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Abstract Methods of particles are now recognized as an effective tool for numer-
ical modeling of dynamic mechanical and coupled processes in solids and liquids.
This chapter is devoted to a brief review of recent advances in the development of
the popular particle-based discrete element method (DEM). DEM is conventionally
considered as a highly specialized technique for modeling the flow of granular media
and the fracture of brittle materials at micro- and mesoscopic scales. However, in the
last decade, great progress has beenmade in the development of the formalism of this
method. It is largely associated with the works of the scientific group of Professor S.
G. Psakhie. The most important achievement of this group is a generalized formula-
tion of the method of homogeneously deformable discrete elements. In the chapter,
we describe keystones of this implementation of DEM and a universal approach
that allows one to apply various rheological models of materials (including coupled
models of porous fluid-saturated solids) to a discrete element. The new formalism
makes possible qualitative expansion of the scope of application of the particle-based
discrete element technique to materials with various rheological properties and to the
range of considered scales formmicroscopic to macroscopic. The capabilities of this
method are especially in demand in the study of the features of contact interaction of
materials. To demonstrate these capabilities, we briefly review two recent applica-
tions concerning (a) the effect of adhesive interaction on the regime ofwear of surface
asperities under tangential contact of bodies and (b) the nonmonotonic dependence
of the stress concentration in the neck of the human femur on the dynamics of hip
joint contact loading.
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1 Introduction

Starting with the classic works of Cauchy and Navier [1, 2], the development of
the formalism of the discrete representation of the medium at a continuum (“super-
atomic”) scale is considered among the fundamental problems for the mechanics of
solids. In the frameworkof this representation, amatter is described by an ensemble of
interacting particles. Each particle models a sufficient number of atoms or molecules
to describe the state and response of the particle in terms of thermodynamic param-
eters and classical mechanical models (Fig. 1). A discrete description of solids and
liquids was initially considered as a way to fill the gap between molecular mechanics
and continuum mechanics [3]. However, the rapid development of the formalism
of particle methods in the last two decades has made it possible to apply them to
study the mechanical behavior of diverse solids as well as various mechanically
assisted or activated processes in the entire spectrum of spatial scales from atomic
to macroscopic.

The traditional approach to the numerical study of the behavior of materials on the
“above-atomic” spatial scales is based on the methods of continuummechanics such
as finite element, finite difference and boundary element methods (FEM, FDM and
BEM) [4–9]. The formalism of these methods allows easy implementation of various
linear and nonlinear (including coupled thermomechanical and poroelastic) rheolog-
ical models. Moreover, advanced implementations of FEM, FDM and BEM include
the ability to directly model fracture [10, 11]. Despite the well-known advantages of
continuum numerical methods, their fundamental limitation is difficulty in modeling
of complex fracture-related problems including development of multiple fractures,
contact interaction of the initial and newly formed surfaces, wear of surface layers
and a change in surface roughness, flow of granular media, etc.

Mentioned limitation is not inherent in particle-based methods [12–19]. The most
relevant and efficient particle-based method for numerical modeling of the above-
said complex mechanical processes in solids is the discrete element method (DEM)
[18, 19]. The constantly growing interest in this numerical technique is determined
by the ability to solve a variety of complex and non-linear contact problems, where
the processes of fragmentation and mass transfer of fragments play a key role. This

Fig. 1 Representation of the material by ensemble of particles as an extension of atomistic
representation to higher spatial (and temporal) scales
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chapter is devoted to the analysis of achievements in the development of DEM for
computer simulation of the mechanical behavior of consolidated solids.

Creation of this method is attributed to Cundall [20, 21]. In the framework of
original implementation of DEM, a discrete element is treated as a finite part of a
solid body (or a particle in particulate/granular material) bounded by clearly defined
(exact) surface. The latter qualitatively distinguishes this method from the methods
of quasiparticles with “fuzzy” surface. Elements can be either chemically bonded
if they model a consolidated material, or contact if the contact interaction of the
fragments is modeled. Changing the type of bond of elements (chemically bonded
↔ contact ↔ noninteracting) is governed by the applied criteria of fracture, bond
formation andcontact loss [22, 23].The stress state of a discrete element is determined
by the mechanical load of the surrounding elements on the surface of the element.
The absence of a constraint in the form of the continuity equation makes the DEM
extremely attractive for numerical studying complex processes in contact zones.

The term “discrete element method” is now used as a generic name for a large
group of numerical techniques based on these general principles for representing the
medium [18, 21, 24, 25]. Various representatives of this group differ in several key
features: the principle of local or global force equilibrium (explicit or implicit formu-
lation); approximation of the shape of the volume modeled by a discrete element;
approximation to the description of the deformability of a discrete element.

Explicit DEM is themost popular and is widely used to solve fracture- and contact
interaction related dynamic problems. It implies the formulation of equations of
motion for each discrete element and the parallel solution of the system of these
equations with an explicit time marching scheme (Euler, Verlet or other integra-
tion algorithm). Since a discrete element simulates a finite volume of material, the
mechanical interaction of such finite volumes should lead not only to their transla-
tional motion, but also to rotation determined by the moments of interaction forces.
The form of the dynamics equations for the rotational degrees of freedom of an
element (Euler’s equations) is determined by the shape of an element. In the general
case, Euler’s equations are written in integral form using the inertia tensor (tensor of
inertia, in turn, is formulated as an integral) [18]. Integral Euler equation is cumber-
some and computationally costly, that is why elements with complex nonequiaxial
geometry (polygonal [26], superquadric [27] elements) are used only for modeling
granular or fragmented (block-structured) materials. At the same time, a consoli-
dated material can be much more efficiently modelled by an ensemble of bonded
equiaxial elements, the shape of which is approximated by equivalent sphere (3D
problem) or a disk of a given height (2D problem) [18, 22, 28]. The efficiency of
an approximation of an equivalent disk/sphere is determined by the simplicity of the
Newton–Euler motion equations for a discrete element:

