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Abstract The treatise proposes a model of biological fluid transfer in a dedicated
macropore with microporous walls. The distribution of concentrations and velocity
studies in the capillary wall for two flow regimes—convective and diffusive. The
largest impact on the redistribution of concentration between the capillary volume
and its porous wall is made by Darcy number and correlation of diffusion coeffi-
cients and concentration expansion. The velocity in the interface vicinity increases
with rising pressure in the capillary volume or under decreasing porosity or without
consideration of the concentration expansion.

Keywords Capillary · Diffusion · Peclet number · Convective and diffusive flow
regimes

1 Introduction

Contemporary medicine widely implements agents for tissue culture, delivery
systems for pharmaceuticals, implants, bandages, arterial conduits, etc. The effi-
cacy of all synthesized materials depends on their structure, including the structure
of the pore space, which largely controls the kinetics of biochemical processes. For
example, an implant should possess a strictly determined pore size promoting the
formation of blood vessels during tissue growth. The structure of biological porous
media is multiscale. Along with macroscopic pores, there are a lot of capillaries.
Pore walls, in turn, consist of several layers, each of which has its own structure. The
properties of the surfaces of pores and capillaries also affect the flow of biological
fluids.

The main biological fluids of a person include blood, tissue fluid and lymph. The
first performs mainly a transport function. Essentials for life enter the cells through
the tissue fluid from the blood into the cells. The main function of the third fluid
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is protective. Lymph destroys pathogens and ensures the return of tissue fluid into
the bloodstream. The blood vessels through which blood flows from the heart form
the arterial system, and the vessels that collect blood and carry it to the heart form
the venous system. The metabolism between the blood and body tissues is carried
out using capillaries that penetrate the organs and most tissues. The main functions
of the blood and circulatory system are to connect organs and cells to ensure their
vital functions—in the delivery of oxygen, nutrients, hormones, excretion of decom-
position products, maintaining a constant body temperature, and protection from
harmful microbes [1, 2]. All this suggests the need to study the flow of biological
fluids in the system of vessels and capillaries, taking into account the features of
the structure and rheological properties and the development of appropriate models
[3]. The rheological properties of blood are mainly due to the processes of hydro-
dynamic interaction of erythrocytes with plasma, which contribute to the formation
and decay of aggregates, rotation and deformation of red blood cells, their redistribu-
tion, and the corresponding orientation in the flow [4]. Blood is a heterogeneous and
multiphase physical and chemical system. It can be represented as a suspension and
non-Newtonian fluid with complex rheological properties. In addition to modeling
blood flow in large blood vessels [2, 4–8] there are a number of works in the literature
in which the flow in capillaries is simulated.

For example, work [9] has analyzed three variants of mathematical models
describing the flow of a viscous incompressible fluid in a long cylindrical capillary
with its internal surface covered by a permeable porous layer. The authors have shown
that for thin weakly permeable porous layers on the capillary walls, the Brinkman
model is not applicable; one just can use the Navier slip condition. If the porous layer
is thick and/or is weakly permeable, it is not allowed to neglect the effect of the flow
in it on the total fluid flow rate through the capillary, and an adequate description of
the filtration process should be made using the Brinkman model.

In [10, 11], the authors have studied the blood flow through porous blood vessels
taking into account an electromagnetic field. They have suggested a blood flow
model in an artery with porous walls within the model of a non-Newtonian fluid
in the presence of electromagnetic field. In these works, the viscosity of the non-
Newtonian fluid depended on the temperature and magnetic field and was calculated
by the models of Reynolds and Vogel or was assumed to be constant.

There are a lot of works devoted to modeling of blood flow in capillaries [12–
14]. The authors investigate the influence of diverse parameters on the fluid motion
in capillaries: vessel curvature [15], capillary radius and shape [16–18], dynamics
of oxygen transportation [19], hemodynamics of vascular prostheses and implants
[20, 21].

