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Abstract A discrete-time structured population model is formulated by a popula-
tion turnover map F on the cone of finite nonnegative Borel measures that maps
the structural population distribution of a given year to the one of the next year.
F has a first order approximation at the zero measure (the extinction fixed point),
which is a positive linear operator on the ordered vector space of real measures and
can be interpreted as a basic population turnover operator. A spectral radius can
be defined by the usual Gelfand formula and can be interpreted as basic population
turnover number. We continue our investigation (Thieme, H.R.: Discrete-time popu-
lation dynamics on the state space of measures, Math. Biosci. Engin. 17:1168–1217
(2020). doi: 10.3934/mbe.2020061) in how far the spectral radius serves as a thresh-
old parameter between population extinction and population persistence. Emphasis
is on conditions for various forms of uniform population persistence if the basic
population turnover number exceeds 1.

Keywords Extinction · Basic reproduction number · Feller kernel ·
Eigenfunctions · Flat norm (also known as dual bounded lipschitz norm)

1 Introduction

Many animal and plant populations have yearly cycles with reproduction occurring
once a year during a relatively short period. They also carry population structures
which may be due to spatial distribution, age or rank structure, or degree of maturity.

It seems appropriate to describe such populations by discrete-time structured
models in the form of difference equations,
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xn = F(xn−1), n ∈ N, x0 ∈ X+, (1)

with the population structure being encoded in the closed subset X+ � 0 of a normed
vector space X overR, F(0) = 0 [17, 20, 32]. The vector xn describes the structural
distribution of the population in year n while F : X+ → X+ formulates the rule how
the structural distribution in a given year follows from the structural distribution of
the previous year. The norm ‖xn‖ is some measure of the population size in year
n. F is called the (yearly) population turnover operator. The condition F(0) = 0
means that the population is closed: If there is no population this year, then there is
no population next year. We use the notation

Ẋ+ = X+ \ {0}. (2)

Notice that (1) is solved by

xn = Fn(x0), n ∈ N, (3)

where Fn is the n-fold composition or iterate of the operator F and {Fn; n ∈ N} is
the discrete semiflow on X+ induced by the map F [26, Sect. 1.2].

Since this paper relies more heavily on dynamical systems theory than its prequel
[32], we will rather use the iterates Fn than solutions of (1) to formulate our results.

A fundamental question is as to whether the population always dies out, ‖Fn(x0)‖
→ 0 as n → ∞ for all x0 ∈ X+, or whether it persists uniformly [26, 33]:

There is some ε > 0 such that for all x0 ∈ Ẋ+ there is some N ∈ N such that ‖F(x0)‖ ≥ ε

for all n ≥ N (with ε not depending on x0).

In addressing this question, we assume that X+ is a (positively) homogeneous
subset of X :

If x ∈ X+ and α ∈ R+, then αx ∈ X+.

We assume that F is directionally differentiable at 0 = F(0), i.e., that all direc-
tional differentials

B(x) = ∂F(0, x) = lim
R+�b→0

1

b
F(bx), x ∈ X+, (4)

exist. It is easy to see that the directional derivative B : X+ → X+ at 0 is (positively)
homogeneous (of degree one) [20, Theorem3.1]:

If x ∈ X+ and α ∈ R+, then B(αx) = αB(x).

Since we rarely consider homogeneity in a different sense, B with this property
is simply called homogeneous. B is a first order approximation of F at 0 in a weak
sense, and we will need B to be a first order approximation in a stronger sense [20,
Sect. 3] with which we do not want to burden the reader quite yet. We call B the
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basic population turnover operator because it approximates the turnover operator at
low population densities.

The operator norm of a homogenous operator B : X+ → X+ is defined as

‖B‖ := sup{‖B(x)‖; x ∈ X+, ‖x‖ ≤ 1}, (5)

and B is called bounded if this supremum exists.

Lemma 1 Assume that there are δ > 0 and c > 0 such that F : X+ → X+ satisfies
‖F(x)‖ ≤ c‖x‖ for all x ∈ X+ with ‖x‖ ≤ δ. Then the directional derivative B of
F at 0 is bounded and ‖B‖ ≤ c.

1.1 The Spectral Radius of a Homogeneous Operator

Since B is homogeneous,

‖B(x)‖ ≤ ‖B‖ ‖x‖, x ∈ X+, (6)

provided that B is bounded. This formula implies that the powers (iterates) Bn :
X+ → X+ of a homogeneous bounded B are bounded and ‖Bn‖ ≤ ‖B‖n for all
n ∈ N.

The spectral radius of a bounded homogeneous B : X+ → X+ is defined by the
Gelfand formula [13]

r(B) = inf
n∈N

‖Bn‖1/n = lim
n→∞ ‖Bn‖1/n. (7)

The last equality is shown in the same well-known way as for a bounded linear
everywhere-defined map. See [20, 28, 31, 32] for more information.

For restrictions of bounded positive linear operators to a cone, theGelfand formula
for the spectral radiuswas used byBonsall [4] under the name “partial spectral radius”
and by Nussbaum [24] under the name “cone spectral radius.” Mallet-Paret and
Nussbaum [21, 22] used the Gelfand formula for homogeneous bounded operators
on a cone under the name “Bonsall cone spectral radius”. But since this formula also
makes sense on homogeneous sets (which concept includes the vector space), we
simply say “spectral radius”.

If B has an interpretation as basic population turnover operator, then r(B) is called
the basic population turnover number [17, 20, 32].
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1.2 Preview of Extinction and Persistence Results

The following results, which highlight the role of the basic turnover number as thresh-
old parameter between population extinction and persistence, hold under additional
assumptions, all of which we do not mention here.

It will be not enough to assume that X+ is a closed homogeneous subset of X ;
rather X+ needs to be a closed cone.

A homogeneous subset X+ of X is called a cone if it is also a convex subset of X
and if x = 0 is the only vector in X such that x and −x are both elements in X+. A
cone is called a closed cone if it is a closed subset of the normed vector space X .

Cones, wedges and ordered vector spaces are studied in this context in [20, 28,
32] to which we refer. Similarly, not much can be done without assuming that B is
order-preserving i.e., for all x, x̃ ∈ X+,

x − x̃ ∈ X+ =⇒ B(x) − B(x̃) ∈ X+. (8)

• For the rest of this section, let X+ be the closed cone of the normed vector space
X .

• Further, let B : X+ → X+ be homogeneous and order-preserving and let B be an
appropriate first order approximation of F .

Theorem 1 Let X+ be a normal cone, F, B : X+ → X+, r = r(B) < 1. Then the
extinction state 0 is locally asymptotically stable in the following sense:

For each α ∈ (r, 1), there exist some δ0 > 0 and M ≥ 1 such that ‖Fn(x)‖ ≤
Mαn‖x‖ for all n ∈ N and all x ∈ X+ with ‖x‖ ≤ δ0.

See [20, Theorem4.2] for the precise formulation. A rigorously formulated appli-
cation to a general population model in the state space of measures is given in
Theorem 4.

Theorem 2 Let F, B : X+ → X+ and B be compact and continuous, r(B) > 1.
Then, under appropriate additional assumptions, the population persists uni-

formly weakly:
There exists some ε > 0 such that for all x ∈ Ẋ+ and all m ∈ N there exists some

n ∈ N with n > m and that ‖Fn(x)‖ ≥ ε.

See [20, Theorem5.2] for the precise formulation. A rigorously formulated appli-
cation to a general population model in the state space of measures is given in
Theorem 6 and to a more specific model for iteroparous populations in Theorem 25.

Theorem 3 Let F, B : X+ → X+ and B be compact and continuous, r(B) > 1,
and

lim sup
‖x‖→∞

‖F(x)‖
‖x‖ < 1.

Then, under appropriate additional assumptions, the semiflow induced by F has a
compact persistence attractor A1 ⊆ X+:
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(a) A1 is a compact set, F(A1) = A1, and inf
x∈A1

‖x‖ > 0.

(b) A1 attracts all compact subsets K of X+ with inf
x∈K ‖x‖ > 0:

If K is such a subset and U is an open set withA1 ⊆ U ⊆ X+, then there exists
some N ∈ N such that Fn(K) ⊆ U for all n ∈ N with n ≥ N.

Theorem 3 is a consequence of Theorem 2 and of the point-dissipativity Theorem
9 in Sect. 3 and is a special case of [26, Theorem5.7] to which we refer for the precise
assumptions. A rigorously formulated application to a general population model in
the state space of measures is given in Theorem 22.

Corollary 1 Let the assumptions of Theorem 3 be satisfied. Then there is some
ε1 > 0 such that for any compact subsetK of X+ with inf x∈K ‖x‖ > 0 there is some
N ∈ N such that ‖Fn(x)‖ ≥ ε1 for all x ∈ K and all n ∈ N with n ≥ N.

The theorems above are known if B can be extended to a bounded linear map on
X and B is the Frechet derivative of F at 0 [7, 26, 33].

There are at least three motivations to consider the more general situation of a
bounded homogenous order-preserving operator. The first is of mathematical nature,
namely that the directional derivative is homogeneous but not necessarily linear and
that homogenous operators are not Frechet differentiable at 0 unless they are linear
[20, Sect. 3].

The second, biological, motivation are two-sex populationmodelswhich often use
homogeneous mating functions resulting in homogeneous first order approximations
of the population turnover operator [18–20, 29–31].

The third motivation are structural population distributions which are best
described by measures μ on a metric space S (see [1, 2, 32] and the references
therein) which is the state space of individual characteristics [8]. A point in S gives
an individual’s characteristic, and the metric d describes how close the characteris-
tics of two different individuals are to each other. If μ : B → R+ is a measure on the
σ -algebraB of Borel sets in S,μ(T ) gives the number of individuals whose structural
characteristic lies in the Borel subset T of S. This leads to choosing X = M(S) as
population state space, the vector space of real finite Borel measures (or rather an
appropriate closed subspace of it if S is not separable). Let X+ = M+(S) denote
the cone of nonnegative measures and Ẋ+ = Ṁ+(S) be M+(S) without the zero
measure. The variation norm is too strong to provide the required compactness of
the basic turnover operator B on X+ in Theorem 2 even if B can be extended to a
bounded linear operator on X . A suitable alternative is the flat norm aka dual bounded
Lipschitz norm (see [14] and the references therein and Sect. 4). The flat norm has
the trade off that important linear basic turnover operators defined on all of X are
compact and continuous on X+ but not bounded on X [32].
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2 A General Framework for the State Space of Measures

In this paper, we will be guided by the third motivation, a population state space
consisting of measures on a metric space S (Sect. 4).

2.1 Feller Kernels

Important building blocks for the turnovermap F are Feller kernels κ : B × S → R+
where B is the σ -algebra of Borel subsets of S ([32] and Sect. 5). In fact, the first
order approximation of F at 0 mentioned before will be associated with a Feller
kernel. As a first requirement,

• κ(·, s) is a nonnegative measure on B for each s ∈ S.

Then, for each f ∈ Cb(S) (bounded continuous function), we can form the integrals

∫
S
f (t)κ(dt, s) =: (A∗ f )(s), s ∈ S. (9)

As a second requirement,

• κ has theFeller property, i.e., definition (9) provides a continuousbounded function
A∗ f ,

and a bounded linear map A∗ on Cb(S) is associated with κ .
Cf. [3, Sect. 19.3]. See Example 10.12 in [32].
Cb(S), the vector space of bounded continuous real-valued functions, is a Banach

space under the supremum norm and has Cb+(S), the subset of nonnegative functions
in Cb(S), as closed convex cone. Ċb+(S) denotes this cone without the zero function.

By [32, Proposition6.3], if κ is a Feller kernel, κ(U, ·) is a Borel measurable
function on S for all open subsets U of S and thus for all Borel sets U in S. Conse-
quently, A∗ can be extended to Mb(S) by (9), the Banach space of bounded Borel
measurable functions with the supremum norm.

