l‘)

Check for
updates

CollegeBot: A Conversational
AT Approach to Help Students
Navigate College

Mohinish Daswani, Kavina Desai, Mili Patel, Reeya Vani,
and Magdalini Eirinaki®

Computer Engineering Department, San Jose State University,
San Jose, CA 95192, USA
{mohinish.maheshku.mar .daswani,kavina.desai,mili.patel,reeya.vani,
magdalini.eirinaki}@sjsu.edu

Abstract. In an organization as big as a university that has many dis-
tinct departments and administrative bodies, it becomes almost impossi-
ble to easily obtain information online or by other means. Assistance over
the phone or in-person is often limited to office hours and the informa-
tion online is scattered through numerous (often nested) web pages, often
independently administered and maintained by each sub-division. In this
work, we present CollegeBot, a conversational AT agent that uses natural
language processing and machine learning to assist visitors of a univer-
sity’s web site in easily locating information related to their queries. We
discuss how we create the knowledge base by collecting and appropriately
preprocessing information that is used to train the conversational agent
for answering domain-specific questions. We have evaluated two differ-
ent algorithms for training the conversational model for the chatbot,
namely a semantic similarity model and a deep learning one leveraging
Sequence-to-Sequence learning model. The proposed system is able to
capture the user’s intent and switch context appropriately. It also lever-
ages the open source AIML chatbot ALICE to answer any generic (non
domain-specific) questions. We present a proof-of-concept prototype for
San Jose State University, to demonstrate how such an approach can be
easily adopted by other academic institutions as well.

Keywords: Chatbot - Conversational Al - Natural language
processing * Deep learning + Sequence-to-Sequence + AIML - Semantic
sentence similarity.

1 Introduction

Conventional methods of communication with companies and other organiza-
tions like email, call centers, or automated voice response system, are often time-
consuming, slow, and tedious. These communication methods might be restricted
to certain working days or a certain number of hours per day. To address these
© Springer Nature Switzerland AG 2020

C. Stephanidis et al. (Eds.): HCII 2020, LNCS 12424, pp. 44-63, 2020.
https://doi.org/10.1007/978-3-030-60117-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60117-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-60117-1_4

CollegeBot: A Conversational AT Approach 45

issues, companies and businesses have started to adopt automated systems like
chatbots, voice assistants, and other conversational AI. Chatbots are software
programs that can converse with humans and provide answers to their questions.
About 67% of the clients utilized conversational Al for client assistance in the
business a year ago [11]. The simplest form of chatbots that is employed by
many companies are keyword-based and return predefined answers to a set of
generic questions. Some more advanced ones include answers to domain-specific
questions pertaining to particular tasks in the company. However, we rarely see
such chatbots be used by universities and other academic institutions.

In an organization as big as a university that has many distinct depart-
ments and administrative bodies, it becomes almost impossible to easily obtain
information online or by other means. Assistance over the phone or in person
is often limited to office hours and the information online is scattered through
numerous (often nested) web pages, independently administered and maintained
by each sub-division. In this work, we present CollegeBot, a conversational Al
agent that uses natural language processing (NLP) and machine learning (ML)
to assist visitors of a university’s web site in easily locating information related
to their queries. Our approach caters to a necessity for domain engineering as it
includes end-to-end implementation from data retrieval using a web cralwer, to
data preprocessing and real-time response generation to the end user’s queries.

We considered and evaluated two different algorithms for training the conver-
sational model for the chatbot. The RNN-based Sequence-to-Sequence (seq2seq)
model is one of the state-of-the-art models used in the literature for Al chat-
bot systems [15]. The second model we evaluated is a semantic similarity model
that follows a more traditional NLP approach. We evaluate the two approaches
based on the computational efficiency in terms of time, and the correctness of the
answers produced by them using the BLEU Score method. The proposed system
is also able to capture the user’s intent and switch context appropriately in a
fast and efficient manner. In addition to the trained model used to respond to
domain-specific questions, our prototype also uses ALICE bot, an open-sourced
implementation of pre-coded AIML files to carry out informal conversation, usu-
ally used in the beginning of a chat.

In the rest of this paper, we discuss the technical design, preliminary exper-
imental evaluation, and proof-of-concept prototype implementation of College-
Bot. We provide a brief review of related work in Sect. 2 and discuss the system
architecture in Sect. 3. We then explain how we created the system’s knowledge
base in Sect.4 and discuss in detail the design and evaluation of the training
algorithms in Sect. 5. Finally, we present some technical details of our prototype
in Sect. 6 and conclude in Sect. 7.

2 Related Work

We can distinguish between two kinds of chatbots, one which is based on a
set of rules and principles to be followed for a particular query, and another
that is based on artificial intelligence (AI) systems that iteratively get smarter

46 M. Daswani et al.

and more efficient. Two of the most popular open-sourced chatbots are ELIZA
and ALICE. ALICE (Artificial Linguistic Internet Computer Entity) is one of
the most popular and award-winning chatbots that primarily focuses on natural
language understanding and pattern matching [2]. The famous pattern matching
algorithm of ALICE is a simple depth-first search technique used to find the
longest matching sequence and then generate an appropriate response based on
the pattern matched. The underlying data structure that ALICE is built upon
is AIML. AIML stands for Artificial Intelligence Markup Language and is an
extension of the traditional XML (Extensible Markup Language). AIML was
designed by the Alicebot open source community to empower individuals to
include pattern information into chatbots [1]. In ALICE the core design of the
chatbot engine and language knowledge model [2] are isolated. This offers us the
chance to effortlessly introduce a newly designed language model on the top of
the base system. On the contrary, ELIZA is built using more complicated rules
and directions, that requires coming up with input transformation functions,
output transformation functions, and complex keyword patterns that show input
and output [2].

