary algorithms (EAs) are optimization
techniques for searching a defined solution space such as possible force designs to
find the best mix of capabilities to achieve missions within the specified scenario. It
also provides a performance metric for direct comparison to other force mixes in the
form of a fitness score.

This paper investigates EAs as a potential tool for generating and evaluating force
structure options. EAs can evaluate an extremely large solution space of force mixes
at a much faster rate than human cognition to determine a balanced and affordable
force option according to an objective function. This paper proceeds to describe the
implementation of a software framework, dubbed “FORCESIGHT”, which can be
customized by developers to model any scenario where the use of EAs is appropriate.
Two trials of the framework complete the analysis, one to demonstrate the general
capabilities of EAs, and another to demonstrate in particular the sensitivity of EAs
to minor changes in constraints.

18.2 Evolutionary Algorithms

An EA is a nature-inspired optimization method, which imitates the basic principles
of life and applies genetic operators to an individual [1]. Effectively, the algorithm
iteratively evolves a sample of individuals in order to determine the optimized solu-
tion to a given problem, asmeasured by an objective function. This solves the problem
above as the fitness scores assigned by the objective function can be used as a metric
for direct comparison of the effectiveness of potential solutions.
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EAs typically start by generating a random population of sample individuals and
rating them against the objective function. The algorithm then selects the prime indi-
viduals for reproduction and applies the genetic operators of mutation and crossover.
This process repeats until either convergence of the population or a failsafe is
activated to prevent the algorithm from consuming too many resources [1].

Some of the main strengths of EAs are the ability to handle difficult multi-modal
problems, where many local optima may exist in the search space, and the relative
ease of decomposing a problem into smaller and more easily evaluated sub-problems
[1]. The ability to handle multi-modal problems provides more globally optimum
results, as the algorithm has a reduced chance of converging on a local optima. The
ability to perform problem decomposition means that the algorithm is able to rapidly
determine which components of a solution are desirable, and recycle those attributes
in subsequent generations.

18.3 Methodology

In a real-world scenario, a force is comprised of “units” which are grouped into
“elements”. A unit is defined as a single unique entity. For simplicity, only one type
of unit can be contained in an element.

Each unit type has its own strengths and weaknesses compared to other unit
types, such as ease of mobility and ability to detect hostile units. Each unit type is
also associated with a relative cost of resources, and is outfitted with up to two types
of weapons.

When two or more forces enter conflict, it is the units within the element group
which engage other hostile element groups. The location inwhich these engagements
take place is denoted as an “area”. The effectiveness of an engagement is deter-
mined by the relationship between the attacking units’ weapons and the defending
units’ type. For example, rifles and mortars have drastically different effects against
armoured vehicles. To summarize

• A Unit is a single unique Entity;
• A Element is a group of like Entities and
• A Force is a group of Elements.

The FORCESIGHT framework operates on a three-step algorithm. The reproduc-
tion step generates a new population of Individuals (i.e. a Force) from either (a) a
previous parent population or (b) by randomizing the attributes of new Individuals.
The evaluation step iterates over the offspring population of Individuals and evalu-
ates them against the Fitness Evaluator to determine each Individual’s fitness score.
The selection step applies a selection strategy to the combined parent and offspring
populations to determine which individuals are candidates for survival; these Indi-
viduals become the next parent generation. The algorithm repeats these steps until it
determines that it has converged on a global maximum, or it reaches the maximum
number of generations.
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During the design of FORCESIGHT, it was decided early that the module would
consist only of the evolutionary aspects of the algorithm. In development termi-
nology, the Fitness Evaluator and Individual classes would remain as blueprints
for developers to create custom implementations of the problem to be modelled,
as shown in Fig. 18.1. The three green ovals at the bottom of Fig. 18.1 represent
either object descriptions in the case of Units and Area, or outcome descriptions
in the case of Effects. The Units Comma Separated Values (CSV) file contains the
values describing the capabilities of each unit in the scenario. The Area CSV file
contains a description of the scenario’s battlefield by dividing it into Areas, which
roughly simulate which units are in the vicinity of each other. Finally, the Effects
CSV file provides a table for determining the effectiveness of available weapons
against different unit types.

There are numerous factors that should be taken into account with regard to the
execution of an evolutionary algorithm. In this research, only the objective function
and the selection strategy employed by the evolutionary algorithm were examined
in depth. Exploration of other factors, such as crossover and mutation methodolo-
gies, were deemed out of scope of this research and remained static throughout the
trials. The crossover methodology used was the single-point crossover method, and
the mutation methodology was restricted to a variant of bit-string mutation, where
the value of a chromosome was regenerated based on the mutation chance of the
parameter.

Fig. 18.1 Overview of FORCESIGHT
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The objective function f (xi ) determines an Individual’s fitness score. The objec-
tive function is always specific to the problem being optimized, and implementation
will be described in the next section.

FORCESIGHT supports four types of selection strategies: Tournament, Trunca-
tion, and stochastic/non-stochastic Roulette [2]. These can be defined as follows:

• Truncation—the top percentage of Individuals are selected for progression;
• Tournament—Individuals are divided into groups, with the best Individual from

each group selected for progression;
• Roulette (NS)—Individuals are selected randomly for progression, however, a

higher grade increases the chance of selection; and
• Roulette (S)—Individuals are selected pseudo-randomly at set intervals of scoring,

however, a higher grade increases the chance of selection.

The final component to a successful EA is the intelligence to know when to stop.
FORCESIGHT implements the Convergence Stability Percentage Metrics (1) from
the ANSYS software application [3]:

|μi − μi−1|
Max−Min

<
S

100
,

|σi − σi−1|
Max−Min

<
S

100
. (18.1)

In Eq. (18.1) μ =Mean of Population Fitness, σ = Standard Deviation of Popu-
lation Fitness, Max, Min = Max/Min Fitness in Original Population, i = Current
Population; and S = Convergence Stability Percentage.

These metrics compare the mean and standard deviation of the current and
previous populations against a user-defined percentage denoting an accepted level of
convergence. If both metrics are below this percentage, then the algorithm considers
the population converged, which is to say the algorithm believes that there are no
further improvements that can be made to the population of Individuals. Accurately
detecting convergence is an important step in the algorithm, as premature conver-
gence may result in suboptimal solutions and late convergence unnecessarily wastes
time and computational resources.

18.4 Implementation

18.4.1 Trial Preparation

In order to test FORCESIGHT, trial Fitness Evaluator and Individual modules were
created based on the scenario examined by Revello et al. [4] expanded with informed
assumptions, such as the effect of different weapons platforms against different unit
types. This work can be found detailed below.

The trial scenario was created as a standard RED vs BLUE engagement. The
BLUE force’s primary objective is to maintain a port blockade for 48 days, while
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the RED force’s primary objective is to destroy the BLUE Carrier (CV-class) units
maintaining the blockade.

The scenario is considered a BLUE victory if any conditions below are met:

• The primary objective is completed.
• RED losses exceed a threshold of 25–35% of total unit value (determined

randomly).

The scenario is considered a RED victory if any conditions below are met:

• The primary objective is completed.
• BLUE losses exceed 10 units.
• BLUE losses exceed a cost value of 6.0.

The RED force is composed of a static force of 22 submarines—8 air-propelled
submarines (AIP-class) and 14 diesel submarines (SS-class). AIP-class submarines
were equipped with 8 rounds of torpedoes and 8 anti-ship cruise missiles, while
SS-class submarines were equipped only with 16 rounds of torpedoes.

Scenario Execution

The Fitness Evaluator module in the trial is a turn- and speed-based model. Turns
are modelled as days. Each day, the evaluator allows elements to take actions based
on the comprising unit’s “speed” value. A higher speed value results in more actions
each day. Roughly, this results in alternating sides taking turns until all elements
have taken their allotted number of actions, where the turn counter increments and
the process reoccurs.

Each force consists of up to 19 elements, each of which consists of up to 9 units
of the same type. When an element takes an action, it moves to an adjacent area
and searches for hostile elements. The success of this search is dependent on the
unit’s “vision” value; a higher vision value provides a greater chance of successful
detection. If a hostile element is detected, the element is able to open fire on the hostile
element and reduce the quantity of units in the element. The outcome of engaging a
hostile element is determined by the unit’s equipped weapons. Each weapon has an
effectiveness rating associated with it. A higher effectiveness rating results in more
damage being dealt to an element. Every 100 points of damage to an element destroys
a unit in that element, and an element is considered destroyed when it contains no
more units. BLUE has access to four deployable types of units, as seen in Table 18.1.

Table 18.1 BLUE unit attributes

Frigate (FFG) Destroyer (DDG) Carrier Escort (CVE) Nuclear Submarine (SSN)

Cost 0.2 1.0 0.4 2.5

Speed 2 2 2 1

Vision 0.5 0.4 0.3 0.8

Wpn1 GM × 20 GM × 40 AST × 16 AST × 8

Wpn2 – – – –
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Fig. 18.2 Environment map

An element performs its actions based on one of four behaviours: stationary,
hive, boundary and random. In the stationary behaviour, the element does not move
to a new area. The hive behaviour makes the element patrol back and forth from a
central “hive” area and adjacent areas. The boundary behaviour results in the element
patrolling the areas surrounding the area containing the CV-class units. Finally, a
random behaviour forces the element to move to an adjacent area at random. In all
behaviours, the element searches for and engages threats after movement.

After every turn, the evaluator examines the victory conditions and events to
determine if the scenario has been won or lost, and if anything extraordinary occurs
between turns, such as reinforcements or a change in orders.

The scenario takes place in an environment consisting of 11 Areas, illustrated in
Fig. 18.2. Areas 1, 2 and 10 serve as the “spawn” area, or the area where units enter
the battlefield, for the respective coloured units.

The objective function for the scenario (2) is similar to Revello’s approach. It
emphasizes win rate, but also takes into consideration the total cost of ownership of
the force mix. In this way, the most effective force can be described as the force that
is capable of winning the scenario consistently with minimal units on hand.

f (WR,C) = WR − C

200
. (18.2)

In Eq. (18.2), WR =Win Rate of Individual in Scenario and C = Total Relative
Cost of Individual. The Cost value is divided by 200 as a way to reduce the weight
of the value in the objective function, as win rate is deemed of greater import than
cost.

With the trial modules prepared, FORCESIGHT is now ready to determine the
optimal solution to the scenario. The application is supported by a Graphical User
Interface, which allows the executor to further customize particular aspects of the
algorithm.
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Fig. 18.3 Parameter settings
for a FORCESIGHT
simulation
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Algorithm Parameters and Constraints

Simulation Parameters

The parameters on the upper image of Fig. 18.3 control the execution of theEA.Popu-
lation Size denotes the number of Individuals per generation. Scenario Executions
denotes how many times an Individual can be tested against the Fitness Evaluator.
TheMax Generations variable adds a failsafe to stop the algorithm from consuming
too much time and resources if the algorithm fails to converge below the accepted
Convergence Stability Percentage (S in Eq. (18.1)). All of these parameters accept
inputs of any positive number.

Genetic Operator Parameters

The parameters on the middle image of Fig. 18.3 control the effect of genetic opera-
tors on an Individual.Mutation and Crossover % denote the chance of the respective
operation taking place on an Individual. These have default values of 25% and 80%,
respectively. Converge % denotes the threshold for the algorithm to consider a popu-
lation converged. Values between 0 and 1 are acceptable for these parameters. The
Select by option is a drop-down for selecting one of the four selection strategies.

Objective Constraints

The parameters on the lower image of Fig. 18.3 manage the constraints that apply
penalties to the objective function (Eq. 18.2). The BLUE Max Limits options denote
the amount of units in terms of maximum cost and size that can be included in the
BLUE force. The BLUE Loss Limits options denote the amount of units that can be
lost before the attempt is declared a loss. In both sets of limits, a value of 0 implies
that there is no constraint in that particular area, while a positive number reflects the
appropriate constraint.

18.4.2 Outcomes

Numerous tests of the evolutionary algorithm were conducted with different combi-
nations of the parameters listed above. On average, each test performs at the rate
of examining 10 generations of Individuals per minute with a population size of 30
individuals and 100 scenario executions per individual, on a machine using 16 GB
RAM at a speed of 3.6 GHz. This calculates 3000 scenario executions per minute, a
favourable timeframe when compared to the time required to evaluate force options
by othermeans such as awargame.However, the speed of execution is largely because
of the simplicity of the simulation, and running EAs using a more realistic simula-
tion would be considerably slower. Figure 18.4 below shows a sample simulation,
indicative of approximately 95% of all simulations run.

