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Preface

The 25th International Conference on Difference Equations and Applications was
held at UCL (University College London) from June 24-28, 2019, under the
auspices of the International Society of Difference Equations (ISDE). Over 120
researchers from over 35 countries participated in the conference which was hosted
by the UCL Mathematics Department. There was a very busy programme with 8
plenary talks and over 90 contributed talks spread over four and a half days.

The plenary speakers were Paul Glendinning (UK), Mats Gyllenberg (Finland),
Mihaly Pituk (Hungary), Adina Luminita Sasu (Romania), Ewa Schmeidel (Poland),
Andrey Shilnikov (USA), Horst Thieme (USA) and Patricia Wong (Singapore).

There was a wide variety of topics covered at the conference. Difference
equations pervade mathematics and the topics covered included chaos, bifurcation
theory, renormalization theory, exponential dichotomies, dynamical systems on
time scales, monotone systems theory, stability theory, integrable systems and
many other areas. In addition, there were applications of difference equations to a
diverse set of subjects such as ecology, neuroscience, epidemiology, economics and
control theory to mention a few. There were also special sessions of more of a pure
mathematical flavour organized for Nevanlinna theory and discrete integrable
dynamics.

This book is composed of contributions from both plenary speakers and con-
ference participants. It reflects well the sheer length and breadth of material covered
in just four and a half days. The first part of the book is formed from chapters
contributed by plenary speakers, whereas the second part contains articles by
attendees on the topics that they spoke on at the meeting.

Any international conference of this size takes a fair amount of organization. So
it is entirely appropriate to conclude by offering our gratitude to all of those who
contributed to the success of the conference. In particular, at UCL we would like to
mention Professors Rodney Halburd and Steven Bishop as fellow organizers, and
Belgin Seymenoglu, Jason Vittis and Jordan Hofmann who helped enormously
with the day-to-day running of the conference, and finally Soheni Francis who
oversaw over the administration of the entire event.



vi Preface

Finally, we would like to acknowledge the generous support of our sponsors, the
UCL Mathematics Department and the Taylor & Francis group.

London, UK Steve Baigent
Rolla, MO, USA Martin Bohner
San Antonio, TX, USA Saber Elaydi

July 2020
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Caputo Nabla Fractional Boundary )
Value Problems i

ALLAN PETERSON and Wei Hu

Abstract We study boundary value problems with the Caputo nabla difference in
the context of discrete fractional nabla calculus, especially when the right boundary
condition has a fractional order. We first construct the Green’s function for the general
case and study the properties of the Green’s function in several cases. We then apply
the cone theory in a Banach space to show the existence of positive solutions to a
nonlinear boundary value problem.

Keywords Discrete fractional calculus - Boundary value problems + Green’s
function

1 Nabla Fractional Calculus

In this chapter, we introduce the notation, definitions, and results concerning nabla
fractional calculus. Most of these results can be found in the monograph [12] by
Goodrich and Peterson.

1.1 Basic Definitions

Definition 1 Fora,b e Rand b —a € Z* :={1,2, ...}, the sets N, and NZ are
defined by

N,:=f{a,a+1,a+2,...} and N2:={a,a+1,a+2,...b}.
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Definition 2 The nabla operator (backwards difference operator), V, for f : N, —
R is defined by

(VH@O) = f@) = fp@),

where p(¢) :=t — 1 is the backward jump operator.
The operator V" is defined recursively by

V(@) == V(Y @)
fort € Nyy,, n € Ny, where f : N,_, — R, and V° is the identity operator.
Lemma 1 The binomial expression for V" f(t), where N € Noand f : R — Ris

given by
N

(N
VVF@) =) (1) (j.)f(t -
j=0

fort e R.

Definition 3 The rising function is defined by
=t +1)---t+n—1),
fort e Randn € Nj.

Remark 1 Note that

"=t +1)---t+n—1)
r@)-t¢+1)---@¢+n—1
NG

_ T(t+n)

ro t ¢ —Np,

where I” is the gamma function.

Definition 4 Motivated by Remark 1, we define the (generalized) rising function
by

Fo r+r)
O

for the values of ¢ and r such that the right-hand side of this equation makes sense.
We adopt the convention that " := 0 for ¢ a nonpositive integer but ¢ 4+ r not a
nonpositive integer.
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1.2 Nabla Fractional Sums and Differences

Definition 5 For f : N,;; — Rand € N,, we define the nabla integral of f from
atot by

/f(T)vT = > f(n. teN,

T=a+1

with the convention that the integral is zero if the upper limit of the summation is
less than the lower limit.

Definition 6 For 1 ¢ Z~, we define the u-th order nabla fractional Taylor monomial
(based at a) by B
(t—a)

H,(t,a) = ——,
R e
whenever the right-hand side is meaningful.

Remark 2 For i ¢ Z~ and a, b € R, we see that
HILL([s a) = Hu(t +b,a+b)

by the definition of Taylor monomials.
In the next theorem, we list several important properties of the Taylor monomials.

Theorem 1 ([12], Theorem 3.57) For i ¢ Z.~, the u-th order nabla fractional Taylor
monomial has the following properties:

(i) H,(a,a)=0;
(i) VH,(t,a) = H,_(t, a);

t
(iii) / H,(s,a)Vs = H,11(t, a);
at
@) [ H0.p6) Vs = Hynrtr. )
v) fork € Ny, H 4(t,a) =0, 1 € N,.
provided the expressions in this theorem are well defined.

Lemma 2 Fort > a,

=

-1
Hk(tsa) = HN*l(t’a - 1)
k

Il
=

Proof We proceed by induction. Let N = 2 be the base case. We have

1
ZHk(t,a) = Hy(t,a) + Hi(t,a) =1+t —a=Ht,a—1).
k=0
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M—1
Assume Zk—o H,(t,a) = Hy_1(t,a — 1), then we have

M M—-1
Y Hit,a) =) Hi(t,a) + Hy(1, @)
k=0 k=0

= HM_](t,a - 1)+HM(tva)
CG—a+ DT -

M —1)! M!

Mt —a+M) (¢t —a+D" 1 (¢t —a+M) ¢ —a)
T MGt—at M) (M—1) (t—a+M) M!
:< M t—a )(t—a+1)M

t—a+M t—a+ M M!
=Hy(t,a—1). O

Remark 3 The above lemma is also seen in [10], where Gensler gives a proof using
Pochhammer polynomials.

Definition 7 Assume f : N,;; — R and p > 0. Then the nabla fractional sum is
defined by

V) = / Ho (0. p(s)) £ (5) Vs,

for t € N,, where by convention V, * f(a) = 0.

Definition 8 (Riemann-Liouville Nabla Fractional Difference) Let f : Nyy1_y —
R and v € RT. We define the v-th order nabla fractional difference of f by

VLf(@) = VIV N (1)
fort € N,y 1, where N = [v].

The following theorem from [1] shows that the fractional difference V) f (¢) is
obtained from the fractional sum V} f(¢) by replacing v by —v.

Theorem 2 Assume f : N, - R,v > 0, and v ¢ Ny. Then

VUL = f H_yo1(t, p(s)) f(5)Vs

In the following theorem, we list some additional important results for Taylor
monomials.
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Theorem 3 ([12], Theorem 3.93. Generalized Power Rules) Let v € Rt and jp € R
such that |1, v + v, and |1 — v are nonnegative integers. Then the following hold for
t € N,.

(i) V,"H,(t,a) = Hyy, (1, ),
(i) VYH,(t,a) = H,_,(t,a),

oo, o T+ o
(iii) V(t —a) = —F(éH VJ -,
. I I'(p+ —

V(s - _ v
(iv) VJ(t —a) —F(M o0 (t—a)l".

Later in this paper we will use Laplace transforms in some of our later proofs. We
will use the following results.

Definition 9 ([12, Definition 3.64]) Assume f : N,.; — R, then we define the
Laplace transform of f (based at a) by

o]

Lo{fYs) =) A=) fla+h

k=1
for those values of s such that the above infinite series converges.
Definition 10 ([12, Definition 3.77]) For f, g : N,+1 — R, we define the nabla con-

volution product of f and g by

(f =) :=/ f@—p@)+a)g(s)Vs, t €Nyt

Theorem 4 ([12, Theorem 3.80]) For f : N1 — Randv notanonpositive integer,
we have
V., f@) = (Hy—1(-,a)* f)t), t€Ngp.

Theorem 5 ([12, Theorem 3.81] Nabla Convolution Theorem) Assume f, g : N, 11
— R and their nabla Laplace transforms converge for |s — 1| < r. Then

Lo f * g}(s) = La{f}(s)Lalg}(s)
for|s —1| <r.

Theorem 6 ([12, Theorem 3.82]) Assume 1 > 0 and the nabla Laplace transform
of f : Nyt1 = R converges for |s — 1| < r for some r > 0. Then

1
La{Vi " [}s) = S Lalf}s),

for|s —1| <r.
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2 Caputo Nabla Fractional Differences

One of our main interests in this paper is to consider the Caputo fractional equation
VY (1) = h(t),

where the operator V}, is the v Caputo fractional difference operator. In the section

of our paper we define and give several important properties of this Caputo fractional
difference operator, which we will use to prove our main results.

Definition 11 (Caputo Nabla Fractional Difference) Assume f : N, ;_y — Rand
> 0. Then the p-th Caputo nabla fractional difference of f is defined by

VE F(t) := vV NVIVN (1)

fort € Ny, where N = [pu].

We note some differences between the Caputo nabla difference and the nabla
Riemann-Liouville difference in the following remark.

Remark 4 For ;1 > 0 and any constant C, we have for the Caputo case
ViC=v, Ny NC = 0.
But for the nabla Riemann-Liouville case we get that
vic = vNv, W=me
=v" / t Hy—y-1(1, p(5))CVs
a

= VNCHy_,(t,a)  (by Theorem 1, (iii))
=CH_,(t,a) (by Theorem 1, (ii))

for t € N,, which is zero only for ;. a positive integer.

3 Composition Rules

In this section we will give several important compositions rules.
Lemma 3 ([12], Lemma 3.108) Let k € Ny, pt > 0, and N = [u]. Then
VAV () = VE£()

and
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fort € Nyiy.

VEVEF (1) = V(1)

The following lemma appears in Ariel Setniker’s dissertation [22]. Here we give

a different proof.

Lemmad ForpeRYand f: Ny — R,

VEVf@) =VV @) — H,—i(t,a) f(a)

fort € N,.
Proof

t
V V@) = VY () =/ Hy—1(t, p)HV f()Vs — [V f(1) — (V' )& — D]

for t € N,. Thus the proof is complete.

t
Z Hy1(t, p)V [ () = [V " f(0) = (V" )t = D]

s=a+1

t
D Hu 1t p))(f($) = fls = 1) = V' £ (1)

s=a+1

t—1

+ Y Hu =1, p()) f(5)
s=a+1
t—1

- Z Hyr (6 p) S s = D+ Y Huor(t = 1, p(s) £ (5)

s=a+1 s=a+1

t
—Hy i(t,a)f@) — Y Hy1(t,s = 1) f(s —1)

s=a+2

t
+ Y Hya(t—1s=2)f(s—1)

s=a+2
—H,_1(t,a)f(a)  (by Remark 2)

We now generalize the above lemma.

Theorem 7 ([22, Theorem 2.8]) Let > 0, N € Ny, and f : Ny_ny+1 — R. Then

VY ) =

fort € N,.

N—-1

(VO = Hy vt )V f (@),

k=0
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Proof We proceed by induction. The base case when N = 1 has been shown by
the previous lemma. Now assume the result is true for all N > 1 and consider the
following for r € N,,.

(VAN () = (VYN Y £) ()

N—-1
= VYV IV @O = D Hy vk, a)(VEV £)(@)
k=0
N—-1
= VN[V )0 = Hyr (8, ) f(@] = Y Hyeni (8, @)V f(a)
k=0
N—-1
= (VNI )0 — Hyn1 (@) f@) = Y Hy oy (t, @)V f(a)
k=0
N

= (VNI ) (0) = Hyon-1(t.a) f@) = Y Hy- vkt )V £ (@)
k=1
N

= (VNI )0 = Y Hy vk (8, ) VE £ @) .

k=0
Corollary 1 Assume v >0, and N :==[v]land f :N,_y;1 > R Let uy=N —v
in Theorem 7. Then we have

N-1

VLF@) =V =Y Heo(t.a)V f(a),

k=0
fort € N,.

Corollary 2 When . = N in Theorem 7 we get that

N-—1
VAVNF@) = f() =) Het.a)VE f(a).
k=0
fort € N,.
Proof
N-—1

VAV @) = VN @) = ) Hi(t, )V f(a)
k=0

N—1

= f(t)= ) Hi(t.a)V*f(a),  (by Lemma 3)

k=0

fort e N,. O
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Theorem 8 ([22, Theorem 2.18]) Assume v > 0, N := [v] and f : Nyy1_ny — R.

Then
N—1

VUYL = f0) =) Hi(t,a)V* f(a)

k=0

fort € N,.

Proof By the definition of Caputo difference, we have

VoUVEf(t) = VIV VIV £
— V;(I/+N_V)va(t)
=V, NVVf@)

N—-1

= f(t) = Y_ Hi(t,a)V* f(a),

k=0
for t € N,, where we used Corollary 2 in the last step. (]

Theorem 9 ([12, Theorem 3.107]) Assume f : N,o1 — R, and v, u > 0. Then

VUV =V R F@),  teN,.

The following theorem is a generalization of [12, Theorem 3.107].
Theorem 10 Leta € R, b, v, p € RY, and f : Ny_p11 — R. Then
VoIV L@ =V (@), 1€ Nas.

Proof Applying the Laplace transform, we get that

_ 1 _
La{V"V E FYs) = — LalV, 1 F)(s)
S
_ siyca{HW(-,a — B)}($)Lalf}(s) (by Theorem 5)

o0
[>a -9 "t 1@ =b+ka=b)Latfieo)

1
B
S

- siv[ S (-9 H, i@+, a)]ﬁa{f}(s) (by Remark 2)
k=1

1
= s*[:a{Hp,—l(' »a)}($)La{f}(s)

1 —
= sLalVa o)

= La{V;"Va " [}(5)
= L4{V; """ f}(s) (by Theorem 9)
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Then by the uniqueness of Laplace transforms, we have
VIV F@) =V @), 1€ Naspa.

Moreover, V,*V. " f(a—b) =0=V,""f(a - b). O

4 Caputo Nabla Fractional Boundary Value Problems

4.1 Introduction

The study of fractional calculus dates back to the time of Leibniz. Many applications
of fractional calculus emerged in the past few decades. Tenreiro Machado et al. [20]
investigate some engineering applications of fractional calculus. Valério et al. [24]
survey the application of fractional calculus to scientific and engineering problems in
the past two centuries. Recently, Graef et al. [14] use fractional differential equations
to study bike sharing systems. However, only in recent years, fractional difference
equations began to be studied. Miller and Ross published a landmark paper on frac-
tional difference calculus [21] in 1988. Recent results can be found in [2, 46, 9-13,
16-18, 23].

This chapter is motivated by Eloe et al. [7], St Goar [23] and Erbe and Peterson [8].
Atic1 and Eloe [3] studied a two-point boundary value problem and then the results
were generalized by Goodrich [11] and Eloe et al. [7], where fractional boundary
value conditions are considered. Eloe et al. [7] studied the Green’s functions for a
family of delta fractional boundary value problems and St Goar [23] considered a
right focal boundary value theorem problem with a Caputo fractional difference. In
[8], Erbe and Peterson discussed the existence of positive solutions to a boundary
value problem on time scales, using the cone theory that can be found in [15, 19]. In
this chapter we consider a Caputo nabla fractional boundary value problem (FBVP)
with a fractional boundary condition of the form

—Viy(t) =h@), 1 €N,
y(a—1i)=0, I1<i<N-1 (1
(Vi) () =0,

where h:Nyy )1 > R, v>1,0<g<N-1<v<N,b—a€Zand b—a >
N —1.

When 1 < v <2 and 8 = 0, the FBVP (1) becomes a two-point problem that
will be discussed in Sect.2.5. When 1 < v < 2 and § = 1, it becomes the right focal
problem in [23].

In Sect. 2.2, we derive the Green’s function for solving the FBVP (1) by adopting
a construction approach which is similar to the method used by Eloe et al. [7], so that
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the Green’s function, the solution of the FBVP, and the existence and uniqueness
of the solution are all included in the following theorem. In Sect.2.3, we discuss
the behavior of the Green’s function with respect to the parameter 3 and prove
that the Green’s function is nonnegative in several cases. In Sect.2.4, we prove two
comparison theorems. In Sect.2.5, we use cone theory in a Banach space to study
a two-point problem and discuss the existence of positive solutions to its nonlinear
case.

4.2 Green’s Function

In this section, we are interested in the Green’s function for the homogeneous nabla
FBVP

—Viy() =0, teN;,
ya—i)=0, 1<i<N-1 )

(V2yb) =0,

wherev > 1,0<<N-1l<v<N,b—aeZadb—a> N —1.

Theorem 11 Assume v > 1, 0<3<N-1<v<N,b—a€Z b—a>N —
1 and h : Nyyy — R. The Green’s function G(t,s) : N27N+1 X NZ_H — R for the
Caputo nabla FBVP (2) is given by

u(t,s), a+1<t<p(s)<b

G, s) = v(t,s), a+1<p(s)<t<b )
where
__ Hy_p_1(b, p(s))Hy1(2, p(a))
u(t,s) =
Hy_5_1(b, p(a))
and

_ Hyp_1(b, p(s))Hy_1 (1, p(@))
v(t,s) = Hy 71 (b, p(@) w—1(t, p(s)).

Furthermore, the unique solution of the Caputo nabla FBVP (1) is given by

b
) = f G(t, $)h(s)Vs,

b
fort e NJ.
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Proof Applying the nabla sum operator V" to both sides of the Caputo nabla
fractional equation in (1) we get that

—V V() = VVh(t)

fort € N,.
By Theorem 8, the general solution to V}.y(¢) = h(t) is given by

N-1

Y() =Y Hi(t,a)V*y(a) — V,"h(t). )
k=0

fort € N,.

Then we use the binomial expression in Lemma 1 to expand V¥y(a) and apply
the boundary conditions on the left in the FBVP (1). Then we use Lemma 2 to obtain
the following

N—-1 k
[k
Y =) Hilt, a) ZH)’( .)y(a — )=V, h(t)
k=0 j=0 J

N—1
_ (Z Hi(t, a))y(a) — VVh(r)
k=0
= Hy_1(t, p(a))y(a) — V,"h(t) (5

fort e N,.

Now we use the boundary condition on the right in (1) to solve for y(a). We apply
the Caputo nabla fractional operator Vf* to both sides of (5) and then evaluate the
result at = b. So we have

(Vo) (B) = 0= y@) (V. Hy-1(-, p@)) () — (VN ") (B). ()

Next we use the power rules from Theorem 1 (ii) and Theorem 3 (i) to find that

(V2. Hy (-, p(a)))(b) = (V; MDY Hy (-, pa)))(b)
= (VM D Hy iy, p(a))(b)
= Hy_3_1(b, p(a)), (N

where M = [[3].
Note that in the above proof, we used M < N — 1 so that Hy_p—1(b,a) # 0.
Otherwise, we would not be able to solve for y(a).
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Next consider the term (Vf* V. 7h)(b) in (6) and find that

(VO R (b) = (V; MOV 1) (b)
= (V,; M=OvMrpyp)  (by Lemma 3)
= (VPh)(b),  (by Theorem 9) )

where M = [[3].
We substitute (7) and (8) into (6) to obtain

y(@)Hy—3-1(b, p(@)) — (VI™")h(b) = 0.

Solving for y(a), we get

@V D®)
Y= Hy_s5-1(b, p(a))’

Therefore, the solution of the boundary value problem (1) is given by

B—v
y(0) = %ml(n pla)) =V, h(1)
_ /” Hy_51(b, p(s)) Hy 1 (¢, p(a))
o Hy_j-1(b, p(a))
_ [ Hompor (B p) Hy1 Gt p(@) )Vs
a Hy_g_1(b, p(a))
N /b Hy,—5-1(b, p(s))Hy—1 (1, p(a))
t+1

Hy_p_1(b, p(a))
- / H,_1(t, p(s)h(s)Vs — H,_1(t, p(t + 1)h(t + 1)

_ U H,_51(b, p(s))Hy-1(t, p(a)) r+1
= a HN—ﬂ—](b, p(a)) h(s)vs _A Hl,,l(t, p(s))h(s)vs

+/b Hy,_s_1(b, p(s))Hy_1(t, p(a))
1+1
b

h(s)Vs —f H,_(t, p(s))h(s)Vs

h(s)Vs

h(s)V
Hy—y_1(b. p(a)) (©)Vs

=/ G(t,)h(s)Vs, teNo_\ |,

a

where we used that H,_ (¢, p(t + 1)) = H,_(¢,t) = O0by Theorem 1 (i) and G (¢, s)
is the Green’s function defined in (3). O

Remark 5 In [23], St Goar studied a Caputo nabla FBVP with an integer order
boundary condition of the form
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Viy(@) =h(t), teN:,

Viya—1)=0, 0<k<N-2 9)
(VN=ly)(b) =0

wherev > 1, N =[v],b—a€Zandb—a > N — 1.
The Green’s function for the corresponding homogeneous FBVP
Vi y(t) =0, teNy
Viy(a—1) =0, 0<k<N-2 (10)
(VV=Iyb) =0

is given by
u(t,s), t=<p(s)
= 11
G.s) v(t,s), t = p(s) (b
where
u(t,s) = —Hy_1(t,a — 1)H,_n(b, p(s))
and

v(t,s) = —Hy_1(t,a — DH,_n(b, p(s)) + H,—1(t, p(s)).

In the Green’s function (11), u(¢, s) is defined to be the unique solution of the
BVP

VZu(t,s) =0, teN;,
Vhu(a —1,5) =0, 0<k<N-2 (12)

V¥Vl (b, s) = =V~ Ix(b, s),

where x (¢, s) = H,_1(t, p(s)).
‘We note that the Green’s function we have found in Theorem 11 reduces to (11)
when 0 = N — 1 and satisfy the following BVP that is similar to (12):

Viu(t,s) =0, teNy
ula—i,s) =0, 1<i<N-1 (13)
(Vou)b, s) = —(V2)x(b, 5),

where x (¢, s) = H,_(t, p(s)).

St Goar also presented a generalized FBVP where the boundary condition on the
right is (Viy)(b) =0, i € Név_l. Both of the two FBVPs are special cases of our
FBVP (1).
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5 Properties of the Green’s Function

In this section, we examine the behavior of the Green’s functions G (¢, s) in Theorem
11 for 0 < 3 < 1. Note that G(3; t, 5) := G(¢, s).

Theorem 12 Let 1 <v <2, and 2<b—a < ﬁ Then the Green’s function
G (05 t, s) has the following properties:

(i) GO:a—1,s5) = G(0;b,s) =0.

(i) G(0;¢,5) > 0for(t,s) e No_| x N,
(iii) max, ey G(0;t,5) = G(0; p(s),s) for (t,s) € NZ_I x N2 and

a+1’
(iv) G(0;t,5) = k-G(0; p(s),s) for a constant k € (0, 1) and (t,s) € Nl(f1 X
N,

Proof (i) Notethat1 < v < 2implies N = 2. When /3 = 0, the boundary conditions
in the FBVP (1) becomes y(a — 1) = 0 and y(b) = 0.
By direct computation, we have

H,_ (b, p(s))Hi(a — 1, p(a)) _

Gha=1l.5)= Hy (b, p(a))

07

and

H,_(b, H, (b,
G(0: b, s) = ‘(H’l’ EZ))p(;E) PD) b, pls)) = 0.

Hence the Green’s function satisfies the boundary conditions.
(ii) For < p(s) we have

G@0;t,s) =ul(t,s)
_ Hy_1(b, p(s) Hi (1, p(@))
B Hy (D, p(a))
b —=pls) +v— DI — p(a))
TG — p(s)Ib — pla))
>0.

For t > p(s), we have

H,_,(b, H(t,
GO 1,5) = v(t, s) = 2= Hlp ((;))p(;)()t PD) oy ps)).

Then the nabla difference of v(¢, s) with respect to 7 is given by

_ Hoab,p(s)
Viv(t,s) = oS = Hua (). (14)
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We claim that H,_,(¢, p(s)) is decreasing in ¢ for each fixed s € NZ 1
Fort =5, H, »(t, p(s)) = H,_»2(t, p(t)) = L.
Fort > s + 1, we have

ViH, »(t, p(s)) = H,_3(t, p(s))
Tt =s+v-2)
S Tw—-2)I't—s+1)
<0,

sincet—s+v—2>0,t—s+1>0,and—-1 <v—-2<0.
Hence we substitute H,_,(¢, p(s)) by H,_»(b, p(s)) in (14) and get the inequality
H,_1(b, p(s))
Viu(t, s) < m — H,_2(b, p(s))
_ r—p@s)+v—1) _F(b—p(s)+u—2)
(b= p@)T Wb —p(s) T'w—DIb-ps)
_ (b—p(s)+1/—2 _1> F(b—p(s)+1/—2).
(v =10 — pla)) I'(v—1DI® - p(s))

‘We see that
r'ob—p6)+v-2)

I'(v = DI — p(s))

and

b—p(s)+u—2_ - b—a+v—-2 B
(v =1D(b — pla)) T w-DHh-a+]
b—a+v-2—-—w—-—1Db-a+1)
wv—1Db-a+])
_b—at+v-2-@w-1)—-@w-1(b-a)
v—-—Db—-a+1
-2 -v) -1
T w=Db-a+1
=2 —v)—1
So-Db-ath
=0.

Hence V,v(t, s) < 0. So G(0; t, s) is decreasing for r > p(s).
We also see that v(b, s) = 0 from the proof of (i).
Hence G(0; ¢, s) > 0.
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(iii) We note that

Viu(t,s) =V, |:

Hy,_1(b, p(s))H1 (1, p(a))

Hy,—1 (b, p(s))
H, (b, p(a))

H, (b, p(a))

)

19

fort < p(s) and each fixed s € NZ+1~ We have shown V,v(¢,s) < 0fort > p(s) and

each fixed s € NZH.

For p(s) <t <b — 1, since G(0; ¢, 5) decreases in ¢, we have

G@;1t,s)

G(0;1t,5) G(0;a,s)
G(0; p(s),s) — G(0; p(s), s)
H,_(b, p(s))a—a+1)
b—a+1
H,_(b, p(s))(s —a)
b—a+1
1
C s—ua
- 1
“b—a

G(0; p(s), 5)

- GO;b—1,9)
G(0; p(s), s)

Hy1(b, p(s))(b—1—a+1)

b—a—+1

Hence the maximum of the G(0; ¢, s5) occurs at t = p(s).
iv) Fora <t < p(s), since G(0; ¢, s) increases in ¢, we have
P

— H,1(b— 1, p(s))

H,_1(b, p(s))(s —a)

b—a+1

Hy1(b—1,p(s)(b—a+1)

H,_(b, p(s))(s —a)

a_(b—gﬁﬂb—a+n
(b—s+ DT
 Th—s+v-DIrb-s+1)

)

= H,1(p(s), p(s))

I'(b—sb—s+v)

b—-s5)b—a+1)
a—

b—s+v—1

)

w—a+n)

(b—a)(b—s—i—u—1)—(b—s)(b—a+1))

b—s+v—1

b—ayv-—1+®-ys)

b—s+rv—1

)
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1 ((b—a)(v— 1)+(b—S))

>
“b—a b—s+v—1
. v—1 n b—s
S b—s4+v—1 b-a)b—s+v—1)
v—1
>
“"b—a+v-1
. 1 v—1 .
Letk := m1n{ , }.It1sclearthat0<k< 1. O
b—a b—a+v-—1

1
Theorem 13 Letl<u<25uchthat2§b—a§2—,N=[V],0§ﬂ§l,
—v

and G(B;t,s) := G(t,s) be the Green’s function defined in Theorem 11. Then
G(B; t, s) is increasing in 3 for all fixed (t, s) € NZ_I X N2+2.

Proof The behavior of G(3; t, s) in (3 is determined by

H,s_1(b.p(s))  T'b—s+v—p TI'b—a+1)[(N—p)
Hy_s-1(b,pla@) T'h—s+0)I'wv—pB) T'h—a+N-7)

Since I'(b — a + 1) and I" (b — s + 1) are both positive, the behavior of G(3; ¢, s)
in (3 as a continuous variable is further determined by

Fb—s+v—BAIN—-B)  (v—pBP~

Fb) = Fv—@rb—a+N—-p) (N—ppha

Since 1 < v < 2 implies N = 2, we substitute N in the above definition to get

Frb—s+v—-Are—p w—pe
Frw—-/rb—a+2-0 @-pp—

fB) = (15)

Since b—s €Z,b—a€Zand b—a > b —s, we use Definition 3 to expand
the rising functions (15) and then obtain

v-Bv—-B+1D---(v=0B+b—-s—1)
RQ-2—-B+1D---Q—=p+b—s—1)---Q—B+b—a—1)
_bfsfl V_/(),+l.b7a71 1
- 1:[0 2—ﬁ+ijns2—ﬁ+j'

h—

fp =

Then we use the generalized product rule for n functions of the form

d n . B n ‘ n fi’(x)
5516@) = Ef,(x); o
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to find the derivative of f(3)

-1

b—s v /6 +i b—s—1 v_2 b—a—1 1
ro= (ll_([) 2-f+i Q-p+dw-=p+i) )\ 1 2-B+]

Nag

j=b—s
b—s—1 I/—ﬂ—i—i b—a—1 1 b—a—1 1
+ R S — e — R
(11 2-p+i )\ L2 2=0+] j§_S2—ﬁ+j
b—s—1 v_2 b—a—1 1
_f(ﬂ)z Q-0+ -— ﬂ+)+f(ﬂ) ;SZ—ﬁ—i-j
b—a—1 1 b—s—1 1

~IO\ X v Lo

i=0
Since f(B) > 0, the sign of f’(/3) depends on
b—a—1 1 b—s—1 1

S i MR

i=0

It can be shown that ¢((3) increases in v. Since 2 <b —a < , we have

— VUV
3 3
V> > Whenu:z,b—a=2 and there are two values for s: a + 1 or a + 2.

a + 1 is not in the domain of s and b — s — 1 = —1 when s = a + 2. So we have

»(B) = ;5+;5>0 for 3 € [0, 1].

Hence ¢(3) > 0 for all v € [2,2) since ¢(B) increases in v. It follows that
f'(3) > 0 and the proof is complete. (]

1
Theorem 14 Let 1l <v <2,2<b—a < Z—,Ofﬁf 1, and (1, s) GNZ—1 X
—v
NZ 12+ The Green’s function G(3; t, s) has the following properties:
(i) G(B;t,5) =0,
(i) max,ce  G(Bit,5) = G(B; p(s), 5).
Proof
1
(1) By Theorem 12, G(0;¢,5) >0 for 1 <v <2, 2<b—a< 5

(t,s) € N” 1 X Na+l Then the result is valid for (z, s) € NZ_l X NZ+2. Therefore
by Theorem 13, we have G(3;t,s) > 0for0 < 3 < 1.

, and
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(i) G(B; ¢, s) is increasing in ¢ for t < p(s) since

Hy,—5-1(b, p(5))

Vit 5) = b, p(@)

Now we show G (0; t, s) is decreasing in ¢ for t > p(s). Consider

 Hypabop(s)
Viu(t,s) = m H, »(t, p(s)).

H,_3_(b, . .
By the proof of Theorem 13, we have Brop1 . p8)) 4 casesin Bfors e No_,.

H,_5(b, p(a))
This implies V,v(t, s) increases in 3 for each fixed s € NZH. So when 3 =1, we
have

Viv(z, s) o v—2(b, p(s)) — Hy2(1, p(s))

507

since H,_,(t, p(s)) decreases in t by the proof of Theorem 12. So V,v(t, s) < 0 for
0 < 3 < 1. Therefore max, ey | G(B;t,s) = G(G; p(s), s). O

We have been considering v < 2 in the previous theorems. We treat v = 2 as a
special case in the following theorem.

Theorem 15 Let v =2, 0 <3 <1 and (t,s) € NZ_I X NZ+1~ Then the Green’s
function G(B;t,s) increases in B, G(B;t,s) >0, and max, ey | G(B;t,s) =

G(B; p(s), 5).

Proof Let v = 2. The Green’s Function becomes

Hi_g(b, p(s))H (¢, p(a))

) _ H ,g(b, p(a))
G(ﬂvt’s) - Hl_g(b}p(s))Hl(tv ,O(Cl))

Hi_s(b, pl(@))

t < p(s)

- I/—l(t7 p(s))’ t 2 p(s)

and its behavior in 3 depends on

Hy_g(b, p(s)Hy(t,p(@)) T'(b—s+2—3Ib—a+1)
Hy_5(b, p(a)) Tb—a+2-Arb—s+1)

(t—a+1).

We note that I'(b—s+2—3), '(b—a+2—[),and t —a + 1 are positive.
Consider

 Tb—s+2-5)
o0 = rb—a+2-05)
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b—a—1

1
= Il 55+

i=b—s

Since 0 < 5 <1 and 2_;% is positive and increasing with repect to i for each

fixed 3 we have that G(3; t, s) is increasing in 3 for v = 2.
For t < p(s), we have

G(B;t,s) =ul(t,s)
_ His(b, p() Hi (1, p(a))
Hy_s(b, p(a))
b — p(s)' Pt — pla))

(b — pla)'=7
_Tb—s+2-Brb-a+l)
“To—at2-pro—stn’¢th

>0,
and for t > p(s), we have

H,_3(b, p(s))H\ (1, p(a))

G(B;t,s) =v(t,s) = Hy_y(b, pla)) — H(t, p(s)).
The nabla difference of v(¢, s) in ¢ for each fixed s is
_ Hip(b, p(s))Ho(t, p(a))
Viu(t, s) = Hy_y(b, pla)) Ho(t, p(s))
_ Hisp(s)
Hy_3(b, p(a))
_Tb-s+2-fre-a+l)
T I'b—a+2-3rb—-s+1)
_ ‘Y_al—r b—a-—i _
o b—a+1-p—i
<0
for ¢t < p(s) and
_ Hi_p(b, p(s))Hi (b, pla))
v(b,s) = H . (@) Hy (D, p(s))
(1T —2=a=i g - 1
_< H b—a—i—l—ﬂ—i)( —a+1)—(b-s+1).

i=0
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We already have that v(b, s) increases in 5. When § = 0, we have

v, o) = H\ (b, p(s))Hi(b, p(a)) Hy(b, p(s)) = 0.

=0 H, (b, p(a))

It follows that v(b, s) > 0 for all 3 € [0, 1]. Hence G(5; ¢, s) > 0.
To see that max;eny | G(B;t,s) = G(B; p(s), s), we note that

Vou(t,s) =V, [Hlﬂ(b’ p(s)H(t, p(a))]
Hi_5(b, p(a))

_ Hi(b. p(s)
Hi_s(b. p(@)

for t < p(s) and each fixed s € NZ_H. Therefore max, eyt G(B;t,s) =G,
p(s), s). U

Remark 6 There is no upper limit on b — a in Theorem 15. We can also see this
from Theorem 13, where b — a — oo as v — 2. The Fig. 1 shows the graphs of the
Green’s function forv =2,b =10,a =0,s =4 and 8 =0, 0.6, 1.

Remark 7 The condition b — a < ﬁ in Theorem 12 is also seen in [23, Theorem

3.11], where it was used to obtain a positive lower bound for v(z, s). In the proof of
Theorem 12 this condition is needed for a decreasing v(z, s) in ¢ for fixed s.

Remark 8 Note that the condition 2 < b —a < zi—y implies v > 3/2. If l <v <

3/2, we need to find new conditions for the relationship between v and b — a. Oth-
erwise, the Green’s function could be negative, as shown in Fig. 2.

]
\4

|
—
N
[en)
—_
[N}
w
o~ 4
ot
(=2
~
oo
Ne)
=
(=)
—
—

Fig. 1 The Green’s function for » = 2 with § = 0, 0.6, 1
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3
2
1
[ ]
[ ]
@ o———————»
—2 0 2 e o ©° 6 8
-1

Fig. 2 The Green’s function forv = 1.2, 3 =02b=6,a =0ands =3

5.1 Comparison Theorems

In this section, we give two comparison theorems as a direct result of the nonnegative

property of the Green’s functionfor 1 <v <20<<1,2<b—a < 7.

2—v
Theorem 16 Assumel <v <2, 0<p<1,2<b—-a < 2l—y,andu,v:[\lz_l —
R such that u(t) and v(t) satisfy
VZiu(t) > Viv(), teN
ula—1) =v@-1)
(Vi) (b) = (Vv) ()
Then u(t) < v(t) fort € qu'
Proof Let
w(t) =v(t) —u(t), teN |,
then
h(t) := Viw(t) = Viu(t) — Viu(@) <0, teN2
by hypothesis. Note that w(¢) solves the Caputo FBVP
—Viw(t) = —h(t), teN (16)
w(a—1) =0, (17)
(V2 w)(b) = 0. (18)

Hence by Theorem 11
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b
w(t)=/ G(B; 1, 9)[—=h($)]Vs 19)
ab
= Y GBit,9[-h)], teN, . (20)
s=a+1

Since h(t) < Ofort € NZ+1 and by Theorem 14, G(3;t,s) > Ofort € NZ_] and

s € N2 |, wehave thatw(#) > Ofors € N’ This implies that v(¢) > u(r) fort € N.

But by the hypothesis u(a — 1) = v(a — 1). Hence

v(t) > u(t), teN: . O

Next, we give the solution to the FBVP (1) with nonhomogeneous boundary
conditions for 1 < v < 2.

Theorem 17 Assume 1 <v <2, 0<(3<1,and h: N2+l — R. The solution of
the FBVP
—Viy(t) =h(t), teN

Y(a - 1) = Av
(V2.y)(b) = B.

where A and B are constants, is given by

b
y(t)=z(t)+f G(t,s)h(s)Vs teN>_ |,

where G (t, s) is the Green’s function defined in Theorem 11 and z(t) is the solution
of the FBVP

—Viz(t) =0, teNi,
2a—1)=A,
(V2.2)(b) = B.

Proof This theorem is an immediate corollary of Theorem 11 for 1 <v <2. [

Theorem 18 Assume 1 < v < 2,0 < 3 < 1 and z(t) solves the FBVP

—Viz(t) =0, teN’
z2la—1)=A,
(V22)(b) = B.

IfA,B >0, then z(t) > 0 fort e Nb_,.
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Proof Since 1 < v < 2, we have that N = [v] = 2. Using Theorem 8, the general

solution of —V.z(t) = 0 is given by

1
2(t) =) H(t,a)V¥z(a).

k=0

Using the boundary condition on the left, we have

z(t) = Hy(t,a)z(a) + H (¢, a)Vz(a)
=z(a)+ H(t,a)(z(a) — z(a — 1))
= z(a) + H(t, a)(z(a) — A),

fort € N®_|. Applying the boundary condition on the right, we have
(Vo) (b) = Hi_y(b, a)(z(a) — A) = B,
which implies
@) =A4+ ——.
Hy_5(b, a)

Hence, fort e N2,

B
) =A+———+H(a)

-_ > s
Hy_3(b, a) Hy_3(b,a) —
since Hy(t,a) =t —a > 0and Hy_3(b, a) = %}% > 0. O

Using Theorems 17 and 18, the following comparison theorem is a generalization
of Theorem 16.

Theorem 19 Assumel <v <2,0<p<1,2<b—a <5, andu,v:N,_, —

2—v’
R such that u(t) and v(t) satisfy

Viu(t) > Viv(), teN:
ula—1>va-1)

(VE)ub) = (Vv (b).

Then u(t) < v(t) fort € N°_ .

Proof Let w(t) :=u(t) —v(t) fort € szl’ A:=u(a—1)—v(@—1),and B :=
(V2)u(b) — (V2.)v(b). Then we have

h(t) := VZ%w(t) = Viu(t) — Viv(@) >0, teN .
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Note that —w(t) is the solution of the FBVP

—Viw() =h(), t €N,
wa@—1)=A,
(V2w)(b) = B,

where A, B > 0.
Hence by Theorem 17,

b
—w(t) = z(t) + f G(t,s)h(s)Vs, teN’
a
where z(t) solves the Caputo FBVP

—Viz(t) =0, teN’,
zla—1)=A,
(V..2)(b) = B.

fort € N?_,.Note thatz(t) > Ofort € N2_ by Theorem 18. We also have G(z, s) >
Ofortr € N?_ and s € N, by Theorem 14 and h(t) > 0 for t € N?_,. Therefore,

we have w(t) = u(t) —v(t) <0,t e N°_ .

5.2 Two-Point Problems

O

In this section we give the solution to a two-point FBVP in general and then study a

nonlinear case.

We note that the Green’s function G(0; ¢, s) provides the unique solution to a

two-point problem of the Caputo nabla difference:

—Viy(t) =h@t), teN
y(a - 1) = 07
y() =0,

Whereh:NZH—>R,1<1/<2,b—anandb—a>N—1.

Theorem 20 The solution of the two-point problem (21) is given by

b
y(t):/ G(0;t,5)h(s)Vs, teN> |

where G(0; t, s) is the Green’s function defined by

2n
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Hy—1 (b, p(s))(t — p(a))

— , a+1<1=<p(s)<b
GO:t.9) =\ o, p(sf)(t — p(a))
b — pla)

—H,_i(t,p(s)), a+1=<p(s) <t <bh.

Proof The two-point problem (21) is a special case of the Caputo nabla FBVP (1)
for 8 = 0. Therefore the result follows from the proof of Theorem 11. (]

3
Next we consider a nonlinear two-point problem when 5 <v<?2

—Viy(®) =h(t, y(t=1)), teNy,

y@a—1)=0, (22)
y(b) =0,

1
where 1 : N2 | x RT — R is continuous, b —a € Z,and2 < b —a < =

We are going to apply the framework from Erbe and Peterson [8], where the
authors discussed the existence of positive solutions to a boundary value problem on
time scales.

Definition 12 Let B be a Banach space. Then P C B is called a cone provided P is
a nonempty, closed, convex subset of 5 satisfying

(1) A > 0and x € P implies Ax € P;
(i) x, —x € P implies x = 0,

where 0 is the identity element in B.

The following fixed point theorem concerning cone expansion and cone com-
pression appears in [15, 19]. It has been a useful tool in the analysis of nonlinear
problems in both differential and difference equations. See [3, 8, 23].

Theorem 21 Let B be a Banach space and let P C E be a cone. Assume §2\ and
§2, are open subsets of B with 0 € $21 and 2| C $§2,, and assume that

A:PN(2,/2) > P

is a completely continuous operator such that either

@) N1Ax] < llxll, x € PN OS2y, and ||Ax]|l = |x]l,x € PN OS2, or
() [|Ax]l > [Ix]l, x € P N2y, and ||Ax| < ||x], x € P N 2.

Then A has a fixed point in P N (25 \ £21).
For the analysis of the nonlinear two-point problem (22), we define a Banach

space
5::{y:N§71 — R:y(a—1)=yb) =0}
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with the norm || - || defined by
Iyl == max{ly(@)|, t € N)_,}.
We define a cone K in £ by
K:={yeE:y@t) >0fort e N?_, and y(r) > k|| y|| fort € Nb'},

where k € (0, 1] is as defined in Theorem 12.
We define an operator A by

b b
Ay(t) = f G@0;t,s)h(s,y(s —1))Vs = Z G0;t,s)h(s, y(s — 1))

a+1

fort e Ne-land y € K.

Now we show that A : K — K. We have G(0; 7, s) > Ofor (¢, s) € NZ_I X N2+1
from Theorem 12 and # : N2 | x RT — R from the two-point problem (22). So
we have Ay(¢) > 0. Then by Theorem 12 (ii),

b
Ay(1) = / kG (0; p(s), $)h(s, y(s — 1)) Vs

b
> / k max G(0;¢t,s)h(s, y(s — 1))Vs
a

teNb-

b
> k max / G(0;t,s)h(s, y(s —1))Vs

1eNs™" Jq

= kllyll-

So Ay(t) € K. Therefore, A : K — K.

We also note that the operator A is completely continuous since it is a sum of
finite discrete terms.

We will give sufficient conditions related to the behavior of k(z, y) so that the
nonlinear two-point problem (22) has a positive solution. We define « and ¢ such
that

b
::/ G (0; p(s), s)Vs, and

Sl = 2=

b—1
= k/ G(0; 1y, 5)Vs,

for fixed 7o € No~1.
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Theorem 22 [f there exist ju1, py € (0, 00) such that

h(t,y) <yu ¥t eN._and 0 <y <, and
h(t,y) >d0yVte Nz*1 and kuy <y < o,

then the two-point FBVP (22)

—Vry(t) =h(t, y(t—1), teN
Y(a - 1) = 07
y(b) =0

has a positive solution.

Proof Case 1: pu < pp. Let £21, £2, C &€ such that £2; be the ball centered at the
origin with radius y; and §2, be the ball centered at the origin with radius .
If y e Kand |lyll = 11, we have

b
Ay(t) = / G(0;¢,s)h(s,y(s —1))Vs
b
< / G(O; p(s). $)h(s, (s — 1))Vs

b
=Y / G(0; p(s), 5)Vs
a
= l].
So [[Ayll < |yl for y € KN O$2;.
If y € K and ||y|| = 2, then y > ky, implies y > k||y|l and we have

b
Ay(to) = / G(0; 1o, $)hs, y(s — 1)V
ab—l
> / G(0; tp, s)h(s, y(s — 1)) Vs
‘ b—1
> 6/ G(; ty, s)y(s — 1)Vs
a h_l
> Sklly / G (0: 10, 5)Vs

= Iyl

So|lAyll = |yl fory € KC N 0£2,. Hence by Theorem 21 (i), the operator A has a
fixed point in K N (§2;, \ £2;). Therefore the FBVP (22) has a positive solution y(t)
such that p < [[y[l < p2.
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Case 2: up < pp. Let £21, £2, C &€ such that £2; be the ball centered at the origin
with radius p, and £2, be the ball centered at the origin with radius ;.

If y € K and ||y|| = w2, then by the similar argument as in Case 1, we have
|Ay| = ||yl fory €e KNOL2;.If y € Kand ||y|| = p1, then by the similar argument
as in Case 1, we have ||Ay|| < ||y| for y € K N 0§2,. Hence by Theorem 21 (ii), the
operator A has a fixed point in /CN (£2, \ £2;). Therefore the FBVP (22) has a
positive solution y(#) such that yp < ||yl < p. O

Now we consider more restrictions to the behavior of A(¢, y). We have assumed
that & : Nz +1 X R — R*. We further assume that the limits

h(t, . ha(,
Ao ;= lim @, ) and My = lim @, 7)

y—0+ y y—>00 y

exist uniformly in R U {—o0, 00}.

Theorem 23 [f either Ao = 0 and Moo = 00 or Ay = 00 and Ao = 0, the two-point
FBVP (22)
—Viy(@) =h(t, y(t—1)), teN
ya—-1) =0,
y(b) =0,

has a positive solution.

Proof Assume Ao = 0 and Ao, = 00.

Since A\g = limy_, o+ h(;y) = 0, we pick r; > 0 such that

h(t,y) < vy

forO0<y<r andt e Nﬁ_l. Let 2, :={y € K : ||y|| < r1} be the open ball in £
centered at the origin with radius r;. If y € L N 02, then ||y|| = r; and

b
Ay(t) =f G(0;t,s)h(s, x(s — 1)) Vs
b
< 7/ G(0;t,s)x(s —1)Vs
‘ b
Svrlf G(;1,5)Vs

b
< 7r1/ G(0; p(s),s)Vs

=r.

Hence [|Ay[l < [y ,
Since Ao = limy_, o (’)IY) = 00, there exists an ri such that
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h(t,y) > 5r{
for y > r{. Then we define
Ry := max{2ry, r{}

and £2, :={y e KL : |yl < Ri}. Now fory € XN 92, and 1y € N(’l"l, we have

b
Ay(to) = / G(0; . $)h(s. y(s — 1)V
ah—l
> / G(O; 10, $)h(s. y(s — 1)V
‘ b—1
> 6/ G(; 19, s)y(s — 1)Vs

b1
= 5k||y||/ G(0;10,5)Vs
= Iyl

Hence || Ay|| = Ay(ty) > || y||. Therefore by Theorem 21 (i), A has a fixed point
in N (825 \ £2)). It follows that the FBVP (22) has a positive solution.

Next we assume Ao = 00 and Ao = 0. Since \g = lim,_, o+ h(’y’") = 00, we may
pick r, > 0 such that

ht,y) = by

forO<y<randt e NZ—I' Let 2, :={y € K : ||y|| < r2} be the open ball in £
centered at the origin with radius r,. If y € L N 942, then ||y|| = r, and

b
Av(io) = [ G(O; 1o, $)h(s, y(s — 1)V
ab—l
> / G(0; 10, $)h(s. y(s — 1)V
‘ b—1
> 5/ G(0; 19, 8)y(s — 1)Vs
¢ b—1
> 6k||y||/ G(0; 1y, 5)Vs

= Iyl

Hence [ Ay|l = Ay(to) = [Iyll. Since A = lim, o "5

such that

= 0, there exists an r}
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h(t,y) <~rh

for y > r}. Then we define

R, := max{2r,, r}}

and £2, :={y € K : ||ly|l < Rz2}. Now for y € KL N 9§2,, we have

b
Ay(t) = / GO;t,s)h(s,x(s —1))Vs
b
< ’y/ G@;t,s)x(s — 1)Vs

b
< 7||y||/ G(0: 1,5)Vs
a

b
< 7||y||/ G (0; pls), $)Vs

= [yl = R..

Hence [|Ay|| < [Iyll.

Therefore by Theorem 21 (ii), A has a fixed point in C N (£2 \ £2)). It follows

that the FBVP (22) has a positive solution. (]
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A Note on Ergodicity for Nonautonomous | M)
Linear Difference Equations e

Mihély Pituk

Abstract For a class of nonautonomous linear difference equations with bounded,
nonnegative and uniformly primitive coefficients it is shown that the normalized
positive solutions are asymptotically equivalent to the Perron vectors of the transition
matrix at infinity.

Keywords Difference equation * Ergodicity - Asymptotic behaviour

1 Introduction

Let R, R and Z, denote the set of real numbers, the set of nonnegative numbers and
the set of nonnegative integers, respectively. For a positive integer d, R¢ and R¢*¢
denote the d-dimensional space of real column vectors and the space of d x d real
matrices, respectively.

Let < be the partial order on R induced by the nonnegative cone Ri, the set of
those vectors in R? which have nonnegative components. For x = (x1, ..., x7)” and
y= (yl,...,yd)T € R?, we have x < yifandonlyifx; <y, foralli =1,...,d.
We write x < yifx < yandx; < y; forsomei € {1, ...,d} and we write x < y if
x; <y foralli =1,...,d. A vector x is called nonnegative, positive and strongly
positive if 0 < x,0 < x and 0 < x, respectively. A similar notation and terminology
is used for matrices. The set of nonnegative matrices in R?*¢ is denoted by Ri”’.

A norm | - || on R? is called monotone if 0 < x < y implies ||x|| < ||y|. In the
sequel, || - || denotes any monotone norm on R? and the associated induced norm on
R¥*4_ A vector x € R? is called normalized if ||x|| = 1.

Consider the nonautonomous linear difference equation

x(t+1)=B@)x(), te’Zy, @))
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where B: Z, — R‘f‘l. Throughout the paper, we shall assume that there exist non-
negative matrices P, Q € R‘f‘] such that

P<B()<Q foralreZy (2)

and
P is a primitive matrix. 3)

Recall that a matrix M € RiXd is primitive if there exists a positive integer g such
that 0 <« M4. It is known [1] that every primitive matrix M € Ri”l has a unique
strongly positive normalized eigenvector, the so-called Perron vector of M, which
will be denoted by p(M). The Perron vector corresponds to the spectral radius r (M)
of M so that Mp(M) = r(M)p(M),0 < p(M) and | p(M)| = 1.

Note that assumptions (2) and (3) imply that B(¢) is nonnegative and primitive for
every t € Z,. Therefore each B(¢) has a unique Perron vector denoted by p(B(t)),
teZ,.

The following result from [2] shows that if B in Eq. (1) is slowly varying at
infinity, then the normalized positive solutions of (1) are asymptotically equivalent
to the Perron vectors of the coefficient matrices B(t) as t — oo.

Theorem 1 [2, Theorem 1] Suppose (2) and (3) hold. Assume also that
Bt+1)—B@t) — 0 ast— oo. (@)

Then for every solution x : Z., — R? of (1) with initial value x(0) € Ri \ {0}, we
have
x(t)

llx ()l

—p(B(t)) — 0 ast — oo, (5)

where p(B(t)) is the Perron vector of B(t) fort € Z,.

The asymptotic relation (5) shows that in the long run the behavior of the nor-
malized positive solutions is independent of the initial data. This fact is sometimes
called an ergodic property of Eq.(1). For the origin of the terminology and further
related results, see [3—6] and the references therein.

The purpose of this note is to give an asymptotic description of the normalized
positive solutions of Eq. (1) without assuming the slowly varying condition (4). Our
main result is formulated in Sect. 3 after presenting some notations and lemmas in
Sect. 2. In Sect. 4, we illustrate the main theorem by two examples.

2 Notations and Lemmas

The proof of our main result will be based on the properties of Hilbert’s projective
metric. Let RZ, denote the set of strongly positive vectors in RY. For x, y € RY
we define Hilbert’s projective metric by
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Xi

max1§[§n ; _xl.

d(x,y) =In——— 2 = max In ==L, (6)
minj<;<, y—‘ I<ij=n  X;Y

In the following lemma, we list some basic facts about the projective metric.

d

4., we have

Lemma 1 [8, Theorem 2.1, p. 7] Forall x, y and 7z € R
(1) d(x,y) =0,
(ii) d(x,y) = 0 ifand only if y = [Bx for some positive constant (3,
(iii) d(x,y) =d(y,x),
(iv) d(x,y) <d(x,z) +d(z,y),
v) d(Bx,~vy) =d(x,y) for any positive constants 3 and -y.

A matrix M € Rix‘l is row-allowable if it has a positive entry in each of its rows.
The next result shows that linear mappings generated by nonnegative row-allowable
matrices are nonexpansive, while strongly positive matrices act as contractions in
the projective metric.

Lemma 2 [8, Theorem 2.6, p. 22] Let M = (m;;) € R‘fd be a nonnegative row-

allowable matrix. Then for any x and y € Ri 4> we have

dMx, My) < 75(M)d(x, y), (7

where Tg(M) is Birkhoff’s contractivity coefficient given by

_ 1 /500
1+ op(M)

and Tg(M) = 1 if M has at least one O entry.

75 (M) with 6(M) = _min Tt M >0 (8)

<i,j,k,l<n mrmiy

By Lemma 2, 75(M) <1 whenever M is nonnegative and row-allowable and
Tg(M) < 1if M > 0. Furthermore, the explicit expression (8) implies that the func-
tion 73 is continuous on the open the set of strongly positive matrices.

We shall also need a result which shows that for strongly positive normalized
sequences the convergence in the projective metric implies convergence in any mono-
tone norm.

Lemma 3 [9, Lemma 6.4, p. 217] For any monotone norm || - || on R?, we have

x =yl <3(1 —e ™) whenever x,y € RY_ and||x|| = |lyll = 1. (9)

3 Main Result and Proof

The solutions of Eq. (1) can be written as

x(t) = X(t,s)x(s) fort>s>0, (10)
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where X (¢, s),t > s > 0, is the transition matrix defined by
X(t,s)=B(t—1)B(t—2)---B(s) fort>s>0. (11)

(By definition, X (s, s) = I for s > 0, where I denotes the d x d identity matrix.)
Our main result is the following theorem.

Theorem 2 Suppose (2) and (3) hold. Then for every solution x : Z,. — R? of (1)
with initial value x(0) € Ri \ {0}, we have

x(1)

m—p(X(t,O))—)O ast — 00, (12)

where p(X (¢, 0)) is the Perron vector of the transition matrix X (¢, 0) given by (11).

Theorem 2 may be viewed as a refinement of the Weak Ergodic Theorem by
Golubitsky et al. [3, Theorem 2.2] which states that if we take the /;-norm on R4,
then under conditions (2) and (3) for every pair of solutions x and y of (1) with
positive initial data x(0) and y(0),

x(1) y(t)
— —0
lx@1 ly®I

ast — o0. (13)

For the continuous analogue of Theorem 2, see [7, Theorem 2.2].
Now we give a proof of Theorem 2 which is an appropriate modification of the
proof of the Weak Ergodic Theorem [3, Theorem 2.2].

Proof By virtue of (2) and (11), we have
P < X(t,s) < Q"™ fort>s>0. (14)

Since P is nonnegative and primitive, there exists g > O suchthat P? >> 0. From (14),
we find that

0K PI<X(jg,(j—Dg)<=Q? forj=12,.... (15)
Since P and hence its powers are primitive and every primitive matrix is evidently
row-allowable, (14) implies that X (¢, s) is nonnegative and row-allowable for r >
s > 0. This, together with (15), implies that

X0 =Xt,q)X(q,0)>0 forr>gq.

Hence
x(1)=X(,0x0)>»0 forr>gq.

Furthermore, by Lemma 2, we have
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Tp(X(t,s5)) <1 fort>s>0. (16)

Define
C={MecR>|Pi<M=<Q}.

Evidently, C is a compact set of strongly positive matrices. As noted before, the
Birkhoff contractivity function 73 is continuous on the set of strongly positive matri-
ces and hence it attains its maximum € on the compact set C. Using Lemma 2 again,
we conclude that
0 = max p(M) < 1.
MeC

By virtue of (15), we have that X (jgq, (j — 1)q) € Cfor j = 1,2, .... Hence
8(X(jqg,(j—Dg) <0<1 forj=1,2,.... 17)

Lett > g and write p(¢t) = p(X(¢,0)) and r(t) = r(X (¢, 0)) for the Perron vector
and the spectral radius of X (¢, 0), respectively, so that

X, 0)p@) =r@)p().
In view of Lemma 3, in order to prove (12) it is enough to show that

d( ||ig§|| ’ p(’)> = d(x(0). r(p(1)) = d(X(1,0)x(0), X (1.0)p(1)) —> 0 (18)

as t — o0o. (Note that the last and the last but one equalities in (18) follow from
Lemma 1 (v).) Lett > ¢ be fixed and k = [t/q], the greatest integer part of #/q. By
the application of Lemma 2, we obtain

d(X(1,0)x(0), X (t,0)p(1)) = d(X (1, kq) X (kq, 0)x(0), X (1, kq) X (kq, 0) p(1))
= 78(X (1, kq))d (X (kq, 0)x(0), X (kq, 0) p(1)).

This, together with (16), implies
d(X(t,0)x(0), X (7,0)p(1)) = d(X(kq, 0)x(0), X (kq, 0) p(2)). 19)
Taking into account that
X(kq,0) = X(kq, (k = Dg)X ((k — Dgq, (k —=2)q) --- X (29, 9)X (g, 0),
arepeated use of Lemma 2, combined with (17), yields

d(X (kq, 0)x(0), X (kq, 0)p(1)) < 0*"'d(X (g, 0)x(0), X(¢,0)p(1)).  (20)
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Let
D={X(q,0v|veR:, [v]|=1}.

Since X(g,0) > 0, D is a compact subset of Ri +- As noted before, x(g) =
X (g,0)x(0) > 0 and therefore (6) implies that the mapping u — d(x(g), u) is
continuous on Ri +- As a consequence, the above mapping is bounded on the com-
pact set D C Ri +- This implies the existence of v > 0 such that for all u € D, we
have that

d(X(q,0)x(0), u) = d(x(q),u) <.

From this, taking into account that X (g, 0) p(t) € D, we find that
d(X(q,0)x(0), X(g,0)p(t)) <.
This, together with (19) and (20), yields
d(X(t,0)x(0), X(1,0)p()) <"1 — 0  asr — oo.

Thus, (18) holds. O

4 Examples

We will illustrate Theorem 2 by two examples.

Example 1 We give an asymptotic description of the normalized positive solutions
of Eq. (1), where B: Z, — Rixz is a 2-periodic matrix function defined by

1( V3 24 (=1

PO=2G-y v

fort € Z,.
2 > or +

We will use the /,-norm on R?. Assumptions (2) and (3) of Theorem 2 are satisfied

with P=%<\/1§\}§> and Q=%<?3§)

but the slowly varying condition (4) of Theorem 1 is violated. Thus, Theorem 1 does

not apply. As shown in [2, Example 1], in this case conclusion (5) of Theorem 1 does

not hold. We shall establish the asymptotic behaviour of the normalized positive

solutions of Eq. (1) by applying Theorem 2. In view of the 2-periodicity of B, we
have fort € Z,

: 1 V3

X(2t,00=M"',  where M = B(1)B(0) = (ﬁ 3 >
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and

X(2t+1,0) = N'B(0),  where N = B(0)B(1) = (jg *f) .

An easy calculation shows that the Perron vectors and the spectral radii of M and N

are L
p(M)=§<\/§)’ r(M) =4,

Ny = (V3 N)=4
=3 (). =4

respectively. Since Mp(M) = 4p (M) implies M’ p(M) = 4' p(M) fort > 1,inview
of uniqueness, M and M’ share the same Perron vector. Hence

and

p(X(2t,0) = p(M") = p(M)  fort > 1. 21
We claim that
p(X (2t +1,0)) = p(N'B()) = p(N) fort > 1. (22)
Indeed, if we write p(r) = p(N'B(0)) and r(¢t) = r(N'B(0)) for brevity, then
N'BO)p(t) =r(t)p(t) and N'p(N)=4"p(N) fort > 1.
From this, using Lemma 1 (v), we find for ¢ > 1,

d(p(t), p(N)) = d(r(t)p(t), 4 p(N)) = d(N'B(0)p(1), N' p(N))
< (75(N))'d(B0)p(®), p(N)),

where the last inequality follows from Lemma 2. By virtue of (8), we have that
7g(N) = 0 and hence d(p(t), p(N)) =0 for ¢t > 1. In view of Lemma 3, this
implies (22). Finally, from (21) and (22), by the application Theorem 2, we con-
clude that for every solution of Eq. (1) with initial value x(0) > 0,

x(1)
lx@)l

—s(t)— 0 ast— oo, 23)

where s: Z, — R‘i is a 2-periodic sequence defined by s(¢t) = p(M) if t € Z is
even and s(t) = p(N) if t € Z, is odd.

Example 2 Consider Eq. (1), where B: Z; — R%*? is defined by

1+e! 2—e!
B(t) = <1 +sin2\/; 1 +COS2 \/;) fOrt S Z+.
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Assumptions (2) and (3) of Theorem 2 are satisfied with

11 22
P=<11> and Q:<22>.

We will use the /;-norm | - || on R?. It is easy to verify that
1
B(t)u =3u fort e Z,, where u = K 24)
Hence %u is a normalized strongly positive eigenvector of B(¢) for all # € Z. . Since

B(#) is nonnegative and primitive, in view of the uniqueness, %u must be the Perron
vector of B(t), i.e. p(B(t)) = %u for all t € Z... From (11) and (24), it follows by
easy induction that

X(t,0u=3u forteZ,

which implies by a similar argument as before that p(X (¢, 0)) = %u forallt € Z,.
By the application Theorem 2, we conclude that for every solution of Eq. (1) with
initial value x(0) > O,

x(®) — l (]> ast — oo. (25)
lx @)l 2 \1
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Poincaré Return Maps in Neural ®)
Dynamics: Three Examples Sheshee

Marina L. Kolomiets and ANDREY L. SHILNIKOV

Abstract Understanding of the onset and generic mechanisms of transitions between
distinct patterns of activity in realistic models of individual neurons and neural net-
works presents a fundamental challenge for the theory of applied dynamical systems.
We use three examples of slow-fast neural systems to demonstrate a suite of new
computational tools to study diverse neuronal systems.

Keywords Neurodynamics + Poincaré return maps - Neural model - Networks

1 Introduction

Most neurons demonstrate oscillations of the membrane potential either endoge-
nously or due to external perturbations. Deterministic description of primary oscil-
latory activities, such as tonic spiking and bursting, of neuronal dynamics is based
on models following the Hodgkin-Huxley formalism [1]. Mathematically, such con-
ductance based models belong to a special class of dynamical systems with at least
two distinct time scales, the so-called slow—fast systems [2—8]. Bursting is a mani-
festation of slow—fast dynamics possessing subcomponents operating at distinct time
scales. Neural bursting is a modular activity composed of various limiting branches,
corresponding to oscillatory and equilibrium regimes of the fast subsystem, and
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connected by transients between them. Using the common mathematical we can
better understand the basic onset of bursting oscillations in models of individual
and coupled neurons. The study of mechanisms of bursting and its transformations
requires nonlocal bifurcation analysis, which is based on the derivation and further
examination of Poincaré return maps.

2 Hodgkin-Huxley Type Model of a Leech Heart
Interneuron

Our first example is the “reduced” model of heart interneuron model [9-13] derived
through the Hodgkin-Huxley gated variables formalism [ 1] that not every mathemati-
cian may be familiar with. Its equations do look too detailed and overwhelming:

dv
C—-=—ha—Ia+ I~ L~ Iy, (1)
I =3 (V-E), Ix=3gemgy(V - Ex),
Ina = 8Na g v (V = Exa), - ming = m(V),

dhna d
d—l; =h, (V) —h, 7% LS

TNa = mo (V) — mxa,

where C = 0.5 nF is the membrane capacitance; V is the membrane potential; Iy, is
the fast voltage gated sodium current with slow inactivation Ay, and fast activation
mna; Ik 1S the persistent potassium current with activation my»; I is leak current and
Ipp 1s a constant polarization or external applied current. The maximal conductances
are g, = 30nS, gn, = 200nS and g = 8nS, and the reversal potentials are Ex, =
0.045 V, Ex = —0.070V and E}, = —0.046V. The time constants of gating variables
are 7, = 0.25 sec and 7w, = 0.0405 s. The steady state values of gating variables,
h (V), mR, (V), mgs(V), are given by the following sigmoidal functions:

A2 (V) = [1 + exp(500(0.0333 — V))]~!
m (V) = [1 + exp(—150(0.0305 — V))]~! 2)
m(V) = [1 + exp (—83(0.018 — V + V3hiftyy]-1,

The quantity Vil is a genuine bifurcation parameter for this model: it is the deviation
from experimentally averaged voltage value V;,; = 0.018 V corresponding to semi-
activated potassium channel, i.e. mg,(0.018) = 1/2. Variations of Vi move the
slow nullcline % = 0 in the V-direction in the 3D phase, see Fig. 1. Due to the
disparity of the time constants of the phase variables, the fast-slow system paradigm
is applicable to system (1): its first two differential equations form a fast subsystem,
while the last equation is the slow one. The dynamics of such a system are known

[14] to be determined by, and centered around, attracting pieces of the slow motion
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Fig. 1 Slow motion manifolds and nullclines of the model (1): the 2D spiking manifold M.
is foliated by the periodic orbits continued, from the left to the right, as the parameter Vi(hzift is
increased from —0.026 through 0.0018. The space curves Vi, and (V) are made of minimal and
average coordinates of the periodic orbits. M. glues to the hyperpolarized fold of the quiescent
manifold, Meq, comprised of the equilibrium states of (2), where the curve of the averaged values
(V) terminates. An equilibrium state of Egs. (2) is the intersection point of Meq with the slow
(yellow) nullcline g = 0 for given Vf(hziﬂ. Also shown (in red) is the curve of the v-minimal
coordinate values of the periodic orbits making M. This curve is used to define the Poincaré map
taking it onto itself after one revolution around M,

manifolds that constitute a skeleton of activity patterns. These manifolds are formed
by the limit sets, such as equilibria and limit cycles, of the fast subsystem where the
slow variable becomes a parameter in the singular limit.

A typical Hodgkin-Huxley model possesses a pair of such manifolds [15]: qui-
escent and tonic spiking, denoted by My and M, correspondingly. A solution of
(2) that repeatedly switches between the low, hyperpolarized branch of Mg, and
the spiking manifold M), represents a busting activity in the model. Whenever
the spiking manifold M. is transient for the solutions of (1), like those winding
around it in Figs. 2, the models exhibits regular or chaotic bursting. Otherwise, the
model (1) has a spiking periodic orbit that has emerged on M, through the saddle-
node bifurcation thereby terminating the bursting activity [16] or both regimes may
co-exist as in [17, 18].

To determine what makes the spiking and bursting attractors change their shapes
and stability, we construct numerically a Vit parameter family of 1D Poincaré maps
taking an interval of membrane potentials onto itself. This interval is comprised of the
minimal values, denoted by (V), of the membrane potential on the found periodic
orbits foliating densely the spiking manifold M, see Fig. 1. Then, for some Vfgf‘-
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Fig. 2 (Top-left) Four v-minimums of the stable spiking periodic orbit spiking at Vfgf‘ = 0.0255
corresponding to the period-4 orbit of the Poincaré map. Insets (C) and (D) show the voltage
waveforms.(Top-right) Chaotic spiking of the model and in the map at V%h;ﬂ = —0.0254. (Bottom)
Chaotic bursting at the spike adding transition becomes more regularized with a large number of
spikes per burst

values, we integrate numerically the outgoing solutions of (2) starting from the initial
conditions corresponding to each (V) to find the consecutive minimum (V1) in the
voltage time series. All found pairs (Vy, V1) constitute the graph of the Poincaré
map for given Viiift,

Figure 2 is a showcase of such 1D unimodal maps with the distinctive U-shape.
A fixed point of map would correspond to a single V-minimum on the periodic orbit
on the 2D tonic spiking manifold, while period-2 orbit of the map corresponds to the
periodic orbit of the model and so forth. A bursting orbit with multiple turns around
M. and switching to and back from M, is represented by a more complex orbit
of a longer period. Moreover, the bursting orbit may become even chaotic at spike
adding transition, and as the map reveals that is caused by a homoclinic orbit (red
trajectory) of an unstable fixed point corresponding to a saddle periodic orbit of the
neural model (1). The shape of the 1D return map infers that as it becomes steeper
with a characteristic cusp shape the model would move into the chaotic regime.

3 FitzHugh-Nagumo-Rinzel Model

Our next example is the FitzZHugh-Nagumo-Rinzel (FNR) model which is a mathe-
matical model of an elliptic burster (see Fig. 3B); its equations given by [19]:
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Fig. 3 (A) Topology of the tonic spiking, M., and quiescent, Meq, manifolds. The fold on M,
corresponds to a saddle-node bifurcation where the stable (outer) and saddle (inner) branches,
comprised of periodic orbits, merge. The vertex, where the unstable branch of Mj. collapses at
Mcq, corresponds to a subcritical Andronov-Hopf bifurcation. Space curves, labeled by V.. (in
green) and (V*") (in blue and red, respectively), correspond to the V-maximal and the averaged,
over the period, coordinates of the periodic orbits composing Mjc. The plane, y' = 0, is the slow
nullcline, above (below) which the y-component of a solution of the model increases (decreases).
The plane is elevated/lowered as the c-parameter is increased/decreased. (right) The “continuously”
reshaping family of the 1D Poincaré return maps 7 : V, — V4 for the FHN-model at pu =
0.002 as c increases from ¢ = —1 through ¢ = —0.55. Lower graphs correspond to quiescence
and subthreshold oscillations in the model; upper graphs correspond to tonic spiking dynamics,
while the middle graphs describe bifurcations of bursting. An intersection point of a graph with the
bisectrix is a fixed point of the map. The stability of the fixed point is determined by the slope of
the graph, i.e. it is stable if |T'| < 1

vV=v—v¥3—-wt+y+1,
w' = §(0.7+ v —0.8w), 3)
Y =plc—y—v).

Here, 6 = 0.08, I = 0.3125 is an “external current”, and we set ;1 = 0.002 deter-
mining the pace of the slow variable y; the bifurcation parameter of the model is c.

The slow variable y becomes frozen when p = 0. The first two fast equations
in (3) compose the FitzHugh-Nagumo fast subsystem model describing a relaxation
oscillator, provided ¢ is small. This subsystem exhibits either tonic spiking on a stable
limit cycle, or quiescence on a stable equilibrium state for some fixed values of y.
Stability loss of the equilibrium state in the fast subsystem gives rise to a stable limit
cycle through a sub-critical Andronov-Hopf bifurcation when an unstable limit cycle
collapses into the equilibrium state. The stable and unstable limit cycle emerge in the
FNR-model through a saddle-node bifurcation. Both bifurcations, Andronov-Hopf
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and saddle-node, are key to the description of an elliptic burster. Using a traditional
slow-fast dissection, one can locate the corresponding branches of the limit cycle
and equilibrium states by varying the frozen y-variable in the extended phase space
of the fast subsystem. The topology of the tonic spiking, M, and quiescent, Meg, in
the phase space the FNR-model is revealed in Fig. 3.

4 1D Voltage Maps

Recall that a feature of a slow-fast system is that its solutions are constrained to stay
near the slow-motion manifolds, composed of equilibria and periodic obits of the
fast subsystem. If both manifolds are transient for the solutions of the corresponding
neuron model, it exhibits a bursting behavior, which is a repetitive alternation of
tonic spiking and quiescent periods. Otherwise, the model demonstrates the tonic
spiking activity if there is a stable periodic orbit on the tonic spiking manifold, or
it shows no oscillations when solutions are attracted to a stable equilibrium state on
the quiescent manifold.

The core of the methods is a reduction to, and a derivation of, a low dimen-
sional Poincaré return map, with an accompanying analysis of the limit solutions:
fixed, periodic and homoclinic orbits, representing various oscillations in the orig-
inal model. Maps have been actively employed in computational neuroscience, see
[20-23] and referenced therein. It is customary that such a map is sampled from
voltage traces, for example by singling out successive voltage maxima or minima, or
interspike intervals. A drawback of a map generated by time series is a sparseness,
as the construction algorithm reveals only a single periodic attractor of a model,
unless the latter demonstrates chaotic or mixing dynamics producing a large variety
of densely wandering points.

A new, computer assisted method for constructing a complete family of Poincaré
maps for an interval of membrane potentials for slow-fast Hodgkin-Huxley models
of neurons was proposed in [12] following [24], see above. Having such maps we
are able to elaborate on bifurcations in the question of tonic spiking and bursting,
detect bistability, as well examine unstable sets, which are the organizing centers
of complex dynamics in any model. Using this approach we have studied complex
bursting transformations in a leech heart interneuron model and revealed that the
cause of complex behaviors at transitions is homoclinic tangles of saddle periodic
orbits which can be drastically amplified by small noise [11, 25]. Examination of the
maps will help us make qualitative predictions about transitions before they actually
occur in the models.

The construction of the voltage interval maps is a two stage routine. First, we need
to accurately single out the slow motion manifold My, in the neuronal model using
the parameter continuation technique. The manifold is formed by the tonic-spiking
periodic orbits as a control parameter in the slow equation is varied. Recall, that its
variations, raising or lowering the slow nullcline in the phase space of the model,
do not alter the fast subsystem and hence do keep the manifold intact. Next a space
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curve Vi . on M is detected, which corresponds to maximal voltage values of the
membrane potentials V,, found on all periodic orbits constituting the tonic spiking
manifold, see Fig. 3.

We use this data to further amend the set {V,}, by integrating the solutions of the
model in the vicinity of each maxima to find the exact locations of the turning points,
determined by the condition V|, = 0. Next, the points defining {V,} are employed
as the initial conditions to compute outgoing solutions of (3) that will stay on or
close to Mj.. The integration is stopped when a successive maximal value {V,;}
of the voltage is reached in the voltage trace. Figure 4 demonstrates how the shape
of the 1D maps changes in a complex predictable way as the c-parameter is varied.
One can see from the end points, that the map has initially a stable fixed point at
the top-right corner that corresponds to the stable tonic spiking orbit on the outer
surface of the 2D manifold M. in Fig. 3(left). One can also foresee from the map
at the bottom-right corner in Fig. 3(right) the neural model will undergo a cascade
of period-doubling bifurcations of sub-threshold oscillations followed by complex
mixed-mode oscillations involving sub-threshold ones and bursting. Our predictions
are illustrated and confirmed by Fig. 4 that samples four characteristic 1D Poincaré
return maps out of Fig. 3. In it the shape of the 1D Poincaré return maps reveals
the underlying cause of chaotic mixed mode oscillations (MMOs) at the transition
from tonic spiking to bursting in the in the FNR-model (3) that next become periodic
MMGOs, and further transition to chaotic and regular sub-threshold oscillations en a
route to the quiescent phase in generic elliptic bursters.

