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Preface

The 25th International Conference on Difference Equations and Applications was
held at UCL (University College London) from June 24–28, 2019, under the
auspices of the International Society of Difference Equations (ISDE). Over 120
researchers from over 35 countries participated in the conference which was hosted
by the UCL Mathematics Department. There was a very busy programme with 8
plenary talks and over 90 contributed talks spread over four and a half days.

The plenary speakers were Paul Glendinning (UK), Mats Gyllenberg (Finland),
Mihàly Pituk (Hungary), Adina Luminiţa Sasu (Romania), Ewa Schmeidel (Poland),
Andrey Shilnikov (USA), Horst Thieme (USA) and Patricia Wong (Singapore).

There was a wide variety of topics covered at the conference. Difference
equations pervade mathematics and the topics covered included chaos, bifurcation
theory, renormalization theory, exponential dichotomies, dynamical systems on
time scales, monotone systems theory, stability theory, integrable systems and
many other areas. In addition, there were applications of difference equations to a
diverse set of subjects such as ecology, neuroscience, epidemiology, economics and
control theory to mention a few. There were also special sessions of more of a pure
mathematical flavour organized for Nevanlinna theory and discrete integrable
dynamics.

This book is composed of contributions from both plenary speakers and con-
ference participants. It reflects well the sheer length and breadth of material covered
in just four and a half days. The first part of the book is formed from chapters
contributed by plenary speakers, whereas the second part contains articles by
attendees on the topics that they spoke on at the meeting.

Any international conference of this size takes a fair amount of organization. So
it is entirely appropriate to conclude by offering our gratitude to all of those who
contributed to the success of the conference. In particular, at UCL we would like to
mention Professors Rodney Halburd and Steven Bishop as fellow organizers, and
Belgin Seymenoǧlu, Jason Vittis and Jordan Hofmann who helped enormously
with the day-to-day running of the conference, and finally Soheni Francis who
oversaw over the administration of the entire event.

v



Finally, we would like to acknowledge the generous support of our sponsors, the
UCL Mathematics Department and the Taylor & Francis group.

London, UK Steve Baigent
Rolla, MO, USA

July 2020

Martin Bohner
San Antonio, TX, USA Saber Elaydi
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Caputo Nabla Fractional Boundary
Value Problems

ALLAN PETERSON and Wei Hu

Abstract We study boundary value problems with the Caputo nabla difference in
the context of discrete fractional nabla calculus, especially when the right boundary
condition has a fractional order.Wefirst construct theGreen’s function for the general
case and study the properties of the Green’s function in several cases. We then apply
the cone theory in a Banach space to show the existence of positive solutions to a
nonlinear boundary value problem.

Keywords Discrete fractional calculus · Boundary value problems · Green’s
function

1 Nabla Fractional Calculus

In this chapter, we introduce the notation, definitions, and results concerning nabla
fractional calculus. Most of these results can be found in the monograph [12] by
Goodrich and Peterson.

1.1 Basic Definitions

Definition 1 For a, b ∈ R and b − a ∈ Z
+ := {1, 2, . . . }, the sets Na and N

b
a are

defined by

Na := {a, a + 1, a + 2, . . . } and N
b
a := {a, a + 1, a + 2, . . . b}.
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Definition 2 The nabla operator (backwards difference operator), ∇, for f : Na →
R is defined by

(∇ f )(t) = f (t) − f (ρ(t)),

where ρ(t) := t − 1 is the backward jump operator.
The operator ∇n is defined recursively by

∇n f (t) := ∇(∇n−1 f (t))

for t ∈ Na+n, n ∈ N1, where f : Na−n → R, and ∇0 is the identity operator.

Lemma 1 The binomial expression for ∇N f (t), where N ∈ N0 and f : R → R is
given by

∇N f (t) =
N∑

j=0

(−1) j
(
N

j

)
f (t − j)

for t ∈ R.

Definition 3 The rising function is defined by

tn := t (t + 1) · · · (t + n − 1),

for t ∈ R and n ∈ N1.

Remark 1 Note that

tn = t (t + 1) · · · (t + n − 1)

= Γ (t) · t (t + 1) · · · (t + n − 1)

Γ (t)

= Γ (t + n)

Γ (t)
, t /∈ −N0,

where Γ is the gamma function.

Definition 4 Motivated by Remark 1, we define the (generalized) rising function
by

tr := Γ (t + r)

Γ (t)

for the values of t and r such that the right-hand side of this equation makes sense.
We adopt the convention that tr := 0 for t a nonpositive integer but t + r not a
nonpositive integer.
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1.2 Nabla Fractional Sums and Differences

Definition 5 For f : Na+1 → R and t ∈ Na , we define the nabla integral of f from
a to t by

∫ t

a
f (τ )∇τ :=

t∑

τ=a+1

f (τ ), t ∈ Na

with the convention that the integral is zero if the upper limit of the summation is
less than the lower limit.

Definition 6 Forμ /∈ Z
−, we define theμ-th order nabla fractional Taylor monomial

(based at a) by

Hμ(t, a) := (t − a)μ

Γ (μ + 1)
,

whenever the right-hand side is meaningful.

Remark 2 For μ /∈ Z
− and a, b ∈ R, we see that

Hμ(t, a) = Hμ(t + b, a + b)

by the definition of Taylor monomials.

In the next theorem, we list several important properties of the Taylor monomials.

Theorem 1 ([12], Theorem3.57)Forμ /∈ Z
−, theμ-th order nabla fractional Taylor

monomial has the following properties:

(i) Hμ(a, a) = 0;
(ii) ∇Hμ(t, a) = Hμ−1(t, a);

(iii)
∫ t

a
Hμ(s, a)∇s = Hμ+1(t, a);

(iv)
∫ t

a
Hμ(t, ρ(s))∇s = Hμ+1(t, a);

(v) for k ∈ N1, H−k(t, a) = 0, t ∈ Na.

provided the expressions in this theorem are well defined.

Lemma 2 For t > a,
N−1∑

k=0

Hk(t, a) = HN−1(t, a − 1).

Proof We proceed by induction. Let N = 2 be the base case. We have

1∑

k=0

Hk(t, a) = H0(t, a) + H1(t, a) = 1 + t − a = H1(t, a − 1).
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Assume
∑M−1

k=0
Hk(t, a) = HM−1(t, a − 1), then we have

M∑

k=0

Hk(t, a) =
M−1∑

k=0

Hk(t, a) + HM(t, a)

= HM−1(t, a − 1) + HM(t, a)

= (t − a + 1)M−1

(M − 1)! + (t − a)M

M !
= M(t − a + M)

M(t − a + M)

(t − a + 1)M−1

(M − 1)! + (t − a + M)

(t − a + M)

(t − a)M

M !
=

( M

t − a + M
+ t − a

t − a + M

) (t − a + 1)M

M !
= HM(t, a − 1). �

Remark 3 The above lemma is also seen in [10], where Gensler gives a proof using
Pochhammer polynomials.

Definition 7 Assume f : Na+1 → R and μ > 0. Then the nabla fractional sum is
defined by

∇−μ
a f (t) :=

∫ t

a
Hμ−1(t, ρ(s)) f (s)∇s,

for t ∈ Na , where by convention ∇−μ
a f (a) = 0.

Definition 8 (Riemann-Liouville Nabla Fractional Difference) Let f : Na+1−N →
R and ν ∈ R

+. We define the ν-th order nabla fractional difference of f by

∇ν
a f (t) := ∇N∇−(N−ν)

a f (t)

for t ∈ Na+1, where N = �ν�.
The following theorem from [1] shows that the fractional difference ∇ν

a f (t) is
obtained from the fractional sum ∇ν

a f (t) by replacing ν by −ν.

Theorem 2 Assume f : Na → R, ν > 0, and ν /∈ N1. Then

∇ν
a f (t) =

∫ t

a
H−ν−1(t, ρ(s)) f (s)∇s

In the following theorem, we list some additional important results for Taylor
monomials.
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Theorem 3 ([12], Theorem 3.93. Generalized Power Rules) Let ν ∈ R
+ and μ ∈ R

such that μ, ν + ν, and μ − ν are nonnegative integers. Then the following hold for
t ∈ Na.

(i) ∇−ν
a Hμ(t, a) = Hμ+ν(t, a),

(ii) ∇ν
a Hμ(t, a) = Hμ−ν(t, a),

(iii) ∇−ν
a (t − a)μ = Γ (μ + 1)

Γ (μ + ν + 1)
(t − a)μ+ν,

(iv) ∇ν
a (t − a)μ = Γ (μ + 1)

Γ (μ + ν + 1)
(t − a)μ−ν .

Later in this paper we will use Laplace transforms in some of our later proofs. We
will use the following results.

Definition 9 ([12, Definition 3.64]) Assume f : Na+1 → R, then we define the
Laplace transform of f (based at a) by

La{ f }(s) =
∞∑

k=1

(1 − s)k−1 f (a + k)

for those values of s such that the above infinite series converges.

Definition 10 ([12, Definition 3.77]) For f, g : Na+1 → R, we define the nabla con-
volution product of f and g by

( f ∗ g)(t) :=
∫ t

a
f (t − ρ(s) + a)g(s)∇s, t ∈ Na+1.

Theorem 4 ([12,Theorem3.80])For f : Na+1 → Randν not anonpositive integer,
we have

∇−ν
a f (t) = (Hν−1( · , a) ∗ f )(t), t ∈ Na+1.

Theorem 5 ([12, Theorem 3.81] Nabla Convolution Theorem) Assume f, g : Na+1

→ R and their nabla Laplace transforms converge for |s − 1| < r. Then

La{ f ∗ g}(s) = La{ f }(s)La{g}(s)

for |s − 1| < r.

Theorem 6 ([12, Theorem 3.82]) Assume μ > 0 and the nabla Laplace transform
of f : Na+1 → R converges for |s − 1| < r for some r > 0. Then

La{∇−μ
a f }(s) = 1

sμ
La{ f }(s),

for |s − 1| < r .
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2 Caputo Nabla Fractional Differences

One of our main interests in this paper is to consider the Caputo fractional equation

∇ν
a∗y(t) = h(t),

where the operator ∇ν
a∗ is the ν Caputo fractional difference operator. In the section

of our paper we define and give several important properties of this Caputo fractional
difference operator, which we will use to prove our main results.

Definition 11 (Caputo Nabla Fractional Difference) Assume f : Na+1−N → R and
μ > 0. Then the μ-th Caputo nabla fractional difference of f is defined by

∇μ
a∗ f (t) := ∇−(N−μ)

a ∇N f (t)

for t ∈ Na+1, where N = �μ�.
We note some differences between the Caputo nabla difference and the nabla

Riemann-Liouville difference in the following remark.

Remark 4 For μ > 0 and any constant C , we have for the Caputo case

∇μ
a∗C = ∇−(N−μ)

a ∇NC = 0.

But for the nabla Riemann-Liouville case we get that

∇μ
a C = ∇N∇−(N−μ)

a C

= ∇N
∫ t

a
HN−μ−1(t, ρ(s))C∇s

= ∇NCHN−μ(t, a) (by Theorem 1, (iii))

= CH−μ(t, a) (by Theorem 1, (ii))

for t ∈ Na , which is zero only for μ a positive integer.

3 Composition Rules

In this section we will give several important compositions rules.

Lemma 3 ([12], Lemma 3.108) Let k ∈ N0, μ > 0, and N = �μ�. Then

∇k∇−μ
a f (t) = ∇k−μ

a f (t)

and
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∇k∇μ
a f (t) = ∇k+μ

a f (t)

for t ∈ Na+k .

The following lemma appears in Ariel Setniker’s dissertation [22]. Here we give
a different proof.

Lemma 4 For μ ∈ R
+ and f : Na+1 → R,

∇−μ
a ∇ f (t) = ∇∇−μ

a f (t) − Hμ−1(t, a) f (a)

for t ∈ Na.

Proof

∇−μ
a ∇ f (t) − ∇∇−μ

a f (t) =
∫ t

a
Hμ−1(t, ρ(s))∇ f (s)∇s − [∇−μ

a f (t) − (∇−μ
a f )(t − 1)]

=
t∑

s=a+1

Hμ−1(t, ρ(s))∇ f (s) − [∇−μ
a f (t) − (∇−μ

a f )(t − 1)]

=
t∑

s=a+1

Hμ−1(t, ρ(s))( f (s) − f (s − 1)) − ∇−μ
a f (t)

+
t−1∑

s=a+1

Hμ−1(t − 1, ρ(s)) f (s)

= −
t∑

s=a+1

Hμ−1(t, ρ(s)) f (s − 1) +
t−1∑

s=a+1

Hμ−1(t − 1, ρ(s)) f (s)

= −Hμ−1(t, a) f (a) −
t∑

s=a+2

Hμ−1(t, s − 1) f (s − 1)

+
t∑

s=a+2

Hμ−1(t − 1, s − 2) f (s − 1)

= −Hμ−1(t, a) f (a) (by Remark 2)

for t ∈ Na . Thus the proof is complete. �

We now generalize the above lemma.

Theorem 7 ([22, Theorem 2.8]) Let μ > 0, N ∈ N1, and f : Na−N+1 → R. Then

(∇−μ
a ∇N f )(t) = (∇N∇−μ

a f )(t) −
N−1∑

k=0

Hμ−N+k(t, a)∇k f (a),

for t ∈ Na.
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Proof We proceed by induction. The base case when N = 1 has been shown by
the previous lemma. Now assume the result is true for all N > 1 and consider the
following for t ∈ Na .

(∇−μ
a ∇N+1 f )(t) = (∇−μ

a ∇N∇ f )(t)

= (∇N∇−μ
a ∇ f )(t) −

N−1∑

k=0

Hμ−N+k(t, a)(∇k∇ f )(a)

= ∇N [
(∇∇−μ

a f )(t) − Hμ−1(t, a) f (a)
] −

N−1∑

k=0

Hμ−N+k(t, a)∇k+1 f (a)

= (∇N+1∇−μ
a f )(t) − Hμ−N−1(t, a) f (a) −

N−1∑

k=0

Hμ−N+k(t, a)∇k+1 f (a)

= (∇N+1∇−μ
a f )(t) − Hμ−N−1(t, a) f (a) −

N∑

k=1

Hμ−(N+1)+k(t, a)∇k f (a)

= (∇N+1∇−μ
a f )(t) −

N∑

k=0

Hμ−(N+1)+k(t, a)∇k f (a) �

Corollary 1 Assume ν > 0, and N := �ν� and f : Na−N+1 → R. Let μ = N − ν
in Theorem 7. Then we have

∇ν
a∗ f (t) = ∇ν

a f (t) −
N−1∑

k=0

Hk−ν(t, a)∇k f (a),

for t ∈ Na.

Corollary 2 When μ = N in Theorem 7 we get that

∇−N
a ∇N f (t) = f (t) −

N−1∑

k=0

Hk(t, a)∇k f (a).

for t ∈ Na.

Proof

∇−N
a ∇N f (t) = ∇N∇−N

a f (t) −
N−1∑

k=0

Hk(t, a)∇k f (a)

= f (t) −
N−1∑

k=0

Hk(t, a)∇k f (a), (by Lemma 3)

for t ∈ Na . �
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Theorem 8 ([22, Theorem 2.18]) Assume ν > 0, N := �ν� and f : Na+1−N → R.
Then

∇−ν
a ∇ν

a∗ f (t) = f (t) −
N−1∑

k=0

Hk(t, a)∇k f (a)

for t ∈ Na.

Proof By the definition of Caputo difference, we have

∇−ν
a ∇ν

a∗ f (t) = ∇−ν
a ∇−(N−ν)

a ∇N f (t)

= ∇−(ν+N−ν)
a ∇N f (t)

= ∇−N
a ∇N f (t)

= f (t) −
N−1∑

k=0

Hk(t, a)∇k f (a),

for t ∈ Na , where we used Corollary 2 in the last step. �

Theorem 9 ([12, Theorem 3.107]) Assume f : Na+1 → R, and ν,μ > 0. Then

∇−ν
a ∇−μ

a f (t) = ∇−ν−μ
a f (t), t ∈ Na .

The following theorem is a generalization of [12, Theorem 3.107].

Theorem 10 Let a ∈ R, b, ν,μ ∈ R
+, and f : Na−b+1 → R. Then

∇−ν
a ∇−μ

a−b f (t) = ∇−ν−μ
a f (t), t ∈ Na−b.

Proof Applying the Laplace transform, we get that

La{∇−ν
a ∇−μ

a−b f }(s) = 1

sν
La{∇−μ

a−b f }(s)

= 1

sν
La{Hμ−1( · , a − b)}(s)La{ f }(s) (by Theorem 5)

= 1

sν

{ ∞∑

k=1

(1 − s)k−1Hμ−1(a − b + k, a − b)
}
La{ f }(s)

= 1

sν

{ ∞∑

k=1

(1 − s)k−1Hμ−1(a + k, a)
}
La{ f }(s) (by Remark 2)

= 1

sν
La{Hμ−1( · , a)}(s)La{ f }(s)

= 1

sν
La{∇−μ

a f }(s)
= La{∇−ν

a ∇−μ
a f }(s)

= La{∇−ν−μ
a f }(s) (by Theorem 9)
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Then by the uniqueness of Laplace transforms, we have

∇−ν
a ∇−μ

a−b f (t) = ∇−ν−μ
a f (t), t ∈ Na−b+1.

Moreover, ∇−ν
a ∇−μ

a−b f (a − b) = 0 = ∇−ν−μ
a f (a − b). �

4 Caputo Nabla Fractional Boundary Value Problems

4.1 Introduction

The study of fractional calculus dates back to the time of Leibniz. Many applications
of fractional calculus emerged in the past few decades. Tenreiro Machado et al. [20]
investigate some engineering applications of fractional calculus. Valério et al. [24]
survey the application of fractional calculus to scientific and engineering problems in
the past two centuries. Recently, Graef et al. [14] use fractional differential equations
to study bike sharing systems. However, only in recent years, fractional difference
equations began to be studied. Miller and Ross published a landmark paper on frac-
tional difference calculus [21] in 1988. Recent results can be found in [2, 4–6, 9–13,
16–18, 23].

This chapter ismotivated by Eloe et al. [7], St Goar [23] and Erbe and Peterson [8].
Atıcı and Eloe [3] studied a two-point boundary value problem and then the results
were generalized by Goodrich [11] and Eloe et al. [7], where fractional boundary
value conditions are considered. Eloe et al. [7] studied the Green’s functions for a
family of delta fractional boundary value problems and St Goar [23] considered a
right focal boundary value theorem problem with a Caputo fractional difference. In
[8], Erbe and Peterson discussed the existence of positive solutions to a boundary
value problem on time scales, using the cone theory that can be found in [15, 19]. In
this chapter we consider a Caputo nabla fractional boundary value problem (FBVP)
with a fractional boundary condition of the form

⎧
⎪⎨

⎪⎩

−∇ν
a∗ y(t) = h(t), t ∈ N

b
a+1

y(a − i) = 0, 1 ≤ i ≤ N − 1

(∇β
a∗ y)(b) = 0,

(1)

where h : Na+1 → R, ν > 1, 0 ≤ β ≤ N − 1 < ν ≤ N , b − a ∈ Z and b − a ≥
N − 1.

When 1 < ν ≤ 2 and β = 0, the FBVP (1) becomes a two-point problem that
will be discussed in Sect. 2.5. When 1 < ν ≤ 2 and β = 1, it becomes the right focal
problem in [23].

In Sect. 2.2, we derive the Green’s function for solving the FBVP (1) by adopting
a construction approach which is similar to the method used by Eloe et al. [7], so that
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the Green’s function, the solution of the FBVP, and the existence and uniqueness
of the solution are all included in the following theorem. In Sect. 2.3, we discuss
the behavior of the Green’s function with respect to the parameter β and prove
that the Green’s function is nonnegative in several cases. In Sect. 2.4, we prove two
comparison theorems. In Sect. 2.5, we use cone theory in a Banach space to study
a two-point problem and discuss the existence of positive solutions to its nonlinear
case.

4.2 Green’s Function

In this section, we are interested in the Green’s function for the homogeneous nabla
FBVP

⎧
⎪⎨

⎪⎩

−∇ν
a∗ y(t) = 0, t ∈ N

b
a+1

y(a − i) = 0, 1 ≤ i ≤ N − 1

(∇β
a∗ y)(b) = 0,

(2)

where ν > 1, 0 ≤ β ≤ N − 1 < ν ≤ N , b − a ∈ Z and b − a > N − 1.

Theorem 11 Assume ν > 1, 0 ≤ β ≤ N − 1 < ν ≤ N, b − a ∈ Z, b − a > N −
1 and h : Na+1 → R. The Green’s function G(t, s) : Nb

a−N+1 × N
b
a+1 → R for the

Caputo nabla FBVP (2) is given by

G(t, s) =
{
u(t, s), a + 1 ≤ t ≤ ρ(s) ≤ b

v(t, s), a + 1 ≤ ρ(s) ≤ t ≤ b
(3)

where

u(t, s) := Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))

and

v(t, s) := Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))
− Hν−1(t, ρ(s)).

Furthermore, the unique solution of the Caputo nabla FBVP (1) is given by

y(t) =
∫ b

a
G(t, s)h(s)∇s,

for t ∈ N
b
a .
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Proof Applying the nabla sum operator ∇−ν
a to both sides of the Caputo nabla

fractional equation in (1) we get that

−∇−ν
a ∇ν

a∗ y(t) = ∇−ν
a h(t)

for t ∈ Na .
By Theorem 8, the general solution to ∇ν

a∗ y(t) = h(t) is given by

y(t) =
N−1∑

k=0

Hk(t, a)∇k y(a) − ∇−ν
a h(t). (4)

for t ∈ Na .
Then we use the binomial expression in Lemma 1 to expand ∇k y(a) and apply

the boundary conditions on the left in the FBVP (1). Then we use Lemma 2 to obtain
the following

y(t) =
N−1∑

k=0

Hk(t, a)

k∑

j=0

(−1) j
(
k

j

)
y(a − j) − ∇−ν

a h(t)

=
( N−1∑

k=0

Hk(t, a)
)
y(a) − ∇−ν

a h(t)

= HN−1(t, ρ(a))y(a) − ∇−ν
a h(t) (5)

for t ∈ Na .
Nowwe use the boundary condition on the right in (1) to solve for y(a). We apply

the Caputo nabla fractional operator ∇β
a∗ to both sides of (5) and then evaluate the

result at t = b. So we have

(∇β
a∗ y)(b) = 0 = y(a)(∇β

a∗ HN−1( · , ρ(a)))(b) − (∇β
a∗∇−ν

a h)(b). (6)

Next we use the power rules from Theorem 1 (ii) and Theorem 3 (i) to find that

(∇β
a∗ HN−1( · , ρ(a)))(b) = (∇−(M−β)

a ∇MHN−1( · , ρ(a)))(b)

= (∇−(M−β)
a HN−1−M( · , ρ(a)))(b)

= HN−β−1(b, ρ(a)), (7)

where M = �β�.
Note that in the above proof, we used M ≤ N − 1 so that HN−M−1(b, a) �= 0.

Otherwise, we would not be able to solve for y(a).
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Next consider the term (∇β
a∗∇−ν

a h)(b) in (6) and find that

(∇β
a∗∇−ν

a h)(b) = (∇−(M−β)
a ∇M∇−ν

a h)(b)

= (∇−(M−β)
a ∇M−ν

a h)(b) (by Lemma 3)

= (∇β−ν
a h)(b), (by Theorem 9) (8)

where M = �β�.
We substitute (7) and (8) into (6) to obtain

y(a)HN−β−1(b, ρ(a)) − (∇β−ν
a )h(b) = 0.

Solving for y(a), we get

y(a) = (∇β−ν
a h)(b)

HN−β−1(b, ρ(a))
.

Therefore, the solution of the boundary value problem (1) is given by

y(t) = (∇β−ν
a h)(b)

HN−β−1(b, ρ(a))
HN−1(t, ρ(a)) − ∇−ν

a h(t)

=
∫ b

a

Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))
h(s)∇s −

∫ t

a
Hν−1(t, ρ(s))h(s)∇s

=
∫ t+1

a

Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))
h(s)∇s

+
∫ b

t+1

Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))
h(s)∇s

−
∫ t

a
Hν−1(t, ρ(s))h(s)∇s − Hν−1(t, ρ(t + 1))h(t + 1)

=
∫ t+1

a

Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))
h(s)∇s −

∫ t+1

a
Hν−1(t, ρ(s))h(s)∇s

+
∫ b

t+1

Hν−β−1(b, ρ(s))HN−1(t, ρ(a))

HN−β−1(b, ρ(a))
h(s)∇s

=
∫ b

a
G(t, s)h(s)∇s, t ∈ N

b
a−N+1,

wherewe used that Hν−1(t, ρ(t + 1)) = Hν−1(t, t) = 0 byTheorem 1 (i) andG(t, s)
is the Green’s function defined in (3). �

Remark 5 In [23], St Goar studied a Caputo nabla FBVP with an integer order
boundary condition of the form
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⎧
⎪⎨

⎪⎩

∇ν
a∗ y(t) = h(t), t ∈ N

b
a+1

∇k y(a − 1) = 0, 0 ≤ k ≤ N − 2

(∇N−1y)(b) = 0

(9)

where ν > 1, N = �ν�, b − a ∈ Z and b − a ≥ N − 1.
The Green’s function for the corresponding homogeneous FBVP

⎧
⎪⎨

⎪⎩

∇ν
a∗ y(t) = 0, t ∈ N

b
a+1

∇k y(a − 1) = 0, 0 ≤ k ≤ N − 2

(∇N−1y)(b) = 0

(10)

is given by

G(t, s) =
{
u(t, s), t ≤ ρ(s)

v(t, s), t ≥ ρ(s)
(11)

where
u(t, s) = −HN−1(t, a − 1)Hν−N (b, ρ(s))

and
v(t, s) = −HN−1(t, a − 1)Hν−N (b, ρ(s)) + Hν−1(t, ρ(s)).

In the Green’s function (11), u(t, s) is defined to be the unique solution of the
BVP

⎧
⎪⎨

⎪⎩

∇ν
a∗u(t, s) = 0, t ∈ N

b
a+1

∇ku(a − 1, s) = 0, 0 ≤ k ≤ N − 2

(∇N−1u)(b, s) = −∇N−1x(b, s),

(12)

where x(t, s) = Hν−1(t, ρ(s)).
We note that the Green’s function we have found in Theorem 11 reduces to (11)

when β = N − 1 and satisfy the following BVP that is similar to (12):

⎧
⎪⎨

⎪⎩

∇ν
a∗u(t, s) = 0, t ∈ N

b
a+1

u(a − i, s) = 0, 1 ≤ i ≤ N − 1

(∇β
a∗u)(b, s) = −(∇β

a∗)x(b, s),

(13)

where x(t, s) = Hν−1(t, ρ(s)).
St Goar also presented a generalized FBVP where the boundary condition on the

right is (∇ i y)(b) = 0, i ∈ N
N−1
0 . Both of the two FBVPs are special cases of our

FBVP (1).
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5 Properties of the Green’s Function

In this section, we examine the behavior of the Green’s functions G(t, s) in Theorem
11 for 0 ≤ β ≤ 1. Note that G(β; t, s) := G(t, s).

Theorem 12 Let 1 < ν < 2, and 2 ≤ b − a ≤ 1
2−ν

. Then the Green’s function
G(0; t, s) has the following properties:

(i) G(0; a − 1, s) = G(0; b, s) = 0.
(ii) G(0; t, s) ≥ 0 for (t, s) ∈ N

b
a−1 × N

b
a+1,

(iii) maxt∈Nb
a−1

G(0; t, s) = G(0; ρ(s), s) for (t, s) ∈ N
b
a−1 × N

b
a+1, and

(iv) G(0; t, s) ≥ k · G(0; ρ(s), s) for a constant k ∈ (0, 1) and (t, s) ∈ N
b−1
a ×

N
b
a+1.

Proof (i) Note that 1 < ν < 2 implies N = 2.Whenβ = 0, the boundary conditions
in the FBVP (1) becomes y(a − 1) = 0 and y(b) = 0.

By direct computation, we have

G(0; a − 1, s) = Hν−1(b, ρ(s))H1(a − 1, ρ(a))

H1(b, ρ(a))
= 0,

and

G(0; b, s) = Hν−1(b, ρ(s))H1(b, ρ(a))

H1(b, ρ(a))
− Hν−1(b, ρ(s)) = 0.

Hence the Green’s function satisfies the boundary conditions.
(ii) For t ≤ ρ(s) we have

G(0; t, s) = u(t, s)

= Hν−1(b, ρ(s))H1(t, ρ(a))

H1(b, ρ(a))

= [Γ (b − ρ(s) + ν − 1)](t − ρ(a))

[Γ (ν)Γ (b − ρ(s))](b − ρ(a))

≥ 0.

For t ≥ ρ(s), we have

G(0; t, s) = v(t, s) = Hν−1(b, ρ(s))H1(t, ρ(a))

H1(b, ρ(a))
− Hν−1(t, ρ(s)).

Then the nabla difference of v(t, s) with respect to t is given by

∇tv(t, s) = Hν−1(b, ρ(s))

H1(b, ρ(a))
− Hν−2(t, ρ(s)). (14)
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We claim that Hν−2(t, ρ(s)) is decreasing in t for each fixed s ∈ N
b
a+1.

For t = s, Hν−2(t, ρ(s)) = Hν−2(t, ρ(t)) = 1.
For t ≥ s + 1, we have

∇t Hν−2(t, ρ(s)) = Hν−3(t, ρ(s))

= Γ (t − s + ν − 2)

Γ (ν − 2)Γ (t − s + 1)

< 0,

since t − s + ν − 2 > 0, t − s + 1 > 0, and −1 < ν − 2 < 0.
Hence we substitute Hν−2(t, ρ(s)) by Hν−2(b, ρ(s)) in (14) and get the inequality

∇tv(t, s) ≤ Hν−1(b, ρ(s))

H1(b, ρ(a))
− Hν−2(b, ρ(s))

= Γ (b − ρ(s) + ν − 1)

(b − ρ(a))Γ (ν)Γ (b − ρ(s))
− Γ (b − ρ(s) + ν − 2)

Γ (ν − 1)Γ (b − ρ(s))

=
(
b − ρ(s) + ν − 2

(ν − 1)(b − ρ(a))
− 1

)
Γ (b − ρ(s) + ν − 2)

Γ (ν − 1)Γ (b − ρ(s))
.

We see that
Γ (b − ρ(s) + ν − 2)

Γ (ν − 1)Γ (b − ρ(s))
> 0

and

b − ρ(s) + ν − 2

(ν − 1)(b − ρ(a))
− 1 ≤ b − a + ν − 2

(ν − 1)(b − a + 1)
− 1

= b − a + ν − 2 − (ν − 1)(b − a + 1)

(ν − 1)(b − a + 1)

= b − a + ν − 2 − (ν − 1) − (ν − 1)(b − a)

(ν − 1)(b − a + 1)

= (b − a)(2 − ν) − 1

(ν − 1)(b − a + 1)

≤
1

2−ν
(2 − ν) − 1

(ν − 1)(b − a + 1)

= 0.

Hence ∇tv(t, s) ≤ 0. So G(0; t, s) is decreasing for t ≥ ρ(s).
We also see that v(b, s) = 0 from the proof of (i).
Hence G(0; t, s) ≥ 0.
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(iii) We note that

∇t u(t, s) = ∇t

[
Hν−1(b, ρ(s))H1(t, ρ(a))

H1(b, ρ(a))

]

= Hν−1(b, ρ(s))

H1(b, ρ(a))
> 0.

for t ≤ ρ(s) and each fixed s ∈ N
b
a+1. We have shown∇tv(t, s) ≤ 0 for t ≥ ρ(s) and

each fixed s ∈ N
b
a+1. Hence the maximum of the G(0; t, s) occurs at t = ρ(s).

(iv) For a ≤ t ≤ ρ(s), since G(0; t, s) increases in t , we have
G(0; t, s)

G(0; ρ(s), s)
≥ G(0; a, s)

G(0; ρ(s), s)

=
Hν−1(b, ρ(s))(a − a + 1)

b − a + 1
Hν−1(b, ρ(s))(s − a)

b − a + 1

= 1

s − a

≥ 1

b − a
.

For ρ(s) ≤ t ≤ b − 1, since G(0; t, s) decreases in t , we have
G(0; t, s)

G(0; ρ(s), s)
≥ G(0; b − 1, s)

G(0; ρ(s), s)

=
Hν−1(b, ρ(s))(b − 1 − a + 1)

b − a + 1
− Hν−1(b − 1, ρ(s))

Hν−1(b, ρ(s))(s − a)

b − a + 1
− Hν−1(ρ(s), ρ(s))

= b − a

s − a
− Hν−1(b − 1, ρ(s))(b − a + 1)

Hν−1(b, ρ(s))(s − a)

= 1

s − a

(
b − a − (b − s)ν−1(b − a + 1)

(b − s + 1)ν−1

)

= 1

s − a

(
b − a − Γ (b − s + ν − 1)Γ (b − s + 1)

Γ (b − s)Γ (b − s + ν)
(b − a + 1)

)

= 1

s − a

(
b − a − (b − s)(b − a + 1)

b − s + ν − 1

)

= 1

s − a

( (b − a)(b − s + ν − 1) − (b − s)(b − a + 1)

b − s + ν − 1

)

= 1

s − a

( (b − a)(ν − 1) + (b − s)

b − s + ν − 1

)
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≥ 1

b − a

( (b − a)(ν − 1) + (b − s)

b − s + ν − 1

)

= ν − 1

b − s + ν − 1
+ b − s

(b − a)(b − s + ν − 1)

≥ ν − 1

b − a + ν − 1
.

Let k := min
{ 1

b − a
,

ν − 1

b − a + ν − 1

}
. It is clear that 0 < k < 1. �

Theorem 13 Let 1 < ν < 2 such that 2 ≤ b − a ≤ 1

2 − ν
, N = �ν�, 0 ≤ β ≤ 1,

and G(β; t, s) := G(t, s) be the Green’s function defined in Theorem 11. Then
G(β; t, s) is increasing in β for all fixed (t, s) ∈ N

b
a−1 × N

b
a+2.

Proof The behavior of G(β; t, s) in β is determined by

Hν−β−1(b, ρ(s))

HN−β−1(b, ρ(a))
= Γ (b − s + ν − β)

Γ (b − s + 1)Γ (ν − β)

Γ (b − a + 1)Γ (N − β)

Γ (b − a + N − β)
.

SinceΓ (b − a + 1) andΓ (b − s + 1) are both positive, the behavior ofG(β; t, s)
in β as a continuous variable is further determined by

f (β) := Γ (b − s + ν − β)Γ (N − β)

Γ (ν − β)Γ (b − a + N − β)
= (ν − β)b−s

(N − β)b−a
.

Since 1 < ν < 2 implies N = 2, we substitute N in the above definition to get

f (β) = Γ (b − s + ν − β)Γ (2 − β)

Γ (ν − β)Γ (b − a + 2 − β)
= (ν − β)b−s

(2 − β)b−a
. (15)

Since b − s ∈ Z, b − a ∈ Z and b − a ≥ b − s, we use Definition 3 to expand
the rising functions (15) and then obtain

f (β) = (ν − β)(ν − β + 1) · · · (ν − β + b − s − 1)

(2 − β)(2 − β + 1) · · · (2 − β + b − s − 1) · · · (2 − β + b − a − 1)

=
b−s−1∏

i=0

ν − β + i

2 − β + i

b−a−1∏

j=b−s

1

2 − β + j
.

Then we use the generalized product rule for n functions of the form

d

dx

n∏

i=1

fi (x) =
n∏

i=1

fi (x)
n∑

i=1

f ′
i (x)

fi (x)
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to find the derivative of f (β)

f ′(β) =
(
b−s−1∏

i=0

ν − β + i

2 − β + i

) (
b−s−1∑

i=0

ν − 2

(2 − β + i)(ν − β + i)

) ⎛

⎝
b−a−1∏

j=b−s

1

2 − β + j

⎞

⎠

+
(
b−s−1∏

i=0

ν − β + i

2 − β + i

)⎛

⎝
b−a−1∏

j=b−s

1

2 − β + j

⎞

⎠

⎛

⎝
b−a−1∑

j=b−s

1

2 − β + j

⎞

⎠

= f (β)

b−s−1∑

i=0

ν − 2

(2 − β + i)(ν − β + i)
+ f (β)

b−a−1∑

j=b−s

1

2 − β + j

= f (β)

⎛

⎝
b−a−1∑

i=0

1

2 − β + i
−

b−s−1∑

j=0

1

ν − β + j

⎞

⎠ .

Since f (β) > 0, the sign of f ′(β) depends on

φ(β) :=
b−a−1∑

i=0

1

2 − β + i
−

b−s−1∑

j=0

1

ν − β + j
.

It can be shown that φ(β) increases in ν. Since 2 ≤ b − a ≤ 1

2 − ν
, we have

ν ≥ 3

2
. When ν = 3

2
, b − a = 2 and there are two values for s: a + 1 or a + 2.

a + 1 is not in the domain of s and b − s − 1 = −1 when s = a + 2. So we have

φ(β) = 1

2 − β
+ 1

3 − β
> 0 for β ∈ [0, 1].

Hence φ(β) > 0 for all ν ∈ [ 32 , 2) since φ(β) increases in ν. It follows that
f ′(β) > 0 and the proof is complete. �

Theorem 14 Let 1 < ν < 2, 2 ≤ b − a ≤ 1

2 − ν
, 0 ≤ β ≤ 1, and (t, s) ∈ N

b
a−1 ×

N
b
a+2. The Green’s function G(β; t, s) has the following properties:

(i) G(β; t, s) ≥ 0,
(ii) maxt∈Nb

a−1
G(β; t, s) = G(β; ρ(s), s).

Proof

(i) By Theorem 12, G(0; t, s) ≥ 0 for 1 < ν < 2, 2 ≤ b − a ≤ 1

2 − ν
, and

(t, s) ∈ N
b
a−1 × N

b
a+1. Then the result is valid for (t, s) ∈ N

b
a−1 × N

b
a+2. Therefore

by Theorem 13, we have G(β; t, s) ≥ 0 for 0 ≤ β ≤ 1.
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(ii) G(β; t, s) is increasing in t for t ≤ ρ(s) since

∇t u(t, s) = Hν−β−1(b, ρ(s))

H1−β(b, ρ(a))
> 0.

Now we show G(β; t, s) is decreasing in t for t ≥ ρ(s). Consider

∇tv(t, s) = Hν−β−1(b, ρ(s))

H1−β(b, ρ(a))
− Hν−2(t, ρ(s)).

By theproof ofTheorem13,wehave
Hν−β−1(b, ρ(s))

H1−β(b, ρ(a))
increases inβ for s ∈ N

b
a+2.

This implies ∇tv(t, s) increases in β for each fixed s ∈ N
b
a+2. So when β = 1, we

have

∇tv(t, s)
∣∣∣
β=1

= Hν−2(b, ρ(s)) − Hν−2(t, ρ(s))

≤ 0,

since Hν−2(t, ρ(s)) decreases in t by the proof of Theorem 12. So ∇tv(t, s) ≤ 0 for
0 ≤ β ≤ 1. Therefore maxt∈Nb

a−1
G(β; t, s) = G(β; ρ(s), s). �

We have been considering ν < 2 in the previous theorems. We treat ν = 2 as a
special case in the following theorem.

Theorem 15 Let ν = 2, 0 ≤ β ≤ 1 and (t, s) ∈ N
b
a−1 × N

b
a+1. Then the Green’s

function G(β; t, s) increases in β, G(β; t, s) ≥ 0, and maxt∈Nb
a−1

G(β; t, s) =
G(β; ρ(s), s).

Proof Let ν = 2. The Green’s Function becomes

G(β; t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

H1−β(b, ρ(s))H1(t, ρ(a))

H1−β(b, ρ(a))
, t ≤ ρ(s)

H1−β(b, ρ(s))H1(t, ρ(a))

H1−β(b, ρ(a))
− Hν−1(t, ρ(s)), t ≥ ρ(s)

and its behavior in β depends on

H1−β(b, ρ(s))H1(t, ρ(a))

H1−β(b, ρ(a))
= Γ (b − s + 2 − β)Γ (b − a + 1)

Γ (b − a + 2 − β)Γ (b − s + 1)
(t − a + 1).

We note that Γ (b − s + 2 − β), Γ (b − a + 2 − β), and t − a + 1 are positive.
Consider

φ(β) : = Γ (b − s + 2 − β)

Γ (b − a + 2 − β)
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=
b−a−1∏

i=b−s

1

2 − β + i
.

Since 0 ≤ β ≤ 1 and 1
2−β+i is positive and increasing with repect to i for each

fixed β we have that G(β; t, s) is increasing in β for ν = 2.
For t ≤ ρ(s), we have

G(β; t, s) = u(t, s)

= H1−β(b, ρ(s))H1(t, ρ(a))

H1−β(b, ρ(a))

= (b − ρ(s))1−β(t − ρ(a))

(b − ρ(a))1−β

= Γ (b − s + 2 − β)Γ (b − a + 1)

Γ (b − a + 2 − β)Γ (b − s + 1)
(t − a + 1)

≥ 0,

and for t ≥ ρ(s), we have

G(β; t, s) = v(t, s) = H1−β(b, ρ(s))H1(t, ρ(a))

H1−β(b, ρ(a))
− H1(t, ρ(s)).

The nabla difference of v(t, s) in t for each fixed s is

∇tv(t, s) = H1−β(b, ρ(s))H0(t, ρ(a))

H1−β(b, ρ(a))
− H0(t, ρ(s))

= H1−β(b, ρ(s))

H1−β(b, ρ(a))
− 1

= Γ (b − s + 2 − β)Γ (b − a + 1)

Γ (b − a + 2 − β)Γ (b − s + 1)
− 1

=
s−a−1∏

i=0

b − a − i

b − a + 1 − β − i
− 1

< 0

for t ≤ ρ(s) and

v(b, s) = H1−β(b, ρ(s))H1(b, ρ(a))

H1−β(b, ρ(a))
− H1(b, ρ(s))

=
( s−a−1∏

i=0

b − a − i

b − a + 1 − β − i

)
(b − a + 1) − (b − s + 1).
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We already have that v(b, s) increases in β. When β = 0, we have

v(b, s)
∣∣∣
β=0

= H1(b, ρ(s))H1(b, ρ(a))

H1(b, ρ(a))
− H1(b, ρ(s)) = 0.

It follows that v(b, s) ≥ 0 for all β ∈ [0, 1]. Hence G(β; t, s) ≥ 0.
To see that maxt∈Nb

a−1
G(β; t, s) = G(β; ρ(s), s), we note that

∇t u(t, s) = ∇t

[
H1−β(b, ρ(s))H1(t, ρ(a))

H1−β(b, ρ(a))

]

= H1−β(b, ρ(s))

H1−β(b, ρ(a))
> 0.

for t ≤ ρ(s) and each fixed s ∈ N
b
a+1. Therefore maxt∈Nb

a−1
G(β; t, s) = G(β;

ρ(s), s). �

Remark 6 There is no upper limit on b − a in Theorem 15. We can also see this
from Theorem 13, where b − a → ∞ as ν → 2. The Fig. 1 shows the graphs of the
Green’s function for ν = 2, b = 10, a = 0, s = 4 and β = 0, 0.6, 1.

Remark 7 The condition b − a ≤ 1
2−ν

in Theorem 12 is also seen in [23, Theorem
3.11], where it was used to obtain a positive lower bound for v(t, s). In the proof of
Theorem 12 this condition is needed for a decreasing v(t, s) in t for fixed s.

Remark 8 Note that the condition 2 ≤ b − a ≤ 1
2−ν

implies ν ≥ 3/2. If 1 < ν <

3/2, we need to find new conditions for the relationship between ν and b − a. Oth-
erwise, the Green’s function could be negative, as shown in Fig. 2.
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Fig. 1 The Green’s function for ν = 2 with β = 0, 0.6, 1
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Fig. 2 The Green’s function for ν = 1.2, β = 0.2 b = 6, a = 0 and s = 3

5.1 Comparison Theorems

In this section, we give two comparison theorems as a direct result of the nonnegative
property of the Green’s function for 1 ≤ ν < 2,0 ≤ β ≤ 1, 2 ≤ b − a ≤ 1

2−ν
.

Theorem 16 Assume 1 ≤ ν < 2, 0 ≤ β ≤ 1, 2 ≤ b − a ≤ 1
2−ν

, and u, v : Nb
a−1 →

R such that u(t) and v(t) satisfy

∇ν
a∗u(t) ≥ ∇ν

a∗v(t), t ∈ N
b
a+1

u(a − 1) = v(a − 1)

(∇β
a∗u)(b) = (∇β

a∗v)(b)

Then u(t) ≤ v(t) for t ∈ N
b
a−1.

Proof Let
w(t) = v(t) − u(t), t ∈ N

b
a−1,

then

h(t) := ∇ν
a∗w(t) = ∇ν

a∗v(t) − ∇ν
a∗u(t) ≤ 0, t ∈ N

b
a+1

by hypothesis. Note that w(t) solves the Caputo FBVP

−∇ν
a∗w(t) = −h(t), t ∈ N

b
a+1 (16)

w(a − 1) = 0, (17)

(∇β
a∗w)(b) = 0. (18)

Hence by Theorem 11
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w(t) =
∫ b

a
G(β; t, s)[−h(s)]∇s (19)

=
b∑

s=a+1

G(β; t, s)[−h(s)], t ∈ N
b
a−1. (20)

Since h(t) ≤ 0 for t ∈ N
b
a+1 and by Theorem 14, G(β; t, s) ≥ 0 for t ∈ N

b
a−1 and

s ∈ N
b
a+1, we have thatw(t) ≥ 0 for t ∈ N

b
a . This implies that v(t) ≥ u(t) for t ∈ N

b
a .

But by the hypothesis u(a − 1) = v(a − 1). Hence

v(t) ≥ u(t), t ∈ N
b
a−1. �

Next, we give the solution to the FBVP (1) with nonhomogeneous boundary
conditions for 1 < ν < 2.

Theorem 17 Assume 1 < ν < 2, 0 ≤ β ≤ 1, and h : Nb
a+1 → R. The solution of

the FBVP ⎧
⎪⎨

⎪⎩

−∇ν
a∗ y(t) = h(t), t ∈ N

b
a+1

y(a − 1) = A,

(∇β
a∗ y)(b) = B.

where A and B are constants, is given by

y(t) = z(t) +
∫ b

a
G(t, s)h(s)∇s t ∈ N

b
a−1,

where G(t, s) is the Green’s function defined in Theorem 11 and z(t) is the solution
of the FBVP ⎧

⎪⎨

⎪⎩

−∇ν
a∗ z(t) = 0, t ∈ N

b
a+1

z(a − 1) = A,

(∇β
a∗ z)(b) = B.

Proof This theorem is an immediate corollary of Theorem 11 for 1 < ν < 2. �

Theorem 18 Assume 1 < ν < 2, 0 ≤ β ≤ 1 and z(t) solves the FBVP

⎧
⎪⎨

⎪⎩

−∇ν
a∗ z(t) = 0, t ∈ N

b
a+1

z(a − 1) = A,

(∇β
a∗ z)(b) = B.

If A, B ≥ 0, then z(t) ≥ 0 for t ∈ N
b
a−1.
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Proof Since 1 < ν < 2, we have that N = �ν� = 2. Using Theorem 8, the general
solution of −∇ν

a∗ z(t) = 0 is given by

z(t) =
1∑

k=0

Hk(t, a)∇k z(a).

Using the boundary condition on the left, we have

z(t) = H0(t, a)z(a) + H1(t, a)∇z(a)

= z(a) + H1(t, a)(z(a) − z(a − 1))

= z(a) + H1(t, a)(z(a) − A),

for t ∈ N
b
a−1. Applying the boundary condition on the right, we have

(∇β
a∗ z)(b) = H1−β(b, a)(z(a) − A) = B,

which implies

z(a) = A + B

H1−β(b, a)
.

Hence, for t ∈ N
b
a−1,

z(t) = A + B

H1−β(b, a)
+ H1(t, a)

B

H1−β(b, a)
≥ 0,

since H1(t, a) = t − a > 0 and H1−β(b, a) = Γ (b−a+1−β)

Γ (2−β)Γ (b−a)
> 0. �

Using Theorems 17 and 18, the following comparison theorem is a generalization
of Theorem 16.

Theorem 19 Assume 1 < ν < 2, 0 ≤ β ≤ 1, 2 ≤ b − a ≤ 1
2−ν

, and u, v : Nb
a−1 →

R such that u(t) and v(t) satisfy

∇ν
a∗u(t) ≥ ∇ν

a∗v(t), t ∈ N
b
a+1

u(a − 1) ≥ v(a − 1)

(∇β
a∗)u(b) ≥ (∇β

a∗)v(b).

Then u(t) ≤ v(t) for t ∈ N
b
a−1.

Proof Let w(t) := u(t) − v(t) for t ∈ N
b
a−1, A := u(a − 1) − v(a − 1), and B :=

(∇β
a∗)u(b) − (∇β

a∗)v(b). Then we have

h(t) := ∇ν
a∗w(t) = ∇ν

a∗u(t) − ∇ν
a∗v(t) ≥ 0, t ∈ N

b
a+1.
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Note that −w(t) is the solution of the FBVP

⎧
⎪⎨

⎪⎩

−∇ν
a∗w(t) = h(t), t ∈ N

b
a+1

w(a − 1) = A,

(∇β
a∗w)(b) = B,

where A, B ≥ 0.
Hence by Theorem 17,

−w(t) = z(t) +
∫ b

a
G(t, s)h(s)∇s, t ∈ N

b
a−1

where z(t) solves the Caputo FBVP

⎧
⎪⎨

⎪⎩

−∇ν
a∗ z(t) = 0, t ∈ N

b
a+1

z(a − 1) = A,

(∇β
a∗ z)(b) = B.

for t ∈ N
b
a−1. Note that z(t) ≥ 0 for t ∈ N

b
a−1 by Theorem18.We also haveG(t, s) ≥

0 for t ∈ N
b
a−1 and s ∈ N

b
a+1 by Theorem 14 and h(t) ≥ 0 for t ∈ N

b
a+1. Therefore,

we have w(t) = u(t) − v(t) ≤ 0, t ∈ N
b
a−1. �

5.2 Two-Point Problems

In this section we give the solution to a two-point FBVP in general and then study a
nonlinear case.

We note that the Green’s function G(0; t, s) provides the unique solution to a
two-point problem of the Caputo nabla difference:

⎧
⎪⎨

⎪⎩

−∇ν
a∗ y(t) = h(t), t ∈ N

b
a+1

y(a − 1) = 0,

y(b) = 0,

(21)

where h : Nb
a+1 → R, 1 < ν < 2, b − a ∈ Z and b − a > N − 1.

Theorem 20 The solution of the two-point problem (21) is given by

y(t) =
∫ b

a
G(0; t, s)h(s)∇s, t ∈ N

b
a−1,

where G(0; t, s) is the Green’s function defined by
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G(0; t, s) =

⎧
⎪⎨

⎪⎩

Hν−1(b, ρ(s))(t − ρ(a))

b − ρ(a)
, a + 1 ≤ t ≤ ρ(s) ≤ b

Hν−1(b, ρ(s))(t − ρ(a))

b − ρ(a)
− Hν−1(t, ρ(s)), a + 1 ≤ ρ(s) ≤ t ≤ b.

Proof The two-point problem (21) is a special case of the Caputo nabla FBVP (1)
for β = 0. Therefore the result follows from the proof of Theorem 11. �

Next we consider a nonlinear two-point problem when
3

2
≤ ν < 2

⎧
⎪⎨

⎪⎩

−∇ν
a∗ y(t) = h(t, y(t − 1)), t ∈ N

b
a+1

y(a − 1) = 0,

y(b) = 0,

(22)

where h : Nb
a+1 × R

+ → R
+ is continuous, b − a ∈ Z, and 2 ≤ b − a ≤ 1

2 − ν
.

We are going to apply the framework from Erbe and Peterson [8], where the
authors discussed the existence of positive solutions to a boundary value problem on
time scales.

Definition 12 Let B be a Banach space. Then P ⊂ B is called a cone provided P is
a nonempty, closed, convex subset of B satisfying

(i) λ ≥ 0 and x ∈ P implies λx ∈ P;
(ii) x,−x ∈ P implies x = 0,

where 0 is the identity element in B.
The following fixed point theorem concerning cone expansion and cone com-

pression appears in [15, 19]. It has been a useful tool in the analysis of nonlinear
problems in both differential and difference equations. See [3, 8, 23].

Theorem 21 Let B be a Banach space and let P ⊂ E be a cone. Assume Ω1 and
Ω2 are open subsets of B with 0 ∈ Ω1 and Ω1 ⊂ Ω2, and assume that

A : P ∩ (Ω2/Ω1) → P

is a completely continuous operator such that either

(i) ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω2, or
(ii) ‖Ax‖ ≥ ‖x‖, x ∈ P ∩ ∂Ω1, and ‖Ax‖ ≤ ‖x‖, x ∈ P ∩ ∂Ω2.

Then A has a fixed point in P ∩ (Ω2 \ Ω1).

For the analysis of the nonlinear two-point problem (22), we define a Banach
space

E := {y : Nb
a−1 → R : y(a − 1) = y(b) = 0}
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with the norm ‖ · ‖ defined by

‖y‖ := max{|y(t)|, t ∈ N
b
a−1}.

We define a cone K in E by

K := {y ∈ E : y(t) ≥ 0 for t ∈ N
b
a−1 and y(t) ≥ k‖y‖ for t ∈ N

b−1
a },

where k ∈ (0, 1] is as defined in Theorem 12.
We define an operator A by

Ay(t) =
∫ b

a
G(0; t, s)h(s, y(s − 1))∇s =

b∑

a+1

G(0; t, s)h(s, y(s − 1))

for t ∈ N
b−1
a and y ∈ K.

Now we show that A : K → K. We have G(0; t, s) ≥ 0 for (t, s) ∈ N
b
a−1 × N

b
a+1

from Theorem 12 and h : Nb
a+1 × R

+ → R
+ from the two-point problem (22). So

we have Ay(t) ≥ 0. Then by Theorem 12 (ii),

Ay(t) ≥
∫ b

a
kG(0; ρ(s), s)h(s, y(s − 1))∇s

≥
∫ b

a
k max
t∈Nb−1

a

G(0; t, s)h(s, y(s − 1))∇s

≥ k max
t∈Nb−1

a

∫ b

a
G(0; t, s)h(s, y(s − 1))∇s

= k‖y‖.

So Ay(t) ∈ K. Therefore, A : K → K.
We also note that the operator A is completely continuous since it is a sum of

finite discrete terms.
We will give sufficient conditions related to the behavior of h(t, y) so that the

nonlinear two-point problem (22) has a positive solution. We define γ and δ such
that

1

γ
:=

∫ b

a
G(0; ρ(s), s)∇s, and

1

δ
:= k

∫ b−1

a
G(0; t0, s)∇s,

for fixed t0 ∈ N
b−1
a .
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Theorem 22 If there exist μ1,μ2 ∈ (0,∞) such that

h(t, y) ≤ γμ1 ∀ t ∈ N
b
a−1 and 0 ≤ y ≤ μ1, and

h(t, y) ≥ δy ∀ t ∈ N
b−1
a and kμ2 ≤ y ≤ μ2,

then the two-point FBVP (22)
⎧
⎪⎨

⎪⎩

−∇ν
a∗ y(t) = h(t, y(t − 1)), t ∈ N

b
a+1

y(a − 1) = 0,

y(b) = 0

has a positive solution.

Proof Case 1: μ1 < μ2. Let Ω1,Ω2 ⊂ E such that Ω1 be the ball centered at the
origin with radius μ1 and Ω2 be the ball centered at the origin with radius μ2.

If y ∈ K and ‖y‖ = μ1, we have

Ay(t) =
∫ b

a
G(0; t, s)h(s, y(s − 1))∇s

≤
∫ b

a
G(0; ρ(s), s)h(s, y(s − 1))∇s

≤ γμ1

∫ b

a
G(0; ρ(s), s)∇s

= μ1.

So ‖Ay‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1.
If y ∈ K and ‖y‖ = μ2, then y ≥ kμ2 implies y ≥ k‖y‖ and we have

Ay(t0) =
∫ b

a
G(0; t0, s)h(s, y(s − 1))∇s

≥
∫ b−1

a
G(0; t0, s)h(s, y(s − 1))∇s

≥ δ

∫ b−1

a
G(0; t0, s)y(s − 1)∇s

≥ δk‖y‖
∫ b−1

a
G(0; t0, s)∇s

= ‖y‖.

So ‖Ay‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2. Hence by Theorem 21 (i), the operator A has a
fixed point in K ∩ (Ω2 \ Ω1). Therefore the FBVP (22) has a positive solution y(t)
such that μ1 ≤ ‖y‖ ≤ μ2.
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Case 2: μ2 < μ1. Let Ω1,Ω2 ⊂ E such that Ω1 be the ball centered at the origin
with radius μ2 and Ω2 be the ball centered at the origin with radius μ1.

If y ∈ K and ‖y‖ = μ2, then by the similar argument as in Case 1, we have
‖Ay‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1. If y ∈ K and ‖y‖ = μ1, then by the similar argument
as in Case 1, we have ‖Ay‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2. Hence by Theorem 21 (ii), the
operator A has a fixed point in K ∩ (Ω2 \ Ω1). Therefore the FBVP (22) has a
positive solution y(t) such that μ2 ≤ ‖y‖ ≤ μ1. �

Now we consider more restrictions to the behavior of h(t, y). We have assumed
that h : Nb

a+1 × R
+ → R

+. We further assume that the limits

λ0 := lim
y→0+

h(t, y)

y
and λ∞ := lim

y→∞
h(t, y)

y

exist uniformly in R ∪ {−∞,∞}.
Theorem 23 If either λ0 = 0 and λ∞ = ∞ or λ0 = ∞ and λ∞ = 0, the two-point
FBVP (22) ⎧

⎪⎨

⎪⎩

−∇ν
a∗ y(t) = h(t, y(t − 1)), t ∈ N

b
a+1

y(a − 1) = 0,

y(b) = 0,

has a positive solution.

Proof Assume λ0 = 0 and λ∞ = ∞.
Since λ0 = limy→0+ h(t,y)

y = 0, we pick r1 > 0 such that

h(t, y) ≤ γy

for 0 ≤ y ≤ r1 and t ∈ N
b
a−1. Let Ω1 := {y ∈ K : ‖y‖ < r1} be the open ball in E

centered at the origin with radius r1. If y ∈ K ∩ ∂Ω1, then ‖y‖ = r1 and

Ay(t) =
∫ b

a
G(0; t, s)h(s, x(s − 1))∇s

≤ γ

∫ b

a
G(0; t, s)x(s − 1)∇s

≤ γr1

∫ b

a
G(0; t, s)∇s

≤ γr1

∫ b

a
G(0; ρ(s), s)∇s

= r1.

Hence ‖Ay‖ ≤ ‖y‖.
Since λ∞ = limy→∞ h(t,y)

y = ∞, there exists an r ′
1 such that
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h(t, y) ≥ δr ′
1

for y ≥ r ′
1. Then we define

R1 := max{2r1, r ′
1}

and Ω2 := {y ∈ K : ‖y‖ < R1}. Now for y ∈ K ∩ ∂Ω2 and t0 ∈ Nb−1
a , we have

Ay(t0) =
∫ b

a
G(0; t0, s)h(s, y(s − 1))∇s

≥
∫ b−1

a
G(0; t0, s)h(s, y(s − 1))∇s

≥ δ

∫ b−1

a
G(0; t0, s)y(s − 1)∇s

≥ δk‖y‖
∫ b−1

a
G(0; t0, s)∇s

= ‖y‖.

Hence ‖Ay‖ ≥ Ay(t0) ≥ ‖y‖. Therefore by Theorem 21 (i), A has a fixed point
in K ∩ (Ω2 \ Ω1). It follows that the FBVP (22) has a positive solution.

Next we assume λ0 = ∞ and λ∞ = 0. Since λ0 = limy→0+ h(t,y)
y = ∞, we may

pick r2 > 0 such that

h(t, y) ≥ δy

for 0 ≤ y ≤ r2 and t ∈ N
b
a−1. Let Ω1 := {y ∈ K : ‖y‖ < r2} be the open ball in E

centered at the origin with radius r2. If y ∈ K ∩ ∂Ω1, then ‖y‖ = r2 and

Ay(t0) =
∫ b

a
G(0; t0, s)h(s, y(s − 1))∇s

≥
∫ b−1

a
G(0; t0, s)h(s, y(s − 1))∇s

≥ δ

∫ b−1

a
G(0; t0, s)y(s − 1)∇s

≥ δk‖y‖
∫ b−1

a
G(0; t0, s)∇s

= ‖y‖.

Hence ‖Ay‖ ≥ Ay(t0) ≥ ‖y‖. Since λ∞ = limy→∞ h(t,y)
y = 0, there exists an r ′

2
such that
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h(t, y) ≤ γr ′
2

for y ≥ r ′
2. Then we define

R2 := max{2r2, r ′
2}

and Ω2 := {y ∈ K : ‖y‖ < R2}. Now for y ∈ K ∩ ∂Ω2, we have

Ay(t) =
∫ b

a
G(0; t, s)h(s, x(s − 1))∇s

≤ γ

∫ b

a
G(0; t, s)x(s − 1)∇s

≤ γ‖y‖
∫ b

a
G(0; t, s)∇s

≤ γ‖y‖
∫ b

a
G(0; ρ(s), s)∇s

= ‖y‖ = R2.

Hence ‖Ay‖ ≤ ‖y‖.
Therefore by Theorem 21 (ii), A has a fixed point in K ∩ (Ω2 \ Ω1). It follows

that the FBVP (22) has a positive solution. �
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A Note on Ergodicity for Nonautonomous
Linear Difference Equations

Mihály Pituk

Abstract For a class of nonautonomous linear difference equations with bounded,
nonnegative and uniformly primitive coefficients it is shown that the normalized
positive solutions are asymptotically equivalent to the Perron vectors of the transition
matrix at infinity.

Keywords Difference equation · Ergodicity · Asymptotic behaviour

1 Introduction

LetR,R+ andZ+ denote the set of real numbers, the set of nonnegative numbers and
the set of nonnegative integers, respectively. For a positive integer d, Rd and R

d×d

denote the d-dimensional space of real column vectors and the space of d × d real
matrices, respectively.

Let ≤ be the partial order on R
d induced by the nonnegative cone Rd+, the set of

those vectors inRd which have nonnegative components. For x = (x1, . . . , xd)T and
y = (y1, . . . , yd)T ∈ R

d , we have x ≤ y if and only if xi ≤ yi for all i = 1, . . . , d.
We write x < y if x ≤ y and xi < yi for some i ∈ {1, . . . , d} and we write x � y if
xi < yi for all i = 1, . . . , d. A vector x is called nonnegative, positive and strongly
positive if 0 ≤ x , 0 < x and 0 � x , respectively. A similar notation and terminology
is used for matrices. The set of nonnegative matrices in Rd×d is denoted by R

d×d+ .
A norm ‖ · ‖ on R

d is called monotone if 0 ≤ x ≤ y implies ‖x‖ ≤ ‖y‖. In the
sequel, ‖ · ‖ denotes any monotone norm on Rd and the associated induced norm on
R

d×d . A vector x ∈ R
d is called normalized if ‖x‖ = 1.

Consider the nonautonomous linear difference equation

x(t + 1) = B(t)x(t), t ∈ Z+, (1)
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where B : Z+ → R
d×d
+ . Throughout the paper, we shall assume that there exist non-

negative matrices P, Q ∈ R
d×d
+ such that

P ≤ B(t) ≤ Q for all t ∈ Z+ (2)

and
P is a primitive matrix. (3)

Recall that a matrix M ∈ R
d×d
+ is primitive if there exists a positive integer q such

that 0 � Mq . It is known [1] that every primitive matrix M ∈ R
d×d
+ has a unique

strongly positive normalized eigenvector, the so-called Perron vector of M , which
will be denoted by p(M). The Perron vector corresponds to the spectral radius r(M)

of M so that Mp(M) = r(M)p(M), 0 � p(M) and ‖p(M)‖ = 1.
Note that assumptions (2) and (3) imply that B(t) is nonnegative and primitive for

every t ∈ Z+. Therefore each B(t) has a unique Perron vector denoted by p(B(t)),
t ∈ Z+.

The following result from [2] shows that if B in Eq. (1) is slowly varying at
infinity, then the normalized positive solutions of (1) are asymptotically equivalent
to the Perron vectors of the coefficient matrices B(t) as t → ∞.

Theorem 1 [2, Theorem 1] Suppose (2) and (3) hold. Assume also that

B(t + 1) − B(t) −→ 0 as t → ∞. (4)

Then for every solution x : Z+ → R
d of (1) with initial value x(0) ∈ R

d+ \ {0}, we
have

x(t)

‖x(t)‖ − p(B(t)) −→ 0 as t → ∞, (5)

where p(B(t)) is the Perron vector of B(t) for t ∈ Z+.

The asymptotic relation (5) shows that in the long run the behavior of the nor-
malized positive solutions is independent of the initial data. This fact is sometimes
called an ergodic property of Eq.(1). For the origin of the terminology and further
related results, see [3–6] and the references therein.

The purpose of this note is to give an asymptotic description of the normalized
positive solutions of Eq. (1) without assuming the slowly varying condition (4). Our
main result is formulated in Sect. 3 after presenting some notations and lemmas in
Sect. 2. In Sect. 4, we illustrate the main theorem by two examples.

2 Notations and Lemmas

The proof of our main result will be based on the properties of Hilbert’s projective
metric. Let Rd++ denote the set of strongly positive vectors in R

d . For x , y ∈ R
d++,

we define Hilbert’s projective metric by
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d(x, y) = ln
max1≤i≤n

xi
yi

min1≤i≤n
xi
yi

= max
1≤i, j≤n

ln
xi y j
x j yi

. (6)

In the following lemma, we list some basic facts about the projective metric.

Lemma 1 [8, Theorem 2.1, p. 7] For all x, y and z ∈ R
d++, we have

(i) d(x, y) ≥ 0,
(ii) d(x, y) = 0 if and only if y = βx for some positive constant β,
(iii) d(x, y) = d(y, x),
(iv) d(x, y) ≤ d(x, z) + d(z, y),
(v) d(βx, γy) = d(x, y) for any positive constants β and γ.

A matrix M ∈ R
d×d+ is row-allowable if it has a positive entry in each of its rows.

The next result shows that linear mappings generated by nonnegative row-allowable
matrices are nonexpansive, while strongly positive matrices act as contractions in
the projective metric.

Lemma 2 [8, Theorem 2.6, p. 22] Let M = (mi j ) ∈ R
d×d
+ be a nonnegative row-

allowable matrix. Then for any x and y ∈ R
d++, we have

d(Mx,My) ≤ τB(M)d(x, y), (7)

where τB(M) is Birkhoff’s contractivity coefficientgiven by

τB(M) = 1 − √
φ(M)

1 + √
φ(M)

with φ(M) = min
1≤i, j,k,l≤n

mikm jl

m jkmil
if M 
 0 (8)

and τB(M) = 1 if M has at least one 0 entry.

By Lemma 2, τB(M) ≤ 1 whenever M is nonnegative and row-allowable and
τB(M) < 1 if M 
 0. Furthermore, the explicit expression (8) implies that the func-
tion τB is continuous on the open the set of strongly positive matrices.

We shall also need a result which shows that for strongly positive normalized
sequences the convergence in the projectivemetric implies convergence in anymono-
tone norm.

Lemma 3 [9, Lemma 6.4, p. 217] For any monotone norm ‖ · ‖ on Rd , we have

‖x − y‖ ≤ 3(1 − e−d(x,y)) whenever x, y ∈ R
d
++ and ‖x‖ = ‖y‖ = 1. (9)

3 Main Result and Proof

The solutions of Eq. (1) can be written as

x(t) = X (t, s)x(s) for t ≥ s ≥ 0, (10)
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where X (t, s), t ≥ s ≥ 0, is the transition matrix defined by

X (t, s) = B(t − 1)B(t − 2) · · · B(s) for t ≥ s ≥ 0. (11)

(By definition, X (s, s) = I for s ≥ 0, where I denotes the d × d identity matrix.)
Our main result is the following theorem.

Theorem 2 Suppose (2) and (3) hold. Then for every solution x : Z+ → R
d of (1)

with initial value x(0) ∈ R
d+ \ {0}, we have

x(t)

‖x(t)‖ − p(X (t, 0)) −→ 0 as t → ∞, (12)

where p(X (t, 0)) is the Perron vector of the transition matrix X (t, 0) given by (11).

Theorem 2 may be viewed as a refinement of the Weak Ergodic Theorem by
Golubitsky et al. [3, Theorem 2.2] which states that if we take the l1-norm on R

d ,
then under conditions (2) and (3) for every pair of solutions x and y of (1) with
positive initial data x(0) and y(0),

x(t)

‖x(t)‖ − y(t)

‖y(t)‖ −→ 0 as t → ∞. (13)

For the continuous analogue of Theorem 2, see [7, Theorem 2.2].
Now we give a proof of Theorem 2 which is an appropriate modification of the

proof of the Weak Ergodic Theorem [3, Theorem 2.2].

Proof By virtue of (2) and (11), we have

Pt−s ≤ X (t, s) ≤ Qt−s for t ≥ s ≥ 0. (14)

Since P is nonnegative andprimitive, there existsq > 0 such that Pq 
 0. From (14),
we find that

0 � Pq ≤ X ( jq, ( j − 1)q) ≤ Qq for j = 1, 2, . . . . (15)

Since P and hence its powers are primitive and every primitive matrix is evidently
row-allowable, (14) implies that X (t, s) is nonnegative and row-allowable for t ≥
s ≥ 0. This, together with (15), implies that

X (t, 0) = X (t, q)X (q, 0) 
 0 for t ≥ q.

Hence
x(t) = X (t, 0)x(0) 
 0 for t ≥ q.

Furthermore, by Lemma 2, we have
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τB(X (t, s)) ≤ 1 for t ≥ s ≥ 0. (16)

Define
C = { M ∈ R

d×d
+ | Pq ≤ M ≤ Qq }.

Evidently, C is a compact set of strongly positive matrices. As noted before, the
Birkhoff contractivity function τB is continuous on the set of strongly positive matri-
ces and hence it attains its maximum θ on the compact set C . Using Lemma 2 again,
we conclude that

θ = max
M∈C τB(M) < 1.

By virtue of (15), we have that X ( jq, ( j − 1)q) ∈ C for j = 1, 2, . . . . Hence

τB(X ( jq, ( j − 1)q)) ≤ θ < 1 for j = 1, 2, . . . . (17)

Let t ≥ q and write p(t) = p(X (t, 0)) and r(t) = r(X (t, 0)) for the Perron vector
and the spectral radius of X (t, 0), respectively, so that

X (t, 0)p(t) = r(t)p(t).

In view of Lemma 3, in order to prove (12) it is enough to show that

d

(
x(t)

‖x(t)‖ , p(t)
)

= d(x(t), r(t)p(t)) = d(X (t, 0)x(0), X (t, 0)p(t)) −→ 0 (18)

as t → ∞. (Note that the last and the last but one equalities in (18) follow from
Lemma 1 (v).) Let t ≥ q be fixed and k = [t/q], the greatest integer part of t/q. By
the application of Lemma 2, we obtain

d(X (t, 0)x(0), X (t, 0)p(t)) = d(X (t, kq)X (kq, 0)x(0), X (t, kq)X (kq, 0)p(t))

≤ τB(X (t, kq))d(X (kq, 0)x(0), X (kq, 0)p(t)).

This, together with (16), implies

d(X (t, 0)x(0), X (t, 0)p(t)) ≤ d(X (kq, 0)x(0), X (kq, 0)p(t)). (19)

Taking into account that

X (kq, 0) = X (kq, (k − 1)q)X ((k − 1)q, (k − 2)q) · · · X (2q, q)X (q, 0),

a repeated use of Lemma 2, combined with (17), yields

d(X (kq, 0)x(0), X (kq, 0)p(t)) ≤ θk−1d(X (q, 0)x(0), X (q, 0)p(t)). (20)
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Let
D = { X (q, 0)v | v ∈ R

d
+, ‖v‖ = 1 }.

Since X (q, 0) 
 0, D is a compact subset of R
d++. As noted before, x(q) =

X (q, 0)x(0) 
 0 and therefore (6) implies that the mapping u �−→ d(x(q), u) is
continuous on R

d++. As a consequence, the above mapping is bounded on the com-
pact set D ⊂ R

d++. This implies the existence of γ > 0 such that for all u ∈ D, we
have that

d(X (q, 0)x(0), u) = d(x(q), u) ≤ γ.

From this, taking into account that X (q, 0)p(t) ∈ D, we find that

d(X (q, 0)x(0), X (q, 0)p(t)) ≤ γ.

This, together with (19) and (20), yields

d(X (t, 0)x(0), X (t, 0)p(t)) ≤ γθ[t/q]−1 −→ 0 as t → ∞.

Thus, (18) holds. �

4 Examples

We will illustrate Theorem 2 by two examples.

Example 1 We give an asymptotic description of the normalized positive solutions
of Eq. (1), where B : Z+ → R

2×2+ is a 2-periodic matrix function defined by

B(t) = 1

2

( √
3 2 + (−1)t

2 − (−1)t
√
3

)
for t ∈ Z+.

We will use the l2-norm on R
2. Assumptions (2) and (3) of Theorem 2 are satisfied

with

P = 1

2

(√
3 1
1

√
3

)
and Q = 1

2

(√
3 3
3

√
3

)
,

but the slowly varying condition (4) of Theorem 1 is violated. Thus, Theorem 1 does
not apply. As shown in [2, Example 1], in this case conclusion (5) of Theorem 1 does
not hold. We shall establish the asymptotic behaviour of the normalized positive
solutions of Eq. (1) by applying Theorem 2. In view of the 2-periodicity of B, we
have for t ∈ Z+,

X (2t, 0) = Mt , where M = B(1)B(0) =
(

1
√
3√

3 3

)
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and

X (2t + 1, 0) = Nt B(0), where N = B(0)B(1) =
(

3
√
3√

3 1

)
.

An easy calculation shows that the Perron vectors and the spectral radii of M and N
are

p(M) = 1

2

(
1√
3

)
, r(M) = 4,

and

p(N ) = 1

2

(√
3
1

)
, r(N ) = 4,

respectively. SinceMp(M) = 4p(M) impliesMt p(M) = 4t p(M) for t ≥ 1, in view
of uniqueness, M and Mt share the same Perron vector. Hence

p(X (2t, 0)) = p(Mt ) = p(M) for t ≥ 1. (21)

We claim that

p(X (2t + 1, 0)) = p(Nt B(0)) = p(N ) for t ≥ 1. (22)

Indeed, if we write p(t) = p(Nt B(0)) and r(t) = r(Nt B(0)) for brevity, then

Nt B(0)p(t) = r(t)p(t) and Nt p(N ) = 4t p(N ) for t ≥ 1.

From this, using Lemma 1 (v), we find for t ≥ 1,

d(p(t), p(N )) = d(r(t)p(t), 4t p(N )) = d(Nt B(0)p(t), Nt p(N ))

≤ (τB(N ))t d(B(0)p(t), p(N )),

where the last inequality follows from Lemma 2. By virtue of (8), we have that
τB(N ) = 0 and hence d(p(t), p(N )) = 0 for t ≥ 1. In view of Lemma 3, this
implies (22). Finally, from (21) and (22), by the application Theorem 2, we con-
clude that for every solution of Eq. (1) with initial value x(0) > 0,

x(t)

‖x(t)‖ − s(t) −→ 0 as t → ∞, (23)

where s : Z+ → R
d+ is a 2-periodic sequence defined by s(t) = p(M) if t ∈ Z+ is

even and s(t) = p(N ) if t ∈ Z+ is odd.

Example 2 Consider Eq. (1), where B : Z+ → R
2×2
+ is defined by

B(t) =
(

1 + e−t 2 − e−t

1 + sin2
√
t 1 + cos2

√
t

)
for t ∈ Z+.
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Assumptions (2) and (3) of Theorem 2 are satisfied with

P =
(
1 1
1 1

)
and Q =

(
2 2
2 2

)
.

We will use the l1-norm ‖ · ‖ on R
2. It is easy to verify that

B(t)u = 3u for t ∈ Z+, where u =
(
1
1

)
. (24)

Hence 1
2u is a normalized strongly positive eigenvector of B(t) for all t ∈ Z+. Since

B(t) is nonnegative and primitive, in view of the uniqueness, 1
2u must be the Perron

vector of B(t), i.e. p(B(t)) = 1
2u for all t ∈ Z+. From (11) and (24), it follows by

easy induction that
X (t, 0)u = 3t u for t ∈ Z+

which implies by a similar argument as before that p(X (t, 0)) = 1
2u for all t ∈ Z+.

By the application Theorem 2, we conclude that for every solution of Eq. (1) with
initial value x(0) > 0,

x(t)

‖x(t)‖ −→ 1

2

(
1
1

)
as t → ∞. (25)
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Poincaré Return Maps in Neural
Dynamics: Three Examples

Marina L. Kolomiets and ANDREY L. SHILNIKOV

Abstract Understandingof theonset andgenericmechanismsof transitions between
distinct patterns of activity in realistic models of individual neurons and neural net-
works presents a fundamental challenge for the theory of applied dynamical systems.
We use three examples of slow-fast neural systems to demonstrate a suite of new
computational tools to study diverse neuronal systems.

Keywords Neurodynamics · Poincaré return maps · Neural model · Networks

1 Introduction

Most neurons demonstrate oscillations of the membrane potential either endoge-
nously or due to external perturbations. Deterministic description of primary oscil-
latory activities, such as tonic spiking and bursting, of neuronal dynamics is based
on models following the Hodgkin-Huxley formalism [1]. Mathematically, such con-
ductance based models belong to a special class of dynamical systems with at least
two distinct time scales, the so-called slow—fast systems [2–8]. Bursting is a mani-
festation of slow–fast dynamics possessing subcomponents operating at distinct time
scales. Neural bursting is a modular activity composed of various limiting branches,
corresponding to oscillatory and equilibrium regimes of the fast subsystem, and
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connected by transients between them. Using the common mathematical we can
better understand the basic onset of bursting oscillations in models of individual
and coupled neurons. The study of mechanisms of bursting and its transformations
requires nonlocal bifurcation analysis, which is based on the derivation and further
examination of Poincaré return maps.

2 Hodgkin-Huxley Type Model of a Leech Heart
Interneuron

Our first example is the “reduced” model of heart interneuron model [9–13] derived
through theHodgkin-Huxley gated variables formalism [1] that not everymathemati-
cian may be familiar with. Its equations do look too detailed and overwhelming:

C
dV

dt
= −INa − IK2 + IL − Iapp − Isyn, (1)

IL = ḡL (V − EL), IK2 = ḡK2 m
2
K2(V − EK),

INa = ḡNa m
3
Na hNa (V − ENa), mNa = m∞

Na(V ),

τNa
dhNa
dt

= h∞
Na(V ) − h, τK2

dmK2

dt
= m∞

K2(V ) − mK2,

where C = 0.5 nF is the membrane capacitance; V is the membrane potential; INa is
the fast voltage gated sodium current with slow inactivation hNa and fast activation
mNa; IK2 is the persistent potassium currentwith activationmK2; IL is leak current and
Iapp is a constant polarization or external applied current. The maximal conductances
are ḡK2 = 30nS, ḡNa = 200nS and gL = 8nS, and the reversal potentials are ENa =
0.045 V, EK = −0.070V and EL = −0.046V. The time constants of gating variables
are τK2 = 0.25 sec and τNa = 0.0405 s. The steady state values of gating variables,
h∞
Na(V ), m∞

Na(V ), m∞
K2(V ), are given by the following sigmoidal functions:

h∞
Na(V ) = [1 + exp(500(0.0333 − V ))]−1

m∞
Na(V ) = [1 + exp(−150(0.0305 − V ))]−1

m∞
K2(V ) = [1 + exp (−83(0.018 − V + Vshift

K2 ))]−1.

(2)

The quantityVshift
K2 is a genuine bifurcation parameter for thismodel: it is the deviation

from experimentally averaged voltage value V1/2 = 0.018 V corresponding to semi-
activated potassium channel, i.e. m∞

K2(0.018) = 1/2. Variations of Vshift
K2 move the

slow nullcline dmK2
dt = 0 in the V -direction in the 3D phase, see Fig. 1. Due to the

disparity of the time constants of the phase variables, the fast-slow system paradigm
is applicable to system (1): its first two differential equations form a fast subsystem,
while the last equation is the slow one. The dynamics of such a system are known
[14] to be determined by, and centered around, attracting pieces of the slow motion
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Fig. 1 Slow motion manifolds and nullclines of the model (1): the 2D spiking manifold Mlc
is foliated by the periodic orbits continued, from the left to the right, as the parameter Vshift

K2 is
increased from −0.026 through 0.0018. The space curves Vmin and 〈V〉 are made of minimal and
average coordinates of the periodic orbits. Mlc glues to the hyperpolarized fold of the quiescent
manifold, Meq, comprised of the equilibrium states of (2), where the curve of the averaged values
〈V〉 terminates. An equilibrium state of Eqs. (2) is the intersection point of Meq with the slow
(yellow) nullcline ṁK2 = 0 for given Vshift

K2 . Also shown (in red) is the curve of the v-minimal
coordinate values of the periodic orbits making Mlc. This curve is used to define the Poincaré map
taking it onto itself after one revolution around Mlc

manifolds that constitute a skeleton of activity patterns. These manifolds are formed
by the limit sets, such as equilibria and limit cycles, of the fast subsystem where the
slow variable becomes a parameter in the singular limit.

A typical Hodgkin-Huxley model possesses a pair of such manifolds [15]: qui-
escent and tonic spiking, denoted by Meq and Mlc, correspondingly. A solution of
(2) that repeatedly switches between the low, hyperpolarized branch of Meq and
the spiking manifold Mlc represents a busting activity in the model. Whenever
the spiking manifold Mlc is transient for the solutions of (1), like those winding
around it in Figs. 2, the models exhibits regular or chaotic bursting. Otherwise, the
model (1) has a spiking periodic orbit that has emerged on Mlc through the saddle-
node bifurcation thereby terminating the bursting activity [16] or both regimes may
co-exist as in [17, 18].

To determine what makes the spiking and bursting attractors change their shapes
and stability,we construct numerically aVshift

K2 - parameter family of 1DPoincarémaps
taking an interval ofmembrane potentials onto itself. This interval is comprised of the
minimal values, denoted by (V0), of the membrane potential on the found periodic
orbits foliating densely the spiking manifold Mlc, see Fig. 1. Then, for some Vshift

K2 -
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Fig. 2 (Top-left) Four v-minimums of the stable spiking periodic orbit spiking at Vshift
K2 = 0.0255

corresponding to the period-4 orbit of the Poincaré map. Insets (C) and (D) show the voltage
waveforms.(Top-right) Chaotic spiking of the model and in the map at Vshift

K2 = −0.0254. (Bottom)
Chaotic bursting at the spike adding transition becomes more regularized with a large number of
spikes per burst

values, we integrate numerically the outgoing solutions of (2) starting from the initial
conditions corresponding to each (V0) to find the consecutive minimum (V1) in the
voltage time series. All found pairs (V0, V1) constitute the graph of the Poincaré
map for given Vshift

K2 .
Figure 2 is a showcase of such 1D unimodal maps with the distinctive U-shape.

A fixed point of map would correspond to a single V-minimum on the periodic orbit
on the 2D tonic spiking manifold, while period-2 orbit of the map corresponds to the
periodic orbit of the model and so forth. A bursting orbit with multiple turns around
Mlc and switching to and back from Mlc is represented by a more complex orbit
of a longer period. Moreover, the bursting orbit may become even chaotic at spike
adding transition, and as the map reveals that is caused by a homoclinic orbit (red
trajectory) of an unstable fixed point corresponding to a saddle periodic orbit of the
neural model (1). The shape of the 1D return map infers that as it becomes steeper
with a characteristic cusp shape the model would move into the chaotic regime.

3 FitzHugh-Nagumo-Rinzel Model

Our next example is the FitzHugh-Nagumo-Rinzel (FNR) model which is a mathe-
matical model of an elliptic burster (see Fig. 3B); its equations given by [19]:
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Fig. 3 (A) Topology of the tonic spiking, Mlc, and quiescent, Meq, manifolds. The fold on Mlc,
corresponds to a saddle-node bifurcation where the stable (outer) and saddle (inner) branches,
comprised of periodic orbits, merge. The vertex, where the unstable branch of Mlc collapses at
Meq, corresponds to a subcritical Andronov-Hopf bifurcation. Space curves, labeled by V∗

max (in
green) and 〈Vs,u〉 (in blue and red, respectively), correspond to the V-maximal and the averaged,
over the period, coordinates of the periodic orbits composing Mlc. The plane, y′ = 0, is the slow
nullcline, above (below) which the y-component of a solution of the model increases (decreases).
The plane is elevated/lowered as the c-parameter is increased/decreased. (right) The “continuously”
reshaping family of the 1D Poincaré return maps T : Vn → Vn+1 for the FHN-model at μ =
0.002 as c increases from c = −1 through c = −0.55. Lower graphs correspond to quiescence
and subthreshold oscillations in the model; upper graphs correspond to tonic spiking dynamics,
while the middle graphs describe bifurcations of bursting. An intersection point of a graph with the
bisectrix is a fixed point of the map. The stability of the fixed point is determined by the slope of
the graph, i.e. it is stable if |T ′| < 1

v′ = v − v3/3 − w + y + I,
w′ = δ(0.7 + v − 0.8w),

y′ = μ(c − y − v).

(3)

Here, δ = 0.08, I = 0.3125 is an “external current”, and we set μ = 0.002 deter-
mining the pace of the slow variable y; the bifurcation parameter of the model is c.

The slow variable y becomes frozen when μ = 0. The first two fast equations
in (3) compose the FitzHugh-Nagumo fast subsystem model describing a relaxation
oscillator, provided δ is small. This subsystem exhibits either tonic spiking on a stable
limit cycle, or quiescence on a stable equilibrium state for some fixed values of y.
Stability loss of the equilibrium state in the fast subsystem gives rise to a stable limit
cycle through a sub-critical Andronov-Hopf bifurcation when an unstable limit cycle
collapses into the equilibrium state. The stable and unstable limit cycle emerge in the
FNR-model through a saddle-node bifurcation. Both bifurcations, Andronov-Hopf
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and saddle-node, are key to the description of an elliptic burster. Using a traditional
slow-fast dissection, one can locate the corresponding branches of the limit cycle
and equilibrium states by varying the frozen y-variable in the extended phase space
of the fast subsystem. The topology of the tonic spiking, Mlc, and quiescent, Meq, in
the phase space the FNR-model is revealed in Fig. 3.

4 1D Voltage Maps

Recall that a feature of a slow-fast system is that its solutions are constrained to stay
near the slow-motion manifolds, composed of equilibria and periodic obits of the
fast subsystem. If both manifolds are transient for the solutions of the corresponding
neuron model, it exhibits a bursting behavior, which is a repetitive alternation of
tonic spiking and quiescent periods. Otherwise, the model demonstrates the tonic
spiking activity if there is a stable periodic orbit on the tonic spiking manifold, or
it shows no oscillations when solutions are attracted to a stable equilibrium state on
the quiescent manifold.

The core of the methods is a reduction to, and a derivation of, a low dimen-
sional Poincaré return map, with an accompanying analysis of the limit solutions:
fixed, periodic and homoclinic orbits, representing various oscillations in the orig-
inal model. Maps have been actively employed in computational neuroscience, see
[20–23] and referenced therein. It is customary that such a map is sampled from
voltage traces, for example by singling out successive voltage maxima or minima, or
interspike intervals. A drawback of a map generated by time series is a sparseness,
as the construction algorithm reveals only a single periodic attractor of a model,
unless the latter demonstrates chaotic or mixing dynamics producing a large variety
of densely wandering points.

A new, computer assisted method for constructing a complete family of Poincaré
maps for an interval of membrane potentials for slow-fast Hodgkin-Huxley models
of neurons was proposed in [12] following [24], see above. Having such maps we
are able to elaborate on bifurcations in the question of tonic spiking and bursting,
detect bistability, as well examine unstable sets, which are the organizing centers
of complex dynamics in any model. Using this approach we have studied complex
bursting transformations in a leech heart interneuron model and revealed that the
cause of complex behaviors at transitions is homoclinic tangles of saddle periodic
orbits which can be drastically amplified by small noise [11, 25]. Examination of the
maps will help us make qualitative predictions about transitions before they actually
occur in the models.

The construction of the voltage interval maps is a two stage routine. First, we need
to accurately single out the slow motion manifold Mlc in the neuronal model using
the parameter continuation technique. The manifold is formed by the tonic-spiking
periodic orbits as a control parameter in the slow equation is varied. Recall, that its
variations, raising or lowering the slow nullcline in the phase space of the model,
do not alter the fast subsystem and hence do keep the manifold intact. Next a space
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curve V∗
max on Mlc is detected, which corresponds to maximal voltage values of the

membrane potentials Vn found on all periodic orbits constituting the tonic spiking
manifold, see Fig. 3.

We use this data to further amend the set {Vn}, by integrating the solutions of the
model in the vicinity of each maxima to find the exact locations of the turning points,
determined by the condition V′

max = 0. Next, the points defining {Vn} are employed
as the initial conditions to compute outgoing solutions of (3) that will stay on or
close to Mlc. The integration is stopped when a successive maximal value {Vn+1}
of the voltage is reached in the voltage trace. Figure 4 demonstrates how the shape
of the 1D maps changes in a complex predictable way as the c-parameter is varied.
One can see from the end points, that the map has initially a stable fixed point at
the top-right corner that corresponds to the stable tonic spiking orbit on the outer
surface of the 2D manifold Mlc in Fig. 3(left). One can also foresee from the map
at the bottom-right corner in Fig. 3(right) the neural model will undergo a cascade
of period-doubling bifurcations of sub-threshold oscillations followed by complex
mixed-mode oscillations involving sub-threshold ones and bursting. Our predictions
are illustrated and confirmed by Fig. 4 that samples four characteristic 1D Poincaré
return maps out of Fig. 3. In it the shape of the 1D Poincaré return maps reveals
the underlying cause of chaotic mixed mode oscillations (MMOs) at the transition
from tonic spiking to bursting in the in the FNR-model (3) that next become periodic
MMOs, and further transition to chaotic and regular sub-threshold oscillations en a
route to the quiescent phase in generic elliptic bursters.

5 Example 3: 2D Recurrent Maps in Multifunctional 3-Cell
Networks

Many rhythmic motor behaviors such as respiration, chewing, locomotion on land
and in water, and heartbeat (in leeches) are produced by networks of cells called
central pattern generators (CPGs). A CPG is a neural microcircuit of cells whose
synergetic, nonlinear interactions can autonomously generate an array of multicom-
ponent/polyrhythmic bursting patterns of activity that determine motor behaviors in
animals, including humans [26–32]. Modeling studies, phenomenologically math-
ematical and exhaustively computational, have proven useful to gain insights into
operational principles of CPGs [33–40]. Although variousmodels, reduced and feasi-
ble, of specific CPGs, have been developed, it remains unclear how the CPGs achieve
the level of robustness and stability observed in nature [41–45]. Understanding the
key universal mechanisms of the functional evolution of neural connectivity, bifur-
cation mechanisms underlying transitions between different neural activities, and
accurate modeling of these processes presents opportunity and challenge for applied
mathematics in particular and for all computational sciences in general.

Whereas a dedicated CPG generates a single pattern robustly, a multifunctional
or polymorphic CPG can flexibly produce distinct rhythms, such as temporally dis-
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Fig. 4 (A1/2) The shape of the 1D Poincaré return map reveals the underlying cause of chaotic
mixed mode oscillations (MMOs) at the transition from tonic spiking to bursting in the in the
FNR-model (3) that become periodic MMOs with a single burst followed by nine sub-threshold
oscillations (B1/2). (C1/2) The unimodal map corresponding to chaotic and period-4 sub-threshold
oscillations (D1/2)
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tinct swimming versus crawling locomotions, and alternation of directions of blood
circulation in leeches [46–48]. Switching between various attractors of a CPG net-
work causes switching between locomotion behaviors. Each attractor is associated
with a definite rhythm running on a specific time scale with well-defined and robust
phase lags among the constituting neurons. The emergence of synchronous rhythms
in neural networks is closely related to temporal characteristics of coupled neurons
due to intrinsic properties and types of synaptic coupling, which can be inhibitory,
excitatory and electrical, fast and slow [49–53].

We developed a computational toolkit for oscillatory networks that reduces the
problem of the occurrence of bursting and spiking rhythms generated by a CPG net-
work to the bifurcation analysis of attractors in the corresponding Poincaré return
maps for the phase lags between oscillatory neurons. The structure of the phase space
of themap is an individual signature of theCPGas it discloses all characteristics of the
functional space of the network. Recurrence of rhythms generated by the CPG (rep-
resented by a system of coupled Hodgkin-Huxley type neurons [54]) lets us employ
Poincaré returnmaps defined for phase lags between spike/burst initiations in the con-

stituent neurons (Fig. 5) [41, 49–51, 55]. Forward trajectories
{
φ(n)
21 ,φ(n)

31

}
of phase

pointsMn =
(
φ(n)
21 ,φ(n)

31

)
of the Poincaré mapΠ : Mn → Mn+1 are defined through

the time delays Δφ(n)
j1 = τ (n+1)

j1 − τ (n)
j1

τ (n+1)
1 − τ (n)

1

(on mod 1) between the burst initiations in

each cycle normalized over the network period, can converge to several co-existing
stable fixed points, thus indicating the given network is multistable, or a single stable
invariant circle wrapping around the torus that corresponds to a unique rhythmic out-
comewith periodically varying phase lags. These are attractors, single or multiple, of
the return map on a 2D torus, which are associated with multifunctional or dedicated
neural circuits, respectively (Fig. 5). The 2D return map, Π : Mn → Mn+1, for the
phase lags can be written as follows:

φ(n+1)
21 = φ(n)

21 + μ1 f1
(
φ(n)
21 ,φ(n)

31

)
, φ(n+1)

31 = φ(n)
31 + μ2 f2

(
φ(n)
21 ,φ(n)

31

)
(4)

withμi representing the coupling strength, and fi being some undetermined coupling
functions such that f1 = f2 = 0 corresponds to its fixed points: φ∗

j1 = φ(n+1)
j1 = φ(n)

j1 .
These functions, similar to phase-resetting curves, can be assessed from the simu-

lated data collected for known all trajectories
{
φ(n)
21 ,φ(n)

31

}
. By treating fi as par-

tials ∂F/∂φi j , we can restore a “phase potential” F (φ21 ,φ31) = C that determines
the dynamics of the coupled neurons, find its critical points associated with FPs—
attractors, repellers and saddles of the map, and by scaling fi predict their bifurca-
tions due to loss of stability, and hence transformations of rhythmic outcomes of the
network as a whole.

With such return maps, we can predict and identify the set of robust outcomes in
a CPG with mixed, inhibitory and excitatory, slow or/and fast synapses, which are
differentiated by phase-locked or periodically varying lags corresponding, respec-
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Fig. 5 GPU-based interactive motif-toolbox [56, 57] for computational studies of rhythmogenesis
in 3-cell circuits comprised of synaptically coupled FitzhHugh-Nagumo, Hodgkin-Huxley, and 2�-
neurons, which can generate up to 6 (3 in this figure) robust patterns corresponding to the stable
fixed points in the 2D Poincaré return map for the phase lags between constituent cells.

tively, to stable fixed points and invariant circles of the return map. The toolkit lets us
predict bifurcations and transformations of rhythmic outcomes before they actually
occur in the network. The approach also reveals the capacity of the network and the
dependence of its outcomes on coupling strength, wiring circuitry, and synapses,
thereby letting one quantitatively and qualitatively identify necessary and sufficient
conditions for rhythmic outcomes to occur. Using graphics processor units (GPUs)
for parallel simulations of multistable neural networks using multiple initial condi-
tions (as depicted in Fig. 5) can drastically speed up the bifurcation analysis and
reduce a simulation time to merely few seconds.
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Persistent Discrete-Time Dynamics
on Measures

Horst R. Thieme

Abstract A discrete-time structured population model is formulated by a popula-
tion turnover map F on the cone of finite nonnegative Borel measures that maps
the structural population distribution of a given year to the one of the next year.
F has a first order approximation at the zero measure (the extinction fixed point),
which is a positive linear operator on the ordered vector space of real measures and
can be interpreted as a basic population turnover operator. A spectral radius can
be defined by the usual Gelfand formula and can be interpreted as basic population
turnover number. We continue our investigation (Thieme, H.R.: Discrete-time popu-
lation dynamics on the state space of measures, Math. Biosci. Engin. 17:1168–1217
(2020). doi: 10.3934/mbe.2020061) in how far the spectral radius serves as a thresh-
old parameter between population extinction and population persistence. Emphasis
is on conditions for various forms of uniform population persistence if the basic
population turnover number exceeds 1.

Keywords Extinction · Basic reproduction number · Feller kernel ·
Eigenfunctions · Flat norm (also known as dual bounded lipschitz norm)

1 Introduction

Many animal and plant populations have yearly cycles with reproduction occurring
once a year during a relatively short period. They also carry population structures
which may be due to spatial distribution, age or rank structure, or degree of maturity.

It seems appropriate to describe such populations by discrete-time structured
models in the form of difference equations,
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xn = F(xn−1), n ∈ N, x0 ∈ X+, (1)

with the population structure being encoded in the closed subset X+ � 0 of a normed
vector space X overR, F(0) = 0 [17, 20, 32]. The vector xn describes the structural
distribution of the population in year n while F : X+ → X+ formulates the rule how
the structural distribution in a given year follows from the structural distribution of
the previous year. The norm ‖xn‖ is some measure of the population size in year
n. F is called the (yearly) population turnover operator. The condition F(0) = 0
means that the population is closed: If there is no population this year, then there is
no population next year. We use the notation

Ẋ+ = X+ \ {0}. (2)

Notice that (1) is solved by

xn = Fn(x0), n ∈ N, (3)

where Fn is the n-fold composition or iterate of the operator F and {Fn; n ∈ N} is
the discrete semiflow on X+ induced by the map F [26, Sect. 1.2].

Since this paper relies more heavily on dynamical systems theory than its prequel
[32], we will rather use the iterates Fn than solutions of (1) to formulate our results.

A fundamental question is as to whether the population always dies out, ‖Fn(x0)‖
→ 0 as n → ∞ for all x0 ∈ X+, or whether it persists uniformly [26, 33]:

There is some ε > 0 such that for all x0 ∈ Ẋ+ there is some N ∈ N such that ‖F(x0)‖ ≥ ε

for all n ≥ N (with ε not depending on x0).

In addressing this question, we assume that X+ is a (positively) homogeneous
subset of X :

If x ∈ X+ and α ∈ R+, then αx ∈ X+.

We assume that F is directionally differentiable at 0 = F(0), i.e., that all direc-
tional differentials

B(x) = ∂F(0, x) = lim
R+�b→0

1

b
F(bx), x ∈ X+, (4)

exist. It is easy to see that the directional derivative B : X+ → X+ at 0 is (positively)
homogeneous (of degree one) [20, Theorem3.1]:

If x ∈ X+ and α ∈ R+, then B(αx) = αB(x).

Since we rarely consider homogeneity in a different sense, B with this property
is simply called homogeneous. B is a first order approximation of F at 0 in a weak
sense, and we will need B to be a first order approximation in a stronger sense [20,
Sect. 3] with which we do not want to burden the reader quite yet. We call B the
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basic population turnover operator because it approximates the turnover operator at
low population densities.

The operator norm of a homogenous operator B : X+ → X+ is defined as

‖B‖ := sup{‖B(x)‖; x ∈ X+, ‖x‖ ≤ 1}, (5)

and B is called bounded if this supremum exists.

Lemma 1 Assume that there are δ > 0 and c > 0 such that F : X+ → X+ satisfies
‖F(x)‖ ≤ c‖x‖ for all x ∈ X+ with ‖x‖ ≤ δ. Then the directional derivative B of
F at 0 is bounded and ‖B‖ ≤ c.

1.1 The Spectral Radius of a Homogeneous Operator

Since B is homogeneous,

‖B(x)‖ ≤ ‖B‖ ‖x‖, x ∈ X+, (6)

provided that B is bounded. This formula implies that the powers (iterates) Bn :
X+ → X+ of a homogeneous bounded B are bounded and ‖Bn‖ ≤ ‖B‖n for all
n ∈ N.

The spectral radius of a bounded homogeneous B : X+ → X+ is defined by the
Gelfand formula [13]

r(B) = inf
n∈N

‖Bn‖1/n = lim
n→∞ ‖Bn‖1/n. (7)

The last equality is shown in the same well-known way as for a bounded linear
everywhere-defined map. See [20, 28, 31, 32] for more information.

For restrictions of bounded positive linear operators to a cone, theGelfand formula
for the spectral radiuswas used byBonsall [4] under the name “partial spectral radius”
and by Nussbaum [24] under the name “cone spectral radius.” Mallet-Paret and
Nussbaum [21, 22] used the Gelfand formula for homogeneous bounded operators
on a cone under the name “Bonsall cone spectral radius”. But since this formula also
makes sense on homogeneous sets (which concept includes the vector space), we
simply say “spectral radius”.

If B has an interpretation as basic population turnover operator, then r(B) is called
the basic population turnover number [17, 20, 32].
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1.2 Preview of Extinction and Persistence Results

The following results, which highlight the role of the basic turnover number as thresh-
old parameter between population extinction and persistence, hold under additional
assumptions, all of which we do not mention here.

It will be not enough to assume that X+ is a closed homogeneous subset of X ;
rather X+ needs to be a closed cone.

A homogeneous subset X+ of X is called a cone if it is also a convex subset of X
and if x = 0 is the only vector in X such that x and −x are both elements in X+. A
cone is called a closed cone if it is a closed subset of the normed vector space X .