There exist several domain-specific chatbots. For instance, MamaBot is a
conversational Al system built to help pregnant women, mother, children, and
their families [13]. The authors outline three main aspects of building a chat-
bot architecture: intent identification and classification, entity recognition, and
response generation. They use the open-source Microsoft Bot Framework which
internally uses LUIS (Language Understanding Intelligent Service) as its cogni-
tive service. Another example is the bank chatbot introduced in [4]. The authors
discuss the process of applying NLP on the user input, using ML classification
algorithm to identify the class it belongs to, and then finally applying cosine
similarity between the input query and the questions of that same identified
class.

Among the few chatbots related to college inquiries is UNIBOT [7]. The
authors introduce a new algorithm for finding the relevant answer from the
knowledge database. The database consists of a row that has all the questions and
more than one row is allocated for the answers, as it is presumed that one ques-
tion might map to multiple answers. The user input is fetc.hed, stopwords are
removed, the keywords are extracted, and then it searches in the database using
either pattern matching or comparing SQL regex. In [3] the authors leverage the
implementation of ALICE chatbot as a domain-specific chatbot that can act as
an information system for undergraduate students. They present three chatbots
that have different knowledge repositories: BaseBot, the most basic implementa-
tion containing the AIML files, UFaqBot(Dom_eng), a domain engineered system
designed with knowledge repository, and UFaqBot(rep), a hybrid system which
is an amalgamation of basic dialog conversation and domain knowledge. This
setup is very similar to our proposed system, that leverages ALICE for generic
questions, includes a domain-specific chatbot engine, and switches between the
two as needed. However our approach in the domain-specific chatbot differs from
our CollegeBot.

CollegeBot: A Conversational AT Approach 47

As we are dealing with a domain-specific conversational Al system, a user will
be asking the chatbot specific questions about a particular topic. Thus, entity
extraction and context identification NLP techniques are also very important.
Additionally, as input comes in free-form text, there can be more than one ways
to pose the same question. The chatbot system should recognize such similarities.
Depending on the query representation method, this can be done employing
vector similarity metrics such as cosine similarity, which is what we use in our
semantic similarity engine, or ontology-based metrics like Wu-Palmer similarity
and path similarity, used in [5].

Neural networks have been recently introduced for dialogue generation in con-
versational AT agents. As described in [14], the Sequence-to-Sequence (seq2seq)
model depends on the recurrent neural network (RNN) that takes in the input
sentence one token at a time and in a similar way predicts the output sequence
one token at a time. At the time of training the model, the correct output
sequence is fed into the model, so that backpropagation can be performed to
make the learning more accurate. Long sequences can be problematic for deep
neural networks on the grounds that they necessitate the dimensionality of the
input and output to be fixed. In [12] the authors talk about the Long Short-
Term Memory (LSTM) approach that can tackle the basic seq2seq problems.
The approach is to utilize one layer of LSTM to read the input sequence, com-
pute a fixed-size vector representation of that input sequence, and use the other
LSTM to extricate the output sequence from that vector representation. The
approach most similar to ours is discussed in [8]. This paper discusses the design
of a web assistant where the ML module is based on the RNN wherein the
seq2seq model is fed the input sequence as multiple tokens and it further gives
a proper arrangement of tokens as the output sequence.

There is a lot of research and studies conducted on chatbots, however, vari-
ous challenges have also been identified in developing one. We researched these
challenges to find a way to address them while developing our applications. Chal-
lenges include limited amount of training data, context modeling and context
switching, emotion recognition, natural language processing, language special-
ization, speaker-listener specific modeling, and many more. A general rule for
ML systems is that the more the training data, the better the model is. Chat-
bots, especially those relying on deep learning, need lots of training data for
the machine to learn the chatting pattern and to create a model to correctly
maintain a conversation about a topic. Moreover, a common challenge in NLP
is learning and understanding the syntax. There can be multiple ways a ques-
tion or statement be made. For example, “What’s the weather?” can be asked
as “Could you check the weather?” [9]. We explore how different approaches in
designing the chatbot engine address the aforementioned issues.

3 System Architecture

Figure 1 shows the system architecture of CollegeBot. Chatbots need a knowledge
base to generate appropriate responses to the user’s queries. To gather data

48 M. Daswani et al.

for our knowledge base we have used a web crawler. The data relating to the
university is spread across several web pages and needs to be aggregated, filtered,
grouped, and indexed. For our system prototype we collected most of the data
from FAQs pages posted on various SJSU web pages for various topics such as
admissions, international student and scholar services, courses offered, majors,
and so on. The process is described in Sect.4. However this selection could be
expanded to cover more pages within a University.

The data is next fed to the Preprocessor module. In this module, we employ
NLP techniques to bring the data in appropriate format for input to the Training
module. This module is employed both in the back-end but also in the front-end
part of our architecture, used to preprocess the questions of the end user prior
to submitting it to the chatbot engine. The Preprocessor module, along with the
Training and the Engine modules consist the core part of CollegeBot. They rely
on NLP and ML to be able to decode a user’s question and retrieve the most
appropriate answers. We considered and evaluated two different algorithms for
training the conversational model for the chatbot, namely a semantic similarity
model and a seq2seq-based model, which we discuss in detail in Sect. 5.

In the front-end, the system checks whether the question is domain-specific
or not. The system sends the domain-specific questions to the Preprocessor and
subsequently the chatbot Engine module. The Engine then checks whether there
exists a context for the sentence. If a context is found then it identifies the most
similar question to the user query and returns the corresponding answer as the
response. If the context is not found then it will check for the new context,
append it, find the most similar question and return the corresponding answer
as the response. The back-end then takes the response from the Engine and
sends it to the front-end where it is displayed to the user, as shown in Fig. 2.
Non domain-specific questions are handled by the ALICE AIML server. We
discuss the technical details of the core modules of the CollegeBot prototype in
more detail in Sect. 6.