5 Example 3: 2D Recurrent Maps in Multifunctional 3-Cell
Networks

Many rhythmic motor behaviors such as respiration, chewing, locomotion on land
and in water, and heartbeat (in leeches) are produced by networks of cells called
central pattern generators (CPGs). A CPG is a neural microcircuit of cells whose
synergetic, nonlinear interactions can autonomously generate an array of multicom-
ponent/polyrhythmic bursting patterns of activity that determine motor behaviors in
animals, including humans [26-32]. Modeling studies, phenomenologically math-
ematical and exhaustively computational, have proven useful to gain insights into
operational principles of CPGs [33—40]. Although various models, reduced and feasi-
ble, of specific CPGs, have been developed, it remains unclear how the CPGs achieve
the level of robustness and stability observed in nature [41-45]. Understanding the
key universal mechanisms of the functional evolution of neural connectivity, bifur-
cation mechanisms underlying transitions between different neural activities, and
accurate modeling of these processes presents opportunity and challenge for applied
mathematics in particular and for all computational sciences in general.

Whereas a dedicated CPG generates a single pattern robustly, a multifunctional
or polymorphic CPG can flexibly produce distinct rhythms, such as temporally dis-
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Fig. 4 (A1/2) The shape of the 1D Poincaré return map reveals the underlying cause of chaotic
mixed mode oscillations (MMOs) at the transition from tonic spiking to bursting in the in the
FNR-model (3) that become periodic MMOs with a single burst followed by nine sub-threshold
oscillations (B1/2). (C1/2) The unimodal map corresponding to chaotic and period-4 sub-threshold
oscillations (D1/2)



Poincaré Return Maps in Neural Dynamics: Three Examples 53

tinct swimming versus crawling locomotions, and alternation of directions of blood
circulation in leeches [46—48]. Switching between various attractors of a CPG net-
work causes switching between locomotion behaviors. Each attractor is associated
with a definite rhythm running on a specific time scale with well-defined and robust
phase lags among the constituting neurons. The emergence of synchronous rhythms
in neural networks is closely related to temporal characteristics of coupled neurons
due to intrinsic properties and types of synaptic coupling, which can be inhibitory,
excitatory and electrical, fast and slow [49-53].

We developed a computational toolkit for oscillatory networks that reduces the
problem of the occurrence of bursting and spiking rhythms generated by a CPG net-
work to the bifurcation analysis of attractors in the corresponding Poincaré return
maps for the phase lags between oscillatory neurons. The structure of the phase space
of the map is an individual signature of the CPG as it discloses all characteristics of the
functional space of the network. Recurrence of rhythms generated by the CPG (rep-
resented by a system of coupled Hodgkin-Huxley type neurons [54]) lets us employ
Poincaré return maps defined for phase lags between spike/burst initiations in the con-
stituent neurons (Fig. 5) [41, 49-51, 55]. Forward trajectories { 5"1), é’{)] of phase
points M,, = ( o, ;’?) of the Poincaré map IT : M,, — M, are defined through

(n+1) 7_(n)

. il 1 e e .
the time delays Ad)%) = j(”T](n) (on mod 1) between the burst initiations in
T — T

each cycle normalized over1 the netwlork period, can converge to several co-existing
stable fixed points, thus indicating the given network is multistable, or a single stable
invariant circle wrapping around the torus that corresponds to a unique rhythmic out-
come with periodically varying phase lags. These are attractors, single or multiple, of
the return map on a 2D torus, which are associated with multifunctional or dedicated
neural circuits, respectively (Fig. 5). The 2D return map, I7 : M,, — M, , for the
phase lags can be written as follows:

(n+1) (n) n) (n) (n+1) (n) (n) (n)
21 = 2]+M1f1(2]’ 31>’ 31 = 31+M2f2(2lv 31) “)

with p; representing the coupling strength, and f; being some undetermined coupling

functions such that f; = f» = 0 corresponds to its fixed points: ¢%, = ;"IH) = <Z>;"l).
These functions, similar to phase-resetting curves, can be assessed from the simu-

lated data collected for known all trajectories { o, g’i)}. By treating f; as par-

tials OF /O¢;;, we can restore a “phase potential” F (¢ , ¢31) = C that determines
the dynamics of the coupled neurons, find its critical points associated with FPs—
attractors, repellers and saddles of the map, and by scaling f; predict their bifurca-
tions due to loss of stability, and hence transformations of rhythmic outcomes of the
network as a whole.

With such return maps, we can predict and identify the set of robust outcomes in
a CPG with mixed, inhibitory and excitatory, slow or/and fast synapses, which are
differentiated by phase-locked or periodically varying lags corresponding, respec-
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Fig.5 GPU-based interactive motif-toolbox [56, 57] for computational studies of rhythmogenesis
in 3-cell circuits comprised of synaptically coupled FitzhHugh-Nagumo, Hodgkin-Huxley, and 2©-
neurons, which can generate up to 6 (3 in this figure) robust patterns corresponding to the stable
fixed points in the 2D Poincaré return map for the phase lags between constituent cells.

tively, to stable fixed points and invariant circles of the return map. The toolkit lets us
predict bifurcations and transformations of rhythmic outcomes before they actually
occur in the network. The approach also reveals the capacity of the network and the
dependence of its outcomes on coupling strength, wiring circuitry, and synapses,
thereby letting one quantitatively and qualitatively identify necessary and sufficient
conditions for rhythmic outcomes to occur. Using graphics processor units (GPUs)
for parallel simulations of multistable neural networks using multiple initial condi-
tions (as depicted in Fig. 5) can drastically speed up the bifurcation analysis and
reduce a simulation time to merely few seconds.
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Persistent Discrete-Time Dynamics )
on Measures e

Horst R. Thieme

Abstract A discrete-time structured population model is formulated by a popula-
tion turnover map F on the cone of finite nonnegative Borel measures that maps
the structural population distribution of a given year to the one of the next year.
F has a first order approximation at the zero measure (the extinction fixed point),
which is a positive linear operator on the ordered vector space of real measures and
can be interpreted as a basic population turnover operator. A spectral radius can
be defined by the usual Gelfand formula and can be interpreted as basic population
turnover number. We continue our investigation (Thieme, H.R.: Discrete-time popu-
lation dynamics on the state space of measures, Math. Biosci. Engin. 17:1168-1217
(2020). doi: 10.3934/mbe.2020061) in how far the spectral radius serves as a thresh-
old parameter between population extinction and population persistence. Emphasis
is on conditions for various forms of uniform population persistence if the basic
population turnover number exceeds 1.

Keywords Extinction * Basic reproduction number - Feller kernel -
Eigenfunctions * Flat norm (also known as dual bounded lipschitz norm)

1 Introduction

Many animal and plant populations have yearly cycles with reproduction occurring
once a year during a relatively short period. They also carry population structures
which may be due to spatial distribution, age or rank structure, or degree of maturity.

It seems appropriate to describe such populations by discrete-time structured
models in the form of difference equations,
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Xn = F(x11—|)7 ne N7 X0 € X+7 (1)

with the population structure being encoded in the closed subset X ; > 0 of a normed
vector space X over R, F'(0) = 0 [17, 20, 32]. The vector x,, describes the structural
distribution of the population in year n while F : X4 — X formulates the rule how
the structural distribution in a given year follows from the structural distribution of
the previous year. The norm ||x,| is some measure of the population size in year
n. F is called the (yearly) population turnover operator. The condition F(0) =0
means that the population is closed: If there is no population this year, then there is
no population next year. We use the notation

X=X\ {0} (@)
Notice that (1) is solved by
X = F"(x0), neN, 3)

where F" is the n-fold composition or iterate of the operator F and {F"; n € N} is
the discrete semiflow on X induced by the map F [26, Sect. 1.2].
Since this paper relies more heavily on dynamical systems theory than its prequel
[32], we will rather use the iterates F” than solutions of (1) to formulate our results.
A fundamental question is as to whether the population always dies out, || F” (xo) ||
— 0 asn — oo forall xgp € X, or whether it persists uniformly [26, 33]:

There is some € > 0 such that for all xg € X + there is some N € N such that || F(xg)|| > €
for all n > N (with € not depending on xg).

In addressing this question, we assume that X, is a (positively) homogeneous
subset of X:

IfxeXyando € Ry, thenax € X

We assume that F' is directionally differentiable at 0 = F(0), i.e., that all direc-
tional differentials

1
B(x) =0F(0,x) = N lgjn Ol—)F(bx), x € Xy, 4)
+3b—

exist. Itis easy to see that the directional derivative B : X, — X at0is (positively)
homogeneous (of degree one) [20, Theorem 3.1]:

Ifx € X4 and @ € Ry, then B(ax) = aB(x).

Since we rarely consider homogeneity in a different sense, B with this property
is simply called homogeneous. B is a first order approximation of F at 0 in a weak
sense, and we will need B to be a first order approximation in a stronger sense [20,
Sect. 3] with which we do not want to burden the reader quite yet. We call B the
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basic population turnover operator because it approximates the turnover operator at
low population densities.
The operator norm of a homogenous operator B : X, — X is defined as

1Bl := sup{llB(x)[l; x € Xy, lIxll =1}, ®)

and B is called bounded if this supremum exists.

Lemma 1 Assume that there are § > 0 and ¢ > O suchthat F : X, — X satisfies
|F(x)| <clx|| for all x € X+ with ||x|| < . Then the directional derivative B of
F at 0 is bounded and ||B|| < c.

1.1 The Spectral Radius of a Homogeneous Operator

Since B is homogeneous,
BN = IBI Ixll, x € X4, (6)

provided that B is bounded. This formula implies that the powers (iterates) B" :
X, — X, of a homogeneous bounded B are bounded and ||B"|| < || B|" for all
neN.

The spectral radius of a bounded homogeneous B : X1 — X is defined by the
Gelfand formula [13]

r(B) = inf |B"|"/" = lim ||B"|"/". (7)
neN n—00

The last equality is shown in the same well-known way as for a bounded linear
everywhere-defined map. See [20, 28, 31, 32] for more information.

For restrictions of bounded positive linear operators to a cone, the Gelfand formula
for the spectral radius was used by Bonsall [4] under the name “partial spectral radius”
and by Nussbaum [24] under the name ‘“cone spectral radius.” Mallet-Paret and
Nussbaum [21, 22] used the Gelfand formula for homogeneous bounded operators
on a cone under the name “Bonsall cone spectral radius”. But since this formula also
makes sense on homogeneous sets (which concept includes the vector space), we
simply say “spectral radius”.

If B has an interpretation as basic population turnover operator, then r(B) is called
the basic population turnover number [17, 20, 32].
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1.2 Preview of Extinction and Persistence Results

The following results, which highlight the role of the basic turnover number as thresh-
old parameter between population extinction and persistence, hold under additional
assumptions, all of which we do not mention here.

It will be not enough to assume that X is a closed homogeneous subset of X;
rather X, needs to be a closed cone.

A homogeneous subset X | of X is called a cone if it is also a convex subset of X
and if x = 0 is the only vector in X such that x and —x are both elements in X ;. A
cone is called a closed cone if it is a closed subset of the normed vector space X.

Cones, wedges and ordered vector spaces are studied in this context in [20, 28,
32] to which we refer. Similarly, not much can be done without assuming that B is
order-preserving i.e., for all x, x € X,

x—i€X+ S B(x)—B()?)GX.,_ (8)

e For the rest of this section, let X be the closed cone of the normed vector space
X.

e Further, let B : X, — X, be homogeneous and order-preserving and let B be an
appropriate first order approximation of F.

Theorem 1 Let X be a normal cone, F, B : X, — X, r =r(B) < 1. Then the
extinction state 0 is locally asymptotically stable in the following sense:

For each o € (r, 1), there exist some 8y > 0 and M > 1 such that |F"(x)| <
Mo" ||x|| foralln € N and all x € X with ||x] < .

See [20, Theorem 4.2] for the precise formulation. A rigorously formulated appli-
cation to a general population model in the state space of measures is given in
Theorem 4.

Theorem 2 Let F, B : X — X and B be compact and continuous, r(B) > 1.
Then, under appropriate additional assumptions, the population persists uni-
formly weakly:
There exists some € > 0 such that for all x € X, and allm € N there exists some
n € Nwithn > m and that | F" (x)| > e.

See [20, Theorem 5.2] for the precise formulation. A rigorously formulated appli-
cation to a general population model in the state space of measures is given in
Theorem 6 and to a more specific model for iteroparous populations in Theorem 25.

Theorem 3 Let F, B : Xy — X, and B be compact and continuous, r(B) > 1,

and
. | £ (x|
lim su <1

Ixll—oo NIl

Then, under appropriate additional assumptions, the semiflow induced by F has a
compact persistence attractor A; € X,:
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(a) A is a compact set, F(A;) = Ay, and inj lx] > 0.
XEA]
(b) A attracts all compact subsets K of X with in1f< x| > 0:
Xe

If K is such a subset and U is an open set with A; CU C X, then there exists
some N € N such that F"(KC) C U foralln € Nwithn > N.

Theorem 3 is a consequence of Theorem 2 and of the point-dissipativity Theorem
91n Sect. 3 and is a special case of [26, Theorem 5.7] to which we refer for the precise
assumptions. A rigorously formulated application to a general population model in
the state space of measures is given in Theorem 22.

Corollary 1 Let the assumptions of Theorem 3 be satisfied. Then there is some
€1 > 0 such that for any compact subset IC of X 1 with inf ¢k || x| > O there is some
N € N such that | F"(x)|| > €, forallx € K and alln € Nwithn > N.

The theorems above are known if B can be extended to a bounded linear map on
X and B is the Frechet derivative of F at 0 [7, 26, 33].

There are at least three motivations to consider the more general situation of a
bounded homogenous order-preserving operator. The first is of mathematical nature,
namely that the directional derivative is homogeneous but not necessarily linear and
that homogenous operators are not Frechet differentiable at O unless they are linear
[20, Sect. 3].

The second, biological, motivation are two-sex population models which often use
homogeneous mating functions resulting in homogeneous first order approximations
of the population turnover operator [18-20, 29-31].

The third motivation are structural population distributions which are best
described by measures @ on a metric space S (see [1, 2, 32] and the references
therein) which is the state space of individual characteristics [8]. A point in S gives
an individual’s characteristic, and the metric d describes how close the characteris-
tics of two different individuals are to each other. If i : B — R, is a measure on the
o-algebra B of Borel setsin S, u(T') gives the number of individuals whose structural
characteristic lies in the Borel subset 7' of S. This leads to choosing X = M(S) as
population state space, the vector space of real finite Borel measures (or rather an
appropriate closed subspace of it if S is not separable). Let X, = M (S) denote
the cone of nonnegative measures and X, = M+(S ) be M (S) without the zero
measure. The variation norm is too strong to provide the required compactness of
the basic turnover operator B on X in Theorem 2 even if B can be extended to a
bounded linear operator on X. A suitable alternative is the flat norm aka dual bounded
Lipschitz norm (see [14] and the references therein and Sect.4). The flat norm has
the trade off that important linear basic turnover operators defined on all of X are
compact and continuous on X but not bounded on X [32].
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2 A General Framework for the State Space of Measures

In this paper, we will be guided by the third motivation, a population state space
consisting of measures on a metric space S (Sect.4).

2.1 Feller Kernels

Important building blocks for the turnover map F are Fellerkernels« : B x § — Ry
where B is the o-algebra of Borel subsets of S ([32] and Sect.5). In fact, the first
order approximation of F' at 0 mentioned before will be associated with a Feller
kernel. As a first requirement,

e « (-, s) is a nonnegative measure on B3 for each s € S.

Then, for each f € C b(S) (bounded continuous function), we can form the integrals

/Sf(t)/c(dt, s) =t (AL f)(s), s eS. ©)]

As a second requirement,

e i hasthe Feller property,i.e., definition (9) provides a continuous bounded function
A* f9

and a bounded linear map A, on C?(S) is associated with «.

Cf. [3, Sect. 19.3]. See Example 10.12 in [32].

C*(8), the vector space of bounded continuous real-valued functions, is a Banach
space under the supremum norm and has C_’; (S), the subset of nonnegative functions
in C?(S), as closed convex cone. Cf;(S) denotes this cone without the zero function.

By [32, Proposition6.3], if « is a Feller kernel, « (U, -) is a Borel measurable
function on S for all open subsets U of S and thus for all Borel sets U in S. Conse-
quently, A, can be extended to M?(S) by (9), the Banach space of bounded Borel
measurable functions with the supremum norm.

For each u € M(S), we can define

/K(T,S)M(dS) = Aw(T), TeB, (10)
S

and obtain a measure Ap and a linear map on M(S) and the duality relation

/(A*f) du = / FA(AR,  feMMS), weMS). (D
S S

The linear operator A on M(S) is bounded with respect to the variation norm,
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[All = sup (S, s) = [|Axll, (12)

ses

but not necessarily bounded with respect to the flat norm [32, Sect.9, 10].

In some probabilistic applications, it is assumed that « is also a Markov kernel,
ie., k(S,s) = 1foralls € S. Then (T, s) can be interpreted as the probability that
an individual with characteristic s € S will have a characteristic within the set T
after one year. This ignores that the individual may die during the year on the one
hand or have offspring on the other hand.

So, we do not assume that « is a Markov kernel, and « (7', s) is rather interpreted as
follows: For an individual with characteristic feature s € S, k (T, s) is the sum of the
probability that, after one year, the individual is still alive and has its characteristic
feature within the set 7' and of the amount of its surviving offspring that has also
characteristic feature within the set 7. For more on Feller kernels see Sect. 5.

Definition 1 A Feller kernel « : B x § — Ry is called a uniform Feller kernel if

sup [k(T,t) —«(T,s)| — O, t — s, foralls € S. (13)
TeB

Equivalent characterizations of uniform Feller kernels are given in Proposition9,
in particular (13) implies the Feller property above. For more on uniform Feller
kernels see Sect.5.2.

2.1.1 Convolutions and Spectral Radius of Feller Kernels

The convolution of two Feller kernels k; : B x § — R4, j =1, 2, is defined by

(k1 *k2)(T, s) = //q(T, ko (dt, s), TeB,ses. (14)
S

K1 * k> is again a Feller kernel.

Definition 2 Let « : B x § — R, be a Feller kernel. We inductively define the
multiple convolution kernels k™ by k'* =k and Kk "TV* = k™ x k.
The spectral radius of the Feller kernel « is defined by

r(x) = inf (sup K" (S, s))l/". (15)

neN A ses

If A, is the map on C?(S) or on M?(S) induced by i, then A" is induced by «"*.
This implies that r(«) = r(A,), and so, in (15), ing can be replaced by lim because
ne

n—o00
of (7). See [32, Sect. 9] for more details.
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2.1.2 Irreducible Feller Kernels

Since a Feller kernel « : B x S — R, induces the positive bounded linear map A,
on the Banach lattice C?(S) with the supremum norm, irreducibility of « could be
defined as irreducibility of A, like in [25, III.8]. However, the following weaker
irreducibility concept seems to be better tailored to a Feller kernel.

Definition 3 ([27]) A Fellerkernel« : B x § — R, is called top-irreducible (short
for “topologically irreducible”) if for any nonempty open subset U of S and for any
s € S\ U there is some n € N such that «™ (U, s) > 0.

We will also use the following stronger concept.

Definition 4 A Feller kernel « : B x S — R, is called strongly top-irreducible if
for any nonempty open subset U of S and any nonempty compact subset K of §
there exists some n € N such that ™ (U, s) > Oforall s € K.

For more on (strongly) irreducible Feller kernels see Sect.5.3.

2.2 Turnover Maps on the State Space of Measures

We consider yearly turnover maps F of the following general form,

F(u)(T) = /K"(T, s) pds),  peMi(S), TebB, (16)
N

where {k"; u € M, (S)} is a family of Feller kernels «* : B x § — R,.

The interpretation of «* is as before except that individual survival, develop-
ment and reproduction play out in the environment being effected by the structural
distribution p of the population.

If 1 is the zero measure, we use the notation «°. Often, the operator A associated
with «? by (10) will turn out to be the first order approximation of F at the zero
measure.

Finally, we emphasize that, while individual survival, development, and reproduc-
tion are modeled stochastically through the family of Feller kernels, the population
model is completely deterministic.

A more specific model for a semelparous population can be found in [32, Sect.2
and 12] and for an iteroparous population in Sect. 7.

Assumption 5 For each u € M, (S), «* is a Feller kernel and {K”(S, t); K €E
M.(S),t € S} is a bounded subset of R.

Standard measure-theoretic arguments imply the following result.

Proposition 1 Let the Assumption 5 be satisfied. Then F maps M_(S) into itself.
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Definition 6 The kernel family {k"; u € M_(S)} is called upper semicontinuous
at the zero measure if for any € € (0, 1) there is some § > 0 such that

k"(T,s) < (1 +e)x(T,s), TehB,secs,

for all u € M (S) with u(S) < 6.
The kernel family {«*; u € M, (S)} is called lower semicontinuous at the zero
measure if for any € € (0, 1) there is some § > 0 such that

k"(T,s) > (1 —e)xk°(T,s), TeB,ses,

for all u € M (S) with u(S) < 6.
The kernel family {«x*; u € M (S)} is called continuous at the zero measure if
for any € € (0, 1) there is some § > 0 such that

(I —ex’(T,s) <«™(T,s) <(1+ex°T,s), TebB,ses,

for all u € M (S) with u(S) < 6.

In a preview of results, we will showcase the spectral radius of the basic turnover
kernel x¢ as a crucial threshold parameter between local stability (in the subthresh-
old case r(x?) < 1) and instability (in the superthreshold case r(k°) > 1) of the
extinction state represented by the zero measure; r(« ) is called the basic population
turnover number. For a semelparous population, as it is considered in [32, Sect. 12],
the basic turnover number coincides with the basic reproduction number.

2.3 Local (Global) Stability of the Zero Measure in the
Subthreshold Case

For perspective, we cite the following result [32, Theorem 3.6].

Theorem 4 Make Assumption 5 and let the kernel family {k"; u € M, (S)} be
upper semicontinuous at the zero measure.
(a)Ifr =r(k°) < 1, the zero measure (the extinction state) is locally asymptotically
stable in the following sense:

For each a € (r, 1), there exist some 8, > 0 and M, > 1 such that,

F"(1)(S) < o"My u(S),  neN,
if p € My(S) with 1(S) < 8.

(b)Ifr =r(k°) < landk™(T,s) < k°(T,s)forallT € B, s € S, the zero measure
is globally stable in the following sense:
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For each a € (r, 1), there exists some M, > 1 such that
F'(u)(8) <a"My n(S), neN, peMi(S).

Recall that F"(u)(S) is the total population size in the nth year and w(S) the
population size at the beginning.

2.4 Instability of the Zero Measure in the Superthreshold
Case

We consider the following concepts [10, 14, 16, 32].
Definition 7 Consider a subset N of M_.(S).

o N is called tight if for any € > 0 there exists a compact subset K of S such that
w(S\ K) <eforall u e N.

e A single measure u € M (S) is called tight, and we write u € M, (S), if {u} is
tight.

o N is called pre-tight if for any € > 0 there exists a closed totally bounded subset
T of S such that u(S\ T) < € forall u € N.

o A single measure i € M (S) is called separable, and we write u € M? (S), if
there exists a countable subset 7' of S such that (S \ T) = 0.

e A single measure u € M(S) is called separable, and we write u € M?*(S), if its
absolute value || is separable.

By definition, a subset T of § is fotally bounded if for any € > 0 there exists a
finite subset K of T such that T C UseK Uc(s). Here U.(s) = {t € S;d(t,s) < €}
is the open neighborhood with center s and radius €. T C S is compact if and only
if T is totally bounded and complete [3, Sect.3.7].

If S is a compact metric space, M (S) is trivially tight. If S is a separable metric
space, M (§) = M’.(S).

Definition 8 A Feller kernel « is called a tight Feller kernel if {k(-,s); s € S}isa
tight set of measures.

A Feller kernel « is called a Feller kernel of separable measures if all measures
k(-,s),s € 8§, are separable.

The condition r(x”) < 1in Theorem 4 is almost sharp as seen from the next result
([32, Theorem 3.13] with switched roles of x; and «»).

Theorem 5 Make Assumption 5 and let the kernel family {k"; u € M, (S)} be
lower semicontinuous at the zero measure.

Assume that k° = K| + kp with two Feller kernels k; of separable measures and
assume that k; is a tight kernel and r :==r(k°) > 1 > r(ky).
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Then there exists some eigenmeasure v € M. (S), v(S) = 1, such that

rv(T) = /K”(T, s)v(ds), T € B.
s

Further, the zero measure is unstable: There is some 8y > 0 such for any v-positive
w € M, (S) there is some n € Z, with F"()(S) > 8.

A measure u € M_(S) is called v-positive if there exists some § > 0 such that
w(T) = 68v(T) forall T € B.

In an iteroparous population, as we will consider it in Sect. 7, the Feller kernel «
may be associated with adult survival and adult development and the Feller kernel
i> with reproduction and first year development. If r(x;) < 1, x° = > > k" isa
Feller kernel, and the Feller kernel

o0
Ko 4Kk % k(° =Ky + E Ko * K|

n=1

can be interpreted as next generation kernel and its spectral radius as basic [9] (or
inherent net [5, 6]) reproduction number. We again like to think of «° = k; + «; as
basic population turnover kernel and its spectral radius as basic turnover number,
this spectral radius has also been called inherent population growth rate [6].

Remark 1 Letr(k;) < 1. The following trichotomy holds:

o r(ky+Kkyxk(®) > landr(k; +«2) > 1
or

o r(ky + iy x k) =landr(k; + k) =1
or

o r(ky + ko x k%) < land r(k; +«2) < 1.

See [32, Remark 3.14, Theorem 7.16], but notice that the roles of x| and x, have
been switched.

2.5 Persistence of the Population in the Superthreshold Case

We now give a preview of this paper’s main results in the general framework for the
population state space of measures. The proofs can be found in Sect. 6.

Assumption 9 For each u € M’ (S), k* is a Feller kernel of separable measures
and {k"(S,1); w € M’.(S), 1 € S} is a bounded subset of R.

Assumption 10 For any u € Mi(S), k*(S,s) > 0foralls € S.
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Recall that ./\/l; (S) is the set of nonnegative separable measures without the zero
measure.

Theorem 6 Assume Assumptions 9 and 10. Let the kernel family {k"; u € M?_(S)}
be lower semicontinuous at the zero measure.

Assume that k° is a top-irreducible Feller kernel and k° = k| + k, with two tight
Feller kernels «k j, where k; is a uniform Feller kernel.

Finally, assume r = r(k°) > 1 > r(k;).

Then the semiflow induced by F is uniformly weakly persistent: There exists some
8 > 0 such that lim sup F" (u)(S) > 8 forall u € Mi(S).

n—oo

The next assumption looks rather technical, but is often satisfied; the technicality
is the prize we pay for the generality of the framework. We will derive from it that
F is continuous on M, (S) with respect to the flat norm.

Assumption 11 If u € M? (S) and (u,) is a sequence in M’ (S) such that
[ fdun — [ fdu, forall f € C5(S), then

/h(t) i (dt, s) =3 | h(t) k" (dt, s) (17)
S S

uniformly for s in every closed totally bounded subset of S, forall 4 € L,
L={hel0,1% Vt,i € S: |h@t) — h(D)| <d(t, D} (18)

Assumption 12 If A is a bounded subset of M (S), then the set of measures
(k" (-, 8); s € S, u € N} is tight and the set {«*(S, s); s € S, u € N'}is bounded in
R.

This assumption will imply that F is compact on M?_(S) with respect to the flat
norm.

Assumption 13 limsup sup (S, s) < 1.
n(S)—oo ses

This assumption will allow us to use the abstract point-dissipativity result in the
upcoming Sect. 3.

Theorem 7 Make Assumptions 9, 10, 11, 12, 13 and let the kernel family {k"; u €
M(S)} be lower semicontinuous at the zero measure.

Assume that k° is a top-irreducible Feller kernel and k° = Kk + k, with two tight
Feller kernels k; where «; is a uniform Feller kernel.

Finally, assume r = r(k°) > 1 > r(«y).

Then the semiflow induced by F is uniformly persistent: There exists some § > 0
such that linnliolgf F"'(w)(S) = 8 forall u € Mj_(S).

To obtain uniform persistence in a stronger sense, we will assume the following.
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Assumption 14 If \/is atight bounded subset of M (S), then there exists a strongly
top-irreducible Feller kernel « such that

k*(T,s) > k(T,s), TeB,seS uel.

Theorem 8 Make Assumptions 9, 10, 11, 12, 13, 14 and let the kernel family
{k#; € MS(S)} be lower semicontinuous at the zero measure.

Assume that «° is a strongly top-irreducible Feller kernel and k° = k| + ky with
two tight Feller kernels k;, where «; is a uniform Feller kernel. Finally, assume
r=rk°’ >1=>r(y).

Then the semiflow induced by F is uniformly persistent in the following sense:
For each f € C ﬁ(S), there exists some €y > O with the following property:

If N is a bounded tight subset of ME(S) withinf e nr i (S) > O, there exists some
N € N such that

/de”(u) >e€; forallp e N andalln € Nwithn > N.
s

3 An Abstract Point-Dissipativity Result

The next abstract result will be used in proving Theorem 8.

Theorem 9 Let X be the closed cone of an ordered normed vector space X. Let
F : Xy — X, map bounded subsets of X into bounded subsets of X.. Let 0 :
X+ — R, be homogeneous, subadditive, continuous and uniformly positive (there
is some € > 0 such that €||x|| < 0(x) forall x € X ). Assume that

lim sup w <1 (19)
Ixl—oco  O(X)
Then, for any bounded subset B of X 1, there exists a bounded convex subset Bof
X suchthat F*"(B) C B foralln € N. Further, there exists a bounded convex subset
By of X such that for each x € X there exists some m € N such that F"(x) € By
for all n > m. If F is continuous and compact, the semiflow induced by F has a
compact attractor of bounded sets [26, Sect. 2.2.3].

Proof Cf.[26,L.7.1]. By (19) and the other properties of 6, there exists some & €
(0, 1) and Ry > 0 such that

O(F(x)) <&0(x), xe€X;,0(x)=Ry. (20)
We claim that there exists some R, > 0 such that, forall x € X,

0(x) <Ry = 0(F(x)) < Ry. 2y



72 H. R. Thieme

If not, for any n € N, there exists some x,, € X such that 9(x,) <n < 0(F(x,)).
Since F maps bounded sets in X into bounded sets of X, and 6 is bounded,
0(x,) — oo as n — oo. This leads to a contradiction for n large enough such that
G(Xn) = Rl:

n < 60(F(xy) < §60(x,) <n.

Let R3 = max{R;, R,}.Let R > Rjand B} = {x € X4;0(x) < R}. Since 0 is con-
vex and continuous, B;g is convex and closed. Since 6 is uniformly positive, B;g
is bounded. By (21), F (B;) - B}'. Let B be a bounded subset of X, . Then there
exists some R > Rj such that B C B} and F"(B) C B} foralln € N.Letx € X .
If ||lx|| < Rs, limsup, ., 6(F"(x)) < Rs. If 6(x) > R3, by (20), 0(F""'(x)) <
EO(F™(x)) as long as O(F"(x)) > R3. So 6(F"(x)) < R3 for some m € N and
limsup,_, ., 0(F"(x)) < R3 as well. Since 0 is uniformly positive, there exists some
¢ > O such that limsup,,_, , | F"(x)|| < cforallx € X,.

In the language of [26, Definition 2.25], we have shown that the semiflow induced
by F is point-dissipative and eventually bounded on every bounded set. If F is also
continuous and the semiflow is asymptotically smooth (in particular if F is compact).
then the semiflow has a compact attractor of bounded set by [26, Theorem2.30]. [J

4 The Ordered Vector Space of Real Measures

Let S be a nonempty set, 5 a o-algebra on S, and M(S) denote the set of real
measures on 3.

M(S) becomes a real vector space by the definitions (u + v)(T) = u(T) + v(T)
and (@u)(T) = au(T) where T € Band o € R and u, v € M(S).

M(S) contains the cone of all nonnegative measures, M, (S) (a convex homo-
geneous set). M(S) is an order-complete vector lattice: Each subset N of M(S)
which has an lower (upper) bound has an infimum (supremum).

The absolute value || of a measure (in this context also called the variation of
the measure) is given by

[l (T) =sup{uU) —u(T\U); B>U C T}
(22)

=sup(ln(@)] + [T\ U B3 U € T) =sup | Y (Tl
j=1

where the supremum is taken over all n € N and subsets {T1, ..., T,} of BB such that
T is its disjoint union [3, Corollary 10.54 and Theorem 10.56].
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4.1 Measures Under the Variation Norm and the Flat Norm

The variation norm (also called total variation) on M(S) is defined by

liells = 1wl(S), e M(S), (23)

where || is the absolute value of ¢ defined by (22).

If we Mi(S), llrnlly = u(S). So the variation norm is additive and order-
preserving on M (S), and M (S) is a normal cone. The variation norm makes
M(S) a Banach lattice; in particular, M (S) is a non-flat generating cone: Every
real-valued measure p can be written as the difference of its positive and negative
variation, ju = jt4 — ju_, and [|exll; < [l]:.

The variation norm is equivalent to the supremum norm

litlloo = sup (M1, e M(S), (24)

and the two norms are equal on M_ (S).

Let (S, d) be a metric space. B now denotes the Borel o-algebra of S which is
the smallest o-algebra that contains all open and closed sets. The sets in the Borel
o-algebra are called Borel sets. In a metric space, the Borel o-algebra is also the
smallest o -algebra for which all (bounded) continuous functions are continuous [11,
Theorem 7.1.1]. This second o -algebra is often [11] but not always [3] called the
Baire-o -algebra.

The following is a summary of results needed later. For more details, we refer to
[14]. Many of the results can already been found in [10, 11]. See also [15, 16].

For perspective, we present the following result for the variation norm.

Theorem 10 For all © € M(S),
Ik = 11() = sup | [ fauls £ < ') 17 <1,

Proof By [12, IV.6.2], u +— 6 with 8(f) = fs fdu, f e Cb(S), is an isometric
isomorphism between the Banach space of regular additive set functions with the
variation norm and the dual space of C?(S). The assertion now follows because every
real measure on B is regular [3, Theorem 12.5]. O

We introduce the following functional on M(S),

b

il =sup | [ fdu
feL N (25)

£=[f€10.11% Yo ses 1f ) = fO)] = dix, ).
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Recall that M5 denotes the set of functions from S to a set M. || - ||, is a norm on
M(S) [14], which we call the flat norm, and

leells < Nliellzs € M(S). (26)

In the literature, definitions different from (25) are used that lead to equivalent
norms. For instance, [0, 1]° is replaced by [—1, 1]5. Also different names are used
for the flat norm or its equivalent definitions. For details see [14].

All the definitions have in common that

il = w(S) = llulls, 1€ Mi(S). 27

This implies that the flat norm is additive and order-preserving on M (S).
In the following, all topological notions concerning M (S) and M, (S) are meant
with respect to the flat norm unless it is explicitly said otherwise.

Theorem 11 M (S) is a generating, normal, closed cone.

Lemma 2 Forx € S, let 8, denote the Dirac measure at x. Then 1 = ||8, |, and, for
y,x €85,
16x — 8yl = min{1, d(x, y)}.

Corollary 2 ([16]) If S is not uniformly discrete (i.e., its metric is not equivalent to
the discrete metric), then the ordered normed vector space M(S) is not complete.

4.1.1 Convergence in M _(S)

Definition 15 Let F be asetof functions f : S — Rands € S. Fiscalled equicon-
tinuous at s if for any € > 0 there exists some § > O such that | f () — f(s)| < €
forall f € Fandallr € S withd(z,s) < §. F is called equicontinuous on S if it is
equicontinuous at all s € S.

F is called uniformly equicontinuous on S C S if for any € > 0 there is some
6 > Osuchthat |f(t) — f(s)] <eforall f € Fandalls,t e S'Withd(t,s) < 4.

F is called equibounded if there exists some ¢ > 0 such that | f(s)| < c for all
se Sandall f € F.

The following is proved in [32, Proposition 6.10].

Proposition 2 Let F be an equicontinuous and equibounded family of functions
f:S— Ry and n € M(S) and (1) be a sequence in M (S) such that ||, —
Wl = 0asn — oo. Then fS fdu, — fs fdu as n — oo uniformly for f € F.

Recall the definition of a (pre-)tight set of measures (Definition 7).
To show that pre-tightness does not change under topologically equivalent metrics,
we note the following.
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Proposition 3 1 € M_ () is separable if and only if it is pre-tight.

Proposition 4 The closure of a tight set of nonnegative measures is tight. The closure
of a pre-tight set of nonnegative measures is pre-tight.

The closure of a set of separable nonnegative measures consists of separable
measures.

Proof The first two statements follow from [14, Theorem 4.10d]. The third statement
holds because a countable union of countable sets is countable.

Corollary 3 M’ (S) is a closed cone of M(S).
Here is the characterization of convergence.
Theorem 12 Let (1) in M4.(S) and pu € M. (S). Equivalent are

@ Nlpn — plls =0,
(ii) fs fd(un — 1) — 0 for all continuous functions f € C*(S),
(iii) fs fd(u, — n) — 0 for all Lipschitz continuous functions f : S — [0, 1].

4.1.2 Compactness and Completeness in M (S)

Theorem 13 Let (i) be a tight sequence in M (S) such that (j1,,(S)) is bounded.
Then (W,,) has a converging subsequence (with the limit measure being tight as well).

Proposition 5 Let N' € M, (S) be a totally bounded set of pre-tight measures.
Then N is pre-tight and, if S is complete, tight.

Theorem 14 ([16, Theorem3.8]) M, (S) is complete if and only if S is complete.

5 More on Feller Kernels

Let S be metrizable topological space and 5 and the respective Borel o -algebra.

Definition 16 A function k : B x § — R, is called a Feller kernel if

k(-,8) € My(S) foralls € S and if « has the Feller property

[s FOK(dy, ) € CP(S) forany f € CP(S).

A Feller kernel « is called a Feller kernel of separable measures if

k(- s) € M(S) forall s € §.

Cf. [3, Sect. 19.3] and Sect.2.1. For examples and details see [32]. Recall that
every Feller kernel induces maps A : M(S) — M(S) and A, : M*(S) — M>(S)
with M?(S) denoting the Banach space of bounded measurable functions with the
supremum norm. See (10) and (9). Since « is a Feller kernel, A, maps Ch(S) to
Cc’(S).

The next result is part of [32, Theorem 10.4].
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Theorem 15 Let x : B x S — R be a Feller kernel of separable measures.
Then the following hold:
(a) A maps M’ (S) into M°(S), and A : M5 (S) — M.(S) is continuous with
respect to the flat norm.
(b) A maps M?*(S) into M*(S).

Remark 2 Let « be a Feller kernel of separable measures and A* denote the restric-
tion of A from M?*(§) to M?*(S) and A%, the restriction of A from M?_(S) to M, (S5).
Since the Dirac measures are separable, we still have for the operator norms that
[A*] = | A% [l = supscs k (S, s), (see 12). By (15),

r(A%) =r(A) =r(A)) =r(x).

Remark 3 The map A induced by a Feller kernel via (10) is continuous from M ()
to M (S) with respect to the variation norms even without the Feller type property.
But it seems difficult to come up with conditions for A to be compact with respect
to the variation norm.

5.1 Tight Feller Kernels

Definition 17 A Feller kernel « : B x S — R, is called a tight Feller kernel if the
set of measures {k (-, x); x € S} is tight.

A Feller kernel « is called a pre-tight Feller kernel if set of measures {« (-, x);
x € S} is pre-tight.

See [32, Sect. 10] for the proofs of the following and other results and for examples.

Proposition 6 Let k : B x S — R be a tight Feller kernel. Then A is continuous
and compact from M (S) to M. (S) with respect to the flat norm and maps M (S)
into M!_(S).

Proposition 7 Let P : B x S — R, be a tight Feller kernel and g € Ci(S x S).
Thenik : Bx S — Ry,
k(T,s) = / g(s,t)P(dt,s), seS8,Teb, (28)
T

is a tight Feller kernel. In particular, k (S, -) € ch(S).

5.2 Uniform Feller Kernels

We start from the observation that tight Feller kernels are related to compactness in
C?(S). Recall the concepts of equicontinuity and equiboundedness, Definition 15.
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Proposition 8 Let k be a tight Feller kernel and Q be an equicontinuous bounded
subset of Cb(S). Let A, be the map on CY(S) induced by k via (9). Then A.(Q) has
compact closure in in C*(S).

Proof Let (g,) be a sequence in Q. Since « is tight, there exists a sequence (K ;) of
compact subsets of S such that

supk(S\ K;,s) — 0, j — oo. 29)

ses

Set § = jeny K- Then S is separable. By a version of the Arzela-Ascoli theorem

[23, Theorem 8.5], there~exists a subsequence (gy,) and some g € C b (S') such that
&n, — g pointwise on S and uniformly on each K;. Set h, = A,g, and h(s) =
[58()k(dt,s),s € S. Then h, € C’(S) and h € M>(S). Foreachs € Sand j,i €
N’

|, (s) — h(s)] 5/ 8n, ()| (dt, 5) +/ |8n, (1) — g ()| (dt, 5)
S\K; K
+f lg(®)Ik(dt, s).
S\K;

By our various assumptions, there is some ¢ > 0 such that, for all i, j € N,

17n, — hlle < 2csupk(S\ K;,s)+ csup|gn () — g®)l.

SES tek;
For all j € N, since g,, — g asi — oo uniformly on K,

lim sup [|A,, — hlloo < 2ck(S\ K).
i—00
By (29), we can take the limit as i — oo,

limsup ||y, — hllec = 0.

i—00

This shows A, (Q) is a compact subset of C?(S). Since all &, are continuous, / is
continuous as well. (Il

The preceding result motivates us to look for Feller kernels that are related to
equicontinuous sets of functions.

Proposition 9 Letx : B x S — R, bea Feller kernel and A the induced linear map
on M(S) and A, the induced linear map on MP"(S) via (10) and (9), respectively.
Then the following are equivalent:

(a) sup |k(T,t) —«k(T,s)| — O, t — s, foralls € S.
TeB
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(b) If Q is a bounded subset of M"(S), then A.(Q) is an equicontinuous and equi-
bounded subset of ch(S).

(c) If Q is a bounded subset of C*(S), then A,(Q) is an equicontinuous and equi-
bounded subset of C?(S).

(d) A is continuous from M (S) with the flat norm to M (S) with the variation
norm.

Proof Assume (a).Let f(t) = > |-, o; x1; be ameasurable function of finitely many

values «y, ..., a,;,, where T; € B are pairwise disjoint. Then

m

|4, )0 = AdH®] < M1 flloo D [T 1) = (T, 5|

i=1

Since (-, t) — « (-, s) is a real-valued measure and the 7; are pairwise disjoint,

|4 @) = AN )] <201 flloo sup (T, 1) = k(T 5)|. (30)

If f € M"(S), f is the uniform limit of a sequence of such finitely-valued measurable
functions and (30) holds for f € M b(S). This implies that A, maps MP"(S) into
C®(S). Let Q be a bounded subset of M”(S). Then A,(Q) is a bounded subset of
C’(S) and an equicontinuous subset by (a) and (30), and (b) follows.

Obviously, (b) implies (c).

Assume (c). Let (u,) be a sequence in M (S) and u € M (S) such that
ltn — ptll, — 0 as n — oo. By (¢), {A,f; f € Cb(S),0 < f < 1} is a uniformly
equicontinuous and equibounded family of functions from S to R,. By Propo-
sition 2, fS(A*f)dM,, — fS(A*f)d,u as n — oo uniformly for f e C?(S) with
0< f<1.Let feClS) with || fllw<1.Then f = f, — f_ with0 < f. < 1.
So [((A.f)du, — [¢(A,f)du uniformly for f € CP(S) with | fllec < 1. By the
duality between A, and A, (11), [ fd(Ap,) — [g fd(Ap) as n — oo uniformly
for f € C*(S) with || f|le < 1. Assertion (d) now follows from Theorem 10.

Assume (d). Ast — s, [|6; — &s|l[, = 0 by Lemma 2 and, by (d), A§;, — A§; in
variation norm and supy g |« (T, t) — k (T, s)| — 0 by (10).

Definition 18 A Feller kernel « : B x S — R, is called a uniform Feller kernel if
it satisfies property (a) of Proposition 9.

Corollary 4 If « is a Feller kernel and the map A, : C*(S) — C”(S) associated
with k is compact, then k is a uniform Feller kernel.

Corollary 5 Let k| be a Feller kernel on S and ky a uniform Feller kernel on S.
Then k1 x k3 is a uniform Feller kernel on S.

Proof Let A; be the linear maps on M (S) induced by «; via (10). By Proposition
9, A, continuously maps M (S) with the flat norm into M (S) with the variation
norm, while A; is a bounded liner map on M (S) with the variation norm. So A A,
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continuously maps M (S) with the flat norm into M (S) with the variation norm.
Since AjA; is induced by k1 x k2 [32, L.9.2], k1 % k3 is a uniform Feller kernel by
Proposition 9.

Proposition 10 Let «k be a uniform Feller kernel. Let g : S x S — R be bounded
and g(s, ) be Borel measurable and g(-, s) be continuous on S for every s € S.
Letik : B x S — R be given by

K(T,s) = / g(s, K (dt, s), ses, TebkB.
T

Then k is a uniform Feller kernel.

Proof Lets € S. Since g(s, ) is Borel measurable and bounded and « (-, s) is a finite
non-negative measure, « (-, §) is a finite non-negative measure.
Let (s,) be a sequence in S and s € S and 5, — s. Then

‘/g(sn,t)K(dt,Sn)_/g(S,Z)K(dt,S)‘
T T
s\/g(sn,mx(dt,sn)—/g(sn,r)x(dr,n]
T T
+| / g(sn. D (dt, 5) — / §(s, Dxdr, 5)|
T T

<2suplg| sup }K(f, sp) — (T, s)| + / |g(sn, t) — g(s, t)|k(dt, s).
TeB s

The last integral converges to 0 as n — oo by Lebesgue’s dominated conver-
gence theorem because |g(s,, t) — g(s, )] — 0 as n — oo pointwise in ¢t € § and
|g(sn,t) —g(s, 1) <2supg(S x S)foralln € N.

Notice that the last expression in the inequality converges to 0 as n — oo uni-
formly for T € B. ]

This trivially provides examples for uniform Feller kernels.

Example 1 Let v € M, (S) and g : S x S — R be bounded and g(s, -) be Borel
measurable and g(-, s) continuous on S for every s € S.
Letk : B x S — R be given by

k(T,s) = / g(s, )v(dr), se S, TebB.
T

Then « is a uniform Feller kernel.
The class of Feller kernels provided this way can be quite comprehensive.

Example 2 Let S be a separable metric space and « : B x § — R, be a uniform
Feller kernel.
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Choose a countable dense subset {s,; n € N} in §.
Define v € M (S).

wW(T) = Zz—"K(T, s,), T eB.
n=1

Let T € Band v(T) = 0. Then «(T, s,,) = 0 for all n € N. Since {s,; n € N} is
dense in S and « is a uniform Feller kernel, « (T, s) = O for all s € S. By the Radon-
Nikodym theorem, for any s € §, there exists a Borel measurable function g(s, -)
such that

k(T,s) = / g(s, tyv(dr), s eB. 31
T
Since « is a uniform Feller kernel,
/ lg(s, 1) — g(5,t)|v(dt) — 0, s — 3. (32)
s

Conversely, any kernel of the form (31) satisfying (32) is a uniform Feller kernel.

Theorem 16 Let k| be a tight Feller kernel and k, a uniform Feller kernel. Then
AN = [ fomns.  ses.femto)
s

defines a bounded positive linear map A, from MP(S) to Mb(S) and from Ch(S) to
Cb(S), and

(U6 = [ Fratdns). ses.femts)
s
is a bounded positive linear map A, from M?(S) to CP(S) such that A, A, is
compact from MP(S) to CP(S).
Proof Combine Propositions 8 and 9.

Theorem 17 Let k; be a uniform Feller kernel that is tight. Let k| be a tight
Felleij kernel and k = k| + ky. Assume that r(k) > r(k1). Then there exists some
f e CZ(S) such that r(k) f (s) = fs f()k(dt,s) foralls € S.

Proof Let A, be the operators on C?(S) associated with k j.By Theorem 16, A, A,
and Aiz are compact on C?(S). The assertion now follows from [32, Theorem7.17].
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5.3 Irreducible and Colonization Kernels

Recall the definition of a (strongly) top-irreducible Feller kernel (Sect.2.1.2).

Lemma3 Let x : Bx S — Ry be a Feller kernel and A, be the bounded linear
map on Cb(S) induced by (9). Then the following are equivalent:

(a) « is top-irreducible.
(b) For any nonempty open strict subset U of S there exists some s € S\ U such
that k (U, s) > 0.
(c) Forany f € C0(S), S = U,z (ALSf > 0} = U(f).
(d) For any Lipschitz continuous f : S — R, that is not identically equal to 0,
S =Upez (ALf > 0} =2 U ().
Here, {A] f > 0} is a shorthand for {s € §; (A% f)(s) > 0}.

Proof (a)=-(b): Suppose that (b) does not hold: Then there exists some nonempty
open strict subset U of S such that « (U, s) =0 for all s € S\ U. Since « (S, -) is
bounded, there exists some ¢ > 0 such that k (U, s) < cxy(s) forall s € S. Then

K*Z(U, s) = /I{(U, Hk(dt,s) < /CXU(S)K(dt,S) =ck(U,s) < CZXU(S).
s s

By induction, «™*(U, s) < c"xy(s) foralls € S and all n € N. So (a) does not hold.

(b)=>(c): Since « is a Feller kernel, the functions A% f in part (c) are continuous
and U ( f) is open as union of open sets. Since f is not the zero functionand A f = f,
U (f) is nonempty. Suppose U (f) # S. By (b), there exists some s € S\ U(f) such
that « (U(f), s) > 0. Since the measure « (-, s) is continuous from below, there is
some n € N such that « ({A” f > 0}, s) > 0. This implies that (A”™! f)(s) > 0 and
s € U(f), a contradiction.

(c)=(d): obvious.

(d)=(a): Let U be a nonempty open subset of S. Choose some #y € U. Then there
exists some Lipschitz continuous f : S — [0, 1] such that f(z) = 1, f(¢) < xu(t)
forall t € S [14, L.2.1]. By (d), for any s € S, there is some n € Z, such that 0 <
(A7 f)(s). Let s € S\ U. Then (AYf)(s) = f(s) < xu(s) = 0 and 0 < (A” f)(s)
for some n € N. Since A’ is induced by «"*,

0 < (A" f)(s) < / o (DK™t ) < K™ (U, 5).
S

So (a) holds.

Remark 4 Assume that S is not a singleton set. If ¥ : Bx § — R, is a top-
irreducible Feller kernel, then « (S \ {s},s) > Oforall s € S.

Proof Lets € SandT = S\ {s}. Since S is not a singleton set, 7' is a nonempty open
subset of S. Since « is top-irreducible, by Lemma 3(b), there exists some s € S\ T
such that (T, §) > 0. Since S\ T = {s}, «(T,s) > 0.
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Theorem 18 Let « be a top—irreducib{e Feller kernel, A, the associated linear
bounded map on C*(S), r > 0. Let f € C_’,’_(S) be an eigenfunctionrf = A, f. Then
f(s) >0foralls € S.

Proof Foralln e N, f =r™"A’ f andso f(s) > Oforalls € § by Lemma 3(c).

Theorem 19 Let « be a top-irreducible Feller kernel. Then, for any p € M+(S)
and f € Ci(S), there is some n € 7 such that fS fdA"w) = fs Alfdu>0.

Proof Let u € M+(S) and f € Cﬁ(S). By Lemma 3(c),

nely

The last is a shorthand for {s € S, (A" f)(s) > 0}. Analogous shorthands will be
used in the following.
Since w is continuous from below and w(S) > 0, there exists some m € N such

that 0 < u(Ur_o Sa(f)). Since Uy Si(f) = { Xy A" f > 0}, there is some
k € N such that u (T (f)) > 0, T (f) = { X A" f > 1/k}. Now

> [ raan= [ Y@ du
n=0 S Sn:O
A" f)d 1/k)ul(T,, 0.
E/ka<f><§ ") = (/0T () >

So there is some n € Z, such that [ f d(A"w) = [( A% f du > 0.

Corollary 6 Letk be atop-irreducible Feller kernel, A the associated linear map on
M (8S), r > 0. Let uw € M (S) be an eigenmeasure riu = Au. Then fs fdu >0

forany f € Ci(S).
Proof Foralln € N, u = r™" A" and the assertion follows from Theorem 19.

Proposition 11 Let k be a top-irreducible Feller kernel and let N be a tight subset
of M4 (S) withinf, cpr £(S) > 0. Then, for any f € Ci(S), there exist somem € N
and § > 0 such that

m

Z/Aifduza, neN.
n=0 S

Proof Let n = (1/2)inf,cpr 1(S). Then n > 0. Since N is tight, there exists some
compact subset K of S such that (S \ K) < n for all © € N and so

wK)=n, pneN. (33)
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Let f € Ci(S), f # 0. Since « is top-irreducible, S = Un6Z+ S, (f) with open sets
Sp(f) ={ALf > 0} by Lemma 3(c). Since K is compact, there exists some m € N
such that K C UZ;O S, (f). So there exists some § > 0 such that

D (AN =8, sek.

n=0

For all u € NV, by (33),

m

i/Aifdu«zf (ZAZf) dp > §u(K) = én > 0.
n=0 S K

n=0

5.3.1 Strongly Top-Irreducible Feller Kernels.

Recall the definition of a strongly top-irreducible Feller kernel (Definition 4).

Lemma 4 Letk : B x S — R, bea Feller kernel and A be the associated bounded
linear map on Cb(S). Then the following are equivalent:

(a) « is strongly top-irreducible.

(b) Forany f € o) f_(S ) and any nonempty compact subset K of S there exists some
n € Zy such that (A7 f)(s) > O forall s € K.

(c) For any Lipschitz continuous f :S — R, that is not identically equal to 0
and any nonempty compact subset K of S, there exists some n € Z, such that
(A% f)(s) > O0foralls € K.

Proof (a) = (b):

Let f € Ci(S) and K be a compact subset of S. Then U ={t € S; f(¢) >
Il fllo/2} is a nonempty open subset of S. Since « is strongly top-irreducible, there
exists some n € N such that, forall s € K.

2f@®) .,

2
0<k™U,s) < dt,s) < —— (Al .
< ‘)</U||f||of @t.5) < o A

Obviously (b) implies (c).
(¢) = (a) follows similarly as in Lemma 3(d) = (a).

Proposition 12 Letk : B x S — R, be a Feller kernel with the following property
forany f € Ci(S):

For all s € S there exists some neighborhood U, C S of s and some ng € N such
that fS f®k"™(dt,s) > O0foralln € N, n > ng, and all 5 € Us.

Then k is a strongly top-irreducible Feller kernel.
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Proof The neighborhoods U, can be chosen as open sets containing s. Let K be a
nonempty compact subset of S. Then K C [ J;.¢ U, and there exists a finite subset

S of S such that K C U5 Us. Set m = max n;. Then m € N and

seS
seSs
/f(t)/c’”*(dt,i) >0, J§eKk.
S

By Lemma 4, « is strongly top-irreducible. (]
A similar proof as for Proposition 11 yields the following result.

Proposition 13 Let « be a strongly top-irreducible Feller kernel and let N be a
tight subset of M. (S) with inf e £ (S) > 0. Then, for any f € Ci (S), there exist
some n € Nand § > 0 such that

/A’;fduz& weN.
s

Proposition 14 Let P : B x S — R, be a Feller kernel, g € Cf_(S x S), and k :
B x § — R, be defined by

k(T,s) = / g(s,r)P(dt, s), seS, TebkB. (34)
T

Assume that k is also a Feller kernel and that g(s,t) > 0 forall s,t € S.

(a) P is top-irreducible if and only if k is top-irreducible.
(b) P is strongly top-irreducible if and only if k is strongly top-irreducible.

Proof For f e Ci(S), set U, ={f, >0} and V, = {h, > 0} where f,4| = fs
fu(®)P(dt, ) and h,y = fs h,(t)k(dt,-) for all n € N. Let U(fp) and V(fp) be
the respective unions over n € N.

For any f € C i(S) and s € S, we have the equivalence of the following two
statements:

() [¢ f)P(dt,5) > 0,

(i) P({f > 0}, 5) > 0.

An analogous equivalence holds for « replacing P.

Since g is strictly positive on 2, statement (ii) for P is equivalent to the statement
(ii) for k replacing P.

With this observation, it follows by induction that U, = V), for all n € N such that
U(f)=V(f).SoS=U(f)ifandonlyif S = V(f).

The equivalence in (a) follows from Lemma 3(c).

The equivalence in (b) follows from Lemma 4(b).

In these lemmata, U, = {A} f > 0} if A, isinduced by P and V,, = {A} f > 0}
if A, is induced by «.
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5.3.2 Colonization Kernels.

The following example of strongly top-irreducible kernels seems particularly suited
for spatially structured populations, but less for populations with other structures.

Definition 19 Let k : B x S — R, be a Feller kernel. « is called a colonization
kernel if for any s € S there is an open subset U > s of S such that x(V, s) > 0 for
all nonempty open subsets V of U.

Proposition 15 Let S be connected and k be a colonization Feller kernel. Then, for
any f € Ci(S), S = UneZ+ Su(f) where S,(f) = {A}f > 0} form an increasing

sequence of open sets, and k is strongly top-irreducible.
Here A, is the operator defined in (9).

Proof Let f € Ci(S) and define S, (f) as above.

Since A’ f is continuous, the sets S,(f) form a sequence of open subsets of
S. We claim that this sequence is increasing with respect to the subset relation. It is
sufficient to show that So(f) € S1(f) because S,+1(f) = S1(AL(f)).Lets € Sand
f(s) > 0. Since « is a colonization kernel, there is an open subset U > s of S such
that «(V,s) > 0 for all nonempty open subsets V of U. Set V = {t eU; f(t) >
f(s)/2}. Then V an open subset of U and s € V; so

f(s)
2

(A f)(s) = / fx(de,s) = k(V,s)>0.
\4

This implies So(f) € S1(f).

Set S(f) = UneN S, (f). S(f) is open as union of open sets. To show that S(f)
is closed, let s € S be a limit point of S(f). Since « is a colonization kernel, there is
an open subset U > s of S such that «(V, s) > 0 for all nonempty open subsets V
of U. Since s is a limit point of S(f), U N S(f) # P and U N S, (f) # @ for some
n € Z..Since S, (f) = U,en {A2f > 1/m}, there exists a nonempty open subset
V of U and some m € N such that (A7 f)(t) > 1/m forallt € V. Forallx € U,

(AL f)(s) = /(Aif)(t)K(dt,S) = (1/myk(V,s) > 0.
Vv

So s € S,+1(f) S S(f). Since S(f) is open and closed in the connected set S,
S=S80f).

Let K be a compact subset of S. Then there exists some n € N such that K C
U;le S;(f). Since the S,(f) form an increasing sequence of sets, K C S,(f), i.e.,
(A% f)(s) > Oforall s € K. So, « is strongly top-irreducible by Lemma 4.

Lemma5 Let x : B x S — Ry be a tight colonization Feller kernel and g : S x
S — (0, 00) be continuous and bounded. Then k : B x S — R, defined by

K(T,s) = / g(s, Hk(dt, s), T eB,ses,
T
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is also a tight colonization Feller kernel.

Proof By Proposition 7, i is a tight Feller kernel.

Let s € S. Since « is a colonization kernel, there is some open subset U > s of
S such that «(V, s) > 0 for all nonempty open subsets V of U. Since g is strictly
positive and continuous, V = |,y V. With open subsets V, = {r € V; g(s, 1) >
1/n} of V.Foralln € N,

k(V,s) > / g(s,Hk(dt,s) = (1/n)k(V,, s).
v,

n

Since « (-, s) is continuous from below, «(V,,s) — «(V,s) > 0 as n — oo and
Kk(V,s) > 0.

6 Proofs for the General Framework for The state Space of
Measures. Tight Bounded Persistence Attractors

Recall that we consider yearly turnover maps F' of the following form,
F(u)(T) = /K”(T, s) ulds),  peM(S), TEeB,
s

where {k"; u € M’ (S)} is a set of Feller kernels «* : B x § — R,.

If w is the zero measure, we use the notation «°.
Proposition 16 Let the Assumption 9 be satisfied. Then F maps M?®_(S) into itself.
Proof Theorem 15(a).

Lemma 6 Let( f,,) be a bounded sequence in C*(S) and (1,,) be a bounded pre-tight
sequence in M, (S). Then

n—oo

[ Fdi =0 i f 0
s
uniformly on every totally bounded subset of S.

Proof Lete > 0.Since {u,,; n € N}is pre-tight, there exists a closed totally bounded
subset T of S such that i, (S\ T) < e foralln € N.Foralln € N,

\/fndun s/|ﬁ|dun+/ | Fold it

s T S\T

<sup | f,| sup i (S) + supsup | fi| pa(S\ T).
T keN keN S
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Since f, — 0 uniformly on T, the last but one expression converges to 0 as n — 00
and

< sup sup | fel €.
keN S

lim sup ’ / Fud i
s

n—00

Since this holds for arbitrary € > 0, the limit superior is zero and we have proved
the assertion.

Proposition 17 Let the family of Feller kernels {«k"); u € M (S)} satisfy the
Assumptions 9 and 11. Then F : M (S) — M.(S) is continuous with respect to
the flat norm.

Proof Letu € M. (S)and (u,) be asequence in M’ (S) such that ||, — pl, — O.
By Theorem 12,

/S fdp, — /S fdu,  feCi(s). (35)

Then {u,; n € N} is a compact subset of M (S) with respect to the flat norm and
pre-tight by Proposition 5 and a bounded subset of M (S).
Let f € F. By (16),

]fsde(un)—/Sde(u)] = ’/Sf,,d,un—/sfdu‘ 36)

with
fn(S)Z/Sf(t)K“”(dt,S), fs Z/Sf(t)K"(dI,S)-

By Theorem 12, it is sufficient that the expression on the right hand side of (36)
converges to 0 as n — oo.
By the triangle inequality and (36),

[ £aran - [ rarw| <] [~ Paw|+ | [ Fdw -~ [ fau|
s s s s s
Since «* is a Feller kernel, f € Cﬁ(S) and the second term on the right hand side

of the last inequality converges to 0 as n — oo by (35). As for the first term, by
Assumption 11, for any closed totally bounded subset T of S

fu(s) — f(s) — 0, n — oo, uniformly fors € 7. 37

Further, by Assumption 9, (f,, — f ) is a bounded sequence in C?(S). Now the first
term of the last inequality converges to 0 by Lemma 6.

Proposition 18 Under the Assumptions 9 and 12, the yearly population turnover
map F : M’ (S) — M?.(S) is compact; for any bounded subset N of M’.(S),
F(N) is a tight bounded subset of M?,(S).
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Proof Let N be a bounded subset of M*_(S). For any set T € Band u € N,

FGO(S\ T) =/

k"(S\T,s) u(ds) <sup «"(S\T,s)u(S).  (38)
S ses

For T = @, we obtain that {F (1)(S); u € N} is bounded in R by Assumption 12.
Let € > 0. By Assumption 12, there exists some compact set 7" in S such that

—1
S\ T, s) < 6(1 + sup M(S)) . ses.
neN

By (38), F(uw)(S\ T) < e forall u € N. By Definition 7, F (V) is a tight subset of

ME(S).
By Theorem 13, F (/) has compact closure in M*_(S).

Proposition 19 Let the Assumptions 9 and 13 be satisfied. Then

i F(n)(S)
imsup —— < 1
w(S—oo  MH(S)

Proof For all n € M?.(S),

F(u)(S) = /K“(S, s) pu(ds) < supk”(S,s) u(S).

N seS
This implies the assertion.

Theorem 20 Let the Assumptions 9, 11, 12, and 13 be satisfied.
Then the semiflow induced by F has a compact attractor of bounded sets.

Proof We apply Theorem 9. By Assumption 13 and Proposition 19, inequality (19)
is satisfied with 6(u) = w(S). F is continuous by Proposition 17 and compact and
thus asymptotically smooth by Proposition 18. All assumptions of Theorem 9 are
satisfied which implies that the semiflow induced by F has a compact attractor of
bounded sets. (]

Let us spell out what Theorem 20 means [26, Chap. 2].

Remark 5 Under the assumptions of Theorem 20, there exists a subset /C of M2 (S)
which is tight, compact with respect to the flat norm, and satisfies F (') = K. Further,
if N is a bounded subset of M (S) and U an open set in M?,_(S) with respect to the
flat norm with X € U, there exists some N € N such that F*(N) C U foralln € N
withn > N.

The tightness of X follows from Proposition 18 and F(K) = K.

Proposition 20 Under the Assumptions 9 and 10, F maps /\}li(S ) into itself.
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Proof Let u € M+(S). Then w(S) > 0. By Assumption 10, § = UjeN T; with
Tj={s € S;k"(S,s) > 1/j}.
Notice that 7; € T4 forall j € N. Since u is continuous from below, 0 < u(S) =
lim;_, . (7). So, for some j € N, u(T;) > 0 and
F(u)(S) = / (S, s)u(ds) = (1/j)u(T;) > 0
T;

and F(u) € M5.(S). O

The following result implies that the extinction state is unstable.

Theorem 21 Make Assumptions 9 and 10 and let the kernel family {k"; u €
M (8)} be lower semicontinuous at the zero measure.

Further assume that there exists somer > Qand f € C i(S) such that f(s) > 0
forall s € S and

/f(f)'fo(dhs) >rf(s), seS.
s

Then the semiflow induced by F' is uniformly weakly persistent: There exists some
8 > 0 such that limsup, _, ., F"(u)(S) > 8 for all u € M. (S).

Proof We apply [20, Theorem 5.2] with

(Bu)(T) = /SK”(T, ) (ds)

and

O (w) =/Sfdu, w € M(S).

The assumptions (a) and (b) are satisfied by Assumption 10 and the strict positivity
of f. Assumption (c) follows from the lower semicontinuity of the kernel family. [

Proof of Theorem 6. We apply Theorem 21. By Theorem 17, there is some f € C i S
such that

/f(t)ic”(dt, s) =rf(s), s €S,
s

r =r(k°). f is strictly positive by Corollary 18. (]
Proof of Theorem 1. We combine [26, Theorem4.5], Theorems 20 and 6.
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6.1 Compact Persistence Attractor

Theorem 22 Make Assumptions 9, 10, 11, 12, 13, 14 and let the kernel family
{Kt; u € MS(S)} be lower semicontinuous at the zero measure.

Assume that «° is a strongly top-irreducible Feller kernel and k° = k| + ky with
two tight Feller kernels «;, where k3 is a uniform Feller kernel. Finally, assume
r=rk° >1=>r().

Then the semiflow induced by F has a compact connected persistence attractor

.Al.'

(a) A, is a compact set with respect to the flat norm, F(A,) = A, and A, is a tight
set of measures.

(b) A; attracts all subsets N of M(S) with inf e pr 0 (S) > 0 that are compact
with respect to the flat norm or are bounded and tight: If N is such a subset and
U is an open set in ./\/lj_(S) with respect to the flat norm, Ay C U, then there
exists some N € N such that F*(N') C U foralln € Nwithn > N.

(c) Forany f € C"ﬁ’r(S), there exists some €y > 0 such that fs fdu > €y for all
YIS .Al.

(d) A is connected with respect to the flat norm. In particular, for any f € Ci S),
{ fS fdu; p e A } is a compact interval (possibly a singleton set) contained in
(0, 00).

Proof We apply [26, Sect. 5.2] with X = M (S) and p () = () for u € M2 (S).
Since F(0) =0 and F(X \ {0}) € X \ {0} by Proposition 20, the set X, := {,u €
X;Vn € Zy : F"(n) =0} = {0}.
By Theorem 6, the semiflow {F"; n € Z.,} is uniformly weakly p-persistent.
The statements (a) and (b) follow from [26, Theorem 5.7](b) as does

6 := inf wu(S) > 0. 39)

HeA;

(c) By Assumption 14, there exists a strongly top-irreducible Feller kernel & such
that
k" (T,s) > k(T,s), TeB,seS,veA.

Let A, be the map on C”(S) associated with &. For any f € C2(S), u € A;,

f FdFG) = / ( / F(rdr.5))u(ds)

S S S

> / ( / FORG1))n(ds) = f (A f) d .
S S S

By induction, for any f € C2($),

/dek(u)z/diif)du, keN,peA. (40)
S N
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Now let f € C i(S). By Proposition 13 since « is a strongly top-irreducible Feller
kernel, there exists some n € N and €y > 0 such that

GfS/S(AZf)dMS/Sde”(M), e A.

Since F"(A;) = Ay, this implies that fs fdv=>er>0forallv e A.

(d) Connectedness from A; follows from [26, Proposition5.9] because p with
p(u) = u(S) is concave, actually additive on M (S). By Theorem 12, for any
f € C(S), the map ¢r: M3(S) = [0,00), 97 (1) = fs fdu, is continuous under
the flat norm. Since continuous images of compact (connected) sets are compact
(connected), ¢ ¢(A;) is compact and connected and, by (c), a subset of (0, co0) if
fech(s. O

Proof of Theorem 8. Let A; be the persistence attractor from Theorem 22 and f €
Cf;(S). Then there exists some €7 > 0 such that fs fdu > ey forall u € A;. Set
U=1{ve M) fs fdv > €;}. By Theorem 12, U is an open set in M?®_(S) with
respect to the flat norm and A; C U C Mi(S). The statement now follows from
Theorem 22(b) and (c). [l

7 A More Specific Model for an Iteroparous Population

We consider a structured population the dynamics of which are governed by the
processes of birth, death, and structural development, with the last being spatial
movement to be specific.

We assume that each year has one very short reproductive season. We count the
years in such a way that the census period is just before the reproductive season.
At the end of the year, juveniles born at the beginning of the year have matured
enough that they are reproductive as well and are counted as adults. This means that
each year, at the very beginning of the year, just before the reproductive season,
all individuals are adults. Differently from the model for a semelparous population
considered in [32], individuals can reproduce several times during their life-time.

Births and deaths can be affected by competition for resources. Consider a typical
adult individual at location ¢ € S. Let g (s, t) denote the competitive effect it has
on an adult located at s € S and ¢ (s, t) denote the competitive effect it has on a
neonate located at s € S. Here g, : §? — R,. If u € M, (S) is the distribution of
adult individuals at the beginning of the year and s € S,

(Q11)(s) =/Sq1(s,t)u(dt) (41)

is the competition level exerted by w on an adult that has been at s at the beginning
of the year. while



92 H. R. Thieme

(Q210)(s) =/SQ2(S,I)M(dt) (42)

is the competition level exerted by w on a juvenile born at s.

Further, let g; (s, g) be the probability of an adult located ats € S at the beginning
of the year to survive competition till the end of the year when the competition level
atsisqg e Ry, g1 : S xRy — [0, 1].

Let g : S x Ry — R, be the effective per capita birth function, i.e., g2(s, q) is
the per capita amount of offspring that is produced at s € S by an adult located at s
and that survives competition till the end of the year when the competition level at s
isqg € R;.

We assume that the migration patterns of neonates and adults are possibly differ-
ent.

Let P(T, s) be the probability that an adult staying at s € S at the beginning
of the year does not die from noncompetitive causes till the end of the year and is
located at some point in the set 7" at the end of the year.

Similarly, let P,(T, s) be the probability that a neonate born ats € S at the begin-
ning of the year does not die from noncompetitive causes till the end of the year and
is located at some point in the set 7" at the end of the year.

If the measure v represents the spatial distribution of neonates shortly after the
reproductive season at the beginning of the year,

(Av)(T) = / Py(T, s)v(ds), T € B, (43)
s

provides the resulting number of adults that, at the end of the year, have not died
from noncompetitive causes and are located within the set 7.

A similar formula holds for the relation between the spatial distribution of adults
at the beginning of the year and the resulting distribution of survivors at the end of
the year.

In combination, the turnover kernel for a population with spatial distribution
JVS] M+(S) is

k*(T,s) = K{L(T, s) + K;(T, s)

K (T, 5) = Pi(T,s) g;(s, (Qjm)(5) } TeB,ses, (44)

and Q;u from (41) and (42). Notice that

K;)(T, s)= Pi(T,s) gj(s,0), T eB,s eSS, (45)

Assumption 20 For the per capita survival and reproduction rate functions g; and
82,

(gl) gj:S xR, — Riiscontinuous and bounded, j =1, 2; g1(s, ¢) < 1forall
seS, qgeR,.
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gj(s,u)
gj(s,0)

For the competitive influence functions ¢; and g5,

(g2) gj(s,0) >Oforalls € S and — 1 asu — 0O uniformly for s € S.

(q1) gq;: $2 — R, is continuous and bounded.
For the survival/migration kernels P; and P,,

(P1) P;j:B xS — Ry isaFeller kernel (Definition 16) of separable measures.
(P2) 0<Pi(S,s)<1forallseS.

Here S? and S x R, are equipped with the respective product topologies.

Lemma 7 Let the Assumptions 20 be satisfied and j = 1,2. Then, for any u €
ML(S), Qju is continuous on S and g; (s, (Qj,u)(s)) is a continuous function of
ses.
For each u € M,(S), the kernels K_’]TL, Jj=1,2, and k" are Feller kernels of
separable measures, and the Assumptions 5 are satisfied for K;ft and k" = ki + k).
Further, the kernel families {K}‘; nweM(S)}, j=1,2 and {k"; u € M, (S)}
are continuous at the zero measure.
Moreover, K{L(S, s) < lforallp e M.(S)andall s € S and r(xy) < 1.
Finally, if the kernel P; is tight, so is the kernel k5.

Proof Let u € M,(S). Then

(0,10)(s) = fsq,-(s,rm(dt)

is a continuous function of s by Lebesgue’s theorem of dominated convergence
because ¢; is continuous and bounded by Assumption 20. By the same assumption,
gj (s, (Q; u)(s)) is a continuous function of s € S as composition of continuous
functions.

Let f € C5(S). Then

/S FORL L, 5) =hy(8) 85 (5, Q).

7 (s) =f FOP (1),
S

h; € C"(S) because P; is a Feller kernel. As product of continuous functions,
s f(t)fc;-‘(dt, s) is a continuous function of s € S.

This implies that K;-L is a Feller kernel and so is x*.

Further, K;‘(S, s) < Pi(S,s)supg;(S x Ry) <supg;(§ xRy) is a bounded
function of s € S and K{‘(S, s) < 1 by Assumption 20.

The separability of Kf (+, ) is inherited from the separability of P;(-, s).

The continuity of the kernel families at the zero measure follows from Assumption
20 (g2) and (44) and (45).
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k> inherits tightness from P, via the boundedness of g,. |
The subsequent stability result follows from Theorem 4 [32, Theorem 3.6].

Theorem 23 Let the Assumptions 20 be satisfied and r = r(k°) < 1.

(a) The extinction state is locally asymptotically stable in the following sense:
For each o € (r, 1), there exist some 8, > 0 and M, > 1 such that,

F' () (S) ="My u(S),  neN,

if w € My(S) with u(S) < 8.

(b) If gj(s,q) <g;(s,0) for all s € S, g € Ry, j=1,2, the extinction state is
globally stable in the following sense:
For each a € (r, 1), there exists some M, > 1 such that

F*()(S) < o"My pu(S), neN, peMi(S).

