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Abstract. In recent years, research involving the use of neurophysiological sen-
sor streams to quantitatively measure and predict the level of mental workload
experienced by an individual user has gained momentum as the complexity of the
tasks operators have experienced in heavily computerized contexts has continued
to expand. Despite the promising results from many empirical studies reporting
successful classification of workload using neurophysiological sensor data, accu-
rate classification of workload in real-time remains a largely unsolved problem.
This research aims to both introduce and examine the efficacy of a new research
tool: Tools for Object Measurement and Evaluation (TOME). The TOME system
is a toolset for collating and examining neurophysiological data in real time. Fol-
lowing a presentation of the system, and the problems the system may help to
solve, a validation study using the TOME system is presented.
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1 Introduction

In recent years, research involving the use of neurophysiological sensor streams to
quantitatively measure and predict workload experienced by an individual has gained
momentum with the complexity of its applications ranging from driving cars [1] to
playing music [2] and web surfing [3]. Such systems often pair a neurophysiological
measurement modality such as functional near-infrared spectroscopy (fNIRS) or elec-
troencephalogram (EEG) with other physiological sensors such as electrocardiogram
(ECG), electrooculogram (EOG), respiration rate sensors and galvanic skin response
(GSR). Data collected from these modalities are then fused together to build classifiers
trained to discretely predictmental states from these physiological signals usingmachine
learning techniques [4]. While these studies effectively correlate performance in simu-
lated tasks with workload, their extension to a practical setting is often limited by the
footprint and portability of these sensors. This is especially true in the aviation domain,
where pilots are often wearing helmets or other flight gear and must maneuver aircraft in
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both simulated and actual flight environments. Naturalistic environments such as these
necessitate the use of wearable sensor suites that are highly practical for deployment
in operational settings. There are often tradeoffs, however, between a sensor’s physical
profile, portability, and efficacy with references to recording a reliable signal which may
be used for both analysis and predictive modeling. A minimal yet comprehensive sensor
suite that allows a highly practical and efficient data collection procedure is required to
build robust models suited for in-flight studies.

Despite the promising results frommany empirical studies reporting successful clas-
sification of workload using neurophysiological sensor data, the ability to accurately
classify the level of user workload in real-time remains a largely unsolved problem. This
issue arises because models that were trained on small laboratory datasets often fail to
generalize beyond the original dataset. These models fail to transfer to new sensors, new
contexts, new people (or even to the same person in a different day). Neurophysiological
datasets are high dimensional in nature, and they should be trained on a suitable number
of instances to enable the creation of generalizable models. Several recent papers have
begun to detail these challenges [5–7].

With these goals in mind, this research makes the following three contributions to
the research domain: First, we present the Tools for Objective Measurement and Eval-
uation (TOME) system, a diagnostic tool-set for cost-effectively supporting test and
evaluation practitioners using a highly practical suite of neurophysiological sensors.
With the suite of sensors, TOME supports real-time secure cloud-based data acquisition
and data storage via an easy to use graphical user interface (GUI). The TOME system
works with a suite of neurophysiological sensors that were validated and selected based
on their ability to maintain cost effectiveness, portability, comfort and practicality for
use in ecological flight simulation scenarios, while still maintaining quality of the psy-
chophysiological data. These sensors (detailed later in this paper) include functional
near-infrared spectroscopy (fNIRS), Electrocardiogram (ECG), Electrodermal Activity
(EDA), respiration, and eye tracking sensors. Second, we present the results of an empir-
ical study where difficulty levels were manipulated while participants piloted an F-18
Aircraft in an X-Plane flight simulator environment. The TOME system was used to
collect neurophysiological data in 10 participants and a support vector machine (SVM)
was trained on the resulting data to predict participant workload caused by the changes in
difficulty. Third, we expand upon our predictive analyses to include an evaluation of the
value and sensitivity of the different data streams in the overall classification accuracy
of operator workload.

