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Abstract. Multiple academic and industry-based communities have engaged in
defining the theoretical constructs, practical approaches, and technical standards
for technology-enabled systems of human learning. However, conceptual and
architectural models of Adaptive Instructional Systems (AISs) often focus on the
functions of the technology, with the learner as a user external to the system. We
offer an AIS model that considers the learner as a key component at the heart of
a learning system. The learner, along with other human actors and environmental
conditions, interact with technology components in a distributed learning system.
Modular components surrounding the learner are interoperable.Data flowbetween
the components using standards-based interfaces for instrumented and adaptive
learner experiences. The model builds on functional components identified by
Glowa&Goodell (2016) in Student-Centered Learning: Functional Requirements
for Integrated Systems to Optimize Learning. The model is further informed by
the IEEE workgroup P2247.1 developing a standard for the classification of adap-
tive instructional systems. It examines the learning system at a conceptual level
and then maps those conceptual categories to functional components as modules
in a distributed learning system. The model is rooted in the process of learning
engineering as defined by the IEEE Industry Connection Industry Consortium on
Learning Engineering (ICICLE). We envision future design and development of
adaptive instructional systems benefiting from an emerging learning engineering
discipline that embraces an iterative problem-solving approach. The proposedAIS
model is a self-improving systembydesign that embodies key learning engineering
processes.
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1 Introduction

Adaptive instructional systems (AISs) are artificially-intelligent, computer-based sys-
tems that guide learning experiences by tailoring instruction and recommendations based
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on the goals, needs, preferences, and interests of each individual learner or team in the
context of domain learning objectives [1]. Multiple academic and industry-based com-
munities have engaged in defining the theoretical constructs, practical approaches, and
technical standards forAISs for human learning.Currently severalworkgroupswithin the
IEEELearningTechnologyStandardsCommittee are developing standards for theAdap-
tive Instructional System (AIS) informed by prior research-based frameworks such as the
Generalized Intelligent Framework for Tutoring [2] and Knowledge-Learning Instruc-
tion Framework [3]. A consortium within the IEEE standards organization (ICICLE)
is defining and developing Learning Engineering as a profession and as an academic
discipline. Rapidly developing innovations in artificial intelligence, virtual/augmented
reality, social learning platforms, instrumented learning experiences, and mobile/place-
based learning are creating new opportunities to leverage technology to optimize human
learning.Meanwhile, learning sciences findings continue to expand what we know about
how people learn.

The offered model begins with the notion that the learner is a core component of
the AIS. The academic discipline of human-computer interaction recognizes human
actors as a part of a system. However, conceptual and architectural models of AISs
often focus on the functions of the technology, with the learner as a user external to the
system. In many models only a proxy of the learner (the learner model) is considered
part of the system. The offered model considers the role of the human learner and
physical/perceptual environment as well as the digital twin representations of the real
agent and environment.

The offered model is also informed by the emerging field of learning engineering. It
offers mindsets, processes, and practices for those designing and developing AISs that
may translate into new approaches to design decisions.

We start with the learner component at the center of the AIS design. Like other
development models the learner needs drive design decisions, and like other models we
begin with a prototype of the learner and learner context to set the purpose and goals
for the system, and to consider what problems need to be solved. The design builds
outward from the learner component, considering the requirements for interoperation of
the learner and other system components.

2 Learner-Centered Adaptive Feedback

The system design is guided by the requirements for interactions between the learner and
other components via human-computer interfaces, inputs from and about the learner, and
feedback to the learner from the other system components. “Feedback” here is broadly
defined to include recommendations, visualizations, system prompts, adaptations to the
user interface (e.g. menu choices offered), and adaptations to learning experiences. The
quality of the feedback generated by system components (e.g. a human or AI agent)
depends on a current and accurate understanding of the learner.

The learner-centered adaptive system may give feedback to the learner at multiple
levels:
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• Progress level (hyper-adaptive)—feedback on where a learner is in relation to long-
term learning goals, such as progress toward award of a credential, qualification for a
job, or level of mastery in a domain

• Lesson level (macro-adaptive)—feedback or adaptation between learning experiences
that helps inform what the learner does next, e.g. recommending an instructional
strategy or learning experience

• Activity level (micro-adaptive)—formative feedback or adaptation during a learning
experience.