The subsequent instability result follows from Theorem 5 and from Lemma 7 and
shows that the assumption r(k?) < 1 in Theorem 23 is almost sharp.

Theorem 24 Let the Assumptions 20 be satisfied and P, be a tight Feller kernel.
Letr =r(«°) > 1.
Then there exists some eigenmeasure v € M’_(S), v(S) = 1, such that

rv(T) = /K”(T, s)v(ds), T € B.
s

Further, the zero measure is unstable: There is some &y > 0 such that for any v-
positive i € M(S) there is some n € Z, with F"(u)(S) > §.

Recall that u € M (S) is v-positive if there exists some § > 0 such that u(7) >
Sv(T) forall T € B.

Proposition 21 Let Assumption 20 be satisfied. Assume that Py and P, are tight
Feller kernels. Then, for any u € M.(S), «{', ky and k" are tight Feller kernels.
Further, the sets of measures

{K;L(~,S); seS,ueMi(S)), j=1,2, and{k"(,s);5 €S, u € ML(S)}
are tight and the sets

kK (S,8);s €S, e Mu(S)), j=1,2, and {k" (S, 5); 5 € S, p € M4.(S)}

are bounded in R. In particular, Assumption 12 is satisfied.
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Proof «{', k5 and k" are tight Feller kernels by Proposition 7 and Lemma 7.
Since the functions g; are bounded, there exists some ¢ > 0 such that g; (s, (Qjm)
(s)) <cforalls € Sand u € M, (S),j=1,2.Forany T € B,

KES\T,s) <k™(S\T.s) < c(Pi(S\T.s)+ PAS\ T,5)).

Since P; are Feller kernels, the right hand side has a common upper bound for
s € S, T € B. This implies the boundedness of the various sets in R in the assertion
of the Proposition. Let € > 0. For j = 1, 2, since the P; are tight kernels, there exist
compact sets T; € B such that P;(S\ Tj,s) <€/(2c).Set T =T, UT,. Then T is
compact and, for all u € M_(S),s € S,

KOS\ T, ) < k"(S\T.s) < c(Pi(S\ Ti. ) + Px(S\ T2, 9)) <e.

Proposition 22 Let Assumption 20 be satisfied. If P := P; + P; is a (strongly) top-
irreducible kernel, so is k°.

Proof Set h(s) = min{g;(s, 0), g2(s,0)},s € S. Then h € Ci(S) and, by Assump-
tion 20, i(s) > O forall s € S.
By (44),

k’(T,s) > P(T,s)h(s) =: k(T,s), T eB,seSs.

Since P is a (strongly) top-irreducible kernel and £ is strictly positive, i is a
(strongly) top-irreducible kernel by Proposition 14 and so is k° as one sees from
Definition 19. ]

In view of these results, we collect the following set of assumptions.

Assumption 21 e P; and P, are tight Feller kernels.
o gi(s,q) >0forj=1,2andalls € Sandg € R,.

Lemma 8 Assume that g;(s,q) > 0 for all s € S, g € R,.. Let N be a bounded
subset of M (S) and P = Py + P; be a strongly top-irreducible kernel. Then there
exists a strongly top-irreducible kernel k such that k" (T, s) > (T, s) forall T € B,
s€SandueN.

In particular, Assumption 14 is satisfied.

Proof Let N be a bounded subset of M. (S). Since ¢ ; is bounded, by (41) and
(42) there exists some ¢ € (0, oo) such that (Q;u)(s) <cfor j=1,2,5 € S, and
u e N. Set

hj(s)zoil;gcgj(s,q), ses, j=172.

Since g is continuousand g (s, g) > Oforalls € S,q € Ry, ;(s) > Oforalls € S.
To show that £ is continuous, let s € § and (s,) be a sequence in S such that s, — s
as £ — o0o. Then T = {s;; £ € N} U {5} is a compact subset of S and T x [0, c] is a
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compact subset of § x R and g; is uniformly continuous on T’ x [0, c]. This implies
that g;(s¢, ¢) — g;(s, g) as£ — oo uniformly forg € [0, c]andso & (se) — h;(s)
for £ — oo. Finally set i(s) = min{h(s), h2(s)}. Thenh € Cf_(S) and A (s) > O for
alls € S.
By (44),
k"(T,s) > P(T,s)h(s) =: (T, s).

Since P is a strongly top-irreducible kernel and % is strictly positive, K is a
strongly top-irreducible kernel by Proposition 14. In particular, foreach u € M (S),
k*(S,s) > k(S,s) >0foralls € S.

Theorem 25 Let the Assumptions 20 and 21 be satisfied, P> be a uniform Feller
kernel, Py + P, be top-irreducible and r = r(x°) > 1.

Then there exists some strictly positive eigenfunction f € Cf_ )

with [¢ f(D)k°(dt,s) = rf(s) foralls € S.

Further, the semiflow generated by F is uniformly weakly persistent: There exists
some § > 0 such that limsup,,_, . F"(u)(S) > § forall p € ./\'/li(S).

Proof By Proposition 10, 5 is a uniform Feller kernel. By Proposition 7, 7 is a
tight Feller kernel, j = 1, 2. By Proposition 22, k? is a top-irreducible Feller kernel.
By Lemma 7, the kernel family {«*; u € M? (S)} is lower semicontinuous at the
ZEro measure.

Assumption 9 is satisfied by Proposition 21, and Assumption 10 is satisfied by
Lemma 8. By Lemma 7, r(x7) < 1. Apply Theorem 6. ]

Recall Definition 15.

Assumption 22 (a) For any closed totally bounded subset T" of S, {g (s, -); s € T}
is equicontinuous on S, j = 1, 2.

(b) For any closed totally bounded subset T of S, {g;(s,-); s € T} is uniformly
equicontinuous on bounded subsets of R, j = 1, 2.

Lemma 9 Assumption 22 is satisfied if S be completely metrizable, and Assumption
20 holds.

Proof Let T be a closed totally bounded subset of S and let S be completely metriz-
able. Then T is compact.

(b) Let ¢ > 0. Then the set T x [0, c] is compact. Since g; is continuous on
S x Ry, g; is uniformly continuous on T x [0, c]. This implies (b).

(a) Suppose that Assumption 22(a) is false for j = 1 or j = 2. Then there is some
5 € S such that {g;(s, -); s € T} is not equicontinuous at §.

Then there exists some € > 0 and a sequence (s,,) in T and a sequence (§,) in S
such that 5, — 5§ asn — oo and

|9 (sns Sn) — qj(sn, )| > €, neN.

Since T x ({3,; n € N} U {§}) is a compact subset of S, g; is uniformly continuous
on this set, a contradiction.
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Lemma 10 Let the Assumptions 20 and 22(a) be satisfied. Further let . € M’ (S)
and (w,) be a sequence in M3 (S), ||ty — plly, = 0asn — oco.

Then, for j = 1,2, (Qjia)(s) = (Q;jn)(s) as n — oo uniformly for s in any
closed totally bounded subset of S. Further Q jj, and Q ;i are bounded functions.

Proof The convergence statement follows from Proposition 2 and (41) and (42). The
boundedness statements are immediate.

Lemma 11 Let the Assumptions 20 and 22(b) be satisfied. Let T be a closed totally
bounded subset of Sand f, : T — Ry, n e N, and f : T — R, be bounded func-
tions such that f, — f uniformlyonT. Then g; (s, fn(s)) — g (s, f(s)) asn — 0o
uniformly fors € T.

Proof There exists some ¢ € (0, o) such that f,,(s), f(s) <cforallm e N,s € T.
Since {g;(s, -); s € T} is uniformly equicontinuous on [0, c], the assertion follows.

Proposition 23 Let the Assumptions 20 and 22 be satisfied. Then Assumption 11 is
satisfied for k', j = 1,2 and ic*.

Proof 1t is sufficient to show the claim for Kf‘. Let (u,) be a sequence in M, (S)
and . € M, (S) such that [ fdu, — [; fduasn — oo forall f € C2(S). Then
i, — pll, = 0 as n — oo by Theorem 12.

Leth € C2(S).Fors € S,

/‘h(t)/(f‘”(dt,s) —/h(t)/c{‘(dt,s)
s s
= [ 0P ). ©u)©) - gl Q)]
s
Since fs h(t)Pi(dt, s) < suph(S), it is sufficient to show that

g1(s, (Qima)(9)) = gi(s, (Q1w)(s)), n— o0

uniformly on every closed totally bounded subset 7 of S. But this follows by com-
bining Lemmas 10 and 11.

Assumption 23 sup Pi(S,s)gi1(s,q) < 1; inf gy(s,t) > 0;
s€S,qg>0 s, teS

g2(s,q) = 0as g — oo, uniformly fors € S.

From the interpretation of g; as probability of surviving competition, it is sug-
gestive that 0 < g;(s, ¢) < 1 (Assumption 20 gl). So, together with P;(S,s) < 1,
the first of the assumptions is not really drastic. The second assumption means that
competitive influence on somebody else’s reproduction reaches everywhere in the
habitat. The third assumption means that fertility drops very low if resources are very
low due to large competition.



98 H. R. Thieme
Proposition 24 Under the Assumptions 23,

sup supki(S,s) <1, supy(S,s) — 0as u(S) — oo,
HEM’ (S) s€S ses

and Assumption 13 is satisfied. Further r(k7) < 1.

Proof Recall that

k1 (S.5) = Pi(S,5)81(s, (Q1i)(s)) < Pi(S,s) sup g1(s,q),
qERL

which implies the first assertion. Further

(Qa1)(s) = si?efs ga(s, 1) ju(S) "3

uniformly for s € §, and so

K5 (S, 8) = Pa(S,9)g2(5, (Qu)(5)) = 0, u(S) — o0,
uniformly for s € S. We combine,

lim sup sup (S, s) < sup &} (S,s) + limsup supxjy (S, s)
n(S)—oo ses HeM(S), seS n(S)—oo ses

= sup Kk} (S,s) < 1.
neM’ (S), seS

Theorem 26 Let the Assumptions 20, 22 and 23 be satisfied. Assume that P, and
P, are tight Feller kernels and r(k°) > 1. )
Then there exists a fixed point F(u) = u € M’ (S).

Proof We apply [32, Theorem3.19]. Its assumptions are satisfied by Lemma 7,
Propositions 21, 23 and 24.

Theorem 27 Let the Assumptions 20, 21, 22 and 23 be satisfied. Assume that P; is
a uniform Feller kernel, Py + P, is top-irreducible and r(k°) > 1.

Then the population is uniformly persistent in the following sense: There exists
some €y > 0 such that ligiorgf F"(n)(S) > € forall u € Mj_(S).

Proof We apply Theorem 7. Its assumptions are satisfied by Lemma 7, Propositions
21,23, 24. O

Theorem 28 Let the Assumptions 20, 21, 22 and 23 be satisfied. Assume that P; is
a uniform Feller kernel, Py + P, is strongly top-irreducible and r(k°) > 1.

Then the semiflow induced by F is uniformly persistent in the following sense:
For each f € C.'j’_(S), there exists some €y > 0 with the following property:
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If N is a compact (or bounded tight) subset of ME(S) with inf e p u(S) > 0,

there exists some N € N such that

/de”(u) >e€; forallp e N andalln € Nwithn > N.
s

Proof We apply Theorem 8. Its assumptions are satisfied by Lemma 7, Propositions
21, 23, 24, Lemma 8. O
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Discrete Splines and Its Applications )

Check for
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Patricia J. Y. Wong

Abstract In this paper, we survey the contributions made to discrete splines in the
literature and present some applications of discrete splines in the numerical treatment
of boundary value problems.

Keywords Discrete spline interpolation + Error estimates - Numerical solution -
Boundary value problems

1 Introduction

In the well familiar continuous spline interpolation, we not only interpolate the
function of interest at each knot, but also interpolate a number of derivatives of
the function at certain knots. Therefore, the function is required to be sufficiently
smooth. However, in the real world situation, not only that it may be difficult to
compute the derivatives of a function, the derivatives may not even exist at some
points. In such a situation, the usual continuous spline interpolation will not be
suitable. We therefore introduce ‘discrete’ spline interpolation schemes that involve
only differences. Since no derivatives are involved, the interpolates can be constructed
for amore general class of function and therefore this type of interpolation has a wider
range of applications.

Discrete splines are piecewise polynomials where continuity of differences rather
than derivatives are satisfied at the joining knots of the polynomial pieces. The
difference operator used may be forward difference operator [18, 70] or central
difference operator [20-23, 41, 42]. In contrast, the continuity conditions of the
familiar continuous splines at the joining knots are in terms of derivatives.

Discrete splines were first introduced by Mangasarian and Schumaker [43]in 1971
as solutions to constrained minimization problems in real Euclidean space, which
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are discrete analogs of minimization problems in Banach space whose solutions are
generalized splines. The solutions to the constrained minimization problems in real
Euclidean space exhibit a spline-like structure and therefore they are termed ‘discrete
splines’ in [43].

In subsequent sections, we shall present discrete quintic spline interpolation, peri-
odic discrete quintic spline interpolation, as well as their error analysis. The two-
variable cases are also tackled.

Discrete splines have been used in the numerical treatment of boundary value
problems and integral equations. There is an advantage of spline method over finite
difference method—once the spline solution is obtained, any information between
the mesh points becomes immediately available. Indeed, applications of discrete
splines to Fredholm integral equations as well as to second order and fourth order
boundary value problems have been investigated in [19, 21-23].

The outline of this paper is as follows. In Sect. 2, we present the discrete quin-
tic spline interpolation, the periodic discrete quintic spline interpolation and their
error analysis. In Sects. 3 and 4, we illustrate the application of discrete splines in
the numerical treatment of second order boundary value problems. Finally, a brief
conclusion is given in Sect. 5.

2 Discrete Spline Interpolation and Error Estimates

After the work of Mangasarian and Schumaker [43], subsequent investigations on
discrete splines can be found in the work of Schumaker [59], Astor and Duris [13],
Lyche [41, 42] and Wong et al. [18, 20, 70].

There are two basic approaches to developing splines—the variational approach
wherein splines are defined as the solutions of certain constrained minimization
problems, and the constructive approach wherein they are defined by piecing together
classes of functions at certain knots. In the very first paper on discrete splines [43], the
variational approach has been used and discrete splines are introduced as solutions
to constrained minimization problems in real Euclidean space. These same discrete
splines also play a fundamental role in certain best summation formulae for a finite
sequence of real numbers [44]. On the other hand, the constructive approach has been
employed in the work of [13, 41, 42, 59]. Both Schumaker [59] and Lyche [41, 42]
deal with discrete polynomial splines. In [59], discrete B-splines, which are discrete
analogs of the classical B-splines, are explored to give the general construction of
discrete splines—here forward differences are involved. In comparison, the discrete
cubic spline discussed in [41] involves central differences. Another work by Lyche
[42] investigates several discrete spline approximation methods for fitting functions
and data, the respective error analysis shows that some results in the continuous
case can be obtained from the discrete analog. On a separate note, in [13] discrete
L-splines are constructively defined so as to parallel the development of continuous
L-splines.
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Motivated by the earlier research on discrete splines, in [70] we have developed
a discrete cubic spline via constructive approach, while in [18] a discrete quintic
spline is developed also via constructive approach. Our definition of discrete spline
involves forward differences and is in the spirit of that in [S9]. However, the method of
construction is different—we derive matrix equations which can be solved uniquely
to obtain the discrete spline, which, unlike [42, 59], is not in terms of B-splines. Our
approach is parallel to the technique in [41]. The main contributions in the work [18,
70] are (i) the development of a class of discrete cubic/quintic spline interpolation
and the derivation of explicit error estimates between the function and its discrete
spline interpolate; and (ii) the extension to two-variable discrete bi-cubic/bi-quintic
spline interpolation and the related error estimates.

The work [18, 70] naturally complements the literature and especially the work
of [41, 42, 59]. We remark that in generalizing the cubic case [70] to the quintic case
[18], there is a quantum leap in the level of complexity. Moreover, the papers [18,
70] have extended the work of [1, 67, 68] on continuous spline to discrete case. It
is also noted that [1, 67, 68] extends the work of Schultz [58], and other work on
different types of continuous splines [1, 2, 27, 33, 38, 57, 60, 64, 69].

In [20], we have developed a class of periodic discrete quintic spline involving
central differences and establish the related existence, uniqueness and error estimates.
The two-variable case has also been considered. Our work naturally extends the
literature and especially complements and/or extends the work of [28, 29, 40, 42,
52] on one-variable discrete cubic splines. We also extend the research of [1, 67] on
continuous spline to discrete case, as well as complement the work of [18, 70] on
discrete cubic/quintic splines involving forward differences.

2.1 Discrete Quintic Splines

This section illustrates the work of [18]. Let a, b, c,d (b > a, d > c) be integers.
We shall denote the discrete interval N[a, b] = {a,a + 1, - - - , b}. Throughout, let

pra=ki<ky<---<ky=b, kieZ 1<i<m (m=>17)

and
priec=h<b<---<l,=d, l;€Z, 1<j<n (n>=7)

be uniform partitions of N[a, b] and N|c, d] respectively with step sizes

h=kiyy—ki(=6), 1<i<m-—1 and h'=1;4;, —1; (>6), 1<j<n-—1.
Further, we let 7 = p x p/ be a rectangular partition of N[a, b] x N[c, d]. The
symbol A, as usual, denotes the forward difference operator with step size 1. For

x € R and k a nonnegative integer, the factorial expression x* = ]_[f‘;& (x —1),
and we use the convention 0’ = 1. For a function f(x) defined on Nla, b + 2],
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we define the usual £, norm as || f|| = maxyen(a.p+2] | f (x)|. Similarly, for a func-
tion f(x, y) defined on N[a, b + 2] x N[c, d + 2], the usual £, norm is defined as

| fII = max(x,yyenia,b+21xNie,d+21 | f (X, Y.

Definition 1 Letj € IN (< k) befixed. Let f;(x) bedefinedon N[k;, ki1 + j], 1 <
i <m—2,and f,_;(x) bedefined on N[k,,_1, b+ 2]. Let f(x) = Ui<i<m_1 fi (x).
We say that f(x) € DY]a, b] if

Ay =Afik), 2<i<m—1,0<I<]j. ()
Note that (1) is also equivalent to
fisiki + D) = fitki +D, 2<i<m-1,0=<1<]. 2

Hence, the function f(x) = U;<j<,—1 fi(x) is well defined on N[a, b + 2]. The set
DD ([a,b] x [c,d]) where p,g €N, p <h, g <H,is analogously defined.

Define the set H(p) = {g(x) € D®|a, b] : g(x) is a quintic polynomial in each
subinterval N[k;, k;+1], 1 <i <m —2 and N[k,,—;, b + 2]}. Clearly, H(p) is of
dimension 3m. The next lemma gives a basis for H (p).

Lemma 1 [17] The functions h;(x), h;(x) and /’:l,‘(x), 1 <i < m form a basis of
H(p). Here, for 1 <i,j <m,

hi(kj) = dij,  Ahi(kj) = A_zhi(kj) =0,
Ahi(k;) = 0i5, hitk;) = Az_hi(kj) =0,
A%hi(k;) = 6;;, hi(k;) = Ah;(kj) = 0.

The explicit expressions of h;(x), hi(x) and Zi(x), 1 <i <m can be computed
directly.

We are now ready to develop discrete spline interpolation. To begin, we define
the set S(p) = {g(x) € D®][a, b] : g(x) is a quintic polynomial in each subinter-
val N[k;, ki+1], 1 <i <m —2and Nlk,_1, b+ 2]}. Clearly, S(p) is of dimension
(m +4).

Definition 2 For a given function f(x) defined on Nla, b + 2], we say S, f(x)
is the S(p)-interpolate of f(x), also known as the discrete spline interpolate
of f(x), if S,f(x) € S(p) with S,f (ki) = f(k;), 1 <i <m, and A/S,f (k) =
Al fky), AIS,f(kn) = AT flkn), j=1,2.

Lemma 2 For a given g(x) € H(p), we define c; = g(k;), Ac; = Ag(k;), Ac;
= A%g(k;), 1 <i < m.Then, g(x) € S(p) if and only if the vectors Ac = [Ac,-];";z1
and A’c = [Azc,'];”:;l satisfy the matrix equations

B'(Ac) =w' and B*(A%c) = w?, (3)
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where B', B2 are 5-band diagonal (m — 2) x (m — 2) matrices whose elements
are in terms of h; w', w? are (m — 2) x 1 vectors whose elements are in terms of
¢, 1 <i<m, Aci, Acy, A%cy and A%c,,. Moreover, B' and B? are invertible,
hence from (3) the values of Ac;, A%c;, 2 <i <m — 1 can be obtained uniquely in
terms of ¢;i, 1 <i <m, Acy, Acp, A?%cy and A%c,,.

The next result gives an explicit expression of the discrete spline interpolate S, f.

Theorem 1 Let f(x) be defined on Nla, b + 2].If (3), withc; = f(k;), 1 <i <m
and Alc, = A'if(kg), L=1,m, j=1,2, has unique solutions Ac and AZc, then
S, f (x) exists and is unique. Moreover, S, f (x) can be expressed as

m—1

S, f @) = 3 fkdhi () + AF k)i () + Af (k)i () + 3 (Ac)hy ()
i=1 i=2 (4)

m—1

+ A2 f (k) () + A2 (k) (0) + Y (A% (x).
i=2

Remark 1 We can describe a basis for S(p), namely the ‘cardinal splines’,
{s; (x)};"zﬁ4, which are defined by the following interpolating conditions
si(k;) = &;j, Asi(a) = Asi(b) =0, A%si(a) = A%5;(b) =0, 1<i,j<m
Smp1(ki) =0, Aspyi(a) =1, Aspi1(b) =0, A’spyi(a) = A’y (b) =0,
smi2(ki) = 0, Aspin(@) =0, Asyin(b) = 1, A2spi2(a) = Alsia(b) =0,
Smpaki) =0, A’spi3(@) =1, A%s,43(b) =0, Aspyz(a) = Aspia(b) =0,
Smialki) =0, A%spia(a) =0, A%syya(b) =1, Aspia(a) = Aspia(b) =0,
1 <i<m.

The discrete spline interpolate S, f (x) can also be explicitly expressed as

Spf () =Y fki)si(x) + Af @smi1(x) + Af (b)smy2(x)

P (5)
+ A f(@)sn3(x) + A7 f (B)sma(x).

We are now ready to introduce two-variable discrete spline interpolation. For
a given 7 (= p x p'), we define S(7) = S(p) ® S(p) (the tensor product) = Span
[s:0)s; ()t j:j‘ — {g(x,y) € D¥¥([a, b] x [c,d]) : g(x, y)isatwo-dimensional
polynomial of degree 5 in each variable and in each subrectangle N[k;, k;+1] X
N[lj, lj-H]a Nlkyu—1,b+ 2] x N[lj, l_j+]], Nlki, kiv1] x N[l,—1,d+2], 1 <i <
m—2,1<j<n-—2andNlky_1,b+ 2] x N[l,—1,d + 2]}. Since S(7) is the ten-
sor product of S(p) and S(p’) which are of dimensions (m + 4) and (n + 4) respec-
tively, S(7) is of dimension (m + 4)(n + 4).

Definition 3 For a given function f(x, y) defined on N[a, b + 2] x Nlc,d + 2],
we shall denote f/’/” = Aﬁ:’A;’,f(ki,lj), wrv=0,1,2,1<i<m,1<j<nWe
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say S; f(x, y) is the S(7)-interpolate of f(x, y), also known as the discrete spline
interpolate of f(x,y), if S; f(x,y) € S(7) with Aﬁ:’A; Sy fki, 1) = i{”;” where
u, v, i and j satisfy

) ifpu=v=0,thenl <i<m, 1 <j<n,

) ifu=1,2, v=0,theni =1,m, 1 <j <m;

(ii)) if p =0, v=1,2,thenl <i <m, j=1,n;and

@v) ifu=1,2, v=1,2, then (i, j) = (1, 1), (1, n), (m, 1), (m, n).

The next result gives an explicit expression of the two-variable discrete spline
interpolate S; f.

Theorem 2 For any function f(x,y) defined on Nla,b+ 2] x Nl[c,d + 2],
S; f(x,y) exists and is unique. Further, S; f(x,y) can be explicitly expressed in
terms of cardinal splines as

S fOe ) =D D fisi0s;()
i=1 j=1

+>° [ffilsnﬂ(y) 0 Sni2 ) + i sna () + f,-?,;zsn+4(y)] 5i (x)

i=1
n

+ [ Ao a0+ £+ sz 4 Siomsa0) i)

i=1
+ L St OSu1 )+ F a1 (8020 + f a2 ()11 ()
L s D502 () Smas 0501 (D) + f smas ()52 (7)
+ L 1Smaa(Snr1 () + F2 s a (804200 + £ Smr1 (0504300
+ f11}125m+1 (xX)Snra(y) + f,,l,ﬁsm+2(x)sn+3 ) + ,,‘,;?,sm+z(x)sn+4(y)
+ f],’125m+3(x)sn+3 )+ flz,}lzsm+3(x)sn+4()’) + fiﬁsnz+4(x)sn+3 )
+ [ 2 smra(X)Snra(y).

The next theorem gives the error estimates for the discrete spline interpolation
in one variable and two variables. In the one-variable case, the idea is to use the
inequality

I =Spfll = IIf = Hy Sl + I Hp f = S, fl

where H, f is the discrete Hermite interpolate of f [17]. In the two-variable case,
the key inequality used is

If =Sl = = SpfIlH 1S (f =Sy O+ ILf = Sp fl-

Theorem 3

(a) Let f(x) be defined on Nla, b + 2]. Then

— . 7 i
If =S, f I <djhy _ max |ATf(0l 2 <6 )
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where dj(h), 2 < j < 6 are in terms of h and are explicitly known. Further, it
is known that dj(h) = o)), 2<j<e6.

(b) Let f(x,y) bedefinedon Nla,b + 2] x N|c,d + 2]. Then, we have the follow-
ing error estimates

If = S- £ < ds(MASf (x, )| + da(R)da(h) | AZAY f (x, y)|

+ do (I AS £ (x, W ®

I = S 1 = do(WIASS G ) + WALl g
+ do ()1 28 £ (x, ),

If = S 1 = daWIASS G )+ da I AR F ] (o

+ds (W) 145 f (x, P

where ||AﬁA’;f(x, )’)|| = max(x,y)eN[a,b+2—/1,]xN[c,d+2—u] |A§‘A’;f(x, )’)| Fur-
ther, since dj(h) = Oh)), j=2,3,4,6, the error bounds (8)—(10) are of
O(ﬁ6) where h = max{h, h'}.

We shall illustrate the sharpness of the error estimates obtained in Theorem 3 by
two numerical examples. In each example, we take a function f and construct its
discrete spline interpolate, then we calculate the actual error as well as the respective
bound in Theorem 3. We remark that the functions considered in the examples are not
differentiable at certain points and therefore cannot be approximated by continuous
spline interpolation (which involves derivatives).

Example 1 Consider
f@) = t|(® =3t 4+ 1) — 8)|t — 6| In(t + 1)/10°

witha = 0 and b = 60.
The steps taken to construct S, f (¢) and the related bound are as follows:

(i) For a function f(¢) defined on N[a, b + 2], fix the partition p and the step size
h.

(ii) Obtain the values f(k;), 1 <i <mand A/ f(ky), £ =1,m, j=1,2.In(3),
with¢; = f(k;), 1 <i <mand Alc, = A f(ky), £=1,m, j=1,2, solve
for Ac = [Aci];":_zl and AZc = [Azc;]l'."zal.

(iii) We construct S, f'(¢) in each subinterval N[k;_1, k;], 2 <i < m as follows:

Spf (1) = fkhi(6) + f (ki )hi1 (6) + Acihi () + Aci—1hi -1 (1)
+ A%¢ihi () + A’cioihii (1)

(iv) Compute the actual error

If =S, fll= max [f(t)—S,f(@)l

teNla,b+2]
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Table 1 (Example 1) Actual errors and error bounds

m 7 (h = 10) 11 (h = 6)
If =S, £l 0.19143081e¢ + 01 0.13903024¢ + 00
Bound 0.46240560e -+ 02 0.54135637¢ + 01

(v) Obtain the bound in the right side of (7) for j = 6.

The results are presentated in Table 1.

Example 2 Consider
ft,u) = (1—e"*%)t]/100

witha = ¢ = 0andb = d = 48. For afixed partition 7, we shall obtain S, f (¢, u), the
biquintic spline interpolate of f (¢, #). Then, we calculate the actual error || f — S, f ||
as well as the bounds in (8)—(10).

To construct S; f (¢, u), in view of (6) we need only to construct the cardinal splines
si(t), 1 <i <m+4ands;(u), 1 <j<n+4. Tocompute a particular cardinal
spline say s, (¢), from Remark 1 we know exactly the values of ¢; = s1(k;), 1 <i <
m and AJc, = Alsy(ky), £ =1,m, j=1,2, substitute these into the two matrix
equations in (3) and solve for the values Ac; and A2%c;, 2 <i <m—1.Then, noting
(4) the cardinal spline s; has the expression

m—1

51(0) = Zsl(k Yhi(t) + Asi (k)i (1) + Asy (k)i (1) + Y Acihi(1)

i=1 =2
m—1

+ A% (k) (0) + A1 (k) (1) + D A%eihi (1),

i=2

Indeed, from the expressions of 4;, h; and l;,-, we see that in each subinterval
Nlki—1, k], 2<i <m,

s1(1) = s1(k)hi (1) + s1(ki—)hi—1 () + Acihi(t) 4+ Aci_1hi (1)
+ A%cihi(t) + A%ci_1hi_1(2).

Then, we compute the actual error

If =S fll= |f (@t u) = S-f(t, u)]

(t,u)eNla, b+2]><N[L d+2]

as well as the bounds in (8)—(10). The results are presented in Table 2.

To illustrate graphically, in the following figures we shall plotthe casem = n = 9.
Figure 1 shows the original function and its spline interpolate, due to the close
approximation the graphs are presented separately, otherwise they would just appear
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Table 2 (Example 2) Actual errors and error bounds

109

m (= n) T(h=h=8) 9(h=h'=6)

I f =S £l 0.66187125¢ — 02 0.21483362¢ — 02
Bound (8) 0.13637518e + 02 0.73463482¢ + 01
Bound (9) 0.27812870e¢ + 02 0.15152823¢ + 02
Bound (10) 0.16876111e + 02 0.89818595¢ -+ 01

-100

-150
50

Fig. 1 (Example 2) f and S; f whenm =n=9(h=h' = 6)

Original function

Original function

48

m 45

43 43 t

-100

-150
50

Spline interpolate

Spline interpolate

48

44
43743 t

Fig. 2 (Example 2) Enlarged portion of Fig. 1 where the error | f (z, u) — S f(t, u)| is large

as one graph. Figure 2 shows the portion where the error | f (¢, u) — S, f (¢, u)| is
large, note that the maximum error occurs at (¢, u) = (44, 48).

2.2 Periodic Discrete Quintic Splines

Unlike the previous section where forward differences are involved in the discrete
spline interpolation, we present another type of spline involving central differences
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and it is particularly suitable for the interpolation of periodic function. This section
illustrates the work of [20].

For a given h > 0, we recall the central difference operator D), applying to a
function F gives

DPN@=F@xI#Wuﬁiiwu+m—Fu—ML
DPF(x) = %[F(x +h) —2F(x) + F(x — h)];
D F(x) = %[F(x +2h) —2F(x +h) + 2F(x — h) — F(x — 2h)];

DM F(x) = P Qe+ 20) —4F (v + 1) + 6F (x) —4F (x = h) + F(x = 2h)].

We also use the basic polynomials x!/} introduced by Lyche [42]
M =xi, j=01,2
A =x@? —n?), M =207k, P =xG? - hHP - 4n?).

It is noted that D,El}x{j} = jxU=1 j=0,1,2,3,5and D;ll}x{‘” = 2x(2x% + h?).
Leta,b,c,d € Rwitha < bandc < d. We let

pra=ty<t---<tyb=b and ¢ :ic=ug<u;---<u,=d

denote the unform partitions of [a, b] and [c, d] with step sizes p = ’% and p’ = dm;c
respectively. Further, let ¢ = ¢ x ¢ be a rectangular partition of [a, b] x [c, d].
Throughout, let 0 < & < min{p, p’} be fixed and denote the discrete interval

[a, Bl = {a,a+ h, a4+ 2h,---} N[, B].

We assume that p and p’ are multiples of 4. Then, it is clear that #;’s are in [a, b];,
and u;’s are in [c, d],.

Definition 4 A function S(z; ¢, h) is called a discrete quintic spline if its restriction
S; on [t;_1, t;] is a quintic polynomial fori = 1,2, --- ,n and

DY'Si(t) = DY S (), 1<i<n—1, p=0,1,2,3,4. (11)
For a positive number Py, we say a function g is Py-periodic if
g(t) =gt + Po).

We shall now introduce periodic discrete quintic spline. In the spirit of [28, 29] where
periodic discrete cubic spline is studied, let
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Sn(p) = [S(t; p, h) : S(t; p, h) is a discrete quintic spline and
itis (b — a)—periodic}.

Definition 5 For a (b — a)-periodic function f defined on [a — 2k, b + 2h];,, we
say S, f is the S, (p)-interpolate of f, also known as the periodic discrete spline
interpolate of f,if S, f € S, () with

Sof(t)=f)=fi, 0<i<n—-1L 12)

Remark 2 InDefinition 5, it actually suffices to have the periodic function f defined
on the uniform partition . However, for the error analysis in the next section, we
require the periodic function f to be defined on [a — 2h, b 4 2h];,. To be consistent,
we therefore impose throughout that the (b — a)-periodic function f is defined on
[a —2h, b+ 2h].

_ We shall give an explicit expression of S, f. For this, Let the functions g;, g; and
g; satisfy the following for 0 <i,j <n —1:

2 4
gi(gj) = 6jj, D;i }gi(tj) = D;{, }gi(tj) =0,
D;{14}.gi(tj) = 6ij, gi(tj) = D;{,z}gi(tj) =0,
D 5:(t)) = 6. Gi(1)) = DY 5i(t;) = 0.

The explicit expressions of g;, §; and g; can be obtained by direct computation.

Lemma3 LetM; = D\ S, f(t;)and F; = DIV S, f (1), 0 < i < n.Then, S, f can
be written as

n—1

Sof 1) =Y [fig:®) + Migi() + Figi(1)], 1 € [a, b]. (13)

i=0

In particular, fort € [t;_1, t;], 1 <i < n, the spline interpolate S, f has the expres-
sion

Sof @) = (Sp i) = ficigizi(®) + figi@®) + Mi_1gi—1(t) + M;g; (t)

b Fgia () + Fgi(0), 1€ linnl 1<i<n 09

Theorem 4 Let [ be a given (b — a)-periodic function defined on [a — 2h, b +
2h]n. Then, there exists a unique periodic discrete spline interpolate S, f. Here, M;
and F;, 0 <i <n — 1in(13) are uniquely determined by the systems of equations

arM;_> +aM;_ +azM; +a,M; 1 +aiM; 1,
1

= 2l(P* = h") fia #2217 + p") fior = 60 + P fi + 220 + p*) fir (15)
+(p? — h?) fiy2]
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and

aFiot+aFi tabitabintaFio=fio—4fici+6fi —4fiv1 + fia

(16)
where ay = 135 (p* — h?)(p> —4h?), ay = &(p* — h»)(8h* +13p?) and a3 =
%(4},4 +5h%p? 4 11p*). Note that az > 2(|a)| + ay).

Remark 3 Itis possible to describe a basis for S, (), namely the ‘cardinal splines’,
{si}5 _0, defined by the following interpolating conditions

1,ifj=i+nk(kel
0, otherwise.

5i(tj) =0} = {

Obviously S, f can be expressed as

n—1

Sof@) = fisi(0). (17)

i=0

We shall now introduce the two-variable periodic discrete quintic spline inter-
polation. For any positive numbers P; and P,, we say a two-variable function g is
(P1, P»)-periodic if

gt + Prou) =g(t,u), g(t,u+ P)=g(t,u) and gt + Pr,u+ P) = g(t, u).

{u

For convenience, we shall denote g!*"! (¢, u) = h . D

g(t u), and with respect to
the partition ¢ = ¢ x ¢, denote gl“ vl D;fft} h‘ug(t,', ujp).

’ n—1, m—1
Define S,(¢) = Si(p) @ Sp(¢") (the tensor product) = Span {Sisj},:o, =0 =
{S : S is a two-dimensional polynomial of degree 5 in each variable, its restrlction
S,j on [ti—y, ] x [uj—1,u;]l, 1 <i <n, 1 <j<m is biquintic, S’ vl (ti,uj) =
l+1j(tu ]) = S,ljil(tu ]) = S,i1’jj+1(tz7 /) I<i<n-1, 1= j<m-— 1,
u,v=20,1,2,3,4,and S is (b — a, d — c)-periodic}.

Definition 6 For a (b — a,d — c)-periodic function f defined on [a — 2h,b +
2h]y, x [c —2h,d + 2h],, we say Sy f is a Sy (¢)-interpolate of f, also known as
the periodic discrete spline interpolate of f,if Sy f € Sy(¢) with

Spf(ti,uj)=f@,u;)=fij, 0<i<n—-1,0=<j<m-—1. (18)

Remark 4 In Definition 6, it actually suffices to have the periodic function f defined
on the partition ¢. However, the subsequent error analysis requires the periodic
function f tobedefinedon [a — 2h, b + 2h];, X [c — 2h, d + 2h];. To be consistent,
we therefore impose throughout that the (b — a, d — ¢)-periodic function f is defined
onla—2h,b+2h], x[c—2h,d+ 2h],.

We shall give an explicit expression of S f in the next result.
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Lemmad4 Let ci[’“j’”} = (Séf){/”’”}(ti, uj), 0<i<n, 0<j<m, pvef024}

(note that cl!,oj?()} = fij). Then, Sy f can be written as

n—1m—1
Softuy=>"%" [fijgi (g, @) + P g (0)g; ) + % g: (07 ()
=0 {12=0? - {2,2} - - {2,4} - = (19)
+ MG (g, + 57 5:(0F; @) + ¢ 5 (0, ()

4,0)= 42)= - IEIN
+ 5095w + 50560 + o5 07;w).

Theorem 5 Let f be a given (b — a,d — c)-periodic function defined on [a —
2h, b+ 2h], x [c —2h,d + 2h];,. Then, there exists a unique periodic discrete
spline interpolate Sy f. Here, cl!fljl’”} 's in (19) are uniquely determined by systems
analogous to (15) and (16).

Remark 5 In view of Remark 3, S, f can be expressed in terms of cardinal splines

as
n—1m—1

Sof (tuy =YY" fisi()s;(w). (20)

i=0 j=0

We shall next establish the error estimates for the periodic discrete spline inter-
polation in one variable and two variables. For a function g(¢) defined on [a, b],, we
introduce the modulus of smoothness and the norm as

w(g,r) =max {|lg(t) — g : [t ='| <r, 1,1 €la.bly}. gl = max |g(r)]-

tela,blp

For a function g(t, u) defined on [a, bl x [¢, d]n, the norm

ol = max gt wl.
(t,u)€la,blyx[c,d]n

To prove the error estimate result in the one-variable case, we require the following
lemma from [40].

Lemma 5 [40]

(a) Leta, [3begivenreal numbers suchthata < Sand 8 € {a, a + h, a4+ 2h, - -}
for some h > 0. Let g : [a — h, B+ h], — R be a given function, define the
operators L and U by

Lo = "%+ 0@ Wa® = 90) — Le®).
A-a f-a

Then, we have

B —w? 1 B—a
1Ugl < w(g. =~ ). IUgl < ———lgI. IDMUgl < —5—llg®I.
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(b) Let{a;}_, and{b; }jJ.:1 be given sequences of nonnegative real numbers such that

Zi[:l a; = Z,J‘=1 bj. Then, for any real valued function g defined on a discrete
interval [a, By, we have

J

I
Zaig[fio, i, 5 tik] — ijg[ujo, Wit, -, Ujkl

<o (Za) g, 18 —_a—khl)

where ti’s and uj’s are in [, B];.

In the two-variable case, the key inequality used in deriving the error estimates is

If = Ss Sl = ILf = Se fll + 1S (f = Sp f) = (f =S HI+Nf = Sp fl-

The next theorem gives the error estimates for the periodic discrete spline inter-
polation in one variable and two variables.
40p*
@+ p) )
(a) Let f be a (b — a)-periodic function defined on [a — 2h, b + 2h], and e =
Sy f — f. Then, we have
le® < (1 +yw (19, p).

ey < 2 He4}||+2’yw(f{2’ p) = 2 (79, p) + 2w (7% ).
e < £ ||e4}||+7w(fm )<”—2(1+w>w(f“” p)+w (. p).
||e{”||saue‘2’||< 3<1+v)w(f p)+ 2w (£ p).

2
lell = el = 2w (119, p) + Eorw (12, p)

Theorem 6 Define the constant v =

(b) Let f bea (b — a,d — c)-periodic function defined on [a — 2h, b + 2h], X [¢c —
2h,d + 2h];,. Then, we have

2
17 = Su71 = Zot o (799 p) + E (7291, p)

( )_ ot ( )%
v (L +y)w, (FOY, p') + pg Ywa (FO2, p')
9 () (4,4 (p)? 42
+§( +7)|: (1+Fy)wu (f }’p/)_'_T’Y/wu (f{’ }’p,)i|
2 4 "2
+%7|:(P) (1+’Y)wu (f{24 )_'_%,Y/wu (f{2,2}’p/)i|

where 7' is the same as v with p replaced by p'.
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Table 3 (Example 3) Actual errors and error bounds
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p=15.h=p |p=gh=% p=1h=4% p=1-h=1%
llell 0 0.82039194¢ — 08 | 0.20521179¢ — 08 | 0.17547366¢ — 09
Bound |0.96628467¢ — 05 |0.47809205¢ — 03 | 0.24082627¢ — 03 | 0.70158943¢ — 04
et 1o 0.13126271e — 06 | 0.41042359% — 07 | 0.52642099¢ — 08
Bound |0.38651387¢ — 03 |0.15298946¢ — 01 |0.96330507¢ — 02 | 0.42095366¢ — 02
e |o 0.88913504¢ — 05 | 0.35473364¢ — 05 | 0.68230315¢ — 06
Bound |0.77302774e — 02 | 0.63964914¢ +00 |0.19266101¢ 4+ 00 |0.12628610¢ + 00
e o 0.25175638¢ — 03 | 0.12575208¢ —3 | 0.36340402¢ — 04
Bound |0.16331306e + 00 |0.42046640e + 01 | 0.40397862¢ + 01 | 0.38724574¢ + 00
e |o 0.19214105¢ — 01 |0.12196109¢ — 01 | 0.53762787¢ — 02
Bound | 0.34830056e 4+ 00 | 0.92202866¢ 4+ 01 | 0.74626360¢ + 01 | 0.50324713¢ + 01

We shall now present some examples to illustrate the periodic discrete spline
interpolation as well as the corresponding error bounds obtained in Theorem 6.

Example 3 Consider the function

Here, we have [a, b] =

(1) = — | sin(nt) + o cost(mr) |, 1 €[0,1]
f = 100 sin“(7t) ECOS(ﬂ'), e [0, 1].

interpolate S, f* and the errors are listed as follows.

[0, 1] and the steps taken to obtain the periodic discrete spline

(i) Fix the uniform partition ¢ (i.e., step size p) and choose a value for /.
(ii) Solve the systems (15) and (16) to get M;’s and F;’s respectively. Then, S, f can
be constructed in each subinterval [#;,_1, ¢;] following (14).
(iii)) Compute the actual errors

”e{u}” — ||f{u} _

(iv) Compute the bounds given in Theorem 6.

(S, H

te[0,1]

M= max [F™@) — S, H™M@)I,

=0,1,2,3,4.

The actual errors and the error bounds are presented in Table 3. To illustrate
graphically, we have plotted S, f and f in Fig. 3.

Example 4 Consider the function

Here, we have [a, b] =

ftu) =

100

[c,d] =

|:s1n (mwt) + (g)cos (7ru):| (t,u) € [0, 1] x [0, 1].

[0,1]. Fix p = p’and take h = £



116 P.J. Y. Wong

10.1

Original function

10F Spline interpolate |

9.9

9.8}

9.7+

9.6

9.5

9.4
0

02 04 06 03 1
t
Fig.3 (Example 3) f and S, f whenh = p = 1170

Table 4 (Example 4) Actual errors and error bounds

p= p’ = % p= p’ = 11—0
If = Sofll 0.56790328¢ — 03 0.28049052¢ — 03
Bound 0.18645590¢ — 01 0.93922244¢ — 02

To construct Sy f, in view of Remark 5 we need only to construct the cardi-
nal splines s;, t € [0,1], 0 <i<n—1and s;, u€[0,1],, 0<j<m—1.To
obtain a particular cardinal spline, we solve the systems (15) and (16) and then the
cardinal spline can be written explicitly using (13) or (14).

We also compute the actual error

IIf—S¢f||=( |f (2, u) = Sy f (2, u)]

max
£,u)€[0,1]; %[0, 1],

and the bound in Theorem 6. The results are presented in Table 4. To illustrate
graphically, we have plotted S, f and f in Figs. 4 and 5.

3 Discrete Cubic Spline Method for Second Order
Boundary Value Problem

In this section, we use discrete cubic spline to obtain approximate solution of a
second order boundary value problem. We shall show that the method is of order 4
if a parameter takes a specific value, and it is of order 2 otherwise. Two numerical
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Original function Spline interpolate

0.02 0.02

0.015 0.015

0.01 0.01

0.005 0.005

Fig. 4 (Example4) f and S, f when p = p’ =4h =

=i

Original function Spline interpolate

0.014
0.012
0.01
0.008

0.006
0.7

u 055 06 ¢ u 055 06 ¢

Fig. 5 (Example 4) Enlarged portion of Fig. 4 where the error | f(t, u) — Sy f (¢, u)| is large

examples are presented to illustrate the efficiency of our method as well as to compare
the performance with other numerical methods proposed in the literature. This section
refers to the work of [21].

We consider the second order boundary value problem

Y@ = Y@ +9(). asx<b on
ya =a, yb)=4
where f and g are continuous functions on [a, b]. Such problems arise from many
real world situations, for example in the theory which describes the deflection of
plates and a variety of other scientific applications. In general it is difficult to obtain
the analytical solution of (21) for arbitrary f and g and we usually resort to some
numerical methods. In the literature, finite difference method has been commonly
used for the numerical treatment of (21) and this method has been discussed by many
authors, see, for example [12, 24, 34, 63]. On the other hand, Ahlberg et al. [3] have
introduced (continuous) splines in solving initial as well as boundary value problems.
Following this several authors [4, 5, 16, 32, 36] have investigated the use of cubic
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splines in solving two-point boundary value problems. Other methods that involve
quadratic splines as well as collocation methods with splines as basis functions have
further been applied to solve various second order boundary value problems, see for
example [3, 6, 11, 35, 48, 56, 65] and the references therein.

We note that in the literature those methods that solve (21) by cubic splines [4,
5, 16, 32, 36] are of order 2 in most cases, except that of Khan [36], which is of
order 4 when certain parameters take specific values and is of order 2 otherwise. In
comparison, our discrete cubic spline method is fourth order convergent if a parameter
takes a specific value, else it is second order convergent—this convergence is ‘on
par’ with the method of Khan [36] and better than those in [4, 5, 16, 32]. Moreover,
computationally our method is much easier compared to [36]. Indeed, we shall show
by two numerical examples that our method outperforms other collocation, finite-
difference and spline methods for solving (21).

3.1 Discrete Cubic Spline Method

Let P:a =x9p <x; <--- <X, = b be auniform mesh of [a, b] with x; — x;_1 =
p, 1 <i < n.For any function F(x), we denote its k-th derivative at x; as Fl-(k).
Let i € (0, p] be a given constant used in the central difference operator Dj,.

Definition 7 Let S(x; h) be a piecewise continuous function defined over [a, b]
(withmesh P)and S; (x) beitsrestrictionon [x;_p, x;], 1 < i < npassing through the
points (x;_1, s;—1) and (x;, s;). We say S(x; h) is adiscrete cubic spline if S;(x), 1 <
i < nis apolynomial of degree 3 or less and

(Siv1 — S + jh) =0, j=-1,0,1, 1<i<n-—1 (22)
or equivalently
DY'Si(x)) = DS (x), j=0,1,2, 1<i<n-—1. (23)

The above definition of discrete spline is based on central differences. Indeed,
Lyche [42] has the same definition for discrete spline.

We shall approximate a solution y(x) of (21) by the discrete cubic spline S(x; h).
Hence, for any x € [a, b] (x may be between mesh points), we propose the following
approximation

YO ZSGh), Y ) ZDISE R,y ) = F)SE )+ g(x). (24)
In particular, at the mesh points we have

ViZs =S80, y=s,=DSix), ¥y =s=fiSi&)+g., 0<i<n
(25)
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From the boundary conditions, we note that s = yp = aand s, =y, = ﬁ_, and s; is
an approximate of y;, 1 <i <n — 1.

Our immediate task is to obtain an explicit expression of S;(x). Clearly, S;(x)
should pass through the points (x;_;, s;—;) and (x;, s;). Let ¢; = D;lZ}S(x,-; h),0<
i < n denote the ‘discrete moments’. Since D,{f} S(x; h) is piecewise linear, we have
forx € [x;_1,x;], 1 <i <n,

Xi—x X —Xi_
Dl{lz}S(X; h) = DI{IZ}SZ‘ (x) = ci—1+ lci, (26)
p p
It follows that for x € [x;_1, x;], 1 <i <mn,
(x; —x) —x P x—xx—xi
Si(x) = ci—1+ ¢ + u; + v; 27
6p 6p p p

where u; and v; are arbitrary constants that can be determined by the interpolation
conditions S;(x;_;) = s;_1 and S;(x;) = s;. It is found that

p2_h2 p2—h2
Ci—1, Vi =S8 —

6 B 6

u =S_1— Ci, 1 fl =n. (28)
Hence, upon substituting (28) into (27), we obtain an explicit expression of S; (x) in
terms of s;_1, s;, ¢ci—1 and ¢;.

Taking central difference of (27) then gives for x € [x;_1, x;], 1 <i <n,

i —x)? (PP =) — i) n (x = xi—l)zc_ 4 ST Sin

{1} _ .
Dh Si(x) = 2p Ci—1 6p 2p i

(29)
The ‘continuity’ requirement Di”S,- (x;) = Di” Si+1(x;) (see (23)) then leads to the
system of equations

W —nh L 2ept ) =k
6 ! 6 i 6

Citl =Si—1—25; +siy1, 1 <i<n—1.
(30)
In view of the fact that we approximate y(x) by S(x; #) and (25), we set ¢; = s{’ or

¢ = fisi+gi, 0<i=<n. 3D

Upon substituting (31) into (30), the system (30) becomes

2—h2 202 2 h2 —
|:—(p 6 )fi—1—11|si—1+|:%fi +21|Si+|:(p fz+l_ ]Si+l

(p* —h?) 22p* +h?) )
_T(gi—l + giv1) — — % l<i<n-—1.

(32)
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Together with the boundary conditions sy = &, s, = 6_, we may solve (32) to get
si, 1 <i <n — 1. The unique solvability of the system (32) will be shown in the
next section.

Finally, we list the steps of computing the discrete cubic spline solution of (21)
as follows:

(i) Fix the mesh P (and hence the mesh size p) and choose a value for 4 (€ (0, p]).

(i) Solve (32) to gets;, 1 <i < n — 1, which approximates y;.

(iii) Calculate ¢; by using ¢; = fis; + ¢i, 0 <i < n (see (31)). Noting (25), s/ = ¢;
serves as an approximate to y;’.

(iv) Compute D;L”S,» (x;) from (29). Noting (25), s = D,{,”Si (x;) serves as an approx-
imate to y;.

(v) The discrete cubic spline solution S;(x) over the subinterval [x;_;, x;] can be
obtained using (27). The first central difference D,i”S,- (x) can also be obtained
using (29). These can be used to approximate y(x) and y’(x) for any x € [a, b].

3.2 Convergence Analysis

In this section, we shall establish the existence of a unique discrete cubic spline
solution for (21) (i.e., (32) has a unique solution) and also conduct a convergence
analysis for the method presented in the previous section. As usual, the norms of a
column vector ¢ = [f;] and a matrix A = [a;;] are given by

It =max 4| and Al =max ) a;;l.
1 2
J

Let ¢, =y; —s;, 1 <i<n-—1 be the errors. Let y=1[y;], s=1[s],
r =[r;], t =[t;] and e = [¢;] be (n — 1)-dimensional column vectors. The system
(32) can be written as
As=r (33)

where
A=Ag+ O, O = BF, F =diag(f;), i=1,2,---,n—1, (34)
B =[b;j] and Ag = [a;;] are (n — 1) x (n — 1) tridiagonal matrices given by
2p2+ 0%
e, T 2 i=j
bij =1 (p*>—h?) aj=1-LIli—jl=1 (@35

6 o li=ji=1 0, otherwise
0, otherwise,
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and

[(p 2 foa+ (p* = h®)go +22p* + hPg1 + (p* = hDgal, i =1
——[(p 2 hPgio1 +2Qp* +hP)gi + (PP —hP)gipal, 2<i<n—2

3 - [(p 2B fuB + (p? = 1) gn—2 +22p* + WD) gu—1 + (P — h*)gn],

i=n-—1.
(36)
From (33), we have A(y —e) =r or
Ay =r+1t (37
where
t = Ae. (38)

The i-th equation of the system (37) is

1
—Yiet 2y — Yip1 = ‘6[(”2 — By +2@p* + By + (pF = )y ]+t

where t;, 1 <i < n — 1 are the local truncation errors given by

20,2 2 4 2 2
(p~ —2h7) (4p° —5h%)
P+ 20 oY), (39)

[i = A
12 ! 360

Remark 6 When i = L. itis clear from (39) that /; = 5 S8y @ + 0(p®). Thus,

%I

1
t) = —p°Ms 40
Il = 2457 (40)

where Mg = max, |y© (x)].

Lemma 6 [63] The inverse of Ay, namely Agl = [n;;1, is given by

J('l—l)’l>

=N e )

n

I

Note that A, IS 0, i.e, all the entries of A, U are positive. Moreover,

nZ

ATl < —. 41
||o||_8 41)
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Lemma 7 [31] Let W be a square matrix such that |W| < 1. Then, (I + W) is
nonsingular and

1
I+ W) < .
L=w]

Our first result guarantees the existence of a unique discrete cubic spline solution
for (21).

Theorem 7

(a) The system (33) has a unique solution if
Kf<1 (42)

where K = %(b —a)? and f = maXj<j<n—1 | fil-
(b) The system (33) has a unique solution if f(x) = fo > 0.

Proof (a) If (33) has a unique solution, then it can be written as
s=A"r = A0+ O) 7 r =4I+ A O r =+ A" 0) A (43)

From Lemma 6 the inverse A, ! exists, if we can show that (1 + Ay '0)~1 also exists,
then it is immediate that (33) has a unique solution given by (43).
It is clear that || B|| = p?. Since Q = BF, we find

lel < IBIIIFI < p*f. (44)

Then, applying (41), the factn = '%, (44) and (42) successively, we get

_ _ b —a)? R R
lag el < 143 el sg—pz(pzf)=1<f< 1. (45)

Since ||A51Q|| < 1, it follows from Lemma 7 that (I + AalQ) is nonsingular.
Hence, (I + Aj ! 0)~! exists and (33) has a unique solution given by (43).

(b)If f(x) = fo > 0, we can show that the coefficient matrix A in (33) is strictly
diagonally dominant, then A~ exists and the conclusion is immediate.

In fact, from (32) we see that the (n — 1) x (n — 1) matrix A is tridiagonal and
is given by

2<2p26+h2> fo+2 (nghz) fo—1
22 222> 2_p2
(P61)f0_1 (P6+ )f0+2 (P61)f0_1

A = [a;j] =

(p2gh2) fo—1 2<2p26+h2> fo+2 (nghz) fo—1
‘ 2202 20241
(1’61)f0_1 (P6+ )f0+2
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It can be easily checked that for2 <i <n — 2,

2(p>+2h?) (p*—h?)

= fo+4, +=——f—-1>0

sl =Yy = | v Rt B >0, (46)
j#i p fOs Tfo—lfo

while fori =1, n — 1,

(P*+h?) (p’=h*

Z +3, +F=—fo—-1=0

|aii| - |aij| = (Sp%+]12)J“0 (nghz) fO > 0. (47)
i 6 f0+1’ 6 fO_ISO

Hence, the matrix A is indeed strictly diagonally dominant, this completes the
proof. O
The next result gives the convergence order of the discrete cubic spline method.

Theorem 8 Suppose K f < lor f(x) = fo > 0. Then,

£

V2

and ||e|| = O(p?) for other values of h € (0, p]. In conclusion, the discrete cubic
spline method (33) is fourth order convergent if h = % and is second order conver-

lell = 0" if h=

gent otherwise.

Proof First, suppose K f < 1. We consider the special case when h = %. From
(38) we have

e=A"t=A+0) =T+ A'O) AL

Noting (45), we apply Lemma 7, (41), (40) and the factn = ’%, giving

llell = 11/ +1A61Q)_1|| 1A I 1121
1Aq Il llll

S iAol
1=14,'0l

b —a) Lﬁ 1
= 8p? (240pM6)<1—Kf>

K Mg p*
= 2P~ o).
240(1 — K f)

This shows that (33) is fourth order convergent when h = % For other values of

h € (0, p], from (39) we have ||t|| = O(p*) and a similar argument then leads to
(33) is second order convergent.

Next, suppose f(x) = fo > 0. Here, the matrix A is strictly diagonally dominant.
It is well known that for a strictly diagonally dominant matrix,
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—1
JA™ I < | min | Jail = D lag|
J#
Comparing (46) and (47), it is easily checked that min; [|aii| -3 i |a; jl] occurs

when 2 < i < n — 2. Hence, using (46), we find, if =" f, — 1 > 0,

2(p? + 2h> - 1 3
= [(p—)fo +4} << (48)
6 Zfo+4 P fo
If@fo—lfo,weget |
A=) < : (49)
P> fo
A combination of (48) and (49) leads to
3 1 3
||A—'||smax{ T }= T (50)
p*fo P fo p* fo
Now for the special case h = %, from (38), (40) and (50) we get

3 1 Mg p*
el < IA™M 2]l < — M) = =L = op*.
p2fo 240 80 fo

Hence, (33) is fourth order convergent when h = % For other values of h €

(0, pl, from (39) we have |¢]| = O(p*) and it follows that (33) is second order
convergent. (I

3.3 Examples

In this section, we present two numerical examples to demonstrate the discrete cubic
spline method proposed in Sect. 3.1 as well as to illustrate the comparative perfor-
mance with some well known numerical methods.

Example 5 Consider the boundary value problem

2 1
Y'=5y—= y@=y@) =0 (D
X X

The exact solution is given by y(x) = 3¢ (—5x% 4 19x — 3}(_6)
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Table5 (Examples5and 6) Maximum absolute errors of discrete cubic spline method with h = £

2
p BVP (51) BVP (52)
1/8 1.74 x 1077 1.74 x 1073
1/16 1.10 x 10-8 1.13 x 10~*
1/32 6.85 x 10710 7.28 x 1076
Example 6 Consider the boundary value problem
y" =100y, y(0)=y()=1. (52)

cosh(10x—5)

The exact solution is given by y(x) = = =

Clearly, both (51) and (52) satisfy the conditions of Theorem 7 and so each has a
unique discrete cubic spline solution.

First, we choose h = %. The maximum absolute errors max; |y; — s;| for differ-
ent mesh sizes p are given in Table 5. We note that if the mesh size p is reduced
by a factor of 1, then the maximum absolute errors are approximately reduced by

(%)4 = %. Thus, the numerical results confirm that our method is fourth order con-
vergent when h = %, which verifies Theorem 8. Moreover, the maximum absolute
errors recorded in Table 5 coincide with those obtained by Khan [36] using the para-
metric cubic spline method with the parameters («, §) = (ﬁ 15—2) in which case the
method is also of order 4. We remark that the expression of the spline given by our
method is much easier to obtain and the approximate values s; are easy to compute,
while in [36] only s; can be computed but the expression of the parametric cubic
spline cannot be obtained.

Next, we choose h = % p in order to compare with other second order methods.
The maximum absolute errors max; |y; — s;| obtained by various methods for the
boundary value problem (51) are given in Table 6. The numerical experiment confirms
that our method is second order convergent when i = % p (Theorem 8), and our results
are notably better than others’.

Next, we shall compare the performance of the ‘non-traditional’ continuous cubic
spline method of [5] (which is superior to traditional cubic spline method) with our
discrete cubic spline method. The values of max; |yl.(k) — sl.(k) |, k=0, 1,2 obtained
for the boundary value problem (51) by using the method in [5] and our method
with h = % p (second order convergent) are presented in Table 7. We observe that
the actual error max; |y; — s;| of our method is much smaller, whereas max; |y; — s;|
is slightly worse, but max; |y — s/| is again much smaller—this indicates that our
discrete cubic spline method gives better approximation of y(x;) and y”(x;) for the
boundary value problem (51).

Finally, in Table 8 we present the maximum absolute errors max; |y; — s;| for the
boundary value problem (52) obtained by various second order methods. Once again
we observe that our method is second order convergent and offers better results than
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Table 6 (Example 5) Comparison with other second order methods (BVP (51))

Method p=1/4 p=1/8 p=1/16
Our method with 1.77 x 1073 5.00 x 107° 1.29 x 107
h=@3/4p

Parametric cubic

spline [36]

(a, B) = (1/14,3/7) [2.05 x 1073 5.74 x 107° 1.47 x 107°
(o, B) = (1/10,2/5) [3.50 x 10 8.46 x 1070 2.09 x 107°
(o, B) = (1/18,4/9) [5.14 x 1073 1.36 x 107° 3.46 x 1076
Cubic spline [5] 5.49 x 1073 1.87 x 1073 5.07 x 1076
Collocation— 7.93 x 1073 2.06 x 1073 5.20 x 107
quadratic spline

[56]

Quadratic spline [6] | 1.60 x 10~* 2.66 x 1077 5.58 x 1070
Cubic spline [4] 1.65 x 10~ 4.17 x 1073 1.04 x 1073
Second order 2.79 x 1074 542 %107 1.19 x 1073
centered-difference

Table 7 (Example 5) Maximum absolute errors for BVP (51)

Method P miax |yvi — sil mlax |y; — sl(| m[ax |yl{’ — s{/l
Continuous cubic | 1/10 1.247 x 1073 7.818 x 1073 8.734 x 10~
spline method [5] | 1/20 3.286 x 1076 1.931 x 1073 2.211 x 1074

1/40 8.466 x 1077 4812 x 107° 5.546 x 1073
Discrete cubic 1/10 3.038 x 107° 2.797 x 10~* 1.082 x 1076
spline method 1/20 7.461 x 1077 7.003 x 1073 2.655 x 1077
withh = 3p 1/40 1.858 x 1077 1.751 x 1073 6.630 x 1078

other methods. While doing the numerical experiments with different & € (0, p],
we observe that as & — 0, the result reduces to that of the continuous cubic spline
[4]; when h — %, either approaching from O or approaching from p, the maximum
absolute errors become smaller, this is in agreement with our theoretical results given
in Theorem 8.

In Fig. 6, we plot the graphs of the discrete cubic spline solutions and the exact
solutions of boundary value problems (51) and (52) for comparison.
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Table 8 (Example 6) Comparison with other second order methods (BVP (52))

Method p=1/16 p=1/32 p=1/20 p=1/40
Our method with

h=@2/3)p 7.64 x 107* 1.74 x 10~* 475 x 10~ 1.10 x 10~*
h=@G/4p 6.18 x 1074 1.80 x 10~ 432 x 1074 1.17 x 1074
Parametric cubic

spline [36]

(a, B) = 1.28 x 1073 3.07 x 1074 8.17 x 1074 1.95 x 10~4
(1/10,2/5)

(a, B) = 7.22 x 107* 2.06 x 10~* 5.00 x 1074 1.34 x 10~*
(1/14,3/7)

(o, B) = 1.83 x 1073 491 x 1074 1.22 x 1073 3.16 x 1074
(1/18,4/9)

Cubic spline [5] [2.27 x 1073 6.84 x 10~* 1.57 x 1073 453 x 10~
Collocation—

quadratic spline |3.06 x 1073 7.58 x 1074

[56]

Cubic spline [4] |6.05 x 1073 1.51 x 1073 3.93 x 1073 9.66 x 1074
Collocation—

quadratic spline 1.8x 1073 47 x 1074
[35]

Exact solution
Spline solution

0.05

Exact solution
Spline solution

0.04

0.03

0.02

0.01

0

—0.012

22 24 26 28 3
X

Fig. 6 (Example 6) BVP (51) (left) and BVP (52) (right) when p = % h=4L

4 Deficient Discrete Cubic Spline Method for Second Order
Boundary Value Problem

In this section, we use deficient discrete cubic spline to obtain approximate solution
of a system of second order boundary value problems. It is shown that the method is
of order 2 when a parameter takes a specific value. A well known numerical example
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is presented to illustrate our method as well as to compare the performance with
other numerical methods proposed in the literature. This section illustrates the work
of [22].

The system of second order boundary value problems we consider is of the form

f(x)v aSXSC
V'=19@)y@x)+ fx)+rc<x=<d 53
fx), d<x<b

y@=a, yb)=p

with continuity conditions of y and y" at ¢ and d. Here, f and g are continuous
functions on [a, b] and [c, d] respectively, r, & and 6_ are real finite constants. This
type of systems arises in the study of obstacle, unilateral, moving and free boundary
value problems and has important applications in other branches of pure and applied
sciences, see [15, 25, 26, 37, 46, 47, 55].

The literature on the numerical treatment of (53) is abundant. Noor and Khalifa
[48] have solved (53) using a collocation method with first-order accuracy, adopting
cubic B-splines as basis functions. Also, Noor and Tirmizi [51] have used finite differ-
ence schemes based on the central difference and the well known Numerov method
to solve (53), all these give first-order accurate approximations to the solution of
(53). In the paper of Al-Said et al. [11], the authors use spline and finite differ-
ence methods to obtain numerical solutions of (53) — it is shown that the numerical
solutions derived using both spline and finite difference techniques are first-order
accurate approximations regardless of the order of the methods used, and the authors
illustrate this idea further with the second-order cubic spline method of Albasiny and
Hoskins [4] and the fourth-order quintic spline method of Usmani and Warsi [66].
For methods of second-order accuracy, we note that a modified Numerov method has
been discussed in [10]. Polynomial splines have also been employed in solving (53),
for example in the papers of Al-Said [7-9], quadratic and cubic spline methods have
been developed and analyzed, these methods are of second order. Further, quintic
spline is used in [14] to solve (53), the method developed is second-order accurate.
On the other hand, non-polynomial spline methods have been discussed in the papers
[54, 61, 62], here the non-polynomial splines consist of polynomial and trigonomet-
ric parts such as span{1, x, sin kx, cos kx} (cubic non-polynomial spline). So far the
methods mentioned above are non-iterative. Some iterative numerical algorithms
used to solve (53) include a modified decomposition method based on the Adomian
decomposition method [45], as well as the variational iteration method [49]. Both of
these methods do not require discretization, and the variational iteration method has
the extra advantage of not having tedious computation of Adomian polynomials.

Motivated by all the above research especially the use of splines in solving (53),
we shall employ a deficient discrete cubic spline to get a numerical solution of (53).
In our proposed method, we shall relax the continuity of y’ at ¢ and d, and instead
impose the continuity of the first central difference of y at ¢ and d. The deficient
discrete cubic spline is uniquely determined and it enables us to approximate y and
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its derivatives at every point in the range of integration. Our proposed method is
second-order convergent, and through a well know example on obstacle boundary

value problem, we illustrate that our method outperforms other collocation, finite
difference and spline methods for solving (53) in the literature [7-11, 14, 48, 51].

4.1 Deficient Discrete Cubic Spline Method

Let P:a=xp <x; <---<x, =>b be a uniform mesh of [a, b] with step size

p b;—“. Without loss of generality, we shall take
3 b 3b
c = Cl4+ = Xn/4 and d= Cl: = X3n/4,

and require the positive integer n (> 8) to be divisible by 4.
Let & € (0, p] be a given constant used in the central difference operator Dy,.

Definition 8 Let S(x; &) be a piecewise continuous function defined over [a, b]
(with mesh P) and S; (x) be its restriction on [x;_;, x;], 1 <i < n passing through
the points (x;_1, s;—1) and (x;, ;). We say S(x; h) is a deficient discrete cubic spline
if S;(x), 1 <i < n is a polynomial of degree 3 or less and

(Sit1 —=S)(x; +jh) =0, j=-10,1, iel
(Siv1 — S)) =0, (Siy1 — S +h) = (Sis1 — S —h), i=123

or equivalently

DY'Si(x)) = D) Sipi(x), j=0.1, 1<i<n—1
DS (xi) = DY Sisa (i), i€l

where I ={ieZ |[1<i<n—1,i#% 2},

The above definition of deficient discrete cubic spline coincides with that given
in the paper of Rana and Dubey [53]. It has been observed [53] that deficient splines
are more applicable than usual splines as they require less continuity requirement at
the mesh points.

We shall approximate a solution y(x) of (53) by the deficient discrete cubic spline
S(x; h), i.e., y(x) will be approximated by S; (x) over the subinterval [x;_j, x;], 1 <
i < n. Indeed, for any x € [a, b] (x may be between mesh points), we propose the
following approximation

yx) = S(x;h), Y (x) = DS k), x€la,b]
"(x) = fx), x €la,c)U(d,b] (56)
Y=V 90)SG h) + f(x) + 7, x € (e, d).
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In particular, at the mesh points we have

Vi s =8, y =5/ =D'Six), 0<i<n

v~ | fis 0<i<?—-landZ+1<i<n (57)
S e e

Moreover, since the left and right second derivatives y” and y/ exist at both ¢ and
d, we propose
wheni:%, v = fi, Vi Egisi + fi+r,

n

: = it 58
wheni =3¢, y' =Zgsi+ fi+r y, = fi. ©8)

From the boundary conditions, we note that s = yo = @ and s, = y, = 3, and s; is
an approximate of y;, 1 <i <n —1.

‘We shall now obtain an explicit expression of S; (x). Let¢; = D,{f} S(x;; h) denote
the ‘discrete moments’. Taking into account the fact that we approximate y(x) by
S(x; h) as well as (57) and (58), we set

o | i 0<i<fZ2—land? +1<i<n
lesi+ i fHlsi<s -1 (59)
Wheni:g, ci- = fi, Civ =gisi + fi +r,

wheni = ¢, c_=gsi+ fi+r cy=fi

Since D,{f] S(x; h) is piecewise linear, using a similar argument as in Sect. 2, we
obtain (26)—(29) for x € [x;_1, x;], 1 <i < n.Here, wheni = %, %’, we take ¢; =
ci—; wheni = % +1, % + 1, we take ¢;—1 = ¢;_1 1 (see (59) for the definitions).
For i € I, the ‘continuity’ requirement D,{ll}Si (x;) = D,{Zl}Si+1(xi) leads to the

system of equations

2_h2 222 h2 2—h2
(p ).+(p+)A+(p )

¢ il G Ci ¢ Gt =Sio— 2s;i + 841, €L
(60)
Note that in (60), when i = 7 — 1, %" — 1, we take ¢;1] = ¢j11,—; wheni = 7 +
1, %” + 1, we take ¢;_1 = ¢;_1.+ (see (59) for the definitions).
When i = :—1, %, from (29) we have the following
2 2
( p si—sic1 (p=—h°)
D), "Si(xi) = Zeim - i— = Ci-1),
i (xi) 2C+ » 6p (¢ Ci1)
Sit1 — S 2 n?
D}ll}si-t-l(xi) = —ECi+ 4 (P )(Ci+l — Cit),
2 p 6p

and D!"'S;(x;) = D!V S ;1 (x;) yields
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2_h2 h2+2 2 2_h2
Mciq w(cw +co)+ MCH—I =S5i_1 — 28; + Si41,
6 6 6 . n 3n
I = 1 T
(61)
Upon substituting (59) into (60) and (61), we obtain
2_p2 24 2 2_p2
_Si—l+25i_si+1=—(p ﬁh)fi—l 2(217 + )fi_ 0 6h)fi+l’ 62)
1<l<;—1and37"+15i5n—1
2_p2 2,72 _
-1+ 6h)gi—l]si—l+[2+%g] [ 1+ (p 91+1]Si+1
2_p2 22 L2 232
W 200 e 0 2y (63)
trl<i<®—]
and
—sio1+ Lz + @ +h )gl] sit+|—1+ (p gz+1] Sit1
2 2 2
W 6h)fi_l_2<2p6+h)fi @’ ’”fm-%r (64)

l:

’

N
4>|'§’

With so = a and s, = 6_, we may solve (62)-(64) to get s;, 1 <i <n — 1. The
unique solvability of the system (62)—(64) will be proved in the next section.

For clarity, the steps of computing the deficient discrete cubic spline solution of
(53) are listed as follows:

(i) Fix the mesh P (and hence the mesh size p) and choose a value for & (€ (0, p]).

(i) Solve (62)—(64) to gets;, 1 <i < n — 1, which approximates y;.

(iii) Calculate ¢; by using (59). Noting (57) and (58), ¢; serves as an approximate to
v

(iv) Compute D;l” Si (x;) from (29). Noting (57), s = Di,l}Si (x;) serves as an approx-
imate to y,.

(v) The deficient discrete cubic spline solution S;(x) over the subinterval [x;_1, x;]
can be obtained using (27). The first central difference D,il}Si (x) can also be
obtained using (29). These can be used to approximate y(x) and y’(x) for any
x € [a, b].

4.2 Convergence Analysis

In this section, we shall establish the existence of a unique deficient discrete cubic
spline solution for (53) (i.e., (62)—(64) has a unique solution) and also conduct a
convergence analysis for the method presented in the previous section.

Lete; =y, —s;, 1 <i<n-—1 be the errors. Let Y =[y;], S=1[s;], W=
[w;], T =[] and E = [e;] be (n — 1)-dimensional column vectors. The system
(62)—(64) can be written as
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AS =W (65)

where
A=Ay+ B, (66)

Ag = [a;;] is given in (35) and B = [l;ij] isa(n — 1) x (n — 1) matrix given by

%2<2p2+h2>gi,i=j, tyl<i<®_1
cPP=hmgi, i—j=1‘ft4+1=<i<P-—

§ 5 1o S .
; (" =hgip, j—i=1, F+1=<i=< -
bij = R 4 67
T dep g =g =ty (©7)
tPP—hNgin, j—i=1, i=122
0, otherwise
and
a— (PP =mD) fin +2@p* + 1)) fi + (P* = h?) fip ] i=1
—: [(P2 = D) fioi +2Qp* + D) fi + (p* — hz)fiﬂl,
2<i<i-land+1<i<n-2
2 . n n
wi =\ —¢[(P* —h)fia +2QP* + WD) fi+ (PP = W) fin ] = 5r i=5 3%

1
Y2 = W) fiy 2202 IS4 (P — B fit + 6p7r].
trl<i<®]

B— [P =MD fimi +2Qp* + D fi + (PP = WD) fi]. i=n-—1L

) (68)
From (65) we have A(Y — E) = W or
AY =W +T (69)
where B
T = AE. (70)

For i € I, the i-th equation of system (69) is

1
—YVic1 42y — Yip1 = —6[(172 — By +2Qp* + By + (p* — )y 1+t

while fori = %, %, we have

(p* — h?) (h* 4+ 2p?)
—Yio1 +2yi — Yiy1 = _T(yi”—l + i) — T(Yﬁr + )+t
By Taylor series expansion, we obtain the truncation error #;, 1 <i <n — 1 as (39).

[
Hence, when h = 7 We get



Discrete Splines and Its Applications 133

1
ITIl = mp"Mﬁ (71)

where Mg = max, [y© (x)].
The next result gives the convergence order of the deficient discrete cubic spline
method.