For each μ ∈ M(S), we can define

∫
S
κ(T, s)μ(ds) = (Aμ)(T ), T ∈ B, (10)

and obtain a measure Aμ and a linear map on M(S) and the duality relation

∫
S
(A∗ f ) dμ =

∫
S
f d(Aμ), f ∈ Mb(S), μ ∈ M(S). (11)

The linear operator A on M(S) is bounded with respect to the variation norm,
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‖A‖ = sup
s∈S

κ(S, s) = ‖A∗‖, (12)

but not necessarily bounded with respect to the flat norm [32, Sect. 9, 10].
In some probabilistic applications, it is assumed that κ is also a Markov kernel,

i.e., κ(S, s) = 1 for all s ∈ S. Then κ(T, s) can be interpreted as the probability that
an individual with characteristic s ∈ S will have a characteristic within the set T
after one year. This ignores that the individual may die during the year on the one
hand or have offspring on the other hand.

So, we do not assume that κ is aMarkov kernel, and κ(T, s) is rather interpreted as
follows: For an individual with characteristic feature s ∈ S, κ(T, s) is the sum of the
probability that, after one year, the individual is still alive and has its characteristic
feature within the set T and of the amount of its surviving offspring that has also
characteristic feature within the set T . For more on Feller kernels see Sect. 5.

Definition 1 A Feller kernel κ : B × S → R+ is called a uniform Feller kernel if

sup
T∈B

|κ(T, t) − κ(T, s)| → 0, t → s, for all s ∈ S. (13)

Equivalent characterizations of uniform Feller kernels are given in Proposition9,
in particular (13) implies the Feller property above. For more on uniform Feller
kernels see Sect. 5.2.

2.1.1 Convolutions and Spectral Radius of Feller Kernels

The convolution of two Feller kernels κ j : B × S → R+, j = 1, 2, is defined by

(κ1 � κ2)(T, s) =
∫
S
κ1(T, t)κ2(dt, s), T ∈ B, s ∈ S. (14)

κ1 � κ2 is again a Feller kernel.

Definition 2 Let κ : B × S → R+ be a Feller kernel. We inductively define the
multiple convolution kernels κn� by κ1� = κ and κ(n+1)� = κn� � κ .

The spectral radius of the Feller kernel κ is defined by

r(κ) = inf
n∈N

(
sup
s∈S

κn�(S, s)
)1/n

. (15)

If A∗ is the map on Cb(S) or on Mb(S) induced by κ , then An∗ is induced by κn�.
This implies that r(κ) = r(A∗), and so, in (15), inf

n∈N
can be replaced by lim

n→∞ because

of (7). See [32, Sect. 9] for more details.
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2.1.2 Irreducible Feller Kernels

Since a Feller kernel κ : B × S → R+ induces the positive bounded linear map A∗
on the Banach lattice Cb(S) with the supremum norm, irreducibility of κ could be
defined as irreducibility of A∗ like in [25, III.8]. However, the following weaker
irreducibility concept seems to be better tailored to a Feller kernel.

Definition 3 ([27]) A Feller kernel κ : B × S → R+ is called top-irreducible (short
for “topologically irreducible”) if for any nonempty open subset U of S and for any
s ∈ S \U there is some n ∈ N such that κn�(U, s) > 0.

We will also use the following stronger concept.

Definition 4 A Feller kernel κ : B × S → R+ is called strongly top-irreducible if
for any nonempty open subset U of S and any nonempty compact subset K of S
there exists some n ∈ N such that κn�(U, s) > 0 for all s ∈ K .

For more on (strongly) irreducible Feller kernels see Sect. 5.3.

2.2 Turnover Maps on the State Space of Measures

We consider yearly turnover maps F of the following general form,

F(μ)(T ) =
∫
S
κμ(T, s) μ(ds), μ ∈ M+(S), T ∈ B, (16)

where {κμ;μ ∈ M+(S)} is a family of Feller kernels κμ : B × S → R+.
The interpretation of κμ is as before except that individual survival, develop-

ment and reproduction play out in the environment being effected by the structural
distribution μ of the population.

If μ is the zero measure, we use the notation κo. Often, the operator A associated
with κo by (10) will turn out to be the first order approximation of F at the zero
measure.

Finally, we emphasize that, while individual survival, development, and reproduc-
tion are modeled stochastically through the family of Feller kernels, the population
model is completely deterministic.

A more specific model for a semelparous population can be found in [32, Sect. 2
and 12] and for an iteroparous population in Sect. 7.

Assumption 5 For each μ ∈ M+(S), κμ is a Feller kernel and
{
κμ(S, t); μ ∈

M+(S), t ∈ S
}
is a bounded subset of R.

Standard measure-theoretic arguments imply the following result.

Proposition 1 Let the Assumption 5 be satisfied. Then F maps M+(S) into itself.
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Definition 6 The kernel family {κμ;μ ∈ M+(S)} is called upper semicontinuous
at the zero measure if for any ε ∈ (0, 1) there is some δ > 0 such that

κμ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S,

for all μ ∈ M+(S) with μ(S) ≤ δ.
The kernel family {κμ;μ ∈ M+(S)} is called lower semicontinuous at the zero

measure if for any ε ∈ (0, 1) there is some δ > 0 such that

κμ(T, s) ≥ (1 − ε)κo(T, s), T ∈ B, s ∈ S,

for all μ ∈ M+(S) with μ(S) ≤ δ.
The kernel family {κμ;μ ∈ M+(S)} is called continuous at the zero measure if

for any ε ∈ (0, 1) there is some δ > 0 such that

(1 − ε)κo(T, s) ≤ κμ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S,

for all μ ∈ M+(S) with μ(S) ≤ δ.

In a preview of results, we will showcase the spectral radius of the basic turnover
kernel κo as a crucial threshold parameter between local stability (in the subthresh-
old case r(κo) < 1) and instability (in the superthreshold case r(κo) > 1) of the
extinction state represented by the zero measure; r(κo) is called the basic population
turnover number. For a semelparous population, as it is considered in [32, Sect. 12],
the basic turnover number coincides with the basic reproduction number.

2.3 Local (Global) Stability of the Zero Measure in the
Subthreshold Case

For perspective, we cite the following result [32, Theorem3.6].

Theorem 4 Make Assumption 5 and let the kernel family {κμ;μ ∈ M+(S)} be
upper semicontinuous at the zero measure.
(a) If r = r(κo) < 1, the zero measure (the extinction state) is locally asymptotically
stable in the following sense:

For each α ∈ (r, 1), there exist some δα > 0 and Mα ≥ 1 such that,

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N,

if μ ∈ M+(S) with μ(S) ≤ δα .

(b) If r = r(κo) < 1 and κμ(T, s) ≤ κo(T, s) for all T ∈ B, s ∈ S, the zero measure
is globally stable in the following sense:
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For each α ∈ (r, 1), there exists some Mα ≥ 1 such that

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N, μ ∈ M+(S).

Recall that Fn(μ)(S) is the total population size in the nth year and μ(S) the
population size at the beginning.

2.4 Instability of the Zero Measure in the Superthreshold
Case

We consider the following concepts [10, 14, 16, 32].

Definition 7 Consider a subset N of M+(S).

• N is called tight if for any ε > 0 there exists a compact subset K of S such that
μ(S \ K ) < ε for all μ ∈ N .

• A single measure μ ∈ M+(S) is called tight, and we write μ ∈ Mt+(S), if {μ} is
tight.

• N is called pre-tight if for any ε > 0 there exists a closed totally bounded subset
T of S such that μ(S \ T ) < ε for all μ ∈ N .

• A single measure μ ∈ M+(S) is called separable, and we write μ ∈ Ms+(S), if
there exists a countable subset T of S such that μ(S \ T̄ ) = 0.

• A single measure μ ∈ M(S) is called separable, and we write μ ∈ Ms(S), if its
absolute value |μ| is separable.
By definition, a subset T of S is totally bounded if for any ε > 0 there exists a

finite subset K of T such that T ⊆ ⋃
s∈K Uε(s). Here Uε(s) = {t ∈ S; d(t, s) < ε}

is the open neighborhood with center s and radius ε. T ⊆ S is compact if and only
if T is totally bounded and complete [3, Sect. 3.7].

If S is a compact metric space,M+(S) is trivially tight. If S is a separable metric
space, M+(S) = Ms+(S).

Definition 8 A Feller kernel κ is called a tight Feller kernel if {κ(·, s); s ∈ S} is a
tight set of measures.

A Feller kernel κ is called a Feller kernel of separable measures if all measures
κ(·, s), s ∈ S, are separable.

The condition r(κo) < 1 in Theorem 4 is almost sharp as seen from the next result
([32, Theorem3.13] with switched roles of κ1 and κ2).

Theorem 5 Make Assumption 5 and let the kernel family {κμ;μ ∈ M+(S)} be
lower semicontinuous at the zero measure.

Assume that κo = κ1 + κ2 with two Feller kernels κ j of separable measures and
assume that κ2 is a tight kernel and r := r(κo) > 1 ≥ r(κ1).
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Then there exists some eigenmeasure ν ∈ Ms+(S), ν(S) = 1, such that

rν(T ) =
∫
S
κo(T, s)ν(ds), T ∈ B.

Further, the zero measure is unstable: There is some δ0 > 0 such for any ν-positive
μ ∈ M+(S) there is some n ∈ Z+ with Fn(μ)(S) ≥ δ0.

A measure μ ∈ M+(S) is called ν-positive if there exists some δ > 0 such that
μ(T ) ≥ δν(T ) for all T ∈ B.

In an iteroparous population, as we will consider it in Sect. 7, the Feller kernel κ1
may be associated with adult survival and adult development and the Feller kernel
κ2 with reproduction and first year development. If r(κ1) < 1, κ∞

1 = ∑∞
n=1 κn�

1 is a
Feller kernel, and the Feller kernel

κ2 + κ2 � κ∞
1 = κ2 +

∞∑
n=1

κ2 � κn�
1

can be interpreted as next generation kernel and its spectral radius as basic [9] (or
inherent net [5, 6]) reproduction number. We again like to think of κo = κ1 + κ2 as
basic population turnover kernel and its spectral radius as basic turnover number;
this spectral radius has also been called inherent population growth rate [6].

Remark 1 Let r(κ1) < 1. The following trichotomy holds:

• r(κ2 + κ2 � κ∞
1 ) > 1 and r(κ1 + κ2) > 1

or
• r(κ2 + κ2 � κ∞

1 ) = 1 and r(κ1 + κ2) = 1
or

• r(κ2 + κ2 � κ∞
1 ) < 1 and r(κ1 + κ2) < 1.

See [32, Remark3.14, Theorem7.16], but notice that the roles of κ1 and κ2 have
been switched.

2.5 Persistence of the Population in the Superthreshold Case

We now give a preview of this paper’s main results in the general framework for the
population state space of measures. The proofs can be found in Sect. 6.

Assumption 9 For each μ ∈ Ms+(S), κμ is a Feller kernel of separable measures
and

{
κμ(S, t);μ ∈ Ms+(S), t ∈ S

}
is a bounded subset of R.

Assumption 10 For any μ ∈ Ṁs+(S), κμ(S, s) > 0 for all s ∈ S.
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Recall that Ṁs+(S) is the set of nonnegative separable measures without the zero
measure.

Theorem 6 Assume Assumptions 9 and 10. Let the kernel family {κμ;μ ∈ Ms+(S)}
be lower semicontinuous at the zero measure.

Assume that κo is a top-irreducible Feller kernel and κo = κ1 + κ2 with two tight
Feller kernels κ j , where κ2 is a uniform Feller kernel.

Finally, assume r = r(κo) > 1 ≥ r(κ1).
Then the semiflow induced by F is uniformly weakly persistent: There exists some

δ > 0 such that lim sup
n→∞

Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

The next assumption looks rather technical, but is often satisfied; the technicality
is the prize we pay for the generality of the framework. We will derive from it that
F is continuous on Ms+(S) with respect to the flat norm.