Many of these tests were affected by convergence, either by premature conver-
gence or late convergence. In Fig. 18.4, each of the selection strategies was tested
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Fig. 18.4 Sample simulation of the effect of selection strategies on algorithm execution

for the ability to converge on a maximum. The vertical axis denotes the fitness score,
as calculated by the objective function shown in Eq. (18.2), of the fittest individual
in the population, while the horizontal axis denotes the generation of population, up
to the maximum generation of 500. Upon examination, it was determined that using
the Tournament selection strategy was the most consistent in terms of convergence
on the fittest Individual. The ability to converge can be seen by the length of the
tail of the graph: the longer the tail the more certain that the strategy has picked
the fittest individual to converge on. The Tournament strategy’s tail is of respectable
length, meaning that the fittest individual in that simulation has been challenged with
no improvements found. The Truncation strategy has an extremely short tail, which
signifies that the fittest individual hasn’t been challenged much at all. The Roulette
strategies, on the other hand, have an extremely long tail, signifying that the fittest
individual has been challenged to excess with no improvement.

The results of many simulations were very similar with regard to the fittest indi-
vidual; in most cases, the fittest individual was a force consisting of a group of seven
FFG-class units following a boundary behaviour. This can be seen in Fig. 18.5, which
displays the evolution of unit composition and behaviour throughout the test using
Tournament selection carried out in Fig. 18.4. The vertical axes of each graph show
the total size of the force in units, broken down further into groupings of unit types and
behaviours, respectively, and the horizontal axes denote the generation of population,
up to the point of convergence. As can be seen, the SSN-class (purple in Composi-
tion) and DDG-class (green in Composition) units were quickly eliminated from the
forcemix due to their high cost, as were the stationary (red in Behaviour) and random
(purple in Behaviour) behaviours due to limited effectiveness. This test determined
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Fig. 18.5 Unit composition and behaviour of fittest individuals by generation

the fittest individual around generation 125, and failed to find improvements between
this generation and the point of convergence around generation 225.

In many real-world scenarios, there are additional constraints placed upon
scenarios such as this. To test the effect of such constraints, the trial in Fig. 18.5 was
repeated, but with the additional requirement that the maximum number of units in
the force was five. With this additional constraint, the output changes very dramat-
ically. Instead of a force of seven FFG-class units with a behaviour of boundary,
the algorithm instead presents a force consisting of two SSN-class units (purple in
Composition) with a stationary behaviour in the main staging area for BLUE (red in
Behaviour) as shown in Fig. 18.6. The reasons for this selection are most likely that

Fig. 18.6 Unit composition and behaviour of fittest individuals by generation where maximum
force size = 5
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the FFG-class units did not have the necessary firepower to win the scenario reliably
when restricted to fewer units. This is a clear demonstration of an EA’s inherent
sensitivity, in that minor changes to input data and requirements can result in major
changes to the outcomes.

18.5 Future Work

One of the defining characteristics of FORCESIGHT is the flexibility of software
design. This enables improvements to be made to the base framework relatively
easily. One of the first improvements that would be recommended is a way to further
mitigate and/or manage the detection of convergence. Currently, it is recommended
to execute a particular configuration at least ten times to minimize the impact of
premature or late convergence.

There are many assumptions made about the trial scenario, such as not including
weather conditions or the inability of either force to adapt to the opponent’s strategy.
The incorporation of these features would present a more robust system, as the
simulation grows closer to the reality of such an engagement. There were also very
few trials undertakenwith regard to constraining the algorithm. Examining the effects
of restricting a specific unit could also be the subject of future improvement.

At a higher level, EAs are only one of the many techniques that comprise the
Evolutionary Computation suite. Further investigation into some of these techniques,
such as particle swarm optimization, may prove to be effective compared to EAs.

At the framework level, FORCESIGHT can be improved in a number of ways.
Firstly, FORCESIGHT is capable of having the output data enriched by displaying
trends and patterns of behaviour, as well as specific groupings of units into elements.
Furthermore, FORCESIGHT could be enhanced directly by the addition of specific
functions. For example, the ability to natively display findings, rather than relying
on manual generation, would reduce the time between simulating a scenario and
presenting findings. Also, the creation of a standardized blueprint for modelling data
would allow developers using FORCESIGHT to be able to collaborate with other
developers on modelling scenarios. This could lead to improvements being made
elsewhere in the scenario, bringing the model closer to reality.

18.6 Conclusions

The investigation into the aptitude of EAs as a tool for generating and evaluating
force structure options reveals that the approach has significant potential to improve
the overall process of identifying optimal force structure options. EAs were used to
search a very large set of possible force structures and identify the best force mix to
win in a given simulated warfighting scenario. Further work is required to develop
the FORCESIGHT framework for routine application on more realistic simulations.
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However, the success of FORCESIGHThas demonstrated that the approach isworthy
of such further development.
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Chapter 19
A Genetic Programming Framework
for Novel Behaviour Discovery in Air
Combat Scenarios

Martin Masek, Chiou Peng Lam, Luke Kelly, Lyndon Benke,
and Michael Papasimeon

Abstract Behaviour trees offer a means to systematically decompose a behaviour
into a set of steps within a tree structure. Genetic programming, which has at its
core the evolution of tree-like structures, thus presents an ideal tool to identify
novel behaviour patterns that emerge when the algorithm is guided by a set fitness
function. In this paper, we present our framework for novel behaviour discovery
using evolved behaviour trees, with some examples from the beyond-visual range air
combat domain where distinct strategies emerge in response to modelling the effects
of electronic warfare.

Keywords Behaviour tree · Air combat · Genetic programming

19.1 Introduction

Constructive simulations are used in defence operations research to support acquisi-
tions, war gaming and the exploration and discovery of new tactical behaviour. In the
air combat domain constructive simulations have been used to explore and develop
new tactics in a more cost-effective and more flexible manner, especially in light of
continuous technological advances such as stealth, advanced avionics and electronic
warfare. Many of these simulation systems have incorporated artificial intelligence
(AI) agents to model individual and team decision-making for the development and
assessment of tactics. AI agents are used to represent the tactical decision-making of
aircrew such as pilots. Conventional approaches for developing these agents require
themanual encoding of significant domain knowledge. This is costly, labour intensive
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and is not amenable to easily discovering emergent behaviour. The manual encoding
of the domain knowledge results in agents that are designed to handle pre-defined
opponents, situations and fighter aircraft. The requirement to model new opponents,
situations and aircraft systems requires significant manual modification of the pilot
agents.

In air combat, selecting a suitable strategy against an opponent depends on the
details of the situation (i.e. situation awareness). Factors to consider include the
number of aircraft involved in the engagement and the relative capabilities of those
aircraft. In a “future warfare” scenario a diverse array of aircraft may take part,
with a mixture of autonomous and human-piloted platforms, presenting situations
that differ from a commander’s existing experience and complicating the choice
of suitable strategy. Also, as the situation changes during the mission, a change
in strategy may be required. For example, one side may employ electronic attack,
reducing the effectiveness of sensors of the other side. As there is no universal tactic
that performs well in all situations, a large library of suitable tactics would need
to be developed for a comprehensive evaluation of a situation. New methods and
techniques that can help discover novel tactical behaviour for pilots and aircrew are
highly desirable.

Behaviour trees, as defined for the game AI domain [1], are one construct that can
be used to decompose the behaviour of entities, such as aircraft, into a hierarchical
structure that can then be examined and refined. A key advantage of the behaviour
tree, as opposed to finite state machines, is that they are more scalable [2] and
hence easier to apply to behaviour addressing more complex situations. Besides
game development applications, the use of behaviour trees has also been explored in
domains such as robotics [3] and for representing medical procedures [4].

The main contribution of this paper is a tactics exploration framework based on
behaviour trees evolved with Genetic Programming (GP). Behaviour trees, capturing
the behaviour of an aircraft are automatically constructed from a set of low-level
aircraft actions and subsequently, can be incorporated into simulators. The behaviour
trees are evolved to maximize effectiveness against a particular scenario with agent-
based opponents. Unlike other work in the area, such as [5], our approach does not
rely on initial solutions provided by subject matter experts. The use of behaviour
trees to model aircraft behaviour also makes our approach more scalable to larger
andmore complex scenarios as opposed to earlier work based on finite statemachines
[6]. To evaluate our approach, a Beyond Visual Range (BVR) air combat scenario
involving one Blue aircraft and two Red aircraft and the ACE-2 simulator [7] is used
to explore tactical behaviour of the Blue aircraft under varying conditions.

The rest of the paper is organized as follows: first, background information on
behaviour trees and genetic programming is presented along with related work in air
combat scenarios. Next, we present our approach for evolving behaviour trees using
genetic programming. This is followed by a case study scenario and experiments,
discussion of the results and conclusions and future work.
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19.2 Background

19.2.1 Behaviour Trees

A Behaviour tree (BT) is a goal-orientated model that represents agent behaviour
within a system. A BT can be comprised of many sub-trees with smaller goals. The
modular nature of BTs allows for the hierarchical combination of many simple BTs
to create more complex behaviour.

BTs start execution at the root node and are comprised of control nodes and
leaf nodes. Control nodes dictate the flow through the tree to determine which node
should be executed next. Leaf nodes are nodes that can read or react to the simulation
environment. As the tree is traversed and each node is executed it returns whether it
was successful, it failed or it is currently running.

Control nodes can take the form of sequence, selection or decorator nodes. A
sequence node executes each of its child nodes from left to right, until one of them
fails. A selector node executes each of its child nodes from left to right until one
is successful. A decorator node is used to alter the execution of a child node, for
example, dictating that the child node is to be executed a set number of times before
returning success.

Leaf nodes are either conditions or actions. Condition leaf nodes typically query
the state of the environment returning successful if true or failure if false. Action leaf
nodes allow the AI agent to interact with the simulation environment. If the action
is completed, the node returns a success, if the action doesn’t complete, the node
returns a fail. Due to the modular and scalable nature of behaviour trees, actions can
range from simple primitive behaviour, such as “turn”, through to complex behaviour
modelled as sub-trees, such as “engage in BVR combat”.

An example of a simple behaviour tree, constructed from high-level actions and
control nodes, is shown in Fig. 19.1. To save space, this tree is presented on its side
and inverted on the horizontal so that it is traversed from left to right from the root
node and top to bottom when traversing the branches. The behaviour corresponds to
“Check to see if there is a threat, if there is a threat, launch a missile. If there is a
threat and the missile is launched, crank, if you are unable to crank perform missile
support” (in the crank action, the pilot turns away from the target while maintaining
it locked on their radar).

19.2.2 Genetic Programming of Behaviour Trees

In genetic programming [8], a program is represented by a tree, where non-terminal
tree nodes consist of functions and terminal nodes represent the input data for those
functions. The algorithmworks by startingwith an initial population of programs, and
evaluating them according to some measure of how the output meets a success crite-
rion (the fitness function). Programs are then selected based on fitness to construct a
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Fig. 19.1 Example behaviour tree (traversed left to right and top to bottom) using high-level actions
(launch_weapon, crank and missile_support) with sequence (- > ), selector (?) and conditional
(is_threat) nodes

new population, with genetic operators used to vary aspects of the individuals. This
process continues over a number of generations with the goal of improving fitness
as the evolution progresses.

The process of genetic programming can bemapped to the generation of behaviour
trees, which can be constructed from terminal and non-terminal components. Instead
of using data as terminal nodes, action and condition nodes are used. An action node
can equate either to a high-level task, such as search or crank, or it could be a lower
level action, such as performing a turn or flying straight. A condition node relies
on information from the scenario, such as whether an opponent is within a certain
range. In place of the functions that act as the non-terminals of a genetic program,
these are replaced by the standard behaviour tree control nodes such as sequence or
selector.

19.2.3 Other Work

Previous applications of behaviour tree evolution using a genetic programming
approach in games and in a combat environment include agent control [9], devel-
opment of automated players for a real-time strategy [10] and the exploration of
submarine tactics [5].

DEFCON [11] is a multiplayer real-time strategy game, involved players coor-
dinating placements of resources such as airbases, fleets, radars and missile silos
in order to attack and destroy their opponents. Lim et al. [10] developed a set of
10 behaviour trees to model the role of an automated player for DEFCON [11].
They employed genetic programming to evolve these behaviour trees for optimizing
the placement positions of offensive and defensive components for four sub-goals.
The overall strategy used to compete against the in-built artificial intelligence (AI)
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in DEFCON [11] is constructed by combining the best performing behaviour trees
associated with each of the sub-goals and it can defeat the in-built AI more than 50%
of the time.