Theorem 9 Suppose L = % g < 1 where § = maxo<;<, |gi|. Then, the system

(65) has a unique solution and

. p
IEI =00 if h=—,
V2
i.e., the deficient discrete cubic spline method (65) is second-order convergent if
h=-L.
V2

Proof 1f (65) has a unique solution, then it can be written as

S=A"'W=(A+ B)"'W =[Ag( + A;'B)"'W = (I + Ay B) ' Ay'W.
(72)
From Lemma 6 the inverse A, ! exists, hence it remains to show that (I + Ay 1 1§) is
nonsingular.
enumerateFrom (67), we find || B|| < p2§. Then, using (41) gives

(b —a)?
L4

1Ay 'BIl < 1A, I 1Bl < (p*) =L < 1. (73)

Hence, we conclude from Lemma 7 that (I + A, 1B’) is nonsingular, and (65) has a
unique solution given by (72).
Next, we consider the special case when i = %. From (70), we have

E=A""T=(A+B)'T=U+A4,"B)"A,'T. (74)

Applying (41), (71), (73) and Lemma 7, it follows from (74) that

IE|| < ||(1+]Aa'é)*‘|| 1A I IT I

< Mo T

1—||A§B||

b—a) 1 6 1
< —|==p"Ms ) | —

8p? 240 1-L
_ (b—a)’Mep*
T1920(1—L)

This shows that (65) is a fourth-order convergence method when 4 = 5 However,
as observed in [14] the solution exists continuously only up to the second derivative,

o
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therefore the method is only second-order accurate over the whole interval. In fact,
in the paper [62] it is also shown that || E| ~ O(p*) yet the method developed is
second-order convergent, similar observations have also been noted in [10, 11]. [

Remark 7 Theorem 9 gives a sufficient condition for the existence and uniqueness
of deficient discrete cubic spline solution and the order of convergence. Actually, the
weakest condition is just to have the matrix A invertible. Then, the system (65) has

a unique solution § = A~!'W. Moreover, the deficient discrete cubic spline method
(65) is convergent when & = -, since from (70) we have E = A~'T which in view

of (71) leads to

Sis

. 1 .
IE| < |AT' T < mp%uA "I < oo.

4.3 Obstacle Boundary Value Problem

To illustrate the application of the deficient discrete cubic spline method, we consider
the obstacle boundary value problem

—y'(x) = f(x), on 2 = [0, 7]

y(x) = P(x), on 2 = [0, 7] (75)
(V') = f))(y(x) —(x)) =0, on 2 = [0, 7]

y(0) = y(m) =0,

where f(x) is a given force acting on the string and (x) is the elastic obstacle.

The problem (75) has been considered by almost every paper on system of second
order boundary value problems. As first discussed by Noor and Khalifa [48], by using
the variational inequality approach, (75) is equivalent to the variational inequality
problem (see [15, 25, 37, 50])

a(y,v—y) > {(f,v—y), forallve K (76)

where a(-, -) is a coercive continuous bilinear form and K is the closed convex set
givenby K ={v € H(} (£2) | v =1 on 2} (HO1 (£2) is a Sobolev space). Following
the idea and technique of Lewy and Stampacchia [39], the variational inequality (76)
can be written as

Y=y =PIy - =f 0<x<m
¥(0) = y(m) =0 7)

where p(t), known as the penalty function, is the discontinuous function defined by

ult) = {(1) =0 (78)
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and v is the given obstacle function defined by

-1, 0<x§%r
Px) =11, §<X< - (79)

-1, F=<x=m

Equation (77) describes the equilibrium configuration of an obstacle string pulled at
the ends and lying over elastic step of constant height 1 and unit rigidity. Since the
obstacle function v is known, it is possible to find the solution of the problem in the
interval [0, 7].

From equations (77)—(79), one obtains the following system of boundary value

problem
3r

" o__ fs OSXS%aHdTSXS’]T
S BN ER FE (80)
y(0) =y(m) =0

and the condition of the continuity of y and y" at 7 and 3” . We shall consider a
special case of the system (80) in Example 7, thlS example is first discussed in
[48] and subsequently considered in almost every paper on system of second order
boundary value problems.

Example 7 [48] We consider the system (80) when f = 0, i.e.,

. |o, OSxS%anda—"'ngW
Yy I<x< @1)
y(0) = y(m) =0.
The analytical solution for this problem is given by
tx, 0<x=<12
y(x) = l—n;izcosh(g—)c),%SJCS%TTr (82)
(=), Fs<xsm

where v, = m + 4 coth § and vy, = 7sinh § + 4 cosh 7.

We observe from the analytical solution that y and y’ are continuous at 7 and 3
but y” is not continuous at these two points, so the overall accuracy of our method
is only second order. This is also verified from the numerical evidence in Table 9.

In this example, we take h = %. The system of linear equations (62)—(64) is
explicitly given as

—Si1+2si—s541 =0, 1<i<?-— and3”+1<z<n—1

(-1+5) s+ (2+%)s +61 o) s =0 =iz R
2 2

—si-1 + 2—{—%)&4—(1 p—z)s =L, i=143
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Table 9 (Example 7) Maximum absolute errors max; |y; — ;|

Method p=m/20 p =m/40 p=7/80
Deficient discrete 1.19 x 1073 3.04 x 1074 7.68 x 1077
cubic spline
Cubic spline [9] 1.26 x 1073 3.29 x 1074 8.43 x 107
Modified Numerov 1.65 x 1073 433 x 1074 1.11 x 1074
method [10]
Cubic spline [8] 1.94 x 1073 4.99 x 10~ 1.27 x 10~*
Quadratic spline [7] | 2.20 x 1073 5.87 x 1074 1.51 x 107*
Quintic spline [14] 2.57 x 1073 7.31 x 10~* 1.94 x 104
Collocation-cubic [48] | 1.40 x 1072 7.71 x 1073 4.04 x 1073
Cubic spline [11] 1.80 x 1072 9.13 x 103 4.60 x 1073
uintic spline [11] 1.82 x 102 9.17 x 1073 4.61 x 1073
Q p
Numerov [51] 2.32 x 1072 1.21 x 1072 6.17 x 1073
Scheme (4.9) [51] 2.50 x 1072 1.29 x 1072 6.58 x 1073
Cubic non-polynomial spline
[62]a =1z, B=1 |643x 1074 1.83 x 10~* 487 x 107
B0la= 15 B=1 |5.01x107* 1.33 x 10~ 3.40 x 1073
Quintic non-polynomial spline [54]
a=4. =3 1532 x 10710 2.90 x 10712 5.85x 10714

For different values of p, we can solve the unknowns s;, 1 <i <n — 1 from the
above system. Then, we can get ¢; using (59) and finally obtain the deficient discrete
spline S;(x) as well as D,{ql}S,- (x) in (27) and (29) respectively. In Tables 9 and 10
respectively, we present the maximum absolute errors max; |y; — ;| and max; |y —
s!| obtained from our method as well as from other methods in the literature.

From Table 9, the numerical results confirm that our method is of second order.
Moreover, our method outperforms other methods in [7-11, 14, 48, 51]. The non-
polynomial spline methods [30, 54, 62] presented in Table 9 are of second order
(cubic non-polynomial spline) and sixth order (quintic non-polynomial spline).
Although non-polynomial spline methods offer excellent approximations to y;’s,
but unlike our method, they may not be able to approximate y and its derivatives
at every point in the range of integration, since the non-polynomial splines are not
computable.

From Table 10, we see that our method gives better approximations for y’ com-
pared to the cubic and quintic spline methods in [9, 11].

To compare graphically, in Fig. 7 we plot the exact solution y and the deficient
discrete cubic spline solution S(x; &); in Fig. 8 we plot the exact y’, D}l” S(x; h) and
the first derivative of the cubic spline solution obtained in [8]; in Fig. 9 we plot the
exact y”, D,{f}S (x; h) and the second derivative of the cubic spline solution obtained
in [8]. It is seen from the figures that our method gives better approximations for

y, ¥ and y”.
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Table 10 (Example 7) Maximum absolute errors max; |y; — s/

137

Method p=m/20 p =7/40 p=7/80
Deficient discrete 7.58 x 1074 1.91 x 107 479 x 1073
cubic spline
Cubic spline [9] 8.32 x 1074 2.09 x 107 522 x 1073
Cubic spline [11] 2.75 x 1072 1.39 x 1072 7.02 x 1073
Quintic spline [11] 9.05 x 1072 470 x 1072 244 x 1072
Fig.7 (Example 7) Exact 0.7
solution versus deficient Exact solution
discrete spline solution 06l Deficient discrete spline solution |
(r=1%)

05F

0.41

0.3t

0.2t

01t

0 ‘ ‘ ‘ ‘
0 0.5 1 15 2 25 3
X
Fig. 8 (Example 7) The first 05
derivative of exact solution 04 Exact solution
versus the first central ’ Deficient discrete spline solution
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Fig. 9 (Example 7) The

second derivative of exact N )
Cubic spline solution

solution versus the second 05 Cubic spline solution ]
central difference of Exact solution
deficient discrete cubic +  Deficient discrete spline solution

spline solution/second
derivative of cubic spline
solution [8] (p = 75)

5 Conclusion

In this paper, we survey the contributions made to discrete splines in the literature and
present some applications of discrete splines in the numerical treatment of boundary
value problems. More specifically, we illustrate two types of discrete spline interpo-
lation, namely the discrete quintic spline interpolation involving forward differences
and the periodic discrete quintic spline interpolation involving central differences.
In both cases, the explicit error estimates between the function and its discrete spline
interpolate are obtained, and the interpolation of two-variable functions (including
error estimates) is also developed. Further, to demonstrate the usefulness of discrete
splines in numerical methods, we present a discrete cubic spline method for a second
order boundary value problem that arises from plate deflection theory, and a deficient
discrete cubic spline method for a system of second order boundary value problems
that arises from obstacle, unilateral, moving and free boundary value problems. The
convergence analysis as well as numerical examples are presented to illustrate the
efficiency of the methods.
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Abstract We propose and investigate a discrete-time predator-prey model with a
structured predator population. We describe the predator population using two stages,
juveniles and adults, and assume that only the adult stage consumes the prey species.
For this model, we discuss conditions for the existence and global stability of the
extinction and predator-free equilibria as well as conditions for the existence and
uniqueness of an interior equilibrium. We show that when the predator-free equilib-
rium destabilizes, the interior equilibrium is stable in a neighborhood of the bifur-
cation. We also find the conditions for the persistence of both prey and predator
populations. Finally, we use numerical simulations to demonstrate various dynam-
ical scenarios. We find that introducing stage-structure into the predator population
allows for complicated dynamics that are not possible when the predator is unstruc-
tured.

Keywords Discrete-time predator-prey models - Stability - Persistence + Global
attractors - Stage-structure

1 Introduction

Predator-prey models play an important role in understanding the possible ecological
outcomes of interacting species. The earliest predator-prey models were introduced
and investigated independently by both Lotka and Volterra [28, 29, 40]. Ample exten-
sions of these models, in both continuous-time and discrete-time, have since been
developed to describe different ecological predator-prey scenarios. These include
various types of functional responses [21, 24, 26, 41], developmental delays and
stage structure [14, 15, 25], the co-evolution between predator and prey [1, 2, 42],
and more complicated predator-prey interactions such as intraguild predation [7, 23,
36]. In certain situations, such as when the species have non-overlapping generations,
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ithas been suggested that discrete-time models governed by difference equations may
be more appropriate than continuous-time modeling approaches [5, 20, 35].

To model a biological population mathematically, species can often be better
described using stage-structure rather than treating all individuals as physiologi-
cally identical [6, 12, 13, 39]. In fact, various studies have found that unstructured
population models are less efficient at predicting population abundance [8, 31, 34].
When modeling interacting species, stage structure can become particularly impor-
tant when only specific developmental stages interact. For instance, in predator-prey
interactions, it may be the case that juveniles and adults of the predator population
consume different prey species. Such a situation may occur if different developmen-
tal stages inhabit different environments or size differences shift diet preferences due
to changes in foraging ability. These ontogenetic niche shifts are prevalent in many
aquatic organisms which undergo dramatic changes in body size throughout their
lifetimes [34]. For example, newborn Eurasian perch feed on zooplankton, shift to
benthic resources at intermediate sizes, then feed on fish at larger sizes [22]. Despite
the documented importance of structure in species interactions, when compared to
the extensive study of single species models with stage-structure, there are relatively
few models for predator-prey interactions with stage structure [25, 33]. In large part,
this is likely due to the mathematical intractability of such models [25].

The purpose of this work is to extend the discrete-time predator-prey model devel-
oped in [3] to include a stage-structured predator population in which the predator is
classified according to two developmental stages: juveniles and adults. We model the
prey population as unstructured, that is individuals are described by the same average
biological vital rates. We assume that this population grows according to a monotonic
nonlinearity, such as the Beverton-Holt function, in the absence of predators. For the
predator population, we assume that only the adult predators are capable of attack-
ing and consuming the prey population with prey consumption regulating predator
reproduction. The transition probability of the juvenile predators, and the survival
probabilities of both predator stages are assumed to be time and density indepen-
dent. We thoroughly investigate the various dynamical behaviors of this discrete-time
predator-prey model such as the existence and uniqueness of the extinction, predator-
free, and interior equilibria as well as the local and global stability of the equilibria
and the persistence of the system.

This paper is organized as follows. In Sect. 2, we introduce the discrete-time
predator-prey model with stage-structure in the predator. We derive conditions for
the existence of two boundary equilibria, namely, the extinction and predator-free
equilibria. We also prove the global asymptotic stability of these two equilibria. Next,
we derive conditions for the existence and uniqueness of the interior equilibrium and
show that, when the predator-free equilibrium destabilizes, this equilibrium is stable
in a neighborhood of the bifurcation. We also establish conditions for the persistence
of both the prey and predator populations. In Sect. 3, we provide numerical examples
showing various dynamical scenarios in support of the theoretical results. These
numerical simulations also show the existence of rich dynamics that are not observed
when the predator is unstructured [4]. Finally, we provide some concluding remarks
in Sect. 4.
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2 The Predator-Prey Model

In this section, we introduce the discrete-time predator-prey model for a single prey
and a single predator population with stage-structure in the predator population. We
consider two stages for the predator, namely juveniles and adults. Let n denote the
prey density and p; and p, the densities of the juvenile and adult predator stages,
respectively. We assume that after each time step a fraction y,0 < v < 1, of surviving
juvenile predators become adult predators. We also assume that only adult predators
attack and consume the prey population. Specifically, the model is given by

n(t+1) = ¢ () (1 — f(p2(2)) p2(2)) n(2),
pit+1) =1 —=ys1pi1(@) +bn@)n) f(p2(t)) p2(t), (D
pa(t + 1) = ys1p1(t) + s2p2(2),

where the constants 0 < 51, 5o < 1 represent the density-independent probabilities
of a juvenile or adult predator, respectively, surviving a unit of time.

The nonlinearities ¢, b, and f are assumed to be smooth functions in the set X
defined by:

X :={v e Cl0, 00)|v'(x) <0, (w(x)x) >0, lim v(x)=0, and lim v(x)x < 00}.
X—>00 X—> 00

This set includes functions of the Beverton-Holt type [9]. The quantity f(p») is
defined to be the fraction of prey consumed by a single adult predator individual per
unit time when p, predators are present, 0 < f(p,) < 1. Thus, 0 < f(p2)p, <1
gives the fraction of prey consumed by p, adult predators and 1 — f(py) p, gives
the fraction of prey that escape predation per unit time. This quantity modifies the
predator-free prey growth given by ¢(n). The reproductive output of an adult predator
individual is assumed to be determined by the amount of prey consumed, where the
conversion factor b(n)n gives the number of new births that would result from the
consumption of the entire prey population n. This term is defined so that predator
reproduction is limited by biological factors and cannot grow unbounded as prey
density gets large. The assumption that predator reproduction is regulated by prey
consumption is appropriate for many species, such as snakes and marine birds, where
reproductive output is determined by energy availability [10, 37].

2.1 Egquilibria and Stability

The equilibrium equations of model (1) are given by the following system of equa-
tions:



148 A. S. Ackleh et al.

n=¢m) (- f(p)p)n,
p1 =1 —=ysip1 +b@)nf(p2)pa, 2)
P2 =7yS1p1+ s2p2.

Solving the above system, we find that model (1) has three equilibria, namely the
extinction equilibrium where both species die out, the predator-free equilibrium
where the prey survives but predator goes extinct, and an interior equilibrium where
both prey and predator densities are positive. In this section, we discuss the existence
and stability of these equilibria. To determine the local asymptotic stability of the
equilibria, we find when the eigenvalues of Jacobian matrix of system (1) evaluated
at each of the equilibria have magnitude less than one. This Jacobian matrix is given
by

(¢(m)n) (1 = f(p2) p2) 0 — (p(m)n) (f (p2)p2)
J(n, p1, p2) = (bmn) (f(p2)p2) A —s1 (bmn) (f(p2)p2) |. (3)
0 YS1 $2

2.1.1 Existence and Stability of Boundary Equilibria

In this section, we discuss the existence and stability of the two boundary equilibria
of model (1), which are the extinction equilibrium and the predator-free equilibrium.
First, in Theorem 1, we show that the extinction equilibrium is globally asymptoti-
cally stable when the inherent growth rate of the prey ¢(0) is less than one.

Theorem 1 The extinction equilibrium (0, 0, 0) of model (1) is globally asymptot-
ically stable if (0) < 1 and unstable if $(0) > 1.

Proof The Jacobian matrix (3) evaluated at the extinction equilibrium (0, 0, 0) is
given by

»(0) 0 0
J(0,0,0) = 0 (1—2)s 0
0 ¥S1 $2

The eigenvalues of this matrix are A\; = ¢(0), A\, = (1 — 7y)sy, and A3 = s;. Since
0<~vy<landO < 51,5 < 1, || < 1fori = 2, 3. Thus the extinction equilibrium
(0, 0, 0) is locally asymptotically stable if #(0) < 1 and unstable if ¢(0) > 1. Since
the function ¢(n) is a function satisfying all the conditions in the set X, there exists
a positive constant D such that ¢(n)n < D for all n > 0. Since

nt+1) = p(n)nt)(1 — f(p2(t))p2(?)) < ¢p(n())n(t) < D foralln >0,
we have that

pit+2) =0 =sipit + 1D+ b+ D)n@ + 1) f(p2(t + D) pa(r + 1),
=T =msipit+1)+bD)D.
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Consider the difference equation ¢(t + 1) = (1 —)s;p1(t) + b(D)D, where
D)D

q1(0) = pi1(1). Then we have that lim ¢q,() = ———— . Hence, lim sup

=00 1 - (1 - 7)S1 t—00
b(D)D
p1(t) < ——————. As aresult,
=1 =)
b(D)D
P2t +3) < ysi | ————— ) +s2p2(t +2).
L= (1=

Letting ¢a(t + 1) = s1 <1 _f’;f’jgﬂ) + 52¢5(t) with ¢2(0) = pa(2), it follows that

. vS1 b(D)D .
lim g,(¢) = . Hence, we have Ilimsup p,(t) <
=00 1 —s5 1—(0 =8 t—00

( i ) < b(D)D ) Therefore, the solutions of system (1) remain non-
1 - 1 —(1 =78

negative and bounded for all forward time. Since ¢ € X, ¢(n) < ¢(0) for any
n >0, and thus n(zt + 1) < ¢(n(@))n(t) < ¢(0)n(r) for r > 0. From this we have
tlirglon(t) = 0 whenever ¢(0) < 1. As a result, rlggo pi(t) = zlggo p2(t) =0, and

hence for ¢(0) < 1, all the solutions of (1) will converge to the extinction equi-
librium (0, 0, 0). Thus the extinction equilibrium (0, 0, 0) is globally asymptotically
stable when ¢(0) < 1, and unstable if ¢(0) > 1.

Next, in Theorem 2, we show that a predator-free equilibrium (72, 0, 0) exists when
¢(0) > 1. This predator-free equilibrium is globally asymptotically stable when the
invasion net reproductive number R; is less than one. This quantity is the inherent
net reproductive number of the predator when the prey is at its predator-free state.
Hence, when R; < 1, the predator is unable to invade the system.

To calculate the invasion net reproductive number Rj;, we first consider the preda-
tor subsystem given by

P(t+1) = A(n(t), p1(1), p2()) P (1), “4)

where

An, py, p2) = ((1 ;Jm b(")'g(p”) and P (1) = (128) '

Suppose that the prey is at its predator-free equilibrium 7. Then, the inherent projec-
tion matrix for the predator population when the prey is at its predator-free state is
given by

VS1 52

This matrix A(n, 0, 0) can now be decomposed as A = T + F, where the transition
matrix 7" and the fertility matrix F are given by
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- <(1 — s 0) nd F— (o b(ﬁ)ﬁf(O)) .
ys1 S 0 0

Then the next generation matrix N is given by

1 0
N=(L-T)"= =0 s L

(I=52)(A=1=7)s51) 1—=52

where I is the identity matrix of size 2 x 2 and N (i, j) is the expected number of
visits over a lifetime to stage i for an individual starting in stage j [11]. The invasion
net reproductive number for the predator, R; when the prey is at its equilibrium state
is given by the dominant eigenvalue of the matrix F N [19]. From this we obtain

ys1b@m)n f(0)
(I =51 = A =)s1)

R; = (&)

Next, we show that a predator-free equilibrium exists when the inherent growth rate
of the prey is greater than one and is globally asymptotically stable when R; < 1.

Theorem 2  The predator-free equilibrium (n,0,0) of model (1), where n :=
o1 (1), exists when ¢(0) > 1. Moreover, if R; < 1, where Rj is defined as in (5),
then (n, 0, 0) is globally asymptotically stable. If R; > 1, then (n, 0, 0) is unstable.

Proof First, it is easy to see that the predator-free equilibrium (2, 0, 0), where n :=
¢~ 1(1) exists when ¢(0) > 1. Applying the Jury conditions to the Jacobian matrix
evaluated at (n, 0, 0), we find that this equilibrium is locally asymptotically stable
when

$2(L = (L =y)s1) + A =s1 +ys1b@nf(0) < L.

This is equivalent to R; < 1. It remains to show that (7, 0, 0) is globally asymptoti-
cally stable when R; < 1.
Since p € X,n(t + 1) < ¢(n(t))n(t) < D forsome D > 0and ¢ > 0. Moreover,

limsupn(t 4+ 1) < limsup(¢p(n(t))n(t)) < ¢(limsupn(t)) lim supn(z).

—>0o0 —>00 =00 1—>00

Thus ¢(lim supn(t)) > 1, which implies that lim supn(t) < n. Therefore for any
—00 =00
€ > 0, there exists #y > 0 such that for ¢t > 1y, n(t) < n + € and

=0 =ms)+A=s1 +ys51b(n+e)(n+€) f(0) < L. (6)

On the other hand, with f(0) > f(p,) we have



Persistence of a Discrete-Time Predator-Prey Model ... 151

P2t +2) =ysipi(t + 1) +s2p2(r + 1),
< ys1 (L =Vsip1(0) + bmnf () p2(2)) + s2p2(t + 1),
— 511 = )5, (Pz(t + 1D —sap2(@)
81
= =sip2t +1) = (1 = Y)s1s2p2(t) + ys16(m@)n(t) f(0) pa (1) + s2p2(t + 1),
= (I =Ps1+s2)p2(t + 1) = (A = Psis2 — ys1b(1 + €) (1 + €) £(0)) p2(1).

> +ys1b(O)n(1) fO)p2(t) + s2p2(t + 1),

Thus, letting c; = (1 —y)s; + s and c; = (1 — y)s152 — ys1b6(n + €)(n + €) £(0),
we have
P2t +2) <cipat + 1) — capa(t). (7N

We claim that lim p,(¢) = 0. To this end, we solve x% — ¢1x + ¢, = 0 which has
—00

1 —A/ 2 =4 144/ —4c
Sl A 5 to and d, = atvazte 5 fer By (6),

two roots d; =
cr—c2= (1 =751 +5) = (A —=y)s1s2 —ys1b(n + e)(n +¢) £(0)) < 1.

As aresult, we have 0 < d; < 1fori = 1, 2. We can rewrite (7) as

D2t +2) —dipa(t + 1) <do(p2(t + 1) — dy pa(2)). ®)

If po(t + 1) —dipa(t) <0 for t =7, then by (8), p(t + 1) — d; p»(t) < 0 for all
t > 7. Under this case, d; < 1 implies that lim p,(#) = 0. Otherwise, suppose that
t—>00

pa(t + 1) —dypa(t) > 0 for all . By (8), d» < 1 implies that lim (po(r + 1) —
—>00
dip2(t)) =0 and thus lim p,(t) = 0 since d; < 1. As a result of lim p,(t) =0,
t—00 [—00
with the third equation in the model, we have lim p;(¢) = 0. Finally, with the first
11— 00

equation in the model, we must have lim n(¢t) = n if ¢(0) > 1.
1—00

2.1.2 Existence and Stability of the Interior Equilibrium

Next, we show that a unique interior equilibrium of (1) exists if and only if the
invasion net reproductive number of the predator Rj is greater than one.

Theorem 3 A unique interior equilibrium (n*, pY, p3) of model (1) exists if and
only if $(0) > 1 and R; > 1, where Ry is defined in (5).

Proof The equilibrium equations of (1) can be written as
o(m)(1 = f(p2)p2) = 1,

(I =ys1p1 +b@nf(p2)p2 = p1, )
Y$1p1 + S2p2 = pa.
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1752
VS1
second equation above and simplifying, we obtain

From the third equation of (9), we have p; = ( ) p2. Using this relation in the

A= =5) 1 -5
————— +bmnf(py) = , (10)
VS
which is equivalent to
s+ bm)nf(p2) =1, (11
with § := 1+ w =% This final equation together with the first equilib-

rium equation of (9) reduces the equilibrium equations to

)1 — f(p2)p2) =1,

~ (12)
s+bmnf(py) =1.
This system of equilibrium equations is the same as the equilibrium equations for the
non-evolutionary model discussed in [3]. Hence, this system has a unique equilibrium
(n, p») (and hence (n, py, p»)) if and only if $(0) > 1 and 5 + b(n)n f(0) > 1. This
latter inequality is equivalent to R; > 1. Thus a unique interior equilibrium of model
(1) exists if and only if ¢(0) > 1 and R; > 1.

Remark 1 We note that, in the equilibrium equations for the non-evolutionary model
studied in [3], we have 0 < § < 1. Meanwhile, for model (1) we have § < 1 but not
necessarily § > 0, as is the case in Example 1 shown below. However, all steps in
the proof of Theorem 2.2(a) from [3] continue to hold when § < 0.

In Theorem 3, we showed that the predator-free equilibrium destabilizes as Rj;
increases past one. We further showed that a unique interior equilibrium exists for
R; > 1.1In Theorem 4, we apply perturbation arguments to establish the local stabil-
ity of the interior equilibrium in a neighborhood of R; £ 1. To do this, we introduce
the bifurcation parameter by := b(0). In terms of this parameter, R; 2, 1 is equivalent
to by % b for

joo L= A =7s)d =)

) :=b(n)/by. 13
1B £ (0) B(n) (n)/bo 13)

The arguments used to prove Theorem 4 are analogous to those applied in [17, 18].

Theorem 4 Define by := b(0) and assume ¢(0) > 1. There exists a branch of posi-
tive equilibria (n, py, p>) of model (1) bifurcating from the predator-free equilibrium
(11,0, 0) at by = b where b is defined in (13). The bifurcating equilibria are locally
asymptotically stable for by Z b.

Proof Consider the equilibria equations given by (9). Solve the second equation in
(9) for p; and substitute this solution into the third equation. We now have that an
interior equilibrium must satisfy
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g1(n, p1, p2, bo) = g2(n, p1, p2, bo) = g3(n, p1, p2, bp) =0,

where
gi1(n, p1, p2, by) :==1—pm)(1 — f(p2)p2),
&, p1, p2, bo) :=p1 — (1 = y)s1p1 — boSm)nf (p2) p2, (14)
_ysiboSmnf(p2)

g3(n, p1, p2, by) =1 52,

L= =7
and we have explicitly denoted dependence on the bifurcation parameter by by
defining 5(n) := b(n)/by. Since (i1, 0, 0) is a solution to (14) only for by = b, by
the Implicit Function Theorem there exists a branch of equilibria bifurcating from
(n,0,0) at by = b provided that the determinant of the Jacobian of (14) evaluated at
the known solution (7, 0, 0, 13) is non-zero. This determinant is given by

oo = d=ys)d = 5)(f(0*(B@) +aB' () + aB@) f'(0)¢' (7)) -

0,
nf3(n) f(0)

which is nonzero since ¢, b, f € X. It follovys that a branch of equilibria of the form
(n(€), p1(€), p2(€), bo(€)) withe ~ 0,b9 = b(1 + €),and (n(0), p1(0), p2(0), by(0))
= (n, 0, 0, b) bifurcates from the predator-free equilibrium at by = b.

To determine the parametrization of the bifurcating equilibria, we differentiate
(14) with respect to € and evaluate the derivatives at e = 0. We arrive at the following
parameterizations

SOA-A=ys)d =)

ne) =it — e+ O(),
K
pi(e) = (A=A =759 (n)6 Lo, (15)
YS1K
POl 1 U T NPT

Since ¢'(n) < 0, it follows that an interior equilibrium exists for € £ 0, or equiv-
alently, by < b. Notice that the parameterization for n says that, as the predator
population becomes positive, the prey population decreases, as is to be expected.

Finally, to determine the stability of the branch of interior equilibria, we param-
eterize the eigenvalues in terms of ¢,

Ai(€) = Ni(0) + N(0)e + O(E?).
The Jacobian matrix (3) evaluated at the positive equilibrium (15) has the expansion

J(n(e), p1(e), p2(€), bo(e)) = JA(O) + J'(0)e + O(€?) where J(0) is the Jacobian
matrix (3) evaluated at (7, 0, 0, b),
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ng'(n) + ¢(n) 0 —ng(n) f(0)
J(0) = 0 (I —7)s1 bnB{) f(0) |,
0 vS1 52

and matrix J'(0) may be found by substituting the positive equilibrium (n(€), p; (),
p2(€), bo(e)) into (3), differentiating this Jacobian matrix with respect to ¢, and
evaluating the resulting matrix at e = 0. Matrix J(0) has eigenvalues A;(0) = 1,
M (0) = =14 (I — y)s1 + 52, and A3(0) = 1 + n¢’(n). Meanwhile, X!(0) may be
found by first linearizing the eigenvalue equation J (¢)v(e) = A(e)v(e) around e = 0
to obtain (J(0) — A(0)I)v'(0) = (N (0)I — J'(0))v(0). Next we may either apply
inner product arguments or the Fredholm Alternative to show that this equation has
a solution if and only if w(0)(\' (0)1 — J'(0))v(0) = 0 where w(0) is the left eigen-
vector of J(0) [18]. Thus we have X! (0) = %. From the eigenvalues of J (0),
it is clear that the stability of the interior equilibrium is determined by A, (¢), where
v(0) = (& s, 1)T and w(0) = (0 L 1) are the right and left eigenvec-

¢'(n)’ s > 1—=(1—7)s
tors corresponding to A; (0). All together, we arrive at A} (0) = — % < 0.

Thus, the interior equilibrium is locally asymptotically stable for € Z 0, or equiva-
lently, by £ b.

Remark 2 In Theorem 4, we have shown that the branch of interior equilibria bifur-
cates forward or supercritically (meaning the equilibria are positive for by £ b) and
is stable in a neighborhood of the bifurcation. This is a similar dynamic scenario as
is described by the Fundamental Bifurcation Theorem [16]. However, that theorem
applies to models with primitive inherent projection matrices whereas the projection
matrix for model (1) is reducible.

Remark 3 After submission of this paper, it came to the authors’ attention that a
more general result, developed in [32], can be applied to establish Theorem 4. While
both the proof of Theorem 4 and result from [32] use a similar Lyapunov-Schmidt
expansion technique, which relies on an application of the Implicit Function Theorem
and the Fredholm Alternative, they apply different forms for the expansion of the
bifurcation parameter.

Next, we provide an example that shows the conditions for the existence and
stability of the equilibria for a specific set of nonlinearities satisfying the conditions
in X.

Example 1 We assume the following set of nonlinearities:

0 py= 2 and f(py) = —
, n)—= , an = .
14+ mn 14 dn Pz 14+ cps

o) = (16)

Note that {¢, b, f} C X with $(0) = ro, f(0) =c, i = ¢~(1) = =L, and

o ys1¢bo(ro — 1)
T m Ao — 1) (I —s) (1= (1 =)s1)
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(i) The extinction equilibrium (0, 0, 0) is globally asymptotically stable if 7y < 1
and unstable otherwise.
(i) The predator-free equilibrium (72, 0, 0) exists if ry > 1 and is globally asymp-
totically stable if R; < 1.
(iii) For § :=1+ a=d=s) _ % and k := % > 0, the interior equilibrium
(n*, pt, p3) with

. (k6= 1)+ (kS — 12+ dkm
" 2m ’
<l—s2> ro— (144 (k6 = 1)+ V&5 = 17 +4km))

1 c+§((k5—1)+\/M)
* ro—(l—l—%((ké—l)—i—\/M))
Py = )

e+ 5 (8 = 1)+ /&3 — )7 + m )

exists when R; > 1.

2.2 Persistence

In this section, we investigate the persistence of the prey and predator populations.
Consider the difference equation system

x(t+1)=F(x(@)), a7

where x(t) = (x1(t), x2(t), ..., X, (DT, F = (f1, fa, ..., fu)T is a smooth function
from R” to R", and f; = fi(x(¢)),i = 1, 2, ..., n for a postive integer n. Define

Z={xeR'Nx>0}, Zt:={xeR'x >0,Vi=1,2, .. n} (18)

andletp : Z — [0, co) be acontinuous function. Suppose My := {z € Z : p(z) > 0}
and OM, := {z € Z : p(z) = 0}. We assume that the system is invariant in M. Then,
the definition of p-uniform persistence is as follows.

Definition 1 (p-uniform persistence [30]) System (17) is said to be p-uniformly

persistent if there exists € > 0 such that lim inf p(F" (x)) > ¢, Vx € My; system (17)
n—00

is weakly p-uniformly persistent if there exists € > 0 such that lim sup p(F" (x)) >

€, Vx € M.

To establish the persistence of system (1), we assume the system satisfies the
following hypotheses:
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(H1) ¢(0)>1 and R; > 1 with n = qb_l(l).

Lemma 1 Assume (HI1). There exist positive constants N, Py and P, such that
A={(n, p1,p)0<n<N=<n,0<p; <P,0< p, <Py} is an attracting set
under system (1).

Proof This lemma follows from the arguments provided in the proof of Theorem 1
with N =D,

b Vs b .
P = 17((3)71))51 ,and P, = (1’;;2) (17((3)&1 ), where D is such that ¢(n)n < D.

Next, in Theorem 5 we show that model (1) is persistent. For the predator population,
we show that all stages are bounded away from zero, referred to as c-persistence in
[27]. This condition provides the coexistence of the predator stages by ensuring that
no orbits converge to the boundary of the positive cone.

Theorem 5 Assume (HI). Then model (1) is persistent, that is there exists an € > 0
such that min{litm inf n(z), liminf p;(¢), liminf p,(#)} > € for any initial condition
—00 t—00 t—00

inZ".
Proof We prove the theorem by showing the persistence of the prey, the juvenile
predator, and the adult predator populations with the following four steps.
e Step 1: Show the prey is persistent (i.e. liminf n(¢) > e forall zop € Z%).
—00
Let Ng = {(n, p1, p2)|n = 0}, on which the subsystem is given by

pit+1) =1 =vs1p1(0),

(19)
P2t + 1) = s:p2(2).

If the extinction equilibrium of subsystem (19) is globally stable, then the omega
limit set of Ny is Q(Np) = {(0,0,0)} =: {P1}. Let A(P) := ¢(n)(1 — f(p2)p2)
with P € Q(Np). Then if A(P;) = ¢(0) > 1, A(P)) is primitive and the spectral
radius of A(P;) is greater than one. Then by Corollary 1 in [38], Ny is a uni-
formly weak repeller. Finally, by Theorem 2.3 in [38], we have that the system is
n—persistent i.e. li[rr_l)(ibgfn(t) > €.

e Step 2: We prove that the system is p— persistent with p = p; + p», that is, there
exists € > 0 such that forall zop € Z+

litm inf (p1 + p2) > €. (20)
— 00

Following [38], define f : R} x R2 — R} and g : R} x R2 — R2 such that for
allz € R} x R, F(z) = (f(2), g(2)). Consider the following dynamical system:

Z2(t +1) = F(z(1)), forallz € R} x R. (21)

Equation (21) can be written as



Persistence of a Discrete-Time Predator-Prey Model ... 157

x(t+1) = fz@®), 22)

y(t + 1) = A@z(t))y(1),
where, N| ={z = (x,y) € R}r X ]Rily =0}, and A(z) is a continuous matrix
function satisfying A(x,0) > 0. Let x = n and y = (pi, p2). The set N; repre-
sents the positively invariant predator-free sub-space, in which the dynamics are
given by

n(t +1) = ¢(n(@)n(1). (23)

Let n(t + 1) = n(¢t) = n be the predator-free equilibrium for the prey, thatis n =
¢»~'(1). Note that 71 exists when ¢(0) > 1. Model (1) can now be put in the form
(21) with
1 —~)s; b(n)n
A, pr. py) = (( st b(m) f(pz)> '

S 52

We note that the matrix A(n, p;, p,) is nonnegative on the set A; = {(n, p1, p2)|
e<n=<n,0<p <P,0=<p, <P} forsomee > 0. Now the matrix A evalu-
ated at (n, 0, 0),

AG.0.0) — ((1 ~ b(ﬁ)fzf(())) ’

is primitive, since all the entries are non-negative provided that ¢(0) > 1. Also,
A(z)n # Oforall (z,n) € A; x U, where 7 is a unit vector in Ri and U, is the
set of such unit vectors in Ri. We note that both the sets Z and Z \ N, are non-
empty and positively invariant. Suppose M; = A; N N;. Then M| is a non-empty,
compact, positively invariant set that is bounded away from zero and attracts all
non-zero points of Nj. Moreover, Q2(M;) = {(n, 0, 0)}. Note that, tr(A) = (1 —
Y)s1 + 52, and det(A) = (1 — v)sys2 — ysib(n)n f(0). Thus the eigenvalues of
A are given by

tr(A) + V2 (A) — 4det(A)
Al = ,

_d=MstsnE V(A = s1 + )% +4((1 = s15 — ys1b@af(0))
5 .

If R; > 1, then it is easy to verify that the spectral radius of A(r, 0, 0), given by
A1, is greater than one. Applying Corollary 1 along with Theorem 2.3 in [38], M| is
a uniformly weak repeller and thus the system is p— persistent with p = p; + ps.
That is, there exists an € > 0 such that forall zy € Z*

liminf (p; + p2) > e.
—00
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e Step 3: In this step we show that
liminf (p; + p2) > ¢ = liminf p; > ¢; or liminf p; > €, 24)
=00 =00 1—>00
i.e. either the juvenile or the adult population persists. Indeed, we have that

liminf (p; 4+ p2) > ¢ = limsup p; > €; or limsup p; > €, (25)
=00

1—>00 =00

However, by Proposition 3.2 in [30], for k = 1, 2, we have

limsup py > ¢ == liminf p; > €.
—00

—>00

e Step 4: We show that

liminf p; > ¢, <= liminf p; > €;.
11—

—>00

Suppose first that p; is strongly uniform persistent, i.e. liminf p; > €;. We claim
—>00

that p, is weakly uniform persistent, i.e. lim sup p, > €, for some ¢; > 0. We
—00

prove the claim by way of contradiction. Suppose the claim to be false, that is
p> is not weakly uniform persistent. Then lim sup p, < €, for any €, > 0. Then

—>00
we have that lim p, = 0 and from the third equation of (1), lim p; = 0. This
—00 11— 00

contradicts the fact that p; is strongly uniform persistent. As a result, we have that

lim sup p; > €. By Proposition 3.2 in [30], lim sup p, > €, implies lim inf p, >
t—>00 1—00 =00
€. Thus, liminf p; > ¢ = liminf p, > €. In a similar manner, we can show
t—00 [—00

that liminf p, > ¢, = liminf p; > ¢;. This completes the proof.
t— 00 t—00

3 Numerical Studies

In this section, we demonstrate the possible dynamics of model (1). In Example 2, we
illustrate the results of the theorems presented in the previous section. Meanwhile, in
Example 3 we show that model (1) may exhibit rich dynamics. This is in stark contrast
to the unstructured predator-prey model developed in [3]. For this model, only stable
equilibria were observed when the nonlinearities are given by the Beverton-Holt
functions (16) [4].

Example 2 InFig. 1 we illustrate the dynamics of the predator-prey model (1) under
the conditions stated in Theorems 1 and 2. The time-series graphs were obtained using
the functions given in (16) and varying the inherent prey growth rate 7y, while keeping
all other parameters fixed at the following values: m =1, ¢ =1, 51 =0.5, 5, =
0.6, v =10.5, § =1, and by = 2. For the simulation presented in Fig. la we let
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Fig.1 Shown are the time series dynamics for the predator-prey model (1) obtained using the non-
linearities given in (16) and various values of ro. Here the solid blue lines are the prey, the dashed red
lines are the juvenile predator, and the dashed-dotted black lines are the adult predator. For all graphs
we use the parameter valuesm =1, c =1, s1 =0.5, s, =0.6, y=0.5, §=1, and by =2.a
For ¢(0) = ro = 0.5, both the prey and predator go extinct since ¢(0) < 1; b For ¢(0) = ro = 1.5,
the prey survives while the predator goes extinct since ¢(0) > 1 and R; = 0.5556 < 1; ¢ For
¢(0) = ro = 5, both the prey and the predator persist since ¢(0) > 1 and R; = 1.3333 > 1

ro = 0.5. For this value of ry, we have ¢(0) = ryp < 1 and, hence, both the predator
and prey populations go extinct, as discussed in Theorem 1. For the simulation
presented in Fig. 1b we let ¢(0) = ry = 1.5. Here we observe that the prey survives
but the predator population goes extinct, as stated in Theorem 2. Finally, in Fig. 1c
we use ¢(0) = rp = 5resulting in both the prey and predator populations persisting,
as concluded in Theorem 5. Here we observe a stable interior equilibrium.

Example 3 (Rich dynamics resulting from predator structure)
We generate bifurcation diagrams for model (1) using the nonlinearities given in
(16) along with the following four sets of parameter values:

1) ro=5m=1.1,c=1, 51 =095 v=0.5 § = 1.1, and by = 2,
@) ro=5m=0.1, c=1, 51 =05, v=0.5, § =0.1, and by = 2,
(iii)) ro=5,m=0.1, c=1, 51 =095, y=0.5, § =0.1, and by = 2,
@iv) ro=5m=0.1, c=1, 51 =095, v=1, § =0.1, and by = 2.

In Fig. 2, we give bifurcation diagrams for model (1) with respect to the parameter
value s,. Each row was obtained using the corresponding set of parameters listed
above. To generate these graphs, for each value of s, running from s, = 0tos, = 1
with a step-size of 0.001, we ran the model for 10000 iterations and plotted the last
200 data points for each of n, p;, and p, against the corresponding s, values.

For the parameter values in (i), we observe stable equilibria for all values of s,
(shown in Fig. 2a—c). On the other hand, for the parameter values in (ii) and (iii), the
system shows chaotic behavior (as was verified through calculation of the Lyapunov
exponent, not shown). We note that the only parameter that differs in these two
parameter sets is sy, with s; = 0.5 for (ii) (shown in Fig. 2d—f) and s; = 0.95 for
(ii1) (shown in Fig. 2d—f). These graphs show that increasing the juvenile predator
survival may cause the chaotic region to shift left, resulting in chaotic behavior for
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() (h) 0]

Fig.2 Shown are the bifurcation diagrams for the prey (first column), the juvenile predator (second
column), and the adult predator (third column) using the sets of parameter values listed in Example
3. Figures a—c use the parameters listed in (i); Figures d—f use the parameters listed in (ii); Figures
g-i use the parameters listed in (iii); and Figures j—1 use the parameters listed in (iv)

smaller values of s;. Finally, the system exhibits rich dynamics even when s, = 0 if
~ = 1. This corresponds to the case where juvenile predators mature after one time
step (shown in Fig. 2j-1).
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4 Conclusion

We investigated the dynamics of a discrete-time predator-prey model with stage-
structure in the predator. In this model, we assumed that the predator population
consists of a juvenile and an adult stage, with only the adult stage consuming the
prey population. We established the existence and global stability of the boundary
equilibria of this model in Theorems 1 and 2. The conditions for the existence of a
unique interior equilibrium are given in Theorem 3. These conditions are also the
same conditions for the persistence of the prey and predator populations, which is
shown in Theorem 5. The conditions in these theorems depend on two quantities:
the inherent growth rate of the prey ¢(0) and the invasion net reproductive number
of the predator when the prey is at its predator-free equilibrium density Rj;. These
quantities are defined in terms of general non-linear functions, as given by the set X.

While we proved that the interior equilibrium is locally asymptotically stable
when Rj; Z 1, it remains an open problem to determine the extent of the stability
of the interior equilibrium. Though it was shown for the case of an unstructured
predator population that, given a certain restriction on the nonlinearity f, the interior
equilibrium is always stable when it exists [3], numerical simulations show that the
interior equilibrium of model (1) may be unstable in some parameter ranges. In fact,
numerical simulations of this simple discrete-time model have revealed rich dynam-
ics. In Example 3, we show that model (1) may have stable equilibria or may exhibit
chaotic dynamics depending on the choice of parameter values. For our particular
examples, these different scenarios were obtained by varying the parameters s; and
~. In particular, increased ranges of chaotic dynamics were observed when either of
these values were increased, which corresponds to increasing Rj.

The investigations in this paper contribute to the understanding of how stage-
structure may influence predator-prey interactions. In particular, we observe that
stage-structure may introduce complicated dynamics that are not observed for
unstructured predator and prey populations. However, this model has a number of
simplifying assumptions. In particular, we assumed that prey consumption is only
dependent on the adult predator and we did not explicitly consider juvenile con-
sumption of resources. Natural extensions of this model would be to assume that
both juvenile and adult predators consume the prey or that adults and juveniles have
two distinct prey populations. It is also of interest to consider how prey evolution, as
considered in [3], may impact model dynamics. In future work, we will address these
issues in order to gain a better understanding of the intriguing nature of interacting
species.
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Techniques on Solving Systems )
of Nonlinear Difference Equations e

JERICO B. BACANI and Julius Fergy T. Rabago

Abstract This paper provides alternative techniques on solving some systems of dif-
ference equations. These techniques are analytical and much explanatory in nature
as compared to methods used in existing literatures. We applied these methods par-
ticularly to the systems studied by Touafek in his paper Touafek (Iran J Math Sci Info
9(2): 303-305, 2014, [33]). We found out that these strategies can be used also in
solving other systems that are closely related to our work. Interestingly, some of the
systems are found to posses closed-form solutions that consist of intriguing integer
sequences, such as those found in nature and polyenoids.

Keywords Difference equations - Systems of difference equations - Closed-form
solutions

1 Introduction

1.1 Background and Motivation

Let I be a subset of the set of all real numbers R and f : I**! — I be a continuously
differentiable function. Any equation of the form given by

Xn+1 =f(xn7xn—la""xn—k)’ n GNO =NU{0}5 (1)

is called a difference equation of order k + 1—a specific type of recurrence rela-
tion. It is known that for every set of initial conditions {xn}gz_ « C I, the difference
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Eq. (1) has a unique solution {x,}52 _, = {x,}% (cf. [15]). Some well-known differ-
ence equations such as the Fibonacci sequences [16, 37] were originally discovered
to model population dynamics. In present times, difference equations are fundamen-
tally important in various fields of mathematics and related sciences such as physics,
probability theory, biology, ecology, epidemiology, etc. They are used extensively in
both theoretical and empirical economics [29]. These equations are actually discrete
analogues of differential equations and are used in solving their continuous ‘coun-
terparts’ numerically. Difference equations also have great importance in analysis
of algorithms [30] and have valuable applications in digital signal processing [22].
For more applications of difference equations in physical, life and natural sciences,
we refer the readers to the monograph of Jagerman [14], the text of Kulenovié¢ and
Ladas [17], and books of Mickens [20] and Sharkovsky [31]. For a good introduction
about theory on difference equations, we recommend a book by Elaydi [6].

For the past few years, difference equations have attracted the attention of many
researchers. We have witnessed a rapid growth in the number of papers published
dealing with these types of equations. One of the hot topics that gains much interest on
this field is the problem of finding the closed-form solutions of some solvable systems
of nonlinear difference equations. This is advantageous on our part as researchers
for if we know the solution form, we can examine easily and predict the dynamical
behavior of such systems. We can also easily understand the concepts of boundedness,
asymptoticity and periodicity of the solutions.

In terms of solving linear difference equations, various methods can readily be
found in existing literatures. In [1], for instance, several methods have been presented
in solving special linear recurrence equations related to Fibonacci, Pell, Jacobsthal
and Balancing number sequences, but there are still no general methods available
for solving nonlinear types of difference equations. Also, as far as we know, not so
much effort has been done to provide readers analytical methods in solving systems
of difference equations. Nevertheless, the method of mathematical induction is usu-
ally used by most experts to establish the solution forms of these solvable systems of
difference equations (cf. [7-9, 33-36] and the references cited therein). We empha-
size, however, that this method has some disadvantages. For instance, it does not give
much detail on how could one derive analytically the solution form of a particular
system of difference equations. Meanwhile, Rabago [23, 27, 28] was able to study
intensively several systems of nonlinear difference equations by reducing them to
linear types through appropriate transformations. In fact, various techniques were
also devised to solve several nonlinear difference equations whose solutions were
expressible in closed-forms (see, e.g., [2, 11, 24, 28]), providing clear explanations
on some existing results that were first justified only through the induction principle
(see [25, 26] for instance).

In [3], Brand was able to find the solution form of the Riccati difference equation

a+ bx,
c+dx,’

x}’H—l: nEN(),
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through the transformation x, = y, — d/c. He examined completely its limiting

properties and obtained an interesting result related to continued fractions by using

the transformation y, = z,+1/z,. The same problem appeared and was considered

by Stevic [32]. In [13], Iricanin and Liu described in a simpler and more elegant way

the behavior of positive solutions of the higher-order difference equations
CXn—pXn—p—q

‘xn = —, n E NO’ (2)

Xp—g

where p, g € Nand ¢ > 0. The method employed by Iricanin and Liu to investigate
equation (2) uses some elementary properties of logarithms. This approach was
discovered independently by Rabago and was applied in [23, 28] in examining similar
problems. Moreover, this approach is found to be effective in dealing with such types
of problems, especially in determining the periodicity of solutions of some systems
of difference equations (cf. [23]).

In this work we revisit some systems of nonlinear difference equations which
were previously studied by Touafek [33]. This time, we use alternative methods in
deriving the solution forms of these systems of equations. One technique that we
find very powerful in addressing this problem is the so-called method of differences,
also known as the method of telescoping sums. This method simplifies the sum
Zflvzl {an — a1}, where {a,}} is some number sequence. More precisely, given a
number sequence {a,}), we get the identity

N

Z{an - anfl} =day — dp.

n=1

through ‘telescoping’. As we shall see in our discussion, this method works perfectly
in determining the solution form of the following system of difference equations

Yn—-3YnXn—-2 Yn—2Xn—1

s Y41 = ——, neNy, (5)
Yn—3Xn-2 + Yn—3Yn + YnXn—2 " 2yn72 + Xn—1

Xn+1 =

when reduced to linear types via appropriate transformations.
Now, in relation to our set objective, that is, to find the closed-form solution of
system (S), the following results and notations are needed.

Definition 1 (Periodicity) A sequence {x,}% is said to be periodic with period p if
Xntp = X, forevery n > —k.

Definition 2 ([10]) A solution {x,,}, of (1) is called eventually periodic with period
p if there exists an integer N > —k such that {x,}% is periodic with period p; that
iS, Xpqp = Xy, foralln > N.

The rest of the paper is structured as follows. In Sect.2, we present some pre-
liminaries which are requisites to our main results presented in Sect.3. Results are
accompanied by illustrations. Then, in Sect. 4, we end our paper with a summary of
discussion, plus suggested works for future investigations.
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2 Preliminary Results

2.1 Review of Integer Sequences

In the following discussion, we present two integer sequences that are essential to
our results.

Sequence No. A000045. The widely-studied Fibonacci sequence { f,,}5° satisfies the
second-order linear recurrence equation f,, 11 = f, + fu—1, withinitial values fy = 0
and f; = 1. Its first few terms, starting withn = 0, are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,
... (cf. Sequence No. A000045 in O.E.L.S [21]). This sequence can also be extended
into negative indexes. More precisely, one can generate the sequence {f_,}°—
the Fibonacci numbers with negative indexes—using the relation f_, = (—1)"*! f,,.
Hence, one easily findsthat f_; = 1, f» = —1, f_3 =2, f_4 = —3 and so on. This
number sequence is also known to posses many exciting properties (see, e.g., [5, 16,
37, 38]) and has been generalized in various ways (see, e.g., Larcombe’s survey paper
[18] about Horadam sequences—a second-order linear recurrence sequence named
after Horadam [12] for his extensive study of these numbers; and the interesting
paper of Lucas [19]). It’s Binet formula is given by

¢" — (1 —¢)"
N
where ¢ denotes the well-known golden ratio [5, 37]. In Sect. 3, we shall see how

the solution form of a particular case of system (S) can be expressed in terms of the
Fibonacci numbers. In this regard, the following lemma will be useful.

fn=

?ZEN(),

Lemma 1l Let {f,};° denote the Fibonacci sequence and {g,};° be an integer
sequence generating the number series

0, 1, 4, 17, 72, 305, 1292, 5473, ..., Gu+1 =490 + Gn-1, -- .-
Then, for all n € Ny, the following identities hold.
(l) In+1 — Gn = f3n+l;

. 1
(7i) Gny1+ gn = 3 {3gn+1 + 290 + gu—1} = frn+2,

1
(iii) 2gnq1 = z {942 = gu} = fanss-

Proof Consider the recurrence equation given by g¢,+; = 4g, + gn—1, With initial
values gy = 0 and g; = 1. We can find the Binet’s form for g, as follows: Using the
ansatz g, = A" (n € Ny), we obtain the quadratic equation P(1) = A> — 41 — 1 = 0.
Since P (1) = 0 has two distinct roots A; , = 2 & /3, we can express g, as

gn = Cl)\.’ll + Cz)\.g, ne N(),
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where ¢; and ¢; can be computed by solving the system of equations given by
ci+c1 =0 and Ay + A =1

Hence, we have

_ e+ -2V
- 24/5 '

VneNy: Gn

One can check that, indeed,

(6] — Q2+/5"— @2 —/5)"
gn() - 2«/3

o0
} — {0, 1,4, 17,72, 305, 1292, 5473, . . .}.
0

Identity (i). For all n € Ny, we have, using the relations ¢* = 2 + V5 and (1 —
$)’ =245,

L —gy= L@EA™ - @V @45 - 2=V
2 Gn+1 9n B 2\/5 2\/5
_e—1-9a-9) _ .
= — = fanpr.

Identity (ii). Furthermore, with the identities $?=3+ /5 and (1-—¢)2=3-
\/5, we have

_ VYT 2=V 245 -2 V5
Gnt1 + Gn = 2\/5 + 2\/5

o7t - =) —¢) s

= ﬁ = J3n+42-

Identity (iii). Noting that > = 2 + v/5 and (1 — ¢)? =2 — /5,

Q2+ ﬁ)ﬂ-H —-Q2- ﬁ)n+l _ ¢3n - - ¢)3n
25 V5

29n+l =2 = f3n-

This proves the lemma.

Remark 1 The number sequence {g,}§° is, in fact, the number sequence numbered
as Sequence No. A001076 in O.E.L.S. [21].

Sequence No. A000912. Consider the number sequence {u, (i, u1)}5° defined by
the recurrence relation, given its real initial values uy and u; (not simultaneously
Zero),
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Upy1 = Zun + 3un—la n= L. (3)

Its first few terms, with u( and u; set to 0 and 2, respectively, are given by, starting
withn = 2,

ur =4, us =14, uy =40, us = 132, ug = 424, uy; = 1430, ug = 4848, ...

With the usual approach in solving linear recurrence equations, the corresponding
Binet’s formula of u, is easily established as follows: Using the ansatz u, = A", n €
N, in Eq. (3) we get the quadratic equation P (1) = A?> — 2A — 3 = 0, whose roots
are given by A; = 3 and A, = —1. Since | # A,, then u,, can be written in the form
u, = ciA] + czA%, where ¢; and ¢; are computable constants. Indeed, ¢ + ¢, = ug
and 3c¢; — ¢; = u;. Computing for the unknowns c¢; and ¢;, we get ¢; = %(uo + uyp)
and ¢, = }1(3u0 — uy), respectively. Thus, the n-th term of the sequence {u,, (0, 2)}g°
can be found explicitly using the formula

1
U, = E {3" — (—1)"} y n e No. (4)

Interestingly, the sequence {u,, (0, 2)}5° = {0, 2, 4, 14, 40, 132, 424, 1430, 4848, .. .}
(with 1 and 0O replaced by 0 and 2, respectively, as its first two values) appears to be
Sequence No. A000912 in O.E.L.S. Apparently, this sequence, whose n-th term is
actually given by the formula

C(n), if nis even,
n-th term of Seq. A00912 =
C(n) — C(%5), ifnis odd,

c _ 1 2n
(n)_m(n)’

denoted as the n-th Catalan number (cf. Sequence No. A000108 in O.E.L.S.), seems
to have some sorts of connection with the number of bond-rooted polyenoids with
2n — 1 edges (cf. [4]). Consequently, with the above relations, we are able to describe
a new formula for the sequence A000912 in O.E.L.S. More precisely, we have the
following proposition.

where

Proposition 1 For all n € Ny, we have

—_—

ifn =0,
n-th term of Seq. A00912 =
{3"‘l — (—1)""} , otherwise.

N =
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3 Main Results

Let n € Ny and consider the following systems of nonlinear difference equations:

X _ Yn—3YnXn-2 y _ Yn—2Xn—1 (S 1)
1 - ki 1 - —7 .
" Yn—3Xn—2 + Yu—3Yn + YuXn—2 " 2yn—2 + Xn—1
Yn—3YnXn—2 Yn—2Xn—1
Xntl = s Yl = o, (5.2)
" Yn—3Xn—2 — Yn-3Yn + YnXn—2 ! 2yn72 + Xp-1
Yn—3YnXn—2 Yn—2Xn—1
Xnil = s Y= o, (S.3)
" Yn—3Xn-2 + Yn—-3Yn — YnXn-2 ! 2yn72 + Xp-1
Yn—-3YnXn-2 Yn—-2Xn—1
Xntl = s Yl = o, (S.4)
" Yn—3Xn—-2 + Yn—3Yn + YnXn—2 " 2yn72 — Xn—1
Yn—3YnXn—2 Yn—2Xn—1
Xn1 = Lo . Yl = —————, (8.5
Yn—-3Xn—2 — Yn-3Yn — YnXn-2 2)’,172 + Xp—1
Yn—3YnXn—2 Yn—2Xn—1
Xntl = s . Ve =, (S.6)
Yn—3Xn—2 + Yn—-3Yn — YnXn-2 2yn—2 — Xn—1
Yn—3YnXn—2 Yn—2Xn—1
g1 = — L M= ()
Yn—3Xn—2 = Yn—3Yn + YnXn—2 2yn—2 — Xn-1
_ Xn— _2Xp—
Xpil = Yn—-3YnXn-2 i Vil = Yn—2Xn—1 , (SS)
Yn—-3Xn—2 — Yn-3¥n — YnXn—-2 Zyn—Z — Xn—1

with real nonzero initial values x_, x_1, xo, y_3, Y—2, y—1 and yy.

In this study, we analyze the forms and behaviors of the well-defined solutions
of the above systems by taking into account the following substitutions on the phase
variables:

1
w,=— and z,=—, foralln € Ny. )
Xn Yn

Remark 2 By well-defined solutions of systems (S.1)—(S.8), we mean a solution
generated by the set of initial points {x,,}‘i2 and { y,,}(i3 taken outside the systems’
respective singularity sets. An initial set of points {x,}°, and {y,}°, that generates
a solution {(x,, y,)}{° of equation (S) with at least one of the denominators equal to
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zero for some least index n leads to an undefined value for x,,.; and/or y, ;. We call
this set of all such initial points the singularity set of equations (S). The singularity
set is also called the “forbidden set” in the literature (cf. [10, 17]).

Remark 3 We mention that four out of the eight systems above have already been
studied by Touafek in [33]. Particularly, Touafek established the solution forms of
systems (S.1), (S.4), (S.5) and (S.8) through induction principle. In this paper, as
alluded in the Introduction, we will use a different approach in establishing the
solution forms of these systems.

3.1 Solution Form of System (S.1)

Consider the system

Yn—3¥YnXn-2 Yn—2Xn—1
Xn+1 = s Y1 = — ———, nE I\IO-
Yn—3Xn—2 + Yn—3Yn + YnXn—2 2yn72 + Xp—1

Using the substitution defined in (5), and after some transpositions, we get the fol-
lowing transformed system of equations:

Wp+1 = Zn t+wy 2+ 23 2+ 23 = Wp+1 — Wp—-2,
Vn e No : 1
In+1 = 2wn—1 + Zn—2 — Wy -1 E{Zn+1 - Zn—2}~

Eliminating the first variable yields the following one-dimensional difference equa-
tion z,4+3 = 4z, + z,—3, for all n € Ny. Replacing n by 3n — i, where i =0, 1, 2,
and then iterating the right hand side of the resulting equation, we get

Vn € No:  z3uen—i =423n—i + 23(—1)—i
= 4{4z3—1)—i + Bw—2)—i } + LB-1)—i
= 1723(—1y4i +423(—2)—i
=17 {42302~ + Z3(-3—i } + 423—2)—i
= 7223, + 17234—1)—i

= Gn+123—i + GnZ—i>

where {g,}5° = {0, 1,4, 17,72, 305, 1292, 5473, ...} is Sequence No. A001076 in
O.E.LS. [21]). Now, referring to equation z3(,+1)—i = gn+123—i + gnZ—i, We have, in
view of the substitution defined in (5) and the expression for y;_; computed using
the original system (S.1),
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Gn+1 +£}1 _ {gn+1(2y_;+x1_i) +g_n}1
Y3—i Y—i Y—iX1—i Y—i
Y—iX1—i

© 2Gut1Y—i + {Gut1 + Gulx1—i

Vn € NO L V3m+D)—i = {

i=0,1,2.

For the first few terms of the solution {y,}{°, one can check that the formula works
well for i = 1, 2. However, for i = 0, we find that the solution form for y;, has an
x term. Hence, the exact form for y;, must be given by, in view of the expression
for x; computed using the original system,

2 +g,17"
Vn e NO D V3mgn) = { In+1 + 9n+1 gn}

X1 Yo
_ { 20041 (h-3%-2 +¥-330 + Y0X-2) a1 + }1
y-3Y0X-2 Yo
Y-3YoX-2

© {3Gnt1 + Gudy_3X_2 + 2Gut1Y-3Y0 + 20n+1Y0X—2

Now, with the formula for y, at hand, we can compute for the solution form of x,
through the equation w,_; = %{Zn+1 — Zp—2}. Todo this, wereplacen by 3n + 2 — i
where i = 0, 1, 2 and then use the substitution defined in (5) to obtain

1 1!
VHGN()Z x3n+17i=2 _— .
Y3m+1)—i Y3n—i

Fori = 0, we have

(3gnt1 + gu}y—3x_2 + 2gut1y-3Y0 + 2gn+1Y0x—2

Vn e Ny : X3n+]=2|:

y-3YoX-2
 (Bgn + ga1}y-3x2 + 2guy-330 + 29nY0x—2:|_l
y-3YoX-2
_5 [{3gn+1 — 29, — gnl}ysxz}1
y-3Yo0X-2
o [2{gn+1 — gu}y-3Y0 + 2{gus1 — Gn}Yox_2 ]1 _
y-3YoX-2

Meanwhile, fori = 1, 2, we have
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1 1 7!

Vit e Not xamers =2 [_ - }

V3(m+1)—i Vin—i
> |:2.gn+l))i + {Gn+1 + Gntx1-i
Y—iX1—i
2g5y-i 4G + g-1)X1-i }1
V—iX1—i
Y—iX1—i

{1 — gndy—i + Howr1 — gam)xin
Now, in reference to Lemma 1, we finally have the following theorem.

Theorem 1 Let {x, }92 and {y, }93 be non-zero real numbers such that y_ /xo, y—2/

Y1 € {—=fan/f3nr1}7° and (y_3yo + yox—2)/y-3x_2 & {— fans2/fans1}g°- Then,
every solution {(x,, y,)}{° of system (S.1) takes the form

y-3YoX-2 .
, fori =0,
Sanr2y-3x_2 + fing1Y-3Y0 + fansr1Y0X_2
Xappli = VX1
L , fori=1,2,
Fanr1y—i + frnXii
and
_ X_
Yy-3YoXxX-2 . fori =0,
Sanray_3X_2 + f3u43Y-3Y0 + f3n+3Y0X_2
Y3n+1)—i = Y_iX1i
fori=1,2,

Sant3y—i + fantaXi—i
where { f,,}5° is the Fibonacci sequence.

Note that the Fibonacci sequence grows to infinity as n increases without bound.
As a consequence and in view of the previous theorem, we see that every solution of
system (S.1) converges to zero as n goes to infinity. The following example illustrates
this observation.

Example 1 Figure 1 illustrates the long term dynamics of system (S.1) with random
initial values taken from the unit interval [0,1].

3.2 Solution Form of System (S.2)

Consider the system

X Yn—-3YnXn—2 y Yn—2Xn—1
n+l = ’ n+l — s~
Yn—-3Xn—2 — Yn-3¥n + YnXn—2 2y11—2 + Xn—1

, nGNo.
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Fig. 1 Behavior of a particular solution of system (S.1)

Using the substitution defined in (5), we can transform the above system into

Wyl = Zp — Wp—2 + Zn-3 <= Zn + Zu—3 = Wyl + Wy—2,
Vn € NO : 1
in+l = 211)”,1 + Zn-2 — Wp—1 = E{ZnJrl - Zn72}-

Hence, z, + zp-3 = Wyt + wy0 = %{Zn+3 -z}t %{Zn —Zp-3}= %{Zn+3 — zZn-3}.
Therefore, 2z, + 2z,-3 = Zy+3 — 2n—3 or equivalently, z,4+3 + z, = 3{z, + z0-3}-
Putting v, := z, + z,-3, we get v,13 = 3v,. Replacing n by 3n — i, where i =
0, 1, 2, and then iterating the right hand side (RHS) of the resulting equation leads
to

Vn e Ny : V3(n+1)—i = 3'11)3_[, i=0,1,2.

This in turn will give us the equation v3(,41)—; = Z3(u+1)—i + Z3n—i Which can be
rewritten as, after replacing n by j, z3(j+1)—i + 23— = 3/v3_;. By multiplying both
sides of the latter equation by (—1)/ and then summing it up from O ton — 1, we get

n—1 n—1
D"+ =Y (D gy + 2y =) (=3 v
Jj=0 j=0
(=3)"—1] _ (=)' (3" = (D"
= U3 ) = > ) V3.

The above relation can be rearranged to get
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1
VneNy: zzi =(—D"z + S UnV3—i, i=0,12.

Hence, in reference to Eq. (5) together with the definition of v,, we have

2y3_iy—i

, i=0,1,2.
2(=D"y3—i +un(y3—i +y-i)

VneNy: yypi=

Since the RHS of the above equation has the term y;_;, we further simplify it as
follows. Noting that y3_; = y_;x;—;/(2y_; + x1—;) foralli =0, 1, 2, we have

VneN 2y-i
ne : n—i —
0 73 2y_i +x1-;
2"+ u,} + yjun  ————
Y—iX1—i
YoiXi-i i=0,1,2.

T Uy A e + (=D

Notice that the RHS of the above equation depends on its initial values except when
i = 0. In this case, however, we can express ys3, as follows:

Yo
{u, + (="} + uny()/xl
Yo
Y-3X_2 — y_3Y0 + YoX_2 }
Y-3YoX-2

Vn € Ny : Yin =

{un + (=D"} 4+ unyo {

_ Y-3)Y0X-2
{n + (=1)"}y_3x_2 +u, {y_3x_2 — y_3y0 + Yox_2}

- Y-3)0t-2 . i=0,1,2.
{2u, + (=1)"}y_3x_2 — upy_3y0 + UnYoX_2

Now, on the other hand, by applying the same approach to w4+ + w,—»
= Zn + Zn—3, W€ get

n—1
(=1 i+ wig = (=D {wag - + wsji}
=0
n—1
= Z(_l)]{ZS(jJrl)—i + z3j-i}
=0

= (_1)n71Z3nfi + 7.

Using our result for the phase variable w,,, we get

1
VneNy: wyi— = (=D"wi_; + S UnV3-i, i=0,1,2.
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In view of the substitution (5), we obtain

2y3 i y—iX1-
2(=D"y3_iy—i +un(y3—i + y_i)xi—i’

Vn e Ny : X3nrl—i = i=0,1,2.

The above expression can be further simplified, as we did in our previous result, in
the following manner

VneNy: x = 2y-ixi—i
0° Xappl-i = ,
T =DMy X1} g y_ix1—i/ V3
_ 2y_ixi—i
- 2y_i +x1_; ’
2(=D"y_; +upxi—i} +upy—_ixi—; {;}
Y—iX1—i
it . i=0,1,2,

- {un + (—1)”})’4 + UpX1—i
where at i = 0, we have, for all n € N

Yo
uy + {un + (_1)11} )’O/XI

X3n41 =

Y-3Yo0X-2
(2u, + (="} y_3x_o — {un + (="} y_3y0 + {un + (="} yox o

The following theorem summarizes our previous discussion.

Theorem 2 Let {x, }(12 and {y,l}(i3 be non-zero real numbers such that they satisfy
the conditions that

(e )
X0 y-1 u, +(=DH"J, 7 1

—v_ B 3n o0 3" o0
y3yo+yoxz¢({_ } u{——} )
Y_3xX_2 u, +(=DH"J, u, ),

Then, every solution {(x,, y,)}{° of system (S.2) takes the form

and

Y-3Y0X—2
3ty 3x_p — {u, + (="} y_3yo0 + {u, + (=1)"} yox_»
Y—iX1—i
{un + (=1)"} y—i + unxi—i

, fori =0

X3n+1—-i =

fori=1,2,

and
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Fig. 2 Behavior of a particular solution of system (S.2)

y—3Y0X—-2
3"y_3X_2 — Upy-3Y0 + UnYoX—2
V—iX1—i
upy—i + {un + (=1)"}x1-;

, fori =0

Vin—i =

fori=1,2,

where {u, }§° is the sequence defined in Proposition 1.

Note that the sequence {u,};° grows indefinitely as n increases without bound.
Hence, it follows immediately from the above theorem that every solution (x,,, y,)
of system (S.3) goes to (0, 0) as n — oo.

For confirming the above statement we provide the following example.

Example 2 Figure?2 illustrates the long term dynamics of system (S.2) with random
initial values taken from the unit interval [0,1].

3.3 Solution Form of System (S.3)

Consider the system

X Yn—-3YnXn—2 y Yn—2Xn—1
n+l = ’ n+l = 5
Yn—3Xp—2 + Yn—-3¥Yn — YnXn—2 2yn—2 + Xn—1

y I’lENQ.

With the substitution (5), the above system can be written equivalently as follows
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Wptl = Zn + Wyp—2 — Zn-3 <= Zn — Zn—3 = Wyl — Wp-2,
Vn € NO : 1
Zntl =2Wpo1 + 22 & Wy—1 = E{Zn+l — Zn—2}.

Eliminating the phase variable z,, yields 2w, _» = w,4+; — w,—_», which is equivalent
to w,4+; = 3w,_». Replacing n by 3n — 1 —i where i =0, 1, 2 and then iterating
the RHS of this equation, we obtain

VneNy: ws,—;, =3"w_;, i=01,2,
or equivalently, with reference to Eq. (5),

1\"
VnGN()Z X3n_i=(§> X_i, i=0,1,2.

1

Notice that, at n = 1 and i = 2, we have x; = 3

the expression

x_p which obviously differs from

Y-3YoX-2

X1 =
Y-3X_2 + y-3Y0 — YoX—2

obtained from the original system (S.3). These two expressions are, in fact, equivalent.

To see this, we use the second equation in system (S.3). That is, we have, atn = —1,
y-3X_2
Yo=5————— <= 2y_3)0 = y-3X_2 — YoX—2
2y 3+x_
<= 3y-3Y0 = y-3X—2 + Y-3)0 — YoX-2
Y-3Y0 _1
y-3x—2+Y-3¥0— Yox—2 3
1 _3YV0X_
— —x_, = y-3YoX-2 ‘ 6)
3 Y-3X_2+Y_3Y0 — YoX_2

Furthermore, we find that the exact solution form for x,, is given by

1 n
(5) X_i, fori =0,1,

1\"! 3 YoX_
<—> { Y3 YoX-2 } fori = 2.
3 Y-3X_2+ y_3Y0 — YoX_2

Now, on the other hand, since z,,+; = 2w, —1 + z,—2, then, after replacing n by 3n +
1 — i, we have

Vn € No X3y =

VneNy: 23ptn—i-1 =2-3"w_; + 2341, i=0,1

Again, iterating the RHS of the above equation, we get
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VneNy: B3upgn-i—i =2-3"w_; + 234—i—1
=2-3"w_; +2-3" Wi + 23p-1)-i-1
=2.-3w_; +2- 3”71111_,‘ +2- 3"72w_,~ + Z3(—2)—i—1

= 2 . 3”11)_,' —+ 2 . 3”*1w_,- + -4 Zw_i +Z—i—1

3n+1 -1
:zil+2wi{T}, lZO,l

Hence, using the substitution defined in (5) and upon replacing n + 1 by n, the above
relation can be written equivalently in the form

V—1—iX—i
2{363" = D} yimi +x

Vn € No L Van—1-i = i = 0, 1.

Meanwhile, to obtain for the form of solution for y;,, we proceed as follows. Note
that, in a similar argument as above, we have

VneNy: 23uen=2-3"wi+23, =20+ 3" — Dwy.
Hence, in view of the substitution defined in (5) and the expression for x|, we have

1 3" =-n)"!
Vn € Ny : y3n={_+¥}
Yo X1

_ {i + 3" — D(y—3x_2 + y_3Y0 — Yox—2) }_l

Yo Y-3YoX-2
y-3Y0X-2

C 3y axa+ (3= Dy_sy— (3" — Dyox_o

Combining all of our results exhibited above, we arrive at the following theorem.

Theorem 3 Let{x, }92 and{y, }23 be non-zero real numbers such that they satisfy the
conditions that y_3x_» + y_3y0 — YoX—2 # 0, y_o, x_1, y_1/x0 ¢ {—1/21,}{° and
(y=3y0 — Yox—2)/y—3x_o ¢ {—Q2t, + 1)/2t,}5°. Then, every solution {(x,, y,)}{° of
system (S.3) takes the form

1 n
<§> X_i, fori=0,1,

VneNy: x3,_; = el
1 Y-3Y0X_2 .
— , fori=2.
3 Y_3X_2 + y_3Y0 — YoX_2

and
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Fig. 3 Behavior of a particular solution of system (S.3)

&7 fori =21,
2t y—i + X1-i
Vn € N() LoV = s
y-3YoX—2 .
, fori =0,
{2ty + 1}y 3x 2 + 21,y 3Y0 — 2t yox 2

where {,}3° := {1(3" — D} = {0, 1,4, 13,40, 121, 364, 1093, 3280, ... ).

Remark 4 We emphasize that the same approach employed in the previous section
can be used to formulate the solution form for the phase variable y,. However, we
intended to use a different method here to give the readers a different way to derive
the solution form.