= |
> Raw Data———>Preprocessor—>{ Training —> Kn%wledge
1 j@: ‘ ase

Web Crawler H

D — Backend reprocessor Engine

Frontend

AIML

Fig. 1. CollegeBot system architecture

CollegeBot: A Conversational AT Approach 49

Knowledge
Base

I

! |

Preporcessing
Backend 5 Calculating
the Incoming lassification
Server question similarity

\\ Engine 1

Fig. 2. Semantic sentence similarity Engine

4 Knowledge Base Creation

4.1 Data Collection

For creating the knowledge base for our proof-of-concept prototype we used the
San Jose State University (SJSU) website!. We collected most of the data from
the FAQs posted on the SJSU website for various topics such as admissions,
international student and scholar services, courses offered, majors, and so on
using a web crawler. We designed the web crawler to start from a particular
page and collect all the links present on that page. It then filters the list to
return the links which point to the SJSU website. The crawler then visits those
pages, parses each page, and creates a list of python dictionaries containing
questions, answers, relevant URLs, and the context/category of the question.
It identifies all the questions and answers using regex for pattern matching.
It also identifies any hyperlinks present in the answers and also adds them to
the python dictionary. As shown in Fig.3 the answer contains the hyperlink
“Registrar” which points to the URL for the SJSU office of the registrar. The
web crawler identifies this URL in the answer and adds it to the dictionary of
FAQs. The crawler also captures the context for which the FAQs are posted and
also adds it to the python dictionary. When the web crawler starts parsing a
new page for FAQs it takes the title of the page as the context for all the FAQs
present in that page. In the example of Fig. 3 the context is “GAPE” (Graduate
Admissions and Program Evaluations) which was taken from the title of that
page. An example of the python dictionary created for each FAQs is also shown
in Fig. 3. This dictionary is then added to the python list which is then stored in
a comma-separated file once the entire page is parsed. This process is repeated
again for the next link.

During the process, the web crawler can encounter some pages where it is
not able to parse the data. We made a list of all those links and changed the
regex for identifying FAQs for those links. Additionally, some of the topics such

! http://www.sjsu.edu.

http://www.sjsu.edu

50 M. Daswani et al.

as faculty information, or research conducted by different faculty members and
departments did not have FAQs. For such topics, we visited the SJSU website
and collected the data in a question-answer format.

In all, we gathered 923 questions from SJSU’s website. We had shortlisted
some topics and focused on only those topics as part of this study. We covered
topics like health center, recreation center, library, international students cell,
admissions, courses and professor information.

For testing our system, we required a smaller dataset. We created this dataset
by randomly selecting the questions from the training set and created variations
of a few other randomly selected questions. This dataset only has questions and
expected answers as columns.

Q. Can I take undergraduate classes as a graduate student?

A. Yes, graduate students may take undergraduate classes. However, lower division
(freshman and sophomore) courses numbered 1-99 cannot be used for graduate degree
credit and are not included in the GPA computation. For additional assistance and inquires
about registration In undergraduate classes, please visit the Registrar.

Regex for identifying question: <p>Q\.(.*?)

Regex for identifying answer: </strong=><br=(.*?)</p>
Regex for identifying links in answer: <a\s+(?:[*>]*?\s+)?href="([""])

Dictionary created:

{'question: 'Can | take undergraduate classes as a graduate student?, 'answer' 'Yes,
graduate students may take undergraduate classes. However, lower division (freshman and
sophomore) courses numbered 1-99 cannot be used for graduate degree credit and are not
included in the GPA computation. For additional assistance and inquires about registration in
undergraduate classes, please visit the Registrar', 'link 'https://www.sjsu.edu/registrar/,
‘context” 'gape'}

Fig. 3. Example for converting text to python dictionary using regex for pattern match-
ing

5 Training Algorithms

For training our model, we considered two options, a purely NLP-based one,
and a deep learning one. We discuss both, as well as the preprocessing steps
applicable to each one in detail here.

5.1 Semantic Similarity Model

If we break down the logic of a chatbot in simple terms, it comes down to
recognizing if a similar kind of question exists in our data repository or not.
However, there can be more than one ways of posing a question as shown in
Fig.4. While humans can easily understand which sentences mean the same
thing and which sentences are totally different, this is not as straightforward for
a conversational agent like a chatbot. However, the system should recognize such
similar input queries and generate the appropriate response for that. As shown
in Fig. 4, the two queries “What is the last date to enroll?” and “When is the

CollegeBot: A Conversational AT Approach 51

- b e
.
Yes &

Semantically <
Different

— 8 When is the enroliment deadline?

August 16th, 2020 8

Semantically <

Similar [—]
8 What is the last day to enroll?

August 16th, 2020 8

Fig. 4. Semantic similarity example

enrollment deadline?” have the same meaning (and there might be even more
ways of posing the same question).

When employing this model, the system finds semantic sentence similarity.
To do this, all questions in the knowledge base need to be first preprocessed,
through stemming and lemmatization. We also created a dictionary for stor-
ing all the synonyms and we replaced all the similar words with the standard
abbreviations across the whole dataset (e.g. words like “United States”, “United
States of America”, “America”, “USA” will be replaced by a common synonym
“US” everywhere in the sentence). As we are dealing with a domain-specific con-
versational Al system, a user will be asking specific questions about a particular
topic. Thus, entity extraction and context identification NLP techniques are also
important.