Important applications of biomedical systems, such as biological tissues, require
taking into account the flow, heat and mass exchange through a porous medium [22].
The theory of transfer in a porous medium on the basis of various models, such
as Darcy-Brinkman model of momentum transfer and local thermal equilibrium
for energy transfer, were analyzed by the authors and can be particularly useful in
describing different biological applications.
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In general case, biological fluids possess specific rheological properties. As a rule,
biological fluids are non-Newtonian fluids that are described by various rheological
models. In the literature, models of viscoelastic, viscoplastic, pseudo-plastic and
dilatant fluids are widely used. All the models, with due consideration of complex
rheology, are non-linear. The non-linear effects also manifest when accounting the
dependence of properties (for instance, viscosity) on concentration.

Current work suggests a model of biological fluid transfer in a selected macropore
with microporous walls. Unlike [10, 11], we assume isothermal conditions; however,
we assume some the state equations for pressure in the fluid to be differential [23,
24], which yields a non-linear coupled model.

2 General Equations

Let us formulate the problemon the transfer of a biological fluid (or a pharmaceutical)
in a selected cylindrical macropore with radius R1 havingmicroporous walls (Fig. 1).
Area 1 is the macropore, area 2 is the porous layer with thickness δ = R2 − R1.

To construct the model we use the continuity equation:

∂ρ

∂t
+ ∇ · (ρv) = 0, (1)

balance equation for species

ρ

(
∂Ck

∂t
+ v∇Ck

)
= −∇ · Jk, (2)

and motion equation

ρ
∂v
∂t

+ ρv∇(v) = −∇ · σ + ρF, (3)

Fig. 1 Cylindrical pore with radius R1 having porous walls
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where ρ is the density, v is the velocity of centre of mass; Ck—species (component)
concentrations; Jk is diffusion flux of this component; σ is stress tensor; F is the mass
force vector; ∇ . . . ≡ grad . . .; ∇ · . . . ≡ div . . .

We will describe the flow in the macropore (area 1) using Navier-Stokes equa-
tions. The microporous medium (area 2) will be modeled as Brinkman medium. In
a first approximation, the biological fluid is assumed incompressible. Navier-Stokes
equations follows from (3) when

σi j = −Pδi j + 2μei j , (4)

and F = F1 = − 1
ρ
∇(gz). Here p is hydrodynamic pressure and ei j is the tensor of

strain rates,

ei j = 1

2

(
∂Vi

∂x j
+ ∂Vj

∂xi

)
,

Vi are components of the velocity vector.
Brinkman medium appears when we assume

F = F1 + F2, (5)

where F2 is the force of internal friction depending on filtration velocity, w. Then
v = w/a, a = Sp/S, and Sp is the area occupied by pores in the section S.

If the fluid is incompressible (which is usually accepted for slow flows), instead
continuity equations (1) will remain:

∇ · vi = 0; i = 1, 2. (6)

As a result we obtain for area inside the capillary:

0 < r < R1 : ρ1

(
∂Ck

∂t
+ v1∇Ck

)
= −∇ · Jk, (7)

ρ1

(
∂v1
∂t

+ v1∇v1

)
= −∇ p1 + ρ1gz + ∇ · (μ1∇v1), (8)

and for the porous walls:

R1 < r < R2 : ρ2

(
∂Ck

∂t
+ v2∇Ck

)
= −∇ · Jk, (9)

ρ2

(
∂v2
∂t

+ v2∇v2

)
= −∇ p2 + ρ2gz +

(
∇ · (μ2∇v2) − μ

/

2m
v2
k f

)
. (10)
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Here v1, v2, ρ1, ρ2 are the vectors of velocities and densities of the liquid in areas
1 and 2, Ck is the concentration of the k-th component, Jk = −Dkρi∇Ck is the
diffusion flux of the k-th component; P1, P2, μ1, μ2 are the pressure and viscosity
of the fluid in areas 1 and 2, μ/

2 is the viscosity in the Darcy’s law, in general case
it differs from μ2; g is the force of gravity; k f is the permeability of the porous
medium; m is the porosity of pore walls.