⎧
⎪⎪⎨

⎪⎪⎩

mi
d2�ri
dt2 = mi

d �vi
dt = �Fi =

Ni∑

k=1

�Fik =
Ni∑

k=1

( �Fc
ik + �Ft

ik

)

Ji
d �ωi
dt = �Mi =

Ni∑

k=1

�Mik

, (1)
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where i is the number of discrete element, �ri , �vi and �ωi are the radius-vector, velocity
vector and angular velocity pseudovector respectively, mi is the mass of the element
i, Ji is moment of inertia of an equivalent disk or sphere, �Fi and �Mi are the total force
and torque acting on the element i by the neighbors, �Fik is the force of interaction of
the considered element i with the neighbor k, �Fc

ik and �Ft
ik are the central (along the

line connecting mass centers of the elements i and k) and tangential (in transverse
plane) components of the force �Fik , �Mik is the moment of interaction forces (includes
tangential moment of �Ft

ik and twisting moment [22]), Ni is the number of neighbors
of the element i .

One can see that the approximation of the equivalent disk/sphere allows the use
of Euler’s equations in the most trivial and computationally efficient form. Another
important consequence of this approximation is the formal independence of the
central and tangential interactions: the force �Fc

ik does not cause acceleration in the
plane of the tangential interaction, and the force �Ft

ik does not cause acceleration along
the line connecting the centers of mass of the elements.

The forces �Fc
ik and �Ft

ik of interaction of discrete elements are traditionally
represented as the sum of the potential ( �Fcp

ik and �Ftp
ik ) and viscous ( �Fcv

ik and �Ftv
ik )

constituents [20, 22]. From the point of view of the rheological description, viscous
forces have a meaning similar to the physical meaning of the damper in the Kelvin-
Voight viscoelastic model. A key component of constructing a discrete-element
model of a material is the determination of the structural type and coefficients of
the potential interaction forces.

In the framework of the traditional DEM implementation, the central and tangen-
tial potential forces of interaction of equivalent balls/disks (Fcp

ik and Ftp
ik ) are calcu-

lated in the pair-wise approximation. From the physical point of view, pair-wise
potential corresponds to the approximation of a non-deformable (rigid) element (a
system of springs or rods). Here, the term “rigid” is used in the sense that the inter-
action of the element i with the neighbor k does not change its volume and shape
and, therefore, does not cause a change in the forces of interaction of the element
i with other neighbors (these neighbors “feel” the result of the interaction in the
pair i − k only indirectly, through the motion of the element i). This approximation
is widely used for micro- and mesoscopic description of the processes of damage
accumulation and fracture of brittle materials, contact interaction of elastic bodies,
including the dynamics of block-structured media. In this case, element-element
interaction is traditionally modelled using harmonic interaction potentials (such an
interaction is schematically represented by connecting the centers of the elements
with two springs oriented in the central and tangential directions) [22, 28, 29]. Some
models also use nonlinear (elastic–plastic or viscoelasticMaxwell type) formulations
of pair-wise interaction forces Fcp

ik and Ftp
ik [30, 31] for simulation of granular media

and porous structures with non-linear/ductile rheological properties of the material
of the skeleton walls or granules. However, such potentials make possible adequate
description of the mechanical behavior of porous systems only at a “low” scale (the
scale of discontinuities or granules).
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The key problems that strongly limit the range of application of the traditional
implementation of DEM with pair-wise interaction forces are well known. They are
(i) dependence of the macroscopic properties of an ensemble of discrete elements
on the type of packaging and size distribution of elements, (ii) incorrect description
of the plastic strain of an ensemble of elements (for example, plastic deformation of
a sample may be accompanied by an uncontrolled change in its volume), and other
related problems.

Various approaches to solving these fundamental difficultieswithin the framework
of the concept of non-deformable elements have been proposed in last decades. In
particular, stochastic dense packing of non-uniform-sized circular (2D) or spher-
ical (3D) elements [22, 28, 29] is used to solve the problems of packing-induced
anisotropy of the elastic response and packing-dependent ratio of elastic modules
of an ensemble of elements. An alternative approach is to use the formalism of
spring network model (lattice model [32, 33]) to build relationships for the forces of
interaction of regularly packed uniform-sized elements [34–36]. The lattice model
is based on the postulation of the form of interaction potential (harmonic potential
is usually used for both central and angular interactions) and equalization of elastic
strain energy stored in a unit cell of volume to the associated elastic strain energy
of the modelled continuum. The material parameters derived from this equality are
included in the relationships for the forces of element-element interaction. The above
approaches made it possible to adequately describe the mechanical (and thermome-
chanical [36]) behavior of brittle materials under complex loading conditions. At
the same time, they do not allow solving the key problem of incorrect modeling of
nonlinear (and/or inelastic) mechanical behavior of materials with complex rheolog-
ical properties (including rubber-like viscoelastic materials as well as metallic and
polymer materials, whose macroscopic plasticity is not related to discontinuities).

The problem of correct modeling of nonlinear mechanical behavior of consoli-
dated materials by the method of discrete elements can be generally solved only by
using the approximation of the deformable element. In turn, the deformability of an
element can be realized only within the framework of a many-body interaction of
elements. This means that the potential interaction force must depend not only on the
relative motion of the elements in the pair, but also on the interaction of each of them
with other neighbors. The formulation of the general structural form of the potential
interaction force and its specific realizations for materials with various rheological
properties has been among the critical challenges for the DEM until recently.