Cones, wedges and ordered vector spaces are studied in this context in [20, 28,
32] to which we refer. Similarly, not much can be done without assuming that B is
order-preserving i.e., for all x, x̃ ∈ X+,

x − x̃ ∈ X+ =⇒ B(x) − B(x̃) ∈ X+. (8)

• For the rest of this section, let X+ be the closed cone of the normed vector space
X .

• Further, let B : X+ → X+ be homogeneous and order-preserving and let B be an
appropriate first order approximation of F .

Theorem 1 Let X+ be a normal cone, F, B : X+ → X+, r = r(B) < 1. Then the
extinction state 0 is locally asymptotically stable in the following sense:

For each α ∈ (r, 1), there exist some δ0 > 0 and M ≥ 1 such that ‖Fn(x)‖ ≤
Mαn‖x‖ for all n ∈ N and all x ∈ X+ with ‖x‖ ≤ δ0.

See [20, Theorem4.2] for the precise formulation. A rigorously formulated appli-
cation to a general population model in the state space of measures is given in
Theorem 4.

Theorem 2 Let F, B : X+ → X+ and B be compact and continuous, r(B) > 1.
Then, under appropriate additional assumptions, the population persists uni-

formly weakly:
There exists some ε > 0 such that for all x ∈ Ẋ+ and all m ∈ N there exists some

n ∈ N with n > m and that ‖Fn(x)‖ ≥ ε.

See [20, Theorem5.2] for the precise formulation. A rigorously formulated appli-
cation to a general population model in the state space of measures is given in
Theorem 6 and to a more specific model for iteroparous populations in Theorem 25.

Theorem 3 Let F, B : X+ → X+ and B be compact and continuous, r(B) > 1,
and

lim sup
‖x‖→∞

‖F(x)‖
‖x‖ < 1.

Then, under appropriate additional assumptions, the semiflow induced by F has a
compact persistence attractor A1 ⊆ X+:
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(a) A1 is a compact set, F(A1) = A1, and inf
x∈A1

‖x‖ > 0.

(b) A1 attracts all compact subsets K of X+ with inf
x∈K ‖x‖ > 0:

If K is such a subset and U is an open set withA1 ⊆ U ⊆ X+, then there exists
some N ∈ N such that Fn(K) ⊆ U for all n ∈ N with n ≥ N.

Theorem 3 is a consequence of Theorem 2 and of the point-dissipativity Theorem
9 in Sect. 3 and is a special case of [26, Theorem5.7] to which we refer for the precise
assumptions. A rigorously formulated application to a general population model in
the state space of measures is given in Theorem 22.

Corollary 1 Let the assumptions of Theorem 3 be satisfied. Then there is some
ε1 > 0 such that for any compact subsetK of X+ with inf x∈K ‖x‖ > 0 there is some
N ∈ N such that ‖Fn(x)‖ ≥ ε1 for all x ∈ K and all n ∈ N with n ≥ N.

The theorems above are known if B can be extended to a bounded linear map on
X and B is the Frechet derivative of F at 0 [7, 26, 33].

There are at least three motivations to consider the more general situation of a
bounded homogenous order-preserving operator. The first is of mathematical nature,
namely that the directional derivative is homogeneous but not necessarily linear and
that homogenous operators are not Frechet differentiable at 0 unless they are linear
[20, Sect. 3].

The second, biological, motivation are two-sex populationmodelswhich often use
homogeneous mating functions resulting in homogeneous first order approximations
of the population turnover operator [18–20, 29–31].

The third motivation are structural population distributions which are best
described by measures μ on a metric space S (see [1, 2, 32] and the references
therein) which is the state space of individual characteristics [8]. A point in S gives
an individual’s characteristic, and the metric d describes how close the characteris-
tics of two different individuals are to each other. If μ : B → R+ is a measure on the
σ -algebraB of Borel sets in S,μ(T ) gives the number of individuals whose structural
characteristic lies in the Borel subset T of S. This leads to choosing X = M(S) as
population state space, the vector space of real finite Borel measures (or rather an
appropriate closed subspace of it if S is not separable). Let X+ = M+(S) denote
the cone of nonnegative measures and Ẋ+ = Ṁ+(S) be M+(S) without the zero
measure. The variation norm is too strong to provide the required compactness of
the basic turnover operator B on X+ in Theorem 2 even if B can be extended to a
bounded linear operator on X . A suitable alternative is the flat norm aka dual bounded
Lipschitz norm (see [14] and the references therein and Sect. 4). The flat norm has
the trade off that important linear basic turnover operators defined on all of X are
compact and continuous on X+ but not bounded on X [32].
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2 A General Framework for the State Space of Measures

In this paper, we will be guided by the third motivation, a population state space
consisting of measures on a metric space S (Sect. 4).

2.1 Feller Kernels

Important building blocks for the turnovermap F are Feller kernels κ : B × S → R+
where B is the σ -algebra of Borel subsets of S ([32] and Sect. 5). In fact, the first
order approximation of F at 0 mentioned before will be associated with a Feller
kernel. As a first requirement,

• κ(·, s) is a nonnegative measure on B for each s ∈ S.

Then, for each f ∈ Cb(S) (bounded continuous function), we can form the integrals

∫
S
f (t)κ(dt, s) =: (A∗ f )(s), s ∈ S. (9)

As a second requirement,

• κ has theFeller property, i.e., definition (9) provides a continuousbounded function
A∗ f ,

and a bounded linear map A∗ on Cb(S) is associated with κ .
Cf. [3, Sect. 19.3]. See Example 10.12 in [32].
Cb(S), the vector space of bounded continuous real-valued functions, is a Banach

space under the supremum norm and has Cb+(S), the subset of nonnegative functions
in Cb(S), as closed convex cone. Ċb+(S) denotes this cone without the zero function.

By [32, Proposition6.3], if κ is a Feller kernel, κ(U, ·) is a Borel measurable
function on S for all open subsets U of S and thus for all Borel sets U in S. Conse-
quently, A∗ can be extended to Mb(S) by (9), the Banach space of bounded Borel
measurable functions with the supremum norm.

For each μ ∈ M(S), we can define

∫
S
κ(T, s)μ(ds) = (Aμ)(T ), T ∈ B, (10)

and obtain a measure Aμ and a linear map on M(S) and the duality relation

∫
S
(A∗ f ) dμ =

∫
S
f d(Aμ), f ∈ Mb(S), μ ∈ M(S). (11)

The linear operator A on M(S) is bounded with respect to the variation norm,
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‖A‖ = sup
s∈S

κ(S, s) = ‖A∗‖, (12)

but not necessarily bounded with respect to the flat norm [32, Sect. 9, 10].
In some probabilistic applications, it is assumed that κ is also a Markov kernel,

i.e., κ(S, s) = 1 for all s ∈ S. Then κ(T, s) can be interpreted as the probability that
an individual with characteristic s ∈ S will have a characteristic within the set T
after one year. This ignores that the individual may die during the year on the one
hand or have offspring on the other hand.

So, we do not assume that κ is aMarkov kernel, and κ(T, s) is rather interpreted as
follows: For an individual with characteristic feature s ∈ S, κ(T, s) is the sum of the
probability that, after one year, the individual is still alive and has its characteristic
feature within the set T and of the amount of its surviving offspring that has also
characteristic feature within the set T . For more on Feller kernels see Sect. 5.

Definition 1 A Feller kernel κ : B × S → R+ is called a uniform Feller kernel if

sup
T∈B

|κ(T, t) − κ(T, s)| → 0, t → s, for all s ∈ S. (13)

Equivalent characterizations of uniform Feller kernels are given in Proposition9,
in particular (13) implies the Feller property above. For more on uniform Feller
kernels see Sect. 5.2.

2.1.1 Convolutions and Spectral Radius of Feller Kernels

The convolution of two Feller kernels κ j : B × S → R+, j = 1, 2, is defined by

(κ1 � κ2)(T, s) =
∫
S
κ1(T, t)κ2(dt, s), T ∈ B, s ∈ S. (14)

κ1 � κ2 is again a Feller kernel.

Definition 2 Let κ : B × S → R+ be a Feller kernel. We inductively define the
multiple convolution kernels κn� by κ1� = κ and κ(n+1)� = κn� � κ .

The spectral radius of the Feller kernel κ is defined by

r(κ) = inf
n∈N

(
sup
s∈S

κn�(S, s)
)1/n

. (15)

If A∗ is the map on Cb(S) or on Mb(S) induced by κ , then An∗ is induced by κn�.
This implies that r(κ) = r(A∗), and so, in (15), inf

n∈N
can be replaced by lim

n→∞ because

of (7). See [32, Sect. 9] for more details.
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2.1.2 Irreducible Feller Kernels

Since a Feller kernel κ : B × S → R+ induces the positive bounded linear map A∗
on the Banach lattice Cb(S) with the supremum norm, irreducibility of κ could be
defined as irreducibility of A∗ like in [25, III.8]. However, the following weaker
irreducibility concept seems to be better tailored to a Feller kernel.

Definition 3 ([27]) A Feller kernel κ : B × S → R+ is called top-irreducible (short
for “topologically irreducible”) if for any nonempty open subset U of S and for any
s ∈ S \U there is some n ∈ N such that κn�(U, s) > 0.

We will also use the following stronger concept.

Definition 4 A Feller kernel κ : B × S → R+ is called strongly top-irreducible if
for any nonempty open subset U of S and any nonempty compact subset K of S
there exists some n ∈ N such that κn�(U, s) > 0 for all s ∈ K .

For more on (strongly) irreducible Feller kernels see Sect. 5.3.

2.2 Turnover Maps on the State Space of Measures

We consider yearly turnover maps F of the following general form,

F(μ)(T ) =
∫
S
κμ(T, s) μ(ds), μ ∈ M+(S), T ∈ B, (16)

where {κμ;μ ∈ M+(S)} is a family of Feller kernels κμ : B × S → R+.
The interpretation of κμ is as before except that individual survival, develop-

ment and reproduction play out in the environment being effected by the structural
distribution μ of the population.

If μ is the zero measure, we use the notation κo. Often, the operator A associated
with κo by (10) will turn out to be the first order approximation of F at the zero
measure.

Finally, we emphasize that, while individual survival, development, and reproduc-
tion are modeled stochastically through the family of Feller kernels, the population
model is completely deterministic.

A more specific model for a semelparous population can be found in [32, Sect. 2
and 12] and for an iteroparous population in Sect. 7.

Assumption 5 For each μ ∈ M+(S), κμ is a Feller kernel and
{
κμ(S, t); μ ∈

M+(S), t ∈ S
}
is a bounded subset of R.

Standard measure-theoretic arguments imply the following result.

Proposition 1 Let the Assumption 5 be satisfied. Then F maps M+(S) into itself.
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Definition 6 The kernel family {κμ;μ ∈ M+(S)} is called upper semicontinuous
at the zero measure if for any ε ∈ (0, 1) there is some δ > 0 such that

κμ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S,

for all μ ∈ M+(S) with μ(S) ≤ δ.
The kernel family {κμ;μ ∈ M+(S)} is called lower semicontinuous at the zero

measure if for any ε ∈ (0, 1) there is some δ > 0 such that

κμ(T, s) ≥ (1 − ε)κo(T, s), T ∈ B, s ∈ S,

for all μ ∈ M+(S) with μ(S) ≤ δ.
The kernel family {κμ;μ ∈ M+(S)} is called continuous at the zero measure if

for any ε ∈ (0, 1) there is some δ > 0 such that

(1 − ε)κo(T, s) ≤ κμ(T, s) ≤ (1 + ε)κo(T, s), T ∈ B, s ∈ S,

for all μ ∈ M+(S) with μ(S) ≤ δ.

In a preview of results, we will showcase the spectral radius of the basic turnover
kernel κo as a crucial threshold parameter between local stability (in the subthresh-
old case r(κo) < 1) and instability (in the superthreshold case r(κo) > 1) of the
extinction state represented by the zero measure; r(κo) is called the basic population
turnover number. For a semelparous population, as it is considered in [32, Sect. 12],
the basic turnover number coincides with the basic reproduction number.

2.3 Local (Global) Stability of the Zero Measure in the
Subthreshold Case

For perspective, we cite the following result [32, Theorem3.6].

Theorem 4 Make Assumption 5 and let the kernel family {κμ;μ ∈ M+(S)} be
upper semicontinuous at the zero measure.
(a) If r = r(κo) < 1, the zero measure (the extinction state) is locally asymptotically
stable in the following sense:

For each α ∈ (r, 1), there exist some δα > 0 and Mα ≥ 1 such that,

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N,

if μ ∈ M+(S) with μ(S) ≤ δα .

(b) If r = r(κo) < 1 and κμ(T, s) ≤ κo(T, s) for all T ∈ B, s ∈ S, the zero measure
is globally stable in the following sense:
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For each α ∈ (r, 1), there exists some Mα ≥ 1 such that

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N, μ ∈ M+(S).

Recall that Fn(μ)(S) is the total population size in the nth year and μ(S) the
population size at the beginning.

2.4 Instability of the Zero Measure in the Superthreshold
Case

We consider the following concepts [10, 14, 16, 32].

Definition 7 Consider a subset N of M+(S).

• N is called tight if for any ε > 0 there exists a compact subset K of S such that
μ(S \ K ) < ε for all μ ∈ N .

• A single measure μ ∈ M+(S) is called tight, and we write μ ∈ Mt+(S), if {μ} is
tight.

• N is called pre-tight if for any ε > 0 there exists a closed totally bounded subset
T of S such that μ(S \ T ) < ε for all μ ∈ N .

• A single measure μ ∈ M+(S) is called separable, and we write μ ∈ Ms+(S), if
there exists a countable subset T of S such that μ(S \ T̄ ) = 0.

• A single measure μ ∈ M(S) is called separable, and we write μ ∈ Ms(S), if its
absolute value |μ| is separable.
By definition, a subset T of S is totally bounded if for any ε > 0 there exists a

finite subset K of T such that T ⊆ ⋃
s∈K Uε(s). Here Uε(s) = {t ∈ S; d(t, s) < ε}

is the open neighborhood with center s and radius ε. T ⊆ S is compact if and only
if T is totally bounded and complete [3, Sect. 3.7].

If S is a compact metric space,M+(S) is trivially tight. If S is a separable metric
space, M+(S) = Ms+(S).

Definition 8 A Feller kernel κ is called a tight Feller kernel if {κ(·, s); s ∈ S} is a
tight set of measures.

A Feller kernel κ is called a Feller kernel of separable measures if all measures
κ(·, s), s ∈ S, are separable.

The condition r(κo) < 1 in Theorem 4 is almost sharp as seen from the next result
([32, Theorem3.13] with switched roles of κ1 and κ2).

Theorem 5 Make Assumption 5 and let the kernel family {κμ;μ ∈ M+(S)} be
lower semicontinuous at the zero measure.

Assume that κo = κ1 + κ2 with two Feller kernels κ j of separable measures and
assume that κ2 is a tight kernel and r := r(κo) > 1 ≥ r(κ1).
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Then there exists some eigenmeasure ν ∈ Ms+(S), ν(S) = 1, such that

rν(T ) =
∫
S
κo(T, s)ν(ds), T ∈ B.

Further, the zero measure is unstable: There is some δ0 > 0 such for any ν-positive
μ ∈ M+(S) there is some n ∈ Z+ with Fn(μ)(S) ≥ δ0.

A measure μ ∈ M+(S) is called ν-positive if there exists some δ > 0 such that
μ(T ) ≥ δν(T ) for all T ∈ B.

In an iteroparous population, as we will consider it in Sect. 7, the Feller kernel κ1
may be associated with adult survival and adult development and the Feller kernel
κ2 with reproduction and first year development. If r(κ1) < 1, κ∞

1 = ∑∞
n=1 κn�

1 is a
Feller kernel, and the Feller kernel

κ2 + κ2 � κ∞
1 = κ2 +

∞∑
n=1

κ2 � κn�
1

can be interpreted as next generation kernel and its spectral radius as basic [9] (or
inherent net [5, 6]) reproduction number. We again like to think of κo = κ1 + κ2 as
basic population turnover kernel and its spectral radius as basic turnover number;
this spectral radius has also been called inherent population growth rate [6].

Remark 1 Let r(κ1) < 1. The following trichotomy holds:

• r(κ2 + κ2 � κ∞
1 ) > 1 and r(κ1 + κ2) > 1

or
• r(κ2 + κ2 � κ∞

1 ) = 1 and r(κ1 + κ2) = 1
or

• r(κ2 + κ2 � κ∞
1 ) < 1 and r(κ1 + κ2) < 1.

See [32, Remark3.14, Theorem7.16], but notice that the roles of κ1 and κ2 have
been switched.

2.5 Persistence of the Population in the Superthreshold Case

We now give a preview of this paper’s main results in the general framework for the
population state space of measures. The proofs can be found in Sect. 6.

Assumption 9 For each μ ∈ Ms+(S), κμ is a Feller kernel of separable measures
and

{
κμ(S, t);μ ∈ Ms+(S), t ∈ S

}
is a bounded subset of R.

Assumption 10 For any μ ∈ Ṁs+(S), κμ(S, s) > 0 for all s ∈ S.
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Recall that Ṁs+(S) is the set of nonnegative separable measures without the zero
measure.

Theorem 6 Assume Assumptions 9 and 10. Let the kernel family {κμ;μ ∈ Ms+(S)}
be lower semicontinuous at the zero measure.

Assume that κo is a top-irreducible Feller kernel and κo = κ1 + κ2 with two tight
Feller kernels κ j , where κ2 is a uniform Feller kernel.

Finally, assume r = r(κo) > 1 ≥ r(κ1).
Then the semiflow induced by F is uniformly weakly persistent: There exists some

δ > 0 such that lim sup
n→∞

Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

The next assumption looks rather technical, but is often satisfied; the technicality
is the prize we pay for the generality of the framework. We will derive from it that
F is continuous on Ms+(S) with respect to the flat norm.

Assumption 11 If μ ∈ Ms+(S) and (μn) is a sequence in Ms+(S) such that∫
S f dμn → ∫

S f dμn for all f ∈ Cb+(S), then

∫
S
h(t) κμn (dt, s)

n→∞−→
∫
S
h(t) κμ(dt, s) (17)

uniformly for s in every closed totally bounded subset of S, for all h ∈ L,

L = {
h ∈ [0, 1]S; ∀t, t̃ ∈ S : |h(t) − h(t̃)| ≤ d(t, t̃)

}
. (18)

Assumption 12 If N is a bounded subset of Ms+(S), then the set of measures
{κμ(·, s); s ∈ S, μ ∈ N } is tight and the set {κμ(S, s); s ∈ S, μ ∈ N } is bounded in
R.

This assumption will imply that F is compact on Ms+(S) with respect to the flat
norm.

Assumption 13 lim sup
μ(S)→∞

sup
s∈S

κμ(S, s) < 1.

This assumption will allow us to use the abstract point-dissipativity result in the
upcoming Sect. 3.

Theorem 7 Make Assumptions 9, 10, 11, 12, 13 and let the kernel family {κμ;μ ∈
Ms+(S)} be lower semicontinuous at the zero measure.

Assume that κo is a top-irreducible Feller kernel and κo = κ1 + κ2 with two tight
Feller kernels κ j where κ2 is a uniform Feller kernel.

Finally, assume r = r(κo) > 1 > r(κ1).
Then the semiflow induced by F is uniformly persistent: There exists some δ > 0

such that lim inf
n→∞ Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

To obtain uniform persistence in a stronger sense, we will assume the following.
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Assumption 14 IfN is a tight bounded subset ofM+(S), then there exists a strongly
top-irreducible Feller kernel κ̃ such that

κμ(T, s) ≥ κ̃(T, s), T ∈ B, s ∈ S, μ ∈ N .

Theorem 8 Make Assumptions 9, 10, 11, 12, 13, 14 and let the kernel family
{κμ;μ ∈ Ms+(S)} be lower semicontinuous at the zero measure.

Assume that κo is a strongly top-irreducible Feller kernel and κo = κ1 + κ2 with
two tight Feller kernels κ j , where κ2 is a uniform Feller kernel. Finally, assume
r = r(κo) > 1 ≥ r(κ1).

Then the semiflow induced by F is uniformly persistent in the following sense:
For each f ∈ Ċb+(S), there exists some ε f > 0 with the following property:

IfN is a bounded tight subset ofMs+(S)with infμ∈N μ(S) > 0, there exists some
N ∈ N such that

∫
S
f d Fn(μ) ≥ ε f for all μ ∈ N and all n ∈ N with n > N .

3 An Abstract Point-Dissipativity Result

The next abstract result will be used in proving Theorem 8.

Theorem 9 Let X+ be the closed cone of an ordered normed vector space X. Let
F : X+ → X+ map bounded subsets of X+ into bounded subsets of X+. Let θ :
X+ → R+ be homogeneous, subadditive, continuous and uniformly positive (there
is some ε > 0 such that ε‖x‖ ≤ θ(x) for all x ∈ X+). Assume that

lim sup
‖x‖→∞

θ(F(x))

θ(x)
< 1. (19)

Then, for any bounded subset B of X+, there exists a bounded convex subset B̃ of
X+ such that Fn(B) ⊆ B̃ for all n ∈ N. Further, there exists a bounded convex subset
B0 of X+ such that for each x ∈ X+ there exists some m ∈ N such that Fn(x) ∈ B0

for all n ≥ m. If F is continuous and compact, the semiflow induced by F has a
compact attractor of bounded sets [26, Sect.2.2.3].

Proof Cf. [26, L.7.1]. By (19) and the other properties of θ , there exists some ξ ∈
(0, 1) and R1 > 0 such that

θ(F(x)) ≤ ξθ(x), x ∈ X+, θ(x) ≥ R1. (20)

We claim that there exists some R2 > 0 such that, for all x ∈ X+,

θ(x) ≤ R2 =⇒ θ(F(x)) ≤ R2. (21)
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If not, for any n ∈ N, there exists some xn ∈ X+ such that θ(xn) ≤ n < θ(F(xn)).
Since F maps bounded sets in X+ into bounded sets of X+ and θ is bounded,
θ(xn) → ∞ as n → ∞. This leads to a contradiction for n large enough such that
θ(xn) ≥ R1:

n < θ(F(xn)) ≤ ξθ(xn) < n.

Let R3 = max{R1, R2}. Let R ≥ R3 and B+
R = {x ∈ X+; θ(x) ≤ R}. Since θ is con-

vex and continuous, B+
R is convex and closed. Since θ is uniformly positive, B+

R
is bounded. By (21), F(B+

R ) ⊆ B+
R . Let B be a bounded subset of X+. Then there

exists some R > R3 such that B ⊆ B+
R and Fn(B) ⊆ B+

R for all n ∈ N. Let x ∈ X+.
If ‖x‖ ≤ R3, lim supn→∞ θ(Fn(x)) ≤ R3. If θ(x) > R3, by (20), θ(Fn+1(x)) ≤
ξθ(Fn(x)) as long as θ(Fn(x)) ≥ R3. So θ(Fn(x)) ≤ R3 for some m ∈ N and
lim supn→∞ θ(Fn(x)) ≤ R3 as well. Since θ is uniformly positive, there exists some
c > 0 such that lim supn→∞ ‖Fn(x)‖ ≤ c for all x ∈ X+.

In the language of [26, Definition2.25], we have shown that the semiflow induced
by F is point-dissipative and eventually bounded on every bounded set. If F is also
continuous and the semiflow is asymptotically smooth (in particular if F is compact).
then the semiflow has a compact attractor of bounded set by [26, Theorem2.30]. �

4 The Ordered Vector Space of Real Measures

Let S be a nonempty set, B a σ -algebra on S, and M(S) denote the set of real
measures on B.

M(S) becomes a real vector space by the definitions (μ + ν)(T ) = μ(T ) + ν(T )

and (αμ)(T ) = αμ(T ) where T ∈ B and α ∈ R and μ, ν ∈ M(S).
M(S) contains the cone of all nonnegative measures, M+(S) (a convex homo-

geneous set). M(S) is an order-complete vector lattice: Each subset N of M(S)

which has an lower (upper) bound has an infimum (supremum).
The absolute value |μ| of a measure (in this context also called the variation of

the measure) is given by

|μ|(T ) = sup{μ(U ) − μ(T \U );B � U ⊆ T }

= sup{|μ(U )| + |μ(T \U )|;B � U ⊆ T } = sup
{ n∑

j=1

|μ(Tj )|
}
,

(22)

where the supremum is taken over all n ∈ N and subsets {T1, . . . , Tn} of B such that
T is its disjoint union [3, Corollary10.54 and Theorem10.56].
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4.1 Measures Under the Variation Norm and the Flat Norm

The variation norm (also called total variation) onM(S) is defined by

‖μ‖� = |μ|(S), μ ∈ M(S), (23)

where |μ| is the absolute value of μ defined by (22).
If μ ∈ M+(S), ‖μ‖� = μ(S). So the variation norm is additive and order-

preserving on M+(S), and M+(S) is a normal cone. The variation norm makes
M(S) a Banach lattice; in particular, M+(S) is a non-flat generating cone: Every
real-valued measure μ can be written as the difference of its positive and negative
variation, μ = μ+ − μ−, and ‖μ±‖� ≤ ‖μ‖�.

The variation norm is equivalent to the supremum norm

‖μ‖∞ = sup
T∈B

|μ(T )|, μ ∈ M(S), (24)

and the two norms are equal on M+(S).
Let (S, d) be a metric space. B now denotes the Borel σ -algebra of S which is

the smallest σ -algebra that contains all open and closed sets. The sets in the Borel
σ -algebra are called Borel sets. In a metric space, the Borel σ -algebra is also the
smallest σ -algebra for which all (bounded) continuous functions are continuous [11,
Theorem7.1.1]. This second σ -algebra is often [11] but not always [3] called the
Baire-σ -algebra.

The following is a summary of results needed later. For more details, we refer to
[14]. Many of the results can already been found in [10, 11]. See also [15, 16].

For perspective, we present the following result for the variation norm.

Theorem 10 For all μ ∈ M(S),

‖μ‖� = |μ|(S) = sup
{∣∣∣

∫
S
f dμ

∣∣∣; f ∈ Cb(S), ‖ f ‖∞ ≤ 1
}
.

Proof By [12, IV.6.2], μ 
→ θ with θ( f ) = ∫
S f dμ, f ∈ Cb(S), is an isometric

isomorphism between the Banach space of regular additive set functions with the
variation norm and the dual space ofCb(S). The assertion now follows because every
real measure on B is regular [3, Theorem12.5]. �

We introduce the following functional on M(S),

‖μ‖
 = sup
f ∈L

∣∣∣
∫
S
f dμ

∣∣∣,
L =

{
f ∈ [0, 1]S; ∀x, y∈S | f (x) − f (y)| ≤ d(x, y)

}
.

(25)
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Recall that MS denotes the set of functions from S to a set M . ‖ · ‖
 is a norm on
M(S) [14], which we call the flat norm, and

‖μ‖
 ≤ ‖μ‖�, μ ∈ M(S). (26)

In the literature, definitions different from (25) are used that lead to equivalent
norms. For instance, [0, 1]S is replaced by [−1, 1]S . Also different names are used
for the flat norm or its equivalent definitions. For details see [14].

All the definitions have in common that

‖μ‖
 = μ(S) = ‖μ‖�, μ ∈ M+(S). (27)

This implies that the flat norm is additive and order-preserving on M+(S).
In the following, all topological notions concerningM(S) andM+(S) are meant

with respect to the flat norm unless it is explicitly said otherwise.

Theorem 11 M+(S) is a generating, normal, closed cone.

Lemma 2 For x ∈ S, let δx denote the Dirac measure at x. Then 1 = ‖δx‖
 and, for
y, x ∈ S,

‖δx − δy‖
 = min{1, d(x, y)}.

Corollary 2 ([16]) If S is not uniformly discrete (i.e., its metric is not equivalent to
the discrete metric), then the ordered normed vector space M(S) is not complete.

4.1.1 Convergence inM+(S)

Definition 15 LetF be a set of functions f : S → R and s ∈ S.F is called equicon-
tinuous at s if for any ε > 0 there exists some δ > 0 such that | f (t) − f (s)| < ε

for all f ∈ F and all t ∈ S with d(t, s) < δ. F is called equicontinuous on S if it is
equicontinuous at all s ∈ S.

F is called uniformly equicontinuous on S̃ ⊆ S if for any ε > 0 there is some
δ > 0 such that | f (t) − f (s)| < ε for all f ∈ F and all s, t ∈ S̃ with d(t, s) < δ.

F is called equibounded if there exists some c > 0 such that | f (s)| ≤ c for all
s ∈ S and all f ∈ F .

The following is proved in [32, Proposition6.10].

Proposition 2 Let F be an equicontinuous and equibounded family of functions
f : S → R+ and μ ∈ M(S) and (μn) be a sequence in M+(S) such that ‖μn −
μ‖
 → 0 as n → ∞. Then

∫
S f dμn → ∫

S f dμ as n → ∞ uniformly for f ∈ F .

Recall the definition of a (pre-)tight set of measures (Definition 7).
To show that pre-tightness does not change under topologically equivalentmetrics,

we note the following.
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Proposition 3 μ ∈ M+(S) is separable if and only if it is pre-tight.

Proposition 4 The closure of a tight set of nonnegativemeasures is tight. The closure
of a pre-tight set of nonnegative measures is pre-tight.

The closure of a set of separable nonnegative measures consists of separable
measures.

Proof The first two statements follow from [14, Theorem4.10d]. The third statement
holds because a countable union of countable sets is countable.

Corollary 3 Ms+(S) is a closed cone of M(S).

Here is the characterization of convergence.

Theorem 12 Let (μn) inM+(S) and μ ∈ Ms+(S). Equivalent are

(i) ‖μn − μ‖
 → 0,
(ii)

∫
S f d(μn − μ) → 0 for all continuous functions f ∈ Cb(S),

(iii)
∫
S f d(μn − μ) → 0 for all Lipschitz continuous functions f : S → [0, 1].

4.1.2 Compactness and Completeness inM+(S)

Theorem 13 Let (μn) be a tight sequence inM+(S) such that (μn(S)) is bounded.
Then (μn) has a converging subsequence (with the limit measure being tight as well).

Proposition 5 Let N ⊆ Ms+(S) be a totally bounded set of pre-tight measures.
Then N is pre-tight and, if S is complete, tight.

Theorem 14 ([16, Theorem3.8]) Ms+(S) is complete if and only if S is complete.

5 More on Feller Kernels

Let S be metrizable topological space and B and the respective Borel σ -algebra.

Definition 16 A function κ : B × S → R+ is called a Feller kernel if

κ(·, s) ∈ M+(S) for all s ∈ S and if κ has the Feller property∫
S f (y)κ(dy, ·) ∈ Cb(S) for any f ∈ Cb(S).

A Feller kernel κ is called a Feller kernel of separable measures if

κ(·, s) ∈ Ms+(S) for all s ∈ S̃.

Cf. [3, Sect. 19.3] and Sect. 2.1. For examples and details see [32]. Recall that
every Feller kernel induces maps A : M(S) → M(S) and A∗ : Mb(S) → Mb(S)

with Mb(S) denoting the Banach space of bounded measurable functions with the
supremum norm. See (10) and (9). Since κ is a Feller kernel, A∗ maps Cb(S) to
Cb(S).

The next result is part of [32, Theorem10.4].
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Theorem 15 Let κ : B × S → R+ be a Feller kernel of separable measures.
Then the following hold:

(a) A maps Ms+(S) into Ms+(S), and A : Ms+(S) → Ms+(S) is continuous with
respect to the flat norm.

(b) A maps Ms(S) intoMs(S).

Remark 2 Let κ be a Feller kernel of separable measures and As denote the restric-
tion of A fromMs(S) toMs(S) and As+ the restriction of A fromMs+(S) toMs+(S).
Since the Dirac measures are separable, we still have for the operator norms that
‖As‖ = ‖As+‖ = sups∈S κ(S, s), (see 12). By (15),

r(As) = r(A) = r(As
+) = r(κ).

Remark 3 Themap A induced by aFeller kernel via (10) is continuous fromM+(S)

toM+(S) with respect to the variation norms even without the Feller type property.
But it seems difficult to come up with conditions for A to be compact with respect
to the variation norm.

5.1 Tight Feller Kernels

Definition 17 A Feller kernel κ : B × S → R+ is called a tight Feller kernel if the
set of measures {κ(·, x); x ∈ S} is tight.

A Feller kernel κ is called a pre-tight Feller kernel if set of measures {κ(·, x);
x ∈ S} is pre-tight.

See [32, Sect. 10] for the proofs of the following andother results and for examples.

Proposition 6 Let κ : B × S → R+ be a tight Feller kernel. Then A is continuous
and compact fromM+(S) toM+(S)with respect to the flat norm and mapsM+(S)

intoMt+(S).

Proposition 7 Let P : B × S → R+ be a tight Feller kernel and g ∈ Cb+(S × S).
Then κ̃ : B × S → R+,

κ̃(T, s) =
∫
T
g(s, t)P(dt, s), s ∈ S, T ∈ B, (28)

is a tight Feller kernel. In particular, κ̃(S, ·) ∈ Cb(S).

5.2 Uniform Feller Kernels

We start from the observation that tight Feller kernels are related to compactness in
Cb(S). Recall the concepts of equicontinuity and equiboundedness, Definition 15.
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Proposition 8 Let κ be a tight Feller kernel and Q be an equicontinuous bounded
subset of Cb(S). Let A∗ be the map on Cb(S) induced by κ via (9). Then A∗(Q) has
compact closure in in Cb(S).

Proof Let (gn) be a sequence in Q. Since κ is tight, there exists a sequence (K j ) of
compact subsets of S such that

sup
s∈S

κ(S \ K j , s) → 0, j → ∞. (29)

Set S̃ = ⋃
j∈N K j . Then S̃ is separable. By a version of the Arzela-Ascoli theorem

[23, Theorem8.5], there exists a subsequence (gni ) and some g ∈ Cb(S̃) such that
gni → g pointwise on S̃ and uniformly on each K j . Set hn = A∗gn and h(s) =∫
S̃ g(t)κ(dt, s), s ∈ S. Then hn ∈ Cb(S) and h ∈ Mb(S). For each s ∈ S and j, i ∈
N,

|hni (s) − h(s)| ≤
∫
S\K j

|gni (t)|κ(dt, s) +
∫
K j

|gni (t) − g(t)|κ(dt, s)

+
∫
S̃\K j

|g(t)|κ(dt, s).

By our various assumptions, there is some c > 0 such that, for all i, j ∈ N,

‖hni − h‖∞ ≤ 2c sup
s∈S

κ(S \ K j , s) + c sup
t∈K j

|gni (t) − g(t)|.

For all j ∈ N, since gni → g as i → ∞ uniformly on K j ,

lim sup
i→∞

‖hni − h‖∞ ≤ 2cκ(S \ K j ).

By (29), we can take the limit as i → ∞,

lim sup
i→∞

‖hni − h‖∞ = 0.

This shows A∗(Q) is a compact subset of Cb(S). Since all hn are continuous, h is
continuous as well. �

The preceding result motivates us to look for Feller kernels that are related to
equicontinuous sets of functions.

Proposition 9 Let κ : B × S → R+ be a Feller kernel and A the induced linearmap
onM(S) and A∗ the induced linear map on Mb(S) via (10) and (9), respectively.

Then the following are equivalent:

(a) sup
T∈B

|κ(T, t) − κ(T, s)| → 0, t → s, for all s ∈ S.
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(b) If Q is a bounded subset of Mb(S), then A∗(Q) is an equicontinuous and equi-
bounded subset of Cb(S).

(c) If Q is a bounded subset of Cb(S), then A∗(Q) is an equicontinuous and equi-
bounded subset of Cb(S).

(d) A is continuous from M+(S) with the flat norm to M+(S) with the variation
norm.

Proof Assume (a). Let f (t) = ∑m
i=1 αiχTi be ameasurable function of finitelymany

values α1, . . . , αm , where Ti ∈ B are pairwise disjoint. Then

∣∣A∗ f )(t) − A∗( f )(s)
∣∣ ≤ ‖ f ‖∞

m∑
i=1

∣∣κ(Ti , t) − κ(Ti , s)
∣∣.

Since κ(·, t) − κ(·, s) is a real-valued measure and the Ti are pairwise disjoint,

∣∣A∗ f )(t) − A∗( f )(s)
∣∣ ≤ 2‖ f ‖∞ sup

T∈B

∣∣κ(T, t) − κ(T, s)
∣∣. (30)

If f ∈ Mb(S), f is the uniform limit of a sequence of such finitely-valuedmeasurable
functions and (30) holds for f ∈ Mb(S). This implies that A∗ maps Mb(S) into
Cb(S). Let Q be a bounded subset of Mb(S). Then A∗(Q) is a bounded subset of
Cb(S) and an equicontinuous subset by (a) and (30), and (b) follows.

Obviously, (b) implies (c).
Assume (c). Let (μn) be a sequence in M+(S) and μ ∈ M+(S) such that

‖μn − μ‖
 → 0 as n → ∞. By (c), {A∗ f ; f ∈ Cb(S), 0 ≤ f ≤ 1} is a uniformly
equicontinuous and equibounded family of functions from S to R+. By Propo-
sition 2,

∫
S(A∗ f )dμn → ∫

S(A∗ f )dμ as n → ∞ uniformly for f ∈ Cb(S) with
0 ≤ f ≤ 1. Let f ∈ Cb(S) with ‖ f ‖∞ ≤ 1. Then f = f+ − f− with 0 ≤ f± ≤ 1.
So

∫
S(A∗ f )dμn → ∫

S(A∗ f )dμ uniformly for f ∈ Cb(S) with ‖ f ‖∞ ≤ 1. By the
duality between A∗ and A, (11),

∫
S f d(Aμn) → ∫

S f d(Aμ) as n → ∞ uniformly
for f ∈ Cb(S) with ‖ f ‖∞ ≤ 1. Assertion (d) now follows from Theorem 10.

Assume (d). As t → s, ‖δt − δs‖
 → 0 by Lemma 2 and, by (d), Aδt → Aδs in
variation norm and supT∈B |κ(T, t) − κ(T, s)| → 0 by (10).

Definition 18 A Feller kernel κ : B × S → R+ is called a uniform Feller kernel if
it satisfies property (a) of Proposition 9.

Corollary 4 If κ is a Feller kernel and the map A∗ : Cb(S) → Cb(S) associated
with κ is compact, then κ is a uniform Feller kernel.

Corollary 5 Let κ1 be a Feller kernel on S and κ2 a uniform Feller kernel on S.
Then κ1 � κ2 is a uniform Feller kernel on S.

Proof Let Ai be the linear maps on M+(S) induced by κi via (10). By Proposition
9, A2 continuously maps M+(S) with the flat norm into M+(S) with the variation
norm, while A1 is a bounded liner map onM(S) with the variation norm. So A1A2
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continuously mapsM+(S) with the flat norm intoM+(S) with the variation norm.
Since A1A2 is induced by κ1 � κ2 [32, L.9.2], κ1 � κ2 is a uniform Feller kernel by
Proposition 9.

Proposition 10 Let κ be a uniform Feller kernel. Let g : S × S → R be bounded
and g(s, ·) be Borel measurable and g(·, s) be continuous on S for every s ∈ S.

Let κ̃ : B × S → R be given by

κ̃(T, s) =
∫
T
g(s, t)κ(dt, s), s ∈ S, T ∈ B.

Then κ̃ is a uniform Feller kernel.

Proof Let s ∈ S. Since g(s, ·) is Borel measurable and bounded and κ(·, s) is a finite
non-negative measure, κ̃(·, s) is a finite non-negative measure.

Let (sn) be a sequence in S and s ∈ S and sn → s. Then

∣∣∣
∫
T
g(sn, t)κ(dt, sn) −

∫
T
g(s, t)κ(dt, s)

∣∣∣
≤

∣∣∣
∫
T
g(sn, t)κ(dt, sn) −

∫
T
g(sn, t)κ(dt, s)

∣∣∣
+

∣∣∣
∫
T
g(sn, t)κ(dt, s) −

∫
T
g(s, t)κ(dt, s)

∣∣∣
≤ 2 sup |g| sup

T̃∈B

∣∣κ(T̃ , sn) − κ(T̃ , s)
∣∣ +

∫
S
|g(sn, t) − g(s, t)|κ(dt, s).

The last integral converges to 0 as n → ∞ by Lebesgue’s dominated conver-
gence theorem because |g(sn, t) − g(s, t)| → 0 as n → ∞ pointwise in t ∈ S and
|g(sn, t) − g(s, t)| ≤ 2 sup g(S × S) for all n ∈ N.

Notice that the last expression in the inequality converges to 0 as n → ∞ uni-
formly for T ∈ B. �

This trivially provides examples for uniform Feller kernels.

Example 1 Let ν ∈ M+(S) and g : S × S → R be bounded and g(s, ·) be Borel
measurable and g(·, s) continuous on S for every s ∈ S.

Let κ : B × S → R be given by

κ(T, s) =
∫
T
g(s, t)ν(dt), s ∈ S, T ∈ B.

Then κ is a uniform Feller kernel.

The class of Feller kernels provided this way can be quite comprehensive.

Example 2 Let S be a separable metric space and κ : B × S → R+ be a uniform
Feller kernel.
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Choose a countable dense subset {sn; n ∈ N} in S.
Define ν ∈ M+(S).

ν(T ) =
∑
n=1

2−nκ(T, sn), T ∈ B.

Let T ∈ B and ν(T ) = 0. Then κ(T, sn) = 0 for all n ∈ N. Since {sn; n ∈ N} is
dense in S and κ is a uniform Feller kernel, κ(T, s) = 0 for all s ∈ S. By the Radon-
Nikodym theorem, for any s ∈ S, there exists a Borel measurable function g(s, ·)
such that

κ(T, s) =
∫
T
g(s, t)ν(dt), s ∈ B. (31)

Since κ is a uniform Feller kernel,

∫
S
|g(s, t) − g(s̃, t)|ν(dt) → 0, s → s̃. (32)

Conversely, any kernel of the form (31) satisfying (32) is a uniform Feller kernel.

Theorem 16 Let κ1 be a tight Feller kernel and κ2 a uniform Feller kernel. Then

(A1∗ f )(s) =
∫
S
f (t)κ1(dt, s), s ∈ S, f ∈ Mb(S),

defines a bounded positive linear map A1∗ from Mb(S) to Mb(S) and from Cb(S) to
Cb(S), and

(A2∗ f )(s) =
∫
S
f (t)κ2(dt, s), s ∈ S, f ∈ Mb(S),

is a bounded positive linear map A2∗ from Mb(S) to Cb(S) such that A1∗A2∗ is
compact from Mb(S) to Cb(S).

Proof Combine Propositions 8 and 9.

Theorem 17 Let κ2 be a uniform Feller kernel that is tight. Let κ1 be a tight
Feller kernel and κ = κ1 + κ2. Assume that r(κ) > r(κ1). Then there exists some
f ∈ Ċb+(S) such that r(κ) f (s) = ∫

S f (t)κ(dt, s) for all s ∈ S.

Proof Let A∗ j be the operators onCb(S) associatedwith κ j . ByTheorem16, A∗1A∗2
and A2∗2 are compact on Cb(S). The assertion now follows from [32, Theorem7.17].
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5.3 Irreducible and Colonization Kernels

Recall the definition of a (strongly) top-irreducible Feller kernel (Sect. 2.1.2).

Lemma 3 Let κ : B × S → R+ be a Feller kernel and A∗ be the bounded linear
map on Cb(S) induced by (9). Then the following are equivalent:

(a) κ is top-irreducible.
(b) For any nonempty open strict subset U of S there exists some s ∈ S \U such

that κ(U, s) > 0.
(c) For any f ∈ Ċb+(S), S = ⋃

n∈Z+{An∗ f > 0} =: U ( f ).
(d) For any Lipschitz continuous f : S → R+ that is not identically equal to 0,

S = ⋃
n∈Z+{An∗ f > 0} =: U ( f ).

Here, {An∗ f > 0} is a shorthand for {s ∈ S; (An∗ f )(s) > 0}.
Proof (a)⇒(b): Suppose that (b) does not hold: Then there exists some nonempty
open strict subset U of S such that κ(U, s) = 0 for all s ∈ S \U . Since κ(S, ·) is
bounded, there exists some c > 0 such that κ(U, s) ≤ cχU (s) for all s ∈ S. Then

κ∗2(U, s) =
∫
S
κ(U, t)κ(dt, s) ≤

∫
S
cχU (s)κ(dt, s) = cκ(U, s) ≤ c2χU (s).

By induction, κn∗(U, s) ≤ cnχU (s) for all s ∈ S and all n ∈ N. So (a) does not hold.
(b)⇒(c): Since κ is a Feller kernel, the functions An∗ f in part (c) are continuous

andU ( f ) is open as union of open sets. Since f is not the zero function and A0∗ f = f ,
U ( f ) is nonempty. SupposeU ( f ) �= S. By (b), there exists some s ∈ S \U ( f ) such
that κ(U ( f ), s) > 0. Since the measure κ(·, s) is continuous from below, there is
some n ∈ N such that κ

({An∗ f > 0}, s) > 0. This implies that (An+1∗ f )(s) > 0 and
s ∈ U ( f ), a contradiction.

(c)⇒(d): obvious.
(d)⇒(a): LetU be a nonempty open subset of S. Choose some t0 ∈ U . Then there

exists some Lipschitz continuous f : S → [0, 1] such that f (t0) = 1, f (t) ≤ χU (t)
for all t ∈ S [14, L.2.1]. By (d), for any s ∈ S, there is some n ∈ Z+ such that 0 <

(An∗ f )(s). Let s ∈ S \U . Then (A0∗ f )(s) = f (s) ≤ χU (s) = 0 and 0 < (An∗ f )(s)
for some n ∈ N. Since An∗ is induced by κn∗,

0 < (An
∗ f )(s) ≤

∫
S
χU (t)κn∗(dt, s) ≤ κn∗(U, s).

So (a) holds.

Remark 4 Assume that S is not a singleton set. If κ : B × S → R+ is a top-
irreducible Feller kernel, then κ(S \ {s}, s) > 0 for all s ∈ S.

Proof Let s ∈ S and T = S \ {s}. Since S is not a singleton set, T is a nonempty open
subset of S. Since κ is top-irreducible, by Lemma 3(b), there exists some s̃ ∈ S \ T
such that κ(T, s̃) > 0. Since S \ T = {s}, κ(T, s) > 0.
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Theorem 18 Let κ be a top-irreducible Feller kernel, A∗ the associated linear
bounded map on Cb(S), r > 0. Let f ∈ Ċb+(S) be an eigenfunction r f = A∗ f . Then
f (s) > 0 for all s ∈ S.

Proof For all n ∈ N, f = r−n An∗ f and so f (s) > 0 for all s ∈ S by Lemma 3(c).

Theorem 19 Let κ be a top-irreducible Feller kernel. Then, for any μ ∈ Ṁ+(S)

and f ∈ Ċb+(S), there is some n ∈ Z+ such that
∫
S f d(Anμ) = ∫

S A
n∗ f dμ > 0.

Proof Let μ ∈ Ṁ+(S) and f ∈ Ċb+(S). By Lemma 3(c),

S =
⋃
n∈Z+

Sn( f ), Sn( f ) = {
An

∗ f > 0
}
.

The last is a shorthand for
{
s ∈ S, (An∗ f )(s) > 0

}
. Analogous shorthands will be

used in the following.
Since μ is continuous from below and μ(S) > 0, there exists some m ∈ N such

that 0 < μ
( ⋃m

n=0 Sn( f )
)
. Since

⋃m
n=0 Sn( f ) = {∑m

n=0 A
n∗ f > 0

}
, there is some

k ∈ N such that μ
(
Tmk( f )

)
> 0, Tmk( f ) = {∑m

n=0 A
n∗ f > 1/k

}
. Now

m∑
n=0

∫
S
f d (Anμ) =

∫
S

m∑
n=0

(An
∗ f ) dμ

≥
∫
Tmk ( f )

( m∑
n=0

An
∗ f

)
dμ ≥ (1/k)μ

(
Tmk( f )

)
> 0.

So there is some n ∈ Z+ such that
∫
S f d(Anμ) = ∫

S A
n∗ f dμ > 0.

Corollary 6 Let κ be a top-irreducible Feller kernel, A the associated linear map on
M+(S), r > 0. Let μ ∈ Ṁ+(S) be an eigenmeasure rμ = Aμ. Then

∫
S f dμ > 0

for any f ∈ Ċb+(S).

Proof For all n ∈ N, μ = r−n Anμ and the assertion follows from Theorem 19.

Proposition 11 Let κ be a top-irreducible Feller kernel and letN be a tight subset
ofM+(S) with infμ∈N μ(S) > 0. Then, for any f ∈ Ċb+(S), there exist some m ∈ N

and δ > 0 such that
m∑

n=0

∫
S
An

∗ f dμ ≥ δ, μ ∈ N .

Proof Let η = (1/2) infμ∈N μ(S). Then η > 0. Since N is tight, there exists some
compact subset K of S such that μ(S \ K ) ≤ η for all μ ∈ N and so

μ(K ) ≥ η, μ ∈ N . (33)
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Let f ∈ Cb+(S), f �= 0. Since κ is top-irreducible, S = ⋃
n∈Z+ Sn( f ) with open sets

Sn( f ) = {An∗ f > 0} by Lemma 3(c). Since K is compact, there exists some m ∈ N

such that K ⊆ ⋃m
n=0 Sn( f ). So there exists some δ̃ > 0 such that

m∑
n=0

(An
∗ f )(s) ≥ δ̃, s ∈ K .

For all μ ∈ N , by (33),

m∑
n=0

∫
S
An

∗ f dμ ≥
∫
K

( m∑
n=0

An
∗ f

)
dμ ≥ δ̃μ(K ) ≥ δ̃η > 0.

5.3.1 Strongly Top-Irreducible Feller Kernels.

Recall the definition of a strongly top-irreducible Feller kernel (Definition 4).

Lemma 4 Let κ : B × S → R+ be aFeller kernel and A∗ be the associated bounded
linear map on Cb(S). Then the following are equivalent:

(a) κ is strongly top-irreducible.
(b) For any f ∈ Ċb+(S) and any nonempty compact subset K of S there exists some

n ∈ Z+ such that (An∗ f )(s) > 0 for all s ∈ K.
(c) For any Lipschitz continuous f : S → R+ that is not identically equal to 0

and any nonempty compact subset K of S, there exists some n ∈ Z+ such that
(An∗ f )(s) > 0 for all s ∈ K.

Proof (a) ⇒ (b):
Let f ∈ Ċb+(S) and K be a compact subset of S. Then U = {t ∈ S; f (t) >

‖ f ‖∞/2} is a nonempty open subset of S. Since κ is strongly top-irreducible, there
exists some n ∈ N such that, for all s ∈ K .

0 < κn�(U, s) ≤
∫
U

2 f (t)

‖ f ‖∞
κn�(dt, s) ≤ 2

‖ f ‖∞
(An

∗ f )(s).

Obviously (b) implies (c).
(c) ⇒ (a) follows similarly as in Lemma 3(d) ⇒ (a).

Proposition 12 Let κ : B × S → R+ be a Feller kernel with the following property
for any f ∈ Ċb+(S):

For all s ∈ S there exists some neighborhood Us ⊆ S of s and some ns ∈ N such
that

∫
S f (t)κn�(dt, s̃) > 0 for all n ∈ N, n ≥ ns, and all s̃ ∈ Us.

Then κ is a strongly top-irreducible Feller kernel.
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Proof The neighborhoods Us can be chosen as open sets containing s. Let K be a
nonempty compact subset of S. Then K ⊆ ⋃

s∈S Us and there exists a finite subset
S̃ of S such that K ⊆ ⋃

s∈S̃ Us . Set m = max
s∈S̃

ns . Then m ∈ N and

∫
S
f (t)κm�(dt, s̃) > 0, s̃ ∈ K .

By Lemma 4, κ is strongly top-irreducible. �

A similar proof as for Proposition 11 yields the following result.

Proposition 13 Let κ be a strongly top-irreducible Feller kernel and let N be a
tight subset ofM+(S) with infμ∈N μ(S) > 0. Then, for any f ∈ Ċb+(S), there exist
some n ∈ N and δ > 0 such that

∫
S
An

∗ f dμ ≥ δ, μ ∈ N .

Proposition 14 Let P : B × S̃ → R+ be a Feller kernel, g ∈ Cb+(S × S), and κ :
B × S → R+ be defined by

κ(T, s) =
∫
T
g(s, t)P(dt, s), s ∈ S, T ∈ B. (34)

Assume that κ is also a Feller kernel and that g(s, t) > 0 for all s, t ∈ S.

(a) P is top-irreducible if and only if κ is top-irreducible.
(b) P is strongly top-irreducible if and only if κ is strongly top-irreducible.

Proof For f0 ∈ Ċb+(S), set Un = { fn > 0} and Vn = {hn > 0} where fn+1 = ∫
S

fn(t)P(dt, ·) and hn+1 = ∫
S hn(t)κ(dt, ·) for all n ∈ N. Let U ( f0) and V ( f0) be

the respective unions over n ∈ N.
For any f ∈ Ċb+(S) and s ∈ S, we have the equivalence of the following two

statements:
(i)

∫
S f (t)P(dt, s) > 0,

(ii) P
({ f > 0}, s) > 0.

An analogous equivalence holds for κ replacing P .
Since g is strictly positive on S2, statement (ii) for P is equivalent to the statement

(ii) for κ replacing P .
With this observation, it follows by induction thatUn = Vn for all n ∈ N such that

U ( f ) = V ( f ). So S = U ( f ) if and only if S = V ( f ).
The equivalence in (a) follows from Lemma 3(c).
The equivalence in (b) follows from Lemma 4(b).
In these lemmata, Un = {An∗ f > 0} if A∗ is induced by P and Vn = {An∗ f > 0}

if A∗ is induced by κ .
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5.3.2 Colonization Kernels.

The following example of strongly top-irreducible kernels seems particularly suited
for spatially structured populations, but less for populations with other structures.

Definition 19 Let κ : B × S → R+ be a Feller kernel. κ is called a colonization
kernel if for any s ∈ S there is an open subset U � s of S such that κ(V, s) > 0 for
all nonempty open subsets V of U .

Proposition 15 Let S be connected and κ be a colonization Feller kernel. Then, for
any f ∈ Ċb+(S), S = ⋃

n∈Z+ Sn( f ) where Sn( f ) = {An∗ f > 0} form an increasing
sequence of open sets, and κ is strongly top-irreducible.

Here A∗ is the operator defined in (9).

Proof Let f ∈ Ċb+(S) and define Sn( f ) as above.
Since An∗ f is continuous, the sets Sn( f ) form a sequence of open subsets of

S. We claim that this sequence is increasing with respect to the subset relation. It is
sufficient to show that S0( f ) ⊆ S1( f ) because Sn+1( f ) = S1(An∗( f )). Let s ∈ S and
f (s) > 0. Since κ is a colonization kernel, there is an open subset U � s of S such
that κ(V, s) > 0 for all nonempty open subsets V of U . Set V = {

t ∈ U ; f (t) >

f (s)/2
}
. Then V an open subset of U and s ∈ V ; so

(A∗ f )(s) ≥
∫
V
f (t)κ(dt, s) ≥ f (s)

2
κ(V, s) > 0.

This implies S0( f ) ⊆ S1( f ).
Set S( f ) = ⋃

n∈N Sn( f ). S( f ) is open as union of open sets. To show that S( f )
is closed, let s ∈ S be a limit point of S( f ). Since κ is a colonization kernel, there is
an open subset U � s of S such that κ(V, s) > 0 for all nonempty open subsets V
of U . Since s is a limit point of S( f ), U ∩ S( f ) �= ∅ and U ∩ Sn( f ) �= ∅ for some
n ∈ Z+. Since Sn( f ) = ⋃

m∈N
{
An∗ f > 1/m

}
, there exists a nonempty open subset

V of U and some m ∈ N such that (An∗ f )(t) > 1/m for all t ∈ V . For all x ∈ U ,

(An+1
∗ f )(s) ≥

∫
V
(An

∗ f )(t)κ(dt, s) ≥ (1/m)κ(V, s) > 0.

So s ∈ Sn+1( f ) ⊆ S( f ). Since S( f ) is open and closed in the connected set S,
S = S( f ).

Let K be a compact subset of S. Then there exists some n ∈ N such that K ⊆⋃n
j=1 Sj ( f ). Since the Sn( f ) form an increasing sequence of sets, K ⊆ Sn( f ), i.e.,

(An∗ f )(s) > 0 for all s ∈ K . So, κ is strongly top-irreducible by Lemma 4.

Lemma 5 Let κ : B × S → R+ be a tight colonization Feller kernel and g : S ×
S → (0,∞) be continuous and bounded. Then κ̃ : B × S → R+ defined by

κ̃(T, s) =
∫
T
g(s, t)κ(dt, s), T ∈ B, s ∈ S,
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is also a tight colonization Feller kernel.

Proof By Proposition 7, κ̃ is a tight Feller kernel.
Let s ∈ S. Since κ is a colonization kernel, there is some open subset U � s of

S such that κ(V, s) > 0 for all nonempty open subsets V of U . Since g is strictly
positive and continuous, V = ⋃

n∈N Vn with open subsets Vn = {t ∈ V ; g(s, t) >

1/n} of V . For all n ∈ N,

κ̃(V, s) ≥
∫
Vn

g(s, t)κ(dt, s) ≥ (1/n)κ(Vn, s).

Since κ(·, s) is continuous from below, κ(Vn, s) → κ(V, s) > 0 as n → ∞ and
κ̃(V, s) > 0.

6 Proofs for the General Framework for The state Space of
Measures. Tight Bounded Persistence Attractors

Recall that we consider yearly turnover maps F of the following form,

F(μ)(T ) =
∫
S
κμ(T, s) μ(ds), μ ∈ Ms

+(S), T ∈ B,

where {κμ;μ ∈ Ms+(S)} is a set of Feller kernels κμ : B × S → R+.
If μ is the zero measure, we use the notation κo.

Proposition 16 Let the Assumption 9 be satisfied. Then F mapsMs+(S) into itself.

Proof Theorem 15(a).

Lemma 6 Let ( f̃n) be a bounded sequence inCb(S) and (μn) be a bounded pre-tight
sequence inM+(S). Then

∫
S
f̃ndμn

n→∞−→ 0 if f̃n
n→∞−→ 0

uniformly on every totally bounded subset of S.

Proof Let ε > 0. Since {μn; n ∈ N} is pre-tight, there exists a closed totally bounded
subset T of S such that μn(S \ T ) < ε for all n ∈ N. For all n ∈ N,

∣∣∣
∫
S
f̃ndμn

∣∣∣ ≤
∫
T

| f̃n|dμn +
∫
S\T

| f̃n|dμn

≤ sup
T

| f̃n| sup
k∈N

μk(S) + sup
k∈N

sup
S

| f̃k | μn(S \ T ).
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Since f̃n → 0 uniformly on T , the last but one expression converges to 0 as n → ∞
and

lim sup
n→∞

∣∣∣
∫
S
f̃ndμn

∣∣∣ ≤ sup
k∈N

sup
S

| f̃k | ε.

Since this holds for arbitrary ε > 0, the limit superior is zero and we have proved
the assertion.

Proposition 17 Let the family of Feller kernels {κμ);μ ∈ Ms+(S)} satisfy the
Assumptions 9 and 11. Then F : Ms+(S) → Ms+(S) is continuous with respect to
the flat norm.

Proof Letμ ∈ Ms+(S) and (μn) be a sequence inMs+(S) such that ‖μn − μ‖
 → 0.
By Theorem 12, ∫

S
f̃ dμn →

∫
S
f̃ dμ, f̃ ∈ Cb

+(S). (35)

Then {μn; n ∈ N} is a compact subset of M+(S) with respect to the flat norm and
pre-tight by Proposition 5 and a bounded subset of M+(S).

Let f ∈ F . By (16),

∣∣∣
∫
S
f dF(μn) −

∫
S
f dF(μ)

∣∣∣ =
∣∣∣
∫
S
fndμn −

∫
S
f̃ dμ

∣∣∣ (36)

with

fn(s) =
∫
S
f (t)κμn (dt, s), f̃ (s) =

∫
S
f (t)κμ(dt, s).

By Theorem 12, it is sufficient that the expression on the right hand side of (36)
converges to 0 as n → ∞.

By the triangle inequality and (36),

∣∣∣
∫
S
f dF(μn) −

∫
S
f dF(μ)

∣∣∣ ≤
∣∣∣
∫
S
( fn − f̃ )dμn

∣∣∣ +
∣∣∣
∫
S
f̃ dμn −

∫
S
f̃ dμ

∣∣∣.

Since κμ is a Feller kernel, f̃ ∈ Cb+(S) and the second term on the right hand side
of the last inequality converges to 0 as n → ∞ by (35). As for the first term, by
Assumption 11, for any closed totally bounded subset T of S

fn(s) − f̃ (s) → 0, n → ∞, uniformly for s ∈ T . (37)

Further, by Assumption 9, ( fn − f̃ ) is a bounded sequence in Cb(S). Now the first
term of the last inequality converges to 0 by Lemma 6.

Proposition 18 Under the Assumptions 9 and 12, the yearly population turnover
map F : Ms+(S) → Ms+(S) is compact; for any bounded subset N of Ms+(S),
F(N ) is a tight bounded subset of Ms+(S).
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Proof Let N be a bounded subset of Ms+(S). For any set T ∈ B and μ ∈ N ,

F(μ)(S \ T ) =
∫
S
κμ(S \ T, s) μ(ds) ≤ sup

s∈S
κμ(S \ T, s) μ(S). (38)

For T = ∅, we obtain that {F(μ)(S);μ ∈ N } is bounded in R by Assumption 12.
Let ε > 0. By Assumption 12, there exists some compact set T in S such that

κμ(S \ T, s) ≤ ε
(
1 + sup

μ∈N
μ(S)

)−1
, s ∈ S.

By (38), F(μ)(S \ T ) ≤ ε for all μ ∈ N . By Definition 7, F(N ) is a tight subset of
Ms+(S).

By Theorem 13, F(N ) has compact closure inMs+(S).

Proposition 19 Let the Assumptions 9 and 13 be satisfied. Then

lim sup
μ(S)→∞

F(μ)(S)

μ(S)
< 1.

Proof For all μ ∈ Ms+(S),

F(μ)(S) =
∫
S
κμ(S, s) μ(ds) ≤ sup

s∈S
κμ(S, s) μ(S).

This implies the assertion.

Theorem 20 Let the Assumptions 9, 11, 12, and 13 be satisfied.
Then the semiflow induced by F has a compact attractor of bounded sets.

Proof We apply Theorem 9. By Assumption 13 and Proposition 19, inequality (19)
is satisfied with θ(μ) = μ(S). F is continuous by Proposition 17 and compact and
thus asymptotically smooth by Proposition 18. All assumptions of Theorem 9 are
satisfied which implies that the semiflow induced by F has a compact attractor of
bounded sets. �

Let us spell out what Theorem 20 means [26, Chap.2].

Remark 5 Under the assumptions of Theorem 20, there exists a subsetK ofMs+(S)

which is tight, compactwith respect to the flat norm, and satisfies F(K) = K. Further,
ifN is a bounded subset ofMs+(S) and U an open set inMs+(S) with respect to the
flat norm withK ⊆ U , there exists some N ∈ N such that Fn(N ) ⊆ U for all n ∈ N

with n ≥ N .

The tightness of K follows from Proposition 18 and F(K) = K.

Proposition 20 Under the Assumptions 9 and 10, F maps Ṁs+(S) into itself.
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Proof Let μ ∈ Ṁ+(S). Then μ(S) > 0. By Assumption 10, S = ⋃
j∈N Tj with

Tj = {s ∈ S; κμ(S, s) ≥ 1/j}.

Notice that Tj ⊆ Tj+1 for all j ∈ N. Since μ is continuous from below, 0 < μ(S) =
lim j→∞ μ(Tj ). So, for some j ∈ N, μ(Tj ) > 0 and

F(μ)(S) ≥
∫
Tj

κμ(S, s)μ(ds) ≥ (1/j)μ(Tj ) > 0

and F(μ) ∈ Ṁs+(S). �

The following result implies that the extinction state is unstable.

Theorem 21 Make Assumptions 9 and 10 and let the kernel family {κμ;μ ∈
Ms+(S)} be lower semicontinuous at the zero measure.

Further assume that there exists some r > 0 and f ∈ Cb+(S) such that f (s) > 0
for all s ∈ S and ∫

S
f (t)κo(dt, s) ≥ r f (s), s ∈ S.

Then the semiflow induced by F is uniformly weakly persistent: There exists some
δ > 0 such that lim supn→∞ Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

Proof We apply [20, Theorem5.2] with

(Bμ)(T ) =
∫
S
κo(T, s)μ(ds)

and

θ(μ) =
∫
S
f dμ, μ ∈ Ms

+(S).

The assumptions (a) and (b) are satisfied by Assumption 10 and the strict positivity
of f . Assumption (c) follows from the lower semicontinuity of the kernel family. �

Proof of Theorem 6.We apply Theorem21. ByTheorem17, there is some f ∈ Ċb+(S)

such that ∫
S
f (t)κo(dt, s) = r f (s), s ∈ S,

r = r(κo). f is strictly positive by Corollary 18. �
Proof of Theorem 7. We combine [26, Theorem4.5], Theorems 20 and 6.
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6.1 Compact Persistence Attractor

Theorem 22 Make Assumptions 9, 10, 11, 12, 13, 14 and let the kernel family
{κμ;μ ∈ Ms+(S)} be lower semicontinuous at the zero measure.

Assume that κo is a strongly top-irreducible Feller kernel and κo = κ1 + κ2 with
two tight Feller kernels κ j , where κ2 is a uniform Feller kernel. Finally, assume
r = r(κo) > 1 ≥ r(κ1).

Then the semiflow induced by F has a compact connected persistence attractor
A1:

(a) A1 is a compact set with respect to the flat norm, F(A1) = A1, andA1 is a tight
set of measures.

(b) A1 attracts all subsets N of Ms+(S) with infμ∈N μ(S) > 0 that are compact
with respect to the flat norm or are bounded and tight: IfN is such a subset and
U is an open set in Ms+(S) with respect to the flat norm, A1 ⊆ U , then there
exists some N ∈ N such that Fn(N ) ⊆ U for all n ∈ N with n ≥ N.

(c) For any f ∈ Ċb+(S), there exists some ε f > 0 such that
∫
S f dμ ≥ ε f for all

μ ∈ A1.
(d) A1 is connected with respect to the flat norm. In particular, for any f ∈ Ċb+(S),{ ∫

S f dμ;μ ∈ A1
}
is a compact interval (possibly a singleton set) contained in

(0,∞).

Proof Weapply [26, Sect. 5.2]with X = Ms+(S) andρ(μ) = μ(S) forμ ∈ Ms+(S).
Since F(0) = 0 and F(X \ {0}) ⊆ X \ {0} by Proposition 20, the set X0 := {

μ ∈
X; ∀n ∈ Z+ : Fn(μ) = 0

} = {0}.
By Theorem 6, the semiflow {Fn; n ∈ Z+} is uniformly weakly ρ-persistent.
The statements (a) and (b) follow from [26, Theorem5.7](b) as does

δ := inf
μ∈A1

μ(S) > 0. (39)

(c) By Assumption 14, there exists a strongly top-irreducible Feller kernel κ̃ such
that

κν(T, s) ≥ κ̃(T, s), T ∈ B, s ∈ S, ν ∈ A1.

Let Ã∗ be the map on Cb(S) associated with κ̃ . For any f ∈ Cb+(S), μ ∈ A1,

∫
S
f d F(μ) =

∫
S

( ∫
S
f (t)κμ(dt, s)

)
μ(ds)

≥
∫
S

( ∫
S
f (t)κ̃(dt, s)

)
μ(ds) =

∫
S
( Ã∗ f ) d μ.

By induction, for any f ∈ Cb+(S),

∫
S
f dFk(μ) ≥

∫
S
( Ãk

∗ f ) d μ, k ∈ N, μ ∈ A1. (40)
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Now let f ∈ Ċb+(S). By Proposition 13 since κ̃ is a strongly top-irreducible Feller
kernel, there exists some n ∈ N and ε f > 0 such that

ε f ≤
∫
S
( Ãn

∗ f ) d μ ≤
∫
S
f dFn(μ), μ ∈ A1.

Since Fn(A1) = A1, this implies that
∫
S f dν ≥ ε f > 0 for all ν ∈ A1.

(d) Connectedness from A1 follows from [26, Proposition5.9] because ρ with
ρ(μ) = μ(S) is concave, actually additive on Ms+(S). By Theorem 12, for any
f ∈ Cb(S), the map φ f : Ms+(S) → [0,∞), φ f (μ) = ∫

S f dμ, is continuous under
the flat norm. Since continuous images of compact (connected) sets are compact
(connected), φ f (A1) is compact and connected and, by (c), a subset of (0,∞) if
f ∈ Ċb+(S). �

Proof of Theorem 8. Let A1 be the persistence attractor from Theorem 22 and f ∈
Ċb+(S). Then there exists some ε f > 0 such that

∫
S f dμ > ε f for all μ ∈ A1. Set

U = {ν ∈ Ms+(S); ∫
S f dν > ε f }. By Theorem 12, U is an open set inMs+(S) with

respect to the flat norm and A1 ⊆ U ⊆ Ms+(S). The statement now follows from
Theorem 22(b) and (c). �

7 A More Specific Model for an Iteroparous Population

We consider a structured population the dynamics of which are governed by the
processes of birth, death, and structural development, with the last being spatial
movement to be specific.

We assume that each year has one very short reproductive season. We count the
years in such a way that the census period is just before the reproductive season.
At the end of the year, juveniles born at the beginning of the year have matured
enough that they are reproductive as well and are counted as adults. This means that
each year, at the very beginning of the year, just before the reproductive season,
all individuals are adults. Differently from the model for a semelparous population
considered in [32], individuals can reproduce several times during their life-time.

Births and deaths can be affected by competition for resources. Consider a typical
adult individual at location t ∈ S. Let q1(s, t) denote the competitive effect it has
on an adult located at s ∈ S and q2(s, t) denote the competitive effect it has on a
neonate located at s ∈ S. Here q j : S2 → R+. If μ ∈ M+(S) is the distribution of
adult individuals at the beginning of the year and s ∈ S,

(Q1μ)(s) =
∫
S
q1(s, t)μ(dt) (41)

is the competition level exerted by μ on an adult that has been at s at the beginning
of the year. while
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(Q2μ)(s) =
∫
S
q2(s, t)μ(dt) (42)

is the competition level exerted by μ on a juvenile born at s.
Further, let g1(s, q) be the probability of an adult located at s ∈ S at the beginning

of the year to survive competition till the end of the year when the competition level
at s is q ∈ R+, g1 : S × R+ → [0, 1].

Let g2 : S × R+ → R+ be the effective per capita birth function, i.e., g2(s, q) is
the per capita amount of offspring that is produced at s ∈ S by an adult located at s
and that survives competition till the end of the year when the competition level at s
is q ∈ R+.

We assume that the migration patterns of neonates and adults are possibly differ-
ent.

Let P1(T, s) be the probability that an adult staying at s ∈ S at the beginning
of the year does not die from noncompetitive causes till the end of the year and is
located at some point in the set T at the end of the year.

Similarly, let P2(T, s) be the probability that a neonate born at s ∈ S at the begin-
ning of the year does not die from noncompetitive causes till the end of the year and
is located at some point in the set T at the end of the year.

If the measure ν represents the spatial distribution of neonates shortly after the
reproductive season at the beginning of the year,

(A2ν)(T ) =
∫
S
P2(T, s)ν(ds), T ∈ B, (43)

provides the resulting number of adults that, at the end of the year, have not died
from noncompetitive causes and are located within the set T .

A similar formula holds for the relation between the spatial distribution of adults
at the beginning of the year and the resulting distribution of survivors at the end of
the year.

In combination, the turnover kernel for a population with spatial distribution
μ ∈ M+(S) is

κμ(T, s) = κ
μ
1 (T, s) + κ

μ
2 (T, s)

κ
μ

j (T, s) = Pj (T, s) g j
(
s, (Q jμ)(s)

)
}

T ∈ B, s ∈ S, (44)

and Q jμ from (41) and (42). Notice that

κo
j (T, s) = Pj (T, s) g j (s, 0), T ∈ B, s ∈ S, (45)

Assumption 20 For the per capita survival and reproduction rate functions g1 and
g2,

(g1) g j : S × R+ → R+ is continuous and bounded, j = 1, 2; g1(s, q) ≤ 1 for all
s ∈ S, q ∈ R+.
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(g2) g j (s, 0) > 0 for all s ∈ S and
g j (s, u)

g j (s, 0)
→ 1 as u → 0 uniformly for s ∈ S.

For the competitive influence functions q1 and q2,

(q1) q j : S2 → R+ is continuous and bounded.

For the survival/migration kernels P1 and P2,

(P1) Pj : B × S → R+ is a Feller kernel (Definition 16) of separable measures.
(P2) 0 ≤ Pj (S, s) ≤ 1 for all s ∈ S.

Here S2 and S × R+ are equipped with the respective product topologies.

Lemma 7 Let the Assumptions 20 be satisfied and j = 1, 2. Then, for any μ ∈
M+(S), Q jμ is continuous on S and g j

(
s, (Q jμ)(s)

)
is a continuous function of

s ∈ S.
For each μ ∈ M+(S), the kernels κ

μ

j , j = 1, 2, and κμ are Feller kernels of
separable measures, and the Assumptions 5 are satisfied for κ

μ

j and κμ = κ
μ
1 + κ

μ
2 .

Further, the kernel families {κμ

j ;μ ∈ M+(S)}, j = 1, 2, and {κμ;μ ∈ M+(S)}
are continuous at the zero measure.

Moreover, κμ
1 (S, s) ≤ 1 for all μ ∈ Ms+(S) and all s ∈ S and r(κo

1 ) ≤ 1.
Finally, if the kernel P2 is tight, so is the kernel κo

2 .

Proof Let μ ∈ M+(S). Then

(Q jμ)(s) =
∫
S
q j (s, t)μ(dt)

is a continuous function of s by Lebesgue’s theorem of dominated convergence
because q j is continuous and bounded by Assumption 20. By the same assumption,
g j

(
s, (Q jμ)(s)

)
is a continuous function of s ∈ S as composition of continuous

functions.
Let f ∈ Cb+(S). Then

∫
S
f (t)κμ

j (dt, s) =h j (s) g j
(
s, (Q jμ)(s)

)
,

h j (s) =
∫
S
f (t)Pj (dt, s),

h j ∈ Cb(S) because Pj is a Feller kernel. As product of continuous functions,∫
S f (t)κμ

j (dt, s) is a continuous function of s ∈ S.
This implies that κμ

j is a Feller kernel and so is κμ.
Further, κ

μ

j (S, s) ≤ Pj (S, s) sup g j (S × R+) ≤ sup g j (S × R+) is a bounded
function of s ∈ S and κ

μ
1 (S, s) ≤ 1 by Assumption 20.

The separability of κ
μ

j (·, s) is inherited from the separability of Pj (·, s).
The continuity of the kernel families at the zeromeasure follows fromAssumption

20 (g2) and (44) and (45).
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κ2 inherits tightness from P2 via the boundedness of g2. �

The subsequent stability result follows from Theorem 4 [32, Theorem3.6].

Theorem 23 Let the Assumptions 20 be satisfied and r = r(κo) < 1.

(a) The extinction state is locally asymptotically stable in the following sense:
For each α ∈ (r, 1), there exist some δα > 0 and Mα ≥ 1 such that,

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N,

if μ ∈ M+(S) with μ(S) ≤ δα .
(b) If g j (s, q) ≤ g j (s, 0) for all s ∈ S, q ∈ R+, j = 1, 2, the extinction state is

globally stable in the following sense:
For each α ∈ (r, 1), there exists some Mα ≥ 1 such that

Fn(μ)(S) ≤ αnMα μ(S), n ∈ N, μ ∈ M+(S).

The subsequent instability result follows from Theorem 5 and from Lemma 7 and
shows that the assumption r(κo) < 1 in Theorem 23 is almost sharp.

Theorem 24 Let the Assumptions 20 be satisfied and P2 be a tight Feller kernel.
Let r = r(κo) > 1.

Then there exists some eigenmeasure ν ∈ Ms+(S), ν(S) = 1, such that

rν(T ) =
∫
S
κo(T, s)ν(ds), T ∈ B.

Further, the zero measure is unstable: There is some δ0 > 0 such that for any ν-
positive μ ∈ M+(S) there is some n ∈ Z+ with Fn(μ)(S) ≥ δ0.

Recall that μ ∈ M+(S) is ν-positive if there exists some δ > 0 such that μ(T ) ≥
δν(T ) for all T ∈ B.
Proposition 21 Let Assumption 20 be satisfied. Assume that P1 and P2 are tight
Feller kernels. Then, for any μ ∈ M+(S), κ

μ
1 , κ

μ
2 and κμ are tight Feller kernels.

Further, the sets of measures

{κμ

j (·, s); s ∈ S, μ ∈ M+(S)}, j = 1, 2, and {κμ(·, s); s ∈ S, μ ∈ M+(S)}

are tight and the sets

{κμ

j (S, s); s ∈ S, μ ∈ M+(S)}, j = 1, 2, and {κμ(S, s); s ∈ S, μ ∈ M+(S)}

are bounded in R. In particular, Assumption 12 is satisfied.
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Proof κ
μ
1 , κ

μ
2 and κμ are tight Feller kernels by Proposition 7 and Lemma 7.

Since the functions g j are bounded, there exists some c > 0 such that g j
(
s, (Q jμ)

(s)
) ≤ c for all s ∈ S and μ ∈ M+(S), j = 1, 2. For any T ∈ B,

κ
μ

j (S \ T, s) ≤ κμ(S \ T, s) ≤ c
(
P1(S \ T, s) + P2(S \ T, s)

)
.

Since Pj are Feller kernels, the right hand side has a common upper bound for
s ∈ S, T ∈ B. This implies the boundedness of the various sets in R in the assertion
of the Proposition. Let ε > 0. For j = 1, 2, since the Pj are tight kernels, there exist
compact sets Tj ∈ B such that Pj (S \ Tj , s) ≤ ε/(2c). Set T = T1 ∪ T2. Then T is
compact and, for all μ ∈ M+(S), s ∈ S,

κ
μ

j (S \ T, s) ≤ κμ(S \ T, s) ≤ c
(
P1(S \ T1, s) + P2(S \ T2, s)

) ≤ ε.

Proposition 22 Let Assumption 20 be satisfied. If P := P1 + P2 is a (strongly) top-
irreducible kernel, so is κo.

Proof Set h(s) = min{g1(s, 0), g2(s, 0)}, s ∈ S. Then h ∈ Cb+(S) and, by Assump-
tion 20, h(s) > 0 for all s ∈ S.

By (44),

κo(T, s) ≥ P(T, s)h(s) =: κ̃(T, s), T ∈ B, s ∈ S.

Since P is a (strongly) top-irreducible kernel and h is strictly positive, κ̃ is a
(strongly) top-irreducible kernel by Proposition 14 and so is κo as one sees from
Definition 19. �

In view of these results, we collect the following set of assumptions.

Assumption 21 • P1 and P2 are tight Feller kernels.
• g j (s, q) > 0 for j = 1, 2 and all s ∈ S and q ∈ R+.

Lemma 8 Assume that g j (s, q) > 0 for all s ∈ S, q ∈ R+. Let N be a bounded
subset ofM+(S) and P = P1 + P2 be a strongly top-irreducible kernel. Then there
exists a strongly top-irreducible kernel κ̃ such that κμ(T, s) ≥ κ̃(T, s) for all T ∈ B,
s ∈ S and μ ∈ N .

In particular, Assumption 14 is satisfied.

Proof Let N be a bounded subset of M+(S). Since q j is bounded, by (41) and
(42) there exists some c ∈ (0,∞) such that (Q jμ)(s) ≤ c for j = 1, 2, s ∈ S, and
μ ∈ N . Set

h j (s) = inf
0≤q≤c

g j (s, q), s ∈ S, j = 1, 2.

Since g j is continuous and g j (s, q) > 0 for all s ∈ S,q ∈ R+, h j (s) > 0 for all s ∈ S.
To show that h j is continuous, let s ∈ S and (s�) be a sequence in S such that s� → s
as � → ∞. Then T = {s�; � ∈ N} ∪ {s} is a compact subset of S and T × [0, c] is a
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compact subset of S × R and g j is uniformly continuous on T × [0, c]. This implies
that g j (s�, q) → g j (s, q) as � → ∞ uniformly for q ∈ [0, c] and so h j (s�) → h j (s)
for � → ∞. Finally set h(s) = min{h1(s), h2(s)}. Then h ∈ Cb+(S) and h(s) > 0 for
all s ∈ S.

By (44),
κμ(T, s) ≥ P(T, s)h(s) =: κ̃(T, s).

Since P is a strongly top-irreducible kernel and h is strictly positive, κ̃ is a
strongly top-irreducible kernel by Proposition 14. In particular, for eachμ ∈ M+(S),
κμ(S, s) ≥ κ̃(S, s) > 0 for all s ∈ S.

Theorem 25 Let the Assumptions 20 and 21 be satisfied, P2 be a uniform Feller
kernel, P1 + P2 be top-irreducible and r = r(κo) > 1.

Then there exists some strictly positive eigenfunction f ∈ Ċb+(S)

with
∫
S f (t)κo(dt, s) = r f (s) for all s ∈ S.

Further, the semiflow generated by F is uniformly weakly persistent: There exists
some δ > 0 such that lim supn→∞ Fn(μ)(S) ≥ δ for all μ ∈ Ṁs+(S).

Proof By Proposition 10, κo
2 is a uniform Feller kernel. By Proposition 7, κo

j is a
tight Feller kernel, j = 1, 2. By Proposition 22, κo is a top-irreducible Feller kernel.
By Lemma 7, the kernel family {κμ;μ ∈ Ms+(S)} is lower semicontinuous at the
zero measure.

Assumption 9 is satisfied by Proposition 21, and Assumption 10 is satisfied by
Lemma 8. By Lemma 7, r(κo

1 ) ≤ 1. Apply Theorem 6. �
Recall Definition 15.

Assumption 22 (a) For any closed totally bounded subset T of S, {q j (s, ·); s ∈ T }
is equicontinuous on S, j = 1, 2.

(b) For any closed totally bounded subset T of S, {g j (s, ·); s ∈ T } is uniformly
equicontinuous on bounded subsets of R, j = 1, 2.

Lemma 9 Assumption 22 is satisfied if S be completely metrizable, and Assumption
20 holds.

Proof Let T be a closed totally bounded subset of S and let S be completely metriz-
able. Then T is compact.

(b) Let c > 0. Then the set T × [0, c] is compact. Since g j is continuous on
S × R+, g j is uniformly continuous on T × [0, c]. This implies (b).

(a) Suppose that Assumption 22(a) is false for j = 1 or j = 2. Then there is some
s̃ ∈ S such that {q j (s, ·); s ∈ T } is not equicontinuous at s̃.

Then there exists some ε > 0 and a sequence (sn) in T and a sequence (s̃n) in S
such that s̃n → s̃ as n → ∞ and

|q j (sn, s̃n) − q j (sn, s̃)| > ε, n ∈ N.

Since T × ({s̃n; n ∈ N} ∪ {s̃}) is a compact subset of S2, q j is uniformly continuous
on this set, a contradiction.



Persistent Discrete-Time Dynamics on Measures 97

Lemma 10 Let the Assumptions 20 and 22(a) be satisfied. Further let μ ∈ Ms+(S)

and (μn) be a sequence inMs+(S), ‖μn − μ‖
 → 0 as n → ∞.
Then, for j = 1, 2, (Q jμn)(s) → (Q jμ)(s) as n → ∞ uniformly for s in any

closed totally bounded subset of S. Further Q jμn and Q jμ are bounded functions.

Proof The convergence statement follows from Proposition 2 and (41) and (42). The
boundedness statements are immediate.

Lemma 11 Let the Assumptions 20 and 22(b) be satisfied. Let T be a closed totally
bounded subset of S and fn : T → R+, n ∈ N, and f : T → R+ be bounded func-
tions such that fn → f uniformly on T . Then g j

(
s, fn(s)

) → g j
(
s, f (s)

)
as n → ∞

uniformly for s ∈ T .

Proof There exists some c ∈ (0,∞) such that fn(s), f (s) ≤ c for all n ∈ N, s ∈ T .
Since {g j (s, ·); s ∈ T } is uniformly equicontinuous on [0, c], the assertion follows.
Proposition 23 Let the Assumptions 20 and 22 be satisfied. Then Assumption 11 is
satisfied for κ

μ

j , j = 1, 2 and κμ.

Proof It is sufficient to show the claim for κ
μ
1 . Let (μn) be a sequence in Ms+(S)

and μ ∈ Ms+(S) such that
∫
S f dμn → ∫

S f dμ as n → ∞ for all f ∈ Cb+(S). Then
‖μn − μ‖
 → 0 as n → ∞ by Theorem 12.

Let h ∈ Cb+(S). For s ∈ S,

∫
S
h(t)κμn

1 (dt, s) −
∫
S
h(t)κμ

1 (dt, s)

=
∫
S
h(t)P1(dt, s)

[
g1

(
s, (Q1μn)(s)

) − g1
(
s, (Q1μ)(s)

)]
.

Since
∫
S h(t)P1(dt, s) ≤ sup h(S), it is sufficient to show that

g1
(
s, (Q1μn)(s)

) → g1
(
s, (Q1μ)(s)

)
, n → ∞

uniformly on every closed totally bounded subset T of S. But this follows by com-
bining Lemmas 10 and 11.

Assumption 23 sup
s∈S,q≥0

P1(S, s)g1(s, q) < 1; inf
s, t∈S q2(s, t) > 0;

g2(s, q) → 0 as q → ∞, uniformly for s ∈ S.

From the interpretation of g1 as probability of surviving competition, it is sug-
gestive that 0 ≤ g1(s, q) ≤ 1 (Assumption 20 g1). So, together with P1(S, s) ≤ 1,
the first of the assumptions is not really drastic. The second assumption means that
competitive influence on somebody else’s reproduction reaches everywhere in the
habitat. The third assumption means that fertility drops very low if resources are very
low due to large competition.
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Proposition 24 Under the Assumptions 23,

sup
μ∈Ms+(S)

sup
s∈S

κ
μ
1 (S, s) < 1, sup

s∈S
κ

μ
2 (S, s) → 0 as μ(S) → ∞,

and Assumption 13 is satisfied. Further r(κo
1 ) < 1.

Proof Recall that

κ
μ
1 (S, s) = P1(S, s)g1

(
s, (Q1μ)(s)

) ≤ P1(S, s) sup
q∈R+

g1(s, q),

which implies the first assertion. Further

(Q2μ)(s) ≥ inf
s,t∈S q2(s, t) μ(S)

μ(S)→∞−→ ∞

uniformly for s ∈ S, and so

κ
μ
2 (S, s) = P2(S, s)g2

(
s, (Qμ)(s)

) → 0, μ(S) → ∞,

uniformly for s ∈ S. We combine,

lim sup
μ(S)→∞

sup
s∈S

κμ(S, s) ≤ sup
μ∈Ms+(S), s∈S

κ
μ
1 (S, s) + lim sup

μ(S)→∞
sup
s∈S

κ
μ
2 (S, s)

= sup
μ∈Ms+(S), s∈S

κ
μ
1 (S, s) < 1.

Theorem 26 Let the Assumptions 20, 22 and 23 be satisfied. Assume that P1 and
P2 are tight Feller kernels and r(κo) > 1.

Then there exists a fixed point F(μ) = μ ∈ Ṁs+(S).

Proof We apply [32, Theorem3.19]. Its assumptions are satisfied by Lemma 7,
Propositions 21, 23 and 24.

Theorem 27 Let the Assumptions 20, 21, 22 and 23 be satisfied. Assume that P2 is
a uniform Feller kernel, P1 + P2 is top-irreducible and r(κo) > 1.

Then the population is uniformly persistent in the following sense: There exists
some ε0 > 0 such that lim inf

n→∞ Fn(μ)(S) ≥ ε0 for all μ ∈ Ṁs+(S).

Proof We apply Theorem 7. Its assumptions are satisfied by Lemma 7, Propositions
21, 23, 24. �

Theorem 28 Let the Assumptions 20, 21, 22 and 23 be satisfied. Assume that P2 is
a uniform Feller kernel, P1 + P2 is strongly top-irreducible and r(κo) > 1.

Then the semiflow induced by F is uniformly persistent in the following sense:
For each f ∈ Ċb+(S), there exists some ε f > 0 with the following property:
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If N is a compact (or bounded tight) subset of Ms+(S) with infμ∈N μ(S) > 0,
there exists some N ∈ N such that

∫
S
f dFn(μ) ≥ ε f for all μ ∈ N and all n ∈ N with n > N .

Proof We apply Theorem 8. Its assumptions are satisfied by Lemma 7, Propositions
21, 23, 24, Lemma 8. �
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Discrete Splines and Its Applications

Patricia J. Y. Wong

Abstract In this paper, we survey the contributions made to discrete splines in the
literature and present some applications of discrete splines in the numerical treatment
of boundary value problems.

Keywords Discrete spline interpolation · Error estimates · Numerical solution ·
Boundary value problems

1 Introduction

In the well familiar continuous spline interpolation, we not only interpolate the
function of interest at each knot, but also interpolate a number of derivatives of
the function at certain knots. Therefore, the function is required to be sufficiently
smooth. However, in the real world situation, not only that it may be difficult to
compute the derivatives of a function, the derivatives may not even exist at some
points. In such a situation, the usual continuous spline interpolation will not be
suitable. We therefore introduce ‘discrete’ spline interpolation schemes that involve
only differences. Since noderivatives are involved, the interpolates can be constructed
for amore general class of function and therefore this type of interpolation has awider
range of applications.

Discrete splines are piecewise polynomials where continuity of differences rather
than derivatives are satisfied at the joining knots of the polynomial pieces. The
difference operator used may be forward difference operator [18, 70] or central
difference operator [20–23, 41, 42]. In contrast, the continuity conditions of the
familiar continuous splines at the joining knots are in terms of derivatives.

Discrete splineswere first introduced byMangasarian andSchumaker [43] in 1971
as solutions to constrained minimization problems in real Euclidean space, which
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are discrete analogs of minimization problems in Banach space whose solutions are
generalized splines. The solutions to the constrained minimization problems in real
Euclidean space exhibit a spline-like structure and therefore they are termed ‘discrete
splines’ in [43].

In subsequent sections, we shall present discrete quintic spline interpolation, peri-
odic discrete quintic spline interpolation, as well as their error analysis. The two-
variable cases are also tackled.

Discrete splines have been used in the numerical treatment of boundary value
problems and integral equations. There is an advantage of spline method over finite
difference method—once the spline solution is obtained, any information between
the mesh points becomes immediately available. Indeed, applications of discrete
splines to Fredholm integral equations as well as to second order and fourth order
boundary value problems have been investigated in [19, 21–23].

The outline of this paper is as follows. In Sect. 2, we present the discrete quin-
tic spline interpolation, the periodic discrete quintic spline interpolation and their
error analysis. In Sects. 3 and 4, we illustrate the application of discrete splines in
the numerical treatment of second order boundary value problems. Finally, a brief
conclusion is given in Sect. 5.

2 Discrete Spline Interpolation and Error Estimates

After the work of Mangasarian and Schumaker [43], subsequent investigations on
discrete splines can be found in the work of Schumaker [59], Astor and Duris [13],
Lyche [41, 42] and Wong et al. [18, 20, 70].

There are two basic approaches to developing splines—the variational approach
wherein splines are defined as the solutions of certain constrained minimization
problems, and the constructive approachwherein they are defined by piecing together
classes of functions at certain knots. In the very first paper on discrete splines [43], the
variational approach has been used and discrete splines are introduced as solutions
to constrained minimization problems in real Euclidean space. These same discrete
splines also play a fundamental role in certain best summation formulae for a finite
sequence of real numbers [44]. On the other hand, the constructive approach has been
employed in the work of [13, 41, 42, 59]. Both Schumaker [59] and Lyche [41, 42]
deal with discrete polynomial splines. In [59], discrete B-splines, which are discrete
analogs of the classical B-splines, are explored to give the general construction of
discrete splines—here forward differences are involved. In comparison, the discrete
cubic spline discussed in [41] involves central differences. Another work by Lyche
[42] investigates several discrete spline approximation methods for fitting functions
and data, the respective error analysis shows that some results in the continuous
case can be obtained from the discrete analog. On a separate note, in [13] discrete
L-splines are constructively defined so as to parallel the development of continuous
L-splines.
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Motivated by the earlier research on discrete splines, in [70] we have developed
a discrete cubic spline via constructive approach, while in [18] a discrete quintic
spline is developed also via constructive approach. Our definition of discrete spline
involves forward differences and is in the spirit of that in [59]. However, themethod of
construction is different—we derive matrix equations which can be solved uniquely
to obtain the discrete spline, which, unlike [42, 59], is not in terms of B-splines. Our
approach is parallel to the technique in [41]. The main contributions in the work [18,
70] are (i) the development of a class of discrete cubic/quintic spline interpolation
and the derivation of explicit error estimates between the function and its discrete
spline interpolate; and (ii) the extension to two-variable discrete bi-cubic/bi-quintic
spline interpolation and the related error estimates.

The work [18, 70] naturally complements the literature and especially the work
of [41, 42, 59]. We remark that in generalizing the cubic case [70] to the quintic case
[18], there is a quantum leap in the level of complexity. Moreover, the papers [18,
70] have extended the work of [1, 67, 68] on continuous spline to discrete case. It
is also noted that [1, 67, 68] extends the work of Schultz [58], and other work on
different types of continuous splines [1, 2, 27, 33, 38, 57, 60, 64, 69].

In [20], we have developed a class of periodic discrete quintic spline involving
central differences and establish the related existence, uniqueness and error estimates.
The two-variable case has also been considered. Our work naturally extends the
literature and especially complements and/or extends the work of [28, 29, 40, 42,
52] on one-variable discrete cubic splines. We also extend the research of [1, 67] on
continuous spline to discrete case, as well as complement the work of [18, 70] on
discrete cubic/quintic splines involving forward differences.

2.1 Discrete Quintic Splines

This section illustrates the work of [18]. Let a, b, c, d (b > a, d > c) be integers.
We shall denote the discrete interval N [a, b] = {a, a + 1, · · · , b}. Throughout, let

ρ : a = k1 < k2 < · · · < km = b, ki ∈ ZZ, 1 ≤ i ≤ m (m ≥ 7)

and
ρ′ : c = l1 < l2 < · · · < ln = d, l j ∈ ZZ, 1 ≤ j ≤ n (n ≥ 7)

be uniform partitions of N [a, b] and N [c, d] respectively with step sizes

h = ki+1 − ki (≥ 6), 1 ≤ i ≤ m − 1 and h′ = l j+1 − l j (≥ 6), 1 ≤ j ≤ n − 1.

Further, we let τ = ρ × ρ′ be a rectangular partition of N [a, b] × N [c, d]. The
symbol Δ, as usual, denotes the forward difference operator with step size 1. For
x ∈ IR and k a nonnegative integer, the factorial expression x (k) = ∏k−1

i=0 (x − i),
and we use the convention 0(0) = 1. For a function f (x) defined on N [a, b + 2],
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we define the usual �∞ norm as ‖ f ‖ = maxx∈N [a,b+2] | f (x)|. Similarly, for a func-
tion f (x, y) defined on N [a, b + 2] × N [c, d + 2], the usual �∞ norm is defined as
‖ f ‖ = max(x,y)∈N [a,b+2]×N [c,d+2] | f (x, y)|.
Definition 1 Let j ∈ IN (< h)befixed.Let fi (x)be definedon N [ki , ki+1 + j], 1 ≤
i ≤ m − 2, and fm−1(x) be defined on N [km−1, b + 2]. Let f (x) ≡ ∪1≤i≤m−1 fi (x).
We say that f (x) ∈ D( j)[a, b] if

Δl fi−1(ki ) = Δl fi (ki ), 2 ≤ i ≤ m − 1, 0 ≤ l ≤ j. (1)

Note that (1) is also equivalent to

fi−1(ki + l) = fi (ki + l), 2 ≤ i ≤ m − 1, 0 ≤ l ≤ j. (2)

Hence, the function f (x) = ∪1≤i≤m−1 fi (x) is well defined on N [a, b + 2]. The set
D(p,q)([a, b] × [c, d]) where p, q ∈ IN, p < h, q < h′, is analogously defined.

Define the set H(ρ) = {g(x) ∈ D(2)[a, b] : g(x) is a quintic polynomial in each
subinterval N [ki , ki+1], 1 ≤ i ≤ m − 2 and N [km−1, b + 2]}. Clearly, H(ρ) is of
dimension 3m. The next lemma gives a basis for H(ρ).

Lemma 1 [17] The functions hi (x), h̄i (x) and
¯̄hi (x), 1 ≤ i ≤ m form a basis of

H(ρ). Here, for 1 ≤ i, j ≤ m,

hi (k j ) = δi j , Δhi (k j ) = Δ2hi (k j ) = 0,
Δh̄i (k j ) = δi j , h̄i (k j ) = Δ2h̄i (k j ) = 0,

Δ2 ¯̄hi (k j ) = δi j ,
¯̄hi (k j ) = Δ ¯̄hi (k j ) = 0.

The explicit expressions of hi (x), h̄i (x) and ¯̄hi (x), 1 ≤ i ≤ m can be computed
directly.

We are now ready to develop discrete spline interpolation. To begin, we define
the set S(ρ) = {g(x) ∈ D(4)[a, b] : g(x) is a quintic polynomial in each subinter-
val N [ki , ki+1], 1 ≤ i ≤ m − 2 and N [km−1, b + 2]}. Clearly, S(ρ) is of dimension
(m + 4).

Definition 2 For a given function f (x) defined on N [a, b + 2], we say Sρ f (x)
is the S(ρ)-interpolate of f (x), also known as the discrete spline interpolate
of f (x), if Sρ f (x) ∈ S(ρ) with Sρ f (ki ) = f (ki ), 1 ≤ i ≤ m, and Δ j Sρ f (k1) =
Δ j f (k1), Δ j Sρ f (km) = Δ j f (km), j = 1, 2.

Lemma 2 For a given g(x) ∈ H(ρ), we define ci = g(ki ), Δci = Δg(ki ), Δ2ci
= Δ2g(ki ), 1 ≤ i ≤ m. Then, g(x) ∈ S(ρ) if and only if the vectors Δc = [Δci ]m−1

i=2
and Δ2c = [Δ2ci ]m−1

i=2 satisfy the matrix equations

B1(Δc) = w1 and B2(Δ2c) = w2, (3)
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where B1, B2 are 5-band diagonal (m − 2) × (m − 2) matrices whose elements
are in terms of h; w1, w2 are (m − 2) × 1 vectors whose elements are in terms of
ci , 1 ≤ i ≤ m, Δc1, Δcm, Δ2c1 and Δ2cm. Moreover, B1 and B2 are invertible,
hence from (3) the values of Δci , Δ2ci , 2 ≤ i ≤ m − 1 can be obtained uniquely in
terms of ci , 1 ≤ i ≤ m, Δc1, Δcm, Δ2c1 and Δ2cm .

The next result gives an explicit expression of the discrete spline interpolate Sρ f.

Theorem 1 Let f (x) be defined on N [a, b + 2]. If (3), with ci = f (ki ), 1 ≤ i ≤ m
and Δ j c� = Δ j f (k�), � = 1,m, j = 1, 2, has unique solutions Δc and Δ2c, then
Sρ f (x) exists and is unique. Moreover, Sρ f (x) can be expressed as

Sρ f (x) =
m∑

i=1

f (ki )hi (x) + Δ f (k1)h̄1(x) + Δ f (km)h̄m(x) +
m−1∑

i=2

(Δci )h̄i (x)

+ Δ2 f (k1)
¯̄h1(x) + Δ2 f (km) ¯̄hm(x) +

m−1∑

i=2

(Δ2ci )
¯̄hi (x).

(4)

Remark 1 We can describe a basis for S(ρ), namely the ‘cardinal splines’,
{si (x)}m+4

i=1 , which are defined by the following interpolating conditions

si (k j ) = δi j , Δsi (a) = Δsi (b) = 0, Δ2si (a) = Δ2si (b) = 0, 1 ≤ i, j ≤ m
sm+1(ki ) = 0, Δsm+1(a) = 1, Δsm+1(b) = 0, Δ2sm+1(a) = Δ2sm+1(b) = 0,
sm+2(ki ) = 0, Δsm+2(a) = 0, Δsm+2(b) = 1, Δ2sm+2(a) = Δ2sm+2(b) = 0,
sm+3(ki ) = 0, Δ2sm+3(a) = 1, Δ2sm+3(b) = 0, Δsm+3(a) = Δsm+3(b) = 0,
sm+4(ki ) = 0, Δ2sm+4(a) = 0, Δ2sm+4(b) = 1, Δsm+4(a) = Δsm+4(b) = 0,

1 ≤ i ≤ m.

The discrete spline interpolate Sρ f (x) can also be explicitly expressed as

Sρ f (x) =
m∑

i=1

f (ki )si (x) + Δ f (a)sm+1(x) + Δ f (b)sm+2(x)

+ Δ2 f (a)sm+3(x) + Δ2 f (b)sm+4(x).

(5)

We are now ready to introduce two-variable discrete spline interpolation. For
a given τ (= ρ × ρ′), we define S(τ ) = S(ρ) ⊕ S(ρ′) (the tensor product) = Span
{
si (x)s j (y)

}m+4 n+4
i=1 j=1 = {g(x, y) ∈ D(4,4)([a, b] × [c, d]) : g(x, y) is a two-dimensional

polynomial of degree 5 in each variable and in each subrectangle N [ki , ki+1] ×
N [l j , l j+1], N [km−1, b + 2] × N [l j , l j+1], N [ki , ki+1] × N [ln−1, d + 2], 1 ≤ i ≤
m − 2, 1 ≤ j ≤ n − 2 and N [km−1, b + 2] × N [ln−1, d + 2]}.Since S(τ ) is the ten-
sor product of S(ρ) and S(ρ′) which are of dimensions (m + 4) and (n + 4) respec-
tively, S(τ ) is of dimension (m + 4)(n + 4).