Assumption 11 If μ ∈ Ms+(S) and (μn) is a sequence in Ms+(S) such that∫
S f dμn → ∫

S f dμn for all f ∈ Cb+(S), then

∫
S
h(t) κμn (dt, s)

n→∞−→
∫
S
h(t) κμ(dt, s) (17)

uniformly for s in every closed totally bounded subset of S, for all h ∈ L,

L = {
h ∈ [0, 1]S; ∀t, t̃ ∈ S : |h(t) − h(t̃)| ≤ d(t, t̃)

}
. (18)

Assumption 12 If N is a bounded subset of Ms+(S), then the set of measures
{κμ(·, s); s ∈ S, μ ∈ N } is tight and the set {κμ(S, s); s ∈ S, μ ∈ N } is bounded in
R.

This assumption will imply that F is compact on Ms+(S) with respect to the flat
norm.

Assumption 13 lim sup
μ(S)→∞

sup
s∈S

κμ(S, s) < 1.

This assumption will allow us to use the abstract point-dissipativity result in the
upcoming Sect. 3.

Theorem 7 Make Assumptions 9, 10, 11, 12, 13 and let the kernel family {κμ;μ ∈
Ms+(S)} be lower semicontinuous at the zero measure.

Assume that κo is a top-irreducible Feller kernel and κo = κ1 + κ2 with two tight
Feller kernels κ j where κ2 is a uniform Feller kernel.

Finally, assume r = r(κo) > 1 > r(κ1).
Then the semiflow induced by F is uniformly persistent: There exists some δ > 0

such that lim inf
n→∞ Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

To obtain uniform persistence in a stronger sense, we will assume the following.
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Assumption 14 IfN is a tight bounded subset ofM+(S), then there exists a strongly
top-irreducible Feller kernel κ̃ such that

κμ(T, s) ≥ κ̃(T, s), T ∈ B, s ∈ S, μ ∈ N .

Theorem 8 Make Assumptions 9, 10, 11, 12, 13, 14 and let the kernel family
{κμ;μ ∈ Ms+(S)} be lower semicontinuous at the zero measure.

Assume that κo is a strongly top-irreducible Feller kernel and κo = κ1 + κ2 with
two tight Feller kernels κ j , where κ2 is a uniform Feller kernel. Finally, assume
r = r(κo) > 1 ≥ r(κ1).

Then the semiflow induced by F is uniformly persistent in the following sense:
For each f ∈ Ċb+(S), there exists some ε f > 0 with the following property:

IfN is a bounded tight subset ofMs+(S)with infμ∈N μ(S) > 0, there exists some
N ∈ N such that

∫
S
f d Fn(μ) ≥ ε f for all μ ∈ N and all n ∈ N with n > N .

3 An Abstract Point-Dissipativity Result

The next abstract result will be used in proving Theorem 8.

Theorem 9 Let X+ be the closed cone of an ordered normed vector space X. Let
F : X+ → X+ map bounded subsets of X+ into bounded subsets of X+. Let θ :
X+ → R+ be homogeneous, subadditive, continuous and uniformly positive (there
is some ε > 0 such that ε‖x‖ ≤ θ(x) for all x ∈ X+). Assume that

lim sup
‖x‖→∞

θ(F(x))

θ(x)
< 1. (19)

Then, for any bounded subset B of X+, there exists a bounded convex subset B̃ of
X+ such that Fn(B) ⊆ B̃ for all n ∈ N. Further, there exists a bounded convex subset
B0 of X+ such that for each x ∈ X+ there exists some m ∈ N such that Fn(x) ∈ B0

for all n ≥ m. If F is continuous and compact, the semiflow induced by F has a
compact attractor of bounded sets [26, Sect.2.2.3].

Proof Cf. [26, L.7.1]. By (19) and the other properties of θ , there exists some ξ ∈
(0, 1) and R1 > 0 such that

θ(F(x)) ≤ ξθ(x), x ∈ X+, θ(x) ≥ R1. (20)

We claim that there exists some R2 > 0 such that, for all x ∈ X+,

θ(x) ≤ R2 =⇒ θ(F(x)) ≤ R2. (21)
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If not, for any n ∈ N, there exists some xn ∈ X+ such that θ(xn) ≤ n < θ(F(xn)).
Since F maps bounded sets in X+ into bounded sets of X+ and θ is bounded,
θ(xn) → ∞ as n → ∞. This leads to a contradiction for n large enough such that
θ(xn) ≥ R1:

n < θ(F(xn)) ≤ ξθ(xn) < n.

Let R3 = max{R1, R2}. Let R ≥ R3 and B+
R = {x ∈ X+; θ(x) ≤ R}. Since θ is con-

vex and continuous, B+
R is convex and closed. Since θ is uniformly positive, B+

R
is bounded. By (21), F(B+

R ) ⊆ B+
R . Let B be a bounded subset of X+. Then there

exists some R > R3 such that B ⊆ B+
R and Fn(B) ⊆ B+

R for all n ∈ N. Let x ∈ X+.
If ‖x‖ ≤ R3, lim supn→∞ θ(Fn(x)) ≤ R3. If θ(x) > R3, by (20), θ(Fn+1(x)) ≤
ξθ(Fn(x)) as long as θ(Fn(x)) ≥ R3. So θ(Fn(x)) ≤ R3 for some m ∈ N and
lim supn→∞ θ(Fn(x)) ≤ R3 as well. Since θ is uniformly positive, there exists some
c > 0 such that lim supn→∞ ‖Fn(x)‖ ≤ c for all x ∈ X+.

In the language of [26, Definition2.25], we have shown that the semiflow induced
by F is point-dissipative and eventually bounded on every bounded set. If F is also
continuous and the semiflow is asymptotically smooth (in particular if F is compact).
then the semiflow has a compact attractor of bounded set by [26, Theorem2.30]. �

4 The Ordered Vector Space of Real Measures

Let S be a nonempty set, B a σ -algebra on S, and M(S) denote the set of real
measures on B.

M(S) becomes a real vector space by the definitions (μ + ν)(T ) = μ(T ) + ν(T )

and (αμ)(T ) = αμ(T ) where T ∈ B and α ∈ R and μ, ν ∈ M(S).
M(S) contains the cone of all nonnegative measures, M+(S) (a convex homo-

geneous set). M(S) is an order-complete vector lattice: Each subset N of M(S)

which has an lower (upper) bound has an infimum (supremum).
The absolute value |μ| of a measure (in this context also called the variation of

the measure) is given by

|μ|(T ) = sup{μ(U ) − μ(T \U );B � U ⊆ T }

= sup{|μ(U )| + |μ(T \U )|;B � U ⊆ T } = sup
{ n∑

j=1

|μ(Tj )|
}
,

(22)

where the supremum is taken over all n ∈ N and subsets {T1, . . . , Tn} of B such that
T is its disjoint union [3, Corollary10.54 and Theorem10.56].
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4.1 Measures Under the Variation Norm and the Flat Norm

The variation norm (also called total variation) onM(S) is defined by

‖μ‖� = |μ|(S), μ ∈ M(S), (23)

where |μ| is the absolute value of μ defined by (22).
If μ ∈ M+(S), ‖μ‖� = μ(S). So the variation norm is additive and order-

preserving on M+(S), and M+(S) is a normal cone. The variation norm makes
M(S) a Banach lattice; in particular, M+(S) is a non-flat generating cone: Every
real-valued measure μ can be written as the difference of its positive and negative
variation, μ = μ+ − μ−, and ‖μ±‖� ≤ ‖μ‖�.

The variation norm is equivalent to the supremum norm

‖μ‖∞ = sup
T∈B

|μ(T )|, μ ∈ M(S), (24)

and the two norms are equal on M+(S).
Let (S, d) be a metric space. B now denotes the Borel σ -algebra of S which is

the smallest σ -algebra that contains all open and closed sets. The sets in the Borel
σ -algebra are called Borel sets. In a metric space, the Borel σ -algebra is also the
smallest σ -algebra for which all (bounded) continuous functions are continuous [11,
Theorem7.1.1]. This second σ -algebra is often [11] but not always [3] called the
Baire-σ -algebra.

The following is a summary of results needed later. For more details, we refer to
[14]. Many of the results can already been found in [10, 11]. See also [15, 16].

For perspective, we present the following result for the variation norm.

Theorem 10 For all μ ∈ M(S),

‖μ‖� = |μ|(S) = sup
{∣∣∣

∫
S
f dμ

∣∣∣; f ∈ Cb(S), ‖ f ‖∞ ≤ 1
}
.

Proof By [12, IV.6.2], μ 
→ θ with θ( f ) = ∫
S f dμ, f ∈ Cb(S), is an isometric

isomorphism between the Banach space of regular additive set functions with the
variation norm and the dual space ofCb(S). The assertion now follows because every
real measure on B is regular [3, Theorem12.5]. �

We introduce the following functional on M(S),

‖μ‖
 = sup
f ∈L

∣∣∣
∫
S
f dμ

∣∣∣,
L =

{
f ∈ [0, 1]S; ∀x, y∈S | f (x) − f (y)| ≤ d(x, y)

}
.

(25)
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Recall that MS denotes the set of functions from S to a set M . ‖ · ‖
 is a norm on
M(S) [14], which we call the flat norm, and

‖μ‖
 ≤ ‖μ‖�, μ ∈ M(S). (26)

In the literature, definitions different from (25) are used that lead to equivalent
norms. For instance, [0, 1]S is replaced by [−1, 1]S . Also different names are used
for the flat norm or its equivalent definitions. For details see [14].

All the definitions have in common that

‖μ‖
 = μ(S) = ‖μ‖�, μ ∈ M+(S). (27)

This implies that the flat norm is additive and order-preserving on M+(S).
In the following, all topological notions concerningM(S) andM+(S) are meant

with respect to the flat norm unless it is explicitly said otherwise.

Theorem 11 M+(S) is a generating, normal, closed cone.

Lemma 2 For x ∈ S, let δx denote the Dirac measure at x. Then 1 = ‖δx‖
 and, for
y, x ∈ S,

‖δx − δy‖
 = min{1, d(x, y)}.

Corollary 2 ([16]) If S is not uniformly discrete (i.e., its metric is not equivalent to
the discrete metric), then the ordered normed vector space M(S) is not complete.

4.1.1 Convergence inM+(S)

Definition 15 LetF be a set of functions f : S → R and s ∈ S.F is called equicon-
tinuous at s if for any ε > 0 there exists some δ > 0 such that | f (t) − f (s)| < ε

for all f ∈ F and all t ∈ S with d(t, s) < δ. F is called equicontinuous on S if it is
equicontinuous at all s ∈ S.

F is called uniformly equicontinuous on S̃ ⊆ S if for any ε > 0 there is some
δ > 0 such that | f (t) − f (s)| < ε for all f ∈ F and all s, t ∈ S̃ with d(t, s) < δ.

F is called equibounded if there exists some c > 0 such that | f (s)| ≤ c for all
s ∈ S and all f ∈ F .

The following is proved in [32, Proposition6.10].

Proposition 2 Let F be an equicontinuous and equibounded family of functions
f : S → R+ and μ ∈ M(S) and (μn) be a sequence in M+(S) such that ‖μn −
μ‖
 → 0 as n → ∞. Then

∫
S f dμn → ∫

S f dμ as n → ∞ uniformly for f ∈ F .

Recall the definition of a (pre-)tight set of measures (Definition 7).
To show that pre-tightness does not change under topologically equivalentmetrics,

we note the following.
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Proposition 3 μ ∈ M+(S) is separable if and only if it is pre-tight.

Proposition 4 The closure of a tight set of nonnegativemeasures is tight. The closure
of a pre-tight set of nonnegative measures is pre-tight.

The closure of a set of separable nonnegative measures consists of separable
measures.

Proof The first two statements follow from [14, Theorem4.10d]. The third statement
holds because a countable union of countable sets is countable.

Corollary 3 Ms+(S) is a closed cone of M(S).

Here is the characterization of convergence.

Theorem 12 Let (μn) inM+(S) and μ ∈ Ms+(S). Equivalent are

(i) ‖μn − μ‖
 → 0,
(ii)

∫
S f d(μn − μ) → 0 for all continuous functions f ∈ Cb(S),

(iii)
∫
S f d(μn − μ) → 0 for all Lipschitz continuous functions f : S → [0, 1].