2 Distinct Element Method with Deformable Elements

A meaningful contribution to the development of the formalism of DEM was done
by Professor Sergey G. Psakhie and his team. Professor Psakhie was a founder of
the new particle-based method, namely, the method of movable cellular automata
(MCA) [37, 38].The basic principles of this method were developed in collaboration
with Professor Yuki Horie (North Carolina State University, Los Alamos National
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Lab). Originally, the MCA method was designed as a hybrid technique to model
mechanically activated chemical reactions in powder mixtures [39, 40]. This original
implementation combined the formalisms of discrete elements and cellular automata,
in which the mechanical response of the particle was described using the DEM
formalism, while the non-mechanical thermodynamic aspects of particle–particle
interaction (including melting and mechanically activated chemical reaction) were
modelled on the basis of the concept of cellular automata.

Themost important achievement of S. G. Psakhie in the development of numerical
particle-basedmodelling techniques is the proposed general formalism of themethod
of homogeneously (simply) deformable discrete elements.

The keystones of this formalism were laid in the framework of collaboration
with Professor Valentin L. Popov (Technische Universität Berlin) and his scien-
tific group. In a joint work of Professors Psakhie and Popov [41], the basic princi-
ples for describing the mechanical behavior of a discrete element (movable cellular
automaton) as a deformable area of the medium were formulated. For a special case
of an ensemble of close packed elements of the same equivalent radius, whichmodels
an isotropic two-dimensional continuum, a relation was proposed for the potential
force of the central interaction of elements in the many-body approximation:

Fcp
ik = E∗δLik = E∗

⎛

⎝δrik + D
N∑

j=1

δri j + D
N∑

m=1

δrkm

⎞

⎠. (2)

Here, the symbol δ denotes the difference between the current and initial values of the
corresponding parameter, rik = |�ri − �rk | is the distance between the centers of mass
of the elements i and k, Lik is the effective distance between the elements, N is the
number of neighbors in the first coordination sphere. The coefficients E∗ and D are
expressed in terms of the elastic constants of the material and the element packing
parameters. Derivation of these coefficients is based on the condition for ensuring
the required values of Young’s modulus and Poisson’s ratio of the material [41].
This model is based on the same principles as the classic spring network models,
but it has a fundamental difference. The force of the central interaction of the two
elements is represented in the form of a superposition of the pair-wise component
E∗δrik and “hydrostatic” components. The latter are proportional to the change in the
volumes of the interacting elements (here, we use the particular form of expression
for the element’s volume change in regular packing). The reasonableness of this
formulation is confirmed by the linear relationship of the diagonal components of
the stress tensor and the volume strain in the vastmajority ofmacroscopic rheological
models of materials (linear and non-linear elasticity, viscoelasticity, plasticity).

The proposed formalism actually uses the approximation of homogeneously
deformable elements. It was further developed to describe plastic flowof the elements
based on constitutive equations of the macroscopic continuum theory of defects
[41]. Despite the clear advantages of the proposed formalism, it has the same key
limitations as traditional lattice-based models. Among them, are the absence of the
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tangential interaction of elements (shear resistance force), packing-dependent artifi-
cial anisotropy of the integral response of the ensemble of elements at a significant
distortion of the initial symmetry of the lattice, and the lack of a general and simple
algorithm of implementation of complex rheological material models.

A generalized formulation of the method of homogeneously deformable discrete
elements was proposed later in the works of Professor S. G. Psakhie with co-authors.
It applies the concept ofmany-body interaction for the ensemble of arbitrarily packed
different-size elements and is based on the following principles:

1. Approximation of equivalent disks/spheres (Fig. 2). Within the framework of
this approximation, the dynamics of elements is described by Eq. (1), and the
forces of central and tangential interaction are assumed to be formally unrelated
to each other. Elements interact with each other through flat contact areas. The
geometry and squares of these areas are determined by the local packing and
sizes of the elements [22, 42, 43]. The potential interaction of the two elements
is conveniently described in terms of specific forces of interaction (normal σik

and tangential τik contact stresses):

{
Fcp
ik = σik Sik

Ftp
ik = τik Sik

. (3)

2. A discrete element is assumed to be homogeneously deformable, i.e., its stress–
strain state is characterized by tensors of stress and strain (hereinafter called

Fig. 2 Typical examples of 2D samples modelled by the ensembles of regularly and stochastically
(dense) packed discrete elements. Figures show equivalent disks
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average stresses σαβ and strains εαβ , where α, β = x, y, z). To determine the
components of average stress tensor, we use well-known classical relations for
average stresses and “local” values of traction vectors at the contact areas of the
element with neighbors (stress homogenization) [22, 42, 44]:

σ i
αβ = Ri

	0
i

Ni∑

k=1

S0ik(�nik)α
( �
ik

)

β
= Ri

	0
i

Ni∑

k=1

S0ik(�nik)α
(
σik(�nik)β + τik

(�tik
)

β

)
,

(4)

where Ri is the radius of equivalent sphere approximating the element i, 	0
i is

the volume of unstrained element, S0ik is the contact square in unstrained pair
i − k, �
ik is the traction vector at the area of contact of elements i and k (normal
and tangential contact stresses are the components of this vector), �nik is the
unit normal vector directed along the line connecting the mass centers of the
elements, �tik is the unit tangent vector directed in the tangential plane, ( �W )β is
the projection of some vector �W onto the β-axis. We emphasize the generality
of definition (4), which is applicable for arbitrary local packing of elements of
various sizes (packing and sizes determine the values of the direction cosines
and contact areas).