1.1 Background and Literature Review

Defining and Measuring Mental Workload: A dearth of research has explored the
construct of mental workload, and while there remains contention regarding the exact
definition, most researchers agree that mental workload is a product of the demands of a
task and the mental capacity of the person performing the task [8]. Techniques for mea-
suringmental workload can be divided into subjective ratings, secondary-task behavioral
measures, and physiological measures [9]. Common subjective measurements such as
the NASA-TLX [10] and the Bedford Workload Scale [11] have been widely used to
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assess workload, due in part to the ease by which they can be administered. These sur-
veys have been widely recognized to be sensitive to mental workload, but they suffer
from the same drawbacks of other self-report surveys, including the inability of people
to accurately self-assess their own changing workload as well as the fact that they are
administered after a task has been completed, which lacks real-time information [8, 9,
12]. Secondary task performance is another common way to assess mental workload.
This technique assumes that decrements in secondary task performance are due to the
combined task load exceeding a person’s workload capacity. While this technique does
not suffer from the subjective issues of self-report scales, some researchers have criticized
this technique as dual task decrements in performance vary with different allocation of
resources [9, 13, 14], allowing for researchers to only infer workload from performance.

To overcome the drawbacks of self-report and secondary task performance measures
for assessing workload, researchers have turned directly to cognitive and physiological
sensors in order to acquire real-time, objective measures of workload. To this end, recent
research has used a myriad of sensors to measure and predict workload. This includes
brain measurement with EEG [15, 16] and fNIRS [12, 17], or physiological measure-
ments such as heartrate, galvanic skin response, respiration rate, or pupil diameter [18,
19]. In order to gain a more complete picture of workload, researchers have begun
to merge data streams from various neurophysiological devices, as the data are often
complementary [4, 20]. For example, Molina et al. were able to classify four levels
of mental workload by combining different signals including EDA, electrocardiogram,
photoplethysmography (PPG), EEG, temperature and pupil dilation during aweb brows-
ing task [3]. See Lohani [21] for a thorough review of recent empirical psychophysiology
research focused on measuring workload and other related constructs (e.g., attention),
which includes details about the biological mechanics underlying psychophysiological
sensing (heartrate, galvanic skin response, respiration, pupil size, etc.) as well as relative
strengths and limitations of each measure.

Predicting Mental Workload in Driving and Flight Settings: As noted above, our
research is focused on prediction of pilot’s workload changes during flight, which dove-
tails with research in the driving domain, as both tasks (flying a plane and driving
a car) require continuous attention and multitasking to maintain performance. Several
researchers have exploredmentalworkload prediction during driving [21–24]. For exam-
ple, recent work explored the combination of ECG, EOG, EEG and/or fNIRSmodalities
to investigate the effect of sleep deprivation on a subjects’ performance in a simulated car
driving study [22]. Though aircraft pilots face less traffic compared to their on-ground
counterparts, piloting is a complex multi-tasking activity that requires both skill and
technical expertise [25]. From an HCI perspective, piloting an aircraft is a cognitively
demanding, resource intensive task, exercising working memory to satisfy task demands
[26]. Numerous studies have used neuro-imaging modalities such as EEG [19, 27–29]
and fNIRS [30] paired with other physiological sensors to evaluate neuro-physiological
correlates of pilots cognitive workload in a simulated flight environment.

Although machine learning has been used to predict mental workload on cognitive
and/or physiological sensor data in many prior empirical studies with promising accu-
racies, transitioning those successes outside of the laboratory remains challenging. This
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prior research suffers from two challenges: First, data collection is a time consuming
and laborious task, with prior models often trained on very small datasets that fail to
transfer to other domains, other participants, other sensor manufacturers. Second, it can
be difficult to compare and collate results from studies as data sharing is not common
and results differ by sensors used, number of participants in study, number of work-
load states predicted, operationalization of ‘ground truth’ workload per study, as well as
whether or not models are built within subjects or across subjects. Therefore, despite the
advancements reported from many empirical studies reporting successful classification
of workload, a number of recent papers have shed light on the above issues [5–7].

1.2 The TOME System

TOME, The Tools for Objective Measurement and Evaluation system, is a diagnostic
toolset for cost-effectively supporting test and evaluation practitioners and augmenting
system acquisition decisions through advancedworkloadmeasurement and performance
assessment strategies. TOME’s current implementation includes the following five psy-
chophysiological sensors, which were selected for inclusion based on their ability to
maintain cost effectiveness, portability, comfort and practicality for use in ecological
flight simulation scenarios, while still maintaining quality of the collected data 1) a
2-Channel functional near-infrared spectroscopy (fNIRS) device from PLUX for mea-
suring blood flow in the frontal cortex, 2) a Zephyr Bioharness for measuring respiration,
3) a Polar HR10 shirt for measuring heart rate, 4) a Polar Smartwatch for measuring
galvanic skin response data, and 5) a desk-mounted Tobii eyetracker for assessing pupil
diameter (Fig. 1).