Perez et al. [9] applied Grammatical Evolution, a grammar-based form of GP, to
evolve Behaviour trees for direct agent control in Mario AI Benchmark [12] with
the aim of improving reactiveness of agents in a dynamic game environment. The
behaviour tree controls the actions of the agent throughout a level in the Mario game
using an approach involving querying a map of the world via condition nodes and
use of action nodes that mimic button presses made by a human player. An advantage
of their approach, as outlined by the authors, is that the evolved behaviour trees are
human-readable and can be examined in greater depths.

A tactics exploration framework that employed grammar-based genetic program-
ming for evolving tactics in the engagement-level simulation was proposed by Yao
et al. [5]. In their work, tactics were represented using a grammar of behaviour tree
formalism. The proposed framework incorporated an engagement-level simulator
which supports submarine warfare with models of high-fidelity and a grammar-
based GP as the tactic exploration engine. Initialization of population involved using
20 expert tactics produced by domain experts and the remaining 80 individuals were
generated by completing crossovers andmutation operations on the 20 expert tactics.
In terms of their fitness function, it is obtained from the final result of the engage-
ment from the simulator. An individual (tactic) is scored 1 point if the submarine
eliminates the enemy and 0 points for a loss. In the case of a draw where both sides
survived, fitness is assigned 1/3, and where both sides are destroyed, a value of 2/3.
To get a baseline value for fitness, the 20 expert tactics were tested in a simula-
tion and experimental results were then compared to the baseline fitness value. In
the two experiments conducted, the respective average fitness did not exceed the
baseline value. However, the top 15% tactics at the end of the evolution were found
statistically to have a fitness value greater than the baseline.

In comparison to other approaches, the closest work to ours is that of Yao et al. [5]
where that approach relies on a set of existing tactics from subject matter experts. In
our approach, tactics are constructed automatically based on a set of low-level aircraft
actions and performance against an agent-based opponent. In our previous work [6],
we have experimented with the evolution of transitions in a finite state machine using
a genetic algorithm. That approach, demonstrated on a simple 1 versus 1within visual
range scenario, is limited by the finite number of state instances in the finite state
machine and the static number of transitions in the genetic algorithm representation.
Moving to behaviour trees allowed us to use their scalability and produce an aircraft
controller model whose complexity changes through the evolutionary process in
response to the opponent. As such, it becomes easier to consider more complex
scenarios such as the ones described in this paper.
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19.3 Methodology

We now describe our genetic programming approach to the evolution of behaviour
trees which capture the behaviour of an aircraft as a composition of simple aircraft
actions in response to the situation of the mission. The core components are the
choice of nodes that the behaviour tree is evolved out of and the fitness function
which guides the evolution. These are described next, followed by details of the
evolutionary operations.

19.3.1 Behaviour Tree Node Set

Our chosen behaviour tree node set consists of the action, condition and control
nodes presented in Table 19.1. The Selector and Sequence non-terminal nodes are
standard control nodes for behaviour trees and the terminal nodes are a collection of
aircraft control specific actions and condition.

The Turn and Level Flight action nodes rely on parameter values. The Level
Flight parameter is the aircraft speed, and the Turn parameters are turn speed, and
the amount and direction of yaw and pitch that will be executed in the turn. When
concrete instances of these nodes are evolved into the behaviour tree the value of its
parameters are set to a random value bound by the modelled aircraft capability.

The condition nodes query the state of the mission in the simulation environment.
Similar to our previous work [6], we use the relative position of the current target
from the aircraft. The Is Correct Position node checks whether the current target
is within a set of minimum and maximum distance boundaries separately along the
x-, y- and z-axes of the aircraft. The boundary values are evolvable parameters for
each instance of the node. The In Fire Range node also uses an evolvable parameter,
the percentage of maximum missile range at which the missile could be fired at the
target. The remaining conditions are more simple checks. Is Threat and Is Threat
Killed return whether an opposing aircraft has been detected or eliminated and Is
Missile in Flight returns whether we have already launched a missile.

Table 19.1 The set of
terminal and non-terminal
nodes used in building
behaviour trees in the
experiments

Non-terminal nodes Terminal nodes

Standard BT control
nodes

Action nodes Condition nodes

Selector Turn Is threat?

Sequence Level flight Is threat killed?

Missile support Is missile in flight?

Launch weapon In fire range?

Is correct position?
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19.3.2 Fitness Function

To evaluate each individual solution, the solution is used to instantiate an aircraft
agent which flies in the particular scenario we are trying to explore. Aspects of the
agent’s performance in the mission are evaluated to derive a measure of fitness.
The fitness function in any approach based on an evolutionary algorithm should be
carefully chosen as a measure of what a superior solution would be and to assign
solutions that are inferior a lower value. In the combat domain, there are three clear
success levels—win, lose or draw, but besides these it is not simple to rank two
solutions with the same success level. For example, a method is required to assess
the fitness or effectiveness of two solutions which both have been categorized as a
loss. The fitness function needs to evaluate effectiveness of a solution by taking into
account additional criteria which influenced the outcome. These additional criteria
may include the time taken, the number of missiles used and some measure of the
situational awareness of the agent.

The actual calculation and weighting of these factors varies in the literature.
For example, Yao et al. [13] measure three factors: score which takes one of three
possible values depending on win, draw or lose, safe time ratio is the fraction of
the engagement time that the evaluated aircraft was being tracked by the adversary,
and missile hit ratio being the fraction of missiles fired at the adversary that hit their
target. These three factors were weighted and summed to produce a fitness value,
with weights used in the experiments reported being: 0.7 (score), 0.1 (safe time ratio)
and 0.2 (missile hit ratio).

Toubman et al. [14] also used score, but as a binary value (win or lose), a time
ratio to give reward based on completing the mission early and a missile used ratio,
the ratio of missiles fired during the mission. The weights used in that work are: 0.75
(score), 0.125 (time ratio) and 0.125 (missile used ratio).

In both the work of Yao et al. [13] and Toubman et al. [14], the fitness calculation
is dominated, through a large weighting, by a single factor (score), which has a low
granularity of only two to three possible values. In our study, rather than focusing on
a single score for the side that we are evolving, we calculate a score for both sides,
with fitness calculated as the differential of the two scores, as shown in Eq. 19.1:

fitness=blueScore − redScore, (19.1)

where blueScore is a measure of success of the blue side and redScore is a measure
of success of the red side from the perspective of blue. This provides the advantage
of increasing the granularity, by having more components as part of the fitness score.
Additionally, it allows the assignment of weightings for both blue and red team
success parameters, providing more control over the types of strategies that will be
favoured. The score for a side is calculated for blue (Eq. 19.2) and red (Eq. 19.3) as

blueScore=A ∗ blueTimeEfficiency+B ∗ blueWeaponEfficiency
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+C ∗ blueAwarenessEfficiency (19.2)

redScore=D ∗ redTimeEfficiency+E ∗ redWeaponEfficiency+
F ∗ redAwarenessEfficiency (19.3)

In calculating these scores we emphasize three factors, winning early
(timeEfficiency), maximizing efficiency of weapons (weaponEfficiency) and maxi-
mizing the proportion of the mission during which an aircraft was aware of its
opponent’s location (awarenessEfficiency). These are calculated in Eqs. 19.4–19.6
as follows:

timeEfficiency=NumberOfKillsMade ∗ (1−(MissionDuration/MaxMissionDuration))
(19.4)

weaponEfficiency=NumberOfKillsMade/TotalMisilesFired (19.5)

awarenessEfficiency=TimeSpentTrackingOpponent/MissionDuration
(19.6)

Here NumberOfKillsMade and TotalMisilesFired are the total for all aircraft on
a particular side. TimeSpentTrackingOpponent is the sum of the durations for each
aircraft on a side where the aircraft was tracking an opponent aircraft.MaxMission-
Duration is the maximum duration before the mission simulation is terminated and
MissionDuration is the actual total duration of the simulation (until the goal of either
red or blue is met or MaxMissionDuration is reached).

The scaling factors: A, B, C, D, E and F depend on desired mission characteris-
tics—A, B and D, E prioritize lethality, C and F prioritizes situational awareness.
Separating the fitness into a score for each side means that different values can be set
for the blue and red constants. For example, from our perspective on the blue side,
we might care more about weapon efficiency of blue than red. Likewise, the killing
factors may depend of aircraft type—if Blue is a drone, D and E (related to score
blue loses if shot down) could be lower than A and B. The resulting fitness, assuming
the sum of A, B and C and the sum of D, E and F are each equal to 1, results in a
value between –1 and 1, which for the purposes of our experiments we normalized
to be in the range from 0 to 1.

19.3.3 Population Management

In the first generation, an initial population of random behaviour trees is created, each
tree to a depth in the range 1–4. These trees start from a root node, with a non-terminal
arity (the number of child nodes a non-terminal node should have) chosen randomly
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between 2 and 4. For half of the initial population, the trees are generated until every
leaf is at the set tree depth, the other half using a method that stops growing the tree
when the first leaf node reaches the set depth, with the remaining leaf nodes set to be
terminal nodes. This is a recommended procedure for generating an initial population
in genetic programming as it provides an initial population of trees with a variety of
sizes and shapes [8]. This differs from the initial population procedure of Yao et al.
[5], who use an initial population consisting of 20 trees hand-crafted by experts (and
80 variants of those trees). The benefit of using a random initial population is that
there is no limit to population size, there is no need to tie up experts’ time in tree
production and a source of possible bias that experts may have in particular existing
tactics is avoided.

The population of subsequent generations are filled by selecting individuals from
the preceding generation and probabilistically applying crossover andmutation oper-
ators. The individual with the highest fitness from the previous generation (the elite)
is always selected to go to a new generation. To select remaining individuals we use
tournament selection, with a tournament size of three. This means that to select one
individual, we randomly choose three individuals to go into a competition and the
individual with the resulting highest fitness score is chosen. Single point crossover
was used, where taking two selected individuals, two sub-trees taken from random
points in each tree were swapped over. The mutation scheme employed is sub-tree
mutation. Here, a random point in the tree is selected and the sub-tree at that point is
replaced by a randomly produced sub-tree. To prevent the tree fromgrowing too large,
a condition was imposed on the crossover and mutation operators to cap resultant
trees to a maximum depth of six.

In our experiments, we run the algorithm for a set number of generations so as
to compare evolution runs with different settings. In practice, other stopping criteria
can be used to terminate the algorithm, such as when a solution of high enough
fitness has been found or if the population has converged to a single optimum where
all individuals represent the same solution. The aim in each of these experiments is
to evolve a behaviour tree that encodes a tactical strategy for the blue agent, which
addresses a version of the scenario.

19.4 Case Study

The scenarios used in this paper were adapted from the tactical situations presented
in Shaw [15], a widely accepted treatise on fighter combat tactics and manoeuvring.
To demonstrate how we use the proposed approach for tactic exploration, we use
a scenario involving BVR combat where there is one aircraft on the blue side and
the red side has two aircraft with noise jamming capabilities. Noise jamming is an
electronic warfare technique that reduces the situational awareness of an opponent.
In this study, we use an effects-based jamming model which reduces the effective
range of the opponent’s radar by a certain percentage. The starting configuration of
the scenario is shown in Fig. 19.2.
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Fig. 19.2 Initial configuration of the case study scenario

All aircraft have the same capabilities apart from the range of the blue agent radar,
which is affected by jamming. The radar rangewhen not jammed is 20 nautical miles.
The behaviour of the red team aircraft follows a static hand-tuned behaviour tree.
In this strategy, once the red aircraft detects the blue, it approaches until within a
set missile launch distance and then proceeds to launch a missile and crank. If the
missile misses its target, the red aircraft performs a reset manoeuvre, coming back
around and re-attempting the missile launch/crank manoeuvre.

In this paper, we explore tactics for future hypothetical unmanned combat air
vehicles (UCAVs). Many UCAV options are currently being explored with lighter,
smaller and low-cost variants being considered. As a result, it is not expected these
will use operational concepts prevalent in current fighter technologies. Consequently,
the tactical behaviours and parameters (such as speeds) explored and generated here
are not necessarily indicative of current fighter tactics or of any specific future UCAV
concept.