4.1.2 Compactness and Completeness inM+(S)

Theorem 13 Let (μn) be a tight sequence inM+(S) such that (μn(S)) is bounded.
Then (μn) has a converging subsequence (with the limit measure being tight as well).

Proposition 5 Let N ⊆ Ms+(S) be a totally bounded set of pre-tight measures.
Then N is pre-tight and, if S is complete, tight.

Theorem 14 ([16, Theorem3.8]) Ms+(S) is complete if and only if S is complete.

5 More on Feller Kernels

Let S be metrizable topological space and B and the respective Borel σ -algebra.

Definition 16 A function κ : B × S → R+ is called a Feller kernel if

κ(·, s) ∈ M+(S) for all s ∈ S and if κ has the Feller property∫
S f (y)κ(dy, ·) ∈ Cb(S) for any f ∈ Cb(S).

A Feller kernel κ is called a Feller kernel of separable measures if

κ(·, s) ∈ Ms+(S) for all s ∈ S̃.

Cf. [3, Sect. 19.3] and Sect. 2.1. For examples and details see [32]. Recall that
every Feller kernel induces maps A : M(S) → M(S) and A∗ : Mb(S) → Mb(S)

with Mb(S) denoting the Banach space of bounded measurable functions with the
supremum norm. See (10) and (9). Since κ is a Feller kernel, A∗ maps Cb(S) to
Cb(S).

The next result is part of [32, Theorem10.4].
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Theorem 15 Let κ : B × S → R+ be a Feller kernel of separable measures.
Then the following hold:

(a) A maps Ms+(S) into Ms+(S), and A : Ms+(S) → Ms+(S) is continuous with
respect to the flat norm.

(b) A maps Ms(S) intoMs(S).

Remark 2 Let κ be a Feller kernel of separable measures and As denote the restric-
tion of A fromMs(S) toMs(S) and As+ the restriction of A fromMs+(S) toMs+(S).
Since the Dirac measures are separable, we still have for the operator norms that
‖As‖ = ‖As+‖ = sups∈S κ(S, s), (see 12). By (15),

r(As) = r(A) = r(As
+) = r(κ).

Remark 3 Themap A induced by aFeller kernel via (10) is continuous fromM+(S)

toM+(S) with respect to the variation norms even without the Feller type property.
But it seems difficult to come up with conditions for A to be compact with respect
to the variation norm.

5.1 Tight Feller Kernels

Definition 17 A Feller kernel κ : B × S → R+ is called a tight Feller kernel if the
set of measures {κ(·, x); x ∈ S} is tight.

A Feller kernel κ is called a pre-tight Feller kernel if set of measures {κ(·, x);
x ∈ S} is pre-tight.

See [32, Sect. 10] for the proofs of the following andother results and for examples.

Proposition 6 Let κ : B × S → R+ be a tight Feller kernel. Then A is continuous
and compact fromM+(S) toM+(S)with respect to the flat norm and mapsM+(S)

intoMt+(S).

Proposition 7 Let P : B × S → R+ be a tight Feller kernel and g ∈ Cb+(S × S).
Then κ̃ : B × S → R+,

κ̃(T, s) =
∫
T
g(s, t)P(dt, s), s ∈ S, T ∈ B, (28)

is a tight Feller kernel. In particular, κ̃(S, ·) ∈ Cb(S).

5.2 Uniform Feller Kernels

We start from the observation that tight Feller kernels are related to compactness in
Cb(S). Recall the concepts of equicontinuity and equiboundedness, Definition 15.
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Proposition 8 Let κ be a tight Feller kernel and Q be an equicontinuous bounded
subset of Cb(S). Let A∗ be the map on Cb(S) induced by κ via (9). Then A∗(Q) has
compact closure in in Cb(S).

Proof Let (gn) be a sequence in Q. Since κ is tight, there exists a sequence (K j ) of
compact subsets of S such that

sup
s∈S

κ(S \ K j , s) → 0, j → ∞. (29)

Set S̃ = ⋃
j∈N K j . Then S̃ is separable. By a version of the Arzela-Ascoli theorem

[23, Theorem8.5], there exists a subsequence (gni ) and some g ∈ Cb(S̃) such that
gni → g pointwise on S̃ and uniformly on each K j . Set hn = A∗gn and h(s) =∫
S̃ g(t)κ(dt, s), s ∈ S. Then hn ∈ Cb(S) and h ∈ Mb(S). For each s ∈ S and j, i ∈
N,

|hni (s) − h(s)| ≤
∫
S\K j

|gni (t)|κ(dt, s) +
∫
K j

|gni (t) − g(t)|κ(dt, s)

+
∫
S̃\K j

|g(t)|κ(dt, s).

By our various assumptions, there is some c > 0 such that, for all i, j ∈ N,

‖hni − h‖∞ ≤ 2c sup
s∈S

κ(S \ K j , s) + c sup
t∈K j

|gni (t) − g(t)|.

For all j ∈ N, since gni → g as i → ∞ uniformly on K j ,

lim sup
i→∞

‖hni − h‖∞ ≤ 2cκ(S \ K j ).

By (29), we can take the limit as i → ∞,

lim sup
i→∞

‖hni − h‖∞ = 0.

This shows A∗(Q) is a compact subset of Cb(S). Since all hn are continuous, h is
continuous as well. �

The preceding result motivates us to look for Feller kernels that are related to
equicontinuous sets of functions.

Proposition 9 Let κ : B × S → R+ be a Feller kernel and A the induced linearmap
onM(S) and A∗ the induced linear map on Mb(S) via (10) and (9), respectively.

Then the following are equivalent:

(a) sup
T∈B

|κ(T, t) − κ(T, s)| → 0, t → s, for all s ∈ S.
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(b) If Q is a bounded subset of Mb(S), then A∗(Q) is an equicontinuous and equi-
bounded subset of Cb(S).

(c) If Q is a bounded subset of Cb(S), then A∗(Q) is an equicontinuous and equi-
bounded subset of Cb(S).

(d) A is continuous from M+(S) with the flat norm to M+(S) with the variation
norm.

Proof Assume (a). Let f (t) = ∑m
i=1 αiχTi be ameasurable function of finitelymany

values α1, . . . , αm , where Ti ∈ B are pairwise disjoint. Then

∣∣A∗ f )(t) − A∗( f )(s)
∣∣ ≤ ‖ f ‖∞

m∑
i=1

∣∣κ(Ti , t) − κ(Ti , s)
∣∣.

Since κ(·, t) − κ(·, s) is a real-valued measure and the Ti are pairwise disjoint,

∣∣A∗ f )(t) − A∗( f )(s)
∣∣ ≤ 2‖ f ‖∞ sup

T∈B

∣∣κ(T, t) − κ(T, s)
∣∣. (30)

If f ∈ Mb(S), f is the uniform limit of a sequence of such finitely-valuedmeasurable
functions and (30) holds for f ∈ Mb(S). This implies that A∗ maps Mb(S) into
Cb(S). Let Q be a bounded subset of Mb(S). Then A∗(Q) is a bounded subset of
Cb(S) and an equicontinuous subset by (a) and (30), and (b) follows.

Obviously, (b) implies (c).
Assume (c). Let (μn) be a sequence in M+(S) and μ ∈ M+(S) such that

‖μn − μ‖
 → 0 as n → ∞. By (c), {A∗ f ; f ∈ Cb(S), 0 ≤ f ≤ 1} is a uniformly
equicontinuous and equibounded family of functions from S to R+. By Propo-
sition 2,

∫
S(A∗ f )dμn → ∫

S(A∗ f )dμ as n → ∞ uniformly for f ∈ Cb(S) with
0 ≤ f ≤ 1. Let f ∈ Cb(S) with ‖ f ‖∞ ≤ 1. Then f = f+ − f− with 0 ≤ f± ≤ 1.
So

∫
S(A∗ f )dμn → ∫

S(A∗ f )dμ uniformly for f ∈ Cb(S) with ‖ f ‖∞ ≤ 1. By the
duality between A∗ and A, (11),

∫
S f d(Aμn) → ∫

S f d(Aμ) as n → ∞ uniformly
for f ∈ Cb(S) with ‖ f ‖∞ ≤ 1. Assertion (d) now follows from Theorem 10.

Assume (d). As t → s, ‖δt − δs‖
 → 0 by Lemma 2 and, by (d), Aδt → Aδs in
variation norm and supT∈B |κ(T, t) − κ(T, s)| → 0 by (10).

Definition 18 A Feller kernel κ : B × S → R+ is called a uniform Feller kernel if
it satisfies property (a) of Proposition 9.

Corollary 4 If κ is a Feller kernel and the map A∗ : Cb(S) → Cb(S) associated
with κ is compact, then κ is a uniform Feller kernel.

Corollary 5 Let κ1 be a Feller kernel on S and κ2 a uniform Feller kernel on S.
Then κ1 � κ2 is a uniform Feller kernel on S.

Proof Let Ai be the linear maps on M+(S) induced by κi via (10). By Proposition
9, A2 continuously maps M+(S) with the flat norm into M+(S) with the variation
norm, while A1 is a bounded liner map onM(S) with the variation norm. So A1A2
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continuously mapsM+(S) with the flat norm intoM+(S) with the variation norm.
Since A1A2 is induced by κ1 � κ2 [32, L.9.2], κ1 � κ2 is a uniform Feller kernel by
Proposition 9.

Proposition 10 Let κ be a uniform Feller kernel. Let g : S × S → R be bounded
and g(s, ·) be Borel measurable and g(·, s) be continuous on S for every s ∈ S.

Let κ̃ : B × S → R be given by

κ̃(T, s) =
∫
T
g(s, t)κ(dt, s), s ∈ S, T ∈ B.

Then κ̃ is a uniform Feller kernel.

Proof Let s ∈ S. Since g(s, ·) is Borel measurable and bounded and κ(·, s) is a finite
non-negative measure, κ̃(·, s) is a finite non-negative measure.

Let (sn) be a sequence in S and s ∈ S and sn → s. Then

∣∣∣
∫
T
g(sn, t)κ(dt, sn) −

∫
T
g(s, t)κ(dt, s)

∣∣∣
≤

∣∣∣
∫
T
g(sn, t)κ(dt, sn) −

∫
T
g(sn, t)κ(dt, s)

∣∣∣
+

∣∣∣
∫
T
g(sn, t)κ(dt, s) −

∫
T
g(s, t)κ(dt, s)

∣∣∣
≤ 2 sup |g| sup

T̃∈B

∣∣κ(T̃ , sn) − κ(T̃ , s)
∣∣ +

∫
S
|g(sn, t) − g(s, t)|κ(dt, s).

The last integral converges to 0 as n → ∞ by Lebesgue’s dominated conver-
gence theorem because |g(sn, t) − g(s, t)| → 0 as n → ∞ pointwise in t ∈ S and
|g(sn, t) − g(s, t)| ≤ 2 sup g(S × S) for all n ∈ N.

Notice that the last expression in the inequality converges to 0 as n → ∞ uni-
formly for T ∈ B. �

This trivially provides examples for uniform Feller kernels.

Example 1 Let ν ∈ M+(S) and g : S × S → R be bounded and g(s, ·) be Borel
measurable and g(·, s) continuous on S for every s ∈ S.

Let κ : B × S → R be given by

κ(T, s) =
∫
T
g(s, t)ν(dt), s ∈ S, T ∈ B.

Then κ is a uniform Feller kernel.

The class of Feller kernels provided this way can be quite comprehensive.

Example 2 Let S be a separable metric space and κ : B × S → R+ be a uniform
Feller kernel.



80 H. R. Thieme

Choose a countable dense subset {sn; n ∈ N} in S.
Define ν ∈ M+(S).

ν(T ) =
∑
n=1

2−nκ(T, sn), T ∈ B.

Let T ∈ B and ν(T ) = 0. Then κ(T, sn) = 0 for all n ∈ N. Since {sn; n ∈ N} is
dense in S and κ is a uniform Feller kernel, κ(T, s) = 0 for all s ∈ S. By the Radon-
Nikodym theorem, for any s ∈ S, there exists a Borel measurable function g(s, ·)
such that

κ(T, s) =
∫
T
g(s, t)ν(dt), s ∈ B. (31)

Since κ is a uniform Feller kernel,

∫
S
|g(s, t) − g(s̃, t)|ν(dt) → 0, s → s̃. (32)

Conversely, any kernel of the form (31) satisfying (32) is a uniform Feller kernel.