Fig. 1. A screenshot of the TOME dashboard.

The Body Area Network (BAN) transmitter is a service application that currently
runs on Android mobile devices. The BAN transmitter’s main responsibility is connect-
ing to the various sensors a person is wearing and transmitting that information to the
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TOME server. The BAN has multiple ways it interfaces with the system, including data
streaming through a message broker, making requests through HTTP web services pro-
vided by the TOME server, and interfacing with sensors through various communication
methods, such as Bluetooth Low Energy (BLE). The BAN is designed to serve as a gate-
way between the TOME server and sensors. This prevents the server from having to
manage sensor connections directly, making the system more scalable and manageable.
Additionally, because the BAN can remotely connect to the server (via WiFi or cellular
network), users do not need to stay within a certain physical range of the server, thus
carrying the potential to make them more mobile. Another benefit of the BAN transmit-
ter is that it runs as a background service. This ensures the application is always running
and maintaining an active connection with the server. It also limits user interaction with
the system, which allows users to focus on their tasking without distraction.

The TOME server performs a variety of functions, including centralized real-time
data processing,management of user states,management of experimental test conditions,
and persistent data storage by utilizing cloud computing resources. In short, the TOME
server manages all data in the system, executes algorithms, and hosts web services
that interact with the system. Also running on the TOME server is a web server that
provides a front-end user interface for the entire system. These applications include
several different pages for viewing data, entering forms, and performing administrative
functions. This also provides a convenient mechanism for exporting all collected data
into a comma separated value format that can be ingested by virtually any commercial
statistical software package, including both unprocessed sensor data and post-processed
algorithm derived measures. Because the displays are web-based, they are compatible
with a wide variety of devices, specifically any device that can run a web browsing
application.

The TOME backend server includes a processing module that executes algorithms to
generate alerts and derived features within the system, including inferred user states such
as cognitive workload. The TOME project includes an API for algorithm development.
This API includes several interfaces and abstract classes to help developers create new
algorithms that can easily be used by the system. It also comes with utility methods
to help evaluate algorithms in bulk. The system currently supports two main types of
algorithms: 1) Data Algorithms: Algorithms that receive data messages to generate
new features within the system, often referred to as “derived” features; and 2) Alert
Algorithms: Algorithms that receive data messages to generate alerts within the system.
Both types of algorithms fundamentally work the same way; they mostly differ with
respect to the type of information they generate.

2 Experiment

10 participants (9 male and 1 female) from a University in the Western United States
participated in this the study. They ranged in age from 23 to 42 years (M= 26.4 yrs, SD=
8.6) and gave informed consent under the guidelines and restrictions of the university’s
institutional review board. As the participants were new to the X-Plane simulator, they
were given a self-paced period before undergoing the experimental conditions in which
they were allowed to practice to practice until they felt comfortable with their ability to
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pilot in the simulation before being allowed to move forward through the experimental
apparatus.

2.1 Sensor Set-Up and Flight Simulator Testbed Evaluation

As shown in Fig. 2 (left), each participant wore all TOME sensors, which consisted
of a Polar compression t-shirt embedded with electrodes around its chest cavity which
connects to a Polar H10 heart rate monitor placed on the back collar of the Polar t-shirt.
Respiration rate was collected using a Zephyr Bio-harness placed at the bottom of their
sternum. GSR was recorded using a Polar M4500 smartwatch worn by the participants
on their right wrist. Lastly a 2 channel fNIRS device, the PLUX Explorer, was placed
on the participants forehead at the mid-point of their respective FpZ locations using the
measured using the 10–20 system.

Fig. 2. Sensor configuration (left) and testbed environment with desk mounted Tobii Eye Tracker
(right).

The experiment setup consisted of a computer equipped with an X-Plane 11 Flight
Simulator installation. In order to mimic a typical in-flight cockpit of an FA-18F, the
simulator was configured to simulate the same aircraft to be maneuvered with a Thrust-
Master Joystick and Rudders as shown in Fig. 2.