3. A consequence of the deformability of an element is the need to divide the spatial
parameters of its interaction with a neighbor (pair overlap and relative tangential
displacement) into two components, namely, the contributions of both elements:

{
�rik = �qik + �qki = Ri�εik + Rk�εki

�lshik = Ri�γik + Rk�γki
, (5)

where qik and qki are the distances from the mass centers of the interacting
elements i and k to the central point of the contact area (they are equal to equiv-
alent radii Ri and Rk respectively for the case of unstrained elements), εik and
εki are central pair strains of discrete elements i and k, lshearik is the value of
relative tangential displacement of the elements (it is calculated with taking into
account the element rotations [22, 39, 42]), γik and γki are the shear angles of
discrete elements i and k (contributions to the total shear angle). In the general
case, εik �= εki and γik �= γki . Relations (5) are given in the incremental form
[hereinafter the symbol� denotes an increment of some parameter over the time
step of numerical integration of the motion equations (1)] because this form is
convenient for the numerical implementation of complex rheological models.
Note that the strains εik and γik are the components of the “local” strain vector,
which is used in the definition of εiαβ by the analogy to (4).

4. In the framework of approximation of deformable element, the specific normal
and tangential forces (contact stresses) σik and τik are interpreted as the compo-
nents of the specific force of mechanical response of the element i to the mechan-
ical loading by the neighboring element k. These stresses are the functions of the
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i-th element strains εik and γik in the pair i − k. We proposed the general form of
these functions, which assumes homogeneous deformability of the element and
linear relation between volume strain and mean stress (or pressure) [42–44]:

{
σik = σ

pair
ik (εik, ε̇ik) + Biσ

i
mean = σ

pair
ik (εik, ε̇ik) − Bi Pi

τik = τ
pair
ik (γik, γ̇ik)

. (6)

Here, the upper index “pair” denotes pair-wise function, σ i
mean = −Pi =(

σ i
xx + σ i

yy + σ i
zz

)/
3, Bi is the material parameter. The first relation in (6)

suggests that the normal (compressive/tensile) resistance of an element is deter-
mined by both the strain of this element εik along the loading axis and the hydro-
static (liquid-like) component. The second relation is written in the pair-wise
approximation, which ideologically corresponds to the relations connecting the
off-diagonal components of the stress and strain (or strain rate) tensors in most
rheological models of solids. The specific form of the pair-wise components
σ

pair
ik and τ

pair
ik as well as the values of the material coefficients are determined

by the applied rheological model of the material modeled by a discrete element.
The necessity to satisfy Newton’s third law (σ ik = σki and τik = τki ) leads to the
following systems of equations, which are used to calculate the current value of
interaction forces �Fcp

ik and �Ftp
ik for the motion equation (1):

{
σ

pair
ik (εik, ε̇ik) + Biσ

i
mean = σ

pair
ki (εki , ε̇ki ) + Biσ

i
mean

�rik = �qik + �qki = Ri�εik + Rk�εki
, (7)

{
τ
pair
ik (γik, γ̇ik) = τ

pair
ki (γki , γ̇ki )

�lshik = Ri�γik + Rk�γki
. (8)

The solutions to each pair of equations are the values of pair strains. These
strains are then used to calculate the current values of the forces of interaction
of elements according to (6).

5. A pair of elements modeling a part of a consolidated material is assumed to be
chemically bonded (linked). The central interaction of linked elements includes
resistance to compression and tension, and the tangential interaction typically
takes into account shear and bending resistance [42]. In the framework of the
discrete element method, the elementary act of fracture at the considered spatial
scale is the breaking of the chemical bond between the two elements. The condi-
tion of linked-to-unlinked transition is governed by a specified fracture criterion
for a pair. This criterion is determined as a fracture condition at the contact
area. Most fracture criteria in the mechanics of a deformable solid are formu-
lated in force-like form in terms of the invariants of the stress tensor (Mises,
Mohr–Coulomb, Drucker-Prager and other failure criteria). We proposed an
approach to implementation of such kind of criteria within the framework of
the formalism of deformable elements [42, 44]. It is based on determining
the local stress tensor on the contact area of the linked pair of elements and
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calculating its invariants. The local stress tensor σ ik
α′β ′ is determined in the local

coordinate system of the pair i − k. The specific forces σik and τik are used
as the diagonal and off-diagonal components of this tensor. The missing 4
components are determined on the contact surface by linear interpolation of the
corresponding components of average stress tensors in the interacting elements:
σ ik

α′β ′ = (
σ i

α′β ′qki + σ k
α′β ′qik

)/
rik . Here the accent means that average stresses

are considered in the local coordinate system.
A bond break leads to a change in the interaction in a pair of discrete elements:
the central interaction includes only compression resistance, and the dry [22] or
viscous friction force is usually used as the tangential force. A pair becomes non-
interacting if the value of the central force becomes equal to zero. We also note
that the deformability of elements leads to a generalized formulation of contact
detection condition, which takes into account a change in the linear dimensions
of elements [42, 44].

6. Contact interaction of unlinked discrete elements is traditionally treated as non-
adhesive. However, inmany real systems, the adhesion of surfaces is an important
factor determining the laws of friction and wear [45]. To adequately model the
adhesive contact of surfaces, we assume attractive normal force acting between
elements even after they are debonded [46, 47]. This force varies with separation
of the surfaces of interacting elements according to prescribedmodel of adhesion
(Dugdale’s, Van-der-Vaals or other interaction potential). The value of separation
is determined with taking into account deformation of elements along the normal
�nik . The tangential force of interaction of unlinked and noncontact elements is
assumed to be zero.
At large values of surface energy, the mechanical contact of chemically clean and
smooth surfaces can be accompanied by the formation of a chemical bond (this
effect is often called coldwelding). This effect is taken into account in themethod
of deformable discrete elements based on the use of the criterion of unlinked-to-
linked transition for contacting pairs of elements. The pair of elements becomes
linked if the criterion is satisfied. We proposed some formulations of such kind
of criteria including critical values of the contact normal stress and plastic work
of deformation [42].