Park and Lee (2003) consider Aptitude Treatment Interactions (ATI) as a separate
class of adaptive instructional approach, although it could be argued that the treatments
here could be at themicro-adaptive ormacro-adaptive levels. TheATI approach considers
learner aptitudes (learner characteristics or environmental conditions that increase or
impair the probability that a given treatmentwill result in student learning) and treatments
(variations in the pace or style of instruction). According to Park and Lee (2003) “since
Cronbach (1957) made his proposal, relatively few studies have found consistent results
to support the paradigm or made a notable contribution to either instructional theory or
practice.” However, some of the ATI research provides valuable insights into the variety
of aptitude variables that might be used as inputs into adaptation decisions made by

Fig. 1. Levels of Feedback. From Glowa, L. and Goodell, J. (2016) Student-Centered Learning:
Functional Requirements for Integrated Systems to Optimize Learning, Vienna, VA.: International
Association for K-12 Online Learning (iNACOL). Adapted with permission.
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AISs, and into the variety of treatments (instructional strategies and conditions) that
might be adapted to the learner’s needs based on those inputs.

3 Conceptual Model of an Adaptive Instructional System

According to the AIS Ontology Workgroup [4], an AIS may be conceptualized as a
combination of four models: (1) learner models, (2) knowledge models, (3) adaptive
models, and (4) interface models (see also Murray, 1999; Sottilare & Brawner, 2018;
Woolf, 2010; Nkambou, Mizoguchi & Bourdeau, 2010).

3.1 The Learner Model

The learner model (implemented with data architecture) is a structured representation
of a learner’s knowledge, abilities, dispositions, habits of practice, misconceptions, dif-
ficulties, and/or other learner attributes that evolve during the course of learning. Details
such as the learner’s background knowledge, prior experiences, cultural values, and
learning contexts have an impact on what feedback will be most effective at any given
moment.

The learner model may function as an imperfect “digital twin” of the learner. It is
imperfect because the mind of a learner is not directly observable and the scope of data
in any system will be limited. However, along with observable event data the learner
model may include predictions or assertions about unobservable characteristics of the
learner that have been inferred from observable event data.

Learning technologymay handle learner data in different ways and in both structured
and unstructured formats, withmore or fewer links to contextual information. The learner
model may use a federated data approach that uses data across multiple physical system
components. The learner model has interdependencies with other system components
and with other systems in the ecosystem.

3.2 The Domain Model

The domainmodel (implemented as information repositories) is a fundamental element
of an AIS that contains the set of skills, knowledge, and strategies/tactics of the topic
under instruction. It normally contains the ideal learner or expert knowledge model for
the domain of instruction, along with question banks, common bugs, mal-rules, miscon-
ceptions, and content. Thedomainmodel includes data,metadata, and learning resources,
and maps the relationships between those things. Such content and relationships include

• competency frameworks,
• competency pathways,
• pedagogical models,
• adaptive strategies,
• lesson definitions,
• activity definitions,
• learning resources (static or interactive content),
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• knowledge maps,
• rubrics,
• assessment activities,
• metadata, and
• paradata to support adaptations, weighting, decision-making.

Information from the domain model and learner model are inputs into the adaptive
model.

3.3 The Adaptive Model

The adaptive model (implemented as adaptive engines) represents the decision-making
and control functions of the adaptive system. The adaptive model uses data from the
learner model and the domain model as input, informs decisions about what strate-
gies, steps, and actions the AIS should do next, and triggers feedback events. In mix-
initiative systems, the learners may also take actions, ask questions, or request help
(Aleven, McClaren, Roll & Koedinger, 2006; Rus & Graesser, 2009), but the AIS must
be able to decide next steps, which is determined by the adaptive model that is driven
by pedagogical theories.

These three models (learner model, domain model, and adaptive model) represent
the theoretical/conceptual components in an adaptive instructional system (Knowles,
et al.; Draft Standard for the Classification of Adaptive Instructional Systems). A phys-
ical implementation of an AIS may have many more components that address specific
functions of the system.