Using pilot testing and prior literature [30–35] as guidance, we created two scenarios
of high and low difficulty levels within the X-Plane environment. As depicted in Table 1,
in the low difficulty level, participants were instructed to fly the plane while maintaining
an altitude of ±5000 ft from 10,000 ft while the weather conditions were clear and
sunny, with no wind. In the high difficulty level condition, the participants had to keep
their altitude within the more restrictive ±500 ft from 10,000 ft, while operating under
extreme weather conditions that included high wind and levels of rain.

A customX-Plane pluginwas created to enable the researchers to create experimental
designs for participants, that would allow presentation of the difficulty levels (Table 1) in
an order and for a duration specified by the researchers prior to the experimental protocol
beginning. The plug-in also allowed researchers to build pauses between conditions
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Table 1. Weather parameters and altitude constraints for low and high difficulty levels.

Parameter Low difficulty High difficulty

Altitude (in ft.) 10,000 ± 5,000 1,000 ± 500

Wind Speed (in kts) 55 430

Sky Conditions Clear Cloudy

Rain Speed (in mph) 16 110

where participants could rest. Through the plug-in, a set of instructions pertaining to the
altitude instructions to follow at any given time were overlaid on the center-left side of
the simulator screen during all conditions (see Fig. 3).

Fig. 3. X-Plane 11 GUI with a white arrow pointing to custom participant instructions regarding
altitude and rest.

Protocol: After providing informed consent, the participants were trained on the usage
of the X-Plane simulator using the X-Plane flight school. They were also shown the
instructions for the plugin, which would ask them to maintain specific altitude ranges
at various times. Once the participants were comfortable taking off and flying in the X-
Plane environment, theywere equippedwith the TOME sensor suite. After take-off, each
participant conducted a series of 6 ‘tasks’. A task represented each condition (low and
high) consisting of flying for 60 s while maintaining the target altitude range amongst the
weather conditions created by the plug-in. After each 60-second-long task, the X-Plane
simulator would pause the screen mid-flight and participants would rest for 45 s to allow
their brain’s metabolic activity to return to baseline. The protocol included a randomized
block design, with each block containing one low and one high difficulty level condition
presented in a random order. The block design had six blocks total.
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3 Data Analysis and Results

3.1 Manipulation Check

As a manipulation check, we first verified that the workload manipulations were being
mentally perceived by subjects with different difficulty, we used joystick deflections
from the neutral position as behavioral measure [31]. Using the first order derivative
of joystick deflections �J from the neutral axis we were able to perform workload
manipulation check on our participant’s data. Figure 4 shows the average of deflections
for the first High and Low difficulty task encountered by the participants, respectively.
As per the figure, the�J for high difficulty tasks are significantly farther from the neutral
axis (y = 0) than the lower difficulty setting.

Fig. 4. Average Joystick deflections across 10 participants for the two difficulty levels.

3.2 Data Pre-processing

Since the sampling rate varies for each of the five sensors, data acquired from each
sensor goes through different pre-processing routines, with outputs being placed in a
raw datafile that can be exported from the TOME server. To accommodate supervised
classification with feature vectors built from these five sensors, we generate all features
only once every five seconds (i.e., if there are six readings from the Tobii eyetracker
over a 5 s window, those will be averaged together and output as one average value for
summarizing the Tobii features in that 5 s window).

Functional Near Infrared Spectroscopy: Raw data acquired from the fNIRS device
wasfirst converted into absorption coefficient IR (µA)using the transfer function outlined
below:
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IR = c ∗ ADC

2n

Here, c is a proportionality constant depending on bit precision (n) of raw data
values configured within the OpenSignals Software (the default recording software for
the PLUX fNIRS device). We used values 0.15 and 16 bits respectively [36]. Due to
the intricate optical properties and high frequency nature of fNIRS sensors, the optical
density values acquired are sensitive to the displacement of optodes from their loca-
tions resulting from head movements, micro movements resulting from cardiac pulses
(Mayer Waves) or respiratory activities of the subjects [37]. We reduced motion and
other physiological artifacts by applying a band-pass filter on the resulting data with
values between 0.01 and 0.5 Hz. Finally, values are estimated from the two wavelengths
using the Modified Beer Lambert Law to convert the data into relative changes in oxy-
and deoxy- hemoglobin. This resulted in four timeseries data streams sampled at 10 Hz,
consisting of �oxy- and �deoxy- hemoglobin at two measurement locations. Then for
every 5 s of fNIRS data we generated the following eight features (shown in Table 2):
average and slope (2) x for both �oxy- and �deoxy- hemoglobin (2) x two channels
locations (2). These 8 features are shown in Table 2 for the fNIRS.