3 Principles of Implementation of Rheological Models

The most important advantage of the proposed general formulation of element-
element interaction (6)–(8) is the possibility of simple implementation of various
rheological models of solids. One can see from relation (4) that the components of
average stress tensor are linearly related to the forces of interaction of the element
with its neighbors. In turn, the interaction forces are linearly related to the compo-
nents of average stress tensor by relation (6). A fully similar interconnection takes
place between average strains and pair strains of the element. We first showed that
the similarity of the relationship between average and local (contact) stress and strain
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parameters of the element inevitably leads to the fact that the specific formulation
of relations (6) should be similar to the formulation of the constitutive relations for
the material of a discrete element. In other words, the relation for the specific central
force σik of the ith element response to the mechanical loading by the neighbor k has
to be formulated bymeans of direct rewriting of the constitutive equation for the diag-
onal components of the stress tensor. The specific force of tangential response τik is
formulatedbydirect rewriting the corresponding constitutive relation for off-diagonal
stress components. Using these principles, we implemented macroscopic mechan-
ical models of elasticity, viscoelasticity, and plasticity and applied them to study
the behavior of various materials, including metals, ceramics, composite materials,
rocks, rubbers, and even bone tissues [38, 42–44].

Below there is an example of the relations (6) for the quite general case of locally
isotropic viscoelastic (described by the Prony series) material of the element. These
relations are written in an incremental form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�σik = 2Gi,
�εik +
(

1 − 2Gi

3Ki

)

�σ i
mean

− 2
∑

p

Gi,Mp

ηi,Mp
�σik,Mp + 2

�σ i
mean

3Ki,


∑

p

Gi,MpKi,Mp

ηi,Mp

�τik = 2Gi,
�γik − 2
∑

p

Gi,Mp

ηi,Mp
�τik,Mp

. (9)

Here Gi,
 = Gi,K + ∑
p Gi,M is the instant shear modulus of viscoelastic material

(Gi,K is the shear modulus of the Kelvin element, Gi,Mp is the shear modulus of
the pth Maxwell element in a series), Ki,
 is the total bulk modulus determined in
a similar way, ηi,Mp is the dynamic viscosity of the p-th Maxwell element, σik,Mp

and τik,Mp are the contributions of the pth Maxwell element to the total specific
force. It is easy to show that substitution of the relations (9) to the definition of
average stress tensor (4) leads to rigorous fulfilment of the constitutive equation for
the viscoelastic material in terms of average stresses and strains. The particular case
of (9) is the linear-elastic model (the only Kelvin element), which is typically used
to numerically study the elastic behavior of brittle and ductile materials.

It is well known that although the mechanisms of plasticity can qualitatively
differ for the materials of various natures (defects of the crystal lattice in metals and
alloys and discontinuities in microscopically brittle materials), their macroscopic
inelastic behavior is adequately described on the basis of similar models based on
the principles of the classical theory of plastic flow. In the framework of this theory,
plasticity is described as instantaneous relaxation of “excess” stresses when the
plasticity criterion (which is traditionally expressed in terms of the stress tensor
invariants) exceeds a specified threshold value (yield shear stress).

Macroscopic inelastic (ductile) behavior of materials is conventionally modelled
using associated (for metals and polymers) and non-associated (for ceramic mate-
rials, rocks and bone tissues under mechanical confinement) plastic flow models.
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The most popular way to implement these models within explicit numerical methods
of continuum mechanics is the use of radial return algorithm of Wilkins [48]. We
were the first to show that this algorithm can be easily adapted to the formalism of
deformable discrete elements. By the analogy with elasticity, the prescribed law of
mapping the average stresses σ i

αβ is rigorously satisfied when applying the stress
correcting expressions to the specific response forces σik and τik . Using this way, we
numerically implemented the widely used macroscopic model of plasticity of metals
with von Mises yield criterion [42, 43] and non-associated plastic flow model of
Nikolaevsky [44] (the macroscopic rock plasticity model with von Mises-Schleicher
yield criterion [49]). Other models of elasticity and plasticity can be implemented
within the formalism of deformable discrete elements using this direct way. In partic-
ular, recently we developed a numerical model of inelastic deformation and fracture
of brittle materials, which takes into account the finite incubation time of structural
defects and applies principles of the structural-kinetic theory of strength [50].

The generality of the developed formalism allows one to implement not only
mechanical but also coupled (thermomechanical, poromechanical and so on)material
models. One of the most significant recent achievements of Professor S. G. Psakhie
and his scientific team is the development of a hybrid (coupled) DEM-based tech-
nique to model the mechanical behavior of “contrast” materials, namely the porous
materials with solid skeleton and interstitial liquid [38, 51]. Well-known examples
of materials with locally contrasting mechanical properties are watered porous rocks
and rubbers, bone and soft tissues. The importance of adequate consideration of
the liquid phase in the contrast materials is determined by the fact that such kind
of materials possesses strongly nonlinear behavior and non-stationary mechanical
characteristics (even in the case of elastic-brittle skeleton) due to redistribution of
mobile interstitial fluid in the pore space. Note that the formalism of DEM-based
hybrid method was developed in collaboration with Dr. S. Zavsek (Velenje Coal
Mine) and Professor J. Pezdic (University of Ljubljana).