Definition 3 For a given function f (x, y) defined on N [a, b + 2] × N [c, d + 2],
we shall denote f μ,ν

i, j = Δ
μ
xΔ

ν
y f (ki , l j ), μ, ν = 0, 1, 2, 1 ≤ i ≤ m, 1 ≤ j ≤ n. We
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say Sτ f (x, y) is the S(τ )-interpolate of f (x, y), also known as the discrete spline
interpolate of f (x, y), if Sτ f (x, y) ∈ S(τ ) with Δ

μ
xΔ

ν
y Sτ f (ki , l j ) = f μ,ν

i, j where
μ, ν, i and j satisfy

(i) if μ = ν = 0, then 1 ≤ i ≤ m, 1 ≤ j ≤ n;
(ii) if μ = 1, 2, ν = 0, then i = 1,m, 1 ≤ j ≤ n;
(iii) if μ = 0, ν = 1, 2, then 1 ≤ i ≤ m, j = 1, n; and
(iv) if μ = 1, 2, ν = 1, 2, then (i, j) = (1, 1), (1, n), (m, 1), (m, n).

The next result gives an explicit expression of the two-variable discrete spline
interpolate Sτ f.

Theorem 2 For any function f (x, y) defined on N [a, b + 2] × N [c, d + 2],
Sτ f (x, y) exists and is unique. Further, Sτ f (x, y) can be explicitly expressed in
terms of cardinal splines as

Sτ f (x, y) =
m∑

i=1

n∑

j=1

f 0,0i, j si (x)s j (y)

+
m∑

i=1

[
f 0,1i,1 sn+1(y) + f 0,1i,n sn+2(y) + f 0,2i,1 sn+3(y) + f 0,2i,n sn+4(y)

]
si (x)

+
n∑

i=1

[
f 1,01,i sm+1(x) + f 1,0m,i sm+2(x) + f 2,01,i sm+3(x) + f 2,0m,i sm+4(x)

]
si (y)

+ f 1,11,1 sm+1(x)sn+1(y) + f 1,11,n sm+1(x)sn+2(y) + f 1,1m,1sm+2(x)sn+1(y)
+ f 1,1m,nsm+2(x)sn+2(y) + f 2,11,1 sm+3(x)sn+1(y) + f 2,11,n sm+3(x)sn+2(y)
+ f 2,1m,1sm+4(x)sn+1(y) + f 2,1m,nsm+4(x)sn+2(y) + f 1,21,1 sm+1(x)sn+3(y)
+ f 1,21,n sm+1(x)sn+4(y) + f 1,2m,1sm+2(x)sn+3(y) + f 1,2m,nsm+2(x)sn+4(y)
+ f 2,21,1 sm+3(x)sn+3(y) + f 2,21,n sm+3(x)sn+4(y) + f 2,2m,1sm+4(x)sn+3(y)
+ f 2,2m,nsm+4(x)sn+4(y).

(6)

The next theorem gives the error estimates for the discrete spline interpolation
in one variable and two variables. In the one-variable case, the idea is to use the
inequality

‖ f − Sρ f ‖ ≤ ‖ f − Hρ f ‖ + ‖Hρ f − Sρ f ‖

where Hρ f is the discrete Hermite interpolate of f [17]. In the two-variable case,
the key inequality used is

‖ f − Sτ f ‖ ≤ ‖ f − Sρ f ‖ + ‖Sρ( f − Sρ′ f )‖ + ‖ f − Sρ′ f ‖.

Theorem 3

(a) Let f (x) be defined on N [a, b + 2]. Then

‖ f − Sρ f ‖ ≤ d j (h) max
x∈N [a,b+2− j] |Δ

j f (x)|, 2 ≤ j ≤ 6 (7)
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where d j (h), 2 ≤ j ≤ 6 are in terms of h and are explicitly known. Further, it
is known that d j (h) = O(h j ), 2 ≤ j ≤ 6.

(b) Let f (x, y) be defined on N [a, b + 2] × N [c, d + 2]. Then, we have the follow-
ing error estimates

‖ f − Sτ f ‖ ≤ d6(h)‖Δ6
x f (x, y)‖ + d2(h)d4(h′)‖Δ2

xΔ
4
y f (x, y)‖

+ d6(h′)‖Δ6
y f (x, y)‖, (8)

‖ f − Sτ f ‖ ≤ d6(h)‖Δ6
x f (x, y)‖ + d3(h)d3(h′)‖Δ3

xΔ
3
y f (x, y)‖

+ d6(h′)‖Δ6
y f (x, y)‖, (9)

‖ f − Sτ f ‖ ≤ d6(h)‖Δ6
x f (x, y)‖ + d4(h)d2(h′)‖Δ4

xΔ
2
y f (x, y)‖

+ d6(h′)‖Δ6
y f (x, y)‖ (10)

where ‖Δμ
xΔ

ν
y f (x, y)‖ = max(x,y)∈N [a,b+2−μ]×N [c,d+2−ν] |Δμ

xΔ
ν
y f (x, y)|. Fur-

ther, since d j (h) = O(h j ), j = 2, 3, 4, 6, the error bounds (8)–(10) are of
O(ĥ6) where ĥ = max{h, h′}.

We shall illustrate the sharpness of the error estimates obtained in Theorem 3 by
two numerical examples. In each example, we take a function f and construct its
discrete spline interpolate, then we calculate the actual error as well as the respective
bound in Theorem 3.We remark that the functions considered in the examples are not
differentiable at certain points and therefore cannot be approximated by continuous
spline interpolation (which involves derivatives).

Example 1 Consider

f (t) = |t |(t5 − 3t + 1)(t − 8)|t − 6| ln(t + 1)/109

with a = 0 and b = 60.

The steps taken to construct Sρ f (t) and the related bound are as follows:

(i) For a function f (t) defined on N [a, b + 2], fix the partition ρ and the step size
h.

(ii) Obtain the values f (ki ), 1 ≤ i ≤ m and Δ j f (k�), � = 1,m, j = 1, 2. In (3),
with ci = f (ki ), 1 ≤ i ≤ m and Δ j c� = Δ j f (k�), � = 1,m, j = 1, 2, solve
for Δc = [Δci ]m−1

i=2 and Δ2c = [Δ2ci ]m−1
i=2 .

(iii) We construct Sρ f (t) in each subinterval N [ki−1, ki ], 2 ≤ i ≤ m as follows:

Sρ f (t) = f (ki )hi (t) + f (ki−1)hi−1(t) + Δci h̄i (t) + Δci−1h̄i−1(t)

+ Δ2ci
¯̄hi (t) + Δ2ci−1

¯̄hi−1(t).

(iv) Compute the actual error

‖ f − Sρ f ‖ = max
t∈N [a,b+2] | f (t) − Sρ f (t)|.
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Table 1 (Example 1) Actual errors and error bounds

m 7 (h = 10) 11 (h = 6)

‖ f − Sρ f ‖ 0.19143081e + 01 0.13903024e + 00

Bound 0.46240560e + 02 0.54135637e + 01

(v) Obtain the bound in the right side of (7) for j = 6.

The results are presentated in Table 1.

Example 2 Consider
f (t, u) = (

1 − etu/400) |t |/100

witha = c = 0 andb = d = 48.For afixedpartition τ ,weshall obtain Sτ f (t, u), the
biquintic spline interpolate of f (t, u).Then, we calculate the actual error ‖ f − Sτ f ‖
as well as the bounds in (8)–(10).

To construct Sτ f (t, u), in viewof (6)weneedonly to construct the cardinal splines
si (t), 1 ≤ i ≤ m + 4 and s j (u), 1 ≤ j ≤ n + 4. To compute a particular cardinal
spline say s1(t), from Remark 1 we know exactly the values of ci = s1(ki ), 1 ≤ i ≤
m and Δ j c� = Δ j s1(k�), � = 1,m, j = 1, 2, substitute these into the two matrix
equations in (3) and solve for the valuesΔci andΔ2ci , 2 ≤ i ≤ m − 1. Then, noting
(4) the cardinal spline s1 has the expression

s1(t) =
m∑

i=1

s1(ki )hi (t) + Δs1(k1)h̄1(t) + Δs1(km)h̄m(t) +
m−1∑

i=2

Δci h̄i (t)

+ Δ2s1(k1)
¯̄h1(t) + Δ2s1(km) ¯̄hm(t) +

m−1∑

i=2

Δ2ci
¯̄hi (t).

Indeed, from the expressions of hi , h̄i and ¯̄hi , we see that in each subinterval
N [ki−1, ki ], 2 ≤ i ≤ m,

s1(t) = s1(ki )hi (t) + s1(ki−1)hi−1(t) + Δci h̄i (t) + Δci−1h̄i−1(t)

+ Δ2ci
¯̄hi (t) + Δ2ci−1

¯̄hi−1(t).

Then, we compute the actual error

‖ f − Sτ f ‖ = max
(t,u)∈N [a,b+2]×N [c,d+2]

| f (t, u) − Sτ f (t, u)|

as well as the bounds in (8)–(10). The results are presented in Table 2.
To illustrate graphically, in the following figureswe shall plot the casem = n = 9.

Figure 1 shows the original function and its spline interpolate, due to the close
approximation the graphs are presented separately, otherwise they would just appear
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Table 2 (Example 2) Actual errors and error bounds

m (= n) 7 (h = h′ = 8) 9 (h = h′ = 6)

‖ f − Sτ f ‖ 0.66187125e − 02 0.21483362e − 02

Bound (8) 0.13637518e + 02 0.73463482e + 01

Bound (9) 0.27812870e + 02 0.15152823e + 02

Bound (10) 0.16876111e + 02 0.89818595e + 01
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Fig. 1 (Example 2) f and Sτ f when m = n = 9 (h = h′ = 6)
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Fig. 2 (Example 2) Enlarged portion of Fig. 1 where the error | f (t, u) − Sτ f (t, u)| is large

as one graph. Figure 2 shows the portion where the error | f (t, u) − Sτ f (t, u)| is
large, note that the maximum error occurs at (t, u) = (44, 48).

2.2 Periodic Discrete Quintic Splines

Unlike the previous section where forward differences are involved in the discrete
spline interpolation, we present another type of spline involving central differences
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and it is particularly suitable for the interpolation of periodic function. This section
illustrates the work of [20].

For a given h > 0, we recall the central difference operator Dh applying to a
function F gives

D{0}
h F(x) = F(x); D{1}

h F(x) = 1

2h
[F(x + h) − F(x − h)];

D{2}
h F(x) = 1

h2
[F(x + h) − 2F(x) + F(x − h)];

D{3}
h F(x) = 1

2h3
[F(x + 2h) − 2F(x + h) + 2F(x − h) − F(x − 2h)];

D{4}
h F(x) = 1

h4
[F(x + 2h) − 4F(x + h) + 6F(x) − 4F(x − h) + F(x − 2h)].

We also use the basic polynomials x { j} introduced by Lyche [42]

x { j} = x j , j = 0, 1, 2

x {3} = x(x2 − h2), x {4} = x2(x2 − h2), x {5} = x(x2 − h2)(x2 − 4h2).

It is noted that D{1}
h x { j} = j x { j−1}, j = 0, 1, 2, 3, 5 and D{1}

h x {4} = 2x(2x2 + h2).
Let a, b, c, d ∈ IR with a < b and c < d. We let

ϕ : a = t0 < t1 · · · < tn = b and ϕ′ : c = u0 < u1 · · · < um = d

denote the unformpartitions of [a, b] and [c, d]with step sizes p = b−a
n and p′ = d−c

m
respectively. Further, let φ = ϕ × ϕ′ be a rectangular partition of [a, b] × [c, d].
Throughout, let 0 < h ≤ min{p, p′} be fixed and denote the discrete interval

[α,β]h = {α,α + h,α + 2h, · · · } ∩ [α,β].

We assume that p and p′ are multiples of h. Then, it is clear that ti ’s are in [a, b]h
and ui ’s are in [c, d]h .
Definition 4 A function S(t;ϕ, h) is called a discrete quintic spline if its restriction
Si on [ti−1, ti ] is a quintic polynomial for i = 1, 2, · · · , n and

D{μ}
h Si (ti ) = D{μ}

h Si+1(ti ), 1 ≤ i ≤ n − 1, μ = 0, 1, 2, 3, 4. (11)

For a positive number P0, we say a function g is P0-periodic if

g(t) = g(t + P0).

We shall now introduce periodic discrete quintic spline. In the spirit of [28, 29] where
periodic discrete cubic spline is studied, let
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Sh(ϕ) =
{
S(t;ϕ, h) : S(t;ϕ, h) is a discrete quintic spline and

it is (b − a)-periodic
}
.

Definition 5 For a (b − a)-periodic function f defined on [a − 2h, b + 2h]h, we
say Sϕ f is the Sh(ϕ)-interpolate of f , also known as the periodic discrete spline
interpolate of f , if Sϕ f ∈ Sh(ϕ) with

Sϕ f (ti ) = f (ti ) ≡ fi , 0 ≤ i ≤ n − 1. (12)

Remark 2 InDefinition 5, it actually suffices to have the periodic function f defined
on the uniform partition ϕ. However, for the error analysis in the next section, we
require the periodic function f to be defined on [a − 2h, b + 2h]h . To be consistent,
we therefore impose throughout that the (b − a)-periodic function f is defined on
[a − 2h, b + 2h]h .

We shall give an explicit expression of Sϕ f . For this, Let the functions gi , ḡi and¯̄gi satisfy the following for 0 ≤ i, j ≤ n − 1 :

gi (t j ) = δi j , D{2}
h gi (t j ) = D{4}

h gi (t j ) = 0,
D{2}

h ḡi (t j ) = δi j , ḡi (t j ) = D{4}
h ḡi (t j ) = 0,

D{4}
h

¯̄gi (t j ) = δi j , ¯̄gi (t j ) = D{2}
h

¯̄gi (t j ) = 0.

The explicit expressions of gi , ḡi and ¯̄gi can be obtained by direct computation.

Lemma 3 Let Mi = D{2}
h Sϕ f (ti ) and Fi = D{4}

h Sϕ f (ti ), 0 ≤ i ≤ n.Then, Sϕ f can
be written as

Sϕ f (t) =
n−1∑

i=0

[
figi (t) + Mi ḡi (t) + Fi ¯̄gi (t)

]
, t ∈ [a, b]. (13)

In particular, for t ∈ [ti−1, ti ], 1 ≤ i ≤ n, the spline interpolate Sϕ f has the expres-
sion

Sϕ f (t) = (Sϕ f )i (t) = fi−1gi−1(t) + figi (t) + Mi−1ḡi−1(t) + Mi ḡi (t)
+ Fi−1 ¯̄gi−1(t) + Fi ¯̄gi (t), t ∈ [ti−1, ti ], 1 ≤ i ≤ n.

(14)

Theorem 4 Let f be a given (b − a)-periodic function defined on [a − 2h, b +
2h]h. Then, there exists a unique periodic discrete spline interpolate Sϕ f . Here, Mi

and Fi , 0 ≤ i ≤ n − 1 in (13) are uniquely determined by the systems of equations

a1Mi−2 + a2Mi−1 + a3Mi + a2Mi+1 + a1Mi+2

= 1

6
[(p2 − h2) fi−2 + 2(2h2 + p2) fi−1 − 6(h2 + p2) fi + 2(2h2 + p2) fi+1

+(p2 − h2) fi+2]
(15)
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and

a1Fi−2 + a2Fi−1 + a3Fi + a2Fi+1 + a1Fi+2 = fi−2 − 4 fi−1 + 6 fi − 4 fi+1 + fi+2

(16)
where a1 = 1

120 (p
2 − h2)(p2 − 4h2), a2 = 1

60 (p
2 − h2)(8h2 + 13p2) and a3 =

1
20 (4h

4 + 5h2 p2 + 11p4). Note that a3 > 2(|a1| + a2).

Remark 3 It is possible to describe a basis for Sh(ϕ), namely the ‘cardinal splines’,
{si }n−1

i=0 , defined by the following interpolating conditions

si (t j ) = δ∗
i j =

{
1, if j = i + nk (k ∈ ZZ)

0, otherwise.

Obviously Sϕ f can be expressed as

Sϕ f (t) =
n−1∑

i=0

fi si (t). (17)

We shall now introduce the two-variable periodic discrete quintic spline inter-
polation. For any positive numbers P1 and P2, we say a two-variable function g is
(P1, P2)-periodic if

g(t + P1, u) = g(t, u), g(t, u + P2) = g(t, u) and g(t + P1, u + P2) = g(t, u).

For convenience, we shall denote g{μ,ν}(t, u) = D{μ}
h,t D

{ν}
h,ug(t, u), and with respect to

the partition φ = ϕ × ϕ′, denote g
{μ,ν}
i, j = D{μ}

h,t D
{ν}
h,ug(ti , u j ).

Define Sh(φ) = Sh(ϕ) ⊕ Sh(ϕ′) (the tensor product) = Span
{
si s j

}n−1, m−1
i=0, j=0 =

{S : S is a two-dimensional polynomial of degree 5 in each variable, its restriction
Si j on [ti−1, ti ] × [u j−1, u j ], 1 ≤ i ≤ n, 1 ≤ j ≤ m is biquintic, S{μ,ν}

i j (ti , u j ) =
S{μ,ν}
i+1, j (ti , u j ) = S{μ,ν}

i, j+1(ti , u j ) = S{μ,ν}
i+1, j+1(ti , u j ), 1 ≤ i ≤ n − 1, 1 ≤ j ≤ m − 1,

μ, ν = 0, 1, 2, 3, 4, and S is (b − a, d − c)-periodic}.
Definition 6 For a (b − a, d − c)-periodic function f defined on [a − 2h, b +
2h]h × [c − 2h, d + 2h]h , we say Sφ f is a Sh(φ)-interpolate of f , also known as
the periodic discrete spline interpolate of f , if Sφ f ∈ Sh(φ) with

Sφ f (ti , u j ) = f (ti , u j ) ≡ fi j , 0 ≤ i ≤ n − 1, 0 ≤ j ≤ m − 1. (18)

Remark 4 InDefinition 6, it actually suffices to have the periodic function f defined
on the partition φ. However, the subsequent error analysis requires the periodic
function f to be defined on [a − 2h, b + 2h]h × [c − 2h, d + 2h]h . To be consistent,
we therefore impose throughout that the (b − a, d − c)-periodic function f is defined
on [a − 2h, b + 2h]h × [c − 2h, d + 2h]h .

We shall give an explicit expression of Sφ f in the next result.
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Lemma 4 Let c{μ,ν}
i, j = (Sφ f ){μ,ν}(ti , u j ), 0 ≤ i ≤ n, 0 ≤ j ≤ m, μ, ν ∈ {0, 2, 4}

(note that c{0,0}
i, j = fi j ). Then, Sφ f can be written as

Sφ f (t, u) =
n−1∑

i=0

m−1∑

j=0

[
fi jgi (t)g j (u) + c{0,2}

i, j gi (t)ḡ j (u) + c{0,4}
i, j gi (t) ¯̄g j (u)

+ c{2,0}
i, j ḡi (t)g j (u) + c{2,2}

i, j ḡi (t)ḡ j (u) + c{2,4}
i, j ḡi (t) ¯̄g j (u)

+ c{4,0}
i, j

¯̄gi (t)g j (u) + c{4,2}
i, j

¯̄gi (t)ḡ j (u) + c{4,4}
i, j

¯̄gi (t) ¯̄g j (u)
]
.

(19)

Theorem 5 Let f be a given (b − a, d − c)-periodic function defined on [a −
2h, b + 2h]h × [c − 2h, d + 2h]h . Then, there exists a unique periodic discrete
spline interpolate Sφ f. Here, c{μ,ν}

i, j ’s in (19) are uniquely determined by systems
analogous to (15) and (16).

Remark 5 In view of Remark 3, Sφ f can be expressed in terms of cardinal splines
as

Sφ f (t, u) =
n−1∑

i=0

m−1∑

j=0

fi j si (t)s j (u). (20)

We shall next establish the error estimates for the periodic discrete spline inter-
polation in one variable and two variables. For a function g(t) defined on [ā, b̄]h, we
introduce the modulus of smoothness and the norm as

w(g, r) = max
{|g(t) − g(t ′)| : |t − t ′| < r, t, t ′ ∈ [ā, b̄]h

}
, ‖g‖ = max

t∈[ā,b̄]h
|g(t)|.

For a function g(t, u) defined on [ā, b̄]h × [c̄, d̄]h, the norm

‖g‖ = max
(t,u)∈[ā,b̄]h×[c̄,d̄]h

|g(t, u)|.

To prove the error estimate result in the one-variable case, we require the following
lemma from [40].

Lemma 5 [40]

(a) Letα, β begiven real numbers such thatα < β andβ ∈ {α,α + h,α + 2h, · · · }
for some h > 0. Let g : [α − h,β + h]h → IR be a given function, define the
operators L and U by

(Lg)(t) = t − α

β − α
g(β) + β − t

β − α
g(α), (Ug)(t) = g(t) − (Lg)(t).

Then, we have

‖Ug‖ ≤ w(g,β − α), ‖Ug‖ ≤ (β − α)2

8
‖g{2}‖, ‖D{1}

h Ug‖ ≤ β − α

2
‖g{2}‖.
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(b) Let {ai }Ii=1 and {b j }Jj=1 be given sequences of nonnegative real numbers such that∑I
i=1 ai = ∑J

j=1 b j . Then, for any real valued function g defined on a discrete
interval [α,β]h, we have

∣
∣
∣
∣
∣
∣

I∑

i=1

aig[ti0, ti1, · · · , tik] −
J∑

j=1

b jg[u j0, u j1, · · · , u jk]
∣
∣
∣
∣
∣
∣

≤ 1

k!

(
I∑

i=1

ai

)

w
(
g{k}, |β − α − kh|)

where ti�’s and u j�’s are in [α,β]h .
In the two-variable case, the key inequality used in deriving the error estimates is

‖ f − Sφ f ‖ ≤ ‖ f − Sϕ f ‖ + ‖Sϕ( f − Sϕ′ f ) − ( f − Sϕ′ f )‖ + ‖ f − Sϕ′ f ‖.

The next theorem gives the error estimates for the periodic discrete spline inter-
polation in one variable and two variables.

Theorem 6 Define the constant γ = 40p4

(4h2+p2)(h2+p2) .

(a) Let f be a (b − a)-periodic function defined on [a − 2h, b + 2h]h and e =
Sϕ f − f. Then, we have

‖e{4}‖ ≤ (1 + γ)w
(
f {4}, p

)
,

‖e{3}‖ ≤ p

2
‖e{4}‖ + 2

p
γw

(
f {2}, p

)
≤ p

2
(1 + γ)w

(
f {4}, p

)
+ 2

p
γw

(
f {2}, p

)
,

‖e{2}‖ ≤ p2

8
‖e{4}‖ + γw

(
f {2}, p

)
≤ p2

8
(1 + γ)w

(
f {4}, p

)
+ γw

(
f {2}, p

)
,

‖e{1}‖ ≤ p

2
‖e{2}‖ ≤ p3

16
(1 + γ)w

(
f {4}, p

)
+ p

2
γw

(
f {2}, p

)
,

‖e‖ ≤ p2

8
‖e{2}‖ ≤ p4

64
(1 + γ)w

(
f {4}, p

)
+ p2

8
γw

(
f {2}, p

)
.

(b) Let f be a (b − a, d − c)-periodic function defined on [a − 2h, b + 2h]h × [c −
2h, d + 2h]h . Then, we have

‖ f − Sφ f ‖ ≤ p4

64
(1 + γ)wt

(
f {4,0}, p

)+ p2

8
γwt

(
f {2,0}, p

)

+ (p′)4

64
(1 + γ′)wu

(
f {0,4}, p′)+ (p′)2

8
γ′wu

(
f {0,2}, p′)

+ p4

32
(1 + γ)

[
(p′)4

64
(1 + γ′)wu

(
f {4,4}, p′)+ (p′)2

8
γ′wu

(
f {4,2}, p′)

]

+ p2

4
γ

[
(p′)4

64
(1 + γ′)wu

(
f {2,4}, p′)+ (p′)2

8
γ′wu

(
f {2,2}, p′)

]

where γ′ is the same as γ with p replaced by p′.
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Table 3 (Example 3) Actual errors and error bounds

p = 1
10 , h = p p = 1

8, h = p
4 p = 1

10, h = p
4 p = 1

15, h = p
4

‖e‖ 0 0.82039194e − 08 0.20521179e − 08 0.17547366e − 09

Bound 0.96628467e − 05 0.47809205e − 03 0.24082627e − 03 0.70158943e − 04

‖e{1}‖ 0 0.13126271e − 06 0.41042359e − 07 0.52642099e − 08

Bound 0.38651387e − 03 0.15298946e − 01 0.96330507e − 02 0.42095366e − 02

‖e{2}‖ 0 0.88913504e − 05 0.35473364e − 05 0.68230315e − 06

Bound 0.77302774e − 02 0.63964914e + 00 0.19266101e + 00 0.12628610e + 00

‖e{3}‖ 0 0.25175638e − 03 0.12575208e − 3 0.36340402e − 04

Bound 0.16331306e + 00 0.42046640e + 01 0.40397862e + 01 0.38724574e + 00

‖e{4}‖ 0 0.19214105e − 01 0.12196109e − 01 0.53762787e − 02

Bound 0.34830056e + 00 0.92202866e + 01 0.74626360e + 01 0.50324713e + 01

We shall now present some examples to illustrate the periodic discrete spline
interpolation as well as the corresponding error bounds obtained in Theorem 6.

Example 3 Consider the function

f (t) = 1

100

[

sin2(πt) + 19

20
cos2(πt)

]

, t ∈ [0, 1].

Here, we have [a, b] = [0, 1] and the steps taken to obtain the periodic discrete spline
interpolate Sϕ f and the errors are listed as follows.

(i) Fix the uniform partition ϕ (i.e., step size p) and choose a value for h.
(ii) Solve the systems (15) and (16) to get Mi ’s and Fi ’s respectively. Then, Sϕ f can

be constructed in each subinterval [ti−1, ti ] following (14).
(iii) Compute the actual errors

‖e{μ}‖ = ‖ f {μ} − (Sϕ f ){μ}‖ = max
t∈[0,1]h

| f {μ}(t) − (Sϕ f ){μ}(t)|, μ = 0, 1, 2, 3, 4.

(iv) Compute the bounds given in Theorem 6.

The actual errors and the error bounds are presented in Table 3. To illustrate
graphically, we have plotted Sϕ f and f in Fig. 3.

Example 4 Consider the function

f (t, u) = 1

100

[

sin2(πt) + 19

20
cos2(πu)

]

, (t, u) ∈ [0, 1] × [0, 1].

Here, we have [a, b] = [c, d] = [0, 1]. Fix p = p′ and take h = p
4 .
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Table 4 (Example 4) Actual errors and error bounds

p = p′ = 1
8 p = p′ = 1

10

‖ f − Sφ f ‖ 0.56790328e − 03 0.28049052e − 03

Bound 0.18645590e − 01 0.93922244e − 02

To construct Sφ f , in view of Remark 5 we need only to construct the cardi-
nal splines si , t ∈ [0, 1]h, 0 ≤ i ≤ n − 1 and s j , u ∈ [0, 1]h, 0 ≤ j ≤ m − 1. To
obtain a particular cardinal spline, we solve the systems (15) and (16) and then the
cardinal spline can be written explicitly using (13) or (14).

We also compute the actual error

‖ f − Sφ f ‖ = max
(t,u)∈[0,1]h×[0,1]h

| f (t, u) − Sφ f (t, u)|

and the bound in Theorem 6. The results are presented in Table 4. To illustrate
graphically, we have plotted Sφ f and f in Figs. 4 and 5.

3 Discrete Cubic Spline Method for Second Order
Boundary Value Problem

In this section, we use discrete cubic spline to obtain approximate solution of a
second order boundary value problem. We shall show that the method is of order 4
if a parameter takes a specific value, and it is of order 2 otherwise. Two numerical
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examples are presented to illustrate the efficiency of ourmethod aswell as to compare
the performancewith other numericalmethods proposed in the literature. This section
refers to the work of [21].

We consider the second order boundary value problem

y′′(x) = f (x)y(x) + g(x), a ≤ x ≤ b
y(a) = ᾱ, y(b) = β̄

(21)

where f and g are continuous functions on [a, b]. Such problems arise from many
real world situations, for example in the theory which describes the deflection of
plates and a variety of other scientific applications. In general it is difficult to obtain
the analytical solution of (21) for arbitrary f and g and we usually resort to some
numerical methods. In the literature, finite difference method has been commonly
used for the numerical treatment of (21) and this method has been discussed bymany
authors, see, for example [12, 24, 34, 63]. On the other hand, Ahlberg et al. [3] have
introduced (continuous) splines in solving initial as well as boundary value problems.
Following this several authors [4, 5, 16, 32, 36] have investigated the use of cubic
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splines in solving two-point boundary value problems. Other methods that involve
quadratic splines as well as collocation methods with splines as basis functions have
further been applied to solve various second order boundary value problems, see for
example [3, 6, 11, 35, 48, 56, 65] and the references therein.

We note that in the literature those methods that solve (21) by cubic splines [4,
5, 16, 32, 36] are of order 2 in most cases, except that of Khan [36], which is of
order 4 when certain parameters take specific values and is of order 2 otherwise. In
comparison, our discrete cubic splinemethod is fourth order convergent if a parameter
takes a specific value, else it is second order convergent—this convergence is ‘on
par’ with the method of Khan [36] and better than those in [4, 5, 16, 32]. Moreover,
computationally our method is much easier compared to [36]. Indeed, we shall show
by two numerical examples that our method outperforms other collocation, finite-
difference and spline methods for solving (21).

3.1 Discrete Cubic Spline Method

Let P : a = x0 < x1 < · · · < xn = b be a uniform mesh of [a, b] with xi − xi−1 =
p, 1 ≤ i ≤ n. For any function F(x), we denote its k-th derivative at xi as F

(k)
i .

Let h ∈ (0, p] be a given constant used in the central difference operator Dh .

Definition 7 Let S(x; h) be a piecewise continuous function defined over [a, b]
(withmesh P) and Si (x)be its restriction on [xi−1, xi ], 1 ≤ i ≤ n passing through the
points (xi−1, si−1) and (xi , si ).We say S(x; h) is a discrete cubic spline if Si (x), 1 ≤
i ≤ n is a polynomial of degree 3 or less and

(Si+1 − Si )(xi + jh) = 0, j = −1, 0, 1, 1 ≤ i ≤ n − 1 (22)

or equivalently

D{ j}
h Si (xi ) = D{ j}

h Si+1(xi ), j = 0, 1, 2, 1 ≤ i ≤ n − 1. (23)

The above definition of discrete spline is based on central differences. Indeed,
Lyche [42] has the same definition for discrete spline.

We shall approximate a solution y(x) of (21) by the discrete cubic spline S(x; h).

Hence, for any x ∈ [a, b] (x may be between mesh points), we propose the following
approximation

y(x) ∼= S(x; h), y′(x) ∼= D{1}
h S(x; h), y′′(x) ∼= f (x)S(x; h) + g(x). (24)

In particular, at the mesh points we have

yi ∼= si ≡ Si (xi ), y′
i
∼= s ′

i ≡ D{1}
h Si (xi ), y′′

i
∼= s ′′

i ≡ fi Si (xi ) + gi , 0 ≤ i ≤ n.

(25)
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From the boundary conditions, we note that s0 = y0 = ᾱ and sn = yn = β̄, and si is
an approximate of yi , 1 ≤ i ≤ n − 1.

Our immediate task is to obtain an explicit expression of Si (x). Clearly, Si (x)
should pass through the points (xi−1, si−1) and (xi , si ). Let ci = D{2}

h S(xi ; h), 0 ≤
i ≤ n denote the ‘discrete moments’. Since D{2}

h S(x; h) is piecewise linear, we have
for x ∈ [xi−1, xi ], 1 ≤ i ≤ n,

D{2}
h S(x; h) = D{2}

h Si (x) = xi − x

p
ci−1 + x − xi−1

p
ci . (26)

It follows that for x ∈ [xi−1, xi ], 1 ≤ i ≤ n,

Si (x) = (xi − x){3}

6p
ci−1 + (x − xi−1)

{3}

6p
ci + xi − x

p
ui + x − xi−1

p
vi (27)

where ui and vi are arbitrary constants that can be determined by the interpolation
conditions Si (xi−1) = si−1 and Si (xi ) = si . It is found that

ui = si−1 − p2 − h2

6
ci−1, vi = si − p2 − h2

6
ci , 1 ≤ i ≤ n. (28)

Hence, upon substituting (28) into (27), we obtain an explicit expression of Si (x) in
terms of si−1, si , ci−1 and ci .

Taking central difference of (27) then gives for x ∈ [xi−1, xi ], 1 ≤ i ≤ n,

D{1}
h Si (x) = − (xi − x)2

2p
ci−1 − (p2 − h2)(ci − ci−1)

6p
+ (x − xi−1)

2

2p
ci + si − si−1

p
.

(29)
The ‘continuity’ requirement D{1}

h Si (xi ) = D{1}
h Si+1(xi ) (see (23)) then leads to the

system of equations

(p2 − h2)

6
ci−1 + 2(2p2 + h2)

6
ci + (p2 − h2)

6
ci+1 = si−1 − 2si + si+1, 1 ≤ i ≤ n − 1.

(30)
In view of the fact that we approximate y(x) by S(x; h) and (25), we set ci = s ′′

i or

ci = fi si + gi , 0 ≤ i ≤ n. (31)

Upon substituting (31) into (30), the system (30) becomes

[
(p2 − h2)

6
fi−1 − 1

]

si−1 +
[
2(2p2 + h2)

6
fi + 2

]

si +
[
(p2 − h2)

6
fi+1 − 1

]

si+1

= − (p2 − h2)

6
(gi−1 + gi+1) − 2(2p2 + h2)

6
gi , 1 ≤ i ≤ n − 1.

(32)
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Together with the boundary conditions s0 = ᾱ, sn = β̄, we may solve (32) to get
si , 1 ≤ i ≤ n − 1. The unique solvability of the system (32) will be shown in the
next section.

Finally, we list the steps of computing the discrete cubic spline solution of (21)
as follows:

(i) Fix the mesh P (and hence the mesh size p) and choose a value for h (∈ (0, p]).
(ii) Solve (32) to get si , 1 ≤ i ≤ n − 1, which approximates yi .
(iii) Calculate ci by using ci = fi si + gi , 0 ≤ i ≤ n (see (31)). Noting (25), s ′′

i = ci
serves as an approximate to y′′

i .

(iv) Compute D{1}
h Si (xi ) from (29). Noting (25), s ′

i = D{1}
h Si (xi ) serves as an approx-

imate to y′
i .

(v) The discrete cubic spline solution Si (x) over the subinterval [xi−1, xi ] can be
obtained using (27). The first central difference D{1}

h Si (x) can also be obtained
using (29). These can be used to approximate y(x) and y′(x) for any x ∈ [a, b].

3.2 Convergence Analysis

In this section, we shall establish the existence of a unique discrete cubic spline
solution for (21) (i.e., (32) has a unique solution) and also conduct a convergence
analysis for the method presented in the previous section. As usual, the norms of a
column vector t = [ti ] and a matrix A = [ai j ] are given by

‖t‖ = max
i

|ti | and ‖A‖ = max
i

∑

j

|ai j |.

Let ei = yi − si , 1 ≤ i ≤ n − 1 be the errors. Let y = [yi ], s = [si ],
r = [ri ], t = [ti ] and e = [ei ] be (n − 1)-dimensional column vectors. The system
(32) can be written as

As = r (33)

where

A = A0 + Q, Q = BF, F = diag( fi ), i = 1, 2, · · · , n − 1, (34)

B = [bi j ] and A0 = [ai j ] are (n − 1) × (n − 1) tridiagonal matrices given by

bi j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(2p2 + h2)

6
, i = j

(p2 − h2)

6
, |i − j | = 1

0, otherwise,

ai j =
⎧
⎨

⎩

2, i = j
−1, |i − j | = 1
0, otherwise

(35)
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and

ri =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ᾱ − 1

6
[(p2 − h2) f0ᾱ + (p2 − h2)g0 + 2(2p2 + h2)g1 + (p2 − h2)g2], i = 1

−1

6
[(p2 − h2)gi−1 + 2(2p2 + h2)gi + (p2 − h2)gi+1], 2 ≤ i ≤ n − 2

β̄ − 1

6
[(p2 − h2) fn β̄ + (p2 − h2)gn−2 + 2(2p2 + h2)gn−1 + (p2 − h2)gn],

i = n − 1.
(36)

From (33), we have A(y − e) = r or

Ay = r + t (37)

where
t = Ae. (38)

The i-th equation of the system (37) is

−yi−1 + 2yi − yi+1 = −1

6
[(p2 − h2)y′′

i−1 + 2(2p2 + h2)y′′
i + (p2 − h2)y′′

i+1] + ti

where ti , 1 ≤ i ≤ n − 1 are the local truncation errors given by

ti = p2(p2 − 2h2)

12
y(4)
i + p4(4p2 − 5h2)

360
y(6)
i + O(p8). (39)

Remark 6 When h = p√
2
, it is clear from (39) that ti = 1

240 p
6y(6)

i + O(p8). Thus,

‖t‖ = 1

240
p6M6 (40)

where M6 = maxx |y(6)(x)|.
Lemma 6 [63] The inverse of A0, namely A−1

0 = [ηi j ], is given by

ηi j =

⎧
⎪⎨

⎪⎩

j (n − i)

n
, i ≥ j

i(n − j)

n
, i ≤ j.

Note that A−1
0 > 0, i.e, all the entries of A−1

0 are positive. Moreover,

‖A−1
0 ‖ ≤ n2

8
. (41)
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Lemma 7 [31] Let W be a square matrix such that ‖W‖ < 1. Then, (I + W ) is
nonsingular and

‖(I + W )−1‖ ≤ 1

1 − ‖W‖ .

Our first result guarantees the existence of a unique discrete cubic spline solution
for (21).

Theorem 7

(a) The system (33) has a unique solution if

K f̂ < 1 (42)

where K = 1
8 (b − a)2 and f̂ = max1≤i≤n−1 | fi |.

(b) The system (33) has a unique solution if f (x) ≡ f0 > 0.

Proof (a) If (33) has a unique solution, then it can be written as

s = A−1r = (A0 + Q)−1r = [A0(I + A−1
0 Q)]−1r = (I + A−1

0 Q)−1A−1
0 r. (43)

FromLemma 6 the inverse A−1
0 exists, if we can show that (I + A−1

0 Q)−1 also exists,
then it is immediate that (33) has a unique solution given by (43).

It is clear that ‖B‖ = p2. Since Q = BF, we find

‖Q‖ ≤ ‖B‖ ‖F‖ ≤ p2 f̂ . (44)

Then, applying (41), the fact n = b−a
p , (44) and (42) successively, we get

‖A−1
0 Q‖ ≤ ‖A−1

0 ‖ ‖Q‖ ≤ (b − a)2

8p2

(
p2 f̂

)
= K f̂ < 1. (45)

Since ‖A−1
0 Q‖ < 1, it follows from Lemma 7 that (I + A−1

0 Q) is nonsingular.
Hence, (I + A−1

0 Q)−1 exists and (33) has a unique solution given by (43).
(b) If f (x) ≡ f0 > 0, we can show that the coefficient matrix A in (33) is strictly

diagonally dominant, then A−1 exists and the conclusion is immediate.
In fact, from (32) we see that the (n − 1) × (n − 1) matrix A is tridiagonal and

is given by

A = [ai j ] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2(2p2+h2)
6 f0 + 2 (p2−h2)

6 f0 − 1
(p2−h2)

6 f0 − 1 2(2p2+h2)
6 f0 + 2 (p2−h2)

6 f0 − 1
. . .

. . .
. . .

(p2−h2)
6 f0 − 1 2(2p2+h2)

6 f0 + 2 (p2−h2)
6 f0 − 1

(p2−h2)
6 f0 − 1 2(2p2+h2)

6 f0 + 2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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It can be easily checked that for 2 ≤ i ≤ n − 2,

|aii | −
∑

j �=i

|ai j | =
{

2(p2+2h2)
6 f0 + 4, (p2−h2)

6 f0 − 1 ≥ 0

p2 f0,
(p2−h2)

6 f0 − 1 ≤ 0

}

> 0; (46)

while for i = 1, n − 1,

|aii | −
∑

j �=i

|ai j | =
{

(p2+h2)
2 f0 + 3, (p2−h2)

6 f0 − 1 ≥ 0
(5p2+h2)

6 f0 + 1, (p2−h2)
6 f0 − 1 ≤ 0

}

> 0. (47)

Hence, the matrix A is indeed strictly diagonally dominant, this completes the
proof. �

The next result gives the convergence order of the discrete cubic spline method.

Theorem 8 Suppose K f̂ < 1 or f (x) ≡ f0 > 0. Then,

‖e‖ ∼= O(p4) if h = p√
2

and ‖e‖ ∼= O(p2) for other values of h ∈ (0, p]. In conclusion, the discrete cubic
spline method (33) is fourth order convergent if h = p√

2
and is second order conver-

gent otherwise.

Proof First, suppose K f̂ < 1. We consider the special case when h = p√
2
. From

(38) we have

e = A−1t = (A0 + Q)−1t = (I + A−1
0 Q)−1A−1

0 t.

Noting (45), we apply Lemma 7, (41), (40) and the fact n = b−a
p , giving

‖e‖ ≤ ‖(I + A−1
0 Q)−1‖ ‖A−1

0 ‖ ‖t‖
≤ ‖A−1

0 ‖ ‖t‖
1 − ‖A−1

0 Q‖
≤ (b − a)2

8p2

(
1

240
p6M6

)(
1

1 − K f̂

)

= KM6 p4

240(1 − K f̂ )
∼= O(p4).

This shows that (33) is fourth order convergent when h = p√
2
. For other values of

h ∈ (0, p], from (39) we have ‖t‖ ∼= O(p4) and a similar argument then leads to
(33) is second order convergent.

Next, suppose f (x) ≡ f0 > 0.Here, the matrix A is strictly diagonally dominant.
It is well known that for a strictly diagonally dominant matrix,
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‖A−1‖ ≤
⎡

⎣min
i

⎛

⎝|aii | −
∑

j �=i

|ai j |
⎞

⎠

⎤

⎦

−1

.

Comparing (46) and (47), it is easily checked that mini
[
|aii | −∑

j �=i |ai j |
]
occurs

when 2 ≤ i ≤ n − 2. Hence, using (46), we find, if (p2−h2)
6 f0 − 1 ≥ 0,

‖A−1‖ ≤
[
2(p2 + 2h2)

6
f0 + 4

]−1

≤ 1
p2

3 f0 + 4
≤ 3

p2 f0
. (48)

If (p2−h2)
6 f0 − 1 ≤ 0, we get

‖A−1‖ ≤ 1

p2 f0
. (49)

A combination of (48) and (49) leads to

‖A−1‖ ≤ max

{
3

p2 f0
,

1

p2 f0

}

= 3

p2 f0
. (50)

Now for the special case h = p√
2
, from (38), (40) and (50) we get

‖e‖ ≤ ‖A−1‖ ‖t‖ ≤ 3

p2 f0

(
1

240
p6M6

)

= M6 p4

80 f0
∼= O(p4).

Hence, (33) is fourth order convergent when h = p√
2
. For other values of h ∈

(0, p], from (39) we have ‖t‖ ∼= O(p4) and it follows that (33) is second order
convergent. �

3.3 Examples

In this section, we present two numerical examples to demonstrate the discrete cubic
spline method proposed in Sect. 3.1 as well as to illustrate the comparative perfor-
mance with some well known numerical methods.

Example 5 Consider the boundary value problem

y′′ = 2

x2
y − 1

x
, y(2) = y(3) = 0. (51)

The exact solution is given by y(x) = 1
38

(−5x2 + 19x − 36
x

)
.
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Table 5 (Examples 5 and 6) Maximumabsolute errors of discrete cubic splinemethodwith h = p√
2

p BVP (51) BVP (52)

1/8 1.74 × 10−7 1.74 × 10−3

1/16 1.10 × 10−8 1.13 × 10−4

1/32 6.85 × 10−10 7.28 × 10−6

Example 6 Consider the boundary value problem

y′′ = 100y, y(0) = y(1) = 1. (52)

The exact solution is given by y(x) = cosh(10x−5)
cosh 5 .

Clearly, both (51) and (52) satisfy the conditions of Theorem 7 and so each has a
unique discrete cubic spline solution.

First, we choose h = p√
2
. The maximum absolute errors maxi |yi − si | for differ-

ent mesh sizes p are given in Table 5. We note that if the mesh size p is reduced
by a factor of 1

2 , then the maximum absolute errors are approximately reduced by
(
1
2

)4 = 1
16 . Thus, the numerical results confirm that our method is fourth order con-

vergent when h = p√
2
, which verifies Theorem 8. Moreover, the maximum absolute

errors recorded in Table 5 coincidewith those obtained by Khan [36] using the para-
metric cubic spline method with the parameters (α,β) = (

1
12 ,

5
12

)
in which case the

method is also of order 4. We remark that the expression of the spline given by our
method is much easier to obtain and the approximate values si are easy to compute,
while in [36] only si can be computed but the expression of the parametric cubic
spline cannot be obtained.

Next, we choose h = 3
4 p in order to compare with other second order methods.

The maximum absolute errors maxi |yi − si | obtained by various methods for the
boundaryvalue problem (51) are given inTable 6.Thenumerical experiment confirms
that ourmethod is secondorder convergentwhenh = 3

4 p (Theorem8), andour results
are notably better than others’.

Next, we shall compare the performance of the ‘non-traditional’ continuous cubic
spline method of [5] (which is superior to traditional cubic spline method) with our
discrete cubic spline method. The values of maxi |y(k)

i − s(k)
i |, k = 0, 1, 2 obtained

for the boundary value problem (51) by using the method in [5] and our method
with h = 2

3 p (second order convergent) are presented in Table 7. We observe that
the actual error maxi |yi − si | of our method is much smaller, whereas maxi |y′

i − s ′
i |

is slightly worse, but maxi |y′′
i − s ′′

i | is again much smaller—this indicates that our
discrete cubic spline method gives better approximation of y(xi ) and y′′(xi ) for the
boundary value problem (51).

Finally, in Table 8 we present the maximum absolute errors maxi |yi − si | for the
boundary value problem (52) obtained by various second order methods. Once again
we observe that our method is second order convergent and offers better results than
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Table 6 (Example 5) Comparison with other second order methods (BVP (51))

Method p = 1/4 p = 1/8 p = 1/16

Our method with
h = (3/4)p

1.77 × 10−5 5.00 × 10−6 1.29 × 10−6

Parametric cubic
spline [36]

(α,β) = (1/14, 3/7) 2.05 × 10−5 5.74 × 10−6 1.47 × 10−6

(α,β) = (1/10, 2/5) 3.50 × 10−5 8.46 × 10−6 2.09 × 10−6

(α,β) = (1/18, 4/9) 5.14 × 10−5 1.36 × 10−6 3.46 × 10−6

Cubic spline [5] 5.49 × 10−5 1.87 × 10−5 5.07 × 10−6

Collocation—
quadratic spline
[56]

7.93 × 10−5 2.06 × 10−5 5.20 × 10−6

Quadratic spline [6] 1.60 × 10−4 2.66 × 10−5 5.58 × 10−6

Cubic spline [4] 1.65 × 10−4 4.17 × 10−5 1.04 × 10−5

Second order
centered-difference

2.79 × 10−4 5.42 × 10−5 1.19 × 10−5

Table 7 (Example 5) Maximum absolute errors for BVP (51)

Method p max
i

|yi − si | max
i

|y′
i − s′

i | max
i

|y′′
i − s′′

i |
Continuous cubic 1/10 1.247 × 10−5 7.818 × 10−5 8.734 × 10−4

spline method [5] 1/20 3.286 × 10−6 1.931 × 10−5 2.211 × 10−4

1/40 8.466 × 10−7 4.812 × 10−6 5.546 × 10−5

Discrete cubic 1/10 3.038 × 10−6 2.797 × 10−4 1.082 × 10−6

spline method 1/20 7.461 × 10−7 7.003 × 10−5 2.655 × 10−7

with h = 2
3 p 1/40 1.858 × 10−7 1.751 × 10−5 6.630 × 10−8

other methods. While doing the numerical experiments with different h ∈ (0, p],
we observe that as h → 0, the result reduces to that of the continuous cubic spline
[4]; when h → p√

2
, either approaching from 0 or approaching from p, the maximum

absolute errors become smaller, this is in agreement with our theoretical results given
in Theorem 8.

In Fig. 6, we plot the graphs of the discrete cubic spline solutions and the exact
solutions of boundary value problems (51) and (52) for comparison.
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Table 8 (Example 6) Comparison with other second order methods (BVP (52))

Method p = 1/16 p = 1/32 p = 1/20 p = 1/40

Our method with

h = (2/3)p 7.64 × 10−4 1.74 × 10−4 4.75 × 10−4 1.10 × 10−4

h = (3/4)p 6.18 × 10−4 1.80 × 10−4 4.32 × 10−4 1.17 × 10−4

Parametric cubic
spline [36]

(α,β) =
(1/10, 2/5)

1.28 × 10−3 3.07 × 10−4 8.17 × 10−4 1.95 × 10−4

(α,β) =
(1/14, 3/7)

7.22 × 10−4 2.06 × 10−4 5.00 × 10−4 1.34 × 10−4

(α,β) =
(1/18, 4/9)

1.83 × 10−3 4.91 × 10−4 1.22 × 10−3 3.16 × 10−4

Cubic spline [5] 2.27 × 10−3 6.84 × 10−4 1.57 × 10−3 4.53 × 10−4

Collocation—

quadratic spline
[56]

3.06 × 10−3 7.58 × 10−4

Cubic spline [4] 6.05 × 10−3 1.51 × 10−3 3.93 × 10−3 9.66 × 10−4

Collocation—

quadratic spline
[35]

1.8 × 10−3 4.7 × 10−4
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Fig. 6 (Example 6) BVP (51) (left) and BVP (52) (right) when p = 1
8 , h = p√

2

4 Deficient Discrete Cubic Spline Method for Second Order
Boundary Value Problem

In this section, we use deficient discrete cubic spline to obtain approximate solution
of a system of second order boundary value problems. It is shown that the method is
of order 2 when a parameter takes a specific value. A well known numerical example
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is presented to illustrate our method as well as to compare the performance with
other numerical methods proposed in the literature. This section illustrates the work
of [22].

The system of second order boundary value problems we consider is of the form

y′′ =
⎧
⎨

⎩

f (x), a ≤ x ≤ c
g(x)y(x) + f (x) + r, c ≤ x ≤ d
f (x), d ≤ x ≤ b

y(a) = ᾱ, y(b) = β̄

(53)

with continuity conditions of y and y′ at c and d. Here, f and g are continuous
functions on [a, b] and [c, d] respectively, r, ᾱ and β̄ are real finite constants. This
type of systems arises in the study of obstacle, unilateral, moving and free boundary
value problems and has important applications in other branches of pure and applied
sciences, see [15, 25, 26, 37, 46, 47, 55].

The literature on the numerical treatment of (53) is abundant. Noor and Khalifa
[48] have solved (53) using a collocation method with first-order accuracy, adopting
cubicB-splines as basis functions.Also,Noor andTirmizi [51] have used finite differ-
ence schemes based on the central difference and the well known Numerov method
to solve (53), all these give first-order accurate approximations to the solution of
(53). In the paper of Al-Said et al. [11], the authors use spline and finite differ-
ence methods to obtain numerical solutions of (53) – it is shown that the numerical
solutions derived using both spline and finite difference techniques are first-order
accurate approximations regardless of the order of the methods used, and the authors
illustrate this idea further with the second-order cubic spline method of Albasiny and
Hoskins [4] and the fourth-order quintic spline method of Usmani and Warsi [66].
For methods of second-order accuracy, we note that a modified Numerovmethod has
been discussed in [10]. Polynomial splines have also been employed in solving (53),
for example in the papers of Al-Said [7–9], quadratic and cubic spline methods have
been developed and analyzed, these methods are of second order. Further, quintic
spline is used in [14] to solve (53), the method developed is second-order accurate.
On the other hand, non-polynomial spline methods have been discussed in the papers
[54, 61, 62], here the non-polynomial splines consist of polynomial and trigonomet-
ric parts such as span{1, x, sin kx, cos kx} (cubic non-polynomial spline). So far the
methods mentioned above are non-iterative. Some iterative numerical algorithms
used to solve (53) include a modified decomposition method based on the Adomian
decomposition method [45], as well as the variational iteration method [49]. Both of
these methods do not require discretization, and the variational iteration method has
the extra advantage of not having tedious computation of Adomian polynomials.

Motivated by all the above research especially the use of splines in solving (53),
we shall employ a deficient discrete cubic spline to get a numerical solution of (53).
In our proposed method, we shall relax the continuity of y′ at c and d, and instead
impose the continuity of the first central difference of y at c and d. The deficient
discrete cubic spline is uniquely determined and it enables us to approximate y and
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its derivatives at every point in the range of integration. Our proposed method is
second-order convergent, and through a well know example on obstacle boundary
value problem, we illustrate that our method outperforms other collocation, finite
difference and spline methods for solving (53) in the literature [7–11, 14, 48, 51].

4.1 Deficient Discrete Cubic Spline Method

Let P : a = x0 < x1 < · · · < xn = b be a uniform mesh of [a, b] with step size
p = b−a

n . Without loss of generality, we shall take

c = 3a + b

4
= xn/4 and d = a + 3b

4
= x3n/4,

and require the positive integer n (≥ 8) to be divisible by 4.
Let h ∈ (0, p] be a given constant used in the central difference operator Dh .

Definition 8 Let S(x; h) be a piecewise continuous function defined over [a, b]
(with mesh P) and Si (x) be its restriction on [xi−1, xi ], 1 ≤ i ≤ n passing through
the points (xi−1, si−1) and (xi , si ). We say S(x; h) is a deficient discrete cubic spline
if Si (x), 1 ≤ i ≤ n is a polynomial of degree 3 or less and

(Si+1 − Si )(xi + jh) = 0, j = −1, 0, 1, i ∈ I
(Si+1 − Si )(xi ) = 0, (Si+1 − Si )(xi + h) = (Si+1 − Si )(xi − h), i = n

4 ,
3n
4
(54)

or equivalently

D{ j}
h Si (xi ) = D{ j}

h Si+1(xi ), j = 0, 1, 1 ≤ i ≤ n − 1
D{2}

h Si (xi ) = D{2}
h Si+1(xi ), i ∈ I.

(55)

where I = {
i ∈ ZZ

∣
∣ 1 ≤ i ≤ n − 1, i �= n

4 ,
3n
4

}
.

The above definition of deficient discrete cubic spline coincides with that given
in the paper of Rana and Dubey [53]. It has been observed [53] that deficient splines
are more applicable than usual splines as they require less continuity requirement at
the mesh points.

We shall approximate a solution y(x) of (53) by the deficient discrete cubic spline
S(x; h), i.e., y(x)will be approximated by Si (x) over the subinterval [xi−1, xi ], 1 ≤
i ≤ n. Indeed, for any x ∈ [a, b] (x may be between mesh points), we propose the
following approximation

y(x) ∼= S(x; h), y′(x) ∼= D{1}
h S(x; h), x ∈ [a, b]

y′′(x) ∼=
{
f (x), x ∈ [a, c) ∪ (d, b]
g(x)S(x; h) + f (x) + r, x ∈ (c, d).

(56)
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In particular, at the mesh points we have

yi ∼= si ≡ Si (xi ), y′
i
∼= s ′

i ≡ D{1}
h Si (xi ), 0 ≤ i ≤ n

y′′
i

∼=
{
fi , 0 ≤ i ≤ n

4 − 1 and 3n
4 + 1 ≤ i ≤ n

gi si + fi + r, n
4 + 1 ≤ i ≤ 3n

4 − 1.
(57)

Moreover, since the left and right second derivatives y′′− and y′′+ exist at both c and
d, we propose

when i = n
4 , y′′

i− ∼= fi , y′′
i+ ∼= gi si + fi + r,

when i = 3n
4 , y′′

i− ∼= gi si + fi + r, y′′
i+ ∼= fi .

(58)

From the boundary conditions, we note that s0 = y0 = ᾱ and sn = yn = β̄, and si is
an approximate of yi , 1 ≤ i ≤ n − 1.

We shall now obtain an explicit expression of Si (x). Let ci = D{2}
h S(xi ; h) denote

the ‘discrete moments’. Taking into account the fact that we approximate y(x) by
S(x; h) as well as (57) and (58), we set

ci =
{
fi , 0 ≤ i ≤ n

4 − 1 and 3n
4 + 1 ≤ i ≤ n

gi si + fi + r, n
4 + 1 ≤ i ≤ 3n

4 − 1
when i = n

4 , ci− = fi , ci+ = gi si + fi + r,
when i = 3n

4 , ci− = gi si + fi + r, ci+ = fi .

(59)

Since D{2}
h S(x; h) is piecewise linear, using a similar argument as in Sect. 2, we

obtain (26)–(29) for x ∈ [xi−1, xi ], 1 ≤ i ≤ n. Here, when i = n
4 ,

3n
4 , we take ci =

ci,−; when i = n
4 + 1, 3n

4 + 1, we take ci−1 = ci−1,+ (see (59) for the definitions).

For i ∈ I, the ‘continuity’ requirement D{1}
h Si (xi ) = D{1}

h Si+1(xi ) leads to the
system of equations

(p2 − h2)

6
ci−1 + 2(2p2 + h2)

6
ci + (p2 − h2)

6
ci+1 = si−1 − 2si + si+1, i ∈ I.

(60)
Note that in (60), when i = n

4 − 1, 3n
4 − 1, we take ci+1 = ci+1,−; when i = n

4 +
1, 3n

4 + 1, we take ci−1 = ci−1,+ (see (59) for the definitions).
When i = n

4 ,
3n
4 , from (29) we have the following

D{1}
h Si (xi ) = p

2
ci− + si − si−1

p
− (p2 − h2)

6p
(ci− − ci−1),

D{1}
h Si+1(xi ) = − p

2
ci+ + si+1 − si

p
− (p2 − h2)

6p
(ci+1 − ci+),

and D{1}
h Si (xi ) = D{1}

h Si+1(xi ) yields
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(p2 − h2)

6
ci−1 + (h2 + 2p2)

6
(ci+ + ci−) + (p2 − h2)

6
ci+1 = si−1 − 2si + si+1,

i = n
4 ,

3n
4 .

(61)
Upon substituting (59) into (60) and (61), we obtain

−si−1 + 2si − si+1 = − (p2−h2)
6 fi−1 − 2(2p2+h2)

6 fi − (p2−h2)
6 fi+1,

1 ≤ i ≤ n
4 − 1 and 3n

4 + 1 ≤ i ≤ n − 1
(62)

[
−1 + (p2−h2)

6 gi−1

]
si−1 +

[
2 + 2(2p2+h2)

6 gi

]
si +

[
−1 + (p2−h2)

6 gi+1

]
si+1

= − (p2−h2)
6 fi−1 − 2(2p2+h2)

6 fi − (p2−h2)
6 fi+1 − p2r,

n
4 + 1 ≤ i ≤ 3n

4 − 1

(63)

and
−si−1 +

[
2 + (2p2+h2)

6 gi

]
si +

[
−1 + (p2−h2)

6 gi+1

]
si+1

= − (p2−h2)
6 fi−1 − 2(2p2+h2)

6 fi − (p2−h2)
6 fi+1 − p2

2 r,
i = n

4 ,
3n
4 .

(64)

With s0 = ᾱ and sn = β̄, we may solve (62)–(64) to get si , 1 ≤ i ≤ n − 1. The
unique solvability of the system (62)–(64) will be proved in the next section.

For clarity, the steps of computing the deficient discrete cubic spline solution of
(53) are listed as follows:

(i) Fix the mesh P (and hence the mesh size p) and choose a value for h (∈ (0, p]).
(ii) Solve (62)–(64) to get si , 1 ≤ i ≤ n − 1, which approximates yi .
(iii) Calculate ci by using (59). Noting (57) and (58), ci serves as an approximate to

y′′
i .

(iv) Compute D{1}
h Si (xi ) from (29). Noting (57), s ′

i = D{1}
h Si (xi ) serves as an approx-

imate to y′
i .

(v) The deficient discrete cubic spline solution Si (x) over the subinterval [xi−1, xi ]
can be obtained using (27). The first central difference D{1}

h Si (x) can also be
obtained using (29). These can be used to approximate y(x) and y′(x) for any
x ∈ [a, b].

4.2 Convergence Analysis

In this section, we shall establish the existence of a unique deficient discrete cubic
spline solution for (53) (i.e., (62)–(64) has a unique solution) and also conduct a
convergence analysis for the method presented in the previous section.

Let ei = yi − si , 1 ≤ i ≤ n − 1 be the errors. Let Y = [yi ], S = [si ], W =
[wi ], T = [ti ] and E = [ei ] be (n − 1)-dimensional column vectors. The system
(62)–(64) can be written as
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ĀS = W (65)

where
Ā = A0 + B̄, (66)

A0 = [ai j ] is given in (35) and B̄ = [b̄i j ] is a (n − 1) × (n − 1) matrix given by

b̄i j =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
62(2p

2 + h2)gi , i = j, n
4 + 1 ≤ i ≤ 3n

4 − 1
1
6 (p

2 − h2)gi−1, i − j = 1, n
4 + 1 ≤ i ≤ 3n

4 − 1
1
6 (p

2 − h2)gi+1, j − i = 1, n
4 + 1 ≤ i ≤ 3n

4 − 1
1
6 (2p

2 + h2)gi , i = j, i = n
4 ,

3n
4

1
6 (p

2 − h2)gi+1, j − i = 1, i = n
4 ,

3n
4

0, otherwise

(67)

and

wi =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ᾱ − 1
6

[
(p2 − h2) fi−1 + 2(2p2 + h2) fi + (p2 − h2) fi+1

]
, i = 1

− 1
6

[
(p2 − h2) fi−1 + 2(2p2 + h2) fi + (p2 − h2) fi+1

]
,

2 ≤ i ≤ n
4 − 1 and 3n

4 + 1 ≤ i ≤ n − 2

− 1
6

[
(p2 − h2) fi−1 + 2(2p2 + h2) fi + (p2 − h2) fi+1

]− p2

2 r, i = n
4 ,

3n
4− 1

6

[
(p2 − h2) fi−1 + 2(2p2 + h2) fi + (p2 − h2) fi+1 + 6p2r

]
,

n
4 + 1 ≤ i ≤ 3n

4 − 1
β̄ − 1

6

[
(p2 − h2) fi−1 + 2(2p2 + h2) fi + (p2 − h2) fi+1

]
, i = n − 1.

(68)
From (65) we have Ā(Y − E) = W or

ĀY = W + T (69)

where
T = ĀE . (70)

For i ∈ I, the i-th equation of system (69) is

−yi−1 + 2yi − yi+1 = −1

6
[(p2 − h2)y′′

i−1 + 2(2p2 + h2)y′′
i + (p2 − h2)y′′

i+1] + ti

while for i = n
4 ,

3n
4 , we have

−yi−1 + 2yi − yi+1 = − (p2 − h2)

6
(y′′

i−1 + y′′
i+1) − (h2 + 2p2)

6
(y′′

i+ + y′′
i−) + ti .

By Taylor series expansion, we obtain the truncation error ti , 1 ≤ i ≤ n − 1 as (39).
Hence, when h = p√

2
, we get
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‖T ‖ = 1

240
p6M6 (71)

where M6 = maxx |y(6)(x)|.
The next result gives the convergence order of the deficient discrete cubic spline

method.

Theorem 9 Suppose L = (b−a)2

8 ĝ < 1 where ĝ = max0≤i≤n |gi |. Then, the system
(65) has a unique solution and

‖E‖ ∼= O(p2) if h = p√
2
,

i.e., the deficient discrete cubic spline method (65) is second-order convergent if
h = p√

2
.

Proof If (65) has a unique solution, then it can be written as

S = Ā−1W = (A0 + B̄)−1W = [A0(I + A−1
0 B̄)]−1W = (I + A−1

0 B̄)−1A−1
0 W.

(72)
From Lemma 6 the inverse A−1

0 exists, hence it remains to show that (I + A−1
0 B̄) is

nonsingular.
enumerateFrom (67), we find ‖B̄‖ ≤ p2ĝ. Then, using (41) gives

‖A−1
0 B̄‖ ≤ ‖A−1

0 ‖ ‖B̄‖ ≤ (b − a)2

8p2
(
p2ĝ
) = L < 1. (73)

Hence, we conclude from Lemma 7 that (I + A−1
0 B̄) is nonsingular, and (65) has a

unique solution given by (72).
Next, we consider the special case when h = p√

2
. From (70), we have

E = Ā−1T = (A0 + B̄)−1T = (I + A−1
0 B̄)−1A−1

0 T . (74)

Applying (41), (71), (73) and Lemma 7, it follows from (74) that

‖E‖ ≤ ‖(I + A−1
0 B̄)−1‖ ‖A−1

0 ‖ ‖T ‖
≤ ‖A−1

0 ‖ ‖T ‖
1 − ‖A−1

0 B̄‖
≤ (b − a)2

8p2

(
1

240
p6M6

)(
1

1 − L

)

= (b − a)2M6 p4

1920(1 − L)
.

This shows that (65) is a fourth-order convergence method when h = p√
2
. However,

as observed in [14] the solution exists continuously only up to the second derivative,
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therefore the method is only second-order accurate over the whole interval. In fact,
in the paper [62] it is also shown that ‖E‖ ≈ O(p4) yet the method developed is
second-order convergent, similar observations have also been noted in [10, 11]. �

Remark 7 Theorem 9 gives a sufficient condition for the existence and uniqueness
of deficient discrete cubic spline solution and the order of convergence. Actually, the
weakest condition is just to have the matrix Ā invertible. Then, the system (65) has
a unique solution S = Ā−1W. Moreover, the deficient discrete cubic spline method
(65) is convergent when h = p√

2
, since from (70) we have E = Ā−1T which in view

of (71) leads to

‖E‖ ≤ ‖ Ā−1‖ ‖T ‖ ≤ 1

240
p6M6‖ Ā−1‖ < ∞.

4.3 Obstacle Boundary Value Problem

To illustrate the application of the deficient discrete cubic splinemethod, we consider
the obstacle boundary value problem

−y′′(x) ≥ f (x), on Ω = [0,π]
y(x) ≥ ψ(x), on Ω = [0,π]
(y′′(x) − f (x))(y(x) − ψ(x)) = 0, on Ω = [0,π]
y(0) = y(π) = 0,

(75)

where f (x) is a given force acting on the string and ψ(x) is the elastic obstacle.
The problem (75) has been considered by almost every paper on system of second

order boundary value problems. As first discussed byNoor andKhalifa [48], by using
the variational inequality approach, (75) is equivalent to the variational inequality
problem (see [15, 25, 37, 50])

a(y, v − y) ≥ 〈 f, v − y〉, for all v ∈ K (76)

where a(·, ·) is a coercive continuous bilinear form and K is the closed convex set
given by K = {v ∈ H 1

0 (Ω) | v ≥ ψ on Ω} (H 1
0 (Ω) is a Sobolev space). Following

the idea and technique of Lewy and Stampacchia [39], the variational inequality (76)
can be written as

y′′ − [μ(y − ψ)](y − ψ) = f, 0 < x < π
y(0) = y(π) = 0

(77)

where μ(t), known as the penalty function, is the discontinuous function defined by

μ(t) =
{
1, t ≥ 0
0, t < 0

(78)
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and ψ is the given obstacle function defined by

ψ(x) =
⎧
⎨

⎩

−1, 0 ≤ x ≤ π
4

1, π
4 ≤ x ≤ 3π

4−1, 3π
4 ≤ x ≤ π.

(79)

Equation (77) describes the equilibrium configuration of an obstacle string pulled at
the ends and lying over elastic step of constant height 1 and unit rigidity. Since the
obstacle function ψ is known, it is possible to find the solution of the problem in the
interval [0,π].

From equations (77)–(79), one obtains the following system of boundary value
problem

y′′ =
{
f, 0 ≤ x ≤ π

4 and 3π
4 ≤ x ≤ π

y + f − 1, π
4 ≤ x ≤ 3π

4
y(0) = y(π) = 0

(80)

and the condition of the continuity of y and y′ at π
4 and 3π

4 . We shall consider a
special case of the system (80) in Example 7, this example is first discussed in
[48] and subsequently considered in almost every paper on system of second order
boundary value problems.

Example 7 [48] We consider the system (80) when f = 0, i.e.,

y′′ =
{
0, 0 ≤ x ≤ π

4 and 3π
4 ≤ x ≤ π

y − 1, π
4 ≤ x ≤ 3π

4
y(0) = y(π) = 0.

(81)

The analytical solution for this problem is given by

y(x) =

⎧
⎪⎨

⎪⎩

4
γ1
x, 0 ≤ x ≤ π

4

1 − 4
γ2
cosh

(
π
2 − x

)
, π

4 ≤ x ≤ 3π
4

4
γ1

(π − x), 3π
4 ≤ x ≤ π

(82)

where γ1 = π + 4 coth π
4 and γ2 = π sinh π

4 + 4 cosh π
4 .

We observe from the analytical solution that y and y′ are continuous at π
4 and 3π

4 ,

but y′′ is not continuous at these two points, so the overall accuracy of our method
is only second order. This is also verified from the numerical evidence in Table 9.

In this example, we take h = p√
2
. The system of linear equations (62)–(64) is

explicitly given as

⎧
⎪⎪⎨

⎪⎪⎩

−si−1 + 2si − si+1 = 0, 1 ≤ i ≤ n
4 − 1 and 3n

4 + 1 ≤ i ≤ n − 1(
−1 + p2

12

)
si−1 +

(
2 + 5p2

6

)
si +

(
−1 + p2

12

)
si+1 = p2, n

4 + 1 ≤ i ≤ 3n
4 − 1

−si−1 +
(
2 + 5p2

12

)
si +

(
−1 + p2

12

)
si+1 = p2

2 , i = n
4 ,

3n
4 .
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Table 9 (Example 7) Maximum absolute errors maxi |yi − si |
Method p = π/20 p = π/40 p = π/80

Deficient discrete
cubic spline

1.19 × 10−3 3.04 × 10−4 7.68 × 10−5

Cubic spline [9] 1.26 × 10−3 3.29 × 10−4 8.43 × 10−5

Modified Numerov
method [10]

1.65 × 10−3 4.33 × 10−4 1.11 × 10−4

Cubic spline [8] 1.94 × 10−3 4.99 × 10−4 1.27 × 10−4

Quadratic spline [7] 2.20 × 10−3 5.87 × 10−4 1.51 × 10−4

Quintic spline [14] 2.57 × 10−3 7.31 × 10−4 1.94 × 10−4

Collocation-cubic [48] 1.40 × 10−2 7.71 × 10−3 4.04 × 10−3

Cubic spline [11] 1.80 × 10−2 9.13 × 10−3 4.60 × 10−3

Quintic spline [11] 1.82 × 10−2 9.17 × 10−3 4.61 × 10−3

Numerov [51] 2.32 × 10−2 1.21 × 10−2 6.17 × 10−3

Scheme (4.9) [51] 2.50 × 10−2 1.29 × 10−2 6.58 × 10−3

Cubic non-polynomial spline

[62] α = 1
16 , β = 7

16 6.43 × 10−4 1.83 × 10−4 4.87 × 10−5

[30] α = 1
16 , β = 7

16 5.01 × 10−4 1.33 × 10−4 3.40 × 10−5

Quintic non-polynomial spline [54]

α = 1
12 , β = 5

12 5.32 × 10−10 2.90 × 10−12 5.85 × 10−14

For different values of p, we can solve the unknowns si , 1 ≤ i ≤ n − 1 from the
above system. Then, we can get ci using (59) and finally obtain the deficient discrete
spline Si (x) as well as D{1}

h Si (x) in (27) and (29) respectively. In Tables 9 and 10
respectively, we present the maximum absolute errors maxi |yi − si | and maxi |y′

i −
s ′
i | obtained from our method as well as from other methods in the literature.
From Table 9, the numerical results confirm that our method is of second order.

Moreover, our method outperforms other methods in [7–11, 14, 48, 51]. The non-
polynomial spline methods [30, 54, 62] presented in Table 9 are of second order
(cubic non-polynomial spline) and sixth order (quintic non-polynomial spline).
Although non-polynomial spline methods offer excellent approximations to yi ’s,
but unlike our method, they may not be able to approximate y and its derivatives
at every point in the range of integration, since the non-polynomial splines are not
computable.

From Table 10, we see that our method gives better approximations for y′ com-
pared to the cubic and quintic spline methods in [9, 11].

To compare graphically, in Fig. 7 we plot the exact solution y and the deficient
discrete cubic spline solution S(x; h); in Fig. 8 we plot the exact y′, D{1}

h S(x; h) and
the first derivative of the cubic spline solution obtained in [8]; in Fig. 9 we plot the
exact y′′, D{2}

h S(x; h) and the second derivative of the cubic spline solution obtained
in [8]. It is seen from the figures that our method gives better approximations for
y, y′ and y′′.



Discrete Splines and Its Applications 137

Table 10 (Example 7) Maximum absolute errors maxi |y′
i − s′

i |
Method p = π/20 p = π/40 p = π/80

Deficient discrete
cubic spline

7.58 × 10−4 1.91 × 10−4 4.79 × 10−5

Cubic spline [9] 8.32 × 10−4 2.09 × 10−4 5.22 × 10−5

Cubic spline [11] 2.75 × 10−2 1.39 × 10−2 7.02 × 10−3

Quintic spline [11] 9.05 × 10−2 4.70 × 10−2 2.44 × 10−2

Fig. 7 (Example 7) Exact
solution versus deficient
discrete spline solution(
p = π

20

)
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Fig. 8 (Example 7) The first
derivative of exact solution
versus the first central
difference of deficient
discrete cubic spline
solution/first derivative of
cubic spline solution [8](
p = π

20

)
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Fig. 9 (Example 7) The
second derivative of exact
solution versus the second
central difference of
deficient discrete cubic
spline solution/second
derivative of cubic spline
solution [8]

(
p = π

20

)

0 0.5 1 1.5 2 2.5 3
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0
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x

Cubic spline solution 
Cubic spline solution
Exact solution 

5 Conclusion

In this paper, we survey the contributionsmade to discrete splines in the literature and
present some applications of discrete splines in the numerical treatment of boundary
value problems. More specifically, we illustrate two types of discrete spline interpo-
lation, namely the discrete quintic spline interpolation involving forward differences
and the periodic discrete quintic spline interpolation involving central differences.
In both cases, the explicit error estimates between the function and its discrete spline
interpolate are obtained, and the interpolation of two-variable functions (including
error estimates) is also developed. Further, to demonstrate the usefulness of discrete
splines in numerical methods, we present a discrete cubic spline method for a second
order boundary value problem that arises from plate deflection theory, and a deficient
discrete cubic spline method for a system of second order boundary value problems
that arises from obstacle, unilateral, moving and free boundary value problems. The
convergence analysis as well as numerical examples are presented to illustrate the
efficiency of the methods.
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Persistence of a Discrete-Time
Predator-Prey Model with
Stage-Structure in the Predator

AZMY S. ACKLEH, Md. Istiaq Hossain, Amy Veprauskas, and Aijun Zhang

Abstract We propose and investigate a discrete-time predator-prey model with a
structured predator population.We describe the predator population using two stages,
juveniles and adults, and assume that only the adult stage consumes the prey species.
For this model, we discuss conditions for the existence and global stability of the
extinction and predator-free equilibria as well as conditions for the existence and
uniqueness of an interior equilibrium. We show that when the predator-free equilib-
rium destabilizes, the interior equilibrium is stable in a neighborhood of the bifur-
cation. We also find the conditions for the persistence of both prey and predator
populations. Finally, we use numerical simulations to demonstrate various dynam-
ical scenarios. We find that introducing stage-structure into the predator population
allows for complicated dynamics that are not possible when the predator is unstruc-
tured.

Keywords Discrete-time predator-prey models · Stability · Persistence · Global
attractors · Stage-structure

1 Introduction

Predator-preymodels play an important role in understanding the possible ecological
outcomes of interacting species. The earliest predator-prey models were introduced
and investigated independently by bothLotka andVolterra [28, 29, 40].Ample exten-
sions of these models, in both continuous-time and discrete-time, have since been
developed to describe different ecological predator-prey scenarios. These include
various types of functional responses [21, 24, 26, 41], developmental delays and
stage structure [14, 15, 25], the co-evolution between predator and prey [1, 2, 42],
and more complicated predator-prey interactions such as intraguild predation [7, 23,
36]. In certain situations, such aswhen the species have non-overlapping generations,
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it has been suggested that discrete-timemodels governed by difference equationsmay
be more appropriate than continuous-time modeling approaches [5, 20, 35].

To model a biological population mathematically, species can often be better
described using stage-structure rather than treating all individuals as physiologi-
cally identical [6, 12, 13, 39]. In fact, various studies have found that unstructured
population models are less efficient at predicting population abundance [8, 31, 34].
When modeling interacting species, stage structure can become particularly impor-
tant when only specific developmental stages interact. For instance, in predator-prey
interactions, it may be the case that juveniles and adults of the predator population
consume different prey species. Such a situation may occur if different developmen-
tal stages inhabit different environments or size differences shift diet preferences due
to changes in foraging ability. These ontogenetic niche shifts are prevalent in many
aquatic organisms which undergo dramatic changes in body size throughout their
lifetimes [34]. For example, newborn Eurasian perch feed on zooplankton, shift to
benthic resources at intermediate sizes, then feed on fish at larger sizes [22]. Despite
the documented importance of structure in species interactions, when compared to
the extensive study of single species models with stage-structure, there are relatively
few models for predator-prey interactions with stage structure [25, 33]. In large part,
this is likely due to the mathematical intractability of such models [25].

The purpose of this work is to extend the discrete-time predator-preymodel devel-
oped in [3] to include a stage-structured predator population in which the predator is
classified according to two developmental stages: juveniles and adults. Wemodel the
prey population as unstructured, that is individuals are described by the same average
biological vital rates.We assume that this population grows according to amonotonic
nonlinearity, such as the Beverton-Holt function, in the absence of predators. For the
predator population, we assume that only the adult predators are capable of attack-
ing and consuming the prey population with prey consumption regulating predator
reproduction. The transition probability of the juvenile predators, and the survival
probabilities of both predator stages are assumed to be time and density indepen-
dent.We thoroughly investigate the various dynamical behaviors of this discrete-time
predator-preymodel such as the existence and uniqueness of the extinction, predator-
free, and interior equilibria as well as the local and global stability of the equilibria
and the persistence of the system.

This paper is organized as follows. In Sect. 2, we introduce the discrete-time
predator-prey model with stage-structure in the predator. We derive conditions for
the existence of two boundary equilibria, namely, the extinction and predator-free
equilibria.We also prove the global asymptotic stability of these two equilibria. Next,
we derive conditions for the existence and uniqueness of the interior equilibrium and
show that, when the predator-free equilibrium destabilizes, this equilibrium is stable
in a neighborhood of the bifurcation. We also establish conditions for the persistence
of both the prey and predator populations. In Sect. 3, we provide numerical examples
showing various dynamical scenarios in support of the theoretical results. These
numerical simulations also show the existence of rich dynamics that are not observed
when the predator is unstructured [4]. Finally, we provide some concluding remarks
in Sect. 4.
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2 The Predator-Prey Model

In this section, we introduce the discrete-time predator-prey model for a single prey
and a single predator population with stage-structure in the predator population. We
consider two stages for the predator, namely juveniles and adults. Let n denote the
prey density and p1 and p2 the densities of the juvenile and adult predator stages,
respectively.We assume that after each time step a fraction γ, 0 < γ ≤ 1, of surviving
juvenile predators become adult predators. We also assume that only adult predators
attack and consume the prey population. Specifically, the model is given by

⎧
⎪⎨

⎪⎩

n(t + 1) = φ(n(t)) (1 − f (p2(t))p2(t)) n(t),

p1(t + 1) = (1 − γ)s1 p1(t) + b(n(t))n(t) f (p2(t))p2(t),

p2(t + 1) = γs1 p1(t) + s2 p2(t),

(1)

where the constants 0 < s1, s2 < 1 represent the density-independent probabilities
of a juvenile or adult predator, respectively, surviving a unit of time.

The nonlinearities φ, b, and f are assumed to be smooth functions in the set X
defined by:

X := {v ∈ C1[0, ∞)| v′(x) < 0, (v(x)x)′ > 0, lim
x→∞ v(x) = 0, and lim

x→∞ v(x)x < ∞}.

This set includes functions of the Beverton-Holt type [9]. The quantity f (p2) is
defined to be the fraction of prey consumed by a single adult predator individual per
unit time when p2 predators are present, 0 ≤ f (p2) ≤ 1. Thus, 0 ≤ f (p2)p2 ≤ 1
gives the fraction of prey consumed by p2 adult predators and 1 − f (p2)p2 gives
the fraction of prey that escape predation per unit time. This quantity modifies the
predator-free prey growth given byφ(n). The reproductive output of an adult predator
individual is assumed to be determined by the amount of prey consumed, where the
conversion factor b(n)n gives the number of new births that would result from the
consumption of the entire prey population n. This term is defined so that predator
reproduction is limited by biological factors and cannot grow unbounded as prey
density gets large. The assumption that predator reproduction is regulated by prey
consumption is appropriate for many species, such as snakes andmarine birds, where
reproductive output is determined by energy availability [10, 37].

2.1 Equilibria and Stability

The equilibrium equations of model (1) are given by the following system of equa-
tions:
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⎧
⎪⎨

⎪⎩

n = φ(n) (1 − f (p2)p2) n,

p1 = (1 − γ)s1 p1 + b(n)n f (p2)p2,

p2 = γs1 p1 + s2 p2.

(2)

Solving the above system, we find that model (1) has three equilibria, namely the
extinction equilibrium where both species die out, the predator-free equilibrium
where the prey survives but predator goes extinct, and an interior equilibrium where
both prey and predator densities are positive. In this section, we discuss the existence
and stability of these equilibria. To determine the local asymptotic stability of the
equilibria, we find when the eigenvalues of Jacobian matrix of system (1) evaluated
at each of the equilibria have magnitude less than one. This Jacobian matrix is given
by

J (n, p1, p2) =
⎛

⎝
(φ(n)n)′ (1 − f (p2)p2) 0 − (φ(n)n) ( f (p2)p2)

′

(b(n)n)′ ( f (p2)p2) (1 − γ)s1 (b(n)n) ( f (p2)p2)
′

0 γs1 s2

⎞

⎠ . (3)

2.1.1 Existence and Stability of Boundary Equilibria

In this section, we discuss the existence and stability of the two boundary equilibria
of model (1), which are the extinction equilibrium and the predator-free equilibrium.
First, in Theorem 1, we show that the extinction equilibrium is globally asymptoti-
cally stable when the inherent growth rate of the prey φ(0) is less than one.

Theorem 1 The extinction equilibrium (0, 0, 0) of model (1) is globally asymptot-
ically stable if φ(0) < 1 and unstable if φ(0) > 1.

Proof The Jacobian matrix (3) evaluated at the extinction equilibrium (0, 0, 0) is
given by

J (0, 0, 0) =
⎛

⎝
φ(0) 0 0
0 (1 − γ)s1 0
0 γs1 s2

⎞

⎠ .

The eigenvalues of this matrix are λ1 = φ(0),λ2 = (1 − γ)s1, and λ3 = s2. Since
0 < γ ≤ 1 and 0 < s1, s2 < 1, |λi | < 1 for i = 2, 3. Thus the extinction equilibrium
(0, 0, 0) is locally asymptotically stable if φ(0) < 1 and unstable if φ(0) > 1. Since
the function φ(n) is a function satisfying all the conditions in the set X , there exists
a positive constant D such that φ(n)n ≤ D for all n ≥ 0. Since

n(t + 1) = φ(n(t))n(t)(1 − f (p2(t))p2(t)) ≤ φ(n(t))n(t) ≤ D for all n ≥ 0,

we have that

p1(t + 2) = (1 − γ)s1 p1(t + 1) + b(n(t + 1))n(t + 1) f (p2(t + 1))p2(t + 1),

≤ (1 − γ)s1 p1(t + 1) + b(D)D.
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Consider the difference equation q1(t + 1) = (1 − γ)s1 p1(t) + b(D)D, where

q1(0) = p1(1). Then we have that lim
t→∞ q1(t) = b(D)D

1 − (1 − γ)s1
. Hence, lim sup

t→∞
p1(t) ≤ b(D)D

1 − (1 − γ)s1
. As a result,

p2(t + 3) ≤ γs1

(
b(D)D

1 − (1 − γ)s1

)

+ s2 p2(t + 2).

Letting q2(t + 1) = γs1
(

b(D)D
1−(1−γ)s1

)
+ s2q2(t) with q2(0) = p2(2), it follows that

lim
t→∞ q2(t) =

(
γs1

1 − s2

) (
b(D)D

1 − (1 − γ)s1

)

. Hence, we have lim sup
t→∞

p2(t) ≤
(

γs1
1 − s2

)(
b(D)D

1 − (1 − γ)s1

)

. Therefore, the solutions of system (1) remain non-

negative and bounded for all forward time. Since φ ∈ X , φ(n) ≤ φ(0) for any
n ≥ 0, and thus n(t + 1) ≤ φ(n(t))n(t) ≤ φ(0)n(t) for t ≥ 0. From this we have
lim
t→∞ n(t) = 0 whenever φ(0) < 1. As a result, lim

t→∞ p1(t) = lim
t→∞ p2(t) = 0, and

hence for φ(0) < 1, all the solutions of (1) will converge to the extinction equi-
librium (0, 0, 0). Thus the extinction equilibrium (0, 0, 0) is globally asymptotically
stable when φ(0) < 1, and unstable if φ(0) > 1.

Next, in Theorem2,we show that a predator-free equilibrium (n̄, 0, 0) exists when
φ(0) > 1. This predator-free equilibrium is globally asymptotically stable when the
invasion net reproductive number Rn̄ is less than one. This quantity is the inherent
net reproductive number of the predator when the prey is at its predator-free state.
Hence, when Rn̄ < 1, the predator is unable to invade the system.

To calculate the invasion net reproductive number Rn̄ , we first consider the preda-
tor subsystem given by

P(t + 1) = A(n(t), p1(t), p2(t))P(t), (4)

where

A(n, p1, p2) =
(

(1 − γ)s1 b(n)n f (p2)
γs1 s2

)

and P(t) =
(
p1(t)
p2(t)

)

.

Suppose that the prey is at its predator-free equilibrium n̄. Then, the inherent projec-
tion matrix for the predator population when the prey is at its predator-free state is
given by

A(n̄, 0, 0) =
(

(1 − γ)s1 b(n̄)n̄ f (0)
γs1 s2

)

.

This matrix A(n̄, 0, 0) can now be decomposed as A = T + F , where the transition
matrix T and the fertility matrix F are given by
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T =
(

(1 − γ)s1 0
γs1 s2

)

and F =
(
0 b(n̄)n̄ f (0)
0 0

)

.

Then the next generation matrix N is given by

N = (I2 − T )−1 =
(

1
1−(1−γ)s1

0
γs1

(1−s2)(1−(1−γ)s1)
1

1−s2

)

,

where I2 is the identity matrix of size 2 × 2 and N (i, j) is the expected number of
visits over a lifetime to stage i for an individual starting in stage j [11]. The invasion
net reproductive number for the predator, Rn̄ when the prey is at its equilibrium state
is given by the dominant eigenvalue of the matrix FN [19]. From this we obtain

Rn̄ = γs1b(n̄)n̄ f (0)

(1 − s2)(1 − (1 − γ)s1)
. (5)

Next, we show that a predator-free equilibrium exists when the inherent growth rate
of the prey is greater than one and is globally asymptotically stable when Rn̄ < 1.

Theorem 2 The predator-free equilibrium (n̄, 0, 0) of model (1), where n̄ :=
φ−1(1), exists when φ(0) > 1. Moreover, if Rn̄ < 1, where Rn̄ is defined as in (5),
then (n̄, 0, 0) is globally asymptotically stable. If Rn̄ > 1, then (n̄, 0, 0) is unstable.

Proof First, it is easy to see that the predator-free equilibrium (n̄, 0, 0), where n̄ :=
φ−1(1) exists when φ(0) > 1. Applying the Jury conditions to the Jacobian matrix
evaluated at (n̄, 0, 0), we find that this equilibrium is locally asymptotically stable
when

s2(1 − (1 − γ)s1) + (1 − γ)s1 + γs1b(n̄)n̄ f (0) < 1.

This is equivalent to Rn̄ < 1. It remains to show that (n̄, 0, 0) is globally asymptoti-
cally stable when Rn̄ < 1.

Since φ ∈ X , n(t + 1) ≤ φ(n(t))n(t) ≤ D for some D > 0 and t ≥ 0. Moreover,

lim sup
t→∞

n(t + 1) ≤ lim sup
t→∞

(φ(n(t))n(t)) ≤ φ(lim sup
t→∞

n(t)) lim sup
t→∞

n(t).

Thus φ(lim sup
t→∞

n(t)) ≥ 1, which implies that lim sup
t→∞

n(t) ≤ n̄. Therefore for any

ε > 0, there exists t0 > 0 such that for t ≥ t0, n(t) ≤ n̄ + ε and

s2(1 − (1 − γ)s1) + (1 − γ)s1 + γs1b(n̄ + ε)(n̄ + ε) f (0) < 1. (6)

On the other hand, with f (0) ≥ f (p2) we have
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p2(t + 2) = γs1 p1(t + 1) + s2 p2(t + 1),

≤ γs1 ((1 − γ)s1 p1(t) + b(n)n f (0)p2(t)) + s2 p2(t + 1),

= γs1(1 − γ)s1

(
p2(t + 1) − s2 p2(t)

γs1

)

+ γs1b(n(t))n(t) f (0)p2(t) + s2 p2(t + 1),

= (1 − γ)s1 p2(t + 1) − (1 − γ)s1s2 p2(t) + γs1b(n(t))n(t) f (0)p2(t) + s2 p2(t + 1),

≤ ((1 − γ)s1 + s2)p2(t + 1) − ((1 − γ)s1s2 − γs1b(n̄ + ε)(n̄ + ε) f (0))p2(t).

Thus, letting c1 = (1 − γ)s1 + s2 and c2 = (1 − γ)s1s2 − γs1b(n̄ + ε)(n̄ + ε) f (0),
we have

p2(t + 2) ≤ c1 p2(t + 1) − c2 p2(t). (7)

We claim that lim
t→∞ p2(t) = 0. To this end, we solve x2 − c1x + c2 = 0 which has

two roots d1 = c1−
√

c21−4c2
2 and d2 = c1+

√
c21−4c2
2 . By (6),

c1 − c2 = ((1 − γ)s1 + s2) − ((1 − γ)s1s2 − γs1b(n̄ + ε)(n̄ + ε) f (0)) < 1.

As a result, we have 0 < di < 1 for i = 1, 2. We can rewrite (7) as

p2(t + 2) − d1 p2(t + 1) ≤ d2(p2(t + 1) − d1 p2(t)). (8)

If p2(t + 1) − d1 p2(t) ≤ 0 for t = τ , then by (8), p2(t + 1) − d1 p2(t) ≤ 0 for all
t > τ . Under this case, d1 < 1 implies that lim

t→∞ p2(t) = 0. Otherwise, suppose that

p2(t + 1) − d1 p2(t) > 0 for all t . By (8), d2 < 1 implies that lim
t→∞(p2(t + 1) −

d1 p2(t)) = 0 and thus lim
t→∞ p2(t) = 0 since d1 < 1. As a result of lim

t→∞ p2(t) = 0,

with the third equation in the model, we have lim
t→∞ p1(t) = 0. Finally, with the first

equation in the model, we must have lim
t→∞ n(t) = n̄ if φ(0) > 1.

2.1.2 Existence and Stability of the Interior Equilibrium

Next, we show that a unique interior equilibrium of (1) exists if and only if the
invasion net reproductive number of the predator Rn̄ is greater than one.

Theorem 3 A unique interior equilibrium (n∗, p∗
1, p

∗
2) of model (1) exists if and

only if φ(0) > 1 and Rn̄ > 1, where Rn̄ is defined in (5).

Proof The equilibrium equations of (1) can be written as

φ(n)(1 − f (p2)p2) = 1,

(1 − γ)s1 p1 + b(n)n f (p2)p2 = p1,

γs1 p1 + s2 p2 = p2.

(9)
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From the third equation of (9), we have p1 =
(
1−s2
γs1

)
p2. Using this relation in the

second equation above and simplifying, we obtain

(1 − γ)(1 − s2)

γ
+ b(n)n f (p2) = 1 − s2

γs1
, (10)

which is equivalent to
s̃ + b(n)n f (p2) = 1, (11)

with s̃ := 1 + (1−γ)(1−s2)
γ

− 1−s2
γs1

. This final equation together with the first equilib-
rium equation of (9) reduces the equilibrium equations to

φ(n)(1 − f (p2)p2) = 1,

s̃ + b(n)n f (p2) = 1.
(12)

This system of equilibrium equations is the same as the equilibrium equations for the
non-evolutionarymodel discussed in [3]. Hence, this systemhas a unique equilibrium
(n, p2) (and hence (n, p1, p2)) if and only if φ(0) > 1 and s̃ + b(n̄)n̄ f (0) > 1. This
latter inequality is equivalent to Rn̄ > 1. Thus a unique interior equilibrium of model
(1) exists if and only if φ(0) > 1 and Rn̄ > 1.

Remark 1 Wenote that, in the equilibriumequations for the non-evolutionarymodel
studied in [3], we have 0 < s̃ < 1. Meanwhile, for model (1) we have s̃ < 1 but not
necessarily s̃ > 0, as is the case in Example 1 shown below. However, all steps in
the proof of Theorem 2.2(a) from [3] continue to hold when s̃ < 0.

In Theorem 3, we showed that the predator-free equilibrium destabilizes as Rn̄

increases past one. We further showed that a unique interior equilibrium exists for
Rn̄ > 1. In Theorem 4, we apply perturbation arguments to establish the local stabil-
ity of the interior equilibrium in a neighborhood of Rn̄ � 1. To do this, we introduce
the bifurcation parameter b0 := b(0). In terms of this parameter, Rn̄ � 1 is equivalent
to b0 � b̂ for

b̂ := (1 − (1 − γ)s1)(1 − s2)

γs1β(n̄)n̄ f (0)
, β(n) := b(n)/b0. (13)

The arguments used to prove Theorem 4 are analogous to those applied in [17, 18].

Theorem 4 Define b0 := b(0) and assume φ(0) > 1. There exists a branch of posi-
tive equilibria (n, p1, p2) of model (1) bifurcating from the predator-free equilibrium
(n̄, 0, 0) at b0 = b̂ where b̂ is defined in (13). The bifurcating equilibria are locally
asymptotically stable for b0 � b̂.

Proof Consider the equilibria equations given by (9). Solve the second equation in
(9) for p1 and substitute this solution into the third equation. We now have that an
interior equilibrium must satisfy



Persistence of a Discrete-Time Predator-Prey Model … 153

g1(n, p1, p2, b0) = g2(n, p1, p2, b0) = g3(n, p1, p2, b0) = 0,

where
g1(n, p1, p2, b0) :=1 − φ(n)(1 − f (p2)p2),

g2(n, p1, p2, b0) :=p1 − (1 − γ)s1 p1 − b0β(n)n f (p2)p2,

g3(n, p1, p2, b0) :=1 − γs1b0β(n)n f (p2)

1 − (1 − γ)s1
− s2,

(14)

and we have explicitly denoted dependence on the bifurcation parameter b0 by
defining β(n) := b(n)/b0. Since (n̄, 0, 0) is a solution to (14) only for b0 = b̂, by
the Implicit Function Theorem there exists a branch of equilibria bifurcating from
(n̄, 0, 0) at b0 = b̂ provided that the determinant of the Jacobian of (14) evaluated at
the known solution (n̄, 0, 0, b̂) is non-zero. This determinant is given by

κ := (1 − (1 − γ)s1)(1 − s2)( f (0)2(β(n̄) + n̄β′(n̄)) + n̄β(n̄) f ′(0)φ′(n̄))

n̄β(n̄) f (0)
> 0,

which is nonzero since φ, b, f ∈ X . It follows that a branch of equilibria of the form
(n(ε), p1(ε), p2(ε), b0(ε))with ε ≈ 0,b0 = b̂(1 + ε), and (n(0), p1(0), p2(0), b0(0))
= (n̄, 0, 0, b̂) bifurcates from the predator-free equilibrium at b0 = b̂.

To determine the parametrization of the bifurcating equilibria, we differentiate
(14) with respect to ε and evaluate the derivatives at ε = 0.We arrive at the following
parameterizations

n(ε) = n̄ − f (0)(1 − (1 − γ)s1)(1 − s2)

κ
ε + O(ε2),

p1(ε) = − (1 − (1 − γ)s1)φ′(n̄)

γs1κ
ε + O(ε2),

p2(ε) = − (1 − (1 − γ)s1)(1 − s2)φ′(n̄)

κ
ε + O(ε2).

(15)

Since φ′(n̄) < 0, it follows that an interior equilibrium exists for ε � 0, or equiv-
alently, b0 � b̂. Notice that the parameterization for n says that, as the predator
population becomes positive, the prey population decreases, as is to be expected.

Finally, to determine the stability of the branch of interior equilibria, we param-
eterize the eigenvalues in terms of ε,

λi (ε) = λi (0) + λ′
i (0)ε + O(ε2).

The Jacobian matrix (3) evaluated at the positive equilibrium (15) has the expansion
J (n(ε), p1(ε), p2(ε), b0(ε)) = J (0) + J ′(0)ε + O(ε2) where J (0) is the Jacobian
matrix (3) evaluated at (n̄, 0, 0, b̂),
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J (0) =
⎛

⎝
n̄φ′(n̄) + φ(n̄) 0 −n̄φ(n̄) f (0)

0 (1 − γ)s1 b̂n̄β(n̄) f (0)
0 γs1 s2

⎞

⎠ ,

and matrix J ′(0) may be found by substituting the positive equilibrium (n(ε), p1(ε),
p2(ε), b0(ε)) into (3), differentiating this Jacobian matrix with respect to ε, and
evaluating the resulting matrix at ε = 0. Matrix J (0) has eigenvalues λ1(0) = 1,
λ2(0) = −1 + (1 − γ)s1 + s2, and λ3(0) = 1 + n̄φ′(n̄). Meanwhile, λ′

i (0) may be
found by first linearizing the eigenvalue equation J (ε)v(ε) = λ(ε)v(ε) around ε = 0
to obtain (J (0) − λ(0)I )v′(0) = (λ′(0)I − J ′(0))v(0). Next we may either apply
inner product arguments or the Fredholm Alternative to show that this equation has
a solution if and only if w(0)(λ′(0)I − J ′(0))v(0) = 0 where w(0) is the left eigen-
vector of J (0) [18]. Thuswe haveλ′

i (0) = w(0)J ′(0)v(0)
w(0)v(0) .From the eigenvalues of J (0),

it is clear that the stability of the interior equilibrium is determined by λ1(ε), where

v(0) =
(

f (0)
φ′(n̄)

, 1−s2
γs1

, 1
)ᵀ

andw(0) =
(
0, γs1

1−(1−γ)s1
, 1

)
are the right and left eigenvec-

tors corresponding toλ1(0). All together,we arrive atλ′
1(0) = − (1−(1−γ)s1)(1−s2)

2−(1−γ)s1−s2
< 0.

Thus, the interior equilibrium is locally asymptotically stable for ε � 0, or equiva-
lently, b0 � b̂.

Remark 2 In Theorem 4, we have shown that the branch of interior equilibria bifur-
cates forward or supercritically (meaning the equilibria are positive for b0 � b̂) and
is stable in a neighborhood of the bifurcation. This is a similar dynamic scenario as
is described by the Fundamental Bifurcation Theorem [16]. However, that theorem
applies to models with primitive inherent projection matrices whereas the projection
matrix for model (1) is reducible.

Remark 3 After submission of this paper, it came to the authors’ attention that a
more general result, developed in [32], can be applied to establish Theorem 4. While
both the proof of Theorem 4 and result from [32] use a similar Lyapunov-Schmidt
expansion technique,which relies on an application of the Implicit FunctionTheorem
and the Fredholm Alternative, they apply different forms for the expansion of the
bifurcation parameter.

Next, we provide an example that shows the conditions for the existence and
stability of the equilibria for a specific set of nonlinearities satisfying the conditions
in X .

Example 1 We assume the following set of nonlinearities:

φ(n) = r0
1 + mn

, b(n) = b0
1 + δn

, and f (p2) = c

1 + cp2
. (16)

Note that {φ, b, f } ⊂ X with φ(0) = r0, f (0) = c, n̄ = φ−1(1) = r0−1
m , and

Rn̄ = γs1cb0(r0 − 1)

(m + δ(r0 − 1)) (1 − s2) (1 − (1 − γ)s1)
.
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(i) The extinction equilibrium (0, 0, 0) is globally asymptotically stable if r0 < 1
and unstable otherwise.

(ii) The predator-free equilibrium (n̄, 0, 0) exists if r0 > 1 and is globally asymp-
totically stable if Rn̄ < 1.

(iii) For s̃ := 1 + (1−γ)(1−s2)
γ

− 1−s2
γs1

and k := r0(1−s̃)
b0c

> 0, the interior equilibrium
(n∗, p∗

1, p
∗
2) with

n∗ := (kδ − 1) + √
(kδ − 1)2 + 4km

2m
,

p∗
1 :=

(
1 − s2
γs1

)
⎛

⎝
r0 −

(
1 + 1

2

(
(kδ − 1) + √

(kδ − 1)2 + 4km
))

c + c
2

(
(kδ − 1) + √

(kδ − 1)2 + 4km
)

⎞

⎠ ,

p∗
2 :=

r0 −
(
1 + 1

2

(
(kδ − 1) + √

(kδ − 1)2 + 4km
))

c + c
2

(
(kδ − 1) + √

(kδ − 1)2 + 4km
) ,

exists when Rn̄ > 1.