Theorem 16 Let κ1 be a tight Feller kernel and κ2 a uniform Feller kernel. Then

(A1∗ f )(s) =
∫
S
f (t)κ1(dt, s), s ∈ S, f ∈ Mb(S),

defines a bounded positive linear map A1∗ from Mb(S) to Mb(S) and from Cb(S) to
Cb(S), and

(A2∗ f )(s) =
∫
S
f (t)κ2(dt, s), s ∈ S, f ∈ Mb(S),

is a bounded positive linear map A2∗ from Mb(S) to Cb(S) such that A1∗A2∗ is
compact from Mb(S) to Cb(S).

Proof Combine Propositions 8 and 9.

Theorem 17 Let κ2 be a uniform Feller kernel that is tight. Let κ1 be a tight
Feller kernel and κ = κ1 + κ2. Assume that r(κ) > r(κ1). Then there exists some
f ∈ Ċb+(S) such that r(κ) f (s) = ∫

S f (t)κ(dt, s) for all s ∈ S.

Proof Let A∗ j be the operators onCb(S) associatedwith κ j . ByTheorem16, A∗1A∗2
and A2∗2 are compact on Cb(S). The assertion now follows from [32, Theorem7.17].
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5.3 Irreducible and Colonization Kernels

Recall the definition of a (strongly) top-irreducible Feller kernel (Sect. 2.1.2).

Lemma 3 Let κ : B × S → R+ be a Feller kernel and A∗ be the bounded linear
map on Cb(S) induced by (9). Then the following are equivalent:

(a) κ is top-irreducible.
(b) For any nonempty open strict subset U of S there exists some s ∈ S \U such

that κ(U, s) > 0.
(c) For any f ∈ Ċb+(S), S = ⋃

n∈Z+{An∗ f > 0} =: U ( f ).
(d) For any Lipschitz continuous f : S → R+ that is not identically equal to 0,

S = ⋃
n∈Z+{An∗ f > 0} =: U ( f ).

Here, {An∗ f > 0} is a shorthand for {s ∈ S; (An∗ f )(s) > 0}.
Proof (a)⇒(b): Suppose that (b) does not hold: Then there exists some nonempty
open strict subset U of S such that κ(U, s) = 0 for all s ∈ S \U . Since κ(S, ·) is
bounded, there exists some c > 0 such that κ(U, s) ≤ cχU (s) for all s ∈ S. Then

κ∗2(U, s) =
∫
S
κ(U, t)κ(dt, s) ≤

∫
S
cχU (s)κ(dt, s) = cκ(U, s) ≤ c2χU (s).

By induction, κn∗(U, s) ≤ cnχU (s) for all s ∈ S and all n ∈ N. So (a) does not hold.
(b)⇒(c): Since κ is a Feller kernel, the functions An∗ f in part (c) are continuous

andU ( f ) is open as union of open sets. Since f is not the zero function and A0∗ f = f ,
U ( f ) is nonempty. SupposeU ( f ) �= S. By (b), there exists some s ∈ S \U ( f ) such
that κ(U ( f ), s) > 0. Since the measure κ(·, s) is continuous from below, there is
some n ∈ N such that κ

({An∗ f > 0}, s) > 0. This implies that (An+1∗ f )(s) > 0 and
s ∈ U ( f ), a contradiction.

(c)⇒(d): obvious.
(d)⇒(a): LetU be a nonempty open subset of S. Choose some t0 ∈ U . Then there

exists some Lipschitz continuous f : S → [0, 1] such that f (t0) = 1, f (t) ≤ χU (t)
for all t ∈ S [14, L.2.1]. By (d), for any s ∈ S, there is some n ∈ Z+ such that 0 <

(An∗ f )(s). Let s ∈ S \U . Then (A0∗ f )(s) = f (s) ≤ χU (s) = 0 and 0 < (An∗ f )(s)
for some n ∈ N. Since An∗ is induced by κn∗,

0 < (An
∗ f )(s) ≤

∫
S
χU (t)κn∗(dt, s) ≤ κn∗(U, s).

So (a) holds.

Remark 4 Assume that S is not a singleton set. If κ : B × S → R+ is a top-
irreducible Feller kernel, then κ(S \ {s}, s) > 0 for all s ∈ S.

Proof Let s ∈ S and T = S \ {s}. Since S is not a singleton set, T is a nonempty open
subset of S. Since κ is top-irreducible, by Lemma 3(b), there exists some s̃ ∈ S \ T
such that κ(T, s̃) > 0. Since S \ T = {s}, κ(T, s) > 0.
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Theorem 18 Let κ be a top-irreducible Feller kernel, A∗ the associated linear
bounded map on Cb(S), r > 0. Let f ∈ Ċb+(S) be an eigenfunction r f = A∗ f . Then
f (s) > 0 for all s ∈ S.

Proof For all n ∈ N, f = r−n An∗ f and so f (s) > 0 for all s ∈ S by Lemma 3(c).

Theorem 19 Let κ be a top-irreducible Feller kernel. Then, for any μ ∈ Ṁ+(S)

and f ∈ Ċb+(S), there is some n ∈ Z+ such that
∫
S f d(Anμ) = ∫

S A
n∗ f dμ > 0.

Proof Let μ ∈ Ṁ+(S) and f ∈ Ċb+(S). By Lemma 3(c),

S =
⋃
n∈Z+

Sn( f ), Sn( f ) = {
An

∗ f > 0
}
.

The last is a shorthand for
{
s ∈ S, (An∗ f )(s) > 0

}
. Analogous shorthands will be

used in the following.
Since μ is continuous from below and μ(S) > 0, there exists some m ∈ N such

that 0 < μ
( ⋃m

n=0 Sn( f )
)
. Since

⋃m
n=0 Sn( f ) = {∑m

n=0 A
n∗ f > 0

}
, there is some

k ∈ N such that μ
(
Tmk( f )

)
> 0, Tmk( f ) = {∑m

n=0 A
n∗ f > 1/k

}
. Now

m∑
n=0

∫
S
f d (Anμ) =

∫
S

m∑
n=0

(An
∗ f ) dμ

≥
∫
Tmk ( f )

( m∑
n=0

An
∗ f

)
dμ ≥ (1/k)μ

(
Tmk( f )

)
> 0.

So there is some n ∈ Z+ such that
∫
S f d(Anμ) = ∫

S A
n∗ f dμ > 0.

Corollary 6 Let κ be a top-irreducible Feller kernel, A the associated linear map on
M+(S), r > 0. Let μ ∈ Ṁ+(S) be an eigenmeasure rμ = Aμ. Then

∫
S f dμ > 0

for any f ∈ Ċb+(S).

Proof For all n ∈ N, μ = r−n Anμ and the assertion follows from Theorem 19.

Proposition 11 Let κ be a top-irreducible Feller kernel and letN be a tight subset
ofM+(S) with infμ∈N μ(S) > 0. Then, for any f ∈ Ċb+(S), there exist some m ∈ N

and δ > 0 such that
m∑

n=0

∫
S
An

∗ f dμ ≥ δ, μ ∈ N .

Proof Let η = (1/2) infμ∈N μ(S). Then η > 0. Since N is tight, there exists some
compact subset K of S such that μ(S \ K ) ≤ η for all μ ∈ N and so

μ(K ) ≥ η, μ ∈ N . (33)
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Let f ∈ Cb+(S), f �= 0. Since κ is top-irreducible, S = ⋃
n∈Z+ Sn( f ) with open sets

Sn( f ) = {An∗ f > 0} by Lemma 3(c). Since K is compact, there exists some m ∈ N

such that K ⊆ ⋃m
n=0 Sn( f ). So there exists some δ̃ > 0 such that

m∑
n=0

(An
∗ f )(s) ≥ δ̃, s ∈ K .

For all μ ∈ N , by (33),

m∑
n=0

∫
S
An

∗ f dμ ≥
∫
K

( m∑
n=0

An
∗ f

)
dμ ≥ δ̃μ(K ) ≥ δ̃η > 0.

5.3.1 Strongly Top-Irreducible Feller Kernels.

Recall the definition of a strongly top-irreducible Feller kernel (Definition 4).

Lemma 4 Let κ : B × S → R+ be aFeller kernel and A∗ be the associated bounded
linear map on Cb(S). Then the following are equivalent:

(a) κ is strongly top-irreducible.
(b) For any f ∈ Ċb+(S) and any nonempty compact subset K of S there exists some

n ∈ Z+ such that (An∗ f )(s) > 0 for all s ∈ K.
(c) For any Lipschitz continuous f : S → R+ that is not identically equal to 0

and any nonempty compact subset K of S, there exists some n ∈ Z+ such that
(An∗ f )(s) > 0 for all s ∈ K.

Proof (a) ⇒ (b):
Let f ∈ Ċb+(S) and K be a compact subset of S. Then U = {t ∈ S; f (t) >

‖ f ‖∞/2} is a nonempty open subset of S. Since κ is strongly top-irreducible, there
exists some n ∈ N such that, for all s ∈ K .

0 < κn�(U, s) ≤
∫
U

2 f (t)

‖ f ‖∞
κn�(dt, s) ≤ 2

‖ f ‖∞
(An

∗ f )(s).

Obviously (b) implies (c).
(c) ⇒ (a) follows similarly as in Lemma 3(d) ⇒ (a).

Proposition 12 Let κ : B × S → R+ be a Feller kernel with the following property
for any f ∈ Ċb+(S):

For all s ∈ S there exists some neighborhood Us ⊆ S of s and some ns ∈ N such
that

∫
S f (t)κn�(dt, s̃) > 0 for all n ∈ N, n ≥ ns, and all s̃ ∈ Us.

Then κ is a strongly top-irreducible Feller kernel.
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Proof The neighborhoods Us can be chosen as open sets containing s. Let K be a
nonempty compact subset of S. Then K ⊆ ⋃

s∈S Us and there exists a finite subset
S̃ of S such that K ⊆ ⋃

s∈S̃ Us . Set m = max
s∈S̃

ns . Then m ∈ N and

∫
S
f (t)κm�(dt, s̃) > 0, s̃ ∈ K .

By Lemma 4, κ is strongly top-irreducible. �

A similar proof as for Proposition 11 yields the following result.

Proposition 13 Let κ be a strongly top-irreducible Feller kernel and let N be a
tight subset ofM+(S) with infμ∈N μ(S) > 0. Then, for any f ∈ Ċb+(S), there exist
some n ∈ N and δ > 0 such that

∫
S
An

∗ f dμ ≥ δ, μ ∈ N .

Proposition 14 Let P : B × S̃ → R+ be a Feller kernel, g ∈ Cb+(S × S), and κ :
B × S → R+ be defined by

κ(T, s) =
∫
T
g(s, t)P(dt, s), s ∈ S, T ∈ B. (34)

Assume that κ is also a Feller kernel and that g(s, t) > 0 for all s, t ∈ S.

(a) P is top-irreducible if and only if κ is top-irreducible.
(b) P is strongly top-irreducible if and only if κ is strongly top-irreducible.

Proof For f0 ∈ Ċb+(S), set Un = { fn > 0} and Vn = {hn > 0} where fn+1 = ∫
S

fn(t)P(dt, ·) and hn+1 = ∫
S hn(t)κ(dt, ·) for all n ∈ N. Let U ( f0) and V ( f0) be

the respective unions over n ∈ N.
For any f ∈ Ċb+(S) and s ∈ S, we have the equivalence of the following two

statements:
(i)

∫
S f (t)P(dt, s) > 0,

(ii) P
({ f > 0}, s) > 0.