In the case of slow (crawl) flow, the second summands in the left brackets of the
motion equations for porous walls can be neglected.

We should add the state equation connecting the pressure with temperature and
fluid composition. For constant temperature, we can write [23, 25]

dp = −ρβ−1
T dγ +

n∑
k=1

pkdCk (11)

where pk = αkβ
−1
T , αk is concentration expansion coefficients, βT is isothermal

compressibility coefficient, β−1
T = K ; K is bulk module for fluid. Then for

incompressible fluid with constant properties for each area we have

p2 − p20 = 3Kα(C2 − C20) and p1 − p10 = 3Kα(C1 − C10), (12)

where C10 and C20 is preset zero approximation, p10 and p20—is initial pressures
values in areas.

3 Stationary Model

From (7)–(10) we obtain stationary model for individual pore The hydrodynamic
part of the problem will include equations:

0 < r < R1 : ρ1V1
dV1

dr
= −dp1

dr
+ 1

r

d

dr

(
rμ1(C1)

dV1

dr

)
, (13)

R1 < r < R2 : dp2
dr

−
(
1

r

d

dr

(
r μ2(C2)

dV2

dr

)
− μ

/

2(C2)m
V2

k f

)
= 0, (14)

where Vk , k = 1,2 are radial components of velocity for areas.
The boundary conditions for the hydrodynamic part of the problem will be as

follow. In the point r = 0 we have the symmetry condition

V1 = 0. (15)

In the interface between two areas, mass velocities and stress tensor components
are equal
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r = R1 : ρ1V1 = mρ2V2, −p1 + μ1(C1)
dV1

dr
= m

(
−p2 + μ2(C2)

dV2

dr

)
.

(16)

We can assume that the outer wall of the capillary (r = R2) is free of load, on

σrr = −p2 + μ2
dV2

dr
= 0 (17)

or (other case)

V2 = 0. (18)

The viscosities linearly depend on concentration:

μ1(C1) = μ10 + μ11C1, μ2(C2) = μ20 + μ21C2. (19)

For the diffusion part of the problem, we have:

0 < r < R1 : ρ1V1
dC1

dr
= 1

r

d

dr

(
D1ρ1r

dC1

dr

)
, (20)

R1 < r < R2 : ρ2V2
dC2

dr
= 1

r

d

dr

(
D2ρ2r

dC2

dr

)
, (21)

r = 0 : dC1

dr
= 0, (22)

r = R1 : C1 = mC2, ρ1

[
D1

dC1

dr
− V1C1

]
= ρ2m

[
D2

dC2

dr
− V2C2

]
, (23)

r = R2 : ρ2

(
D2

dC2

dr
− V2C2

)
= Ω, (24)

where D1, D2 are the diffusion coefficients in areas 1 and 2.
The condition (22) is symmetry condition; first of (23) follows from chemical

potential continuity, second of (23) is the equality of the total mass flows; condition
(24) contains the mass sink on the outer wall of the capillary 
.

Taking into account the connection between pressure and concentration (12), from
(13), (14), (16), (17) we obtain

ρ1V1
dV1

dr
= −3Kα

dC1

dr
+ 1

r

d

dr

(
rμ1(C1)

dV1

dr

)
;

3Kα
dC2

dr
−

(
1

r

d

dr

(
rμ2(C2)

dV2

dr

)
− μ

/

2(C2)m
V2

k f

)
= 0;
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− (3Kα(C1 − C10) + p10) + μ1(C1)
dV1

dr

= m

(
−(3Kα(C2 − C20) + p20) + μ2(C2)

dV2

dr

)
;

σrr = −(3Kα(C2 − C20) + p20) + μ
dV2

dr
= 0.