In order to identify relevant questions in the knowledge base, even when not
phrased identically by the end user, we calculate a similarity score between the
(preprocessed) user query and the queries stored in the knowledge base. The
similarity is calculated using word vectors with the help of the word2vec algo-
rithm. This algorithm employs multi-layered neural network structure, which is
modelled to form linguistic contexts of words. The algorithm takes as input a
text corpus and gives a vector space as the output. There is a unique vector
assigned in the space for each different word in the corpus. Thus the compar-
ison is essentially done between these word vectors by calculating their cosine
similarity and then a score between 0 to 1 is returned as the similarity score for
comparison between two sentences.

Therefore, for each incoming query, the system sorts all questions in the
knowledge base in descending order of similarity. A threshold for the similarity
score is preset and if the highest similarity score from the matched question
is greater than the decided threshold, then the corresponding answer to that
question is returned to the end user. An example of the top-10 relevant questions
to a user query is shown in Fig. 5. It can be observed that the incoming question
was identified as almost 90% similar to the first question in the list. On the other
hand, if there is no proper match between the incoming question and any of the
questions from the dataset, we set a fallback mechanism and a generic response

52 M. Daswani et al.

such as “I am not sure about that” or “Sorry, I do not know that” is returned
as the response.

Incoming question

I had enrolled in an upper division course at other CSU, however the course did not turn out that well, so what form
should I use

similarity

Questions Similarity score

0 I took an upper division GE course at another CSU, but... 895677
Can I take a course from my technology major (MIS, CMP... 864332
I have already published a master's thesis, a PhD diss... 856760
As a ChAD student, how can I apply for graduation? 853763
completed all of my lower division GE and I have pas... 830573
took an American Institutions (US 1, US 2, US3) cour... 824764
tried to enroll in a class, but the enrollment (regi... 821910
tried to enroll in a class, but the enrollment (regi... 821910
tried to enroll in a class, but the enrollment (regi... 821910
Do I need to sign up for utilities, or internet service? 819263

I3

HOHH

1
2
3
4
5
6
7
8
9

cocooooooo

Fig. 5. Implementation of semantic sentence similarity

Although this approach yields high accuracy, it is inefficient in terms of time
taken to generate the response, as the system needs to preprocess and calcu-
late, in real-time, the similarity between the user query and all questions in the
system’s knowledge base. Additionally, such approach does not take into consid-
eration the context, i.e. previous questions the user might have asked. Humans
can interpret the context easily and the conversations never break. However,
sometimes when a user is interacting with an AI chatbot, they may not explic-
itly mention the context in every question, and thus the bot may not give an
appropriate, context-specific response. This results in either a wrong answer or
the bot saying that it doesn’t know the answer, even though the bot was trained
to have the answer for that specific question as well. See for example the ques-
tions in Fig. 6. The user first asks about Open University and the response by
the bot is accurate. The user follows up asking about the application deadline
(implying this applies to Open University admissions), but the bot cannot inter-
pret that. So, it returns the answer for which it found the maximum similarity
for the question resulting in a contextually wrong answer.

To overcome this problem, we categorized the knowledge base into a few spe-
cific categories or contexts, such as Open University, GAPE (Graduate Admis-
sions & Program Evaluations), MSSE (Master of Science in Software Engineer-
ing), ISSS (International Student & Scholar Services), and so on. Whenever a

Question (User) Response (CollegeBot)

What is an Open University? "Open University," or "Continuing Education" at SJSU
allows individuals that are not registered in a degree
program to take university courses. There are a number of
restrictions.

What is the application deadline? | University Graduate admission deadlines are listed at
http://www.sjsu.edu/gape/prospective_students/deadlines/

Fig. 6. Sequence of questions and responses without context

CollegeBot: A Conversational AT Approach 53

question is asked, the query is preprocessed reducing every noun in the question
to a specific word from the dictionary and saving it in the user’s browser envi-
ronment. When a question follows without a context, the bot assumes that the
user is referring to the previous context and the saved context is appended to
the query. Once the context is identified, the similarity score is calculated only
for the questions pertaining to this context, thus reducing the time to return the
accurate response as well. This results in context-specific answers, as shown in
Fig. 7. We observe that the response returned by the bot for the same question
about the application deadline is now pertaining to Open University.

Question (User) Response (CollegeBof)

What is the Open University? "Open University," or "Continuing Education” at SJSU
allows individuals that are not registered in a degree
program to take university courses. There are a number of
restrictions.

What is the application deadline? | Please see the registration website for Open University:
https://www.sjsu.edu/openuniversity/registration/

Fig. 7. Sequence of questions and responses with context

One shortcoming of this methodology is that it plainly depends on the simi-
larity score calculated between the sentences. This algorithm used word vectors
to find the similarity between sentences but it would not be able to link dif-
ferent synonyms. For example “What is the deadline” and “What is the last
date” includes two different ways implying the word deadline, however these
words would have different representations in the form of word vectors. Thus
the similarity score between these kind of sentences would not be very high.

5.2 Seq2seq Model

In this model, we leverage deep neural networks (DNNs) by employing the
seq2seq algorithm. DNNs [12] are strong models which can achieve incredible
performance on learning difficult and complex tasks such as speech recognition
or object detection. However such networks can be only be applied to use cases or
problems with input parameters and target variables encoded in a fixed dimen-
sionality. However this does not apply in cases when the text sequence length is
unknown at the beginning. Answering free-form user questions falls under this
category, as the questions (and answers) are modelled as a sequence of words of
variable length. Our approach incorporates a multi-layered LSTM (Long Short-
Term Memory), a modified version of Recurrent Neural Network (RNN), that
maps the given input sequence to a vector or matrix with a fixed dimension.
The next step of the LSTM decodes back the input sequence from the vector or
matrix and produces the output.