An analogous equivalence holds for κ replacing P .
Since g is strictly positive on S2, statement (ii) for P is equivalent to the statement

(ii) for κ replacing P .
With this observation, it follows by induction thatUn = Vn for all n ∈ N such that

U ( f ) = V ( f ). So S = U ( f ) if and only if S = V ( f ).
The equivalence in (a) follows from Lemma 3(c).
The equivalence in (b) follows from Lemma 4(b).
In these lemmata, Un = {An∗ f > 0} if A∗ is induced by P and Vn = {An∗ f > 0}

if A∗ is induced by κ .
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5.3.2 Colonization Kernels.

The following example of strongly top-irreducible kernels seems particularly suited
for spatially structured populations, but less for populations with other structures.

Definition 19 Let κ : B × S → R+ be a Feller kernel. κ is called a colonization
kernel if for any s ∈ S there is an open subset U � s of S such that κ(V, s) > 0 for
all nonempty open subsets V of U .

Proposition 15 Let S be connected and κ be a colonization Feller kernel. Then, for
any f ∈ Ċb+(S), S = ⋃

n∈Z+ Sn( f ) where Sn( f ) = {An∗ f > 0} form an increasing
sequence of open sets, and κ is strongly top-irreducible.

Here A∗ is the operator defined in (9).

Proof Let f ∈ Ċb+(S) and define Sn( f ) as above.
Since An∗ f is continuous, the sets Sn( f ) form a sequence of open subsets of

S. We claim that this sequence is increasing with respect to the subset relation. It is
sufficient to show that S0( f ) ⊆ S1( f ) because Sn+1( f ) = S1(An∗( f )). Let s ∈ S and
f (s) > 0. Since κ is a colonization kernel, there is an open subset U � s of S such
that κ(V, s) > 0 for all nonempty open subsets V of U . Set V = {

t ∈ U ; f (t) >

f (s)/2
}
. Then V an open subset of U and s ∈ V ; so

(A∗ f )(s) ≥
∫
V
f (t)κ(dt, s) ≥ f (s)

2
κ(V, s) > 0.

This implies S0( f ) ⊆ S1( f ).
Set S( f ) = ⋃

n∈N Sn( f ). S( f ) is open as union of open sets. To show that S( f )
is closed, let s ∈ S be a limit point of S( f ). Since κ is a colonization kernel, there is
an open subset U � s of S such that κ(V, s) > 0 for all nonempty open subsets V
of U . Since s is a limit point of S( f ), U ∩ S( f ) �= ∅ and U ∩ Sn( f ) �= ∅ for some
n ∈ Z+. Since Sn( f ) = ⋃

m∈N
{
An∗ f > 1/m

}
, there exists a nonempty open subset

V of U and some m ∈ N such that (An∗ f )(t) > 1/m for all t ∈ V . For all x ∈ U ,

(An+1
∗ f )(s) ≥

∫
V
(An

∗ f )(t)κ(dt, s) ≥ (1/m)κ(V, s) > 0.

So s ∈ Sn+1( f ) ⊆ S( f ). Since S( f ) is open and closed in the connected set S,
S = S( f ).

Let K be a compact subset of S. Then there exists some n ∈ N such that K ⊆⋃n
j=1 Sj ( f ). Since the Sn( f ) form an increasing sequence of sets, K ⊆ Sn( f ), i.e.,

(An∗ f )(s) > 0 for all s ∈ K . So, κ is strongly top-irreducible by Lemma 4.

Lemma 5 Let κ : B × S → R+ be a tight colonization Feller kernel and g : S ×
S → (0,∞) be continuous and bounded. Then κ̃ : B × S → R+ defined by

κ̃(T, s) =
∫
T
g(s, t)κ(dt, s), T ∈ B, s ∈ S,
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is also a tight colonization Feller kernel.

Proof By Proposition 7, κ̃ is a tight Feller kernel.
Let s ∈ S. Since κ is a colonization kernel, there is some open subset U � s of

S such that κ(V, s) > 0 for all nonempty open subsets V of U . Since g is strictly
positive and continuous, V = ⋃

n∈N Vn with open subsets Vn = {t ∈ V ; g(s, t) >

1/n} of V . For all n ∈ N,

κ̃(V, s) ≥
∫
Vn

g(s, t)κ(dt, s) ≥ (1/n)κ(Vn, s).

Since κ(·, s) is continuous from below, κ(Vn, s) → κ(V, s) > 0 as n → ∞ and
κ̃(V, s) > 0.

6 Proofs for the General Framework for The state Space of
Measures. Tight Bounded Persistence Attractors

Recall that we consider yearly turnover maps F of the following form,

F(μ)(T ) =
∫
S
κμ(T, s) μ(ds), μ ∈ Ms

+(S), T ∈ B,

where {κμ;μ ∈ Ms+(S)} is a set of Feller kernels κμ : B × S → R+.
If μ is the zero measure, we use the notation κo.

Proposition 16 Let the Assumption 9 be satisfied. Then F mapsMs+(S) into itself.

Proof Theorem 15(a).

Lemma 6 Let ( f̃n) be a bounded sequence inCb(S) and (μn) be a bounded pre-tight
sequence inM+(S). Then

∫
S
f̃ndμn

n→∞−→ 0 if f̃n
n→∞−→ 0

uniformly on every totally bounded subset of S.

Proof Let ε > 0. Since {μn; n ∈ N} is pre-tight, there exists a closed totally bounded
subset T of S such that μn(S \ T ) < ε for all n ∈ N. For all n ∈ N,

∣∣∣
∫
S
f̃ndμn

∣∣∣ ≤
∫
T

| f̃n|dμn +
∫
S\T

| f̃n|dμn

≤ sup
T

| f̃n| sup
k∈N

μk(S) + sup
k∈N

sup
S

| f̃k | μn(S \ T ).
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Since f̃n → 0 uniformly on T , the last but one expression converges to 0 as n → ∞
and

lim sup
n→∞

∣∣∣
∫
S
f̃ndμn

∣∣∣ ≤ sup
k∈N

sup
S

| f̃k | ε.

Since this holds for arbitrary ε > 0, the limit superior is zero and we have proved
the assertion.

Proposition 17 Let the family of Feller kernels {κμ);μ ∈ Ms+(S)} satisfy the
Assumptions 9 and 11. Then F : Ms+(S) → Ms+(S) is continuous with respect to
the flat norm.

Proof Letμ ∈ Ms+(S) and (μn) be a sequence inMs+(S) such that ‖μn − μ‖
 → 0.
By Theorem 12, ∫

S
f̃ dμn →

∫
S
f̃ dμ, f̃ ∈ Cb

+(S). (35)

Then {μn; n ∈ N} is a compact subset of M+(S) with respect to the flat norm and
pre-tight by Proposition 5 and a bounded subset of M+(S).

Let f ∈ F . By (16),

∣∣∣
∫
S
f dF(μn) −

∫
S
f dF(μ)

∣∣∣ =
∣∣∣
∫
S
fndμn −

∫
S
f̃ dμ

∣∣∣ (36)

with

fn(s) =
∫
S
f (t)κμn (dt, s), f̃ (s) =

∫
S
f (t)κμ(dt, s).

By Theorem 12, it is sufficient that the expression on the right hand side of (36)
converges to 0 as n → ∞.

By the triangle inequality and (36),

∣∣∣
∫
S
f dF(μn) −

∫
S
f dF(μ)

∣∣∣ ≤
∣∣∣
∫
S
( fn − f̃ )dμn

∣∣∣ +
∣∣∣
∫
S
f̃ dμn −

∫
S
f̃ dμ

∣∣∣.

Since κμ is a Feller kernel, f̃ ∈ Cb+(S) and the second term on the right hand side
of the last inequality converges to 0 as n → ∞ by (35). As for the first term, by
Assumption 11, for any closed totally bounded subset T of S

fn(s) − f̃ (s) → 0, n → ∞, uniformly for s ∈ T . (37)

Further, by Assumption 9, ( fn − f̃ ) is a bounded sequence in Cb(S). Now the first
term of the last inequality converges to 0 by Lemma 6.

Proposition 18 Under the Assumptions 9 and 12, the yearly population turnover
map F : Ms+(S) → Ms+(S) is compact; for any bounded subset N of Ms+(S),
F(N ) is a tight bounded subset of Ms+(S).



88 H. R. Thieme

Proof Let N be a bounded subset of Ms+(S). For any set T ∈ B and μ ∈ N ,

F(μ)(S \ T ) =
∫
S
κμ(S \ T, s) μ(ds) ≤ sup

s∈S
κμ(S \ T, s) μ(S). (38)

For T = ∅, we obtain that {F(μ)(S);μ ∈ N } is bounded in R by Assumption 12.
Let ε > 0. By Assumption 12, there exists some compact set T in S such that

κμ(S \ T, s) ≤ ε
(
1 + sup

μ∈N
μ(S)

)−1
, s ∈ S.

By (38), F(μ)(S \ T ) ≤ ε for all μ ∈ N . By Definition 7, F(N ) is a tight subset of
Ms+(S).

By Theorem 13, F(N ) has compact closure inMs+(S).

Proposition 19 Let the Assumptions 9 and 13 be satisfied. Then

lim sup
μ(S)→∞

F(μ)(S)

μ(S)
< 1.

Proof For all μ ∈ Ms+(S),

F(μ)(S) =
∫
S
κμ(S, s) μ(ds) ≤ sup

s∈S
κμ(S, s) μ(S).

This implies the assertion.

Theorem 20 Let the Assumptions 9, 11, 12, and 13 be satisfied.
Then the semiflow induced by F has a compact attractor of bounded sets.

Proof We apply Theorem 9. By Assumption 13 and Proposition 19, inequality (19)
is satisfied with θ(μ) = μ(S). F is continuous by Proposition 17 and compact and
thus asymptotically smooth by Proposition 18. All assumptions of Theorem 9 are
satisfied which implies that the semiflow induced by F has a compact attractor of
bounded sets. �

Let us spell out what Theorem 20 means [26, Chap.2].

Remark 5 Under the assumptions of Theorem 20, there exists a subsetK ofMs+(S)

which is tight, compactwith respect to the flat norm, and satisfies F(K) = K. Further,
ifN is a bounded subset ofMs+(S) and U an open set inMs+(S) with respect to the
flat norm withK ⊆ U , there exists some N ∈ N such that Fn(N ) ⊆ U for all n ∈ N

with n ≥ N .

The tightness of K follows from Proposition 18 and F(K) = K.

Proposition 20 Under the Assumptions 9 and 10, F maps Ṁs+(S) into itself.
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Proof Let μ ∈ Ṁ+(S). Then μ(S) > 0. By Assumption 10, S = ⋃
j∈N Tj with

Tj = {s ∈ S; κμ(S, s) ≥ 1/j}.

Notice that Tj ⊆ Tj+1 for all j ∈ N. Since μ is continuous from below, 0 < μ(S) =
lim j→∞ μ(Tj ). So, for some j ∈ N, μ(Tj ) > 0 and

F(μ)(S) ≥
∫
Tj

κμ(S, s)μ(ds) ≥ (1/j)μ(Tj ) > 0

and F(μ) ∈ Ṁs+(S). �

The following result implies that the extinction state is unstable.

Theorem 21 Make Assumptions 9 and 10 and let the kernel family {κμ;μ ∈
Ms+(S)} be lower semicontinuous at the zero measure.

Further assume that there exists some r > 0 and f ∈ Cb+(S) such that f (s) > 0
for all s ∈ S and ∫

S
f (t)κo(dt, s) ≥ r f (s), s ∈ S.

Then the semiflow induced by F is uniformly weakly persistent: There exists some
δ > 0 such that lim supn→∞ Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

Proof We apply [20, Theorem5.2] with

(Bμ)(T ) =
∫
S
κo(T, s)μ(ds)

and

θ(μ) =
∫
S
f dμ, μ ∈ Ms

+(S).

The assumptions (a) and (b) are satisfied by Assumption 10 and the strict positivity
of f . Assumption (c) follows from the lower semicontinuity of the kernel family. �

Proof of Theorem 6.We apply Theorem21. ByTheorem17, there is some f ∈ Ċb+(S)

such that ∫
S
f (t)κo(dt, s) = r f (s), s ∈ S,

r = r(κo). f is strictly positive by Corollary 18. �
Proof of Theorem 7. We combine [26, Theorem4.5], Theorems 20 and 6.
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6.1 Compact Persistence Attractor

Theorem 22 Make Assumptions 9, 10, 11, 12, 13, 14 and let the kernel family
{κμ;μ ∈ Ms+(S)} be lower semicontinuous at the zero measure.