Adaptive learning systems employ data-informed adaptations of learning experi-
ences and conditions for learning. The workgroup for the IEEE AIS Standard for the
Classification of Adaptive Instructional Systems has identified “levels of adaptivity” for
AISs. At the highest level are systems that are self-improving.

This paper examines the concept of a self-improving system in three contexts:
the learner as a key component of an AIS

1. the AIS technology and information architectures
2. the AIS engineering team

3.4 The Interface Model

The user interface model (implemented as human-computer interfaces and machine-
machine interfaces including application programming interfaces) is a representation
of how a human user or another system component interacts with a component of the
system, and how the system component responds. It interprets the learner’s input (e.g.
speech, typing, clicking) and produces outputs (e.g. text, diagrams, animations, agents).
In addition to the conventional human-computer interface features, recent systems have
incorporated natural language interaction (e.g. Graesser et al. 2012), speech recognition
(e.g. Litman 2013), and the sensing of learner emotions (e.g. Baker, D’Mello, Rodrigo,
& Graesser, 2010; Goldberg, Sottilare, Brawner, Holden, 2011).

Interfacemodelsmay be further classified based onwhether the interface represented
is between a human and the system components or between system/software modules.
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• Human-computer Interface Model—a representation of how human user(s) interact
with a computer program or another device and how the system responds.

• An Application Programming Interface (API) Model—a representation of how other
system components get access to specific information, to trigger special behavior, or
to perform some other action in a component of the system. (See: https://www.w3.
org/2008/webapps/).

4 Learning Engineering

Given the enormous complexities, trade-offs, and uncertainties associated with learning
in real-world learning contexts (Koedinger, Booth, & Klahr, 2013), building effective
AISs is difficult. This issue is often magnified with scale. Scale arises from not only the
number and diversity of learners, but also the variability of time and space for learning
opportunities, the resulting rich data about learner engagement and performance, the
mass personalization (Schuwer & Kusters, 2014) of learners and learner groups, and
the way in which our pedagogy must adapt to these needs (Roll, Russell, Gasevic,
2018). All of these must be taken into account as technologies, pedagogies, research and
analyses, and theories of learning and teaching are combined to design effective learning
interactions and experiences. Growing learning engineering efforts are beginning to shed
light into the processes that help us figure out what works in AISs to promote learning,
why it works, and how to scale what works.

Learning engineering is “a process and practice that applies the learning sciences,
using human-centered engineering design methodologies, and data-informed decision-
making to support learners and their development” [5]. Learning engineering applies
the learning sciences—informed by cognitive psychology, neuroscience, and education
research (Wilcox, Sarma, Lippel, 2016)—and engineering principles to create and iter-
atively improve learning experiences for learners. It leverages human-centered design
to guide design choices that promote robust student learning, but also emphasizes the
use of data to inform iterative design, development, and improvement process. In the
following subsections, we provide examples of ways in which learner needs drive the
design decisions within each aspect of the learning engineering process and practice.

4.1 The Learning Engineering Process and Practice

The Generalized Intelligent Framework for Tutoring [2], the Knowledge-Learning
Instruction Framework [3], and similar efforts such as ASSISTments as an open plat-
form for research [6] are excellent examples of learning engineering in practice. The
GIFT testbed methodology supports the manipulation of the learner model, instruc-
tional strategies, and domain-specific knowledge, and enables empirical evaluation of
the effects of environmental attributes, tools, models, and methods on student learning,
engagement, and transfer of skills within [7]. The KLI framework advocates for in-vivo
experimentation, which enables rigorous experimental controls in real learning settings
with real students. Such frameworks have led to important understandings of what works
and why, and as a result, has led to robust learning gains (e.g., [8, 9]).

https://www.w3.org/2008/webapps/
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Effective learning requires the integration of research across different fields that
impact learning. The learning engineering process enables data-informed decision-
making through development cycles that include learning sciences, design-based
research, and learning analytics/educational data mining. It leverages advances from
different fields including learning sciences, design research, curriculum research, game
design, data sciences, and computer science. It thus provides a social-technical infras-
tructure to support iterative learning engineering and practice-relevant theory for scaling
learning sciences through design research, deep content analytics, and iterative product
improvements.