As a part of preparing the data file to be fed to the algorithm, we manually
append a delimiter between the question and the answer so that the algorithm

54 M. Daswani et al.

can distinguish between those two and store them as a vector pair. Also, the
algorithm takes care of removing unnecessary special characters and symbols.
We first pre-process the data by tokenizing the sentences and converting the
words into numbers that uniquely identify them. These tokens are stored into
a vocabulary so that we can convert them back to words. After processing the
data, the algorithm converts the question and answer pair into word vectors and
then performs the encoding and decoding on those vectors. An example is shown
in Fig. 8.

the cat is and or
"is the cat blue ?" = [04, 02, 03, 86, 32, 01]
1 02 03 04 05 06 ...

Fig. 8. Tokenizing a sentence [10]

The tokenized number form of the sentences is sent as a batch to the encoders.
The batch is of a fixed size and the length of the sentences in each batch is also
fixed. To maintain the size of sentences, padding is added. The sentences are
also padded with a token at the beginning to identify the start of the sentence
and a token is appended at the end of the sentence to identify the end of the
token. An example of this is shown in Fig. 9.

The matrix or tensor thus formed is transposed to be sent to the RNN. The
encoder takes the input from the tensor till an end of the sentence is encountered
and a vector representation called context vector is the output. The tokens which
are semantically closer are grouped together in the n-dimensional point which
are passed into the next layer, bi-directional Gated Recurrent Unit (GRU). GRU
is essentially a modified and updated version of a traditional LSTM approach
which proves to be computationally less costly than LSTM. The GRU then
generates a new tensor by reading the input tokens in forward order in the first
layer of GRU and in reverse order in the second layer.

The information is passed from the encoder to the decoder in the form of a
context vector. Certain words in the input sequence are of greater importance
than the other words and thus more attention needs to be given to them. For

ENCODER Reply

2O;hj I\IllayT 20?0j <EF}D>

A A

s e s B

AR
1

When is Spring graduation?

<START>

Incoming question DECODER

Fig. 9. Example of the encoder decoder architecture

CollegeBot: A Conversational AT Approach 55

that purpose, we use the Luong Attention layer mechanism. A weighted sum
of all the encoder outputs is calculated and then that computed context vector
is used in calculating the hidden state of the decoder. Thus, the output of the
decoder depends on three things: decoder output from previous step, the hidden
vector of the decoder, and the context vector computed from the attention layer.

The next step is to train the model. This step consists of setting the right
value of the hyper-parameters such as number of iterations, teacher forcing rate,
learning rate and so on. The training time depends on the size of the data and
the number of epochs. After the training process is completed, the model reads
the user input, evaluates it and finds the relevant answer with the help of the
model trained earlier. Thus, this approach gives a faster reply on the fly, but it
takes a very long time for the model to train.

Due to limited input data, the model does not converge quickly during train-
ing. One way to ensure better convergence is to provide the expected answer
to the decoder instead of using the decoder’s predicted value. This mechanism
is called “Teacher forcing”. Another shortcoming we encountered during the
implementation of this model is that it fails when a word outside the vocabulary
is given. When a question contains an unrecognized word, it does not gener-
ate an answer. The model should ignore the unrecognized word and try to find
an answer. This shortcoming is due to the limited size of the data and can be
overcome with a rich training dataset.

5.3 Evaluation

We evaluated the two training models in terms of their response time and accu-
racy. For testing response time, we provided the same queries to both the models
to calculate the time it takes for them to return an output. Half of the test queries
were identical to some included in the training data (i.e. the knowledge base) and
the other half were rephrased questions. We also wanted to evaluate the accuracy
of the model as a function of the number of the correct answers predicted for the
input queries. We selected a subset of queries to evaluate the models’ accuracy.
Half of the queries were rephrased questions, while the other half included only
a few keywords. We discuss our results and findings in what follows.

We used BLEU (Bilingual Evaluation Understudy) score to evaluate the
accuracy of responses for both the models. BLEU score is a metric to compare
the similarity between a generated statement to a reference statement. The score
metric ranges from 0.0 to 1.0 where 0 means no similarity and 1 means perfect
match. It is defined as follows [6]:

N
BLEU = BP exp(z wy, log pr)
n=1
1 ife>r (1)
BP=1{ _
e=r/e) ife<r (2)

56 M. Daswani et al.

where ¢ denotes the candidate sentence length and r the reference length. In
essence, the score takes a weighted geometric mean of the logs of n-gram preci-
sions up to some length (usually 4), adding a penalty for too-short predictions.

We used “sentence_bleu” from Python’s NLTK library? to measure the cor-
rectness of the answer generated by both the models. We wrote a script to
measure the BLEU score of the test data with various threshold values to deter-
mine the correctness of the model. BLEU Score gives us results between 0 and
1. Additionally we are measuring the time taken by both the models to respond
to a user query. Thus, the average time taken by the semantic similarity model
was 2.03s and that for the seq2seq model was 0.41 s. However, the training time
for the seq2seq model was considerably higher (and, in some setups with a larger
input dataset, the system would not converge even after thousands of iterations).

Semantic Similarity Model. We measured the accuracy of the semantic sim-
ilarity model by using the true positive values and the size of the dataset. Our
preliminary findings after implementing the Semantic Similarity approach was
that the loss of context in the conversations breaks the dialogue or renders the
responses meaningless. Moreover without having a category to search for, the
model has to look for answers in the entire dataset, which increased the com-
plexity of the solution and time to return an answer. Also, we noticed that nouns
in a question can have multiple synonyms which the users can use. And if these
are not mapped to the dataset then the responses would be inaccurate.