In this model we assumed that viscosity of fluid and diffusion coefficients in pore
and in porous wall are different, that connect with special structure of porous space
affecting the fluid mobility. These problem is coupling in general case.

4 Special Case

The simplest stationary diffusion model for individual pore can be analyzed for
the case when the pressure gradient along the macro pores is given, and the fluid
composition in pore is fixed (we neglect the gravitational force):

∇ p1 = ω = const, C1 = C10. (25)

Because in interfaceρ1V1 = mρ2V2 and the pressure is proportional to concentration,
then we do not mistake if assume:

∇ p1 = const = βω ∼ ∇ p2, (26)

where ω, β is some constants. In this case the hydrodynamical part of the problem
turns to

ω − 1

r

d

dr

(
rμ1(C10)

dV1

dr

)
= 0; (27)

ωβ −
(
1

r

d

dr

(
rμ2(C2)

dV2

dr

)
− V2

k f

)
= 0; (28)

r = 0 : V1 = 0; r = R2; V2 = 0; (29)

r = R1 : ρ1V1 = mρ2V2; μ1(Ci0)
dV1

dr
= mμ2(C2)

dV2

dr
. (30)

For the case of constant viscosity, the exact analytical solution of this problem is
presented in [26].

Diffusion part of the problem takes a place only for the area R1 ≤ r ≤ R2:
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Fig. 2 Concentration distribution in the wall of pore (a) for different diffusion coefficients (b).
D20 = 10−3 μm/s, 1—αp2 = 0; 2—αp2 = 6; 3—αp2 = 10

ρ2Vr2(r;C10,C2,m, ω)
dC2

dr
= 1

r

d

dr

(
D2ρ2r

dC2

dr

)
;

r = R1 : C10 = mC2;

r = R2 : C2 = 0.

We assume that velocity distribution in the walls is given and does not depend
on concentration. It is obviously, when the velocity is equals to zero, and diffusion
coefficient is constant value, we come to concentration distribution coinciding with
the exact analytical solution (Fig. 2a, b—lines 1):

C2 = C10

m

ln(r/R2)

ln(R1/R2)
.

This solution does not contain density and diffusion coefficient.
If diffusion coefficient depends on space coordinate (that could be connected

with the change of pore structure, for example, using the equation D2 =
D20/

(
1 + αp2(r − R1)

)
, then concentration distribution changes (2 and 3 curves

correspondingly) in this figure.
The positive value of given filtration velocity effects on concentration distribution

similarly (Fig. 3). However, the type of the velocity distribution is not essential
concentration (Fig. 4).

The concentration distribution in Fig. 4b is given for the velocity functions V2(r),
presented in the Fig. 4a. The change of the velocity with the coordinate could be
connects with the complex structure of porous space, with structure of pore surface,
with their specific tortuosity, the close pores availability leading to inhibition of
concentration distribution along pore walls.
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Fig. 3 Concentration distribution for given filtration rate. 1—V2 = 0.1; 2—V2 = 0; 3—V2 = 0.2
μm/s, D20 = 10−3 μm/s

Fig. 4 Concentration distribution (a) and liquid velocity in pore wall (b). Black line—is exact
analytical solution for V2 = 0; the colors of the lines to the left correspond to colors of the lines to
the right. D20 = 10−3 μm/s

5 Dimensionless Variables and Parameters in Total
Stationary Model

Let us introduce the following dimensionless variables:

ξ = r

R2
, V i = Vi

μ10/ρ1R2
, p̄i = pi

μ2
10/ρ1R2

2

.