Figure 1 illustrates a learning engineering process for the design and development
of an AIS. Product decisions across human-centered design and dissemination in this
process may vary in method, but still follow similar patterns of questioning, generating
or accessing data, data interpretation, and application of key learnings (Fig. 2).

The process starts with decisions or hypotheses. Decisions include product design,
experience design, and learning design. An example of a hypothesis could be, “If using
design x, the response will be y.” From this point, areas of information needs emerged.
To create an AIS that is successful in terms of learning goals, engagement, and market
viability, teams should answer questions, such as, “to what extent are product/learning
assumptions true?” or “what is the behavioral response to the interaction design?” These
become the research questions that drive a focused research design toward data gathering
and meaning-making.

Learners use AISs. A learner-centered approach requires production teams to have
a complete (or as close to complete as possible) view of the learner, their motivation,
and their learning environments. It is through user activity that data are generated.
Data can be observational, behavioral, sentiment, and analytic, and are gathered and
understood throughavariety of analyticalmethods.Bywayof thesemethods andanalytic
approaches, researchers make sense of findings, and together with product owners and
designers, derive insights to inform design improvements and contribute to the broader
research corpus.

Fig. 2. The learning engineering process. From [10].
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4.2 Applications of Learning Sciences

The learning engineering process starts with the application of learning sciences to
inform the pedagogy and design for learning and engagement. We refer to learning sci-
ences in broad definition by the International Society of theLearningSciences as research
that involves the “empirical investigation of learning as it happens in real-world settings”
[11] Learning sciences research is interdisciplinary and includes scholarship from areas
like cognitive science, educational psychology, curricular studies, and design research.
In the learning engineering process, learning sciences research is mapped to stages of
design, from curriculum to immersion and interaction design, and to overall system
design and final product development and implementation with considerations of evi-
dence and data collection [12]. In relation to adaptive design, important methodological
extensions of learning sciences such as user-centered design research, game-based learn-
ing design, learning analytics, and educational data mining [13, 14] also become relevant
as part of a paradigm of data-informed AISs. As such, learning sciences applications are
present at all stages of the learning engineering process [13].

At the start of the design and development process, the fundamental question in learn-
ing design is to clearly define what is being taught. Educational research in curricular
design investigates methodology in this area, with the establishment of learning trajec-
tories [15]—including fundamental components of fine-grained, measurable learning
objectives and pathways embedding formative assessment for differentiated instruction.
In application to foundational mathematics skills, for instance, the design of learning
trajectories informs an approach and a specified ontology of core mathematics learning
objectives in the program Building Blocks, a mathematics curriculum designed using
a comprehensive Curriculum Research Framework to address numeric and geometric
ideas [16].

Building on defining competencies and learning objectives, learning science research
can inform the core design of learning experiences. This can be done in numerous ways.

In game-based and immersive learning contexts, for example, evidence-based design
frameworks serve to fundamentally connect learning objectives with specific digital
interactions designed to elicit evidence of learner knowledge, skills, or abilities (e.g.
Evidence Centered Design, [17]. This alignment allows insight into student learning
through real-time interaction with a virtual space, thus providing ongoing performance
data that enable formative feedback and personalized learning pathways. This gives way
to authentic assessment and player immersion, which is vital for reaching learners in
both formal and informal learning environments [18].

Learning science can also support learning design by using research in human cogni-
tion and development to support long-term learning of target competencies. For example,
desirable difficulties [19] such as retrieval practice [20], interleaving [21], and distributed
practice [22] can be built into an adaptive system to support long-term memory. Appli-
cations of perceptual learning principles can be used to support the development of
perceptual expertise (e.g., [23]). Concreteness fading principles can be used to promote
conceptual transfer [24].

In data-centric phases of the learning engineeringprocess,methodological extensions
of learning sciences such as learning analytics and educational data mining [14] can
guide design improvements for better learning and engagement (more in Sect. 4.4).
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Learning sciences approaches can inform research questions, analyses, interpretation of
results, and derive insights for design improvements [25]. Resulting insights can enable
intelligent personalization of the system, inform iterative data-driven design of core
activities and mechanics, and allow for real-time visualization of learner progress.