Simulation of the scenarios was performed in the ACE-2 simulation environment
[7]. This scenario is chosen to demonstrate the approach as it is complex enough
for a variety of strategies to emerge and constrained enough so that human-based
verification can occur to evaluate whether there are strategies that the evolution has
overlooked.
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19.4.1 Experimental Setup

We explore four versions of the scenario, where the blue agent radar is jammed from
its original range of 20 nautical miles using jamming powers 0, 25, 50 and 75%.
Evolution of the blue agent is guided by the fitness function (Eq. 19.1), where the
weights A, B, C, D, E and F associated with Eqs. 19.2 and 19.3 were set to 0.6,
0.2, 0.2, 0.8, 0.1 and 0.1, respectively. Putting a higher weighting on D than A in
essence means the penalty for getting killed is higher than the reward for making a
kill. Due to the non-deterministic nature of evolutionary operators, experiments were
repeated five times to check for consistency of tactics produced. Experiments used a
population size of 90, were run for 400 generations and used a crossover probability
of 50% and mutation probability of 10%.

19.5 Results and Discussion

The strategies that emerge from the evolved behaviour of trees differ based on the
level of jamming that occurs. For each of the jamming levels, an example evolved
strategy is profiled in Table 19.2. Visually observing the aircraft behaviour, for 0%
and 25% jamming, the blue aircraft flies a smooth run, with moderate speed and
gradual turns. In the case of 0% jamming, both red aircraft are shot down, and in
the 25% jamming case, one red aircraft is shot down. For the scenario with 50%
jamming, the blue aircraft shoots down both red aircraft, with a distinctly different
strategy characterized by fast interim speed (after avoiding the first missile) and sharp
turns. For the case of 75% jamming, the blue aircraft avoids all conflict and does not
attempt to engage either of the red aircraft.

The behaviour trees that are produced by the evolution process are quite large.
However, insight into the strategies they represent can be gained by analyzing the path
of triggered nodes at key points in the mission. For example, for the 75% jamming
scenario, a portion of a sub-tree is shown in Fig. 19.3. Here the green path through the
tree represents the only path taken as a threat was not detected during the scenario run
due to the highly degraded radar performance of blue. The turn action was executed,
with parameters evolved for the turn node resulting in the aircraft pitching up at
59 degrees at a high speed of 488 m/s (600 m/s was the maximum speed for this
aircraft). This evasion tactic was the solution with the highest fitness, preserving the
blue aircraft although it did not down any red aircraft.

Another example of sub-tree is shown in Fig. 19.4. This was evolved in response
to the 50% jamming scenario, with this path through the tree being executed when
the blue aircraft detects the first red aircraft. The blue aircraft launches a missile and
executes a turn. The parameters of the turn are to speed up to 572 m/s, turn right at
60 degrees and pitch up 62°.

To explore novel behaviour further, we modified the genetic parameters for the
25% jamming case to a population of 400 and 50 generations. This reduces the
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Table 19.2 Properties of selected evolved strategies, from the perspective of the blue aircraft

0% jamming 25% jamming 50% jamming 75% jamming

Kills made 2 1 2 0

Missiles fired 2 2 2 0

First missile fire
tactic

Drops speed from
310 to 150 m/s.
Levels wings, pitch
down at 6o

Flies straight,
hold speed at
151 m/s

Increase speed
from 265 to
572 m/s, turn at
79o, pitch down at
60o

Pitch up at 59o,
hold speed at
488 m/s, don’t
fire

First red missile
avoided by (m)

436 2353 368 No red missiles
fired

Second red
missile avoided
by (m)

922 2717 1133 N/A

Start speed (m/s) 487 231 265 488

First detection
speed (m/s)

310 151 151 N/A

First fire speed
(m/s)

150 151 151 N/A

First missile
evasion tactic

Turn at 15°, pitch
down at 6o

Keeps flying
straight at
151 m/s

Increase speed
from 265 to
572 m/s, turn at
79°, pitch down at
60° then, turn at
60°, pitch up at 62o

N/A

Interim speed
(m/s)

150 151 269 N/A

Second fire
speed (m/s)

150 151 151

Second missile
evasion tactic

Fly slow so it burns
out

Fly slow so it
burns out

Fly slow so it burns
out

N/A

number of generations but increases the number of individual solutions per genera-
tion. This resulted in an interesting behaviour discovery where blue executes a turn
that keeps it out of the red aircraft radar cone while allowing it to cover the red
aircraft with its own radar and launch a missile. This can be seen in Fig. 19.5. The
outcome is that blue is able to destroy both red aircraft without either of the red
aircraft launching a missile.

19.6 Conclusions and Future Work

We have proposed our tactics exploration framework based on genetic programming
to evolve behaviour trees. The approach is scalable due to the nature of behaviour
trees and does not rely on expert knowledge of existing tactics to run, instead starting
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Fig. 19.3 Sub-tree (with some branches and nodes removed to improve clarity) of the evolved
behaviour tree for the blue aircraft in the 75% jamming case. Green nodes show success, red failure
and uncoloured nodes did not get visited. In this case, which was the only triggered path through
the entire scenario, a threat was not detected, the aircraft’s position relative to any threat could not
be ascertained and so the aircraft performed a turn

Fig. 19.4 Sub-tree (nodes and branches removed to improve clarity) of the blue aircraft in the 50%
jamming case. The green path represents the successfully executed nodes when the blue aircraft
detects the first red aircraft, launches a weapon and executes a turn

with a random initial set of behaviour trees constructed fromprimitive aircraft actions
and improving the solutions using an evolutionary process guided by a fitness func-
tion. In addition, behaviour trees, capturing the strategy of an evolved behaviour
for aircraft, are automatically produced and subsequently, can be incorporated into
simulators for analysis and training. The approach was demonstrated on a scenario,
where an aircraft with degraded radar capabilities through electronic jamming could
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Fig. 19.5 Strategy evolved in response to a scenario with 25% jamming against blue. The blue
aircraft circles and approaches the two red aircraft from the side so as to avoid their forward facing
radar (radar cones of blue and targeted red shown)

successfully defeat two opponent aircraft using a range of strategies suited to the
aircraft’s capabilities.

There are several lines of investigation that could be pursued in future work,
including further exploring the development of suitable fitness functions, and the
mapping of the approach to other combat domains beyond the air combat space.
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Chapter 20
Expanded Basis Sets for the
Manipulation of Random Forests

T. L. Keevers

Abstract Random Forests is considered one of the best off-the-shelf algorithms
for data mining. However, it suffers from poor interpretability and an opaque deci-
sion structure. In this paper, we develop a method for generating an “expanded
basis set” for a Random Forest model that captures every possible decision rule and
vastly improves the transparency of the classifier. The expanded basis set allows
the structure of a Random Forest model to be algebraically manipulated and facili-
tates a number of operations, including inverse mapping from outputs to the domain
of inputs, systematic identification of every decision boundary, and comparison of
Random Forest models. The expanded basis set facilitates visualization of the global
behaviour of a Random Forest classifier and a data set by combining parallel coor-
dinates with a non-linear binning transformation. The global visualization allows
classifier performance to be compared against domain expertise, and areas of under-
fitting and overfitting to be readily identified. Additionally, the expanded basis set
underpins the generation of counterfactuals and anchors—combinations of variables
that control the local outputs of a Random Forest model. The basis states can also
be used to place bounds on the model stability in response to single or multi-feature
perturbations. These stability bounds are especially useful when the model inputs
may be uncertain or subject to variation over time.

Keywords Combat simulation · Clustering · Key event identification

20.1 Introduction

Random Forests is one of the most popular machine learning algorithms. It offers
strong predictive performance, while requiring minimal performance tuning. How-
ever, unlike their constituent decision trees, Random Forest models are difficult to
interpret [1]. The decision rules that lead to a particular prediction are usually opaque
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and the model structure is difficult to algebraically manipulate. These characteristics
can hinder the optimization of a Random Forest classifier and reduce the model’s
credibility.

A number of model-agnostic methods for understanding model structure have
been developed, including partial dependence plots [2], conditional expectation plots
[3], measures of feature importance [1] and surrogate models [4]. To the best of our
knowledge, the only method developed specifically for interpreting Random Forests
is forest floor [5], which uses colour to allow three-dimensional interactions to be
captured. While these methods show the aggregate influence of each feature, they
don’t effectively address the global structure of a Random Forest classifier.

In this paper, we develop a procedure for creating a rule set that describes all
possible outputs from a Random Forest model. The key strength of this approach
is that it simplifies analysis by reducing a multi-dimensional continuous function
to a finite set of points. We extend the method developed for extracting rules from
decision trees proposed by Friedman and Popescu as part of their RuleFit algorithm
[6]. Combinations of basis states are derived from each feature, which can capture
emergent interactions between variables. We call these combinations the expanded
basis set and the individual node values for each feature the basis states.

The expanded basis set representation facilitates the algebraic manipulation of
a Random Forest model and is developed in Sect. 20.2. In Sect. 20.3, we show
that Random Forests can learn high-order interactions, even from shallow trees, but
are unable to capture XOR-type behaviour. The expanded basis set representation
is leveraged to create inverse maps from outputs to inputs (Sect. 20.4) and verify
whether two Random Forest models are identical (Sect. 20.5). We use the expanded
basis set to visualize the global behaviour of a Random Forest model and the data set
by combining parallel coordinates with a non-linear transformation, which enables
us to identify potential regions over- and underfitting byRandomForests (Sect. 20.6).
Lower and upper bounds are placed on the stability of a Random Forest classifier
and its predictions (Sect. 20.7). Decision boundaries are identified and used to sys-
tematically generate “anchors” [7] and “counterfactuals” [4] given an arbitrary data
point (Sect. 20.8). A similar method can be used to generate adversarial examples
(Sect. 20.9). These new analysis tools are applied to the iris and digits data sets from
Scikit-learn [8] as proof-of-concept. While the scope of this paper is restricted to
Random Forests, the methods can trivially be extended to accommodate other tree
ensemble methods like boosting.

We will use the term Random Forests when referring to the algorithm that uses
training data to build a model, and the term Random Forest model or Random Forest
classifier to refer to a particular instance that has already been trained.

20.2 Expanded Basis Set

Decision trees consist of a number of piecewise linear decision boundaries, with the
particular geometry defined by the nodes in the decision tree and the outputs of each
decision path [1]. Tree-based descriptions are easy to interpret and are flexible enough
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to capture a range of non-linear behaviour. However, tree-based descriptions are
difficult to algebraically manipulate and contain superfluous information (multiple
tree structures can produce globally identical outputs, yet have different topologies).
In contrast, it is easy to manipulate rules and verify whether two rule ensembles are
equivalent.

Rule ensembles can be extracted from decision trees by tracing a path through the
tree and forming the product of indicator functions associatedwith all the edges of the
path [6]. Although decision rules from a single decision tree are easy to manipulate,
they prove to be unwieldy when dealing with ensembles of rules, which occurs for
ensemble methods like Random Forests. We demonstrate the limitations of the rule
extraction method for dealing with Random Forests by considering a simple counter-
example consisting of three decision trees (shown in Fig. 20.1).

We consider a Random Forest classifier built from three decision trees, each
of which accepts as input a feature vector of length two (x0, x1) and outputs a
classification of either red or blue. The rules of the decision trees, also shown in
Fig. 20.1, are

Tree 1 Tree 2 Tree 3
Blue x0 > 0 x1 > 1 x1 > −1
Red x0 ≤ 0 x1 ≤ 1 x1 ≤ −1

It is easy to show that the subsequent Random Forest classifier consists of sepa-
rated red and blue regions (Fig. 20.1):

• Blue if (x0 ≤ 0 and x1 >1) or (x0 > 0 and x1 > −1)
• Red otherwise

Despite the simplicity of the Random Forest classifier and the child trees, the
ensemble demonstrates emergent complexity. All of the individual logical rules
involve a single feature, either x0 or x1, while the Random Forest classifier is able
to learn rules that involve both features simultaneously. This shows that Random
Forest models cannot be described by the union of extracted rules from individual
trees, so a different approach is required. As an aside, the behaviour observed above
suggests that Random Forests outperform decision trees not only because of vari-
ance reduction [1], but also because of their ability to learn more complicated basis
functions [9].