Then the equations and boundary conditions in dimensionless variables will be
rewritten as

0 < ξ < 1 − 
 : V r1
dV 1

dξ
= −d p̄1

dξ
+ 1

ξ

d

dξ

(
ξμ̄1(C1)

dV 1

dξ

)
, (31)
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PeDV 1
dC1

dξ
= 1

ξ

d

dξ

(
ξ
dC1

dξ

)
, (32)

1 − 
 < ξ < 1 : Da
d p̄2
dξ

−
(
Da

ξ

d

dξ

(
ξ μ̄2(C2)

dV 2

dξ

)
− μ̄

/

2m(C2)V 2

)
= 0,

(33)

PeDV 2
dC2

dξ
= D

1

ξ

d

dξ

(
ξ
dC2

dξ

)
, (34)

ξ = 0 : V 1 = 0,
dC1

dξ
= 0, (35)

ξ = 1 − 
 : V r1 = mρ̄V r2. − p̄1 + μ̄1(C1)
dV r1

dξ
= m

(
− p̄2 + μ̄2(C2)

dV r2

dξ

)
,

(36)

C1 = mC2,
dC1

dξ
− PeDV 1C1 = mρ̄

(
D
dC2

dξ
− PeDV 2C2

)
, (37)

ξ = 1 : μ̄2
dV r2

dξ
= p̄20 + Kbez(C2 − C20), (38)

D
dC2

dξ
− PeV 2C2 = 
, (39)

where μ̄1(C1) = 1 + α1C1, μ̄2(C2) = β + α2C2, μ̄
/

2 = μ̄2, p̄2 − p̄20 =
Kbez(C2 − C20) and p̄1 − p̄10 = Kbez(C1 − C10) .

Stationary model contains following dimensionless parameters:

PeD = V∗R2

D1
, Da = k f

R2
2

, Kbez = KαR2
2ρ1

μ2
10

, D = D2

D1
, 
 = δ

R2
,

ρ̄ = ρ2

ρ1
, m, α1 = μ11

μ10
, α2 = μ21

μ10
, β = μ20

μ10
, 
 = ΩR2

ρ2D1
.

DiffusionPeclet number PeD includes the velocityV∗ = μ10/ρ1R2 and characterizes
the relation between convective and diffusion forces; Darcy number Da, relation
of elastic and viscous forces Kbez and diffusion coefficients D together with PeD
determine the nature of the flow. parameters 
, ρ̄, α1, α2, β are not so significant.

To assess the dimensionless parameters, the following physical values were used
that characterize the diffusing fluid (blood) and physical parameters of the capillary
[27–31]: μ10 = 4.5 × 10−3 Pa s, ρ1 = 1064 kg/m−3, K = 2.2 × 109 Pa, α = 0.3,
R1 = 3 × 10−6 m, R2 = 4 × 10−6 m, D1 = 2.1 × 10−10 m2/s, k f = 0.5 × 10−12

m2. By using data above we can assess the region of alteration of dimensionless
complexes: 0.38 ≤ PeD ≤ 1.43 × 103, Kbez = 5.54 × 104. In the calculations, the
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following dimensionless parameters were varied: m, PeD , D, Da and p10, p20. The
rest of the parameter were fixed: C10 = 0.1, C20 = 0, ξ1 = 0.75, ξ2 = 1, ρ̄ = 1, α1

= 0.1, α2 = 0.1, β = 1, 
 = 0.
The stationary problem for the porous wall (31)–(39) was solved numerically. In

differential Eqs. (31), (32) and (34), the convective summand is approximated by
the difference against the flow [32]. Such difference provides approximation of the
convective summand for anydirectionof theflowvelocity andyields stable algorithm.
The initial distribution of velocities and concentrations is specified first. Then the
differential equations for concentration and velocity are solved by the double-sweep
method. Obtained distributions are used as initial for next iteration. The interface
between media is distinguished explicitly. In the direct marching, the coefficients are
found with a special approximation of boundary conditions in point at the interface.
During reverse marching, we first find C2 at the interface and then, by using first
condition (37) in the point in interface, we find C1. The same operations are applied
to velocities. The process is repeated until a special condition is met. The calculation
is carried out until a special condition is fulfilled—until a solution with a given
accuracy is obtained. The variation of spatial steps changes the results no more than
1–5% in the wide region of varying model parameters.