2.2 Persistence

In this section, we investigate the persistence of the prey and predator populations.
Consider the difference equation system

x(t + 1) = F(x(t)), (17)

where x(t) = (x1(t), x2(t), ..., xn(t))T , F = ( f1, f2, ..., fn)T is a smooth function
from R

n to Rn , and fi = fi (x(t)), i = 1, 2, ..., n for a postive integer n. Define

Z := {x ∈ R
n|x ≥ 0}, Z+ := {x ∈ R

n|xi > 0,∀i = 1, 2, ..., n}, (18)

and letρ : Z → [0,∞) be a continuous function. SupposeM0 := {z ∈ Z : ρ(z) > 0}
and ∂M0 := {z ∈ Z : ρ(z) = 0}. We assume that the system is invariant in M0. Then,
the definition of ρ-uniform persistence is as follows.

Definition 1 (ρ-uniform persistence [30]) System (17) is said to be ρ-uniformly
persistent if there exists ε > 0 such that lim inf

n→∞ ρ(Fn(x)) ≥ ε,∀x ∈ M0; system (17)

is weakly ρ-uniformly persistent if there exists ε > 0 such that lim sup
n→∞

ρ(Fn(x)) ≥
ε,∀x ∈ M0.

To establish the persistence of system (1), we assume the system satisfies the
following hypotheses:
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(H1) φ(0) > 1 and Rn̄ > 1 with n̄ = φ−1(1).

Lemma 1 Assume (H1). There exist positive constants N , P1 and P2 such that
A = {(n, p1, p2)|0 ≤ n ≤ N ≤ n̄, 0 ≤ p1 ≤ P1, 0 ≤ p2 ≤ P2} is an attracting set
under system (1).

Proof This lemma follows from the arguments provided in the proof of Theorem 1
with N = D,
P1 = b(D)D

1−(1−γ)s1
, and P2 =

(
γs1
1−s2

) (
b(D)D

1−(1−γ)s1

)
, where D is such that φ(n)n ≤ D.

Next, in Theorem 5we show that model (1) is persistent. For the predator population,
we show that all stages are bounded away from zero, referred to as c-persistence in
[27]. This condition provides the coexistence of the predator stages by ensuring that
no orbits converge to the boundary of the positive cone.

Theorem 5 Assume (H1). Then model (1) is persistent, that is there exists an ε > 0
such that min{lim inf

t→∞ n(t), lim inf
t→∞ p1(t), lim inf

t→∞ p2(t)} > ε for any initial condition

in Z+.

Proof We prove the theorem by showing the persistence of the prey, the juvenile
predator, and the adult predator populations with the following four steps.

• Step 1: Show the prey is persistent (i.e. lim inf
t→∞ n(t) > ε for all z0 ∈ Z+).

Let N0 = {(n, p1, p2)|n = 0}, on which the subsystem is given by

{
p1(t + 1) = (1 − γ)s1 p1(t),

p2(t + 1) = s2 p2(t).
(19)

If the extinction equilibrium of subsystem (19) is globally stable, then the omega
limit set of N0 is �(N0) = {(0, 0, 0)} =: {P1}. Let A(P) := φ(n)(1 − f (p2)p2)
with P ∈ �(N0). Then if A(P1) = φ(0) > 1, A(P1) is primitive and the spectral
radius of A(P1) is greater than one. Then by Corollary 1 in [38], N0 is a uni-
formly weak repeller. Finally, by Theorem 2.3 in [38], we have that the system is
n−persistent i.e. lim inf

t→∞ n(t) > ε.

• Step 2: We prove that the system is ρ− persistent with ρ = p1 + p2, that is, there
exists ε > 0 such that for all z0 ∈ Z+

lim inf
t→∞ (p1 + p2) > ε. (20)

Following [38], define f : R1
1 × R

2+ → R
1
1 and g : R1

1 × R
2+ → R

2+ such that for
all z ∈ R

1
1 × R

2+, F(z) = ( f (z), g(z)). Consider the following dynamical system:

z(t + 1) = F(z(t)), for all z ∈ R
1
1 × R

2
+. (21)

Equation (21) can be written as
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x(t + 1) = f (z(t)),

y(t + 1) = A(z(t))y(t),
(22)

where, N1 = {z = (x, y) ∈ R
1+ × R

2+|y = 0}, and A(z) is a continuous matrix
function satisfying A(x, 0) ≥ 0 . Let x = n and y = (p1, p2). The set N1 repre-
sents the positively invariant predator-free sub-space, in which the dynamics are
given by

n(t + 1) = φ(n(t))n(t). (23)

Let n(t + 1) = n(t) = n̄ be the predator-free equilibrium for the prey, that is n̄ =
φ−1(1). Note that n̄ exists when φ(0) > 1. Model (1) can now be put in the form
(21) with

A(n, p1, p2) =
(

(1 − γ)s1 b(n)n f (p2)
γs1 s2

)

.

We note that the matrix A(n, p1, p2) is nonnegative on the setA1 = {(n, p1, p2)|
ε ≤ n ≤ n̄, 0 ≤ p1 ≤ P1, 0 ≤ p2 ≤ P2} for some ε > 0. Now the matrix A evalu-
ated at (n̄, 0, 0),

A(n̄, 0, 0) =
(

(1 − γ)s1 b(n̄)n̄ f (0)
γs1 s2

)

,

is primitive, since all the entries are non-negative provided that φ(0) > 1. Also,
A(z)η 
= 0 for all (z, η) ∈ A1 ×U+, where η is a unit vector in R2+ and U+ is the
set of such unit vectors in R

2+. We note that both the sets Z and Z \ N1 are non-
empty and positively invariant. Suppose M1 = A1 ∩ N1. Then M1 is a non-empty,
compact, positively invariant set that is bounded away from zero and attracts all
non-zero points of N1. Moreover, �(M1) = {(n̄, 0, 0)}. Note that, tr(A) = (1 −
γ)s1 + s2, and det(A) = (1 − γ)s1s2 − γs1b(n̄)n̄ f (0). Thus the eigenvalues of
A are given by

λ1,2 = tr(A) ± √
tr2(A) − 4 det(A)

2
,

= (1 − γ)s1 + s2 ± √
((1 − γ)s1 + s2)2 + 4((1 − γ)s1s2 − γs1b(n̄)n̄ f (0))

2
.

If Rn̄ > 1, then it is easy to verify that the spectral radius of A(n̄, 0, 0), given by
λ1, is greater than one. Applying Corollary 1 alongwith Theorem 2.3 in [38],M1 is
a uniformly weak repeller and thus the system is ρ− persistent with ρ = p1 + p2.
That is, there exists an ε > 0 such that for all z0 ∈ Z+

lim inf
t→∞ (p1 + p2) > ε.
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• Step 3: In this step we show that

lim inf
t→∞ (p1 + p2) > ε =⇒ lim inf

t→∞ p1 > ε1 or lim inf
t→∞ p2 > ε2, (24)

i.e. either the juvenile or the adult population persists. Indeed, we have that

lim inf
t→∞ (p1 + p2) > ε =⇒ lim sup

t→∞
p1 > ε1 or lim sup

t→∞
p2 > ε2, (25)

However, by Proposition 3.2 in [30], for k = 1, 2, we have

lim sup
t→∞

pk > εk =⇒ lim inf
t→∞ pk > εk .

• Step 4: We show that

lim inf
t→∞ p1 > ε1 ⇐⇒ lim inf

t→∞ p2 > ε2.

Suppose first that p1 is strongly uniform persistent, i.e. lim inf
t→∞ p1 > ε1. We claim

that p2 is weakly uniform persistent, i.e. lim sup
t→∞

p2 > ε2 for some ε2 > 0. We

prove the claim by way of contradiction. Suppose the claim to be false, that is
p2 is not weakly uniform persistent. Then lim sup

t→∞
p2 < ε2 for any ε2 > 0. Then

we have that lim
t→∞ p2 = 0 and from the third equation of (1), lim

t→∞ p1 = 0. This

contradicts the fact that p1 is strongly uniform persistent. As a result, we have that
lim sup
t→∞

p2 > ε2. By Proposition 3.2 in [30], lim sup
t→∞

p2 > ε2 implies lim inf
t→∞ p2 >

ε2. Thus, lim inf
t→∞ p1 > ε1 =⇒ lim inf

t→∞ p2 > ε2. In a similar manner, we can show

that lim inf
t→∞ p2 > ε2 =⇒ lim inf

t→∞ p1 > ε1. This completes the proof.

3 Numerical Studies

In this section, we demonstrate the possible dynamics of model (1). In Example 2, we
illustrate the results of the theorems presented in the previous section. Meanwhile, in
Example 3we show thatmodel (1)may exhibit rich dynamics. This is in stark contrast
to the unstructured predator-prey model developed in [3]. For this model, only stable
equilibria were observed when the nonlinearities are given by the Beverton-Holt
functions (16) [4].

Example 2 In Fig. 1 we illustrate the dynamics of the predator-preymodel (1) under
the conditions stated inTheorems 1 and2. The time-series graphswere obtained using
the functions given in (16) and varying the inherent prey growth rate r0, while keeping
all other parameters fixed at the following values: m = 1, c = 1, s1 = 0.5, s2 =
0.6, γ = 0.5, δ = 1, and b0 = 2. For the simulation presented in Fig. 1a we let
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Fig. 1 Shown are the time series dynamics for the predator-prey model (1) obtained using the non-
linearities given in (16) and various values of r0. Here the solid blue lines are the prey, the dashed red
lines are the juvenile predator, and the dashed-dotted black lines are the adult predator. For all graphs
we use the parameter values m = 1, c = 1, s1 = 0.5, s2 = 0.6, γ = 0.5, δ = 1, and b0 = 2. a
For φ(0) = r0 = 0.5, both the prey and predator go extinct since φ(0) < 1; b For φ(0) = r0 = 1.5,
the prey survives while the predator goes extinct since φ(0) > 1 and Rn̄ = 0.5556 < 1; c For
φ(0) = r0 = 5, both the prey and the predator persist since φ(0) > 1 and Rn̄ = 1.3333 > 1

r0 = 0.5. For this value of r0, we have φ(0) = r0 < 1 and, hence, both the predator
and prey populations go extinct, as discussed in Theorem 1. For the simulation
presented in Fig. 1b we let φ(0) = r0 = 1.5. Here we observe that the prey survives
but the predator population goes extinct, as stated in Theorem 2. Finally, in Fig. 1c
we use φ(0) = r0 = 5 resulting in both the prey and predator populations persisting,
as concluded in Theorem 5. Here we observe a stable interior equilibrium.

Example 3 (Rich dynamics resulting from predator structure)
We generate bifurcation diagrams for model (1) using the nonlinearities given in

(16) along with the following four sets of parameter values:

(i) r0 = 5,m = 1.1, c = 1, s1 = 0.95, γ = 0.5, δ = 1.1, and b0 = 2,
(ii) r0 = 5,m = 0.1, c = 1, s1 = 0.5, γ = 0.5, δ = 0.1, and b0 = 2,
(iii) r0 = 5,m = 0.1, c = 1, s1 = 0.95, γ = 0.5, δ = 0.1, and b0 = 2,
(iv) r0 = 5,m = 0.1, c = 1, s1 = 0.95, γ = 1, δ = 0.1, and b0 = 2.

In Fig. 2, we give bifurcation diagrams for model (1) with respect to the parameter
value s2. Each row was obtained using the corresponding set of parameters listed
above. To generate these graphs, for each value of s2 running from s2 = 0 to s2 = 1
with a step-size of 0.001, we ran the model for 10000 iterations and plotted the last
200 data points for each of n, p1, and p2 against the corresponding s2 values.

For the parameter values in (i), we observe stable equilibria for all values of s2
(shown in Fig. 2a–c). On the other hand, for the parameter values in (ii) and (iii), the
system shows chaotic behavior (as was verified through calculation of the Lyapunov
exponent, not shown). We note that the only parameter that differs in these two
parameter sets is s1, with s1 = 0.5 for (ii) (shown in Fig. 2d–f) and s1 = 0.95 for
(iii) (shown in Fig. 2d–f). These graphs show that increasing the juvenile predator
survival may cause the chaotic region to shift left, resulting in chaotic behavior for
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Fig. 2 Shown are the bifurcation diagrams for the prey (first column), the juvenile predator (second
column), and the adult predator (third column) using the sets of parameter values listed in Example
3. Figures a–c use the parameters listed in (i); Figures d–f use the parameters listed in (ii); Figures
g–i use the parameters listed in (iii); and Figures j–l use the parameters listed in (iv)

smaller values of s2. Finally, the system exhibits rich dynamics even when s2 = 0 if
γ = 1. This corresponds to the case where juvenile predators mature after one time
step (shown in Fig. 2j–l).
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4 Conclusion

We investigated the dynamics of a discrete-time predator-prey model with stage-
structure in the predator. In this model, we assumed that the predator population
consists of a juvenile and an adult stage, with only the adult stage consuming the
prey population. We established the existence and global stability of the boundary
equilibria of this model in Theorems 1 and 2. The conditions for the existence of a
unique interior equilibrium are given in Theorem 3. These conditions are also the
same conditions for the persistence of the prey and predator populations, which is
shown in Theorem 5. The conditions in these theorems depend on two quantities:
the inherent growth rate of the prey φ(0) and the invasion net reproductive number
of the predator when the prey is at its predator-free equilibrium density Rn̄ . These
quantities are defined in terms of general non-linear functions, as given by the set X .

While we proved that the interior equilibrium is locally asymptotically stable
when Rn̄ � 1, it remains an open problem to determine the extent of the stability
of the interior equilibrium. Though it was shown for the case of an unstructured
predator population that, given a certain restriction on the nonlinearity f , the interior
equilibrium is always stable when it exists [3], numerical simulations show that the
interior equilibrium of model (1) may be unstable in some parameter ranges. In fact,
numerical simulations of this simple discrete-time model have revealed rich dynam-
ics. In Example 3, we show that model (1) may have stable equilibria or may exhibit
chaotic dynamics depending on the choice of parameter values. For our particular
examples, these different scenarios were obtained by varying the parameters s1 and
γ. In particular, increased ranges of chaotic dynamics were observed when either of
these values were increased, which corresponds to increasing Rn̄ .

The investigations in this paper contribute to the understanding of how stage-
structure may influence predator-prey interactions. In particular, we observe that
stage-structure may introduce complicated dynamics that are not observed for
unstructured predator and prey populations. However, this model has a number of
simplifying assumptions. In particular, we assumed that prey consumption is only
dependent on the adult predator and we did not explicitly consider juvenile con-
sumption of resources. Natural extensions of this model would be to assume that
both juvenile and adult predators consume the prey or that adults and juveniles have
two distinct prey populations. It is also of interest to consider how prey evolution, as
considered in [3], may impact model dynamics. In future work, we will address these
issues in order to gain a better understanding of the intriguing nature of interacting
species.
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Techniques on Solving Systems
of Nonlinear Difference Equations

JERICO B. BACANI and Julius Fergy T. Rabago

Abstract This paper provides alternative techniques on solving some systems of dif-
ference equations. These techniques are analytical and much explanatory in nature
as compared to methods used in existing literatures. We applied these methods par-
ticularly to the systems studied by Touafek in his paper Touafek (Iran JMath Sci Info
9(2): 303–305, 2014, [33]). We found out that these strategies can be used also in
solving other systems that are closely related to our work. Interestingly, some of the
systems are found to posses closed-form solutions that consist of intriguing integer
sequences, such as those found in nature and polyenoids.

Keywords Difference equations · Systems of difference equations · Closed-form
solutions

1 Introduction

1.1 Background and Motivation

Let I be a subset of the set of all real numbersR and f : I k+1 → I be a continuously
differentiable function. Any equation of the form given by

xn+1 = f (xn, xn−1, . . . , xn−k), n ∈ N0 := N ∪ {0}, (1)

is called a difference equation of order k + 1—a specific type of recurrence rela-
tion. It is known that for every set of initial conditions {xn}0n=−k ⊂ I , the difference
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Eq. (1) has a unique solution {xn}∞n=−k := {xn}∞−k (cf. [15]). Some well-known differ-
ence equations such as the Fibonacci sequences [16, 37] were originally discovered
to model population dynamics. In present times, difference equations are fundamen-
tally important in various fields of mathematics and related sciences such as physics,
probability theory, biology, ecology, epidemiology, etc. They are used extensively in
both theoretical and empirical economics [29]. These equations are actually discrete
analogues of differential equations and are used in solving their continuous ‘coun-
terparts’ numerically. Difference equations also have great importance in analysis
of algorithms [30] and have valuable applications in digital signal processing [22].
For more applications of difference equations in physical, life and natural sciences,
we refer the readers to the monograph of Jagerman [14], the text of Kulenović and
Ladas [17], and books ofMickens [20] and Sharkovsky [31]. For a good introduction
about theory on difference equations, we recommend a book by Elaydi [6].

For the past few years, difference equations have attracted the attention of many
researchers. We have witnessed a rapid growth in the number of papers published
dealingwith these types of equations.One of the hot topics that gainsmuch interest on
this field is the problemof finding the closed-form solutions of some solvable systems
of nonlinear difference equations. This is advantageous on our part as researchers
for if we know the solution form, we can examine easily and predict the dynamical
behavior of such systems.Wecan also easily understand the concepts of boundedness,
asymptoticity and periodicity of the solutions.

In terms of solving linear difference equations, various methods can readily be
found in existing literatures. In [1], for instance, several methods have been presented
in solving special linear recurrence equations related to Fibonacci, Pell, Jacobsthal
and Balancing number sequences, but there are still no general methods available
for solving nonlinear types of difference equations. Also, as far as we know, not so
much effort has been done to provide readers analytical methods in solving systems
of difference equations. Nevertheless, the method of mathematical induction is usu-
ally used by most experts to establish the solution forms of these solvable systems of
difference equations (cf. [7–9, 33–36] and the references cited therein). We empha-
size, however, that this method has some disadvantages. For instance, it does not give
much detail on how could one derive analytically the solution form of a particular
system of difference equations. Meanwhile, Rabago [23, 27, 28] was able to study
intensively several systems of nonlinear difference equations by reducing them to
linear types through appropriate transformations. In fact, various techniques were
also devised to solve several nonlinear difference equations whose solutions were
expressible in closed-forms (see, e.g., [2, 11, 24, 28]), providing clear explanations
on some existing results that were first justified only through the induction principle
(see [25, 26] for instance).

In [3], Brand was able to find the solution form of the Riccati difference equation

xn+1 = a + bxn
c + dxn

, n ∈ N0,
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through the transformation xn = yn − d/c. He examined completely its limiting
properties and obtained an interesting result related to continued fractions by using
the transformation yn = zn+1/zn . The same problem appeared and was considered
by Stevic [32]. In [13], Iricanin and Liu described in a simpler and more elegant way
the behavior of positive solutions of the higher-order difference equations

xn = cxn−pxn−p−q

xn−q
, n ∈ N0, (2)

where p, q ∈ N and c > 0. The method employed by Iricanin and Liu to investigate
equation (2) uses some elementary properties of logarithms. This approach was
discovered independently byRabago andwas applied in [23, 28] in examining similar
problems. Moreover, this approach is found to be effective in dealing with such types
of problems, especially in determining the periodicity of solutions of some systems
of difference equations (cf. [23]).

In this work we revisit some systems of nonlinear difference equations which
were previously studied by Touafek [33]. This time, we use alternative methods in
deriving the solution forms of these systems of equations. One technique that we
find very powerful in addressing this problem is the so-called method of differences,
also known as the method of telescoping sums. This method simplifies the sum∑N

n=1{an − an−1}, where {an}N1 is some number sequence. More precisely, given a
number sequence {an}N1 , we get the identity

N∑

n=1

{an − an−1} = aN − a0.

through ‘telescoping’. As we shall see in our discussion, this method works perfectly
in determining the solution form of the following system of difference equations

xn+1 = yn−3ynxn−2

yn−3xn−2 ± yn−3yn ± ynxn−2
, yn+1 = yn−2xn−1

2yn−2 ± xn−1
, n ∈ N0, (S)

when reduced to linear types via appropriate transformations.
Now, in relation to our set objective, that is, to find the closed-form solution of

system (S), the following results and notations are needed.

Definition 1 (Periodicity) A sequence {xn}∞−k is said to be periodic with period p if
xn+p = xn for every n ≥ −k.

Definition 2 ([10]) A solution {xn}∞−k of (1) is called eventually periodic with period
p if there exists an integer N ≥ −k such that {xn}∞N is periodic with period p; that
is, xn+p = xn , for all n ≥ N .

The rest of the paper is structured as follows. In Sect. 2, we present some pre-
liminaries which are requisites to our main results presented in Sect. 3. Results are
accompanied by illustrations. Then, in Sect. 4, we end our paper with a summary of
discussion, plus suggested works for future investigations.
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2 Preliminary Results

2.1 Review of Integer Sequences

In the following discussion, we present two integer sequences that are essential to
our results.
Sequence No. A000045. The widely-studied Fibonacci sequence { fn}∞0 satisfies the
second-order linear recurrence equation fn+1 = fn + fn−1,with initial values f0 = 0
and f1 = 1. Its first few terms, starting with n = 0, are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
. . . (cf. Sequence No. A000045 in O.E.I.S [21]). This sequence can also be extended
into negative indexes. More precisely, one can generate the sequence { f−n}∞1 —
the Fibonacci numbers with negative indexes—using the relation f−n = (−1)n+1 fn .
Hence, one easily finds that f−1 = 1, f−2 = −1, f−3 = 2, f−4 = −3 and so on. This
number sequence is also known to posses many exciting properties (see, e.g., [5, 16,
37, 38]) and has been generalized in variousways (see, e.g., Larcombe’s survey paper
[18] about Horadam sequences—a second-order linear recurrence sequence named
after Horadam [12] for his extensive study of these numbers; and the interesting
paper of Lucas [19]). It’s Binet formula is given by

fn = φn − (1 − φ)n√
5

, n ∈ N0,

where φ denotes the well-known golden ratio [5, 37]. In Sect. 3, we shall see how
the solution form of a particular case of system (S) can be expressed in terms of the
Fibonacci numbers. In this regard, the following lemma will be useful.

Lemma 1 Let { fn}∞0 denote the Fibonacci sequence and {gn}∞0 be an integer
sequence generating the number series

0, 1, 4, 17, 72, 305, 1292, 5473, . . . , gn+1 = 4gn + gn−1, . . . .

Then, for all n ∈ N0, the following identities hold.

(i) gn+1 − gn = f3n+1,

(ii) gn+1 + gn = 1

2
{3gn+1 + 2gn + gn−1} = f3n+2,

(iii) 2gn+1 = 1

2
{gn+2 − gn} = f3n+3.

Proof Consider the recurrence equation given by gn+1 = 4gn + gn−1, with initial
values g0 = 0 and g1 = 1. We can find the Binet’s form for gn as follows: Using the
ansatz gn = λn (n ∈ N0), we obtain the quadratic equation P(λ) = λ2 − 4λ − 1 = 0.
Since P(λ) = 0 has two distinct roots λ1,2 = 2 ± √

5, we can express gn as

gn = c1λ
n
1 + c2λ

n
2, n ∈ N0,
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where c1 and c2 can be computed by solving the system of equations given by

c1 + c1 = 0 and λ1c1 + λ2c2 = 1.

Hence, we have

∀n ∈ N0 : gn = (2 + √
5)n − (2 − √

5)n

2
√
5

.

One can check that, indeed,

{gn}∞0 =
{

(2 + √
5)n − (2 − √

5)n

2
√
5

}∞

0

= {0, 1, 4, 17, 72, 305, 1292, 5473, . . .}.

Identity (i). For all n ∈ N0, we have, using the relations φ3 = 2 + √
5 and (1 −

φ)3 = 2 − √
5,

1

2
{gn+1 − gn} = 1

2

{
(2 + √

5)n+1 − (2 − √
5)n+1

2
√
5

− (2 + √
5)n − (2 − √

5)n

2
√
5

}

= φ3nφ − (1 − φ)3n(1 − φ)√
5

= f3n+1.

Identity (ii). Furthermore, with the identities φ2 = 3 + √
5 and (1 − φ)2 = 3 −√

5, we have

gn+1 + gn = (2 + √
5)n+1 − (2 − √

5)n+1

2
√
5

+ (2 + √
5)n − (2 − √

5)n

2
√
5

= φ3nφ2 − (1 − φ)3n(1 − φ)2√
5

= f3n+2.

Identity (iii). Noting that φ3 = 2 + √
5 and (1 − φ)3 = 2 − √

5,

2gn+1 = 2

{
(2 + √

5)n+1 − (2 − √
5)n+1

2
√
5

}

= φ3n − (1 − φ)3n√
5

= f3n .

This proves the lemma.

Remark 1 The number sequence {gn}∞0 is, in fact, the number sequence numbered
as Sequence No. A001076 in O.E.I.S. [21].

Sequence No. A000912. Consider the number sequence {un(u0, u1)}∞0 defined by
the recurrence relation, given its real initial values u0 and u1 (not simultaneously
zero),
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un+1 = 2un + 3un−1, n ≥ 1. (3)

Its first few terms, with u0 and u1 set to 0 and 2, respectively, are given by, starting
with n = 2,

u2 = 4, u3 = 14, u4 = 40, u5 = 132, u6 = 424, u7 = 1430, u8 = 4848, . . .

With the usual approach in solving linear recurrence equations, the corresponding
Binet’s formula of un is easily established as follows: Using the ansatz un = λn , n ∈
N0, in Eq. (3) we get the quadratic equation P(λ) = λ2 − 2λ − 3 = 0, whose roots
are given by λ1 = 3 and λ2 = −1. Since λ1 
= λ2, then un can be written in the form
un = c1λn

1 + c2λ2
2, where c1 and c2 are computable constants. Indeed, c1 + c2 = u0

and 3c1 − c2 = u1. Computing for the unknowns c1 and c2, we get c1 = 1
4 (u0 + u1)

and c2 = 1
4 (3u0 − u1), respectively. Thus, the n-th term of the sequence {un(0, 2)}∞0

can be found explicitly using the formula

un = 1

2

{
3n − (−1)n

}
, n ∈ N0. (4)

Interestingly, the sequence {un(0, 2)}∞0 = {0, 2, 4, 14, 40, 132, 424, 1430, 4848, . . .}
(with 1 and 0 replaced by 0 and 2, respectively, as its first two values) appears to be
Sequence No. A000912 in O.E.I.S. Apparently, this sequence, whose n-th term is
actually given by the formula

n-th term of Seq. A00912 =
⎧
⎨

⎩

C(n), if n is even,

C(n) − C( n−1
2 ), if n is odd,

where

C(n) = 1

n + 1

(
2n

n

)

,

denoted as the n-th Catalan number (cf. Sequence No. A000108 in O.E.I.S.), seems
to have some sorts of connection with the number of bond-rooted polyenoids with
2n − 1 edges (cf. [4]). Consequently, with the above relations, we are able to describe
a new formula for the sequence A000912 in O.E.I.S. More precisely, we have the
following proposition.

Proposition 1 For all n ∈ N0, we have

n-th term of Seq. A00912 =

⎧
⎪⎨

⎪⎩

1, if n = 0,

1

2

{
3n−1 − (−1)n−1

}
, otherwise.
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3 Main Results

Let n ∈ N0 and consider the following systems of nonlinear difference equations:

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, (S.1)

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, (S.2)

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, (S.3)

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, (S.4)

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, (S.5)

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, (S.6)

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, (S.7)

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, (S.8)

with real nonzero initial values x−2, x−1, x0, y−3, y−2, y−1 and y0.
In this study, we analyze the forms and behaviors of the well-defined solutions

of the above systems by taking into account the following substitutions on the phase
variables:

wn = 1

xn
and zn = 1

yn
, for all n ∈ N0. (5)

Remark 2 By well-defined solutions of systems (S.1)–(S.8), we mean a solution
generated by the set of initial points {xn}0−2 and {yn}0−3 taken outside the systems’
respective singularity sets. An initial set of points {xn}0−2 and {yn}0−3 that generates
a solution {(xn, yn)}∞1 of equation (S) with at least one of the denominators equal to
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zero for some least index n leads to an undefined value for xn+1 and/or yn+1. We call
this set of all such initial points the singularity set of equations (S). The singularity
set is also called the “forbidden set” in the literature (cf. [10, 17]).

Remark 3 We mention that four out of the eight systems above have already been
studied by Touafek in [33]. Particularly, Touafek established the solution forms of
systems (S.1), (S.4), (S.5) and (S.8) through induction principle. In this paper, as
alluded in the Introduction, we will use a different approach in establishing the
solution forms of these systems.

3.1 Solution Form of System (S.1)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, n ∈ N0.

Using the substitution defined in (5), and after some transpositions, we get the fol-
lowing transformed system of equations:

∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn + wn−2 + zn−3 ⇐⇒ zn + zn−3 = wn+1 − wn−2,

zn+1 = 2wn−1 + zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 − zn−2}.

Eliminating the first variable yields the following one-dimensional difference equa-
tion zn+3 = 4zn + zn−3, for all n ∈ N0. Replacing n by 3n − i , where i = 0, 1, 2,
and then iterating the right hand side of the resulting equation, we get

∀n ∈ N0 : z3(n+1)−i = 4z3n−i + z3(n−1)−i

= 4
{
4z3(n−1)−i + z3(n−2)−i

} + z3(n−1)−i

= 17z3(n−1)+i + 4z3(n−2)−i

= 17
{
4z3(n−2)−i + z3(n−3)−i

} + 4z3(n−2)−i

= 72z3n−i + 17z3(n−1)−i

...

= gn+1z3−i + gnz−i ,

where {gn}∞0 = {0, 1, 4, 17, 72, 305, 1292, 5473, . . .} is Sequence No. A001076 in
O.E.I.S. [21]). Now, referring to equation z3(n+1)−i = gn+1z3−i + gnz−i , we have, in
view of the substitution defined in (5) and the expression for y3−i computed using
the original system (S.1),



Techniques on Solving Systems of Nonlinear Difference Equations 173

∀n ∈ N0 : y3(n+1)−i =
{
gn+1

y3−i
+ gn

y−i

}−1

=
{
gn+1(2y−i + x1−i )

y−i x1−i
+ gn

y−i

}−1

= y−i x1−i

2gn+1y−i + {gn+1 + gn}x1−i
, i = 0, 1, 2.

For the first few terms of the solution {yn}∞1 , one can check that the formula works
well for i = 1, 2. However, for i = 0, we find that the solution form for y3n has an
x1 term. Hence, the exact form for y3n must be given by, in view of the expression
for x1 computed using the original system,

∀n ∈ N0 : y3(n+1) =
{
2gn+1

x1
+ gn+1 + gn

y0

}−1

=
{
2gn+1(y−3x−2 + y−3y0 + y0x−2)

y−3y0x−2
+ gn+1 + gn

y0

}−1

= y−3y0x−2

{3gn+1 + gn}y−3x−2 + 2gn+1y−3y0 + 2gn+1y0x−2
.

Now, with the formula for yn at hand, we can compute for the solution form of xn
through the equationwn−1 = 1

2 {zn+1 − zn−2}. To do this, we replace n by 3n + 2 − i
where i = 0, 1, 2 and then use the substitution defined in (5) to obtain

∀n ∈ N0 : x3n+1−i = 2

{
1

y3(n+1)−i
− 1

y3n−i

}−1

.

For i = 0, we have

∀n ∈ N0 : x3n+1 = 2

[ {3gn+1 + gn}y−3x−2 + 2gn+1y−3y0 + 2gn+1y0x−2

y−3y0x−2

− {3gn + gn−1}y−3x−2 + 2gn y−3y0 + 2gn y0x−2

y−3y0x−2

]−1

= 2

[ {3gn+1 − 2gn − gn−1}y−3x−2

y−3y0x−2

]−1

+ 2

[
2{gn+1 − gn}y−3y0 + 2{gn+1 − gn}y0x−2

y−3y0x−2

]−1

.

Meanwhile, for i = 1, 2, we have
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∀n ∈ N0 : x3n+1−i = 2

[
1

y3(n+1)−i
− 1

y3n−i

]−1

= 2

[
2gn+1y−i + {gn+1 + gn}x1−i

y−i x1−i

− 2gn y−i + {gn + gn−1}x1−i

y−i x1−i

]−1

= y−i x1−i

{gn+1 − gn}y−i + 1
2 {gn+1 − gn−1}x1−i

.

Now, in reference to Lemma 1, we finally have the following theorem.

Theorem 1 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that y−1/x0, y−2/

y−1 /∈ {− f3n/ f3n+1}∞1 and (y−3y0 + y0x−2)/y−3x−2 /∈ {− f3n+2/ f3n+1}∞0 . Then,
every solution {(xn, yn)}∞1 of system (S.1) takes the form

x3n+1−i =

⎧
⎪⎪⎨

⎪⎪⎩

y−3y0x−2

f3n+2y−3x−2 + f3n+1y−3y0 + f3n+1y0x−2
, for i = 0,

y−i x1−i

f3n+1y−i + f3nx1−i
, for i = 1, 2,

and

y3(n+1)−i =

⎧
⎪⎪⎨

⎪⎪⎩

y−3y0x−2

f3n+4y−3x−2 + f3n+3y−3y0 + f3n+3y0x−2
, for i = 0,

y−i x1−i

f3n+3y−i + f3n+2x1−i
, for i = 1, 2,

where { fn}∞0 is the Fibonacci sequence.

Note that the Fibonacci sequence grows to infinity as n increases without bound.
As a consequence and in view of the previous theorem, we see that every solution of
system (S.1) converges to zero as n goes to infinity. The following example illustrates
this observation.

Example 1 Figure1 illustrates the long term dynamics of system (S.1) with random
initial values taken from the unit interval [0,1].

3.2 Solution Form of System (S.2)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, n ∈ N0.
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Fig. 1 Behavior of a particular solution of system (S.1)

Using the substitution defined in (5), we can transform the above system into

∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn − wn−2 + zn−3 ⇐⇒ zn + zn−3 = wn+1 + wn−2,

zn+1 = 2wn−1 + zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 − zn−2}.

Hence, zn + zn−3 = wn+1 + wn−2 = 1
2 {zn+3 − zn} + 1

2 {zn − zn−3}= 1
2 {zn+3 − zn−3}.

Therefore, 2zn + 2zn−3 = zn+3 − zn−3 or equivalently, zn+3 + zn = 3{zn + zn−3}.
Putting vn := zn + zn−3, we get vn+3 = 3vn . Replacing n by 3n − i , where i =
0, 1, 2, and then iterating the right hand side (RHS) of the resulting equation leads
to

∀n ∈ N0 : v3(n+1)−i = 3nv3−i , i = 0, 1, 2.

This in turn will give us the equation v3(n+1)−i = z3(n+1)−i + z3n−i which can be
rewritten as, after replacing n by j , z3( j+1)−i + z3 j−i = 3 jv3−i . By multiplying both
sides of the latter equation by (−1) j and then summing it up from 0 to n − 1, we get

(−1)n−1z3n−i + z−i =
n−1∑

j=0

(−1) j {z3( j+1)−i + z3 j−i } =
n−1∑

j=0

(−3) jv3−i

= v3−i

{
(−3)n − 1

−4

}

= (−1)n−1

2

{
3n − (−1)n

2

}

v3−i .

The above relation can be rearranged to get
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∀n ∈ N0 : z3n−i = (−1)nz−i + 1

2
unv3−i , i = 0, 1, 2.

Hence, in reference to Eq. (5) together with the definition of vn , we have

∀n ∈ N0 : y3n−i = 2y3−i y−i

2(−1)n y3−i + un(y3−i + y−i )
, i = 0, 1, 2.

Since the RHS of the above equation has the term y3−i , we further simplify it as
follows. Noting that y3−i = y−i x1−i/(2y−i + x1−i ) for all i = 0, 1, 2, we have

∀n ∈ N0 : y3n−i = 2y−i

{2(−1)n + un} + y−i un

{
2y−i + x1−i

y−i x1−i

}

= y−i x1−i

un y−i + {un + (−1)n}x1−i
, i = 0, 1, 2.

Notice that the RHS of the above equation depends on its initial values except when
i = 0. In this case, however, we can express y3n as follows:

∀n ∈ N0 : y3n = y0
{un + (−1)n} + un y0/x1

= y0

{un + (−1)n} + un y0

{
y−3x−2 − y−3y0 + y0x−2

y−3y0x−2

}

= y−3y0x−2

{un + (−1)n}y−3x−2 + un {y−3x−2 − y−3y0 + y0x−2}
= y−3y0x−2

{2un + (−1)n}y−3x−2 − un y−3y0 + un y0x−2
, i = 0, 1, 2.

Now, on the other hand, by applying the same approach to wn+1 + wn−2

= zn + zn−3, we get

(−1)n−1w3n+1−i + w1−i =
n−1∑

j=0

(−1) j {w3( j+1)+1−i + w3 j+1−i }

=
n−1∑

j=0

(−1) j {z3( j+1)−i + z3 j−i }

= (−1)n−1z3n−i + z−i .

Using our result for the phase variable wn , we get

∀n ∈ N0 : w3n+1−i = (−1)nw1−i + 1

2
unv3−i , i = 0, 1, 2.
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In view of the substitution (5), we obtain

∀n ∈ N0 : x3n+1−i = 2y3−i y−i x1−i

2(−1)n y3−i y−i + un(y3−i + y−i )x1−i
, i = 0, 1, 2.

The above expression can be further simplified, as we did in our previous result, in
the following manner

∀n ∈ N0 : x3n+1−i = 2y−i x1−i

{2(−1)n y−i + unx1−i } + un y−i x1−i/y3−i
,

= 2y−i x1−i

{2(−1)n y−i + unx1−i } + un y−i x1−i

{
2y−i + x1−i

y−i x1−i

} ,

= y−i x1−i

{un + (−1)n} y−i + unx1−i
, i = 0, 1, 2,

where at i = 0, we have, for all n ∈ N0

x3n+1 = y0
un + {un + (−1)n} y0/x1

= y−3y0x−2

{2un + (−1)n} y−3x−2 − {un + (−1)n} y−3y0 + {un + (−1)n} y0x−2
.

The following theorem summarizes our previous discussion.

Theorem 2 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that they satisfy
the conditions that

y−1

x0
,
y−2

y−1
/∈

({

− un
un + (−1)n

}∞

1

∪
{

−un + (−1)n

un

}∞

1

)

and −y−3y0 + y0x−2

y−3x−2
/∈

({

− 3n

un + (−1)n

}∞

0

∪
{

−3n

un

}∞

1

)

.

Then, every solution {(xn, yn)}∞1 of system (S.2) takes the form

x3n+1−i =

⎧
⎪⎪⎨

⎪⎪⎩

y−3y0x−2

3n y−3x−2 − {un + (−1)n} y−3y0 + {un + (−1)n} y0x−2
, for i = 0

y−i x1−i

{un + (−1)n} y−i + unx1−i
for i = 1, 2,

and
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Fig. 2 Behavior of a particular solution of system (S.2)

y3n−i =

⎧
⎪⎪⎨

⎪⎪⎩

y−3y0x−2

3n y−3x−2 − un y−3y0 + un y0x−2
, for i = 0

y−i x1−i

un y−i + {un + (−1)n}x1−i
for i = 1, 2,

where {un}∞0 is the sequence defined in Proposition 1.

Note that the sequence {un}∞0 grows indefinitely as n increases without bound.
Hence, it follows immediately from the above theorem that every solution (xn, yn)
of system (S.3) goes to (0, 0) as n → ∞.

For confirming the above statement we provide the following example.

Example 2 Figure2 illustrates the long term dynamics of system (S.2) with random
initial values taken from the unit interval [0,1].

3.3 Solution Form of System (S.3)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, n ∈ N0.

With the substitution (5), the above system can be written equivalently as follows
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∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn + wn−2 − zn−3 ⇐⇒ zn − zn−3 = wn+1 − wn−2,

zn+1 = 2wn−1 + zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 − zn−2}.

Eliminating the phase variable zn yields 2wn−2 = wn+1 − wn−2, which is equivalent
to wn+1 = 3wn−2. Replacing n by 3n − 1 − i where i = 0, 1, 2 and then iterating
the RHS of this equation, we obtain

∀n ∈ N0 : w3n−i = 3nw−i , i = 0, 1, 2,

or equivalently, with reference to Eq. (5),

∀n ∈ N0 : x3n−i =
(
1

3

)n

x−i , i = 0, 1, 2.

Notice that, at n = 1 and i = 2, we have x1 = 1
3 x−2 which obviously differs from

the expression

x1 = y−3y0x−2

y−3x−2 + y−3y0 − y0x−2

obtained from theoriginal system (S.3). These twoexpressions are, in fact, equivalent.
To see this, we use the second equation in system (S.3). That is, we have, at n = −1,

y0 = y−3x−2

2y−3 + x−2
⇐⇒ 2y−3y0 = y−3x−2 − y0x−2

⇐⇒ 3y−3y0 = y−3x−2 + y−3y0 − y0x−2

⇐⇒ y−3y0
y−3x−2 + y−3y0 − y0x−2

= 1

3

⇐⇒ 1

3
x−2 = y−3y0x−2

y−3x−2 + y−3y0 − y0x−2
. (6)

Furthermore, we find that the exact solution form for xn is given by

∀n ∈ N0 : x3n−i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

3

)n

x−i , for i = 0, 1,

(
1

3

)n−1 {
y−3y0x−2

y−3x−2 + y−3y0 − y0x−2

}

, for i = 2.

Now, on the other hand, since zn+1 = 2wn−1 + zn−2, then, after replacing n by 3n +
1 − i , we have

∀n ∈ N0 : z3(n+1)−i−1 = 2 · 3nw−i + z3n−i−1, i = 0, 1.

Again, iterating the RHS of the above equation, we get



180 J. B. Bacani and J. F. T. Rabago

∀n ∈ N0 : z3(n+1)−1−i = 2 · 3nw−i + z3n−i−1

= 2 · 3nw−i + 2 · 3n−1w−i + z3(n−1)−i−1

= 2 · 3nw−i + 2 · 3n−1w−i + 2 · 3n−2w−i + z3(n−2)−i−1

...

= 2 · 3nw−i + 2 · 3n−1w−i + · · · + 2w−i + z−i−1

= z−i−1 + 2w−i

{
3n+1 − 1

2

}

, i = 0, 1.

Hence, using the substitution defined in (5) and upon replacing n + 1 by n, the above
relation can be written equivalently in the form

∀n ∈ N0 : y3n−1−i = y−1−i x−i

2
{
1
2 (3

n − 1)
}
y−1−i + x−i

, i = 0, 1.

Meanwhile, to obtain for the form of solution for y3n , we proceed as follows. Note
that, in a similar argument as above, we have

∀n ∈ N0 : z3(n+1) = 2 · 3nw1 + z3n = z0 + (3n − 1)w1.

Hence, in view of the substitution defined in (5) and the expression for x1, we have

∀n ∈ N0 : y3n =
{
1

y0
+ (3n − 1)

x1

}−1

=
{
1

y0
+ (3n − 1)(y−3x−2 + y−3y0 − y0x−2)

y−3y0x−2

}−1

= y−3y0x−2

3n y−3x−2 + (3n − 1)y−3y0 − (3n − 1)y0x−2
.

Combining all of our results exhibited above, we arrive at the following theorem.

Theorem 3 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that they satisfy the
conditions that y−3x−2 + y−3y0 − y0x−2 
= 0, y−2, x−1, y−1/x0 /∈ {−1/2tn}∞1 and
(y−3y0 − y0x−2)/y−3x−2 /∈ {−(2tn + 1)/2tn}∞1 . Then, every solution {(xn, yn)}∞1 of
system (S.3) takes the form

∀n ∈ N0 : x3n−i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

3

)n

x−i , for i = 0, 1,

(
1

3

)n−1 {
y−3y0x−2

y−3x−2 + y−3y0 − y0x−2

}

, for i = 2.

and
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Fig. 3 Behavior of a particular solution of system (S.3)

∀n ∈ N0 : y3n−i =

⎧
⎪⎪⎨

⎪⎪⎩

y−i x1−i

2tn y−i + x1−i
, for i = 2, 1,

y−3y0x−2

{2tn + 1}y−3x−2 + 2tn y−3y0 − 2tn y0x−2
, for i = 0,

,

where {tn}∞0 := { 12 (3n − 1)}∞0 = {0, 1, 4, 13, 40, 121, 364, 1093, 3280, . . .}.
Remark 4 We emphasize that the same approach employed in the previous section
can be used to formulate the solution form for the phase variable yn . However, we
intended to use a different method here to give the readers a different way to derive
the solution form.

It is evident from Theorem 3 that (xn, yn) → (0, 0) as n → ∞ (see example
below).

Example 3 Figure 3 illustrates the long term dynamics of system (S.3) with random
initial values from [0, 1].

3.4 Solution Form of System (S.4)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, n ∈ N0.

Using the substitution (5), the above equations are transformed into
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∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn + wn−2 + zn−3 ⇐⇒ zn + zn−3 = wn+1 − wn−2,

zn+1 = 2wn−1 − zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 + zn−2}.

These relations imply that wn+1 = 3wn−2. In reference to the previous case, we
readily have w3n−i = 3nw−i , for each i = 0, 1, 2, for all n ∈ N0. Therefore, we have

∀n ∈ N0 : x3n−i =
(
1

3

)n

x−i , i = 0, 1, 2.

Obviously, the above formula works well for i = 0, 1. However, for i = 2, the RHS
of the equation seems to be different from the form of solution, for instance of x1,
obtained from the original system (S.4). To fix this problem, we must compute for
the exact form of x1 from the original system. That is, we have

x1 = y−3y0x−2

y−3x−2 + y−3y0 + y0x−2
.

Hence, the exact solution form for xn is given by

∀n ∈ N0 : x3n−i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

3

)n {
y−3y0x−2

y−3x−2 + y−3y0 + y0x−2

}

, for i = 2,

(
1

3

)n

x−i , for i = 1, 0.

Now, consider the equation zn+1 + zn−2 = 2wn−1. Note that the homogeneous
equation zn+1 = −zn−2 has the solution z3n−i = (−1)nz−i , where i = 0, 1, 2, for all
n ∈ N0. To see this, we can simply iterate theRHSof the equation z3n−i = −z3(n−1)−i

as follows: z3n−i = −z3(n−1)−i = (−1)2z3(n−2)−i = (−1)3z3(n−3)−i = · · · =
(−1)nz−i . Meanwhile, the non-homogeneous case zn+1 + zn−2 = 2wn−1 can be
transformed, upon replacing n by 3n − i + 1 as in the previous case, as follows:

z3(n+1)−1−i = 2w3n−i − z3n−i−1 = · · · = −z−i−1 + 2w−i

n∑

j=0

(−3) j , i = 0, 1, 2.

This implies that, upon replacing n + 1 by n together with the substitution (5) and
Proposition 1, we have

∀n ∈ N0 : y3n−i−1 =
[

− 1

y−i−1
+ (−1)n−1

x−i

{
3n − (−1)n

2

}]−1

= y−1−i x−i

y−i−1un + (−1)nx−i
, i = 0, 1, 2.
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It can be verified that the formula above gives exact values for i = 1, 2; however,
a different form will be obtained for y3n . Even so, the solution form for y3n can be
established in a similar fashion as above. Note that

z3n = 2w3n−2 − z3n−3 = · · · = −z0 + 2w1

n−1∑

j=0

(−3) j

= −z0 + (−1)n−1w1

{
3n − (−1)n

2

}

,

which, in turn, can be rewritten as, upon using the substitution defined in (5) and in
reference to Proposition 1,

y3n =
{
un
x1

+ (−1)n

y0

}−1

.

Thus, in view of the form for x1, we finally have

∀n ∈ N0 : y3n =
{
un
x1

+ (−1)n

y0

}−1

=
{
un(y−3x−2 + y−3y0 + y0x−2)

y−3y0x−2
+ (−1)n

y0

}−1

= y−3y0x−2

{un + (−1)n}y−3x−2 + un y−3y0 + un y0x−2
.

In conclusion, we have the following theorem.

Theorem 4 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that they satisfy the
conditions that y−3x−2 + y−3y0 + y0x−2 
= 0, y−2, x−1, y−1/x0 /∈ {−(−1)n/un}∞1
and (y−3y0 + y0x−2)/y−3x−2 /∈ {−[un + (−1)n]/un}∞1 . Then, every solution
{(xn, yn)}∞1 of system (S.4) takes the form

∀n ∈ N0 : x3n−i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1

3

)n {
y−3y0x−2

y−3x−2 + y−3y0 + y0x−2

}

, for i = 2,

(
1

3

)n

x−i , for i = 1, 0,

and

∀n ∈ N0 : y3n−i =

⎧
⎪⎪⎨

⎪⎪⎩

y−i x1−i

y−i un + (−1)nx1−i
, for i = 2, 1,

y−3y0x−2

{un + (−1)n}y−3x−2 + un y−3y0 + un y0x−2
, for i = 0,

where {un}∞0 is the sequence defined in Proposition 1.
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Fig. 4 The long term behavior of a particular solution of system (S.4)

Note that the sequence {(1/3)n}∞0 converges to zero as n → ∞ while {un}∞0
grows indefinitely. Hence, max{xn, yn} → 0 as n → ∞. As an illustration of this
observation, we provide the following example.

Example 4 Figure 4 illustrates a particular plot for the long termdynamics of system
(S.4) with random initial values from [0, 1].

3.5 Solution Form of System (S.5)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 + xn−1
, n ∈ N0.

Using the substitution (5), the above equations are transformed into

∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn − wn−2 − zn−3 ⇐⇒ zn − zn−3 = wn+1 + wn−2,

zn+1 = 2wn−1 + zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 − zn−2}.

Fromabove equations, it follows that 2wn−1 = wn+1 + wn−2 or equivalently,wn+1 =
wn−2. Replacing n by 3n − 1 − i together with Eq. (5), where i = 0, 1, 2, we get

∀n ∈ N0 : x3n−i = x3(n−1)−i ⇐⇒ x3n−i = x−i , i = 0, 1, 2.
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Hence, {xn}∞1 is periodic with period 3. The formula we have obtained above works
well for i = 0, 1. However, for i = 2, we will get the relation x3n−2 = x−2. At n =
1, this equation will give us x1 = x−2, which is inconsistent with the form of x1
obtained from the original system (S.5). This problem, however, can be fixed easily
by computing for x1. Thus, the exact solution form for xn is given as follows:

∀n ∈ N0 : x3n−i =
⎧
⎨

⎩

y−3y0x−2

y−3x−2 − y−3y0 − y0x−2
, for i = 2,

x−i , for i = 1, 0.

On the other hand, going back to the transformed equations, we have zn+1 =
2wn−1 + zn−3. Replacing n by 3n − i − 1 in this equation and then using the relation
w3n−i = w−i , where i = 0, 1, we obtain z3(n+1)−i−1 = 2w−i + z3n−i−1 or equiva-
lently, z3(n+1)−i−1 − z3n−i−1 = 2w−i . Once again, replacing n by j and then sum-
ming up each side of the equation from 0 to n − 1, we get

z3n−i−1 − z−i−1 =
n−1∑

j=0

{
z3( j+1)−i−1 − z3 j−i−1

}

=
n−1∑

j=0

2w−i = 2nw−i , i = 0, 1.

Hence, z3n−i−1 = 2nw−i + z−i−1 for each i = 0, 1, for all n ∈ N0. Thus, using
Eq. (5), we get

∀n ∈ N0 : y3n−i−1 = y−i−1x−i

2ny−i−1 + x−i
, i = 0, 1.

Meanwhile, to find for the solution form for y3n , we replace n by 3 j − 1 in the
equation 2wn−1 = zn+1 − zn−2 and then sum up the resulting equation from 1 to n
in order to get

z3n − z3 =
n∑

j=1

{z3 j − z3( j−1)} = 2
n∑

j=1

w3 j−2.

Using the substitution defined in (5), together with the computed form for x3n−2, we
can rewrite the above equation as follows:

∀n ∈ N0 : 1

y3n
− 1

y0
= 2

n∑

j=1

1

x3 j−2

= 2n(y−3x−2 − y−3y0 − y0x−2)

y−3y0x−2

which, when rearranged, becomes
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∀n ∈ N0 : y3n =
{
2n(y−3x−2 − y−3y0 − y0x−2)

y−3y0x−2
+ 1

y0

}−1

= y−3y0x−2

(2n + 1)y−3x−2 − 2ny−3y0 − 2ny0x−2
.

Our previous discussion proves the following theorem.

Theorem 5 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that they satisfy
the conditions that y−3x−2 − y−3y0 − y0x−2 
= 0, y−2, x−1, y−1/x0 /∈ {−1/2n}∞1
and (y−3y0 + y0x−2)/y−3x−2 /∈ {(2n + 1)/2n}∞1 . Then, every solution {(xn, yn)}∞1
of system (S.5) takes the form

∀n ∈ N0 : x3n−i =
⎧
⎨

⎩

y−3y0x−2

y−3x−2 − y−3y0 − y0x−2
, for i = 2,

x−i , for i = 1, 0,

and

∀n ∈ N0 : y3n−i =

⎧
⎪⎨

⎪⎩

y−i x1−i

2ny−i + x1−i
, for i = 2, 1,

y−3y0x−2

(2n + 1)y−3x−2 − 2ny−3y0 − 2ny0x−2
, for i = 0.

The following result is immediate from the above theorem.

Corollary 1 Let {(xn, yn)}∞1 be a solution of system (S.5). Then, the sequence {xn}∞1
is periodic with period 3 while the sequence {yn}∞1 converges to zero as n increases
without bound.

The following example illustrates the virtue of the previous corollary. Notice that
the solution {xn}∞1 is periodic of period 3 while {yn}∞1 converges to zero as n goes
to infinity.

Example 5 Figure 5 illustrates a particular plot for the long termdynamics of system
(S.5) with random initial values from [0, 1].

3.6 Solution Form of System (S.6)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 + yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, n ∈ N0.

In view of the substitution (5), the above equations are, therefore, equivalent to the
following transformations:
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Fig. 5 The long term behavior of a particular solution of system (S.5)

∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn + wn−2 − zn−3 ⇐⇒ zn − zn−3 = wn+1 − wn−2,

zn+1 = 2wn−1 − zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 + zn−2}.

Clearly, the above equations imply that, upon eliminating the phase variable wn ,
2zn − 2zn−3 = zn+3 − zn−3, which can equivalently be written as zn+3 − zn = zn −
zn−3. Replacing n by 3 j + i and then summing up the resulting equation from 0 to
n, with i = 1, 2, we get

∀n ∈ N0 : z3(n+1)+i − z−i =
n∑

j=0

{z3( j+1)+i − z3 j+i }

=
n∑

j=0

{z3 j+i − z3( j−1)+i }

= z3n+i − z−3+i , i = 1, 2.

Rearranging the resulting equation obtained above, we get the relation z3(n+1)+i −
z3n+i = z−i − z−3+i . Now, replacing n by j and then summing up each side of this
equation from 0 to n, we obtain

∀n ∈ N0 : z3(n+1)+i − zi =
n∑

j=0

{z3( j+1)+i − z3 j+i } =
n∑

j=0

{z−i − z−3+i }

= (n + 1)[z−i − z−3+i ], i = 1, 2.
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Once again, after replacing n + 1 by n, the above equation can be rearranged to
obtain

∀n ∈ N0 : z3n+i = (n + 1)zi − nz−3+i , i = 1, 2.

Therefore, in view of Eq. (5), we have

∀n ∈ N0 : y3n+i = yi y−3+i

(n + 1)y−3+i − nyi
, i = 1, 2. (7)

Observe from the above formula that the RHS is dependent from y1 and y2 for
i = 1, 2, respectively. So, in order to establish the exact expression for the n-th term
solution yn , we need to compute for y1 and y2. Thus, in view of the original system
(S.6), we have, for i = 1, 2,

yi = yi−3xi−2

2yi−3 − xi−2
.

Hence, we now have

∀n ∈ N0 : y3n+i = yi y−3+i

(n + 1)y−3+i − nyi
= 1

n + 1

yi
− n

y−3+i

= 1
(n + 1)(2yi−3 − xi−2)

yi−3xi−2
− n

yi−3

= yi−3xi−2

2(n + 1)yi−3 − (2n + 1)xi−2
, i = 1, 2.

Now, for the terms of the form y3n , we replace n by 3 j on both sides of the equation
zn+3 − zn = zn − zn−3 and then sum up the resulting equation from 1 to n so that we
will have

∀n ∈ N0 : z3(n+1) − z3 =
n∑

j=1

{z3( j+1) − z3 j } =
n∑

j=1

{z3 j − z3( j−1)}

= z3n − z0.

Again, the above equation can be rearranged to obtain z3(n+1) − z3n = z3 − z0, for
all n ∈ N0. Replacing n by j and then summing up the resulting equation from 0 to
n, we get

∀n ∈ N0 : z3(n+1) − z0 =
n∑

j=0

{
z3( j+1) − z3 j

} =
n∑

j=0

{z3 − z0}

= (n + 1)(z3 − z0).
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In reference to the substitution defined in (5), we can rewrite the equation to obtain

∀n ∈ N0 : y3(n+1) =
{
n + 1

y3
− n

y0

}−1

.

Now, from the original system of equations (S.6), we can find 1/y3 as follows:

1

y3
= 2y0 − x1

y0x1
= 2

x1
− 1

y0

= 2(y−3x−2 + y−3y0 − y0x−2)

y−3y0x−2
− 1

y0

= y−3x−2 + 2y−3y0 − 2y0x−2

y−3y0x−2
.

Hence, we now have

∀n ∈ N0 : y3(n+1) =
{

(n + 1)(y−3x−2 + 2y−3y0 − 2y0x−2)

y−3y0x−2
− n

y0

}−1

= y−3y0x−2

y−3x−2 + 2(n + 1)y−3y0 − 2(n + 1)y0x−2
.

On the other hand, upon replacing n by 3n + i − 1, with i = 1, 2, in wn−1 =
1
2 {zn+1 + zn−2}, we have

w3n−2+i = 1

2
{z3n−i + z3(n−1)−i }

= 1

2
{[(n + 1)zi − nz−3+i

] + [
nzi − (n − 1)z−3+i

]}

= 1

2
{(2n + 1)zi − (2n − 1)z−3+i }.

Using the substitution defined in (5), we have

∀n ∈ N0 : 1

x3n−2+i
= 1

2

{
(2n + 1)

yi
− (2n − 1)

y−3+i

}

= 1

2

{
(2n + 1)y−3+i − (2n − 1)yi

y−3+i yi

}

, i = 1, 2,

or equivalently,

∀n ∈ N0 : x3n−2+i = 2y−3+i yi
(2n + 1)y−3+i − (2n − 1)yi

, i = 1, 2.
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Again, we observe that the RHS of the above equation is dependent on y1 and y2 for
i = 1, 2, respectively. So, in view of the form for y1 and y2, we have

∀n ∈ N0 : x3n−2+i = 2
2n + 1

yi
− 2n − 1

y−3+i

= 2
(2n + 1)(2yi−3 − xi−2)

yi−3xi−2
− 2n − 1

yi−3

= yi−3xi−2

(2n + 1)yi−3 − 2nxi−2
, i = 1, 2.

Now, to compute for the form of the terms x3n+1, we replace n by 3 j in the equation
wn+1 − wn−2 = zn − zn−3 and then sumup the resulting equation from1 to n. Hence,
we have

∀n ∈ N0 : w3n+1 − w1 =
n∑

j=1

{w3 j+1 − w3( j−1)+1} =
n∑

j=1

{z3 j − z3( j−1)}

= z3n − z0,

or equivalently, in view of the substitution (5),

∀n ∈ N0 : x3n+1 =
{

1

y3n
+ 1

x1
− 1

y0

}−1

.

With the expression for x1 computed using the original system together with the form
of solution for y3n , we get

∀n ∈ N0 : x3n+1 =
{
y−3x−2 + 2ny−3y0 − 2ny0x−2

y−3y0x−2

+ y−3x−2 + y−3y0 − y0x−2

y−3y0x−2
− 1

y0

}−1

=
{
y−3x−2 + 2ny−3y0 − 2ny0x−2

y−3y0x−2
+ y−3y0 − y0x−2

y−3y0x−2

}−1

= y−3y0x−2

y−3x−2 + (2n + 1)y−3y0 − (2n + 1)y0x−2
.

Combining the results we have exhibited above, we arrive at the following theo-
rem.

Theorem 6 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that y−1/x0, y−2/

y−1 /∈ ({2n/(2n + 1)}∞0 ∪ {(2n + 1)/(2n + 2)}∞0
)
and (y−3y0 − y0x−2)/y−3x−2 /∈

{−1/n}∞1 . Then, every solution {(xn, yn)}∞1 of system (S.6) takes the form
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Fig. 6 The long term behavior of a particular solution of system (S.6)

∀n ∈ N0 : x3n−2+i =

⎧
⎪⎪⎨

⎪⎪⎩

y−3y0x−2

y−3x−2 + (2n + 1)y−3y0 − (2n + 1)y0x−2
, for i = 3,

yi−3xi−2

(2n + 1)yi−3 − 2nxi−2
, for i = 2, 1,

and

∀n ∈ N0 : y3n+i =

⎧
⎪⎪⎨

⎪⎪⎩

yi−3xi−2

2(n + 1)yi−3 − (2n + 1)xi−2
, for i = 1, 2,

y−3y0x−2

y−3x−2 + 2(n + 1)y−3y0 − 2(n + 1)y0x−2
, for i = 3.

In the following example, we provide a numerical illustration describing the long
term behavior of system (S.6) for some arbitrary initial values taken randomly from
the unit interval [0, 1]. Notice that, in the illustrated plots, the solution converges to
zero as n goes to infinity.

Example 6 Figures 6, 7 and 8 illustrate several plots for the long term dynamics of
system (S.6) with random initial values from [0, 1].
In contrast to the first two plots shown previously, the illustrated behavior of solution
of system (S.6) shown in Fig. 8 is diverging.

In view of the illustrations, it is natural to ask what particular set of initial values
will give a converging, diverging or periodic solution (if there is) to system (S.6).
The answer to this question shall be the subject of further investigation elsewhere.
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Fig. 7 Another possible long term behavior of a particular solution of system (S.6)
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Fig. 8 Another possible long term behavior of a particular solution of system (S.6)
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3.7 Solution Form of System (S.7)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn + ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, n ∈ N0.

In view of the substitution (5), the above equations are therefore equivalent to the
following transformations

∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn − wn−2 + zn−3 ⇐⇒ zn + zn−3 = wn+1 + wn−2,

zn+1 = 2wn−1 − zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 + zn−2}.

With the above equations at hand, we easily obtained the equation 2wn−2 = wn+1 +
wn−2 or equivalently, wn+1 = wn−2. Following our result for system (S.5), we have

∀n ∈ N0 : x3n−i = x3(n−1)−i ⇐⇒ x3n−i = x−i , i = 0, 1, 2,

which in turn implies that {xn}∞1 is periodic with period 3. Obviously, at i = 2, the
equation x3n−2 = x−2 does not hold for n = 0, but, this can be fixed by solving for
x1 directly from the original system (S.7). Therefore, the correct solution form for
xn is given by

∀n ∈ N0 : x3n−i =
⎧
⎨

⎩

y−3y0x−2

y−3x−2 − y−3y0 + y0x−2
, for i = 2,

x−i , for i = 1, 0.

Now, from the transformation of the original systemobtained through the substitution
(5), we have 2zn + 2zn−3 = {zn+3 + zn} + {zn + zn−3} or equivalently, zn+3 = zn−3.
Hence, yn+3 = yn−3 for all n ∈ N0 which, in turn, implies that yn is periodic of period
6. Using this formula, at n = 0, we’ll get y3 = y−3. This value for y3, however, does
not agree with

y3 = y0x1
2y0 − x1

= 1
2

x1
− 1

y0

= 1
2y−3x−2 − 2y−3y0 + 2y0x−2

y−3y0x−2
− 1

y0

= y−3y0x−2

y−3x−2 − 2y−3y0 + 2y0x−2
,

which is obtained from the original system (S.7). So, in view of this result, the
solution for yn must take the form {yn}∞0 = {y−2, y−1, y0, y1, y2, y3} from which it
suggests that y1 and y2 must be computed from the original system. These results
now deliver the following theorem.
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Theorem 7 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that the following
inequalities are satisfied:

(y−3x−2 − y−3y0 + y0x−2) 
= 0,

and
(2y−2 − x−1)(2y−1 − x0)(y−3x−2 − 2y−3y0 + 2y0x−2) 
= 0.

Then, every solution {(xn, yn)}∞1 of system (S.7) takes the form

∀n ∈ N0 : x3n−i =
⎧
⎨

⎩

y−3y0x−2

y−3x−2 − y−3y0 + y0x−2
, for i = 2,

x−i , for i = 1, 0,

and

∀n ∈ N0 : y6n+i =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yi−3xi−2

2yi−3 − xi−2
, for i = 1, 2

y−3y0x−2

y−3x−2 − 2y−3y0 + 2y0x−2
, for i = 3,

yi−6, for i = 4, 5, 6.

Corollary 2 Let {(xn, yn)}∞1 be a solution of system (S.7). Then, {xn}∞1 is periodic
of period 3 and {yn}∞1 is periodic of period 6.

For confirming the virtue of the above corollary, we provide the following example.

Example 7 Figure 9 illustrates the long term dynamics of system (S.7) with random
initial values taken from the unit interval [0, 1].

3.8 Solution Form of System (S.8)

Consider the system

xn+1 = yn−3ynxn−2

yn−3xn−2 − yn−3yn − ynxn−2
, yn+1 = yn−2xn−1

2yn−2 − xn−1
, n ∈ N0.

In view of the substitution (5), the above equations are therefore equivalent to the
following transformations

∀n ∈ N0 :
⎧
⎨

⎩

wn+1 = zn − wn−2 − zn−3 ⇐⇒ zn − zn−3 = wn+1 + wn−2,

zn+1 = 2wn−1 − zn−2 ⇐⇒ wn−1 = 1

2
{zn+1 + zn−2}.
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Fig. 9 The periodicity of solution for system (S.7) can be observed easily in above plots. The upper
plot clearly shows that the solution {xn}∞1 is periodic with period 3 while it shows (lower plot) that
the solution {yn}∞1 is of period 6. These behaviors agree with Corollary 2

The above equations imply, upon eliminating the phase variable wn , zn+3 = −3zn−3

or equivalently, zn+6 = −3zn . Hence, replacing n by 6n − i , where i = −3,−2,−1,
0, 1, 2, we get z6(n+1)−i = −3z6n−i . Iterating the RHS of this equation n times yields
z6(n+1)−i = (−3)n+1z−i . Then, using the substitution (5), we obtain

∀n ∈ N0 : y6(n+1)−i =
(

−1

3

)n+1

y−i , i = −3,−2,−1, 0, 1, 2.

In view of the above formula, we see that {yn}∞1 is of period 6. Moreover, at n =
0, we will have the equation y6−i = − 1

3 y−i , i = −3,−2,−1, 0, 1, 2. For indices
i = −1,−2,−3, the LHS of this equation depends on the terms y1, y2 and y3,
respectively. In this regard, we need to compute for the values of y1, y2 and y3 in
order to establish completely the closed form solution for {yn}∞1 . These expressions,
however, are easily obtained as follows:

y1 = y−2x−1

2y−2 − x−1
, y2 = y−1x0

2y−1 − x0
, (8)

and
y3 = y0x1

2y0 − x1
= y−3y0x−2

x−2y−3 − 2y0y−3 − 2y0x−2
. (9)

Now to find the solution form for xn , we go directly to the original system (S.8). This
part needs a little more work. From the original equation
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yn+1 = yn−2xn−1

2yn−2 − xn−1
,

we could find xn−1, which is given by

xn−1 = 2yn+1yn−2

yn+1 + yn−2
. (10)

Replacing n by 6n + 7 − i , where i = 0, 1, 2, 3, 4, 5, we get

x6n+6−i = 2y6(n+1)+2−i y6(n+1)−1−i

y6(n+1)+2−i + y6(n+1)−1−i
.

In view of the formula for yn we obtained earlier, the above equation can be trans-
formed into

x6n+6−i = 2
1

y6(n+1)−1−i
+ 1

y6(n+1)+2−i

=
(

−1

3

)n+1 2y2−i y−1−i

y2−i + y−1−i

for i = 0, 1. Now, using Eq. (8), we have

∀n ∈ N0 : x6n+6−i =
(

−1

3

)n+1

x−i , i = 0, 1.

For i = 2, in reference to Eq. (9) together with the formula for yn , we have

∀n ∈ N0 : x6n+4 = 2
1

y6n+3
+ 1

y6(n+1)

=
(

−1

3

)n

⎧
⎪⎪⎨

⎪⎪⎩

2
1

y3
− 3

y0

⎫
⎪⎪⎬

⎪⎪⎭

=
(

−1

3

)n

⎧
⎪⎪⎨

⎪⎪⎩

2
x−2y−3 − 2y0y−3 − 2y0x−2

y−3y0x−2
− 3

y0

⎫
⎪⎪⎬

⎪⎪⎭

= −
(

−1

3

)n {
y−3y0x−2

x−2y−3 + y0y−3 + y0x−2

}

.

Meanwhile, using Eq. (8) and the formula for yn , we have
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∀n ∈ N0 : x6n+6−i = 2
1

y6(n+1)−1−i
+ 1

y6(n+1)+2−i

=
(

−1

3

)n

⎧
⎪⎪⎨

⎪⎪⎩

2
1

y5−i
− 3

y2−i

⎫
⎪⎪⎬

⎪⎪⎭

=
(

−1

3

)n

⎧
⎪⎪⎨

⎪⎪⎩

2
2y2−i − x3−i

y2−i x3−i
− 3

y2−i

⎫
⎪⎪⎬

⎪⎪⎭

=
(

−1

3

)n {
y2−i x3−i

y2−i − 2x3−i

}

, i = 3, 4.

Finally, at i = 5, we have, with reference to Eq. (9) and the formula for yn ,

∀n ∈ N0 : x6n+1 = 2
1

y6n
+ 1

y6n+3

=
(

−1

3

)n

⎧
⎪⎪⎨

⎪⎪⎩

2
1

y0
+ x−2y−3 − 2y0y−3 − 2y0x−2

y−3y0x−2

⎫
⎪⎪⎬

⎪⎪⎭

=
(

−1

3

)n {
y−3y0x−2

x−2y−3 − y0y−3 − y0x−2

}

.

In summary, we have the following theorem.

Theorem 8 Let {xn}0−2 and {yn}0−3 be non-zero real numbers such that the following
inequalities are satisfied:

(x−2y−3 − y0y−3 − y0x−2)(y−2 − 2x−1)(y−1 − 2x0)(x−2y−3 + y0y−3 + y0x−2) 
= 0,

and

(x−2y−3 − y0y−3 − y0x−2)(2y−2 − x−1)(2y−1 − x0)(x−2y−3 + y0y−3 + y0x−2) 
= 0.

Then, every solution {(xn, yn)}∞1 of system (S.8) takes the form

∀n ∈ N0 : x6(n+1)−i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

−1

3

)n {
y−3y0x−2

x−2y−3 − y0y−3 − y0x−2

}

, for i = 5,

(

−1

3

)n {
y2−i x3−i

y2−i − 2x3−i

}

, for i = 4, 3,

−
(

−1

3

)n {
y−3y0x−2

x−2y−3 + y0y−3 + y0x−2

}

, for i = 2,

(

−1

3

)n+1

x−i , for i = 1, 0.

and
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Fig. 10 Behavior of a particular solution of system (S.8)

∀n ∈ N0 : y6n−i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(

−1

3

)n {
y−(3+i)x−(2+i)

2y−(3+i) − x−(2+i)

}

, for i = −1,−2,

(

−1

3

)n {
y−3y0x−2

x−2y−3 − 2y0y−3 − 2y0x−2

}

, for i = −3,

(

−1

3

)n

y−i , for i = 2, 1, 0.

In view of the above theorem, it is evident that max{xn, yn} → 0 as n → ∞ since
limn→∞(−1/3)n = limn→∞(−1/3)n+1 = 0 (refer to Fig. 10 for an illustration).

Example 8 Figure 10 illustrates the long termdynamics of system (S.8)with random
initial values from [0, 1]. The computed solution {(xn, yn)}∞1 to the system (S.8)
clearly converges to (0, 0) as n approaches infinity.

4 Summary and a Statement of Future Work

We have considered in this work several systems of nonlinear difference equations.
Some of these systems were already studied in [33]. The main goal of the paper was
achieved by providing the readers new techniques—more explanatory and efficient—
in determining the solution forms of these systems of equations. It has been shown
that the method of differences or telescoping sums works perfectly in deriving the
closed-form solutions. Furthermore, well-known integer sequences are seen in the
solution forms.
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Obviously, the techniques presented here can be employed in handling other
systems of equations related to our work. Thus, our next agenda is to continue
solving other forms of systems of difference equations via the method of telescoping
sums.

Acknowledgements This work was completed in 2016 when JFTR was still at the Department of
Mathematics and Computer Science, College of Science, University of the Philippines Baguio.
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A Note on q-partial Differential
Equations for Generalized q-2D Hermite
Polynomials

JIAN CAO, Tianxin Cai, and Li-Ping Cai

Abstract In this short paper, we generalize Ismail–Zhang’s q-2D Hermite polyno-
mials (Trans Am Math Soc 369:6779–6821 (2017), [14]) with an extra parameter
and prove that if an analytic function in several variables satisfies a set of partial dif-
ferential equations of second order, then it can be expanded in terms of the product
of the generalized q-2D Hermite polynomials. In addition, we give some generating
functions as applications.

Keywords q-partial differential equation · Generating function · Generalized
q-2d hermite polynomials

1 Introduction

In this paper, we follow the notations and terminology in [9] and suppose that 0 <
q < 1. The compact factorials of q-shifted factorials are defined respectively by

(a; q)0 = 1, [a]q := 1 − qa

1 − q
, (a; q)n =

n−1∏

k=0

(1 − aqk), (a; q)∞ =
∞∏

k=0

(1 − aqk)

(1)
and (a1, a2, . . . c, am; q)n = (a1; q)n(a2; q)n · · · (am; q)n , where m ∈ N := {1, 2,
3, . . .} and n ∈ N0 := N ∪ {0}.
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The complex Hermite polynomials {Hm,n(z1, z2)}∞m,n=0 were defined first by Itô
[15]

Hm,n(z1, z2) =
m∧n∑

k=0

(−1)kk!
(
m

k

)(
n

k

)
zm−k
1 zn−k

2 (2)

in his study of complex multiple Wiener integrals and applied in normal stochastic
processes. In recent years, several mathematical physicists studied complex Hermite
polynomials frommathematical andphysical points of view, applying them toLandau
levels and coherent states [1], quantum optics and quasi-probabilities [21, 22]. (See
details in [1, 8, 10, 15, 21, 22], respectively.)

Just recently, Ismail and Zhang [12] defined the following two q-analogue com-
plex Hermite polynomials:

Definition 1 ([12, Eqs. (3.1) and (4.2)]) For m, n ∈ N0 and m ∧ n = min{m, n},
the q-2D Hermite polynomials are

Hm,n(x, y|q) =
m∧n∑

k=0

[
m
k

]

q

[
n
k

]

q

(−1)kq(
k
2)(q; q)k xm−k yn−k, (3)

Gm,n(x, y|q) =
m∧n∑

k=0

[
m
k

]

q

[
n
k

]

q

q(m−k)(n−k)(−1)k(q; q)k xm−k yn−k, (4)

where

[
m
k

]

q

:=
{

(q;q)n
(q;q)k (q;q)n−k

, i f 0 ≤ k ≤ n,

0, otherwise.

The q-2D Hermite polynomials Hm,n(x, y|q) and Gm,n(x, y|q) transform into each
other under q → 1/q. Ismail and Zhang produced several orthogonalitymeasures for
both families ofq-2DHermite polynomials, and found raising and lowering operators
for both families of q-2D Hermite polynomials together with the Sturm–Liouville
equations which they satisfy, see details in [12–14].

Recently, Liu [17] introduced the concept of the ternary classical 2D Hermite
polynomials and then proved that if an analytic function in several variables satisfies
a set of partial differential equations of second order, then it can be expanded in terms
of the product of the ternary classical Hermite polynomials (see details in [17, 18]).

Motivated by Ismail–Zhang’s results for q-2D Hermite polynomials and Liu’s
method for classical 2DHermite polynomials, it’s natural to ask ifwe can add an extra
parameter on Ismail–Zhang’s q-2DHermite polynomials (generalized q-2DHermite
polynomials) and prove that if an analytic function in several variables satisfies a set
of partial differential equations of second order, then it can be expanded in terms
of the product of the generalized q-2D Hermite polynomials. With this method, we
give a new proof and further generalize Ismail–Zhang’s results.
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Definition 2 For m, n ∈ N0, we define

Hm,n(x, y, z|q) =
m∧n∑

k=0

[
m
k

]

q

[
n
k

]

q

(−1)kq(
k
2)(q; q)k xm−k yn−k zk, (5)

Gm,n(x, y, z|q) =
m∧n∑

k=0

[
m
k

]

q

[
n
k

]

q

(q; q)kq(m−k)(n−k)xm−k yn−k zk . (6)

We will prove:

Theorem 3 If f (x, y, z) is a 3-variable analytic function at (0, 0, 0) ∈ C
3, then

(I) f can be expanded in an absolutely and uniformly convergent polynomial
Hm,n(x, y, z|q), if and only if f satisfies the partial differential equation

∂q−1

∂q−1 z
f = − ∂2

q

∂q x∂q y
f, (7)

where f = f (x, y, z) and

∂q

∂q z
f = f (x) − f (qx)

x
,

∂2
q

∂q x∂q y
f = ∂q

∂q y

{
∂q

∂q x
f

}
. (8)

(II) f can be expanded in an absolutely and uniformly convergent polynomial
Gm,n(x, y, z|q), if and only if f satisfies the partial differential equation

∂q

∂q z
ηz f = ∂2

q−1

∂q−1x∂q−1 y
f (9)

where ηz f = f (x, y, zq).

These expansion theorems allow us to easily deduce identities for generalized
q-2D Hermite polynomials.

The rest of the paper is organized as follows. In Sect. 2, we give the proof of
Theorem 12. In Sect. 3, using Theorem 12, we obtain the Srivastava–Agarwal type
generating functions for the generalized q-2D Hermite polynomials. In Sect. 4, we
gain the mixed generating functions for the generalized q-2D Hermite polynomials.
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2 The Proof of Theorem 3

In order to prove Theorem 3, the following lemmas are necessary.

Lemma 4 ([12, Eqs. (3.3) and (4.6)])We have

∞∑

m,n=0

Hm,n(x, y, z|q) smtn

(q; q)m(q; q)n = (st z; q)∞
(sx, t y; q)∞ , max{|sx | , |t y|} < 1,

(10)
∞∑

m,n=0

Gm,n(x, y, z|q) q
(m−n)2/2smtn

(q; q)m(q; q)n =
(−sxq1/2,−t yq1/2; q)

∞
(st z; q)∞ , |st z| < 1.

(11)

Proof (Proof of Lemma 4) Direct summation in Eqs. (3) and (4) yields (10) and (11)
respectively.

Remark 5 Taking z = 1 in Lemma 4, Eqs. (10) and (11) reduce to [12, Eqs. (3.3)
and (4.6)] respectively.

Lemma 6 For m, n ∈ N0, polynomials Hm,n(x, y, z|q) and Gm,n(x, y, z|q) satisfy
the following partial differential equations respectively

∂q−1

∂q−1 z
{Hm,n(x, y, z|q)} = − ∂2

q

∂q x∂q y
{Hm,n(x, y, z|q)},

∂q

∂q z
ηz{Gm,n(x, y, z|q)} = ∂2

q−1

∂q−1x∂q−1 y
{Gm,n(x, y, z|q)}.

(12)

Proof (Proof of Lemma 6) Applying q-partial differential operator
∂2
q

∂q x∂q y
to both

sides of the Eq. (10), we deduce

∞∑

m,n=0

∂2
q Hm,n

∂q x∂q y

smtn

(q; q)m(q; q)n = st (st z; q)∞
(sx, t y; q)∞ . (13)

Similarly, taking the q-partial differential operator on both sides of the Eq. (10) with
z yields

∞∑

m,n=0

∂q−1Hm,n

∂q−1 z

smtn

(q; q)m(q; q)n = − st (st z; q)∞
(sx, t y; q)∞ . (14)

Comparing the above two equation, we have

∞∑

m,n=0

∂2
q Hm,n

∂q x∂q y

smtn

(q; q)m(q; q)n = −
∞∑

m,n=0

∂q−1Hm,n

∂q−1 z

smtn

(q; q)m(q; q)n . (15)
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Equating coefficients of s and t on both sides of the above Eq. (15), we obtain the
first formula in Eq. (12). Similarly, we deduce the second formula in Eq. (12). The
proof of Lemma 6 is complete.

Lemma 7 For m, n ∈ N0, Hm,n(x, y, z|q) and Gm,n(x, y, z|q) have the following
operational representation

Hm,n(x, y, z|q) = (z∂q x∂q y; q)∞{xm yn},
Gm,n(x, y, z|q) = qmn

(q−1z∂q−1x∂q−1 y; q)∞ {xm yn}. (16)

Proof (Proof of Lemma 7) Direct computation gives

(
∂2
q

∂q x∂q y

)k

{xm yn} =

⎧
⎪⎨

⎪⎩

[
m

k

]

q

[
n

k

]

q

(q; q)2k xm−k yn−k, k ≤ min{m, n},

0, k > min{m, n}.

Using the q-binomial theorem, we get

(z∂q x∂q y; q)∞{xm yn} =
m∧n∑

k=0

(−1)kq(
k
2)zk

(q; q)k
(

∂2

∂q x∂q y

)k

{xm yn} = Hm,n(x, y, z|q).

In the same way, we deduce the second formula in Eq. (16). The proof of Lemma 7
is complete.

We usually use the following Hartogs’s theorem to determine whether a function
is an analytic function in several complex variables. For more information, please
refer to [11, 19, 20, 24].

Proposition 8 (Hartogs’s theorem [11]) If a complex-valued function is holomor-
phic (analytic) in each variable separately in an open domain D ⊆ C

n, then it is
holomorphic (analytic) in D.

Proposition 9 ([20]) If f (x1, x2, . . . , xk) is analytic at the origin (0, 0, . . . , 0) ∈
C

k , then, f can be expanded in an absolutely and uniformly convergent power series,

f (x1, x2, . . . , xk) =
∞∑

n1,n2,...,nk=0

λn1,n2,...,nk x
n1
1 xn22 . . . xnkk .

Proof (Proof of Theorem 3) The proof of theorem can be deduced by induction.
Since f is analytic at the origin (0, 0, 0), we know that f can be expanded in an
absolutely and uniformly convergent power series in a neighborhood of (0, 0, 0).
Thus there exists a sequence λm,m,p independent of x1, y1, z1, such that
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f (x1, y1, z1) =
∞∑

m,n,p=0

λm,n,p · xm1 yn1 z
p
1 . (17)

Substituting the Eq. (17) into the q-partial differential equation (7) yields

∞∑

m,n,p=0

(1 − q p)q1−pλm,n,p · xm1 yn1 z
p−1
1 = − ∂2

q

∂q x1∂q y1

⎧
⎨

⎩

∞∑

m,n,p=0

λm,n,p · xm1 yn1 z
p
1

⎫
⎬

⎭ .

(18)
Equating the coefficients of z p−1

1 on both sides of the Eq. (18), we obtain

(1 − q p)q1−p
∞∑

m,n=0

λm,n,p · xm1 yn1 = − ∂2
q

∂q x1∂q y1

{ ∞∑

m,n=0

λm,n,p−1 · xm1 yn1

}
.

Iterating this relation p − 1 times and interchanging the order of the differentiation
and summation, we deduce

∞∑

m,n=0

λm,n,p · xm1 yn1 = 1

(q; q)p
∂
2p
q

∂q x
p
1 ∂q y

p
1

{ ∞∑

m,n=0

λm,n,0 · xm1 yn1

}

= (−1)pq(
p
2)

(q; q)p
∞∑

m,n=0

λm,n,0 · ∂
2p
q

∂q x
p
1 ∂q y

p
1

{
xm1 yn1

}
. (19)

Substituting the above Eq. (19) into (17) and interchanging the order of the summa-
tion, we gain

f (x1, y1, z1) =
∞∑

p=0

z p1

∞∑

m,n=0

λm,n,p · xm1 yn1

=
∞∑

p=0

(−1)pq(
p
2)z p1

(q; q)p
∞∑

m,n=0

λm,n,0 · ∂
2p
q

∂q x
p
1 ∂q y

p
1

{
xm1 yn1

}

=
∞∑

m,n=0

λm,n,0 · (z1∂q x1∂q y1; q)∞{xm1 yn1 }

=
∞∑

m,n=0

λm,n,0 · Hm,n(x1, y1, z1|q).

Conversely, if f (x1, y1, z1) canbe expanded in termsof Hm,n(x1, y1, z1|q), thenusing
Lemma 6, we can obtain Eq. (7). Similarly, we deduce the Eq. (9). This completes
the proof of Theorem 3.
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3 Srivastava–Agarwal Type Generating Functions for the
Generalized q-2D Hermite Polynomials

In this section, we obtain Srivastava–Agarwal type generating functions by q-partial
differential equations.

Theorem 10 For max{|sx | , |t y| , |st z|} < 1, we have

∞∑

m,n=0

Hm,n(x, y, z|q) s
m(u/s; q)mtn(v/t; q)n

(q; q)m(q; q)n = (ux, vy; q)∞
(sx, t y; q)∞ 2φ2

[
u/s, v/t
ux, vy

; q, st z
]
.

(20)

For max{|sx | , |t y| , |st z|} < 1, we have

∞∑

m,n=0

Gm,n(x, y, z|q) (−1)m+nq(m+n−2mn)/2um(s/u; q)mvn(t/v; q)n
(q; q)m(q; q)n

= (−sxq1/2,−t yq1/2; q)∞
(−uxq1/2,−vyq1/2; q)∞ 3φ2

[
s/u, t/v, 0

−q1/2/(ux),−q1/2/(vy)
; q, zq

xy

]
. (21)

Remark 11 Letting u = v = 0 inTheorem10, Eqs. (20) and (21) reduce toEqs. (10)
and (11) respectively.

Proof (Proof of Theorem 10) We denote the right-hand side of Eq. (20) by

f (x, y, z) = (ux, vy; q)∞
(sx, t y; q)∞ 2φ2

[
u/s, v/t
ux, vy

; q, st z
]
.

It is easily seen that f (x, y, z) is an analytic function of x, y, z, for any x, y
and max{|sx | , |t y| , |st z|} < 1. Hence f (x, y, z) is analytic at (x, y, z) = (0, 0, 0).
Hence f (x, y, z) satisfies Theorem 3: there exists a sequence λm,n independent of
x, y, z such that

f (x, y, z) =
∞∑

m,n=0

λm,n · Hm,n(x, y, z|q). (22)

Setting z = 0, and using Hm,n(x, y, 0|q) = xm yn in the resulting equation, we obtain

f (x, y, 0) = (ux, vy; q)∞
(sx, t y; q)∞ =

∞∑

m,n=0

(sx)m(u/s; q)m(t y)n(v/t; q)n
(q; q)m(q; q)n =

∞∑

m,n=0

λm,n · xm yn .

Comparing the coefficients of xm yn , we gain
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λm,n = sm(u/s; q)mtn(v/t; q)n
(q; q)m(q; q)n .

Substituting the above equation into Eq. (22), we deduce f (x, y, z) equals the left-
hand side of Eq. (20). Similarly, we can deduce the Eq. (21). The proof is complete.

4 Mixed Generating Functions for the Generalized q-2D
Hermite Polynomials

The Rogers–Szegö polynomials

hn(a|q) =
n∑

k=0

[
n
k

]
ak, gn(a|q) =

n∑

k=0

[
n
k

]
qk(k−n)ak (23)

and their corresponding generating functions

∞∑

m=0

hm(a|q) sm

(q; q)m = 1

(as, s; q)∞ ,

∞∑

m=0

gm(a|q) (−1)mq(
m
2)sm

(q; q)m = (as, s; q)∞
(24)

play an important role in the theory of orthogonal polynomials, see details in
[2, 5–7, 23].

In this section, we deduce the following mixed generating functions by q-partial
differential equations.

Theorem 12 For max{|asx | , |bty| , |t y| , |sx |} < 1, we have

∞∑

m,n=0

Hm,n(x, y, z|q)hm(a|q)hn(b|q) smtn

(q; q)m (q; q)n

= (abstz; q)∞
(asx, bty; q)∞

∞∑

j=0

(asz/y; q) j (t y) j
(q; q) j (abstz; q) j

∞∑

k=0

(btzq j/x, aszq j /y; q)k (sx)k
(q, abstzq j , asz/y; q)k 2φ1

[
q− j , 0
aszqk/y

; q, szq j /y

]
.

(25)

For |abstz| < 1, we have

∞∑

m,n=0

Gm,n(x, y, z|q)gm(a|q)gn(b|q) q
(m−n)2/2smtn

(q; q)m(q; q)n = (−asxq1/2,−btyq1/2; q)∞
(abstz; q)∞

×
∞∑

j=0

(−yq1/2/(asz); q) j (−1) j q(
j+1
2 )(1/b) j

(q, q/(abstz); q) j

×
∞∑

k=0

(−xq1/2+ j/(btz),−yq1/2+ j/(asz); q)
k (−q− j/a)k

(q, q1+ j/(abstz),−yq1/2/(asz); q)k
∞∑

n=0

(q− j ; q)nq(n+k+1)(n+k)/2

(q;−yq1/2+k/(asz); q)n
(

− 1

a

)n

.

(26)
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Remark 13 For a = b = 0 in Theorem 12, Eqs. (25) and (26) reduce to Eqs. (10)
and (11) respectively. For z = 0 in Theorem 12, Eqs. (25) and (26) reduce to results
in Eqs. (24) respectively.

Proof (Proof of Theorem 12) We denote the right-hand side of Eq. (25) by

f (x, y, z) = (abstz; q)∞
(asx, bty; q)∞

∞∑

j=0

(asz/y; q) j (t y) j
(q; q) j (absyz; q) j

×
∞∑

k=0

(btzq j/x, aszq j/y; q)k(sx)k
(q, abstzq j , asz/y; q)k 2φ1

[
q− j , 0
aszqk/y

; q, szq j/y

]
.

Since f (x, y, z) is analytic, Theorem 3 shows that there exists a sequence λm,n

independent of x, y, z such that

f (x, y, z) =
∞∑

m,n=0

λm,n · Hm,n(x, y, z|q). (27)

Setting z = 0 and using that Hm,n(x, y, 0|q) = xm yn in the above Eq. (27), we have

f (x, y, 0) = 1

(sx, t y, asx, bty; q)∞ =
∞∑

m,n=0

hm(a|q)hn(b|q) (sx)m(t y)n

(q; q)m(q; q)n

=
∞∑

m,n=0

λm,n · xm yn . (28)

Comparing the coefficients of xm yn in the above Eq. (28), we obtain

λm,n = hm(a|q)hn(b|q) smtn

(q; q)m(q; q)n . (29)

Substituting the above Eq. (29) into Eq. (27) yields

f (x, y, z) =
∞∑

m,n=0

hm(a|q)hn(b|q)Hm,n(x, y, z|q) smtn

(q; q)m(q; q)n ,

which is the left-hand side of the Eq. (25). Similarly, we deduce the Eq. (26). The
proof of Theorem 12 is complete.
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5 Concluding Remarks

q-Partial Differential Equations are powerful methods, see details in [3, 4, 16, 25].
Compared to traditional combinatorial transformation methods used for analysis
of q-2D Hermite polynomials, we build the relations between q-partial differential
equations and q-2D Hermite polynomials. That is, if an analytic function in several
variables satisfies a kind of q-partial differential equation of second order, then it can
be expanded in terms of the product of the generalized q-2D Hermite polynomials.
This method is a useful tool for proving formulas involving the generalized q-2D
Hermite polynomials, which allow us to develop a systematic way to derive identities
involving others q-2D polynomials.
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Stability of a Spring-Mass System with
Generalized Piecewise Constant
Argument

DUYGU ARUĞASLAN ÇINÇIN and Nur Cengiz

Abstract In this paper, we address a damped spring-mass system and develop it
with piecewise constant argument of generalized type (PCAG). We investigate exis-
tence and uniqueness of the solutions of the proposed mechanical system. Then, we
give sufficient conditions guaranteeing the uniform asymptotic stability of the triv-
ial solution. While doing the stability examination, we use Lyapunov-Razumikhin
method developed by Akhmet and Aruğaslan (Discrete and continuous dynamical
systems. Series A, vol 25(2), pp 457–466, 2009, [1]) for differential equations with
PCAG (EPCAG). Additionally, we present several examples with simulations.

Keywords Stability · Differential equations with piecewise constant argument of
generalized type · Lyapunov-Razumikhin method · Spring-mass system ·
Simulations

1 Introduction and Preliminaries

Differential equations with piecewise constant argument (EPCA) are in the class
of differential equations with deviating arguments [11, 17, 18, 22, 23, 25, 27–29].
In these type differential equations, the greatest integer function is considered as
deviating argument. By taking any piecewise function instead of the greatest integer
function, EPCAG are introduced in the papers [2–4] and developed in the papers
[4–8]. Recently, research of EPCAG has attracted the attention of great number of
researchers [9, 10, 12–15, 30]. Using the theory of EPCAG,we aim to study a spring-
mass system which is one of the most remarkable models of real life problems and
plays an important role in many fields such as physics, mathematics, biomechanics,
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biology and engineering. In the present paper, we model the spring mass system
using PCAG as follows

my′′(t) + cy′(t) + ky(t) = Ay(β(t)). (1)

This model can be considered as a damped harmonic oscillator. LetR,N,N0 andR+
be the sets of all real numbers, positive integers, non-negative integers and non-
negative real numbers, respectively, i.e., R = (−∞,∞), N = {1, 2, 3, ...}, N0 =
{0, 1, 2, ...} and R+ = [0,∞). Denote the n−dimensional real space by Rn, n ∈ N,
and the Euclidean norm inRn by ‖.‖. Here, the positive constantsm, c, k denote the
mass, the coefficient of damping, the spring constant, respectively. A and y corre-
spond to the magnitude of the generalized piecewise constant force and the displace-
ment of the mass, respectively. Fix a real valued sequence θ = {θi }, i ∈ N0, such that
0 ≤ θi < θi+1 for all i ∈ N0 and θi → ∞ as i → ∞. Let us assume without loss of
generality that θi < t0 ≤ θi+1 for some i ∈ N0, where t0 ∈ R

+ is an initial moment.
We denoteD = [t0,∞). In (1), y ∈ R, t ≥ t0, and β(t) = θi if t ∈ [θi , θi+1), i ∈ N0.
There are numerous studies on the spring-mass systems with piecewise constant
argument in the literature [13, 14, 19].

With x1(t) = y(t), x2(t) = y′(t), the damped spring-mass system (1) can be
reduced to a first-order differential equation as

{
x ′
1(t) = x2(t)

x ′
2(t) = − c

m
x2(t) − k

m
x1(t) + A

m
x1(β(t)).

(2)

Let x(t) = (x1(t), x2(t)), and x1(t), x2(t) be abbreviated as x1, x2, respectively,
throughout the paper. The definition of a solution of (2) on [t0,∞) is defined below.

Definition 1 ([1]) A function x(t) is a solution of (2) on D if:

(i) x(t) is continuous on D;
(ii) the derivative x ′(t) exists for t ∈ D with the possible exception of the points

θi , i ∈ N0, where one-sided derivatives exist;
(iii) equation (2) is satisfied by x(t) on each interval (θi , θi+1) , i ∈ N0, and it holds

for the right derivative of x(t) at the points θi , i ∈ N0.

The main purpose of the paper is to give sufficient conditions for uniform asymp-
totic stability of the trivial solution of the mechanical system (2) ((1)) with PCAG,
by means of Lyapunov-Razumikhin method, without finding the exact solution of
the system and without transforming the system into a discrete one. Accordingly,
the paper is organized as follows: In Sect. 2, we give a remarkable inequality which
shows the relation between the value of the solution at the deviating argument β(t)
and the value of the solution at any t . In Sect. 3, we examine the stability of the trivial
solution of (2). While investigating the stability, we consider Lyapunov-Razumikhin
method developed by Akhmet and Aruğaslan [1] for EPCAG. Then, in Sect. 4, our
theoretical results are exemplified and simulations are presented. Finally, in Sect. 5,
we present conclusions and discuss what can be done in future studies.
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2 An Auxiliary Result and Existence-Uniqueness of the
Solutions

In this section, a crucial auxiliary result which has an importance in the proofs
of stability theorems in the sense of the Lyapunov-Razumikhin method is given by
Lemma 1.Moreover, sufficient conditions guaranteeing the existence and uniqueness
of the solutions are presented in Lemma 2 and Theorem 1. The following assumption
will be needed throughout the paper:

(C1) There exists a positive number θ such that θi+1 − θi ≤ θ, i ∈ N0.

Additionally, introducing the following notations,

Ω = e
θ
m

[
c+θk

]
,

κ1 = θ

m
(k + |A|)

(
Ωθ

1

m

[
c + θk

]
+ 1

)
,

κ = max

⎧⎨
⎩

{
1 − θΩ

1

m
(c + θk)

}−2
(1 + κ1),

{
1 − θ

2

m
(k + |A|)Ω

}−2

(1 + θΩ)

⎫⎬
⎭ ,

μ = max
{
κ1, θΩ

}
,

M = max
{
A2 + k2 + 2 |A| k + c |A| + ck,m2 + c2 + c |A| + ck

}
,

we will assume that the conditions below are valid:

(C2) θΩ
1

m
(c + θk) < 1,

θ
2

m
(k + |A|)Ω < 1, μκ < 1.

(C3) 2
1

m
θM1/2 < 1;

(C4) θe
1
m θM1/2

(
2
√
A2 + k |A| + c |A| + M1/2

)
< m.

Note that κ is positive by the condition (C2).

Lemma 1 Let (C1) and (C2) be satisfied. Then the following inequality

‖x(β(t))‖ ≤
{
1

κ
− μ

}−1/2

‖x(t)‖ (3)
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holds for all t ∈ D, x1, x2 ∈ R.

Proof For t ∈ [θi , θi+1), the solution (x1, x2) of system (2) can be written as follows

x1 = x1(θi ) +
t∫

θi

x2(s)ds, (4)

x2 = x2(θi ) +
t∫

θi

(
− c

m
x2(s) − k

m
x1(s) + A

m
x1(θi )

)
ds. (5)

Then,

|x2| ≤ |x2(θi )| + θ

m
(k + |A|) |x1(θi )| + c

m

t∫
θi

|x2(s)| ds + k

m

t∫
θi

s∫
θi

|x2(u)| duds.

Using a Gronwall type inequality, stated by Bykov and Salpagarov [16, 20, 21] for
integral equations including integral and double integral, for t ≥ s ≥ θi , i ∈ Z, we
can write

|x2| ≤
{

|x2(θi )| + θ

m
(k + |A|) |x1(θi )|

}
e

t∫
θi

c
m ds+

t∫
θi

s∫
θi

k
m duds

≤
{

|x2(θi )| + θ

m
(k + |A|) |x1(θi )|

}
Ω. (6)

For (4), it is seen that

|x1| ≤ |x1(θi )| +
t∫

θi

{
|x2(θi )| + θ

m
(k + |A|) |x1(θi )|

}
Ωds

≤ |x1(θi )|
[
1 + θ

2

m
(k + |A|) Ω

]
+ |x2(θi )| θΩ. (7)

Moreover, for t ∈ [θi , θi+1), we can write that

x1(θi ) = x1 −
t∫

θi

x2(s)ds, (8)
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x2(θi ) = x2 −
t∫

θi

(
− c

m
x2(s) − k

m
x1(s) + A

m
x1(θi )

)
ds. (9)

Then, considering (6) and (7), we reach the following inequality:

|x2(θi )| ≤
{
1 − θΩ

1

m
(c + θk)

}−1

(|x2| + |x1(θi )| κ1) . (10)

Additionally, it follows from (8) and then (6) that

|x1(θi )| ≤ |x1| + θ

{
|x2(θi )| + θ

m
(k + |A|) |x1(θi )|

}
Ω.

From the last inequality, we obtain that

|x1(θi )| ≤
{
1 − θ

2

m
(k + |A|) Ω

}−1 (
|x1| + |x2(θi )| θΩ

)
. (11)

Using (10) and (11) together with the fact that 2 |uv| ≤ u2 + v2, it is obtained that

x22 (θi ) ≤
{
1 − θΩ

1

m
(c + θk)

}−2

(1 + κ1)
(
x22 + x21 (θi )κ1

)
(12)

and

x21 (θi ) ≤
{
1 − θ

2

m
(k + |A|)Ω

}−2

(1 + θΩ)
(
x21 + x22 (θi )θΩ

)
. (13)

Then, we get

x21 (θi ) + x22 (θi ) ≤ κ
(
x21 + x22

) + κμ(x21 (θi ) + x22 (θi )),

and so

x21 (θi ) + x22 (θi ) ≤ {1 − μκ}−1 κ
(
x21 + x22

) =
{
1

κ
− μ

}−1 (
x21 + x22

)
. (14)

It follows from condition (C2) that ‖x(θi )‖ ≤
{
1

κ
− μ

}−1/2

‖x(t)‖ for t ∈ [θi , θi+1).

Thus, (3) holds for all t ≥ t0. �
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Now, for arbitrary initial moment ξ, sufficient conditions for the existence and
uniqueness of the solution of (2) on

[
θi , θi+1

]
can be seen with help of the following

lemma.

Lemma 2 Let (C1), (C3) and (C4) be satisfied and i ∈ N0 be fixed. Then for every
(ξ, x0) ∈ [

θi , θi+1
] × R

2, there exists a unique solution x(t) = x(t, ξ, x0) of (2) on[
θi , θi+1

]
.