Heart Rate Monitor (Polar HR10): To process the raw ECG data, we band-pass fil-
tered the raw data between 0.5 and 35 Hz followed by detrending to remove the baseline
shift in the data. After extracting the QRS complex (the main spike seen in ECG data)
from the filtered signal, emergence of an R peak in the data indicated a heartbeat.We then
extracted 2 features from the processed data in 5 s windows: time difference between
two consequent R peaks (Heartrate) and the frequency of the peaks (RR Interval).

Eye Tracking (Tobii 4C): For extracting features from theTobii eye trackerwe focused
on the estimated size (in cm) of the pupil diameter, as output by the Tobii. We simply
output the average diameter of the Left and Right pupil over each five second window
of time (Left pupil diameter, Right pupil diameter).

Respiration Rate (Zephyr Bioharness): For the Bioharness Respiration monitor we
calculated mean and standard deviations over a 5 s window, resulting in features for
mean respiration rate mean and standard deviation of respiration rate.

Galvanic Skin Response and Pulse Rate (Polar M4500 Smartwatch): For the Polar
smartwatch we acquired pulse rate and galvanic skin response data. We used these data
streams to generate average pulse rate and average GSR activity over the course of a 5 s
window.

3.3 Accounting for Missing Data and Outliers, Normalization of Resulting Data

The TOME system relies on the five devices detailed above to function ‘properly’ in
order to collect the data to the TOME server. Issues in collecting data from a device can
occur when 1) The specific device loses Bluetooth connectivity with TOME or 2) the
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Table 2. List of the 16 features out every five seconds from the five sensors included in the TOME
System.

Sensor PLUX

Features 1. Average �oxy channel 1
2. Average �deoxy channel 1
3. Slope �oxy channel 1
4. Slope �deoxy channel 1
5. Average �oxy channel 2
6. Average �deoxy channel 2
7. Slope �oxy channel 2
8. Slope �deoxy channel 2

Sensor Polar HR10

Features 9. Heartrate
10. RR interval

Sensor Tobii

Features 11. Left pupil diameter
12. Right pupil diameter

Sensor Bioharness

Features 13. Mean respiration rate
14. Stdev respiration rate

Sensor Polar M4500 Smartwatch

Features 15. Pulse rate
16. GSR Activity

sensors from a given device lose contact with the participant. Unfortunately, the PLUX
and Polar Smartwatch sensors were prone to losing network connectivity, resulting in
data loss during experimental sessions, as shown in Table 3. See ‘Limitations’ section
for further discussion.

Whenever a sensor did not collect data for a participant, the missing values were
filled in with ‘NaN’ (Not a Number) values using the NumPy python package. These
values were replaced so that the data from the ‘working sensors’ could still be used
for classification while ignoring feature values resulting in the missing sensor data.
This is further detailed in the sections below. The resulting data were also examined and
outliers eliminated from each feature separately. For each participant and for each feature
all values that were greater than 3 standard deviations away from the mean feature value
were again replaced with ‘NaN’ values. This replacement was chosen as z-score and
correlation matrix operations in many Python packages can ignore ‘NaN’ cells in their
calculations without skewing the results. After outliers were handled the data was then
normalized using z-score normalization for each of the 16 feature columns.
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Table 3. Summary of device and network connectivity performance.

Participant Description

P1 No PLUX fNIRS Readings

P2 All Devices collecting properly

P3 All Devices collecting properly

P4 No PLUX fNIRS Readings

P5 No Tobii and No Polar Smartwatch Readings

P6 No Polar Smartwatch Readings

P7 No PLUX fNIRS Readings

P8 All Devices collecting properly

P9 All Devices collecting properly

P10 No PLUX fNIRS Readings

3.4 Feature Exploration and Selection

Selection of an optimal feature set is critical to creating an efficient classification pipeline.
To determine an optimal feature set, we use the oft used feature filteringmethodwhereby
Pearson correlation coefficients are generated to down-select the features that have the
highest correlation with the class value [38]. We first wanted to see the relationship
between the 16 features. To do this a Pearson correlation matrix was generated between
every feature and every other feature across all participants and all difficulty levels. This
is shown in Fig. 5.