Assume that κo is a strongly top-irreducible Feller kernel and κo = κ1 + κ2 with
two tight Feller kernels κ j , where κ2 is a uniform Feller kernel. Finally, assume
r = r(κo) > 1 ≥ r(κ1).

Then the semiflow induced by F has a compact connected persistence attractor
A1:

(a) A1 is a compact set with respect to the flat norm, F(A1) = A1, andA1 is a tight
set of measures.

(b) A1 attracts all subsets N of Ms+(S) with infμ∈N μ(S) > 0 that are compact
with respect to the flat norm or are bounded and tight: IfN is such a subset and
U is an open set in Ms+(S) with respect to the flat norm, A1 ⊆ U , then there
exists some N ∈ N such that Fn(N ) ⊆ U for all n ∈ N with n ≥ N.

(c) For any f ∈ Ċb+(S), there exists some ε f > 0 such that
∫
S f dμ ≥ ε f for all

μ ∈ A1.
(d) A1 is connected with respect to the flat norm. In particular, for any f ∈ Ċb+(S),{ ∫

S f dμ;μ ∈ A1
}
is a compact interval (possibly a singleton set) contained in

(0,∞).

Proof Weapply [26, Sect. 5.2]with X = Ms+(S) andρ(μ) = μ(S) forμ ∈ Ms+(S).
Since F(0) = 0 and F(X \ {0}) ⊆ X \ {0} by Proposition 20, the set X0 := {

μ ∈
X; ∀n ∈ Z+ : Fn(μ) = 0

} = {0}.
By Theorem 6, the semiflow {Fn; n ∈ Z+} is uniformly weakly ρ-persistent.
The statements (a) and (b) follow from [26, Theorem5.7](b) as does

δ := inf
μ∈A1

μ(S) > 0. (39)

(c) By Assumption 14, there exists a strongly top-irreducible Feller kernel κ̃ such
that

κν(T, s) ≥ κ̃(T, s), T ∈ B, s ∈ S, ν ∈ A1.

Let Ã∗ be the map on Cb(S) associated with κ̃ . For any f ∈ Cb+(S), μ ∈ A1,

∫
S
f d F(μ) =

∫
S

( ∫
S
f (t)κμ(dt, s)

)
μ(ds)

≥
∫
S

( ∫
S
f (t)κ̃(dt, s)

)
μ(ds) =

∫
S
( Ã∗ f ) d μ.

By induction, for any f ∈ Cb+(S),

∫
S
f dFk(μ) ≥

∫
S
( Ãk

∗ f ) d μ, k ∈ N, μ ∈ A1. (40)
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Now let f ∈ Ċb+(S). By Proposition 13 since κ̃ is a strongly top-irreducible Feller
kernel, there exists some n ∈ N and ε f > 0 such that

ε f ≤
∫
S
( Ãn

∗ f ) d μ ≤
∫
S
f dFn(μ), μ ∈ A1.

Since Fn(A1) = A1, this implies that
∫
S f dν ≥ ε f > 0 for all ν ∈ A1.

(d) Connectedness from A1 follows from [26, Proposition5.9] because ρ with
ρ(μ) = μ(S) is concave, actually additive on Ms+(S). By Theorem 12, for any
f ∈ Cb(S), the map φ f : Ms+(S) → [0,∞), φ f (μ) = ∫

S f dμ, is continuous under
the flat norm. Since continuous images of compact (connected) sets are compact
(connected), φ f (A1) is compact and connected and, by (c), a subset of (0,∞) if
f ∈ Ċb+(S). �

Proof of Theorem 8. Let A1 be the persistence attractor from Theorem 22 and f ∈
Ċb+(S). Then there exists some ε f > 0 such that

∫
S f dμ > ε f for all μ ∈ A1. Set

U = {ν ∈ Ms+(S); ∫
S f dν > ε f }. By Theorem 12, U is an open set inMs+(S) with

respect to the flat norm and A1 ⊆ U ⊆ Ms+(S). The statement now follows from
Theorem 22(b) and (c). �

7 A More Specific Model for an Iteroparous Population

We consider a structured population the dynamics of which are governed by the
processes of birth, death, and structural development, with the last being spatial
movement to be specific.

We assume that each year has one very short reproductive season. We count the
years in such a way that the census period is just before the reproductive season.
At the end of the year, juveniles born at the beginning of the year have matured
enough that they are reproductive as well and are counted as adults. This means that
each year, at the very beginning of the year, just before the reproductive season,
all individuals are adults. Differently from the model for a semelparous population
considered in [32], individuals can reproduce several times during their life-time.

Births and deaths can be affected by competition for resources. Consider a typical
adult individual at location t ∈ S. Let q1(s, t) denote the competitive effect it has
on an adult located at s ∈ S and q2(s, t) denote the competitive effect it has on a
neonate located at s ∈ S. Here q j : S2 → R+. If μ ∈ M+(S) is the distribution of
adult individuals at the beginning of the year and s ∈ S,

(Q1μ)(s) =
∫
S
q1(s, t)μ(dt) (41)

is the competition level exerted by μ on an adult that has been at s at the beginning
of the year. while



92 H. R. Thieme

(Q2μ)(s) =
∫
S
q2(s, t)μ(dt) (42)

is the competition level exerted by μ on a juvenile born at s.
Further, let g1(s, q) be the probability of an adult located at s ∈ S at the beginning

of the year to survive competition till the end of the year when the competition level
at s is q ∈ R+, g1 : S × R+ → [0, 1].

Let g2 : S × R+ → R+ be the effective per capita birth function, i.e., g2(s, q) is
the per capita amount of offspring that is produced at s ∈ S by an adult located at s
and that survives competition till the end of the year when the competition level at s
is q ∈ R+.

We assume that the migration patterns of neonates and adults are possibly differ-
ent.

Let P1(T, s) be the probability that an adult staying at s ∈ S at the beginning
of the year does not die from noncompetitive causes till the end of the year and is
located at some point in the set T at the end of the year.

Similarly, let P2(T, s) be the probability that a neonate born at s ∈ S at the begin-
ning of the year does not die from noncompetitive causes till the end of the year and
is located at some point in the set T at the end of the year.

If the measure ν represents the spatial distribution of neonates shortly after the
reproductive season at the beginning of the year,

(A2ν)(T ) =
∫
S
P2(T, s)ν(ds), T ∈ B, (43)

provides the resulting number of adults that, at the end of the year, have not died
from noncompetitive causes and are located within the set T .

A similar formula holds for the relation between the spatial distribution of adults
at the beginning of the year and the resulting distribution of survivors at the end of
the year.

In combination, the turnover kernel for a population with spatial distribution
μ ∈ M+(S) is

κμ(T, s) = κ
μ
1 (T, s) + κ

μ
2 (T, s)

κ
μ

j (T, s) = Pj (T, s) g j
(
s, (Q jμ)(s)

)
}

T ∈ B, s ∈ S, (44)

and Q jμ from (41) and (42). Notice that

κo
j (T, s) = Pj (T, s) g j (s, 0), T ∈ B, s ∈ S, (45)

Assumption 20 For the per capita survival and reproduction rate functions g1 and
g2,

(g1) g j : S × R+ → R+ is continuous and bounded, j = 1, 2; g1(s, q) ≤ 1 for all
s ∈ S, q ∈ R+.
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(g2) g j (s, 0) > 0 for all s ∈ S and
g j (s, u)

g j (s, 0)
→ 1 as u → 0 uniformly for s ∈ S.

For the competitive influence functions q1 and q2,

(q1) q j : S2 → R+ is continuous and bounded.

For the survival/migration kernels P1 and P2,

(P1) Pj : B × S → R+ is a Feller kernel (Definition 16) of separable measures.
(P2) 0 ≤ Pj (S, s) ≤ 1 for all s ∈ S.

Here S2 and S × R+ are equipped with the respective product topologies.

Lemma 7 Let the Assumptions 20 be satisfied and j = 1, 2. Then, for any μ ∈
M+(S), Q jμ is continuous on S and g j

(
s, (Q jμ)(s)

)
is a continuous function of

s ∈ S.
For each μ ∈ M+(S), the kernels κ

μ

j , j = 1, 2, and κμ are Feller kernels of
separable measures, and the Assumptions 5 are satisfied for κ

μ

j and κμ = κ
μ
1 + κ

μ
2 .

Further, the kernel families {κμ

j ;μ ∈ M+(S)}, j = 1, 2, and {κμ;μ ∈ M+(S)}
are continuous at the zero measure.

Moreover, κμ
1 (S, s) ≤ 1 for all μ ∈ Ms+(S) and all s ∈ S and r(κo

1 ) ≤ 1.
Finally, if the kernel P2 is tight, so is the kernel κo

2 .

Proof Let μ ∈ M+(S). Then

(Q jμ)(s) =
∫
S
q j (s, t)μ(dt)

is a continuous function of s by Lebesgue’s theorem of dominated convergence
because q j is continuous and bounded by Assumption 20. By the same assumption,
g j

(
s, (Q jμ)(s)

)
is a continuous function of s ∈ S as composition of continuous

functions.
Let f ∈ Cb+(S). Then

∫
S
f (t)κμ

j (dt, s) =h j (s) g j
(
s, (Q jμ)(s)

)
,

h j (s) =
∫
S
f (t)Pj (dt, s),

h j ∈ Cb(S) because Pj is a Feller kernel. As product of continuous functions,∫
S f (t)κμ

j (dt, s) is a continuous function of s ∈ S.
This implies that κμ

j is a Feller kernel and so is κμ.
Further, κ

μ

j (S, s) ≤ Pj (S, s) sup g j (S × R+) ≤ sup g j (S × R+) is a bounded
function of s ∈ S and κ

μ
1 (S, s) ≤ 1 by Assumption 20.

The separability of κ
μ

j (·, s) is inherited from the separability of Pj (·, s).
The continuity of the kernel families at the zeromeasure follows fromAssumption

20 (g2) and (44) and (45).
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κ2 inherits tightness from P2 via the boundedness of g2. �

The subsequent stability result follows from Theorem 4 [32, Theorem3.6].

Theorem 23 Let the Assumptions 20 be satisfied and r = r(κo) < 1.

(a) The extinction state is locally asymptotically stable in the following sense:
For each α ∈ (r, 1), there exist some δα > 0 and Mα ≥ 1 such that,

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N,

if μ ∈ M+(S) with μ(S) ≤ δα .
(b) If g j (s, q) ≤ g j (s, 0) for all s ∈ S, q ∈ R+, j = 1, 2, the extinction state is

globally stable in the following sense:
For each α ∈ (r, 1), there exists some Mα ≥ 1 such that

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N, μ ∈ M+(S).

The subsequent instability result follows from Theorem 5 and from Lemma 7 and
shows that the assumption r(κo) < 1 in Theorem 23 is almost sharp.

Theorem 24 Let the Assumptions 20 be satisfied and P2 be a tight Feller kernel.
Let r = r(κo) > 1.

Then there exists some eigenmeasure ν ∈ Ms+(S), ν(S) = 1, such that

rν(T ) =
∫
S
κo(T, s)ν(ds), T ∈ B.

Further, the zero measure is unstable: There is some δ0 > 0 such that for any ν-
positive μ ∈ M+(S) there is some n ∈ Z+ with Fn(μ)(S) ≥ δ0.

Recall that μ ∈ M+(S) is ν-positive if there exists some δ > 0 such that μ(T ) ≥
δν(T ) for all T ∈ B.
Proposition 21 Let Assumption 20 be satisfied. Assume that P1 and P2 are tight
Feller kernels. Then, for any μ ∈ M+(S), κ

μ
1 , κ

μ
2 and κμ are tight Feller kernels.