It is evident from Theorem 3 that (x,, y,) — (0,0) as n — 0o (see example
below).

Example 3 Figure 3 illustrates the long term dynamics of system (S.3) with random
initial values from [0, 1].

3.4 Solution Form of System (S.4)

Consider the system

X Yn—-3YnXn—2 y Yn—2Xn—1
n+l = ) n+l — 5
Yn-3Xn—2 + Yn-3Yn + YnXn—2 2Yp—2 — Xp—1

, I’lGNo.

Using the substitution (5), the above equations are transformed into
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Wp+1 = Zn + w2+ 243 = 2yt 3= Wp4+1 — Wp-2,
Vn € NO : 1
Tngl =2Wpo| —Zpy = Wy = E{Zn+l + Zn-2}.

These relations imply that w,;; = 3w,_,. In reference to the previous case, we

readily have ws,—; = 3"w_;,foreachi = 0, 1, 2, for all n € Ny. Therefore, we have
1 n
Vl’lGN()Z X3n—i = (g) X_i, i=0,1,2.

Obviously, the above formula works well for i = 0, 1. However, for i = 2, the RHS
of the equation seems to be different from the form of solution, for instance of x,
obtained from the original system (S.4). To fix this problem, we must compute for
the exact form of x; from the original system. That is, we have

y-3YoX—2

X1 = .
Y-3X_2 + y-3¥0 + YoX—2

Hence, the exact solution form for x,, is given by

1\" Y-3YoX—2 :
— , fori =2,
3 Y-3X_2 + Y_3Y0 + Yox_2

1 n
(—) X_i, fori =1,0.
3

Now, consider the equation z,+; + z,—» = 2w, —;. Note that the homogeneous

Vn € N() L X3p—i =

equation z,,+; = —z,—» has the solution z3,_; = (—1)"z_;, where i = 0, 1, 2, for all
n € Ny. To see this, we can simply iterate the RHS of the equation z3,—; = —z3(u—1)—i
as  follows:  z3—i = —23—1)—i = (—1)?230—2)—i = (=1’ 23—3—i = -+ =

(=1)"z_;. Meanwhile, the non-homogeneous case z,+| + Z,—2» = 2w,—; can be
transformed, upon replacing n by 3n — i + 1 as in the previous case, as follows:

n
311 = 2Wa i — T == —2 i+ 2w Yy (=3), i=0,1,2.
=0

This implies that, upon replacing n + 1 by n together with the substitution (5) and
Proposition 1, we have

1 —1rl (3n — (=) -1
VneNy: Yo = [_ 4 (=D { (-1 ”
Y—i—1 X_; 2

Y-1-iX—i .
= , i=0,1,2.
Y—i—tp + (—=1)"x_;
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It can be verified that the formula above gives exact values for i = 1, 2; however,
a different form will be obtained for ys3,. Even so, the solution form for ys, can be
established in a similar fashion as above. Note that

n—1

23 = 2W34—2 — 23p—3 = -+ = —20 + 2w Z(—3)J
j=0

= —z04+ (=) tw, {w} ;

2

which, in turn, can be rewritten as, upon using the substitution defined in (5) and in
reference to Proposition 1,

w, (=17
Vin = {_ + } .
X1 Yo

Thus, in view of the form for x|, we finally have

u —nr) !
VneNy: yg,l:{—"+( ) }
X1 Yo
_ {Mn(Y—ﬂC—z + y-3¥0 + yox—2) n (=D" }_1
y-3YoX—2 Yo
y-3YoX-2

g+ (=DM y_3x_0 + upy_3Y0 + UnYoX_2

In conclusion, we have the following theorem.

Theorem 4 Let{x, }(12 and {y, }(13 be non-zero real numbers such that they satisfy the
conditions that y_3x_s + y_3yo + yox—2 # 0, y_2, x_1, y_1/Xo ¢ {—(=1)"/u,}°
and  (y-3yo + yox—2)/y-3x—2 ¢ {—[un + (=1)"1/u,}5°. Then, every solution
{Ctn, Y)IS° of system (S.4) takes the form

" Y_3YoX_2 .
- , fori =2,
3 y-3X_2+ y-3Y0 + Yox 2

1 n
5 —i> .=190’
(3) X fori

Y—iX1—i
y_itty + (=1D)"x1—;’
Y-3Y0X-2
{un + (=1)"}y_3x_2 + upny_3y0 + tnyoX 2

VneNy: x3,; =

and

fori =21,

VneNy: y3i=
, fori =0,

where {u,}§° is the sequence defined in Proposition 1.



184 J. B. Bacani and J. F. T. Rabago
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Fig. 4 The long term behavior of a particular solution of system (S.4)

Note that the sequence {(1/3)"}5° converges to zero as n — oo while {u,}g°
grows indefinitely. Hence, max{x,, y,} — 0 as n — 0o. As an illustration of this
observation, we provide the following example.

Example 4 Figure 4 illustrates a particular plot for the long term dynamics of system
(S.4) with random initial values from [0, 1].

3.5 Solution Form of System (S.5)

Consider the system

Yn—3¥YnXn—-2 Yn—2Xn—1
Xn41 = , Yol = —, KN E No.
Yn-3Xn—2 = Yn-3Yn — YnXn—2 2yn—2 + Xp_1

Using the substitution (5), the above equations are transformed into
Wptl = Zn — Wyp—2 — Zp-3 <= Zn — Zn-3 = Wpy1 + wy—2,
Vn € N() . 1

Znpl = 2Wp_1 + 252 = Wy = E{ZnJrl — Zn—2}.

From above equations, it follows that 2w, | = w4 + w,—_, orequivalently, w, | =
wy_>. Replacing n by 3n — 1 — i together with Eq. (5), where i = 0, 1, 2, we get

VneNy: Xai =X3p-n-i &= Xp_i=x, =012
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Hence, {x,}{° is periodic with period 3. The formula we have obtained above works
well for i = 0, 1. However, for i = 2, we will get the relation x3,_» = x_». Atn =
1, this equation will give us x; = x_,, which is inconsistent with the form of x,
obtained from the original system (S.5). This problem, however, can be fixed easily
by computing for x;. Thus, the exact solution form for x,, is given as follows:

Y-3Y0X-2
VneNog: x3,_; =4 Y-3¥—2—Y-3Y0 = YoX-2
X_i, fori =1,0.

, fori =2,

On the other hand, going back to the transformed equations, we have z,,; =
2w, —1 + z,—3. Replacing n by 3n — i — 1 in this equation and then using the relation
w3,—; = w—;, where i =0, 1, we obtain z34,41)—i—1 = 2w_; + 23,—;—1 Or equiva-
lently, z3¢41)—i—1 — Z3n—i—1 = 2w_;. Once again, replacing n by j and then sum-
ming up each side of the equation from 0 to n — 1, we get

n—1
Lp—i—1 = 2-i-1 = Z {Zs(j+1)—i—1 - Z3j—i—1}
j=0
n—1
:ZZw_i=2nw_,~, i=0,1.
j=0
Hence, z3,—i—1 =2nw_; +z_;_; for each i =0, 1, for all n € Ny. Thus, using
Eq.(5), we get
Y—i—1X—i .
Vn e Ny : i = i=0,1.
0 Y3n—i—1 2y 1+ x

Meanwhile, to find for the solution form for ys,, we replace n by 3j — 1 in the
equation 2w,_| = z,4+1 — Zy—2 and then sum up the resulting equation from 1 to n
in order to get

n n
Zn— 3= ) {237 — 23—} =2 wsja.
=1 j=1

Using the substitution defined in (5), together with the computed form for x3,_,, we
can rewrite the above equation as follows:

1 1
Vn e Ny —_— - — =
Y3n Yo — X3j-2
j_
_ 2n(y-3x_2 — y-3y0 — YoX—2)
y-3YoXx-2

which, when rearranged, becomes
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2n(y-3¥-2 = y-3%0 = YoX-2) i}l

Yy-3YoX—-2 Yo
Y-3YoX—2

© (2n+ Dy_sx_p — 2ny_3y0 — 2nyox_s

Vn e Ny : yg,,:{

Our previous discussion proves the following theorem.

Theorem 5 Let {x, }(12 and {y, }(13 be non-zero real numbers such that they satisfy
the conditions that y_3x_o — y_3¥o — YoX—2 # 0, y_o,x_1, y_1/x0 ¢ {—1/2n}{°
and (y-3yo + yox—2)/y-3x—2 & {(2n + 1)/2n}{°. Then, every solution {(x,, yn)}{°
of system (S.5) takes the form

Y-3YoX-2 .
, fori =2,
VneNy: x3,;j =1 Y-3¥-2—Y-3Y0o — YoX-2
X_i, fori=1,0,
and
B e fori=2,1
VneNy: y3— = 2ny_i +xi1-; o
. n—i — _ X_
Y-3Y0X-2 . fori=0.

(2n + Dy_3x_» — 2ny_3yo — 2nyox_»
The following result is immediate from the above theorem.

Corollary 1 Let {(x,, y,)}{° be a solution of system (S.5). Then, the sequence {x,}{°
is periodic with period 3 while the sequence {y,}° converges to zero as n increases
without bound.

The following example illustrates the virtue of the previous corollary. Notice that
the solution {x,}{° is periodic of period 3 while {y,}{° converges to zero as n goes
to infinity.

Example 5 Figure 5 illustrates a particular plot for the long term dynamics of system
(S.5) with random initial values from [0, 1].

3.6 Solution Form of System (S.6)

Consider the system

Yn—-3YnXn—2 Yn—2Xn—1
Xnt+l1 = s Yl = s —————————

, ne No.
Yn—3Xp—2 + Yn—3Yn — YnXn—-2 2yn—2 — Xn—1

In view of the substitution (5), the above equations are, therefore, equivalent to the
following transformations:
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Fig. 5 The long term behavior of a particular solution of system (S.5)

Wyl = Zpn + Wp—2 — Zn-3 <= Zn — Zn—3 = Wy — Wy—2,

Vn e Ny : 1
in+l = 2Wy_1 — Zp—2 — Wyp—1 = z{ZrH-l + Zn—Z}-

Clearly, the above equations imply that, upon eliminating the phase variable w,,
22y — 2243 = Zu+3 — Zn—3, Which can equivalently be written as z,,43 — 2, = 2, —
Zn—3. Replacing n by 3j + i and then summing up the resulting equation from 0 to
n, withi =1, 2, we get

n
VneNo: Z3ptn+i —2-i = Z{Zs<j+1)+i — Z3j+i)
j=0
n
= Z{ZSjJri — Z3(j=D)+i}
j=0
=23t — 23+, =12

Rearranging the resulting equation obtained above, we get the relation z3(,41)+i —
Z3n+i = Z—i — Z-3+i- Now, replacing n by j and then summing up each side of this
equation from O to n, we obtain

n n
Vi eNo: Zgrni =2 = Y {ZaGant — 234} = ) {2 — 2344}
j=0 j=0

=mn+Dlz—z3ul, =12
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Once again, after replacing n + 1 by n, the above equation can be rearranged to
obtain
VneNo: zzpri =+ D)z — nz_syy, i=1,2.

Therefore, in view of Eq. (5), we have

Yiy—-3+i

Vn € NO L Vangi = s
T+ Dy_sp —nyi

i=1,2. @)

Observe from the above formula that the RHS is dependent from y; and y, for
i =1, 2, respectively. So, in order to establish the exact expression for the n-th term
solution y,, we need to compute for y; and y,. Thus, in view of the original system
(S.6), we have, fori =1, 2,

o Ji3Xi2
= 2yi3 — Xi—o
Hence, we now have
VneNo: yaur = ViY—3+i _ 1
(m+ 1Dy s34 —ny, ntl —n
Vi Y—3+i
. 1
 (n+ DQyisz —xi2) _n
Yi-3Xi—2 Yi-3
Yi—3Xi-2 i=12.

T2+ Dyis— Qo+ Dxi o

Now, for the terms of the form ys,, we replace n by 3j on both sides of the equation
Zn+3 — Zn = Zn — Zu—3 and then sum up the resulting equation from 1 to n so that we
will have

n n
VneNo: zZ3uen —23 = Z{Z3(,i+l) — 23} = Z{Zaj — 23—}
=1 =1
= Z3n — 20-

Again, the above equation can be rearranged to obtain z3(,41y — 23, = 23 — 20, for
all n € Ny. Replacing n by j and then summing up the resulting equation from O to
n, we get

n

n
VneNy: 3m+1) — 20 = Z {Z3(_/+1) - Z3j} = Z {z3 — 20}
j=0 i=0

=m+ 1)(zz3 — z0)-
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In reference to the substitution defined in (5), we can rewrite the equation to obtain

n+1 n }_]
V3 Yo '

VneNy: Y3y = {

Now, from the original system of equations (S.6), we can find 1/y;3 as follows:

1_2y0—x1_2 1

Y3 YoX1 X1 Yo
_203x 2+ y3y0—yox2) 1
- y-3YoX-2 Yo
_ y-3x2+2y-3y0 — 2yox—2
- y-3YoX-2 ’

Hence, we now have

{ (n+ DO-3x2+ 2y 550 = 2y0x2) 7 }1

Yy-3YoX-2 Yo
y-3YoX—2

y_3x_2 +2(n+ Dy_3y0 —2(n + Dyox—»

VneNo: Y3

On the other hand, upon replacing n by 3n +i — 1, withi = 1,2, in w,_; =
%{Z}'H»l + anz}, we have

W3p—24i = E{ZSn—i + 3(—1)—i}
1
= 5{[(” + Dz —nz sy + [nzi — (n — Dz_34i ]}

1
= 5{@n+ Dz = @n = Dzsi).

Using the substitution defined in (5), we have

1 1[@2 1 2n —1
Vn e Ny - {2

X3n-2+i 2 Vi V-3+i
_1{(2n+1)y_3+,~—(2n—1)yi} P12
2 Y-3+iYi ’ o

or equivalently,
2y_34iYi
VnEN()I X3p—24i = Y5+ i=1,2.

n+ Dy_34i — 2n — Dy;’
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Again, we observe that the RHS of the above equation is dependent on y; and y, for
i =1, 2, respectively. So, in view of the form for y; and y,, we have

2 2
VneNo: Xnoti = 3T 2, =1 = Gn ¥ DQ2yis —xi2) 2n—1
Yi Y-3+i Yi-3Xi-2 Yi-3
Yi—3Xi—2 ’ i=1.2

- (21’1 + l)y,-,3 — 2nx,-,2

Now, to compute for the form of the terms x3,.1, we replace n by 3 in the equation
Wpil — Wy—2 = Zn — Zn—3 and then sum up the resulting equation from 1 to n. Hence,
we have

n n
VneNy: w3q —w = Z{w3j+l — W3(j—)41} = Z{ZBj — 23—}
o =

= Z3n — 20,

or equivalently, in view of the substitution (5),

1 1 1)
VvhneNy: x3ppp1={—+——— .
Y3n X1 Yo

With the expression for x; computed using the original system together with the form
of solution for ys,, we get

y-3x_2 + 2ny_3yo — 2nyox_»

y—3YoX-2

YosX_a+y_3vo —yox— 1|7
Y-3YoX-2 - %}

{y3x2 + 2ny_3y0 — 2nypx_2 4 Y30 T YoXa }1

Y-3Yo0X-2 Y-3Y0X-2
Y-3YoX-2
yo3x_o 4+ 2n+ Dy_3y0 — 2n + Dyox_s

Vn EN()Z X3n+1 Z{

+

Combining the results we have exhibited above, we arrive at the following theo-
rem.

Theorem 6 Let {x,}°, and {y, }(13 be non-zero real numbers such that y_i /xo, y_2/

yo1 & ((2n/@n+ DI U{@n + 1)/Qn +2)}§°) and (y-3y0 — yox_2)/y-3x_2 ¢
{=1/n}5°. Then, every solution {(x,, y,)}{° of system (S.6) takes the form
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Fig. 6 The long term behavior of a particular solution of system (S.6)

y=3)Y0X-2

, fori=3,
y-3x—2 + 2n + Dy-3y0 — 2n + Dyox—2
VneNo: x3p-24i = Vi_3Xi_)
@n 4 Dyj_3 —2nx; 5’ o -
and
Yi—3Xi—2 , fori=172,
201+ Dyis = @n+ Dxiy
VneNy: Yy = Y-3Y0X-2
, fori=23.

yo3x_2+2(m+ 1Dy3y0 —2(n + Dyox_2

In the following example, we provide a numerical illustration describing the long
term behavior of system (S.6) for some arbitrary initial values taken randomly from
the unit interval [0, 1]. Notice that, in the illustrated plots, the solution converges to
zero as n goes to infinity.

Example 6 Figures 6, 7 and 8 illustrate several plots for the long term dynamics of
system (S.6) with random initial values from [0, 1].

In contrast to the first two plots shown previously, the illustrated behavior of solution
of system (S.6) shown in Fig. 8 is diverging.

In view of the illustrations, it is natural to ask what particular set of initial values
will give a converging, diverging or periodic solution (if there is) to system (S.6).
The answer to this question shall be the subject of further investigation elsewhere.
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Fig. 7 Another possible long term behavior of a particular solution of system (S.6)
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Fig. 8 Another possible long term behavior of a particular solution of system (S.6)
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3.7 Solution Form of System (S.7)

Consider the system

Yn—-3¥YnXn-2 Yn—2Xn—1
Kntl = ’ Y1 = s ————————
Yn—3Xn—2 — Yn-3Yn + YnXn—2 2yn—2 — Xn—1

, HGN().

In view of the substitution (5), the above equations are therefore equivalent to the
following transformations

Wpt1 = Zp — Wyp—2 + Zn-3 <= Zn + Zn—3 = Wy41 + Wp—2,
Vn € N() : 1
Zntl = 2Wpo1 — 22 & Wy—1 = E{Zn-ﬁ-l + Zp-2}

With the above equations at hand, we easily obtained the equation 2w,,—» = w;,+; +
wy—p or equivalently, w,+; = w,—>. Following our result for system (S.5), we have

VneNy: Xypoi =X30——i = X—i=x_;, i=0,12,

which in turn implies that {x,}{° is periodic with period 3. Obviously, at i = 2, the
equation xs3,_» = x_; does not hold for n = 0, but, this can be fixed by solving for
x1 directly from the original system (S.7). Therefore, the correct solution form for
X, is given by

Y-3Y0X-2

VneNy: x3,; = { Y-3¥—2—Y-3)Y0+ YoX—2
X_i, fori =1,0.

, fori =2,

Now, from the transformation of the original system obtained through the substitution
(5), we have 2z, + 2z, 3 = {Zn+3 + Zn} + {Zn + Zn—3} or equivalently’ In+3 = Zn-3-
Hence, y,4+3 = y,_3 foralln € Ny which, in turn, implies that y, is periodic of period
6. Using this formula, at n = 0, we’ll get y3 = y_3. This value for ys, however, does
not agree with

yorir 1 1

= 2yo—x 2 1 T 2y_3x_5 — 2y_3)0 + 2y0x 2 1

X1 Yo Yy-3YoX—-2 Yo
Y-3YoX-2

y-_3X_3 —2y_3y0 + 2yox_>

which is obtained from the original system (S.7). So, in view of this result, the
solution for y, must take the form {y,}5° = {y—2, Y1, Yo, Y1, ¥2, y3} from which it
suggests that y; and y, must be computed from the original system. These results
now deliver the following theorem.
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Theorem 7 Let {x, }82 and { y,,}(l3 be non-zero real numbers such that the following
inequalities are satisfied:

(y—3x_2 — y_3y0 + yox_2) #0,

and
2y2 —x-1)Q2y_1 —x0)(y_3x_2 — 2y_3y0 + 2y0x_2) # 0.

Then, every solution {(x,, y,)}{° of system (S.7) takes the form

y-3Y0X-2

, fori =2,
VneNy: x3,; = { Y-3X—2— Y-3Y0 + Yox—2
X_j, fori=1,0,
and
_Yimstiz2 fori=1,2
2yi3 — Xi2
VneNy: Yonyi = Y-3YoX—2 , fori =3,
Y-3x—2 — 2y-3Y0 + 2yox—2
Yi—6> fori =4,5,6.

Corollary 2 Let {(x,, y,)}7° be a solution of system (S.7). Then, {x,}{° is periodic
of period 3 and {y,}{° is periodic of period 6.

For confirming the virtue of the above corollary, we provide the following example.

Example 7 Figure 9 illustrates the long term dynamics of system (S.7) with random
initial values taken from the unit interval [0, 1].

3.8 Solution Form of System (S.8)

Consider the system

Yn—-3¥YnXn-2 Yn—2Xn—1
Xnt1 = s Yn+1 =

——— neNp.
Yn—-3Xn—2 — Yn-3Yn — YnXn-2 2yn—2 — Xn—1

In view of the substitution (5), the above equations are therefore equivalent to the
following transformations

Wptl = Zn — Wyp—2 — Zn-3 <= Zn — Zn—3 = Wyl + Wy—2,
Vn € NO : 1
Zntl = 2Wpo — 22 & Wy—1 = E{Zn+l + Zn—2}
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Fig.9 The periodicity of solution for system (S.7) can be observed easily in above plots. The upper
plot clearly shows that the solution {x,,}{° is periodic with period 3 while it shows (lower plot) that
the solution {y,}{° is of period 6. These behaviors agree with Corollary 2

The above equations imply, upon eliminating the phase variable w,,, z,+3 = —3z,-3
or equivalently, z,.¢ = —3z,. Hence, replacing n by 6n — i, wherei = —3, -2, —1,
0,1, 2, we get Z6(n+1)—i = —3Zen—i. Iterating the RHS of this equation n times yields
Z6(+1)—i = (—3)"*!z_;. Then, using the substitution (5), we obtain
1 n+1
Vn € No L Ye(m+)—i = (—g) Y—i, i = —3, —2, —1, O, 1, 2.

In view of the above formula, we see that {y,}{° is of period 6. Moreover, at n =
0, we will have the equation ys_; = —%y,,-, i =-3,-2,-1,0,1, 2. For indices
i =—1,—-2,-3, the LHS of this equation depends on the terms y;, y, and ys,
respectively. In this regard, we need to compute for the values of y;, y, and y3 in
order to establish completely the closed form solution for {y, }7°. These expressions,
however, are easily obtained as follows:

. Y=2Xxa Yy = Y—1Xo
- 5 > 2 - 5~
2y —x 2y_1—xo

Y1 ®)

and YoX1 Yy—-3YoX—2
V3= = : )
2y0 — X1 X_2y-3 — 2yoy-3 — 2y0X_2

Now to find the solution form for x,,, we go directly to the original system (S.8). This
part needs a little more work. From the original equation
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Yn—2Xn—1
yn+1 = —7
2yn—2 — Xn—1
we could find x,_1, which is given by
2 _
X, | = EYnt1¥n-2 (10)
Ynt1 + Yn—2

Replacing n by 6n +7 — i, wherei =0, 1, 2, 3,4, 5, we get

2Y6(n41)4+2—i Y6(n+1)—1—i

Xén+6—i = .
Yo(+1)+2—i + Yo(u+1)—1—i

In view of the formula for y, we obtained earlier, the above equation can be trans-
formed into

X 2 < 1>n+1 2yriy_1-i
on+6—i — = —_— —_—
1 1 . .

+ 3 Yo—i + Y—1—i

Yo(n+1)—1—i Yéo(n+1)+2—i

fori = 0, 1. Now, using Eq. (8), we have

1 n+1
Vn € N() L Xen46—i = <—§> X_i, i = 0, 1.

For i = 2, in reference to Eq. (9) together with the formula for y,, we have

e N B 2 (]2
nelo: Yo =—F—"7-=("3) 1T 3

Yon+3 Y6(n+1) V3 Yo

1\" 2
- <_§) X_2y-3 —2yoy-3 —2yox—2 3
Y-3YoX-2 Yo

_ (_1)” { Y-3Y0X—2 }
3 X_2y-3+ Yoy-3 + yox—o ]

Meanwhile, using Eq. (8) and the formula for y,, we have
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2 1\" 2
VneNy: Xenyo—i = I I ={73 T 3
_l’_ -
Yo(n+1)—1—i Yomn+1)+2—i Y5—i Yo—i
Y 2
U3 | o 3
YVo—iX3—i Ya—i
1" —iX3—
—(—2) 2 U5y
3 Yaoi —2x3-;

Finally, at i = 5, we have, with reference to Eq.(9) and the formula for y,,

R B 2 (Y 2
mER0T Xontl = T T —\3 T, X253 = 2y0y-3 = Doxa

Yon Yon+3 Yo y-3Yo0Xx-2

_ (_l)" { Y-3Y0X-2 }
3 X_2y-3 — Y0y-3 — Y0X—2

In summary, we have the following theorem.

Theorem 8 Let {x, }(12 and { yn}(l3 be non-zero real numbers such that the following
inequalities are satisfied:

(X—2y-3 = Y0y-3 — Yox—-2)(¥—2 — 2x—1)(y—1 — 2x0) (x—2Y—-3 + yoy-3 + yox—2) # 0,

and
(X—2y-3 = Y0y-3 — Yox—2)(2y—2 — x—1)(2y—1 — X0) (x—2Y¥—-3 + Y0y—3 + yox—2) # 0.

Then, every solution {(x,, y»)}7° of system (S.8) takes the form

1\" 3YoX_
(——) { y-3Yox-2 }, fori =35,
3 X_2Y-3 — YoY-3 — YoX—2
" [ yr—ixs—i .
-5 - A ’ = 47 35
( 3) {)’2i —2x3-; fori
1\" 3 Vox_
Y e s
3 X_2y-3+ Yoy-3 + yox—2

1 n+1
__ X_i, ori =1,0.
3 Je

VneNy: Xewyn—i =

and



198 J. B. Bacani and J. F. T. Rabago

T
B initial values

1 : ]

x(n)

0 10 20 30 40 50

y(n)

0 10 20 30 40 50
n

Fig. 10 Behavior of a particular solution of system (S.8)

<_1)” { Y—(B+i)X—(2+i) } fori=—1,-2
3 2y Gty = X—@+iy )
1\" y-3Y0X_2 ;
VneNy: yoni = Y ' =
0 ( 3) {x2y3 = 2Y0y-3 = 2y0x2 fort
1 n
<_§> Y—is fori=2,1,0.

In view of the above theorem, it is evident that max{x,, y,} — 0 as n — oo since
lim,, oo (—1/3)" = lim,,, oo (— 1/3)”“ = 0 (refer to Fig. 10 for an illustration).

Example 8 Figure 10 illustrates the long term dynamics of system (S.8) with random
initial values from [0, 1]. The computed solution {(x,, y,)}{° to the system (S.8)
clearly converges to (0, 0) as n approaches infinity.

4 Summary and a Statement of Future Work

We have considered in this work several systems of nonlinear difference equations.
Some of these systems were already studied in [33]. The main goal of the paper was
achieved by providing the readers new techniques—more explanatory and efficient—
in determining the solution forms of these systems of equations. It has been shown
that the method of differences or telescoping sums works perfectly in deriving the
closed-form solutions. Furthermore, well-known integer sequences are seen in the
solution forms.
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Obviously, the techniques presented here can be employed in handling other
systems of equations related to our work. Thus, our next agenda is to continue
solving other forms of systems of difference equations via the method of telescoping
sums.

Acknowledgements This work was completed in 2016 when JFTR was still at the Department of
Mathematics and Computer Science, College of Science, University of the Philippines Baguio.
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A Note on g-partial Differential )
Equations for Generalized ¢-2D Hermite | @i
Polynomials

JIAN CAO, Tianxin Cai, and Li-Ping Cai

Abstract In this short paper, we generalize Ismail-Zhang’s ¢g-2D Hermite polyno-
mials (Trans Am Math Soc 369:6779-6821 (2017), [14]) with an extra parameter
and prove that if an analytic function in several variables satisfies a set of partial dif-
ferential equations of second order, then it can be expanded in terms of the product
of the generalized ¢-2D Hermite polynomials. In addition, we give some generating
functions as applications.

Keywords ¢-partial differential equation + Generating function - Generalized
q-2d hermite polynomials
1 Introduction

In this paper, we follow the notations and terminology in [9] and suppose that 0 <
q < 1. The compact factorials of g-shifted factorials are defined respectively by

1 — 4@ n—1 00
@qo=1, lalg:= l_q c @ =[]0-ag". @qe=]]0-ag"
a4 k=0 k=0

(D
and (a1, az,...c,am; @Qn = (a1; @)n(a2; @)n -+ - (@ q)n, Where m € N:= {1, 2,
3,...}andn € Ny := NU {0}.
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The complex Hermite polynomials { H,, »(z1, 22)},, = Were defined first by Itd
[15]

mAn

H, . (21,22) = Z(—l)k/d('Z) <Z>Zrln—kzg—k @
k=0

in his study of complex multiple Wiener integrals and applied in normal stochastic
processes. In recent years, several mathematical physicists studied complex Hermite
polynomials from mathematical and physical points of view, applying them to Landau
levels and coherent states [1], quantum optics and quasi-probabilities [21, 22]. (See
details in [1, 8, 10, 15, 21, 22], respectively.)

Just recently, Ismail and Zhang [12] defined the following two g-analogue com-
plex Hermite polynomials:

Definition 1 ([12, Egs. (3.1) and (4.2)]) For m,n € Ny and m A n = min{m, n},
the ¢g-2D Hermite polynomials are

Hyn(x, ylg) =) [ﬂ [Z} (—1 g ® (g: @ea™Fy" k. 3)
q q

k=0

mAn
Gm,n(x, y|q) = Z |:nk/l:| |:Z] q(mfk)(nfk)(_l)k(q; q)kxmfkynfk’ (4)
q q

k=0

(4:@n ; <k <
where [m] = | @GDGDn—x ’. if 0=k=n,
k q 0, otherwise.

The g-2D Hermite polynomials H,, ,(x, y|q¢) and G, ,(x, y|gq) transform into each
otherunder g — 1/q.Ismail and Zhang produced several orthogonality measures for
both families of g-2D Hermite polynomials, and found raising and lowering operators
for both families of g-2D Hermite polynomials together with the Sturm-Liouville
equations which they satisfy, see details in [12—-14].

Recently, Liu [17] introduced the concept of the ternary classical 2D Hermite
polynomials and then proved that if an analytic function in several variables satisfies
a set of partial differential equations of second order, then it can be expanded in terms
of the product of the ternary classical Hermite polynomials (see details in [17, 18]).

Motivated by Ismail-Zhang’s results for g-2D Hermite polynomials and Liu’s
method for classical 2D Hermite polynomials, it’s natural to ask if we can add an extra
parameter on Ismail-Zhang’s g-2D Hermite polynomials (generalized g-2D Hermite
polynomials) and prove that if an analytic function in several variables satisfies a set
of partial differential equations of second order, then it can be expanded in terms
of the product of the generalized g-2D Hermite polynomials. With this method, we
give a new proof and further generalize Ismail-Zhang’s results.
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Definition 2 For m, n € Ny, we define

mAn

.

Hyn(x,y,2lq) = Z[ﬂ [Z] (—D*q® (g; gyexm*y" Rk, (5)
k=0 q q
mAn m n

Gun(x,y,2lq) = Z[k] [k] (q; Qrg "Xy R (6)
k=0 q q

We will prove:

Theorem 3 If f(x, y, z) is a 3-variable analytic function at (0,0, 0) € C3, then

(I) f can be expanded in an absolutely and uniformly convergent polynomial
H,, . (x,y, z|q), if and only if f satisfies the partial differential equation

Oy O, @)
8q_1z a 8qx8qy ’
where f = f(x,y,z) and
a(9_qf:f(X)—f(QX)’ % :@{ﬁf}_ ®
2 X 0gx0yy Oqy | Ogx

(II) f can be expanded in an absolutely and uniformly convergent polynomial
Gun(x,y,z2lq), if and only if f satisfies the partial differential equation

B o2
A .
32" = o w0,y @

wheren, f = f(x,y, 2q9).

These expansion theorems allow us to easily deduce identities for generalized
q-2D Hermite polynomials.

The rest of the paper is organized as follows. In Sect.2, we give the proof of
Theorem 12. In Sect. 3, using Theorem 12, we obtain the Srivastava—Agarwal type
generating functions for the generalized ¢-2D Hermite polynomials. In Sect.4, we
gain the mixed generating functions for the generalized g-2D Hermite polynomials.
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2 The Proof of Theorem 3

In order to prove Theorem 3, the following lemmas are necessary.
Lemma4 ([12, Egs. (3.3) and (4.6)]) We have

o0 mqen
s™t (stz; q)
3" Hyn(r, v, 2lg)— = 2T max{lsal . lryl) < 1,
0 (@ D@ P (5X,1Y5 @)oo
(10)
o (m—n)?/2 §mn _qul/Z’ _tyql/Z; q
Z Gun(x,y,zlq) 1 = ( )°°, Istz] < 1.
m.n=0 G5 Pm(q; q)n (512; Qoo
(1)

Proof (Proof of Lemma 4) Direct summation in Egs. (3) and (4) yields (10) and (11)
respectively.

Remark 5 Taking z = 1 in Lemma 4, Egs. (10) and (11) reduce to [12, Egs. (3.3)
and (4.6)] respectively.

Lemma 6 For m,n € Ny, polynomials H,, ,(x, y, z|q) and G, ,(x, y, z|q) satisfy
the following partial differential equations respectively

3,1 ! 65
P {Hm n(-x Yy, Z|Q)} = - {Hm,n(-xv y, Z|Q)}v
-12 0yx0,y (12)
d, 92,
Gm n - Glnl’l
84/71{ (x,y,zlg)} = Dy a > {Gmanlx, y, zlg)}.

Proof (Proof of Lemma 6) Applying g-partial differential operator 7 38 o 0 both
sides of the Eq. (10), we deduce

> 33Hm,n s _st(S1Z; @)oo
= 04%0,y (@3 D (@ Pn (X, 1V @)oo

13)

Similarly, taking the g-partial differential operator on both sides of the Eq. (10) with
7 yields

> O+ Hyp st o st(s1Z3 9) o (14)
=0 aq*'Z (Cl, q)m(q; q)n (sx,1y; q)oo ’
Comparing the above two equation, we have
ad asz n s B Z le n st . (15)

=~ 94%04y (45 9)m(q; q)n 21z (g Pm(q; P

m,n=0
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Equating coefficients of s and ¢ on both sides of the above Eq.(15), we obtain the
first formula in Eq. (12). Similarly, we deduce the second formula in Eq.(12). The
proof of Lemma 6 is complete.

Lemma 7 Form,n € Ny, H,, ,(x, y,z|lq) and G,, ,(x, y, z|q) have the following
operational representation

Hyy o (x, y,21q) = (20,x05Y; @)oo{x™y"},
qmn m._n (16)
= - {x"y"}.
(q71204-1x04-1y; @)oo

Gm,l’l(xa ya Z|Q) =
Proof (Proof of Lemma 7) Direct computation gives

2 k m n 2 m—k n k .
6‘1 {men} — |:k] |:k:| (q fI) k < min{m, n},
&,xaqy q q

0, k> min{m,n}.

Using the g-binomial theorem, we get

mAan (_1)kq(’2()zk < 82
(204x0,y; Q)oo{x™y"} =
e ; (@ Dr \0yxd,y

k
) (X" y"} = Hpn(x, y, 2lq).
In the same way, we deduce the second formula in Eq. (16). The proof of Lemma 7
is complete.

We usually use the following Hartogs’s theorem to determine whether a function
is an analytic function in several complex variables. For more information, please
refer to [11, 19, 20, 24].

Proposition 8 (Hartogs’s theorem [11]) If a complex-valued function is holomor-
phic (analytic) in each variable separately in an open domain D C C", then it is
holomorphic (analytic) in D.

Proposition 9 ([20]) If f(x1, x2, ..., x) is analytic at the origin (0,0,...,0) €
CK, then, f can be expanded in an absolutely and uniformly convergent power series,

[ee]

ny np 1073
i, x, . 00,x0) = E D IS 0 4 B S

ny,na,...,n=0

Proof (Proof of Theorem 3) The proof of theorem can be deduced by induction.
Since f is analytic at the origin (0, 0, 0), we know that f can be expanded in an
absolutely and uniformly convergent power series in a neighborhood of (0, 0, 0).
Thus there exists a sequence A, , independent of x1, yi, z, such that
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)
f(xls Vi, Zl) = Z /\m,n,p x?")’qu'f (17)

m,n, p=0

Substituting the Eq. (17) into the g-partial differential equation (7) yields

o0 82 o0
2 : 1— m_n_p—l q m.n_P
(1_ql7)q p>\mnp X1 V1% z_ax 9 Z )\m,n,p'-xl yi<1
m,n, p=0 qX10g )1 m,n, p=0

(18)
Equating the coefficients of z} ~! on both sides of the Eq. (18), we obtain

00
(1 - qp)ql—p Z )\m,n,p : x;"y;l - a Z )\m n,p—1 " -x1 yl
m,n=0 X qyl m,n=0

Iterating this relation p — 1 times and interchanging the order of the differentiation
and summation, we deduce

= 1
Z Am,n,p'xinyil [ Z )\mnO X1 yl}

(q: Q)paxl q)’1 1.1=0

( 1)pq(p) a;p
—E:Amn.—xm"_ 19
(g 9)p - aqxfath { lyl} (1

m,n=0

Substituting the above Eq. (19) into (17) and interchanging the order of the summa-
tion, we gain

00 00
f(xh Y1, 21) = Zzlp Z )\mnp xllny?

p=0 m,n=0
P 2
— i (_l)pq(Z)le i Y . 3qp {xm n}
- ( N ) m,n,0 8)61)8 D 1N
p=0 q-9)p m,n=0 91 qyl

00
Z )\m,n,O : (Zlaqxlaqyl; q)OO{xiny?}

m,n=0

00
Z /\m,n,O : Hm,n(xh y1,21lq).

m,n=0

Conversely, if f (x1, y1, z1) canbe expanded in terms of H,, ,(x1, y1, 21|q), thenusing
Lemma 6, we can obtain Eq. (7). Similarly, we deduce the Eq.(9). This completes
the proof of Theorem 3.
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3 Srivastava—Agarwal Type Generating Functions for the
Generalized ¢-2D Hermite Polynomials

In this section, we obtain Srivastava—Agarwal type generating functions by g-partial
differential equations.

Theorem 10 For max{|sx|, |ty|, |stz]} < 1, we have

o0 m . n . .
s™(u/s; t"(v/t; ux,vy; v/t
Z Hpn(x, v, 219) (u/s; Omt"v/t;n _ ( Y5 @)oo |:u/s v/ ;q,slzi|.

o0 @ DOm@Dn (X 1y Qoo ux, vy
(20)
For max{|sx|, |ty|, |stz]} < 1, we have
S (_1)m+nq(m+n—2mn)/2um(s/u; q)mvn(t/v; q)n
Z Gm,n(x» y, Zlq)
0 (G D qs O
(—sxq'?, —1yq'?; @)oo s/u,t/v,0 zq
= N g, — |- 21
(—uxq'’?, —vyq'/?; q)003¢2 —q'"?/x), —q'?/vy) " xy @h

Remark 11 Lettingu = v = 0in Theorem 10, Egs. (20) and (21) reduce to Egs. (10)
and (11) respectively.

Proof (Proof of Theorem 10) We denote the right-hand side of Eq.(20) by

(Ux,vy; q)oo u/s, v/t
X, Y, = - 5 9 st .
fx,y,2) Cx Dy D 202 wx, vy 9512
It is easily seen that f(x,y,z) is an analytic function of x, y, z, for any x,y
and max{|sx|, |ty|, |stz|} < 1. Hence f(x, y, z) is analytic at (x, y, z) = (0, 0, 0).
Hence f(x, y, z) satisfies Theorem 3: there exists a sequence ), , independent of
X, y, z such that

oo
F3D =D A Hua(x, 3. 219). (22)
m,n=0

Setting z = 0, and using H,, ,(x, ¥, 0]g) = x™y" in the resulting equation, we obtain

Ux, vy Qoo i (52)"™ (/53 Qo (00" /1 D _ i N

,¥,0) = =
fo.y 0 (sX,1Y; @)oo (G Dm(q: Pn

m,n=0 m,n=0

Comparing the coefficients of x™y”", we gain
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\ :sm(u/S;q)mt”(V/t;q)n
" (@5 D g5 n

Substituting the above equation into Eq. (22), we deduce f(x, y, z) equals the left-
hand side of Eq. (20). Similarly, we can deduce the Eq. (21). The proof is complete.

4 Mixed Generating Functions for the Generalized ¢-2D
Hermite Polynomials

The Rogers—Szegd polynomials

_n”k _nnk(kfn)k
hn(am)—zua, gn<a|q)—2[k}q a (23)
k=0 k=0
and their corresponding generating functions

ih (alg)— : i @y EL" s

m(alg = , gm(alg) —————— = (as, s; q
— @ Dn @s,5 P’ (45 D >
(24)

play an important role in the theory of orthogonal polynomials, see details in
[2, 5-7, 23].

In this section, we deduce the following mixed generating functions by g-partial
differential equations.

Theorem 12 For max{|asx|, |bty|, |ty|, |sx|} < 1, we have

mn

o0
N
Y Hun(x, y, 20 hm(alg)hn (blg) —————
m,n=0 (qv q)m (l], q)n
_ _(abstzig)eo i (asz/y; q)j(ty)! i(btij/x,asij/y;q)k(sx)" s |: q77,0 . szq-f/v:|
(asx, bty @)oo “=4 (q:9)j(abstziq)j (= (q.abstzq), asz/y; @ aszq*/y " g
(25)
For |abstz| < 1, we have
> m=nP/2gmm(Zgsxql/2, —bryg/?:
q’", =btyg "1 q)
Z Gmn(x,y,219)8m(alq)gn(blq) — : = — o0
m,n=0 45 Dm(q; Pn (abstz; q) o
.l .
y i (—yq'?/(as2); ) ;(=1)/q2) (1/b)]
= (q,q/(abstz); q);
. &\ (—xq" 24T [(b12), —yq' 171 [(as2); q), (=g~ Ja)F & (g7 q)pg DO/ <_l)n
= (q.q"*1 /(abstz), —yq'/?/(as2): @) = (@ —yq' P asiqn \ a)

(26)
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Remark 13 For a = b = 0 in Theorem 12, Eqgs.(25) and (26) reduce to Egs. (10)
and (11) respectively. For z = 0 in Theorem 12, Egs. (25) and (26) reduce to results
in Egs. (24) respectively.

Proof (Proof of Theorem 12) We denote the right-hand side of Eq. (25) by

(abstz; @)oo~ (asz/y; q);(ty)

flx,y,2) =
(asx, bty: ) =5 (g3 q) (absyz: q),

[e¢]

XZ(btij/x,aszq"/y;q)k(SX)" p q77,0
(q,abstzql, asz/y; )~ | aszq*/y

1 q, sij/y] .
k=0

Since f(x,y,z) is analytic, Theorem 3 shows that there exists a sequence A, ,
independent of x, y, z such that

o0
FOY. D= Y Aun Hun(x.y.2lq). 27)
m,n=0

Setting z = 0 and using that H,, ,,(x, y, 0]g) = x™y" in the above Eq. (27), we have

(sx)™ ()"
G D q; @n

= Y hu(alg)h,(blg)

m,n=0

1
’ ’O =
fx,y,0) (sx, 1y, asx,bty; q)oo

= Z A - X"y (28)
m,n=0

Comparing the coefficients of x”y" in the above Eq. (28), we obtain

mqen

(@ D (@ Pn

Substituting the above Eq. (29) into Eq. (27) yields

st

» ) = hm hn b Hmn » ) ’
fOy2) = 3 hu(alghaBlg) Hon (x5, 210) s

m,n=0

which is the left-hand side of the Eq.(25). Similarly, we deduce the Eq.(26). The
proof of Theorem 12 is complete.
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5 Concluding Remarks

q-Partial Differential Equations are powerful methods, see details in [3, 4, 16, 25].
Compared to traditional combinatorial transformation methods used for analysis
of ¢g-2D Hermite polynomials, we build the relations between g-partial differential
equations and ¢-2D Hermite polynomials. That is, if an analytic function in several
variables satisfies a kind of g-partial differential equation of second order, then it can
be expanded in terms of the product of the generalized ¢g-2D Hermite polynomials.
This method is a useful tool for proving formulas involving the generalized g-2D
Hermite polynomials, which allow us to develop a systematic way to derive identities
involving others g-2D polynomials.
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Stability of a Spring-Mass System with )
Generalized Piecewise Constant i
Argument

DUYGU ARUGASLAN CINCIN and Nur Cengiz

Abstract In this paper, we address a damped spring-mass system and develop it
with piecewise constant argument of generalized type (PCAG). We investigate exis-
tence and uniqueness of the solutions of the proposed mechanical system. Then, we
give sufficient conditions guaranteeing the uniform asymptotic stability of the triv-
ial solution. While doing the stability examination, we use Lyapunov-Razumikhin
method developed by Akhmet and Arugaslan (Discrete and continuous dynamical
systems. Series A, vol 25(2), pp 457-466, 2009, [1]) for differential equations with
PCAG (EPCAG). Additionally, we present several examples with simulations.

Keywords Stability - Differential equations with piecewise constant argument of
generalized type - Lyapunov-Razumikhin method - Spring-mass system *
Simulations

1 Introduction and Preliminaries

Differential equations with piecewise constant argument (EPCA) are in the class
of differential equations with deviating arguments [11, 17, 18, 22, 23, 25, 27-29].
In these type differential equations, the greatest integer function is considered as
deviating argument. By taking any piecewise function instead of the greatest integer
function, EPCAG are introduced in the papers [2—4] and developed in the papers
[4-8]. Recently, research of EPCAG has attracted the attention of great number of
researchers [9, 10, 12-15, 30]. Using the theory of EPCAG, we aim to study a spring-
mass system which is one of the most remarkable models of real life problems and
plays an important role in many fields such as physics, mathematics, biomechanics,
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biology and engineering. In the present paper, we model the spring mass system
using PCAG as follows

my" (1) + cy'(t) + ky(t) = Ay(B(1)). (D

This model can be considered as a damped harmonic oscillator. Let R, N, Ny and R
be the sets of all real numbers, positive integers, non-negative integers and non-
negative real numbers, respectively, i.e., R = (—o00,00), N={1,2,3,...}, Ny =
{0, 1,2, ...} and Rt = [0, 00). Denote the n—dimensional real space by R", n € N,
and the Euclidean norm in R” by ||.||. Here, the positive constants m, ¢, k denote the
mass, the coefficient of damping, the spring constant, respectively. A and y corre-
spond to the magnitude of the generalized piecewise constant force and the displace-
ment of the mass, respectively. Fix a real valued sequence § = {6;},i € Ny, such that
0<86; <0y foralli € Nyand ; — oo asi — oo. Let us assume without loss of
generality that §; < ty < 6,4, for some i € Ny, where fy € R™ is an initial moment.
We denote D = [#y, 00). In (1), y € R, ¢ > tg,and 5(¢) = 6; ift € [6;,0;11),i € Ny.
There are numerous studies on the spring-mass systems with piecewise constant
argument in the literature [13, 14, 19].

With x1(¢t) = y(t), x2(t) = y'(¢), the damped spring-mass system (1) can be
reduced to a first-order differential equation as

x(t) = x2(1)

c k A 2)
50 = = Sxat) = S0 + S (B0)). (
m m m
Let x () = (x1(2), x2(¢)), and x;(¢), x(¢) be abbreviated as x;, x,, respectively,
throughout the paper. The definition of a solution of (2) on [#y, 00) is defined below.

Definition 1 ([1]) A function x(¢) is a solution of (2) on D if:

(i) x(¢) is continuous on ID;
(ii) the derivative x'(¢) exists for r € D with the possible exception of the points
0;, i € Ny, where one-sided derivatives exist;
(iii) equation (2) is satisfied by x(#) on each interval (6;, 0; 1) , i € Ny, and it holds
for the right derivative of x(¢) at the points 6;, i € Ny.

The main purpose of the paper is to give sufficient conditions for uniform asymp-
totic stability of the trivial solution of the mechanical system (2) ((1)) with PCAG,
by means of Lyapunov-Razumikhin method, without finding the exact solution of
the system and without transforming the system into a discrete one. Accordingly,
the paper is organized as follows: In Sect. 2, we give a remarkable inequality which
shows the relation between the value of the solution at the deviating argument 3(t)
and the value of the solution at any 7. In Sect. 3, we examine the stability of the trivial
solution of (2). While investigating the stability, we consider Lyapunov-Razumikhin
method developed by Akhmet and Arugaslan [1] for EPCAG. Then, in Sect.4, our
theoretical results are exemplified and simulations are presented. Finally, in Sect.5,
we present conclusions and discuss what can be done in future studies.
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2 An Auxiliary Result and Existence-Uniqueness of the
Solutions

In this section, a crucial auxiliary result which has an importance in the proofs
of stability theorems in the sense of the Lyapunov-Razumikhin method is given by
Lemma 1. Moreover, sufficient conditions guaranteeing the existence and uniqueness
of the solutions are presented in Lemma 2 and Theorem 1. The following assumption
will be needed throughout the paper:

(C1) There exists a positive number 0 such that 0ic1—6; < 0,i € Ny.

Additionally, introducing the following notations,

Q= e%[c-ﬁ-@k]’

0 _
m

[c+§k]+1>,

3=

-2 -2 -2
ﬁ:maxl{l —éfzi(cmk)} 1+ k1), {1— 0(k+|A|)Q} (1+09)},
m m
u:max{m,@()},

M =max {A> + k> + 2 |Alk + c |Al 4+ ck, m* + ¢* + c|A| + ck},
we will assume that the conditions below are valid:
—2

-1 — 0
(C2) 02— (c+6k)y <1, —(k+ 1A 2 < 1, ux < 1.
m m

1-—
(C3) 2—OM'? < 1;
m

(C4) GenoM'” (2\/A2 FKIA|+c|A]+ M1/2) <m.
Note that « is positive by the condition (C2).

Lemma 1 Let (Cl) and (C2) be satisfied. Then the following inequality

1 —1/2
[x(BENI < {; - u} lx 3
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holds forallt € D, x;, x, € R.
Proof Fort € [0;, 6;41), the solution (x1, x;) of system (2) can be written as follows

1

¥ =160 + f x2(s)ds, 4

0;

t

x2 = x2(6;) +/ <—£X2(S) - E)CI(S) + é161(671')> ds. ®)
m m m

0;

Then,

—_ t t s
0 c k
2l < )] + = (k+ 4D |x1<9i>|+—/|xz(s)|ds+—/[|xz<u)|duds.
m m m
0, 0;

i

Using a Gronwall type inequality, stated by Bykov and Salpagarov [16, 20, 21] for
integral equations including integral and double integral, for t > s > 6;,i € Z, we
can write

@ jﬁdﬂrfj%duds
lxa] < 1x2(0)] + . (k + [A]) [x1(0)] ¢ € it

0
< {l)@(@)l + (k£ 14D |x1(9i)|} £2. (6)

For (4), it is seen that

t

7
| < |x1<9,->|+/ [|xz(9i>|+g<k+|A|) |x1<e,->|}9ds

6i
=2

0 _
< |x1(6;)] |:1+Z(k+|A|)~Qi| + [x2(0)] 052. @)

Moreover, for ¢ € [6;, 6;11), we can write that

t

x1(0;) = x1 —/Xz(S)ds, 3

b
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; k A
00 = x5 — / (—n%xz(m — () + Wn(@-)) ds. )

i

Then, considering (6) and (7), we reach the following inequality:

_ 1 _ 1!
[x2(6)] < {1 —9Qn—1(6+9k)} (lx2] + 1x1(0) K1) . (10)

Additionally, it follows from (8) and then (6) that

m

- 0
Ix1(0)] < |xi1 +0 {|x2(9i)| + — (k+1A]D |x1(9i)|} £2.

From the last inequality, we obtain that

=2

-1
0 _

1 6] < {1 —— e+ |A|>9} (wl+e@o2). A

Using (10) and (11) together with the fact that 2 [uv| < u? 4+ v, it is obtained that

-2
x3(0) < {1 — 59%(0 +§k)} (14 k1) (x5 + x7(0)r1) (12)

and

2 -2
0 _ _
K20 < {1 — —(k+14D) 9} (1+0%) (x% +x§(9,-)9.(2) . (13)
Then, we get
XT(0:) +x30) < & (x] +x3) + kpx©:) + x3(6),
and so

-1
x1(0) +x3(0) < {1l —pr} 'k (x] +x3) = {% — u} (xf+x3). (19

1 —1/2

It follows from condition (C2) that || x (8,) || < {— - M} lx()| fort € [6;, 0;11).
K

Thus, (3) holds for all ¢ > ¢,. [l
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Now, for arbitrary initial moment ¢, sufficient conditions for the existence and
uniqueness of the solution of (2) on [0,-, 9i+1] can be seen with help of the following
lemma.

Lemma 2 Let (Cl), (C3) and (C4) be satisfied and i € Ny be fixed. Then for every
(&, xo) € [9,-, 0,-+1] x R?, there exists a unique solution x(t) = x(t, £, xo) of (2) on
[0[, 9,‘+1].

Proof Existence: Fix i € Ny and assume without loss of generality that §; < ¢ <
0;41. Define a norm || x (1), = max [x(2)]. Take x°(t) = x° and a sequence
[6:.€]

p+](t) — ):0 / -x2 (S) ds P >0 te [9 9 1)
xz(S)——xl (S)+—x1 (9) ’ - i» YVi+1)-
13

First, for p = 0, we have
[x'@) = x°@®)|| < max |x'@) —x°@)|
[6:.€]

= [x'®) - x|,

((A=0?
SI[Iel,ag)](/{ ) (x7) —|—<1+—>(x2)—|—
13

c|A Kkl o 0}1/2
2SS [ s,

Using 2 |uv| < u? + v?, the last inequality takes the following form

[x'®) = x°®)], < —1[Ila§/\/M {GD? + (D)2 }ds

So, we obtain

t

Jx' () — x°0)]), < _max/M1/2 [« ds < ~aM'2 [x°]. (15
[6:,€1 m
3

Similarly, for p =0 and p = 1, we get
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2

t 5 k
||x2(t) —x'() ||0 = I[gag](/ {(1 + %) (le(s) — xz(s)) (xl (s) — x?(s))2 +
13

+ 2}% |x3 () = x3 ()| |x{ () — x)(s)| +

+ %i (x!(6) — x06)) +

+2|i;| ! (0;) — x00) | k |xi (s) —x)(s)| +
+2—| 1) — x}(0)] ¢ |x3(5) —xz(s)|}1/2ds.

Using 2 |uv| < u® + v?, we have

1
@) —x'®], < Emag];/ {[KF* + k |A] + ck] (x] (s) — x)(s))?
¢
+ [m* + S + ck + ¢ |Al] (3 (5) — x3(5))*
+ (1Al + ¢+ k) |AL (] 0) — x00))*) " ds
5
< =M ||x" ) — x°@)| +
m

+— max/M1/2 [x'(s) — x(s) | ds.
m [0;.£]

Thus, by (15), we obtain

[ = x'0], = —9 M <] + —9 M| < 2 S0 M ]

By induction, it can be easily seen that we reach the conclusion

[0 - xt o], = 22— s o = L Lgagra) " o)
P =X (0], < 20— =2 n

Then, the condition (C3) implies that the sequence x”(¢) is convergent and its limit
x(t) satisfies

. o [ x2(s) .
x() =x +/ _ixZ(s)——xl(s)—}-éXl(gi) @
g -om " "

n [6;, £]. The existence is proved.
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Uniqueness: Let x/(t) = x (1, &, (x°)7), x/(&) = %)/, j =1,2, denote the
solutions of

/ x2() . A
x(t) = —ixz(t) — —x1(t) + —x1(6;)
m m m

where 6; < ¢ < 6;1,. Now, we shall show that xN! # (x? implies x'@) #* x%(1)
for every ¢ € [6;, ;,1]. The solutions x'(¢) and x2(¢) satisfy, respectively,

1 041 \ xZI(S)
x () = (x7) "‘/ [ _ﬁle(s)_Exll(s)+éx11(9i)}ds
¢ m " "

and

2 042 \ x%(s)
X)) = () +/ [_ixg(s) - fxf(s) + éxf(e,»)} as,
13 m m m
forall t € [6;, 6;11]. We can write
[x'@) = x*@) | < [« = O] +
1 t
J%/ {(k2 + ok +kAD (x1 () — x2(9) +
13

+(m? 4+ 4+ ck+c|A)) (le(s) - x%(s))2 +

(A2 + kAl +c|AD (x] @) — xf(ev,»))z}l/2 ds

< ) — GO + - BVATFKIAT+ Al [x' @) — @] +

t
—i—l / M'? ||x1(s) — x2(s)|| ds.
m
13

By Gronwall-Bellman inequality, we have

|x'@) = 20| < ' = @] en™" +

%WAZ + KA+ c[A] [ @) — x* @) ] ex™" . (16)

For t = 6,, it is true that
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|2 @) — 20| < | = (02| en™" +

+l§\/A2 +k|A|+c|A] ||x1(9i) _xz(ei)H phoM
m

Hence,

Lgpm2

em

m— 0/ A2+ k|A|+c|Alen™"”

|x' @) — x*@)| < [ =% .

Substituting the last inequality in (16) and by rearranging the terms, we obtain

Loagl/2
enM"

m— 0y A2+ k|A|+ c|Alent™"”

|x' () = x| < [ = @0 . (a7

If it is assumed on the contrary that there exists a * € [6;, 6;,1] such that x' (¢*) =
x2(t*), then we get
x3(s) — x5 (s)
o €2 1 k@ > 1
(' =ty = [ (T (30 700 = 0 =) g
€ 2 (36 — x 6
+m (xl( ) —x;( )))

BN

By the last equality, we reach

A

'
[CORECRN = ;/ [(36) = ¥ @) [m? + & + ek + 1] +
¢
+ (x7(s) —xll(s))2 [K* + ck + k|Al] +

+ (x7(0) — x11(0i))2 [A% +c|Al +k |A|]}1/2 ds

§<\/A2+k|A|+C|A|+MI/2) eing/z

=

0y1 042
m —0/A2 + k|A] + c|Alen®™" [t =7
< &t =7,

which is a contradiction due to the condition (C4). U

Then, the following theorem guarantees sufficient conditions for the existence and
the uniqueness of the solution of (2) on D, which can be proved by the mathematical
induction and in view of Lemma 2.
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Theorem 1 Assume that the conditions (C1), (C3) and (C4) hold true. Then, for
every (ty, xo) € RT x R?, there exists a unique solution x(t) = x(t, to, xo) of (2) on
D in the sense of Definition 1 such that x(ty) = xo.

3 Stability Analysis in the Sense of Lyapunov-Razumikhin
Method

Now, we shall consider the Lyapunov-Razumikhin method developed by Akhmet
and Arugaslan [1] for differential equations with PCAG in the following form

X't = f @ x@®), x(B1)). (18)

In the investigation of the system (18) [3—5], anew approach based on the construction

of an equivalent integral equation has been used. Definitions of stability for EPCAG

coincide with the definitions used for ordinary differential equations [1, 7, 12, 24].
Let us describe special sets as follows:

A={a e C(R",RY): strictly increasing and a(0) = 0},
and
B={beC(R"R"):b0)=0,b(s) > 0fors > 0}.

The technique developed in [1, 30] enables stability analysis by constructing a
positive definite Lyapunov function V (¢, x) which

(i) is continuouson D x R and V(¢,0) = O for all t € D,
(ii) is continuously differentiable on (#;, 6;+1) x R and for each x € R, the right
derivative exists at t = 6;, i € Ny;

and by finding conditions giving a negative definite derivative of V (¢, x) along the
trajectories of (18) whenever there exists a relation between the values of this Lya-
punov function at the deviation argument (3(¢) and any time ¢ according to Theorem
3.1 in [1] and Theorem 5 in [30]. Here, the derivative of V (¢, x) with respect to
system (18) is defined by

oV (¢,
ouvx

B (VV (1, x), f(t,x, ),

Vig (@, x,y) =
forallt # 6, inDD and x, y € R, where VV denotes the gradient vector of V with
respect to x [1, 30].

By this method, we investigate the uniform asymptotic stability of the spring-mass

system (2) ((1)) with PCAG. The following further assumptions will be needed for
the stability analysis in sense of Lyapunov-Razumikhin method:

(C5) 2k — |A] = 0 and (k + m)(2c — |A]) — 2mk > 0;
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(C6) min{ (2k — |ADk(k + ¢) [(k+m)(2c—|A|)—2mk]k(k+c)}>1.

|A| (k + ¢ 4 2m)(2k +m)’ (m +2)*m | A

3.1 Theoretical Results Together with the Construction of the
Lyapunov Function

Based on the Lyapunov-Razumikhin method developed in paper [1], the next theorem
gives sufficient conditions for uniform asymptotic stability of the trivial solution
of (2).

Theorem 2 Assume that the conditions (C1)—(C6) are satisfied. Then, the trivial
solution of (2) is uniformly asymptotically stable.

Proof Consider the following Lyapunov function
V(x) = (1+a)xi + (1 +b)x] + 2x1x2, (19)

k
where x = (x1, xp) anda = te

,b= % It is obvious that the Lyapunov function
(19) is positive definite:

V) = axl2 + bx% + (X1 +x2)? > axlz + bx§.

Therefore, we can find a constant ; = &§;(m, ¢, k) > 0 such that V > & (x{ + x3),
and thus we can find a function u € A which satisfies the inequalities u (||x||) > Oand
u (Jlx|)) < V (¢, x). Besides, a function v € A with the property v (||x]) > V (¢, x)
can be found:

V) <(+a)yxi+ 1 +b)x; +x7+x3=Q2+a)xi+ Q2 +b)x3,

and so, we can find a constant & = &,(m, ¢, k) > 0 such that V < & {x{ + x3}.
Define ¢(s) = os which is a continuous nondecreasing function for s > 0 and define

a function w(x) which is given by w(u) = —u? € B. Let us take a constant o such
m
that

. { 2k — |ADk(k + ¢) [(k4+m)2c — |A|)—2mk]k(k+c)}
1 < 0 < min .

|Al (k + ¢ + 2m)(2k +m)’ (m +2)°m |A|

Assume that R is a positive constant defined by

. m 1 2
R = min 2k—|A|—cr|A|<2-|-—) ~ 4 m,
k m k+c

,(1 + %) 2c — |Al) —2m — om (2+ %)2 kl—?—|c}'
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Let us evaluate the derivative of the Lyapunov function (19) with respect to #, for
t ;é 0;, i € Np:

2k
Vi (r x(B(0)) < —x7 {;} -x; {2(1 + b)% — 2] +

k c
+2x1x2{1+a——(1+b)——}+
m m

|A] |A]

+2— |x1| 1 (B + 2(1 + b)— |xa| [x1 (B(@)] .

m m
Here, it can be seen that the coefficient of x;x; is equal to zero. By the inequality
2 |u| |v] < u® + v?, the last inequality takes the following form

2k
Vi (x, x(B(0) < —x7 {;} - x5 {2(1 + b)% - 2} +

2 1Al |A] |A]|

S+ (4D QD) T axf(B)
_ 2 1Al s (1+ﬂ)2c_|A| -2+
=\ T m 2 k
A
+(2+5) I ado
S [2k 1A 5 m_2c — |A|
<2122t o2 tas D =20+
m m k m
A
4 (2 4 %) k'_+'c (ax}(B()) + bx3(B(1))) +
A
+ (2 + %) k' +'c x1(B(1) + x2(B3(1)))* .

Now, we can complete the proof based on the Theorem 3.2.3 in [1]. Therefore,

we have
5 |2k —|A] |A|(2+m) 1+ 2
PN B el i Y
! m k m k+c

m_2c — |A| m\2 |A]|
o X o (0 )

Vi, G, x(B(1))

IA

IA

Rioie
. (7 +x3)
= —w(llx)

whenever V (x(3(¢))) < ¥ (V(x(¢))) according to Theorem 3.2.3 in [1]. In other
words, the trivial solution of (2) ((1)) is uniformly asymptotically stable whenever
ax}(B(1)) + bx3(B(1)) + @1 (BW)) +x2(B0) < vax] +0bx3 + o (x1 +x2)
by (3). This completes the proof. (]
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4 TIllustrative Examples

In this section, taking the obtained theoretical results into account, we give some
examples together with simulations using the MATLAB package program.

Example1 Letm =3, c =15, k=3, A=0.03 in (1) and let §; = 41—0 + (=1

20’ i € Ny. So consider the following spring-mass system

X (1) = %2(0)
{xg(t) — —55,(0) — 31 () — 0.01x,(B(1)) G0

with PCAG. Assume that the solutions x;(¢) start at initial points x;(0.01) = 0.1,

— 5 - 1 —
i = 1, 2. By simple calculation, we obtain § = E,QQ—(C’ + 6k) = 0.25917606 <
m
-2
0 -
1, — (k+]A]) 2 =0.0021633704 < 1, pk =0.10166956 < 1; 2—OM'/* =
m

m
0.46435439 < 1; fenoM"” (2\/A2 TKIA|+clAl+ M'/2> = 0.95587091 < m =
3. So, the conditions (C1)—(C4) hold true, and it follows from Lemma 2 and Theo-
rem 1 that there exists a unique solution with the initial value (x;(0.01), x,(0.01)) =
(0.1, 0.1). Additionally, we have 2k — |A| =5.97 > 0 and (k +m)(2c — |A]) —
2mk = 161.82 > 0;

mi { (2k — [ADk(k + <) [(k +m)Q2c — IAI)—ka]k(k+c)}
|A] (k + ¢ +2m)(2k +m)’ (m 4+ 2)2m | A
=49.75 > 1.

Thus, (C5)—(C6) are satisfied. We can choose o = 49 which satisfies the inequality
1 < 0 <49.75. Hence, the conditions of Theorem 2 are satisfied, and Lyapunov-
Razumikhin technique says that the trivial solution of (20) is uniformly asymptoti-
cally stable as seen by Fig. 1.

i

Example2 Let m =3, ¢=16,k=3, A=0.1in (1) and let 6; =

+ (=1

20’ i € Ny. So, consider the following spring-mass system
K = ngt)6 0.1 (21
x;(1) = —?Xz(t) —x1(1) — ?xl(ﬁ(t))

_ 5 — 1 _
By simple calculation, we obtain 6 = 20’ 02— (c + 0k) = 0.0245393 < 1,
m
-2
0 1-
— (k4 |A]) 2 = 0.0018375 < 1, pur = 0.0484045 < 1; 2—OM"/? = 0.1129022
m m
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0.12

0.06 ]

0.02 k/\ ]

-0.02 b

~0.04 . . . . . . . .
0 5 10 15 20 25 30 35 40 45

Fig. 1 Time response of state variables x(¢) (the red one) and x;(¢) (the black one) of (20)
. 7

for t € [0.01, 42.50833333] while m = 3, ¢ = 15, k = 3, 0.03, 6; = 4l—0 + (=1 0’ i € Ny, at

(x1(0.01), x2(0.01)) = (0.1, 0.1)

0.15

0.05 ]

X1y

-0.05 b

~0.1 . . . . . . .
0 5 10 15 20 25 30 35 40

Fig. 2 Time response of state variables x(#) (the red one) and x;(¢) (the black one) of (21) for
t € [0.01,37.50833333] whilem =3,c =16,k =3, A=0.1,0; = 41—0 + (—l)i@,i € Ny, at
(x1(0.01), x2(0.01)) = (0.1, 0.1)
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< 1;0entM"" (2\/A2 +k|A|+c|A| + M1/2) = 0.2396368 < m = 3.So, the con-
ditions (C1)—(C4) are fulfilled, and it follows from Lemma 2 and Theorem 1
that there exists a unique solution with the initial value (x;(0.01), x,(0.01)) =
(0.1,0.1). We have 2k — |A| = 5.9 > 0 and (k +m)(2c — |A|) —2mk = 0.6 > 0;
{ 2k — |ADk(k + ¢) [(k +m)(2c — |A]) = 2mk]k(k +¢) | 1104
|A| (k + ¢ +2m) 2k +m)’ (m +2)2m |A| o
> 1. Thus, (C5)-(C6) are satisfied. We can choose ¢ = 1.1 which satisfies the
inequality 1 < o0 < 1.104. Hence, the conditions of Theorem 2 are satisfied, and
Lyapunov-Razumikhin technique says that the trivial solution of (21) is uniformly
asymptotically stable. The simulation showing the uniform asymptotic stability of
the trivial solution of (21) is given in Fig. 2.

5 Conclusion

In the present work, we address a damped spring-mass system which is modeled by
a piecewise function, i.e. by PCAG, as a deviating argument. Since PCAG is a more
general argument than the greatest integer function, we get a more general system
and thus obtain more general results for the mechanical system mathematically.
Thus, when examining stability of the system’s behavior, it is possible to obtain
more appropriate results in terms of the reality of the model. Although this argument
develops the systems, it makes difficult to find the exact solution of such systems.
Therefore, it is very important to be able to analyze the system without finding
its solution. In this case, Lyapunov methods are very useful [1, 26]. In our study,
Lyapunov-Razumikhin method [1], which was developed for analysis of applications
where there is a PCAG, is considered. This method is more applicable than other
methods available in the literature for similar analyses. With the help of this method,
i.e. the Lyapunov-Razumikhin method for EPCAG, results can be achieved more
efficiently. In order to observe this, studies conducted, for instance, by Lyapunov-
Krasovskii method, in the same direction can be examined. Moreover, in the present
paper, it is of great importance that the achieved results are supported by examples
and simulations. In future studies, the mechanical model considered in this study can
be developed by the argument (¢) which is introduced by Akhmet [8]. The argument
function ~(#) is of the alternate type which means that it is both advanced type and
delayed type. In our paper, the argument function 3(¢) is of delayed type only.
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A Darwinian Ricker Equation )

Check for
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Jim M. Cushing

Abstract The classic Ricker equation x;,; = bx; exp (—cx;) has positive equilibria
for b > 1 that destabilize when b > e’ after which its asymptotic dynamics are
oscillatory and complex. We study an evolutionary version of the Ricker equation
in which coefficients depend on a phenotypic trait subject to Darwinian evolution.
We are interested in the question of whether evolution will select against or will
promote complex dynamics. Toward this end, we study the existence and stability
of its positive equilibria and focus on equilibrium destabilization as an indicator of
the onset of complex dynamics. We find that the answer relies crucially on the speed
of evolution and on how the intra-specific competition coefficient ¢ depends on the
evolving trait. In the case of a hierarchical dependence, equilibrium destabilization
generally occurs after 2 when the speed of evolution is sufficiently slow (in which
case we say evolution selects against complex dynamics). When evolution proceeds
at a faster pace, destabilization can occur before ¢? (in which case we say evolution
promotes complex dynamics) provided the competition coefficient is highly sensitive
to changes in the trait v. We also show that destabilization does not always result in
a period doubling bifurcation, as in the non-evolutionary Ricker equation, but under
certain circumstances can result in a Neimark-Sacker bifurcation.

Keywords Ricker equation + Darwinian Ricker equation + Chaos - Evolutionary
game theory

1 Introduction

It is well known that difference equations can predict complex asymptotic dynamics
in the form of non-equilibrium attractors. The exponential or Ricker equation
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X(+1) = bx( exp(—cx)) (1)

is the iconic example of a period doubling route to chaos which, as b > 1 increases,
initiates after b = ¢* where the positive equilibrium x = ¢~! In b destabilizes. Despite
the ubiquity of this phenomenon in difference equations used as population dynamic
models, unequivocal evidence of its occurrence in biological populations is sparse
and is, for the most part, limited to populations manipulated in laboratory settings
[10]. Several explanations for this can be found in the literature. One is that popula-
tion time series data tends to be too short to be able to identify complex dynamics
and data is usually “noisy” and, as a result, it is difficult to tell the difference between
stochastic fluctuations and deterministic fluctuations (such as chaos) [5, 8]. Another
explanation is that most populations in the natural world are subject to interactions
with other species that can serve to dampen complex dynamics [7]. Yet another
explanation is that biological populations are subject to evolutionary change by Dar-
winian principles and that evolution might select to reduce dynamic complexity, i.e.
non-equilibrium dynamics such as periodic oscillations or chaos [4]. In this paper
we briefly consider the latter possibility by subjecting the parameters in the Ricker
equation (1) to evolutionary changes according to a methodology called evolution-
ary game theory (or Darwinian dynamics) [9]. This derivation results in a system
of difference equations that we refer to as a Darwinian Ricker model. In this short
note, we do not strive to carry out a study of the non-equilibrium dynamics that are
possible in Darwinian Ricker equations, but instead focus simply on whether or not
positive equilibria destabilize for b greater than some critical value and, if they do,
whether the critical value is greater or less than 2. If it is greater than ¢, then we say
that evolution selects against non-equilibrium and complex dynamics in the sense
that the de-stabilization of the equilibrium occurs for larger values of b than it does
when evolution is absent. If the critical value of b occurs before e, then we say that
evolution promotes non-equilibrium and complex dynamics.

Darwinian Ricker model equations are derived by evolutionary game theoretic
methods in Sect.2. The existence and stability (by linearization) of equilibria of
this system of two nonlinear difference equations are studied in Sect. 3. Conclusions
obtained from this analysis with regard to the effect of evolution on non-equilibrium
dynamics are discussed in Sect. 4.

2 A Darwinian Ricker Equation

In the Ricker equation (1) x represents the total size or density of a population
consisting of individual biological organisms. We interpret b as the inherent (i.e.
density free) per capita fertility rate. The coefficient ¢ is a measure of the effect that
increased population density has on the per capita fertility rate, as might be due to
competition with con-specifics for resources (food, space, mates, etc.). We refer to ¢
as the competition coefficient. We assume that both b and c, as coefficients relating
to an individual’s inherent fertility and susceptibility to intra-specific competition



A Darwinian Ricker Equation 233

respectively, are functions of a phenotypic trait of the individual, denoted by v, that
is subject to evolutionary change over time. Under the axioms of Darwinian evolution
(trait variability, heritability, and differential trait dependent fitness), the method of
evolutionary game theory [9] provides a dynamic model for the population density
and the population’s mean phenotypic trait, under the assumption that the trait has
a Gaussian distribution with fixed variance throughout the population at all times.
Thus, the distribution of the trait v in the population at any point in time is determined
by the population mean trait, which we denote by u.

In the Ricker equation we assume the fertility rate b is a function of v alone, since
it is the density free fertility rate of an individual with trait v (i.e. not subject to the
presence of other individuals and hence to the population mean u). The competition
coefficient ¢, on the other hand, we assume is dependent on the individual’s trait v
and that of other individuals with whom it competes, as represented by the mean trait
u. Thus we assume

b=bW), c=c(,u).

The density dependent fertility rate is then
r(x,v,u)=>b()exp(—c(v,u)x). @)
The Darwinian equations governing both population and mean trait dynamics are

X411 =1 (X, v, Mz)|u=u, Xt 3)

o 0lnr (x;, v, u,)

5 “4)

Urr1 = U+ 0O

v=u,

where 02 > 0 is called the speed of evolution (it is proportional to the constant
variance of v) [2, 9]. The trait equation (4) says that the change in mean trait is
proportional to the fitness gradient, with fitness taken to be In r (the equation is often
called Lande’s or Fisher’s equation or the canonical equation of evolution).