6 Analysis of Results

The Peclet number which characterizes two flow regimes-convective (PeD > 1) and
diffisive one (PeD < 1)—presents the main interest in the study of fluid transfer
through a capillary with porous wall.

At small Peclet numbers, the main contribution to the distribution of concentra-
tions in a capillary is made by diffusion. Since diffusion is a slow process, a smaller
amount of a diffusant gets into the porous capillary wall (line 3 in Fig. 5a). With

Fig. 5 Distribution of concentration (a) and velocity (b) along the radius at different Peclet numbers
1—Pe = 103, 2—Pe = 1, 3—Pe = 10−2, D = 1, m = 0.3, Da = 0.01, p10 = 2, p20 = 0.2,
Kbez = 5.54 × 10−2, 
 = 0.25, 
 = 0
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Fig. 6 Distribution of concentration (a) and velocity (b) along the radius under convective mass
transfer at different values of parameter D, 1—D = 0.1, 2—D = 1, 3—D = 10, PeD = 103, m =
0.3, Da = 0.01, p10 = 2, p20 = 0.2, Kbez = 5.54 × 10−2, 
 = 0.25, 
 = 0

growing Peclet number (PeD > 1), the contribution of convective diffusion becomes
dominating; the flow velocity is higher in both areas (lines 1 in Fig. 5b). This leads
to increased amount of the diffusant permeating the porous wall of the capillary
(lines 1 and 2 in Fig. 5a). Line 2 in Fig. 5 corresponds to the transition regime, a
convective-diffusive mass transfer. The main changes to concentration and velocity
are observed in the vicinity of the interface ξ = 
.

The redistribution of the diffusant concentration between the materials is appre-
ciably affected by parameter D (relation of the diffusion coefficient in area 2 to the
diffusion coefficient in area 1). At D > 1 the fraction of the diffusant in the capillary
wall increases (Fig. 6a), while at D < 1 the diffusant is almost absent in area 2. It has
almost zero effect on the velocity distribution (Fig. 6b). The character of concentra-
tion distribution both at convective (Fig. 6) and diffusivemass transfer is qualitatively
similar under variation of D. The difference is only in the velocity values.

Increased capillary wall thickness decreases the concentration and velocity at the
interface in both phases both under convective and diffusive mass transfer. This was
demonstrated in Table 1, because it was difficult to demonstrate in a figure.

Increased wall porosity decreases the concentration of the diffusant in the second
area near the interface; however, the diffusant permeates deeper into the capillary
wall under both convective (Fig. 7a, c) and diffusive (Fig. 7b, d) regimes. This is

Table 1 Concentration and velocity at interface for different capillary wall thickness under
convective mass transfer


 = ξ2 − ξ1 C1(ξ1) C2(ξ1) V1(ξ1) V2(ξ1)

0.25 0.05056 0.16855 0.00368 0.012284

0.3 0.05050 0.16834 0.00367 0.012249

0.35 0.05041 0.16803 0.00366 0.012247

0.4 0.05032 0.16775 0.00367 0.012243

0.45 0.05021 0.16738 0.00367 0.012239
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Fig. 7 Distribution of concentration (a, b) and velocity (c, d) along radius under convective (a,
c) and diffusive (b, d) mass transfer and different values of parameterm, 1—m = 0.15, 2—m = 0.2,
3—m=0.25, 4—m=0.3, 5—m=0.35, D=1, Da=0.01, p10 =2, p20 =0.2, Kbez = 5.54×10−2,

 = 0.25; 
 = 0

explained by increased volumeof porous space and the diffusantmovesmore freely in
the second area. The variation of porosity hardly affects the concentration distribution
in the first area at any Peclet number. The concentration negligibly reduces only near
the interface. The velocity behaves ambiguously (Fig. 7c, d) which is due to the
interdependence of contrary physical mechanisms.