To overcome all these limitations, we devised a few steps of preprocessing.
We created a dictionary for the most common nouns in the datasets and added
all the synonyms the users might use. As part of the preprocessing step, when
the user query comes the model, the preprocessor will replace all the nouns in
the question with dedicated nouns in the dataset as mapped by the dictionaries.
We added the categories for each question in the dataset and similarly saved
the context of the incoming query in the user’s environment to keep the model
context-aware in the conversation. The bot would now search for the responses
in that specific category the user is referring to. This drastically reduced the
computation time for the model. So, we concluded that more the categories we
divide the dataset into, the faster the processing becomes. As shown in Fig. 10,
the accuracy of the model was persistently over 90% for various sizes of input
query size.

Seq2seq-Based Model. The answer generated by the algorithm is termed as
actual answer and the correct answer is termed as expected answer. We measure
the BLEU score of these two and if the score is above the threshold value, we
increase the number of true positive answers. We measure the score for each pair
of the expected and actual answers over the test data set. We finally calculate
the number of correct answers based on our threshold and find the accuracy
percentage using the total test data set size and the true positive answer values.

2 https://www.nltk.org/_modules/nltk /translate/bleu_score.html.

https://www.nltk.org/_modules/nltk/translate/bleu_score.html

CollegeBot: A Conversational AT Approach 57

Similarity Model Accuracy Comparison

914 I Data
Size

Accuracy

53 100 150

Data size

Fig. 10. Semantic similarity: performance in various sized data sets

To find the balance between the number of iterations and the data size where the
model would converge, we trained various models of same data size and varying
number of iterations. We gathered results for the test data for threshold values
of 0.7, 0.75 and 0.8 for the seq2seq model, for various numbers of queries. We
also measured the decrease in loss using “maskedNLLLoss” while increasing the
number of iterations to see how the dataset is modeled to work with the algo-
rithm. The results, for various test data sizes and number of iterations are shown
in Figs. 11, 12, 13, 14, 15 and 16. We observe that the optimal hyperparameters
vary depending on the dataset size, but we can achieve 80% or higher BLEU
score accuracy for the optimal parameters for each dataset.

We observed that, since the seq2seq model generates its vocabulary from
the training dataset, it is unable to recognize the word that is outside of its
vocabulary. So, one limitation of seq2seq model is that it will not provide an
answer when a word outside of its vocabulary is used to ask a question. If we
are limiting the vocabulary by limiting the dataset, then the chances of the
model not recognizing a new word increases by default due to the nature of the
algorithm. Thus, to extract the best possible result of seq2seq model, we need to
train the model for appropriate number of epochs and feed in with a large enough
dataset such that the vocabulary of the model can be formed properly. On the
other hand, a larger corpus of training questions requires a larger number of
iterations to converge and increases the computational complexity of the model.

58 M. Daswani et al.

Performance in Data size 53

100 e
iterations

. 100
iterations

80 . 150
iterations

. 200

iterations

Accuracy

@

0.70 0.75 0.80

Bleu Score Threshold

Fig. 11. Seq2Seq: performance in dataset
of size 53

Performance in Data size 100

%0 - 140
iterations

- - 200
iterations

. 250
8 iterations

- 300

Accuracy

iterations

-

~

0
. II | -
0.70 0.75 0.80

Bleu Score Threshold

Fig. 13. Seq2Seq: performance in dataset
of size 100

Performance in Data size 150

100 . 200
iterations
& . 250
iterations
. 300
> 60 iterations
'§ . 350
S iterations
< 40
. 400
iterations
20
0
0.70 0.75 0.80

Bleu Score Threshold

Fig. 15. Seq2Seq: performance in dataset
of size 150

6 CollegeBot Prototype

Average Loss With Data Size 53
0.010

—— Change
in
0.008 f;’:;ag&
2
& o008
s
<
S 0004
=
0.002
0.000

Iteration

Fig.12. Seq2Seq: average Loss with
Data size 53

Average Loss With Data Size 100

0.004 — Change
in
Average
0.003 Loss
2
8
S
$ 0002
<
£
s
0.001
0.000
140 200 250 300
Iteration

Fig. 14. Seq2Seq: average Loss with
data size 100

Average Loss With Data Size 150
0.008

—— Change
in
Average
0.006 Loss
2
g
S
S 0004
<
IS
=
0.002
0.000

200 250 300 350 400

Iteration

Fig.16. Seq2Seq: average Loss with
data size 150

Figure 1 shows the system architecture of the CollegeBot prototype. After exper-
imenting with both training models, we decided to implement the semantic sim-
ilarity model in our proof-of-concept prototype. We have created a distributed
architecture using React.js as frontend server, Java server for AIML, and Python
Flask servers in the backend. The Python Flask servers in the backend are
responsible only for minor tasks, thus creating a micro-service architecture.

CollegeBot: A Conversational AT Approach 59

Figure 17 explains the flow of this system. The frontend takes the user input
and sends it to the Python Flask server! where it checks whether the ques-
tion is a domain-specific question. If it is a domain-specific question it sends
the question to Python server2 for query processing. This server preprocesses
the input question with techniques such as lemmatization and stemming and
sends the response back to serveri. The serverl then sends the received string
to the semantic similarity engine on server3. The engine then checks whether
there exists a context for the sentence. If a context is found then it finds the
most similar question to the user input and returns the corresponding answer
as the response. If the context is not found then it will check for the new con-
text, append it, find the most similar question and return the corresponding
answer as the response. The backend then takes the response from the engine
and sends it to the frontend where it is displayed to the users. If the question was
not domain-specific then the server sends the question to the AIML server that
sends a response back to serverl, that forwards the response to the frontend. A
snapshot of the UT of the CollegeBot prototype is shown in Fig. 18.