To further specify the model, we will place assumptions on b (v) and ¢ (v, u). In
this paper we assume that there is a trait at which inherent fertility has a maximum,
denoted by by, and we choose that trait to be the reference point for v. We also
assume that fertility » (v) is distributed in a Gaussian fashion around its maximum
by v = 0 and, without loss in generality, we scale the trait v so that the variance of
b (v) equals 1:

2
b (v) = by exp (—%) : )]

With (2) and this choice for b (v) , the Darwinian equations (3)—(4) become
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v
xi1 = bo (exp (=3 ) exp (—c o) x))| ©)
v=u,
dc (v, uy)
Upyl = U + o? <—Mt - Tt xz) . (7N

A common assumption that is made concerning trait dependency of competition
coefficients in Darwinian models is that they are functions of the difference v — u. In
other words, the competition that an individual experiences depends on how different
its trait v is from the typical individual in the population, as represented by the mean
trait . We make this assumption here and write ¢ = ¢ (v — u) where the function ¢ (z)
is continuously differentiable for all values of its argument z. Under this assumption

equations (6)—(7) become
u2
by <exp <—7’) exp (—c (0) xt)) X

de (2) x)
z=0 A

dz
As a final scaling, we assume population units for x are chosen so that ¢ (0) = 1
and obtain the model equations

Xt+1

2
Uy = U +0 (_uz -

U2
Xi41 = boexp (—é) exp (—x;) x; (8)
U] = —c10%x, + (1 — 62) U; 9
where
dc(2)
Ccl = .
dz z=0

There are three coefficients in the Egs. (8)—(9). The coefficient b is the maximal
possible fertility rate, as a function of the trait v, and the coefficient o' is the speed
of evolution. The coefficient c; is the sensitivity of the competition competition ¢ (z)
to changes in the difference z = v — u at when v = u. If ¢; # 0 then ¢ measures the
difference between the competition intensities experienced by individuals that have
the population mean trait and those whose traits are slightly different from the mean.
For example, if ¢; > 0 then an individual that inherits a trait slightly larger (smaller)
than the mean u will experience increased (decreased) intraspecific competition.
These interpretations can also hold, of course, if c; = 0 unless ¢ (z) has an extrema
at z = 0. In fact, a common modeling assumption is that maximum competition is
experience by individuals with the population mean trait, in which case c (z) has a
maximum at z = 0 and ¢; = 0. A commonly used model for ¢ (z) assumes it has a
Gaussian type distribution
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2
c(z) =exp (— < ) (10)

2w?
(with variance w?). In contrast, if for example

c(z) =exp(ci2) (1)

then competition intensity either decreases as v decreases or increases from the mean
u, depending on the sign of ¢;. We refer to this type of competition coefficient ¢ (z),
i.e. one for which ¢; # 0 as heirarchical.

3 Equilibria of the Darwinian Ricker

Our goal is the study the existence and stability properties of equilibria of the Dar-
winian Ricker equations (8)—(9) using by as a bifurcation parameter. We are interested
in equilibria (x, #) with a positive x-component, which we define to be a positive
equilibrium pair. The equations for a positive equilibrium pair are

2

1 = by exp (—%) exp (—x)
0= —cix —u.
If by < 1, then one sees from the first equation that there is no positive equilibrium

(x, u) . However, if by > 1 then there exists a unique positive equilibrium obtained
from the equations

2.2
cix
1 = by exp <_T> exp (—x), U= —Ccix (12)
The positive root of
c2x?
IT +x =1Inby (13)

yields the formulas for positive equilibria:

(In by, 0) ife; =0
(x (by) , u (by)) = <—l+4/71+2cflnbo 1—4/71+2cf1nbo) ife, £0° (14)
c% ’ c

The Jacobian of Egs. (8)-(9)

1,2 1.2
boe 2" e ™ (1 — x) —uxbge 2" e™*
—ci0? 1—0?

J(x,u):(
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evaluated at the positive equilibrium becomes, when Eq. (12) are utilized, is

_ 2
T (x (bo) 1 (bo)) = (1 * (Bo) e1x “’5”)

—Cc10 1—0o

which by (13), further simplifies to

1 — x (by) % (Inby — x (bO))> (15)

J (x (bo) , u (b)) = ( 2 2

—c|0 1—0o

Motivated by the question posed in Sect. | we are interested in the case when the
positive equilibria are stable for by >1, but near 1 and destabilize at some value of
by >1. For by near 1 the eigenvalues of the Jacobian J (x (by) , u (by)) are

M (bo) =1—(bo— 1)+ O (b — 1)?)
ha (bo) = 0% =140 ((bo — 1)?).

It follows by the Linearization Principle that for by greater than, but near 1, the
equilibria (x (by) , u (by)) are stable if 7> < 2 and unstable if 6> > 2. Therefore, we
will assume that o* < 2.

For the case ¢; = 0 the eigenvalues of this Jacobian are

AM=1—Inby and A, =1—0?

and the destabilization of the positive equilibrium occurs at the same critical value
as does the classic Ricker equation (1).

Theorem 1 Assume ¢ = 0 and 0% < 2 in the Darwinian Ricker equations (8)—(9).
There exists positive equilibrium for and only for by > 1. They are locally asymp-
totically stable if 1 < by < e and unstable if by > e* . When by = e? the Jacobian
has eigenvalue value —1.

In general when ¢; = 0, the trait equation (9) decouples from the population equation
(8) and lim,_, o u; = 0 under the assumption 02 < 2. In this case, the population
equation (8) is asymptotically autonomous and the classic Ricker (1) is its limiting
equation. This fact allows for further analysis of the dynamics of the Darwinian
Ricker model [1, 6], but we will not pursue further analysis here . Note that Theorem 1
applies when the competition coefficient has the Gaussian form (10).

Consider now the case ¢; # 0. To study the eigenvalues of the Jacobian we employ
the trace and determinant criteria which imply both eigenvalues have magnitude <1
if and only if the three inequalities

trd (x,u) < 14+detJ (x,u) (16)

—1—detJ (x,u) <trd (x,u) (17
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detJ (x,u) <1 (18)

all hold [3]. If inequality (16) or (17) become equalities, then the Jacobian has an
eigenvalue equal to 41 or —1 respectively. If inequality (18) becomes an equality,
then the Jacobian has a complex eigenvalue whose absolute value equals 1.

For (15) we have

trJ (x (by) , u (b)) =2 — x (by) — o> (19)
det J (x (bo) , u (b)) = (1 — x (bp)) (1 — %) + 20 (Inby — x (by)). (20)

Lemma 1 Assume c| # 0 in the Darwinian Ricker equations (8)—(9). Inequality
(16) holds for all o* and by > 1.

Proof Using (19) and (20), it is easy to show that inequality (16) reduces to x (by) <
2In by. From the Formula (14) and ¢; # 0, this inequality is

—1+4 /14 2ciInby

2
S

< 21Hb0

or /1 +2c?Inby < 1+ 2¢%In by, which is clearly true and completes the proof.

Next we turn attention to inequality (17).

Lemma 2 Assume c¢; # 0 and 6% < 2 in the Darwinian Ricker equations (8)—(9).
(a) If 5
2 <

1+ 8ct

o

21

then there exist a real by > € such that inequality (17) holds for by satisfying
1 < by < by. Inequality (17) is reversed if by is greater than but near b,. The
Jacobian J (x (b,) , u (b,)) has eigenvalue —1.

(b) If

2

1+ 8¢t

O'2>

(22)

then inequality (17) holds for all by > 1.

Proof Using (19) and (20) together with the equilibrium formulas (14), one can
re-arrange inequality (17) to the inequality

(2+02),/2c%z+1 <2+0%+2c (2 —62) +20%ciz

where we have defined
= In b() > 0.
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Since both sides are positive, we can retain the inequality by squaring both sides,
after which we re-arrange the result into an equivalent inequality 0 < g; (z) where
q1 (z) is the quadratic polynomial

q1 (2) == 2¢? (2 — 02) (02 +2+ (2 — 02) cf)
— i (2=0%) (24 (1 —4c}) 0?) z + 20%c2.

The quadratic ¢; (z) has a global minimum

— L oo (e +2) ) (o2 - 2
0 () = g (2-0%) (07 +2) (1+8cl)(“ 1+8c%>

attained at the critical point

2 — o2

e = ———>
4o4c?

(240 (1—4c)).

(a) Inequality (21) implies ¢; (z.) < 0 and hence the existence of two real roots of
q1 (z) . Since g1 (0) = 2¢f (2—0?) (2+ 0%+ (2—0?)cf) > 0, it follows that
the two roots are both negative or both positive, depending on whether z, < 0
or z. > 0 respectively. Clearly z, > 0 if 1 —4c? > 0. Suppose, on the other
hand, that 1 — 4c} < 0. Then z, > 0 if and only if 0% < 2 (4c] — l)_] which
holds by (21) since (4cf — 1)_1 > (1+ SC%)_]. Thus, in this case, ¢; (z) has
two positive roots. If we denote the smaller by z, then 0 < ¢ (z) for0 < z < z»
and ¢q; (z) changes sign as z increases through z,. Since ¢ (z2) = 0 inequality
(17) becomes an equality which means the Jacobian has an eigenvalue of —1.
Finally we need to show that z; > 2. One way to do this is to show g; (2) > 0
and ¢{ (2) < 0. Calculations in fact show g; (2) = 2c¢} (o + 2)2 > 0 and, using
21D,

1
q; 2) =i (6> +2) (0> +40%c} —2) < —EC% (6*+2)(2-0?) <O.
(b) Inequality (22) implies q; (z.) > 0and hence q; (z) > 0 for all z. This completes

the proof.

Finally we consider inequality (18).

Lemma 3 Assume c; # 0 and o < 2 in the Darwinian Ricker equations (8)—(9).
There exists a real b, > exp (1/2) such that inequality (18) holds for 1 < by < b,,.
The Jacobian J (x (b,) , u (b,)) has a complex eigenvalue of absolute value 1. The
inequality (18) is reversed for by > b,,.

Proof Inequality (18) can be re-arranged as

02 (2Inby — 1) < x (by) (6> + 1)
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which is true for 1 < by < exp (1/2) . For by > exp (1/2) we use the Formula (14)
for x (bp) and re-arrange the inequality as

0.2
1+(22—1)m6‘% <1/1+2C%Z

where z = Inby > 1/2. Since both sides are positive, we can square them and re-
arrange the inequality to obtain an equivalent inequality

0<q2(x) =07 (20> —0°c; +2) +2(—0* + 20" + 1)z —4o™c{7’

Since g (1/2) = (02 + 1)2 > 0, this quadratic polynomial has a unique positive
root z, > 1/2 and ¢, (z) > 0 for 1/2 < z < z,. Since g5 (z,) = 0, inequality (18)
becomes an equality, which implies the Jacobian has a complex eigenvalue of absolute
value 1. This completes the proof.

In Lemma 2(a), the real b, is equal to exp (z2) where z, is the smaller of the
positive roots of g; (z) . When (21) holds.a formula for z; > 2 is

(2 — 02) (2 +o0%— 4(72c%) — (02 + 2) \/(2 - 02) (2 —02— 80’26‘%)

40’4(3%

= (23)

When (21) holds define
by :==exp (z2) > e 24)

In Lemma 2, the real b, is equal to exp (z,,) where z,, is the unique positive root
>1/2 of g> (z) . A formula for z,, is

1—0o*+ 20’46% + (02 + 1) \/(02 - 1)2 + 4040%
in =

>

1
—. 25
dotct 2 (25)

Define
b, :=exp (z,) > e'/%. (26)

The three Trace-Determinant stability inequalities (16)—(18) for local stability,
together with the three Lemmas 1, 2, and 3, yield the following theorem.

Theorem 2 Assume c; # 0 and 6> < 2 in the Darwinian Ricker equations (8)—(9)
and let by and b,, be defined by (24) and (26).

(a) Assume
2 2

o<
1+ 8¢t
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and define b,, = min {b,, b,}. The positive equilibrium (14) is locally asymptot-
ically stable for 1 < by < b,, and is unstable for by greater than but near b,,.

If b,, = b, then the Jacobian has an eigenvalue —1 when by = b, . If b,, = b,
then the Jacobian has a complex eigenvalue of absolute value 1 when by = b,,.

(b) If
2 2
> ——
1+ 8¢t

then the positive equilibrium (14) is locally asymptotically stable for 1 < by <
b,. and unstable for by greater than, but near b,,. The Jacobian has a complex
eigenvalue of absolute value 1 when by = b,,.

Note that the denominators in the Formulas (23) and (25) for z, and z,, are identical
and the numerator of z, vanishes while that of z,, equals 2 when 02 = 0. Thus, for
o2 small it follows that b, < b,. Theorem 2(a) implies the following corollary.

Corollary 1 Assume c; # 0 in the Darwinian Ricker equations (8)—(9). For o?

sufficiently small, the destabilization of the positive equilibria occurs at by > e?.

For a fixed value of ¢; # 0, sufficiently large values of o> (but less than 2) can
result in destabilization at b,,, which can be either greater than or less than ¢%. Exam-
ples are provided in the next section.

4 Concluding Remarks

It is not our purpose in this paper to rigorously study the nature of the bifurcations in
the Darwinian Ricker equations that occur when the positive equilibrium destabilizes
(i.e. to formally prove that they do result in new invariant sets, what the direction of
bifurcation is, their stability properties, etc.). We focus only on the occurrence of the
destabilization an indicator of the onset of non-equilibrium and complex dynamics.
At the point of bifurcation, the equilibrium is nonhyperbolic and, as a result, the
linearization principle does not hold. This is irrelevant for our purposes here because
it is no concern to us what the stability properties of the equilibrium are at the point
of bifurcation; we are interested only in the fact that there is a change from equilib-
rium stability to instability before and after the bifurcation occurs. With regard to
the type of bifurcation that occurs, i.e. what kind of stable invariant sets replace the
destabilized equilibrium, we do point out in Theorems 1 and 2 what the Jacobian
eigenvalues are at the bifurcation point, specifically where on the complex unit circle
an eigenvalue lies. The reason for this is that this information tells us what kind of
bifurcation we expect to occur. If at destabilization —1 is an eigenvalue of the Jaco-
bian, then one expects a period doubling bifurcation. If the Jacobian has a complex
eigenvalue of absolute value 1, then one expects a Neimark-Sacker bifurcation to an
invariant loop [3].

Theorem 1 implies that when ¢; = 0 in the Darwinian Ricker equations (8)—(9)
the positive equilibria destabilize at by = e, which is no different from the non-
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Fig.1 a The familiar bifurcation diagram for the Ricker equation (1) with ¢ = 1. b The bifurcation

diagram showing the x component of the Darwinian Ricker equations (8)—(9) with ¢; = 0 and
2

o =1

evolutionary Ricker equation (1). The destabilization occurs because an eigenvalue
of the Jacobian increases through —1 as by increases through €2, which is indicative
of a period doubling bifurcation. This is also no different from the non-evolutionary
Ricker equation. A sample bifurcation diagram appears in Fig. 1b that illustrates this
bifurcation and what is apparently a period doubling route to chaos for the Darwinian
Ricker equations that is identical with the non-evolutionary Ricker equation (Fig. 1a).

On the other hand, if ¢; # 0 then Theorem2 shows that while destabilization
does indeed occur at a critical value of by in Darwinian Ricker equations, it does not
necessarily indicate a period doubling bifurcation nor that it occurs at 2, as in the non-
evolutionary Ricker equation. The critical bifurcation point is either b, > e? (which
is indicative of a period doubling bifurcation) or b, > ¢!/ (which is indicative of a
Neimark-Sacker bifurcation [3]). As stated in Corollary 1 equilibrium destabilization
occurs at b, when the speed of evolution is not too fast. In fact, b, can be significantly
larger than ¢ and the onset of complexity significantly delayed. Example bifurcation
diagrams appear in Fig. 2.

Another difference between the evolutionary and non-evolutionary Ricker models
is that destabilization does not necessarily result in period doubling. This occurs (for
larger values of o' and cf) when b,, = b,, which is indicative of a Neimark-Sacker
bifurcation. Sample bifurcation diagrams appear in Fig. 3. One example (Fig.3a) is
when non-equilibrium dynamics are delayed, i.e. b, > ¢* and the other (Fig. 3(b)) is
when they are advanced, i.e. b, < 2. In the latter case, one could say evolution has
promoted non-equilibrium and complexity dynamics.

For the Darwinian versions of the Ricker equation considered here, we arrive
at several general conclusions. If ¢; = 0 in the trait dependent density coefficient
c(v — u), then there is no change in the destabilization point for the fertility rate by.
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Fig. 2 The bifurcation diagram showing the x component of the Darwinian Ricker equations (8)—
Q) withac; =0.5ando? =0.5and b ¢; = 0.6 and 02 = 0.5. The Formulas (24) and (26) for b»
and b, in these two cases yield a by ~ 28.121 < b, ~ 2304.5 and b by ~ 207.13 < b, ~ 342.96
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Fig. 3 The bifurcation diagram showing the x component of the Darwinian Ricker equations (8)—
(9) witha ¢; = 0.8 and 62 = 0.8 and b ¢; = 2 and o2 = 0.8. For these cases, b, does not exist
and a b, ~ 8.5253 > €% ~ 7.3891 and b b, & 3.0004 < e?
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Both models destabilize in period doubling bifurcations at the same critical value
2. In this sense, we conclude that evolution has no effect on the onset of non-
equilibrium and complex dynamics. The opposite is true in the case of hierarchical
trait dependent competition coefficients, i.e. when c; # 0. In this case the onset of
non-equilibrium and complex dynamics is delayed to a larger critical value of by
when evolution procedes slowly (i.e. o2 is small). In this case, we say that slow
evolution selects against non-equilibrium and complex dynamics. If, on the other
hand, evolution procedes at a faster speed, then there are two differences with the
non-evolutionary Ricker equation, depending the magitude of the density effects, i.e.
the size of c). First, the onset of non-equilibrium and complex dynamics can lead
not to a period doubling bifurcation, but to a Neimark-Sacker bifurcation. Secondly,
in the latter case, the bifurcation point can be either later or earlier than ¢2. In the
latter case (and only in this case), which occurs for larger o2 and ¢ values, we can
conclude that evolution promotes non-equilibrium and complex dynamics.

These conclusions are drawn, of course, on the basis of the specific Darwinian
Ricker equation considered here. To what extent they remain valid for other Dar-
winian equations with complex dynamics awaits further study.
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Abstract In this paper we investigate difference equations related to number theory.
We apply a criterion to reduce these hereditary difference equations to finite length.
The solutions are polynomials in one variable. We analyze the solutions with respect
to convergence, periodicity, and boundedness. As an example we obtain and study
Chebyshev polynomials of the second kind. We also apply Poincaré’s theorem to
transform a non-autonomous difference equation to an autonomous version.

Keywords Arithmetic functions + Chebyshev polynomials - Dedekind’s
n-function - Polynomials - Recurrence relations

1 Introduction

Powers of Dedekind’s n-function are functions that are classically studied in number
theory [8]. Dedekind’s n-function is defined as a function on the upper complex half
plane H = {r € C : Im (t) > 0} by

n@®=q"*[1(1-4q")
n=1

employing ¢ = e*™i*. For powers thereof it can be shown that there are polynomials
P, (x) such that

B. HEIM (X))

Faculty of Mathematics, Computer Science, and Natural Sciences, RWTH Aachen University,
52056 Aachen, Germany

e-mail: bernhard.heim @rwth-aachen.de

M. Neuhauser
Kutaisi International University (KIU), Youth Avenue, Turn 5/7 Kutaisi, 4600, Georgia
e-mail: markus.neuhauser @kiu.edu.ge

© Springer Nature Switzerland AG 2020 245
S. Baigent et al. (eds.), Progress on Difference Equations and Discrete

Dynamical Systems, Springer Proceedings in Mathematics & Statistics 341,
https://doi.org/10.1007/978-3-030-60107-2_11


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60107-2_11&domain=pdf
mailto:bernhard.heim@rwth-aachen.de
mailto:markus.neuhauser@kiu.edu.ge
https://doi.org/10.1007/978-3-030-60107-2_11

246 B. Heim and M. Neuhauser

[e¢]

g =[[(1-¢) " =1+)_P.(0)q"

n=1 n=1

for x € C. The degree of the polynomial P, (x) is n. They satisfy P; (x) = x and the
recurrence relation

n—1

Px)="2 (a )+ > 0 (k) Py (x)) : (1)

n
k=1

where o (k) = }_, d is the sum of divisors of k. In number theory the values
P, (—24) play a special role. The Lehmer conjecture [7] on their non-vanishing is
still open. Note that P, (1) are the so-called partition numbers p, [1, 8]. For example
pi=1,p=2,p3=3,ps=5, ..., po =30, ..., pso = 204226.

To understand the dependence of these polynomials on the sum of divisors function
o we employ the following more general approach. We allow arbitrary functions
instead of o and additionally we also generalize the factor % to ﬁ, where h is an
arithmetic function. To summarise we make the following definition (compare also

[6D.
Definition 1 Let g : N — C be an arithmetic function normalised to g (1) = 1 and

h: N — R, increasing, with 4 (1) = 1. We define P¢" (x) by Pl”’h (x) = x and the
recurrence relation

n—1

PO () = —— (g (m+Y_ gk P (x)) 2)
h () ; '

for n > 2. We abbreviate P (x) by P, (x) = PY (x) if h = id the identity on N
and by Q, (x) = Q5 (x)if h (n) =1 foralln € N.

Note that for ¢ = o and & = id we obtain that P,f*id (x) = P7 (x) = P, (x) is
exactly the nth coefficient of the —xth power of Dedekind’s n-function.

In some cases, as in Example 2, it is possible to reduce the recurrence relation (2)
to one of bounded length see [6, Theorem 2.1] (and Theorem 1). We recall this in
Sect. 2.

Example 1 (Toy problems). Let g (n) = 1 for all n. Then

n—1
h _ X X
POt (x) = Y I1 (h(m) +1>

m=1

for n > 1 with (obvious) zeros x € {0, —h (1), —h (2),...,—h(n — 1)}

Example 2 (Chebyshev polynomials of the second kind). We obtain for g = id
a relation to classical orthogonal polynomials [2]. In [6, Corollary 2.5] (see also
Corollary 1 of Theorem 1) we obtained the reduced recurrence relation
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0n(X)=(@x+2)0p1 (x) = Op2(x) (n=3) 3)

and the initial values Q1 (x) = x and Q, (x) = (x + 2) x. As a solution of this recur-
rence relation in [6, part 1 of Remark 2.8] we obtained Q,, (x) = xU,_; (x/2 + 1) for
n > 1 where U, (x) are the Chebyshev polynomials of the second kind. By the well-
known relation U,_; (cost) = % for 0 <t < m the zeros of Q, (x) are x =0
and x = cos (km/n) for 1 <k §‘n —landn > 2.

Also the P/ (x) = ZZ=1 (Z:]i)’]‘{—t = %Lil)l (—x) are related to the associated

Laguerre polynomials [2], which have the form L (x) =Y ;_, (’:_";C‘)(;—f)k for
o> —1.

We assume throughout this work that the power series
o0
G@=) g+
k=1

has a positive radius of convergence R. Note in the case & (n) = 1 for all n € N that
(2) is actually a Volterra difference equation of convolution type [3, Chap. 6].

We are interested in the sequence (P,f7 h (x)) N depending on x. Note that the

ne

sequence P,f’h (0) = 0. Letx > 0. Then the sequence (P,,g’h (x)) . diverges if g is
ne
bounded from below (Proposition 1).

In Sect. 3 we are going to study the limiting behaviour (convergence, periodicity,
or boundedness) of the sequences (QZ (x))nEN for g (k) = 1 depending on x.

In Sect. 4 we are going to identify the behaviour of the sequences depending on x
for the more complicated case of Qi (x) related to the Chebyshev polynomials of
the second kind (Theorem 4).

Finally in Sect. 5 we are going to indicate that there is a close relation between the
sequences (P (x))neN and (0 (x))nEN provided by Poincaré’s theorem for non-
autonomous difference equations [3]. This is illustrated by the case g (k) = 1. The
0% (x) are usually simpler to study because in this case we actually have a genuine
Volterra difference equation.

2 Previous Results

In this section we recall some results from our work [6], which we employ in the
following.

Among the many obstacles that prevent the application of standard methods to
solve explicitly recurrence relation (1) is that to our knowledge it is not possible to
reduce it to a k-order recurrence relation, a recurrence relation of bounded length.
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For other functions than g = o, in [4] for polynomial g and in [6, Theorem 2.1]
for more general g, we stated a method to reduce them to bounded length. Let us
recall the result. Let 7 be the shift operator thatis Tg (k) = g (k + 1).

Theorem 1 Suppose that there are M € N and «, . .., ay € Cwithay = 1 such
that
M
Z o, T"g = 0. 4
m=0

Then a solution of (2) fulfills

f: h(n+m) B X Mi':n ) poh ) =0 )
M) iy & @ O ) P 0=

m=0

for n > 1 which is a recurrence relation of bounded length < M + 1.

Remark 1 Note that the reduced equation (5) can only be applied whenn > M + 1.
Thus instead of just one initial value P/ h (x) = x we use M initial values generated
from this by the first M convolution equations.

The following states Theorem 1 in the case of & (k) = 1 for all k € N. This is a
simplified version of [6, Corollary 2.5].

Corollary 1 Let x be fixed. Let h (n) = 1 for n > 1. In this case a solution of (2)
fulfills the difference equation

M M—m
> <cxm —X ) iy (k)) rm (¥) =0 (6)

m=0 k=1

for n > 1 with characteristic equation

M M—=1 /M-m
Z(xm)»m —X Z (Z Uik (k)) AT =0.
m=0 m=0 \ k=1

In Sect. 4 we are going to consider the case related to the Chebyshev polynomials
of the second kind (see Example 2). This is the case when g = id. For the Q3 (x)
holds the following (see [6, Lemma 4.5]).
Lemma 1 Let x € C\ {—4, 0} be fixed and D = D (x) = x*> + 4x. Define r+ =
Ay (x) = (x+2iJ5)/2, bo=b_ () = 522 and by = b, (x) = 52,
Then foralln > 1
09 (x) = (b_A""" + b2 ) x.

Later in this work we are going to employ the following [6, Theorem 7.1] to show
the divergence of certain sequences (see also [5] for a version where specifically
h = id is considered).



Difference Equations Related to Number Theory 249

Theorem 2 Let R > 0 be the radius of convergence of
oo
G(g) =) glk+1q".
k=1

Let k > 0 be such that G (%) < %(and% < R). Then

x|

Jh
’Rf (X)|> 2h(n)

h
PI% )|

if|x| >kh(n—1),n>1.

3 The Behaviour of Some of These Polynomial Sequences
in the Limit

Note that for increasing g, there is no neighbourhood of 0 such that all sequences for x
in this neighbourhood converge to 0 since Q,, (x) > g (n) x > g (1) x for positive x.
In case lim,,_, o, g (n) = oo this sequence is actually divergent.

Example 3 (Toy problem). Letg (n) = 1foralln € N.Then Q,, (x) = (x + 1)" ' x
is the solution to the recurrence relation. This can be observed from

n—1 n—1
1 -1
x+x E (x_|_1)k*1x=x+(x++x2.
k=1

Actually the recurrence relation reduces to Q,, (x) = (x + 1) Q,—; (x) forn > 2.
This explicit formula immediately implies the following properties:

1. x = 0is fixed.

If |x + 1] < 1 then (Q, (x)),cy converges to x = 0.

If |x + 1| > 1 then (Q, (x)),cn diverges to co.

If x+1/=1 and x #0 then (Q, (x)),ey moves around on the circle
{zeC:|z| = |x]}. If x = —1 4+ ¢™" with rational ¢ the orbit is finite and oth-
erwise infinite and dense in this circle.

Sl

We prove the last item 4 in the previous example in the following.

Proof (Item 4). Let |x + 1] = 1. Then x = —1 4 e™" for some ¢ € R.

If t € Q then there is an m € N such that (x + 1) = 1. Thus the sequence
0O, (x) = (x + 1)" x assumes only finitely many values.

For t € R\Q it is well-known that {nt + Z : n € Z} is dense in R/Z (see [10]).
Since exp is continuous this implies that {ez’“”’ in € Z} is dense in the circle of
radius 1 around O in the complex plane.
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If g is bounded from below we have the following general result on the sequences

(On (x))neN'

Proposition 1 Assume g (n) > ¢ for all n > 2 for some ¢ > 0. Then (Q, (x)),en
diverges for x > Q.

Proof We have

n—1
0, (x) =x (g M)+ Y gk Qs (x))

k=1
n—1 n—k—1

=xgm+xY gk [xgm—k+ Y g()Quijx)

k=1 j=1
n—1

> xg(m)+x*) gk g(n—Fk)
k=1

>x*(2c+ (n—3)c*) - o0

forn — oo.
We can also prove the following result for arbitrary g, in which we have a positive
radius of convergence of G (z) = Y 1o, g (k + 1) Z*.

Theorem 3 Let « be such that G (2/k) < 1/2. Suppose |x| > max {2, «}. Then
(P,f’h (h (n) x)) . diverges.

ne

Proof By Theorem?2 [6, Theorem 7.1] for 2 < m < n we obtain

|h (n) x|

g,h
|PS" (h (n) x)| > 2o

Py 0| = B P2t o o

Thus,
n
‘Png’h (h (n)x)’ > (%) )

follows by assumption on x.

Since /& (n) = 1 for all n € N in the case of the polynomials Qf (x) we obtain
immediately the following.

Corollary 2 Let « be such that G (2/k) < 1/2. Suppose |x| > max {2, «}. Then
(on ()c))neN diverges.



Difference Equations Related to Number Theory 251

4 Chebyshev Polynomials of the Second Kind

In this section g = id. Then Q,, (x) = xU,,_1 (x/2 4 1) where U,, (x) are the Cheby-
shev polynomials of the second kind (see Example 2). We prove now for x € C the
following behaviours of (Q,, (x)),cN-

Theorem 4 1. Q, (0) = 0 for all n.

2. Ifx =2cos (km/n) —2for1 <k <n — 1then (Q, (x)),en has period d where
d | 2n.

3. If =4 < x < 0 and x is not of the form 2cos (km/n) — 2 for some n € N and
some 1 <k <n—1 then (Q, (x)),cN generates a bounded sequence dense in
X _ X

\/—)c—)c2/47 \/—x—x2/4 )

4. Ifx € C\ (—4,0] then (Q, (x)),cy diverges.

the interval

In the following we prove this theorem by several auxiliary results.

Lemma2 Letn >2and 1 <k <n — 1. Then cos (kx/n) is a zero of Qg (x) for
all ¢ € N.

Proof We have x = cos (%J‘[) = cos (%n) Thus x is also a zero of Qy, (x) for all
¢ eN.

By the following lemma we show that for all of these values x = cos (kmr/n) that
O (x) is 2n-periodic for m > 1. Thus, the proof of part 2 of Theorem4.

Lemma 3 Any zero x = cos (krr/n) for somen € Nand 1 <k <n — 1 generates
a 2n-periodic sequence Q,, (x) form > 1.

Proof Then Qg, (x) =0. We show Qgyix (x) = —Qgy—k (x). Obviously this
holds for kK = 0. Suppose now 1 < k < ¢n — 2 and that for 0 < j < k — 1 holds

Qentj (x) = —Qeu—j (x). Then

Q£n+k (X) - (x + 2) Q5n+k—1 (x) - QZ11+k—2 ()C)
=—(x+2) Qi1 (xX) + Qenir2 (x)
=—=(x+2)Quir1 () + & +2) Qeair1 () = Qpni (x).

For k <2 (£ — 1) n — 2 this implies

O2enyk (X) = —Q20n—k (x) = —Q2t—)nsn—k (X) = Q2e—yn—n+k (X)
Q2(e-yntk (X) .

Hence Q,, (x) is 2n-periodic.

The following proves part 3 of Theorem 4.
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Lemmad4 If —4 < x <0 the orbit generated by (Q, (x)),cn is bounded. If
t = arccos (x/2 + 1) ¢ wQ then the sequence is dense in

x 3 x
J=x —x2/4  J—x—x2/4|

sin(nt)
sint

If

=

Proof Let t =arccos(x/2+1). Thus |Q, (x)| = |x L .
N —x—x2/4

t ¢ wQ then it is well-known that {nt 4+ 27Z : n € Z} is dense in R/ (27 Z). Since
sin is continuous {sin (nt) : n € Z} is dense in [—1, 1].

Finally the following proves part 4 of Theorem4. Here standard methods (see
e.g. [3]) can be used to solve the recurrence relation via the characteristic equation
(see Lemma 1 [6, Lemma 4.5]).

Proposition 2 [f x € C\ (—4, 0] then the sequence generated by Q, (x) diverges.

Proof For x = —4 this is easy to observe (see also [6, part 3 of Remark 2.8]).
The characteristic equation of (3) is

—(x+2)A+1=0. 7)

If A+ = A4 (x) are the two solutions of (7) then A, A_ =land Ay +A_ =x + 2.
Thusi_ = )Jrl.Forx < —4orx > Oweobtain A = (x + 2)2 —4=x+4)x>0.
Thus both A are real and Ay # A_ since x % 0, —4.

Now let x =a +ib € C\R wherea =Re(x),b=Im(x) e R. Let A, = a +
i witha =Re(Ay), 8 =Im(A;) € R. As we have already observed A, A_ = 1.
Thus ;Jr’gz =27 _k_ =x+2—2 =a~|—2—oz~|—(b—,3)i. From the imagi-
nary part we obtain — 42 52 = b — B. Hence o> + % = ;ﬁ 5 # 1 since by assump-
tion b = Im (x) # 0. Thus one of [A,|or [A_]|is > 1.

In all cases i.e. x < —4 or x > 0 or x € C\R we Obtained in [6, Lemma 4.5]
that 0, (x) = (b A" +b_A""") x forn > T withby, = 5= andb_ = £,
From Ay +A_ =x 42 and Ay # 0 it follows 1mmed1ately that by # 0. Hence
(Qn (X)), diverges as one of the absolute values of A, is strictly larger and one

strictly less than 1.

5 Relations Between Two Sequences of Polynomials

In this section we link the recurrence relations of PJ (x) and QY (x) for g (n) = 1by
the following Theorem of Poincaré [9] adapted to the case considered in the present
work (for its general form see [3, Theorem 8.9]). Recall that for g (n) = 1 we obtain
Pl (x) =*2=1pY (x) = (=1)" (7F) forn > 1.
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Theorem 5 (H. Poincaré [9]) Assume that P] (x) satisfies a recurrence relation of
finite length. If the limit for each of the coefficients in the recurrence relation exists
and the roots of the characteristic equations with theses limits have distinct moduli

P
then either the solution to the recurrence relation is eventually 0 or lim,,_ oo P (’8)
1

equals a root of the characteristic equation with the limits of the coefficients.
For the coefficient we obtain

. o x+n-—1
lim —— = 1.
n—00 n
In the recurrence relation for Q, (x) we have the term x + 1. But if we con-
sidered nx instead of x then lim,_ ’“‘J“n—"_l = x + 1. Unfortunately P, (x) =

P, (nx) does not fulfill the same recurrence relation as P, (x) but only 13,1 (x) =
(+1=1P )= (x+1-1) %Pn_l (x).

n

Py_1(nx) ( —x )*X.

Theorem 6 Let x < —1 then lim,,_, o oo = (5

Proof We obtain

1 Pt @0\ _yp In (P |
(7 ) =Bt ) =B = ):0)

n—1

=Zln(—nx—k)—ln(—(n—l)x—k).

k=0
The terms in the sum can be written as an integral

1

m(_nx—k)—ln(—(n—1)x—k>=fo PR e

As Riemannian sum for n — oo we obtain

-1

t— n—l)x— :_Z —

r
k=0 =0 n n

_)/
—X —-S

= —In(—x—1)+1In(—x) zln(__x )

=

This implies

IH<M)—>/_XIH< —* )dt:—xln( —* )
Py ((n—1)x) 0 —x—1 —x—1
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Py—1(nx) —x %
Thus, 72055 —~ (55)
Py—1(nx)
Py_i((n—1)x)

x+D (%)ﬂ. Thus, we have a difference equation of Poincaré type with
A= (x+1)(=%) " forx < —1. By Poincaré’s Theorem [9] (see also Theorem 5)

—x—1
we obtain that

Thus, for x < —1 in the limit the terms (x +1-— %) converge to

On the other hand if we use that lim,,_, « = 1 then lim,_, PP lf’(“;) =1.

In the case considered the difference equation can be solved explicitly as P, (x) =
(=1)" (7). We obtain the second limit as

n

x+n—1

lim M: lim _S;’) — lim M:
n—oo P,_; (x) n— 00 (n—l) n—o0 n

1.

It would be interesing to understand the relation of P, (x) and Q, (x) in arbitrary
cases. For example for 2 = id and g = id the reduced recurrence relation is

PI(x) = i (@n—=24x)P! (x)—(n—2) P!, (x))

(2 + X;Z> Pl (x) — (1 - z) Pl (x)
n n

for n > 3 with initial values P{ (x) = x and P} (x) = % (x 4 2).
For P, (x) we obtain in the limit the characteristic equation 0 = A2 — 21 + 1 =
(A — 1)%. In this case we cannot directly apply Poincaré’s Theorem.
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A Note on Non-hyperbolic Fixed Points m
of One-Dimensional Maps e

Sinan Kapcak

Abstract This paper deals with the local asymptotic stability of non-hyperbolic fixed
points of one-dimensional maps. There are, basically, two stability conditions intro-
duced in this study. One of them is for the stability of fixed points of non-oscillatory
maps. The second one is a sufficient condition for the stability for oscillatory maps.
Some properties and applications are also presented.

Keywords Non-hyperbolic fixed points + One-dimensional maps * Test of
stability « Difference equations * Discrete dynamical systems

1 Introduction

Although the complete theory of the stability of hyperbolic and non-hyperbolic fixed
points of one-dimensional maps was already studied [1, 5], the conditions given
in these studies are based on the higher order derivatives evaluated at the fixed
point, which usually requires lengthy calculations. For the oscillatory case, in [1],
the composition function g = f o f is used in order to determine the stability. In
the same paper, Faa di Bruno’s formula was proposed in order to take the higher
order derivatives of the composition function. Using this idea, a generalization of
Schwarzian derivatives is obtained in [6]. In [5], author uses only the higher order
derivatives of f evaluated at the fixed point in order to determine the stability of both
non-oscillatory and oscillatory fixed points.

This paper only deals with local stability, and proposes two conditions on the non-
hyperbolic fixed points. Firstly, for a fixed point x* of one-dimensional map x,; =
f(x,), where f'(x*) = 1, we introduce a new local stability condition. Secondly,
we give a sufficient condition for local stability of non-hyperbolic fixed points of
the maps with f’(x*) = —1. Our main approach here for the stability conditions is
that we will not focus on the fixed point itself but the vicinity of it. By this way, the
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stability/instability for particular types of maps can be determined straightforwardly,
which is the one of the strengths of this study. Moreover, the theorem which gives a
sufficient condition for the stability (we call it Test of Stability) of non-hyperbolic
fixed points of oscillatory maps is easy to apply and helps us generalize the stability
conditions for some family of difference equations.

The next section is devoted to the main results of this study. Examples and appli-
cations will be given in Sect. 3. Some related lemmas and theorems can be found in
Appendix.

2 Main Results

2.1 The Case f'(x*) =1

Lete > 0be an infinitesimal quantity and a € R. We will use the following notations
for the types of neighborhood sets of point a:

B:(a) = (a —e,a+¢e) —{a}, B.(a)=(a—e¢,a), Bl(a)=(a,a+e).

Throughout this paper, we assume that f is an analytic function. Clearly, the fixed
point x* = 0 is locally stable (not asymptotically) when f (x) = x on B,(0). This is
the case with f’(x) = 1 on B,(0).

Without loss of generality, we may assume that the fixed point is at the origin.
Now we present the following theorem which gives a local stability condition for the
non-hyperbolic fixed points of non-oscillatory maps.

Theorem 1 Consider the difference equation x,+1 = f(x,), where f(0) =0 and
f'(0) = 1. The fixed point x* = 0 is

1. locally asymptotically stable if f'(x) < 1 on B:(0).
2. unstable if f'(x) > 1 on B}(0) or B; (0).

Proof We will prove the parts of the theorem separately.
1. Assume that f'(x) < 1 on B.(0). Pick an initial point xg € B.(0).

(a) If xo € B (0): By Lemma 1, we have 0 < f(x) < x. By Lemma 3, x, — 0
asn — o0.

(b) If xo € B, (0): By Lemma 1, we have x < f(x) < 0.By Lemma 3, x, — 0
asn — oo.

By Theorem 7, x* = 0 is a locally asymptotically stable fixed point.
2. Assume that f'(x) > 1 on B (0). Pick an initial point xq € B, (0).

(a) If xo € Bj (0): By Lemma 1, we have f(x) > x. Lemma 4 completes the
proof.
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(b) If xo € B, (0): By Lemma 1, we have f(x) < x. Lemma 4 completes the
proof.

Example 1 Let us discuss the difference equation

5

Xpt1 = X, —sinx;,.

We have f(0) =0 and f’(x) = 1 — 5x*cosx>. Hence, f/(0) = 1 and obviously,
f'(x) < 1 on B.(0). Therefore, the origin is a locally asymptotically stable fixed
point. This map, with the methods given in [1, 5], requires the first five derivatives
to conclude this result.

More generally, for the difference equation x,,4| = x, — sin x*, we may, similarly,
determine the stability and conclude that the fixed point is asymptotically stable (resp.
unstable) when k is odd (resp. even).

2.1.1 The General Case

The stability condition of a fixed point x = x* for a general autonomous difference
equation x, 1| = f(x,) for the non-oscillatory case f’(x*) = 1 is already presented
in [1, 5]. That condition can also be obtained by Theorem 1. Taylor series expansion
of the derivative function f’(x) evaluated at the fixed point tells us the stability
character of the fixed point. Taking the fixed point x* = 0 gives

fPO) oy SO, 0
— X X

m+1 m+2
(m —1)! m! mrny Towr @

[l =1+

where m € {2, 3,4, ...} is the smallest number such that £ (0) # 0. Thus, clearly,

if f(m—’((;)!x’”“ < 0on B, (0), then the origin is locally asymptotically stable. Similarly,

(m—1

if %xm‘l > Qon BgL (0) or B, (0), then the origin is unstable. Here, the stability

depends on whether m is even or odd. If m is even, then {’;"i(l(;)!xm’l > 0 on Bj )
or B; (0), which yields instability. If m is odd, then the sign of f ) (0) on B, (0) will
determine the stability. Clearly, if £ (0) > 0 (resp. < 0), the fixed point is unstable
(resp. asymptotically stable). Hence, we obtain the following theorem, which is

already given in [1, 5].

Theorem 2 Assume that x* is a fixed point of the difference equation x,+1 = f(x,)
and f'(x*) = 1. Letm € {2,3,4, ...} be the smallest number such that ™ (x*) #
0.

1. If m is even, then x* is unstable (semi-stable).
2. Ifmis odd and ™ (x*) > 0, then x* is unstable.
3. Ifmisodd and ™ (x*) < 0, then x* is locally asymptotically stable.
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2.2 The Case f'(x*) = —1

Consider, for example, the difference equation x, | = —xne"‘3. With f(x) =
—xe‘x3, we have f(0) =0, f'(0) = —1. For this case, one of the known meth-
ods to determine the stability of the fixed point x* = 0 is evaluating the Schwarzian
derivatives (up to third order for the given f), which includes higher order deriva-
tives (up to seventh order for the given f). One of the other methodsuses g = f o f
instead of f and focuses on g for the stability analysis. One can find that g’(0) = 1,
g’ 0)=g¥0)=...=g®0) =0, and g7 (0) = —15120 which yields the local
stability of the origin. Another method was introduced in [5], which is based on the
higher order derivatives (for this case, again, seventh order derivative is required).
Obviously, all of these methods require too lengthy calculations.

In this section, we will discuss the stability for oscillatory maps. For some cases,
first order derivative will be sufficient for determining the stability. We will also give
a theorem with a sufficient condition which may help us determine the stability of
non-hyperbolic maps.

Clearly, there exists a stable (not asymptotically) period-2 orbit when (f o
£)(x) = x, that is when f(x) = f~'(x), on B.(0).

Theorem 3 Consider the map x,.1 = f(x,). Let f(0) =0 and f'(0) = —1. Then
the fixed point x* = 0 is

1. locally asymprotically stable if (f o f) (x) < 1 on B(0).
2. unstable if (f o f)'(x) > 1 on BF(0) or B (0).

Proof The result is straightforward by Lemma 5 and Theorem 1.

Example 2 For the difference equation x,1; = —x + ax?, where a € R, since
(fof)(x) = f'x)f(f(x)) =1—6a’x? < 1 at the vicinity of the origin, x = 0
is an asymptotically stable fixed point. Here, Schwarzian derivative is Sf(x) =
—f"(x) = 3(f"(x))* = —6a® < 0, which also yields asymptotic stability. Note that
a generalization of Schwarzian derivatives can be obtained by finding the coef-
ficients of the first nonzero term of the Taylor series expansion of the function

Ff(fx) -1

Theorem 4 Consider the discrete dynamical system x,i1 = f(x,), where
f(0) =0, and f'(0) = —1. Then the fixed point x* = 0 is

1. locally asymptotically stable if | f (x)| < | f~'(x)| on B:(0).
2. unstable if | f(x)| > | f~'(x)| on B:(0).

Proof By Lemma 5, we know that stability character of the fixed point x* =0
under f and g = f o f are the same. Since f(0) =0 and f’/(0) = —1, we have
f(x) <0on B} (0) and f(x) > 0 on B, (0). It is true that f~!(x) < 0 on B}(0)
and f~!(x) > 0 on B_ (0). Now, we will prove the first part of the theorem. Second
part can be done similarly.

The assumption | £ (x)| < | f~'(x)| in the first part of the theorem can be writ-
ten as f(x) > f~'(x) on B}(0) and f(x) < f~'(x) on B (0). Since f is a
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decreasing continuous function, applying f to the both sides of the inequalities, we
obtain (f o f)(x) < x on B (0)and (f o f)(x) > x on B, (0). Therefore, we have
(f o f)(x) < 1on B.(0) and thus, by Theorem 3, the origin is locally asymptotically
stable.

2.2.1 A Sufficient Condition

Now, we present one of the main results of this study, namely, a sufficient condition
for the stability of non-hyperbolic fixed points for oscillatory maps.

Theorem 5 (Test of Stability). Consider the map x,+1 = f(x,). Let £(0) = 0 and
f'(0) = —1. Then the fixed point x* = 0 is locally asymptotically stable if

@ f(=x) <1
forx € BF(0).

Proof Equivalently, we will prove the following statement: If the fixed point x* = 0
is not locally asymptotically stable, then f”(x) f'(—x) > 1 on B (0).

Assume that x* = 0 is not locally asymptotically stable fixed point. Hence, by
Theorem 4, | f(x)| > | f~'(x)| on B;(0). Therefore, f(x) < f~'(x) on B;“(O), and
thus, clearly we have f'(x) < (f~')(x) or

’
') > 1
(f=H' )
on B;"(0). Now let us split the proof into following four cases.

1. The case f(x) < f’l(x) < —x: Both f~!(x) and f(x) are tangent to the line
y = —x at the origin and they are below the line y = —x on B,(0). Thus, f is
concave down, that is f”(x) < 0, on B.(0). Hence, f’ is decreasing. Since f’ is
also continuous, applying f’ to each parts of the inequality f(x) < f~'(x) < —x,
we obtain

FIFe) = F1(f ) > f(=x).
Now, we multiply each part of the inequality by f’(x) < 0 and obtain
F @ (=x) > O f' (F7H@) = (f o ) ).
By the inequality on the left, we obtain

()

F@f 0= Zoses = 1,

which completes the proof for this case.
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2. Thecase f(x) < —x < f~'(x): Whenx € B:(O),each of the components f(x),
—x, and f~'(x) is negative. Since y = f(x) is tangent to the line y = —x at the
origin and it is above the line y = —x on B_ (0), we have f”(x) > 0 on B (0).
Hence, f'is an increasing function on B (0). Now, applying f” to the inequality
f(x) < —x < f~!(x) from the left, we obtain

F(fx) < f(=x) < f(fF 1 x)).

Now, we will multiply each side of the above inequality by f’(x), which is a
negative quantity, to get

f'(x)

(fo @) > f)f'(=x) > Ghm 1,

which yields the desired result.

3. The case —x < f(x) < f~!(x): This case is also similar to the previous cases.
Knowing that f”(x) > 0, which means f’(x) is increasing, we apply the compo-
sition with f” from the left. Since f’(x) < 0 on B,(0), we obtain the inequality
after multiplying by f'(x):

')

> 1.
1'(x))

F'@Of (x> (fo f)(X)_(f

4. The case —x = f(x) = f~!'(x): It is straightforward that f’(x)f'(—x) > 1,
which is the desired result.

Remark 1 Note that, Theorem 5 (Test of Stability) is only a sufficient condition,
and hence there might be asymptotically stable fixed points which does not satisfy
the condition in the theorem. For example, for the difference equation x,, 1, = —x, +
3x2 — 8x2, the usual method of taking the composition g = f o f gives g'(0) = 1,
£”(0) = 0,and g”’ (0) = —12 < 0, which yields the asymptotic stability of the origin.
However, we have f'(x) f'(—x) > 1 on B} (0).

3 Applications

3.1 An Example

We will now show that the fixed point x* = 0 is locally asymptotically stable for the
difference equation

Lk
Xnt1 = —Xp€ o

for any positive integer k. Clearly, taking composition or using Schwarzian derivative
will give us complicated expressions. However, Test of Stability (Theorem 5) gives us
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very straightforward result. The first derivative will be sufficient for our discussion.
We have f(x) = —xe ™", hence f’(x) = (kx* — 1)e=" and f/(0) = —1.

1. If k is odd, then f'(—x)f'(x) = 1 — k*>x?* < 1 at the vicinity of x* = 0.

2. If k is even, then f/(—x) f'(x) = (1;19;‘)2 < 1 at the vicinity of x* = 0.

2x

Therefore, x* =0 is an asymptotically stable fixed point for any positive
integer k.

Remark 2 Note that, when the fixed point x* is not at the origin, it is easy to shift
the fixed point to the origin by the transformation y, = x, — x* and apply Theorem
5. Another way to apply the theorem for a nonzero fixed point is, clearly, using the
condition

flx*—x)f(x*+x) < 1.

3.2 Population Models

In population dynamics, two of the well-known single-species population models
are Logistic Map and the Ricker Map.

1. The Logistic Map x,+1 = ux,(1 — x,), when u = 3, has two fixed points, one of
which is x* = % We have f’(x) =3 — 6x and f’ (%) = —1. Hence, we obtain
f (% - x) f (% + x) =1-36x? < 1on B, (0). Therefore, the fixed point x* =
% of the logistic map is asymptotically stable.

2. Similarly, for the Ricker Map x,,+| = x,, exp(r — x,,), whenr = 2, one of the fixed
pointsis x* = 2. Forthiscase, f'(2) = —land f' 2 —x) f/ Q+x) =1—x* <
1 on B, (0). Thus, the fixed point x* = 2 of the Ricker map is asymptotically stable.

3.3 One-Dimensional Maps with Even or Odd Functions

The following theorem gives the stability/instability of some maps with even or odd
functions, and other similar rules can be derived. These are direct results of our
main theorems, and we will give the proof of only the second part of the theorem.
The other parts can be done similarly. The non-oscillatory case is most of the time
straightforward. One can easily apply Theorems 1 or 2 in order to investigate stability.
Since the oscillatory case is usually more challenging, we mostly focus on that case
by applying Test of Stability (Theorem 5).

Theorem 6 Let E(x) and F (x) be even and odd functions, respectively. Then, fol-
lowing statements hold true.

1. Forthemap x,+1 = x, + E(x,), where E(0) = 0, the fixed point x* = 0 is unsta-
ble.
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2. For the map x,+1 = —x, + E(x,), where E(0) = 0, the fixed point x* =0 is
asymptotically stable.

3. For the map x,+1 = F(x,), where F'(0) = —1, the fixed point x* = 0 is asymp-
totically stable if |F'(x)| < 1 in a neighbourhood of the origin.

4. The fixed point x* = 0 is asymptotically stable for the map

X1 = —xpe” ).

Proof (Part2). Since derivative of an even function is an odd function, taking f (x) =
—x + E(x), we obtain f'(x) f'(—x) = 1 — (E'(x))? < 1 at the vicinity of x* = 0.
Therefore, by Theorem 5, the origin is asymptotically stable.

Example 3 For the map x,,1; = —x, + x, sin® x, + xS cos xs , the origin is asymp-
totically stable by Part (2) of Theorem 6. Similarly, the origin is an asymptotically
stable fixed point for the maps x,, 11 = —x, + In (1 +x2),x,41 = —x, + 2x2 — 3x5,

_2
and Xptl = —Xp + xr%e X,

Example 4 Consider the map

Xpy1 = —X,CO8 XX,
where k is a positive integer. Since the function f(x) = —xcos x¥ is an odd function,
and f'(0) = —1, we clearly have | f/(x)| = | cos x¥ — kx* sin x¥| < 1 at the vicinity

of x* = 0, and by Part (3) of Theorem 6, the origin is asymptotically stable for any
positive integer k.

Note that, by any usual method, first 2k + 1 derivatives at the fixed point must be
evaluated. However, with the Test of Stability, we need only the first derivative at the
vicinity of the fixed point.

4 Conclusions

The stability of non-hyperbolic fixed points of one-dimensional maps was investi-
gated. We gave a stability condition which contains only the first order derivative and
focuses on the vicinity of the fixed point. A sufficient condition for the stability (Test
of Stability) for oscillatory maps was introduced. The condition is easy to apply and
we may obtain the stability for complicated maps as well. For the oscillatory case,
by the methods given in [1, 5], the derivative of the map must be taken at least three
times. Since we have to evaluate the first derivative in any case, surely it is easier to
firstly use Test of Stability by evaluating f’(x) f'(—x), and if it does not work, then
try one of the usual methods.

We used the Test of Stability for the well-known population models such as
Logistic and Ricker Maps to determine the stability of the existence (positive) fixed
point. Although the Test of Stability is a sufficient condition, it is still very powerful. It
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allows us to construct some general rules for stability for some families of functions,
for example maps with even or odd functions.

The results here can also be applied in center manifold theory when one obtains
a one dimensional non-hyperbolic map on the center manifold. It is also possible to
apply these results in the area of zero-diagonal planar maps [4] when converted to a
one dimensional map with a non-hyperbolic fixed point.

A Related Lemmas/Theorems

Lemma 1 Let f be an analytic function, f(0) =0, and f'(0) = 1.

1. If f'(x) < 1on B (0), then 0 < f(x) < x on B} (0).
2. If f'(x) < lon B7(0), thenx < f(x) < 0on B (0).
3. If f'(x) > 1 0on BF(0), then f(x) > x on BF(0).
4. If f'(x) > L on B (0), then f(x) < x on B (0).

Proof 1. Let f'(x) <1 on B;(0). Firstly, by contradiction, we will show that
f(x) < x. Assume that f(x) > x for some x =a € B:(O). Hence, by Mean
Value Theorem (MVT), there exists a number ag € Bj' (0) such that f'(ap) =
@ > 1, which contradicts the assumption that f'(x) < 1 for all x € B (0).
Therefore, if f/(x) < 1, then f(x) < x for x € B} (0).

Similarly, we can show that 0 < f(x). Since f’(0) = 1 is positive, we know by
the continuity of f’ that, f’ is positive for some neighborhood of the origin. Let
us assume that f(x) < 0 forsomex =a € Bj' (0). Thus, by MVT, there exists a
number a; € B (0) such that f/(a;) = @ < 0, which contradicts the fact that
f'(x) > 0 for some neighborhood of the origin. Therefore, if f'(x) < 1, then
f(x) > 0forx € Bf(0).

Combining the results, we complete the proof: if f/'(x) < 1,then0 < f(x) < x
onx € BF(0).

2. Let f'(x) <1 for all x € B (0) = (—¢,0). We will show that x < f(x). We

use the similar approach: Assume that x > f(x) for some x = a in the interval
B (0). By MVT, there exists a number ag € B (0) such that f'(ay) = @ > 1,
which contradicts the assumption that f'(x) < 1 for all x € B (0). Therefore, if
f'(x) <1, thenx < f(x) for x € B (0).
Similarly, we can show that f(x) < 0. Since f'(0) = 1 is positive, f’ is positive
for some neighborhood of the origin. Let us assume that f(x) > 0 for some x =
a € B (0). Thus, there exists anumber a; € B, (0) such that f'(a;) = @ <0,
which contradicts the fact that f/(x) > 0 for some neighborhood of the origin.
Therefore, if f'(x) < 1, then f(x) < 0 for x € B (0).

3. Let f’(x) > 1 on B (0) and assume that f(x) < x for some x = a € B;(0).
Hence, similarly, by MVT, there exists a number ay € Byarepsilon™(0) such
that f'(ag) = @ < 1, which contradicts the assumption that f’(x) > 1 for all
x € B (0). Therefore, if f'(x) > 1, then f(x) > x for x € B} (0).
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4. Let f'(x) > 1 on B (0) and assume that f(x) > x for some x = a € B; (0).
Hence, by MVT, there exists a number ag € B (0) such that f’(ap) = @ <1,
which contradicts the assumption that f'(x) > 1 for all x € B (0). Therefore, if
f'(x) > 1, then f(x) < x for x € B (0).

Lemma 2 Let f be an analytic function, f(0) = 0, and f'(0) = —1. The followings
hold:

1. If (fof)Y(x)<1on B:(O), then f~'(x) < f(x) <0on Bj(O).

2. If(fof)(x) <lonB (0), then0 < f(x) < f'(x) <0on B_ (0).
3. If (f o f)(x) > 1on B} (0), then f~1(x) < f(x) on B}(0).

4. If (f o /) (x) > 1 on BZ(0), then f(x) < ' (x) on B_(0).

Proof Setting g = f o f,using Lemma 1 with function g, and applying the inverse
function f 1 to the inequalities from the left, one can obtain the desired result.
Note that £~! is a decreasing function on B (0), which changes the direction of the
inequalities.

Lemma 3 Letr f be an analytic function. Consider the discrete dynamical system
X1 = f(x,), where f(0) = 0, and f'(0) = 1. Assume that the following condition
is satisfied for some ¢ > Q.

0< f(x) <x, if xe€ BFO),
x < f(x) <0, if x e B (0).

If xg € B:(0), then x, — 0 asn — oo.

Proof Since f is an analytic function and f’(0) = 1 > 0, for sufficiently small
¢ > 0, f is increasing on B, (0). Now, let us focus on the case x > 0. Take an initial
point xo € (0, ). We have the inequality 0 < f(xp) < x¢. Since f is increasing on
B, (0), applying f to both sides of this inequality from the left, we obtain 0 = f(0) <
xy = f(f(x0)) < f(x0) = x;. Similarly, we apply f to the obtained inequality over
and over to get

O<...<xp <...<X3<Xx2<X] <Xp.

By Monotone Convergence Theorem, the limit of the sequence x, exists. Let the
limit be L and we have L = lim f"*!'(xy) = f(lim f"(x9)) = f(L). Hence, the
limit must be 0, which is the only fixed point of the difference equation.

The case when x < 0 can be done similarly. Therefore, lim x, — 0 for any x( €
B.(0).

Lemma 4 Let f be an analytic function, f(0) =0, and f'(0) = 1.

1. If f(x) > xon Bj(O), then 0 is unstable.
2. If f(x) < x on B;(0), then 0 is unstable.
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Proof 1. Take &' < ¢ andletxy € Bj(O). Hence, we have that f(x) > x on (0, &'].
Assume that 0 < f"(xg) < &’ for all positive integer n. Then, x; = f(xo) > X
and applying f from the left over and over, we obtain

0<...<X)<X| <X <X3<...<Xp,<...<E¢€.

By Monotone Convergence Theorem, the limit of the sequence x,, exists. Let the
limit be L and we have L = lim f”“(x()) = f(lim f"(x¢)) = f(L). Hence, the
limit must be a fixed point. However, since f(x) > x on (0, '], there is no fixed
point on this interval. This contradiction completes the proof.

2. Proof for this case can be done similarly.

Theorem 7 Let z be an attracting fixed point of a continuous map f : I — R, where
I is an interval. Then 7 is stable.

Proof of Theorem 7 can be found in [3], on p. 239.

Lemma 5 Consider the difference equations

Xn+1 = f(xn) (2)

and

Xni1 = (f o f)(xn), 3)

where f(x*) = x* and f'(x*) = —1.
x* is asymptotically stable under equation (2) if and only if x* is asymptotically
stable under equation (3).

Proof See [2, 5].
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Impulse Effect on a Population Model m
with Piecewise Constant Argument e

Fatma Karakoc¢

Abstract We consider a population model with piecewise constant argument under
impulse effect. First, we deal with the model with impulses. Sufficient conditions for
the oscillation of the solutions are obtained. We also investigate asymptotic behavior
of the non-oscillatory solutions. Then we obtain similar results for the same model
without impulse effect. Finally, we compare the results with non-impulsive case and
we give some examples to illustrate our results.

Keywords Population model - Piecewise constant argument + Impulse *
Difference equation - Linearized oscillation - Non-oscillation.

1 Introduction

In this paper we investigate asymptotic behavior of the positive solutions of the
following population model

BN (1)

N{#)=—-yN{t) + ——————,1t>0,t#n, n=12, .., 1
() = =N+ e g 120 (1)
N* )’
NeH=Nu)|———) ,n=12,.., 2
(n*) (n)<N(n—l)> n @)
3 1/m
where 3,v,m € (0,00),r € [0,00), N*= (2 —r are constants, k € ZT =

5
{1,2,3,...} and!/ € {2, 3, ...} are fixed numbers, b > 0 is a constant, [.] denotes the

greatest integer function, N(n*) = lim,_,,,+ N(¢) and N(n™) = lim,_,,,- N(¢).
The following population model related to control of a single population of cells
was presented by Nazerenko [1].
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x'(1) + px(1) —Q% =0

Then stability and oscillation of the solutions of the above differential equation
was dealt with in [2].

Studies on delay differential equations with piecewise constant arguments instead
of continuous arguments have been started in 1980’s. In the beginning, stability,
oscillation and existence of periodic solutions of the linear differential equations were
investigated [3-9] and the references cited therein. To the best of our knowledge, there
is only a few paper on the asymptotic behavior of biological models with piecewise
constant arguments. One of the logistic model with piecewise constant arguments

dN m )
- = rN@#) {1 — ,;oij([t -JD

was investigated in [10] and a necessary and sufficient condition for the oscillation
of the positive solutions was established. Recently, asymptotic behavior of the solu-
tions of non-impulsive differential Equation (1) in the case of k = 1 has been studied
in [11]. In real world problems, it is known that the solutions of the mathematical
models may be discontinuous as well as an exterior effect may change the asymptotic
behavior of the solutions. Because of this reality, studies on the impulsive differential
equations with piecewise constant arguments have been started with the works [12—
15]. So, the aim of the present paper is to show how can an exterior effect change
the asymptotic behavior of the population model (1). For this purpose we consider
Eq. (1) with the impulse conditions (2). The main tool of our technique is linearized
oscillation of difference equations. So, Sect. 2 is devoted to some fundamental defini-
tions and results of linearized oscillation theory. In Sect. 3, we prove the main results.
Finally, we consider some examples to compare the results of impulsive differential
equations models with non-impulsive differential equations models.

2 Preliminaries

Define ky = max {k, [} .

Definition 1 It is said that a function N(¢) defined on the set {—kgy, 1 — ko, ...
— 1} U [0, 00) is a solution of Egs. (1)—(2) if it satisfies the following conditions:

(i) N(z)iscontinuouson Rt with the possible exception of the points [¢] € [0, 00),
(i) N(r) is right continuous and has left-hand limit at the points [#] € [0, 00),
(iii) N(z) is differentiable and satisfies Eq. (1) for any ¢ € R, with the possible
exception of the points [¢] € [0, co) where one-sided derivatives exist,
(iv) N(z) satisfies impulse conditions (2) forn € Z™.
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Definition 2 A function x (¢) defined on [0, co) is called oscillatory about zero if
there exist two real valued sequences {#,,},>0, {f,}n>0 C [0, 00) suchthatz, — +o0,
t) - 4+ooasn — +ooand x (f,) <0 <x ( ) for n > N, where N is sufficiently
large Otherwise, the function x (¢) is called non-oscillatory.

Remark 1 According to Definition 2, a piecewise continuous function x : [0, co) —
R can be oscillatory even if x (¢) # 0 for all 7 € [0, c0) .

Definition 3 ([16]) A function x (¢) is called oscillatory about K* if the function
(x(t) — K*) is oscillatory about zero.

Difference equations are main tool for the investigation of differential equations
with piecewise constant arguments. So, we recall the following definition and theo-
rems which will be used in the proofs of main results.

Definition 4 ([16]) The sequence {y,} is said oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is called non-oscillatory.

Theorem 1 ([16], Corollary 7.4.1). Assume thatlim,_ ¢ % =1fori=1,2,....m
and there exists a positive constant § such that

either fi(u) <u forO0<u<édandi=1,2,....m
or filu)y>u for—é6<u<0andi=1,2,....m

Then every solution of equation
ng1 —an+ Y pifilan i) =0, n=0,1,2, .. 3)
i=1

oscillates if and only if every solution of its linearized equation
busi = by + ) pibyt, =0, n=0,1,2, .. @)

oscillates, where p; € (0, co)andk; € {0, 1,2...}fori = 1,2, ..., m,wichZ"zl(pi +
ki) #1, fi € C(R, R) and uf;(u) > 0 for u # 0.

The following theorem gives a sufficient condition for the existence of oscillatory
solutions for the linear equation (4).

Theorem 2 ([16], Theorem 7.3.1). Suppose that

mn ki+1
Z (kH) > 1. 5)

Then every solution of Eq. (4) oscillates.
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By the biological meaning we consider differential Equation (1)—(2) with the positive
initial conditions

N(=ko) >0, N(1 —kg) > 0, ..., N(=1) > 0, N(0) > 0. (6)

3 Main Results

The purpose of this section is to investigate the asymptotic behavior of the positive
solutions of Egs. (1)—(2). Throughout this section we assume that f—f > r. Then, it
is easy to see that every solution of the Egs. (1)—-(2) with the positive initial condi-

5 Im: " et .
tions (6) is positive and N* = (;f - r) is the positive equilibrium point of the

Egs. (1)~(2).
Using substitution N(t) = N*e*¥), Egs. (1)=(2) reduces to following differential
equation

g

r+ (N*)memx(ltfk]) ’

x'(t)=—v+ t#n, n=12, .. (7

x(nt)y —x(n")=—bx(n—1), n=1,2, ... (8)

So, we shall investigate the properties of the Eqs. (7)—(8). We consider Egs. (7)—(8)
with the initial conditions

N_ N_ N
x(—ko) =In —2 = x_, ..., x(=1) =1n71 = x_y, x(0) =1n?0 —x0 (9)

K

In the following theorem we obtain the unique solution of the initial value problem

(N=).

Theorem 3 The unique solution x(t) defined on {—ky, 1 — kg, ..., —1} U [0, 00) of
the initial value problem (7)—(9) has the following representation

B
r+ (N*)memy(nfk)

)(t—n),n§t<n+1, neN,
(10)

x (1) =yn) + (-7 +

where the sequence y(n) is the unique solution of the difference equation

B
r+ (N*)memy(nfk)

yin+1) —ymn)+~vy— +byn—14+1)=0 (1)

with the initial conditions

y(=ko) = X_tg -y y(=1) = x_1, y(0) = xp. (12)
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Proof Let x, (t) = x(¢) be a solution of (7)—~(8) on n <t < n + 1. Equation (7) is
rewritten in the form

s B
x(t)_—’y+r+(N*)memx(n_k),n <t<n+1. (13)

Integrating both sides of Egs. (13) from n to ¢ we obtain that

p
r+ (N*)m emx(n —k)

x,,(t):x(n’L)—i—(—'y—i— >(t—n),n<t<n+1. (14)

On the other hand, if x,,_; (¢) is a solution of Egs. (7)-(8) onn — 1 <t < n, then we
get

B
4 (N*)memx(nflfk)

xn—l(t):x((n—l)+)+(—7+ )(t—n+l),n—1<t<n.

(15)
Using the impulse conditions (8), from (14) and (15) we obtain that

p
X (n+) -X ((I’l - 1)+) - (_')/ + r 4 (N*)memx(n—l—k)> = —bx(n—1D.

Since x is right continuous at the points t = n, n = 1, 2, ..., above equation gives
the difference equation (11). Considering the initial conditions (12), the solution of
Eqg. (11) can be obtained uniquely. Thus, the solution of (7)—(8) with (9) is obtained
as (10).

Following theorem presents a sufficient condition for the oscillation of the differ-
ence Eq. (11).

Theorem 4 Let assume that b > 0, g > 2r and

mﬁ(N*)m (k+1)k+l I
T D A T e R (o

Then every solution of Eq. (11) is oscillatory.

Proof We use linearized oscillation for difference equations to prove the result.
Equation (11) can be rewritten as

yn+1) —y®) + prfily(n —k) + pr fo(y(n =1+ 1)) =0,

vy e
where p; = 28005 >0, fiw) = CREEREES € C(R.R), pr=b>0,

fo(u) =u € C(R, R).

It is clear that Zle(pi + k) = A"

Sy +k+b+1—1+# 1. Moreover, it is

satisfied that u f; (u) > 0 foru # 0 and lim,_, », % =1, i =1, 2. Moreover, since

% > 2r, it is shown that
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@ B et (r+(N*)m)2

e —(r T Ny <1 foru>0.

Hence, J
—(fi(u) —u) <0 foru>0.
du

So, we get f1(u) < u foru > 0. Moreover, it is clear that f,(#) = u is also satisfied
the last condition of Theorem 1. Therefore, by Theorem 1, every solution of Eq. (11)
is oscillatory if and only if every solution of linearized equation

mB(N*)"

Y(n—i-l)—)’(n)-i-m

yin—k)+by(n—-1+1)=0 (17)
is oscillatory. Note that, by Theorem 2, under the condition (16), every solution of
Eq. (17) is oscillatory. So, the proof is completed.

Now we get the following result for the solutions of Egs. (1)—(2).

Corollary 1 Let assume thatb > 0, ;? > 2r. Every solution of Egs. (1)—(2) oscillates
about N* if the condition (16) is satisfied.

Theorem 5 Let assume that b > 0. If a solution N(t) of Egs. (1)—(2) is non-
oscillatory about N*, then lim,_, o, N(t) = N*.

Proof 1t is sufficient to prove that for every nonoscillatory solution x(¢) of the Egs.
(7)—(8) lim;— o, x(¢t) = 0. Let x(¢) be an eventually positive solution of Egs. (7)—(8).
From Eq. (7) forn <t <n + 1, we get

x'(t) = —pf (x([t —k]) <0,

where, p = % >0, f(u)= % > 0 for u > 0. On the other

hand, from the impulse conditions (8), we have
x(nt) <x(m).

So, lim;_, o x(¢) =1 > 0 exists. Since x(¢) = y(n) fort = n, lim,_,» y(n) = 1. We
claim that / = 0. Otherwise, taking the limit of both sides of Eq. (11) as n — oo,

we obtain that 5
0=I[-1=1[- — | —-bl <0
( T (N*)meml> -

which is a contradiction. So, / = 0. If x(¢) is an eventually negative solution of Eqgs.
(7)—(8), then we obtain same result.
Now, let us consider the non-impulsive differential equation
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AN (@) > 0. (18)

N'(t) = —yN _
()= =N+ e 12

In [11] Eq. (18) with k = 1 is studied. The following results are generalizations of
Corollary 1 and Theorem 5 in [11], respectively.

Corollary 2 If ; > 2r and

mBNTY" (k4 D!
> 1

N K ’ 4

then every solution of Eq. (18) oscillates about N*.

Corollary 3 If a solution N(t) of Eq. (18) is nonoscillatory about N*, then
lim;, 00 N(t) = N*.
4 Numerical Examples

In this section we give some examples to illustrate our results.

Example 1 Let us consider the following differential equation

o 5N (1) B
N'(t) = N(t)+—1+N2([t_1]), t>0, t#n,n=12 .. (20
2 b
+\ - _
N@n™) = N )<—N(n_3)> L n=12,.. 1)

where b > 0 is a constant. It can be seen that the N* = 2 is the positive equilibrium
point of the Egs. (20)—(21). Moreover it is shown that ;’ > 2r and the condition (16) is
satisfied for all b > 0. So, from Corollary 1 and Corollary 2 all solutions of impulsive
differential Equation (20)—( 21) as well as all solutions of non-impulsive differential
Equation (20) are oscillate about 2. The solutions N (¢) of the non-impulsive differ-
ential Equation (20) and impulsive differential Eqs. (20)—(21) for » = 1/5 with the
initial conditions N(—2) = N(—1) = N(0) = 1 are demonstrated in Fig. 1 and Fig.
2, respectively.

Example 2 (i) Let us consider the following non-impulsive population model

N'(t) = —lN(t) + __NO t>0 (22)
-8 N2t =2 T

It is clear that Eq. (22) is a special case of (18) with v = %, =1, r=0 m=
1/2, k = 2.1Itis easy to see that N* = 64 is the positive equilibrium point of the Eq.
(22) and g > 2r. But,
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Fig. 1 The solution N (¢) N
of Eq. (20) with the 10r
initial conditions b
N(=2)=N(-1)=1 ol
6k
al
1 YR S S SR NN ST S S 1 1 1 t
0 2 4 6 8 10 12 14
Fig. 2 The solution N (¢) of N
Egs. (20)—(21) with the 10r
initial conditions N (—2) = b
N(=1)=N0O) =1 gl
6

mB(N*)m (k + 1)k+1
ECED

So, we can not apply Corollary 2. But, from Corollary 3, if a solution N (¢) of Eq. (22)
is nonoscillatory about the positive equilibrium point 64, then lim,_, o, N (¢) = 64.
The solution N (t) of the Eq. (22) with the initial conditions N(—2) = N(—1) =
0.5, N(0) =1 is demonstrated in Fig. 3.

(ii) Now let us consider the same population model under impulse effect

o 1 N() _
N'(t) = 8N(t) + N =] t>0,t#n, n=12, .., (23)
i _ 64 12
N(@n™) = N(n )(m) ,n=12, .. (24)
It is clear that
mﬁ(N*)m (k+1)k+l /!

T T A T R
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Fig. 3 The solution N(¢) of N
Eq. (22) with the initial 1001
conditions N(—2) = t
N(—=1)=0.5, N©) =1 sol

Fig. 4 The solution N (¢) of N
Egs. (23)—(24) with the 100 o -
initial conditions N (—2) = t -
N(=1)=0.5, NO) =1 ol
60F / -
aof
-
I —
20 R
L— | | | L | | | t
0 2 4 6 8 10 12 14

So, from Corollary 1, every solution of Egs. (23)—(24) oscillates about the posi-
tive equilibrium point 64. The solution N () of the Egs. (23)—(24) with the initial
conditions N(—2) = N(—1) = 0.5, N(0) = 1 is demonstrated in Fig. 4.
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On a Second-Order Rational Difference m)
Equation with Quadratic Terms, Part 11 e

YEVGENIY KOSTROV and Zachary Kudlak

Abstract We give the character of solutions of the following second-order rational
difference equation with quadratic denominator

o+ Ox,
B-xn + D.ann,] + Xn—1 '

Xn+1 =

where the coefficients are positive numbers, and the initial conditions x_; and x¢ are
nonnegative such that the denominator is nonzero. In particular, we show that the
unique positive equilibrium is locally asymptotically stable, and we give conditions
on the coefficients for which the unique positive equilibrium is globally stable.

Keywords Local stability - Global stability + Rational difference equation -
Rational recurrence relation

1 Introduction

In this paper, we will investigate the behavior of solutions of a second-order rational
recurrence relation with a quadratic term.
Namely, we will consider the equation

Xny1 = @+ B , forn=0,1,..., (1)
an + Dxnxn—l + Xn—1
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where the coefficients are positive real numbers and the initial conditions are non-
negative real numbers such that the denominator is positive.

The difference equation in (1) is a special case of the more general difference
equation

ax,f + bx,x,_1 + cx,i1 +dx, +ex,—1+ f
Xn+1 = 3 3 ,n=0,1,..., (2
Axjp+ Bxyxp—1 +Cx;_; + Dx, + Ex,—1 + F

with nonnegative coefficients and nonnegative initial conditions such that the denom-
inator is positive. Several authors have investigated difference equations contained
in (2), for several examples see [1, 3, 5, 7, 11].

Interestingly, upon investigation of (1), it is easy to see that the monotonicity with
respect to x,, changes as the values of the parameters change. There are several recent
papers where the authors investigate equations with varying monotone character, for
reference, see [6, 10].