There are some intuitive examples of correlated features in the preliminary corre-
lations. For example, left and right pupil diameter positively correlate, and fNIRS oxy
and deoxy hemoglobin have a negative correlation (which is in line with the nature
of the blood oxygen level dependent signal). Furthermore, pulse rate and RR interval
are correlated, which indicates that both the Polar watch and compression shirts were
collecting correlated heartrate data. Aside from the obvious correlations between sim-
ilar physiological sensor streams, it is promising to note that there is not a great deal
of redundancy in the collected features. Strong correlations throughout would indicate
redundant features, and thus give reason to down select sensors (i.e., one can increase
practicality and sensor footprint by removing a sensor without losing valuable informa-
tion). Of note is that it does seem that the Polar Shirt and Polar watch do have redundant
heartrate information.

Next,wewanted to look at the correlation between each feature and the difficulty level
(i.e., low/high). Since the feature values are continuous and the class target difficulty level
is binary, we generated Kendall correlations rather than Pearson correlations, as Kendall
correlation is better suited for identifying correlations between continuous variables and
nominal class values. The correlation matrix shown in Fig. 6 was then generated.

As shown in Fig. 6, of note is that Left and Right pupil diameter have a strong
correlation with difficulty level. Also, the standard deviation of the respiration rate also
has a strong correlation. Thus, in the next section, we explore the use of linear SVMs
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Fig. 5. Pearson Correlations between each feature.

Fig. 6. Kendall correlations between each feature shown on the x axis and task difficulty shown
on the y axis.

for classification using all 16 features versus classifier creation using the features that
have the highest correlation with the target class value, as indicated in Fig. 6.
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3.5 Classification

Based on the insights gained from the correlation matrices above, we aimed to classify
our data into low vs high difficulty levels. Our goal was to explore at classification
results when all features were included and when just the top features from the Kendall
correlations in Fig. 6 were considered.

The z-score and correlation procedures above are robust to missing data, but most
classification algorithms are not able to handle missing values. To ensure an unbiased
classification, the ‘NaN’ generated in the previous section were replaced with values of
random noise drawn from Standard Normal distribution from each of the 16 columns of
features. We then opted to use a linear support vector machine to classify our data into
high and low difficulty. Figure 7 shows the accuracy (left) and F1-scores (right) achieved
by using all 16 features and a leave-one-participant-out cross validation scheme. In this
type of cross-validation themodel is trained on 9 participants and then tested on data from
the unseen 10th participant. This process of train/test is repeated for each participant,
and results are averaged across those 10 cross-validation runs.

Fig. 7. Left: the figure depicts accuracy results of leave-one-out cross validation classification on
the data. This dataset contained many missing data points which were filled in with noise sampled
from a standard normal distribution. A linear support vector classifier from sklearn was used. The
mean accuracy achieved was 56.1%. Right: depicting F1 scores. The mean F1 score was 55.8%.

The results shown in Fig. 7 are in line with our expectations. We expect lowest
accuracy when we use all 16 features, especially since we know from Table 3 that many
of the values fed into the model will reflect the random noise used to insert feature values
where ‘NaN’ values are present, for the participants when a sensor did not correctly log
data to the TOME server.

To see if our SVM models performed better without missing data, we ran the same
SVM techniques detailed above, but for only the participants who did not have a sensor
stream missing during data collection (as shown in Table 3, p2, p3, p8, p9 had all 16
features collected properly)Results are inFig. 8, andwedonote as expected that accuracy
and F1 values do indeed increase when we focus on participants without missing sensor
data.

The results in Fig. 8 are quite promising, as we believe that we can improve accuracy
by using both performance and difficulty level as our ground truth label, as done recently
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Fig. 8. Accuracy Results of leave-one-out cross validation classification on dataset containing
only training examples without any missing data points. A linear support vector classifier from
the sklearn python module was used. The mean accuracy was 61.8%.

by Mckendrick et al. [9]. Anecdotally we noted that participant 8 had a good deal of
trouble mastering the flight simulator, as reflected in that participant’s performance data.