Proof Existence: Fix i ∈ N0 and assume without loss of generality that θi ≤ ξ ≤
θi+1. Define a norm ‖x(t)‖0 = max

[θi ,ξ]
‖x(t)‖. Take x0(t) = x0 and a sequence

x p+1(t) = x0 +
t∫

ξ

[
x p
2 (s)

− c

m
x p
2 (s) − k

m
x p
1 (s) + A

m
x p
1 (θi )

]
ds, p ≥ 0, t ∈ [θi , θi+1).

First, for p = 0, we have

∥∥x1(t) − x0(t)
∥∥ ≤ max

[θi ,ξ]
∥∥x1(t) − x0(t)

∥∥
= ∥∥x1(t) − x0(t)

∥∥
0

≤ max
[θi ,ξ]

t∫
ξ

{
(A − k)2

m2
(x01 )

2 +
(
1 + c2

m2

)
(x02 )

2+

+2
c |A − k|

m2

∣∣x01 ∣∣ ∣∣x02 ∣∣
}1/2

ds.

Using 2 |uv| ≤ u2 + v2, the last inequality takes the following form

∥∥x1(t) − x0(t)
∥∥
0 ≤ 1

m
max
[θi ,ξ]

t∫
ξ

√
M

{
(x01 )

2 + (x02 )
2
}
ds.

So, we obtain

∥∥x1(t) − x0(t)
∥∥
0 ≤ 1

m
max
[θi ,ξ]

t∫
ξ

M1/2
∥∥x0∥∥ ds ≤ 1

m
θM1/2

∥∥x0∥∥ . (15)

Similarly, for p = 0 and p = 1, we get
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∥∥x2(t) − x1(t)
∥∥
0 = max

[θi ,ξ]

t∫
ξ

{(
1 + c2

m2

) (
x12(s) − x02 (s)

)2 + k2

m2

(
x11(s) − x01 (s)

)2 +

+ 2
kc

m2

∣∣x12(s) − x02 (s)
∣∣ ∣∣x11(s) − x01 (s)

∣∣ +
+ A2

m2

(
x11(θi ) − x01 (θi )

)2 +

+2
|A|
m2

∣∣x11(θi ) − x01 (θi )
∣∣ k ∣∣x11(s) − x01 (s)

∣∣ +

+2
|A|
m2

∣∣x11(θi ) − x01 (θi )
∣∣ c ∣∣x12(s) − x02 (s)

∣∣}1/2

ds.

Using 2 |uv| ≤ u2 + v2, we have

∥∥x2(t) − x1(t)
∥∥
0 ≤ 1

m
max
[θi ,ξ]

t∫
ξ

{[
k2 + k |A| + ck

]
(x11(s) − x01 (s))

2

+ [
m2 + c2 + ck + c |A|] (x12(s) − x02 (s))

2

+ (|A| + c + k) |A| (x11(θi ) − x01 (θi ))
2
}1/2

ds

≤ 1

m
θM1/2

∥∥x1(θi ) − x0(θi )
∥∥ +

+ 1

m
max
[θi ,ξ]

t∫
ξ

M1/2
∥∥x1(s) − x0(s)

∥∥ ds.

Thus, by (15), we obtain

∥∥x2(t) − x1(t)
∥∥
0 ≤ 1

m2
θ
2
M

∥∥x0∥∥ + 1

m2
θ
2
M

∥∥x0∥∥ ≤ 2
1

m2
θ
2
M

∥∥x0∥∥ .

By induction, it can be easily seen that we reach the conclusion

∥∥x p+1(t) − x p(t)
∥∥
0 ≤ 2p 1

mp+1
θ
p+1

M (p+1)/2
∥∥x0∥∥ = 1

2

{
2
1

m
θM1/2

}(p+1) ∥∥x0∥∥ .

Then, the condition (C3) implies that the sequence x p(t) is convergent and its limit
x(t) satisfies

x(t) = x0 +
t∫

ξ

[
x2(s)

− c

m
x2(s) − k

m
x1(s) + A

m
x1(θi )

]
ds

on [θi , ξ]. The existence is proved.
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Uniqueness: Let x j (t) = x
(
t, ξ, (x0) j

)
, x j (ξ) = (x0) j , j = 1, 2, denote the

solutions of

x ′(t) =
[
x2(t)

− c

m
x2(t) − k

m
x1(t) + A

m
x1(θi )

]

where θi ≤ ξ ≤ θi+1. Now, we shall show that (x0)1 	= (x0)2 implies x1(t) 	= x2(t)
for every t ∈ [θi , θi+1]. The solutions x1(t) and x2(t) satisfy, respectively,

x1(t) = (x0)1 +
t∫

ξ

[
x12(s)

− c

m
x12(s) − k

m
x11(s) + A

m
x11(θi )

]
ds

and

x2(t) = (x0)2 +
t∫

ξ

[
x22 (s)

− c

m
x22 (s) − k

m
x21 (s) + A

m
x21 (θi )

]
ds,

for all t ∈ [θi , θi+1]. We can write

∥∥x1(t) − x2(t)
∥∥ ≤ ∥∥(x0)1 − (x0)2

∥∥ +

+ 1

m

t∫
ξ

{
(k2 + ck + k |A|) (

x11(s) − x21 (s)
)2 +

+(m2 + c2 + ck + c |A|) (
x12(s) − x22 (s)

)2 +
+(A2 + k |A| + c |A|) (

x11(θi ) − x21 (θi )
)2}1/2

ds

≤ ∥∥(x0)1 − (x0)2
∥∥ + 1

m
θ
√
A2 + k |A| + c |A| ∥∥x1(θi ) − x2(θi )

∥∥ +

+ 1

m

t∫
ξ

M1/2
∥∥x1(s) − x2(s)

∥∥ ds.
By Gronwall-Bellman inequality, we have

∥∥x1(t) − x2(t)
∥∥ ≤ ∥∥(x0)1 − (x0)2

∥∥ e 1
m θM1/2 +

+ 1

m
θ
√
A2 + k |A| + c |A| ∥∥x1(θi ) − x2(θi )

∥∥ e 1
m θM1/2

. (16)

For t = θi , it is true that
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∥∥x1(θi ) − x2(θi )
∥∥ ≤ ∥∥(x0)1 − (x0)2

∥∥ e 1
m θM1/2 +

+ 1

m
θ
√
A2 + k |A| + c |A| ∥∥x1(θi ) − x2(θi )

∥∥ e 1
m θM1/2

.

Hence,

∥∥x1(θi ) − x2(θi )
∥∥ ≤ e

1
m θM1/2

m

m − θ
√
A2 + k |A| + c |A|e 1

m θM1/2

∥∥(x0)1 − (x0)2
∥∥ .

Substituting the last inequality in (16) and by rearranging the terms, we obtain

∥∥x1(t) − x2(t)
∥∥ ≤ e

1
m θM1/2

m

m − θ
√
A2 + k |A| + c |A|e 1

m θM1/2

∥∥(x0)1 − (x0)2
∥∥ . (17)

If it is assumed on the contrary that there exists a t∗ ∈ [θi , θi+1] such that x1(t∗) =
x2(t∗), then we get

(x0)1 − (x0)2 =
t∗∫

ξ

⎡
⎢⎢⎢⎢⎣
x22 (s) − x12(s)(
− c

m

(
x22 (s) − x12(s)

) − k

m

(
x21 (s) − x11(s)

) +

+ A

m

(
x21 (θi ) − x11(θi )

))
⎤
⎥⎥⎥⎥⎦ ds.

By the last equality, we reach

∥∥(x0)1 − (x0)2
∥∥ ≤ 1

m

t∗∫
ξ

{(
x22 (s) − x12(s)

)2 [
m2 + c2 + ck + c |A|] +

+ (
x21 (s) − x11(s)

)2 [
k2 + ck + k |A|] +

+ (
x21 (θi ) − x11(θi )

)2 [
A2 + c |A| + k |A|]}1/2

ds

≤
θ

(√
A2 + k |A| + c |A| + M1/2

)
e

1
m θM1/2

m − θ
√
A2 + k |A| + c |A|e 1

m θM1/2

∥∥(x0)1 − (x0)2
∥∥

<
∥∥(x0)1 − (x0)2

∥∥ ,

which is a contradiction due to the condition (C4). �

Then, the following theorem guarantees sufficient conditions for the existence and
the uniqueness of the solution of (2) onD, which can be proved by the mathematical
induction and in view of Lemma 2.
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Theorem 1 Assume that the conditions (C1), (C3) and (C4) hold true. Then, for
every (t0, x0) ∈ R

+ × R
2, there exists a unique solution x(t) = x(t, t0, x0) of (2) on

D in the sense of Definition 1 such that x(t0) = x0.

3 Stability Analysis in the Sense of Lyapunov-Razumikhin
Method

Now, we shall consider the Lyapunov-Razumikhin method developed by Akhmet
and Aruğaslan [1] for differential equations with PCAG in the following form

x ′(t) = f (t, x(t), x(β(t))) . (18)

In the investigation of the system (18) [3–5], a newapproachbasedon the construction
of an equivalent integral equation has been used. Definitions of stability for EPCAG
coincide with the definitions used for ordinary differential equations [1, 7, 12, 24].

Let us describe special sets as follows:

A = {
a ∈ C

(
R

+,R+) : strictly increasing and a(0) = 0
}
,

and

B = {
b ∈ C

(
R

+,R+) : b(0) = 0, b(s) > 0 for s > 0
}
.

The technique developed in [1, 30] enables stability analysis by constructing a
positive definite Lyapunov function V (t, x) which

(i) is continuous on D × R and V (t, 0) ≡ 0 for all t ∈ D,
(ii) is continuously differentiable on (θi , θi+1) × R and for each x ∈ R, the right

derivative exists at t = θi , i ∈ N0;

and by finding conditions giving a negative definite derivative of V (t, x) along the
trajectories of (18) whenever there exists a relation between the values of this Lya-
punov function at the deviation argument β(t) and any time t according to Theorem
3.1 in [1] and Theorem 5 in [30]. Here, the derivative of V (t, x) with respect to
system (18) is defined by

V ′
(18)(t, x, y) = ∂V (t, x)

∂t
+ 〈∇V (t, x) , f (t, x, y)〉 ,

for all t 	= θi in D and x, y ∈ R, where ∇V denotes the gradient vector of V with
respect to x [1, 30].

By thismethod, we investigate the uniform asymptotic stability of the spring-mass
system (2) ((1)) with PCAG. The following further assumptions will be needed for
the stability analysis in sense of Lyapunov-Razumikhin method:

(C5) 2k − |A| ≥ 0 and (k + m)(2c − |A|) − 2mk ≥ 0;
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(C6) min

{
(2k − |A|)k(k + c)

|A| (k + c + 2m)(2k + m)
,
[(k + m)(2c − |A|) − 2mk] k(k + c)

(m + 2)2m |A|
}

> 1.

3.1 Theoretical Results Together with the Construction of the
Lyapunov Function

Based on theLyapunov-Razumikhinmethod developed in paper [1], the next theorem
gives sufficient conditions for uniform asymptotic stability of the trivial solution
of (2).

Theorem 2 Assume that the conditions (C1)–(C6) are satisfied. Then, the trivial
solution of (2) is uniformly asymptotically stable.

Proof Consider the following Lyapunov function

V (x) = (1 + a) x21 + (1 + b)x22 + 2x1x2, (19)

where x = (x1, x2) and a = k + c

m
, b = m

k
. It is obvious that the Lyapunov function

(19) is positive definite:

V (x) = ax21 + bx22 + (x1 + x2)
2 ≥ ax21 + bx22 .

Therefore, we can find a constant δ1 = δ1(m, c, k) > 0 such that V ≥ δ1
(
x21 + x22

)
,

and thuswe can find a function u ∈ Awhich satisfies the inequalities u (‖x‖) ≥ 0 and
u (‖x‖) ≤ V (t, x). Besides, a function v ∈ A with the property v (‖x‖) ≥ V (t, x)
can be found:

V (x) ≤ (1 + a) x21 + (1 + b)x22 + x21 + x22 = (2 + a) x21 + (2 + b)x22 ,

and so, we can find a constant δ2 = δ2(m, c, k) > 0 such that V ≤ δ2
{
x21 + x22

}
.

Defineψ(s) = σs which is a continuous nondecreasing function for s > 0 and define

a function w(u) which is given by w(u) = ℵ
m
u2 ∈ B. Let us take a constant σ such

that

1 < σ < min

{
(2k − |A|)k(k + c)

|A| (k + c + 2m)(2k + m)
,
[(k + m)(2c − |A|) − 2mk] k(k + c)

(m + 2)2m |A|
}

.

Assume that ℵ is a positive constant defined by

ℵ = min

{
2k − |A| − σ |A|

(
2 + m

k

) (
1

m
+ 2

k + c

)
m,

,
(
1 + m

k

)
(2c − |A|) − 2m − σm

(
2 + m

k

)2 |A|
k + c

}
.
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Let us evaluate the derivative of the Lyapunov function (19) with respect to t , for
t 	= θi , i ∈ N0:

V ′
(2) (x, x(β(t))) ≤ −x21

{
2k

m

}
− x22

{
2(1 + b)

c

m
− 2

}
+

+2x1x2

{
1 + a − k

m
(1 + b) − c

m

}
+

+2
|A|
m

|x1| |x1(β(t))| + 2(1 + b)
|A|
m

|x2| |x1(β(t))| .

Here, it can be seen that the coefficient of x1x2 is equal to zero. By the inequality
2 |u| |v| ≤ u2 + v2, the last inequality takes the following form

V ′
(2) (x, x(β(t))) ≤ −x21

{
2k

m

}
− x22

{
2(1 + b)

c

m
− 2

}
+

+x21
|A|
m

+ x22 (1 + b)
|A|
m

+ (2 + b)
|A|
k + c

ax21 (β(t))

= −x21

{
2k

m
− |A|

m

}
− x22

{
(1 + m

k
)
2c − |A|

m
− 2

}
+

+
(
2 + m

k

) |A|
k + c

ax21 (β(t))

≤ −x21

{
2k

m
− |A|

m

}
− x22

{
(1 + m

k
)
2c − |A|

m
− 2

}
+

+
(
2 + m

k

) |A|
k + c

(
ax21 (β(t)) + bx22 (β(t))

) +

+
(
2 + m

k

) |A|
k + c

(x1(β(t)) + x2(β(t)))2 .

Now, we can complete the proof based on the Theorem 3.2.3 in [1]. Therefore,
we have

V ′
(2) (x, x(β(t))) ≤ −x21

{
2k − |A|

m
− σ |A|

(
2 + m

k

) (
1

m
+ 2

k + c

)}

−x22

{
(1 + m

k
)
2c − |A|

m
− 2 − σ

(
2 + m

k

)2 |A|
k + c

}

≤ − ℵ
m

(
x21 + x22

)
= −w(‖x‖)

whenever V (x(β(t))) ≤ ψ (V (x(t))) according to Theorem 3.2.3 in [1]. In other
words, the trivial solution of (2) ((1)) is uniformly asymptotically stable whenever
ax21 (β(t)) + bx22 (β(t)) + (x1(β(t)) + x2(β(t)))2 ≤ σax21 + σbx22 + σ (x1 + x2)2

by (3). This completes the proof. �
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4 Illustrative Examples

In this section, taking the obtained theoretical results into account, we give some
examples together with simulations using the MATLAB package program.

Example 1 Let m = 3, c = 15, k = 3, A = 0.03 in (1) and let θi = i

40
+ (−1)i

1

120
, i ∈ N0. So consider the following spring-mass system

{
x ′
1(t) = x2(t)
x ′
2(t) = −5x2(t) − x1(t) − 0.01x1(β(t))

(20)

with PCAG. Assume that the solutions xi (t) start at initial points xi (0.01) = 0.1,

i = 1, 2.By simple calculation,weobtainθ = 5

120
,θΩ

1

m
(c + θk) = 0.25917606 <

1,
θ
2

m
(k + |A|)Ω = 0.0021633704 < 1, μκ = 0.10166956 < 1; 2

1

m
θM1/2 =

0.46435439 < 1; θe
1
m θM1/2

(
2
√
A2 + k |A| + c |A| + M1/2

)
= 0.95587091 < m =

3. So, the conditions (C1)–(C4) hold true, and it follows from Lemma 2 and Theo-
rem 1 that there exists a unique solution with the initial value (x1(0.01), x2(0.01)) =
(0.1, 0.1). Additionally, we have 2k − |A| = 5.97 ≥ 0 and (k + m)(2c − |A|) −
2mk = 161.82 ≥ 0;

min

{
(2k − |A|)k(k + c)

|A| (k + c + 2m)(2k + m)
,
[(k + m)(2c − |A|) − 2mk] k(k + c)

(m + 2)2m |A|
}

= 49.75 > 1.

Thus, (C5)–(C6) are satisfied. We can choose σ = 49 which satisfies the inequality
1 < σ < 49.75. Hence, the conditions of Theorem 2 are satisfied, and Lyapunov-
Razumikhin technique says that the trivial solution of (20) is uniformly asymptoti-
cally stable as seen by Fig. 1.

Example 2 Let m = 3, c = 1.6, k = 3, A = 0.1 in (1) and let θi = i

40
+ (−1)i

1

120
, i ∈ N0. So, consider the following spring-mass system

{
x ′
1(t) = x2(t)

x ′
2(t) = −1.6

3
x2(t) − x1(t) − 0.1

3
x1(β(t)).

(21)

By simple calculation, we obtain θ = 5

120
, θΩ

1

m
(c + θk) = 0.0245393 < 1,

θ
2

m
(k + |A|) Ω = 0.0018375 < 1, μκ = 0.0484045 < 1; 2

1

m
θM1/2 = 0.1129022
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Fig. 1 Time response of state variables x1(t) (the red one) and x2(t) (the black one) of (20)

for t ∈ [0.01, 42.50833333] while m = 3, c = 15, k = 3, 0.03, θi = i

40
+ (−1)i

1

120
, i ∈ N0, at

(x1(0.01), x2(0.01)) = (0.1, 0.1)

0 5 10 15 20 25 30 35 40
−0.1

−0.05

0

0.05

0.1

0.15

x 1−x
2

Fig. 2 Time response of state variables x1(t) (the red one) and x2(t) (the black one) of (21) for

t ∈ [0.01, 37.50833333] while m = 3, c = 1.6, k = 3, A = 0.1, θi = i

40
+ (−1)i

1

120
, i ∈ N0, at

(x1(0.01), x2(0.01)) = (0.1, 0.1)
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< 1;θe
1
m θM1/2

(
2
√
A2 + k |A| + c |A| + M1/2

)
= 0.2396368 < m = 3. So, the con-

ditions (C1)–(C4) are fulfilled, and it follows from Lemma 2 and Theorem 1
that there exists a unique solution with the initial value (x1(0.01), x2(0.01)) =
(0.1, 0.1). We have 2k − |A| = 5.9 ≥ 0 and (k + m)(2c − |A|) − 2mk = 0.6 ≥ 0;

min

{
(2k − |A|)k(k + c)

|A| (k + c + 2m)(2k + m)
,
[(k + m)(2c − |A|) − 2mk] k(k + c)

(m + 2)2m |A|
}

= 1.104

> 1. Thus, (C5)–(C6) are satisfied. We can choose σ = 1.1 which satisfies the
inequality 1 < σ < 1.104. Hence, the conditions of Theorem 2 are satisfied, and
Lyapunov-Razumikhin technique says that the trivial solution of (21) is uniformly
asymptotically stable. The simulation showing the uniform asymptotic stability of
the trivial solution of (21) is given in Fig. 2.

5 Conclusion

In the present work, we address a damped spring-mass system which is modeled by
a piecewise function, i.e. by PCAG, as a deviating argument. Since PCAG is a more
general argument than the greatest integer function, we get a more general system
and thus obtain more general results for the mechanical system mathematically.
Thus, when examining stability of the system’s behavior, it is possible to obtain
more appropriate results in terms of the reality of the model. Although this argument
develops the systems, it makes difficult to find the exact solution of such systems.
Therefore, it is very important to be able to analyze the system without finding
its solution. In this case, Lyapunov methods are very useful [1, 26]. In our study,
Lyapunov-Razumikhinmethod [1], whichwas developed for analysis of applications
where there is a PCAG, is considered. This method is more applicable than other
methods available in the literature for similar analyses. With the help of this method,
i.e. the Lyapunov-Razumikhin method for EPCAG, results can be achieved more
efficiently. In order to observe this, studies conducted, for instance, by Lyapunov-
Krasovskii method, in the same direction can be examined. Moreover, in the present
paper, it is of great importance that the achieved results are supported by examples
and simulations. In future studies, the mechanical model considered in this study can
be developed by the argument γ(t)which is introduced byAkhmet [8]. The argument
function γ(t) is of the alternate type which means that it is both advanced type and
delayed type. In our paper, the argument function β(t) is of delayed type only.
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14. Aruğaslan, D., Cengiz, N.: Existence of periodic solutions for a mechanical system with piece-
wise constant forces. Hacet. J. Math. Stat. 47(3), 521–538 (2018)

15. Aruğaslan, D., Özer, A.: Stability analysis of a predator-prey model with piecewise constant
argument of generalized type usingLyapunov functions.NonlinearOscillations 16(4), 452–459
(2013)

16. Bykov, J.A.V., Salpagarov, H.M.K.: Theorii Integrodifferential’nyh Uravnenijam v Kirgizii.
Izd-vo AN Kirg. SSR (2) (1962)

17. Cooke, K.L., Wiener, J.: Retarded differential equations with piecewise constant delays. J.
Math. Anal. Appl. 99, 265–297 (1984)

18. Dai, L.: Nonlinear Dynamics of Piecewise Constant Systems and Implementation of Piecewise
Constant Arguments. World Scientific, Hackensack, NJ (2008)

19. Dai, L., Singh, M.C.: On oscillatory motion of spring-mass systems subjected to piecewise
constant forces. J. Sound Vib. 173(2), 217–231 (1994)

20. Dragomir, S.S.: Some Gronwall Type Inequalities and Applications. Nova Science Publishers
Inc., Hauppauge, NY (Reviewer: B. G. Pachpatte) (2003)
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A Darwinian Ricker Equation

Jim M. Cushing

Abstract The classic Ricker equation xt+1 = bxt exp (−cxt ) has positive equilibria
for b > 1 that destabilize when b > e2 after which its asymptotic dynamics are
oscillatory and complex. We study an evolutionary version of the Ricker equation
in which coefficients depend on a phenotypic trait subject to Darwinian evolution.
We are interested in the question of whether evolution will select against or will
promote complex dynamics. Toward this end, we study the existence and stability
of its positive equilibria and focus on equilibrium destabilization as an indicator of
the onset of complex dynamics. We find that the answer relies crucially on the speed
of evolution and on how the intra-specific competition coefficient c depends on the
evolving trait. In the case of a hierarchical dependence, equilibrium destabilization
generally occurs after e2 when the speed of evolution is sufficiently slow (in which
case we say evolution selects against complex dynamics). When evolution proceeds
at a faster pace, destabilization can occur before e2 (in which case we say evolution
promotes complex dynamics) provided the competition coefficient is highly sensitive
to changes in the trait v. We also show that destabilization does not always result in
a period doubling bifurcation, as in the non-evolutionary Ricker equation, but under
certain circumstances can result in a Neimark-Sacker bifurcation.

Keywords Ricker equation · Darwinian Ricker equation · Chaos · Evolutionary
game theory

1 Introduction

It is well known that difference equations can predict complex asymptotic dynamics
in the form of non-equilibrium attractors. The exponential or Ricker equation
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x(t+1) = bx(t) exp(−cx(t)) (1)

is the iconic example of a period doubling route to chaos which, as b > 1 increases,
initiates afterb = e2 where thepositive equilibrium x = c−1 ln b destabilizes.Despite
the ubiquity of this phenomenon in difference equations used as population dynamic
models, unequivocal evidence of its occurrence in biological populations is sparse
and is, for the most part, limited to populations manipulated in laboratory settings
[10]. Several explanations for this can be found in the literature. One is that popula-
tion time series data tends to be too short to be able to identify complex dynamics
and data is usually “noisy” and, as a result, it is difficult to tell the difference between
stochastic fluctuations and deterministic fluctuations (such as chaos) [5, 8]. Another
explanation is that most populations in the natural world are subject to interactions
with other species that can serve to dampen complex dynamics [7]. Yet another
explanation is that biological populations are subject to evolutionary change by Dar-
winian principles and that evolution might select to reduce dynamic complexity, i.e.
non-equilibrium dynamics such as periodic oscillations or chaos [4]. In this paper
we briefly consider the latter possibility by subjecting the parameters in the Ricker
equation (1) to evolutionary changes according to a methodology called evolution-
ary game theory (or Darwinian dynamics) [9]. This derivation results in a system
of difference equations that we refer to as a Darwinian Ricker model. In this short
note, we do not strive to carry out a study of the non-equilibrium dynamics that are
possible in Darwinian Ricker equations, but instead focus simply on whether or not
positive equilibria destabilize for b greater than some critical value and, if they do,
whether the critical value is greater or less than e2. If it is greater than e2, then we say
that evolution selects against non-equilibrium and complex dynamics in the sense
that the de-stabilization of the equilibrium occurs for larger values of b than it does
when evolution is absent. If the critical value of b occurs before e2, then we say that
evolution promotes non-equilibrium and complex dynamics.

Darwinian Ricker model equations are derived by evolutionary game theoretic
methods in Sect. 2. The existence and stability (by linearization) of equilibria of
this system of two nonlinear difference equations are studied in Sect. 3. Conclusions
obtained from this analysis with regard to the effect of evolution on non-equilibrium
dynamics are discussed in Sect. 4.

2 A Darwinian Ricker Equation

In the Ricker equation (1) x represents the total size or density of a population
consisting of individual biological organisms. We interpret b as the inherent (i.e.
density free) per capita fertility rate. The coefficient c is a measure of the effect that
increased population density has on the per capita fertility rate, as might be due to
competition with con-specifics for resources (food, space, mates, etc.). We refer to c
as the competition coefficient. We assume that both b and c, as coefficients relating
to an individual’s inherent fertility and susceptibility to intra-specific competition
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respectively, are functions of a phenotypic trait of the individual, denoted by v, that
is subject to evolutionary change over time. Under the axioms ofDarwinian evolution
(trait variability, heritability, and differential trait dependent fitness), the method of
evolutionary game theory [9] provides a dynamic model for the population density
and the population’s mean phenotypic trait, under the assumption that the trait has
a Gaussian distribution with fixed variance throughout the population at all times.
Thus, the distribution of the trait v in the population at any point in time is determined
by the population mean trait, which we denote by u.

In the Ricker equation we assume the fertility rate b is a function of v alone, since
it is the density free fertility rate of an individual with trait v (i.e. not subject to the
presence of other individuals and hence to the population mean u). The competition
coefficient c, on the other hand, we assume is dependent on the individual’s trait v

and that of other individuals with whom it competes, as represented by the mean trait
u. Thus we assume

b = b (v) , c = c (v, u) .

The density dependent fertility rate is then

r (x, v, u) = b (v) exp (−c (v, u) x) . (2)

The Darwinian equations governing both population and mean trait dynamics are

xt+1 = r (xt , v, ut )|v=ut
xt (3)

ut+1 = ut + σ 2 ∂ ln r (xt , v, ut )

∂v

∣
∣
∣
∣
v=ut

(4)

where σ 2 ≥ 0 is called the speed of evolution (it is proportional to the constant
variance of v) [2, 9]. The trait equation (4) says that the change in mean trait is
proportional to the fitness gradient, with fitness taken to be ln r (the equation is often
called Lande’s or Fisher’s equation or the canonical equation of evolution).

To further specify the model, we will place assumptions on b (v) and c (v, u). In
this paper we assume that there is a trait at which inherent fertility has a maximum,
denoted by b0, and we choose that trait to be the reference point for v. We also
assume that fertility b (v) is distributed in a Gaussian fashion around its maximum
b0 v = 0 and, without loss in generality, we scale the trait v so that the variance of
b (v) equals 1:

b (v) = b0 exp

(

−v2

2

)

. (5)

With (2) and this choice for b (v) , the Darwinian equations (3)–(4) become
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xt+1 = b0
(

exp
(

−v

2

)

exp (−c (v, ut ) xt )
)∣
∣
∣
v=ut

xt (6)

ut+1 = ut + σ 2

(

−ut − ∂c (v, ut )

∂v

∣
∣
∣
∣
v=ut

xt

)

. (7)

A common assumption that is made concerning trait dependency of competition
coefficients in Darwinian models is that they are functions of the difference v − u. In
other words, the competition that an individual experiences depends on how different
its trait v is from the typical individual in the population, as represented by the mean
traitu.Wemake this assumptionhere andwrite c = c (v − u)where the function c (z)
is continuously differentiable for all values of its argument z. Under this assumption
equations (6)–(7) become

xt+1 = b0

(

exp

(

−u2
t

2

)

exp (−c (0) xt )

)

xt

ut+1 = ut + σ 2

(

−ut − dc (z)

dz

∣
∣
∣
∣
z=0

xt

)

.

As a final scaling, we assume population units for x are chosen so that c (0) = 1
and obtain the model equations

xt+1 = b0 exp

(

−u2
t

2

)

exp (−xt ) xt (8)

ut+1 = −c1σ
2xt + (

1 − σ 2
)

ut (9)

where

c1 := dc (z)

dz

∣
∣
∣
∣
z=0

.

There are three coefficients in the Eqs. (8)–(9). The coefficient b0 is the maximal
possible fertility rate, as a function of the trait v, and the coefficient σ 2 is the speed
of evolution. The coefficient c1 is the sensitivity of the competition competition c (z)
to changes in the difference z = v − u at when v = u. If c1 �= 0 then c1 measures the
difference between the competition intensities experienced by individuals that have
the population mean trait and those whose traits are slightly different from the mean.
For example, if c1 > 0 then an individual that inherits a trait slightly larger (smaller)
than the mean u will experience increased (decreased) intraspecific competition.
These interpretations can also hold, of course, if c1 = 0 unless c (z) has an extrema
at z = 0. In fact, a common modeling assumption is that maximum competition is
experience by individuals with the population mean trait, in which case c (z) has a
maximum at z = 0 and c1 = 0. A commonly used model for c (z) assumes it has a
Gaussian type distribution
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c (z) = exp

(

− z2

2ω2

)

(10)

(with variance ω2). In contrast, if for example

c (z) = exp (c1z) (11)

then competition intensity either decreases as v decreases or increases from themean
u, depending on the sign of c1. We refer to this type of competition coefficient c (z),
i.e. one for which c1 �= 0 as heirarchical.

3 Equilibria of the Darwinian Ricker

Our goal is the study the existence and stability properties of equilibria of the Dar-
winianRicker equations (8)–(9) using b0 as a bifurcation parameter.We are interested
in equilibria (x, u) with a positive x-component, which we define to be a positive
equilibrium pair. The equations for a positive equilibrium pair are

1 = b0 exp

(

−u2

2

)

exp (−x)

0 = −c1x − u.

If b0 < 1, then one sees from the first equation that there is no positive equilibrium
(x, u) . However, if b0 > 1 then there exists a unique positive equilibrium obtained
from the equations

1 = b0 exp

(

−c21x2

2

)

exp (−x) , u = −c1x (12)

The positive root of
c21x2

2
+ x = ln b0 (13)

yields the formulas for positive equilibria:

(x (b0) , u (b0)) =
⎧

⎨

⎩

(ln b0, 0) if c1 = 0
(

−1+
√

1+2c21 ln b0
c21

,
1−

√
1+2c21 ln b0

c1

)

if c1 �= 0
. (14)

The Jacobian of Eqs. (8)–(9)

J (x, u) =
(

b0e− 1
2 u2

e−x (1 − x) −uxb0e− 1
2 u2

e−x

−c1σ 2 1 − σ 2

)
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evaluated at the positive equilibrium becomes, when Eq. (12) are utilized, is

J (x (b0) , u (b0)) =
(

1 − x (b0) c1x2 (b0)
−c1σ 2 1 − σ 2

)

which by (13), further simplifies to

J (x (b0) , u (b0)) =
(
1 − x (b0)

2
c1

(ln b0 − x (b0))
−c1σ 2 1 − σ 2

)

(15)

Motivated by the question posed in Sect. 1 we are interested in the case when the
positive equilibria are stable for b0 >1, but near 1 and destabilize at some value of
b0 >1. For b0 near 1 the eigenvalues of the Jacobian J (x (b0) , u (b0)) are

λ1 (b0) = 1 − (b0 − 1) + O
(

(b0 − 1)2
)

λ2 (b0) = σ 2 − 1 + O
(

(b0 − 1)2
)

.

It follows by the Linearization Principle that for b0 greater than, but near 1, the
equilibria (x (b0) , u (b0)) are stable if σ 2 < 2 and unstable if σ 2 > 2. Therefore, we
will assume that σ 2 < 2.

For the case c1 = 0 the eigenvalues of this Jacobian are

λ1 = 1 − ln b0 and λ2 = 1 − σ 2

and the destabilization of the positive equilibrium occurs at the same critical value
as does the classic Ricker equation (1).

Theorem 1 Assume c1 = 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9).
There exists positive equilibrium for and only for b0 > 1. They are locally asymp-
totically stable if 1 < b0 < e2 and unstable if b0 > e2 . When b0 = e2 the Jacobian
has eigenvalue value −1.

In general when c1 = 0, the trait equation (9) decouples from the population equation
(8) and limt→+∞ ut = 0 under the assumption σ 2 < 2. In this case, the population
equation (8) is asymptotically autonomous and the classic Ricker (1) is its limiting
equation. This fact allows for further analysis of the dynamics of the Darwinian
Rickermodel [1, 6], butwewill not pursue further analysis here .Note that Theorem1
applies when the competition coefficient has the Gaussian form (10).

Consider now the case c1 �= 0. To study the eigenvalues of the Jacobianwe employ
the trace and determinant criteria which imply both eigenvalues have magnitude <1
if and only if the three inequalities

tr J (x, u) < 1 + det J (x, u) (16)

− 1 − det J (x, u) < tr J (x, u) (17)
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det J (x, u) < 1 (18)

all hold [3]. If inequality (16) or (17) become equalities, then the Jacobian has an
eigenvalue equal to +1 or −1 respectively. If inequality (18) becomes an equality,
then the Jacobian has a complex eigenvalue whose absolute value equals 1.

For (15) we have

tr J (x (b0) , u (b0)) = 2 − x (b0) − σ 2 (19)

det J (x (b0) , u (b0)) = (1 − x (b0))
(

1 − σ 2
) + 2σ 2 (ln b0 − x (b0)) . (20)

Lemma 1 Assume c1 �= 0 in the Darwinian Ricker equations (8)–(9). Inequality
(16) holds for all σ 2 and b0 > 1.

Proof Using (19) and (20), it is easy to show that inequality (16) reduces to x (b0) <

2 ln b0. From the Formula (14) and c1 �= 0, this inequality is

−1 +
√

1 + 2c21 ln b0

c21
< 2 ln b0

or
√

1 + 2c21 ln b0 < 1 + 2c21 ln b0, which is clearly true and completes the proof.

Next we turn attention to inequality (17).

Lemma 2 Assume c1 �= 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9).

(a) If

σ 2 <
2

1 + 8c21
(21)

then there exist a real b2 > e2 such that inequality (17) holds for b0 satisfying
1 < b0 < b2. Inequality (17) is reversed if b0 is greater than but near b2. The
Jacobian J (x (bn) , u (bn)) has eigenvalue −1.

(b) If

σ 2 >
2

1 + 8c21
(22)

then inequality (17) holds for all b0 > 1.

Proof Using (19) and (20) together with the equilibrium formulas (14), one can
re-arrange inequality (17) to the inequality

(

2 + σ 2)
√

2c21z + 1 < 2 + σ 2 + 2c21
(

2 − σ 2) + 2σ 2c21z

where we have defined
z = ln b0 > 0.
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Since both sides are positive, we can retain the inequality by squaring both sides,
after which we re-arrange the result into an equivalent inequality 0 < q1 (z) where
q1 (z) is the quadratic polynomial

q1 (z) := 2c21
(

2 − σ 2) (

σ 2 + 2 + (

2 − σ 2) c21
)

− c21
(

2 − σ 2
) (

2 + (

1 − 4c21
)

σ 2
)

z + 2σ 4c41z2.

The quadratic q1 (z) has a global minimum

q1 (zc) = 1

8σ 4

(

2 − σ 2
) (

σ 2 + 2
)2 (

1 + 8c21
)
(

σ 2 − 2

1 + 8c21

)

attained at the critical point

zc = 2 − σ 2

4σ 4c21

(

2 + σ 2
(

1 − 4c21
))

.

(a) Inequality (21) implies q1 (zc) < 0 and hence the existence of two real roots of
q1 (z) . Since q1 (0) = 2c21

(

2 − σ 2
) (

2 + σ 2 + (

2 − σ 2
)

c21
)

> 0, it follows that
the two roots are both negative or both positive, depending on whether zc < 0
or zc > 0 respectively. Clearly zc > 0 if 1 − 4c21 ≥ 0. Suppose, on the other

hand, that 1 − 4c21 < 0. Then zc > 0 if and only if σ 2 < 2
(

4c21 − 1
)−1

which

holds by (21) since
(

4c21 − 1
)−1

>
(

1 + 8c21
)−1

. Thus, in this case, q1 (z) has
two positive roots. If we denote the smaller by z2 then 0 < q1 (z) for 0 < z < z2
and q1 (z) changes sign as z increases through z2. Since q1 (z2) = 0 inequality
(17) becomes an equality which means the Jacobian has an eigenvalue of −1.
Finally we need to show that z2 > 2. One way to do this is to show q1 (2) > 0
and q ′

1 (2) < 0.Calculations in fact show q1 (2) = 2c41
(

σ 2 + 2
)2

> 0 and, using
(21),

q ′
1 (2) = c21

(

σ 2 + 2
) (

σ 2 + 4σ 2c21 − 2
)

< −1

2
c21

(

σ 2 + 2
) (

2 − σ 2
)

< 0.

(b) Inequality (22) implies q1 (zc) > 0 and hence q1 (z) > 0 for all z. This completes
the proof.

Finally we consider inequality (18).

Lemma 3 Assume c1 �= 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9).
There exists a real bn > exp (1/2) such that inequality (18) holds for 1 < b0 < bn.

The Jacobian J (x (bn) , u (bn)) has a complex eigenvalue of absolute value 1. The
inequality (18) is reversed for b0 > bn.

Proof Inequality (18) can be re-arranged as

σ 2 (2 ln b0 − 1) < x (b0)
(

σ 2 + 1
)
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which is true for 1 < b0 < exp (1/2) . For b0 > exp (1/2) we use the Formula (14)
for x (b0) and re-arrange the inequality as

1 + (2z − 1)
σ 2

(

σ 2 + 1
)c21 <

√

1 + 2c21z

where z = ln b0 > 1/2. Since both sides are positive, we can square them and re-
arrange the inequality to obtain an equivalent inequality

0 < q2 (z) := σ 2
(

2σ 2 − σ 2c21 + 2
) + 2

(−σ 4 + 2σ 4c21 + 1
)

z − 4σ 4c21z2

Since q2 (1/2) = (

σ 2 + 1
)2

> 0, this quadratic polynomial has a unique positive
root zn > 1/2 and q2 (z) > 0 for 1/2 < z < zn. Since q2 (zn) = 0, inequality (18)
becomes an equality,which implies the Jacobianhas a complex eigenvalueof absolute
value 1. This completes the proof.

In Lemma 2(a), the real b2 is equal to exp (z2) where z2 is the smaller of the
positive roots of q1 (z) . When (21) holds.a formula for z2 > 2 is

z2 =
(

2 − σ 2
) (

2 + σ 2 − 4σ 2c21
) − (

σ 2 + 2
)
√

(

2 − σ 2
) (

2 − σ 2 − 8σ 2c21
)

4σ 4c21
(23)

When (21) holds define
b2 := exp (z2) > e2. (24)

In Lemma 2, the real bn is equal to exp (zn) where zn is the unique positive root
>1/2 of q2 (z) . A formula for zn is

zn = 1 − σ 4 + 2σ 4c21 + (

σ 2 + 1
)
√

(

σ 2 − 1
)2 + 4σ 4c21

4σ 4c21
>

1

2
. (25)

Define
bn := exp (zn) > e1/2. (26)

The three Trace-Determinant stability inequalities (16)–(18) for local stability,
together with the three Lemmas 1, 2, and 3, yield the following theorem.

Theorem 2 Assume c1 �= 0 and σ 2 < 2 in the Darwinian Ricker equations (8)–(9)
and let b2 and bn be defined by (24) and (26).

(a) Assume

σ 2 <
2

1 + 8c21
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and define bm = min {b2, bn}. The positive equilibrium (14) is locally asymptot-
ically stable for 1 < b0 < bm and is unstable for b0 greater than but near bm.
If bm = b2 then the Jacobian has an eigenvalue −1 when b0 = bm . If bm = bn

then the Jacobian has a complex eigenvalue of absolute value 1 when b0 = bm.
(b) If

σ 2 >
2

1 + 8c21

then the positive equilibrium (14) is locally asymptotically stable for 1 < b0 <

bn. and unstable for b0 greater than, but near bn. The Jacobian has a complex
eigenvalue of absolute value 1 when b0 = bn.

Note that the denominators in the Formulas (23) and (25) for z2 and zn are identical
and the numerator of z2 vanishes while that of zn equals 2 when σ 2 = 0. Thus, for
σ 2 small it follows that b2 < bn . Theorem 2(a) implies the following corollary.

Corollary 1 Assume c1 �= 0 in the Darwinian Ricker equations (8)–(9). For σ 2

sufficiently small, the destabilization of the positive equilibria occurs at b2 > e2.

For a fixed value of c1 �= 0, sufficiently large values of σ 2 (but less than 2) can
result in destabilization at bn , which can be either greater than or less than e2. Exam-
ples are provided in the next section.

4 Concluding Remarks

It is not our purpose in this paper to rigorously study the nature of the bifurcations in
the Darwinian Ricker equations that occur when the positive equilibrium destabilizes
(i.e. to formally prove that they do result in new invariant sets, what the direction of
bifurcation is, their stability properties, etc.). We focus only on the occurrence of the
destabilization an indicator of the onset of non-equilibrium and complex dynamics.
At the point of bifurcation, the equilibrium is nonhyperbolic and, as a result, the
linearization principle does not hold. This is irrelevant for our purposes here because
it is no concern to us what the stability properties of the equilibrium are at the point
of bifurcation; we are interested only in the fact that there is a change from equilib-
rium stability to instability before and after the bifurcation occurs. With regard to
the type of bifurcation that occurs, i.e. what kind of stable invariant sets replace the
destabilized equilibrium, we do point out in Theorems 1 and 2 what the Jacobian
eigenvalues are at the bifurcation point, specifically where on the complex unit circle
an eigenvalue lies. The reason for this is that this information tells us what kind of
bifurcation we expect to occur. If at destabilization −1 is an eigenvalue of the Jaco-
bian, then one expects a period doubling bifurcation. If the Jacobian has a complex
eigenvalue of absolute value 1, then one expects a Neimark-Sacker bifurcation to an
invariant loop [3].

Theorem 1 implies that when c1 = 0 in the Darwinian Ricker equations (8)–(9)
the positive equilibria destabilize at b0 = e2, which is no different from the non-
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Fig. 1 a The familiar bifurcation diagram for the Ricker equation (1) with c = 1. b The bifurcation
diagram showing the x component of the Darwinian Ricker equations (8)–(9) with c1 = 0 and
σ 2 = 1

evolutionary Ricker equation (1). The destabilization occurs because an eigenvalue
of the Jacobian increases through −1 as b0 increases through e2, which is indicative
of a period doubling bifurcation. This is also no different from the non-evolutionary
Ricker equation. A sample bifurcation diagram appears in Fig. 1b that illustrates this
bifurcation and what is apparently a period doubling route to chaos for the Darwinian
Ricker equations that is identical with the non-evolutionary Ricker equation (Fig. 1a).

On the other hand, if c1 �= 0 then Theorem2 shows that while destabilization
does indeed occur at a critical value of b0 in Darwinian Ricker equations, it does not
necessarily indicate a period doubling bifurcation nor that it occurs at e2, as in the non-
evolutionary Ricker equation. The critical bifurcation point is either b2 > e2 (which
is indicative of a period doubling bifurcation) or bn > e1/2 (which is indicative of a
Neimark-Sacker bifurcation [3]). As stated in Corollary 1 equilibrium destabilization
occurs at b2 when the speed of evolution is not too fast. In fact, b2 can be significantly
larger than e2 and the onset of complexity significantly delayed. Example bifurcation
diagrams appear in Fig. 2.

Another difference between the evolutionary and non-evolutionary Rickermodels
is that destabilization does not necessarily result in period doubling. This occurs (for
larger values of σ 2 and c21) when bm = bn , which is indicative of a Neimark-Sacker
bifurcation. Sample bifurcation diagrams appear in Fig. 3. One example (Fig. 3a) is
when non-equilibrium dynamics are delayed, i.e. bn > e2 and the other (Fig. 3(b)) is
when they are advanced, i.e. bn < e2. In the latter case, one could say evolution has
promoted non-equilibrium and complexity dynamics.

For the Darwinian versions of the Ricker equation considered here, we arrive
at several general conclusions. If c1 = 0 in the trait dependent density coefficient
c(v − u), then there is no change in the destabilization point for the fertility rate b0.
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Fig. 2 The bifurcation diagram showing the x component of the Darwinian Ricker equations (8)–
(9) with a c1 = 0.5 and σ 2 = 0.5 and b c1 = 0.6 and σ 2 = 0.5. The Formulas (24) and (26) for b2
and bn in these two cases yield a b2 ≈ 28.121 < bn ≈ 2304.5 and b b2 ≈ 207.13 < bn ≈ 342.96

Fig. 3 The bifurcation diagram showing the x component of the Darwinian Ricker equations (8)–
(9) with a c1 = 0.8 and σ 2 = 0.8 and b c1 = 2 and σ 2 = 0.8. For these cases, b2 does not exist
and a bn ≈ 8.5253 > e2 ≈ 7.3891 and b bn ≈ 3.0004 < e2
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Both models destabilize in period doubling bifurcations at the same critical value
e2. In this sense, we conclude that evolution has no effect on the onset of non-
equilibrium and complex dynamics. The opposite is true in the case of hierarchical
trait dependent competition coefficients, i.e. when c1 �= 0. In this case the onset of
non-equilibrium and complex dynamics is delayed to a larger critical value of b0
when evolution procedes slowly (i.e. σ 2 is small). In this case, we say that slow
evolution selects against non-equilibrium and complex dynamics. If, on the other
hand, evolution procedes at a faster speed, then there are two differences with the
non-evolutionary Ricker equation, depending the magitude of the density effects, i.e.
the size of c1. First, the onset of non-equilibrium and complex dynamics can lead
not to a period doubling bifurcation, but to a Neimark-Sacker bifurcation. Secondly,
in the latter case, the bifurcation point can be either later or earlier than e2. In the
latter case (and only in this case), which occurs for larger σ 2 and c1 values, we can
conclude that evolution promotes non-equilibrium and complex dynamics.

These conclusions are drawn, of course, on the basis of the specific Darwinian
Ricker equation considered here. To what extent they remain valid for other Dar-
winian equations with complex dynamics awaits further study.
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Difference Equations Related to Number
Theory

BERNHARD HEIM and Markus Neuhauser

Abstract In this paper we investigate difference equations related to number theory.
We apply a criterion to reduce these hereditary difference equations to finite length.
The solutions are polynomials in one variable. We analyze the solutions with respect
to convergence, periodicity, and boundedness. As an example we obtain and study
Chebyshev polynomials of the second kind. We also apply Poincaré’s theorem to
transform a non-autonomous difference equation to an autonomous version.

Keywords Arithmetic functions · Chebyshev polynomials · Dedekind’s
η-function · Polynomials · Recurrence relations

1 Introduction

Powers of Dedekind’s η-function are functions that are classically studied in number
theory [8]. Dedekind’s η-function is defined as a function on the upper complex half
plane H = {τ ∈ C : Im (τ ) > 0} by

η (τ) = q1/24
∞∏

n=1

(
1 − qn

)

employing q = e2π iτ . For powers thereof it can be shown that there are polynomials
Pn (x) such that
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qx/24 (η (τ ))−x =
∞∏

n=1

(
1 − qn

)−x = 1 +
∞∑

n=1

Pn (x) qn

for x ∈ C. The degree of the polynomial Pn (x) is n. They satisfy P1 (x) = x and the
recurrence relation

Pn (x) = x

n

(
σ (n) +

n−1∑

k=1

σ (k) Pn−k (x)

)
, (1)

where σ (k) = ∑
d|k d is the sum of divisors of k. In number theory the values

Pn (−24) play a special role. The Lehmer conjecture [7] on their non-vanishing is
still open. Note that Pn (1) are the so-called partition numbers pn [1, 8]. For example
p1 = 1, p2 = 2, p3 = 3, p4 = 5, …, p9 = 30, …, p50 = 204226.

Tounderstand the dependenceof these polynomials on the sumof divisors function
σ we employ the following more general approach. We allow arbitrary functions
instead of σ and additionally we also generalize the factor 1

n to 1
h(n)

, where h is an
arithmetic function. To summarise we make the following definition (compare also
[6]).

Definition 1 Let g : N → C be an arithmetic function normalised to g (1) = 1 and
h : N → R, increasing, with h (1) = 1. We define Pg,h

n (x) by Pg,h
1 (x) = x and the

recurrence relation

Pg,h
n (x) = x

h (n)

(
g (n) +

n−1∑

k=1

g (k) Pg,h
n−k (x)

)
(2)

for n ≥ 2. We abbreviate Pg,h
n (x) by Pn (x) = Pg

n (x) if h = id the identity on N

and by Qn (x) = Qg
n (x) if h (n) = 1 for all n ∈ N.

Note that for g = σ and h = id we obtain that Pσ,id
n (x) = Pσ

n (x) = Pn (x) is
exactly the nth coefficient of the −x th power of Dedekind’s η-function.

In some cases, as in Example 2, it is possible to reduce the recurrence relation (2)
to one of bounded length see [6, Theorem 2.1] (and Theorem 1). We recall this in
Sect. 2.

Example 1 (Toy problems). Let g (n) = 1 for all n. Then

Pg,h
n (x) = x

h (n)

n−1∏

m=1

(
x

h (m)
+ 1

)

for n ≥ 1 with (obvious) zeros x ∈ {0,−h (1) ,−h (2) , . . . ,−h (n − 1)}.
Example 2 (Chebyshev polynomials of the second kind). We obtain for g = id
a relation to classical orthogonal polynomials [2]. In [6, Corollary 2.5] (see also
Corollary 1 of Theorem 1) we obtained the reduced recurrence relation
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Qn (x) = (x + 2) Qn−1 (x) − Qn−2 (x) (n ≥ 3) (3)

and the initial values Q1 (x) = x and Q2 (x) = (x + 2) x . As a solution of this recur-
rence relation in [6, part 1 of Remark 2.8]we obtained Qn (x) = xUn−1 (x/2 + 1) for
n ≥ 1 whereUn (x) are the Chebyshev polynomials of the second kind. By the well-
known relation Un−1 (cos t) = sin(nt)

sin t for 0 < t < π the zeros of Qn (x) are x = 0
and x = cos (kπ/n) for 1 ≤ k ≤ n − 1 and n ≥ 2.

Also the Pg
n (x) = ∑n

k=1

(n−1
n−k

)
xk

k! = x
n L

(1)
n−1 (−x) are related to the associated

Laguerre polynomials [2], which have the form L(α)
n (x) = ∑n

k=0

(n+α

n−k

)
(−x)k

k! for
α > −1.

We assume throughout this work that the power series

G (z) =
∞∑

k=1

g (k + 1) zk

has a positive radius of convergence R. Note in the case h (n) = 1 for all n ∈ N that
(2) is actually a Volterra difference equation of convolution type [3, Chap. 6].

We are interested in the sequence
(
Pg,h
n (x)

)

n∈N
depending on x . Note that the

sequence Pg,h
n (0) = 0. Let x > 0. Then the sequence

(
Pg,h
n (x)

)

n∈N
diverges if g is

bounded from below (Proposition 1).
In Sect. 3 we are going to study the limiting behaviour (convergence, periodicity,

or boundedness) of the sequences
(
Qg

n (x)
)
n∈N for g (k) = 1 depending on x .

In Sect. 4 we are going to identify the behaviour of the sequences depending on x
for the more complicated case of Qid

n (x) related to the Chebyshev polynomials of
the second kind (Theorem 4).

Finally in Sect. 5 we are going to indicate that there is a close relation between the
sequences

(
Pg
n (x)

)
n∈N and

(
Qg

n (x)
)
n∈N provided by Poincaré’s theorem for non-

autonomous difference equations [3]. This is illustrated by the case g (k) = 1. The
Qg

n (x) are usually simpler to study because in this case we actually have a genuine
Volterra difference equation.

2 Previous Results

In this section we recall some results from our work [6], which we employ in the
following.

Among the many obstacles that prevent the application of standard methods to
solve explicitly recurrence relation (1) is that to our knowledge it is not possible to
reduce it to a k-order recurrence relation, a recurrence relation of bounded length.
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For other functions than g = σ , in [4] for polynomial g and in [6, Theorem 2.1]
for more general g, we stated a method to reduce them to bounded length. Let us
recall the result. Let T be the shift operator that is T g (k) = g (k + 1).

Theorem 1 Suppose that there are M ∈ N and α0, . . . , αM ∈ C with αM = 1 such
that

M∑

m=0

αmT
mg = 0. (4)

Then a solution of (2) fulfills

M∑

m=0

(
αm

h (n + m)

h (n + M)
− x

h (n + M)

M−m∑

k=1

αm+kg (k)

)
Pg,h
n+m (x) = 0 (5)

for n ≥ 1 which is a recurrence relation of bounded length ≤ M + 1.

Remark 1 Note that the reduced equation (5) can only be applied when n ≥ M + 1.
Thus instead of just one initial value Pg,h

1 (x) = x we use M initial values generated
from this by the first M convolution equations.

The following states Theorem 1 in the case of h (k) = 1 for all k ∈ N. This is a
simplified version of [6, Corollary 2.5].

Corollary 1 Let x be fixed. Let h (n) = 1 for n ≥ 1. In this case a solution of (2)
fulfills the difference equation

M∑

m=0

(
αm − x

M−m∑

k=1

αm+kg (k)

)
Qg

n+m (x) = 0 (6)

for n ≥ 1 with characteristic equation

M∑

m=0

αmλm − x
M−1∑

m=0

(
M−m∑

k=1

αm+kg (k)

)
λm = 0.

In Sect. 4 we are going to consider the case related to the Chebyshev polynomials
of the second kind (see Example 2). This is the case when g = id. For the Qg

n (x)
holds the following (see [6, Lemma 4.5]).

Lemma 1 Let x ∈ C\ {−4, 0} be fixed and D = D (x) = x2 + 4x. Define λ± =
λ± (x) =

(
x + 2 ± √

D
)

/2, b− = b− (x) = λ+−x−2
λ+−λ− , and b+ = b+ (x) = x+2−λ−

λ+−λ− .

Then for all n ≥ 1
Qg

n (x) = (
b−λn−1

− + b+λn−1
+

)
x .

Later in this work we are going to employ the following [6, Theorem 7.1] to show
the divergence of certain sequences (see also [5] for a version where specifically
h = id is considered).
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Theorem 2 Let R > 0 be the radius of convergence of

G (q) :=
∞∑

k=1

g (k + 1) qk .

Let κ > 0 be such that G
(
2
κ

) ≤ 1
2 (and 2

κ
< R). Then

∣∣Pg,h
n (x)

∣∣ >
|x |

2 h (n)

∣∣∣Pg,h
n−1 (x)

∣∣∣

if |x | > κh (n − 1), n ≥ 1.

3 The Behaviour of Some of These Polynomial Sequences
in the Limit

Note that for increasing g, there is no neighbourhood of 0 such that all sequences for x
in this neighbourhood converge to 0 since Qn (x) ≥ g (n) x ≥ g (1) x for positive x .
In case limn→∞ g (n) = ∞ this sequence is actually divergent.

Example 3 (Toyproblem). Letg (n) = 1 for alln ∈ N. ThenQn (x) = (x + 1)n−1 x
is the solution to the recurrence relation. This can be observed from

x + x
n−1∑

k=1

(x + 1)k−1 x = x + (x + 1)n−1 − 1

x
x2.

Actually the recurrence relation reduces to Qn (x) = (x + 1) Qn−1 (x) for n ≥ 2.
This explicit formula immediately implies the following properties:

1. x = 0 is fixed.
2. If |x + 1| < 1 then (Qn (x))n∈N converges to x = 0.
3. If |x + 1| > 1 then (Qn (x))n∈N diverges to ∞.
4. If |x + 1| = 1 and x �= 0 then (Qn (x))n∈N moves around on the circle

{z ∈ C : |z| = |x |}. If x = −1 + eπ it with rational t the orbit is finite and oth-
erwise infinite and dense in this circle.

We prove the last item 4 in the previous example in the following.

Proof (Item 4). Let |x + 1| = 1. Then x = −1 + eπ it for some t ∈ R.
If t ∈ Q then there is an m ∈ N such that (x + 1)m = 1. Thus the sequence

Qn (x) = (x + 1)n x assumes only finitely many values.
For t ∈ R\Q it is well-known that {nt + Z : n ∈ Z} is dense in R/Z (see [10]).

Since exp is continuous this implies that
{
e2π int : n ∈ Z

}
is dense in the circle of

radius 1 around 0 in the complex plane.
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If g is bounded from below we have the following general result on the sequences
(Qn (x))n∈N.

Proposition 1 Assume g (n) ≥ c for all n ≥ 2 for some c > 0. Then (Qn (x))n∈N
diverges for x > 0.

Proof We have

Qn (x) = x

(
g (n) +

n−1∑

k=1

g (k) Qn−k (x)

)

= xg (n) + x
n−1∑

k=1

g (k)

⎛

⎝xg (n − k) +
n−k−1∑

j=1

g ( j) Qn−k− j (x)

⎞

⎠

≥ xg (n) + x2
n−1∑

k=1

g (k) g (n − k)

> x2
(
2c + (n − 3) c2

) → ∞

for n → ∞.

We can also prove the following result for arbitrary g, in which we have a positive
radius of convergence of G (z) = ∑∞

k=1 g (k + 1) zk .

Theorem 3 Let κ be such that G (2/κ) ≤ 1/2. Suppose |x | > max {2, κ}. Then(
Pg,h
n (h (n) x)

)

n∈N
diverges.

Proof By Theorem2 [6, Theorem 7.1] for 2 ≤ m ≤ n we obtain

∣∣Pg,h
m (h (n) x)

∣∣ >
|h (n) x |
2h (m)

∣∣∣Pg,h
m−1 (h (n) x)

∣∣∣ ≥ |x |
2

∣∣∣Pg,h
m−1 (h (n) x)

∣∣∣ .

Thus,
∣∣Pg,h

n (h (n) x)
∣∣ >

( |x |
2

)n

→ ∞

follows by assumption on x .

Since h (n) = 1 for all n ∈ N in the case of the polynomials Qg
n (x) we obtain

immediately the following.

Corollary 2 Let κ be such that G (2/κ) ≤ 1/2. Suppose |x | > max {2, κ}. Then(
Qg

n (x)
)
n∈N diverges.
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4 Chebyshev Polynomials of the Second Kind

In this section g = id. Then Qn (x) = xUn−1 (x/2 + 1)whereUn (x) are the Cheby-
shev polynomials of the second kind (see Example 2). We prove now for x ∈ C the
following behaviours of (Qn (x))n∈N.

Theorem 4 1. Qn (0) = 0 for all n.
2. If x = 2 cos (kπ/n) − 2 for 1 ≤ k ≤ n − 1 then (Qn (x))n∈N has period d where

d | 2n.
3. If −4 < x < 0 and x is not of the form 2 cos (kπ/n) − 2 for some n ∈ N and

some 1 ≤ k ≤ n − 1 then (Qn (x))n∈N generates a bounded sequence dense in

the interval

[
x√

−x−x2/4
,− x√

−x−x2/4

]
.

4. If x ∈ C\ (−4, 0] then (Qn (x))n∈N diverges.

In the following we prove this theorem by several auxiliary results.

Lemma 2 Let n ≥ 2 and 1 ≤ k ≤ n − 1. Then cos (kπ/n) is a zero of Q	n (x) for
all 	 ∈ N.

Proof We have x = cos
(
k
nπ

) = cos
(

	k
	nπ

)
. Thus x is also a zero of Q	n (x) for all

	 ∈ N.

By the following lemma we show that for all of these values x = cos (kπ/n) that
Qm (x) is 2n-periodic for m ≥ 1. Thus, the proof of part 2 of Theorem4.

Lemma 3 Any zero x = cos (kπ/n) for some n ∈ N and 1 ≤ k ≤ n − 1 generates
a 2n-periodic sequence Qm (x) for m ≥ 1.

Proof Then Q	n (x) = 0. We show Q	n+k (x) = −Q	n−k (x). Obviously this
holds for k = 0. Suppose now 1 ≤ k ≤ 	n − 2 and that for 0 ≤ j ≤ k − 1 holds
Q	n+ j (x) = −Q	n− j (x). Then

Q	n+k (x) = (x + 2) Q	n+k−1 (x) − Q	n+k−2 (x)

= − (x + 2) Q	n−k+1 (x) + Q	n−k+2 (x)

= − (x + 2) Q	n−k+1 (x) + (x + 2) Q	n−k+1 (x) − Q	n−k (x) .

For k ≤ 2 (	 − 1) n − 2 this implies

Q2	n+k (x) = −Q2	n−k (x) = −Q(2	−1)n+n−k (x) = Q(2	−1)n−n+k (x)

= Q2(	−1)n+k (x) .

Hence Qm (x) is 2n-periodic.

The following proves part 3 of Theorem 4.
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Lemma 4 If −4 < x < 0 the orbit generated by (Qn (x))n∈N is bounded. If
t = arccos (x/2 + 1) /∈ πQ then the sequence is dense in

[
x√−x − x2/4

,− x√−x − x2/4

]
.

Proof Let t = arccos (x/2 + 1). Thus |Qn (x)| =
∣∣∣x sin(nt)

sin t

∣∣∣ ≤
∣∣∣∣

x√
−x−x2/4

∣∣∣∣. If

t /∈ πQ then it is well-known that {nt + 2πZ : n ∈ Z} is dense in R/ (2πZ). Since
sin is continuous {sin (nt) : n ∈ Z} is dense in [−1, 1].

Finally the following proves part 4 of Theorem4. Here standard methods (see
e.g. [3]) can be used to solve the recurrence relation via the characteristic equation
(see Lemma 1 [6, Lemma 4.5]).

Proposition 2 If x ∈ C\ (−4, 0] then the sequence generated by Qn (x) diverges.

Proof For x = −4 this is easy to observe (see also [6, part 3 of Remark 2.8]).
The characteristic equation of (3) is

λ2 − (x + 2) λ + 1 = 0. (7)

If λ± = λ± (x) are the two solutions of (7) then λ+λ− = 1 and λ+ + λ− = x + 2.
Thusλ− = λ−1

+ . For x < −4or x > 0weobtain
 = (x + 2)2 − 4 = (x + 4) x > 0.
Thus both λ± are real and λ+ �= λ− since x �= 0,−4.

Now let x = a + ib ∈ C\R where a = Re (x) , b = Im (x) ∈ R. Let λ+ = α +
iβ with α = Re (λ+) , β = Im (λ+) ∈ R. As we have already observed λ+λ− = 1.
Thus α−iβ

α2+β2 = λ−1
+ = λ− = x + 2 − λ+ = a + 2 − α + (b − β) i . From the imagi-

nary part we obtain − β

α2+β2 = b − β. Hence α2 + β2 = β

β−b �= 1 since by assump-
tion b = Im (x) �= 0. Thus one of |λ+| or |λ−| is > 1.

In all cases i.e. x < −4 or x > 0 or x ∈ C\R we obtained in [6, Lemma 4.5]
that Qn (x) = (

b+λn−1
+ + b−λn−1

−
)
x for n ≥ 1 with b+ = λ+−x−2

λ+−λ− and b− = x+2−λ−
λ+−λ− .

From λ+ + λ− = x + 2 and λ± �= 0 it follows immediately that b± �= 0. Hence
(Qn (x))n∈N diverges as one of the absolute values of λ± is strictly larger and one
strictly less than 1.

5 Relations Between Two Sequences of Polynomials

In this section we link the recurrence relations of Pg
n (x) and Qg

n (x) for g (n) = 1 by
the following Theorem of Poincaré [9] adapted to the case considered in the present
work (for its general form see [3, Theorem 8.9]). Recall that for g (n) = 1 we obtain
Pg
n (x) = x+n−1

n Pg
n−1 (x) = (−1)n

(−x
n

)
for n ≥ 1.
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Theorem 5 (H. Poincaré [9]) Assume that Pg
n (x) satisfies a recurrence relation of

finite length. If the limit for each of the coefficients in the recurrence relation exists
and the roots of the characteristic equations with theses limits have distinct moduli
then either the solution to the recurrence relation is eventually 0 or limn→∞ Pg

n (x)
Pg
n−1(x)

equals a root of the characteristic equation with the limits of the coefficients.

For the coefficient we obtain

lim
n→∞

x + n − 1

n
= 1.

In the recurrence relation for Qn (x) we have the term x + 1. But if we con-
sidered nx instead of x then limn→∞ nx+n−1

n = x + 1. Unfortunately P̃n (x) =
Pn (nx) does not fulfill the same recurrence relation as Pn (x) but only P̃n (x) =(
x + 1 − 1

n

)
Pn−1 (nx) = (

x + 1 − 1
n

) Pn−1(nx)
Pn−1((n−1)x) P̃n−1 (x).

Theorem 6 Let x < −1 then limn→∞ Pn−1(nx)
Pn−1((n−1)x) = ( −x

−x−1

)−x
.

Proof We obtain

ln

(
Pn−1 (nx)

Pn−1 ((n − 1) x)

)
= ln (Pn−1 (nx)) − ln (Pn−1 ((n − 1) x))

=
n−1∑

k=0

ln (−nx − k) − ln (− (n − 1) x − k) .

The terms in the sum can be written as an integral

ln (−nx − k) − ln (− (n − 1) x − k) =
∫ −x

0

1

t − (n − 1) x − k
dt.

As Riemannian sum for n → ∞ we obtain

n−1∑

k=0

1

t − (n − 1) x − k
= 1

n

n−1∑

k=0

1
t
n − x − k−x

n

→
∫ 1

0

1

−x − s
ds

= − ln (−x − 1) + ln (−x) = ln

( −x

−x − 1

)
.

This implies

ln

(
Pn−1 (nx)

Pn−1 ((n − 1) x)

)
→

∫ −x

0
ln

( −x

−x − 1

)
dt = −x ln

( −x

−x − 1

)
.
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Thus, Pn−1(nx)
Pn−1((n−1)x) → ( −x

−x−1

)−x
.

Thus, for x < −1 in the limit the terms
(
x + 1 − 1

n

) Pn−1(nx)
Pn−1((n−1)x) converge to

(x + 1)
( −x

−x−1

)−x
. Thus, we have a difference equation of Poincaré type with

λ = (x + 1)
( −x

−x−1

)−x
for x < −1. By Poincaré’s Theorem [9] (see also Theorem 5)

we obtain that

lim
n→∞

P̃n (x)

P̃n−1 (x)
= (x + 1)

( −x

−x − 1

)−x

.

On the other hand if we use that limn→∞ x+n−1
n = 1 then limn→∞ Pn(x)

Pn−1(x)
= 1.

In the case considered the difference equation can be solved explicitly as Pn (x) =
(−1)n

(−x
n

)
. We obtain the second limit as

lim
n→∞

Pn (x)

Pn−1 (x)
= lim

n→∞
−(−x

n

)
( −x
n−1

) = lim
n→∞

x + n − 1

n
= 1.

It would be interesing to understand the relation of Pn (x) and Qn (x) in arbitrary
cases. For example for h = id and g = id the reduced recurrence relation is

Pg
n (x) = 1

n

(
(2n − 2 + x) Pg

n−1 (x) − (n − 2) Pg
n−2 (x)

)

=
(
2 + x − 2

n

)
Pg
n−1 (x) −

(
1 − 2

n

)
Pg
n−2 (x)

for n ≥ 3 with initial values Pg
1 (x) = x and Pg

2 (x) = x
2 (x + 2).

For Pn (x) we obtain in the limit the characteristic equation 0 = λ2 − 2λ + 1 =
(λ − 1)2. In this case we cannot directly apply Poincaré’s Theorem.
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A Note on Non-hyperbolic Fixed Points
of One-Dimensional Maps

Sinan Kapçak

Abstract This paper dealswith the local asymptotic stability of non-hyperbolicfixed
points of one-dimensional maps. There are, basically, two stability conditions intro-
duced in this study. One of them is for the stability of fixed points of non-oscillatory
maps. The second one is a sufficient condition for the stability for oscillatory maps.
Some properties and applications are also presented.

Keywords Non-hyperbolic fixed points · One-dimensional maps · Test of
stability · Difference equations · Discrete dynamical systems

1 Introduction

Although the complete theory of the stability of hyperbolic and non-hyperbolic fixed
points of one-dimensional maps was already studied [1, 5], the conditions given
in these studies are based on the higher order derivatives evaluated at the fixed
point, which usually requires lengthy calculations. For the oscillatory case, in [1],
the composition function g = f ◦ f is used in order to determine the stability. In
the same paper, Faà di Bruno’s formula was proposed in order to take the higher
order derivatives of the composition function. Using this idea, a generalization of
Schwarzian derivatives is obtained in [6]. In [5], author uses only the higher order
derivatives of f evaluated at the fixed point in order to determine the stability of both
non-oscillatory and oscillatory fixed points.

This paper only deals with local stability, and proposes two conditions on the non-
hyperbolic fixed points. Firstly, for a fixed point x∗ of one-dimensional map xn+1 =
f (xn), where f ′(x∗) = 1, we introduce a new local stability condition. Secondly,
we give a sufficient condition for local stability of non-hyperbolic fixed points of
the maps with f ′(x∗) = −1. Our main approach here for the stability conditions is
that we will not focus on the fixed point itself but the vicinity of it. By this way, the
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stability/instability for particular types of maps can be determined straightforwardly,
which is the one of the strengths of this study. Moreover, the theorem which gives a
sufficient condition for the stability (we call it Test of Stability) of non-hyperbolic
fixed points of oscillatory maps is easy to apply and helps us generalize the stability
conditions for some family of difference equations.

The next section is devoted to the main results of this study. Examples and appli-
cations will be given in Sect. 3. Some related lemmas and theorems can be found in
Appendix.

2 Main Results

2.1 The Case f ′(x∗) = 1

Let ε > 0 be an infinitesimal quantity and a ∈ R. Wewill use the following notations
for the types of neighborhood sets of point a:

Bε(a) = (a − ε, a + ε) − {a}, B−
ε (a) = (a − ε, a), B+

ε (a) = (a, a + ε).

Throughout this paper, we assume that f is an analytic function. Clearly, the fixed
point x∗ = 0 is locally stable (not asymptotically) when f (x) ≡ x on Bε(0). This is
the case with f ′(x) = 1 on Bε(0).

Without loss of generality, we may assume that the fixed point is at the origin.
Now we present the following theorem which gives a local stability condition for the
non-hyperbolic fixed points of non-oscillatory maps.

Theorem 1 Consider the difference equation xn+1 = f (xn), where f (0) = 0 and
f ′(0) = 1. The fixed point x∗ = 0 is

1. locally asymptotically stable if f ′(x) < 1 on Bε(0).
2. unstable if f ′(x) > 1 on B+

ε (0) or B−
ε (0).

Proof We will prove the parts of the theorem separately.

1. Assume that f ′(x) < 1 on Bε(0). Pick an initial point x0 ∈ Bε(0).

(a) If x0 ∈ B+
ε (0): By Lemma 1, we have 0 < f (x) < x . By Lemma 3, xn → 0

as n → ∞.
(b) If x0 ∈ B−

ε (0): By Lemma 1, we have x < f (x) < 0. By Lemma 3, xn → 0
as n → ∞.

By Theorem 7, x∗ = 0 is a locally asymptotically stable fixed point.
2. Assume that f ′(x) > 1 on Bε(0). Pick an initial point x0 ∈ Bε(0).

(a) If x0 ∈ B+
ε (0): By Lemma 1, we have f (x) > x . Lemma 4 completes the

proof.



A Note on Non-hyperbolic Fixed Points of One-Dimensional Maps 259

(b) If x0 ∈ B−
ε (0): By Lemma 1, we have f (x) < x . Lemma 4 completes the

proof.

Example 1 Let us discuss the difference equation

xn+1 = xn − sin x5n .

We have f (0) = 0 and f ′(x) = 1 − 5x4 cos x5. Hence, f ′(0) = 1 and obviously,
f ′(x) < 1 on Bε(0). Therefore, the origin is a locally asymptotically stable fixed
point. This map, with the methods given in [1, 5], requires the first five derivatives
to conclude this result.

More generally, for the difference equation xn+1 = xn − sin xkn , wemay, similarly,
determine the stability and conclude that the fixed point is asymptotically stable (resp.
unstable) when k is odd (resp. even).

2.1.1 The General Case

The stability condition of a fixed point x = x∗ for a general autonomous difference
equation xn+1 = f (xn) for the non-oscillatory case f ′(x∗) = 1 is already presented
in [1, 5]. That condition can also be obtained by Theorem 1. Taylor series expansion
of the derivative function f ′(x) evaluated at the fixed point tells us the stability
character of the fixed point. Taking the fixed point x∗ = 0 gives

f ′(x) = 1 + f (m)(0)

(m − 1)! x
m−1 + f (m+1)(0)

m! xm + f (m+2)(0)

(m + 1)! x
m+1 + O(xm+2) (1)

wherem ∈ {2, 3, 4, . . .} is the smallest number such that f (m)(0) 	= 0. Thus, clearly,
if f (m)(0)

(m−1)! x
m−1 < 0 on Bε(0), then the origin is locally asymptotically stable. Similarly,

if f (m)(0)
(m−1)! x

m−1 > 0 on B+
ε (0) or B−

ε (0), then the origin is unstable. Here, the stability

depends on whether m is even or odd. If m is even, then f (m)(0)
(m−1)! x

m−1 > 0 on B+
ε (0)

or B−
ε (0), which yields instability. Ifm is odd, then the sign of f (m)(0) on Bε(0) will

determine the stability. Clearly, if f (m)(0) > 0 (resp.< 0), the fixed point is unstable
(resp. asymptotically stable). Hence, we obtain the following theorem, which is
already given in [1, 5].

Theorem 2 Assume that x∗ is a fixed point of the difference equation xn+1 = f (xn)
and f ′(x∗) = 1. Let m ∈ {2, 3, 4, . . .} be the smallest number such that f (m)(x∗) 	=
0.

1. If m is even, then x∗ is unstable (semi-stable).
2. If m is odd and f (m)(x∗) > 0, then x∗ is unstable.
3. If m is odd and f (m)(x∗) < 0, then x∗ is locally asymptotically stable.
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2.2 The Case f ′(x∗) = −1

Consider, for example, the difference equation xn+1 = −xne−x3n . With f (x) =
−xe−x3 , we have f (0) = 0, f ′(0) = −1. For this case, one of the known meth-
ods to determine the stability of the fixed point x∗ = 0 is evaluating the Schwarzian
derivatives (up to third order for the given f ), which includes higher order deriva-
tives (up to seventh order for the given f ). One of the other methods uses g = f ◦ f
instead of f and focuses on g for the stability analysis. One can find that g′(0) = 1,
g′′(0) = g(3)(0) = . . . = g(6)(0) = 0, and g(7)(0) = −15120 which yields the local
stability of the origin. Another method was introduced in [5], which is based on the
higher order derivatives (for this case, again, seventh order derivative is required).
Obviously, all of these methods require too lengthy calculations.

In this section, we will discuss the stability for oscillatory maps. For some cases,
first order derivative will be sufficient for determining the stability. We will also give
a theorem with a sufficient condition which may help us determine the stability of
non-hyperbolic maps.

Clearly, there exists a stable (not asymptotically) period-2 orbit when ( f ◦
f )(x) ≡ x , that is when f (x) = f −1(x), on Bε(0).

Theorem 3 Consider the map xn+1 = f (xn). Let f (0) = 0 and f ′(0) = −1. Then
the fixed point x∗ = 0 is

1. locally asymptotically stable if ( f ◦ f )′(x) < 1 on Bε(0).
2. unstable if ( f ◦ f )′(x) > 1 on B+

ε (0) or B−
ε (0).

Proof The result is straightforward by Lemma 5 and Theorem 1.

Example 2 For the difference equation xn+1 = −x + ax2, where a ∈ R, since
( f ◦ f )′(x) = f ′(x) f ′( f (x)) = 1 − 6a2x2 < 1 at the vicinity of the origin, x = 0
is an asymptotically stable fixed point. Here, Schwarzian derivative is S f (x) =
− f ′′′(x) − 3

2 ( f
′′(x))2 = −6a2 < 0,which also yields asymptotic stability. Note that

a generalization of Schwarzian derivatives can be obtained by finding the coef-
ficients of the first nonzero term of the Taylor series expansion of the function
f ′(x) f ′( f (x)) − 1.

Theorem 4 Consider the discrete dynamical system xn+1 = f (xn), where
f (0) = 0, and f ′(0) = −1. Then the fixed point x∗ = 0 is

1. locally asymptotically stable if | f (x)| < | f −1(x)| on Bε(0).
2. unstable if | f (x)| > | f −1(x)| on Bε(0).

Proof By Lemma 5, we know that stability character of the fixed point x∗ = 0
under f and g = f ◦ f are the same. Since f (0) = 0 and f ′(0) = −1, we have
f (x) < 0 on B+

ε (0) and f (x) > 0 on B−
ε (0). It is true that f −1(x) < 0 on B+

ε (0)
and f −1(x) > 0 on B−

ε (0). Now, we will prove the first part of the theorem. Second
part can be done similarly.

The assumption | f (x)| < | f −1(x)| in the first part of the theorem can be writ-
ten as f (x) > f −1(x) on B+

ε (0) and f (x) < f −1(x) on B−
ε (0). Since f is a
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decreasing continuous function, applying f to the both sides of the inequalities, we
obtain ( f ◦ f )(x) < x on B+

ε (0) and ( f ◦ f )(x) > x on B−
ε (0). Therefore, we have

( f ◦ f )′(x) < 1 on Bε(0) and thus, byTheorem3, the origin is locally asymptotically
stable.

2.2.1 A Sufficient Condition

Now, we present one of the main results of this study, namely, a sufficient condition
for the stability of non-hyperbolic fixed points for oscillatory maps.

Theorem 5 (Test of Stability). Consider the map xn+1 = f (xn). Let f (0) = 0 and
f ′(0) = −1. Then the fixed point x∗ = 0 is locally asymptotically stable if

f ′(x) f ′(−x) < 1

for x ∈ B+
ε (0).

Proof Equivalently, we will prove the following statement: If the fixed point x∗ = 0
is not locally asymptotically stable, then f ′(x) f ′(−x) ≥ 1 on B+

ε (0).
Assume that x∗ = 0 is not locally asymptotically stable fixed point. Hence, by

Theorem 4, | f (x)| ≥ | f −1(x)| on Bε(0). Therefore, f (x) ≤ f −1(x) on B+
ε (0), and

thus, clearly we have f ′(x) ≤ ( f −1)′(x) or

f ′(x)
( f −1)′(x)

≥ 1

on B+
ε (0). Now let us split the proof into following four cases.

1. The case f (x) ≤ f −1(x) < −x : Both f −1(x) and f (x) are tangent to the line
y = −x at the origin and they are below the line y = −x on Bε(0). Thus, f is
concave down, that is f ′′(x) < 0, on Bε(0). Hence, f ′ is decreasing. Since f ′ is
also continuous, applying f ′ to each parts of the inequality f (x) ≤ f −1(x) < −x ,
we obtain

f ′( f (x)) ≥ f ′( f −1(x)) > f ′(−x).

Now, we multiply each part of the inequality by f ′(x) < 0 and obtain

f ′(x) f ′(−x) > f ′(x) f ′( f −1(x)) ≥ ( f ◦ f )′(x)).

By the inequality on the left, we obtain

f ′(x) f ′(−x) >
f ′(x)

( f −1)′(x)
> 1,

which completes the proof for this case.
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2. The case f (x) < −x < f −1(x):When x ∈ B+
ε (0), each of the components f (x),

−x , and f −1(x) is negative. Since y = f (x) is tangent to the line y = −x at the
origin and it is above the line y = −x on B−

ε (0), we have f ′′(x) > 0 on B−
ε (0).

Hence, f ′ is an increasing function on B−
ε (0). Now, applying f ′ to the inequality

f (x) < −x < f −1(x) from the left, we obtain

f ′( f (x)) < f ′(−x) < f ′( f −1(x)).

Now, we will multiply each side of the above inequality by f ′(x), which is a
negative quantity, to get

( f ◦ f )′(x) > f ′(x) f ′(−x) >
f ′(x)

( f −1)′(x)
> 1,

which yields the desired result.
3. The case −x < f (x) ≤ f −1(x): This case is also similar to the previous cases.

Knowing that f ′′(x) > 0, which means f ′(x) is increasing, we apply the compo-
sition with f ′ from the left. Since f ′(x) < 0 on Bε(0), we obtain the inequality
after multiplying by f ′(x):

f ′(x) f ′(−x) > ( f ◦ f )′(x) ≥ f ′(x)
( f −1)′(x))

> 1.

4. The case −x = f (x) = f −1(x): It is straightforward that f ′(x) f ′(−x) ≥ 1,
which is the desired result.

Remark 1 Note that, Theorem 5 (Test of Stability) is only a sufficient condition,
and hence there might be asymptotically stable fixed points which does not satisfy
the condition in the theorem. For example, for the difference equation xn+1 = −xn +
3x2n − 8x3n , the usual method of taking the composition g = f ◦ f gives g′(0) = 1,
g′′(0) = 0, and g′′′(0) = −12 < 0,which yields the asymptotic stability of the origin.
However, we have f ′(x) f ′(−x) > 1 on B+

ε (0).

3 Applications

3.1 An Example

We will now show that the fixed point x∗ = 0 is locally asymptotically stable for the
difference equation

xn+1 = −xne
−xkn

for any positive integer k. Clearly, taking composition or using Schwarzian derivative
will give us complicated expressions. However, Test of Stability (Theorem5) gives us
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very straightforward result. The first derivative will be sufficient for our discussion.
We have f (x) = −xe−xk , hence f ′(x) = (kxk − 1)e−xk and f ′(0) = −1.

1. If k is odd, then f ′(−x) f ′(x) = 1 − k2x2k < 1 at the vicinity of x∗ = 0.
2. If k is even, then f ′(−x) f ′(x) = (1−kxk )2

e2xk
< 1 at the vicinity of x∗ = 0.

Therefore, x∗ = 0 is an asymptotically stable fixed point for any positive
integer k.

Remark 2 Note that, when the fixed point x∗ is not at the origin, it is easy to shift
the fixed point to the origin by the transformation yn = xn − x∗ and apply Theorem
5. Another way to apply the theorem for a nonzero fixed point is, clearly, using the
condition

f ′(x∗ − x) f ′(x∗ + x) < 1.

3.2 Population Models

In population dynamics, two of the well-known single-species population models
are Logistic Map and the Ricker Map.

1. The Logistic Map xn+1 = μxn(1 − xn), whenμ = 3, has two fixed points, one of
which is x∗ = 2

3 . We have f ′ (x) = 3 − 6x and f ′ ( 2
3

) = −1. Hence, we obtain
f ′ ( 2

3 − x
)
f ′ ( 2

3 + x
) = 1 − 36x2 < 1 on Bε (0). Therefore, the fixed point x∗ =

2
3 of the logistic map is asymptotically stable.

2. Similarly, for theRickerMap xn+1 = xn exp(r − xn), when r = 2, one of the fixed
points is x∗ = 2. For this case, f ′(2) = −1 and f ′ (2 − x) f ′ (2 + x) = 1 − x2 <

1on Bε(0). Thus, the fixedpoint x∗ = 2 of theRickermap is asymptotically stable.

3.3 One-Dimensional Maps with Even or Odd Functions

The following theorem gives the stability/instability of some maps with even or odd
functions, and other similar rules can be derived. These are direct results of our
main theorems, and we will give the proof of only the second part of the theorem.
The other parts can be done similarly. The non-oscillatory case is most of the time
straightforward. One can easily apply Theorems 1 or 2 in order to investigate stability.
Since the oscillatory case is usually more challenging, we mostly focus on that case
by applying Test of Stability (Theorem 5).

Theorem 6 Let E(x) and F(x) be even and odd functions, respectively. Then, fol-
lowing statements hold true.

1. For the map xn+1 = xn + E(xn), where E(0) = 0, the fixed point x∗ = 0 is unsta-
ble.
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2. For the map xn+1 = −xn + E(xn), where E(0) = 0, the fixed point x∗ = 0 is
asymptotically stable.

3. For the map xn+1 = F(xn), where F ′(0) = −1, the fixed point x∗ = 0 is asymp-
totically stable if |F ′(x)| < 1 in a neighbourhood of the origin.

4. The fixed point x∗ = 0 is asymptotically stable for the map

xn+1 = −xne
F(xn).

Proof (Part 2).Since derivative of an even function is an odd function, taking f (x) =
−x + E(x), we obtain f ′(x) f ′(−x) = 1 − (E ′(x))2 < 1 at the vicinity of x∗ = 0.
Therefore, by Theorem 5, the origin is asymptotically stable.

Example 3 For the map xn+1 = −xn + xn sin3 xn + x8n cos x
5
n , the origin is asymp-

totically stable by Part (2) of Theorem 6. Similarly, the origin is an asymptotically
stable fixed point for themaps xn+1 = −xn + ln (1 + x2n ), xn+1 = −xn + 2x2n − 3x6n ,
and xn+1 = −xn + x2ne

−x2n .

Example 4 Consider the map

xn+1 = −xncos x
k
n ,

where k is a positive integer. Since the function f (x) = −xcos xk is an odd function,
and f ′(0) = −1, we clearly have | f ′(x)| = | cos xk − kxk sin xk | < 1 at the vicinity
of x∗ = 0, and by Part (3) of Theorem 6, the origin is asymptotically stable for any
positive integer k.

Note that, by any usual method, first 2k + 1 derivatives at the fixed point must be
evaluated. However, with the Test of Stability, we need only the first derivative at the
vicinity of the fixed point.

4 Conclusions

The stability of non-hyperbolic fixed points of one-dimensional maps was investi-
gated.We gave a stability condition which contains only the first order derivative and
focuses on the vicinity of the fixed point. A sufficient condition for the stability (Test
of Stability) for oscillatory maps was introduced. The condition is easy to apply and
we may obtain the stability for complicated maps as well. For the oscillatory case,
by the methods given in [1, 5], the derivative of the map must be taken at least three
times. Since we have to evaluate the first derivative in any case, surely it is easier to
firstly use Test of Stability by evaluating f ′(x) f ′(−x), and if it does not work, then
try one of the usual methods.

We used the Test of Stability for the well-known population models such as
Logistic and Ricker Maps to determine the stability of the existence (positive) fixed
point. Although theTest of Stability is a sufficient condition, it is still very powerful. It
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allows us to construct some general rules for stability for some families of functions,
for example maps with even or odd functions.

The results here can also be applied in center manifold theory when one obtains
a one dimensional non-hyperbolic map on the center manifold. It is also possible to
apply these results in the area of zero-diagonal planar maps [4] when converted to a
one dimensional map with a non-hyperbolic fixed point.

A Related Lemmas/Theorems

Lemma 1 Let f be an analytic function, f (0) = 0, and f ′(0) = 1.

1. If f ′(x) < 1 on B+
ε (0), then 0 < f (x) < x on B+

ε (0).
2. If f ′(x) < 1 on B−

ε (0), then x < f (x) < 0 on B−
ε (0).

3. If f ′(x) > 1 on B+
ε (0), then f (x) > x on B+

ε (0).
4. If f ′(x) > 1 on B−

ε (0), then f (x) < x on B−
ε (0).

Proof 1. Let f ′(x) < 1 on B+
ε (0). Firstly, by contradiction, we will show that

f (x) < x . Assume that f (x) ≥ x for some x = a ∈ B+
ε (0). Hence, by Mean

Value Theorem (MVT), there exists a number a0 ∈ B+
ε (0) such that f ′(a0) =

f (a)

a ≥ 1, which contradicts the assumption that f ′(x) < 1 for all x ∈ B+
ε (0).

Therefore, if f ′(x) < 1, then f (x) < x for x ∈ B+
ε (0).

Similarly, we can show that 0 < f (x). Since f ′(0) = 1 is positive, we know by
the continuity of f ′ that, f ′ is positive for some neighborhood of the origin. Let
us assume that f (x) ≤ 0 for some x = a ∈ B+

ε (0). Thus, by MVT, there exists a
number a1 ∈ B+

ε (0) such that f ′(a1) = f (a)

a ≤ 0, which contradicts the fact that
f ′(x) > 0 for some neighborhood of the origin. Therefore, if f ′(x) < 1, then
f (x) > 0 for x ∈ B+

ε (0).
Combining the results, we complete the proof: if f ′(x) < 1, then 0 < f (x) < x
on x ∈ B+

ε (0).
2. Let f ′(x) < 1 for all x ∈ B−

ε (0) = (−ε, 0). We will show that x < f (x). We
use the similar approach: Assume that x ≥ f (x) for some x = a in the interval
B−

ε (0). By MVT, there exists a number a0 ∈ B−
ε (0) such that f ′(a0) = f (a)

a ≥ 1,
which contradicts the assumption that f ′(x) < 1 for all x ∈ B−

ε (0). Therefore, if
f ′(x) < 1, then x < f (x) for x ∈ B−

ε (0).
Similarly, we can show that f (x) < 0. Since f ′(0) = 1 is positive, f ′ is positive
for some neighborhood of the origin. Let us assume that f (x) ≥ 0 for some x =
a ∈ B−

ε (0). Thus, there exists a number a1 ∈ B−
ε (0) such that f ′(a1) = f (a)

a ≤ 0,
which contradicts the fact that f ′(x) > 0 for some neighborhood of the origin.
Therefore, if f ′(x) < 1, then f (x) < 0 for x ∈ B−

ε (0).
3. Let f ′(x) > 1 on B+

ε (0) and assume that f (x) ≤ x for some x = a ∈ B+
ε (0).

Hence, similarly, by MVT, there exists a number a0 ∈ Bvarepsilon+(0) such
that f ′(a0) = f (a)

a ≤ 1, which contradicts the assumption that f ′(x) > 1 for all
x ∈ B+

ε (0). Therefore, if f ′(x) > 1, then f (x) > x for x ∈ B+
ε (0).
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4. Let f ′(x) > 1 on B−
ε (0) and assume that f (x) ≥ x for some x = a ∈ B−

ε (0).
Hence, by MVT, there exists a number a0 ∈ B−

ε (0) such that f ′(a0) = f (a)

a ≤ 1,
which contradicts the assumption that f ′(x) > 1 for all x ∈ B−

ε (0). Therefore, if
f ′(x) > 1, then f (x) < x for x ∈ B−

ε (0).

Lemma 2 Let f be an analytic function, f (0) = 0, and f ′(0) = −1. The followings
hold:

1. If ( f ◦ f )′(x) < 1 on B+
ε (0), then f −1(x) < f (x) < 0 on B+

ε (0).
2. If ( f ◦ f )′(x) < 1 on B−

ε (0), then 0 < f (x) < f −1(x) < 0 on B−
ε (0).

3. If ( f ◦ f )′(x) > 1 on B+
ε (0), then f −1(x) < f (x) on B+

ε (0).
4. If ( f ◦ f )′(x) > 1 on B−

ε (0), then f (x) < f −1(x) on B−
ε (0).

Proof Setting g = f ◦ f , using Lemma 1 with function g, and applying the inverse
function f −1 to the inequalities from the left, one can obtain the desired result.
Note that f −1 is a decreasing function on B−

ε (0), which changes the direction of the
inequalities.

Lemma 3 Let f be an analytic function. Consider the discrete dynamical system
xn+1 = f (xn), where f (0) = 0, and f ′(0) = 1. Assume that the following condition
is satisfied for some ε > 0.

{
0 < f (x) < x, if x ∈ B+

ε (0),

x < f (x) < 0, if x ∈ B−
ε (0).

If x0 ∈ Bε(0), then xn → 0 as n → ∞.

Proof Since f is an analytic function and f ′(0) = 1 > 0, for sufficiently small
ε > 0, f is increasing on Bε(0). Now, let us focus on the case x > 0. Take an initial
point x0 ∈ (0, ε). We have the inequality 0 < f (x0) < x0. Since f is increasing on
Bε(0), applying f to both sides of this inequality from the left, we obtain 0 = f (0) <

x2 = f ( f (x0)) < f (x0) = x1. Similarly, we apply f to the obtained inequality over
and over to get

0 < . . . < xk < . . . < x3 < x2 < x1 < x0.

By Monotone Convergence Theorem, the limit of the sequence xn exists. Let the
limit be L and we have L = lim f n+1(x0) = f (lim f n(x0)) = f (L). Hence, the
limit must be 0, which is the only fixed point of the difference equation.

The case when x < 0 can be done similarly. Therefore, lim xn → 0 for any x0 ∈
Bε(0).

Lemma 4 Let f be an analytic function, f (0) = 0, and f ′(0) = 1.

1. If f (x) > x on B+
ε (0), then 0 is unstable.

2. If f (x) < x on B−
ε (0), then 0 is unstable.
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Proof 1. Take ε′ < ε and let x0 ∈ B+
ε′ (0). Hence, we have that f (x) > x on (0, ε′].

Assume that 0 < f n(x0) < ε′ for all positive integer n. Then, x1 = f (x0) > x0
and applying f from the left over and over, we obtain

0 < . . . < x0 < x1 < x2 < x3 < . . . < xn < . . . < ε′.

By Monotone Convergence Theorem, the limit of the sequence xn exists. Let the
limit be L and we have L = lim f n+1(x0) = f (lim f n(x0)) = f (L). Hence, the
limit must be a fixed point. However, since f (x) > x on (0, ε′], there is no fixed
point on this interval. This contradiction completes the proof.

2. Proof for this case can be done similarly.

Theorem 7 Let z be an attracting fixed point of a continuousmap f : I → R, where
I is an interval. Then z is stable.

Proof of Theorem 7 can be found in [3], on p. 239.

Lemma 5 Consider the difference equations

xn+1 = f (xn) (2)

and
xn+1 = ( f ◦ f )(xn), (3)

where f (x∗) = x∗ and f ′(x∗) = −1.
x∗ is asymptotically stable under equation (2) if and only if x∗ is asymptotically

stable under equation (3).

Proof See [2, 5].
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Impulse Effect on a Population Model
with Piecewise Constant Argument

Fatma Karakoç

Abstract We consider a population model with piecewise constant argument under
impulse effect. First, we deal with the model with impulses. Sufficient conditions for
the oscillation of the solutions are obtained. We also investigate asymptotic behavior
of the non-oscillatory solutions. Then we obtain similar results for the same model
without impulse effect. Finally, we compare the results with non-impulsive case and
we give some examples to illustrate our results.

Keywords Population model · Piecewise constant argument · Impulse ·
Difference equation · Linearized oscillation · Non-oscillation.

1 Introduction

In this paper we investigate asymptotic behavior of the positive solutions of the
following population model

N ′(t) = −γN (t) + βN (t)

r + Nm([t − k]) , t ≥ 0, t �= n, n = 1, 2, ..., (1)

N (n+) = N (n−)
(

N ∗

N (n − l)

)b

, n = 1, 2, ..., (2)

where β, γ,m ∈ (0,∞), r ∈ [0,∞), N ∗ =
(

β
γ

− r
)1/m

are constants, k ∈ Z+ =
{1, 2, 3, ...} and l ∈ {2, 3, ...} are fixed numbers, b ≥ 0 is a constant, [.] denotes the
greatest integer function, N (n+) = limt→n+ N (t) and N (n−) = limt→n− N (t).

The following population model related to control of a single population of cells
was presented by Nazerenko [1].
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x ′(t) + px(t) − q
x(t)

r + xn(t − τ )
= 0

Then stability and oscillation of the solutions of the above differential equation
was dealt with in [2].

Studies on delay differential equations with piecewise constant arguments instead
of continuous arguments have been started in 1980’s. In the beginning, stability,
oscillation and existence of periodic solutions of the linear differential equationswere
investigated [3–9] and the references cited therein. To the best of our knowledge, there
is only a few paper on the asymptotic behavior of biological models with piecewise
constant arguments. One of the logistic model with piecewise constant arguments

dN

dt
= r N (t)

⎧⎨
⎩1 −

m∑
j=0

p j N ([t − j])
⎫⎬
⎭ .

was investigated in [10] and a necessary and sufficient condition for the oscillation
of the positive solutions was established. Recently, asymptotic behavior of the solu-
tions of non-impulsive differential Equation (1) in the case of k = 1 has been studied
in [11]. In real world problems, it is known that the solutions of the mathematical
models may be discontinuous as well as an exterior effect may change the asymptotic
behavior of the solutions. Because of this reality, studies on the impulsive differential
equations with piecewise constant arguments have been started with the works [12–
15]. So, the aim of the present paper is to show how can an exterior effect change
the asymptotic behavior of the population model (1). For this purpose we consider
Eq. (1) with the impulse conditions (2). The main tool of our technique is linearized
oscillation of difference equations. So, Sect. 2 is devoted to some fundamental defini-
tions and results of linearized oscillation theory. In Sect. 3, we prove the main results.
Finally, we consider some examples to compare the results of impulsive differential
equations models with non-impulsive differential equations models.

2 Preliminaries

Define k0 = max {k, l} .
Definition 1 It is said that a function N (t) defined on the set {−k0, 1 − k0, ...
− 1} ∪ [0,∞) is a solution of Eqs. (1)–(2) if it satisfies the following conditions:

(i) N (t) is continuous on R+ with the possible exception of the points [t] ∈ [0,∞),

(ii) N (t) is right continuous and has left-hand limit at the points [t] ∈ [0,∞),

(iii) N (t) is differentiable and satisfies Eq. (1) for any t ∈ R+, with the possible
exception of the points [t] ∈ [0,∞) where one-sided derivatives exist,

(iv) N (t) satisfies impulse conditions (2) for n ∈ Z+.
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Definition 2 A function x (t) defined on [0,∞) is called oscillatory about zero if
there exist two real valued sequences {tn}n≥0, {t ′n}n≥0 ⊂ [0,∞) such that tn → +∞,

t ′n → +∞ as n → +∞ and x (tn) ≤ 0 ≤ x
(
t ′n

)
for n ≥ N1 where N1 is sufficiently

large. Otherwise, the function x (t) is called non-oscillatory.

Remark 1 According toDefinition2, a piecewise continuous function x : [0,∞) →
R can be oscillatory even if x (t) �= 0 for all t ∈ [0,∞) .

Definition 3 ([16]) A function x (t) is called oscillatory about K ∗ if the function
(x(t) − K ∗) is oscillatory about zero.

Difference equations are main tool for the investigation of differential equations
with piecewise constant arguments. So, we recall the following definition and theo-
rems which will be used in the proofs of main results.

Definition 4 ([16]) The sequence {yn} is said oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is called non-oscillatory.

Theorem 1 ([16],Corollary 7.4.1).Assume that limu→0
fi (u)
u = 1 for i = 1, 2, ...,m

and there exists a positive constant δ such that

{
ei ther fi (u) ≤ u f or 0 ≤ u ≤ δ and i = 1, 2, ...,m
or fi (u) ≥ u f or − δ ≤ u ≤ 0 and i = 1, 2, ...,m.

Then every solution of equation

an+1 − an +
m∑
i=1

pi fi (an−ki ) = 0, n = 0, 1, 2, ... (3)

oscillates if and only if every solution of its linearized equation

bn+1 − bn +
m∑
i=1

pibn−ki = 0, n = 0, 1, 2, ... (4)

oscillates,where pi ∈ (0,∞) and ki ∈ {0, 1, 2...} for i = 1, 2, ...,m,with
∑m

i=1(pi +
ki ) �= 1, fi ∈ C(R, R) and u fi (u) > 0 for u �= 0.

The following theorem gives a sufficient condition for the existence of oscillatory
solutions for the linear equation (4).

Theorem 2 ([16], Theorem 7.3.1). Suppose that

m∑
i=1

pi
(ki + 1)ki+1

kkii
> 1. (5)

Then every solution of Eq. (4) oscillates.
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By the biological meaningwe consider differential Equation (1)–(2) with the positive
initial conditions

N (−k0) > 0, N (1 − k0) > 0, ..., N (−1) > 0, N (0) > 0. (6)

3 Main Results

The purpose of this section is to investigate the asymptotic behavior of the positive
solutions of Eqs. (1)–(2). Throughout this section we assume that β

γ
> r. Then, it

is easy to see that every solution of the Eqs. (1)–(2) with the positive initial condi-

tions (6) is positive and N ∗ =
(

β
γ

− r
)1/m

is the positive equilibrium point of the

Eqs. (1)–(2).
Using substitution N (t) = N ∗ex(t), Eqs. (1)–(2) reduces to following differential
equation

x ′(t) = −γ + β

r + (N ∗)memx([t−k]) , t �= n, n = 1, 2, ... (7)

x(n+) − x(n−) = −bx(n − l), n = 1, 2, ... (8)

So, we shall investigate the properties of the Eqs. (7)–(8). We consider Eqs. (7)–(8)
with the initial conditions

x(−k0) = ln
N−k0

K
= x−ko , ..., x(−1) = ln

N−1

K
= x−1, x(0) = ln

N0

K
= x0 (9)

In the following theorem we obtain the unique solution of the initial value problem
(7)–(9).