Within the framework of this hybrid technique, the discrete element is considered
as porous and permeable solid. The mechanical behavior of both solid skeleton and
interstitial fluid and their mutual influence are taken into account. In particular, using
Biot’s linearmodel of poroelasticity [52] and Terzaghi’s concept of effective stresses,
we developed the coupled macroscopic model of permeable brittle materials. The
main constitutive equations of this model are:

1. Dependence of the pore volume of an element on the hydrostatic component of
the external load and the pore pressure

	p − 	p0

	
= φ − φ0 = a

K
σmean +

(
1

K
− 1 + φ

Ks

)

Ppore, (10)

where 	p and 	p0 are the current and initial (in an undeformed element) values
of the pore volume, ϕ and ϕ0 are the corresponding values of porosity, 	 is the
volume of the element, Ppore is the pore pressure in the volume of the element.

2. Constitutive equation of linear compressible liquid in the pore space
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Ppore = P0
pore + K f l

(
ρ f l

ρo
f l

− 1

)

= P0
pore + K f l

(
m f l

ρo
f l Vp

− 1

)

, (11)

where ρ0
f l and P0

pore are the equilibrium values of the density and pressure of the
fluid under atmospheric conditions (in the absence of amechanical confinement),
ρ f l is the current value of the density of the liquid in the pore space of the element,
K f l is the bulk modulus of the liquid.

3. Hooke’s law for poroelastic material of the element

�σαβ = 2G

(

�εαβ − δαβ

a�Ppore

K

)

+ δαβ

(

1 − 2G

K

)

�σmean, (12)

where a = 1 − K/Ks is a coefficient of poroelasticity.
4. Modified formulations of yield and fracture criteria in terms of Terzaghi’s

effective stresses σ
e f f
αβ = σmean + Ppore [51].

5. The equations of motion of discrete elements (1) are supplemented by the clas-
sical equation of transport of interstitial fluid in the pore space of the material
[53]. The transport equation is solved on an ensemble of discrete elements by
the finite volume method [51].

Shown below examples demonstrate the capability of the developed formalism to
implement various complex material models. This allows qualitative expansion of
the range of simulated materials and the spatial scales under consideration.

4 Recent Applications of the Formalism of Deformable
Elements

DEM is particularly efficient technique to study various aspects of the contact prob-
lems (including mechanisms of wear) in technical and natural friction pairs. One of
the main principles of Professor Psakhie was a diversification of research activity
and the use of the developed mathematical tools in a variety of scientific fields. The
section is devoted to a brief outline of some recent results of computer study of
contact problems in technical and biological systems. These studies were initiated
and supervised by S. G. Psakhie in close collaboration with Professor V. L. Popov.

4.1 Surface Adhesion as a Factor Controlling Regimes
of Adhesive Wear

Over the past two decades, the authors have carried out numerical studies of the laws
of friction of rough surfaces of ductile and brittle materials. The key results of the
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studies are the features of the formation of the third body (quasi-liquid nano-layer)
[54], the obtained generalized functional dependence of the friction coefficient on
dimensionless combinations of material parameters and loading parameters [54, 55],
the formulated principles of nanotribospectroscopy as a promising nondestructive-
testing technique for assessment of nanostructured coating and surface layer damage
[56].

Recent joint research in this field has focused on studying the “elementary” wear
mechanisms (that is, the modes of fracture of individual asperities) and analyzing
the effect of attractive (adhesive) force between spatially separated surfaces on the
involved mechanism of asperity wear under the condition of low-angle collision.
Note that adhesive wear of the surface layers of contacting bodies is a widely studied
but still poorly predicted phenomenon [45]. A key factor determining the regime
and the rate of wear is the adhesive interaction of surfaces in the contact spots of
asperities. Here, the term “adhesive interaction” includes (a) attractive interaction
between detached surfaces and (b) effect of “cold welding” (chemical bonding of
contacting surfaces) for chemically clear surfaces with high surface energy. The first
well-known attempt to generalize the patterns of adhesive wear is the analytical
model of Rabinowicz [57, 58]. He examined two qualitatively different mechanisms
of asperity wear (plastic smoothing and breakaway) and showed that the involving of
a specific mechanism is determined by the size parameter, which is a combination of
specific material parameters, including shear strength, elastic constants, and specific
surface energy. In recent years, a number of scientific groups carried out extensive
numerical studies of the laws of interaction of single asperities [59, 60]. These studies
have shown that the dependence of the power of asperity wear onmaterial parameters
generally has a significantly more complex nonlinear form, and the spectrum of
realized mechanisms is not limited to those considered by Rabinowicz. However,
the vast majority of theoretical results were obtained for nanoscale asperities using
atomistic simulation.

We were the first to make a systematic numerical analysis of typical modes of
asperity wear on higher (micro- and mesoscopic) scales. Due to the capabilities of
the developed formalism of deformable discrete elements, such a study was carried
out for ductile and brittle materials.

The main result of the study is that we revealed and substantiated two dimension-
less material parameters that control the regime of asperity wear [46].

The first one is the ratio of attractive stress σ0 between the detached surfaces (the
adhesion stress) to the shear strength of the material σ j .We showed that the range
of values of this dimensionless parameter could be divided into two intervals with
its own wear regime in each of them. The border value of the ratio

(
σ ∗
0 /σ j

)
and the

specific involved mechanisms (specific modes) of asperity wear are determined by
the value of the second dimensionless parameter.