To increase the power of the extracted decision rules, we introduce an approach
in which decision atoms are formed from the ensemble of decision rules, and then
formed into different combinations to create decision rules that encompass the
expanded basis set (Algorithm 1). We define a rule atom as a single logical rule
associated with a single feature, but without specifying any output associated with
that rule. For our example decision trees, the rule atoms are trivially

rule atoms ∈ (x0 ≤ 0), (x0 > 0), (x1 > −1), (−1 < x1 ≤ 1), (x1 > 1) (20.1)
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Fig. 20.1 Procedure for generating an expanded rule set for a Random Forest model. a Individual
decision trees are formed from subsets of features and data points. b Graphical representation of
the decision trees. c A Random Forest model consisting of the three decision trees can also be
represented as a single decision tree. d Graphical representation of the Random Forest model, see
text for more details

The basis states are 0 for x0, and−1 and1 for x1. These rule atoms can be combined
to form six rules that form the expanded basis set that can be used to calculate the
possible Random Forest model’s outputs:

• Blue if x0 ≤ 0 and x1 > 1
• Red if x0 ≤ 0 and −1 < x1 ≤ 1
• Red if x0 ≤ 0 and x1 ≤ −1

• Blue if x0 > 0 and x1 > 1
• Blue if x0 > 0 and −1 < x1 ≤ 1
• Red if x0 > 0 and x1 ≤ −1

The expanded rule set can be equivalently represented as a single decision tree by
iterating through each combination of nodes or as a matrix, as shown in Fig. 20.1.

The rule expansion procedure will reproduce the Random Forest model’s
behaviour perfectly, but as can be seen above it can produce an unnecessarily long
list of rules: 6 rules for the expanded rule set versus the condensed set of 3 rules
given above. The rule set could potentially be pruned back to yield a more compact
set of rules, although attempting to do so falls outside the scope of this paper.

A practical limitation to creating an expanded rule set is the exponential increase in
the number of entries that have to be computed. For example, a RandomForest model
consisting of 4 features each with 4 rule atoms has only 256 (44) possible outputs,
while a classifier with 6 features and 8 rule atoms per feature has 1679616 (68)
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possible outputs. For high-dimensional problems with tens or hundreds of features,
a systematic approach to evaluating each possible output becomes impractical.

A partial solution to the curse of dimensionality is to restrict the range for each
feature value so that the number of rule atoms per feature remains small, and is a
viable approach when only the local properties of the Random Forest model are of
interest. Alternatively, the rule atom framework can be used to develop heuristic
methods. For example, we are able to discover adversarial examples by performing
a random walk over rule atoms, as described in later sections.

Algorithm 1 Generate a list of all basis states for a Random Forest classifier by
decomposing each child decision tree into constituent rules.
1: procedure Generate basis states(random forest)
2: list basisstates = ∅
3: for all tree in random forest do
4: for all rule in tree do
5: for all ruleatom in rule do
6: list basisstates ← list of basisstates

⋃
ruleatom

7: sort list of basisstates
8: return list of basisstates

20.3 Emergent Interactions and the Limitations
of Learning with Random Forests

Random Forests can learn emergent interactions that have greater complexity than
any of the individual decision trees. Curiously, Random Forests can learn high-order
interactions between features, even if the individual decisions trees are shallow, but
are unable to capture XOR-type interactions. This insight could assist data analysts
in identifying situations in which Random Forests is likely to be of use, or conversely
to design data sets that are resistant to analysis by decision trees and Random Forests
for benchmarking or adversarial purposes.

To demonstrate the ability for Random Forests to learn high-order interactions,
we consider a sample space with n binary features (0 or 1) and a class that can be -1
or +1. Every decision tree has either no splits or a single split, which inhibits their
ability to learn any second-order or higher interactions. However, Random Forests
is still able to learn an n-order AND-type interaction, as we show below.

We consider a Random Forest model comprising a total of 2n+1 decision trees.
The first decision tree outputs +1 if and only if the first feature is one, the second tree
outputs +1 if and only if the second feature is one, and so forth, which accounts for
the first n trees. The following n − m − 1 trees output −1, regardless of the input,
and the remaining m trees always output +1. As 2n + 1 is odd, there will always be
a strict majority and tied votes do not occur. m controls the order of the interaction.



284 T. L. Keevers

If m=0, then the Random Forest model will output +1 if and only if all the features
are one, thus capturing an n-th order AND-type interaction. If m = n − 1, then the
Random Forest model becomes an (inclusive) OR-type interaction. For intermediate
values of m, the Random Forest model will produce +1 if and only if n − m or more
features have a positive value. This shows that even shallow decision trees with a
single split are able to learn high-order interactions and generalizes the interaction
effects seen in Fig. 20.1.

Despite the ability of Random Forests to learn some high-order feature inter-
actions, it is unable to induce any higher order XOR-type interactions than those
provided by the individual decision trees. We once again consider n binary features,
but now the decisions trees can have up to n − 1 splits, so they can learn an XOR in
any n − 1 dimensional subspace, but cannot learn a n-dimensional XOR. We show
that Random Forests cannot generate an n-dimensional XOR interaction by calculat-
ing the difference between the predicted classes of the “even” and “odd” corners of
the hypercube, where even and odd refers to the parity of the sum of feature values.

The outputs of the even parity corners of an XOR hypercube are −1, while the
outputs of the odd parity corners are +1. Since Random Forest models make their
class predictions based on the majority vote, the corners of the hypercube may have
a mixture of positive and negative class predictions from the decision trees, noting
that the majority vote must be negative on the “even” corners and positive on the
“odd” corners. This gives rise to the mathematical identity

∑

n

( ∑

xi=odd

fn(xi ) −
∑

x j=even

fn(x j )
)
> 0, (20.2)

where fn refers to the n-th decision tree and xi is a feature vector.

Fig. 20.2 Shallow decision trees have pairs of identical outputs on the unsplit features. aA shallow
decision tree with binary features that splits only on the value of x0. b The decision tree will produce
identical outputs for x1 = 0 and x1 = 1 for each value of x0 as there was no split involving x1. c
A symmetry relationship present for the decision tree shown in panel (a). d A general symmetry
relationship present when the tree depth is less than the number of features. j is a feature that is not
split on for a pair of outputs and i provides fixed values for the other features
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A decision tree of depth n − 1 must generate pairs of identical classes for the
unsplit feature. A simple example of a decision tree with a single split and two
features is shown in Fig. 20.2. The decision tree has identical outputs for x(i, 0) and
x(i, 1) for i = 0 and i = 1 since the second feature is not used in the split. The same
phenomena will occur in deeper decision trees, although the feature(s) not used in
the classification will depend on the path taken through the decision tree. Since the
pairing always involves one odd and one even corner, this implies

∑

xi=odd

fn(xi ) −
∑

x j=even

fn(x j ) = 0 (20.3)

for any decision tree with a depth less than the number of features. Since we only
consider decision treeswith fewer splits per path than features, there is a contradiction
between Eqs. 20.2 and 20.3 that demonstrates that Random Forests cannot induce
XOR-type interactions.

20.4 Inverse Decision Trees

Random Forest models accept a vector input and deterministically generate a pre-
diction or decision. This process can be inverted, so that a model is given a potential
prediction or decision and every possible feature vector that could generate such an
input is provided. We call this an inverse decision tree. To the best of our knowl-
edge no method for generating inverse decision trees is described in the literature,
although the process can easily be accomplished by hand for small decision trees.

Inverse decision trees generalize the decision boundaries we derived in the pre-
vious section. Decision boundaries determine the local effect of perturbations on a
single output, while inverse decision trees reproduce the global structure of a Ran-
dom Forest model. Inverse decision trees are useful for the purpose of interpreting
the model structure and identifying when a desired outcome will be generated.

Inverse decision trees can be constructed from an expanded decision tree. The
domain of plausible inputs can be generated by fixing the desired output classification
and tracing through each decision path for the expanded decision tree (like the one
shown in Fig. 20.1), which encapsulates every decision rule and output. As before,
multiple tree structures can be generated for a single model so the decision rules,
while logically equivalent, may have different topological structures.

20.5 Comparison of Two Random Forest Models

The expanded basis set approach can be used to compare two ormore Random Forest
classifiers. The basis sets from both Random Forest models can be combined into
an even larger expanded basis set. Following earlier reasoning, the combined basis
set contains every possible decision rule for both classifiers. The classifiers can be
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tested for each combination of features. If the classifiers agree at every point, they
are predictively identical under all circumstances. Otherwise, a subset of regions that
produce different outputs can be identified for further analysis.

20.6 Parallel Coordinates and Visualization

Parallel coordinates enable visualization inmore than three-dimensions and are espe-
cially useful for understanding the global structure of a data set. A parallel coordinate
view of the original iris data (extracted from Scikit-learn [8]) is shown in Fig. 20.3.
Each colour represents a different species and the features have been linearly rescaled
so the minimum value for each feature is zero, and the maximum value is one. From
visual inspection, it can be seen that the setosa (blue) class can easily be separated
from the versicolor (red) and virginica (black) classes using any of the features,
with the final two features being particularly sensitive to the iris species. Parallel
coordinates provide a global view of the classifier decision structure.

A second set of parallel coordinates are shown in Fig. 20.3 to represent the data set
from the viewpoint of the Random Forest classifier. Each feature has been rescaled
to a value of k/n, where k is the number of basis states it exceeds and n is the total
number of basis states for that feature. Each feature has a support of [0,1], except in
the special case of no nodes when the features are all set to a value of 1

2 . The vertical
dots represent the decision boundaries and serve as a guide to the eye.

The rescaled parallel coordinates are useful because they allow us to analyze how
the Random Forest classifier is processing multi-dimensional data. We see similar
behaviour to the linear scaling case, namely that the last two features clearly provide
strong information for classification, while the first two features are less informative.
Interestingly, we can see the last two features have a lot of bins, but that some of
the bins contain no data points and indicates that Random Forests is overfitting.

Fig. 20.3 The iris data set plotted in parallel coordinates (red is versicolor, blue is setosa, black
is virginica). a The features have been independently scaled between zero and one. b The features
have been rescaled such that their values indicate which Random Forest model bin the values fall
into. The vertical dots represent the boundaries between adjacent feature bins for the Random Forest
classifier. See text for details
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We suspect the large number of empty bins is caused by the ambiguous boundary
between the versicolor and setosa classes, which cause each of the decision trees to
generate multiple decision boundaries.

20.7 Bounds for Stability Analysis

Random Forest classifiers, like decision trees, consist of a number of linear bound-
aries that demarcate the possible outputs. It is helpful in many situations to be able
to explicitly identify the decision boundaries. For instance, a Random Forest classi-
fier may be used to determine the outcome of an applicant’s home loan application.
Some of the applicant’s characteristics may be unknown or subject to variation, such
as level of income or living expenses. An unsuccessful application could use the
decision boundaries to identify changes that could be used to improve the strength of
a future application, or by the creditor to ensure small variation in applicant’s status
will not materially impact on the chance of a default.

Decision boundaries can, in theory, be identified in a model-agnostic way by
generating a grid of points and visually plotting the various model outputs. However,
this approach suffers from the curse of dimensionality and may not resolve genuine
decision boundaries if the grid is too coarse. An analytic or semi-analytic procedure
for identifying decision boundaries is preferable because of gains in computational
efficiency and the ability to guarantee identifying any boundaries of interest.

The expanded basis set approach provides an analytic pathway for generating
regions in which the classifier output will be stable, depending on whether a single
feature or multiple features are perturbed. The key insight needed to generate these
bounds is that the classifier output will always remain constant within a hyper-
rectangle formedbetween adjacent basis states. It is possible to identify exact decision
boundaries by sequentially sampling points from adjacent hyper-rectangles.

A lower bound for output stabilitywhen all features are perturbed canbe calculated
by taking the two adjacent basis states for each feature, as shown by the outwards
pointing arrows in Fig. 20.4. A large minimum bounding box can provide confidence
that a prediction or recommendation is robust against mild uncertainty or variability,
while a small minimum bounding box is inconclusive, and could be the result of
genuine nearby decision boundaries or because of a large number of basis states.
The minimum bounding box is non-optimal in the sense that there may exist a larger
rectangular region in which the Random Forest model will output a constant value.

In contrast, we are able to establish optimal upper bounds for the case in which
only one feature is perturbed. It is calculated by sequentially moving through the
basis states of a feature until the classifier output changes, or the list of basis states
are exhausted. In practice, the bounds are calculated by observing the classifier output
for themidpoint between adjacent basis states and then rounding towards the original
value for reasons of numerical stability. Themaximumbounding box is optimal in the
sense that it provides the exact decision boundaries for each individual feature. The
maximum bounding box can be useful in identifying a subset of important variables
or providing insight into the local interactions that exist between features. A small
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Fig. 20.4 Given a single data point (yellow dot), we can calculate local stability bounds for the
classifier output. Optimal bounds for the maximum possible single feature perturbation are cal-
culated by sequentially stepping through adjacent basis states (grey circles) and a lower bound
for the stability of a perturbation of an arbitrary number of features is calculated by finding the
hyper-rectangle of all adjacent basis states (outwards facing arrows)

maximum bounding box indicates that a particular prediction is unstable, while a
large maximum bounding box shows that the output is robust against changes in any
single output, but provides no guarantees for multi-feature perturbations.