We will now state the main result of this paper.

Theorem 1 Let {x,}52 _, be a solution of (1). Then, there is a unique positive equi-

librium x of (1). If any of the following are true

1. B<aD+ .\/aB; or
2. 8>aD+ JaBand B > 1; or
aD

3. ﬁ>aD+\/aB,B<1,andﬁ§1 5

then the unique positive equilibrium is globally asymptotically stable.

We will prove Theorem 1 in multiple steps. In Sect. 2 we provide some previously
known results for reference. Next, in Sect. 3 we will state and prove several auxiliary
results about (1). Section 4 will show that solutions of (1) will eventually enter an
invariant interval. In Sect. 5, we prove that the unique positive equilibrium is a global
attractor in the regions specified in Theorem 1.

2 Preliminaries

In this section, we state several well-known results which will be useful in this paper.
We call the following two theorems the “m&M Theorems,” see [4] for more details.

Theorem 2 Let g: [a, b] X [a, b] — [a, b] be a continuous function, where a and
b are real numbers with a < b, and consider the difference equation

Xn+1 = g(xn7xn—l)7 fOrn = Ov 17 e . (3)

Suppose that g satisfies the following two conditions:
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1. g(x, ) is non-increasing in x € [a, b] for each fixed y € [a, b], and g(x, y) is
non-increasing in 'y € [a, b] for each fixed x € [a, b];
2. if (m, M) is a solution of the system

m=gM,M), M= qg(m,m), 4)

thenm = M.

Then, there exists exactly one equilibrium of (3), namely x. Furthermore, every
solution of (3) converges to x.

Theorem 3 Let g: [a, b] X [a, b] — [a, b] be a continuous function, where a and
b are real numbers with a < b, and consider the difference equation

Xnt1 = g(Xn, Xn—1), forn=0,1,.... (5)

Suppose that g satisfies the following two conditions:

1. g(x,y) is non-decreasing in x € [a, b] for each fixed y € [a, b], and g(x, y) is
non-increasing in'y € [a, b] for each fixed x € [a, b];
2. if (m, M) is a solution of the system

m=g(m, M), M =g(M,m), (6)

thenm = M.

Then, there exists exactly one equilibrium of (5), namely Xx. Furthermore, every
solution of (5) converges to x.

Theorem 4 (Drymonis and Ladas, [2]). Let
Xp+1 = f(xn, Xp—1), forn=0,1,... 7

with

]' f E C[(Oy OO) X (07 OO)’ (O’ OO)],‘

2. f(u,v) is non-increasing in u and v respectively;

3. xf(x, x) is non-decreasing in x;

4. Equation (7) has a unique positive equilibrium x.

Then, every positive solution of (7) which is bounded from above and from below by

positive constants converges to X.

We follow the terminology given in [4] for stability of an equilibrium. Here we
restate some of their results for convenience.

Let I be an interval of real numbers. Suppose that f : [ x [ — [, is a continuous
function, which defines the difference equation

Xn+1 :f(-xnv-xl‘l—l)v fOr}'l:O,l..., (8)
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and let x € I be an equilibrium of (8). Further, suppose f(u, v) is continuously
differentiable in some neighborhood of the equilibrium x. We define the following
constants

of

a, = —a(i,i), )
ay = —a—f(i,i). (10)
Ov
The equation
Mtad+ay=0 (11)

is called the characteristic equation of (8).

Theorem 5 (Linearized Stability Theorem, [4]). Let x be an equilibrium of (8),
and suppose that f is a continuously differentiable function defined on some open
neighborhood of x. If the roots of (11) have absolute value less than one, then the
equilibrium x is locally asymptotically stable.

Theorem 6 (Theorem 1.3 of [4]). Consider the second-degree polynomial equation
N+ a)+ay=0, (12)

where ay and a, are real numbers.
A necessary and sufficient condition for the roots of (12) to lie within the unit disc
Al < 1is
la1] < 1+ a9 < 2. (13)

We will use the method of full limiting sequences, as developed by Karakostas,
see [8, 9], and we use the following result.

Theorem 7 (Theorem 1.8 of [4]). Consider the difference equation

Xn+l = f(xnaxn—l’ e ’xn—k)a (14)

where f € C[J**1, J] for some interval J of real numbers and some nonneg-
ative integer k. Let {x,}>°_, be a solution of (14). Set I =liminf,_  x, and
S = lim sup,,_, o, Xn, and supposethat 1, S € J. Let L be a limit point of the sequence
{x,}°2 _4. Then the following statements are true.

1. There exists a solution {L,};2 _ . of (14), called a full limiting sequence of
{x, )00 ., such that Ly = Lo, and such that for every N € Z, Ly is a limit point
of {x, )32 _ . In particular,

I <L,<SforallN €Z. (15)

2. Foreveryiy € Z, there exists a subsequence {x,,}2, of the solution {x,},° _, such
that
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Ly = lim x,,4y for every N > iy. (16)
1—> 00

The following inequality will be useful in the sequel, and can be found as an
exercise in [12].

n
[ Qy D et Qi ap Qp
mm{—,—,...,—}fﬁ—lfmax R (17)
By By B, 2 k=1 Bk B B> B,
where o, ..., o, are nonnegative real numbers and By, By, ..., B, are positive real

numbers.

3 Several Auxiliary Results on Equation (1)

In this section we will prove several auxiliary results concerning (1). These results
will be useful in proving Theorem 1. We begin, by showing that every positive
solution of (1) is bounded.

Theorem 8 Every positive solution of (1) is bounded from above and from below
by positive constants.

Proof For the sake of contradiction, suppose that {x,}72, is an unbounded solution
of equation (1). Then there exists an increasing sub-sequence of {x, }5;, which we
will denote { x,,j} such that

lim x,,, = oo.

By considering the recursive definition of x,, ;, this implies that the subsequences
{xnj_l } and {xn/._z} both converge to zero. Further, if lim Xpj—1 = 0, then lim Xp;—3 =
00. Likewise, if lim Xn;—2 = 0, then lim x,,, 4 = oo.

This is a contradiction since on one hand, we see that lim Xnj—4 = 00, but on the
other, lim x,,,_4 = 0. Therefore, there exists some U > 0 such that x, < U for all
n > 1. Now consider forn > 1,

a+ Bx, - «
Xppl = > .
" Bx, + DxpXn1 + Xp1 ~ BU + DU2+ U
We define L = m, and thus we have

U<x,<L, forn > 1.

We will use the following cubic polynomial, which will aid us in the proofs of
several results. We define the cubic polynomial %, by

h(x) = Dx* + (B + Dx* — Bx — a. (18)
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Theorem 9 Equation (1) has a unique positive equilibrium.

Proof Consider the equation
h(x)=0 (19)

where the function £ is defined in (18). By the well-known Decartes’ Rule of Signs,
the cubic equation (19) has a unique positive root.
We define x as the unique positive solution of (19). Thus,

Di*4+ (B+Dx*—pBx—a=0 (20)
(B+ Dx*+Di’=a+ 0% (1)
X = _a—l——?x_ (22)

Bx 4+ Dx? +x

Hence, x is the positive equilibrium of (1), and x is unique.

In the remainder of this section, we will provide several results concerning the
local stability of (1). We show that the unique equilibrium is locally asymptotically
stable. Before we state and prove Theorem 10, we will give some helpful lemmas,
the proofs of which follow by direct computation.

Lemma1 Let f(tv) = — 5" pen
Bu + Duv +v
af Bv —aB — aDv af (a+ Bu)(Du + 1)
—_— = and — = — . 23)
Ou  (Bu+ Duv +v)? Ov (Bu + Duv + v)?

Lemma 2 The characteristic equation of (1) reduces to

s (ZBitaB DTy | sDien
g +(((B+1)2+D)z2)2))\+((B+1)j+Di2>_O‘ (24)

Proof Let constants a; and aq be as defined in (9) and (10). Then,

—0B% + aB + aDx

~ (B+ ¥+ D¥) @

ap

By using the definition of x,

L _ @i+ | iDit 1)
T (B+Di+Di2)? (Bt i+ Dit

(26)

Theorem 10 Let x be the unique positive equilibrium of (1), then, x is locally asymp-
totically stable.
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Proof According to Theorems 5 and 6, we need to show

—Bx + aB + aDx X(Dx +1)
< M)
((B + 1)x + Dx?)? (B + Dx + Dx?

< 2. (27)

We will start by proving the right side of inequality (27) first. Consider

¥ (Dx +1 Di? +x
S R P Y
(B + i + Dx2 Bx + x + Dx?
Now we will prove the left side of (27). We will start by showing
—px + aB + aDx x(Dx +1)
< _
((B+ Dx 4 Dx?)? (B + x + Dx?

Suppose that it is indeed the case, then,

—BX% +aB +aDx < (B + DX + Di*)* + (B + Di + DX»)x(Dx + 1)
a (B + DX) — X < ((B+ i + Dx*? + ((B + )x + Dx*)x(Dx + 1).

Now, we use the expression for « that is obtained from (19) to simplify.

((B + 1)¥* + Dx* — B%) (B + Dx) — 3% <(B+ 1)? %> +2(B + 1) D¥* + D*&*+
+((B+ Dx* + D¥’) (Di + 1)
(Bi* + %2 + Dx* — B%) (B + Dx) — 3% < (B*+2B + 1) ¥* +2BD% + 2D+
+ D*x* + (B¥* + x> + DX°) (DX + 1)
Now, by canceling out like terms on both sides of this inequality, we see that the left

side is negative, while the right side is positive, and hence always true.
Now we will show that

(1 x(Dx + 1) ) —pBX +aB + aDx
- B+ Di+D2) ~(B+ Di+ D2

Suppose that it is indeed true, then

—(((B+ DX + D¥*)* + ((B + DX + Di*)x (DX + 1)) < —B3% + aB + aDx.
By rearranging terms, we obtain,

3% < aB +aDi + (B + 1)@ + Di%)? + ((B + )2+ Di3> Di + (B + D2 + D3,

We use the fact that 3x = Dx> + (B + 1)x? — «, obtained from (19), and cancel
out like terms to see that



286 Y. Kostrov and Z. Kudlak
—a < aB + aDx + ((B + )i + Di* + D#)’ + (B + &> + D&*) Di.
Thus, the left side is negative while the right side is positive. Hence, we have shown

that the conditions of Theorem 5 are satisfied, and the unique positive equilibrium is
locally asymptotically stable.

4 Existence of an Invariant Interval

In this section we will show that all solutions of (1) will eventually enter an invariant
interval. We begin by studying the following quadratic function in variable (3,

R(B) = (8 — aD)* — aB>. (28)
It is clear that the roots of (28) are
B8~ =—-BJa+aD and [T = BJa+aD.

Furthermore, R(3) < 0 on the interval (37, 3%), and R(8) > 0 on (—o0, 37) U
(8%, 00). We will use the following technical lemma in the proofs of the lemmas to
follow.

Lemma 3 The following statements are true.

1. IfaD < 3 < 3% then

aB 0GB aB
max , = .
{6—aD BZ+D(5—aD)} 8 —aD
2. If B> 7 then
. aB 0GB _aB
mm{ﬁ—az)’ 32+D(5—a1))} “B3—aD’

Proof We prove part (1), the proof of part (2) is similar and will be omitted. We
s

aB / :
want to show that Foab = FTD(G—aD)" Consider

aB - OB
B8—aD ~ B4+ D(B —aD)
aB®+aD(3 — aD) > B(3 — aD)
0> (8 —aD)?* — aB?

which is true from the shape of the quadratic function (28).
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Lemmad Let aD < 3 < 3%, then the following is true
Ji aB - B—aD

B—aD B
—aD
2. Ifxn1 = 5205 QD, then x,.1 > ° 2
B
3. Ifxp1 = b B then Xnt1 = ﬁ(jQD

Proof The proof of statement (1) follows from the fact that the quadratic function
defined in (28) is negative for aD < 3 < 3+.

To prove (2), let’s assume that x,,_; < @fg 5 and using that the function f (u, v)
is decreasing in v, we get

o+ Bx, - a+ Bx,
Bx, + DxyXy—1 +Xu1 By 4 Dx, (3 aD) + (ﬂ)

Xn+1
B—aD

a+ Bx, . o g
= Z miny — 75— 35
(5225) + (B + 225) x, e Foap

{ﬂ aD ﬁ—aD} 68— aD
= min

B ' B B
Now we will prove statement (3). Assume x,,_; > 8 _;D , and by using the fact that
the function f(u, v) is decreasing in v along with Lemma 3 Part (1), we obtain

a+ Bx, a+ Bx,
T+l =g D 1= 5—aD 5—aD
Sk Dxatoct 5 =17 py, 4 Dy, (5592) + (552)
o+ Bx, { aB BB }
= < max e
(fffTaD)Jr(BWLM)xn B—aD’ B2+ D(3— aD)
_ aB
- B—aD’

Lemma 5 Let 3 > (3%, then the following is true

aB B—aD
1 B—aD <73
a B=aD
2. Ifxp1 > 52 aD,thenan <=3
B—aD aB
3. Ifx,,,l < B then Xntl = B—aD

Proof The proof of statement (1) follows from the fact that the quadratic function
defined in (28) is positive for § > G*.

To prove (2), we assume that x,,_; > ﬁfg 5 and using that the function f (u, v) is
decreasing in v, we get
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o+ Bx, a+ Bx,
Xnt1 = Bx, + D T =< 5
Y T B X Xn—1 T n=1 - By, + Dx, (5 QD) + (ﬁSaD)
_ a+ Bx, < max { « B }
- B DaB aB_’ BS—BaD+DaB
(8%1)) + <B T3 20) f—aD f—aD

. {ﬁ—aD ﬁ—aD} B8 —aD
= min , =
B B B

Now let’s prove (3). Assume x,,_; < ’B_T“D and using that the function f(u, v) is

decreasing in v along with Lemma 3 Part (2), we get

B a+ Bx, a+ Bx,
n+l = p P
Bx, + Dxpx,—1 + x, — 1 Bx, + Dx, (d—;D) 4 (ﬁ-;u)
a+ Bx, . { aB BB }
=— > min =5
(dfgu) i+ (B N D(ﬁ;aD)) X, B—aD’ B2+ D(3 — aD)

_ aB

T f—aD’
Lemma 6 When 8 = 3% = aD + B./a, the unique equilibrium of equation is x =

aB  __ p—aD

B—aD — B -

Proof 1t is clear that ﬁ“—BD = ﬂ_“D when 3 = * = aD + B.,/a from Eq. (28).

Now we show that x = ﬂ ( D) where 1 was the cubic
equation defined in (18). Clearly,

n aB _D aB 3 B+l aB 2 aB
(ﬂ—aD>_ (ﬁ—aD) B )<6—aD> _5<6—a1)>_

Simplifying this, we see that,

" aB -D aB 3 B4l aB 2 3 aB
(ﬂ—aD)" <ﬁ—aD> o +)(ﬁ—aD> _[<ﬂ—aD)_a

Da’B3 + (B + 1)a?B2(3 — aD) — BaB (8 — aD)? —a (8 — aD)3
(8 —aD)?
Do B(aB?) + (B + Da(aB?) (3 — aD) — BaB (8 — aD)? — o (3 — mo)3
(B —aD)?

__ fp—aD
Since 7205 = ==

525 e implies that « B2 = (3 — aD)?, we get
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< aB ) _ Da*B(B—aD)*+ (B+ Da(B—aD)® — BaB (B —aD)*> —a (3 —aD)’
; =

B —aD (8 — aD)3
(DazB 4 (Ba+a)(f—aD) - faB — af + a2D> (8 — aD)?
B (8 —aD)?
—o0.

This shows that ¥ = ﬂC‘B

Let’s define the interval K,

B—aD B :
(552, 5225 ], it aD<p=p*

k= (29)
I:ﬁng’ 57;0] ., if B> BT,

with the convention that when 3 = %, the “interval” K is a single point and x = K,
as was previously established in Lemma 4.

The next lemma establishes that the interval K is invariant, in the sense that if
two consecutive terms of the solution are in K then the solution will remain in K for
ever. The proof follows from Lemmas 4 and 5, and will be omitted.

Lemma 7 Suppose that oD < (3 and there exists N € Z% such that xy, xy_1 € K,
then x,, € K foralln > N.

Amazingly, we will now show that K is also attracting. That is, solutions will
always eventually enter K, and we state it formally in the following lemma.

Lemma 8 If aD < (3 then K is an attracting interval. In other words, there exists
N € Z* such that x,, € K foralln > N.

Proof We will give the proof foraD < 3 < 3*. The proof for the other case follows
similarly and will be omitted.

Let / = liminf,_, x, and S = lim sup,_, ., x,. Then, ifboth / € K and S € K,
then we are done. For the sake of contradiction, assume that S ¢ K. It follows from
Lemma 4 that S > ,‘ff Thus, there is an open neighborhood O containing S
such that O N K = #. By Theorem 7, let S,,1; be a full-limiting sequence such that
lim,_, » S,+1 = S. Thus, there exists a positive integer N, such that S, € O for
n > N. According to Lemma 4, if S, > ,”50 > 8 ;D then S,4 < ‘j—gD which is
a contradiction. Thus, it must be the case that S is in the interval K. The other case,
when I ¢ K is proved the same way. Thus, it must be the case that both / and S are

in the interval K, which completes the proof.

5 Global Attractivity of x

Our proof of the main result, Theorem 1, will be based on cases which partition the
values of the coefficient 3.
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Fig.1 g <p* o & 15

ce
Q
!
®
ol

5.1 Case3 <p3t

Suppose that 3 < 3. Theorems 11 and 12 will show that the unique equilibrium of
(1) is a global attractor (Fig. 1).

Theorem 11 If 3 = gfl, then the unique positive equilibrium of (1), X, is a global
artractor.

Proof We will apply Theorem 4, for which it only remains to show that xf (x, x) is
non-decreasing in x. Consider

x(a+pBx) = a+fx
Bx+Dx2+x (B+1)+ Dx’

xf(x,x)=

Then, we see that

_ B({(B+1)+Dx)—(a+fpx)D —o
B (B+1) + Dx) =

d
prRACIE
Now all the conditions of the Theorem 4 are satisfied and so every solution converges
to X.

Theorem 12 If 3 < 3" and 3 # é’fl, then the unique positive equilibrium of (1),
X, is a global attractor.

D o Of
Proof Suppose that'ﬁ # sy-and 3 < B7T. Then, consider 5, - From Lemma 1, and
if 8 < aD, we obtain

a_fzﬂv—aB—ozsz(ﬂ—aD)v—aBSO. (30)
Ou  Bu-+ Duv+v)2  (Bu+ Duv+v)?

If aD < 3 < 87 = aD + B./a then by Lemmas 7 and 8, and by the definition
of interval K in (29), every solution {x, } will eventually enter the attracting interval

K = [ﬂ_%D, ﬁi‘%] and remain there. Hence, by Lemma 8, there exists a positive
aB

integer N such that for all integers n > N, x,, < FoaD"
forn > N, %L <0 (Fig. 2).

Therefore, when 3 < 37 and n > N, the function f(u, v) is non-increasing in
both u and v. We will use the “M&m” Theorem, Theorem 2. We define m, M as
follows,

Therefore, we again see that

a+ M a+ OBm
m= and M = .
(B+ )M + DM? (B + 1)m + Dm?

We clear the denominators to obtain
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Fig. 2 When 3 < 3+ the 8 N
unique equilibrium is a B8>p
global attractor B=p"=aD+/aB

(B+ )mM + DmM?* = a + M 31)
(B+ 1)Mm + DMm? = o + Bm. (32)

We subtract (31) and (32) to get
DmM(M —m) = (M — m).

We have a solution M = m. Assume M # m, then we get that DmM = (3 which

implies that m = ﬁ and we substitute this expression into (31) to obtain,

(B+1)<%>M+D<%>M2=Q+BM
—(BJ;DB+,BM=Q+5M
(B+1)B=aD.

Which, we assumed is not the case. Hence, we have proved convergence to x when
B<aDand (B+1)3#aDor 3> 3t =aD + B/a.

Corollary 1 If 8 < 3" then the unique positive equilibrium of (1), X is a global
attractor.

5.2 Case 3> 3%

Suppose that 3 > 7. By Lemma 5, and the definition of the interval K in (29) we

aB B—aD
f—aD’ B

know that the interval K = [ ] is attracting and invariant, and hence,
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Fig.3 > g+ o—eo o [
0 ab g

there exists a positive integer N such that for all integers n > N, x, € K. Hence,
f(u, v) is non-decreasing in # and non-increasing in v (Fig. 3).
We proceed by Theorem 3, setting up the system of equations

m— a+Bm

— Bm+DmM+M (33)
M = a+sM .

~ BM+DmM+m

By, clearing the denominators in (33), and subtracting the second from the first,
we obtain
B(m — M)(m+ M)+ DmM@m — M) = B(m — M). (34)

Clearly m = M is a solution. Suppose that m # M and divide both sides of (34) by
m — M to obtain,
B(m + M)+ DmM = 5. (35)

We can see that by the symmetry, any solution to (33) for m must also be a solution
for M. We solve for m in (35) to obtain,

_ B-BM

B+ DM
and substitute this into the second equation in system (33).
BM?* + DmM?* + mM = o+ M (37)
5 B—BMY\ , (B-BMY
BM +D<7B+DM>M <7B+DM M=o+ M (38)
BM?*(B + DM) + DM*(3 — BM) + M(3 — BM) = (o + SM)(B + DM) (39)
B*M? + BDM? + DBM?* — BDM? + M — BM?* = aB + aDM + 3BM + 3DM?
(40)
BZM? + BM — BM? = aB + aDM + 3BM (41)
B(B— 1)M?* + (3 —aD — BB)M — aB = 0. (42)

We will break this case up into three subcases, depending on whether B =1, B > 1
or B < 1. For the cases when B = 1 or B > 1 we continue by using Theorem 3.
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521 CaseB=1
If B = 1 then (42) reduces to

—aDM —aB =0
which has no positive solutions. Hence m = M was the unique solution to (33), and
by Theorem (3) we would conclude that the unique positive equilibrium is a global
attractor.

522 CaseB >1

If B> 1then B(B — 1) > 0and 3(1 — B) — aD < 0, then we see that M, M, are
solutions to (42), where

B(B—1)+aD —/(B(B—1)+aD)?+4aB2(B — 1) -

M] = M_ = 0’
2B(B - 1)
— — 2 2 _
My = M, = BB —1)+aD+ (BB -1 +aD)* +4aB>B—1) _ 0
2B(B - 1)

By (36), we find that

_B—=BM; _B(B-1+aD+/(B(B—-1)+aD)?+4aB2(B—1)

mp = = =M+»
B+ DM, 2B(B—1)
_ B—BMy _ B(B— ) +aD —/(B3(B—1)+aD)?+4aB%(B — 1) —u
"= B DM, 2B(B — 1) -

This gives us the following symmetric solutions,

My, my) = (M_, M),
(M3, m3) = (My, M_),

where one of the components is negative in each solution. Hence, the unique solution
of (33) is M = m, and so by Theorem 3 we have shown that the X is a global attractor.

523 CaseB <1

So, what remains to be shown, is global convergence for the case when 3 > 5+ and
B < 1 (Fig. 4).

When B < 1 we know that B(B — 1) < 0. Looking at the coefficient of M in
(42), we see that if 3 — aD — 3B < 0 then (42) will have no solutions, since all
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Fig.4 When 3 > 37 and
B > 1 the unique p B>p*
equilibrium is a global B=p"=aD+/aB
attractor
Bg<p*
(0,aD) B<1 B>1
B
1 2
coefficients in (42) will be negative. Hence,
B—aD— (3B <0 (43)
81— B) <aD (44)
aD
< . 45
T (45)
So for 3 < % we have satisfied the requirements of Theorem 3, and every
solution will converge to the unique positive equilibrium Xx.
aD

The global behavior of solutions is still open in the region for 3 > 3+, § > =
and B < 1.
The following theorem follows from the justification given above:

Theorem 13 If 3> BT andif B> 1, 0orif B <1 and 3 < %, then the unique
positive equilibrium of (1) is a global attractor.

6 Conclusion

It has been shown that Eq. (1) has a unique positive equilibrium which is locally
asymptotically stable and a global attractor when the values of the parameters satisfy
the conditions of Theorem 1, and for all positive initial conditions xg, x_;. Hence, the
equilibrium of (1) is globally asymptotically stable under the conditions of Theorem 1
(Fig. 5).

These authors believe that alternative techniques must be used to investigate the
remaining region, namely when

8>aD+aB, (> and B < 1.

1—-B’
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Fig. 5 When 3 > %,
B<1and[i§%the
unique equilibrium is a
global attractor

8> p*
B=p"=aD+aB

Fig. 6 Region for B and 3
for which global attractivity
remains open

B> p*
f=p"=aD+/aB

(-

(0,aD)"

Theorem 3 does not apply with the given invariant interval of K defined in (29)
because it can be shown that there are other solutions to the system in Theorem 3 for
whichm # M. Hence, one must find a smaller invariant interval if one is to apply this
theorem, or use other techniques such as semi-cycle analysis, Lyapunov functions,
etc. (Fig. 6).

Conjecture 1 The unique positive equilibrium of (1) is a global asymptotically stable
for all positive values of the parameters.

We conclude the paper with the following open question, which would extend the
results to a non-autonomous equation.

Question 1 Determine the behavior of solutions of (1) when the coefficients are
periodic, or more generally positive sequences of real numbers bounded from above
and from below by positive constants. In particular, determine if all positive solutions
are bounded.

Acknowledgements The authors wish to thank the anonymous referee for his or her helpful com-
ments for revising this paper.
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Population Motivated Discrete-Time )
Disease Models ik

YE LI and Jiawei Xu

Abstract Infectious diseases are now widely analyzed by compartmental models.
This paper introduces a SIR model coupled with a social mobility model (SMM).
After discretization by a forward Euler Method, and a mixed type Euler method
(structured with both forward and backward Euler elements), we obtained a differ-
ence equations model for our social mobility model. We calculate the basic repro-
duction number Rj using the next-generation matrix method. When Ry < 1, there
will be a disease-free equilibrium (DFE), and Ry < | implies DFE will be locally
asymptotically stable, while Ry > 1 implies DFE is unstable. When Ry = 1, DFE
may stable or unstable. Then we obtain a hyperbolic forward Kolmogorov equation
corresponding to the SIR epidemic model. We also generate the hyperbolic forward
Kolmogorov equations for the SIR model with SMM between 2 locations.

Keywords SIR epidemic model - Discrete-time model - Social mobility model -
Forward Kolmogorov equation

1 Introduction

Infectious diseases are now widely analyzed by compartmental models, such as SEIR,
SIR, SI, etc. [1-3]. Sattenspiel and Dietz considered a structured epidemic model
by incorporating geographic mobility among regions [4]. Skufca and ben-Avraham
considered a situation that accounts for the different dynamics arising from individ-
uals on short trips and returning to home locations, based on a Gravity Model [5]
and using the SMM (social mobility model) [6]. All of the above studies are for-
mulated as a Markov Process. In Sect. 2, we review the SMM model in the form of
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the continuous-time model. In Sect. 3, we formulate the SMM model in the form of
the discrete-time model by the forward Euler method. In Sect. 4, we also define the
Disease-free equilibrium (DFE) and Ry (basic reproductive number) and analyze the
forward Euler method discrete-time model. In Sect. 5, we give a PDE (Kolmogorov
Equation) view of the SIR epidemic model and we construct the Kolmogorov Equa-
tions of the SIR epidemic model under population movement between 2 locations.
Section 6 is the Numerical Simulation part, which shows the computed results on a
simulative example based on the two discrete-time models. Finally, we discuss two
discrete-time models and the difference equation SIR epidemic models under the
Kolmogorov Equations representation in Sect. 7.

2 The Continuous-Time Model

2.1 Basic SIR Model Integrated with the SMM

According to [6], the SMM allows two types of motions: relocation and short trips.
Let
(i, j) = (current location, home location)

Define the time scales 7 > 0 > 7, T ~ years, 8 ~ months, T ~ days [6]. The
motion of people falls into two broad categories: (1) movement to relocate from
one home to another, and (2) motion related to taking a trip with planned returns.
Definition of forms in the SMM model is included in Table 1 and the transition paths
of the model is shown in Fig. 1.

Table 1 Meaning of coefficients

T Time between travelling

0 Time between trips

T Rime between relocation

wjj Likelihood relocate from i to j
Vij Preference to travel from i to j
r Probability
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From the definition above, Skufca and ben-Avraham studied the following popu-

lation motion process by using the parameters of Table 1 and the rates of Fig.2 [6].
The resultant master equations are given by

1 1 1
Trij = ; Zﬂ'ji - (5 ;Vij + T ;wij)ﬂ'ii + T ;wjiﬂ'ij

j#i ey
—_——
optional
. 1 1 1—r
Mij = gViiTij i Tii + D Vi
k#j
ro 1—r 1 )
- (=+ ZVik)Wij + = Z(wkjﬂ'ik — WjkTij)
v T / T
k#j k
optional
A
i 1-r
b —Va
! |
e
g "’ |
Population Population |
City i from i from i | City ]
T % -
(isi) : Ve (3:1) |
1 1 |
— -,
T / I
Population Population - r: - Population [ Population
from k from j - fromj | fromk
(i.k) (L) (3.0 | (1K)
/ 1 |
7T o 7
p S A 2 “ S
— i 1-r =
f— vy 1
- X i T v o l'q.‘-_.
¥ v T
Fig. 1 Travel path of the model
Fig. 2 Transition rates for . -
the SMM. In all cases, Transition Rate Description
i#£j#k when at home
(3,7) — (J,1) Vi travel
(5,1) — (4,7) Fwij relocate
when away from home
(4,5) — (4, 9) ja return
(2,5) — (k,3) 1T;TV¢1¢ continue trip

(4,5) — (i, k) FWik relocate (optional)
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Fig. 3 State transition diagram for the model. Note that health condition is not affected by motion,
and all paths from Sy, — Iy represent disease propagation

We consider a basic SIR model with births and deaths occurring at equal rate, f,
disease recovery rate, «, disease transmission rate, 3, and the total population, N,
remaining fixed:

S =puN — uS—pBSI (3)
I =p3SI—oal—ul 4)
R:ozl—,uR ()

Here S means susceptible, / means infectious, R means removed with S + I +
R=N.

Let S;; means susceptible move from j to i, I;; means infectious move from j to
i, R;; means removed from j to i. Figure 3 illustrates the transition paths available
in the model. From [6], the SMM allows two types of motions: relocation and short
trip. given a two location example, we can get a general SMM model
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Sii =uN; — pSii — ﬁSu ZIIZ + - ZSII (é Zyij + % Zwij)sii (6)

Hﬁt

. 1 1 1
Sij: - lj 6SU ZIIJ+HVJISII+ wljsll+_;yklskj

_ (7

- (; + T ZVik)Sij
k#j
. r 1 1
lii = BSii Z]ij —(a+ Wl + - Z Iji — (5 ZVij + T Zwij)lii (8)
j J# J J
. 1 1 o 1=r
li; = BSi; Zlij —(a+wlh;+ al/ji]jj + pwilii + — ZVkiij
k#j )

r 1—r
(-4 N
S

k£

2.2 The Population Mobility Model with SMM

Set N;; = S;;j + I;j + R;;. Define N; be the residents fromi, N; = Z;l':l Nj;. Apply-
ing the SMM model from [6], we can get a population mobility model as follows:

. r 1 1
Nii = p(N; — Nii) + - ZNji - (5 ZVij + T Zwij)Nii (10
J# J J
N Nij + 20N + o N+1_rZ N (r+1_rZ )N
ij = —HNij T pVjilVjj T ZWijlNig T ——— VkilNkj — (= T ——— Vik)Nij
J AN g itNii T i T L ki Vkj - T L k) Vij

(11)

3 The Discrete-Time Model

In this section, we use the forward Euler method [7—10]. Define ¢(¢) as the time step.
We obtain the discrete-time model as follows:
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Sii (1 +1) = 8ii (1) = $ON; — ;i (1) = BS;i (1) Y Iij (1)
J

(12)
+ = ZS,,(t)f( ZM/ wi_j)Sii(I)]
T A
1
Sij(t+1) = 85 () = p(O)[—pSij (1) — ﬂSU(t)ZI,,(l)-i-e ji ],(t)-l- —wijSii (1)
(13)
+ — Z Vki Skj (1) — <7 s Z Vik)Sij ()]
k#j k#j
Lt + 1) = L (1) = $OIBSi (1) Y 11 (D) = (@ + ) I (1)
! (14)
+ = ZI/,(I)—( ZVI/ w,,)],,(t)]
T A
1
Izj(t +1) - [l](t) —¢(Z)[/3SU(I) lej(t) - (U("‘N)[zj(l) + 9 jl[]j(t) + wlj[ll(t)
! (15)
+ — Zl/kllkj(t) ( L= Zl/,k)ll](t)]
k#j k#j

Similarly, we obtain the discrete population mobility model as follows:

r 1 1
Nit(t) = $(OLR(N; = Nig) + = ; Nji= (5 zjj vij + Zj:wi,-)zv,-,-] (16)

1 1 1—r
Nij(t + 1) = N;j (1) = () —pNij + éVjiij + i Nii + e ZVkiNkj
o an

r 1—r
- (=+— Z Vik)Nijl
T T

If I;; = O for all (i, j), the population will be "disease free’. The Eqs. (12)-(15) will
reduce to
r
Sii(t + 1) = S (1) = o) [uN; — pSii () + . ZSji(t)
J#
- Z vij + w,»sl,(r)]

(18)

1 |
Sij(t +1) = 8;; (1) = p@)[—pSij (1) + éVjiSjj(t) + 7wij5ii(l)
1- 1— (19)
+ S Sy ) = =L w0
Tk Ny
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Which is equivalent to model (16) and (17). If I;; =0 then R;; =0, and so
N;; = §;; for all time steps.
Following the method in [11] we consider discrete dynamical system

xt+1) = fx@), t=0,1,2, .. (20)

which has an equilibrium point x* if f(x*) = x*. Writting (16) and (17) in the form
of (20), we obtain equilibrium points where

r 1 1
(N; —Nii)-i‘;ZNji —(EZM’/’*—?ZW:’/‘)M;’ =0 (21
J# j J
1 1 1—r r 1—r
— NNij —+ 5Vjiij -+ ?w,-jNi,» + T ZVkiNkj — (; + T Zl/ik)Nij =0
k#j k#j
(22)

The solution of (21) and (22) defines the equilibrium of model (16) and (17).
The solution of (21) and (22) orders as follows:
N{i, Ny, ooy Ny NSy ooy NS o NO o, N

1n> n

Which gives population mobility equilibrium n? x n? diagonal matrix N*.

4 The Basic Reproduction Number R and Disease-Free
Equilibrium (DFE)

Ordering the infectious variable

1117 1127 e Ill‘l’ 1215 AR 1211’ AR Il‘ll7 AR Inn‘

Define matrix V as follow:
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ayy 0 0 0
_w% ap 0 0
-“B o a3 0
*w% 0 0 Aann
e 0 0
0o -z 0 ... 0
T
0 0 =luyp... o0
V=6(1) : :
0 0 0 =1y,
e 0 0
0o =y, o ... 0
0 0 =Zly,... o0
0 0 0 -z
where,

ann=a+M+éZjan+%ijnj,

0 0 0
0 %Vzl. 0
0 0 ...%Dz]
w21

= 0 0
ax 0 0
w

B3 0
w

72]1 0 azxn
0 0 0
0 %1/2,,‘“ 0
0 0 -

dn]

0
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0 0 ... 0
=l 0 0
0 %l"nl 0
o 0 -t
0 0 0
-z 0 0
0 %11/,12 0
0o 0
: o
0 0 —
0 an P
0 0 ... danpn

ani=a+/1_1%rl/nn+(£+

1%’ Dk 2i Vnk)- According to [12], the basic reproduction number of model (12)—

(15) is:

where p is spectral radius.

Ry =p(FV'),

Using the method of [7, 12] we construct the diagonal matrix F as follow:

*
11

F=¢(1)-3-N*=¢(1)-8

12

*

n2

*
Nn n

Let Ey be the DFE of model (12)—(15). At the DFE, Egs.(18) and (19) are

equivalent to (16) and (17), so
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* * * * * * *
Eo =[N, Niy ... Ni, NS s NEyo s NN,

n nn’

0,...,0]
——

nxn

in the ordering of

Slla"-vslnaszlv"-vs2ns'-'aSnls'-'vsm‘l»
7 ST ST YT A

Because the DFE considered as I = 0, which cause R = 0, Ey not includes the
removed part. There is a convenient way to analyze the stability of DFE according
to Theorem 2 in [12].

Lemmal Ry < 1 implies DFE be locally asymptotically stable; Ry > 1 implies
DFE unstable.

Proof Here the matrices F and V follow the method [12]. We easily verify that matrix
F and V satisfies the (A1)—(AS)in[12] and that V is also anon-singular M — matrix,
F is also a non-negative matrix. Let C = F — V, and s(C) be the maximum real
part of the eigenvalues of matrix C (spectual abscissa). According to the Theorem
1 and proved in [12] and Lemma 4.1in [9], Ry > 1 <= s(C) >0, Ry < 1 <—
s(C) < 0. So we can get Ry < 1 implies DFE be locally asymptotically stable;
Ry > 1 implies DFE unstable.

Theorem 1 DFE is globally asymptotically stable when Ry < 1; when Ry > 1, the
DFE is unstable.

5 Example

In this section, we validate our algorithm for vectorization of the infected SIR-SMM
model. We construct three examples of locations. These two examples show how
coefficients affect the basic reproduction number (Figs. 4 and 5).

6 The PDE View of the SIR Model with Social Mobility

6.1 Basic SIR Model

Firstly, we consider the Moran process according to the method in [13, 14] in the
basic SIR model (6)—(8). Define N be the total constant population. Py ar (f, n, m)
be the probability there are n susceptible, m infectious and N — m — n removed at
time ¢. Define Af to be the time step. Then we have
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loc 1,1 loc 2,1 loc 3,1
10 0.2 0.04
— | e | — ]
5 —S 0.1 —_— 0.02 —F
—R ‘R R
0 0 0
0 02 04 0 02 04 0 02 04
loc 1,2 loc 2,2 loc 3,2
0.2 4 0.02
w— | —] —
0.1 —_— 2 —S 0.01 —_—5
R R R
0 0 0
0 0.2 04 0 0.2 04 0 0.2 04
loc 1,3 loc 2,3 loc 3,3
0.04 0.02 1
— | L — | — |
0.02 — 0.01 — S 0.5 o &
R R R
) S———— 0 0
0 0.2 04 0 0.2 04 0 02 04

Fig. 4 N1 =10,N; =4,N3=1,5 =0.99N, I =0.01N, ¢(¢) = 0.0002, x = 0.005, 3 = 4.8,
a=48, 7 = 3%, 0 =1,T =10,r =0.5. The S;; and [;; as functions of time ¢. Here Ry < 1

shows the disease will die out. p(A) < 1, s(C) < 0 shows the DFE is locally asymptotical stable

n+1
P(N’At)(t,l’l +1,m—1)

p _ m—1 n+
(N,At)(t+At’n’m)_(M+6_N_1) N
N—-n—-m+1
N
N —

n—m
T(l - N)]P(N,At)(t’ n,m)

+1
(@ ) T Py, anEnm £ D) + Piv.an(tn—1,m) (23)

n m m
+ [N(l—(ﬂ‘f‘ﬂm))ﬂ-ﬁ(l—a—ﬂ)-i-
Let x = §, y =%, p(t,x,y) = NP an(t,xN,yN) = p. Keeping terms of

Ny—1 xN+1 1 1
Lxt —.y——
N_1) N Pertyyoy)

P(N.An(t+ At x, y) = (n+ 3

1 1 1 1
+ (a+u)(y+ﬁ)p(t,x,y+N)+ﬂ(l—x—y+ﬁ)li(t,x—ﬁ,y)

I Y )yl —a—p+ A —x =)0 =mlp, x,y)
Yy

+ (= (u+p

(24)
1
~p+ N[(3u+a = Bx + By)p + (Bxy + 2ux + py — ) px + (ay + py — Bxy — p)pyl

1
~p+ N[ax((ﬁxy +p@x 4y = D)p) + 0y (((a — Bx)y + u(y — D) p)]
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0.1 — 2 — 0.01 —
|—r R R
0 0 0
0 02 04 0 02 04 0 02 04
loc 1,3 loc 2,3 loc 3,3
0.04 0.02 1 ——0

0.02 —3| | 0.01 e 0.5 e
R ‘R —R

0 -
0 02 04 0 02 04 0 02 04

Fig. 5 The S;; and I;; as functions of time ¢. Here we suppose there are 3 locations
and N =10, N, =4, N3 =1,5 =0.99N, I = 0.0IN, ¢(¢) = 0.0002, o = 0.005, 8 = 10, e =

48, 7 = %, 0=1,T =10,r = 0.5, with Rp = 2.0036

Let a, b, c be positive constants and defined by

lim i =b
N—>00oAr—0 N At
. le}
lim —— =a
N—>00A;r—0 N At
I

=c
N—oopr—0 N At

where
ab #0.

Then we have

Op = 0:(((bxy +c(2x +y — D)p) + 0y(((@ —bx)y +c(y — D)p) (25
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6.2 2 Location Condition

According to the method in [13], define N; be the total population in city i, n;; be
the susceptible, m;; be the infectious and N; — n;; — m;; be the recovery from city j
to city i. Define Py, ar)(, n;j, m;;) be the probability that there are n;; susceptible,
m;; infections and N; — n;; — m;; removed at t steps.

Without loss of generality, in city 1, x; = f*, y1 = %, y2 = 2. For population
from city 1 to city 1, let p; = p(¢, x1, 1) = N1 Py, an(t, x1 N1, y1N1) For popu-
lation from city 2 to city 1, let p» = p(t, x2, y2) = N1 P,.an(t, x2N1, y2N1) For
susceptible moves from city 1 to city 1, infectious moving from city 2 to city 1, let
p3 = p(t,x1, y2) = N1 P, an(t, x1 N1, y2N1)

Because S;; cannot become an I;;, there is no term Py, ar(f, n12, my1). Let

1
lim 0 —g
N—conr—0 N At

1
lim r —j

N—oopr0 NAT

r

lim T =
N—ooar—s0 N At

Then we can obtain

Orp1 =04, [2MB(y1 + y2) + ¢ +dvip + lwi)x) + (¢ + dviy + lwi) (v — 1))%]

+ 0y, [((a — bx; + ¢ +dviy + lwi)y) — (byy + ¢ + dvip + lwin)x) pi]
0rp2 =0y, [(B(y1 + y2) + 2¢ 4+ 2h)x3 + (¢ + ) (y> — 1)) p]

+ Oy,[((a = bxy + ¢ + )y, — (byr + ¢ + h)x2) p2]
Oip3 = Oy, [((b(y1 + y2) + 2¢ + dvip + lwia + h)x1 + (¢ + h) (y2 — 1)) p3]

+ 0y,[((a —bxi +c+h)y, — (by1 + ¢ + dvis + lwin)x1) p3]

27)

(28)

Equations (26)—(28) constitute a new stochastic model SIR and SMM based upon
the constitution of Sect.3. The analysis of (26)—(28) and their generalization to n
locations will be the subject of future work.

7 Discussion

In this paper, we consider discrete methods for the SIR model with SMM based on the
[15, 16]. Because the existence criteria of the steady states in the continuous-time and
discrete-time models are the same, both continuous and discrete-time models have
the same equilibrium [17]. According to the method introduced in [13, 14], we get the
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hyperbolic forward Kolmogorov equation for the SIR model (6)—(8) corresponding
to the Moran process. We also construct the Kolmogorov equations for the SIR-SMM
model between 2 locations.

Our further work is to prove the uniqueness of the solution in (6) and (26)—(28),
study how the solution changes with time, and generalize the Kolmogorov equations
of SIR-SMM model (26)—(28) to n locations. How to find a suitable initial condition
for (26)—(28) is also something we will investigate in our future work.
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1 Introduction

We consider the following higher order linear difference equation
CNXptN = CN—1Xn4N—1 + -+ + C1Xp1 + Coxp — fu, n=0,1,2,..., (D)

where N > 2, ¢, ...,cy and f, are integers (n =0, 1,2,...), cg #0, cy # 0. If
cy = =1 then we have an explicit equation. It is clear that any explicit equation has
a unique integer solution for any initial data xo, x1, ..., xy—1 € Z (see, for example,
[1]). In what follows we assume that cy 7 =1 and at least one of ¢y, ..., cy—; iS not
divisible by cy. In this situation Eq. (1) is said to be implicit over the ring Z.

Let us note that an implicit difference equation even of first order does not nec-
essarily have an integer solution. For example, the general solution of the equation
3x,41 = x, + 1 over Q has the form x, = %—i—%, where a € Q,n=0,1,2,....
It is obvious that for any value of a constant a we cannot obtain an integer solu-
tion (see Example 2.1 in [2]). An implicit difference equation may have an inte-
ger solution. For example, the equation 3x,.; = 4x, + 5 has the integer solution
xp, = —5,n=0,1, 2, ....Suchunexpected integrality is sometimes called the “Lau-
rent phenomena” (see [3]).

Equation (1) can be regarded as an infinite system of linear equations with coeffi-
cients in Z. If Eq. (1) is explicit, then the corresponding infinite system has infinitely
many solutions over Z. For the implicit equation the situation is already different: the
uniqueness of an integer solution takes place in many cases [4—6]. In Sect.2 of the
present paper we obtain the general uniqueness criterion of integer solution which
extends the V.N. Berestovskii and Yu.G. Nikonorov’s result [7, Theorem 6]. In The-
orem 2 this criterion is specified for an implicit third order difference equation. The
case of an implicit second order difference equation was considered in [6, Theorem
1].

As shown in [8, 9], if an integer solution to an implicit first or second order linear
difference equation is unique, then this solution can be found by some analogue of
Cramer’s rule (see also Remark 4 of Sect.4 in this paper). The application of the
p-adic topology on the ring Z was essential for this [2]. For other applications of
p-adic numbers to difference equations see [10]. In [11, Remark 3.4] Cramer’s rule
was considered for first order implicit linear difference equations in Fréchet spaces
and other locally convex spaces. In this paper we obtain an analogue of Cramer’s
rule for some implicit higher order linear difference equations. Unlike the first and
second order equations, this problem is much more complicated because the explicit
expression for the solution of Eq. (1) is too cumbersome and the process of computing
the corresponding finite order determinants becomes much more complicated (see the
proofs of Lemma 1 and Theorem 3). The difference equation (1) does not necessarily
have an integer solution. Therefore we begin by studying Eq. (1) over the ring Z,
of p-adic integers [12, Chap. 1, Sect. 3], and show that, under some additional
assumptions, Eq.(1) has a unique solution over Z,. Moreover, this solution can
be found by an analogue of the Cramer’s rule (see Theorem 3). Under additional
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conditions on the coefficients ¢y, ..., cy of Eq.(1) we prove the main result of this
paper concerning the possibility to find the unique integer solution by using of an
analogue of Cramer’s rule (see Theorem 4).

Some results of this paper were presented at the 25th International Conference on
Difference Equations and Applications at UCL on 24th June—S8th June 2019.

2 Uniqueness Criterion of an Integer Solution for a Higher
Order Implicit Difference Equation

We prove the following criterion for the uniqueness of an integer solution of Eq. (1)
in terms of the characteristic polynomial x (\) = cyA\¥ — Zyz_)l ciN.

Theorem 1 The implicit homogeneous equation
CNXntN = CN—1XpgN—1 + -+ + C1Xpq1 + CoXy, n=0,1,2,... ()

has only the trivial solution in integer numbers if and only if the factorization of the
characteristic polynomial x(\) on primitive irreducible over Z polynomials has no
polynomials with leading coefficients equal to 1.

Proof By Gauss‘s theorem (see, for example, [13, Chap.IV, Sect.2, Theorem 2.3])
the characteristic polynomial of Eq. (2) admits the factorization

XA) =cpi(N) ... pu(N), 3
where ¢ € Z and p;()), ..., p,(N\) are primitive non-constant irreducible over Z

polynomials. This factorization is unique up to order of factors. Define the shift
operator § : ZNUO . 7NV} a5 follows

S(xntnzo) = {xns1}izo-
Equation (2) can be rewritten in the operator form
XS {xalZg) =0, n=0,1,2,...,
or by the decomposition (3) in the form
Pi(S) - Pu(S)({xa}2) = 0 4)

(see [1, Kelly-Peterson, Sect.3.3, Theorem 3.7]). To prove the sufficiency of the
assertion of Theorem 1 we assume that leading coefficients of p;(}), ..., p,(N) are
notequal to 1. The polynomial p; (\) isirreducible over Q and its leading coefficient
is not a common divisor of the other coefficients. It follows from Theorem 6 [7] and
Eq. (4) that the sequence {x,};2 is an integer solution of the equation
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P2S) oo P (H{xn ) =0

Using similar arguments for polynomials py(A),-...-, p,(\), we obtain
x, =0, n=0,1,2,....

Now we prove the necessity of the assertion of Theorem 1. Let Eq.(2) have
only the trivial solution in integer numbers. Assume to the contrary that the leading
coefficient at least one of polynomials p;(}), ..., p,()\) in the factorization (3) is
equal to £1. Without loss of generality, suppose that

k—1
PN =X+ "N, a;€Z j=0,1,2,....
j=0

Consider a non-trivial integer solution {x,}°2, of the explicit difference equation

k—1

xn+k+2ajxn+j =0, n=0,1,2,....
j=0

Then p,, (S)({x.};2y) = 0 and

P {xn}Zg) = P1(S) - ... pun(S){xn},20) = 0.

Consequently, {x,}52, is a non-trivial solution of Eq. (2). This contradicts assumption

of the theorem. The proof is complete.

Corollary 1 Let f,=f €Z for all n=0,1,2,.... If the expansion of the
characteristic polynomial x(\) on primitive irreducible over Z. polynomials has
no polynomials with leading coefficients equal to +1, then cy — Z?’;ol ¢j #0and
the nonhomogeneous equation

CNXngN = CN_1XpgyN—1 + -+ C1Xpq1 +Coxy — f, n=0,1,2,...  (5)

has an integer solution if and only if cy — Z’;’:’Ol cj is a divisor of f. If an integer

solution exists, then it is unique, it is constant and has the form

f

N-1
Zj:o Cj —CN

Proof By Theorem 1 Eq. (2) has only the trivial solution in integer numbers. Since the
constant sequence z, = 1 is not a solution of Eq.(2), we obtain cy — Z;V:‘O' c; #0.
Let {x,}2, be an integer solution of Eq.(5). Set y, = x,41. Then the sequence
{yn}s2p is an integer solution of Eq.(5) as well. Then y, = x,, i.e. x, = xo forall n

X, = ,n=0,1,2,...
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and (cN - Zy:_ol cj> xo = —f. Conversely, if cy — Z?]:_Ol c; is adivisor of f, then

the constant sequence x, = is an integer solution of (5).

N-1
j=0 Cj —CN

Example 1 Consider the following third order implicit linear homogeneous differ-
ence equation:

4xn43 = 4xXp42 — 3xpp1 +x,, n=0,1,2,... (6)

The characteristic polynomial y(\) = 4\*> — 4)\? + 3\ — 1 admits the following fac-
torization on primitive irreducible over Z polynomials:

YA =CA=DRN =X+ 1)

By Theorem 1 Eq. (6) has only the trivial integer solution. Now let f € Z. By Corol-
lary 1 the nonhomogeneous equation

Axpes = 4xp40 — 3xp01 +x,— f, n=0,1,2,...

has an integer solution if and only if f is even. This solution is unique and has the
form x, = —%.

Theorem 1 at once implies the following simple uniqueness criterion of an integer
solution in the particular case of a second order implicit difference equation (a more
complicated proof of this assertion may be found in [6, Theorem 1]).

Corollary 2 The implicit second order homogeneous equation
C2Xpq2 = ClXpq1 +CoXy, n=0,1,2,...

has only the trivial solution in integer numbers if and only if the characteristic
polynomial x(X\) = c2A% — ¢1\ — ¢ has no integer roots.

The following example shows that Corollary 2 can fail for an implicit difference
equation of an order greater then two.

Example 2 Consider the following third order implicit linear homogeneous differ-
ence equation:

3xp43 = 4xXpq2 + 2Xp41 — X, n=0,1,2,... (7
The characteristic polynomial of this equation

3N AN 204+ 1=0CA =D =)1—1)
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has no integer roots. But the leading coefficient of the factor A> — A — 1 is equal
to 1 and the Fibonacci sequence is an integer solution of Eq. (7). Then Eq.(7) has
infinitely many integer solutions.

Now we prove the following uniqueness criterion for an implicit third order dif-
ference equation.

Theorem 2 The implicit third order difference equation
C3Xn43 = C2Xpi2 + C1Xuq1 + CoXy, n=0,1,2, ... 3

with co-prime coefficients c3, ca, c1, co has only the trivial solution in integer numbers
if and only if the one of the following two conditions holds:

1. The characteristic polynomial x(\) = c3\3 — ca\* — 1\ — ¢ has no rational
roots.

2. The characteristic polynomial x(\) = c3\> — 202 — ¢\ — ¢y has no integer
roots, but it has a rational root A = g(q # *c3), where p and q are co-prime.

Proof Necessity. Let Eq. (8) has only the trivial integer solution and the characteristic
polynomial x () has a rational root A = g, where p and g are co-prime. Assume
A € Z. Then Eq.(8) has the non-trivial integer solution x, = A" (n =0, 1,2, ...).
This contradicts with the assumption about the uniqueness of an integer solution for
Eq. (8). Therefore A = g € Q\Zand g # +1.

Let us prove that ¢ # 4c3. Then the primitive polynomial g\ — p is a divisor
of the polynomial x(A). Then by Gauss‘s theorem [13, Chap.IV, Sect.2, Theorem
2.3] all the coefficients of the polynomial N +ad+ay = qX,\(—i\)p are integers
and ga, = c3. Moreover, since the polynomial y(\) is primitive, the polynomial
A2 + ay\ + ay is primitive too. Then we have the following decomposition of
X () on primitive irreducible over Z polynomials

XN = (@ +a )+ ag) - (g\ — p). ©)

By Theorem 1 a, # *1 and hence ¢ # =cs.

Sufficiency. Let Condition 1 is fulfilled, i.e. the polynomial x(\) has no rational
roots. Then it is irreducible and by Theorem 6 [4] Eq. (8) has only the trivial integer
solution. Now suppose Condition 2 holds, i.e. the characteristic polynomial x(\)
has no integer roots, but it has a rational root A\ = f(q # =c3), where p and ¢
are co-prime. We again have the decomposition (9) on primitive irreducible over Z
polynomials. Therefore ga, = c3. Since g # *£c3, we obtain a; # 1. By Theorem
1 Eq. (8) has only the trivial integer solution. The proof is complete.
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3 Existence Theorem over the Ring of p-adic Integers

Let p be a prime. Consider Eq. (1) over the ring of p-adic integers Z,,.

Lemma 1 Suppose p is a common prime divisor of c1, ...cn, but ¢y be not divided
by p. Then Eq. (1) has a unique solution over Z, and this solution may be found as

Xn = Zyk+N—l fz+k, n=0,1,2,.., (10)

where the sequence {y, }°2, belongs to Q N Z, and uniquely solves the initial problem

N

CNYn =) eN—jYarj n=0,1,2,.., (11)
j=1

Yo = O, ceey YN-2 = 0, YN—-1 = 1. (12)

All terms of the series (10) belong to the ring Z, and the series (10) converges in
the topology of this ring. Thus, a unique solution of (1) over Z, is some convolution
of the sequence { f,,};2, and a “fundamental solution” {y,}>>, of Eq.(11). Herewith
Eq.(11) is some dual equation for Eq. (1).

Proof Since p is not a divisor of ¢y, we have — € Z, (see [12, Chap. 1, Sect. 3,
Theorem 4]). Therefore, the difference equatlon (l 1) can be written as the explicit
equation over Q N Z,

)’n+N—_ CNYn — ZCN jyurj |. m=0,1,2,.... (13)

Consequently, the solution of the initial problem (13), (12) belongs to Q N Z,,. We
show that the series in the right-hand side of (10) converges in the topology of Z,.
For this purpose it suffices to show that y;, y is divided by p[#] in the ring Z, for
anyk =0,1,2,...,1.e
k+N
verw = pU¥ Dz, (14)

where {z;}72, is a sequence of elements of Z, (see [12, Chap. 1, Sect. 3, Theorem
8]). We prove Formula (14) by induction on k. Let k = 0. Since c; is divided by p,
from (12),(13) it follows that yy = ¢ (—%) € pZ,. Assume that the representation
(14) holds for k =0, ...,m — 1, where m > 2. We show that it is also valid for
k = m. Since cy, ..., cy are divided by p, we have c; = pb;,b; € Z, j=1, ..., N.
By Eq. (13) and the induction assumption,
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N-1 N—1
1 1
Ym+N = | €NV = Z CN=jYmtj | = — PN Ym — Z PON_jymij | =
0 , 0 °
Jj=1 j=1
N-1
1 " 1y e
= C— [71+[N]bNZm — Z p [ N ]bN—jZm-‘rj =
0 ,
j=1
w1 1 Nem
= [ ] bNZm Zp N bejmeLj — p[ N ]Zm+Nv
where
/Yl+/ Hl
im+N = — bNZm ZP bN iZm+j | € Zp~

Thus, the representation (14) holds and the series in the right-hand side of (10)

converges in the topology of Z .
Substituting (10) into Eq. (1), we obtain from (11)—(13) that the sequence x,, is a
solution of Eq. (1) over Z ,:

N—-1 N—-1 oo

1
E CjXjn = CNXnN = — E E Cj fitntkYk+N— 1— — E Stk nYian—1 =
=0 0 j=0 k=0
N—1 oo
E Cj futk YN+k—j— 1—— E Sntk V-1 =
0 j=0 k=j
N—1 oo
1
= E Cj frrk YN+vh—j— 1—— E E CN—jYjtk—1 fnik =
0 =0 k=j k=N j=1
N—-1 oo oo N-1
= E Cj futkYN+k—j— 1—— E E CiYitN—1—j fntk =
0 j=0 k=) 0 k=N j=0
N—1N—1 N-1 k
1
== Cj furkYN+h—j—1 = - E § CjYN+h—j—1 frtk =
0 j=0 k=j 0 k=0 j=0
N—1 N-l k

k
1
D kNt fak = N o — DD kI fark =

1
0 k=0 j=0 € = 2o
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N-1 N—k—1

1
=yn_1fu+ — CNVi—] — CN—iVi—1+i ik = fn, n=0,1,2,....
yn-1f; @ Z NYk-1 Z N—jYk—1+j | Jork = fi

k=1 j=1

Now we prove the uniqueness of this solution. For this purpose it suffices to prove
that the homogeneous equation (2) has only the trivial solution x, = 0 over Z,,. It
follows from (2) that

1
Xp = — | CNXn4N — E CjiXnt+j | =
Co

=C— bnXpin — ben+, ,n=0,1,2,..,

where b; = % €Z, j=1,.., N.Hence,foranym € N, n =0, 1, 2, ... there exists
a number z,,, € Z, such that x, = p”z,,,. Therefore, x, =0, n =0, 1,2, .... The
proof is complete.

Remark 1 In the case of the second order difference equation
C2Xpy2 = ClXpq1 +CoXp — fu, n=0,1,2, .. (15)

Formula (10) was obtained in [6, Formula (10)] by the more complicated method as
the corollary of an explicit formula for a solution of Eq. (1)

00 k+1 k+1 k
AT = (—D*c
- s n=0,1,2, ..,
X, Z( )\1 _ )\2 ) C§+1 f+k n

k=0

where \j, \; are the different roots of the characteristic polynomial A2 — )\ — .
If this characteristic polynomial has a multiple root \; = X\, (for example, ¢; =
9,¢c1 = 6,co = —1, p = 3). then Formula (10) is a corollary of the following explicit
formula for the unique solution of Eq. (15) over Z,, [6, Formula 25]:

e

Note that in this case 3 € Z, for p # 2. If p = 2 then the number 2 is a common
divisor of ¢, and ¢y, and thus “ € Z.. Moreover, c1 + 4cpcy = 0 because we have a

multiple root. Hence (%‘)2 = —cpcy, i.e. ¢ is divisible by 4.
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4 Cramer’s Rule

We regard Eq. (1) as an infinite system of linear equations over Z,. Let the assump-
tions of Lemma 1 hold. Since ¢ is not divided by p, after dividing Eq. (1) by ¢y we
obtain the equivalent system over Z,

CN CN—1 €l Ja
—Xn4N = Xn+N—1 +-- 4+ —Xn+1 +x1‘l ———, n =0’ 1927 tees (16)
€o €o €o €o

By Lemma 1, this system has a unique solution over Z,. We consider elements of
the set S(Z,) of all sequences x = {x,};2, from Z, as column vectors. We write
(16) in the operator-vector form

-1 -1 -1 -1
Lcicy cacy ... cn—1Cy —CNC 0
-1 -1 ~1 -1
f 0 1 cicy ...cy-2cy Cn—1Cy —CNCg
.Ax=a, A=10 o 1 ...CN_3CO_1 cN_zcal cN_lcO_] » x € S(Zyp),

)
where elements of the column vector f = { f,,}2, are integers. Let A, be the matrix

obtained from the matrix A by replacing the n-th column with the vector Cf—o (n=
0,1,2,..),ie.

foca1 clcal czcal cN_lc(;l —chal 0
flco_l 1 clcal . cN_zcal CN_lcO_l —chO_l
‘AO = szO_] 0 1 e C1\1_3C6l CN_2C0_] CN_]C(;l ’
1 foco_' clco_] czcal ...cN_lcal —CNCO_l 0
0 flco_] 1 clco_l cN_ch_l cN_lcO_1 —chO_] .
A= 0 fzco_1 0 1 ... CN_3C61 CN_ZCO_I cN_lcal R LR

We denote by A, (respectively A, ,,) the (m + 1)th order leading principal minor
of the matrix A (respectively A,), m,n = 0, 1, 2, .... The following assertion shows
that a unique solution over Z, can be found by an analogue of the Cramer’s rule.

Theorem 3 Let the assumptions of Lemma I hold. Then Eq. (1) has a unique solution
over ZL,. This solution may be found by the following Cramer’s rule:

_det A,

= —", =0,1,2,.., 18
* det A " (18)
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where the determinants of A, A, can be defined as limits in Z,, of the sequence of
leading principal minors of these matrices, i.e.

det A= lim 4,, detA, = lim A,,. (19)
m— 00 m— 00
Proof By Lemma 1 Eq. (1) has a unique solution over Z,. Without loss of generality
we can assume that co = 1. We show that Formula (10) for finding a solution of (1)
can be regarded as a collection of Cramer’s formulas for solving the infinite system
of linear equations (17). We note that A,, = 1. Therefore det A = 1. Consider the
sequences of the leading principal minors of 4y:

f06‘1 Cy ... Ck

fllcl...Ck,1
Ao = fo, Aok = L0l ol =1 . N—1,

f00... 1

Jocicr...eyo1 —en
fl 1C]...CN_2 CN—1
01...cy-3¢Cn=

Aoy =12 N-3 CN=2|,

fv0O... 0 1

f06‘1€2C3...CN,1 —CN 0o ...0
f1 1 C1C2...CN—2CN—_1 —CN ... 0

A0k= fz 0 16‘1...CN_3CN_QCN_]...O’ k=N+1,N+2,....
fr000... O 0 0o ...1
Fixm = N, N + 1, .... We show that

Ao =Y Yirn-1fj- (20)
j=0

Denote gx = fin_x, k =0, ..., m and consider the determinants

8 C1 C2 ... —Ck
k-1 1 ¢ ...
By = go, Bk=g"—20 Lo k=1, N1,

80 00... 1
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8N €1 Cy...CN—1 —CN
gn-1 1l cr...cn2en
By =|8N-2 0 1...cy-3¢cnv=2| and

g 00... 0 1
8k €1 C2C3...CN—1 —CN 0 ...0

g1 1l crca...enoenvoy —cey ... 0
Bk: 8k—2 01 Cl...CN-3CN—2CN—1 ...0 k:N+1,N+2,...,m.

g 000 0 ...0 O 0 ...1
Decompose B (k =0, ..., N — 1) according to elements of the first row. Then the
finite sequence By, By, B, ..., By_ satisfies the following recurrence relation over
Z,:
By +ciBei1+--+caBy=gr, k=0,1,..,N—1. 2n

Now decompose By (k = N, N + 1..., m) relative to the first row. Then the finite
sequence By, By, , ..., B, is a solution over Z, of the following finite difference
equation

Bi+ciBi1+---+eyaBieni —cnBen =g, k=N,N+1,..,m. (22)
The initial data By, ..., By—; for the difference equation (22) are defined uniquely

from the recurrence relations (21). Then the initial problem (22) with these initial
conditions has a unique solution and B,, = Ay ,,. Let us prove that

k
Sk = Zijerlgkfj, k=0,...,m (23)
i=0

is a solution of Eq.(22) with initial data By, ..., By_;. We have

k
Sk = ZgjykfjJerla k=0,1,...,m.
=0

Then substituting s; into (22) and taking into account (11) and (12), we find

N-1 k—

N—-1 1
E CiSk—1 = E C E 8jYk—I—j4+N-1 =
1=0 1=0

Jj=0
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N— k— N-1 k-1

= Z € Q  8jYk—i—j+N-1 1 Z < Z 8jYk—i—j+N-1 =

=0 =0  j=k—(N—1)

=

Il
o

k—j

k=N N-1 k
= Zg.i ch)’k—l—j+N—1 + Z 8j chyk—l—j+N—1 =
j= =0

j=k—(N-1)  I=0

k=N k-1 N-1
=cN Zgjyk—j—l + Z gj(enyk—j—1 — Z C1Yk—1-j+N-1)+
Jj=0 j=k—(N-1) I=k—j+1
k=N
+Coyn-18k = 8k +CN Zgj)’k—j—l =8k +Sk-nen, k=N, N+1,....m.
j=0
Substituting s into (21), we have sg = g9 = By and
k ko okl ko k=)
chskfl = ch Zngk—l—jJrN—l = Zgj ch)’kflfjJerl =
1=0 =0 j=0 j=0 =0
k=1 k—j
=&t ) & Zczyk—Z—j+N—1 =
j=0 =0
k=1 N-1
=g+ Y gilenyij1— Y. GVr-jn-1) =8, k=1,...,N—L
Jj=0 I=k—j+1
Consequently,
m
Ao =5m =Y _yjsn-1fj. m=N.N+1 N+2, .. (24)
j=0

and the relation (20) holds. By Lemma | lim s, = lim A, exists in the topology
m—00 m— 00

of Z,. Then det A is well defined and Formula (10) for xy can be written as the

Cramer’s formula (18) with n = 0. Arguing in a similar way, we also find Formula

(18) for the remaining components of the solution x,, n =1, 2, .... The proof is

complete.
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Remark 2 Under the conditions of Theorem 3 the inverse operator to A can be
found by Formula (10):

L YN YN+1 YN42 YN43 -
01 yv YNg1 YN42 -
00

-1 _
AT = 1 YN YN+1 -

Remark 3 Asshownin [8, Example 3.1], if the assumptions of Theorem 3 fail, then
even for second order equation lim Ag, may not exist in the topology of Z, for
m—00

all primes. Furthermore, Eq. (1) can have a unique integer solution and this solution
cannot be found by the Cramer’s rule (18), (19).

The following theorem yields the sufficient conditions for the existence and the
uniqueness of an integer solution to Eq. (1) and the possibility to apply the Cramer’s
rule for finding this solution.

Theorem 4 Let cy and cy are co-prime integers and let any prime divisor of cy
divide cy, ..., cny_1. Assume that there exist numbers x,....xy_1 € Z such that (18)
and (19) hold for any prime divisor p of cy forn =0, 1, ..., N — 1. Then the implicit
equation (1) has a unique integer solution {x,}. . This solution can be found by the
Cramer‘s rule (18), (19).

Proof We consider the prime decomposition cy = pll‘ . plz2 -...- pln. By Theorem
3, Eq.(1) has a unique integer solution {x,(,p’)}:io over Z,,j, j=1,..., m. More-
over, x,(lp’) =x,forn=0,..., N—1, j=1, ,...,m.Weshowx,(f‘) =...=

(pm € Z. By Eq.(1) we have ch[(Vp’) =cCN_1XN_1+ -+ c1x +coxo — fo € Z.
Consequently, ("‘) . 1(\‘,”"‘ in Q. Let ||z]||, be the p-adic norm of z € Z,,.
Slnce X e Zp , we have ||x(p’ Il,, < 1and [leyxy” ||,,, = llewlly, - ||x“’f I, <
D j , j=1,...,m. Hence, an integer number ch(p " is divided by p ; for all
j=1,...,m. Thus, this number is divided by cy. Therefore, x(p el j=
1, ..., m. Repeatmg the above argument, we find x\"" = ... = ,(,p ") e Z, where

n= N + 1, N 4+ 2, .... The proof is complete.

Remark 4 We give an analogue of Theorem 4 in the case of the first order equation
(N =1):
ClXpy1 = CoXp — fn. n=0,1,2, ... 25)

Assume that ¢; and ¢( are co-prime integers and there exists an integer xy € Z such

that the following equality holds

o k

C
1
Xo = E Ck_ka

k=0 ~0
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for any prime divisor p of c; in the ring Z,. Then Eq.(25) has a unique integer
solution {x,};2, and this solution can be found by using the Cramer’s rule. This
assertion may be proved by same arguments as in the case N > 2. The case ¢c) = 1
has been considered in [2, 9].
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On the Neumann Boundary Optimal m
Control of a Frictional Quasistatic s i
Contact Problem with Dry Friction

NICOLAE POP, Luige Vladareanu, and Victor Vladareanu

Abstract This paper deals with boundary optimal control problem of a frictional
quasi-static contact problem with dry friction, described by a nonlocal version of
Coulomb’s law. We prove the existence of a boundary optimal control for the regu-
larized problem obtained from a quasi-static contact problem with dry friction. For
getting the necessary optimality conditions, we use some regularization techniques
leading us to a control problem of a variational equality. The minimizing of cost
function is a compromise between energy consumption and the finding of a traction
force on the Neumann boundary condition, so that the actual displacement field is as
close as possible to the desired displacement field, while the density of body force
remain constant and small enough.

Keywords Boundary optimal control problem - Quasi-static contact problem with
friction * Regularized state problem

1 Introduction

The quasi-static model of the contact problems with friction, without the inertia
effects, was proposed by [9] and consists of the formulation obtained through the
approximation with the finite differences of the variational inequality. The proof
of the existence and uniqueness is based on the hypothesis that the displacements
satisfy some conditions of regularity and the friction coefficient is small enough,
see [7, 9]. The static contact problem with friction cannot describe the evolutive
state of the contact conditions. For of this reason, the quasi-static formulation, of the
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contact problem with friction is preferred, which contains a dynamic formulation of
the contact conditions and the inertial term is no longer used. Through the temporal
discretization of the quasi-static contact problem, the so called incremental problem
is obtained, equivalent with a sequence of the static contact problems. Therefore,
the quasi-static problem is solved step by step, at each time small deformations and
displacements are calculated and are added at those calculated previously, as a result
of a few small modifications of the applied forces, of the contact zone and of the
contact conditions. Although, at each increment the dependence of the load-way
is neglected, this hypothesis takes into account the way the applied forces change
(modify themselves). From a mathematical point view, the problem obtained at each
step is similar with a static problem. We will describe two methods for solving our
contact problem, the first is the primal variational formulation problem, and the
second the dual mixed variational formulation problem. The main results where it
was demonstrated the existence of a boundary optimal control for the regularized
problem obtained from a quasi-static contact problem with dry friction, we recall,
[1-3, 8]). For getting the necessary optimality conditions, we use some regularization
techniques leading us to a control problem of a variational equality. After describing
the classical and variational form of the problem, we will first define the notion of
boundary control, optimal pair, optimal control and regularized optimal control, after
which we will present the existence of optimal boundary control.

2 Classical and Variational Formulation

Let 2 C R?,d =2 or 3, the domain occupied by a linear elastic body with a
Lipschitz boundary I". Let I}, I3 and I be three open disjoint parts of I" such
that T =T, UT,UT¢c, T1NTc=%and mes (I7) > 0. We assume that the
body is subjected to volume forces of density f € (L*(£2))¢, to surface traction
of density h € (L>(I»))¢"'d and is held fixed on I'|. The I'c denotes a contact
part of boundary where unilateral contact and Coulomb friction condition between
£2 and perfectly rigid foundation are considered. We denote by u = (uy, ..., uy)
the displacement field, & = (¢;;(w)) = (3 (u;; +u;,;)) the strain tensor and ¢ =
(0ij(w)) = (ajjuer(n)) the stress tensor with the usual summation convention,
where i, j,k,l =1, ...,d. For the normal and tangential components of the dis-
placement vector and stress vector, we use the following notation: uy = u; - n;,
Ur =u —uy - -N,oNy = 0jjUnj, (O'T),' =0jjhj —ON - ni,wheren = (I’l,) is the out-
ward unit normal vector to I". We denote by g € C(I'c), g > Othe initial gap between
the body and the rigid foundation and lets us denote by f and h the density of body
and traction forces, respectively. We assume that a;;,; € L*(£2),1 <1, j, k,l <d,
with usual condition of symmetry and elasticity, that is



On the Neumann Boundary Optimal Control of a Frictional ... 329
Qiju = Qi = arij, 1 =<1i,j, k1 =<d,
and 3my>0, VE=(&) e R, & =&, 1<i, j<d,
aiju &j & > molE|*

In this conditions, the fourth-order tensor a = (a;jy;) is invertible a.e., on £2 and
if we denote its inverse by b = (b;;i), we have g;;(w)) = (bjjuouw)), i, j, k, 1 =
1,...,d.

The classical contact problem with dry friction in elasticity, in the particular case,
is with the normal stress o (1) and I'¢ is assumed known and considered as obeying
the normal compliance law, is the following.

Find u = u(x, ¢) such that u(0, -) = u°(-) in §2 and for all ¢ € [0, T'],

—divo(u) =f, in £ (D
ojj(w) = a;j - e(w), in 2 2)
u=0 on I 3)
o-n=h on I, “4)
the contact condition:

uy =g, oy(w) =<0, (uy —gloy(w) =0 on I¢ (&)

and Coulomb friction on [¢:
lorIl < prloy @], (6)

such that:

—if  Jlor(w)|| < prloy@)| =ur =0

—if Jlor(w)|| = urloy(@)| = IA >0, suchthatay = —Aor
where u’ denotes the initial displacement of the body. Supposing that a positive
coefficient up € L*°(I¢), ur > po a.e. on I¢ of Coulomb friction is given, we
introduce the space of virtual displacements

V={veH ) v=00nnI}
and its convex subset of kinematically admissible displacements
K={vweVlpw=v-n<gonlc}

We assume that the normal force on I'¢ is known (as normal compliance) so that one
can evaluate the non-negative slip bound p € L*°(I¢) as a product of the friction
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coefficient and the normal stress, i.e. p = upAi, when A; is the normal stress. We
assume that normal interface response (the normal compliance law) is:

oy(w) = —cy(uy —g)""~

where ¢y and my are material constant depending on interface properties.
Problem (P;) Find u € K such that J(u) = mi1r<1 J(v).
ve

The minimized functional representing the total potential energy of the body has
the form:

1 _
J(v) = Ea(v, V) — L(V) + j(v)

where:
- the bilinear form a is given by

a(v, w) I/ a;jri€ij (Ve (W)dx
7

- linear functional L is given by:

L(V):/ fvdx+/ hvds;
2 n

- the sublinear functional j is given by:
Ju,v) = / plvrlds + / en(u—g)" vyds
I'c I'c

where vr € (L®°(I'c))?~! denotes the tangent vector to boundary I".

It is known that the problem (P;) is non-differentiable due to the sublinear term
j, and has a unique solution [6].