Decreased permeability (decreasedDarcy number) negligibly reduces the concen-
tration and reduces the velocity in both regions at any Peclet number.

The major impact on the velocity distribution is caused by the pressure gradient.
An increase in the initial pressure in the first area (not shown) augments the velocity
in both areas, while it has almost no effect on the concentration distribution; the
concentration drops in both areas only in the interface vicinity. Similar behavior
is observed under the diffusive regime of mass transfer. An increase in the initial
pressure in the second area has no effect on the concentration distribution, while the
velocity in both areas negligibly reduces in any regime.

All previous calculations were made with due regard to the concentration
expansion. Parameter α which is included into dimensionless complex Kbez =
KαR2

2ρ1/μ
2
10. This excites interest in the comparison of the concentration distri-

bution and velocities in the porous wall with and without due consideration of this
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Fig. 8 Distribution of concentration (a) and velocity (b) along the radius under convective mass
transfer and for different values Kbez , 1—Kbez = 5.54× 10−2, 2—Kbez = 0, PeD = 103, D = 1,
m = 0.3, Da = 0.01, p10 = 2, p20 = 0.2, 
 = 0.25; 
 = 0

effect (Fig. 8). Evidently, without consideration of the concentration expansion, the
velocity in the interface vicinity increases, which is valid for both sides of the inter-
face. The concentration expansion causes more diffusant to permeate into the porous
capillary wall. Such considerable difference is observed even at small values of
coefficient Kbez .

The effect of viscosity versus concentration on concentration and velocity distri-
butions is illustrated in the Fig. 9. An increase in viscosity with concentration leads
to an increase in the fraction of diffusant in the capillary wall in the convective flow
regime (Fig. 9a, c), and in the diffusion mode to an insignificant decrease (Fig. 9b,
d). In this case, the velocity increases in the convective mode, and decreases in the
diffusion mode.

For all figures above it was accepted 
 = 0.
The mass flow affects the nature of the concentration distribution in the diffusion

mode (Fig. 10b, d red lines), but in the convectivemode, no effect is detected (Fig. 10a,
c red lines). A smaller amount of diffusant remains in the capillary wall (Fig. 10b)
when mass flow is taken into account, the speed also decreases (Fig. 10c).

7 Conclusions

The work suggested a model of biological fluid transfer in a selected macropore
with microporous walls with due account for concentration expansion phenomena
appearing in stet equation. For two flow regimes—convective (PeD > 1) and diffu-
sive (PeD < 1)—we have studied the concentration distribution in the capillary wall.
It was shown that the largest impact on the redistribution of concentration between
the capillary volume and its porous wall is made by Darcy number Da and correla-
tion of diffusion coefficients. The concentration of the diffusant in the porous layer
increases with growing parameter D or decreasing porosity or permeability under
diffusive mass transfer. The velocity in the interface vicinity increases with rising
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Fig. 9 Distribution of concentration (a, b) and velocity (c, d) along radius under convective (a,
c) and diffusive (b, d) mass transfer and different values of viscosity of liquid; D = 1, Da = 0.01,
p10 = 2, p20 = 0.2, Kbez = 5.54 × 10−2, m = 0.3, 
 = 0.25; 
 = 0

pressure in the capillary volume or under decreasing porosity at any Peclet number.
It was discovered that the concentration expansion appreciably affects the distribu-
tion of velocity and concentration. The ambiguous impact of model parameters on
different flow regimes is connected with the interrelation between contrary physical
mechanisms. Described model contains practically significant parameters allowing
understanding how the concentration distribution changes with flow type variation.
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Fig. 10 Distribution of concentration (a, b) and velocity (c, d) along radius under convective (a,
c) and diffusive (b, d) mass transfer and different values of parameter 
, 1—
 = 0, 2—
 = 10,
D = 1, Da = 0.01, p10 = 2, p20 = 0.2, Kbez = 5.54 · 10−2, m = 0.3, 
 = 0.25
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