20.8 Anchors and Counterfactuals

Anchors [7] and counterfactuals [4] play an important role in explainable artificial
intelligence. Anchors are sets of features or rules that makemodel predictions locally
independent of other features, while a counterfactual is a feature vector that would
have (counterfactually) resulted in the model making a different prediction.

A duality exists between anchors and counterfactuals: If an anchor consists of a
features from a possible set of n features, then there must exist a counterfactual that
contains at least one feature of the anchor, and it must contain nomore than n − a + 1
perturbed features. This follows trivially from the observation that if a counterfactual
couldn’t be generated containing one of the anchor’s features, then the anchor would
not be the smallest possible set of features that guarantees the original output.

We present algorithms for generating anchors and counterfactuals for Random
Forests. We use an L0 loss function that measures the number of altered features. We
choose this loss function because Random Forests produces models that are invariant
under monotone transforms. Our algorithms for anchors and counterfactuals are
systematic and exhaustive as they find all of the solutions that satisfy our criteria,
and can easily be adapted for other loss functions.

Counterfactuals are generated using a forward selection approach. Each individual
feature is individually perturbed through all their possible values, and if no change
in output is observed for any of the perturbations, then this is repeated for all pairs
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Table 20.1 Example points, anchors and counterfactuals for the iris data set with a Random Forest
classifier. The * in the anchors indicate values that can be changed without affecting the final
classifier output

Point Anchors Counterfactuals

(6.1, 2.8, 4.7, 1.2) (*, *, 4.7, 1.2) (6.1, 2.8, 4.9, 1.2)

(5.7, 3.8, 1.7, 0.3) (*, *, 1.7, 0.3) (5.7, 3.8, 1.7, 0.7)

(*, 3.8, *, 0.3)

(7.7, 2.6, 6.9, 2.3) (*, *, 6.9, 2.3) (7.7, 2.6, 6.9, 0.7)

(7.7, *, *, 2.3)

(6.0, 2.9, 4.5, 1.5) (*, *, 4.5, 1.5) (6.0, 2.9, 4.9, 1.5)

(6.8, 2.8, 4.8, 1.4) (*, 2.8, 4.8, 1.4) (6.8, 2.8, 4.8, 1.6)

(6.8, *, 4.8, 1.4) (6.8, 2.8, 5.0, 1.4)

of features, then all triplets and so forth until a minimum set of features is identified
that is able to change the model’s output. The set of minimum length counterfactuals
consists of all combinations of features that can change the value of the output, given
no counterfactual with fewer perturbed features exists.

To generate anchors we follow the opposite approach (Algorithm 2). We initially
perturb all but one of the features, gradually stepping down the number of perturbed
features until no change in the Random Forest model’s output can be produced.
Prototype anchors and counterfactuals for iris data set are shown in Table 20.1.

Algorithm 2 Generate all anchors of minimum possible length for a Random Forest
model given a local data point.
1: procedure Generate list of anchors(random forest, point)
2: int n ← length(point) – 1
3: anchors ← set of all features F
4: while anchors �= ∅ and n > 0 do
5: anchorsold ← anchors
6: anchors ← ∅
7: for all Set of features S of length n do
8: boolean stores
9: for all features F not in S do
10: for all possible values for F do
11: newpoint ← point
12: newpoint[features in F] ← newvalue
13: if random forest (newpoint) �= random forest (point) then
14: stores ← false
15: if stores then
16: anchors ← anchors

⋃
S

17: n ← n − 1
18: return anchorsold
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20.9 Adversarial Examples

Adversarial examples are carefully crafted data points that are able to confuse trained
classifiers, despite in many cases being imperceptibly different to correctly classi-
fied examples. Adversarial examples have received notable attention in the image
recognition domain,where classifiers that attain human-level performance for natural
images confidently misclassify adversarial examples [10], and in the cybersecurity
domain in which malicious actors may attempt to disrupt or counteract the behaviour
of automated systems [11].

The literature on adversarial examples has traditionally focused on gradient-based
attacks against deep neural networks [10], although attack methods against support-
vector machines [12], logistic regression [13] and linear regression [13] models have
also been investigated. The crafting of adversarial examples for Random Forests and
decision trees has received comparatively little attention [12]. Only a single method
for specifically constructing adversarial examples against decision trees has been
reported [12]. None have been reported specifically for Random Forests. Below, we
adapt the method for constructing adversarial examples for decision trees to fool
Random Forest classifiers using the expanded basis set.

Starting with the original data point, a feature is randomly selected and perturbed
into an adjacent basis state until the input becomes misclassified (see Algorithm 3).

Fig. 20.5 Adversarial examples generated against a Random Forest model trained on the digits
data set (from Scikit-learn [8]). The original samples are shown along the top row, the adversarial
examples are shown in the second row, and the third row shows the perturbation alone. The classi-
fication of the image by the Random Forest model is given in red in the upper-left-hand corner for
the first and seconds rows, and the ground truth is given in cyan in the upper-right-hand corner in
the first row only
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We can repeat this process several times, selecting the example with the smallest
L0 loss. This procedure may not discover the optimal counter-examples, like our
counter-factual algorithm, but scales more efficiently for large numbers of features.

Adversarial examples for digit recognition are shown in Fig. 20.5. Samples are
drawn from the digits data set from Scikit-learn [8]. The top row shows the original
images with their classification by the Random Forest model in red in the upper-
left-hand corner and the ground truth in cyan in the upper-right-hand corner of each
image. The second row shows a perturbed sample with a changed classification and
the third row shows just the perturbation. We can see that the first and last columns
have adversarial examples that are close to the originals, while the middle three
columns have significant perturbations. The first row is particularly interesting. The
Random Forest model originally misclassifies the “5” as a “3”, while the adversarial
example is assigned the true classification, despite only pixels along the top and
bottom of the image being perturbed. This suggests that the Random Forest model
has not properly learnt the underlying concepts, which is unsurprising given the small
training set of only 100 images. In many cases, the perturbations applied to the image
are quite large, which we conjecture is because of the sub-optimal adversarial image
finding algorithm, although further work is needed.

As a general trend, we found that adversarial examples tended to perturb pixels
close to the centre of the image and perturbed several pixels by a small amount. Our
algorithm never found an adversarial example consisting of only a single perturbed
pixel, although our search was not exhaustive. This suggests that Random Forests is
learning rules consisting of many low-order interactions.

Algorithm 3 Generate an adversarial example against a Random Forest image clas-
sifier, given an example image that is classified correctly.
1: procedure Generate adversarial image(random forest, point)
2: adversarialpoint ← point
3: while random forest(point) == random forest(adversarialpoint) do
4: randomly select a feature f
5: adversarialpoint[feature f ] ← adjacent basis state value
6: return adversarialpoint

20.10 Conclusion

Random Forests is considered one of the best-off-the-shelf data mining algorithms.
However, it suffers from poor interpretability and an opaque decision structure. We
have developed a procedure to generate an expanded basis set for a Random Forest
model by aggregating the decision rules from all of the constituent decision trees.
The expanded basis set allows the Random Forest model to be easily algebraically
manipulated, in contrast to the conventional representation that comprises potentially
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hundreds or thousands of decision trees. The expanded basis set facilities a number
of additional operations that were previously infeasible: Inverse mapping of outputs
to the domain of potential inputs, comparison of two Random Forest models and
generation of adversarial examples. These operations improve the utility of Random
Forests and make it more interpretable and transparent for a range of applications.

The global behaviour of a Random Forest classifier and the accompanying data
set can be effectively visualized by combining parallel coordinates with a non-linear
rank transform that bins feature values using the expanded basis set. Using this
approach on the iris data set we were able to identify commonalities and differences
between the three iris species, in addition to observing areas of underfitting and
overfitting by Random Forests. For other problem sets, global visualization could
facilitate comparison of the classifier’s rule structure with domain expertise.

The expanded basis set can be used to evaluate the local and global stability of a
Random Forest model. Systematic procedures were developed for creating counter-
factuals, local perturbations of features that cause themodel output to change, as well
as anchors, combinations of features that ensure the model output remains constant
when other features are perturbed. These procedures were developed specifically for
a Random Forest classifier and can systematically discover all relevant anchors and
counterfactuals. The procedures may not scale well for high-dimensional models, so
we developed alternative procedures for identifying model stability bounds when a
single feature is perturbed and when every feature is perturbed that can easily scale
to hundreds or thousands of features. These methods can inform analysts about the
stability of a Random Forest model’s output, and are particularly valuable in situa-
tions where some of the features may be uncertain or vary over time. In the future,
the expanded basis set approach could be combined with algorithms like RuleFit
to create off-the-shelf data mining algorithms that are accurate, simple to use and
interpretable.
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Chapter 21
Towards the Identification
and Visualization of Causal Events
to Support the Analysis of Closed-Loop
Combat Simulations

Dion Grieger, Martin Wong, Marco Tamassia, Luis Torres,
Antonio Giardina, Rajesh Vasa, and Kon Mouzakis

Abstract Analysis of output data from closed-loop combat simulations can provide
insights into the relationships between model inputs and outputs. However, analyses
that only consider end-of-run output data may not be sufficient to explain why those
relationships exist. In the case of stochastic models, where multiple replications of
the same scenario are conducted, the presence of outliers andmulti-modal results also
needs to be accounted for. In this paper, we use amilitary case study to explore a range
of techniques to interrogate the intra-run event data (i.e. trace logs) generated by a
combat simulation in order to help address these two issues. Cumulative event plots
and geo-spatial visualization techniques which also incorporate the temporal aspects
of the simulation appear best suited to explain the presence of outlier replications and
multi-modal results. Exploratory work using hierarchical clustering techniques and
temporal decision trees provide a promising step towards better explaining causal
events within the combat simulation data.

Keywords Combat simulation · Clustering · Key event identification

21.1 Introduction

Closed-loop combat simulations can be employed to provide insights into differences
between the operational effectiveness of a set of military alternatives. These alter-
natives may be physical in nature, such as different equipment, platforms or terrain
conditions, or behavioural, such as tactics, techniques or procedures. Analysis of
these closed-loop models is typically conducted using end-of-run output data [7].
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A limitation of this approach is the inability to explain the reason for a particular
finding in the end-of-run data.

There are two primary challenges in this space for the simulation data analyst.
The first is to identify and explain the presence of outliers within a set of replications
and determine if those outliers are genuine results, an artefact of the model or poten-
tially invalid replications that should be removed prior to analysis. The second is to
explain the key differences between groups of replications, either different groups
within the same scenario option or groups of replications from different scenario
options. Ideally, approaches to address these issues should be automated in order
to avoid the need for analysts to manually view multiple simulation replays. This
paper presents research conducted through collaboration between DST Group and
DeakinUniversity to address these challenges.We use a case study to provide context
for alternative analytical techniques and also propose some alternative methods to
further explore this problem in the future.

For stochastic models, multiple replications are used to enable statistical compar-
isons between alternatives to be made. Inherent to stochastic models is the chance
that some replications will produce results that are far from the mean or median of all
replications. Such outlier replications may contain vital information in our analysis
of combat simulation runs because, while improbable, their occurrence may drasti-
cally affect the findings and require further investigation. While methods to detect
outliers already exist [5, 16], the analysis of intra-run data (i.e. trace logs) within a
simulated replication may hold the key to explaining such outliers. Previous research
on the analysis of military simulation intra-run data is limited, although there is a
growing interest by researchers in using statistical modelling on intra-run data to find
hidden insights. Luotsinen and Bölöni [19] used Hidden Markov Models (HMMs)
to annotate the actions of moving agents, with the aim of recognizing key behaviours
in military operations. They were able to achieve high accuracy using noisy data
and claim that the annotation process can be performed in real time. Acay et al. [1]
discussed the suitability of Dynamic Bayesian Networks (DBNs) for causal anal-
ysis in military simulations, presenting theoretical arguments on why DBNs are a
better choice over HMMs at achieving a higher efficiency. In particular, they argued
that DBNs have equal expressive power as HMMs but have better computational
complexity on average while equal to HMMs only in the worst case. O’May et al.
[21] used simulation intra-run data at three different stages of the simulation to train
decision trees in order to predict the simulation outcome achieving high accuracy
even though they do not analyze the predictive power of the various features used.