Theorem 3 The unique solution x(t) defined on {−k0, 1 − k0, ...,−1} ∪ [0,∞) of
the initial value problem (7)–(9) has the following representation

x (t) = y(n) +
(

−γ + β

r + (N ∗)memy(n−k)

)
(t − n), n ≤ t < n + 1, n ∈ N ,

(10)
where the sequence y(n) is the unique solution of the difference equation

y(n + 1) − y(n) + γ − β

r + (N ∗)memy(n−k)
+ by(n − l + 1) = 0 (11)

with the initial conditions

y(−k0) = x−k0 , ..., y(−1) = x−1, y(0) = x0. (12)
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Proof Let xn (t) ≡ x(t) be a solution of (7)–(8) on n ≤ t < n + 1. Equation (7) is
rewritten in the form

x ′(t) = −γ + β

r + (N ∗)memx(n−k)
, n < t < n + 1. (13)

Integrating both sides of Eqs. (13) from n to t we obtain that

xn (t) = x
(
n+) +

(
−γ + β

r + (N ∗)memx(n−k)

)
(t − n), n < t < n + 1. (14)

On the other hand, if xn−1(t) is a solution of Eqs. (7)–(8) on n − 1 ≤ t < n, then we
get

xn−1 (t) = x
(
(n − 1)+

) +
(

−γ + β

r + (N∗)memx(n−1−k)

)
(t − n + 1), n − 1 < t < n.

(15)
Using the impulse conditions (8), from (14) and (15) we obtain that

x
(
n+) − x

(
(n − 1)+

) −
(

−γ + β

r + (N ∗)memx(n−1−k)

)
= −bx(n − l).

Since x is right continuous at the points t = n, n = 1, 2, ..., above equation gives
the difference equation (11). Considering the initial conditions (12), the solution of
Eq. (11) can be obtained uniquely. Thus, the solution of (7)–(8) with (9) is obtained
as (10).

Following theorem presents a sufficient condition for the oscillation of the differ-
ence Eq. (11).

Theorem 4 Let assume that b > 0, β
γ
> 2r and

mβ(N ∗)m

(r + (N ∗)m)2
(k + 1)k+1

kk
+ b

ll

(l − 1)l−1
> 1. (16)

Then every solution of Eq. (11) is oscillatory.

Proof We use linearized oscillation for difference equations to prove the result.
Equation (11) can be rewritten as

y(n + 1) − y(n) + p1 f1(y(n − k)) + p2 f2(y(n − l + 1)) = 0,

where p1 = mβ(N ∗)m
(r+(N ∗)m )2 > 0, f1(u) = (r+(N ∗)m )(emu−1)

m(r+(N ∗)memu)
∈ C(R, R), p2 = b > 0,

f2(u) = u ∈ C(R, R).
It is clear that

∑2
i=1(pi + ki ) = mβ(N ∗)m

(r+(N ∗)m )2 + k + b + l − 1 �= 1. Moreover, it is

satisfied that u fi (u) > 0 for u �= 0 and limu→∞ fi (u)
u = 1, i = 1, 2.Moreover, since

β
γ
> 2r, it is shown that
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d f1
du

= emu (r + (N ∗)m)2

(r + (N ∗)memu)2
< 1 f or u > 0.

Hence,
d

du
( f1(u) − u) < 0 f or u > 0.

So, we get f1(u) < u for u > 0.Moreover, it is clear that f2(u) = u is also satisfied
the last condition of Theorem 1. Therefore, by Theorem 1, every solution of Eq. (11)
is oscillatory if and only if every solution of linearized equation

y(n + 1) − y(n) + mβ(N ∗)m

(r + (N ∗)m)2
y(n − k) + by(n − l + 1) = 0 (17)

is oscillatory. Note that, by Theorem 2, under the condition (16), every solution of
Eq. (17) is oscillatory. So, the proof is completed.

Now we get the following result for the solutions of Eqs. (1)–(2).

Corollary 1 Let assume that b > 0, β
γ
> 2r.Every solution of Eqs. (1)–(2) oscillates

about N ∗ if the condition (16) is satisfied.

Theorem 5 Let assume that b > 0. If a solution N (t) of Eqs. (1)–(2) is non-
oscillatory about N ∗, then limt→∞ N (t) = N ∗.

Proof It is sufficient to prove that for every nonoscillatory solution x(t) of the Eqs.
(7)–(8) limt→∞ x(t) = 0. Let x(t) be an eventually positive solution of Eqs. (7)–(8).
From Eq. (7) for n < t < n + 1, we get

x ′(t) = −p f (x([t − k])) < 0,

where, p = mβ(N ∗)m
(r+(N ∗)m )2 > 0, f (u) = (r+(N ∗)m )(emu−1)

m(r+(N ∗)memu)
> 0 for u > 0. On the other

hand, from the impulse conditions (8), we have

x(n+) < x(n−).

So, limt→∞ x(t) = l ≥ 0 exists. Since x(t) = y(n) for t = n, limt→∞ y(n) = l. We
claim that l = 0. Otherwise, taking the limit of both sides of Eq. (11) as n → ∞,

we obtain that

0 = l − l =
(

−γ + β

r + (N ∗)meml

)
− bl < 0

which is a contradiction. So, l = 0. If x(t) is an eventually negative solution of Eqs.
(7)–(8), then we obtain same result.

Now, let us consider the non-impulsive differential equation
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N ′(t) = −γN (t) + βN (t)

r + Nm([t − k]) , t ≥ 0. (18)

In [11] Eq. (18) with k = 1 is studied. The following results are generalizations of
Corollary 1 and Theorem 5 in [11], respectively.

Corollary 2 If β
γ
> 2r and

mβ(N ∗)m

(r + (N ∗)m)2
(k + 1)k+1

kk
> 1, (19)

then every solution of Eq. (18) oscillates about N ∗.

Corollary 3 If a solution N (t) of Eq. (18) is nonoscillatory about N ∗, then
limt→∞ N (t) = N ∗.

4 Numerical Examples

In this section we give some examples to illustrate our results.

Example 1 Let us consider the following differential equation

N ′(t) = −N (t) + 5N (t)

1 + N 2([t − 1]) , t ≥ 0, t �= n, n = 1, 2, ... (20)

N (n+) = N (n−)
(

2

N (n − 3)

)b

, n = 1, 2, ... (21)

where b ≥ 0 is a constant. It can be seen that the N ∗ = 2 is the positive equilibrium
point of the Eqs. (20)–(21).Moreover it is shown that β

γ
> 2r and the condition (16) is

satisfied for all b ≥ 0. So, fromCorollary 1 and Corollary 2 all solutions of impulsive
differential Equation (20)–( 21) as well as all solutions of non-impulsive differential
Equation (20) are oscillate about 2. The solutions N (t) of the non-impulsive differ-
ential Equation (20) and impulsive differential Eqs. (20)–(21) for b = 1/5 with the
initial conditions N (−2) = N (−1) = N (0) = 1 are demonstrated in Fig. 1 and Fig.
2, respectively.

Example 2 (i) Let us consider the following non-impulsive population model

N ′(t) = −1

8
N (t) + N (t)

N 1/2([t − 2]) , t ≥ 0. (22)

It is clear that Eq. (22) is a special case of (18) with γ = 1
8 , β = 1, r = 0, m =

1/2, k = 2. It is easy to see that N ∗ = 64 is the positive equilibrium point of the Eq.
(22) and β

γ
> 2r. But,
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Fig. 1 The solution N (t)
of Eq. (20) with the
initial conditions
N (−2) = N (−1) = 1
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Fig. 2 The solution N (t) of
Eqs. (20)–(21) with the
initial conditions N (−2) =
N (−1) = N (0) = 1
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t
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8

10
N

mβ(N ∗)m

(r + (N ∗)m)2
(k + 1)k+1

kk
< 1.

So, we can not apply Corollary 2. But, fromCorollary 3, if a solution N (t) of Eq. (22)
is nonoscillatory about the positive equilibrium point 64, then limt→∞ N (t) = 64.
The solution N (t) of the Eq. (22) with the initial conditions N (−2) = N (−1) =
0.5, N (0) = 1 is demonstrated in Fig. 3.
(ii) Now let us consider the same population model under impulse effect

N ′(t) = −1

8
N (t) + N (t)

N 1/2([t − 2]) , t ≥ 0, t �= n, n = 1, 2, ..., (23)

N (n+) = N (n−)
(

64

N (n − 2)

)1/2

, n = 1, 2, ... (24)

It is clear that
mβ(N ∗)m

(r + (N ∗)m)2
(k + 1)k+1

kk
+ b

ll

(l − 1)l−1
> 1.
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Fig. 3 The solution N (t) of
Eq. (22) with the initial
conditions N (−2) =
N (−1) = 0.5, N (0) = 1
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Fig. 4 The solution N (t) of
Eqs. (23)–(24) with the
initial conditions N (−2) =
N (−1) = 0.5, N (0) = 1
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So, from Corollary 1, every solution of Eqs. (23)–(24) oscillates about the posi-
tive equilibrium point 64. The solution N (t) of the Eqs. (23)–(24) with the initial
conditions N (−2) = N (−1) = 0.5, N (0) = 1 is demonstrated in Fig. 4.
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On a Second-Order Rational Difference
Equation with Quadratic Terms, Part II

YEVGENIY KOSTROV and Zachary Kudlak

Abstract We give the character of solutions of the following second-order rational
difference equation with quadratic denominator

xn+1 = α + βxn
Bxn + Dxnxn−1 + xn−1

,

where the coefficients are positive numbers, and the initial conditions x−1 and x0 are
nonnegative such that the denominator is nonzero. In particular, we show that the
unique positive equilibrium is locally asymptotically stable, and we give conditions
on the coefficients for which the unique positive equilibrium is globally stable.

Keywords Local stability · Global stability · Rational difference equation ·
Rational recurrence relation

1 Introduction

In this paper, we will investigate the behavior of solutions of a second-order rational
recurrence relation with a quadratic term.

Namely, we will consider the equation

xn+1 = α + βxn
Bxn + Dxnxn−1 + xn−1

, for n = 0, 1, . . . , (1)
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where the coefficients are positive real numbers and the initial conditions are non-
negative real numbers such that the denominator is positive.

The difference equation in (1) is a special case of the more general difference
equation

xn+1 = ax2n + bxnxn−1 + cx2n−1 + dxn + exn−1 + f

Ax2n + Bxnxn−1 + Cx2n−1 + Dxn + Exn−1 + F
, n = 0, 1, . . . , (2)

with nonnegative coefficients and nonnegative initial conditions such that the denom-
inator is positive. Several authors have investigated difference equations contained
in (2), for several examples see [1, 3, 5, 7, 11].

Interestingly, upon investigation of (1), it is easy to see that the monotonicity with
respect to xn changes as the values of the parameters change. There are several recent
papers where the authors investigate equations with varying monotone character, for
reference, see [6, 10].

We will now state the main result of this paper.

Theorem 1 Let {xn}∞n=−1 be a solution of (1). Then, there is a unique positive equi-
librium x̄ of (1). If any of the following are true

1. β ≤ αD + √
αB; or

2. β > αD + √
αB and B ≥ 1; or

3. β > αD + √
αB, B < 1, and β ≤ αD

1 − B
;

then the unique positive equilibrium is globally asymptotically stable.

Wewill prove Theorem 1 in multiple steps. In Sect. 2 we provide some previously
known results for reference. Next, in Sect. 3 we will state and prove several auxiliary
results about (1). Section 4 will show that solutions of (1) will eventually enter an
invariant interval. In Sect. 5, we prove that the unique positive equilibrium is a global
attractor in the regions specified in Theorem 1.

2 Preliminaries

In this section, we state several well-known results which will be useful in this paper.
We call the following two theorems the “m&M Theorems,” see [4] for more details.

Theorem 2 Let g : [a, b] × [a, b] → [a, b] be a continuous function, where a and
b are real numbers with a < b, and consider the difference equation

xn+1 = g(xn, xn−1), for n = 0, 1, . . . . (3)

Suppose that g satisfies the following two conditions:
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1. g(x, y) is non-increasing in x ∈ [a, b] for each fixed y ∈ [a, b], and g(x, y) is
non-increasing in y ∈ [a, b] for each fixed x ∈ [a, b];

2. if (m,M) is a solution of the system

m = g(M,M), M = g(m,m), (4)

then m = M.

Then, there exists exactly one equilibrium of (3), namely x̄ . Furthermore, every
solution of (3) converges to x̄ .

Theorem 3 Let g : [a, b] × [a, b] → [a, b] be a continuous function, where a and
b are real numbers with a < b, and consider the difference equation

xn+1 = g(xn, xn−1), for n = 0, 1, . . . . (5)

Suppose that g satisfies the following two conditions:

1. g(x, y) is non-decreasing in x ∈ [a, b] for each fixed y ∈ [a, b], and g(x, y) is
non-increasing in y ∈ [a, b] for each fixed x ∈ [a, b];

2. if (m,M) is a solution of the system

m = g(m,M), M = g(M,m), (6)

then m = M.

Then, there exists exactly one equilibrium of (5), namely x̄ . Furthermore, every
solution of (5) converges to x̄ .

Theorem 4 (Drymonis and Ladas, [2]). Let

xn+1 = f (xn, xn−1), for n = 0, 1, . . . (7)

with

1. f ∈ C[(0,∞) × (0,∞), (0,∞)];
2. f (u, v) is non-increasing in u and v respectively;
3. x f (x, x) is non-decreasing in x;
4. Equation (7) has a unique positive equilibrium x̄.

Then, every positive solution of (7) which is bounded from above and from below by
positive constants converges to x̄ .

We follow the terminology given in [4] for stability of an equilibrium. Here we
restate some of their results for convenience.

Let I be an interval of real numbers. Suppose that f : I × I → I , is a continuous
function, which defines the difference equation

xn+1 = f (xn, xn−1), for n = 0, 1 . . . , (8)



282 Y. Kostrov and Z. Kudlak

and let x̄ ∈ I be an equilibrium of (8). Further, suppose f (u, v) is continuously
differentiable in some neighborhood of the equilibrium x̄ . We define the following
constants

a1 = −∂ f

∂u
(x̄, x̄), (9)

a0 = −∂ f

∂v
(x̄, x̄). (10)

The equation
λ2 + a1λ + a0 = 0 (11)

is called the characteristic equation of (8).

Theorem 5 (Linearized Stability Theorem, [4]). Let x̄ be an equilibrium of (8),
and suppose that f is a continuously differentiable function defined on some open
neighborhood of x̄ . If the roots of (11) have absolute value less than one, then the
equilibrium x̄ is locally asymptotically stable.

Theorem 6 (Theorem 1.3 of [4]).Consider the second-degree polynomial equation

λ2 + a1λ + a0 = 0, (12)

where a0 and a1 are real numbers.
A necessary and sufficient condition for the roots of (12) to lie within the unit disc

|λ| < 1 is
|a1| < 1 + a0 < 2. (13)

We will use the method of full limiting sequences, as developed by Karakostas,
see [8, 9], and we use the following result.

Theorem 7 (Theorem 1.8 of [4]). Consider the difference equation

xn+1 = f (xn, xn−1, . . . , xn−k), (14)

where f ∈ C[J k+1, J ] for some interval J of real numbers and some nonneg-
ative integer k. Let {xn}∞n=−k be a solution of (14). Set I = lim infn→∞ xn and
S = lim supn→∞ xn, and suppose that I, S ∈ J . LetL0 bea limit point of the sequence
{xn}∞n=−k . Then the following statements are true.

1. There exists a solution {Ln}∞n=−∞ of (14), called a full limiting sequence of
{xn}∞n=−k , such that L0 = L0, and such that for every N ∈ Z, LN is a limit point
of {xn}∞n=−k . In particular,

I ≤ Ln ≤ S for all N ∈ Z. (15)

2. For every i0 ∈ Z, there exists a subsequence {xri }∞i=0 of the solution {xn}∞n=−k such
that
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LN = lim
i→∞ xri+N for every N ≥ i0. (16)

The following inequality will be useful in the sequel, and can be found as an
exercise in [12].

min

{
α1

B1
,
α2

B2
, . . . ,

αn

Bn

}
≤

∑n
k=1 αk∑n
k=1 Bk

≤ max

{
α1

B1
,
α2

B2
, . . . ,

αn

Bn

}
, (17)

where α1, . . . ,αn are nonnegative real numbers and B1, B2, . . . , Bn are positive real
numbers.

3 Several Auxiliary Results on Equation (1)

In this section we will prove several auxiliary results concerning (1). These results
will be useful in proving Theorem 1. We begin, by showing that every positive
solution of (1) is bounded.

Theorem 8 Every positive solution of (1) is bounded from above and from below
by positive constants.

Proof For the sake of contradiction, suppose that {xn}∞n=0 is an unbounded solution
of equation (1). Then there exists an increasing sub-sequence of {xn}∞n=0, which we
will denote

{
xn j

}
such that

lim xn j = ∞.

By considering the recursive definition of xn j , this implies that the subsequences
{xn j−1} and {xn j−2} both converge to zero. Further, if lim xn j−1 = 0, then lim xn j−3 =
∞. Likewise, if lim xn j−2 = 0, then lim xn j−4 = ∞.

This is a contradiction since on one hand, we see that lim xn j−4 = ∞, but on the
other, lim xn j−4 = 0. Therefore, there exists some U > 0 such that xn ≤ U for all
n ≥ 1. Now consider for n ≥ 1,

xn+1 = α + βxn
Bxn + Dxnxn−1 + xn−1

≥ α

BU + DU 2 +U
.

We define L = α
BU+DU 2+U , and thus we have

U ≤ xn ≤ L , for n ≥ 1.

We will use the following cubic polynomial, which will aid us in the proofs of
several results. We define the cubic polynomial h, by

h(x) = Dx3 + (B + 1)x2 − βx − α. (18)
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Theorem 9 Equation (1) has a unique positive equilibrium.

Proof Consider the equation
h(x) = 0 (19)

where the function h is defined in (18). By the well-known Decartes’ Rule of Signs,
the cubic equation (19) has a unique positive root.

We define x̄ as the unique positive solution of (19). Thus,

Dx̄3 + (B + 1)x̄2 − β x̄ − α = 0 (20)

(B + 1)x̄2 + Dx̄3 = α + β x̄ (21)

x̄ = α + β x̄

Bx̄ + Dx̄2 + x̄
(22)

Hence, x̄ is the positive equilibrium of (1), and x̄ is unique.

In the remainder of this section, we will provide several results concerning the
local stability of (1). We show that the unique equilibrium is locally asymptotically
stable. Before we state and prove Theorem 10, we will give some helpful lemmas,
the proofs of which follow by direct computation.

Lemma 1 Let f (u, v) = α + βu

Bu + Duv + v
, then

∂ f

∂u
= βv − αB − αDv

(Bu + Duv + v)2
and

∂ f

∂v
= − (α + βu)(Du + 1)

(Bu + Duv + v)2
. (23)

Lemma 2 The characteristic equation of (1) reduces to

λ2 +
( −β x̄ + αB + αDx̄

((B + 1)x̄ + Dx̄2)2

)
λ +

(
x̄(Dx̄ + 1)

(B + 1)x̄ + Dx̄2

)
= 0. (24)

Proof Let constants a1 and a0 be as defined in (9) and (10). Then,

a1 = −β x̄ + αB + αDx̄

((B + 1)x̄ + Dx̄2)2
. (25)

By using the definition of x̄ ,

a0 = (α + β x̄)(Dx̄ + 1)

((B + 1)x̄ + Dx̄2)2
= x̄(Dx̄ + 1)

(B + 1)x̄ + Dx̄2
. (26)

Theorem 10 Let x̄ be the unique positive equilibriumof (1), then, x̄ is locally asymp-
totically stable.
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Proof According to Theorems 5 and 6, we need to show

∣∣∣∣ −β x̄ + αB + αDx̄

((B + 1)x̄ + Dx̄2)2

∣∣∣∣ < 1 + x̄(Dx̄ + 1)

(B + 1)x̄ + Dx̄2
< 2. (27)

We will start by proving the right side of inequality (27) first. Consider

1 + x̄(Dx̄ + 1)

(B + 1)x̄ + Dx̄2
= 1 + Dx̄2 + x̄

Bx̄ + x̄ + Dx̄2
< 1 + 1 = 2.

Now we will prove the left side of (27). We will start by showing

−β x̄ + αB + αDx̄

((B + 1)x̄ + Dx̄2)2
< 1 + x̄(Dx̄ + 1)

(B + 1)x̄ + Dx̄2
.

Suppose that it is indeed the case, then,

−β x̄ + αB + αDx̄ < ((B + 1)x̄ + Dx̄2)2 + ((B + 1)x̄ + Dx̄2)x̄(Dx̄ + 1)

α (B + Dx̄) − β x̄ < ((B + 1)x̄ + Dx̄2)2 + ((B + 1)x̄ + Dx̄2)x̄(Dx̄ + 1).

Now, we use the expression for α that is obtained from (19) to simplify.

(
(B + 1)x̄2 + Dx̄3 − β x̄

)
(B + Dx̄) − β x̄ <(B + 1)2 x̄2 + 2 (B + 1) Dx̄3 + D2 x̄4+

+ (
(B + 1)x̄2 + Dx̄3

)
(Dx̄ + 1)(

Bx̄2 + x̄2 + Dx̄3 − β x̄
)
(B + Dx̄) − β x̄ <

(
B2 + 2B + 1

)
x̄2 + 2BDx̄3 + 2Dx̄3+

+ D2 x̄4 + (
Bx̄2 + x̄2 + Dx̄3

)
(Dx̄ + 1)

Now, by canceling out like terms on both sides of this inequality, we see that the left
side is negative, while the right side is positive, and hence always true.

Now we will show that

−
(
1 + x̄(Dx̄ + 1)

(B + 1)x̄ + Dx̄2

)
<

−β x̄ + αB + αDx̄

((B + 1)x̄ + Dx̄2)2
.

Suppose that it is indeed true, then

− (
((B + 1)x̄ + Dx̄2)2 + ((B + 1)x̄ + Dx̄2)x̄ (Dx̄ + 1)

)
< −β x̄ + αB + αDx̄ .

By rearranging terms, we obtain,

β x̄ < αB + αDx̄ + ((B + 1)x̄ + Dx̄2)2 +
(
(B + 1)x̄2 + Dx̄3

)
Dx̄ + (B + 1)x̄2 + Dx̄3.

We use the fact that β x̄ = Dx̄3 + (B + 1)x̄2 − α, obtained from (19), and cancel
out like terms to see that
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−α < αB + αDx̄ + (
(B + 1)x̄ + Dx̄2 + Dx̄2

)2 + (
(B + 1)x̄2 + Dx̄3

)
Dx̄ .

Thus, the left side is negative while the right side is positive. Hence, we have shown
that the conditions of Theorem 5 are satisfied, and the unique positive equilibrium is
locally asymptotically stable.

4 Existence of an Invariant Interval

In this section we will show that all solutions of (1) will eventually enter an invariant
interval. We begin by studying the following quadratic function in variable β,

R(β) = (β − αD)2 − αB2. (28)

It is clear that the roots of (28) are

β− = −B
√

α + αD and β+ = B
√

α + αD.

Furthermore, R(β) < 0 on the interval (β−,β+), and R(β) > 0 on (−∞,β−) ∪
(β+,∞). We will use the following technical lemma in the proofs of the lemmas to
follow.

Lemma 3 The following statements are true.

1. If αD < β < β+ then

max

{
αB

β − αD
,

βB

B2 + D(β − αD)

}
= αB

β − αD
.

2. If β > β+ then

min

{
αB

β − αD
,

βB

B2 + D(β − αD)

}
= αB

β − αD
.

Proof We prove part (1), the proof of part (2) is similar and will be omitted. We
want to show that αB

β−αD ≥ βB
B2+D(β−αD)

. Consider

αB

β − αD
≥ βB

B2 + D(β − αD)

αB2 + αD(β − αD) ≥ β(β − αD)

0 ≥ (β − αD)2 − αB2

which is true from the shape of the quadratic function (28).
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Lemma 4 Let αD < β < β+, then the following is true

1. αB
β−αD >

β−αD
B

2. If xn−1 ≤ αB
β−αD , then xn+1 ≥ β−αD

B

3. If xn−1 ≥ β−αD
B , then xn+1 ≤ αB

β−αD

Proof The proof of statement (1) follows from the fact that the quadratic function
defined in (28) is negative for αD < β < β+.

To prove (2), let’s assume that xn−1 ≤ αB
β−αD and using that the function f (u, v)

is decreasing in v, we get

xn+1 = α + βxn
Bxn + Dxnxn−1 + xn−1

≥ α + βxn

Bxn + Dxn
(

αB
β−αD

)
+

(
αB

β−αD

)

= α + βxn(
αB

β−αD

)
+

(
B + DαB

β−αD

)
xn

≥ min

{
α
αB

β−αD

,
β
Bβ

β−αD

}

= min

{
β − αD

B
,
β − αD

B

}
= β − αD

B

Now we will prove statement (3). Assume xn−1 ≥ β−αD
B , and by using the fact that

the function f (u, v) is decreasing in v along with Lemma 3 Part (1), we obtain

xn+1 = α + βxn
Bxn + Dxnxn−1 + xn − 1

≤ α + βxn

Bxn + Dxn
(

β−αD
B

)
+

(
β−αD

B

)

= α + βxn(
β−αD

B

)
+

(
B + D(β−αD)

B

)
xn

≤ max

{
αB

β − αD
,

βB

B2 + D(β − αD)

}

= αB

β − αD
.

Lemma 5 Let β > β+, then the following is true

1. αB
β−αD <

β−αD
B

2. If xn−1 ≥ αB
β−αD , then xn+1 ≤ β−αD

B

3. If xn−1 ≤ β−αD
B , then xn+1 ≥ αB

β−αD

Proof The proof of statement (1) follows from the fact that the quadratic function
defined in (28) is positive for β > β+.

To prove (2), we assume that xn−1 ≥ αB
β−αD and using that the function f (u, v) is

decreasing in v, we get
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xn+1 = α + βxn
Bxn + Dxnxn−1 + xn−1

≤ α + βxn

Bxn + Dxn
(

αB
β−αD

)
+

(
αB

β−αD

)

= α + βxn(
αB

β−αD

)
+

(
B + DαB

β−αD

)
xn

≤ max

{
α
αB

β−αD

,
β

Bβ−BαD+DαB
β−αD

}

= min

{
β − αD

B
,
β − αD

B

}
= β − αD

B

Now let’s prove (3). Assume xn−1 ≤ β−αD
B and using that the function f (u, v) is

decreasing in v along with Lemma 3 Part (2), we get

xn+1 = α + βxn
Bxn + Dxnxn−1 + xn − 1

≥ α + βxn

Bxn + Dxn
(

β−αD
B

)
+

(
β−αD

B

)

= α + βxn(
β−αD

B

)
+

(
B + D(β−αD)

B

)
xn

≥ min

{
αB

β − αD
,

βB

B2 + D(β − αD)

}

= αB

β − αD
.

Lemma 6 When β = β+ = αD + B
√

α, the unique equilibrium of equation is x̄ =
αB

β−αD = β−αD
B .

Proof It is clear that αB
β−αD = β−αD

B when β = β+ = αD + B
√

α from Eq. (28).

Now we show that x̄ = αB
β−αD . We will evaluate h

(
αB

β−αD

)
, where h was the cubic

equation defined in (18). Clearly,

h

(
αB

β − αD

)
= D

(
αB

β − αD

)3

+ (B + 1)

(
αB

β − αD

)2

− β

(
αB

β − αD

)
− α.

Simplifying this, we see that,

h

(
αB

β − αD

)
= D

(
αB

β − αD

)3
+ (B + 1)

(
αB

β − αD

)2
− β

(
αB

β − αD

)
− α

= Dα3B3 + (B + 1)α2B2(β − αD) − βαB (β − αD)2 − α (β − αD)3

(β − αD)3

= Dα2B(αB2) + (B + 1)α(αB2)(β − αD) − βαB (β − αD)2 − α (β − αD)3

(β − αD)3
.

Since αB
β−αD = β−αD

B implies that αB2 = (β − αD)2, we get
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h

(
αB

β − αD

)
= Dα2B (β − αD)2 + (B + 1)α (β − αD)3 − βαB (β − αD)2 − α (β − αD)3

(β − αD)3

=
(
Dα2B + (Bα + α)(β − αD) − βαB − αβ + α2D

)
(β − αD)2

(β − αD)3

= 0.

This shows that x̄ = αB
β−αD when β = β+.

Let’s define the interval K ,

K =

⎧⎪⎪⎨
⎪⎪⎩

[
β−αD

B , αB
β−αD

]
, if αD < β ≤ β+

[
αB

β−αD ,
β−αD

B

]
, if β > β+,

(29)

with the convention that when β = β+, the “interval” K is a single point and x̄ = K ,
as was previously established in Lemma 4.

The next lemma establishes that the interval K is invariant, in the sense that if
two consecutive terms of the solution are in K then the solution will remain in K for
ever. The proof follows from Lemmas 4 and 5, and will be omitted.

Lemma 7 Suppose that αD < β and there exists N ∈ Z
+ such that xN , xN−1 ∈ K,

then xn ∈ K for all n ≥ N.

Amazingly, we will now show that K is also attracting. That is, solutions will
always eventually enter K , and we state it formally in the following lemma.

Lemma 8 If αD < β then K is an attracting interval. In other words, there exists
N ∈ Z

+ such that xn ∈ K for all n ≥ N.

Proof Wewill give the proof forαD < β ≤ β+. The proof for the other case follows
similarly and will be omitted.

Let I = lim infn→∞ xn and S = lim supn→∞ xn . Then, if both I ∈ K and S ∈ K ,
then we are done. For the sake of contradiction, assume that S /∈ K . It follows from
Lemma 4 that S > αB

β−αD . Thus, there is an open neighborhood O containing S
such that O ∩ K = ∅. By Theorem 7, let Sn+1 be a full-limiting sequence such that
limn→∞ Sn+1 = S. Thus, there exists a positive integer N , such that Sn ∈ O for
n ≥ N . According to Lemma 4, if Sn > αB

β−αD ≥ β−αD
B , then Sn+1 <

αB
β−αD , which is

a contradiction. Thus, it must be the case that S is in the interval K . The other case,
when I /∈ K is proved the same way. Thus, it must be the case that both I and S are
in the interval K, which completes the proof.

5 Global Attractivity of x̄

Our proof of the main result, Theorem 1, will be based on cases which partition the
values of the coefficient β.
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Fig. 1 β ≤ β+
β

β+αD0

5.1 Case β ≤ β+

Suppose that β ≤ β+. Theorems 11 and 12 will show that the unique equilibrium of
(1) is a global attractor (Fig. 1).

Theorem 11 If β = αD
B+1 , then the unique positive equilibrium of (1), x̄ , is a global

attractor.

Proof We will apply Theorem 4, for which it only remains to show that x f (x, x) is
non-decreasing in x . Consider

x f (x, x) = x (α + βx)

Bx + Dx2 + x
= α + βx

(B + 1) + Dx
.

Then, we see that

d

dx
x f (x, x) = β ((B + 1) + Dx) − (α + βx) D

((B + 1) + Dx)2
= 0.

Now all the conditions of the Theorem 4 are satisfied and so every solution converges
to x̄ .

Theorem 12 If β ≤ β+ and β �= αD
B+1 , then the unique positive equilibrium of (1),

x̄ , is a global attractor.

Proof Suppose that β �= αD
B+1 , and β ≤ β+. Then, consider ∂ f

∂u . From Lemma 1, and
if β ≤ αD, we obtain

∂ f

∂u
= βv − αB − αDv

Bu + Duv + v)2
= (β − αD)v − αB

(Bu + Duv + v)2
≤ 0. (30)

If αD < β < β+ = αD + B
√

α then by Lemmas 7 and 8, and by the definition
of interval K in (29), every solution {xn} will eventually enter the attracting interval
K =

[
β−αD

B , αB
β−αD

]
and remain there. Hence, by Lemma 8, there exists a positive

integer N such that for all integers n ≥ N , xn ≤ αB
β−αD . Therefore, we again see that

for n ≥ N , ∂ f
∂u ≤ 0 (Fig. 2).

Therefore, when β ≤ β+ and n ≥ N , the function f (u, v) is non-increasing in
both u and v. We will use the “M&m” Theorem, Theorem 2. We define m,M as
follows,

m = α + βM

(B + 1)M + DM2
and M = α + βm

(B + 1)m + Dm2
.

We clear the denominators to obtain
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Fig. 2 When β ≤ β+ the
unique equilibrium is a
global attractor

1 2

B

β
β > β+

β ≤ β+

β = αD
1+B

β = β+ = αD +
√

αB

(0, αD)

(B + 1)mM + DmM2 = α + βM (31)

(B + 1)Mm + DMm2 = α + βm. (32)

We subtract (31) and (32) to get

DmM(M − m) = β(M − m).

We have a solution M = m. Assume M �= m, then we get that DmM = β which
implies that m = β

DM and we substitute this expression into (31) to obtain,

(B + 1)

(
β

DM

)
M + D

(
β

DM

)
M2 = α + βM

(B + 1)β

D
+ βM = α + βM

(B + 1)β = αD.

Which, we assumed is not the case. Hence, we have proved convergence to x̄ when
β ≤ αD and (B + 1)β �= αD or β > β+ = αD + B

√
α.

Corollary 1 If β ≤ β+ then the unique positive equilibrium of (1), x̄ is a global
attractor.

5.2 Case β > β+

Suppose that β > β+. By Lemma 5, and the definition of the interval K in (29) we

know that the interval K =
[

αB
β−αD ,

β−αD
B

]
is attracting and invariant, and hence,
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Fig. 3 β > β+
β

αD β+0

there exists a positive integer N such that for all integers n ≥ N , xn ∈ K . Hence,
f (u, v) is non-decreasing in u and non-increasing in v (Fig. 3).
We proceed by Theorem 3, setting up the system of equations

{
m = α+βm

Bm+DmM+M

M = α+βM
BM+DmM+m

. (33)

By, clearing the denominators in (33), and subtracting the second from the first,
we obtain

B(m − M)(m + M) + DmM(m − M) = β(m − M). (34)

Clearly m = M is a solution. Suppose that m �= M and divide both sides of (34) by
m − M to obtain,

B(m + M) + DmM = β. (35)

We can see that by the symmetry, any solution to (33) for m must also be a solution
for M . We solve for m in (35) to obtain,

m = β − BM

B + DM
, (36)

and substitute this into the second equation in system (33).

BM2 + DmM2 + mM = α + βM (37)

BM2 + D

(
β − BM

B + DM

)
M2 +

(
β − BM

B + DM

)
M = α + βM (38)

BM2(B + DM) + DM2(β − BM) + M(β − BM) = (α + βM)(B + DM) (39)

B2M2 + BDM3 + DβM2 − BDM3 + βM − BM2 = αB + αDM + βBM + βDM2

(40)

B2M2 + βM − BM2 = αB + αDM + βBM (41)

B(B − 1)M2 + (β − αD − βB)M − αB = 0. (42)

We will break this case up into three subcases, depending on whether B = 1, B > 1
or B < 1. For the cases when B = 1 or B > 1 we continue by using Theorem 3.
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5.2.1 Case B = 1

If B = 1 then (42) reduces to

−αDM − αB = 0

which has no positive solutions. Hence m = M was the unique solution to (33), and
by Theorem (3) we would conclude that the unique positive equilibrium is a global
attractor.

5.2.2 Case B > 1

If B > 1 then B(B − 1) > 0 and β(1 − B) − αD < 0, then we see that M1,M2 are
solutions to (42), where

M1 = M− = β(B − 1) + αD − √
(β(B − 1) + αD)2 + 4αB2(B − 1)

2B(B − 1)
< 0,

M2 = M+ = β(B − 1) + αD + √
(β(B − 1) + αD)2 + 4αB2(B − 1)

2B(B − 1)
> 0.

By (36), we find that

m1 = β − BM1

B + DM1
= β(B − 1) + αD + √

(β(B − 1) + αD)2 + 4αB2(B − 1)

2B(B − 1)
= M+,

m2 = β − BM2

B + DM2
= β(B − 1) + αD − √

(β(B − 1) + αD)2 + 4αB2(B − 1)

2B(B − 1)
= M−.

This gives us the following symmetric solutions,

(M1,m1) = (M−,M+),
(M2,m2) = (M+,M−),

where one of the components is negative in each solution. Hence, the unique solution
of (33) isM = m, and so by Theorem 3we have shown that the x̄ is a global attractor.

5.2.3 Case B < 1

So, what remains to be shown, is global convergence for the case when β > β+ and
B < 1 (Fig. 4).

When B < 1 we know that B(B − 1) < 0. Looking at the coefficient of M in
(42), we see that if β − αD − βB ≤ 0 then (42) will have no solutions, since all
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Fig. 4 When β > β+ and
B ≥ 1 the unique
equilibrium is a global
attractor

1 2

B

β
β > β+

β ≤ β+

B < 1 B ≥ 1

β = β+ = αD +
√

αB

(0, αD)

coefficients in (42) will be negative. Hence,

β − αD − βB ≤ 0 (43)

β(1 − B) ≤ αD (44)

β ≤ αD

1 − B
. (45)

So for β ≤ αD
1−B we have satisfied the requirements of Theorem 3, and every

solution will converge to the unique positive equilibrium x̄ .
The global behavior of solutions is still open in the region for β > β+, β > αD

1−B
and B < 1.

The following theorem follows from the justification given above:

Theorem 13 If β > β+ and if B ≥ 1, or if B < 1 and β ≤ αD
1−B , then the unique

positive equilibrium of (1) is a global attractor.

6 Conclusion

It has been shown that Eq. (1) has a unique positive equilibrium which is locally
asymptotically stable and a global attractor when the values of the parameters satisfy
the conditions of Theorem 1, and for all positive initial conditions x0, x−1. Hence, the
equilibriumof (1) is globally asymptotically stable under the conditions of Theorem1
(Fig. 5).

These authors believe that alternative techniques must be used to investigate the
remaining region, namely when

β > αD + √
αB, β >

αD

1 − B
, and B < 1.
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Fig. 5 When β > β+,
B < 1 and β ≤ αD

1−B the
unique equilibrium is a
global attractor

1 2

B

β
β > β+

β ≤ β+

B < 1 B ≥ 1

β > αD
1−B

β ≤ αD
1−B

β = β+ = αD +
√

αB

(0, αD)

(1 − √
αD,

√
α)

Fig. 6 Region for B and β
for which global attractivity
remains open

1 2

B

β
β > β+

β ≤ β+

B < 1 B ≥ 1

β > αD
1−B

β ≤ αD
1−B

β = β+ = αD +
√

αB

(0, αD)

(1 − √
αD,

√
α)

Theorem 3 does not apply with the given invariant interval of K defined in (29)
because it can be shown that there are other solutions to the system in Theorem 3 for
whichm �= M . Hence, onemust find a smaller invariant interval if one is to apply this
theorem, or use other techniques such as semi-cycle analysis, Lyapunov functions,
etc. (Fig. 6).

Conjecture 1 The unique positive equilibriumof (1) is a global asymptotically stable
for all positive values of the parameters.

We conclude the paper with the following open question, which would extend the
results to a non-autonomous equation.

Question 1 Determine the behavior of solutions of (1) when the coefficients are
periodic, or more generally positive sequences of real numbers bounded from above
and from below by positive constants. In particular, determine if all positive solutions
are bounded.

Acknowledgements The authors wish to thank the anonymous referee for his or her helpful com-
ments for revising this paper.



296 Y. Kostrov and Z. Kudlak

References
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Population Motivated Discrete-Time
Disease Models

YE LI and Jiawei Xu

Abstract Infectious diseases are now widely analyzed by compartmental models.
This paper introduces a SIR model coupled with a social mobility model (SMM).
After discretization by a forward Euler Method, and a mixed type Euler method
(structured with both forward and backward Euler elements), we obtained a differ-
ence equations model for our social mobility model. We calculate the basic repro-
duction number R0 using the next-generation matrix method. When R0 < 1, there
will be a disease-free equilibrium (DFE), and R0 < 1 implies DFE will be locally
asymptotically stable, while R0 > 1 implies DFE is unstable. When R0 = 1, DFE
may stable or unstable. Then we obtain a hyperbolic forward Kolmogorov equation
corresponding to the SIR epidemic model. We also generate the hyperbolic forward
Kolmogorov equations for the SIR model with SMM between 2 locations.

Keywords SIR epidemic model · Discrete-time model · Social mobility model ·
Forward Kolmogorov equation

1 Introduction

Infectious diseases are nowwidely analyzedby compartmentalmodels, such asSEIR,
SIR, SI, etc. [1–3]. Sattenspiel and Dietz considered a structured epidemic model
by incorporating geographic mobility among regions [4]. Skufca and ben-Avraham
considered a situation that accounts for the different dynamics arising from individ-
uals on short trips and returning to home locations, based on a Gravity Model [5]
and using the SMM (social mobility model) [6]. All of the above studies are for-
mulated as a Markov Process. In Sect. 2, we review the SMM model in the form of
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the continuous-time model. In Sect. 3, we formulate the SMM model in the form of
the discrete-time model by the forward Euler method. In Sect. 4, we also define the
Disease-free equilibrium (DFE) and R0 (basic reproductive number) and analyze the
forward Euler method discrete-time model. In Sect. 5, we give a PDE (Kolmogorov
Equation) view of the SIR epidemic model and we construct the Kolmogorov Equa-
tions of the SIR epidemic model under population movement between 2 locations.
Section6 is the Numerical Simulation part, which shows the computed results on a
simulative example based on the two discrete-time models. Finally, we discuss two
discrete-time models and the difference equation SIR epidemic models under the
Kolmogorov Equations representation in Sect. 7.

2 The Continuous-Time Model

2.1 Basic SIR Model Integrated with the SMM

According to [6], the SMM allows two types of motions: relocation and short trips.
Let

(i, j) = (current location, home location)

Define the time scales T � θ � τ , T ∼ years, θ ∼ months, τ ∼ days [6]. The
motion of people falls into two broad categories: (1) movement to relocate from
one home to another, and (2) motion related to taking a trip with planned returns.
Definition of forms in the SMMmodel is included in Table 1 and the transition paths
of the model is shown in Fig. 1.

Table 1 Meaning of coefficients

τ Time between travelling

θ Time between trips

T Rime between relocation

ωi j Likelihood relocate from i to j

νi j Preference to travel from i to j

r Probability
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From the definition above, Skufca and ben-Avraham studied the following popu-
lation motion process by using the parameters of Table1 and the rates of Fig. 2 [6].
The resultant master equations are given by

π̇i i = r

τ

∑

j �=i

π j i − (
1

θ

∑

j

νi j + 1

T

∑

j

ωi j )πi i + 1

T

∑

j

ω j iπi j

︸ ︷︷ ︸
optional

(1)

π̇i j = 1

θ
ν j iπ j j + 1

T
ωi jπi i + 1 − r

τ

∑

k �= j

νkiπk j

− (
r

ν
+ 1 − r

τ

∑

k �= j

νik)πi j + 1

T

∑

k

(ωk jπik − ω jkπi j )

︸ ︷︷ ︸
optional

(2)

Fig. 1 Travel path of the model

Fig. 2 Transition rates for
the SMM. In all cases,
i �= j �= k

Transition Rate Description

when at home

(i, i) → (j, i) 1
θ
νij travel

(i, i) → (i, j) 1
T

ωij relocate

when away from home

(i, j) → (j, j) r
τ

return

(i, j) → (k, j) 1−r
τ

νik continue trip

(i, j) → (i, k) 1
T

ωjk relocate (optional)
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Fig. 3 State transition diagram for the model. Note that health condition is not affected by motion,
and all paths from Sxy → Ixy represent disease propagation

We consider a basic SIR model with births and deaths occurring at equal rate, μ,
disease recovery rate, α, disease transmission rate, β, and the total population, N ,
remaining fixed:

Ṡ = μN − μS − βSI (3)

İ = βSI − αI − μI (4)

Ṙ = αI − μR (5)

Here S means susceptible, I means infectious, R means removed with S + I +
R = N .

Let Si j means susceptible move from j to i , Ii j means infectious move from j to
i , Ri j means removed from j to i . Figure 3 illustrates the transition paths available
in the model. From [6], the SMM allows two types of motions: relocation and short
trip. given a two location example, we can get a general SMM model
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Ṡi i = μNi − μSii − βSii
∑

j

Iii + r

τ

∑

j �=i

S ji − (
1

θ

∑

j

νi j + 1

T

∑

j

ωi j )Sii (6)

Ṡi j = − μSi j − βSi j
∑

j

Ii j + 1

θ
ν j i Sii + 1

T
ωi j Sii + 1 − r

τ

∑

k �= j

νki Sk j

− (
r

τ
+ 1 − r

τ

∑

k �= j

νik)Si j

(7)

İi i =βSii
∑

j

Ii j − (α + μ)Iii + r

τ

∑

j �=i

I j i − (
1

θ

∑

j

νi j + 1

T

∑

j

ωi j )Iii (8)

İi j = βSi j
∑

j

Ii j − (α + μ)Ii j + 1

θ
ν j i I j j + 1

T
ωi j I i i + 1 − r

τ

∑

k �= j

νki Ik j

− (
r

τ
+ 1 − r

τ

∑

k �= j

νi j )Ii j

(9)

2.2 The Population Mobility Model with SMM

Set Ni j = Si j + Ii j + Ri j . Define Ni be the residents from i , Ni = ∑n
j=1 N ji . Apply-

ing the SMM model from [6], we can get a population mobility model as follows:

Ṅii = μ(Ni − Nii ) + r

τ

∑

j �=i

N ji − (
1

θ

∑

j

νi j + 1

T

∑

j

ωi j )Nii (10)

Ṅi j = −μNi j + 1

θ
ν j i N j j + 1

T
ωi j Nii + 1 − r

τ

∑

k �= j

νki Nk j − (
r

τ
+ 1 − r

τ

∑

k �= j

νik)Ni j

(11)

3 The Discrete-Time Model

In this section, we use the forward Euler method [7–10]. Define φ(t) as the time step.
We obtain the discrete-time model as follows:
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Sii (t + 1) − Sii (t) =φ(t)[μNi − μSii (t) − βSii (t)
∑

j

Ii j (t)

+ r

τ

∑

j �=i

S ji (t) − (
1

θ

∑

j

νi j + 1

T
ωi j )Sii (t)]

(12)

Si j (t + 1) − Si j (t) =φ(t)[−μSi j (t) − βSi j (t)
∑

j

Ii j (t) + 1

θ
ν j i S j j (t) + 1

T
ωi j Sii (t)

+ 1 − r

τ

∑

k �= j

νki Sk j (t) − (
r

τ
+ 1 − r

τ

∑

k �= j

νik )Si j (t)]
(13)

Iii (t + 1) − Iii (t) = φ(t)[βSii (t)
∑

j

Ii j (t) − (α + μ)Iii (t)

+ r

τ

∑

j �=i

I j i (t) − (
1

θ

∑

j

νi j + 1

T
ωi j )Iii (t)]

(14)

Ii j (t + 1) − Ii j (t) =φ(t)[βSi j (t)
∑

j

Ii j (t) − (α + μ)Ii j (t) + 1

θ
ν j i I j j (t) + 1

T
ωi j Ii i (t)

+ 1 − r

τ

∑

k �= j

νki Ik j (t) − (
r

τ
+ 1 − r

τ

∑

k �= j

νik )Ii j (t)]
(15)

Similarly, we obtain the discrete population mobility model as follows:

Nii (t) = φ(t)[μ(Ni − Nii ) + r

τ

∑

j �=i

N ji − (
1

θ

∑

j

νi j + 1

T

∑

j

ωi j )Nii ] (16)

Ni j (t + 1) − Ni j (t) = φ(t)[−μNi j + 1

θ
ν j i N j j + 1

T
ωi j Nii + 1 − r

τ

∑

k �= j

νki Nk j

− (
r

τ
+ 1 − r

τ

∑

k �= j

νik)Ni j ]
(17)

If Ii j = 0 for all (i, j), the population will be ’disease free’. The Eqs. (12)–(15) will
reduce to

Sii (t + 1) − Sii (t) = φ(t)[μNi − μSii (t) + r

τ

∑

j �=i

S ji (t)

− (
1

θ

∑

j

νi j + 1

T
ωi j )Sii (t)]

(18)

Si j (t + 1) − Si j (t) = φ(t)[−μSi j (t) + 1

θ
ν j i S j j (t) + 1

T
ωi j Sii (t)

+ 1 − r

τ

∑

k �= j

νki Sk j (t) − (
r

τ
+ 1 − r

τ

∑

k �= j

νik)Si j (t)]
(19)
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Which is equivalent to model (16) and (17). If Ii j = 0 then Ri j = 0, and so
Ni j = Si j for all time steps.

Following the method in [11] we consider discrete dynamical system

x(t + 1) = f (x(t)), t = 0, 1, 2, ... (20)

which has an equilibrium point x∗ if f (x∗) = x∗. Writting (16) and (17) in the form
of (20), we obtain equilibrium points where

μ(Ni − Nii ) + r

τ

∑

j �=i

N ji − (
1

θ

∑

j

νi j + 1

T

∑

j

ωi j )Nii = 0 (21)

− μNi j + 1

θ
ν j i N j j + 1

T
ωi j Nii + 1 − r

τ

∑

k �= j

νki Nk j − (
r

τ
+ 1 − r

τ

∑

k �= j

νik)Ni j = 0

(22)

The solution of (21) and (22) defines the equilibrium of model (16) and (17).
The solution of (21) and (22) orders as follows:

N ∗
11, N

∗
12, ..., N

∗
1n, N

∗
21, ..., N

∗
2n, ..., N

∗
n1, ..., N

∗
nn

Which gives population mobility equilibrium n2 × n2 diagonal matrix N ∗.

4 The Basic Reproduction Number R0 and Disease-Free
Equilibrium (DFE)

Ordering the infectious variable

I11, I12, ..., I1n, I21, ..., I2n, ..., In1, ..., Inn .

Define matrix V as follow:
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V=φ(t)

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 . . . 0 − r
τ 0 0 . . . 0 − r

τ 0 0 . . . 0
− ω12

T a12 0 . . . 0 0 − ν21
θ 0 . . . 0 . . . 0 r−1

τ νn1 0 . . . 0

− ω13
T 0 a13 . . . 0 0 0 r−1

τ ν21 . . . 0 . . . 0 0 r−1
τ νn1 . . . 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

− ω1n
T 0 0 . . . ann 0 0 0 . . . r−1

τ ν21 0 0 0 . . . − νn1
θ

− ν12
θ 0 0 . . . 0 a21 − ω21

T 0 . . . 0 r−1
τ νn2 0 0 . . . 0

0 − r
τ 0 . . . 0 0 a22 0 . . . 0 0 − r

τ 0 . . . 0
0 0 r−1

τ ν12 . . . 0 0 − ω23
T a23 . . . 0 . . . 0 0 r−1

τ νn2 . . . 0
.
.
.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 0 0 . . . r−1
τ ν12 0 − ω2n

T 0 . . . a2n 0 0 0 . . . − νn2
θ

.

.

.

.

.

.
. . .

.

.

.

− ν1n
θ 0 0 . . . 0 r−1

τ ν2n 0 0 . . . 0 an1 0 0 . . . − ωn1
T

0 r−1
τ ν1n 0 . . . 0 0 − ν2n

θ 0 . . . 0 0 an2 0 . . . − ωn2
T

0 0 r−1
τ ν1n . . . 0 0 0 r−1

τ ν2n . . . 0 . . . 0 0 an3 . . . − ωn3
T

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 0 0 . . . − r
τ 0 0 0 . . . − r

τ 0 0 0 . . . ann

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where, ann = α + μ + 1
θ

∑
j νnj + 1

T

∑
j ωnj , ani = α + μ − 1−r

μ
νnn + ( r

τ
+

1−r
τ

∑
k �=i νnk). According to [12], the basic reproduction number of model (12)–

(15) is:
R0 = ρ(FV−1),

where ρ is spectral radius.
Using the method of [7, 12] we construct the diagonal matrix F as follow:

F=φ(t)·β·N ∗=φ(t)·β

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

N ∗
11
N ∗
12

. . .

N ∗
1n
N ∗
21
N ∗
22

. . .

N ∗
2n

. . .

N ∗
n1
N ∗
n2

. . .

N ∗
nn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

Let E0 be the DFE of model (12)–(15). At the DFE, Eqs. (18) and (19) are
equivalent to (16) and (17), so
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E0 = [N ∗
11, N

∗
12, ..., N

∗
1n, N

∗
21, ..., N

∗
2n, ..., N

∗
n1, ..., N

∗
nn, 0, . . . , 0︸ ︷︷ ︸

n×n

]

in the ordering of

S11, . . . , S1n, S21, . . . , S2n, . . . , Sn1, . . . , Snn,

I11, . . . , I1n, . . . , In1, . . . , Inn .

Because the DFE considered as I = 0, which cause R = 0, E0 not includes the
removed part. There is a convenient way to analyze the stability of DFE according
to Theorem 2 in [12].

Lemma 1 R0 < 1 implies DFE be locally asymptotically stable; R0 > 1 implies
DFE unstable.

Proof Here thematrices F andV follow themethod [12].Weeasily verify thatmatrix
F andV satisfies the (A1)–(A5) in [12] and thatV is also anon-singularM − matri x ,
F is also a non-negative matrix. Let C = F − V , and s(C) be the maximum real
part of the eigenvalues of matrix C (spectual abscissa). According to the Theorem
1 and proved in [12] and Lemma 4.1 in [9], R0 > 1 ⇐⇒ s(C) > 0, R0 < 1 ⇐⇒
s(C) < 0. So we can get R0 < 1 implies DFE be locally asymptotically stable;
R0 > 1 implies DFE unstable.

Theorem 1 DFE is globally asymptotically stable when R0 < 1; when R0 > 1, the
DFE is unstable.

5 Example

In this section, we validate our algorithm for vectorization of the infected SIR-SMM
model. We construct three examples of locations. These two examples show how
coefficients affect the basic reproduction number (Figs. 4 and 5).

6 The PDE View of the SIR Model with Social Mobility

6.1 Basic SIR Model

Firstly, we consider the Moran process according to the method in [13, 14] in the
basic SIR model (6)–(8). Define N be the total constant population. P(N ,�t)(t, n,m)

be the probability there are n susceptible, m infectious and N − m − n removed at
time t . Define �t to be the time step. Then we have
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Fig. 4 N1 = 10, N2 = 4, N3 = 1, S = 0.99N , I = 0.01N ,φ(t) = 0.0002,μ = 0.005,β = 4.8,
α = 48, τ = 5

365 , θ = 1, T = 10, r = 0.5. The Si j and Ii j as functions of time t . Here R0 < 1
shows the disease will die out. ρ(A) < 1, s(C) < 0 shows the DFE is locally asymptotical stable

P(N ,�t)(t + �t, n,m) = (μ + β
m − 1

N − 1
)
n + 1

N
P(N ,�t)(t, n + 1,m − 1)

+ (α + μ)
m + 1

N
P(N ,�t)(t, n,m + 1) + μ

N − n − m + 1

N
P(N ,�t)(t, n − 1,m)

+ [ n
N

(1 − (μ + β
m

N − 1
)) + m

N
(1 − α − μ) + N − n − m

N
(1 − μ)]P(N ,�t)(t, n,m)

(23)

Let x = n
N , y = m

N , p(t, x, y) = N P(N ,�t)(t, xN , yN ) = p. Keeping terms of
order 1

N

p(N ,�t)(t + �t, x, y) = (μ + β
Ny − 1

N − 1
)
xN + 1

N
p(t, x + 1

N
, y − 1

N
)

+ (α + μ)(y + 1

N
)p(t, x, y + 1

N
) + μ(1 − x − y + 1

N
)p(t, x − 1

N
, y)

+ [x(1 − (μ + β
y

1 − 1
N

)) + y(1 − α − μ) + (1 − x − y)(1 − μ)]p(t, x, y)

≈ p + 1

N
[(3μ + α − βx + βy)p + (βxy + 2μx + μy − μ)px + (αy + μy − βxy − μ)py ]

≈ p + 1

N
[∂x ((βxy + μ(2x + y − 1))p) + ∂y(((α − βx)y + μ(y − 1))p)]

(24)
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Fig. 5 The Si j and Ii j as functions of time t . Here we suppose there are 3 locations
and N1 = 10, N2 = 4, N3 = 1, S = 0.99N , I = 0.01N ,φ(t) = 0.0002,μ = 0.005,β = 10,α =
48, τ = 5

365 , θ = 1, T = 10, r = 0.5, with R0 = 2.0036

Let a, b, c be positive constants and defined by

lim
N→∞�t→0

β

N�t
= b

lim
N→∞�t→0

α

N�t
= a

lim
N→∞�t→0

μ

N�t
= c

where
ab �= 0.

Then we have

∂t p = ∂x (((bxy + c(2x + y − 1)))p) + ∂y(((a − bx)y + c(y − 1))p) (25)
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6.2 2 Location Condition

According to the method in [13], define Ni be the total population in city i , ni j be
the susceptible,mi j be the infectious and Ni − ni j − mi j be the recovery from city j
to city i . Define P(Ni ,�t)(t, ni j ,mi j ) be the probability that there are ni j susceptible,
mi j infections and Ni − ni j − mi j removed at t steps.

Without loss of generality, in city 1, x1 = n11
N1
, y1 = m11

N1
, y2 = m12

N1
. For population

from city 1 to city 1, let p1 = p(t, x1, y1) = N1P(N1,�t)(t, x1N1, y1N1) For popu-
lation from city 2 to city 1, let p2 = p(t, x2, y2) = N1P(N1,�t)(t, x2N1, y2N1) For
susceptible moves from city 1 to city 1, infectious moving from city 2 to city 1, let
p3 = p(t, x1, y2) = N1P(N1,�t)(t, x1N1, y2N1)

Because Si j cannot become an Iii , there is no term P(N1,�t)(t, n12,m11). Let

lim
N→∞�t→0

1
θ

N�t
= d

lim
N→∞�t→0

1
T

N�t
= l

lim
N→∞�t→0

r
τ

N�t
= h

Then we can obtain

∂t p1 = ∂x1[(2(b(y1 + y2) + c + dν12 + lω12)x1 + (c + dν12 + lω12)(y1 − 1))p1]
+ ∂y1[((a − bx1 + c + dν12 + lω12)y1 − (by2 + c + dν12 + lω12)x1)p1]

(26)

∂t p2 = ∂x2 [((b(y1 + y2) + 2c + 2h)x2 + (c + h)(y2 − 1))p2]
+ ∂y2 [((a − bx2 + c + h)y2 − (by1 + c + h)x2)p2] (27)

∂t p3 = ∂x1[((b(y1 + y2) + 2c + dν12 + lω12 + h)x1 + (c + h)(y2 − 1))p3]
+ ∂y2 [((a − bx1 + c + h)y2 − (by1 + c + dν12 + lω12)x1)p3] (28)

Equations (26)–(28) constitute a new stochastic model SIR and SMM based upon
the constitution of Sect. 3. The analysis of (26)–(28) and their generalization to n
locations will be the subject of future work.

7 Discussion

In this paper, we consider discretemethods for the SIRmodelwith SMMbased on the
[15, 16]. Because the existence criteria of the steady states in the continuous-time and
discrete-time models are the same, both continuous and discrete-time models have
the same equilibrium [17]. According to themethod introduced in [13, 14], we get the
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hyperbolic forward Kolmogorov equation for the SIR model (6)–(8) corresponding
to theMoran process.We also construct theKolmogorov equations for the SIR-SMM
model between 2 locations.

Our further work is to prove the uniqueness of the solution in (6) and (26)–(28),
study how the solution changes with time, and generalize the Kolmogorov equations
of SIR-SMMmodel (26)–(28) to n locations. How to find a suitable initial condition
for (26)–(28) is also something we will investigate in our future work.
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1 Introduction

We consider the following higher order linear difference equation

cN xn+N = cN−1xn+N−1 + · · · + c1xn+1 + c0xn − fn, n = 0, 1, 2, ..., (1)

where N ≥ 2, c0, ..., cN and fn are integers (n = 0, 1, 2, ...), c0 �= 0, cN �= 0. If
cN = ±1 then we have an explicit equation. It is clear that any explicit equation has
a unique integer solution for any initial data x0, x1, ..., xN−1 ∈ Z (see, for example,
[1]). In what follows we assume that cN �= ±1 and at least one of c0, ..., cN−1 is not
divisible by cN . In this situation Eq. (1) is said to be implicit over the ring Z.

Let us note that an implicit difference equation even of first order does not nec-
essarily have an integer solution. For example, the general solution of the equation
3xn+1 = xn + 1 over Q has the form xn = a

3n + 1
2 , where a ∈ Q, n = 0, 1, 2, . . . .

It is obvious that for any value of a constant a we cannot obtain an integer solu-
tion (see Example 2.1 in [2]). An implicit difference equation may have an inte-
ger solution. For example, the equation 3xn+1 = 4xn + 5 has the integer solution
xn = −5, n = 0, 1, 2, . . .. Such unexpected integrality is sometimes called the “Lau-
rent phenomena” (see [3]).

Equation (1) can be regarded as an infinite system of linear equations with coeffi-
cients in Z. If Eq. (1) is explicit, then the corresponding infinite system has infinitely
many solutions overZ. For the implicit equation the situation is already different: the
uniqueness of an integer solution takes place in many cases [4–6]. In Sect. 2 of the
present paper we obtain the general uniqueness criterion of integer solution which
extends the V.N. Berestovskii and Yu.G. Nikonorov’s result [7, Theorem 6]. In The-
orem 2 this criterion is specified for an implicit third order difference equation. The
case of an implicit second order difference equation was considered in [6, Theorem
1].

As shown in [8, 9], if an integer solution to an implicit first or second order linear
difference equation is unique, then this solution can be found by some analogue of
Cramer’s rule (see also Remark 4 of Sect. 4 in this paper). The application of the
p-adic topology on the ring Z was essential for this [2]. For other applications of
p-adic numbers to difference equations see [10]. In [11, Remark 3.4] Cramer’s rule
was considered for first order implicit linear difference equations in Fréchet spaces
and other locally convex spaces. In this paper we obtain an analogue of Cramer’s
rule for some implicit higher order linear difference equations. Unlike the first and
second order equations, this problem is much more complicated because the explicit
expression for the solution of Eq. (1) is too cumbersome and the process of computing
the correspondingfinite order determinants becomesmuchmore complicated (see the
proofs of Lemma 1 and Theorem 3). The difference equation (1) does not necessarily
have an integer solution. Therefore we begin by studying Eq. (1) over the ring Zp

of p-adic integers [12, Chap. 1, Sect. 3], and show that, under some additional
assumptions, Eq. (1) has a unique solution over Zp. Moreover, this solution can
be found by an analogue of the Cramer’s rule (see Theorem 3). Under additional
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conditions on the coefficients c0, ..., cN of Eq. (1) we prove the main result of this
paper concerning the possibility to find the unique integer solution by using of an
analogue of Cramer’s rule (see Theorem 4).

Some results of this paper were presented at the 25th International Conference on
Difference Equations and Applications at UCL on 24th June–8th June 2019.

2 Uniqueness Criterion of an Integer Solution for a Higher
Order Implicit Difference Equation

We prove the following criterion for the uniqueness of an integer solution of Eq. (1)
in terms of the characteristic polynomial χ(λ) = cNλN − ∑N−1

j=0 c jλ j .

Theorem 1 The implicit homogeneous equation

cN xn+N = cN−1xn+N−1 + · · · + c1xn+1 + c0xn, n = 0, 1, 2, . . . (2)

has only the trivial solution in integer numbers if and only if the factorization of the
characteristic polynomial χ(λ) on primitive irreducible over Z polynomials has no
polynomials with leading coefficients equal to ±1.

Proof By Gauss‘s theorem (see, for example, [13, Chap. IV, Sect. 2, Theorem 2.3])
the characteristic polynomial of Eq. (2) admits the factorization

χ(λ) = cp1(λ) · . . . · pm(λ), (3)

where c ∈ Z and p1(λ), . . . , pm(λ) are primitive non-constant irreducible over Z
polynomials. This factorization is unique up to order of factors. Define the shift
operator S : ZN∪{0} → ZN∪{0} as follows

S({xn}∞n=0) = {xn+1}∞n=0.

Equation (2) can be rewritten in the operator form

χ(S)({xn}∞n=0) = 0, n = 0, 1, 2, . . . ,

or by the decomposition (3) in the form

p1(S) · . . . · pm(S)({xn}∞n=0) = 0 (4)

(see [1, Kelly-Peterson, Sect. 3.3, Theorem 3.7]). To prove the sufficiency of the
assertion of Theorem 1 we assume that leading coefficients of p1(λ), ..., pm(λ) are
not equal to±1.Thepolynomial p1(λ) is irreducible overQ and its leading coefficient
is not a common divisor of the other coefficients. It follows from Theorem 6 [7] and
Eq. (4) that the sequence {xn}∞n=0 is an integer solution of the equation
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p2(S) · . . . · pm(S)({xn}∞n=0) = 0

Using similar arguments for polynomials p2(λ), · . . . ·, pm(λ), we obtain
xn = 0, n = 0, 1, 2, . . . .

Now we prove the necessity of the assertion of Theorem 1. Let Eq. (2) have
only the trivial solution in integer numbers. Assume to the contrary that the leading
coefficient at least one of polynomials p1(λ), . . . , pm(λ) in the factorization (3) is
equal to ±1. Without loss of generality, suppose that

pm(λ) = λk +
k−1∑

j=0

a jλ
j , a j ∈ Z, j = 0, 1, 2, . . . .

Consider a non-trivial integer solution {xn}∞n=0 of the explicit difference equation

xn+k +
k−1∑

j=0

a j xn+ j = 0, n = 0, 1, 2, . . . .

Then pm(S)({xn}∞n=0) = 0 and

p(S)({xn}∞n=0) = p1(S) · . . . · pm(S)({xn}∞n=0) = 0.

Consequently, {xn}∞n=0 is a non-trivial solution of Eq. (2). This contradicts assumption
of the theorem. The proof is complete.

Corollary 1 Let fn = f ∈ Z for all n = 0, 1, 2, . . . . If the expansion of the
characteristic polynomial χ(λ) on primitive irreducible over Z polynomials has
no polynomials with leading coefficients equal to ±1, then cN − ∑N−1

j=0 c j �= 0 and
the nonhomogeneous equation

cN xn+N = cN−1xn+N−1 + · · · + c1xn+1 + c0xn − f, n = 0, 1, 2, ... (5)

has an integer solution if and only if cN − ∑N−1
j=0 c j is a divisor of f . If an integer

solution exists, then it is unique, it is constant and has the form

xn = f
∑N−1

j=0 c j − cN
, n = 0, 1, 2, ....

Proof ByTheorem1Eq. (2) has only the trivial solution in integer numbers. Since the
constant sequence zn = 1 is not a solution of Eq. (2), we obtain cN − ∑N−1

j=0 c j �= 0.
Let {xn}∞n=0 be an integer solution of Eq. (5). Set yn = xn+1. Then the sequence
{yn}∞n=0 is an integer solution of Eq. (5) as well. Then yn = xn , i.e. xn = x0 for all n



Uniqueness Criterion and Cramer’s Rule for Implicit … 315

and
(
cN − ∑N−1

j=0 c j
)
x0 = − f . Conversely, if cN − ∑N−1

j=0 c j is a divisor of f , then

the constant sequence xn = f
∑N−1

j=0 c j − cN
is an integer solution of (5).

Example 1 Consider the following third order implicit linear homogeneous differ-
ence equation:

4xn+3 = 4xn+2 − 3xn+1 + xn, n = 0, 1, 2, . . . (6)

The characteristic polynomialχ(λ) = 4λ3 − 4λ2 + 3λ − 1 admits the following fac-
torization on primitive irreducible over Z polynomials:

χ(λ) = (2λ − 1)(2λ2 − λ + 1)

By Theorem 1 Eq. (6) has only the trivial integer solution. Now let f ∈ Z. By Corol-
lary 1 the nonhomogeneous equation

4xn+3 = 4xn+2 − 3xn+1 + xn − f, n = 0, 1, 2, . . .

has an integer solution if and only if f is even. This solution is unique and has the
form xn = − f

2 .

Theorem 1 at once implies the following simple uniqueness criterion of an integer
solution in the particular case of a second order implicit difference equation (a more
complicated proof of this assertion may be found in [6, Theorem 1]).

Corollary 2 The implicit second order homogeneous equation

c2xn+2 = c1xn+1 + c0xn, n = 0, 1, 2, . . .

has only the trivial solution in integer numbers if and only if the characteristic
polynomial χ(λ) = c2λ2 − c1λ − c0 has no integer roots.

The following example shows that Corollary 2 can fail for an implicit difference
equation of an order greater then two.

Example 2 Consider the following third order implicit linear homogeneous differ-
ence equation:

3xn+3 = 4xn+2 + 2xn+1 − xn, n = 0, 1, 2, . . . (7)

The characteristic polynomial of this equation

3λ3 − 4λ2 − 2λ + 1 = (3λ − 1)(λ2 − λ − 1)
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has no integer roots. But the leading coefficient of the factor λ2 − λ − 1 is equal
to 1 and the Fibonacci sequence is an integer solution of Eq. (7). Then Eq. (7) has
infinitely many integer solutions.

Now we prove the following uniqueness criterion for an implicit third order dif-
ference equation.

Theorem 2 The implicit third order difference equation

c3xn+3 = c2xn+2 + c1xn+1 + c0xn, n = 0, 1, 2, .... (8)

with co-prime coefficients c3, c2, c1, c0 has only the trivial solution in integer numbers
if and only if the one of the following two conditions holds:

1. The characteristic polynomial χ(λ) = c3λ3 − c2λ2 − c1λ − c0 has no rational
roots.

2. The characteristic polynomial χ(λ) = c3λ3 − c2λ2 − c1λ − c0 has no integer
roots, but it has a rational root λ = p

q (q �= ±c3), where p and q are co-prime.

Proof Necessity.Let Eq. (8) has only the trivial integer solution and the characteristic
polynomial χ(λ) has a rational root λ = p

q , where p and q are co-prime. Assume
λ ∈ Z. Then Eq. (8) has the non-trivial integer solution xn = λn (n = 0, 1, 2, ...).
This contradicts with the assumption about the uniqueness of an integer solution for
Eq. (8). Therefore λ = p

q ∈ Q \ Z and q �= ±1.
Let us prove that q �= ±c3. Then the primitive polynomial qλ − p is a divisor

of the polynomial χ(λ). Then by Gauss‘s theorem [13, Chap. IV, Sect. 2, Theorem
2.3] all the coefficients of the polynomial a2λ2 + a1λ + a0 = χ(λ)

qλ − p are integers
and qa2 = c3. Moreover, since the polynomial χ(λ) is primitive, the polynomial
a2λ2 + a1λ + a0 is primitive too. Then we have the following decomposition of
χ(λ) on primitive irreducible over Z polynomials

χ(λ) = (a2λ
2 + a1λ + a0) · (qλ − p). (9)

By Theorem 1 a2 �= ±1 and hence q �= ±c3.
Sufficiency. Let Condition 1 is fulfilled, i.e. the polynomial χ(λ) has no rational

roots. Then it is irreducible and by Theorem 6 [4] Eq. (8) has only the trivial integer
solution. Now suppose Condition 2 holds, i.e. the characteristic polynomial χ(λ)

has no integer roots, but it has a rational root λ = p
q (q �= ±c3), where p and q

are co-prime. We again have the decomposition (9) on primitive irreducible over Z
polynomials. Therefore qa2 = c3. Since q �= ±c3, we obtain a2 �= ±1. By Theorem
1 Eq. (8) has only the trivial integer solution. The proof is complete.
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3 Existence Theorem over the Ring of p-adic Integers

Let p be a prime. Consider Eq. (1) over the ring of p-adic integers Zp.

Lemma 1 Suppose p is a common prime divisor of c1, ...cN , but c0 be not divided
by p. Then Eq. (1) has a unique solution over Zp and this solution may be found as

xn =
∞∑

k=0

yk+N−1
fn+k

c0
, n = 0, 1, 2, ..., (10)

where the sequence {yn}∞n=0 belongs toQ ∩ Zp anduniquely solves the initial problem

cN yn =
N∑

j=1

cN− j yn+ j , n = 0, 1, 2, ..., (11)

y0 = 0, ..., yN−2 = 0, yN−1 = 1. (12)

All terms of the series (10) belong to the ring Zp and the series (10) converges in
the topology of this ring. Thus, a unique solution of (1) over Zp is some convolution
of the sequence { fn}∞n=0 and a “fundamental solution” {yn}∞n=0 of Eq. (11). Herewith
Eq. (11) is some dual equation for Eq. (1).

Proof Since p is not a divisor of c0, we have 1
c0

∈ Zp (see [12, Chap. 1, Sect. 3,
Theorem 4]). Therefore, the difference equation (11) can be written as the explicit
equation over Q ∩ Zp

yn+N = 1

c0

⎛

⎝cN yn −
N−1∑

j=1

cN− j yn+ j

⎞

⎠ , n = 0, 1, 2, ... . (13)

Consequently, the solution of the initial problem (13), (12) belongs to Q ∩ Zp. We
show that the series in the right-hand side of (10) converges in the topology of Zp.
For this purpose it suffices to show that yk+N is divided by p[

k+N
N ] in the ring Zp for

any k = 0, 1, 2, ..., i.e.
yk+N = p[

k+N
N ]zk+N , (14)

where {zk}∞k=1 is a sequence of elements of Zp (see [12, Chap. 1, Sect. 3, Theorem
8]). We prove Formula (14) by induction on k. Let k = 0. Since c1 is divided by p,

from (12),(13) it follows that yN = c1
(
− 1

c0

)
∈ pZp. Assume that the representation

(14) holds for k = 0, ...,m − 1, where m ≥ 2. We show that it is also valid for
k = m. Since c1, ..., cN are divided by p, we have c j = pb j , b j ∈ Z, j = 1, ..., N .
By Eq. (13) and the induction assumption,
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ym+N = 1

c0

⎛

⎝cN ym −
N−1∑

j=1

cN− j ym+ j

⎞

⎠ = 1

c0

⎛

⎝pbN ym −
N−1∑

j=1

pbN− j ym+ j

⎞

⎠ =

= 1

c0

⎛

⎝p1+[
m
N ]bN zm −

N−1∑

j=1

p
1+

[
m+ j
N

]

bN− j zm+ j

⎞

⎠ =

= p1+[
m
N ] 1

c0

⎛

⎝bN zm −
N−1∑

j=1

p
[
m+ j
N

]
−[ m

N ]bN− j zm+ j

⎞

⎠ = p[
N+m
N ]zm+N ,

where

zm+N = 1

c0

⎛

⎝bN zm −
N−1∑

j=1

p
[
m+ j
N

]
−[ m

N ]bN− j zm+ j

⎞

⎠ ∈ Zp.

Thus, the representation (14) holds and the series in the right-hand side of (10)
converges in the topology of Zp.

Substituting (10) into Eq. (1), we obtain from (11)–(13) that the sequence xn is a
solution of Eq. (1) over Zp:

N−1∑

j=0

c j x j+n − cN xn+N = 1

c0

N−1∑

j=0

∞∑

k=0

c j f j+n+k yk+N−1 − cN
c0

∞∑

k=0

fn+k+N yk+N−1 =

= 1

c0

N−1∑

j=0

∞∑

k= j

c j fn+k yN+k− j−1 − cN
c0

∞∑

k=N

fn+k yk−1 =

= 1

c0

N−1∑

j=0

∞∑

k= j

c j fn+k yN+k− j−1 − 1

c0

∞∑

k=N

N∑

j=1

cN− j y j+k−1 fn+k =

= 1

c0

N−1∑

j=0

∞∑

k= j

c j fn+k yN+k− j−1 − 1

c0

∞∑

k=N

N−1∑

j=0

c j yk+N−1− j fn+k =

= 1

c0

N−1∑

j=0

N−1∑

k= j

c j fn+k yN+k− j−1 = 1

c0

N−1∑

k=0

k∑

j=0

c j yN+k− j−1 fn+k =

= 1

c0

N−1∑

k=0

k∑

j=0

ck− j yN+ j−1 fn+k = yN−1 fn + 1

c0

N−1∑

k=1

k∑

j=0

ck− j yN+ j−1 fn+k =
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= yN−1 fn + 1

c0

N−1∑

k=1

⎛

⎝cN yk−1 −
N−k−1∑

j=1

cN− j yk−1+ j

⎞

⎠ fn+k = fn, n = 0, 1, 2, ....

Nowwe prove the uniqueness of this solution. For this purpose it suffices to prove
that the homogeneous equation (2) has only the trivial solution xn = 0 over Zp. It
follows from (2) that

xn = 1

c0

⎛

⎝cN xn+N −
N−1∑

j=1

c j xn+ j

⎞

⎠ =

= p

c0

⎛

⎝bN xn+N −
N−1∑

j=1

b j xn+ j

⎞

⎠ , n = 0, 1, 2, ...,

where b j = c j
p ∈ Z, j = 1, ..., N . Hence, for anym ∈ N, n = 0, 1, 2, ... there exists

a number zmn ∈ Zp such that xn = pmzmn . Therefore, xn = 0, n = 0, 1, 2, .... The
proof is complete.

Remark 1 In the case of the second order difference equation

c2xn+2 = c1xn+1 + c0xn − fn, n = 0, 1, 2, ... (15)

Formula (10) was obtained in [6, Formula (10)] by the more complicated method as
the corollary of an explicit formula for a solution of Eq. (1)

xn =
∞∑

k=0

(
λk+1
1 − λk+1

2

λ1 − λ2

)
(−1)kck2
ck+1
0

fn+k, n = 0, 1, 2, ...,

where λ1,λ2 are the different roots of the characteristic polynomial c2λ2 − c1λ − c0.
If this characteristic polynomial has a multiple root λ1 = λ2 (for example, c2 =
9, c1 = 6, c0 = −1, p = 3). then Formula (10) is a corollary of the following explicit
formula for the unique solution of Eq. (15) over Zp [6, Formula 25]:

xn =
∞∑

k=0

(−1)k(k + 1)

ck+1
0

(c1
2

)k
fn+k .

Note that in this case c1
2 ∈ Zp for p �= 2. If p = 2, then the number 2 is a common

divisor of c2 and c1, and thus c1
2 ∈ Z. Moreover, c21 + 4c0c1 = 0 because we have a

multiple root. Hence
( c1
2

)2 = −c0c1, i.e. c1 is divisible by 4.
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4 Cramer’s Rule

We regard Eq. (1) as an infinite system of linear equations over Zp. Let the assump-
tions of Lemma 1 hold. Since c0 is not divided by p, after dividing Eq. (1) by c0 we
obtain the equivalent system over Zp

cN
c0

xn+N = cN−1

c0
xn+N−1 + · · · + c1

c0
xn+1 + xn − fn

c0
, n = 0, 1, 2, ..., (16)

By Lemma 1, this system has a unique solution over Zp. We consider elements of
the set S(Zp) of all sequences x = {xn}∞n=0 from Zp as column vectors. We write
(16) in the operator-vector form

Ax = f

c0
, A =

⎛

⎜
⎜
⎜
⎝

1 c1c
−1
0 c2c

−1
0 . . . cN−1c

−1
0 −cNc

−1
0 0

0 1 c1c
−1
0 . . . cN−2c

−1
0 cN−1c

−1
0 −cNc

−1
0

0 0 1 . . . cN−3c
−1
0 cN−2c

−1
0 cN−1c

−1
0

...
...

... . . .
...

...
. . .

⎞

⎟
⎟
⎟
⎠

, x ∈ S(Zp),

(17)
where elements of the column vector f = { fn}∞n=0 are integers. LetAn be the matrix
obtained from the matrix A by replacing the n-th column with the vector f

c0
(n =

0, 1, 2, ...), i.e.

A0 =

⎛

⎜
⎜
⎜
⎝

f0c
−1
0 c1c

−1
0 c2c

−1
0 . . . cN−1c

−1
0 −cNc

−1
0 0

f1c
−1
0 1 c1c

−1
0 . . . cN−2c

−1
0 cN−1c

−1
0 −cNc

−1
0

f2c
−1
0 0 1 . . . cN−3c

−1
0 cN−2c

−1
0 cN−1c

−1
0

...
...

... . . .
...

...
. . .

⎞

⎟
⎟
⎟
⎠

,

A1 =

⎛

⎜
⎜
⎜
⎝

1 f0c
−1
0 c1c

−1
0 c2c

−1
0 . . . cN−1c

−1
0 −cNc

−1
0 0 . . .

0 f1c
−1
0 1 c1c

−1
0 . . . cN−2c

−1
0 cN−1c

−1
0 −cNc

−1
0 . . .

0 f2c
−1
0 0 1 . . . cN−3c

−1
0 cN−2c

−1
0 cN−1c

−1
0 . . .

...
...

...
... . . .

...
...

...
. . .

⎞

⎟
⎟
⎟
⎠

, ... .

We denote by Δm (respectively Δn,m) the (m + 1)th order leading principal minor
of the matrixA (respectivelyAn), m, n = 0, 1, 2, .... The following assertion shows
that a unique solution over Zp can be found by an analogue of the Cramer’s rule.

Theorem 3 Let the assumptions of Lemma1 hold. ThenEq. (1) has a unique solution
over Zp. This solution may be found by the following Cramer’s rule:

xn = detAn

detA , n = 0, 1, 2, ..., (18)
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where the determinants of A, An can be defined as limits in Zp of the sequence of
leading principal minors of these matrices, i.e.

detA = lim
m→∞ Δm, detAn = lim

m→∞ Δn,m . (19)

Proof By Lemma 1 Eq. (1) has a unique solution overZp. Without loss of generality
we can assume that c0 = 1. We show that Formula (10) for finding a solution of (1)
can be regarded as a collection of Cramer’s formulas for solving the infinite system
of linear equations (17). We note that Δm = 1. Therefore detA = 1. Consider the
sequences of the leading principal minors of A0:

Δ0,0 = f0, Δ0,k =

f0 c1 c2 . . . ck
f1 1 c1 . . . ck−1

f2 0 1 . . . ck−2
...

...
...

. . .
...

fk 0 0 . . . 1

, k = 1, ..., N − 1,

Δ0,N =

f0 c1 c2 . . . cN−1 −cN
f1 1 c1 . . . cN−2 cN−1

f2 0 1 . . . cN−3 cN−2
...

...
...

. . .
...

...

fN 0 0 . . . 0 1

, ...,

Δ0,k =

f0 c1 c2 c3 . . . cN−1 −cN 0 . . . 0
f1 1 c1 c2 . . . cN−2 cN−1 −cN . . . 0
f2 0 1 c1 . . . cN−3 cN−2 cN−1 . . . 0
...

...
...

...
...

...
...

...
...

...

fk 0 0 0 . . . 0 0 0 . . . 1

, k = N + 1, N + 2, ....

Fix m = N , N + 1, .... We show that

Δ0,m =
m∑

j=0

y j+N−1 f j . (20)

Denote gk = fm−k, k = 0, ...,m and consider the determinants

B0 = g0, Bk =

gk c1 c2 . . . −ck
gk−1 1 c1 . . . ck−1

gk−2 0 1 . . . ck−2
...

...
...

. . .
...

g0 0 0 . . . 1

, k = 1, ..., N − 1,



322 V. V. Martseniuk et al.

BN =

gN c1 c2 . . . cN−1 −cN
gN−1 1 c1 . . . cN−2 cN−1

gN−2 0 1 . . . cN−3 cN−2
...

...
...

. . .
...

...

g0 0 0 . . . 0 1

and

Bk =

gk c1 c2 c3 . . . cN−1 −cN 0 . . . 0
gk−1 1 c1 c2 . . . cN−2 cN−1 −cN . . . 0
gk−2 0 1 c1 . . . cN−3 cN−2 cN−1 . . . 0

...
...

...
...

. . .
...

...
...

. . .
...

g0 0 0 0 0 . . . 0 0 0 . . . 1

, k = N + 1, N + 2, ...,m.

Decompose Bk (k = 0, ..., N − 1) according to elements of the first row. Then the
finite sequence B0, B1, B2, ..., BN−1 satisfies the following recurrence relation over
Zp:

Bk + c1Bk−1 + · · · + ck B0 = gk, k = 0, 1, ..., N − 1. (21)

Now decompose Bk (k = N , N + 1...,m) relative to the first row. Then the finite
sequence B0, B1, , ..., Bm is a solution over Zp of the following finite difference
equation

Bk + c1Bk−1 + · · · + cN−1Bk−N+1 − cN Bk−N = gk, k = N , N + 1, ...,m. (22)

The initial data B0, ..., BN−1 for the difference equation (22) are defined uniquely
from the recurrence relations (21). Then the initial problem (22) with these initial
conditions has a unique solution and Bm = Δ0,m . Let us prove that

sk =
k∑

j=0

y j+N−1gk− j , k = 0, ...,m (23)

is a solution of Eq. (22) with initial data B0, ..., BN−1. We have

sk =
k∑

j=0

g j yk− j+N−1, k = 0, 1, . . . ,m.

Then substituting sk into (22) and taking into account (11) and (12), we find

N−1∑

l=0

clsk−l =
N−1∑

l=0

cl

k−l∑

j=0

g j yk−l− j+N−1 =
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=
N−1∑

l=0

cl

k−N∑

j=0

g j yk−l− j+N−1 +
N−1∑

l=0

cl

k−l∑

j=k−(N−1)

g j yk−l− j+N−1 =

=
k−N∑

j=0

g j

N−1∑

l=0

cl yk−l− j+N−1 +
k∑

j=k−(N−1)

g j

k− j∑

l=0

cl yk−l− j+N−1 =

= cN

k−N∑

j=0

g j yk− j−1 +
k−1∑

j=k−(N−1)

g j (cN yk− j−1 −
N−1∑

l=k− j+1

cl yk−l− j+N−1)+

+ c0yN−1gk = gk + cN

k−N∑

j=0

g j yk− j−1 = gk + sk−NcN , k = N , N + 1, . . . ,m.

Substituting sk into (21), we have s0 = g0 = B0 and

k∑

l=0

clsk−l =
k∑

l=0

cl

k−l∑

j=0

g j yk−l− j+N−1 =
k∑

j=0

g j

k− j∑

l=0

cl yk−l− j+N−1 =

= gk +
k−1∑

j=0

g j

k− j∑

l=0

cl yk−l− j+N−1 =

= gk +
k−1∑

j=0

g j (cN yk− j−1 −
N−1∑

l=k− j+1

cl yk−l− j+N−1) = gk, k = 1, . . . , N − 1.

Consequently,

Δ0,m = sm =
m∑

j=0

y j+N−1 f j , m = N , N + 1, N + 2, ... (24)

and the relation (20) holds. By Lemma 1 lim
m→∞ sm = lim

m→∞ Δ0,m exists in the topology

of Zp. Then detA0 is well defined and Formula (10) for x0 can be written as the
Cramer’s formula (18) with n = 0. Arguing in a similar way, we also find Formula
(18) for the remaining components of the solution xn, n = 1, 2, .... The proof is
complete.
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Remark 2 Under the conditions of Theorem 3 the inverse operator to A can be
found by Formula (10):

A−1 =

⎛

⎜
⎜
⎜
⎝

1 yN yN+1 yN+2 yN+3 · · ·
0 1 yN yN+1 yN+2 · · ·
0 0 1 yN yN+1 · · ·
...

...
...

...
...

⎞

⎟
⎟
⎟
⎠

.

Remark 3 As shown in [8, Example 3.1], if the assumptions of Theorem 3 fail, then
even for second order equation lim

m→∞ Δ0,m may not exist in the topology of Zp for

all primes. Furthermore, Eq. (1) can have a unique integer solution and this solution
cannot be found by the Cramer’s rule (18), (19).

The following theorem yields the sufficient conditions for the existence and the
uniqueness of an integer solution to Eq. (1) and the possibility to apply the Cramer’s
rule for finding this solution.

Theorem 4 Let cN and c0 are co-prime integers and let any prime divisor of cN
divide c1, ..., cN−1. Assume that there exist numbers x0,...,xN−1 ∈ Z such that (18)
and (19) hold for any prime divisor p of cN for n = 0, 1, . . . , N − 1. Then the implicit
equation (1) has a unique integer solution {xn}∞n=0. This solution can be found by the
Cramer‘s rule (18), (19).

Proof We consider the prime decomposition cN = pl11 · pl22 · . . . · plmm . By Theorem

3, Eq. (1) has a unique integer solution
{
x

(p j )
n

}∞
n=0

over Zp j , j = 1, . . . ,m. More-

over, x
(p j )
n = xn for n = 0, . . . , N − 1, j = 1, 2, . . . ,m. We show x (p1)

N = · · · =
x (pm )

N ∈ Z. By Eq. (1) we have cN x
(p j )

N = cN−1xN−1 + · · · + c1x1 + c0x0 − f0 ∈ Z.
Consequently, x (p1)

N = · · · = x (pm )

N in Q. Let ||z||p be the p-adic norm of z ∈ Zp.

Since x
(p j )

N ∈ Zp j , we have ||x (p j )

N ||p j ≤ 1 and ||cN x (p j )

N ||p j = ||cN ||p j · ||x (p j )

N ||p j ≤
p

−l j
j , j = 1, . . . ,m. Hence, an integer number cN x

(p j )

N is divided by p
l j
j for all

j = 1, . . . ,m. Thus, this number is divided by cN . Therefore, x
(p j )

N ∈ Z, j =
1, ...,m. Repeating the above argument, we find x (p1)

n = · · · = x (pm )
n ∈ Z, where

n = N + 1, N + 2, . . . . The proof is complete.

Remark 4 We give an analogue of Theorem 4 in the case of the first order equation
(N = 1):

c1xn+1 = c0xn − fn. n = 0, 1, 2, ... (25)

Assume that c1 and c0 are co-prime integers and there exists an integer x0 ∈ Z such
that the following equality holds

x0 =
∞∑

k=0

ck1
ck+1
0

fk



Uniqueness Criterion and Cramer’s Rule for Implicit … 325

for any prime divisor p of c1 in the ring Zp. Then Eq. (25) has a unique integer
solution {xn}∞n=0 and this solution can be found by using the Cramer’s rule. This
assertion may be proved by same arguments as in the case N ≥ 2. The case c0 = 1
has been considered in [2, 9].
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On the Neumann Boundary Optimal
Control of a Frictional Quasistatic
Contact Problem with Dry Friction

NICOLAE POP, Luige Vladareanu, and Victor Vladareanu

Abstract This paper deals with boundary optimal control problem of a frictional
quasi-static contact problem with dry friction, described by a nonlocal version of
Coulomb’s law. We prove the existence of a boundary optimal control for the regu-
larized problem obtained from a quasi-static contact problem with dry friction. For
getting the necessary optimality conditions, we use some regularization techniques
leading us to a control problem of a variational equality. The minimizing of cost
function is a compromise between energy consumption and the finding of a traction
force on the Neumann boundary condition, so that the actual displacement field is as
close as possible to the desired displacement field, while the density of body force
remain constant and small enough.

Keywords Boundary optimal control problem · Quasi-static contact problem with
friction · Regularized state problem

1 Introduction

The quasi-static model of the contact problems with friction, without the inertia
effects, was proposed by [9] and consists of the formulation obtained through the
approximation with the finite differences of the variational inequality. The proof
of the existence and uniqueness is based on the hypothesis that the displacements
satisfy some conditions of regularity and the friction coefficient is small enough,
see [7, 9]. The static contact problem with friction cannot describe the evolutive
state of the contact conditions. For of this reason, the quasi-static formulation, of the
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contact problem with friction is preferred, which contains a dynamic formulation of
the contact conditions and the inertial term is no longer used. Through the temporal
discretization of the quasi-static contact problem, the so called incremental problem
is obtained, equivalent with a sequence of the static contact problems. Therefore,
the quasi-static problem is solved step by step, at each time small deformations and
displacements are calculated and are added at those calculated previously, as a result
of a few small modifications of the applied forces, of the contact zone and of the
contact conditions. Although, at each increment the dependence of the load-way
is neglected, this hypothesis takes into account the way the applied forces change
(modify themselves). From a mathematical point view, the problem obtained at each
step is similar with a static problem. We will describe two methods for solving our
contact problem, the first is the primal variational formulation problem, and the
second the dual mixed variational formulation problem. The main results where it
was demonstrated the existence of a boundary optimal control for the regularized
problem obtained from a quasi-static contact problem with dry friction, we recall,
[1–3, 8]). For getting the necessary optimality conditions, we use some regularization
techniques leading us to a control problem of a variational equality. After describing
the classical and variational form of the problem, we will first define the notion of
boundary control, optimal pair, optimal control and regularized optimal control, after
which we will present the existence of optimal boundary control.

2 Classical and Variational Formulation

Let Ω ⊂ IRd , d = 2 or 3, the domain occupied by a linear elastic body with a
Lipschitz boundary Γ . Let Γ1, Γ2 and ΓC be three open disjoint parts of Γ such
that Γ = Γ 1 ∪ Γ 2 ∪ Γ C , Γ 1 ∩ Γ C = ∅ and mes (Γ1) > 0. We assume that the
body is subjected to volume forces of density f ∈ (L2(Ω))d , to surface traction
of density h ∈ (L2(Γ2))

d−1d and is held fixed on Γ1. The ΓC denotes a contact
part of boundary where unilateral contact and Coulomb friction condition between
Ω and perfectly rigid foundation are considered. We denote by u = (u1, . . . , ud)
the displacement field, ε = (εi j (u)) = (

1
2 (ui, j + u j,i )

)
the strain tensor and σ =

(σi j (u)) = (ai jklεkl(u)) the stress tensor with the usual summation convention,
where i, j, k, l = 1, . . . , d. For the normal and tangential components of the dis-
placement vector and stress vector, we use the following notation: uN = ui · ni ,
uT = u − uN · n, σN = σi j ui n j , (σT )i = σi j n j − σN · ni , where n = (ni ) is the out-
ward unit normal vector toΓ .We denote by g ∈ C(Γ̄C), g ≥ 0 the initial gap between
the body and the rigid foundation and lets us denote by f and h the density of body
and traction forces, respectively. We assume that ai jkl ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d,
with usual condition of symmetry and elasticity, that is
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ai jkl = a jikl = akli j , 1 ≤ i, j, k, l ≤ d,

and ∃ m0 > 0, ∀ ξ = (ξi j ) ∈ IRd2
, ξi j = ξ j i , 1 ≤ i, j ≤ d,

ai jkl ξi j ξkl ≥ m0|ξ |2 .

In this conditions, the fourth-order tensor a = (ai jkl) is invertible a.e., on Ω and
if we denote its inverse by b = (bi jkl), we have εi j (u)) = (bi jklσkl(u)), i, j, k, l =
1, . . . , d.

The classical contact problem with dry friction in elasticity, in the particular case,
is with the normal stress σN (u) and ΓC is assumed known and considered as obeying
the normal compliance law, is the following.

Find u = u(x, t) such that u(0, ·) = u0(·) in Ω and for all t ∈ [0, T ],

− div σ(u) = f, in Ω (1)

σi j (u) = ai jkl · εkl(u), in Ω (2)

u = 0 on Γ1 (3)

σ · n = h on Γ2, (4)

the contact condition:

uN ≤ g, σN (u) ≤ 0, (uN − g)σN (u) = 0 on ΓC (5)

and Coulomb friction on ΓC :

‖σT (u)‖ ≤ μF |σN (u)|, (6)

such that:
−if ‖σT (u)‖ < μF |σN (u)| ⇒ uT = 0
−if ‖σT (u)‖ = μF |σN (u)| ⇒ ∃ λ ≥ 0, such that u̇T = −λσT

where u0 denotes the initial displacement of the body. Supposing that a positive
coefficient μF ∈ L∞(ΓC), μF ≥ μ0 a.e. on ΓC of Coulomb friction is given, we
introduce the space of virtual displacements

V = {
v ∈ (H 1(Ω))d |v = 0 on Γ1

}

and its convex subset of kinematically admissible displacements

K = {vN ∈ V |vN ≡ v · n ≤ g on ΓC}.

We assume that the normal force on ΓC is known (as normal compliance) so that one
can evaluate the non-negative slip bound p ∈ L∞(ΓC) as a product of the friction
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coefficient and the normal stress, i.e. p = μFλ1, when λ1 is the normal stress. We
assume that normal interface response (the normal compliance law) is:

σN (u) = −cN (uN − g)mN

where cN and mN are material constant depending on interface properties.
Problem (P1) Find u ∈ K such that J (u) = min

v∈K J (v).

The minimized functional representing the total potential energy of the body has
the form:

J (v) = 1

2
a(v, v) − L(v) + j(v)

where:
- the bilinear form a is given by

a(v,w) =
∫

Ω

ai jklεi j (v)εkl(w)dx

- linear functional L is given by:

L(v) =
∫

Ω

fvdx +
∫

Γ2

hvds;

- the sublinear functional j is given by:

j(u, v) =
∫

ΓC

p |vT | ds +
∫

ΓC

cN (u − g)mnvNds

where vT ∈ (L∞(ΓC))d−1 denotes the tangent vector to boundary Γ .
It is known that the problem (P1) is non-differentiable due to the sublinear term

j , and has a unique solution [6].
The variational formulation, in the quasi-static case, is equivalent to the quasi-

variational inequality:

Problem (P2)Find u(x, t) ∈ K × [0, T ] s.t. a(u, v − u̇) + j(v − u̇) ≥ (L ,u − v̇),
∀v ∈ K ,∀t ∈ [0, T ], T > 0, with initial conditions u(x, 0) = u0, u̇(x, 0) = u1.

The existence and uniqueness of the solution of this quasi-variational inequality
are proven under the assumption that μF is sufficiently small and mes(Γ0) > 0 [4].

The Lagrangian formulation of the problem (P1) is given by introducing L :
V × �1 × �2 → IR, with

L(v, μ1, μ2) = 1

2
a(v, v) − L(v) + 〈μ1, vN − g〉 +

∫

ΓC

μ2vT ds

where �1 = {μ1 ∈ H− 1
2 (ΓC)|μ1 ≥ 0}, �2 = {μ2 ∈ L∞(ΓC)| |μ2| ≤ p on ΓC}.
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The space H− 1
2 (ΓC) is the dual of

H
1
2 (ΓC) = {γ ∈ L2(ΓC)| ∃v ∈ V s.t. γ = vN on ΓC}

and the orderingμ1 ≥ 0means, in the variational form, that 〈μ1, vN − g〉 ≤ 0, ∀ v ∈
K , where 〈·, ·〉 denotes the duality pairing between H− 1

2 (ΓC) and H
1
2 (ΓC). Since

L2(ΓC) is dense in H− 1
2 (ΓC), the duality pairing 〈·, ·〉 is represented by a scalar

product in L2(ΓC).
Another approach is a mixed formulation. Mixed formulation is required by mod-

ern numerical solving techniques to solve contact problems. To this purpose, we
will approach the formulation of the mixed contact issue with help the saddle point
problem, using Lagrange multipliers.

The Lagrangemultipliersμ1, μ2 are considered as functionals on the contact part
of the boundary Γ . It is important that the Lagrange multipliers do have mechanical
significance: while the first one is related to the non-penetration conditions and
represents the normal stress, the second one removes the non-differentiability of the
sublinear functional

j2(v) = sup
μ2∈�2

∫

ΓC

μ2vT ds

and represents the tangential stress.
The equivalence between the problem (P1) and the lagrangian formulation is given

by:
inf
v∈K J (v) = inf

v∈V sup
μ1∈�1,μ2∈�2

L(v, μ1, μ2).

By the mixed variational formulation of the problem (P1) we mean a saddle point
problem:

Problem (P3). Find

(w, λ1, λ2) ∈ V × �1 × �2 such that

L(w,μ1, μ2) ≤ L(w, λ1, λ2) ≤ L(v, λ1, λ2), ∀ (v, μ1, μ2) ∈ V × �1 × �2.

It is known that (P3) has a unique solution [4] and its first component w = u ∈ K
solves (P1) and the Lagrange multipliers λ1, λ2 represent the normal and tangential
contact stress on the contact part of the boundary, respectively.

Remarks.
10. For the contact problemwith Coulomb friction, we use the formula p ≡ μFλ1,

for the slip bound on the contact boundaryΓC , where λ1 ≡ λ1(p) is the normal stress
on ΓC and μF is the coefficient of friction. Unfortunately this problem cannot be
solved as a convex quadratic programming problembecause p is an a priori parameter
in (P3), while λ1 is an a posteriori one.
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20. Because we can consider the mapping 
 : �1 → �1, 
 : p → λ1 ≡ λ1(p)
defined by the second component of the solution for the contact problem with given
friction (P3), the solution of the contact problem with Coulomb friction will be
defined as a fixed point of this mapping in �1. Results concerning the existence of
fixed points for sufficiently small friction coefficients may be found in [6].

3 The Time Discretization of the Contact Problems with
Coulomb Friction

Let us consider a partition (t0, t1, . . . , t N ) of time interval [0, T ] and also the incre-
mental formulation obtained by using the backward finite difference approximation
of the time derivative of u.

If we use ukh = uh(x, t k), Δukh = uk+1
h − ukh , Δt k = t k+1 − t k , u̇h(t k+1) =

Δukh/Δt , f kh = fh(kΔt), for k = 0, 1, . . . , N − 1 whereΔt = T
N , we obtain, at each

time t k , the following quasi-variational inequality

f ind Δukh ∈ Vh s.t. (7)

a(Δukh, vh − Δukh) + j(ukh + Δukh, vh − Δukh) ≥
≥ ΔLk(vh − Δukh) − F(ukh, vh − Δukh), ∀ vh ∈ Kh

where F(ukh, vh − Δukh) = a(ukh, vh − Δukh) − Lk(vh − Δukh).
The time discretization of the problem (P2) follows. For a given load history the

quasi-static problem is approximated by a sequence of incremental problems (7);
although every problem (7) is a static one, it requires appropriate updating of the
displacements, so loads for each increment and so we obtain the following sequence:

Problem(Pht
2 ). Find u ∈ Kh, for each time tk such that J(u) = min

v∈Kh

J(v),

where u ≡ Δukh , v ≡ vh , J (v) = 1
2v

TKv − vT f + pT |Tv| and Kh = {v ∈ IRn|Nv ≤
g}. Here, we by denoteK ∈ IRn×n the positive definite stiffness matrix, f ∈ IRn is the
load vector, p ∈ IRm is the nodal slip bounds vector for contact nodes. The matrices
N,T ∈ IRm×n contain the rows of the normal and tangential vectors in the contact
nodes, respectively, and g ∈ IRm is the vector of distances between the contact nodes
and the rigid foundation.