User Input

Domain Specific
Question

e Ye ()
Append Query with]4 @ LN
No ® :

Saved Context

Search Context

'V

ALICE chatbot

Sentence Similarity
Model

o Return Most Relevant 4

Answer

Fig. 17. CollegeBot Q&A process flow

6.1 AIML Engine

We have integrated the open-sourced ALICE chatbot [1] as part of our sys-
tem prototype, to handle generic, non-domain-specific questions. ALICE has
in-built coded AIML files which have generic patterns and templates to serve
basic user questions such as “Hi”, “How are you”, “What time is it”, and so
on. ALICE maintains the data in the AIML (Artificial Intelligence Markup Lan-
guage) format which is an extension of the traditional XML format. This format
has been implemented by many other chatbots as well because it very convenient
to maintain the data in such kind of templates and patterns. AIML is built of

60 M. Daswani et al.

data objects known as the AIML objects which portrays the behavior of intelli-
gent systems. It comprises of several units/tags which are termed as topics and
categories in the AIML terminology. A category can be understood as an event
which comprises of patterns, that are specific user inputs, and templates, which
are the corresponding answers to those patterns.

Program AB is a readily available implementation of the Alicebot. We have
used the basic Java implementation of Program AB.? After building Program
AB as a Maven project, we can chat with the system. There are multiple AIML
files already present in the program which lets the system answer all the generic
questions. Whenever a new input query comes, a pattern matching algorithm is
applied across all the AIML files present and the pattern that has the highest
match is identified and its corresponding answer is send out as the response.

We should note at this point that we also ran some tests after developing our
own AIML files. We used another open-source platform for testing the manually
written AIML files. A lot of wildcard characters can be used to yield better
results. Also, AIML tags such as srai help in writing the same question in different
ways and we can point all those questions to one answer. This way we can capture
different types of ways a user can pose a question. This open source platform
provides a convenient way to test the AIML files immediately after writing and
it gives a nice experience as if we were chatting with an actual bot.

However, one of the major shortcomings of this approach is that it is a
very basic way of retrieving answers and there is no scope of performing any
preprocesing on the stored data. Thus, the performance of this approach can
be very limited. The use of different kind of wildcards and AIML tags are not
sufficient for building a proper intelligent chatbot system. Also, the text written
in pattern tag should exactly match with the incoming query. So, the incoming
query would not match if there is any spelling mistake made by the user or
if the user has used completely different set of words to pose that question.
AIML expects the ordering of the text in a sentence to be exactly similar to
the text written in the pattern tag. Thus, this method is quite restrictive about
how it expects the text to be. Moreover, it does not leave any scope for proper
preprocessing step before passing the query as an input. For all these reasons,
we decided to go with the semantic similarity engine to handle domain-specific
questions.

6.2 Semantic Similarity Engine

The incoming query is passed as an input to the system to perform general
preprocessing on it, as discussed in detail in Sect.5.1. Using the custom-made
dictionary of synonyms, the system checks and replaces all query words with
their corresponding synonym abbreviations. The sentence is then stemmed using
a Porter Stemmer* before being sent to the semantic similarity chatbot engine.

3 https://code.google.com/archive/p,/program-ab/downloads.
4 https:/ /www.nltk.org/api/nltk.stem.html#module-nltk.stem.porter.

https://code.google.com/archive/p/program-ab/downloads
https://www.nltk.org/api/nltk.stem.html#module-nltk.stem.porter

CollegeBot: A Conversational AT Approach 61

The engine, depicted in Fig. 2, is the part where we are finding the seman-
tic sentence similarity between the sentences. We used Python’s spacy library®
which uses word2vec to create word vectors and calculate the similarity score
(using cosine similarity). We compute a similarity score between the incoming
query and all the questions present in the data repository. As mentioned in
Sect. 5.1, as soon as the query hits the similarity model, the algorithm tries to
identify a context. If it does not already have a context, then it finds a context
and associates it with that question. If there already is a context associated,
then the model proceeds to retrieve the most similar question classified under
that context from the knowledge base, and returns the respective answer. If the
model was not able to find a question from the database having the similarity
score above the threshold, then that existing context is disassociated from the
incoming query. Further, the incoming query, now having no context, is com-
pared for similarity for all the questions in the database and the most generic
answer is written. For subsequent questions, the model already knows what con-
text the user is referring to so the search is narrowed down and the performance
is improved.

RIMOUISAN JOSE STATE SPARTANS

Z)
)
I ——
Whatis open
| university for san jose

\/
state university?

"Open University,” or
"Continuing Education” at
SJSU allows individuals
that ar dina

are a number of
restrictions. |

Fig. 18. SJSU CollegeBot Ul

7 Conclusions

In this work we present CollegeBot, a conversational chatbot that employs infor-
mation retrieval, natural language processing, and machine learning, to assist
students in navigating the website of a university. We compare and evaluate
two training models, and conclude for a small-sized dataset the semantic simi-
larity model outperforms the seq2seq model in terms of accuracy. The seq2seq
model is faster than the semantic similarity model, however it does not converge

5 https://spacy.io/usage/vectors-similarity.

https://spacy.io/usage/vectors-similarity

62 M. Daswani et al.

fast for a small-sized dataset and needs an appropriate number of iterations to
train the model properly. In such cases, where the training dataset is relatively
small, the semantic similarity model is a better choice. We also introduce the
notion of context. CollegeBot can maintain context in a user session and retrieve
the appropriate answers to subsequent, semantically-related questions. We also
present our proof-of-concept prototype of CollegeBot for San Jose State Univer-
sity, demonstrating how such an approach could easily be implemented for other
academic institutions and beyond. As part of our future work, we plan to explore
leveraging libraries like Wordnet to automatically map nouns to their synonyms
existing in our knowledge base. This will let the model map new incoming words
to the questions in the datasets and return accurate results. Similarly, we plan
to explore how additional similarity metrics, like Wu-Palmer, could be leveraged
to improve the accuracy of the system.