The second one is the dimensionless parameter a, which characterizes shear
strength sensitivity to the applied normal stress (ormean stress). It can be expressed in
terms of the ratio of material strength values under different loading conditions. Note
that shear strength sensitivity parameter effectively characterizes fracture toughness
and is closely related to material brittleness: a ≈ 1 for highly ductile materials,
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1 < a < 1.5 for moderately ductile materials, a reaches 5–10 for elastic-brittle
solids. We showed that increase in the ratio of adhesion stress to shear strength is
accompanied by the transitions:

1. from slipping (wear at the atomic scale) to grinding-based wear regime for the
case of highly and moderately ductile materials;

2. from breakaway (separation of the asperity from the foundation) to grinding-
based wear regime for the case of materials with a limited ductility or brittle.

We have built the qualitative map of asperity wear regimes in terms of dimen-
sionless material parameters σ0/σ j and a [46]. Figure 3 shows a rough schematic
representation of this classification of wear regimes, which agrees with the results of
atomistic studies by other researchers, supplements and generalizes them to higher
scales of surface roughness.

An important result of the DEM-based study is the determined dependence of
the position of the boundary between the wear regimes (the border value σ ∗

0 /σ j )
separating “low adhesion” and “high adhesion” wear modes) on asperity size L. We
showed that the value is determined not by the absolute value of L, but its relation
to the length d of action of attractive potential between spatially separated surfaces
[47]. This dependence has a nonlinear increasing profile with reaching a saturation
level at the scale∼104 of the ratio L/d. For larger asperities

(
L/d > 104

)
, the results

of the analysis of the wear regimes are scale invariant under the condition of scale
invariance of the mechanical characteristics of the material.

Fig. 3 Schematic classification of wear regimes of asperities for the case of tangential dry contact.
The coefficient α is close to 1 for highly ductile materials and about 0.5–0.6 for brittle materials(
α = σ ∗

0 /σ j
)
[46].
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So, the surface adhesion stress is a criterion that determines the wear regime of
asperities under the condition of tangential contact. The obtained map of asperity
wear (Fig. 3) together with the revealed asperity size (scale) effect have both funda-
mental and practical significance as they allow forecasting the dominating mode of
asperity wear for quite different materials from brittle to highly ductile.

4.2 Influence of Interstitial Fluid on the Sensitivity
of the Femur to the Rate of Contact Loading

Contact loading is capable of determining not only surface wear and structural modi-
fication of surface layers, but also structural changes in the volume of contacting
bodies. This is particularly relevant for biological (bone and cartilage) tissues. Func-
tioning of these tissues is largely determined by the redistribution of interstitial fluid.
Pore fluid has a complex nonlinear effect on the state and behavior of these biological
materials. There are two key aspects of this influence. The first one is fluid flow in
the pore space. Fluid flow provides the transfer of nutrients and oxygen and serves
as a prerequisite for cell proliferation and tissue regeneration [61, 62]. The second
aspect is the mechanical effect of pore pressure. It causes local tensile stresses in the
skeleton and contributes to local fracture and gradual degradation of bone tissue. At
extreme values of pore pressure it makes a significant contribution to the formation
of cracks. The aforesaid argues the existence of optimal distributions of pore fluid
(that is, optimal maximum local values and their gradient), which on the one hand
provide sufficient fluid flows to ensure normal (regenerative) tissue activity, and on
the other hand do not cause local fracture. Such distribution is formed under certain
(“optimal”) condition of the mechanical (contact) loading of the analyzed organ.

This problem is especially important in application to elements of the human
musculoskeletal system (joints) because functioning of bone tissues in these regions
strongly depends on the normal contact load and mode of tangential contact inter-
action. One of the topical problems in this field is the analysis of stress evolution
and redistribution of interstitial fluid in the femur near the hip joint under dynamic
loading. The developed formalism of permeable fluid-saturated discrete elements
is an efficient tool for such a dynamic analysis up to the stage of macroscopic
crack formation. Note that despite the topicality of the problem, there are practi-
cally no works devoted to the numerical study of the dynamic mechanical response
of femur within the consideration of bone tissue as a multiphase fluid-saturated
solid. The preliminary results of the numerical DEM-based study presented below
are, therefore, pioneering in some way.

The aim of the study is to determine the loading rate sensitivity of healthy bone
tissue of the proximal femur and bone tissue at different stages of osteoporosis. The
main attention was paid to the regions of the femur in which the volume stresses are
positive. This is due to the fact that bone is a brittle material and is characterized by
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Fig. 4 General view of themodel of the proximal femur (a) and its cross section (b) with differently
colored cortical and spongy (trabecular) bone tissues

significantly lower tensile strength than compressive one. First of all, we analyzed
the femoral neck (the typical region of the origin of the cracks).

The femur was modeled as a heterogeneous (shell) structure containing two fluid-
saturated porous layers (Fig. 4): an inner spongy bone with low stiffness and an outer
layer of cortical bone tissue. The latter plays the role of a hard shell and determines
constrained conditions for the deformation of the soft spongy bone. The standard
CADmodel of the femur was used as the geometric basis of the DEMmodel [63].We
modelled compression of the proximal part of the femur along its main physiological
direction (at an angle of about 45° relative to the orientation of the stem, Fig. 4b).
The load was applied by setting the constant velocity Vload to the outermost elements
of a special “cap” on the bone head. The base of the model was fixed. The model was
loaded until the resistance force Fmax = 10 kN was reached (10 kN, is about 70% of
the critical load [64]). A velocity range from 1 to 8 m/s was considered. This range
covers various modes of motor activity up to the “extreme” one.