The matrix form of the Lagrangian for the problem (Pht2 ), at each time t k is:

L(v, μ1, μ2) = 1

2
vTKv − fT v + μT

2 Tv + μT
1 (Nv − g)

where μ1 ∈ �1, μ2 ∈ �2 are the Lagrange multipliers and
�1 = {μ1 ∈ IRm |μ1 ≥ 0}, �2 = {μ2 ∈ IRm ||μ2| ≤ p}.
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The algebraic mixed formulation of (Pht
2 ) is:

Find (v, μ1, μ2) ∈ IRn × �1 × �2 such that

Ku = f − NTλ1 − TTλ2 (8)

(Nu − g)T (λ1 − μ1) + uTTT (λ2 − μ2) ≥ 0, (μ1, μ2) ∈ �1 × �2. (9)

After computing u from (8) and substituting u into (9), we obtain the algebraic
dual formulation, for each time t k , i.e.,

min

{
1

2
λTAλ − λTB

}
s.t. λ1 ≥ 0, |λ1| ≤ g, λ = (λT

1 , λT
2 )T , (10)

where

A =
(
NK−1NT NK−1TT

TK−1NT TK−1TT

)
and B =

(
NK−1f − g
TK−1f

)
.

The problem (10) is a quadratic programming problem that can be solved by
several efficient algorithms.

4 Boundary Optimal Control Problem Formulation

For our contact problem, boundary optimal control problem consists: Let a fixed
function f ∈ L2(Ω)d , we present the following state problem:
Problem (SP1). Let a given function h ∈ L2(Γ2)

d−1, called control.
Find v ∈ V , such that: a(u, v − u) + j(u, v) − j(u,u) ≥ (L ,u − v) ∀v ∈ V

Using the result from problem (P1), for all h ∈ L2(Γ2)
d−1, the state problem

(SP1) has a unique solution ∀v ∈ V,u = u(h). Now we will define the following
functional: J : L2(Γ2)

d−1 × V → IR, with

J (h,u) = α

2
‖ u − ud‖V + β

2
‖ h‖L2(Γ2)d−1 (11)

We denote:

Vad = {[u,h]|[u,h] ∈ V × L2(Γ2)
d−1, s.t. (SP1) is veri f ied

}
,

where α and β are two positive constants, and ud is the desired target function,
taking into account that we are studying a control that acts on the boundary Γ2, so
that the resulting stress σ is as close as possible to the desired target σd = (σi j (ud)) =
(ai jklεkl(ud)).
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The optimal control problem is:
Problem (OC1). Find [u,h] ∈ Vad s.t.

J (h,u) = min
[u,h]∈Vad

J (h,u),

with this notation, a solution of the problem (OC1) is called an optimal paire, and
the second component is called an optimal control.

In these hypotheses and see [2], the following is the next theorem:

Theorem 1 Problem (OC1) has at least one solution [u,h].

5 The Regularized State Problem for a Boundary Optimal
Control Problem

The first step for obtaining the optimal control algorithm is the regularization of the
nondifferentiable friction functional j . For this purpose, we will estimate the func-
tional j by a family of regularized functional jr , which are convex and differentiable
in the second argument

jr : V × V → IR, jr (u, v) =
∫

ΓC

pψr (vT )ds +
∫

ΓC

cN (u − g)mnvNds

where the function ψr : (L2(ΓC))d−1 → L2(ΓC) represents an approximation of the
modulus function, | · | : (L2(ΓC))d−1 → L2(ΓC) and it can be defined in many other
ways, for example, for r > 0, ξ ∈ (L2(ΓC))d−1 and x ∈ ΓC

ψr (ξ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

r

∣∣
∣∣
ξ

r

∣∣
∣∣

2 (
1 − 1

3

∣∣
∣∣
ξ

r

∣∣
∣∣

)
, if |ξ(x)| ≤ r

ε

(∣∣
∣∣
ξ

r

∣∣
∣∣ − 1

3

)
, if |ξ(x)| > r.

The most common example for a regularization function is
ψr (ξ) = √‖ξ‖2 + r , or ψr (ξ) = √‖ξ‖2 + r2 − r .
Now we can replace the state problem (SP1) and see [7], we have the following

regularized state problem:
Problem (RSP1). Let a given function h ∈ L2(Γ2)

d−1, called regularized control.
Find v ∈ V , such that: a(u, v − u) + jr (u, v) − jr (u,u) ≥ (L ,u − v) ∀v ∈ V .

The regularized state problem (RSP1) has a unique solution ur ∈ V that depends
of the Lipschitz continuously on the linear functional L , see [7].

From the presented assumtions result: for ∀v ∈ L2(Γ2)
d−1, the problem (RSP1)

has a unique solution ∀v ∈ V,u = u(h).
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If we denote

V r
ad = {[u,h]|[u,h] ∈ V × L2(Γ2)

d−1, s.t. (RSP1) is veri f ied
}
,

using the regularized functional jr , we can introduce the regularized optimal control
problem:
Problem (RSP2). Find [u∗,h∗] ∈ V r

ad s. t.

J r (u∗,h∗) = min
[u,h]∈V r

ad

J r (h,u).

With these we can affirm:

Theorem 2 Problem (RSP2) has at least one solution [u∗,h∗].
The solution of the problem (RSP2) is called a regularized optimal pair and the
second component h∗ is called a regularized optimal control.

6 Conclusions

A classical control problem consists in finding a control function h ∈ (L2(Γ2))
d−1

whichminimizes the cost functional (3.1). The function f is the given density of body
force, and h is traction force, which, in the Neumann boundary optimal control is a
control variable. The second term of the cost functional is proportional to the con-
sumed energy. The minimizing of J is a compromise between energy consumption
and the finding of a traction force on the Neumann boundary condition h, so that the
actual displacement field u is as close as possible to the desired displacement field
ud , while the stresses inside the body remain constant, small enough.

We prove the existence of a boundary optimal control for the regularized prob-
lem obtained from a quasi-static contact problem with dry friction. For getting the
necessary optimality conditions, we use some regularization techniques leading us
to a control problem of a variational equality.

One of the applications of this problem is the analysis of the dynamic systems
with friction, which model and control the movement with friction of mobile robots.
The structural components of these robots are considered deformable, not rigid, so
frictional contact can be modeled much more correctly. The optimal control prob-
lem will minimize the effort made by the traction force on the Neumann boundary
condition and the difference between the desired displacement field and the current
displacement field of the structural components of the robot.



336 N. Pop et al.

References

1. Amassad, A., Chenais, D., Fabre, C.: Optimal control of an elastic problem involving Tresca
friction law. Nonlinear Anal. 48, 1107–1135 (2002)

2. Capatina, A., Timofte, C.: Boundary optimal control for quasistatic bilateral frictional contact
problems. Nonlinear Anal. Theory Method. Appl. 94, 84–99 (2014)

3. Glowinski, R., Lions, J., Tremolieres, R.: Numerical Analysis of Variational Inequalities. Ams-
terdam, New York, Oxford, North Holland (1981)

4. Ju, J.W., Taylor, R.L.: A perturbed lagrangian formulation for the finite element solution of
nonlinear frictional contact problem. J. de Mécanique Theoretique et Appliquée, Special Issue,
suppl. 7, 1–14 (1998)

5. Klarbring, A., Mikelic, A., Shillor, M.: Global existence result for the quasistatic frictional
contact problem with normal compliance. In: Unilateral Problems in Structural Analysis IV
(Capri. Birkhäuser, vol. 1991, pp. 85–111 (1989)

6. Matei, A., Micu, S.: Boundary optimal control for nonlinear antiplane problems. Non-linear
Anal. Theory Method. Appl. 74(5), 16411652 (2011). ISSN 0362-546X. https://doi.org/10.
1016/j.na.2010.10.034

7. Pop, N.: On the convergence of the solution of the quasi-static contact problems with friction
using the Uzawa type alorithm, Studia Univ. “Babes-Bolyai”, Mathematica, vol. XLVIII, no.
3, pp. 125–132 (2004)

8. Rocca, R., Cocou, M.: Existence and approximation of a solution to quasi-static Signorini
problem with local friction. Int. J. Eng. Sci. 39, 1253–1258 (2001)

9. Rocca, R., Cocou,M.: Numerical analysis of quasi-static unilateral contact problems with local
friction. Siam J. Numer. Anal. 39(4), 1324–1342 (2001)

10. Sofonea,M.,Matei, A.: Variational inequalitieswith applications. a study of antiplane frictional
contact problems. Adv. Mech. Math. 18 (2009)

11. Wriggers, P., Simo, J.C.: A note on tangent stiffness for fully nonlinear contact problems.
Comm. in App. Num. Math. 1, 199–203 (1985)

https://doi.org/10.1016/j.na.2010.10.034
https://doi.org/10.1016/j.na.2010.10.034


Recent Results on Summations
and Volterra Difference Equations
via Lyapunov Functionals

Youssef Raffoul

Abstract In this research we utilize Lyapunov functionals to obtain boundedness on
all solutions, exponential stability and l p-stability on the zero solution of summation
equations and Volterra difference equations.

Keywords Volterra · Summations · Difference equations · Lyapunof functionals ·
Boundedness · Exponential stability

1 Introduction

In this chapter R,Z, and Z
+ represents the sets of real numbers, all integers and

all nonnegative integers, respectively and Z[−1,∞) = Z ∩ [−1,∞). Throughout this
paper the symbol � stands for �l(n) = l(n + 1) − l(n), where l is any sequence

l : Z → R. In addition we adhere to the notation that
b∑

n=a

l(n) = 0 for b < a. In

the introduction of [10], the author elaborated on the role that Volterra summation
equations play in the qualitative analysis of neutral difference equations of the form

�(
H(n, xn)

) = f (n, xn), n ∈ Z
+ (1)

where H is some difference operator. For more on neutral difference equations, we
refer to [2, 11].

In this study we consider the scalar Volterra summation equation

x(t) = a(t) −
t−1∑

s=0

C(t, s)x(s), t ∈ Z
+ (2)
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and the scalar perturbed Volterra difference equation

x(t + 1) = μ(t)x(t) +
t−1∑

s=0

h(t, s)x(s) + f (t), (3)

where x, a, μ, f : Z+ → R, while C : Z+ × Z[−1,∞) → R and h : Z+ × Z[0,∞) →
R. To clear any confusion, we note that the summation term in (2) could have been
started at any initial time t0 ≥ 0. We will use the resolvent equation, (see [10])
combined with Lyapunov functionals and fixed point theory to obtain boundedness
of solutions and their asymptotic behaviors of (2). One of the major difficulties when
using a suitable Lyapunov functional on Volterra summation equations is relating
the solution back to that Lyapunov functional. Using Lyapunov functionals does
not come for free. One must first construct such a function that implies meaningful
information regarding the behavior of solutions. Such construction is an art, rather
than a science. Lyapunov functions/functionals method were first implemented for
ordinary differential equations, and then later on they were extended to integro-
differential equations and functional differential equations. Thanks to Elaydi, in
the last thirty years, Lyapunov functions/functionals were extended to all type of
difference equations and Volterra difference equations, see [4] and the references
therein. Since then the present author has publishedmany papers, using themethod of
Lyapunof functionas/functionals to dealwith boundedness, stability and the existence
of periodic solutions of various kind of difference equations. However, the extension
of Lyapunov method to Volterra summation equations has not been fully developed
and this author has every intentionoffilling thevoid,whichwas initiated in [10]. Thus,
the Sect. 2 of this chapter is a continuation of the work that was initiated in [10]. In
[8] Messina and Vecchio displayed interesting Lyapunov functionals and studied the
stability of the zero solution of Volterra integral dynamic equations under bounded
and unbounded perturbations. In their work they derive different but interesting
formula for the �-derivative of absolute valued functions. For comprehensive work
on the use and the construction of Lyapunov functionals we refer the reader to the
book [9]. Moreover, for more on Volterra summation equations we refer to [2, 7]. In
Sect. 3,we consider perturbed and unperturbedVolterra summation equations and use
Lyapunov functionals to obtain exponential stability and boundedness of solutions.
In Sect. 4, we consider the relationship between l p-stability and exponential stability.
For more on l p-stability we refer to [6].

Let X denotes the set of functions φ : [0, t] → R and ‖φ‖ = sup{|φ(s)| : 0 ≤
s ≤ t}. Adivar et al. [1] were the first to establish the existence of the resolvent, of
an equation that is similar to (2) on time scales. Hence based on [10], the resolvent
equation of (2) is given by

R(t, s) = C(t, s) −
t−1∑

u=s+1

R(t, u)C(u, s), (4)
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and consequently, the solution of (2) is

R(t, s) = C(t, s) −
t−1∑

u=s+1

R(t, u)C(u, s), (5)

where R : Z+ × Z[−1,∞) → R. In [10] the emphaseswason the size ofC(t, s) instead
on its �-difference, which is the case in the next theorem. Throughout this paper we
use the notation �tC(t, s) for partial difference with respect to t and �tsC(t, s) =
�t

(�sC(t, s)
)
.Also, we define the shift operator E by Ez(t) = z(t + 1). In the next

theorem we construct a Lyapunov functional that we may call a perfect match for (2)
since its �-difference along the solutions is accomplished without using any type of
inequalities.

2 Summation Equation

In this section we consider the summation equation given by (2) and use a
Lyapunov functional coupled with its corresponding resolvent equation to obtain
results regarding boundedness of solution.

Theorem 1 Assume for t ≥ 1 and 0 ≤ s ≤ t − 1, we have

C(t, s) ≥ 0, �sC(t − 1, s − 1) ≥ 0, �tC(t − 1, s − 1) ≤ 0, �stC(t, s − 1) ≤ 0.
(6)

Define the function

V (t) =
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s

x(u)
)2 + C(t − 1,−1)

( t−1∑

u=0

x(u)
)2

. (7)

(i) Let α ∈ (0, 1) be a constant such that �sC(t, t − 1) + C(t, t − 1) ≤ α. Then

�V (t) ≤ a2(t) − βx2(t), where β = 1 − α. (8)

In addition if a ∈ l2[0,∞), then so is x and
t−1∑

s=0

R(t, s)a(s). Moreover, V (t) is

bounded.
(ii) Assume the existence of two positive constants D and L such that

max
t∈Z+

t−1∑

s=0

�sC(t − 1, s − 1) = D, and max
t∈Z+

C(t,−1) = L , (9)
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then along the solutions of Eq. (2) we have

( t−1∑

s=0

R(t, s)a(s)
)2 = (a(t) − x(t))2 ≤ 2(D + L)V (t). (10)

Remark 1 Note that (10) does not ask for a ∈ l2. However, if a ∈ l2 for all t and
bounded, then both x and V are bounded.

Proof Let V (t) be given by (7). Then we have, by applying �t that

�t V (t) =
t∑

s=0

�sC(t, s − 1)
( t∑

u=s

x(u)
)2 + C(t,−1)

( t∑

u=0

x(u)
)2

(11)

−
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s

x(u)
)2 − C(t − 1,−1)

( t−1∑

u=0

x(u)
)2

.

Next, we do some algebra on the side in order to simplify (11).

t∑

s=0

�sC(t, s − 1)
( t∑

u=s
x(u)

)2 −
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s
x(u)

)2

=
t∑

s=0

�sC(t, s − 1)
[
x(t) +

t−1∑

u=s
x(u)

]2 −
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s
x(u)

)2

= �sC(t, t − 1)x2(t) +
t−1∑

s=0

�sC(t, s − 1)
[
x(t) +

t−1∑

u=s
x(u)

]2

−
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s
x(u)

)2

= �sC(t, t − 1)x2(t) + x2(t)
t−1∑

s=0

�sC(t, s − 1) + 2x(t)
t−1∑

s=0

�sC(t, s − 1)
t−1∑

u=s
x(u)

+
t−1∑

s=0

�sC(t, s − 1)
( t−1∑

u=s
x(u)

)2 −
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s
x(u)

)2

= �sC(t, t − 1)x2(t) +
t−1∑

s=0

�stC(t, s − 1)
( t−1∑

u=s
x(u)

)2

+ x2(t)
t−1∑

s=0

�sC(t, s − 1) + 2x(t)
t−1∑

s=0

�sC(t, s − 1)
t−1∑

u=s
x(u). (12)
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Similarly,

C(t,−1)
( t∑

u=0

x(u)
)2 − C(t − 1,−1)

( t−1∑

u=0

x(u)
)2

= C(t,−1)
[
x(t) +

t−1∑

u=0

x(u)
]2 − C(t − 1,−1)

( t−1∑

u=0

x(u)
)2

= x2(t)C(t,−1) + 2x(t)C(t,−1)
t−1∑

u=0

x(u)

+ C(t,−1
( t−1∑

u=0

x(u)
)2 − C(t − 1,−1)

( t−1∑

u=0

x(u)
)2

= x2(t)C(t,−1) + 2x(t)C(t,−1)
t−1∑

u=0

x(u)

+ �tC(t − 1,−1)
( t−1∑

u=0

x(u)
)2

. (13)

Finally, we make use of the summation by part formula; for any two sequences y(t)
and z(t)

t−1∑

s=0

y(s)�z(s) = y(s)z(s)|ts=0 −
t−1∑

s=0

Ez(s)�y(s).

With this in mind, we let y(s) = ∑t−1
u=s x(u) and �z(s) = �sC(t, s − 1). Then

z(s) = C(t, s − 1) and �y(s) = −x(s). Hence,

2x(t)
t−1∑

s=0

�sC(t, s − 1)
t−1∑

u=s

x(u))

= 2x(t)
[
C(t, s − 1)

t−1∑

u=s

x(u)
∣∣t
s=0 +

t−1∑

s=0

C(t, s)x(s)
]

= 2x(t)
[
0 − C(t,−1)

t−1∑

u=0

x(u) +
t−1∑

s=0

C(t, s)x(s)
]
. (14)

Thus, substituting (12)–(14) into (11) leads to
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�t V (t) = �sC(t, t − 1)x2(t) +
t−1∑

s=0

�stC(t, s − 1)
( t−1∑

u=s

x(u)
)2

+ x2(t)
t−1∑

s=0

�sC(t, s − 1) + x2(t)C(t,−1)

+ 2x(t)C(t,−1)
t−1∑

u=0

x(u) + �tC(t − 1,−1)
( t−1∑

u=0

x(u)
)2

+ 2x(t)C(t,−1)
t−1∑

u=0

x(u) + 2x(t)
t−1∑

s=0

C(t, s)x(s).

Making use of (6) gives

�t V (t) ≤ x2(t)
[
�sC(t, t − 1) + C(t,−1) +

t−1∑

s=0

�sC(t, s − 1)
]

+ 2x(t)
t−1∑

s=0

C(t, s)x(s)

= x2(t)
[
�sC(t, t − 1) + C(t, t − 1)

]
+ 2x(t)

t−1∑

s=0

C(t, s)x(s)

≤ αx2(t) + 2x(t)
[
a(t) − x(t)

]

≤ αx2(t) + 2x(t)a(t) − 2x2(t)

≤ αx2(t) + x2(t) + a2(t) − 2x2(t)

= (α − 1)x2(t) + a2(t)

= −βx2(t) + a2(t). (15)

Summing (15) from 0 to t − 1 yields

0 ≤ V (t) − V (0) ≤
t−1∑

s=0

a2(s) − β

t−1∑

s=0

x2(s) (16)

which implies that if a ∈ l2[0,∞), then so is x, since C is bounded. Consequently,
inequality (16) implies the boundedness of V (t). This completes the proof of
part (i).

Next we turn our attention to proving (ii). Assume (9) hold and by applying the
Schwartz inequality we get
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( t−1∑

s=0

�sC(t − 1, s − 1)
t−1∑

u=s

x(u)
)2

≤
t−1∑

s=0

�sC(t − 1, s − 1)
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s

x(u)
)2

≤ D
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s

x(u)
)2

≤ D
t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s

x(u)
)2 + DC(t − 1,−1)

( t−1∑

u=0

x(u)
)2

= DV (t). (17)

On the other hand, using a similar summation by parts on (14) yields

[ t−1∑

s=0

�sC(t, s − 1)
t−1∑

u=s

x(u))
]2

=
[
C(t, s − 1)

t−1∑

u=s

x(u)
∣∣t
s=0 +

t−1∑

s=0

C(t, s)x(s)
]2

=
[

− C(t,−1)
t−1∑

u=0

x(u) +
t−1∑

s=0

C(t, s)x(s)
]2

=
[
a(t) − x(t) − C(t,−1)

t−1∑

u=0

x(u)
]2

≥ (1/2)
(
a(t) − x(t)

)2 −
[
C(t,−1)

t−1∑

u=0

x(u)
]2

.

Thus the above inequality gives

(1/2)
(
a(t) − x(t)

)2 ≤
[
C(t,−1)

t−1∑

u=0

x(u)
]2 +

[ t−1∑

s=0

�sC(t, s − 1)
t−1∑

u=s
x(u))

]2

≤ C(t, −1)C(t,−1)
( t−1∑

u=0

x(u)
)2 + DV (t)

≤ L
[
C(t,−1)

( t−1∑

u=0

x(u)
)2 +

t−1∑

s=0

�sC(t − 1, s − 1)
( t−1∑

u=s
x(u)

)2]

+ DV (t)

= (D + L)V (t).

This completes the proof of (ii) and hence the Theorem.
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We have the following Lemma.

Lemma 1 Assume the hypothesis of Theorem 1 and let V (t) be given by (7). Then

V (t) ≤ 1

β

t−1∑

s=0

�sC(t − 1, s − 1)(t − s)
t−1∑

u=s

a2(u)

+ 1

β
C(t − 1,−1)t

t−1∑

u=0

a2(u). (18)

Proof Using Schwartz inequality in (7) gives

V (t) ≤
t−1∑

s=0

�sC(t − 1, s − 1)(t − s)
t−1∑

u=s

x2(u) + C(t − 1,−1)t
t−1∑

u=0

x2(u). (19)

Sum (15) from 0 to t − 1 and obtain

0 ≤ V (t) − V (s) ≤
t−1∑

u=s

a2(s) − β

t−1∑

u=s

x2(s)

which implies that
t−1∑

u=s

x2(s) ≤ 1

β

t−1∑

u=s

a2(s).

Substituting the above inequality and (16) in (19) gives (18). This completes the
proof.

3 Volterra Difference Equations

In this section we consider the perturbed scalar Volterra difference equation

x(t + 1)) = μ(t)x(t) +
t−1∑

s=0

h(t, s)x(s) + f (t), (20)

and its homogenous counter part

x(t + 1)) = μ(t)x(t) +
t−1∑

s=0

h(t, s)x(s), (21)
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and show, under suitable conditions that, all its solutions are uniformly bounded and
its zero solution is uniformly exponentially stable when f (t) is identically zero. We
assume the existence of an initial sequence φ : Z+ → [0,∞), that is bounded and
||φ|| = max

0≤s≤t0
|φ(s)|, t0 ≥ 0 for fixed t0. We begin with the following definition.

Definition 1 The zero solution of (21) is said to be exponentially stable if any
solution x(t, t0, ψ) of (21) satisfies

|x(t, t0, ψ)| ≤ C
(
||ψ ||, t0

)
ζ γ (t−t0), for all t ≥ t0,

where ζ is constant with 0 < ζ < 1, C : R+ × Z
+ → R

+, and γ is a positive con-
stant. The zero solution of (21) is said to be uniformly exponentially stable if C is
independent of t0.

Theorem 2 Suppose there is a scalar sequence α : Z+ → [0,∞). Assume there are
positive constants a > 1 and b such

α(s)a−b(t−s−1) −
t−1∑

u=s

a−b(t−s−1)|h(u, s)| > 0, (22)

|μ(t)| + |α(t)| − |h(t, t)| − 1 ≤ −(1 − a−b), (23)

and for some positive constant M

t−1∑

s=0

(1 − a−b)(t−s−1)| f (s)| ≤ M, f or 0 ≤ t < ∞.

(i) If

max
t≥t0

t∑

s=0

(
α(s)a−b(t−s−1) −

t∑

u=s

a−b(t−s−1)|h(u, s)|
)

< ∞

then all solutions of (20) are uniformly bounded and the zero solution of (21) is
uniformly exponentially stable.
(ii) If for every t0 ≥ 0, there is a constant M(t0) depending on t0 such that

t0−1∑

s=0

α(s)a−b(t0−s−1) −
t0−1∑

u=s

a−b(t0−s−1)|h(u, s)| < M(t0),

then all solutions of (20) are bounded and the zero solution of (21) is exponentially
stable.
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Proof Consider the Lyapunov functional

V (t, x) = |x(t)|

+
t−1∑

s=0

[
α(s)a−b(t−s−1) −

t−1∑

u=s

a−b(t−u−1)|h(u, s)|]|x(s)|. (24)

Then along the solutions of (20) we have

�V (t, x) ≤ |μ(t)||x(t)| +
t−1∑

s=0

|h(t, s)||x(s)| + | f (t)|

+
t∑

s=0

[
α(s)a−b(t−s) −

t∑

u=s

a−b(t−u)|h(u, s)|]|x(s)|

−
t−1∑

s=0

[
α(s)a−b(t−s−1) −

t−1∑

u=s

a−b(t−u−1)|h(u, s)|]|x(s)|.

Next we try to simplify �V (t, x).

t∑

s=0

[
α(s)a−b(t−s) −

t∑

u=s

a−b(t−u)|h(u, s)|]|x(s)|

=
t∑

s=0

[
α(s)a−b(t−s) −

t−1∑

u=s

a−b(t−u)|h(u, s)| − |h(t, s)|]|x(s)|

=
t−1∑

s=0

[
α(s)a−b(t−s) −

t−1∑

u=s

a−b(t−u)|h(u, s)| − |h(t, s)|]|x(s)|

+ α(n)|x(t)| − |h(t, t)||x(t)|

= a−b
t−1∑

s=0

[
α(s)a−b(t−s−1) −

t−1∑

u=s

a−b(t−u−1)|h(u, s)|]|x(s)|

−
t−1∑

s=0

|h(t, s)||x(s)| + α(t)|x(t)| − |h(t, t)||x(t)|.

Substituting the above expression into (25) and making use of (23) yield
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�V (t, x) ≤ [|μ(t)| + |α(t)| − |h(t, t)| − 1
]|x(t)|

− (1 − a−b)

t−1∑

s=0

[
α(s)a−b(t−s−1) −

t−1∑

u=s

a−b(t−u−1)|h(u, s)|]|x(s)| + | f (t)|

≤ −(1 − a−b)
[
|x(t)|

+
t−1∑

s=0

[
α(s)a−b(t−s) −

t−1∑

u=s

a−b(t−u)|h(u, s)|]|x(s)| + | f (t)|

= −(1 − a−b)V (t, x) + | f (t)|. (25)

Set β = (1 − a−b) ∈ (0, 1) and apply the variation of parameters formula to get

V (t, x(t)) ≤ (1 − β)t−t0V (t0, φ) +
t−1∑

s=t0

(1 − α)(t−s−1)| f (s)|

≤ (1 − β)t−t0 ||φ||
[
1 +

+
t0−1∑

s=0

[
α(s)a−b(t0−s−1) −

t0−1∑

u=s

a−b(t0−u−1)|h(u, s)|
]

+
t−1∑

s=t0

(1 − α)(t−s−1)| f (s)|. (26)

The results readily follow from (26) and the fact that |x(t)| ≤ V (t, x).This completes
the proof.

Remark 2 We state that Theorem 2 can be easily extended to nonlinear Voleterra
difference equations of the form

x(t + 1)) = μ(t)x(t) +
t−1∑

s=0

h(t, s)g(x(s)) + f (t),

under the assumption that g(x) ≤ d|x |, for some positive constant d.

4 l p-Stability

In this section we state the definition of l p-stability and state theorems under which
it occurs. We begin by considering the non-autonomous nonlinear discrete system

x(n + 1) = G(n, x(s); 0 ≤ s ≤ n)
de f= G(n, x(·)) (27)
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where G : Z+ × R
k → R

k is continuous in x and G(n, 0) = 0. Let C(n) denote the
set of functions φ : [0, n] → R and ‖φ‖ = sup{|φ(s)| : 0 ≤ s ≤ n}.
We say that x(n) = x(n, n0, φ) is a solution of (27) with a bounded initial function
φ : [0, n0] → R

k if it satisfies (27) for n > n0 and x( j) = φ( j) for j ≤ n0.

Definition 2 The zero solution of (27) is stable (S) if for each ε > 0, there is a
δ = δ(n0, ε) > 0 such that [n0 ≥ 0, φ ∈ C(n0), ‖φ‖ < δ] imply |x(n, n0, φ)| < ε

for all n ≥ n0. It is uniformly stable (US) if it is stable and δ is independent of n0. It
is asymptotically stable (AS) if it is (S) and |x(n, n0, φ)| → 0, as n → ∞.

Definition 3 The zero solution of system (27) is said to be exponentially stable if
any solution x(n, n0, φ) of (27) satisfies

||x(n, n0, φ)|| ≤ C
(
||φ||, n0

)
aη(n−n0), for all n ≥ n0,

where a is constant with 0 < a < 1, C : R+ × Z
+ → R

+, and η is a positive con-
stant. The zero solution of (27) is said to be uniformly exponentially stable if C is
independent of n0.

Definition 4 The zero solution of system (27) is said to be l p-stable if it is stable

and if
∞∑

n=n0

||x(n, n0, φ)||p < ∞ for positive p.

We have the following elementary theorem and for its proof we refer to [6].

Theorem 3 If the the zero solution of (27) is exponentially stable, then it is also
lp-stable.

We caution that the l p-stability is not uniform with respect to p as the next example
shows. Also, it shows that (AS) does not imply l p-stability for all p. To see this we
consider the difference equation

x(n + 1) = n

n + 1
x(n), x(n0) = x0 
= 0, n0 ≥ 1

and its solution is given by

x(n) := x(n, n0, x0) = x0n0
n

.

Clearly the zero solution is (US) and (AS). However, for n0 = n, we have

x(2n, n, x0) = x0n

2n
→ x0

2

= 0
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which implies that the zero solution is not (UAS). Moreover,

∞∑

n=n0

||x(n, n0, x0)||p ≤
∞∑

n=n0

|( x0n0
n

)|p = |x0|p(n0)p
∞∑

n=n0

(
1

n
)p,

which diverges for 0 < p ≤ 1 and converges for p > 1.
The next example shows that asymptotic stability does not necessary imply l p

stability for any p > 0. Let g : [0,∞) → (0,∞)with limn→∞ g(n) = ∞.Consider
the non-autonomous difference equation

x(n + 1) = [
g(n)/g(n + 1)

]
x(n), x(n0) = x0, (28)

which has the solution x(n, n0, x0) = g(n0)
g(n)

x0. It is obvious that as n → ∞ the solu-
tion tends to zero, for fixed initial n0 and the zero solution is indeed asymptotically
stable. On the other hand

∞∑

n=n0

||x(n, n0, x0)||p = [g(n0)x0]p
∞∑

n=n0

( 1

g(n)

)p
, (29)

which may not converge for any p > 0. For example, if we take

g(n) = log(n + 2),

then from (29) we have

∞∑

n=n0

||x(n, n0, x0)||p = [log(n0 + 2)]p||x0||p
∞∑

n=n0

( 1

log(n + 2)

)p
,

which is known to diverge for all p ≥ 0.
The next theorem relates l p stability to Lyapunov functionals. Again for its proof

we refer to [6].

Theorem 4 Let D be an open set in R
k with 0 ∈ D. If there exists a continuous

function V : D → [0,∞) such that V (0) = 0 with V (x) > 0 if x 
= 0 and along the
solutions of (27), V satisfies �V ≤ −c||x ||p, for some positive constants c and p,
then the zero solution of (27) is l p− stable.

In the next two examples we establish that the l p− stability depends on the type
of Lyapunov functional that is being used. Moreover, there will be a price to pay if
you want to obtain l p− stability for higher values of p.

Example 1 Consider the scalar Volterra difference equation

x(n + 1) = a(n)x(n) +
n−1∑

s=0

b(n, s) f (s, x(s)) (30)
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with f being continuous and there exists a constant λ1 such that f (n, x)| ≤ λ1|x |.
Assume there exists a positive α such that

|a(n)| + λ

∞∑

s=n+1

|b(s, n)| + λ1|b(n, n)| − 1 ≤ −α, (31)

and for some positive constant λ which is to be specified later, we have

λ1 ≤ λ. (32)

Then the zero solution of (30) is l1-stable.

Proof Define the Lyapunov functional V by

V (n, x) = |x(n)| + λ

n−1∑

j=0

∞∑

s=n

|b(s, j)||x( j)|.

We have along the solutions of (30) that

�V (t) ≤ (|a(n)| + λ

∞∑

s=n+1

|b(s, n)| + λ1|b(n, n)| − 1
)|x(n)|

+ (λ1 − λ)

n−1∑

s=0

|b(n, s)||x(s)|

≤ −α|x(n)|.

This implies the zero solution is stable and l1-stable by Theorem 4. This completes
the proof.

Example 2 Consider (30) and assume f is continuous with | f (n, x)| ≤ λ1x2.
Assume there exists a positive constant α such that

a2(n) + λ

∞∑

s=n+1

|b(s, n)| + λ1|a(n)|
n∑

s=0

|b(n, s)| − 1 ≤ −α, (33)

and for some positive constant λ which is to be specified later, we have

λ1|a(n)| + λ2
1

n−1∑

s=0

|b(n, s)| − λ ≤ 0. (34)

Then the zero solution of (30) is l2-stable.



Recent Results on Summations and Volterra Difference Equations … 351

Proof define the Lyapunov functional V by

V (n, x) = x2(n) + λ

n−1∑

j=0

∞∑

s=n

|b(s, j)|x2( j).

We have along the solutions of (30) that

�V (t) = (
a(n)x(n) +

n−1∑

s=0

b(n, s) f (s, x(s))
)2 − x2(n)

+ λx2(n)

∞∑

s=n+1

|b(s, n)| − λ

n−1∑

s=0

|b(n, s)|x2(s) − x2(n)

≤ a2(n)x2(n) + 2λ1|a(n)||x(n)|
n−1∑

s=0

|b(n, s)||x(s)| + ( n−1∑

s=0

b(n, s) f (s, x(s)))2

+ λx2(n)

∞∑

s=n+1

|b(s, n)| − λ

n−1∑

s=0

|b(n, s)|x2(s) − x2(n).

As a consequence of 2zw ≤ z2 + w2, for any real numbers z and w we have

2λ1|a(n)||x(n)|
n−1∑

s=0

|b(n, s)||x(s)| ≤ λ1|a(n)|
n−1∑

s=0

|b(n, s)|(x2(n) + x2(s)).

Also, using Schwartz inequality we obtain

( n−1∑

s=0

b(n, s) f (s, x(s))
)2 =

n−1∑

s=0

|b(n, s)|1/2|b(n, s)|1/2| f (s, x(s))|

≤
n−1∑

s=0

|b(n, s)|
n−1∑

s=0

|b(n, s)| f 2(s, x(s))

≤ λ2
1

n−1∑

s=0

|b(n, s)|
n−1∑

s=0

|b(n, s)|x2(s).

Putting all together, we get

�V (t) ≤
(
a2(n) + λ

∞∑

s=n+1

|b(s, n)| + λ1|a(n)|
n∑

s=0

|b(n, s)| − 1
)
x2(n)

+
(
λ1|a(n)| + λ2

1

n−1∑

s=0

|b(n, s)| − λ
) n−1∑

s=0

|b(n, s)|x2

≤ −αx2(n).
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This implies the zero solution is stable and l2-stable by Theorem 4. This completes
the proof.

A quick comparison of (31) with (33) and (32) with (34) reveals that the conditions
for the l2 stability are more stringent.
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New Method of Smooth Extension
of Local Maps on Linear Topological
Spaces. Applications and Examples
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Abstract The question of extension of locally defined maps to the entire space
arises inmany problems of analysis (e.g., local linearization of functional equations).
A known classical method of extension of smooth local maps on Banach spaces
uses smooth bump functions. However, such functions are absent in the majority of
infinite-dimensional spaces. We suggest a new approach to localization of Banach
spaces with the help of locally identical maps, which we call blid maps. In addition
to smooth spaces, blid maps also allow to extend local maps on non-smooth spaces
(e.g., Cq [0, 1], q = 0, 1, 2, ...). For the spaces possessing blid maps, we show how
to reconstruct a map from its derivatives at a point (see the Borel Lemma). We
also demonstrate how blid maps assist in finding global solutions of cohomological
equations having linear transformation of the argument. We present application of
blid maps to local differentiable linearization of maps on Banach spaces. We discuss
differentiable localization for metric spaces (e.g., C∞(IR)), prove an extension result
for locally defined maps and present examples of such extensions for the specific
metric spaces. In conclusion, we formulate open problems.
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1 Introduction

The subject of localization of maps goes back to the works of Sobolev [23] on gener-
alized functions and of K. O. Friedrichs and D. A. Flanders on molifiers. Nowadays,
the most frequently used analogous notions are the bump functions. Recall that a
bump function on a space X at x ∈ X is a map h : X → IR such that |h| ≤ 1 on the
entire X , h = 1 in a neighborhood of x and has bounded support.

There are many examples, where bump functions are used for the study of local
properties of dynamical systems in IRn . For instance, see [15, 24]. J. Palis in his
work [16] considers bump functions in Banach spaces. He proves the existence of
Lipschitz-continuous extensions of local maps with the help of Lipschitz-continuous
bump functions. However, Nitecki [15] points out that it is unknown whether the
smoothness of these extensions may be higher than Lipschitz.

Even though continuous bump functions exist in all Banach spaces, themajority of
infinite-dimensional spaces do not have smooth bump functions. This is an obstacle
in the local analysis of dynamical systems in infinite-dimensional spaces. Following
Meshkov [12] we adopt the following

Definition 1 (Cq-smooth spaces) A space is called Cq -smooth, if it possesses a
Cq -bump function.

Consider X = l p. If p = 2n, then h(||x ||p) is a C∞-bump function at 0, where h
is a bump function on IR. However, it is known that l1 space does not have C1 bump
functions (e.g., [12]). Consequently, C[0, 1] does not have smooth bump functions
(this follows from Banach-Mazur Embedding Theorem, see [2]).

In order to allow smooth localization of Banach spaces, we define analogs of bump
functions, which we call blid maps (Sect. 2). Cq -smooth blid maps exist not only on
all Cq -smooth spaces, but also on some Banach spaces, which are not Cq -smooth.
We present specific examples of blid maps for such spaces.

The general topological spaces, such as C∞(IR) and C∞([0, 1]), are frequently
discussed in a context of partial differential equations. For this reason, we also dis-
cuss how to apply our ideas to linear topological spaces. In Sect. 3 we define the
blid-differentiable property for topological spaces, present examples of spaces with
such property and prove a theorem which asserts existence of global differentiable
extension of locally defined maps.

We also discuss applications (Sect. 4) of the localization of the spaces to the ques-
tions of solvability of smooth cohomological equations and to the local differentiable
linearization on Banach spaces. The proofs of these results are based on an extension
of the well-known Borel Lemma to Banach spaces, which can be found in the same
section.

We conclude our paper (Sect. 5) with a few more examples and open questions
regarding the existence of smooth blid-maps for some non-smooth spaces, Whitney
Extension Problems for non-smooth spaces and existence of Banach spaces without
differentiable blid maps.
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2 Banach Spaces

First, let X be a real Banach space, and Y be a real or complex Banach space. We
will discuss smooth local maps f : X → Y and a possibility of smooth extension of
the maps. Since Banach spaces are equipped with norms, we can consider Fréchet
derivatives. In the topics related to Banach spaces, wewill assume that differentiation
is defined in Fréchet sense.

The map’s extension is usually not unique and can be studied in the context of the
equivalence class of f , i.e. a germ [ f ]. Recall (see [14]) that a germ [ f ] at x ∈ X is
the equivalence class of local maps, such that any pair of the class members coincide
on some neighborhood of x . Each element of the class is called a representative
of a germ. Occasionally, we denote a germ [ f ] as f . In the future, without loss of
generality, we will assume that x = 0. We are interested in the question of existence
of a global representative of the germ.

Consider a Cq germ. Does there exist a Cq global representative of the germ?
Suppose there exists a representative with q bounded derivatives. Does there exist a
global representative which also has q bounded derivatives? To answer these ques-
tion, we introduce special maps, discussed below.

Definition 2 (Cq-smooth blid maps) ACq map H : X → X is called aCq blid-map
at 0 for a Banach space X if there exists a neighborhood U , 0 ∈ U ⊂ X , such that
H|U = id and supx ||H(x)||X < ∞. In other words, the map H is a Bounded Iocally
IDentical map on X .

The idea of extensions with the help of blids first appears in [1], later in [4]. The
Definition 2 was introduced in [5] and was motivated with the following example.

Example 1 The C∞ germ, defined in the neighborhood of 0 ∈ C[0, 1]

f (x) =
∫ 1

0

dt

1 − x(t)

has a global C∞ representative:

∫ 1

0

dt

1 − h(x(t))x(t)
.

Here the blid map H(s) = h(s)s is defined with the help of a bump function h, such
that h(s) = 1 on |s| < 1/3 and 0 on |s| > 1/2. It is easy to see that H = id when
|s| < 1/3 and |H | < 1/3 on C[0, 1], i.e. satisfies the definition of a blid map.

In [5], we generalize the idea of smooth extension of a locally defined map via
composition of the map with a smooth blid-map. This method allows us to prove the
Borel Lemma for Banach spaces. Many questions related to local dynamics can be
addressed with the help of this theorem.
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Theorem 1 ([5]) Let a space X possesses a Cq-blid map H. Then for every
Banach space Y and any Cq-germ f at zero from X to Y there exists a global
Cq-representative. Moreover, if all derivatives of H are bounded, and f contains a
local representative bounded together with all its derivatives, then it has a global
one with the same property.

Obviously, if a space is Cq -smooth, it possesses a Cq -blid map. However, there
are examples of Banach spaces that have blid-maps, but do not have bump functions
of the same smoothness. We will illustrate this idea with the following examples (for
details and proofs see [5]) of blid-maps in various Banach spaces:

Example 2 Suppose X has a Cq bump function h : X → IR. Then, H(x) = h(x)x
is a Cq(X) blid map.

In the following 3 examples h is a C∞(IR) bump function.

Example 3 Let X = C[0, 1]. Then, H : X → X defined by H(x)(t) = h(x(t))x(t)
is a C∞(X) blid map.

Example 4 More generally, suppose X = C(M)where M is a compact space. Then,
H(x)(t) = h(x(t))x(t) is a C∞(X)-blid map.

Example 5 Let X = Cq [0, 1]. Then a C∞(X)-blid map H(x)(t) can be defined via

H(x)(t) =
q−1∑
j=0

t j

j !h(x ( j)(0))x ( j)(0) +
∫ t

0
dt1

∫ t1

0
dt2...

∫ tq−1

0
h

(
x (q)(s)

)
x (q)(s) ds.

There are also some examples of subspaces, where blid maps can be constructed:

Example 6 Suppose X possess a Cq -blid map H , and a subspace X1 of X is H -
invariant. Then the restriction H1 = H |X1 is a Cq -blid map on X1.

Example 7 Assume π : X → X is a bounded projector and X possess Cq -blid
map H . Then, the restriction π(H)|I m(π) is a Cq -blid map on I m(π), while the
restriction (H − π(H))|K er(π) is aCq -blidmap on K er(π). Consequently, if X1 ⊂
X is a subspace, such that there exists another subspace of X , so that these two form
a complementary pair, then X1 possesses a blid map.

3 Linear Topological Spaces

As we noted in Sect. 1 localization on topological linear spaces (e.g., C∞(D), where
D is some smooth manifold) is important for the study of partial differential equa-
tions.

It is not always possible to define Fréchet differentiability on a linear topological
space. For this reason, we will use weaker notions of differentiation. As we have seen
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in Sect. 2, an extension of maps with the help of blids requires composition. Thus, we
will discuss differentiability that satisfies the Chain Rule (in particular, we cannot
use Gâteaux derivative). We will sometimes work with bounded-differentiability,
sometimes the concept of stronger compact (Hadamard) differentiability, and finally
(if it can be defined) the strongest form of differentiability, Fréchet differentiability.
Let us recall these definitions (see [22]).

Let X and Y be linear topological spaces.

Definition 3 (Bounded differentiability) The map f : X → Y is bounded-
differentiable at x ∈ X , if for every bounded subset S ⊂ X and every h ∈ S and
t ∈ IR

f (x + th) − f (x) = t Ah + r(th)

with
r(th)/t → 0

uniformly in h as t → 0 (and A is called the derivative).

Definition 4 (Compact (Hadamard) differentiability) The map f : X → Y is com-
pact (Hadamard) differentiable at x ∈ X , if

f (x + tnhn) − f (x) = tn Ah + o(tn)

as tn → 0, and hn → h (and A is called the derivative).

If both X and Y are Banach spaces with the norms ||.||1 and ||.||2 respectively,
then Fréchet differentiation is well-defined.

Definition 5 (Fréchet differentiability) The map f is Fréchet differentiable at 0 if
(in the notation of Definition 3)

lim
h→0

||r(h)||2/||h||1 = 0.

These definitions define the same derivative A whenever it exists, and differ only
by the definition of the remainder term. In what follows differentiable means one of
the above three differentiability types.

Definition 6 A space X satisfies a blid-differentiable property if for every neighbor-
hood U ⊂ X of 0 there is a differentiable map H defined on X , locally coinciding
with the identity map, such that H(X) ⊂ U .

Let us recall that a neighborhoods base of zero is a system B = {Vα}of neighborhoods
of 0, such that for any neighborhoodU ⊂ X of 0 there exists some Vβ ∈ B, Vβ ⊂ U .
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Therefore, if there is a neighborhoods base B such that for every Vα from B there
exists local identity Hα , Hα(X) ⊂ Vα , then X satisfies the blid-property.

Proposition 1 (Extension of Local Maps) If X satisfies blid-differentiable property,
then every differentiable germ f : X → Y has a global differentiable representative.

Proof Let f be a local representative of the germ defined on a neighborhoodU ⊂ X
of zero. Let H : X → X be a differentiable local identity map such that H(X) ⊂ U .
Then the map

F(x) = f (H(x)), x ∈ X

is a global representative of the germ. �

Let X be a metric space with a metric d. Here we consider germs of maps from
X into an arbitrary linear topological space Y . Instead of Fréchet differentiation
(which is not defined for all metric spaces) we use bounded and compact (Hadamard)
differentiation. The neighborhoods base B can be chosen as a collection {Bc}c =
{x ∈ X : d(x, 0) < c}c. Then the space X satisfies the differentiable-blid property
if for every c there exists a differentiable, local identity map Hc : X → X such that
d(Hc(x), 0) < c for all x , i.e., Hc(X) ⊂ Bc.

In particular, if topology on X is defined by countable collection of norms ||x ||k ,
then the metric can be written as

d(x, y) :=
∞∑

k=0

1

2k
· ||x − y||k
||x − y||k + 1

.

It can always be assumed that ||x ||k are monotonically increasing.

Proposition 2 Suppose for every k = 0, 1, ... there exists a global differentiable
local identity map Hk such that

sup
x

||Hk(x)||k < ∞.

Then X satisfies the differentiable blid property.

Proof For a given c > 0 choose any

k > 1 − ln c/ ln 2 (1)

and let Hk be such that
||Hk(x)||k < N , x ∈ X.

Set

Hc(x) = c

4N
Hk

(
4N

c
x

)
.



New Method of Smooth Extension of Local Maps on Linear Topological Spaces … 359

Then inequality (1) and the fact that ||x || j is monotonically increasing with j imply
that

d(Hc(x), 0) < c,

i.e. Hc(X) ∈ Bc. �
In the following subsections, we present the examples of the spaces with differ-

entiable blid property and state the existence of extension of locally defined maps on
these spaces.

3.1 The Space of Smooth Functions on the Real Line

The space X = Cq(IR) (0 ≤ q < ∞) of all smooth functions on IR can be endowed
with the collection of norms

||x ||k = max
t∈[−k,k]max

l≤q
|x (l)(t)|.

Lemma 1 The space X possesses the bounded- (consequently compact-) differen-
tiable blid property.

Proof Let h(u) be a C∞-bump function on IR. Note, a = supu∈IR h(u)u < ∞. Then

H(x)(t) =
{

h(x(t))x(t), q = 0∑q−1
j=0

t j

j ! h(x ( j)(0))x ( j)(0) + ∫ t
0 dt1

∫ t1
0 dt2...

∫ tq−1
0 h

(
x (q)(s)

)
x (q)(s) ds, q ≥ 1

is differentiable local identity map, and

||H(x)||k < aek, k = 0, 1, ..., x ∈ X.

�
Corollary 1 Every bounded- (consequently compact-) differentiable germ at 0 ∈
Cq(IR) has a global differentiable (in the corresponding sense) representative.

3.2 The Space of Infinitely Differentiable Functions on a
Closed Interval

The space X = C∞[0, 1] is endowed with the collection of norms

||x ||k = max
j≤k

max
t∈[0,1] |x

( j)(t)|.
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Lemma 2 The space X possesses the bounded- (consequently compact-) differen-
tiable property.

Proof Let h(u) be the same bump function on IR as above. Then

H0(x)(t) = h(x(t))x(t)

is a differentiable local identity map, and

||H0(x)||0 < c.

for some positive constant a. Further, let k > 0. Then

Hk(x)(t) =
k−1∑
j=0

t j

j !h(x ( j)(0))x ( j)(0) +
∫ t

0
dt1

∫ t1

0
dt2...

∫ tk−1

0
h

(
x (k)(s)

)
x (k)(s) ds.

is differentiable local identity map, and

||Hk(x)||k < cek, k = 0, 1, ..., x ∈ X. �

Corollary 2 Every bounded- (consequently compact-) differentiable germ at 0 ∈
C∞[0, 1] has a global representative.

3.3 The Space of Infinitely Differentiable Functions on the
Real Line

The space X = C∞(IR) is endowed with the collection of norms

||x ||k = max
j≤k

max
t∈[−k,k] |x

( j)(t)|, k = 0, 1, 2, ...

Lemma 3 The space X possesses the bounded- (consequently compact-) differen-
tiable property.

Proof Let h(u) be the same bump function on IR as above. Then

H0(x)(t) = h(x(t))x(t)

is a differentiable local identity map, and

||H0(x)||0 < c.
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Further, let k > 0. Then

Hk(x)(t) =
k−1∑
p=0

t p

j ! h(x (p)(0))x (p)(0) +
∫ t

0
dt1

∫ t1

0
dt2...

∫ tk−1

0
h

(
x (k)(s)

)
x (k)(s) ds.

is a differentiable local identity map, and

||Hk(x)||k < cek, k = 0, 1, ..., x ∈ X. �

Corollary 3 Every bounded- (consequently compact-) differentiable germ at 0 ∈
C∞(IR) has a global representative.

4 Applications

Frequently, in questions of local analysis and local dynamical systems bump func-
tions are used. For example, they are used for normal forms conjugation [24], in the
proofs of the Borel Lemma [15], and the Whitney Extension results [26].

Since blid maps substitute bump functions, they allow localization of a broader
class of spaces. First, the blid maps were used in [1] for a smooth conjugation of
two C∞ diffeomorphisms on some Banach spaces. In the later works [4, 19] we
discussed conditions for when two C∞ diffeomorphisms on some Banach spaces are
locally C∞-conjugate. Below, we discuss applications of blid maps to differentiable
linearization (without non-resonance assumption), and applications to cohomologi-
cal equations. For the proofs of these results we need the Borel Lemma extended to
Banach spaces. With the help of blid-maps we are able to prove the Borel Lemma
for Banach spaces.

4.1 The Borel Lemma

In this section we state the version of the Borel Lemma proved in [5]. For finite
dimensional X , the Borel Lemma [15] is a particular case of the celebrated Whitney
theorem [26] on the extensions of functions beyond a closed set. The use of blid-
maps in our proofs is analogous to the use of the bump functions in the proofs of
finite-dimensional case. The infinite dimensional version of the proof also requires
some estimates on the growth of the derivatives of the blid-maps.



362 G. Belitskii and V. Rayskin

Theorem 2 (The Borel lemma) Let a Banach space X possess a C∞-blid map with
bounded derivatives of all orders. Then for any Banach space Y and any sequence
{Pj }∞j=0 of continuous homogeneous polynomial maps from X to Y there is a C∞-map
f : X → Y with bounded derivatives of all orders such that Pj (x) = f ( j)(0)(x) j is
satisfied for all j = 0, 1, ....

Here (in the notations of [6]) f ( j)(0) is the j-linear map and f ( j)(0)(x) j is the value
of this map at the point x, x, ..., x︸ ︷︷ ︸

j

.

4.2 Cohomological Equations

In this section we outline the main ideas of the application of the blid maps to the
solutions of cohomological equations. For the detailed discussion please see [5].
Given a map F : X → X , (X is a Banach space) we want to find a C∞ g : X → C,
that satisfies the following cohomological equation:

g(Fx) − g(x) = f (x) (2)

For a broad overview of various versions of the equation see the works of Lyubich
(e.g., [13]).Also, for a discussion of smooth cohomological equationswe recommend
the book [3].
In our example, we will assume that F is linear and denote it by A.
Define a homogenious polinomial map Pn(x) = f (n)(0)(x)n . We will search for
homogeneous, degree n, polynomial solutions Qn(x) (n = 1, 2...) such that

(Ln − id)Qn(x) = Pn(x), n = 1, 2, 3...., (n)

where Ln Qn(x) = (Qn(Ax))(n).
If for every n equation (n) is solvable, we call the cohomological equation (2)

formally solvable. Thenwe can useBorel Lemma to reduce the Eq. (2) to the equation
in flat functions (that are the functions with 0 Taylor coefficients at the origin). Then,
applying some decomposition results (see [5]) for the space X , we can formulate
conditions for the solvability of the original cohomological equation:

Theorem 3 ([5]) Let A : X → X be a hyperbolic linear automorphism, where a
Banch space X possesses a C∞-blid map with bounded derivatives on X. If all
derivatives of f are bounded on every bounded subset, and the cohomological equa-
tion (2) is formally solvable at zero (i.e. each n-th equation has continuous solution,
n = 1, 2, ...), then there exists a global C∞-solution g(x).
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4.3 Differentiable Linearization Without Non-resonance
Assumption

Local linearization and normal forms are convenient simplification of complex
dynamics. In this section we discuss differentiable linearization on Banach spaces.
Following the approach of Poincaré [18], for a diffeomorphism F : X → X (X a
Banach space) with a fixed point 0, we would like to find a smooth transformation Φ

defined in a neighborhood of 0 such that Φ ◦ F ◦ Φ−1 has a simplified (polynomial)
form [18] called the normal form. If Φ ◦ F ◦ Φ−1 = DF = Λ is linear, the conju-
gation is called linearization. There are two major questions in this area of research:
how to improve smoothness of the conjugation Φ, and how to lower the assumption
on the smoothness of the given diffeomorphism F .

Hartman [10] and Grobman [8] independently showed that if Λ is hyperbolic,
then for a diffeomorphism F there exists a local homeomorphism Φ such that Φ ◦
F ◦ Φ−1 = Λ. Different proofs were given by Pugh in [17]. A higher regularity of
Φ has been an active area of research (see, for example, [9, 16, 25, 27]).

The first attempt to answer the question of differentiability of Φ at the fixed point
0 under hyperbolicity assumption was made in [25], but an error was found and dis-
cussed in [20]. Later, in [9], Guysinsky, Hasselblatt and Rayskin presented a correct
proof. However, it was restricted to F ∈ C∞ (or more precisely, it was restricted to
F ∈ Ck , where k is defined by complicated expression). It was conjectured in the
paper [9] that the result is correct for F ∈ C2 (as it was originally claimed in [25]).

Zhang, Lu and Zhang, in their Theorem 7.1 published in [27] showed that for a
Banach space diffeomorphism F with a hyperbolic fixed point and α-Hölder DF , the
local conjugating homeomorphism Φ is differentiable at the fixed point. Moreover,

Φ(x) = x + O(||x ||1+β) and Φ−1(x) = x + O(||x ||1+β)

as x → 0, for certain β ∈ (0, α].
There are two additional assumptions behind this theorem. The first one is the

spectral band width inequality. The authors explain that this inequality is sharp if
the spectrum has at most one connected component inside of the unit circle in X ,
and at most one connected component outside of the unit circle in X . The precise
formulation of the spectral band width condition is somewhat bulky and we present
it in the Appendix. It is important (and it is pointed out in [27]) that this is not a
non-resonance condition. The latter is required for generic linearization of higher
smoothness.

The second assumption is the assumption that the Banach space must possess
smooth bump functions. It is conjectured in the paper that the second assumption is
a necessary condition.

In this section we explain that this conjecture is not correct (see Theorem 4). The
bump function condition can be replaced with the less restrictive blid map condition.
Blid maps allow to reformulate Theorem 7.1 in the following way:
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Theorem 4 Let X be a Banach space possessing a differentiable blid map with
bounded derivative. Suppose F : X → X is a diffeomorphism with a hyperbolic
fixed point, DF is α-Hölder, and the spectral band width condition is satisfied.
Then, there exists local linearizing homeomorphism Φ which is differentiable at the
fixed point. Moreover,

Φ(x) = x + O(||x ||1+β) and Φ−1(x) = x + O(||x ||1+β)

as x → 0, for certain β ∈ (0, α].
In particular, we have the following

Corollary 4 Let X = Cq [0, 1]. Suppose F : X → X is a diffeomorphism with a
hyperbolic fixed point, DF is α-Hölder, and the spectral band width condition is
satisfied. Then, the local conjugating homeomorphism Φ is differentiable at the
fixed point. Moreover,

Φ(x) = x + O(||x ||1+β) and Φ−1(x) = x + O(||x ||1+β)

as x → 0, for certain β ∈ (0, α].
Below we sketch a proof of Theorem 4

Proof Zhang, Lu and Zhang showed that for the conclusion of their Theorem 7.1 it
is enough to satisfy the inequalities 1 and 2 (see 4 below), which are called condition
(7.6) in their paper.

In order to apply the blid maps instead of bump functions to the inequalities (4),
it is sufficient to construct a bounded blid map, which has only first-order bounded
derivative. That is, let blid map H(x) : X → X be as follows:

1. H(x) = x for ||x || < 1
2. H ∈ C1 and ||H ( j)(x)|| ≤ c j , j = 0, 1.

(3)

The condition (7.6) of [27] is:

1. supx∈X ||DF(x) − Λ|| ≤ δη

2. supx∈V \{0} {||DF(x) − Λ||/||x ||α} < ∞.
(4)

Here δη is some small constant, and V is a neighborhood of 0.
Let DF − Λ = f . Define for δ > 0

f̃ (x) := f (δH(x/δ))

We will show that if f satisfies (4), then so does f̃ .
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sup
x∈X

||D f̃ (x)|| ≤ sup
x∈X

||D f (x)|| · sup
x∈X

||DH(x)|| ≤ δη · c1 = δ̃η.

Here δ̃η can be made as small as necessary via appropriate choice of δη.
Thus, the first inequality of (7.6) holds for f̃ . For the second inequality we have

the following estimate:

||D f̃ (x)||
||x ||α ≤ ||D f (δH(x/δ)) ||

||δH(x/δ)||α ·
( ||δH(x/δ)||

||x ||
)α

.

The second multiple is bounded, because for small x (say, ||x/δ|| < ε for some
ε > 0) we have

||δH(x/δ)||
||x || < c1 + o(1),

while for ||x/δ|| ≥ ε
||δH(x/δ)||

||x || < c0/ε.

I.e., ||δH(x/δ)||
||x || is less than some constant m. Then,

sup
x∈V \O

||D f̃ (x)||
||x ||α ≤ sup

0<||x ||<δc0

{||D f (x)||/||x ||α} · sup
x∈X

||DH(x)|| · mα

= sup
0<||x ||<δc0

{||D f (x)||/||x ||α} c1 · mα.

This quantity is bounded by Mc1mα if δ is sufficiently small and M is defined as
supx∈V \{0} {||DF(x) − Λ||/||x ||α}. �

5 More Examples and Open Questions

One of the important questions of local analysis on Banach spaces is the following.
Do Banach spaces without smooth blid maps exist? Recently, affirmative answer was
presented in [7] (also see [11]). The authors of [7, 11] proved that there exist Banach
spaces that do not allow C2-extension (and hence the C2-blid map).

Question 1 For which spaces do smooth blid maps exist? Do they exist on l p, with
non-even p?

Question 2 Are there Banach spaces without differentiable blid maps?

In theTheorem1we considered aCq -germ at a point. For such germs the existence
of a local representative with bounded derivatives implies the existence of the global
one with the same properties.



366 G. Belitskii and V. Rayskin

How can we extend germs of maps defined at a closed subset S ⊂ X? For this
construction we need to define smooth blid maps at S and germs at S. More precisely,
generalizing the definition of germs at a point, we will say that maps f1 and f2 from
neighborhoods U1 and U2 of S into Y are equivalent, if they coincide in a (smaller)
neighborhood of S. Every equivalence class is called a germ at S. We pose the same
question. Given a Cq -germ at S, does there exist a global representative? Assume
there exist aCq -map H : X → X whose image H(X) is contained in a neighborhood
U of S and which is equal to the identity map in a smaller neighborhood. Such maps
we call smooth blid maps at S. Then every local map f defined in U can be extended
on the whole X . It suffices to set F(x) = f (H(x)).

In the next example, we construct the map H for a segment (in particular, for a
ball).

Example 8 Let S(A) be a set of all functions x ∈ C[0, 1]whose graphs (t, x(t)) are
contained in a closed A ⊂ IR2, where A is chosen in such a way that S(A) 	= ∅. Let
h(t, x) be a C∞-function, which is equals to 1 in a neighborhood of A and vanishes
outside of a bigger set. Then, for an arbitrary y ∈ C[0, 1]

Hy(x)(t) = y(t) + h(t, x(t))(x(t) − y(t))

is a C∞-blid map for S(A).
If A = {{t, x} : min(ψ(t), φ(t)) ≤ x ≤ max(ψ(t), φ(t))} for some φ,ψ ∈

C[0, 1], then S(A) can be thought of as a segment [φ,ψ] ⊂ C[0, 1].
In particular, given z ∈ C[0, 1] and a constant r > 0, setting φ = z − r and ψ =

z + r , we obtain the ball Br (z) = {x : ||x − z|| ≤ r} ⊂ C[1, 0].
Every Cq -germ at [φ,ψ] ⊂ C[0, 1] contains a global representative.
Note, this example has an obvious generalization to segments and balls inCk [0, 1].
Question 1 and Example 8 bring us to the next question.

Question 3 For which pairs (S, X) do similar constructions exist? In particular, can
a smooth blid map be constructed for any bounded subset S of a space X possessing
a smooth blid map? For example, we do not know whether a smooth blid map can
be constructed for a sphere S = {x ∈ C[0, 1] : ||x || = r}.
Example 9 TheBorel lemma for finite-dimensional spaces is a particular case of the
well-known Whitney extension theorem from a closed set S ⊂ IRn . There are other
variations of extension questions among the Whitney Extension Problems. They can
be applied to fitting smooth functions and manifolds to data. Fitting manifolds to
data is related to the Whitney extension problem for the infinite-dimensional case.
Some cases of these Extension Problems are solved in [21] with the help of the blid
map ideas.

In Sect. 3 we presented several examples of linear topological spaces with the
differentiable blid property.
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Question 4 Which linear topological spaces have the differentiable blid property?

Linearization is a convenient simplification in the study of local dynamics. In
some cases partial differential equations can be studied in terms of operators on linear
topological spaces. Thus, there arises the question of differentiable linearization.

Question 5 Is it possible to generalize theTheorem4 for the case of linear topological
spaces (e.g., space of C∞ functions), which posses differentiable blid property?

6 Appendix

Here we formulate the spectral band width condition.
Assume that x = 0 is a hyperbolic fixed point of F ,Λ = DF(0) and the spectrum

σ(Λ) = σ− ∩ σ+,

where σ− = {λ ∈ σ(Λ) : |λ| < 1} and σ+ = {λ ∈ σ(Λ) : |λ| > 1}.
The sets σ± can be written as the union of disjoint sets:

σ− = σ1 ∩ ... ∩ σpandσ+ = σp+1 ∩ ... ∩ σd , (5)

where d ∈ IN, p ∈ {1, ..., d} and the numbers λ−
i := inf{|λ| : λ ∈ σi }, λ+

i :=
sup{|λ| : λ ∈ σi } (i = 1, ..., d) satisfy

0 < λ−
1 ≤ λ+

1 < ... < λ−
p ≤ λ+

p < 1 < λ−
p+1 ≤ λ+

p+1 < ... < λ−
d ≤ λ+

d . (6)

Then the spectral band inequality can be written as

λ+
i /λ−

i < (λ+
p )−α, i = 1, ..., p

λ+
j /λ−

j < (λ−
p+1)

α, j = p + 1, ..., d.
(7)
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QRT-Families of Degree Four
Biquadratic Curves Each of Them Has
Genus Zero, Associated Dynamical
Systems

Guy Bastien and MARC ROGALSKI

Abstract In the Congress ICDEA2019 in London, we give two examples of QRT-
families of biquadratic curves Q1(x, y) − λQ2(x, y) = 0, with Q1 of degree 4 and
Q2 of degree 2, each of them has genus zero; these examples contrast with many
examples published of QRT-families, where almost all curves have genus one. After
a brief summary of these examples (the details will be published in Sarajevo Journal
of Mathematics), we give an example with Q1 of degree 4 and Q2 of degree 3. We
prove that, for the QRT-map T associated to this family, the orbit of every point not
in the union of three lines and an hyperbola converges to a fixed point. Finally we
present an example with Q1 and Q2 of degrees 4, where there are some bifurcations
in the behaviour of the QRT-map.

Keywords QRT maps · Genus of curves · Dynamical systems

1 Introduction, the Results

In the Congress ICDEA2019 in London, we introduced two QRT-families of
biquadratic curves (of degree 2 in x and in y) Q1(x, y) − λQ2(x, y) = 0 eachof them
has genus 0. In these examples, Q1 was of degree 4, but Q2 was of degree 2 only. The
associated QRT-map (see the classical definition in Sect. 4) in R

2 \ {(x, y)|x = y}
has two different behaviours in two regions: convergent orbits in a region, periodic-
ity or density in a curve in the other region. In the present paper, we present first a
summary of these examples (the details of proofs will be published in [7]).

Then we present a case of a QRT-family with Q1 of degree 4 and Q2 of degree 3,
such that every curve of it has genus zero. And we prove that for the QRT-map
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associated to this family, which is defined outside of the union of the three lines
x + y = 0, x = 1 and y = 1, and the hyperbola xy = 1, the orbit of every point not
in this set converges to the point (1, 1).

This situation contrasts with most of the classical QRT-families studied in some
papers: see [1, 4–6, 8, 9, 11, 13],…, where almost all curves have genus 1, id est are
elliptic, and where the dynamical system has an infinity of periods for a dense set
of initial points. So it was necessary in these cases to use tools which become from
algebraic geometry of elliptic curves, such as Weierstrass’ function and the chord-
tangent law on a regular cubic curve. This will not be necessary for our examples
(Fig. 1).

In the last section, we present without proof (it is analogous to this one in [7] or
presented in Sects. 3 and 4) an example with Q1 and Q2 of degrees 4.

2 Summary of the Two First Examples Presented in
ICDEA2019

The two examples are the following:

x2y2 − 5xy(x + y) + 16(x2 + y2) − 20(x + y) + 16 − λ(x − y)2 = 0, (1)

x2y2 − 5xy(x + y) − 24(x2 + y2) − 20(x + y) + 16 − λ(x − y)2 = 0. (2)

For the origin of these examples, see [4, 7]. The results are the following:

Theorem 1 Every curve of each QRT families (1) and (2) is not reducible and is of
genus 0, except for two values of λ for which the curve is reducible. The exceptional
values of λ are 10 and 11 for the family (1), and −19 and −10 for the family (2).

Define the two functions

G1(x, y) := x2y2 − 5xy(x + y) + 16(x2 + y2) − 20(x + y) + 16

(x − y)2
,

G2(x, y) := x2y2 − 5xy(x + y) − 24(x2 + y2) − 20(x + y) + 16

(x − y)2
.

(3)

Theorem 2 For the family (1), suppose G1(M0) /∈ {10, 11}. If G1(M0) < 11, then
the sequence of points T n(M0) converges to the point D = (2, 2); if G1(M0) > 11,
then the sequence of points T n(M0) is periodic or is dense in the curve Cλ which
passes through M0.

Theorem 3 For the family (2), suppose G2(M0) /∈ {−19,−10}. If G2(M0) < −19,
then the sequence of points T n(M0) converges to D′ = (−2,−2); if G2(M0) > −19,
then the sequence of points T n(M0) is periodic or is dense in the curve Cλ which
passes through M0.



QRT-Families of Degree Four Biquadratic Curves Each … 371

Fig. 1 The regions defined by the values of the Gi

3 The New Example, Proof that the Curves Have Genus
Zero

The example is the following: we consider the family of real curves Cλ with equations

Bλ :=
[
x2y2 − xy(x + y) + (x2 + y2) − (x + y) + 1

]
− λ(x + y)(x − 1)(y − 1) = 0

(4)
where λ ∈ R.
First we remark that for λ = −1 the curve C−1 split in a double hyperbola with

equation
(xy − 1)2 = 0. (5)

Moreover we remark that the point D = (1, 1) is on every curve Cλ. So it is simpler
to make the change of variables

x = u + 1, y = v + 1, (6)

so that the new curve C̃λ has equation

B̃λ := u2v2 + uv(u + v) + u2 + v2 − λuv(u + v + 2) = 0. (7)

The point D becomes the point O = (0, 0). First we search the singular points at
infinity, which are given by the easy result:

Lemma 1 The points at infinity are H and V in directions horizontal and vertical,
and they are double points.
If −1 < λ < 3 the tangents (asymptotes) at these points are complex and distinct.
If λ < −1 and if λ > 3, the asymptotes are real and distinct.
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If λ = −1, there are double asymptotes v = −1 and u = −1.
If λ = 3, there are double asymptotes v = 1 and u = 1.
So if λ /∈ {−1, 3}, H and V are ordinary singular points of multiplicity 2.

One has also easily, with formula (7).

Lemma 2 The point O is an ordinary singular points of C̃λ of multiplicity 2 if
|λ| �= 1, which is isolated (complex distinct tangents) if |λ| < 1, andwith real distinct
tangents if |λ| > 1. If λ = −1 there is a double tangent (u + v)2 = 0, and if λ = 1
the double tangent is (u − v)2 = 0.

Now we search another singular points. We have

d B̃λ

du
− d B̃λ

dv
= (u − v)

(
(λ − 1)(u + v) + 2(λ + 1) − 2uv

)
,

u
d B̃λ

du
− v

d B̃λ

dv
= (u − v)

(
2(u + v) − (λ − 1)uv

)
.

(8)

So we search if a point (t, t)may be a singular point. We must have B̃λ(t, t) = 0 and
d B̃λ

du (t, t) = 0, so we have as solution t = 0, which gives again the point O . If t �= 0
when the equations

t2 − 2(λ − 1)t + 2(1 − λ) = 0 and 2t2 − 3(λ − 1) = 0

must have a common root. But it is easy to see that this is possible only for λ = −1
or λ = 1. In the first case, it is evident because all the points of C̃−1 are singular. For
λ = 1 we have again the point O .

If u �= v, we must find a common root of the two second members of (8), and
see if it is a solution of B̃λ(u, v) = 0. We put u + v = s and uv = p, and the three
equations become

p2 − (λ − 1)ps + s2 − 2(λ + 1)p = 0,

(λ − 1)s − 2p + 2(λ + 1) = 0,

2s − (λ − 1)p = 0.

(9)

The two last equations give s and p if λ �= 3, we put their values in the first equation
and obtain

4(λ + 1)

λ − 3
= 0. (10)

This is possible only for λ = −1, the case of the double curve (xy − 1)2 = 0 or, in
the new coordinates, (uv + u + v)2 = 0.

In fine ifλ = 3, then the two last equations in (9) are not compatible. In conclusion,
if λ �= −1, there is no other singular point except O, H and V , and they are ordinary
singular points with multiplicity 2 if λ �= 1.

If |λ| �= 1, the formula for the genus g of an algebraic curve of degree d
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g = (d − 1)(d − 2)

2
−

∑
p∈P

μp(μp − 1)

2
, (11)

which is true if the curve is not reducible, and where P is the set of all singular points
p supposed ordinary and of multiplicity μp (see [10]), gives for genus the number
0. So it remains to see if the curves are not reducible.

Necessary, by the symmetry with respect to the diagonal and the biquadratic
character of the curve, the only possibilities are that one has u2v2 − (λ − 1)uv(u +
v) + u2 + v2 − 2λuv identical to

(u2 + αu + γ)(v2 + αv + γ), or to

(uv + α(u + v) + γ)(uv + β(u + v) + δ), or to

(uv + αu + βv + γ)(uv + βu + γv + γ).

It is easy to see that each of these cases is impossible or gives again the curve
(uv + u + v)2 = 0 with λ = −1.

For λ = 1, the curve C̃1 has for equation u2v2 + (u − v)2 = 0, that it is reducible
as two complex conic curves.

So we have proved the essential result.

Theorem 4 If |λ| �= 1, the curve Cλ is not reducible and of genus zero. If λ = −1 it
is reducible as (xy − 1)2 = 0. If λ = 1, it is reducible as (x − 1)2(y − 1)2 + (x −
y)2 = 0 (two complex conic curves except the real point D = (1, 1)).

At last we prove the final result of this section.

Proposition 1 (a) If−1 < λ ≤ 1, the curve Cλ has no real point, except the point D.
(b) The intersection of the set {Q2(x, y) = 0} = {x = 1} ∪ {y = 1} ∪ {x + y = 0}
with each curve Cλ in the real domain is exactly the point D = (1, 1).
(c) The intersection of the set {xy = 1} with a curve Cλ with λ �= −1 reduces to the
point D = (1, 1).

Proof The second and third assertions are easy. So we prove assertion (a).
For a point (u, v) of a curve C̃λ with equation R1(u, v) − λR2(u, v) = 0 we have

λ = R1(u, v)

R2(u, v)
. We shall prove that we have λ = R1(u, v)

R2(u, v)
> 1 or λ = R1(u, v)

R2(u, v)
≤

−1,with R1(u, v) = u2v2 + uv(u + v) + u2 + v2 and R2(u, v) = uv(u + v) + 2uv.

If R2(u, v) > 0, then λ > 1: in fact, u2v2 + uv(u + v) + u2 + v2 > uv(u + v +
2), because u2v2 + (u − v)2 > 0 (except at O). If R2(u, v) < 0, then one has λ <

−1. Because u2v2 + uv(u + v) + u2 + v2 > −uv(u + v + 2), or (uv + u + v)2 >

0, which is true, except for the curve C̃−1. �

In the following Figure, we give some examples of the forms of the curves Cλ.
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Fig. 2 Different forms of curves

4 The Associated Dynamical System

Recall what is the QRT-map T associated to the QRT-family (4). Let be M a point

in the region where Q2(x, y) �= 0, that is the set Z := R
2 \

[
{x + y = 0} ∪ {x =

1} ∪ {y = 1}
]
. The horizontal line which passes to M cuts again the curve Cλ of the

family which passes to M at a point M1, and the vertical line through M1 cuts Cλ at
the image T (M). It is possible that one of these points are at infinity, id est in H or
in V . Moreover the image by T of a point in {xy = 1} is always V . So we consider
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the set Z := (Z ∪ {H, V }) \ {xy = 1}. It results of Proposition 1(b)(c) that the map
T sends the set Z into itself. So it is possible to study the dynamical system (Z , T ).

First we make the change of variables

x = 1 − X

Y
, y = 1 − Y

X
, or X = x − 1

xy − 1
, Y = y − 1

xy − 1
, (12)

obtained by splitting the point D. Putting the new variables in the equation of Cλ,
we obtain a double line with equation (X + Y − 1)2 = 0 and a family of conics,
equations of them are (for λ �= −1)

X2 + Y 2 − X − Y + 1

λ + 1
= 0. (13)

With the new change of variables

X = U + 1/2, Y = V + 1/2, (14)

and putting

a2 = λ − 1

2(λ + 1)
, a > 0 (|λ| > 1), (15)

we obtain a family of circles Γa of centre (0, 0) and radius a:

U 2 + V 2 = a2. (16)

Now we search the conjugated T̃ of the map T by this transformation (12). We
remark that the horizontal lines become the pencil of lines passing through the point
H̃ = (−1/2, 1/2), and that the vertical lines become the pencil of lines passing
through the point Ṽ = (1/2,−1/2). So the map T̃ is defined geometrically by the
following procedure: if M ∈ Γa , the line (MH̃) cuts Γa at M1, and the line (M1Ṽ )

cuts again Γa at the point T̃ (M) (remark that H̃ and Ṽ are not on Γa).
We use the parametrisation of the circles

U (t) = a
1 − t2

1 + t2
, V (t) = a

2t

1 + t2
, (17)

and some easy computations with Maple gives the parameter s of the image T̃ (M):

s = h(t) := (2a2 − 2a + 1)t − 2a

2a2 + 2a + 1 − 2at
. (18)

Thismap h is an homographicmap (also calledMoebiusmap, because 2a2 − 1 �= 0),
which has two fixed points: 1 + √

2 and 1 − √
2. So it exists a number k independant

of t such that we have
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h(t) − (1 + √
2)

h(t) − (1 − √
2)

= k
t − (1 + √

2)

t − (1 − √
2)

. (19)

The n-iteration of the map h is associated to the number kn , so we have to determine
k by the formulas (18) and (19). The computation gives

k =
(1 + √

2a

1 − √
2a

)2
> 1. (20)

So kn → ∞ when n → ∞, and then hn(t) → 1 − √
2 when n → ∞.

We return to the old coordinates : U → a
√
2−1

2−√
2
, V → a 1−√

2
2−√

2
; then the limit of

(X,Y ) is
(
1/2 + a

√
2−1

2−√
2
, 1/2 − a

√
2−1

2−√
2

)
, and finally (x, y) → (1, 1).

In fine we have proved the final result.

Theorem 5 For every point M of the set R2 \
[
{x + y = 0} ∪ {x = 1} ∪ {y = 1} ∪

{xy = 1}
]
, the point T n(M) converges to the point D = (1, 1).

So we see that this result contrasts with this one of Sect. 2 (or of [7]) where in a
region of the plane the dynamical system has an infinity of periods.

5 An Example with Q1 and Q2 of Degrees Four

Without proof, we give another example Q1 − λQ2 = 0 with Q1 and Q2 of degrees
four. This is the following

Gλ(x, y) := x2y2 + x2 + y2 − λxy(xy − 1) = 0. (21)

For λ /∈ {−2, 1, 2}, each of the associated curves has the points O , H and V which
are ordinary singular points with multiplicity two. Moreover if λ /∈ {−2, 1, 2}, then
the curves are not reducible. So their genus are exactly zero.

For λ ∈ {−2, 1}, the curves are reducible to two complex conic curves or to
two complex lines. For λ = 2, the curve reduces to two real hyperbolas. And for
λ ∈ [−2, 1] the curves have only complex points, except the point O .

For the associated QRT-map T defined in the complement of the set {xy = 0} ∪
{xy = 1}, there are two regions: this one where one has

∣∣∣∣
x2y2 + x2 + y2

xy(xy − 1)

∣∣∣∣ > 2, and

then if M is in this region T n(M) → O = (0, 0); and the region where one has

1 <
x2y2 + x2 + y2

xy(xy − 1)
< 2, and then every integer larger than some integer N is the

period of some points in this region, and the orbits of some points are dense in the
curves Cλ which contain them, the two kinds of points being dense in this second
region.
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Stability of Discrete-Time Coupled
Oscillators via Quotient Dynamics

Brian Ryals

Abstract We examine a discrete-time version of the Kuramoto Model for coupled
oscillators. Phase-locked states of N coupled oscillators correspond to invariant cir-
cles on T

N , and can be viewed as fixed points of a quotient dynamical system. We
will discuss how to define and classify the stability of these phase-locked states via
the corresponding equilibria in the quotient system, and give some examples where
the quotient mapping helps identify the phase-locked families and their stability.

Keywords Kuramoto model · Coupled oscillators · Asymptotic stability

1 Introduction

Perhaps the most historically significant coupled oscillator model is the Kuramoto
model, which features N oscillators rotating around a circle in continuous time.
Inspired by observations made byWinfree [20], Kuramoto’s original model [14] had
the form

θ̇i = ωi −
N∑

j=1

Γi j (θi − θ j ), i = 1, . . . , N .

Kuramoto then made the following simplification on the coupling functions: He set
Γi j (θi − θ j ) = K

N sin(θi − θ j ) for all i, j . The coupling constant K is nonnegative
and is independent of i and j . With this, Kuramoto’s model becomes

θ̇i = ωi − K

N

N∑

j=1

sin(θi − θ j ), i = 1, . . . , N . (1)
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The version with the sine coupling is usually what is meant by the “The Kuramoto
Model.” Classical studies of this model in the infinite N limit may be found in [1, 6,
14, 16, 19]. Rigorous results for finite N can be found in [4, 5, 12, 15]. More recent
works include [7–9, 17].

In this chapter, we will consider a discrete-time adaption of the Kuramoto model.
Our main goal is to put the ideas of synchronization, phase-locking, and the stability
of such solutions in a rigorous setting. We will discuss different viewpoints of the
model and show how the dynamics may be reduced to a quotient dynamical system.
We will conclude with some examples to illustrate the usefulness of our quotient
system.

Throughout this chapter, we adopt the following notation. We view

S ∼= R/

(
Z + 1

2

)

so that S is a circle with circumference 1 and let

p : R → S

be the corresponding projectionmap.We view (−1/2, 1/2] as a fundamental domain
and for each x ∈ S, we let x̂ ∈ R be given by

x̂ = p−1(x) ∩ (−1/2, 1/2] . (2)

We view S as being positively oriented and adopt additive notation on the circle, so
that if x, y ∈ S, then x + y = p(x̂ + ŷ).

The N -dimensional torus is defined similarly. We view

T
N = S × S × · · · × S ∼= R

N/(Z + 1/2)N .

As each component of T
N is an element of S, addition is understood to be defined

by addition of their respective components.
The difference equation model to be considered in the rest of this chapter is

θi (t + 1) = θi (t) + ωi − p

⎛

⎝K

N

n∑

j=1

g
(
θi (t) − θ j (t)

)
⎞

⎠ , i = 1, . . . , N .

Here we take discrete steps t ∈ Z
+, the coupling constant K is nonnegative, N

is the number of oscillators, denoted as θ1, . . . , θN with each θi ∈ S, and ωi ∈ S

corresponds to a rigid rotation in the uncoupled (K = 0) system. Further, p is the
projection map described above, and g : S → R is the coupling function which we
will assume to be an odd function.
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2 Viewpoints of the Model and a Quotient Dynamical
System

There are a couple of ways to visualize the dynamics. The first is themarked particle
viewpoint where we view, as Kuramoto did in the continuous model, all N oscillators
as N particles rotating along a lone circle. The ideas of synchronization and phase-
locking are perhaps more intuitive in this marked particle viewpoint, see Fig. 1. With
synchronization, every oscillator collapses to the same point and rotates around the
circle together thereafter (row 1 of Fig. 1). Phase-locking is similar, with oscillators
having their phase differences approaching a constant, rotating in unison with these
phase differences remaining locked (row 2 of Fig. 1). A lack of either is sometimes
called incoherence (row 3 of Fig. 1). In some coupled oscillator systems, chimera
states (not pictured), where some oscillators phase-lockwhile others act incoherently,
have been observed [17].

The other torus viewpoint is to view the whole phase space on T
N and view the

collection of oscillators as a single point,with the dynamics being an orbit of points on
the torus. That is, we view the equation as θ(t + 1) = F(θ(t))where F : T

N → T
N ,

θ(t) = (
θ1(t), . . . , θN (t)

)
. Here we denote the i-th component by Fi (θ), which is

given by

t=0 t= 1 t= 2 t= 3

t=0 t= 1 t= 2 t= 3

t=0 t= 1 t= 2 t= 3

Fig. 1 Examples of different long term phenomena of coupled oscillators. In the top row, the
oscillators synchronize. In the middle row, the oscillators are phase-locked. In the bottom row, the
oscillators are incoherent
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Fi (θ) = θi + ωi − p

⎛

⎝K

N

n∑

j=1

g(θi − θ j )

⎞

⎠ .

A synchronized solution is any orbit θ(t) where for all t ∈ Z
+ we have θi (t) =

θ j (t) for all i, j ∈ 1, . . . , N . Similarly, a phase-locked solution is any orbit θ(t)
where for each t ∈ Z

+, we have θi (t) − θ j (t) = ψi j for all i, j ∈ 1, . . . , N , with ψi j

independent of the time parameter t . Of course, if all ψi j = 0, then the phase-locked
solution is a synchronized solution.

There are two important observations to bemade for these phase-locked solutions,
both of which will motivate our study of a quotient system to be described shortly.
The first observation is that these phase-locked solutions cannot be asymptotically
stable in the usual sense. To see this, observe that if θ(t) is a phase-locked solution,
then any rotation of θ is also a distinct phase-locked solution. More generally, we
have the following Lemma.

Lemma 1 Let θ ∈ T
N . Let Ω = (

Ω,Ω, . . . , Ω
)
where Ω ∈ S. Let m be a positive

integer. Then
Fm

(
θ + Ω

) = Fm(θ) + Ω .

Proof This is just a computation. Form = 1we have that the i-th entry of F
(
θ + Ω

)

is given by

Fi (θ + Ω) = θi + Ω + ωi + p

⎛

⎝K

N

n∑

j=1

g(θi + Ω − θ j − Ω)

⎞

⎠

= θi + Ω + ωi + p

⎛

⎝K

N

n∑

j=1

g(θi − θ j )

⎞

⎠

= Fi (θ) + Ω .

The statement for m > 1 follows by induction. �

This implies we cannot have the usual notion of asymptotic stability for our phase-
locked solutions. For if we have any phase-locked solution, we can translate all of its
components by an arbitrary small constant, and this new solution will never return
to the original solution. However, from a practical point of view, if a perturbation of
a phase-locked solution is asymptotic to a different phase-locked solution with an
identical structure, then in some sense that solution should be stable. Our quotient
system, to be defined shortly, will address this paradox by treating all rotations of a
configuration in the marked particle viewpoint as identical.

The other important observation is to notice that neither synchronized solutions
nor phase-locked solutions are necessarily fixed points of F , as they still rotate with
their locked-phases. However, by equating rotations, we can turn the problem of
finding phase-locked solutions into one of finding fixed points of a quotient map.
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Let us now be more precise. For x, y ∈ T
N , where x = (x1, . . . , xN ) and y =

(y1, . . . , yN ), we define x ∼ y if for some Ω ∈ S, we have that xi + Ω = yi for i =
1, . . . , N . Notice that Lemma1 implies that if x ∼ y, then F(x) ∼ F(y), so that the
equivalence relation respects the dynamics. This gives a quotient spaceT

N/ ∼ ≡ T̃
N

with a projection map q : T
N → T̃

N that sends a point x ∈ T
N to its equivalence

class x̃ ∈ T̃
N . We will study the induced quotient mapping F̃ : T̃

N → T̃
N where

F̃ = q ◦ F ◦ q−1.
Note that the preimage of a single point x̃ ∈ T̃

N given by q−1(x̃) is an entire
circle in T

N . Consequently, if x̃ is a fixed point of F̃ , so that F̃(x̃) = x̃ , then the
corresponding circle q−1(x̃) ∈ T

N is invariant under F , i.e. F
(
q−1(x̃)

) = q−1(x̃).
We will soon show that these invariant circles are the phase-locked solutions of the
original mapping.

We remark that it is straightforward to show that T̃
N is homeomorphic to T

N−1

using the following well known topological lemma.

Lemma 2 Let X and Y be compact Hausdorff spaces and let h be a continuous
function from X onto Y . Let ∼ be an equivalence relation on X such that x ∼ y if
and only if h(x) = h(y). Then X/ ∼ is homeomorphic to Y .

For a proof of the lemma, see e.g. [10].

Corollary 1 The quotient space T̃
N is homeomorphic to T

N−1.

Proof An onto function h : T
N → T

N−1 will be constructed such that x ∼ y if and
only if h(x) = h(y). Let x ∈ T

N be such that x = (x1, . . . , xN ) with each xi ∈ S.
Let

h(x) = h(x1, . . . , xN ) = (x1 − xN , x2 − xN , . . . , xN−1 − xN ) ∈ T
N−1 .

The function h is onto since

h(a1, . . . , aN−1, 0) = (a1, . . . , aN−1)

for any (a1, . . . , aN−1) ∈ T
N−1. Further, if h(x) = h(y), then

(x1 − xN , x2 − xN , . . . , xN−1 − xN ) = (y1 − yN , y2 − yN , . . . , yN−1 − yN ) ,

so that xi = yi − yN + xN = yi + Ω for all i , withΩ = xN − yN ∈ S, so that x ∼ y.
If x ∼ y, then (x1, . . . , xN ) = (y1 + Ω, . . . , yN + Ω), and

h(x) = (x1 − xN , x2 − xN , . . . , xN−1 − xN )

while

h(y) = (y1 + Ω − yN − Ω, y2 + Ω − yN − Ω, . . . , yN−1 + Ω − yN − Ω) = h(x) .
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Thus, the result follows from the preceding lemma. �

The next lemma says that phase-locked solutions are exactly the trajectories that
correspond to an invariant circle on T

N .

Lemma 3 Let θ(t) be an orbit of θ(t + 1) = F(θ(t)). Then θ(t) is a phase-locked
solution if and only if there exists an x̃ such that θ(t) ∈ q−1(x̃) for all t .

Proof Recall that a phase-locked solution is any orbit θ(t) where we have for any
i, j ∈ {1, . . . , N } that

θi (t) − θ j (t) = ψi j (3)

with ψi j independent of the time parameter t .
First, assume that θ(t) is a phase-locked solution. Then for all t ≥ 0, we have, by

taking j = 1 in Eq. (3) above for all i , that

(
ψ11,ψ21, . . . ,ψN1

) = (
θ1(t) − θ1(t), θ2(t) − θ1(t), . . . , θN (t) − θ1(t)

)

= (
θ1(t), θ2(t), . . . , θN (t)

) − (
θ1(t), θ1(t), . . . , θ1(t)

)
.

Then for any times τ1, τ2, we have that

(θ1(τ1), . . . , θN (τ1)) − (θ1(τ1), θ1(τ1), . . . , θ1(τ1))
= (θ1(τ2), . . . , θN (τ2)) − (θ1(τ2), θ1(τ2), . . . , θ1(τ2)) .

But then θi (τ1) = θi (τ2) + cτ1,τ2 where cτ1,τ2 = θ1(τ2) − θ1(τ1) for all i . Conse-
quently θ(τ1) ∼ θ(τ2) and since τ1, τ2 are arbitrary, it follows that θt ∈ q−1

(
q(θ(0))

)

for all t .
Now assume there exists a x̃ such that θ(t) ∈ q−1(x̃) for all t . Then θ(t) ∼ θ(0) for

all t , so that θi (t) = θi (0) + c(t) for some c(t) ∈ S for all i . But then θi (t) − θ j (t) =
θi (0) − θ j (0) for every t , with θi (0) − θ j (0) independent of t . �

We remark that in the proof of Lemma 3 we use the difference

(
θ1(t), θ2(t), . . . , θN (t)

) − (
θ1(t), θ1(t), . . . , θ1(t)

)
.

An intuitive interpretation of this computation in the marked particle viewpoint is
that we mark one of the particles and rotate our point of view after teach time step
so that this particle is always in the same location. As a consequence of Lemma 3,
we have the following.

Corollary 2 Let θ(t) be an orbit of θ(t + 1) = F(θ(t)). Then θ(t) is a phase-locked
solution if and only if q(θ(t)) is a fixed point of F̃ for all t .

Proof If θ(t) is a phase-locked solution, then by Lemma 3 there exists a x̃ such that
θ(t) ∈ q−1(x̃) for all t . Then

q−1(x̃) = {x ∈ T
N : x = θ(0) + (

Ω,Ω, . . . ,Ω
)
, Ω ∈ S} .



Stability of Discrete-Time Coupled Oscillators via Quotient Dynamics 385

Then for any x ∈ q−1(x̃), we have

F(x) = F
(
θ(0) + (

Ω,Ω, . . . ,Ω
)) = F(θ(0)) + (

Ω,Ω, . . . ,Ω
)
.

Then
q(F(x)) = q

(
F(θ(0)) + (

Ω,Ω, . . . ,Ω
)) = q (F(θ(0))) = x̃ .

It follows that F̃(x̃) = q(F(q−1(x̃))) = x̃ .
If instead q(θ(t)) is a fixed point of F̃ for all t , then θ(t) ∈ q−1(x̃) for all t and

the result follows by Lemma3. �

Lemma 3 and Corollary 2 imply that phase-locked solutions come in entire circles
in the phase space, and that each phase-locked solution is part of a one parameter
family of solutions.Moreover, these circles correspond to a fixed point of the induced
quotient dynamical system F̃ , so to find all of the phase-locked solutions (and thus
also the synchronized solutions), we only need to find all the fixed points of F̃ . In
the next section, we will explore how to construct this map in more detail, as well as
discuss the stability of these phase-locked solutions.

3 Stability of Phase-Locked Solutions

As noted in the previous section, since phase-locked solutions come in whole circles,
it is impossible to obtain the usual notion of asymptotic stability. We will consider
instead the stability of the entire family of phase-locked solutions. Informally, we
can think of perturbing a phase-locked solution, and asking if the future of this
perturbation is asymptotic to the future of some phase-locked solution in the same
family.As this entire family is a single point in T̃

N , we are really asking for asymptotic
stability of a fixed point of F̃ .

In symbols, by a family of phase-locked solutions we mean the one-parameter set
θ(t) + Ω with θ(t) ∈ T

N and our parameterΩ = (Ω, . . . ,Ω)withΩ ∈ S. Here θ(t)
satisfies θ(t + 1) = F(θ(t)) and corresponds to a fixed point for F̃ , so that q(θ(t)) =
x̃ for all t .We define this family of phase-locked solutions to be asymptotically stable
if the fixed point x̃ of F̃ is asymptotically stable.

For differentiable maps in R
N , we often use eigenvalues to identify equilibria that

are asymptotically stable. For smooth g, let us now see how to both explicitly write
out the quotient mapping using coordinates, as well as how to extract a matrix from
our quotient map so that we can perform the usual type of analysis.

Let x̃ ∈ T̃
N . Then, by Corollary 1, x̃ has a representation (x1, . . . , xN−1) ∈ T

N−1.
Since one of the points x ∈ q−1(x̃) has its last component equal to 0, we can
choose the coordinates in such a way that the first N − 1 coordinates match with
(x1, . . . , xN−1) ∈ T

N−1 for each x̃ ∈ T̃
N (see also the proof of Corollary 1). That is,

we have that
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q−1(x̃) = {x ∈ T
n : x = (x1, . . . , xN−1, 0) + (

Ω,Ω, . . . ,Ω
)
, Ω ∈ S} .

Denoting Ω = (
Ω,Ω, . . . ,Ω

)
and x = (x1, . . . , xN−1, 0), we have by Lemma 1

that
q

(
F

(
q−1(x̃)

)) = q
(
F(x + Ω)

) = q
(
F(x) + Ω

) = q (F (x)) .

Notice the last component

FN (x) = ωN + p

⎛

⎝K

N

N−1∑

j=1

g(x j )

⎞

⎠ .

Then consider

x∗ = x −
⎛

⎝ωN + p

⎛

⎝K

N

N−1∑

j=1

g(x j )

⎞

⎠ , . . . ,ωN + p

⎛

⎝K

N

N−1∑

j=1

g(x j )

⎞

⎠

⎞

⎠

so that x∗ is the same as x but rotated so that the last component of F(x∗) is 0. Since
x ∼ x∗, we have q(F(x)) = q(F(x∗)), so it suffices to write out the mapping F(x∗).
We have for i = 1, . . . , N − 1 that

Fi (x
∗) = xi + ωi − ωN − p

⎛

⎝K

N
g(xi ) + K

N

N−1∑

j=1

g(xi − x j )

⎞

⎠ − p

⎛

⎝K

N

N−1∑

j=1

g(xi )

⎞

⎠

while by construction
FN (x∗) = 0 .

It follows that F̃(x̃) = q ◦ F ◦ q−1(x̃) has as its N − 1 components

F̃i (x̃) = xi + ωi − ωN − p

⎛

⎝K

N
g(xi ) + K

N

N−1∑

j=1

g(xi − x j )

⎞

⎠ − p

⎛

⎝K

N

N−1∑

j=1

g(xi )

⎞

⎠

where (x1, . . . , xN−1) ∈ T
N−1 is the coordinate representation of x̃ .

Further, we may identify the tangent space of any x̃ ∈ T
N−1 with R

N−1. There,
the matrix representation of DF̃(x) is an (N − 1) × (N − 1) matrix with the i-th
diagonal entry given by

1 − 2K

N
g′(xi ) − K

N

N−1∑

j=1, j �=i

g′(xi − x j )

and the i j-th entry for i �= j given by
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K

N
g′(xi − x j ) − K

N
g′(x j ) .

Eigenvaluesmay be then computed at a fixed point x̃ , and the eigenvaluesλ satisfying
|λ| < 1 is, as usual, equivalent to asymptotic stability for x̃ under the mapping F̃ .

4 Examples

In this section we will give two examples where the coordinates for the quotient map
and the resulting matrix are computed explicitly.

4.1 Two Oscillators with a Sinusoidal Coupling

Consider the system with two oscillators and the coupling function

g(x) = sin(2πx̂)

where x̂ is defined in Eq. (2). Then the system takes the form

θ1(t + 1) = θ1(t) + ω1 − p

(
K

2
sin

(
2π(θ̂1 − θ2)

))

θ2(t + 1) = θ2(t) + ω2 − p

(
K

2
sin

(
2π(θ̂2 − θ1)

))

The corresponding quotient map F̃ gives the rather simple equation

x(t + 1) = x(t) + ω1 − ω2 − p

(
K

2
sin(2πx̂(t))

)
− p

(
K

2
sin(2πx̂(t))

)
.

Phase locked solutions correspond to fixed points of this quotient map, given by

ω1 − ω2 − p

(
K

2
sin(2πx̂)

)
− p

(
K

2
sin(2πx̂)

)
= 0 .

Fixed points are easily found by solving the 1D equation in R given by

K sin(2πx̂) = ω̂1 − ω2 .

The stability of such a solutions is determined by whether

1 − 2Kπ cos(2πx̂) ∈ (−1, 1) .
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Phase locked solutions are then found by computing q−1(x), which yields the family
of phase-locked solutions determined by (x + a, a) where a ∈ S with phase differ-
ence x .

We see that we only have phase-locked solutions if K is sufficiently large; in par-
ticular, we need K ≥ |ω̂1 − ω2|. In the case of K > |ω̂1 − ω2| there are two solutions
x̂1 and x̂2 where |x̂1| < 1

4 and 1
4 < |x̂2| ≤ 1

2 . We see that the phase-locked solution
corresponding to x̂2 is always unstable, as cos(2πx̂2) ≤ 0.

For x̂1, we see that the expression

1 − 2Kπ cos(2πx̂1) = 1 − 2πK

√√√√1 −
(

ω̂1 − ω2

K

)2

.

The expression inside the squareroot is positive by assumption, so the above
expression is real and always smaller than 1. A routine computation shows that this

expression is only greater than −1 if K <

√
1
π2 +

(
ω̂1 − ω2

)2
.

We summarize our findings in the following Theorem.

Theorem 1 The system

θ1(t + 1) = θ1(t) + ω1 − p

(
K

2
sin

(
2π(θ̂1 − θ2)

))

θ2(t + 1) = θ2(t) + ω2 − p

(
K

2
sin

(
2π(θ̂2 − θ1)

))

has both a unique family of unstable phase-locked solutions and a unique family of
asymptotically stable phase-locked solutions if

|ŵ1 − w2| < K <

√
1

π2
+

(
ω̂1 − ω2

)2
.

If instead
K < |ŵ1 − w2|

then there are no phase-locked solutions, and if

K >

√
1

π2
+

(
ω̂1 − ω2

)2

then there are two phase-locked families of unstable phase-locked solutions.

Let us look at an example. Let us consider ω̂1 = 1
4 , ω̂2 = 1

8 , so that |ŵ1 − w2| =
0.125 and

√
1
π2 +

(
ω̂1 − ω2

)2 ≈ 0.34197. A plot of θ1(t) and θ2(t) for
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t= 0

K= 0.1 , 
1
 = 0.25  , 

2
 = 0.125 

t= 1 t= 2 t= 3

t= 4 t= 5 t= 6 t= 7

t= 8 t= 9 t= 10 t= 11

t= 12 t= 13 t= 14 t= 15

Fig. 2 A plot of the first 16 iterates when K = 0.1, ω̂1 = 1
4 , and ω̂2 = 1

8 is shown. No phase-
locking is observed, as expected for these values as there are no fixed points in the quotient map.
The two oscillators act incoherently for all t

t = 0, 1, . . . , 15 for coupling values K = 0.1, K = 0.25, and K = 0.4 are shown
in Figs. 2, 3, and 4 respectively. In the figures, θ1 is shown as the larger dot. The
initial condition used was to start θ1 and θ2 on opposite sides of the circle. With
K < |ŵ1 − w2| in Fig. 2, no phase-locking is observed, and the oscillators act as if
uncoupled, with θ1 rotating at a faster frequency and lapping θ2. When K = 0.25

we are in the stability range |ŵ1 − w2| < K <

√
1

π2
+

(
ω̂1 − ω2

)2
. The orbits are

depicted in Fig. 3, and we see that by t = 5 the two oscillators begin to lock their
phases and rotate in unison thereafter. When K = 0.4, shown in Fig. 4, we have

K >

√
1

π2
+

(
ω̂1 − ω2

)2
. There the phase-locked families are unstable, and we

instead observe a period 2 phase-locked orbit, where even t are locked at a different
phase than odd t .
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t= 0

K= 0.25 , 
1
 = 0.25  , 

2
 = 0.125 

t= 1 t= 2 t= 3

t= 4 t= 5 t= 6 t= 7

t= 8 t= 9 t= 10 t= 11

t= 12 t= 13 t= 14 t= 15

Fig. 3 A plot of the first 16 iterates when K = 0.25 ω̂1 = 1
4 , and ω̂2 = 1

8 is shown. For these
parameter values the quotient map has a stable fixed point. The oscillators quickly become phase-
locked with the phase-difference rapidly converging to 1

12 as t grows. They will continue to rotate
in unison with this fixed separation thereafter

4.2 Five Oscillators with Equal Rotation Frequencies and a
Piecewise Linear Coupling

Let us consider the system where ωi = ω, i = 1, . . . , 5 and the piecewise linear
coupling g0 : S − {p(1/2)} → R with g0(x) = x̂ , with the ˆ operation defined in
Eq. (2). A plot of g0 ◦ p : R → R is shown in Fig. 5. It has discontinuities when-
ever p(x) = 1/2. The coupling function used in this system is also found in [13].
There the intuition behind this map is given, namely that g0(xi − x j ) measures what
they call the “oriented distance” between xi and x j , and this distance is undefined
when two points are directly opposite, explaining why we exclude one of the points
in the domain of g0. See Fig. 6 for some examples.