Team-based sports share many similarities to military battles in the sense that
they are both team invasion games characterized by the presence of sophisticated
attack and defence tactics. Markov models are also a common modelling approach
to team-based sport matches where states represent possession of the ball by a team
on a particular portion of the field. Hirotsu and Wright [12] modelled games using
an HMMwith four states while Forbes [22] used an HMMwith 18 states, improving
its performance by using the additional information in the model. The transition
probabilities learned by thesemodels were then used to compare the different playing
styles across teams. Positional data is also widely used in the analysis of team-based
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sports. O’Shaughnessy [22] created heat maps of the AFL field to evaluate the value
of possession conditioned upon ball position and team possession using intra-match
data. Cervone et al. [6] proposed “Expected Possession Value” (EPV) models in
basketball, which also uses intra-match data, such as the position of the players
and the ball, to form a description of the ball-player interactions. This enabled the
identification of situations where players are well positioned to score off a basketball
rebound. Similarly, Le et al. [18] proposed an advanced approach, called “Data-
DrivenGhosting”which uses a type of neural network called long short-termmemory
(LSTM) to predict where the defensive players should have been as opposed towhere
the players actually were in order to identify players out of formation.

Research on analyzing intra-run data has also been found in the video game
scene particularly onMultiplayer Online Battle Arena (MOBA) games.1 InMOBAs,
two teams of “heroes” controlled by human players (usually five per side) must
collaborate to invade and take control of the opponents’ home base. Drachen et al.
[10] used intra-run data to analyze how players of different skill levels behave during
a game when playing Defense of the Ancients 2 (DotA2).2 Using spatio-temporal
distance measures and the identification of key early player decisions, they were able
to highlight differences in the behaviours between expert and novice players. Yang
et al. [28] used player prior statistics and intra-run data from a large number of DotA2
games to predict the outcome of the games, achieving high accuracy. They observed
that the predictive power of prior statistical features will drop as the match lasts
longer, while intra-run data becomes progressively more useful for the prediction.
Finally, work still under review byDemediuk et al. [9] looks at DotA2 using intra-run
games data (i.e. movement, game stats and abilities used) to understand the patterns
of how heroes can be used differently in order to complement the team.

The literature demonstrates that intra-run data has been analyzed in both the sport
and video game fields with some level of detail, while it has only been marginally
explored in the military context. This is in part due to the difference between data
produced by military simulations and the data recorded from sport and video game
matches. In particular, sport and video game data tend to include a limited number
of entities and can significantly vary between matches due to human involvement.
On the other hand, military simulation data involves a large number of entities, but
this added complexity is mitigated by the algorithmic nature of the simulation events
that take place which, while stochastic, tend to produce recognizable patterns across
repetitions.

The work presented in this paper is a first step towards the complete analysis
of intra-run data in the context of military simulations and presents an initial set of
approaches an analyst can use to gain insights on the evolution of a simulation. These
techniques are not limited to the military context but can also be applied to other
simulation models that are stochastic and event-driven in nature, such as emergency
evacuation simulations. The study of how the presented methods can be used in other

1https://en.wikipedia.org/wiki/Multiplayer_online_battle_arena.
2www.dota2.com.

https://en.wikipedia.org/wiki/Multiplayer_online_battle_arena
http://www.dota2.com
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simulation contexts is not an aim of this work, but we hope this paper fosters further
investigation in this direction.

21.2 Case Study Overview

A case study was used to help highlight the challenges associated with combat
simulation data analysis, particularly the two specific areas of interest described
earlier. The case study compared the performance of three military vehicle options,
A, B and C, in a specific scenario and across a range of performance metrics.

The mission for the Blue force (the side for which the different vehicle options
were being assessed) was the rapid seizure of an urban fringe area. The Blue force
was a Combat Team (CT) consisting of three infantry platoons, a Tank troop and two
direct fire support vehicles. The Red (enemy) force was approximately one third the
size of Blue and its mission was to delay Blue by 24 h. Other key aspects of this
scenario were

• The CT assembly area was located approx. 10 km from the objective within a
heavily vegetated area;

• There was only one viable road-based approach to the objective;
• Red had some indirect fire support options and
• An ambush was planned by Red under the assumption that Blue would be

approaching via the roads.

A number ofmetrics were used to provide an assessment of each option’s lethality,
protection, signature and knowledge acquisition capabilities. Protectionwas assessed
by comparing casualty rates of infantry and various levels of vehicle damage. Simi-
larly, the lethality-based metrics considered the same effects on enemy platforms
and infantry. The signature metrics measured the total number of unique Blue force
entities that were detected during the simulation and also the range at which each
Platoon was first acquired. The knowledge metrics captured the same information in
relation to acquisitions of Red entities made by the Blue force. In addition, a binary
mission success metric was used to determine whether Blue achieved its mission. In
this case, mission success was based on the successful seizure of its objective within
24 h and before reaching certain attrition thresholds to critical assets.

Subject matter experts (SMEs) were consulted in order to extract the appropriate
plans and tactics for both the Blue and Red forces to undertake their respective
missions. These planswere then encoded in the COMBATXXI simulation developed
by the United States Army [2]. COMBAT XXI is a closed-loop, stochastic, discrete
event entity-based model focused on land-force tactical combat. COMBAT XXI is
designed to model operations at brigade and below and is a high-resolution model
that allows for detailed behaviours of units and individual entities. In this case study,
the simulation was replicated 201 times for each of the three vehicle options in order
to allow for statistical analysis of the results. Each replication terminated either
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when Blue successfully completed its mission or it reached one of the defined failure
thresholds described earlier.

This particular scenario, and analytical question,was chosen for the case study as it
is indicative of the types of studies usually conducted byDSTGroup usingCOMBAT
XXI. Therefore, it is expected that the methods employed will be generalizable to
future COMBAT XXI studies.

21.2.1 Case Study Insights

The analysis of the end-of-run data identified a number of questions that we would
like to be able to further explore using methods that interrogate the simulation event
data. The aim of this type of analysis is to help provide the context between model
inputs and outputs and to explain key differences between replications or options in
terms of important causal events within the simulation. For this case study, we used
the following two questions as exemplars of the analytical questions we typically
seek to address using these types of analyses:

1. There appear to be some outliers in the results for some metrics. In particular,
replications 23, 39, 124 and 138 are far from the median result relative to other
replications for a number ofmetrics for optionA. An example is provided in Fig. 21.1
where the four replications identified earlier are those at the bottom left portion of the
plot. Does an explanation exist within the simulation event data that could explain
why these outliers are occurring for these particular metrics?

2. A statistical comparison of the three options was conducted for each metric.
A discussion of all the results of these analyses is beyond the scope of this paper.
Instead we will focus on the metric which considers the percentage of enemy (Red)
infantry killed by Blue to illustrate the analytical challenge. The results were that
optionB has the highestmeanµ= 0.368, withC andA following in this order, having
means of µ = 0.354 and µ = 0.336, respectively. To confirm this from a statistical
standpoint, for each pair of options we run the Wilcoxon signed-rank test [27] with

Fig. 21.1 Proportion of
enemy killed by Blue vs.
number of detections of
enemy made by Blue for
option A
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Bonferroni correction [3] and calculate the Cohen’s d coefficient [8], which gives an
estimate of the “impact” of the difference between the two options. Our threshold for
statistical significance is alpha= 0.05 (corrected alpha= 0.008). We chose a paired
test because the same 201 random seeds were used for each of the three options,
running on the same otherwise deterministic simulation software.

• The test between options A and B yields p < 0.001 (W= 6419.5), with the effect
size being d=−0.316: this indicates a statistically significant, medium effect size
in favour of B.

• The test between options B and C yields p = 0.109 (W = 7435), with the effect
size being d = +0.143: this indicates a non-statistically significant, small effect
size in favour of B.

• The test between options A and C yields p = 0.064 (W = 8459), with the effect
size being d = −0.171: this indicates a non-statistically significant, small effect
size in favour of C.

The statistical analysis confirms that B outperforms optionAwith amedium effect
size. However, there is not enough evidence to confirm that B outperforms C, nor
that C outperforms A: the small effect sizes found suggest that it is possible that there
was no difference, as opposed to the cause being an underpowered study. Ideally,
the analyst would like to be able to further explain these results, namely, why does
option B perform statistically better than option A but not better than option C.

21.3 Case Study Methods and Analysis

In this section, we describe a number of methods to explore the simulation event data
in order to assess their utility to provide further insights to the questions of interest,
both in the context of the case study, and of typical simulation analysis tasks.

21.3.1 Exploratory Data Analysis

Prior to analyzing any simulation event data, an exploratory data analysis (EDA)
is typically conducted to explore the end-of-run metrics. The purpose of the EDA
is to look for any anomalies in the data that may warrant further investigation or
to identify replications that may be invalid and should be excluded from statistical
tests. The hypothesis is already established prior to the EDA, i.e. the options are all
the same, and therefore there is little risk of data dredging. A range of scatter plots,
histograms, box plots and their derivatives are used to explore different metrics and
various groupings of the data. For the case study data, a violin plot that groups the
data according to mission success provides some additional insights into the outliers
seen within the Red infantry casualty results (Fig. 21.2). In this instance, the data
is split using the mission success metric (metric code PA_S001), which represents
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Fig. 21.2 Violin plot for the number of Red infantries killed by Blue for option A (y-axis) for all
replications (left), Blue mission success (middle) and Blue mission failure (right)

whether the mission was a success (PA_S001 = 1) or failure (PA_S001 = 0) for
Blue. A useful finding in relation to our questions of interest is that the outliers we
are seeking to explain all lie within the group of replications in which Blue failed to
achieve its mission. Violin plots comparing options A, B and C for the same metric
(not shown) also provide some insight into the secondquestion. Specifically,while the
median results for options B and C are the same (39.7%) and larger than A (34.5%),
the shape of the distribution of option B is actually more similar to that of option A.
These results are useful for presenting hypotheses that provide a reason for why some
replications are outliers and why we are seeing certain statistical differences between
options. However, we are no closer to understanding the events within the simulation
that actually caused these results. For this reason, we will now focus the analysis on
events occurring during the simulation rather than only looking at end-of-run data.

21.3.2 Cumulative Plots

The proposed cumulative plot analysis techniques are based on the cumulative count
over time of detection and engagement events. Engagements could potentially result
in casualties to personnel and damage of various magnitudes to vehicles. The visu-
alization of these variables as a function of time can provide insights about the
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Fig. 21.3 Cumulative count of shots (left) and kills (right) for option A. Time (mins) is shown on
the x-axis

progression of certain metrics during the missions. To generate these plots, a series
of regularly spaced time-bins (typically 1 min) was created for every detection and
engagement event within each replication. For every time-bin and replication, the
number of events that occurred from the start of the mission until the end of the time-
bin was counted. Mean values (dotted line) and standard deviations (shaded regions)
were calculated across all replications (see Fig. 21.3). As each replication can finish
at different times, the black dashed line was added to record how many replications
were still active at each point in time (scale on the right Y-axis). As a result of some
replications being removed from the calculations, the plots are not strictly mono-
tonically increasing as might be expected in a cumulative plot. When replications
terminate, they are dropped so that the statistics shown in the plots at successive times
are representative only of the replications still active at those times. If these were not
done, the mean would be lower due to the presence of smaller numbers in the sample,
belonging to replications that did not have the “time” to increase those numbers. A
replication is terminated either if Blue achieves its mission and reaches a certain
point on the map before the 24 h mark, or if Blue exceeds some pre-determined
casualty rates for one of its units.

There are two significant points of interest in these plots for option A (Fig. 21.3).
The first is that there is a sudden rise in the number of shots and kills for both sides
between the 130 and 140-minute mark. This suggests that there may be a significant
set of engagements in that time period. The second point of interest is that despite
Blue having a fairly constant and continuous rates of fire between the 140 and 250-
minute mark, there appears to be a decreasing return on those engagements in terms
of the number of kills inflicted on Red. The synthesis of these two findings suggests
that the events occurring between the 130 and 140-minute mark should be subject
to further investigation given the effect they appear to have on the remainder of the
simulation. Note that the mean and standard deviation values beyond 250-minute
mark are quite volatile as a result of these being very few replications which extend
beyond that time point.