Various authors previously showed that the strain rate dependence of the mechan-
ical characteristics of heterogeneous (block-structured) brittle materials under
confined loading conditions has not just a non-linear, but non-monotonic profile with
a local minimum [65]. The reason for the non-monotonic nature of the dependence
is the competition of two factors: pore fluid flow, which affects the redistribution
of local stresses in the skeleton, and change in the equilibrium linear dimensions of
the material due to change in pore pressure. The non-monotonic nature of the influ-
ence of interstitial fluid is especially pronounced under conditions of constrained
deformation, when a change in linear dimensions causes a corresponding change
in the degree of constraint. The biomechanical system under consideration (femur)
also has a heterogeneous structure and is constrained by a hard cortical bone “shell”.
The shell causes confined deformation of a much softer inner region. This gives
reason to suggest that under dynamic loading of such a system, the dependence of
local stress values (including stresses in the femoral neck) on the strain rate can also
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be nonmonotonic with a local minimum. The magnitude of corresponding “opti-
mal” loading velocity should be related to the characteristics of the porosity and
permeability of the bone.

The simulation results confirmed these assumptions and, moreover, allowed us to
estimate the characteristic values of the “optimal” loading velocity for healthy bone
and bone at various stages of osteoporosis. The key result of the numerical study is the
revealed non-linear and nonmonotonic dependence of the stress concentration in the
femoral neck on the loading rate. Figure 5 shows examples of the distribution ofmean
and equivalent stresses in a healthy femur sample at different loading velocities. The
simulation results show that an increase in Vload is accompanied by an increase in the
values of the parameters characterizing the stress concentration in the upper part of
the femoral neck. In particular, the volume of the region of maximum stresses and the
magnitude of the maximum stress in the neck increase. However, when approaching
the “optimal” value of the loading velocity (∼3m/s for the healthy bone), stress
concentration decreases, then reaches minimum value at the “optimal” velocity, and
then (with further increase in Vload ) increases monotonously again. This effect takes
place both for mean and equivalent stresses. The relative magnitude of the reduction
in peak stresses in the neck reaches 10–20%, and the maximum decrease in the
volume of the region of stress concentration amounts to 10%. Note that the loading
velocities 3–4 m/s correspond to the regime of training motion of a human.

The described effect of reducing the heterogeneity of the stress state of bone
tissue (particularly in the femoral neck) in the vicinity of the “optimal” loading
velocity is directly related to the influence of pore fluid pressure and redistribution.
Special simulations for the “dry” femur showed amonotonic dependence of the stress

Fig. 5 Distributions of mean stress (upper row) and equivalent stress (lower row) in the proximal
femur at different values of loading velocity: a 1 m/s; b 3 m/s; c 5 m/s. All pictures correspond to
the same value of applied load Fmax = 10 kN
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concentration in the sample (including the femoral neck) on the loading rate in the
entire considered velocity range.

Preliminary numerical studies have also shown that a change in bone tissue param-
eters corresponding to the successive stages of osteoporosis leads to a systematic
increase in the values of “optimal” loading velocity. Bone tissue suffering from
osteoporosis is characterized by the reduced strength and higher brittleness. There-
fore, our results indicate that the selection of the optimal regime of motor activity
for such a femur is questionable.

Finally, we note the importance of the revealed effect of the “optimal” loading
rate. Despite the relatively small decrease in the maximum tensile stresses in the
critical region of the bone (upper part of the neck), this effect can have a significant
positive value in the long term (with multiple repetitions of the load). In addition
to reducing the risk of microdamage nucleation/accumulation in the upper part of
the neck, a decrease in the magnitude of positive volume stresses contributes to
a more intensive and uniform circulation of interstitial fluid in this region of the
bone. The consequence is a more complete and rational flow of substances necessary
for the normal functioning of bone tissue at optimal loading intensity. So, the results
obtained are critically important for determining the optimal modes of motor activity
of people, aswell as for developing strategies for treatingosteoarthritis andpreventing
the negative consequences of osteoporosis.

5 Conclusion

A formalism of homogeneously deformable elements, which was developed by
Professor Sergey G. Psakhie and his colleagues, made possible qualitative enhance-
ment of the capabilities of the particle-based discrete element method. The main
advantage of DEM is the ability to correctly describe the mechanical behavior of
various materials with taking into account the accompanying thermal, hydrome-
chanical and other effects. Deformability of elements is of particular importance
when studying various aspects of dynamic contact interaction, for example, stick-to-
slip transition in technical and geological contact zones, mechanisms of friction and
wear, redistribution of pore fluid in the surface layers of geological and biological
joints, etc.

Two key factors that identified the advantages of the formalism of deformable
elements should be especially noted. The first one is the postulation of the many-
particle form of relations for the element-element interaction forces. In this regard,
DEM has much in common with molecular dynamics method. Pair-wise interatomic
potentials are able to catch basic properties of crystal lattice, but do not describemany
fundamentally important effects in the bulk and on the surface of solids, including
those determining plasticity and phase transformations. Note that the approxima-
tion of a homogeneously deformable element is an efficient alternative to more
computationally expensive combined DEM-FEM technique. The second factor is
the proposed universal method for determining the specific form (and the values of
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constants) of the interaction forces. This method is based on the replication of the
corresponding rheological relationships of the applied mechanical model. It “cir-
cumvents” the fundamental problem of traditional DEM, namely, the need to find
a vector analogue of constitutive equations written in tensor form. The particular
cases of rheological models mentioned in this chapter are related to locally isotropic
materials, however, models of elasticity, ductility and local fracture of anisotropic
materials can be implemented in a similar way.

At present time, the formalism of deformable DEM is actively developed and
applied in various fields and in the wide range of spatial scales. Moreover, inter-
national scientific teams leaded by well-recognized scholars adopt these ideas and
develop them in their own way. DEM with deformable elements becomes not just
an addition to the classical continuum numerical methods, but to some extent their
competitive even in the areas of mechanics, where they traditionally dominate.
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