4.3 Human-Centered Engineering Design Methodologies

Achieving learning and engagement goals requires a deep knowledge of the end user.
This is where human-centered engineering design processes are critical. Consider design
researchers in a learning engineering team regularly recruiting children and parents to
playtest early production prototypes, investigating the ways young children demonstrate
their problem-solving and meaning-making through proposed playful interactions. Data
from such user testing sessions can drive the concrete interactions, user interface, and
user experience design for each learning experience, all of which are sensitive to the
cognitive load, executive functioning skills, etc. that are appropriate for the learners’
cognitive and development stages. This is particularly crucial for young learners, for
whom the interaction needs are difficult to calibrate in initial design iterations.

Design research outcomes support the blending of pedagogical and engagement
goals by pointing to actionable insights that allow teams to make informed design deci-
sions through product development cycles. From this perspective, educational design
research is embedded in and integral to the design work itself [26, 27] is grounded
in empathy, beginning with the needs and perspectives of the people being designed
for [28] is interested in discovering how and why people behave the way they do, and
what opportunities may exist for new innovation; and highlights starting points for the
design of meaningful interactions, which sit at the core of well-designed environments
for teaching and learning [29].

4.4 Data-Informed Decision Making

With large numbers of diverse learners engaging with content, the extensive detailed
trace data about learner engagement and performance from AISs allow for better under-
standing of how learning unfolds, and permit experimentation of different analytical
methodologies and approaches (such as learning analytics and educational data min-
ing), and of content with rapid design and evaluation cycles (e.g. [14]). This means we
can know more about how learners with different attributes engage and learn, and thus
can differentiate educational experiences that match learners’ skills, goals, interests, and
background [30]. A learning engineering approach takes each of these elements into
account to work for products at scale.

An AIS with rich event-stream data, enabled by the integration of research-based
design phases, supports the application of a large range of methods in learning analytics
and educational data mining to drive learning insights and design iterations. Learner
performance data can be surfaced on dashboard visualizations as feedback for students,
parents, and teachers to monitor and provide additional individual learning support.
Event-stream data of learner progress also supports efficacy research to evaluate learning
outcomes. For example, in educational data mining efforts for learning design and better
personalization, behavior detection methods were recently used to build a predictor
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tracking when students are “wheel-spinning” in ABCmouse Mastering Math, an AIS
designed to promote early number sense in children ages 2–8. Wheel-spinning students
are those who are spending too much time struggling to learn a topic without achieving
mastery, a form of unproductive persistence [31] versus those who are productively
persistent [32]. In detecting wheel-spinning in real-time, AISs can better respond to
students who need support, and surface these insights to educators for additional in-
person intervention. This also enables the design of dashboards summarizing learning
objectivemastery. Insights from these efforts can also inform pedagogical understanding
and informed design for deeper learning and engagement.

Learning engineering iteration cycles can impact learning outcomes at large not
just by feeding insights into new product decisions, but by also sharing learnings back
into the broader academic community of learning engineers and product developers.
The result is a learner-centered practice and process that (1) provides a comprehen-
sive view of the learner and their environment to enable the design of effective and
engaging personalized learning experiences for diverse learners, (2) enables fast learn-
ing and development, which is crucial for staying sustainable with limited resources in
typical industry production environments, and (3) provides coherence across theories
and methodologies to enable actionable insights toward product design, development,
validation, and contribution to the field.

5 The Learner as a System Component

The models introduced earlier provide a theoretical/conceptual model of the AIS. We
discussed how learners’ needs drive the design and development of AISs in the learning
engineering process. When considering a functional system, we propose that the learner
and the learning environment are also part of the system (Fig. 3).