Nonetheless, we can still look for phase-locked solutions that stay away from the
discontinuity set. Our equations take the form
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t= 0

K= 0.4 , 
1
 = 0.25  , 

2
 = 0.125 

t= 1 t= 2 t= 3

t= 4 t= 5 t= 6 t= 7

t= 8 t= 9 t= 10 t= 11

t= 12 t= 13 t= 14 t= 15

Fig. 4 A plot of the first 16 iterates when K = 0.4, ω̂1 = 1
4 , and ω̂2 = 1

8 is shown. For these
values both fixed points of the quotient map are unstable. The oscillators appear to settle on a stable
period 2 phase-locked orbit where odd t have a phase-difference of θ̂1 − θ2 ≈ 0.205 while even t

have θ̂1 − θ2 ≈ −0.054. This suggests the initially stable fixed point undergoes a period doubling
bifurcation in the quotient map as K crosses the stability threshold of 0.34197. This period 2 orbit
in the quotient map corresponds to the continued rotation with alternating phase-differences seen
here

1/2 3/21-1/2

1/2

-1/2

-1-3/2

g0(x)

Fig. 5 Aplot of g0 ◦ p is shown. The function is discontinuous whenever p(x) = 1/2. As required,
the function depicted is odd with period 1
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Fig. 6 The coupling
function g0 between two
points on the circle gives the
oriented distance between
the two oscillators. The
orientation of the attraction
of the two oscillators is
shown. In (c) this orientation
is undefined, as is the case
for any two antipodal points

xj xj

xi xi
xi

xj

??

??

(a) (b) (c)

θi (t + 1) = θi (t) + ω − p

⎛

⎝K

5

5∑

j=1

g0(θi (t) − θ j (t))

⎞

⎠ .

To look for phase-locked solutions, we look at the four-dimensional quotient
mapping with equations

xi (t + 1) = xi (t) − p

⎛

⎝ K

5
g0(xi (t)) + K

5

4∑

j=1

g0(xi (t) − x j (t))

⎞

⎠ − p

⎛

⎝ K

5

4∑

j=1

g0(xi (t))

⎞

⎠ .

Fixed points are obtained whenever, for all i = 1, 2, 3, 4, the sums

K

5
g0(xi ) + K

5

4∑

j=1

g0(xi − x j ) + K

5

4∑

j=1

g0(xi )

yield an integer. Since g0 maps to (−1/2, 1/2], for any K < 2, the only possible
integer is 0. Consequently, the expression can only be made an integer if

g0(xi ) +
4∑

j=1

g0(xi − x j ) +
4∑

j=1

g0(xi ) = 0 .

This sum can be simplified by noting that the only three possibilities for g0(xi −
x j ) = x̂i − x j are given by

g0(xi − x j ) =

⎧
⎪⎨

⎪⎩

x̂i − x̂ j + 1, x̂i − x̂ j ≤ − 1
2

x̂i − x̂ j , − 1
2 < x̂i − x̂ j ≤ 1

2

x̂i − x̂ j − 1, x̂i − x̂ j > 1
2

and that g0(xi ) = x̂i . After some omitted calculations, one obtains fixed points of the
form
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x = (0, 0, 0, 0), x = (−2/5,−2/5, 2/5, 2/5), x = (−2/5,−1/5, 1/5, 2/5)

as well as the remaining 28 permutations of these solutions. Of note is that the first
of these solutions corresponds to a synchronized trajectory. Each of these is easily
translated to a phase-locked family in the original system.

Let us now determine their stability. Since g′(x) = 1, the Jacobian matrix is con-
stant, with diagonal entries given by

1 − K

5
− K

5

4∑

j=1, j �=i

(1) − K

5
= 1 − K .

Since the off diagonal entries are just 0, the Jacobian is a diagonal 4 × 4 matrix with
diagonal entries 1 − K . We conclude that all of these phase-locked solutions, includ-
ing the synchronized state, are stable whenever K < 2. If K > 2, these solutions still
satisfy the equations, but are unstable. There may also be other fixed points of the
quotient map when K > 2. This leaves us with the following Theorem.

Theorem 2 The model described by the equations

θi (t + 1) = θi (t) + ω − p

⎛

⎝K

5

5∑

j=1

g0(θi (t) − θ j (t))

⎞

⎠ , i = 1, 2, 3, 4, 5

has 31 stable phase-locked families if K < 2. They are given explicitly by

(a, a, a, a, a) ,

the six distinct permutations of the first four coordinates of

(
−2

5
+ a,−2

5
+ a,

2

5
+ a,

2

5
+ a, a

)
,

and the 24 permutations of the first four coordinates of

(
−2

5
+ a,−1

5
+ a,

1

5
+ a,

2

5
+ a, a

)

where a ∈ S. All 31 of these phase-locked families are unstable if K > 2.

We emphasize again that when we say a phase-locked family S is asymptotically
stable, such as one of the families in Theorem 2, we do not mean that x ∈ S is
asymptotically stable in the classical sense. It is not true that if x ∈ S and y is a
sufficiently small perturbation of x , that |Fn(x) − Fn(y)| → 0 as n → ∞. What is
true is that there exists a z ∈ S such that |Fn(z) − Fn(y)| → 0, but in general z �= x .



394 B. Ryals

5 Conclusion and Discussion

We have analyzed a discrete time model on T
N for a system of coupled oscillators,

with an emphasis on phase-locking and synchronization. By identifying all rotations
of a configuration of oscillators, we defined a quotient space homeomorphic toT

N−1

with a quotient map whose fixed points correspond to families of phase-locked and
synchronized solutions in the original system.Moreover, the stability of phase-locked
families can be determined by examining the stability of the fixed point in the quotient
space.

It is appropriate to compare the results here to that of the continuous time
Kuramoto model given by Eq.1. Though this is an oversimplification, the results
may be broken into two cases, that of finite N and that of the continuum N → ∞
limit. We compare only to the former and comment that there are many stability
results in the continuum limit, see [7] for a thorough review of this case.

For finite N , stability results for Eq.1 are analogous to those in this article in the
sense that they use a rotating frame to translate the problem to one of fixed points,
as we have done with the quotient mapping. In some cases, such as in [4], results are
also given on the size of the basins of attraction by measuring what proportion of
initial conditions will phase-lock. In contrast, the stability results in this article are
local and we have not provided any estimates on the basin of attraction of the stable
phase-locked families.

In the example with two oscillators in Sect. 4.1, for the parameter range where
there is a single stable fixed point in the quotient map, numerical simulations suggest
that the lone stable family attracts almost all initial conditions. It is likely that some
of the global convergence results in difference equations on [0,∞)n (see for instance
[2, 3, 11, 18]) can be extended to systems of coupled oscillators on the torus. Future
work on the global properties of phase-locking is planned.
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Reaching a Consensus via Krause Mean
Processes in Multi-agent Systems:
Quadratic Stochastic Operators

Tuncay Candan, MANSUR SABUROV, and Ünal Ufuktepe

Abstract A multi-agent system is a system composed of multiple interacting so-
called intelligent agents who possibly have different information and/or diverging
interests. The agents could be robots, humans or human teams. Opinions are at the
basis of human behavior, and can be seen as the internal state of individuals that
drives a certain action. Opinion dynamics is a process of individual opinions, in
which a group of interacting agents continuously fuse their opinions on the same
issue based on established rules to reach a consensus in the final stage. To some
extent, the Krause mean process is a general model of opinion sharing dynamics in
which the opinions are represented by vectors. In this paper, we present an opinion
sharing dynamics by using positive quadratic stochastic operators and establish the
consensus in the system.

Keywords Krause mean process · Quadratic stochastic operator · Cubic
stochastic matrix · Consensus

1 Introduction

A multi-agent system is a system composed of multiple interacting so-called intelli-
gent agents who possibly have different information and/or diverging interests. The
agents could be robots, humans or human teams. The humans are complex indi-
viduals whose behaviors are governed by many aspects, related to social context,
culture, law and other factors. In spite of these many factors, human societies are
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characterized by stunning global regularities in which we can see transitions from
disorder to order. These macroscopic phenomena naturally call for a mathematical
model to understand social behavior, i.e., a model to understand regularities at large
scale as collective effects of the interaction among single individuals. Opinions are
at the basis of human behavior, and can be seen as the internal state of individuals
that drives a certain action. Opinion dynamics is a fusion process of individual opin-
ions, in which a group of interacting agents continuously fuse their opinions on the
same issue based on established fusion rules to reach a consensus, polarization, or
fragmentation in the final stage.

In sociology, different mathematical models have been constructed to study the
evolution of the opinions of a group of interacting individuals. The majority of the
concernedmodels are linear. Typically researchers aremore focused on the consensus
problem and try to find out how to reach it. Historically, an idea of reaching con-
sensus for a structured time-invariant and synchronous environment was introduced
by DeGroot [6]. Later, Chatterjee and Seneta [5] generalized DeGroot’s model for a
structured time-varying and synchronous environment. In these models, an opinion
sharing dynamics of a structured time-varying synchronous multi-agent system is
presented by the backward product of square stochastic matrices. Meanwhile, a non-
homogeneousMarkov chain is presented by the forward product of square stochastic
matrices. Therefore, the consensus in the multi-agent system and the ergodicity of
the Markov chain are dual problems to each other. Since that time, the consensus
which is the most ubiquitous phenomenon of multi-agent systems becomes popular
in various scientific communities, such as biology, physics, control engineering and,
social science (see [4, 14, 25, 26, 28, 43–45]). Recently, some nonlinear models
have been constructed to characterize the opinion dynamics in social communities
(see [12, 13, 17–20]). A more general model of the opinion sharing dynamics is the
Krause mean process in which the opinions are represented by vectors. The reader
may refer to the monograph [21] for a complete exposition of the Krause mean
process. In the series of papers [32–37], the correlation between the Krause mean
processes and quadratic stochastic processes was established.

A quadratic stochastic process (see [7, 41]) is the simplest nonlinear Markov
chain. The analytic theory of the quadratic stochastic process generated by cubic
stochastic matrices was established in [7, 41]. Historically, a quadratic stochastic
operator (in short QSO) was first introduced by Bernstein [3]. The quadratic stochas-
tic operatorwas considered an important source of analysis for the study of dynamical
properties and modeling in various fields such as biology [15, 22], physics [46], and
control system [32–37]. The fixed point sets and omega limiting sets of quadratic
stochastic operators defined on the finite-dimensional simplex were studied in the
references [38–40]. Ergodicity and chaotic dynamics of quadratic stochastic oper-
ators on the finite dimensional simplex were studied in the papers [29–31]. A long
self-contained exposition of recent achievements and open problems in the theory of
quadratic stochastic operators and processes was presented in the survey paper [9].

In this paper, we are aiming to establish a consensus in the multi-agent system
in which an opinion sharing dynamics is presented by positive quadratic stochastic
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operators associated with positive cubic doubly stochastic matrices. We also show
that the proposed nonlinear protocol generates the Krause mean process.

It is also worth mentioning that there are also many recent research papers on this
topic done in time scale calculus, fractional calculus (see [1, 10, 11, 23, 24]).

2 The Krause Mean Processes

We first review a general model of opinion sharing dynamics of the multi-agent
system presented in [12] which encompasses all classical models of opinion shar-
ing dynamics [2, 5, 6]. Consider a group of m individuals Im := {1, . . . ,m} acting
together as a team or committee, each of whom can specify his/her own subjective
distribution for some given task. It is assumed that if the individual i is informed of
the distributions of each of the other members of the group then he/she might wish
to revise his/her subjective distribution to accommodate the information.

Let x(t) = (x1(t), . . . , xm(t))T be the subjective distributions of the multi-agent
system at the time t where xi (t) ≥ 0 for all 1 ≤ i ≤ m. Let pi j (t, x(t)) denote the
weight that the individual i assigns to x j (t) when he/she makes the revision at

the time t + 1. It is assumed that pi j (t, x(t)) ≥ 0 and
m∑

j=1
pi j (t, x(t)) = 1. After

being informed of the subjective distributions of the other members of the group,
the individual i revises his/her own subjective distribution from xi (t) to xi (t + 1) =
m∑

j=1
pi j (t, x(t))x j (t).

Let P (t, x(t)) denote an m × m row-stochastic matrix whose (i j) element is
pi j (t, x(t)). A general model of the structured time-varying synchronous system is
defined as follows

x(t + 1) = P (t, x(t)) x(t). (1)

We may then obtain all classical models [2, 5, 6, 12, 13] by choosing suitable row-
stochastic matrices P (t, x(t)).

We say that a consensus is reached in the structured time-varying synchronous
multi-agent system (1) if x(t) converges to c = (c, . . . , c)T as t → ∞. It is worth
mentioning that the consensus c = c(x(0)) might depend on an initial opinion x(0).

Amore generalmodel of the opinion sharing dynamics is theKrausemean process
in which the opinions are represented by vectors. The reader may refer to an excellent
monograph by Krause [21] for a detailed exposition of mean processes.

Let S be a non-empty convex subset of Rd and Sm be the m−fold Cartesian
product of S. A sequence {x(t)}∞t=0 ⊂ Sm, x(t) = (x1(t), . . . , xm(t))T is called a
Krause mean process on Sm if xi (t + 1) ∈ conv{x1(t), . . . , xm(t)} for all 1 ≤ i ≤ m
and for all t = 0, 1, . . .. In other words, a sequence {x(t)}∞t=0 ⊂ Sm is the Krause
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mean process if conv{x1(t + 1), . . . , xm(t + 1)} ⊂ conv{x1(t), . . . , xm(t)} for all
t = 0, 1, . . . where conv{A} is a convex hull of a set A. A mapping T : Sm → Sm is
called a Krause mean operator if its trajectory {x(t)}∞t=0, x(t) = T t (x(0)) starting
from any initial point x(0) ∈ Sm generates a Krause mean process on Sm .

It is worth mentioning that the nonlinear model of opinion sharing dynamics
given by (1) is a Krause mean process due to the fact that the action of a stochastic
matrix P = (pi j )mi, j=1 on a vector x = (x1, . . . , xm)T can be viewed as formation of

arithmetic means (Px)i =
m∑

j=1
pi j x j with weights pi j . The various kinds of nonlinear

models of mean processes have been studied in the series of papers [12, 13, 17–20].

3 The Quadratic Stochastic Processes

Let Im := {1, . . . ,m} be a finite set and {ek}mk=1 be the standard basis of the space
R

m . Suppose that Rm is equipped with the l1−norm ‖x‖1 := ∑m
k=1 |xk | where x =

(x1, . . . , xm)T ∈ R
m . We say that x ≥ 0 (respectively, x > 0) if xk ≥ 0 (respectively,

xk > 0) for all k ∈ Im . Let

S
m−1 = {

x ∈ R
m : x ≥ 0, ‖x‖1 = 1

}

be the (m − 1)−dimensional standard simplex. An element of the simplex S
m−1 is

called a stochastic vector. Let c = ( 1
m , . . . , 1

m )T be the center of the simplex S
m−1.

Let intSm−1 = {x ∈ S
m−1 : x > 0} and ∂Sm−1 = S

m−1 \ intSm−1 be, respectively, an
interior and boundary of the simplex S

m−1.
Let us now provide some necessary definitions of non-homogeneous Markov

chains and quadratic stochastic processes by following the papers [7, 8, 27, 41, 42].
LetP = (pi j )mi, j=1 be amatrix,pi• := (pi1, . . . , pim), andp• j := (p1 j , . . . , pmj )

T

for any i, j ∈ Im . A square matrix P = (pi j )mi, j=1 is called row-stochastic (respec-
tively, column-stochastic) if pi• (respectively, p• j ) is a stochastic vector for all i ∈ Im
(respectively, for all j ∈ Im). We say that P ≥ 0 (respectively, P > 0) if pi• ≥ 0
(respectively, pi• > 0) for all i ∈ Im .

During the last few decades, the huge efforts have been made to construct var-
ious necessary and/or sufficient conditions for the ergodicity of non-homogeneous
Markov chains (see [27, 42] and references therein). One of the major areas of study
in non-homogeneousMarkov chains is that of finding conditions under which a chain
is weakly/strongly ergodic. A basic technique for doing this is to establish that all
finite products are regular and then require some condition on the size of the positive
entries in the transitionmatrices [42]. In looking for sets of square stochasticmatrices
which can be used in forming weakly/strongly ergodic non-homogeneous Markov
chains, one needs to find subsets of regular square stochastic matrices which form
semi-groups. A set of scrambling square stochastic matrices is one of these sets (for
details see [42]). A stochastic matrix P = (pi j )mi, j=1 is called scrambling if for any
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i, j there is k such that pik p jk > 0, i.e., any two rows of the square stochastic matrix
are not orthogonal. One of the classical results in the theory of linear Markov chains
states that a stochastic matrix is strongly ergodic if and only if its some power is a
scrambling matrix.

A family of square row-stochastic matrices

{

P
[r,t] =

(
p[r,t]
ik

)m

i,k=1
: r, t ∈ N, t − r ≥ 1

}

is called a discrete time non-homogeneous Markov chain if for any natural numbers
r, s, t with r < s < t the following condition, known as the Chapman–Kolmogorov
equation, is satisfied

p[r,t]
ik =

m∑

j=1

p[r,s]
i j p[s,t]

jk , 1 ≤ i, k ≤ m. (2)

A linear operatorL [r,t] : Sm−1 → S
m−1 associatedwith the square row-stochastic

matrix P[r,t] =
(
p[r,t]
ik

)m

i,k=1

(
L [r,t](x)

)
k =

m∑

i=1

xi p
[r,t]
ik , 1 ≤ k ≤ m, (3)

is called a linear stochastic operator (a Markov operator) (see [27, 42]).
Notice that the Chapman–Kolmogorov equation can be written in the following

form

L [r,t] = L [s,t] ◦ L [r,s], r < s < t. (4)

Let P = (pi jk)mi, j,k=1 be a cubic matrix (see [7, 8, 41]) and pi j• := (pi j1, . . . ,
pi jm) be a vector for all 1 ≤ i, j ≤ m. A cubic matrix P = (pi jk)mi, j,k=1 is called
stochastic if pi j• is a stochastic vector for all 1 ≤ i, j ≤ m.

A family of cubic stochastic matrices

{

P [r,t] =
(
p[r,t]
i jk

)m

i, j,k=1
: pi jk = p jik, r, t ∈ N, t − r ≥ 1

}

with an initial distribution x(0) ∈ S
m−1 is called a discrete time quadratic stochas-

tic process if for any natural numbers r, s, t with r < s < t one of the following
conditions, the so-called nonlinear Chapman–Kolmogorov equations, is satisfied

(A) p[r,t]
i jk =

m∑

α,β=1
p[r,s]
i jα x (s)

β p[s,t]
αβk , 1 ≤ i, j, k ≤ m;
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(B) p[r,t]
i jk =

m∑

α,β,γ,δ=1
x (r)

α p[r,s]
iαβ x (r)

γ p[r,s]
jγ δ p

[s,t]
βδk , 1 ≤ i, j, k ≤ m;

where x (ν)
k =

m∑

i, j=1
x (0)
i x (0)

j p[0,ν]
i jk .

We remark that the conditions (A) and (B) are not equivalent to each other. The
reader may refer to [7, 41] for the exposition of quadratic stochastic processes. The
reasons why the condition (A) is homogeneous degree one in x and the condition
(B) is homogeneous degree two in x were explained in the papers [7, 41].

A nonlinear operator Q[r,t] : Sm−1 → S
m−1 associated with the cubic stochastic

matrixP [r,t] =
(
p[r,t]
i jk

)m

i, j,k=1

(
Q[r,t](x)

)
k =

m∑

i, j=1

xi x j p
[r,t]
i jk , 1 ≤ k ≤ m. (5)

is called a quadratic stochastic operator (a nonlinear Markov operator), Obviously,
we have that x(ν) = Q[0,ν](x(0)).

Notice that the nonlinear Chapman–Kolmogorov equation can be written in the
following form

Q[r,t](x(r)) = Q[s,t] (Q[r,s](x(r))
)
, r < s < t. (6)

We define the following stochastic vectors and square row-stochastic matrices
associated with the cubic stochastic matrix P = (pi jk)mi, j,k=1

pi j• : = (pi j1, pi j2, . . . , pi jm), 1 ≤ i, j ≤ m,

Pi•• : = (pi jk)
m
j,k=1, 1 ≤ i ≤ m,

Px : =
m∑

i=1

xiPi••, x ∈ S
m−1.

It is easy to check that the quadratic stochastic operator has the following vector
and matrix forms

Q(x) =
m∑

i, j=1

xi x jpi j• (Vector form) (7)

Q(x) = xT Px =
m∑

i=1

xi
(
xT

Pi••
)

(Matrix form) (8)

See Sect. 5 for some examples.
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Remark 1 Recall (see [16]) that a continuousmappingM : Sm−1 → S
m−1 is called

a nonlinear Markov operator if one has thatM (x) = xT
Mx for any x ∈ S

m−1 where
Mx = (

pi j (x)
)m
i, j=1 is a row-stochastic matrix depends on x ∈ S

m−1 (it introduces

nonlinearity). The quadratic stochastic operator Q : Sm−1 → S
m−1 given by (7) is

indeed a nonlinearMarkov operator since it can bewritten in thematrix formQ(x) =
xT Px for any x ∈ S

m−1 defined by (8). It is worth mentioning that there are some
nonlinear Markov operators which are not polynomial (see [16]). Therefore, the set
of all quadratic (polynomial) stochastic operators cannot cover the set of all nonlinear
Markov operators.

4 Krause Mean Processes via Quadratic Stochastic
Operators

In this section, we establish some correlation with the Krause mean processes and
quadratic stochastic operators. We first introduce some notions and notations.

Definition 1 A cubic matrix P = (pi jk)mi, j,k=1 is called stochastic if one has that

m∑

k=1

pi jk = 1, pi jk ≥ 0, ∀ 1 ≤ i, j, k ≤ m.

Definition 2 A cubic matrixP = (pi jk)mi, j,k=1 is called doubly stochastic if one has
that

m∑

j=1

pi jk =
m∑

k=1

pi jk = 1, pi jk ≥ 0, ∀ 1 ≤ i, j, k ≤ m.

Remark 2 In this paper, we do not require the condition pi jk = p jik for all
i, j, k ∈ Im .

LetP = (pi jk)mi, j,k=1 be a cubic doubly stochastic matrix and P••k = (pi jk)mi, j=1
be a square matrix for fixed k ∈ Im . It is clear that P••k = (pi jk)mi, j=1 is also a square
stochastic matrix. In the sequel, we write P = (P••1|P••2| · · · |P••m) for the cubic
doubly stochastic matrix.

We define a quadratic stochastic operator Q : Sm−1 → S
m−1 associated with the

cubic doubly stochastic matrixP = (P••1|P••2| · · · |P••m) as follows

(Q(x))k =
m∑

i, j=1

pi jk xi x j , 1 ≤ k ≤ m. (9)

We also define a linear stochastic operator Lk : Sm−1 → S
m−1 associated with

the square stochastic matrix P••k = (pi jk)mi, j=1 as
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(Lk(x)) j = (
xT

P••k
)
j =

m∑

i=1

pi jk xi , 1 ≤ j ≤ m. (10)

It follows from (9) and (10) that

(Q(x))k =
m∑

j=1

(
m∑

i=1

pi jk xi

)

x j =
m∑

j=1

(Lk(x)) j x j = (
Lk(x), x

)
, 1 ≤ k ≤ m

where (·, ·) stands for the standard inner product of two vectors.
Therefore, the quadratic stochastic operator Q : Sm−1 → S

m−1 given by (9) can
be written as follows

Q(x) =
((
L1(x), x

)
, . . . ,

(
Lm(x), x

))T
(11)

where Lk : Sm−1 → S
m−1 is defined by (10) for all k ∈ Im .

We now define an m × m matrix as follows

P(x) =

⎛

⎜
⎜
⎜
⎝

(
L1(x)

)
1

(
L1(x)

)
2 · · · (

L1(x)
)
m(

L2(x)
)
1

(
L2(x)

)
2 · · · (

L2(x)
)
m

...
...

. . .
...(

Lm(x)
)
1

(
Lm(x)

)
2 · · · (

Lm(x)
)
m

⎞

⎟
⎟
⎟
⎠

. (12)

We show that P(x) is doubly stochastic matrix for every x ∈ S
m−1. In fact we

know that P(x) = (
pkj (x)

)m
k, j=1 where

pkj (x) = (
Lk(x)

)
j =

m∑

i=1

pi jk xi . (13)

Therefore, we have that

m∑

k=1

pkj (x) =
m∑

k=1

(
m∑

i=1

pi jk xi

)

=
m∑

i=1

(
m∑

k=1

pi jk

)

xi =
m∑

i=1

xi = 1,

m∑

j=1

pkj (x) =
m∑

j=1

(
m∑

i=1

pi jk xi

)

=
m∑

i=1

⎛

⎝
m∑

j=1

pi jk

⎞

⎠ xi =
m∑

i=1

xi = 1.

Hence, it follows from (11) and (12) that

Q(x) = P(x)x (14)
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and we call it a matrix form of the quadratic stochastic operator (9) associated with
the cubic doubly stochastic matrix.

Remark 3 There is a relation between thematrix forms (8) and (14) of the quadratic
stochastic operators. In fact, it is easy to check that for any i ∈ Im and x ∈ S

m−1 one
has

P(ei ) = (Pi••)T , P(x) = PT
x , Q(x) = xT Px = (

PT
x x

)T = (P(x)x)T (15)

Wenowpresent the nonlinear opinion sharing dynamics of themulti-agent system.
Protocol A:LetP = (P••1|P••2| · · · |P••m) be a cubic doubly stochasticmatrix

and let Q : Sm−1 → S
m−1 be a quadratic stochastic operators associated with the

cubic doubly stochastic matrixP = (P••1|P••2| · · · |P••m). Suppose that an opinion
sharing dynamics of the multi-agent system is generated by the quadratic stochastic
operators as follows

x(n+1) = Q
(
x(n)

)
, x(0) ∈ S

m−1 (16)

where x(n) =
(
x (n)
1 , . . . , x (n)

m

)T
is the subjective distribution after n revisions.

Definition 3 We say that the multi-agent system presented by Protocol A even-
tually reaches a consensus if {x(n)}∞n=0 converges to the center c = ( 1

m , . . . , 1
m )T of

the simplex S
m−1 for any x(0) ∈ S

m−1.

It follows from (14) that the opinion sharing dynamics of the multi-agent system
given by Protocol A can be written as

x(n+1) = P
(
x(n)

)
x(n), x(0) ∈ S

m−1 (17)

where x(n) =
(
x (n)
1 , . . . , x (n)

m

)T
is the subjective distribution after n revisions. This

means that, due to the matrix form (1), the opinion sharing dynamics of the multi-
agent system given by Protocol A generates a Krause mean process.

Consequently, we have shown the following result.

Proposition 1 Let P = (P••1|P••2| · · · |P••m) be a cubic doubly stochastic matrix
and Q : Sm−1 → S

m−1 be the associated quadratic stochastic operator. Then the
opinion sharing dynamics of themulti-agent system given by Protocol A generates
the Krause mean process.

We are now ready to state the main result of this paper.

Theorem 1 LetP = (P••1|P••2| · · · |P••m) be a cubic doubly stochastic matrix and
letQ : Sm−1 → S

m−1 be the associated quadratic stochastic operator. IfP > 0, i.e.,
pi jk > 0 for any i, j, k ∈ Im then the opinion sharing dynamics of the multi-agent
system given by Protocol A eventually reaches a consensus.
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Proof Let P = (P••1|P••2| · · · |P••m) > 0 be the positive cubic doubly stochastic
matrix. Let {x(n)}∞n=0, x(n+1) = Q(x(n)) be a trajectory of the associated quadratic
stochastic operator Q : Sm−1 → S

m−1 starting from an initial point x(0) ∈ S
m−1.

According to the definition, the multi-agent system eventually reaches a consensus
if {x(n)}∞n=0 converges to the center c = ( 1

m , . . . , 1
m )T of the simplex S

m−1.

Let δ(P) = 1
2 max

i1,i2

m∑

j=1
|pi1 j − pi2 j | be Dobrushin’s ergodicity coefficient of a

square stochastic matrix P = (pi j )mi, j=1 (see [42]). Then we have that

x(n+1) = P
(
x(n)

)
x(n) = P

(
x(n)

) · · ·P (
x(1)

)
P

(
x(0)

)
x(0) (18)

where P (x) is the square doubly stochastic matrix defined by (12). We setup for any
two integer numbers s > r

P[x
(s),x(r)] := P

(
x(s)

)
P

(
x(s−1)

) · · ·P (
x(r+1)

)
P

(
x(r)

)
.

We then obtain for any n ≥ r ≥ 0 that

x(n+1) = P[x
(n),x(0)]x(0) = P[x

(n),x(r)]x(r).

SinceP = (pi jk)mi, j,k=1 > 0 is the positive cubic doubly stochasticmatrix, the square
doubly stochastic matrices PT

1••, . . . ,PT
m•• are positive. It means that PT

1••, . . . ,PT
m••

are the scrambling matrices (see Sect. 3), i.e.,

δ
(
P
T
i••

)
< 1, ∀ 1 ≤ i ≤ m.

We let
λ := max

1≤i≤m
{δ (

P
T
i••

)} < 1.

We then obtain that

δ (P (x)) = δ
(
PT

x

) ≤ λ < 1, ∀ x ∈ S
m−1. (19)

This means that P (x) is also a scrambling (positive) matrix. Hence, we have that

δ
(
P[x

(n),x(0)]
)

≤ λn, lim
n→∞ δ

(
P[x

(n),x(0)]
)

= 0

Therefore, the backward product of doubly stochastic matrices {Px(n)}∞n=0 is strongly
ergodic (see [42]), i.e., lim

n→∞P[x
(n),x(0)] = mcT c and

lim
n→∞ x(n+1) = lim

n→∞P[x
(n),x(0)]x(0) = c, x(0) ∈ S

m−1,

where c = ( 1
m , . . . , 1

m )T . This completes the proof.



Reaching a Consensus via Krause Mean Processes in Multi-agent Systems … 407

Remark 4 Let us now compare the contribution of this paper with some previous
results. In the series of the papers [32–37], we always assume triple stochasticity of
cubic (hyper)matrices.However, in this paperwe only assume double stochasticity of
cubic matrices. Since we did not require the condition pi jk = p jik for all i, j, k ∈ Im ,
in general, the double stochasticty does not imply the triple stochasticity of cubic
matrices. In this sense, the result of this paper generalizes and extends these previous
results.

5 An Example

We consider the following cubic doubly stochastic matrix P = (P1••|P2••|P3••)
where P1••,P2••,P3•• are square doubly stochastic matrices given as

P1•• =
⎛

⎝
a11 a12 a13
a21 a22 a23
a31 a32 a33

⎞

⎠ P2•• =
⎛

⎝
b11 b12 b13
b21 b22 b23
b31 b32 b33

⎞

⎠ P3•• =
⎛

⎝
c11 c12 c13
c21 c22 c23
c31 c32 c33

⎞

⎠

The following quadratic stochastic operator Q : S2 → S
2 presents Protocol A

Q(x) = x1
(
xT

P1••
) + x2

(
xT

P2••
) + x3

(
xT

P3••
) = xT Px = (P (x) x)T (20)

wherePx = x1P1•• + x2P2•• + x3P3•• andP (x) = PT
x are the square doubly stochas-

tic matrices.
It was shown in [32–37] that if the square doubly stochastic matrices P1••,

P2••,P3•• are positive and

P1•• + P2•• + P3•• =
⎛

⎝
1 1 1
1 1 1
1 1 1

⎞

⎠ (21)

then the consensus is established in the system described by Protocol A. However,
Theorem 1 improves this result. Namely, without the constraint (21), the consensus
is still established in the system described by Protocol A if the square doubly
stochastic matrices P1••,P2••,P3•• are (only) positive. In this sense, the result of this
paper generalizes and extends all results of the papers [32–37]. It is worthmentioning
that if the matrices P1••,P2••,P3•• are merely scrambling then we may not have a
consensus in the system (see [38] for some supporting examples).
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Global Attractivity For a Volterra
Difference Equation

Kaori Saito

Abstract Sufficient conditions for the global asymptotic stability of nonlinear
Volterra difference equations of convolution type, Logistic type and Volterra sys-
tems, which appear as models in science and engineering, are obtained by applying
the technique of comparison method, semi-cycle theory and Liapunov functions,
without the method of Z -transform.

Keywords Global asymptotic stability · Nonlinear Volterra difference equations ·
Comparison method · Semi-cycle theory · Liapunov functions

1 Introduction

The stability theory of nonlinear Volterra difference equations has many interest-
ing applications in science and engineering, especially control theory, population
dynamics and others [2–5, 7–10]. Moreover, interesting results and many references
on stability and boundedness of solutions of Volterra difference equations may be
found in [10]. Recently, Elaydi [2] surveyed some of the fundamental results on
the stability and asymptotic stability of linear Volterra difference equations. The
method Z-transform is heavily utilized in equations of convolution type. However,
for nonlinear Volterra difference equations, it is well known that this method does not
work well. Therefore, in this paper, we study the stability and asymptotic stability of
nonlinear Volterra difference equations of convolution type, which is based on our
manuscript [11].

Let Z denotes the set of all integers. For any p, q ∈ Z such that p < q, we define
Z � [p,∞) = {p, p + 1, p + 2, ...}, Z � [p, q] = {p, p + 1, ..., q} and xn = x(n)

for n ∈ [0,∞).
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First, we consider the global asymptotic stability of the Volterra difference equa-
tion of the convolution type

xn+1 = axn +
n∑

j=0

bn− j g(x j ), n = 0, 1, 2, . . . , (1)

where a is a constant such that 1 > a ≥ 0, and each constants b j > 0 such that

∞∑

j=0

b j = b < ∞. (2)

Moreover, g(x) is a positive continuous monotone function such that g(0) ≥ 0 and
0 < g

′
(x) ≤ 1 for all x ∈ R+ = (0,∞).

Let {xn} be the solution of equation (1) with initial condition x0 ≥ 0. Then, from
(1), xn ≥ 0, n = 0, 1, 2, . . .. In what follows, we need the following definitions of
stability (cf. [10]).

Definition 1 The bounded solution y(n) of Eq. (1) with respect to initial condition
y0 is said to be;

(i) Stable (in short, S) if for any ε > 0 there exists a δ(ε) > 0 such that if |x0 −
y0| < δ(ε), then |xn − yn| < ε for all n ≥ 0, where x(n) is a solution of (1) through
(0, x0) such that x0 ≥ 0.

(ii) Asymptotically stable (in short, AS) if it is S and there exists a δ0 > 0 such
that if |x0 − y0| < δ0, then |xn − yn| → 0 as n → ∞, where x(n) is a solution of (1)
through (0, x0) such that x0 ≥ 0.

(iii) Global attractor (in short, GA) if any initial condition x0 (≥ 0) of Eq. (1),
then |xn − yn| → 0 as n → ∞, where x(n) is a solution of (1) through (0, x0) such
that x0 ≥ 0.

(iv) Globally asymptotically stable (in short, GAS) if it is S, and GA, that is
|xn − yn| → 0 as n → ∞, where x(n) is a solution of (1) through (0, x0) such that
x0 ≥ 0.

For (i) and (ii) in the above Definition 1, actually, the S is weaker than the AS and
also, from (ii) and (iv), the AS is weaker than the GAS as [3] shows.

We can see the linearized equation of (1)

yn+1 = ayn +
n∑

j=0

bn− j y j , n = 0, 1, 2, . . . , (3)

with y0 ≥ 0. We have the following Lemmas that may proved using mathematical
induction.
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Lemma 1 Let {xn} and {yn} be solutions of the Eqs. (1) and (3), respectively, such
that

0 ≤ x0 ≤ y0.

Then

0 ≤ xn ≤ yn for n = 0, 1, 2, . . . .

Lemma 2 let {x̄n} be the solution of equation (1) with initial condition x̄0 = 0, and
let {xn} be any solution of equation (1) with initial condition x0 ≥ 0. Then x̄n ≤ xn
for n = 1, 2, . . ..

If we set wn = xn − x̄n ,then from Lemma 2, we have wn ≥ 0

2 Global Asymptotic Stability

Theorem 1 Under the above assumptions of section 1, we assume that condition
(2) holds with a + b < 1, and let {x̄n} be the solution of equation (1) with initial
condition x̄0 = 0. Then {x̄n} is a globally asymptotically stable solution of equation
(1).

Proof The substitution wn = xn − x̄n transforms Eq. (1) into

wn+1 = awn +
n∑

j=0

bn− j G
−1g(w j ), n = 0, 1, 2, . . . , (4)

where function G−1 := G−1(x j , x̄ j ) = g(x j )−g(x̄ j )

g(w j )
, g(w j ) 	= 0 for j = 0, 1, 2, . . .

and 0 < G−1 < 1.

To do the proof of Theorem 1, it suffices to show that the zero solution of Eq. (4)
is globally asymptotically stable. We first consider a function V defined by

V (wn) = (1 − b)−1
(
wn +

n−1∑

r=0

∞∑

s=n

bs−rG
−1g(wr )

)
. (5)

Since for each r = 0, 1, . . . , n − 1 the series
∑∞

s=n bs−r converges and {wn} is non-
negative sequence, it follows that for every integer n ≥ 0 the function V is well-
defined and nonnegative. The function V plays the role of a “Liapunov function”.
Since (1 − b)−1 > 1, it is easy to see that for all integers n ≥ 0,

V (wn) ≥ wn. (6)
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Next, we prove that for every nonnegative solution {wn} of Eq. (4),

ΔV (wn) = V (wn+1) − V (wn) ≤ −dG−1wn, n = 0, 1, . . . , (7)

where d is a constant such that 0 < d ≤ 1. Using the facts that {wn} is a nonnegative
solution of Eq. (4), x̄n ≥ 0, and g(w) ≤ w for w ≥ 0, we find

ΔV (wn) = V (wn+1) − V (wn)

= (1 − b)−1
(
wn+1 +

n∑

r=0

∞∑

s=n+1

bs−r G
−1g(wr )

)

− (1 − b)−1
(
wn +

n−1∑

r=0

∞∑

s=n
bs−r G

−1g(wr )
)

= (1 − b)−1
{
awn +

n∑

j=0

bn− j G
−1g(w j )

+
n∑

r=0

∞∑

s=n+1

bs−r G
−1g(wr )

}

− (1 − b)−1
(
wn +

n−1∑

r=0

∞∑

s=n
bs−r G

−1g(wr )
)

≤ (1 − b)−1
{
awn +

n∑

j=0

bn− j G
−1g(w j )

+
n−1∑

r=0

∞∑

s=n+1

bs−r G
−1g(wr ) +

∞∑

s=n+1

bs−nG
−1g(wn)

− wn −
n−1∑

r=0

∞∑

s=n+1

bs−r G
−1g(wr ) −

n−1∑

r=0

bn−r G
−1g(wr )

}

= (1 − b)−1
(
awn + b0G

−1g(wn) +
∞∑

s=n+1

bs−nG
−1g(wn) − wn

)

≤ (1 − b)−1(

∞∑

s=n
bs−n − (1 − a))G−1g(wn) (by G−1 < 1 and g(wn) ≤ wn).

Since
∑∞

s=n bs−n = b, it follows from the above inequality that

ΔV (wn) ≤ (1 − b)−1(b − (1 − a))G−1g(wn) = −dG−1g(wn), (8)

where d = (1 − (a + b))/(1 − b), 0 < d ≤ 1, and (8) proved. From (8), it follows
that the sequence {V (wn)} is non-increasing for all nonnegative solutions {wn} of Eq.
(4) and so {V (wn)} is convergent. Thus, there exists an α ≥ 0 such that V (wn) →
α < ∞ for n → ∞. Letting n → ∞ into (8) we obtain
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lim
n→∞ ΔV (wn) = lim

n→∞(V (wn+1) − V (wn)) = 0 ≤ −d lim
n→∞ G−1g(wn),

which implies, limn→∞ wn = 0.
To complete the proof of Theorem 1 it remains to establish the local stability of

the zero solution. From (5) and (7) it follows from G−1
0 < 1 and g(w0) < w0 that

wn ≤ V (wn) ≤ V (w0)

= (1 − b)−1(w0 +
∞∑

s=0

bsG
−1
0 g(w0)) (where G−1

0 = g(x0) − g(x̄0)

g(w0)
)

≤ 1 + b

1 − b
w0

from which the stability of the zero solution of Eq. (4) follows and then, the zero
solution of Eq. (1) is globally asymptotically stable. Thus, the proof of theorem is
complete.

3 A Volterra Difference Equation of Logistic Type

Next, we consider global attractivity of a positive equilibrium point of a nonlin-
ear Volterra difference equation of logistic type, modeling a population of a single
species, such that the present population size is affected by the sizes of earlier times
due to resource availability (cf. for differential equations, see in [1, 6]).

Recently, Elaydi et al [5] have employed Liapunov-Razumikhin function tech-
niques to investigate the stability of nonlinear functional difference equations. Then
they applied their results to investigate the stability of generalized discrete logistic
equations and solved some open problems [3, 5] that were raised by Kocic and Ladas
[9]. In section 4, we shall give a new proof (cf. [8]) of the extended result in [5] by
employing the idea of semi-cycle theory of Kocic and Ladas in [9].

We consider the following difference equation

xn+1 = xn{r − axn −
m∑

l=1

blg(xn−kl )}, n = 0, 1, . . . (9)

where r, a, b, bl ∈ R, g(x) is a positive continuous monotone increasing function on
R+, g(0) = 0 and,

3 > r > 1, a > 0, bl ≥ 0, ∞ > b =:
m∑

l=1

bl , a > b,

k1, . . . , km ∈ Z+, and k = max(k1, . . . , km). (10)
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Then, it is easy to see that Eq. (9) has a unique positive equilibrium point x∗ > 0,
which satisfies

ax∗ + bg(x∗) = r − 1. (11)

In the case where g(x) is a linear function; g(x) = px + q, p, q > 0, we have

x∗ = r − 1 − bq

a + bp
, whenever r > 1 + bq.

Here xn denotes the density of the population at time n and we assume the existence
of positive solution {xn} for Eq. (9) whenever the initial conditions are such that
0 ≤ x− j ≤ x∗ for j = 0, 1, 2, . . . , k.

4 Global Attractor

In this section we study global attractivity of the positive equilibrium point x∗ of Eq.
(9). First, we need the concept of the semi-cycle of a sequence (cf. [9]).

Definition 2 A positive semi-cycle of a solution {xn} of Eq. (9) consists of a string
of terms {xl , xl+1, . . . , xm}, all greater than x∗, with l ≥ −k and m ≤ ∞ and such
that

ei ther l = −k or l > −k and xl−1 ≤ x∗

and

ei ther m = ∞ or m < ∞ and xm+1 ≤ x∗.

A negative semi-cycle of a solution {xn} of Eq. (9) consists of a string of terms
{xl, xl+1, . . . , xm}, all less than x∗, with l ≥ −k and m ≤ ∞ and such that

ei ther l = −k or l > −k and xl−1 ≥ x∗

and

ei ther m = ∞ or m < ∞ and xm+1 ≥ x∗.

Let
{xpi+1, xpi+2, . . . , xpi+1}

be the i th positive semi-cycle of solution {xn} (i.e. xpi ≤ x∗), and let

{xqi+1, xqi+2, . . . , xqi+1}
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be the i th negative semi-cycle of solution {xn} (i.e. xqi ≥ x∗). Let xMi and xmi be
the extreme values in these two semi-cycles, respectively, with the smallest possible
indices Mi and mi .

To prove Theorem 2, we need the following Lemmas.

Lemma 3 F ∈ C([0,∞), (0,∞)) and F is non increasing in [0,∞).

Lemma 4 F2(x) > x for 0 < x < x∗.

Lemma 5 We have

Mi − pi ≤ k + 1 and mi − qi ≤ k + 1. (12)

Lemma 6 Let λ = lim infn→∞ xn = lim inf i→∞ xmi . For ε (0 < ε < λ), we have

xMi ≤ G(λ − ε, xpi ) (13)

where G is given by

G(x, y) = y(r − ay −
m∑

l=1

blg(x))(r − ax∗ −
m−1∑

l=1

blg(x
∗) − bmg(y))

× (r − ax∗ −
m∑

l=1

blg(x))
k−1, (14)

where x∗ is only one fixed point of F2(x∗).

Lemma 7 Equation (9) is permanent, that is, there exist numbers α and β with
0 < α ≤ β < ∞ such that for any initial conditions x−k, . . . , x0 ∈ (0,∞) there is a
positive integer n1 which depends on the initial conditions such that

α ≤ xn ≤ β for n ≥ n1. (15)

The main result in this section is the following:

Theorem 2 In addition to (10), suppose that x∗ is the only fixed point of F2. Then,
the positive solution {xn} of Eq. (9) satisfies

lim
n→∞ xn = x∗.

Here x∗ is the one in (11), and we set

F(x) =
{
maxx≤y≤x∗ G(x, y) (0 ≤ x ≤ x∗),
minx∗≤y≤x G(x, y) (x > x∗),

where G(x, y) is satisfies (14).
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Remark 1 The hypothesis of, only one fixed point x∗ with F2(x) = x , Theorem 2
is natural condition since F(x∗) = x∗ and F is non increasing function by Lemma 3.
Moreover, we are able to drop this assumption of our theorem. However, We do not
have the proof for it. On the other hand, condition 3 > r in (10) is sharp condition,
which was given in [5] and the numerical test.

Now, we will start to prove the theorem. The idea of this proof is based on [8, 9].

4.1 Proof of Theorem 2

Assume for the sake of contradiction that Eq. (9) has a positive solution {xn} which
is eventually nonnegative or is eventually non positive about x∗. We will assume
that {xn} is eventually nonnegative. The case where {xn} is eventually non positive
is similar and will be omitted. We claim that

lim
n→∞ xn = x∗. (16)

Let n0 be an integer such that

xn−kl ≥ x∗ f or n ≥ n0 + k, l = 1, . . . ,m.

Then, by (8) and (11),

xn+1 = xn(r − axn −
m∑

l=1

blg(xn−kl ))

≤ xn(r − ax∗ −
m∑

l=1

blg(x
∗))

= xn.

Thus the sequence {xn} is monotone decreasing for n ≥ n0 + k. Then there is an
α ≥ 0 such that limn→∞ xn = α. If α > x∗, by taking limits in (9),

1 = r − aα −
m∑

l=1

blg(α).

This is a contradiction by the uniqueness of x∗, and hence (16) holds. Therefore
it remains to establish (16) when solution {xn} is the case of except for the above
statement. To this end, we obtain (12) in Lemma 5, that is

Mi − pi ≤ k + 1 and mi − qi ≤ k + 1.
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We will prove (16) for positive semi-cycles. The proof for negative semi-cycles is
similar and will be omitted. Suppose Mi − pi ≤ k + 1 is not true. Then Mi − pi >

k + 1. We set

λ = lim inf
n→∞ xn = lim inf

i→∞ xmi ,

μ = lim sup
n→∞

xn = lim sup
i→∞

xMi . (17)

which in view of (15) exist and are such that

0 < α1 ≤ λ ≤ x∗ ≤ μ < β1.

To complete the proof it suffices to show that

λ = μ = x∗.

From (17) it follows that if μ ∈ (0,∞) and ε ∈ (0, λ) are given, then there exists
n2 ∈ N such that

λ − ε ≤ xn−kl ≤ μ for n ≥ n2 + k, l = 1, . . . ,m.

We now have that, by Lemma 6,

xMi ≤ G(λ − ε, xpi ). (18)

Since λ − ε < xpi ≤ x∗, it follows from (18) that

xMi ≤ G(λ − ε, xpi ) ≤ max
λ−ε≤y≤x∗ G(λ − ε, y) = F(λ − ε). (19)

Therefore, as ε > 0 is arbitrary, xMi ≤ F(λ) and so from (17)

μ ≤ F(λ).

In a similar way we can show that

λ ≥ F(μ).

By applying Lemma 3,

F(μ) ≤ λ ≤ x∗ ≤ μ ≤ F(λ). (20)

Then, we can show that λ = x∗. If we have that λ < x∗ ≤ μ, from (19), Lemma 3
and 4,
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λ ≥ F(μ) ≥ F(F(λ)) = F2(λ) > λ.

This is a contradiction. By the same argument, we can show that μ = x∗. Thus, it
finally follows that (16) is true and the proof is complete.

5 Volterra Difference Systems

Finally, we consider the following Volterra difference system.

{
xn+1 = a1xn + ∑n

j=0 b(1)n− j g(y j ),
yn+1 = a2yn + ∑n

j=0 b(2)n− j g(x j ), n = 0, 1, 2, . . . , (E0)

where a1, a2 are positive constants such that 0 < ai < 1, for i = 1, 2 and each con-
stants b(i) j > 0 for i = 1, 2 such that

a∗ = max{a1, a2} < 1 and,
∞∑

j=0

b(i) j = b∗
i < ∞ for i = 1, 2, and b∗ = max{b∗

1, b
∗
2} < 1. (21)

We can rewrite equation (E0) to the following equation (E).

{
wn+1 = a1wn + ∑n

j=0 b(1)n− j G−1
z g(z j ),

zn+1 = a2zn + ∑n
j=0 b(2)n− jC−1

w g(w j ), n = 0, 1, 2, . . . , (E)

where functions G−1
w := G−1

w (x j , x̄ j ) = g(x j )−g(x̄ j )

g(w j )
, g(w j ) 	= 0 for j = 0, 1, 2, . . .

and 0 < G−1
w < 1, and G−1

z := G−1
z (y j , ȳ j ) = g(y j )−g(ȳ j )

g(z j )
, g(z j ) 	= 0 for j = 0, 1,

2, . . . and 0 < G−1
z < 1.

Theorem 3 Assume that condition (21) holds with a∗ + b∗ < 1, and let ({x̄n}, {ȳn})
be the solution of equation (E) with initial condition x̄0 = 0 and ȳ0 = 0. Then
({x̄n}, {ȳn}) is a globally asymptotically stable solution of equation (E).

Remark 2 (cf. [2, 7]). It is natural to extend equation (E0) to the general system of

xn+1 = Axn +
n∑

l=0

Bn−l g(xl), n = 0, 1, 2, . . . 0 ≤ l ≤ n, (22)

where x ∈ Rk and A = (a(i j)) is a k × k real matrix such that 1 > |A| := a∗∗ ≥ 0,
and Bn = (b(i j)n) is a k × k real matrix defined on Z+ such that
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|b(i j)n| > 0, 1 ≤ i, j ≤ k, and
∞∑

n=0

|b(i j)n| = b∗∗ < ∞. (23)

Moreover, g(x) is a positive continuous monotone function such that |g(0)| ≥ 0 and
0 < |g′

(x)| ≤ 1 for all nonnegative x ∈ Rk(+).
Then, we can obtain the similar stability result of Theorem 3 for Eq. (22) by using

the extended Liapunov function:

V (wn) = (1 − b∗∗)−1{
k∑

i=1

(w(i)n +
k∑

j=1

n−1∑

r=0

∞∑

s=n

b(i j)s−rG
−1g(w( j)r )}

for all j = 1, 2, . . . , k.

Theorem 4 Under the above assumptions, we assume that condition (23) holds with
a∗∗ + b∗∗ < 1, and let {x̂n} be the solution of equation (22) with initial condition
x̂0 = 0. Then {x̂n} is a globally asymptotically stable solution of equation (22).
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Bifurcation Scenarios Under Symbolic
Template Iterations of Flat Top Tent
Maps

Luís Silva

Abstract The behavior of orbits for iterated flat top maps has been widely studied
since the dawn of discrete dynamics as a research field. However, little is known
about orbit behavior if the map changes along with the iterations. In this work we
consider a family of flat top tent maps and investigate in which ways the iteration
pattern (symbolic template) can affect the structure of the bifurcation scenarios.

Keywords Nonautonomous dynamical systems · Bifurcations · Piecewise smooth
maps · Stunted tent maps

1 Introduction

To our knowledge, the first paper dedicated to the study of flat top tent maps was [7].
If a dynamic process is generated by a one-dimensional map, then insertion of a flat
segment on the map will often lead to a superstable periodic orbit. This mechanism
has been widely used in the control of chaos on one-dimensional systems in areas
as diverse as cardiac dynamics (see [6]), telecommunications or electronic circuits
(see [1, 5, 12] and references therein). Families of flat top tent maps have also been
used as models to study related families of differentiable maps, since they are closely
related with symbolic dynamics and are rich enough to encompass in a canonical
way all possible kneading data and all possible itineraries, see [8, 9].

Parameters in real world situations very often are not constant with time. In that
cases, the evolutionary equations have to depend explicitly on time, through time-
dependent parameters or external inputs. Then the classical theory of autonomous
dynamical systems is no longer applicable andwe get into the field of nonautonomous
dynamical systems. The time dependence may be periodic or not. Nonautonomous
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periodic dynamical systems can be used, for example, to model populations with
periodic forcing, see [4].

In [11] we studied the local bifurcation structure of a family of 2-periodic nonau-
tonomous dynamical systems, generated by the alternate iteration of two flat top tent
maps.

In [10], it was introduced the idea of iteration pattern. It was considered the
iteration scheme xn+1 = fcn (xn), where (cn)n∈N0 ∈ {c0, c1}N0 and (c0, c1) ∈ C

2, for
the complex logistic family fc(z) = z2 + c, z ∈ C, and studied how the iteration
pattern (symbolic template) can affect the topology of the Julia and Mandelbrot sets.

In this work we will consider an analogous iteration scheme for a family of flat
top tent maps and investigate in which ways the iteration pattern (symbolic template)
can affect the structure of the bifurcation scenarios.

2 Template Iterations of Flat Top Tent Maps

Wewill consider the family of flat top tentmaps fu : [−1, 1] → [−1, 1], u ∈ [−1, 1],
such that

fu(x) =
⎧
⎨

⎩

2x + 1, i f − 1 ≤ x ≤ (u − 1)/2
u, i f (u − 1)/2 < x < (1 − u)/2

−2x + 1, i f (1 − u)/2 ≤ x ≤ 1
.

We study iterations of two different functions, fu0 and fu1 , according to a general
binary sequence s ∈ {0, 1}N0 (template), in which

– the “zero” positions correspond to iterating the function fu0 , and
– the “one” positions correspond to iterating the function fu1 .

For fixed parameters u0, u1 ∈ [−1, 1], and a fixed binary sequence s = (sn)n ∈
{0, 1}N0 , one can define the s-template orbit for any x0 ∈ [−1, 1] as the sequence

osu0,u1(x0) = (xn)n≥0 : xn+1 = fusn (xn).

Through this work we fix u1 = 1, so fu1 is the usual tent map and the parameters
space is

[−1, 1] × {0, 1}N0 ,

Definition 1 For fixed s ∈ {0, 1}N0 , u ∈ [−1, 1], a point x ∈ [−1, 1] is said to be
periodic for s, u if its orbit osu(x) is a periodic sequence. Moreover, we say that
a periodic point x for s, u is stable if there is a neighborhood J of x such that
σ(osu(y)) = σ(osu(x)) for all y ∈ J , where σ is the shift map.

Remark 1 It follows immediately (see Lemma 1 in [5]) from the definition of sta-
bility that a periodic point x is stable if and only if σ(osu(x)) = σ(osu(0)). So, to study
the stable periodic behavior we just have to study osu(0).
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Remark 2 Stable periodic orbits are not the only kind of attractors. Indeed, the orbit
of 0 always attracts a set of positive Lebesgue measure and if s is periodic then the
set of initial values converging to this orbit is dense in [−1, 1]. If 0 is mapped after
some iteration steps in to a point of an unstable periodic orbit, then this orbit will
attract a set of positive Lebesgue measure. These orbits are commonly known as
Milnor attractors and will be studied in a future work.

Throw this work we will the notation (X1 . . . Xn)
p, 0 < p ≤ ∞ for the concate-

nation p times of the finite sequence X1 . . . Xn , if p = ∞ then we are considering a
periodic infinite sequence.

Considering the periodic template sequence s = (011)∞, and printing the orbits
of 0, varying u ∈ [−1, 1] we obtain the following bifurcation scenario, see Fig. 1

We will use Symbolic dynamics to describe the bifurcation scenarios.

Definition 2 Define the symbolic address of a point x ∈ [−1, 1], as

ad(x) =
⎧
⎨

⎩

L , i f x < 0
0, i f x = 0
R, i f x > 0

Fig. 1 Bifurcation scenario with template s = (011)∞, u ∈ [−1, 1]. For each parameter u we
calculated 600 iterates with initial value x0 = 0, ignored the first 100 and ploted the last 500
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Definition 3 For fixed s ∈ {0, 1}N0 , u ∈ [−1, 1] and a point x ∈ [−1, 1] with orbit

osu(x) = (xn)n∈N,

define the itinerary of x as

I su (x) = ad(x1)ad(x2) . . . .

Let � be the set of sequences X1 . . . Xn such that X j ∈ {L , 0, R} for all j ≤
n ≤ +∞ and �′ = X1 . . . Xn ∈ � such that Xn = 0 and X j �= 0 for all j < n. We
say that X ∈ �′ has length |X | = n ≤ +∞.

To each symbol X j �= 0 we associate a sign,

ε(L) = + and ε(R) = −.

Define
−L = R and − R = L .

Let nR(X1 . . . Xk) = #{X j : 1 ≤ j ≤ k and X j = R}.
For X ∈ �′ and 0 < j < |X |, define

ε j (X) = + (resp. − ) if nR(X1 . . . X j ) is even (resp. odd).

and
ε(X) = ε|X |−1(X).

Considering the natural order relation L < 0 < R, we will introduce an order
structure in �′:

X < Y if and only if there exists r < min{|X |, |Y |}, such that X j = Y j for all
j < r and εr−1(X)Xr < εr−1(Y )Yr .

Definition 4 For s ∈ {0, 1}N0 and u ∈ [−1, 1], define the kneading data

Ks
u = I su (0).

Let σ(X1X2 . . .) = X2 . . . be the usual shift map on �.
From now on we will restrict ourselves to the family of periodic sequences s =

(01p−1)∞, p ∈ N.

Definition 5 A sequence X ∈ � is admissible for (01p−1)∞ if the following condi-
tions are verified:

1. σ pn(X) ≤ X for all n ∈ N.
2. If X pk = 0 for some k, then X = (X1 . . . X pk−10)∞.
3. If X j = 0 for some j such that p � j then σ j (X) = RL∞.
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Denote the set of admissible sequences for (01p−1)∞ by �01p−1
.

From now on we identify the periodic sequences (X1 . . . X pk−10)∞ with the cor-
responding finite sequence X1 . . . X pk−10 ∈ �′.

Proposition 1 Let X ∈ � and s = (01p−1)∞, then X = Ks
u for some u ∈ [−1, 1] if

and only if X ∈ �01p−1
.

Proof Condition 2 follows from the fact that, if X = Ks
u and X pk = 0 then 0 is

periodic with period pk, while Condition 3 follows from the fact that ( fu ◦ f1)(0) =
−1 is a fixed point for all fu , u ∈ [−1, 1]. The rest of the proof follows analogously
to the proof of Theorem 2.2 in [3]. �

3 Characterization of the Bifurcation Scenarios

We will now use the kneading data to describe the bifurcation scenarios. Basically
there are two main symbolic structures involved:

– ∗-product, described in Theorem 1 and Proposition 3;
– period adding, described in Theorem 2.

The idea of symbolic ∗ product was introduced in [2] for the kneading data of the
quadratic family and since then it has been widely used to interpret renormalization
at a symbolic level and describe period-doubling and, more generally, box-within-a-
box structures in bifurcation scenarios.

Definition 6 Let X = X1 . . . X pn−10 ∈ �′. Define

– XL = X1 . . . X pn−1ε(X)L .
– X R = X1 . . . X pn−1ε(X)R.
– X0 = X .

Remark 3 It is immediate to see that, for all X ∈ �′, ε(XL) = + and ε(X R) = −.

Definition 7 (*-product) Let X ∈ �′ and Y = Y1 . . . Yn ∈ � then

X ∗ Y = XY1 . . . XYn .

Definition 8 A sequence X ∈ �′ is unimodal if σ n(X) ≤ X for all n < |X |.
Denote the set of unimodal sequences by �U .

Remark 4 �U is the set of kneading sequences realized by the unimodal family,
see [7].

The following two propositions are analogous, respectively, to Theorem 3.5 and
Proposition 3.3 in [3] and the proofs follow analogously with the necessary adapta-
tions.
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Proposition 2 Let X ∈ �′ andY ∈ �, then X ∗ Y ∈ �01p−1
if andonly if X ∈ �01p−1

and Y ∈ �U .

Proposition 3 Let X ∈ �′ ∩ �01p−1
and Y1,Y2 ∈ �U such that Y1 < Y2, then X ∗

Y1 < X ∗ Y2.

Theorem 1 Let X ∈ �′ ∩ �01p−1
and X < Z ≤ X ∗ (RL∞), then Z ∈ �01p−1

if and
only if Z = X ∗ Y for some Y ∈ �U .

Proof X = (X1 . . . X pk−10)∞ and X ∗ RL∞ = X R(XL)∞, so the conditions imply
that Z = X R . . ..

Let us suppose that there are j ≥ 0, minimal, and 1 ≤ i < pk, such that

σ pk j (Z) = X1 . . . Xi−1Yi . . .

with Yi �= Xi . From the admissibility of Z , X1 . . . Xi−1Yi < X1 . . . Xi−1Xi .
If Z = X R(XL)n X1 . . . Xi−1Yi . . ., then, since ε(X R(XL)n) = −, we would have

Z > X ∗ RL∞ and this contradicts the hypothesis.
If, for some n > 0 and m ≥ 0, Z = X R(XL)n X R . . . X R(XL)m X1 . . . Xi−1Yi . . .,

then admissibility of Z implies that m ≤ n but in that case X R(XL)m X1 . . . Xi−1

Yi . . . > X R(XL)n X1 . . . Xi−1Xi . . . and this violates the admissibility of Z . �

From the previous theorem, for each X ∈ �′ ∩ �01p−1
, the symbolic interval [X ∗

(L∞), X ∗ (RL∞)] ∩ �01p−1
is a copy (box-within-a-box) of the space of unimodal

kneading data�U (in particular it contains the period-doubling sequences, see Fig. 2).
These are the reducible kneading data and it can be proved that the corresponding
maps are renormalizable to flat top tent maps.

Now, the period-adding structure will generate the irreducible kneading data. This
kind of structure was studied in [5] for discontinuous flat top tent maps.

In our context it can be represented by the following infinite directed acyclic
graph.

Consider the 2p−1 finite words in �′, B1 < . . . < B2p−1
such that |B j | = p for

all j . These are the source vertices of the graph.
For i = 1, . . . , 2p−1 − 1, let

ri = min{ j : Bi
j �= Bi+1

j },

and
l(Bi ) = Bi

1 . . . Bi
ri−10RL

∞.

From the point of view of graph theory the sequences l(Bi ) correspond to sink ver-
tices(i.e., vertices with no outgoing edges). The sinks l(Bi ) correspond to kneading
data K 01p−1

u such that ( f1)ri−1 ◦ fu(0) = 0.
Obviously

B1 < l(B1) < B2 < . . . < B2p−1−1 < l(B2p−1−1) < B2p−1
.
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Fig. 2 Bifurcation scenario with template s = (011)∞, u ∈ [−0.56,−0.5]. We can observe the
orbits corresponding to the period doubling sequence, LL0, LL0 ∗ R0, LL0 ∗ RLR0, . . .

For p = 3 we have

B1 = LL0, B2 = LR0, B3 = RR0, B4 = RL0,

and
l(B1) = L0RL∞, l(B2) = 0RL∞, l(B3) = R0RL∞,

see Fig. 1.
We say that X ∈ �′ has a repeated prefix if there exists m ∈ N such that

X pm+1 . . . X |X |−1 = X1 . . . X |X |−pm−1.

For any set W ⊂ �′, set
W = WP ∪ WNP ,

whereWP is the subset of sequences X ∈ W such that X has a repeated prefix and
WNP = W\WP .
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We will now build recursively the levels of the period-adding graph. Denote by
Lk = Bk ∪ l(Bk) the k-th level in the graph, where Bk are the vertices with outgoing
edges and l(Bk) the sinks in level k.

So the first level is
L1 = B1 ∪ l(B1)

where

B1 = {Bi , i = 1, . . . , 2p−1} and l(B1) = {l(Bi ), i = 1, . . . , 2p−1 − 1}.

Next, for general k,

Bk+1 = {(XL)nY, X RY : X ∈ BNP
k and Y < X} ⋃

{(XL)nY : X ∈ BP
k , ε(X) = ε|X |−pm−1(X) and Y < X}⋃

{X RY : X ∈ BP
k , ε(X) = ε|X |−pm−1(X) and σ |X |−pm(X) < Y < X} ⋃

{(XL)nY : X ∈ BP
k , ε(X) �= ε|X |−pm−1(X) and σ |X |−pm(X) < Y < X} ⋃

{X RY : X ∈ BP
k , ε(X) �= ε|X |−pm−1(X) and Y < X},

where Y, k ′, n,m are such that k ′ ≤ k, Y ∈ Bk ′ , n ∈ N, and X pm+1 . . . X |X |−1 =
X1 . . . X |X |−pm−1 if X ∈ BP

k ,

l(Bk+1) = {(XL)nl(Y ) : X ∈ Bk,Y ∈ Bk ′ , k ′ ≤ k and (XL)nY ∈ Bk+1} ⋃

{X Rl(Y ) : X ∈ Bk,Y ∈ Bk ′ , k ′ ≤ k and X RY ∈ Bk+1}.

and Lk+1 = Bk+1 ∪ l(Bk+1).
There exists one edge (X,Y ) from X to Y iff X ∈ Lk , Y ∈ Lk+1 and Y = (XL)n Z

or Y = X RZ with Z ∈ Lk ′ , k ′ ≤ k.
The descendants (respectively, ancestors) of a vertex X are all vertices Y �= X

such that there is a directed path from X to Y (respectively, from Y to X ).
The reachable set from X , T (X), is the vet of vertices containing X and all its

descendants.
Let PA = ∪

k
Lk be the set of period-adding sequences, the following Theorem

follows directly from the construction.

Theorem 2 PA ⊂ �01p−1

Moreover, let X,Y, Z , Z ′ ∈ PA, then:

• If X < Y , T (X) ∩ T (Y ) = ∅, Z ∈ T (X) and Z ′ ∈ T (Y ) then Z < Z ′.
• If X ∈ Bk , Z , Z ′ ∈ Bk ′ with k ′ ≤ k are such that X L Z and XL Z ′ belong to Bk+1

and Z < Z ′ then, for all n ∈ N

(XL)n Z < (XL)nl(Z) < (XL)n+1Z < XL Z ′ < X.

• If X ∈ Bk , Z , Z ′ ∈ Bk ′ with k ′ ≤ k are such that X R Z and X R Z ′ belong to Bk+1

and Z < Z ′ then, for all n ∈ N
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Fig. 3 Template s = (011)∞, u ∈ [−0.5, 0]. Here we can observe the interlacement of ∗-product
and period adding, we pointed the parameters corresponding to the sequences A = LR0L LL0 <

B = LR0 < C = LR0 ∗ R0 < D = LR0RLL0

X < X RZ ′ < X Rl(Z) < X RZ .

Now we will study the interaction between the two stuctures, see Fig. 3.

Proposition 4 If Z ∈ X ∗ �U for some X ∈ �01p−1
then Z LW /∈ �01p−1

for any
W : W < X.

Proof Let Z = X ∗ Y . We will make the proof considering ε(Z) = +, being com-
pletely analogous when ε(Z) = −.

1. ε(X) = +.
ε(Z) = ε(X) = + implies that nR(Y ) > 1, so

Y = RLk . . . RLk ′
0

with k ′ < k (k ′ �= k because RLk0 > RLk R . . .), then ε(XR(XL)k
′
) = −,

Z |X |(k ′+2) = L and XR(XL)k
′
XLW > XR(XL)k

′
XLX . . . = Z .
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2. ε(X) = −.
This case follows immediately because X1 . . . X |X |−1LW > X1 . . . X |X |−1

LX1 . . . .

�

Proposition 5 If Z ∈ X ∗ �U for some X ∈ �01p−1
and Z RW ∈ �01p−1

for anyW <

X then Z = X ∗ RLk0 and Z RW > X ∗ RL∞.

Proof Let Z = X ∗ Y . We will first prove that, if Y = RLk0, then Z RW ∈ �01p−1
.

Z = X R(XL)k X0, so if ε(X) = + then ε(Z) = − and Z RW = X R(XL)k X LW ∈
�01p−1

because XL < X R .
If ε(X) = − then ε(Z) = + and Z RW = XL(X R)k X RW ∈ �01p−1

because
X R < XL .

Let us now suppose that Y = RLk . . . RLk ′
0 with k ′ < k.

If ε(X) = ε(Z) then σ |X |(|Y |−1)(Z RW ) = X RW > X RX . . . = Z .
Analogously, if ε(X) �= ε(Z) then σ |X |(|Y |−k ′−2)(Z RW ) = X R(XL)k

′+1W >

X R(XL)k
′+1X . . . = Z . �

Finally, the following result follows from Theorems 1 and 2.

Proposition 6 If X ∈ Bk,Y ∈ Bk ′ , k ′ ≤ k are such that (XL)nY ∈ Bk+1 then
(XL)n(Y ∗ Z) ∈ �01p−1

, for any Z ∈ �U .
Analogously, if X ∈ Bk,Y ∈ Bk ′ , k ′ ≤ k are such that X RY ∈ Bk+1 then X R(Y ∗

Z) ∈ �01p−1
, for any Z ∈ �U .

References

1. Avrutin, V., Futter, B., Gardini, L., Schanz, M.: Unstable orbits and Milnor attractors in the
discontinuous flat top tent map, ESAIM: PROCEEDINGS Danièle Fournier-Prunaret. Laura
Gardini and Ludwig Reich, Editors 36, 126–158 (2012)

2. Derrida, B., Gervois, A., Pomeau, Y.: Iteration of endomorphisms on the real axis and repre-
sentation of numbers, pp. 305–356. XXIX, Ann. Inst. Henri Poincaré A (1978)

3. Franco, N., Silva, L., Simões, P.: Symbolic dynamics and renormalization of nonautonomous
k periodic dynamical systems. J. Differ. Equ. Appl. 19, 27–38 (2013)

4. Franke, J., Yakubu, A.: Population models with periodic recruitment functions and survival
rates. J. Differ. Equ. Appl. 11, 1169–1184 (2005)

5. Futter, B., Avrutin, V., Schanz, M.: The discontinuous flat top tent map and the nested period
incrementing bifurcation structure. Chaos Solitons Fractals 45, 465–482 (2012)

6. Glass, L., Zeng, W.: Bifurcations in flat-topped maps and the control of cardiac chaos. Int. J.
Bifurcation Chaos 4, 1061–1067 (1994)

7. Metropolis, N., Stein, M.L., Stein, P.R.: On finite limit sets for transformations on the unit
interval. J. Comb. Theory A 15(1), 25–44 (1973)

8. Milnor, J., Tresser, C.: On entropy and monotonicity for real cubic maps. Comm. Math. Phys.
209, 123–178 (2000)
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Linear Operators Associated with
Differential and Difference Systems:
What Is Different?

Petr Zemánek

Abstract The existence of a densely defined operator associated with
(time-reversed) discrete symplectic systems is discussed and the necessity of the
development of the spectral theory for these systems by using linear relations instead
of operators is shown. An explanation of this phenomenon is provided by using the
time scale calculus. In addition, the density of the domain of the maximal linear
relation associated with the system is also investigated.

Keywords Discrete symplectic system · Linear hamiltonian differential system ·
Linear relations · Multi-valuedness · Densely defined operator · Time scale

1 Introduction

The study of the spectral theory of linear operators acting on a (finite or infinite
dimensional) Hilbert space is a classical topic in functional analysis. The develop-
ment of this theory for operators associated with differential equations or systems
can be seen (from the mathematical point of view) as one of the cornerstones in the
mathematical physics. Roughly speaking, quantummechanics isHilbert space theory
(or vice versa), see e.g. [27, 28]. However, from [3, 4, 6, 10, 14] we may observe
that even difference equations or systems should not be ignored in this direction.
Hence, it is not very surprising that the spectral theory of linear operators associated
with difference equations or systems attracts more and more attention in the last
two decades. Nevertheless, it remains significantly underdeveloped except for some
special cases as for the Jacobi and CMV operators in [11, 15, 26]. In the present
note we aim to point out a phenomenon concerning the foundations of the theory
of linear operators given by certain differential and difference expressions, which
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is from time to time overlooked by some authors (including the unification of these
theories based on the time scale calculus).

In our recent works [12, 31] we established the foundations of this theory in
connection with the time-reversed discrete symplectic systems depending linearly
on the spectral parameter, i.e.,

zk(λ) = Sk(λ)zk+1(λ), k ∈ IZ, (Sλ)

where λ ∈ C is the spectral parameter and Sk(λ) := Sk + λVk with the 2n × 2n
complex-valued matrices Sk and Vk such that

S∗
kJSk = J , V∗

kJSk is Hermitian,

V∗
kJ Vk = 0, and Ψk := JSkJ V∗

k J ≥ 0
(1)

for the skew-symmetric 2n × 2n matrix J := (
0 I

−I 0

)
and the superscript ∗ meaning

the conjugate transpose. Furthermore, IZ denotes a discrete interval, which is finite or
unbounded from above. It should be also pointed out that the assumptions concerning
the matrix Vk in (1) or Ψk in (2) below are naturally forced by the Lagrange identity,
which is the main tool in the study of square summable solutions of system (Sλ),
see [12, Theorem 2.5]. The term “symplectic” refers to the fact that the first three
conditions in (1) are equivalent to the symplectic-type equality S

∗
k(λ̄)J Sk(λ) = J

for all (k,λ) ∈ IZ × C. Discrete symplectic systems were established in [7] as the
natural generalization of the second order Sturm–Liouville difference equations and
as the proper discrete analogue of linear Hamiltonian differential systems (4) below,
see also [1]. They play an important role in the discrete Hamiltonian mechanics,
numerical analysis of Hamiltonian differential systems, discrete variational theory,
numerical optimal control, and in the theory of continued fractions.

Although system (Sλ) is determined by the pair of matrices Sk,Vk satisfying (1)
it can be alternatively given by the pair Sk, Ψk satisfying

S∗
kJSk = J , Ψ ∗

k = Ψk ≥ 0, and ΨkJ Ψk = 0, (2)

because it follows from (1) that Vk = −J ΨkSk for all k ∈ IZ. In any case, the matrix
Ψk is absolutely crucial in study of the spectral theory for system (Sλ), because it
appears as the weight matrix in the associated semi-inner product and it enables us
to write system (Sλ) by using the linear map L (z)k := J (zk − Sk zk+1) as

L (z(λ))k = λΨk zk(λ).

However we illustrated in [12, Example 5.1 and Remark 5.3] that this natural map
may not give rise to a linear operator. Hence, the results of [12, 31] were phrased
by using the concept of linear relations instead of operators. At the same time, with-
out going into further details and only for completeness, we derived a sufficient
condition for the existence of a densely defined (minimal) operator associated with
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system (Sλ), see [12, Theorem 5.4]. In the present paper we return to this result and
give “a very explicit characterization” of system (Sλ) satisfying the latter condition.
More specifically, we show that (except the trivial case Ψk ≡ 0) the natural maximal
operator associated with the map L (·) is never well-defined (i.e., it must be mul-
tivalued) and the density of the domain of the corresponding minimal operator is
always violated, see Corollary 1. This fact means that the approach based on linear
relations is themost proper way for the development of the spectral theory for the dis-
crete symplectic mappingL (·). In addition, we attempt to explain this phenomenon
by using the time scale calculus, from which we shall see the “singularity” of the
truly possible single-valuedness and density in the purely continuous time case, see
Theorems 3 and 4. Finally, we discuss also the density of the domain of the maximal
linear relation.

The paper is organized as follows. In the next section, for a better insight into the
problem at hand, we summarize the situation in the cases of the second order Sturm–
Liouville differential and difference equations and the linear Hamiltonian differential
systems. The main result is established in Sect. 3 and the time scale explanation is
provided in Sect. 4.

2 Motivation

The traditional approach to the spectral theory requires the existence of a densely
defined operator, because only in that case the classical adjoint operator is well-
defined. In the simplest case, we can take the operator associated with the second
order Sturm–Liouville differential expression

(τcsl y)(t) := 1

w(t)

{
− [

p(t) y′(t)
]′ + q(t) y(t)

}
(3)

acting on the interval [a, b), where−∞ < a < b ≤ ∞ and the coefficients p, q, w :
[a, b) → R are (locally) integrable on [a, b) with p(t) �= 0 and w(t) > 0 for almost
all t ∈ [a, b). If we denote by L2

W the Hilbert space of (equivalence classes of)
measurable functions y : [a, b) → C such that the function w |y|2 is integrable over
[a, b), then the corresponding maximal operator T csl

max y := τcsl y is generated by τcsl
on the domain

dom T csl
max :=

{
y ∈ L2

W | y and p y′ are (locally) absolutely

continuous in[a, b) and τcsl y ∈ L2
W

}
,

while the minimal operator is defined as T csl
min := T csl

0 , i.e., as the closure of the
pre-minimal operator, which is given by the restriction of the maximal operator to
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dom T csl
0 :=

{
y ∈ dom T csl

max | yhas compact support in[a, b)
}
.

Then it can be shown that dom T csl
0 is dense in L2

W and (T csl
0 )∗ = (T csl

min)
∗ = T csl

max
with the superscript ∗ denoting now the adjoint operator, cf. [29, Chap. 3].

The natural generalization of τcsl leads us to operators associated with the linear
Hamiltonian differential system

− J z′(t,λ) = [H(t) + λW (t)]z(t,λ), t ∈ [a, b), (4)

where H,W : [a, b) → C
2n×2n are Hermitian matrix-valued (locally) integrable

functions, and W (t) ≥ 0 for almost all t ∈ [a, b). At this moment we should men-
tion one big difference between system (4) and its discrete counterpart represented
by system (Sλ), for which explanation we refer to [25]. There is no restriction on
the invertibility of the matrix W (t), while the third condition in (1) implies that the
matrices Vk and Ψk must be singular over IZ.

If we proceed in the same way as before, we obtain the maximal operator TH
max

with

dom TH
max :=

{
z ∈ L2

W ∩ AC | it holds (τH z)(t) = W (t) f (t) for some f ∈ L2
W

}
,

where (τH y)(t) := −J z′(t) − H(t)z(t), the symbol AC denotes the set of all 2n-
vector-valued (locally) absolutely continuous functions on [a, b), and L2

W means the
Hilbert space of (equivalence classes of) 2n-vector-valued square integrable func-
tions, i.e., it consists of all measurable functions z : (a, b) → C

2n such that

∫ b

a
z∗(t)W (t)z(t)dt < ∞.

Then we put
TH
maxz := f

and for the domain of the pre-minimal operator we consider only z ∈ dom TH
max with

compact support in (a, b). However, in contrast to the previous case, we need to
employ an additional assumption, otherwise it is possible to have system (4) such
that the corresponding maximal operator is not well-defined (multivalued) and the
density of the domain of the pre-minimal operator is violated. It typically reads as

whenever (τH z)(t) = W (t) f (t) f or some pair z ∈ L2
W ∩ AC and

f ∈ L2
W such that W (t)z(t) ≡ 0, then z(t) ≡ 0 on (a, b).

}
(C)

Condition (C) generalizes the classical Atkinson (or definiteness) condition, see [5,
Inequality (9.1.6)], and it is satisfied, e.g., when W (t) > 0 on (a, b) or if the weight
matrix W (t) has a very special structure such as
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W (t) =
(
W1(t) 0
0 0

)
and H(t) =

(
A(t) B(t)
B∗(t) C(t)

)

with the n × n blocks being such that A(t) = A∗(t), C(t) = C∗(t), detC(t) �= 0,
and W1(t) > 0 on (a, b). We note that the latter case includes also the situation
when the second order equation (τcsl y)(t,λ) = λ y(t,λ) is written in the form of
system (4). To the best of the author’s knowledge, condition (C) appeared for the
first time in [20, Theorem 7.6], where it was used to guarantee the density of yet
another set (domain) associated with τH, see [20, Definition 7.1] and compare with
[16, Hypothesis 2.2].

The discrete counterpart of τcsl is provided by the second order Sturm–Liouville
difference expression or by the three term recurrence relation, i.e.,

(τdsl y)k := 1

wk

[
− ∇(

pkΔyk
) + qk yk

]
= 1

wk

( − pk−1 yk−1 + rk yk − pk yk+1
)
,

where k ∈ IZ = [0, N + 1)Z := [0, N + 1) ∩ Z for a given N ∈ N ∪ {0,∞}, the
symbols Δ and ∇ mean the forward and backward difference operators, respec-
tively, and {pk}Nk=−1, {qk}Nk=0, {wk}Nk=0, {rk}Nk=0 are real-valued sequences such that
wk > 0 and rk = pk−1 + pk + qk for all k ∈ IZ. In addition, for N �= ∞ we put
I+

Z
:= [0, N + 1]Z, otherwise I+

Z
:= IZ, and in both cases we let I±

Z
:= I+

Z
∪ {−1}.

The maximal operator associated with τdsl is acting on the domain

dom T dsl
max := {y ∈ �2w | τdsl y ∈ �2w} with T dsl

max y := τdsl y,

where �2w denotes the Hilbert space of equivalence classes of complex-valued
sequences {yk}k∈I±

Z

such that
∑

k∈IZ
wk |yk |2 < ∞. However, in contrast to the con-

tinuous time case, it was shown in [23, p. 904] that the maximal operator is always
multivalued under the classical assumption pk �= 0 for all k ∈ IZ ∪ {−1}, which
guarantees the equivalence between equation (τdsl y)k = λ yk and system (Sλ) with
zk = ( yk−pk−1 yk−1

)
and the coefficient matrices

Sk =
(
0 −1/pk
pk 1 + (pk−1 + qk)/pk

)
and Vk =

(
0 0
0 −wk/pk

)
.

This multi-valuedness can be suppressed if we put p−1 = 0 (and pN = 0 if N is
finite), inwhich case the recurrence relation τdsl can be expressed as themultiplication
by a tridiagonal (Jacobi) matrix, see [9] and also [21, Remark 10]. In the next section
we will see that the situation in the setting of system (Sλ) is even worse.
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3 Main Result

Before we establish the main result for system (Sλ) with the coefficients specified
in (1) or (2), we need to recall some fundamental results from the theory of linear
relations, which was established as a suitable tool for the study of multivalued or
non-densely defined linear operators in a Hilbert space, cf. [2]. A (closed) linear
relation T in a Hilbert space H over the field of complex numbers C with the inner
product 〈·, ·〉 is a (closed) linear subspace of the product space H 2 := H × H , i.e.,
the Hilbert space of all ordered pairs {z, f } such that z, f ∈ H . By T we mean the
closure of T . The domain and the multivalued part of T are, respectively, defined as

dom T := {z ∈ H | {z, f } ∈ T } and mul T := {
f ∈ H | {0, f } ∈ T

}
.

A linear relation T is the graph of a linear operator in H if and only if the subspace
mul T is trivial.

The adjoint T ∗ of the linear relation T is the closed linear relation given by

T ∗ := {{y, g} ∈ H 2 | 〈z, g〉 = 〈f , y〉 for all {z, f } ∈ T
}
.

The definition of T ∗ reduces to the standard definition for the graph of the adjoint
operator when T is a densely defined operator. The following proposition is crucial
for our present treatment, see [2, Proposition 3.32] and also [13, Theorem 1].

Proposition 1 Let T be a linear relation in H 2. Then dom T is dense in H if and
only if the adjoint T ∗ is single-valued, i.e., mul T ∗ = {0}.

Let us denote by �2
Ψ the linear space of all complex 2n-vector-valued sequences

defined on I+
Z
, which are square summable with respect to the weight Ψk , i.e.,

�2
Ψ := {{z}k∈I+

Z

| zk ∈ C
2n and ‖z‖Ψ < ∞}

,

where ‖z‖Ψ := √〈z, z〉Ψ is the natural semi-norm determined by the semi-inner
product with the weight Ψk , i.e., 〈z, v〉Ψ := ∑

k∈IZ
z∗
k Ψk vk . As the consequence of

the singularity of Ψk , it follows that �2
Ψ is not a Hilbert space. However, the quotient

space �̃2Ψ obtained after factoring out the kernel of the semi-norm, i.e.,

�̃2Ψ := �2
Ψ

/{z ∈ �2
Ψ | ‖z‖Ψ = 0}, (5)

is a Hilbert space. Henceforth, the equivalence class corresponding to a sequence
z ∈ �2

Ψ will be written by using the brackets [·], i.e., z ∈ [z] ∈ �̃2Ψ . One can easily
observe that we have z[1], z[2] ∈ [z] if and only if Ψk z

[1]
k = Ψk z

[2]
k for all k ∈ IZ. We

also need to define the subspace

�2Ψ,0 :=
{ {

z ∈ �2
Ψ | z0 = 0 = zN+1

}
if N ∈ N ∪ {0},

{
z ∈ �2

Ψ | zhas a compact support in IZ and z0 = 0
}

if N = ∞,
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With this notation, we introduce the maximal linear relation Tmax as a subspace
of the product space �̃2×2

Ψ := �̃2Ψ × �̃2Ψ given by

and we emphasize that it does not depend on the choice of the representative
f ∈ [ f ]. Similarly, we define the pre-minimal linear relation

which evidently satisfies T0 ⊆ Tmax. The closure of T0 is said to be the minimal
linear relation, i.e.,

Tmin := T0,

and the following equalities for these three linear relations were established in [12,
Theorem 5.10].

Theorem 1 The linear relations Tmax, T0, and Tmin as defined above satisfy

T ∗
0 = T ∗

min = Tmax.

The latter statement together with Proposition 1 implies that dom T0 and dom Tmin

are dense subsets of �̃2Ψ if and only if mul Tmax = {[0]}, i.e., Tmax is a (graph of a)
linear operator. Equivalently, it means that there is no z ∈ [0] such that equality
L (z)k = Ψk fk is satisfied for all k ∈ IZ and some f /∈ [0]. In particular, this is true
when z ≡ 0 on I+

Z
is the only representative of the class [0] such that the equality

L (z)k = Ψk fk is satisfied for all k ∈ IZ and some f ∈ �2
Ψ . As we mentioned in the

introductory section, this condition was proposed in [12, Theorem 5.4], compare also
with condition (C) for system (4). But is it even possible? The following theorem
shows that the answer is negative for every nontrivial choice of the weight matrices
Ψk .

Theorem 2 The condition mul Tmax = {[0]} holds if and only if Ψk ≡ 0 on the dis-
crete interval IZ.

Proof If Ψk ≡ 0 on IZ, then �̃2Ψ = {[0]} and the statement is trivial. On the other
hand, let Ψk �≡ 0 on IZ and denote by m ∈ IZ the first index such that Ψm �= 0, i.e.,
Ψk = 0 for all k ∈ IZ ∩ (−∞,m)Z. Moreover, let ξ ∈ C

2n\KerΨm be arbitrary, i.e.,
Ψm ξ �= 0. If m = 0, then the pair

zk =
{

−JΨ0 ξ, k = 0,

0, k ∈ I+
Z

/{0}, fk =
{

ξ, k = 0,

0, k ∈ I+
Z

/{0},

satisfies L (z)k = Ψk fk for all k ∈ IZ and simultaneously

‖z‖2Ψ = −ξ∗Ψ0J Ψ0J Ψ0 ξ
(2)= 0, ‖ f ‖2Ψ = ξ∗Ψ0 ξ �= 0.
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Therefore, we have {[z], [ f ]} ∈ Tmax for the corresponding equivalence classes with
[z] = [0] and [ f ] �= [0], which shows thatmul Tmax �= {[0]}. Similarly, one canverify
directly that for m > 0 the pair

zk =

⎧
⎪⎨

⎪⎩

−(�m−1
j=k S j )J Ψm ξ, k ∈ [0,m − 1]Z

−JΨm ξ, k = m,

0, k ∈ I+
Z

∩ [m + 1,∞)Z,

fk =
{

ξ, k = m,

0, k ∈ I+
Z

/{m},

satisfies L (z)k = Ψk fk for all k ∈ IZ and

‖z‖2Ψ =
∑

k∈IZ

k≥m

z∗
k Ψk zk = −ξ∗ΨmJ ΨmJ Ψm ξ

(2)= 0, ‖ f ‖2Ψ = ξ∗Ψm ξ �= 0.

Hence again {[z], [ f ]} ∈ Tmax for the corresponding equivalence classes with [z] =
[0] and [ f ] �= [0], i.e., mul Tmax �= {[0]}.

As the direct consequence of Theorem 2 we get the main result concerning the
fundamental characterization of Tmax and the domains of T0 and Tmin. It shows that
the development of the spectral theory for discrete symplectic systems in [12, 31]
by using the linear relations instead of operators is not only fruitful because of its
generality but it is, in fact, necessary. In contrast to the continuous time case and
condition (C), it is not possible to “fix” it by any additional condition.

Corollary 1 The maximal linear relation Tmax is always multivalued and the sets
dom T0 and dom Tmin are never dense in �̃2Ψ but for Ψk ≡ 0 on IZ.

From the proof of Theorem2 one can observe that the permanentmulti-valuedness
of Tmax is caused by the singularity of the weight matricesΨk . For nonsingular weight
matrices in the setting of discrete symplectic systems it is necessary to have at least a
quadratic dependence on the spectral parameter, which was studied in [24]. Alterna-
tively and less generally,we could consider the linearHamiltonian difference systems
instead of (Sλ). But, although such systems allow nonsingular weight matrices, they
lead to the same conclusion because of the presence of a partial shift, cf. [22].

Finally, Proposition 1 applied to the linear relation T = Tmax yields the depen-
dence of the density of dom Tmax in �̃2Ψ on the single-valuedness of Tmin, because
it holds T ∗

max = T ∗∗
min = Tmin. Is there a nontrivial case where this is not possible?

For example, let us take N ≥ 1, Sk ≡ I on IZ, Ψ0 = Ψ1 �= 0, and Ψk = 0 for all
k ∈ [2, N + 1)Z. Then Ψ0 ξ �= 0 for some ξ ∈ C

2n and the pair

zk =
{
J Ψ0 ξ, k = 1,

0, k ∈ I+
Z

/{1}, fk =

⎧
⎪⎨

⎪⎩

ξ, k = 0,

−ξ, k = 1,

0, k ∈ IZ/{0, 1}

satisfies L (z)k = Ψk fk on IZ. Simultaneously, we have z ∈ �2Ψ,0, z ∈ [0], and f /∈
[0], which yields that {[z], [ f ]} ∈ T0 ⊆ Tmin. Hence mul Tmin �= {[0]} and so the set
dom Tmax is not dense in �̃2Ψ .
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On the other hand, if system (Sλ) is definite on the discrete interval IZ, i.e., there
exists λ ∈ C and a finite discrete subinterval [a, b]Z ⊆ IZ such that every nontrivial
solution of (Sλ) satisfies

∑b
k=a z

∗
k(λ)Ψk zk(λ) > 0, then for every {[z], [ f ]} ∈ Tmax

there exists a unique ẑ ∈ [z] satisfyingL (ẑ)k = Ψk fk on IZ and the minimal linear
relation admits the representation

Tmin =

⎧
⎪⎨

⎪⎩

{{[z], [ f ]} ∈ Tmax | ẑ0 = 0 = limk→∞ ẑ∗
kJ ŵk

for all [w] ∈ dom Tmax
}
,

{{[z], [ f ]} ∈ Tmax | ẑ0 = 0 = ẑN+1
}
,

(6)

see [12, Theorem 5.2] and [31, Theorem 3.2]. In that case the equality mul Tmin =
{[0]} is true, e.g., for the choice

Sk =
(Ak Bk

Ck Dk

)
and Ψk =

(Wk 0
0 0

)

with then × n blocks such thatWk > 0 anddet Bk �= 0onIZ, comparewith condition
(C). Indeed, if {[z], [ f ]} ∈ Tmin with‖ẑ‖Ψ = 0 and ẑ = (x̂∗ û∗)∗, then the given form
ofΨk and the expression of Tmin given above imply that x̂k ≡ 0 on I+

Z
. Consequently,

the block structure of Sk , the invertibility of Bk , and (6) yield also û ≡ 0 on I+
Z
, i.e.,

ẑ ≡ 0 on I+
Z
. Therefore [ f ] = [0], which shows the single-valuedness of Tmin and

simultaneously the density of dom Tmax in �̃2Ψ .

4 Time Scale Explanation

In this final section we attempt to provide an explanation of the phenomenon con-
cerning the density of Tmin by using the time scale calculus, which was developed for
the simultaneous study of differential and difference equations and many cases “in
between”. Henceforth we suppose that the reader is familiar with the foundations of
the time scale calculus as it can be found in the original works [17–19] by Hilger or in
the monograph [8] by Bohner and Peterson. In particular, by a time scale Twe mean
an arbitrary nonempty closed subset of real numbers. Every time scale is equipped
with the forward jump operator and graininess function defined respectively as

σ(t) := inf{s ∈ T, s > t} and μ(t) := σ(t) − t.

If the time scaleT has a right-scattered maximum M , thenTκ := T/{M}. Otherwise
we let Tκ := T. The time scaleΔ-derivative f Δ(t) is defined for all t ∈ T

κ in such a
way that, in the caseT = R, we get the classical derivative,while forT = Z it reduces
to the forward difference operator. In addition, we recall two useful formulas

f σ(t) = f (t) + μ(t) f Δ(t) and
∫ σ(t)

t
f (τ )Δτ = μ(t) f (t) (7)
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for any t ∈ T
κ, where we apply the abbreviation f σ(t) := f (σ(t)).

Systems (4) and (Sλ) are the simplest examples of the time-reversed symplectic
dynamic system

zΔ(t,λ) = [S(t) + λV(t)]zσ(t,λ), t ∈ T
κ, (STλ)

where the coefficients S,V : Tκ → C
2n×2n are piecewise rd-continuous functions

(i.e., from Cprd) on T
κ and such that the function S(t,λ) := S(t) + λV(t) satisfies

the symplectic-type identity

S
∗(t, λ̄)J + J S(t,λ) − μ(t)S∗(t, λ̄)J S(t,λ) = 0. (8)

for all (t,λ) ∈ T
κ × C, see [30, Section4] for more details. More specifically, if

T = [a, b) then σ(t) ≡ t and system (8) corresponds to (4) with H(t) := −J S(t)
and W (t) := −J V(t). In the case T = IZ we have σ(t) ≡ t + 1, and so system (8)
corresponds to (Sλ) with the coefficients Sk := I − S(k) and Vk := −V(k). The
existence and uniqueness of a solution being piecewise rd-continuously differentiable
on T (i.e., from C1

prd) of any initial value problem associated with (ST

λ) is guaranteed
by the relation

[I − μ(t)S(t,λ)]−1 = −J [I − μ(t)S∗(t, λ̄)]J , (9)

which follows directly from (8). Furthermore, by (7)–(9) we obtain that system (ST

λ)
can be equivalently written as

zΔ(t,λ) = S(t)zσ(t,λ) + λJ Ψ (t)z(t), where Ψ (t) := J V(t)J [I − μ(t)S∗(t)]J

is such that
Ψ ∗(t) = Ψ (t) and μ(t)Ψ (t)J Ψ (t) = 0. (10)

With these assumptions, we could define the space of square integrable functions
with respect to the weight Ψ (t) ≥ 0, the corresponding Hilbert space, the maximal
and minimal linear relations, and establish a connection between them. However, it
is not needed for the present investigation and it will be done in our subsequent work.
At this moment we focus only on the existence of a function z ∈ C1

prd(T) such that
‖z‖Ψ := ∫

T
z∗(t)Ψ (t)z(t)Δt = 0 and

− J [zΔ − S(t)zσ(t)] = Ψ (t) f (t), t ∈ T
κ, (11)

for some f ∈ Cprd(T
κ)with ‖ f ‖Ψ := ∫

T
κ f ∗(t)Ψ (t) f (t)Δt �= 0. In this context we

remark that every solution of (11) can be expressed as

z(t) = �(t)
[
η + J

∫ t

a
�∗(τ )Ψ (τ ) f (τ )Δτ

]
,
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where η = �−1(a)z(a) and �(·) denotes an arbitrary fundamental matrix of the
homogeneous system (ST

0) satisfying the condition �(t)J �∗(t) = J for some (and
hence for any) t ∈ T. Before we analyze the problem in question, we summarize the
basic assumptions concerning system (ST

λ). Note that we require T �= [a, b) as it was
already discussed in detail.

Hypothesis 1 A time scale T is given with a := inf T > −∞ and at least one point
t ∈ T

κ is right-scattered. We have S(t,λ) := S(t) + λV(t) on T
κ × C, where the

2n × 2n matrix-valued functions S,V : Tκ → C
2n×2n are piecewise rd-continuous

on T
κ such that condition (8) holds and Ψ (t) := J V(t)J [I − μ(t)S∗(t)]J ≥ 0

for all t ∈ T
κ.

If a is a right-scattered point and Ψ (a) �= 0, then one can readily verify that the
pair

z(t) :=
{

−μ(a)J Ψ (a)ξ, t = a,

0, t ∈ T/{a}, and f (t) :=
{

ξ, t = a,

0, t ∈ T
κ/{a},

is such that (11) holds and by (7), we see that

‖z‖Ψ =
∫ σ(a)

a
z∗(t)Ψ (t)z(t)Δt = −μ3(a)ξ∗Ψ (a)J Ψ (a)J Ψ (a)ξ

(10)= 0,

‖ f ‖Ψ =
∫ σ(a)

a
f ∗(t)Ψ (t) f (t)Δt = μ(a)ξ∗Ψ (a)ξ �= 0

for any ξ ∈ C
2n\KerΨ (a). This simple observation justifies the following statement.

Theorem 3 Let Hypothesis 1 be satisfied and, in addition, the left-end point a be
right-scattered with Ψ (a) �= 0. Then there exist z ∈ C1

prd(T) and f ∈ Cprd(T
κ) such

that equation (11) is satisfied, ‖z‖Ψ = 0, and ‖ f ‖Ψ �= 0.

On the pother hand, let a be right-dense and t0 ∈ T
κ be an arbitrary right-scattered

point such that Ψ (t0) �= 0. If we put

z(t) := �(t)
[

− μ(t0)J Ψ (t0)ξ + J
∫ t

a
�∗(τ )Ψ (τ ) f (τ )Δτ

]

and

f (t) :=
{

ξ, t = t0,

0, t ∈ T
κ/{t0},

where the fundamental matrix �(·) is determined by the initial condition �(t0) = I
and the vector ξ ∈ C

2n\ ∈ KerΨ (t0) is arbitrary, then we have
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‖ f ‖Ψ =
∫ σ(t0)

t0

f ∗(t)Ψ (t) f (t)Δt
(7)= μ(t0)ξ

∗Ψ (t0)ξ �= 0

and simultaneously

z(t) =
{

−μ(t0)�(t)J Ψ (t0)ξ, t ∈ [a, t0] ∩ T,

0, t ∈ [σ(t0),∞) ∩ T,

which yields that

‖z‖Ψ =
( ∫ t0

a
+

∫ σ(t0)

t0

)
z∗(t)Ψ (t)z(t)Δt

= −μ2(t0)ξ
∗Ψ (t0)J

(∫ t0

a
�∗(t)Ψ (t)�(t)Δt

)
J Ψ (t0)ξ,

because
∫ σ(t0)
t0

z∗(t)Ψ (t)z(t)Δt = −μ3(t0)ξ∗Ψ (t0)J Ψ (t0)J Ψ (t0)ξ = 0 by (10).
Consequently we get the following statement, which shows the sporadic nature of
densely defined operators associated with system (ST

λ) as in the case T = [a, b),
i.e., for the linear Hamiltonian differential system (4). Actually, this fact is (again)
closely connected with the necessary singularity of the weight matrix Ψ (·) at every
right-scattered point, which follows from (8), see the second condition in (10).

Theorem 4 Let Hypothesis 1 be satisfied and, in addition, the left-end point a be
right-dense. If there exist a right-scattered point t0 ∈ T

κ withΨ (t0) �= 0 and a vector
ξ ∈ C

2n\KerΨ (t0) such that

ξ∗Ψ (t0)J
( ∫ t0

a
�∗(t)Ψ (t)�(t)Δt

)
J Ψ (t0)ξ = 0,

then system (11) possesses a solution z ∈ C1
prd(T) with ‖z‖Ψ = 0 for some function

f ∈ Cprd(T
κ) with ‖ f ‖Ψ �= 0.
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