We also explored alternative approaches to visualize and group these cumulative
plots. To provide an example, we again use the binary success measure to compare
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both the difference between successful and unsuccessful missions and also the differ-
ence between Red and Blue within those groups (Fig. 21.4).We clearly see a decisive
point around the 130 to 140-minute mark in which Blue is not detected by Red nearly
as much during successful missions as it is when the mission fails (bottom right of
Fig. 21.4). There are some second-order effects to be considered when examining
detection data, such as the effect that casualties have on the number of entities
available to be detected. Nonetheless, the synthesis of the analyses presented so far
indicates a point in time within the simulation that is of significant interest.

Fig. 21.4 Cumulative count of detections for mission success (top left) and failure (top right) and
differences between detection counts of same side (bottom left) and between opposing sides (bottom
right)
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Fig. 21.5 Cumulative count of shots and kills for replication 23 shown against population trends
for option A

21.3.2.1 Replication Versus Population

One of the primary objectives of this paper is to understand why certain replications
appear different compared to the majority. To this end, it can be useful to compare the
cumulative count of events of a replication against the mean trend of the population.
Figure 21.5 shows the evolution over time of these cumulative counts for replication
23, one of the nominated outliers in option A of the case study data. The first notice-
able feature is that replication 23 is shorter than the majority of all other replications.
Interestingly, it terminates around the 140-minute mark, which is within the time
period identified previously as being “of interest”.

The other salient point about the cumulative data for replication 23 is that there
is a sudden increase in kills by Red beyond the standard deviation range around the
60-minute mark. There does not appear to be a similar increase in the number of
shots taken which suggests that some low probability kills may have occurred. A
hypothesis is that the early damage suffered by Blue may have had a subsequent
effect in the major engagement that takes place around the 140-minute mark and
caused the Blue attrition threshold to be met and, in turn, terminate the replication.

21.3.3 Geo-spatial Plots

The analysis presented thus far has identified some time periods of interest but has
not yet been able to link the results to the context of the military scenario or mission.
We now present the utility of using geo-spatial plots to further analyze intra-run data
and to put geographical context around the time periods of interest. For the particular
example relevant to the case study, we computed the average latitude and longitude
of the target of all engagement events within the time period from 130 to 140-minute
mark (Fig. 21.6). The replications tend to cluster into two geo-spatial groups, as
far as average location is concerned. These figures, in fact, show a large group of
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Fig. 21.6 Red targets average location for the shot and kill events for each replication in option A
for the time period between the 130 and 140-minute mark

replications near the urban area (the dark spot in the map) and a smaller group North-
West from there which contains three of the four outliers identified in the end-of-run
data, including replication 23 which we have examined in detail already. Given that
Blue is moving from North-West to South-East, there is an implication here that the
approach of Blue, in those replications grouped with number 23, has been delayed
for some reason and that they are being engaged, on average, from further out.

21.4 Other Methods Explored

Using the methods described in Sect. 3, we can tell if a particular replication falls
outside of the normal bounds in terms of the number of detection and engagement
events and also identify potential temporal and spatial points of interest within a
scenario. However, we requiremethods that are able to further assist with explanatory
theories on the reasons that gave rise to the results observed, preferably using an
automated approach. As future events of a simulation are affected by the outcomes
of previous events, there may be key events or sequences of events that determine
how a simulation replication unfolds and the end-of-run metric that is achieved. It
may be possible to detect these key events or sequences by comparing the event
sequences in outliers to their more normative counterparts. This section describes
proposed approaches to address the issue.

21.4.1 Hierarchical Clustering for Similarity Analysis
and Key Event Identification

The hierarchical clustering approach produces clusters by either breaking down or
aggregating items based on their similarity measures. The end result is a tree of
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clusters where similar items form sub-trees in the hierarchy. The hierarchical clus-
tering analysis technique adopted in this research uses the agglomerative strategy
with a complete linkage criterion, using either the Hamming or Euclidean distance
depending on the nature of the data [26]. The raw event data was processed in a
number of ways to produce features that would yield good results when used to
generate the hierarchy:

1. Labelling events as detections (d), shots (s) or kills (k) for either the Blue (B) or
Red (R) teams and using these as categorical features;

2. Using the pairwise Hamming distance between the event vectors calculated in
[1] as features;

3. Time-binning the events and using the count of events for each type (e.g. b-d,
b-s, r-k, etc.) as features;

4. Space-clustering and time-binning the events and proceeding as in [3];
5. Space-time clustering the events and proceeding as in [3].

These transformations allow the technique to show different aspects of the data.
In our analysis the space-time clustered events produced the most useful results. An
example of the result obtained is presented in Fig. 21.7. While the technique looks
promising in identifying key groups of clusters based on intra-run events, a notable
extension would look at whether the clusters formed by the dendrogram analysis
can be contrasted in any meaningful way such that key events and sequences can be
identified.

21.4.2 Space-Time Cubes for Visualizing Military Simulation
Trace Data

In tactical analysis, location and time are crucial to understand the evolution of
combat events in a single replication. To aid in the data analysis of such aspect, we
adopted a visualization type, common in geo-spatial analysis, known as “space-time
cube”. Kraak provides an overview of the space-time cube and analyzes it from a
geo-spatial visualization perspective [15]. The technique has been used to visualize
accessibility in urban environments [20], movement differences among genders [17]
and radiological hazard exposure [11]. A space-time cube facilitates the analysis of
a time series of geo-spatial information, by showing both space and time data in a
single visualization. This is achieved through a 3D plot where the two horizontal axes
represent longitude and latitude, while the vertical axis represents time. In such way,
the movement through space and time of an entity is represented as a rising line in
3D space. Different colours can be used for different lines in the same visualization
to highlight groups of information, and a map of the terrain can be drawn as a plane
at time 0. An example of a space-time cube using an alternative simulation data set
(not the case study data) is shown in Fig. 21.8. In this scenario, there were eight
red vehicles advancing towards six blue vehicles who were attempting to delay the
advance. Long periods of static positioning can be clearly seen by lines that are almost
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Fig. 21.7 Dendrogramanddistancematrix of the result of the agglomerative clustering.Thedendro-
gram (the tree-like structure) is repeated on both theX- andY-axes and shows the “distance” between
replications. The distance matrix is represented as a heatmap and shows the “distance” between
every pair of replications. Note that the dendrogram analysis managed to cluster the case study
outliers (replications 23, 39, 124 and 138) into neighbouring subgroups

vertical, while differences between the paths and rates of advance of the red vehicles
are also visible. We plan to build upon the base space-time cube by introducing
new visualization elements that can help differentiate the evolution of combat events
between two replications.

21.4.3 Temporal Machine Learning Approaches for Key
Event Identification

Another potential approach for identifying and explaining key events which we have
explored is to apply various supervised learning algorithms to the simulation event
data. The concept is to train several classifiers/regressors to predict some outcome
metric (e.g. mission success, number of victims, etc.). Each predictor is trained on
data from a certain time interval. It is expected that, as time progresses, there will
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Fig. 21.8 A 3D visualization of movements of units over time; the two horizontal axes represent
space, while the vertical axis represents time. Each line portrays the movements of a Red/Blue unit;
the location of a unit through time is given by projecting the unit line on the terrain; the time of each
movement is indicated by the vertical distance of the line from the terrain. The terrain is shown at
time t = 0 for reference

be less room for changes in the evolution of combat. Therefore, it is reasonable
to expect that the accuracy of later predictors will generally be higher than that of
earlier predictors. Points in time when events occur that shift the balance of combat
are likely to cause sudden changes in accuracy. Figure 21.9 shows an example of a
temporal predictor using a decision tree [4] applied to the same alternative combat
simulation data set as for the space-time cube. The improvement in accuracy is not
linear in this examplewhich implies that theremight be some critical events occurring

Fig. 21.9 Classification
accuracy as a function of
normalized time using
decision trees. Sudden
accuracy increases denote
the presence of significant
events in time
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within certain time periods that could help explain the outcome of the simulation.
For example, the sudden increase in accuracy around simulation time t = 0.4 could
point to the presence of an important event within the simulation.

Decision trees were initially chosen for this approach as they have the advantage
of being more “explainable” compared to most other supervised learning methods.
That is, if one wants to investigate the reasons why a decision tree produced a certain
output, the answer is relatively easy to find; one would just need to descend the tree
from the root and take note of which branches are traversed or analyze the differences
between two successive trees. However, other approaches such as Random Forests
and Artificial Neural Networks could also be applied here. Choosing the right feature
space as inputs into these predictive models is also a critical aspect of this problem.
One possible feature space to consider would be the space-time clusters used in the
hierarchical clustering analysis in Sect. 4.1.

21.5 Future Work

Other methods that could be applied to this problem space but have not yet been
investigated include Markov Chains and probabilistic graphical models (PGM).

AMarkov Chain is a stochastic model describing a sequence of possible events in
which the probability of each event depends only on the state attained in the previous
event [14]. It is possible to calculate transition probabilities between states from
observed data in order to capture an approximation of the simulation behaviour in
the form of aMarkov Chain. As the states are logged by the simulation, the transition
probabilities can be calculated empirically rather than inferred. Possible directions
for such investigations include

• Verifying whether movements before a shot are strategically more likely to lead
to a kill;

• Spatially segregating the data into individual models for each support-by-fire
position, thus allowing analysis of individual sub-conflicts without the analysis
being polluted by the concurrent actions of other troops acting elsewhere on the
battlefield;

• Introducing time as part of the state, allowing the investigation of how behaviour
changes over the course of the battle. This would allow detailed endgame analysis
of time-critical situations to investigate whether a given strategy is rational.

PGMs are graphs where nodes (vertices) represent random variables while edges
represent statistical dependencies between these random variables. PGMs can be of
two types:

• Directed PGMs (edges represented as arrows and called Bayesian Networks) are
widely used in ML and statistics, and are usually used to explain the causality
relationship between variables (for this reason, they are also known as Causal
Networks);
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• Undirected PGMs (called Markov Random Fields) are used in computer vision
and physics to refer to correlation between random variables.

Bayesian Networks can be used to find or infer the relationship between the inputs
andoutputs of the simulation, learned fromsimulation data overmultiple replications.
Do-calculus allows one to infer, from a Bayesian Network, whether it is possible to
identify causal effects from non-experimental data [23]. This provides a principled
approach for using these models to answer “what-if” questions. Do-calculus is part
of a larger class of methods, called Structural Equation Modelling, which allow the
analysis of randomvariableswhose inter-dependencies can be specified in a graphical
model [13].

DBNs introduce time information to the Bayesian Network model: it is similar
to the HMM and, in fact, it applies the same constraints. DBNs are also used in
time series analysis. DBNs can represent time as either a point (instance) or as a
timer-interval. DBNs can then be used to learn the dependencies between the state
of the simulation at two different time points, so we can infer the expected flow of
the simulation and how it affects the final outcomes. In the context of the analysis
conducted in this research, this could refer to the state of both forces’ movement,
detection, shot and kill events.

Poropudas and Virtanen introduce a simulation meta-modelling approach. They
use DBNs as a compact representation to understand the evolution of the simulation,
and also to run “what-if” analyses [24]. In a previous study they also applied DBNs
to analyze air combat simulation data [25]. We plan to extend on this work in the
context of analyzing land combat simulation data.

21.6 Conclusion

In this paper, we present a set of techniques used to provide insights into the data
generated from combat simulations like COMBATXXI. In particular, unlike most
work that has been done in this area, we focus on intra-run events data as opposed
to end-of-run data. We believe that the intra-run events data may have the power to
expose the causes leading to the observed simulation outcomes.

We suggest that, by using the cumulative count of events technique, the general
evolution of the battle can be shown and, when replications are split based on success
criteria, the differences in evolution between successful and unsuccessful replications
become evident. This technique can also be applied to contrast a single replication
against the population in order to help understand where and how this replication
differs from the rest. The geo-spatial visualization is another powerful technique that
can help demonstrate the differences between outlier and non-outlier replications in
terms of geographical locations. The evidence presented in the case study suggests
that the outliers for this specific scenario are indeedvalid, although further exploration
is still required to isolate their cause.
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Furthermore, we present other explored methods that can complement the work
presented. We showcase the benefits of adding a third dimension to geo-spatial visu-
alizations to display time. We also demonstrate how Hierarchical Clustering can
be used to group replications with similar sequences of intra-run events and how
temporal machine learning approaches could potentially be used to identify points in
time where events shift the balance of the battle. The application of these statistical
and machine learning techniques looks promising in enabling us to further elicit the
underlying factors driving the evolution of a particular replication or option.We hope
that this study highlights a need to augment the current techniques used to analyze
combat simulations, and other stochastic event-driven models and promotes more
work in this direction.
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