Each component in a system has a job to do. If the efficiency and effectiveness of
one component can be improved, it may or may not improve the functionality of the
entire system. In other theoretical AIS models, the learner model serves as a proxy for
the learner as it does here, so the adaptive engine makes inferences and adaptations using
the digital twin, and then can infer whether or not that adaptation had a positive effect
on learning based on the updated digital twin. That is a valid approach. However, the
expanded perspective that includes the learner and environment as part of the system
might prompt learning engineering teams to ask different questions, leading to new
insights for optimizing the overall system. As we have seen, the exploration of such
research questions about the learner and their learning environment is an important part of
the learning engineering process. For example, what environmental conditions/patterns
might be affecting learning in ways that humans might not notice, but an AI agent might
discover? How can we better design the conditions outside of the technology system to
promote learning?What are the blind spots in the differences between the learner and the
learner model’s digital twin of the learner? What if we use different kinds of interfaces
to adapt conditions for the learner than what we are used to (e.g. non-verbal audio cues,
natural language dialogue, physiological sensors, climate control adjustments)?

If we consider the learner and learning environment as system components, and the
learner’s function is to learn, then one of the core design goals for the system should be to
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help the learner become better at learning. It is not just about what the other components
can do to the learner to cause learning to happen. What additional components can
be introduced to help the learner become a better learner, a more motivated learner, a
self-regulated learner?

We might say that the overall system goal is to optimize the functionality of the
“learner component” by optimally adapting interactions between the other compo-
nents of the system and the learner via human-computer interfaces and by adapting
the conditions within which those interactions take place.

These interactions can be simply expressed as a cycle of learner experi-
ences/conditions, observed-measured and analyzed by other components to produce
inferences about the state of the learner as diagnosis and prescriptive adaptation inform-
ing what the system does next. The prescription may be immediate feedback for an
adaptation of a future learning experience or to trigger some extra-learning process (e.g.
a credential assertion, an alert to an instructor, etc.) (Fig. 4).

5.1 Modeling the Mind (and Body) of the Learner

System components in the “learner model” category may serve as a “digital twin” of the
learner. This digital twin is the information that informs the rest of the adaptive system. It
is a kind of interface between the real learner component and theAIS. For cognitive learn-
ing objectives the adaptive system, just like a goodhuman tutor, attempts to “get inside the
learner’s head” to understand conceptions that are on target andmisconceptions that need

Fig. 3. Diagram showing the learner and learning environment as part of the overall system
connected to AIS modules via including human-computer interfaces and environmental sensors.
(Goodell, 2019)



568 J. Goodell and K.-P. Thai

correction. For objectives that involve development of bothmental and physical abilities,
the digital twin may include information about physiology and physical development.

This information may include:

• both facts and inferences about past, current, andpredicted future cognitive capabilities
and functions (Examples: logs of interaction, transactional performance assessment
data, and inferred competency assertions derived from those raw data)

• physiological attributes related to learning and performance objectives. (Examples:
physiological metrics/abilities/limitations that might indicate readiness, lack of readi-
ness, or need for accommodations, scaffolding, or pre-requisite physical conditioning;
eye tracking to gauge learner engagement)

• both raw transactional data and processed/interpreted data as a log of a learner’s activ-
ities, actions, and experiences (They may include data to support spaced learning and
knowledge decay models.)

• various data collected from the learner to indicate learner preferences or provide feed-
back to the system

• data collected from other people on behalf of the learner
• data collected through sensors and external systems
• inferences, assertions, and evidence of competency and levels of mastery
• inferences and evidence of knowledge gaps and misconceptions.
• inferences and evidence of learning behaviors
• contextual data about the environmental conditions, cultural contexts, human relation-
ships that might influence a learning experience or the learner’s general perceptions
that impact learning

• data about levels of engagement, emotional states, etc.
• records of feedback offered to the learner

Fig. 4. Experience and feedback cycle illustration. CCBYGoodell, J. & Flynn, J. (2016) Adapted
with permission.
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• applicable metadata inferred from patterns in other learner data sets used to predict
optimum conditions for this learner’s current and future pursuit of the same learning
objectives. (e.g. demographics, prior learning pathways, contextual patterns).