Further, the sets of measures

{κμ

j (·, s); s ∈ S, μ ∈ M+(S)}, j = 1, 2, and {κμ(·, s); s ∈ S, μ ∈ M+(S)}

are tight and the sets

{κμ

j (S, s); s ∈ S, μ ∈ M+(S)}, j = 1, 2, and {κμ(S, s); s ∈ S, μ ∈ M+(S)}

are bounded in R. In particular, Assumption 12 is satisfied.
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Proof κ
μ
1 , κ

μ
2 and κμ are tight Feller kernels by Proposition 7 and Lemma 7.

Since the functions g j are bounded, there exists some c > 0 such that g j
(
s, (Q jμ)

(s)
) ≤ c for all s ∈ S and μ ∈ M+(S), j = 1, 2. For any T ∈ B,

κ
μ

j (S \ T, s) ≤ κμ(S \ T, s) ≤ c
(
P1(S \ T, s) + P2(S \ T, s)

)
.

Since Pj are Feller kernels, the right hand side has a common upper bound for
s ∈ S, T ∈ B. This implies the boundedness of the various sets in R in the assertion
of the Proposition. Let ε > 0. For j = 1, 2, since the Pj are tight kernels, there exist
compact sets Tj ∈ B such that Pj (S \ Tj , s) ≤ ε/(2c). Set T = T1 ∪ T2. Then T is
compact and, for all μ ∈ M+(S), s ∈ S,

κ
μ

j (S \ T, s) ≤ κμ(S \ T, s) ≤ c
(
P1(S \ T1, s) + P2(S \ T2, s)

) ≤ ε.

Proposition 22 Let Assumption 20 be satisfied. If P := P1 + P2 is a (strongly) top-
irreducible kernel, so is κo.

Proof Set h(s) = min{g1(s, 0), g2(s, 0)}, s ∈ S. Then h ∈ Cb+(S) and, by Assump-
tion 20, h(s) > 0 for all s ∈ S.

By (44),

κo(T, s) ≥ P(T, s)h(s) =: κ̃(T, s), T ∈ B, s ∈ S.

Since P is a (strongly) top-irreducible kernel and h is strictly positive, κ̃ is a
(strongly) top-irreducible kernel by Proposition 14 and so is κo as one sees from
Definition 19. �

In view of these results, we collect the following set of assumptions.

Assumption 21 • P1 and P2 are tight Feller kernels.
• g j (s, q) > 0 for j = 1, 2 and all s ∈ S and q ∈ R+.

Lemma 8 Assume that g j (s, q) > 0 for all s ∈ S, q ∈ R+. Let N be a bounded
subset ofM+(S) and P = P1 + P2 be a strongly top-irreducible kernel. Then there
exists a strongly top-irreducible kernel κ̃ such that κμ(T, s) ≥ κ̃(T, s) for all T ∈ B,
s ∈ S and μ ∈ N .

In particular, Assumption 14 is satisfied.

Proof Let N be a bounded subset of M+(S). Since q j is bounded, by (41) and
(42) there exists some c ∈ (0,∞) such that (Q jμ)(s) ≤ c for j = 1, 2, s ∈ S, and
μ ∈ N . Set

h j (s) = inf
0≤q≤c

g j (s, q), s ∈ S, j = 1, 2.

Since g j is continuous and g j (s, q) > 0 for all s ∈ S,q ∈ R+, h j (s) > 0 for all s ∈ S.
To show that h j is continuous, let s ∈ S and (s�) be a sequence in S such that s� → s
as � → ∞. Then T = {s�; � ∈ N} ∪ {s} is a compact subset of S and T × [0, c] is a
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compact subset of S × R and g j is uniformly continuous on T × [0, c]. This implies
that g j (s�, q) → g j (s, q) as � → ∞ uniformly for q ∈ [0, c] and so h j (s�) → h j (s)
for � → ∞. Finally set h(s) = min{h1(s), h2(s)}. Then h ∈ Cb+(S) and h(s) > 0 for
all s ∈ S.

By (44),
κμ(T, s) ≥ P(T, s)h(s) =: κ̃(T, s).

Since P is a strongly top-irreducible kernel and h is strictly positive, κ̃ is a
strongly top-irreducible kernel by Proposition 14. In particular, for eachμ ∈ M+(S),
κμ(S, s) ≥ κ̃(S, s) > 0 for all s ∈ S.

Theorem 25 Let the Assumptions 20 and 21 be satisfied, P2 be a uniform Feller
kernel, P1 + P2 be top-irreducible and r = r(κo) > 1.

Then there exists some strictly positive eigenfunction f ∈ Ċb+(S)

with
∫
S f (t)κo(dt, s) = r f (s) for all s ∈ S.

Further, the semiflow generated by F is uniformly weakly persistent: There exists
some δ > 0 such that lim supn→∞ Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

Proof By Proposition 10, κo
2 is a uniform Feller kernel. By Proposition 7, κo

j is a
tight Feller kernel, j = 1, 2. By Proposition 22, κo is a top-irreducible Feller kernel.
By Lemma 7, the kernel family {κμ;μ ∈ Ms+(S)} is lower semicontinuous at the
zero measure.

Assumption 9 is satisfied by Proposition 21, and Assumption 10 is satisfied by
Lemma 8. By Lemma 7, r(κo

1 ) ≤ 1. Apply Theorem 6. �
Recall Definition 15.

Assumption 22 (a) For any closed totally bounded subset T of S, {q j (s, ·); s ∈ T }
is equicontinuous on S, j = 1, 2.

(b) For any closed totally bounded subset T of S, {g j (s, ·); s ∈ T } is uniformly
equicontinuous on bounded subsets of R, j = 1, 2.

Lemma 9 Assumption 22 is satisfied if S be completely metrizable, and Assumption
20 holds.

Proof Let T be a closed totally bounded subset of S and let S be completely metriz-
able. Then T is compact.

(b) Let c > 0. Then the set T × [0, c] is compact. Since g j is continuous on
S × R+, g j is uniformly continuous on T × [0, c]. This implies (b).

(a) Suppose that Assumption 22(a) is false for j = 1 or j = 2. Then there is some
s̃ ∈ S such that {q j (s, ·); s ∈ T } is not equicontinuous at s̃.

Then there exists some ε > 0 and a sequence (sn) in T and a sequence (s̃n) in S
such that s̃n → s̃ as n → ∞ and

|q j (sn, s̃n) − q j (sn, s̃)| > ε, n ∈ N.

Since T × ({s̃n; n ∈ N} ∪ {s̃}) is a compact subset of S2, q j is uniformly continuous
on this set, a contradiction.
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Lemma 10 Let the Assumptions 20 and 22(a) be satisfied. Further let μ ∈ Ms+(S)

and (μn) be a sequence inMs+(S), ‖μn − μ‖
 → 0 as n → ∞.
Then, for j = 1, 2, (Q jμn)(s) → (Q jμ)(s) as n → ∞ uniformly for s in any

closed totally bounded subset of S. Further Q jμn and Q jμ are bounded functions.

Proof The convergence statement follows from Proposition 2 and (41) and (42). The
boundedness statements are immediate.

Lemma 11 Let the Assumptions 20 and 22(b) be satisfied. Let T be a closed totally
bounded subset of S and fn : T → R+, n ∈ N, and f : T → R+ be bounded func-
tions such that fn → f uniformly on T . Then g j

(
s, fn(s)

) → g j
(
s, f (s)

)
as n → ∞

uniformly for s ∈ T .

Proof There exists some c ∈ (0,∞) such that fn(s), f (s) ≤ c for all n ∈ N, s ∈ T .
Since {g j (s, ·); s ∈ T } is uniformly equicontinuous on [0, c], the assertion follows.
Proposition 23 Let the Assumptions 20 and 22 be satisfied. Then Assumption 11 is
satisfied for κ

μ

j , j = 1, 2 and κμ.

Proof It is sufficient to show the claim for κ
μ
1 . Let (μn) be a sequence in Ms+(S)

and μ ∈ Ms+(S) such that
∫
S f dμn → ∫

S f dμ as n → ∞ for all f ∈ Cb+(S). Then
‖μn − μ‖
 → 0 as n → ∞ by Theorem 12.

Let h ∈ Cb+(S). For s ∈ S,

∫
S
h(t)κμn

1 (dt, s) −
∫
S
h(t)κμ

1 (dt, s)

=
∫
S
h(t)P1(dt, s)

[
g1

(
s, (Q1μn)(s)

) − g1
(
s, (Q1μ)(s)

)]
.

Since
∫
S h(t)P1(dt, s) ≤ sup h(S), it is sufficient to show that

g1
(
s, (Q1μn)(s)

) → g1
(
s, (Q1μ)(s)

)
, n → ∞

uniformly on every closed totally bounded subset T of S. But this follows by com-
bining Lemmas 10 and 11.

Assumption 23 sup
s∈S,q≥0

P1(S, s)g1(s, q) < 1; inf
s, t∈S q2(s, t) > 0;

g2(s, q) → 0 as q → ∞, uniformly for s ∈ S.

From the interpretation of g1 as probability of surviving competition, it is sug-
gestive that 0 ≤ g1(s, q) ≤ 1 (Assumption 20 g1). So, together with P1(S, s) ≤ 1,
the first of the assumptions is not really drastic. The second assumption means that
competitive influence on somebody else’s reproduction reaches everywhere in the
habitat. The third assumption means that fertility drops very low if resources are very
low due to large competition.
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Proposition 24 Under the Assumptions 23,

sup
μ∈Ms+(S)

sup
s∈S

κ
μ
1 (S, s) < 1, sup

s∈S
κ

μ
2 (S, s) → 0 as μ(S) → ∞,

and Assumption 13 is satisfied. Further r(κo
1 ) < 1.

Proof Recall that

κ
μ
1 (S, s) = P1(S, s)g1

(
s, (Q1μ)(s)

) ≤ P1(S, s) sup
q∈R+

g1(s, q),

which implies the first assertion. Further

(Q2μ)(s) ≥ inf
s,t∈S q2(s, t) μ(S)

μ(S)→∞−→ ∞

uniformly for s ∈ S, and so

κ
μ
2 (S, s) = P2(S, s)g2

(
s, (Qμ)(s)

) → 0, μ(S) → ∞,

uniformly for s ∈ S. We combine,

lim sup
μ(S)→∞

sup
s∈S

κμ(S, s) ≤ sup
μ∈Ms+(S), s∈S

κ
μ
1 (S, s) + lim sup

μ(S)→∞
sup
s∈S

κ
μ
2 (S, s)

= sup
μ∈Ms+(S), s∈S

κ
μ
1 (S, s) < 1.

Theorem 26 Let the Assumptions 20, 22 and 23 be satisfied. Assume that P1 and
P2 are tight Feller kernels and r(κo) > 1.

Then there exists a fixed point F(μ) = μ ∈ Ṁs+(S).

Proof We apply [32, Theorem3.19]. Its assumptions are satisfied by Lemma 7,
Propositions 21, 23 and 24.

Theorem 27 Let the Assumptions 20, 21, 22 and 23 be satisfied. Assume that P2 is
a uniform Feller kernel, P1 + P2 is top-irreducible and r(κo) > 1.

Then the population is uniformly persistent in the following sense: There exists
some ε0 > 0 such that lim inf

n→∞ Fn(μ)(S) ≥ ε0 for all μ ∈ Ṁs+(S).

Proof We apply Theorem 7. Its assumptions are satisfied by Lemma 7, Propositions
21, 23, 24. �

Theorem 28 Let the Assumptions 20, 21, 22 and 23 be satisfied. Assume that P2 is
a uniform Feller kernel, P1 + P2 is strongly top-irreducible and r(κo) > 1.

Then the semiflow induced by F is uniformly persistent in the following sense:
For each f ∈ Ċb+(S), there exists some ε f > 0 with the following property:
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If N is a compact (or bounded tight) subset of Ms+(S) with infμ∈N μ(S) > 0,
there exists some N ∈ N such that

∫
S
f dFn(μ) ≥ ε f for all μ ∈ N and all n ∈ N with n > N .

Proof We apply Theorem 8. Its assumptions are satisfied by Lemma 7, Propositions
21, 23, 24, Lemma 8. �
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