References

1. Abushawar, B., Atwell, E.: ALICE Chatbot: Trials and Outputs: Computacién y
Sistemas 19(4) (2005). https://doi.org/10.13053/cys-19-4-2326

2. Bani, B., Singh, A.: College enquiry chatbot using A.L.I.C.E. Int. J. New Technol.
Res. (IJNTR) 3(1), 64-65 (2017)

3. Ghose, S., Barua, J.: Toward the implementation of a topic specific dialogue based
natural language chatbot as an undergraduate advisor. In: International Confer-
ence on Informatics. Electronics and Vision (ICIEV), pp. 1-5. IEEE, Dhaka (2013)

4. Kulkarni, C., Bhavsar, A., Pingale, S., Kumbhar, S.: BANK CHAT BOT - an
intelligent assistant system using NLP and machine learning. Int. Res. J. Eng.
Technol. 4(5) (2017)

5. Lalwani, T., Bhalotia, S., Pal, A., Bisen, S., Rathod, V.: Implementation of a chat
bot system using AI and NLP. Int. J. Innov. Res. Comput. Sci. Technol. (IJIRCST)
6, 26-30 (2018). https://doi.org/10.21276 /ijircst.2018.6.3.2

6. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a method for automatic
evaluation of machine translation. In: Proceedings of the 40th Annual Meeting
on Association for Computational Linguistics (ACL 2002), pp. 311-318 (2002).
https://doi.org/10.3115/1073083.1073135

7. Patel, N., Parikh, D., Patel, D., Patel, R.:AI and web based human-like interactive
university chatbot (UNIBOT). In: 3rd International conference on Electronics,
Communication and Aerospace Technology (ICECA), pp. 148-150, India (2019)

8. Prajwal, S., Mamatha, G., Ravi, P., Manoj, D., Joisa, S.: Universal semantic web
assistant based on sequence to sequence model and natural language understand-
ing. In: 9th International Conference on Advances in Computing and Communi-
cation (ICACC), pp. 110-115 (2019). https://doi.org/10.1109/ICACC48162.2019.
8986173

9. Rahman, A., Mamun, A., Islam, A.: Programming challenges of chatbot: current
and future prospective. In: 2017 IEEE Region 10 Humanitarian Technology Con-
ference (R10-HTC), pp. 75-78, Dhaka, December 2017

10. Sandeep, S.: End to end chatbot using sequence to sequence architec-
ture (2019). https://medium.com/swlh/end-to-end-chatbot-using-sequence-to-
sequence-architecture-e24d137f9¢78. Accessed 10 June 2019

https://doi.org/10.13053/cys-19-4-2326
https://doi.org/10.21276/ijircst.2018.6.3.2
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1109/ICACC48162.2019.8986173
https://doi.org/10.1109/ICACC48162.2019.8986173
https://medium.com/swlh/end-to-end-chatbot-using-sequence-to-sequence-architecture-e24d137f9c78
https://medium.com/swlh/end-to-end-chatbot-using-sequence-to-sequence-architecture-e24d137f9c78

11.

12.

13.

14.

15.

CollegeBot: A Conversational AT Approach 63

Shukairy, A.: Chatbots in customer service - statistics and trends [infographic]
(n.d.). www.invespcro.com/blog/chatbots-customer-service/#:~:text=The
9%20use%200f %20chatbots%20in,a%20human %20agent %20by %202020. Accessed
12 June 2020

Sutskever, 1., Vinyals, O., Le, Q.: Sequence to sequence learning with neural net-
works. In: NIPS, pp. 3104-3112. Curran Associates Inc. (2014)

Vaira, L., Bochicchio, M., Conte, M., Casaluci, F., Melpignano, A.: MamaBot: a
system based on ML and NLP for supporting Women and Families during Preg-
nancy. In: Desai, B. (eds.) 22nd International Database Engineering Applications
Symposium (IDEAS 2018), pp. 273-277. ACM (2018). https://doi.org/10.1145/
3216122.3216173

Vinyals, O., Le, Q.: A neural conversational model. In: Proceedings of the 31st
International Conference of Machine Learning, France (2015)

Zhang, Y., Xu, T., Dai, Y.: Research on chatbots for open domain: using BiLTSM
and sequence to sequence. In: Proceedings of the 2019 International Conference on
Artificial Intelligence and Computer Science, pp. 145-149 (2020). https://doi.org/
10.1145/3349341.3349393

www.invespcro.com/blog/chatbots-customer-service/#:~:text=The%20use%20of%20chatbots%20in, a%20human%20agent%20by%202020
www.invespcro.com/blog/chatbots-customer-service/#:~:text=The%20use%20of%20chatbots%20in, a%20human%20agent%20by%202020
https://doi.org/10.1145/3216122.3216173
https://doi.org/10.1145/3216122.3216173
https://doi.org/10.1145/3349341.3349393
https://doi.org/10.1145/3349341.3349393

	CollegeBot: A Conversational AI Approach to Help Students Navigate College
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Knowledge Base Creation
	4.1 Data Collection

	5 Training Algorithms
	5.1 Semantic Similarity Model
	5.2 Seq2seq Model
	5.3 Evaluation

	6 CollegeBot Prototype
	6.1 AIML Engine
	6.2 Semantic Similarity Engine

	7 Conclusions
	References