5.2 From a Generic Proxies of the Learner and Context to a More Precise Digital
Twins

The system design starts with designing for a proxy of the learner based on a set of
general assumptions about how people learn, about the class of learners who will inter-
act with the system, and about their learning environments. The domain model and
learning experiences designed for the system are based on and may map to definitions
of pedagogical models. Pedagogical models represent application of learning theories
with a pedagogical approach, i.e. defining the kinds of interactions that in theory should
promote a learner’s achievement of learning objectives [1].

The adaptive system doesn’t rest with a general proxy of the learner or general
assumptions about how people in general might respond when a pedagogical model is
applied in a given context. Once the specific “learner component” is plugged into the
system the other components begin to adapt. With every interaction the learner model
is augmented and corrected with a more precise “digital twin” of this specific learner.
Information about learner responses to system stimulus are used to test general theo-
ries behind pedagogical models and enrich those models based on the specific learner,
context, and conditions. The more precise pedagogical model can be used to adapt the
learning activities offered and other factors of the learning experience (e.g. content,
presentation, scaffolding, motivational constructs, etc.).

This kind of iterative improvement is a learning engineering process that can be and
is done by human learning engineering teams such as creators of intelligent tutoring
systems. It is also a learning engineering process that can be done with AI/machine
learning.

5.3 Modular Architecture

While conceptually the proposed learner-centered AIS fits into four conceptual cate-
gories (learner models, domain models, adaptive models, and interface models), the
functional components require further classification. We envision a distributed system
with modules that perform specialized functions and require specialized data architec-
tures. For example, the data architecture for an assessment item bank has very dif-
ferent structural requirements than the data architecture for a competency frameworks
repository.

The following list defines modules that might be included in a distributed learner
centered AIS [33]:

• Competency framework module—an information resource with competency defini-
tions and metadata to which learning experiences, resources, assessment items, and
other resources will be aligned. This includes information about

– competency frameworks;
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– competency definitions;
– associations between competency definitions, e.g. for optimizing competency-
based pathways;

– rubrics and/or assessment criteria profiles (profiles of how a learner’s competence
level can be measured for competency definitions and given contexts); and

– feedback profiles.

• Customized learner profile modules that combine data from source systems and input
from students, educators/instructors, parent/guardian (if applicable), supervisors, and
others involved in the student’s education/training, work context, or well-being

• Separate learner model repositories with data in multiple formats and granularities,
such as a learning experience record store with granular log data versus more struc-
tured data repositories for assessment results, competency assertions, and predictive
inferences driving motivational feedback

• Personalized learning plan modules responsive to the learner as he or she progresses
and changes

• Learning resource/activities content repositories
• Learning resource/activities metadata/paradata repositories
• Learning resource/activities discovery module
• Content authoring modules
• Interface & instrumentation modules (including multisensory learner stimulus com-
ponents, sensors, and data capture functions)

• Repositories of pedagogical models
• Repositories of adaptive strategies as inputs to adaptive engines (Fig. 5)

5.4 Designing from the Inside Out, and then Through Iterative Optimization

We envision future design and development of adaptive instructional systems benefiting
from an emerging learning engineering discipline that embraces a learner-centered iter-
ative problem-solving approach. Designing from the inside out, the learner’s needs drive
the design. This approach starts with imperfect but research-based assumptions about
the learner, how they will interact with the system, their learning environment, the learn-
ing objectives and pedagogical models, the decisions about what functional components
are needed to implement the pedagogical model, and the learning experience designs
that are mapped to pedagogy and learning objectives, etc. As data from and about the
users are collected, we can iterate on the design- and address-specific design and inter-
face problems. The proposed learner-centered AIS model is a self-improving system by
design that embodies key learning engineering processes. The human-centered design
approach can enable us to better understand the learner and the problem to be solved (i.e.
the learner model). Applications of the learning sciences can drive and inform improve-
ments in the domainmodel, adaptivemodel, and the interfacemodel. Iterative design and
development approaches can enable data-informed decision-making. Through designing
from the inside out and then through iterative optimization, we can build AISs that can
address diverse learning needs at scale.
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Fig. 5. From Glowa, L. and Goodell, J. (2016) Student-Centered Learning: Functional Require-
ments for Integrated Systems to Optimize Learning Vienna, VA.: International Association for
K-12 Online Learning (iNACOL). Adapted with permission.
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