Finally, we wanted to explore the impact that feature selection had on our
model results, by only using the ‘best features’ from the correlation matrix in
Fig. 6. As shown in Fig. 9, we select features from best to worst according to
Kendall correlation results in Fig. 6. For example, when trained on only one fea-
ture, we use LEFT_PUPIL_DIAMETER, the feature with the highest Kendall corre-
lation. When training on two features, we use both LEFT_PUPIL_DIAMETER and
RIGHT_PUPIL_DIAMETER, the two features with the highest Kendall correlations.
The y axis represents mean accuracy across all participants assessed in leave-one-out
cross validation.

Fig. 9. left mean accuracy results for n best features. The x axis depicts the number of features
used in leave-one-out cross validation classification. Right: We repeat the process used in the left,
but exclude training examples with any missing features.

As noted on the right side of Fig. 9, again, we repeat the process used in the left,
but exclude training examples without missing features. Here we notice an increase in
mean classification with relatively few features indicating that including uncorrelated
and potentially noisy features has a negative effect on classification accuracy. As shown
on the right of Fig. 9, the highest accuracy achieved across all participants (using leave
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one out cross validation, and all 10 participants) was just above 66% accuracy when we
used only the top 3 features of Left and Right Pupil Diameter and Respiration rate. This
is notable because all 10 participants had successful data collections where the Tobii and
Bioharness sensors collected data properly.

4 Discussion, Limitations and Recommendations

Wenoted above that several of the wearable sensors would sporadically lose contact with
the human subject and/or with their network connectivity to the TOME server at various
times during the data collections. Thiswould result inNaNvalues in their rawdata.Aswe
would expect, and as shown in the classification results above, classificationswere indeed
strongerwhenall sensorswere actively collectingquality data during experiments.Below
we identify these connectivity and other issues that were detrimental to our results and
we talk about steps to address these issues:

• Issue 1: The PLUX and Polar Smartwatches were the main devices that would lose
full connectivity during experiments.

Recommend: Finding ways to ensure more reliable connectivity for sensors. For
example, the our research team has worked to bypass the PLUX OpenSignals software,
and we have swapped the Shimmer GSR sensors into the TOME system as a more
reliable alternative to the Polar watches. Further, we are exploring ways that data can
be logged directly to a local storage device, and later uploaded to the TOME server
during standard data collections in case networking issues continue.

• Issue 2: Flying flight simulators are difficult. Student participants would train on the
simulator beforehand, but they still struggled to fly with a high level of comfort.

Recommend: Futures studies looking at workload need significantly more training
time or to only recruit people familiar w/flight simulators. Actual pilots would be good
subjects.

As detailed in Table 1, the two difficulty levels asked participants to fly within a
range of 10,000 ft with a range of ±500 for low difficulty and ±5000 for high difficulty.
As it has been well studied that condition level alone does not account for a proper
‘mental workload label’ [9], we should only include labeled data where the recorded
altitude shows that participants maintained the proper range as required by the task. By
merging the difficulty level with the performance, we can be more confident that our
‘ground truth’ labels do indeed represent the difficulty experienced at that time by a
given participant.

Also noteworthy is that TOME allows us to better understand which features lead to
the most information gain. The results shown in Fig. 7 are in line with our expectations.
We expect lowest accuracy when we use all 16 features, especially since we know from
Table 3 that many of the values fed into the model will reflect the random noise used
to insert feature values where NaNs are present, for the participants when a sensor did
not correctly log data to the TOME server. That said, it would be interesting to explore
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different techniques for filling in data when a TOME sensor breaks down. Perhaps
augmenting data from other participants (who are not currently in the test set) and
adding some random noise to the resulting data could be a viable option. Also, The
Tobii eye trackers right and left pupil diameter were the strongest features. This makes
sense as flying in simulators is a visually intensive task and data quality was likely higher
when participants were focused on the X-Plane monitors, giving a reliable eye tracking
signal. It might also be possible to change the amount of time over which a feature is
selected. In the above, 5 s windows of time are examined, but it is possible that varying
this parameter (window size = 1 s, 10 s, 20 s) could affect classifier accuracy. Further
effort should be made to explore these and other options for collating and analyzing
multiple sensor streams.
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