The variational formulation, in the quasi-static case, is equivalent to the quasi-
variational inequality:

Problem (P,) Findu(x,t) € K x [0, T] st.a(u,v—u)+ j(v—u) > (L,u—V),
Vve K,Vt €[0,T], T > 0, with initial conditions u(x, 0) = ug, a(x, 0) = u;.
The existence and uniqueness of the solution of this quasi-variational inequality
are proven under the assumption that u  is sufficiently small and mes (1) > 0 [4].
The Lagrangian formulation of the problem (Pp) is given by introducing L :
V x A1 x A, — IR, with

1
L(v, 1, 2) = za(v, v) — L(v) + (1, vy — &) +/ Hovrds
I'c

where A = {iu; € H™2(I'c)|ju1 > 0}, Ay = {ua € L¥(Ie)| |ual < p on Ie).
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The space H -3 (I¢) is the dual of
Hi(I'e) ={y € L*(Iv)|3v € V s.t. y = vy on [}

and the ordering ;| > 0 means, in the variational form, that (i;, vy — g) <0, Vv €
K, where (-, -) denotes the duality pairing between H -3 (I¢) and H > (I¢). Since
L%*(I'¢) is dense in H ’%(Fc), the duality pairing (-, -) is represented by a scalar
product in L2(Iy).

Another approach is a mixed formulation. Mixed formulation is required by mod-
ern numerical solving techniques to solve contact problems. To this purpose, we
will approach the formulation of the mixed contact issue with help the saddle point
problem, using Lagrange multipliers.

The Lagrange multipliers i1, p, are considered as functionals on the contact part
of the boundary I". It is important that the Lagrange multipliers do have mechanical
significance: while the first one is related to the non-penetration conditions and
represents the normal stress, the second one removes the non-differentiability of the
sublinear functional

Jj2(v) = sup / Uavrds
I'c

M2€A

and represents the tangential stress.
The equivalence between the problem (Py) and the lagrangian formulation is given
by:

inf J(v) = inf sup L(v, iy, 12).
vek UEVMIEA],MZEAz

By the mixed variational formulation of the problem (P1) we mean a saddle point
problem:

Problem (P3). Find
(w, A1, M) € V X Ay x Ay such that
L(w, py, o) < L(w, A, A2) < L(v, A, A2), YV (v, w1, u2) € V X Ay X As.

It is known that (P3) has a unique solution [4] and its first component w = u € K
solves (P;) and the Lagrange multipliers A, A, represent the normal and tangential
contact stress on the contact part of the boundary, respectively.

Remarks.

1°. For the contact problem with Coulomb friction, we use the formula p = urpiq,
for the slip bound on the contact boundary I'c, where A; = A;(p) is the normal stress
on I'c and pp is the coefficient of friction. Unfortunately this problem cannot be
solved as a convex quadratic programming problem because p is an a priori parameter
in (P3), while A; is an a posteriori one.
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20, Because we can consider the mapping ¥ : Ay = Ay, V:p— A =2A(p)
defined by the second component of the solution for the contact problem with given
friction (P3), the solution of the contact problem with Coulomb friction will be
defined as a fixed point of this mapping in A . Results concerning the existence of
fixed points for sufficiently small friction coefficients may be found in [6].

3 The Time Discretization of the Contact Problems with
Coulomb Friction

Let us consider a partition (%, ¢!, ..., tV) of time interval [0, T] and also the incre-
mental formulation obtained by using the backward finite difference approximation
of the time derivative of u.

If we use u];l = uy(x, t%), Au’,‘l = u],f”l — uﬁ AR =k gk g, (R =

Auﬁ/At, fhk = fu(kAt),fork =0,1,..., N — 1 where At = %, we obtain, at each
time t*, the following quasi-variational inequality

find Auk €V, st (7)
a(Au];l, v, — Auﬁ) +7(ul,§ + Auﬁ, v, — Au],;) >
> AL* (v, — Auf) — F(u}, v, — Aub), Vv, € K,

where F(uﬁ, v, — Auﬁ) = a(u’,‘l, v, — Aul,i) — L¥v;, — Auﬁ).

The time discretization of the problem (P,) follows. For a given load history the
quasi-static problem is approximated by a sequence of incremental problems (7);
although every problem (7) is a static one, it requires appropriate updating of the
displacements, so loads for each increment and so we obtain the following sequence:

Problem(PY). Find u € Ky, for each time t* such that  J(u) = m}(n Jv),
VERKL

whereu = Auf,v=v;, J(v) = 2v'Kv —v'f + p’|Tv| and K;, = {v € R"|Nv <
g}. Here, we by denote K € IR"*” the positive definite stiffness matrix, f € IR" is the
load vector, p € IR™ is the nodal slip bounds vector for contact nodes. The matrices
N, T € R™*” contain the rows of the normal and tangential vectors in the contact
nodes, respectively, and g € IR™ is the vector of distances between the contact nodes
and the rigid foundation.

The matrix form of the Lagrangian for the problem (P4"), at each time ¥ is:

1
L(v, i1, o) = EVTKV — v+ i Tv+ 1] (Nv —g)

where 1 € Ay, uy € A, are the Lagrange multipliers and
Ay = {1 €e R"|uy = 0}, Ay = {2 € R"||uz| < p}.
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The algebraic mixed formulation of (Py") is:
Find (v, w1, n2) € R" x Ay x A, such that

Ku=f—-N'x —T"x, (8)
Nu—) (g — )+’ T A — 12) > 0, (11, 2) € Ay x A (9)

After computing u from (8) and substituting u into (9), we obtain the algebraic
dual formulation, for each time t* ie.,

1
min{EATAk—ATB} st. M =0, [Ml<g A=00aDT, 10

where

NK-IN” NK-'T” NK'f —g
A= (TK—lNT TK—ITT> and B = (TK—lf '

The problem (10) is a quadratic programming problem that can be solved by
several efficient algorithms.

4 Boundary Optimal Control Problem Formulation

For our contact problem, boundary optimal control problem consists: Let a fixed

function f € L?(£2)¢, we present the following state problem:

Problem (SP,). Let a given function h € L*(I2)¢™!, called control.

Find v € V, such that: a(u, v — u) +7(u, V) — 7(u, u>(L,u—v) VveV
Using the result from problem (Py), for all h € L?>(I)?"!, the state problem

(SPy) has a unique solution Yv € V,u = u(h). Now we will define the following

functional: J : L>(I3)4"! x V — R, with

J(h,u) = %II u—uglly + gll hil L2 (ryye 1D
We denote:
Vaa = {[u hll[u,h] € V x L*(I2)* !, s.t. (SP1) is verified},
where « and B are two positive constants, and u, is the desired target function,

taking into account that we are studying a control that acts on the boundary I3, so
that the resulting stress o is as close as possible to the desired target oy = (07;(0g)) =

(aijuen(ug)).
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The optimal control problem is:
Problem (OC,). Find [u,h] € V4 s.t.

Jh,u) = min J(h,u),
[uh]eVaq
with this notation, a solution of the problem (OC;) is called an optimal paire, and
the second component is called an optimal control.
In these hypotheses and see [2], the following is the next theorem:

Theorem 1 Problem (OC;y) has at least one solution [u, h].

5 The Regularized State Problem for a Boundary Optimal
Control Problem

The first step for obtaining the optimal control algorithm is the regularization of the
nondifferentiable friction functional ;. For this purpose, we will estimate the func-
tional j by a family of regularized functional j,, which are convex and differentiable
in the second argument

JriVxV >R, jv)= / p¥,(vr)ds +/ cn(u—g)"vyds
e
I'c

where the function ¥, : (L>(I'¢))?! — L2>(I'¢) represents an approximation of the

modulus function, | - | : (L>(I'c))¢~! — L?(I'¢) and it can be defined in many other
ways, for example, for r > 0, & € (L*(I'c))? ' and x € I'c

2
1
(1_3

£ _g), if |E(x)| > 7

rle 3
r r

g
The most common example for a regularization function is

U &) =VIENR+r, or ¥, (&) =IENIZ+r?—r.

Now we can replace the state problem (SPy) and see [7], we have the following
regularized state problem:
Problem (RSP,). Let a given function h € L*(I2)?™!, called regularized control.
Find v € V, such that: a(u, v —u) + j,(u,v) — j.(u,u) > (L,u—v) VveV.

The regularized state problem (RSP;) has a unique solution u, € V that depends
of the Lipschitz continuously on the linear functional L, see [7].

From the presented assumtions result: for Vv € L*(I»)%71, the problem (RSPy)
has a unique solution Vv € V,u = u(h).

) JAf E() <7
vr(§) =
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If we denote
7= {lu, hlj[u,h] € V x L2 ()", s.t. (RSP1) is verified},

using the regularized functional j,, we can introduce the regularized optimal control
problem:
Problem (RSP,). Find [u*, h*] € V/, s. t.

J,@*, h*) = min J,(h,u).
[w.hleV},

With these we can affirm:
Theorem 2 Problem (RS P,) has at least one solution [u*, h*].

The solution of the problem (RSP,) is called a regularized optimal pair and the
second component h* is called a regularized optimal control.

6 Conclusions

A classical control problem consists in finding a control function h € (L*(I))?~!
which minimizes the cost functional (3.1). The function f is the given density of body
force, and h is traction force, which, in the Neumann boundary optimal control is a
control variable. The second term of the cost functional is proportional to the con-
sumed energy. The minimizing of J is a compromise between energy consumption
and the finding of a traction force on the Neumann boundary condition h, so that the
actual displacement field u is as close as possible to the desired displacement field
u,, while the stresses inside the body remain constant, small enough.

We prove the existence of a boundary optimal control for the regularized prob-
lem obtained from a quasi-static contact problem with dry friction. For getting the
necessary optimality conditions, we use some regularization techniques leading us
to a control problem of a variational equality.

One of the applications of this problem is the analysis of the dynamic systems
with friction, which model and control the movement with friction of mobile robots.
The structural components of these robots are considered deformable, not rigid, so
frictional contact can be modeled much more correctly. The optimal control prob-
lem will minimize the effort made by the traction force on the Neumann boundary
condition and the difference between the desired displacement field and the current
displacement field of the structural components of the robot.
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Recent Results on Summations )
and Volterra Difference Equations Sheshee
via Lyapunov Functionals

Youssef Raffoul

Abstract In this research we utilize Lyapunov functionals to obtain boundedness on
all solutions, exponential stability and /,-stability on the zero solution of summation
equations and Volterra difference equations.

Keywords Volterra - Summations - Difference equations + Lyapunof functionals -
Boundedness - Exponential stability

1 Introduction

In this chapter R, Z, and Z* represents the sets of real numbers, all integers and

all nonnegative integers, respectively and Z;_ ) = Z N [—1, 00). Throughout this

paper the symbol A stands for Al(n) = I(n + 1) — [(n), where [ is any sequence
b

l : Z — R. In addition we adhere to the notation that Zl (n) =0 for b <a.In

n=a
the introduction of [10], the author elaborated on the role that Volterra summation
equations play in the qualitative analysis of neutral difference equations of the form

A(H(n,xn)) = f(n,x,), neZt (1)

where H is some difference operator. For more on neutral difference equations, we
refer to [2, 11].
In this study we consider the scalar Volterra summation equation

t—1

x(t)=a(t) =Y _C(t.5)x(s), t € Z* )

s=0

Y. Raffoul (<)
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and the scalar perturbed Volterra difference equation

t—1

Xt 41D = p@Ox@) + Y_ht,)x(s) + [, 3)

s=0

where x, a, u, f : Zt — R, while C : ZT x Zj—1,000 = Rand h : Z" X Zj0.00) =
R. To clear any confusion, we note that the summation term in (2) could have been
started at any initial time #, > 0. We will use the resolvent equation, (see [10])
combined with Lyapunov functionals and fixed point theory to obtain boundedness
of solutions and their asymptotic behaviors of (2). One of the major difficulties when
using a suitable Lyapunov functional on Volterra summation equations is relating
the solution back to that Lyapunov functional. Using Lyapunov functionals does
not come for free. One must first construct such a function that implies meaningful
information regarding the behavior of solutions. Such construction is an art, rather
than a science. Lyapunov functions/functionals method were first implemented for
ordinary differential equations, and then later on they were extended to integro-
differential equations and functional differential equations. Thanks to Elaydi, in
the last thirty years, Lyapunov functions/functionals were extended to all type of
difference equations and Volterra difference equations, see [4] and the references
therein. Since then the present author has published many papers, using the method of
Lyapunof functionas/functionals to deal with boundedness, stability and the existence
of periodic solutions of various kind of difference equations. However, the extension
of Lyapunov method to Volterra summation equations has not been fully developed
and this author has every intention of filling the void, which was initiated in [10]. Thus,
the Sect. 2 of this chapter is a continuation of the work that was initiated in [10]. In
[8] Messina and Vecchio displayed interesting Lyapunov functionals and studied the
stability of the zero solution of Volterra integral dynamic equations under bounded
and unbounded perturbations. In their work they derive different but interesting
formula for the A-derivative of absolute valued functions. For comprehensive work
on the use and the construction of Lyapunov functionals we refer the reader to the
book [9]. Moreover, for more on Volterra summation equations we refer to [2, 7]. In
Sect. 3, we consider perturbed and unperturbed Volterra summation equations and use
Lyapunov functionals to obtain exponential stability and boundedness of solutions.
In Sect. 4, we consider the relationship between /,-stability and exponential stability.
For more on /,,-stability we refer to [6].

Let X denotes the set of functions ¢ : [0, 7] — R and ||¢] = sup{|¢(s)|: 0 <
s < t}. Adivar et al. [1] were the first to establish the existence of the resolvent, of
an equation that is similar to (2) on time scales. Hence based on [10], the resolvent
equation of (2) is given by

t—1

R(t,s) =C(t,s) — Z R(t,u)C(u,s), “)

u=s+1
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and consequently, the solution of (2) is

t—1

R(t.5)=C(t.s) = > R(t,u)C(u,s), (5)

u=s+1

where R : Z X Zj-1,00) = R.In[10] the emphases was on the size of C (¢, s) instead
on its A-difference, which is the case in the next theorem. Throughout this paper we
use the notation A,C(t, s) for partial difference with respect to ¢ and A,;;C(t, s) =
A (AsC (1, 5)). Also, we define the shift operator E by Ez(r) = z(t + 1). In the next
theorem we construct a Lyapunov functional that we may call a perfect match for (2)
since its A-difference along the solutions is accomplished without using any type of
inequalities.

2 Summation Equation

In this section we consider the summation equation given by (2) and use a
Lyapunov functional coupled with its corresponding resolvent equation to obtain
results regarding boundedness of solution.

Theorem 1 Assume fort > 1and0 <s <t — 1, we have
C,s)>0, ACt—1,5s—1)=>0, A,C(t—1,s—1) <0, A;C(t,s—1) <0.

(6)
Define the function

t—1 t—1 t—1
Vi)=Y ACE— 15— 1)<Zx(u)>2 LCt—1, —1)(Zx(u))2. 7
s=0 u=s u=0

(i) Let o € (0, 1) be a constant such that A;C(t,t — 1)+ C(t,t — 1) < «. Then

AV (1) < a®(t) — Bx*(t), where B =1 —a. (8)

1—1
In addition if a € 1[20,00), then so is x and Z R(t, s)a(s). Moreover, V (t) is
s=0
bounded.
(ii) Assume the existence of two positive constants D and L such that

teZ*

t—1
maxZ;ASC(t —1,s—=1)=D, and max C(r, —1) = L, 9)
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then along the solutions of Eq. (2) we have
-1 )
(Z R, s)a(s)) =(a(t) —x(1)? <2(D+ L)V (1). (10)
s=0
Remark 1 Note that (10) does not ask for a € /2. However, if a € [* for all ¢ and

bounded, then both x and V are bounded.

Proof Let V(t) be given by (7). Then we have, by applying A, that

AV () = XZ:A‘YC(L 5 — 1)(2[:x(u))2 +ca, —l)(ix(u))z (11)

s=0 u=s u=0
t—1 —1 2 t—1 2
Y ace—1.s - 1)<Zx(u)) —C(—1, —1)<Zx(u)) .
s=0 u=s u=0
Next, we do some algebra on the side in order to simplify (11).
t t 2 —1 —1 2
3 asCis — 1)( Zx(u)) Y A C 1, - 1)( Zx(u))
s=0 u=s s=0 u=s
t t—1 5 t—1 t—1 5
=3 acChs - 1)[x(t) + Zx(u)] Y ACE 1 - 1)( Zx(u))
s=0 u=s s=0 u=s
t—1 t—1 )
= £sC( 1 = D20 + Y BCl,s — 1)[x(t) n Zx(u)]
s=0 u=s
t—1 t—1 2
— S At —1s - 1)( Zx(u))
s=0 u=s
t—1 r—1 t—1
= AsClt, 1 — Dx2@) + x2() Z AsC(t, s — 1) + 2x(1) Z AsClt,s — 1) Z x(u)
s=0 s=0 u=s
t—1 t—1 2 t—1 t—1 2
+ 3 AsCGs - 1)(Zx(u)) Yol (as I 1)( Zx(u))
s=0 u=s s=0 u=s

t—1 t—1

= £sC(t 1 — D220+ Y At Clt,s — 1)( Zx(u))z

s=0 u=s
t—1 t—1 t—1
+ 270 Y ACH s — D +2x(0) Y ACE s — 1) Y x(). (12)
s=0 s=0 u=s
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Similarly,
c, —1)(ix(u))2 —Cu—1, —1)(§x(u)>2
u=0 u=0
—Ca. —l)[x(t) n lil:x(u)]z —C@—1, —1)(§x(u)>2
u=0 u=0
=x*t)C(t, —1) + 2x()C(r, —1) ix(u)
u=0
+Ca. —1<§x(u))2 —C—1, —1)(t21:x(u))2
u=0 u=0

t—1
= x*(C(t, —1) + 2x()C(t, —1) Y x(u)
u=0
—1
+ACH—1, —1)<Zx(u)>

u=0

2

13)

Finally, we make use of the summation by part formula; for any two sequences y(¢)

and z(t)
t—1 t—1

Y ¥(©)Az(8) = y(©)z()licy — Y E2(s)AY(s).

s=0 s=0

With this in mind, we let y(s) = ZFI x(u) and Az(s) = A;C(t,s — 1). Then

u=s

z(s) = C(t,s — 1) and Ay(s) = —x(s). Hence,

t—1 t—1

2x (1) Z AC(t, s — 1) Z x(u))
s=0 u=s

t—1

t—1
_ 2x(l)[C(t, s—DY x|+ ca s)x(s)]
u=s s=0

t—1 t—1

- 2x(t)[0—C(t, —I)Zx(u)+ZC(t,s)x(s)]. (14)

u=0 s=0

Thus, substituting (12)—(14) into (11) leads to
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t—1 —1
DYV = B,C(E 1 — D) + Y Ay Clt,s — 1)( Zx(u)>2
s=0 u=s
t—1
+ x2(1) Z AC(t, s — 1) +x2()C(t, —1)
s=0
t—1 t—1 )
+2x()C(, ~1) Y x(@) + 8,0 — 1, —1)(Zx(u))
u=0 u=0
t—1 t—1
+ 2x(1)C(t, —1) Zx(u) +2x(2) Z C(t, 5)x(s).

u=0 s=0
Making use of (6) gives

t—1
AV@ = RO[ACET= 1)+ Cl =D+ Y ACEs = 1)
s=0
t—1
+2x(1) Y C(t, )x(s)
s=0
t—1

= xz(t)[AsC(t, t—1D)+Ct 1 — 1)] +2x(1) Y Ct9)x(s)

s=0
= ax’() +2x(0]a(®) - ()|
< ax?(t) + 2x(t)a(t) — 2x%(t)
< ax?(t) + x2(t) + a* @) — 2x>(1)
= (a — Dx*@) + a* @)
= —Bx2(1) + a*(@). (15)
Summing (15) from 0 to r — 1 yields
t—1 t—1
0V —V©O) <Y a’s) =By x*s) (16)

s=0 s=0
which implies that if a € l[ZO,oo)’ then so is x, since C is bounded. Consequently,
inequality (16) implies the boundedness of V(¢). This completes the proof of
part (i).
Next we turn our attention to proving (ii). Assume (9) hold and by applying the
Schwartz inequality we get
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—1 —1
(ZAXC(t 15— 1)Zx(u))2
s=0 u=s
t—1 t—1 t—1
<Y ACt—1,5s-1Y ACE— 15— 1)(Zx(u))2
s=0 s=0 u=s

t—1

t—1
< DZAsC(t — 1,5 — 1)(Zx(u))2
s=0

r—1 t—1 1—1
<DY ACH-1,5— 1)<Zx(u)>2 +DC(—1, —1)(Zx(u)>2
s=0 u=s u=0
= DV(). a17)

On the other hand, using a similar summation by parts on (14) yields

-1 -1
Y acs -1 Zx(u))]2
" s=0 u=s

) -1 -1
=[cw.s =Y xw|_,+ ca, s)x(s)]2
" u=s s=0
_ t—1 t—1
=[-ca.-nYxw+ Y ca, s)x(s)]2

u=0 s=0

) -1 5
=la@) = x(t) = Ct, —1) Zx(u)]
- u=0

t—1

1/2(a) —x0)’ = [Ct. =D Y xw)

u=0

2

v

Thus the above inequality gives

t—1 t—1 t—1
(1/2)(at) - x0)* = [Ct. - Zx(u)]z +[ D ascas -1 Zx(u))]z
s=0 u=s

u=0
t—1
<C@ -hC, —1)( > x(u))2 +DV ()
u=0
t—1 2 t—1 1—1 5
< L[C(t, —1)( Zx(u)) +Y aC@ - 15— l)(Zx(u)) ]
u=0 s=0 u=s
+ DV(@)
=D+ L)V(Q).

This completes the proof of (ii) and hence the Theorem.
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We have the following Lemma.

Lemma 1 Assume the hypothesis of Theorem 1 and let V (t) be given by (7). Then

t—1 t—1

V() < %ZASC(I —Ls=Dt-5) a’@w

s=0 u=s
t—1

+ %C(r -1, —l)tZaz(u). (18)

u=0
Proof Using Schwartz inequality in (7) gives
t—1 t—1 t—1
V) <Y ACE=Ls =Dt =) x*@) +Ct—1,-Dt Y x*w). (19)
s=0 u=s u=0

Sum (15) from O to # — 1 and obtain
t—1 t—1
0V —V(s) <Y a(s) =B Y x°(s)

which implies that
t—1 1 t—1
sz(s) < E Zaz(s).

Substituting the above inequality and (16) in (19) gives (18). This completes the
proof.

3 Volterra Difference Equations

In this section we consider the perturbed scalar Volterra difference equation

t—1

x(t+1) = pu@x@) + Y _ht.)x(s) + f). (20)

s=0
and its homogenous counter part

t—1

x(t+ 1) = pwOx®) + Y ht, )x(s), 1)

s=0
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and show, under suitable conditions that, all its solutions are uniformly bounded and
its zero solution is uniformly exponentially stable when f (¢) is identically zero. We
assume the existence of an initial sequence ¢ : Z* — [0, 00), that is bounded and
ol = Orgaéo |p(s)|, to > 0O for fixed #). We begin with the following definition.

Definition 1 The zero solution of (21) is said to be exponentially stable if any
solution x (¢, fy, ¥) of (21) satisfies

lx(t, to, ¥)| < c(||w||, to)g“”"t"), for all > 1o,

where ¢ is constant with0 < ¢ < 1, C : Rt x Z* — R™, and y is a positive con-
stant. The zero solution of (21) is said to be uniformly exponentially stable if C is
independent of 7.

Theorem 2 Suppose there is a scalar sequence a : T — [0, 00). Assume there are
positive constants a > 1 and b such

t—1

a(s)a "D =3 " a P, 5)] > 0, (22)
@]+ la@)] — |at, )] =1 < -1 —a™), (23)

and for some positive constant M
-1
DA =a™ TV fs) < M, for 0=t < oo,
s=0

() If

t t

max <a(s)a*b<’*f*1> — 3 a D, s)|> <00
>ty

s=0 u=s
then all solutions of (20) are uniformly bounded and the zero solution of (21) is
uniformly exponentially stable.
(ii) If for every ty > 0, there is a constant M (ty) depending on ty such that

fo—1 fo—1
Yo a()a 0D =N a0, 5)] < M),
s=0 u=s

then all solutions of (20) are bounded and the zero solution of (21) is exponentially
stable.
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Proof Consider the Lyapunov functional

Vi, x) = |x(2)]
—1 t—1

+ Z [a(s)a_b(t_s_l) — Za‘b(’_”_l)lh(u, ]Ix)1.
s=0 u=s

Then along the solutions of (20) we have

t—1

AV, x) < lp@Ix@]+ Y 1h, )Ixs)] + £ @)

s=0

+ Z [a(s)a=bC) — Zaib(““)lh(u, I]1x ()

s=0 u=s

t—1

—1
— Z [a(s)aib(lﬂ*l) — Zaib(f*kl)Ih(u, s)|]|x(s)|_
s=0

Uu=s

Next we try to simplify AV (¢, x).

D [al)a ™ = a0 h(u, 9)[]1x ()]
s=0 u=s
t t—1
= [a®)a™ ™ =" a0, $)| — |t $)[]1x()]
s=0 u=s
t—1 t—1
=Y [a)a™ ™ = a0 b, $)| — k2, 5)|]1x(5)]
s=0 u=s

+ a(m)|x(@)] — |, O]x(@)]

t—1 1—1
=a ) [a@)a™ = =" a D h(u, 5)|]1x ()]
s=0 u=s
t—1
= D I x|+ a®x@)] = [k, O]1x@)].
s=0

Substituting the above expression into (25) and making use of (23) yield

Y. Raffoul

(24)
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AV(t,x) < [lu®] + la@)| — |h, D] — 1]x@)]

t—1 t—1
— (1 =a)) [a)a™ D =" a P, )| |1x ()] + |0
s=0 u=s
=~ —a)[Ix()]
t—1 t—1

+ ) [a)a™ ™ =" aP O hu, $)[]1x ()] + £ ()]

s=0 u=s

= - —-a ")V, x0)+If0)l (25)
Set B = (1 —a~") € (0, 1) and apply the variation of parameters formula to get

t—1
Vit.x(t) < (1 =B V. ¢)+ Y _(1—a)' ™ V| f(5)]
= A=y ligll[1+

to—1 t—1

+ Z [a(s)afb(tofsfl) _ Zafb(tofufl)u,l(u’ S)l]
s=0 u=s

t—1

+ ) A=)V f ). (26)

s=ty

The results readily follow from (26) and the fact that |x ()| < V (¢, x). This completes
the proof.

Remark 2 We state that Theorem 2 can be easily extended to nonlinear Voleterra
difference equations of the form

t—1
xX(t+ 1) = pOx@) + Y h(t, 9)gx(s) + f (1),

s=0

under the assumption that g(x) < d|x|, for some positive constant d.

4 1,-Stability

In this section we state the definition of /,,-stability and state theorems under which
it occurs. We begin by considering the non-autonomous nonlinear discrete system

X+ 1) =G xs); 0<s <) Gon,x() 7)
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where G : Zt x R¥ — R¥ is continuous in x and G (n, 0) = 0. Let C(n) denote the
set of functions ¢ : [0, n] — R and ||¢|| = sup{|@(s)| : 0 < s < n}.

We say that x(n) = x(n, ng, ¢) is a solution of (27) with a bounded initial function
¢ : [0, ng] — RFif it satisfies (27) for n > ng and x(j) = ¢ (j) for j < ny.

Definition 2 The zero solution of (27) is stable (S) if for each & > 0, there is a
8 = 8(ng, €) > 0 such that [ng > 0, ¢ € C(ng), l|@|| < 8] imply |x(n, ng, P)| < €
for all n > ny. It is uniformly stable (US) if it is stable and § is independent of ny. It
is asymptotically stable (AS) if it is (S) and |x (n, ng, ¢)| — 0, as n — oo.

Definition 3 The zero solution of system (27) is said to be exponentially stable if
any solution x(n, ng, ¢) of (27) satisfies

G0, D)1 = C (N9l mo)a™™, forall n = n,

where a is constant with0 < a < 1, C : Rt x Z* — R*, and 7 is a positive con-
stant. The zero solution of (27) is said to be uniformly exponentially stable if C is
independent of ny.

Definition 4 The zero solution of system (27) is said to be [,-stable if it is stable

o0
and if ) " [|x(n, ng, $)||” < oo for positive p.

n=ny
We have the following elementary theorem and for its proof we refer to [6].

Theorem 3 If the the zero solution of (27) is exponentially stable, then it is also
l,-stable.

We caution that the /,,-stability is not uniform with respect to p as the next example
shows. Also, it shows that (AS) does not imply /,-stability for all p. To see this we
consider the difference equation

x(n+1)= x(n), x(ng) =x0#0, no=1
n—+1
and its solution is given by
x(n) := x(n, ng, xg) = T,
n

Clearly the zero solution is (US) and (AS). However, for ny = n, we have

Xon X0
x(2n,n, xg) = oy — > #0



Recent Results on Summations and Volterra Difference Equations ... 349

which implies that the zero solution is not (UAS). Moreover,

o0 o0 o0 1
Y e no, w07 = 30 DI = Lol (m0)” Y (-

n=ny n=ng n=ng

which diverges for 0 < p < 1 and converges for p > 1.

The next example shows that asymptotic stability does not necessary imply /,
stability forany p > 0. Let g : [0, c0) — (0, oo) withlim,,_, » g(n) = co. Consider
the non-autonomous difference equation

x(n+1)=[gn)/gn + D]x(n), x(no) = xo, (23)
which has the solution x (n, ng, xo) = %xo. It is obvious that as n — o0 the solu-

tion tends to zero, for fixed initial ny and the zero solution is indeed asymptotically
stable. On the other hand

2l 1" = g0l 3 ()" 29)

which may not converge for any p > 0. For example, if we take
gn) =log(n+2),

then from (29) we have

5 I, o 3o)” = oo+ 21 loll? Y- (o)
= Y = Nog(n +2) ’
which is known to diverge for all p > 0.
The next theorem relates /,, stability to Lyapunov functionals. Again for its proof
we refer to [6].

Theorem 4 Let D be an open set in R* with O € D. If there exists a continuous
function V : D — [0, 00) such that V(0) = Owith V(x) > 0ifx # 0and along the
solutions of (27), V satisfies AV < —c||x||?, for some positive constants ¢ and p,
then the zero solution of (27) is l,,— stable.

In the next two examples we establish that the /,— stability depends on the type
of Lyapunov functional that is being used. Moreover, there will be a price to pay if
you want to obtain [, — stability for higher values of p.

Example 1 Consider the scalar Volterra difference equation

n—1

x(n+1) =a(n)x(n)—i—Zb(n,s)f(s,x(s)) 30)

s=0
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with f being continuous and there exists a constant A such that f(n, x)| < A{|x|.
Assume there exists a positive « such that

la(m)+ 2 Y 1b(s, M+ Mlb(r, )] =1 < —a, (31)
s=n+1

and for some positive constant A which is to be specified later, we have
A< A (32)

Then the zero solution of (30) is /;-stable.
Proof Define the Lyapunov functional V by

n—1 oo

V(n,x) =lxm)]+ 1Y Ibs, HIx()I.

j=0 s=n

We have along the solutions of (30) that

AV (1) < (la(m)| + A Z |b(s, n)| + A 1b(n, n)| — 1)|x(n)]
s=n+1

n—1

+ =2 b, 9)l1x(s)]
s=0
< —alx(n)].

This implies the zero solution is stable and /;-stable by Theorem 4. This completes
the proof.

Example 2 Consider (30) and assume f is continuous with | f(n, x)| < A1x2.
Assume there exists a positive constant « such that

o0 n
@)+ 1 Y b, m)| +rila(m)] Y b, 5)| — 1 < —a, (33)
s=n-+1 s=0
and for some positive constant 1 which is to be specified later, we have

n—1

hla@)] + 133 |b(n, 5)| = & < 0. (34)
s=0

Then the zero solution of (30) is /,-stable.
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Proof define the Lyapunov functional V by

n—1 oo

Vin,x) =x>(m) + 1YY Ib(s, HIX*()).

j=0 s=n

We have along the solutions of (30) that

n—1

AV(D) = (a(mx(n) + Y b(n,s) f (s, x(s)” — x2(n)

s=0
00 n—1
+ o) Y b ] =y [b(n ) lxP(s) —x*(n)
s=n+1 s=0
n—1 n—1
< @ (nx* () + 201 la@llx ()] Y 1@ ) x)] + (D bl s) (s, x ()
s=0 s=0
00 n—1
+axi(m) D Ib(s.m) =2 Y b, 5)x*(s) — x*(n).
s=n+1 s=0

As a consequence of 2zw < 722 4+ w?, for any real numbers z and w we have

n—1 n—1

2ula@lxm] Y b, $)l1x()] < tila@)] > b, )| (n) + x7(s)).

5=0 5=0
Also, using Schwartz inequality we obtain

n—1 n—1

(D ben, ) (s, x(0)* = Y 1b0n, )" 1bGn, )21 £ (s, x(5)]
s=0 s=0
n—1 n—1
< D Ib(, )1 Y160, ) (s, x(5)
s=0 s=0
n—1 n—1
<A Y1 ) Y b, 5)|x3(s),
s=0 s=0

Putting all together, we get

AV@) = (@42 Y bl ]+ la@] Y b0 )] 1) x20)

s=n+1 s=0
n—1 n—1
2 2
+ (Malatm) +23 ZO b, )| = 1) ; [bGn. 5)lx

< —ozx2(n).
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This implies the zero solution is stable and /,-stable by Theorem 4. This completes
the proof.

A quick comparison of (31) with (33) and (32) with (34) reveals that the conditions
for the /, stability are more stringent.
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New Method of Smooth Extension )
of Local Maps on Linear Topological e
Spaces. Applications and Examples

Genrich Belitskii and VICTORIA RAYSKIN

Abstract The question of extension of locally defined maps to the entire space
arises in many problems of analysis (e.g., local linearization of functional equations).
A known classical method of extension of smooth local maps on Banach spaces
uses smooth bump functions. However, such functions are absent in the majority of
infinite-dimensional spaces. We suggest a new approach to localization of Banach
spaces with the help of locally identical maps, which we call blid maps. In addition
to smooth spaces, blid maps also allow to extend local maps on non-smooth spaces
(e.g., C100, 1], 9 =0, 1,2, ...). For the spaces possessing blid maps, we show how
to reconstruct a map from its derivatives at a point (see the Borel Lemma). We
also demonstrate how blid maps assist in finding global solutions of cohomological
equations having linear transformation of the argument. We present application of
blid maps to local differentiable linearization of maps on Banach spaces. We discuss
differentiable localization for metric spaces (e.g., C*°(IR)), prove an extension result
for locally defined maps and present examples of such extensions for the specific
metric spaces. In conclusion, we formulate open problems.
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1 Introduction

The subject of localization of maps goes back to the works of Sobolev [23] on gener-
alized functions and of K. O. Friedrichs and D. A. Flanders on molifiers. Nowadays,
the most frequently used analogous notions are the bump functions. Recall that a
bump function on a space X atx € X isamap & : X — R such that |4] < 1 on the
entire X, & = 1 in a neighborhood of x and has bounded support.

There are many examples, where bump functions are used for the study of local
properties of dynamical systems in IR"”. For instance, see [15, 24]. J. Palis in his
work [16] considers bump functions in Banach spaces. He proves the existence of
Lipschitz-continuous extensions of local maps with the help of Lipschitz-continuous
bump functions. However, Nitecki [15] points out that it is unknown whether the
smoothness of these extensions may be higher than Lipschitz.

Even though continuous bump functions exist in all Banach spaces, the majority of
infinite-dimensional spaces do not have smooth bump functions. This is an obstacle
in the local analysis of dynamical systems in infinite-dimensional spaces. Following
Meshkov [12] we adopt the following

Definition 1 (C?-smooth spaces) A space is called C?-smooth, if it possesses a
C4-bump function.

Consider X =1[,.If p = 2n, then A(||x]|?) is a C*°-bump function at 0, where A
is a bump function on IR. However, it is known that /; space does not have C 1 bump
functions (e.g., [12]). Consequently, C[0, 1] does not have smooth bump functions
(this follows from Banach-Mazur Embedding Theorem, see [2]).

In order to allow smooth localization of Banach spaces, we define analogs of bump
functions, which we call blid maps (Sect. 2). C?-smooth blid maps exist not only on
all C?-smooth spaces, but also on some Banach spaces, which are not C?-smooth.
We present specific examples of blid maps for such spaces.

The general topological spaces, such as C*°(IR) and C*°([0, 1]), are frequently
discussed in a context of partial differential equations. For this reason, we also dis-
cuss how to apply our ideas to linear topological spaces. In Sect.3 we define the
blid-differentiable property for topological spaces, present examples of spaces with
such property and prove a theorem which asserts existence of global differentiable
extension of locally defined maps.

We also discuss applications (Sect. 4) of the localization of the spaces to the ques-
tions of solvability of smooth cohomological equations and to the local differentiable
linearization on Banach spaces. The proofs of these results are based on an extension
of the well-known Borel Lemma to Banach spaces, which can be found in the same
section.

We conclude our paper (Sect.5) with a few more examples and open questions
regarding the existence of smooth blid-maps for some non-smooth spaces, Whitney
Extension Problems for non-smooth spaces and existence of Banach spaces without
differentiable blid maps.
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2 Banach Spaces

First, let X be a real Banach space, and Y be a real or complex Banach space. We
will discuss smooth local maps f : X — Y and a possibility of smooth extension of
the maps. Since Banach spaces are equipped with norms, we can consider Fréchet
derivatives. In the topics related to Banach spaces, we will assume that differentiation
is defined in Fréchet sense.

The map’s extension is usually not unique and can be studied in the context of the
equivalence class of f,i.e. a germ [ f]. Recall (see [14]) thata germ [f]atx € X is
the equivalence class of local maps, such that any pair of the class members coincide
on some neighborhood of x. Each element of the class is called a representative
of a germ. Occasionally, we denote a germ [ f] as f. In the future, without loss of
generality, we will assume that x = 0. We are interested in the question of existence
of a global representative of the germ.

Consider a C? germ. Does there exist a C? global representative of the germ?
Suppose there exists a representative with ¢ bounded derivatives. Does there exist a
global representative which also has g bounded derivatives? To answer these ques-
tion, we introduce special maps, discussed below.

Definition 2 (C9-smooth blid maps) A C! map H : X — X iscalled a C? blid-map
at O for a Banach space X if there exists a neighborhood U, 0 € U C X, such that
Hyy =idandsup, ||H (x)||x < oo.In other words, the map H is a Bounded Iocally
IDentical map on X.

The idea of extensions with the help of blids first appears in [1], later in [4]. The
Definition 2 was introduced in [5] and was motivated with the following example.

Example 1 The C* germ, defined in the neighborhood of 0 € CJ0, 1]

_ U dr
f(x)—fo s

has a global C* representative:

/‘ dt
o 1—hx@®)x@)

Here the blid map H (s) = h(s)s is defined with the help of a bump function %, such
that A(s) = 1 on |s| < 1/3 and O on |s| > 1/2. It is easy to see that H = id when
|s| < 1/3 and |H| < 1/3 on C[0, 1], i.e. satisfies the definition of a blid map.

In [5], we generalize the idea of smooth extension of a locally defined map via
composition of the map with a smooth blid-map. This method allows us to prove the
Borel Lemma for Banach spaces. Many questions related to local dynamics can be
addressed with the help of this theorem.
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Theorem 1 ([S]) Let a space X possesses a C4-blid map H. Then for every
Banach space Y and any C9-germ f at zero from X to Y there exists a global
Ci-representative. Moreover, if all derivatives of H are bounded, and f contains a
local representative bounded together with all its derivatives, then it has a global
one with the same property.

Obviously, if a space is C7-smooth, it possesses a C?-blid map. However, there
are examples of Banach spaces that have blid-maps, but do not have bump functions
of the same smoothness. We will illustrate this idea with the following examples (for
details and proofs see [5]) of blid-maps in various Banach spaces:

Example 2 Suppose X has a C? bump function /2 : X — R. Then, H(x) = h(x)x
is a C?(X) blid map.

In the following 3 examples 4 is a C*°(IR) bump function.

Example 3 Let X = C[0, 1]. Then, H : X — X definedby H (x)(¢) = h(x(#))x(¢)
is a C*°(X) blid map.

Example 4 More generally, suppose X = C(M) where M is acompact space. Then,
H(x)(t) = h(x(t))x(t) is a C*(X)-blid map.

Example 5 Let X = CY[0, 1]. Then a C*°(X)-blid map H (x)(¢) can be defined via

H(x)(t)—z h(x<f>(0))x<f>(0)+ / dn / dn,.. f (x@(5)) x'9 () ds.

There are also some examples of subspaces, where blid maps can be constructed:

Example 6 Suppose X possess a C?-blid map H, and a subspace X; of X is H-
invariant. Then the restriction H; = H|X is a C?-blid map on X;.

Example 7 Assume 7 : X — X is a bounded projector and X possess C?-blid
map H. Then, the restriction 7w (H)|Im(x) is a C?-blid map on Im(x), while the
restriction (H — w(H))|Ker (i) isa C?-blid map on K er (7). Consequently, if X; C
X is a subspace, such that there exists another subspace of X, so that these two form
a complementary pair, then X possesses a blid map.

3 Linear Topological Spaces

As we noted in Sect. 1 localization on topological linear spaces (e.g., C*°(D), where
D is some smooth manifold) is important for the study of partial differential equa-
tions.

It is not always possible to define Fréchet differentiability on a linear topological
space. For this reason, we will use weaker notions of differentiation. As we have seen
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in Sect. 2, an extension of maps with the help of blids requires composition. Thus, we
will discuss differentiability that satisfies the Chain Rule (in particular, we cannot
use Gateaux derivative). We will sometimes work with bounded-differentiability,
sometimes the concept of stronger compact (Hadamard) differentiability, and finally
(if it can be defined) the strongest form of differentiability, Fréchet differentiability.
Let us recall these definitions (see [22]).

Let X and Y be linear topological spaces.

Definition 3 (Bounded differentiability) The map f:X — Y 1is bounded-
differentiable at x € X, if for every bounded subset S C X and every & € S and
teR

fx+th)— f(x) =tAh +r(th)

with
r(th)/t — 0

uniformly in 42 as t — 0 (and A is called the derivative).

Definition 4 (Compact (Hadamard) differentiability) The map f : X — Y is com-
pact (Hadamard) differentiable at x € X, if

fx +tahy) — f(x) = 1,Ah + 0(1n)

ast, — 0,and h, — h (and A is called the derivative).

If both X and Y are Banach spaces with the norms ||.||; and ||.||, respectively,
then Fréchet differentiation is well-defined.

Definition 5 (Fréchet differentiability) The map f is Fréchet differentiable at O if
(in the notation of Definition 3)

Lim {[r (M)1I2/ 1A 1l = 0.

These definitions define the same derivative A whenever it exists, and differ only
by the definition of the remainder term. In what follows differentiable means one of
the above three differentiability types.

Definition 6 A space X satisfies a blid-differentiable property if for every neighbor-
hood U C X of 0 there is a differentiable map H defined on X, locally coinciding
with the identity map, such that H(X) C U.

Letusrecall that aneighborhoods base of zerois asystem B = {V,,} of neighborhoods
of 0, such that for any neighborhood U C X of 0 there exists some Vg € B, Vg C U.
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Therefore, if there is a neighborhoods base B such that for every V,, from B there
exists local identity H,, Hy(X) C V,, then X satisfies the blid-property.

Proposition 1 (Extension of Local Maps) If X satisfies blid-differentiable property,
then every differentiable germ f : X — Y has a global differentiable representative.

Proof Let f be alocal representative of the germ defined on a neighborhood U C X
of zero. Let H : X — X be a differentiable local identity map such that H(X) C U.
Then the map

F(x)=f(H(x)), x€ X

is a global representative of the germ. a

Let X be a metric space with a metric d. Here we consider germs of maps from
X into an arbitrary linear topological space Y. Instead of Fréchet differentiation
(which is not defined for all metric spaces) we use bounded and compact (Hadamard)
differentiation. The neighborhoods base B can be chosen as a collection {B.}, =
{x € X :d(x,0) < c}.. Then the space X satisfies the differentiable-blid property
if for every c there exists a differentiable, local identity map H, : X — X such that
d(H.(x),0) < cforall x,i.e., H.(X) C B..

In particular, if topology on X is defined by countable collection of norms ||x||,
then the metric can be written as

dryyi= 30 L L=yl
T L i+ 1

It can always be assumed that ||x||; are monotonically increasing.

Proposition 2 Suppose for every k = 0, 1, ... there exists a global differentiable
local identity map Hy, such that

sup || Hi (x)|x < o0.

Then X satisfies the differentiable blid property.

Proof For a given ¢ > 0 choose any
k>1—Inc/In2 (1)

and let H;, be such that
He(lxk < N, x € X.

Set AN
C
HC()C) = WH/{ (T)C> .
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Then inequality (1) and the fact that ||x]||; is monotonically increasing with j imply
that
d(HC(x)ﬂ 0) < Ca

ie. H.(X) € B,. O

In the following subsections, we present the examples of the spaces with differ-
entiable blid property and state the existence of extension of locally defined maps on
these spaces.

3.1 The Space of Smooth Functions on the Real Line

The space X = C?(R) (0 < g < 00) of all smooth functions on R can be endowed
with the collection of norms

— O}
X = max max |x"(f)|.
|| ||k tel—k k] I=q | ( )|

Lemma 1 The space X possesses the bounded- (consequently compact-) differen-
tiable blid property.

Proof Let h(u) be a C*-bump function on IR. Note, a = sup,,.g h(u)u < 0o. Then

h(x(@)x (@), ¢ =0
Y20 SR D O)xD©) + [ diy [t dia... f5 b (x9(9)) xD(5)ds, g > 1

H(x)(t) =
is differentiable local identity map, and

I|HX)||x < aek, k=0,1,..., x € X.

O

Corollary 1 Every bounded- (consequently compact-) differentiable germ at 0 €
C(R) has a global differentiable (in the corresponding sense) representative.

3.2 The Space of Infinitely Differentiable Functions on a
Closed Interval

The space X = C*°[0, 1] is endowed with the collection of norms

— )
X||x = max max |x“’(7)].
11k ik re[(),l]' (®]
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Lemma 2 The space X possesses the bounded- (consequently compact-) differen-
tiable property.

Proof Let h(u) be the same bump function on IR as above. Then
Ho(x) (1) = h(x(1))x(t)
is a differentiable local identity map, and
[[Ho(xX)[lo < c.

for some positive constant a. Further, let k > 0. Then

k—1

/ t t
Hi (x)(1) :Z%h(x(j)(O))x(j)(0)+/o dn/Ol dtz.../o

j=0

Ix—1

h (x(k) (s)) x® (s)ds.

is differentiable local identity map, and

||Hy()||x < ceb, k=0,1,.., xeX. O

Corollary 2 Every bounded- (consequently compact-) differentiable germ at 0 €
C[0, 1] has a global representative.

3.3 The Space of Infinitely Differentiable Functions on the
Real Line

The space X = C*(IR) is endowed with the collection of norms

[Ix||x = max max [x@)], k=0,1,2,...
j<k te[—k,k]

Lemma 3 The space X possesses the bounded- (consequently compact-) differen-
tiable property.
Proof Let h(u) be the same bump function on IR as above. Then
Hoy(x)(t) = h(x())x(1)
is a differentiable local identity map, and

[[Ho(x)lo < c.
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Further, let £k > 0. Then

k—1

tp t I3t Th—1
H, (x) (1) = Zjh(x(p)(()))x(p)(())—l-/ dtlf dtg.../ h(x(k)(s))x(k)(s)ds.
0 0 0

p=0""
is a differentiable local identity map, and

[H ()|lk < ce*, k=0,1,.., x€X. O

Corollary 3 Every bounded- (consequently compact-) differentiable germ at 0 €
C*®°(R) has a global representative.

4 Applications

Frequently, in questions of local analysis and local dynamical systems bump func-
tions are used. For example, they are used for normal forms conjugation [24], in the
proofs of the Borel Lemma [15], and the Whitney Extension results [26].

Since blid maps substitute bump functions, they allow localization of a broader
class of spaces. First, the blid maps were used in [1] for a smooth conjugation of
two C* diffeomorphisms on some Banach spaces. In the later works [4, 19] we
discussed conditions for when two C* diffeomorphisms on some Banach spaces are
locally C*°-conjugate. Below, we discuss applications of blid maps to differentiable
linearization (without non-resonance assumption), and applications to cohomologi-
cal equations. For the proofs of these results we need the Borel Lemma extended to
Banach spaces. With the help of blid-maps we are able to prove the Borel Lemma
for Banach spaces.

4.1 The Borel Lemma

In this section we state the version of the Borel Lemma proved in [5]. For finite
dimensional X, the Borel Lemma [15] is a particular case of the celebrated Whitney
theorem [26] on the extensions of functions beyond a closed set. The use of blid-
maps in our proofs is analogous to the use of the bump functions in the proofs of
finite-dimensional case. The infinite dimensional version of the proof also requires
some estimates on the growth of the derivatives of the blid-maps.
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Theorem 2 (The Borel lemma) Let a Banach space X possess a C*°-blid map with
bounded derivatives of all orders. Then for any Banach space Y and any sequence
{P; }?10 of continuous homogeneous polynomial maps from X to Y there is a C*-map
f 1 X — Y with bounded derivatives of all orders such that P;(x) = FOO0)(x)/ is
satisfied forall j =0, 1, ....

Here (in the notations of [6]) £ (0) is the j-linear map and £/ (0)(x)/ is the value
of this map at the point x, x, ..., x.
— —

J

4.2 Cohomological Equations

In this section we outline the main ideas of the application of the blid maps to the
solutions of cohomological equations. For the detailed discussion please see [5].
Givenamap F : X — X, (X is a Banach space) we wantto finda C*® g : X — C,
that satisfies the following cohomological equation:

g(Fx) —g(x) = f(x) 2

For a broad overview of various versions of the equation see the works of Lyubich
(e.g.,[13]). Also, for adiscussion of smooth cohomological equations we recommend
the book [3].

In our example, we will assume that F' is linear and denote it by A.

Define a homogenious polinomial map P,(x) = f™(0)(x)". We will search for
homogeneous, degree n, polynomial solutions Q, (x) (n = 1, 2...) such that

(L, —id)Q,(x) =P, (x), n=1,2,3..., (n)

where L, 0, (x) = (Q,(Ax))™.

If for every n equation (n) is solvable, we call the cohomological equation (2)
formally solvable. Then we can use Borel Lemma to reduce the Eq. (2) to the equation
in flat functions (that are the functions with 0 Taylor coefficients at the origin). Then,
applying some decomposition results (see [5]) for the space X, we can formulate
conditions for the solvability of the original cohomological equation:

Theorem 3 ([5]) Let A : X — X be a hyperbolic linear automorphism, where a
Banch space X possesses a C*°-blid map with bounded derivatives on X. If all
derivatives of f are bounded on every bounded subset, and the cohomological equa-
tion (2) is formally solvable at zero (i.e. each n-th equation has continuous solution,
n=1,2,...), then there exists a global C*-solution g(x).
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4.3 Differentiable Linearization Without Non-resonance
Assumption

Local linearization and normal forms are convenient simplification of complex
dynamics. In this section we discuss differentiable linearization on Banach spaces.
Following the approach of Poincaré [18], for a diffeomorphism F : X — X (X a
Banach space) with a fixed point 0, we would like to find a smooth transformation @
defined in a neighborhood of 0 such that @ o F o @ ~! has a simplified (polynomial)
form [18] called the normal form. If ® o F o ®~! = DF = A is linear, the conju-
gation is called linearization. There are two major questions in this area of research:
how to improve smoothness of the conjugation @, and how to lower the assumption
on the smoothness of the given diffeomorphism F.

Hartman [10] and Grobman [8] independently showed that if A is hyperbolic,
then for a diffeomorphism F there exists a local homeomorphism @ such that @ o
F o ®~! = A. Different proofs were given by Pugh in [17]. A higher regularity of
@ has been an active area of research (see, for example, [9, 16, 25, 27]).

The first attempt to answer the question of differentiability of @ at the fixed point
0 under hyperbolicity assumption was made in [25], but an error was found and dis-
cussed in [20]. Later, in [9], Guysinsky, Hasselblatt and Rayskin presented a correct
proof. However, it was restricted to F' € C* (or more precisely, it was restricted to
F e C*, where k is defined by complicated expression). It was conjectured in the
paper [9] that the result is correct for F' € C? (as it was originally claimed in [25]).

Zhang, Lu and Zhang, in their Theorem 7.1 published in [27] showed that for a
Banach space diffeomorphism F with a hyperbolic fixed point and «-Ho6lder D F, the
local conjugating homeomorphism @ is differentiable at the fixed point. Moreover,

@(x)=x+ O(||x[|'"P)and &~ '(x) = x + O(||x]|'*?)

as x — 0, for certain 8 € (0, «].

There are two additional assumptions behind this theorem. The first one is the
spectral band width inequality. The authors explain that this inequality is sharp if
the spectrum has at most one connected component inside of the unit circle in X,
and at most one connected component outside of the unit circle in X. The precise
formulation of the spectral band width condition is somewhat bulky and we present
it in the Appendix. It is important (and it is pointed out in [27]) that this is not a
non-resonance condition. The latter is required for generic linearization of higher
smoothness.

The second assumption is the assumption that the Banach space must possess
smooth bump functions. It is conjectured in the paper that the second assumption is
a necessary condition.

In this section we explain that this conjecture is not correct (see Theorem 4). The
bump function condition can be replaced with the less restrictive blid map condition.
Blid maps allow to reformulate Theorem 7.1 in the following way:
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Theorem 4 Let X be a Banach space possessing a differentiable blid map with
bounded derivative. Suppose F : X — X is a diffeomorphism with a hyperbolic
fixed point, DF is a-Holder, and the spectral band width condition is satisfied.
Then, there exists local linearizing homeomorphism @ which is differentiable at the
fixed point. Moreover,

@ (x) =x+ O(l|x||""?) and @' (x) = x + O(||x]|""?)

as x — 0, for certain B € (0, «].
In particular, we have the following

Corollary 4 Let X = C?[0, 1]. Suppose F : X — X is a diffeomorphism with a
hyperbolic fixed point, DF is a-Holder, and the spectral band width condition is
satisfied. Then, the local conjugating homeomorphism @ is differentiable at the
fixed point. Moreover,

D (x) =x+ O(llx|I""?) and @~ '(x) = x + O(|Ix]|'*?)

as x — 0, for certain B € (0, «].
Below we sketch a proof of Theorem 4

Proof Zhang, Lu and Zhang showed that for the conclusion of their Theorem 7.1 it
is enough to satisfy the inequalities 1 and 2 (see 4 below), which are called condition
(7.6) in their paper.

In order to apply the blid maps instead of bump functions to the inequalities (4),
it is sufficient to construct a bounded blid map, which has only first-order bounded
derivative. That is, let blid map H(x) : X — X be as follows:

1. Hx) =xfor||x]| < 1

2. HeC! and||H(j)(x)||§cj, j=0,1. @)
The condition (7.6) of [27] is:
1. sup,cx [IDF(x) — A|| <6, @)

2. sup,eyy(o {IIDF(x) — All/I1x]|*} < oo.

Here §,, is some small constant, and V' is a neighborhood of 0.
Let DF — A = f. Define foré > 0

f(x) = f(SH(x/8))

We will show that if f satisfies (4), then so does f.
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sup ||D f(x)|| < sup ||Df (x)|| - sup [[DH(x)|| <8, - 1 =5,

xeX xeX xeX

Here 8~,7 can be made as small as necessary via appropriate choice of 4,,.
Thus, the first inequality of (7.6) holds for f. For the second inequality we have
the following estimate:

1D f ()l _IDfFGHE/) I (II(SH(X/B)II)“
[lxlfe = |16H (x /)|« [1x]] '

The second multiple is bounded, because for small x (say, ||x/8|| < € for some
€ > 0) we have

S§H(x/$
BHE/DI o
[lx]]
while for ||x/3|| > €
[18H (x/8)]
— < /€.
[lx]]
lLe., % is less than some constant m. Then,
1D f ()] « o
———— = sup {[[DfII/IIx]|"}-sup|[DH (x)|| - m
xevio  llxll 0<]lx|l<5co xex

= sup {|[DfOI/Nx[[*}Yer - m®.

0<||x||<éco

This quantity is bounded by Mc;m* if § is sufficiently small and M is defined as
sup,cyop HIDF(x) — All/[1x]]}. O

5 More Examples and Open Questions

One of the important questions of local analysis on Banach spaces is the following.
Do Banach spaces without smooth blid maps exist? Recently, affirmative answer was
presented in [7] (also see [11]). The authors of [7, 11] proved that there exist Banach
spaces that do not allow C2-extension (and hence the C2-blid map).

Question 1 For which spaces do smooth blid maps exist? Do they exist on /,,, with
non-even p?

Question 2 Are there Banach spaces without differentiable blid maps?

Inthe Theorem 1 we considered a C?-germ at a point. For such germs the existence
of a local representative with bounded derivatives implies the existence of the global
one with the same properties.
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How can we extend germs of maps defined at a closed subset S C X? For this
construction we need to define smooth blid maps at S and germs at S. More precisely,
generalizing the definition of germs at a point, we will say that maps f; and f, from
neighborhoods U; and U, of S into Y are equivalent, if they coincide in a (smaller)
neighborhood of S. Every equivalence class is called a germ at S. We pose the same
question. Given a C?-germ at S, does there exist a global representative? Assume
there exista C?-map H : X — X whose image H (X) is contained in a neighborhood
U of S and which is equal to the identity map in a smaller neighborhood. Such maps
we call smooth blid maps at S. Then every local map f defined in U can be extended
on the whole X. It suffices to set F(x) = f(H (x)).

In the next example, we construct the map H for a segment (in particular, for a
ball).

Example 8 Let S(A) be a set of all functions x € C[0, 1] whose graphs (¢, x(¢)) are
contained in a closed A C R?, where A is chosen in such a way that S(A) # ¢. Let
h(t, x) be a C*°-function, which is equals to 1 in a neighborhood of A and vanishes
outside of a bigger set. Then, for an arbitrary y € C[0, 1]

Hy(x)(1) = y(1) + h(t, x())(x (1) — y(1))

is a C*°-blid map for S(A).

If A={{t,x}: min(y(), () <x <max(y(t), ¢(t))} for some ¢,V €
CIO0, 1], then S(A) can be thought of as a segment [¢, ¥] C C[O0, 1].

In particular, given z € C[0, 1] and a constant r > 0, setting ¢ = z —r and =
z 4+ r, we obtain the ball B,(z) = {x : ||x — z|| <r} C C[1,0].

Every C?-germ at [¢, ¥] C CIO0, 1] contains a global representative.

Note, this example has an obvious generalization to segments and balls in C*[0, 1].

Question 1 and Example 8 bring us to the next question.

Question 3 For which pairs (S, X) do similar constructions exist? In particular, can
a smooth blid map be constructed for any bounded subset S of a space X possessing
a smooth blid map? For example, we do not know whether a smooth blid map can
be constructed for a sphere S = {x € C[0, 1] : ||x]] =r]}.

Example 9 The Borel lemma for finite-dimensional spaces is a particular case of the
well-known Whitney extension theorem from a closed set S C IR". There are other
variations of extension questions among the Whitney Extension Problems. They can
be applied to fitting smooth functions and manifolds to data. Fitting manifolds to
data is related to the Whitney extension problem for the infinite-dimensional case.
Some cases of these Extension Problems are solved in [21] with the help of the blid
map ideas.

In Sect.3 we presented several examples of linear topological spaces with the
differentiable blid property.
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Question 4 Which linear topological spaces have the differentiable blid property?

Linearization is a convenient simplification in the study of local dynamics. In
some cases partial differential equations can be studied in terms of operators on linear
topological spaces. Thus, there arises the question of differentiable linearization.

Question 5 Isitpossible to generalize the Theorem 4 for the case of linear topological
spaces (e.g., space of C* functions), which posses differentiable blid property?

6 Appendix

Here we formulate the spectral band width condition.
Assume that x = 0 is a hyperbolic fixed point of F, A = D F(0) and the spectrum

o(A)=0_Noy,

whereo_. ={L €o(A): A <1}ando, ={A € (A):|A| > 1}.
The sets o4 can be written as the union of disjoint sets:

o_=oN..Noyando, = 0,1 N...Noy, (®)]

where d € N, p e{l,..,d} and the numbers A, :=inf{|A|: X € 0;}, )»;’ =
sup{|A| : A € 0;} (i =1, ..., d) satisfy

0<Ay <A <<, <A <l<Ay <if<..<ry <Af. (6)
Then the spectral band inequality can be written as

M/ <™ i=1,..p

SO (7
MG <% j=p+1..d
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QRT-Families of Degree Four )
Biquadratic Curves Each of Them Has e
Genus Zero, Associated Dynamical

Systems

Guy Bastien and MARC ROGALSKI

Abstract In the Congress ICDEA2019 in London, we give two examples of QRT-
families of biquadratic curves Q1 (x, y) — AQ»(x, y) = 0, with O of degree 4 and
Q- of degree 2, each of them has genus zero; these examples contrast with many
examples published of QRT-families, where almost all curves have genus one. After
a brief summary of these examples (the details will be published in Sarajevo Journal
of Mathematics), we give an example with QO of degree 4 and Q, of degree 3. We
prove that, for the QRT-map T associated to this family, the orbit of every point not
in the union of three lines and an hyperbola converges to a fixed point. Finally we
present an example with Q| and Q» of degrees 4, where there are some bifurcations
in the behaviour of the QRT-map.

Keywords QRT maps * Genus of curves + Dynamical systems

1 Introduction, the Results

In the Congress ICDEA2019 in London, we introduced two QRT-families of
biquadratic curves (of degree 2inx andiny) O (x, y) — AQ»(x, y) = Oeachof them
has genus 0. In these examples, Q| was of degree 4, but O, was of degree 2 only. The
associated QRT-map (see the classical definition in Sect.4) in R? \ {(x, y)|x = y}
has two different behaviours in two regions: convergent orbits in a region, periodic-
ity or density in a curve in the other region. In the present paper, we present first a
summary of these examples (the details of proofs will be published in [7]).

Then we present a case of a QRT-family with Q of degree 4 and Q, of degree 3,
such that every curve of it has genus zero. And we prove that for the QRT-map
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associated to this family, which is defined outside of the union of the three lines
x+y=0,x =1and y = 1, and the hyperbola xy = 1, the orbit of every point not
in this set converges to the point (1, 1).

This situation contrasts with most of the classical QRT-families studied in some
papers: see [1, 4-6, 8, 9, 11, 13],..., where almost all curves have genus 1, id est are
elliptic, and where the dynamical system has an infinity of periods for a dense set
of initial points. So it was necessary in these cases to use tools which become from
algebraic geometry of elliptic curves, such as Weierstrass’ function and the chord-
tangent law on a regular cubic curve. This will not be necessary for our examples
(Fig.1).

In the last section, we present without proof (it is analogous to this one in [7] or
presented in Sects. 3 and 4) an example with Q| and Q, of degrees 4.

2 Summary of the Two First Examples Presented in
ICDEA2019

The two examples are the following:
X292 = 5xy(x 4+ y) + 16(x2 + ) —20(x +y) + 16 = A(x —y)? =0, (1)
x2y? = 5xy(x +y) =242 +yH) —20x + )+ 16 —A(x — )’  =0.  (2)

For the origin of these examples, see [4, 7]. The results are the following:

Theorem 1 Every curve of each QRT families (1) and (2) is not reducible and is of
genus 0, except for two values of A for which the curve is reducible. The exceptional
values of A are 10 and 11 for the family (1), and —19 and —10 for the family (2).

Define the two functions

x2y? = 5xy(x +y) + 16(x% + y?) —20(x + y) + 16
Gi(x,y) = ,

(x — y)? 3)
xzy2 —Sxy(x+y) — 24(x2 + yz) —20(x+y)+ 16
Gy(x,y) = x— )2 .

Theorem 2 For the family (1), suppose G1(My) ¢ {10, 11}. If G{(Myp) < 11, then
the sequence of points T" (My) converges to the point D = (2,2); if G1(My) > 11,
then the sequence of points T" (My) is periodic or is dense in the curve Cy which
passes through M.

Theorem 3 For the family (2), suppose G,(My) ¢ {—19, —10}. If Go(My) < —19,
then the sequence of points T" (My) convergesto D' = (=2, =2); if G,(My) > —19,
then the sequence of points T"(My) is periodic or is dense in the curve Cy which
passes through M.
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G <11 Gy < —19

Fig. 1 The regions defined by the values of the G;

3 The New Example, Proof that the Curves Have Genus
Zero

The example is the following: we consider the family of real curves Cy, with equations

Byi= [ —xyr+3) + (2 43D = )+ 1] = A+ &= D =D =0
“)
where A € R.
First we remark that for A = —1 the curve C_; split in a double hyperbola with
equation
(xy — 12 =0. 5)

Moreover we remark that the point D = (1, 1) is on every curve Cy. So it is simpler
to make the change of variables

x=u+1, y=v+1, (6)
so that the new curve Cy has equation
EA =P +uvu+v) +u® + > = duvw +v+2) =0. 7

The point D becomes the point O = (0, 0). First we search the singular points at
infinity, which are given by the easy result:

Lemma 1 The points at infinity are H and V in directions horizontal and vertical,
and they are double points.

If —1 < X\ < 3 the tangents (asymptotes) at these points are complex and distinct.
If A < —1 and if A > 3, the asymptotes are real and distinct.
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If A\ = —1, there are double asymptotes v = —1 and u = —1.
If X = 3, there are double asymptotes v =1and u = 1.
Soif A ¢ {—1,3}, H and V are ordinary singular points of multiplicity 2.

One has also easily, with formula (7).

Lemma 2 The point O is an ordinary singular points of CNA of multiplicity 2 if
|\ # 1, which is isolated (complex distinct tangents) if |\| < 1, and with real distinct
tangents if |1\| > 1. If A = —1 there is a double tangent (u + v)> =0, and if A = 1
the double tangent is (u — v)> = 0.

Now we search another singular points. We have

BBy ) (4= D+ ) + 200+ 1) 2u),
du  dv ®)
udd% — v% = (u— v)(Z(u +v)—(A— 1)””)-

So we search if a point (z, £) may be a singular point. We must have B A\, 1) = 0and
%(r, t) = 0, so we have as solution ¢ = 0, which gives again the point O.If t # 0
when the equations

=20 =Dt+2(1—-N)=0 and 2:2-3\A—1)=0

must have a common root. But it is easy to see that this is possible only for A = —1
or A = 1. In the first case, it is evident because all the points of C_, are singular. For
A = 1 we have again the point O.

If u # v, we must ﬁlld a common root of the two second members of (8), and
see if it is a solution of B)(u, v) = 0. We put u + v = s and uv = p, and the three
equations become

pPP—A—Dps+s>—2A+1Dp=0,
A=Ds=2p+2(0+1) =0, )
2s—A—1Dp=0.

The two last equations give s and p if A # 3, we put their values in the first equation

and obtain A0+ 1)
7 _. 10
3 (10)

This is possible only for A = —1, the case of the double curve (xy — 1)> = 0 or, in
the new coordinates, (uv + u + v)* = 0.

Infineif A = 3, then the two last equations in (9) are not compatible. In conclusion,
if A # —1, there is no other singular point except O, H and V, and they are ordinary
singular points with multiplicity 2 if A # 1.

If |A| # 1, the formula for the genus g of an algebraic curve of degree d
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= (d—l)(d—2)_zup(up—1)

2 2 ’ an

peP

which is true if the curve is not reducible, and where P is the set of all singular points
p supposed ordinary and of multiplicity u, (see [10]), gives for genus the number
0. So it remains to see if the curves are not reducible.

Necessary, by the symmetry with respect to the diagonal and the biquadratic
character of the curve, the only possibilities are that one has u?v? — (A — Duv(u +
v) 4+ u? + v* — 2 uv identical to

W’ 4+ ou+~y) W +av+7), orto
wv+aw+v)+y)@v+ Gu+v)+46), orto
(uv + au 4+ Bv + v)(uv + Bu + yv + 7).

It is easy to see that each of these cases is impossible or gives again the curve
v + u + v)? =0 with A = —1.

For A = 1, the curve C; has for equation u?v? + (u — v)? = 0, that it is reducible
as two complex conic curves.

So we have proved the essential result.

Theorem 4 If|\| # 1, the curve Cy, is not reducible and of genus zero. If A = —1 it
is reducible as (xy — 1)2 = 0. If A = 1, it is reducible as (x — 1)>(y — D> + (x —
v)? = 0 (two complex conic curves except the real point D = (1, 1)).

At last we prove the final result of this section.

Proposition 1 (a) If —1 < A\ < 1, the curve Cy has no real point, except the point D.
(b) The intersection of the set {Q»(x,y) =0} ={x=1}JU{y=1}U{x+y =0}
with each curve Cy in the real domain is exactly the point D = (1, 1).

(¢c) The intersection of the set {xy = 1} with a curve Cy with A = —1 reduces to the
point D = (1, 1).

Proof The second and third assertions are easy. So we prove assertion (a).
For a point (u, v) of a curve C), with equation R; (1, v) — AR, (u, v) = 0 we have
R P R ’ R ’
A= M We shall prove that we have A\ = M >lor\= M <
Ra(u, v) Rao(u, v) Ra(u, v)
—1,with Ry (u, v) = u?v® + uv(u + v) + u?> + v>and Ry (u, v) = uv(u + v) + 2uv.

If Ry(u, v) > 0, then \ > 1:in fact, u?v? + uv(u + v) + u? + v¥ > uv(u + v +
2), because u?v* + (u — v)2 > 0 (except at O). If Ry(u, v) < 0, then one has \ <
—1. Because u?v? + uv(u + v) + u? + v > —uv +v+2),0r (uv +u+v)? >
0, which is true, except for the curve C_j. O

In the following Figure, we give some examples of the forms of the curves C,.
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Examples of curves

Fig. 2 Different forms of curves

4 The Associated Dynamical System

Recall what is the QRT-map T associated to the QRT-family (4). Let be M a point
in the region where Q,(x, y) # 0, that is the set Z := R?\ [{x +y=0U{x=

Uiy = 1}]. The horizontal line which passes to M cuts again the curve C), of the

family which passes to M at a point M, and the vertical line through M, cuts C, at
the image T (M). It is possible that one of these points are at infinity, id est in H or
in V. Moreover the image by T of a point in {xy = 1} is always V. So we consider
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the set Z : (Z U{H, V})\ {xy = 1}. It results of Proposition 1(b)(c) that the map
T sends the set Z into itself. So it is possible to study the dynamical system (Z, T).
First we make the change of variables

1-X 1-Y x—1 y—1
X = A , or X= =
Y X

—, Y = , 12
xy —1 xy—1 (12)
obtained by splitting the point D. Putting the new variables in the equation of Cj,

we obtain a double line with equation (X +Y — 1)> = 0 and a family of conics,
equations of them are (for A # —1)

1
X +Y7?—-X-Y+—=0. 13
+ + T (13)
With the new change of variables
X=U+1/2, Y=V +1/2, (14)
and putting
2_ A~ a>0(N>1 (15)
T 200+ 1] ’

we obtain a family of circles I, of centre (0, 0) and radius a:
U?+Vv? =d. (16)

Now we search the conjugated T of the map T by this transformation (12). We
remark that the horizontal lines become the pencil of lines passing through the point
= (—1/2,1/2), and that the vertical lines become the pencil of lines passing
through the point V=0 /2, —1/2). So the map T is defined geometrically by the
following procedure: if M € I, the line (M H ) cuts F at M, and the line (M, V)
cuts again I, at the point T(M ) (remark that H and V are not on I R
We use the parametrisation of the circles

2

Ut)=a V() =a

. — 17
1412 1+12 (17)
and some easy computations with Maple gives the parameter s of the image T(M ):

(a* —2a + 1)t —2a
2a2 +2a+1—2at

s =h(t) = (18)

This map & is an homographic map (also called Moebius map, because 2a> — 1 # 0),
which has two fixed points: 1 + +/2 and 1 — +/2. So it exists a number k independant
of ¢ such that we have
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h(t) — (1 ++/2) =kt_(1+ﬁ)
h(t)—(1=v2)  t—(1-=~2)

The n-iteration of the map 4 is associated to the number k", so we have to determine
k by the formulas (18) and (19). The computation gives

19)

- (AEy

i 20
1= (20)

So k" — oo when n — o0, and then h"(t) — 1 — /2 when n — oo.

We return to the old coordinates : U — a{—f V —> a# then the limit of

(X,Y) is (1/2 +ay=L 12— szl) and finally (x, y) — (1, 1).
In fine we have proved the final result.

Theorem 5 For every point M of the set R> \ [{x +y=0U{x=1}Uu{y=1}U
{xy = 1}], the point T" (M) converges to the point D = (1, 1).

So we see that this result contrasts with this one of Sect.2 (or of [7]) where in a
region of the plane the dynamical system has an infinity of periods.

S An Example with Q1 and Q> of Degrees Four

Without proof, we give another example Q; — AQ, = 0 with O and Q, of degrees
four. This is the following

Ga(x,y) == x*y? +x* 4+ y2 = Mxy(xy — 1) = 0. 1)

For A ¢ {—2, 1, 2}, each of the associated curves has the points O, H and V which
are ordinary singular points with multiplicity two. Moreover if A ¢ {—2, 1, 2}, then
the curves are not reducible. So their genus are exactly zero.

For \ € {—2, 1}, the curves are reducible to two complex conic curves or to
two complex lines. For A = 2, the curve reduces to two real hyperbolas. And for
A € [—2, 1] the curves have only complex points, except the point O.

For the associated QRT-map 7T defined in the complement of the set {xy = 0} U

2,2 2 2
XY AY Y5 and
L xy(xy = 1)
then if M is in this region 7"(M) — O = (0, 0); and the region where one has
2y x? 42 . , :
1 < ———— < 2, and then every integer larger than some integer N is the

xy(xy —1)
period of some points in this region, and the orbits of some points are dense in the

curves C, which contain them, the two kinds of points being dense in this second
region.

{xy = 1}, there are two regions: this one where one has
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Stability of Discrete-Time Coupled )
Oscillators via Quotient Dynamics e

Brian Ryals

Abstract We examine a discrete-time version of the Kuramoto Model for coupled
oscillators. Phase-locked states of N coupled oscillators correspond to invariant cir-
cles on TV, and can be viewed as fixed points of a quotient dynamical system. We
will discuss how to define and classify the stability of these phase-locked states via
the corresponding equilibria in the quotient system, and give some examples where
the quotient mapping helps identify the phase-locked families and their stability.

Keywords Kuramoto model - Coupled oscillators + Asymptotic stability

1 Introduction

Perhaps the most historically significant coupled oscillator model is the Kuramoto
model, which features N oscillators rotating around a circle in continuous time.
Inspired by observations made by Winfree [20], Kuramoto’s original model [14] had
the form

N
éizw,._znj(ai—ej), i=1,...,N.
j=1

Kuramoto then made the following simplification on the coupling functions: He set
i, —0)) = % sin(0; — 0;) for all i, j. The coupling constant K is nonnegative
and is independent of i and j. With this, Kuramoto’s model becomes

K N
9i=wi—ﬁj§sm(9i—9j),i:l,...,N. (1)
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The version with the sine coupling is usually what is meant by the “The Kuramoto
Model.” Classical studies of this model in the infinite N limit may be found in [1, 6,
14, 16, 19]. Rigorous results for finite N can be found in [4, 5, 12, 15]. More recent
works include [7-9, 17].

In this chapter, we will consider a discrete-time adaption of the Kuramoto model.
Our main goal is to put the ideas of synchronization, phase-locking, and the stability
of such solutions in a rigorous setting. We will discuss different viewpoints of the
model and show how the dynamics may be reduced to a quotient dynamical system.
We will conclude with some examples to illustrate the usefulness of our quotient
system.

Throughout this chapter, we adopt the following notation. We view

~ 1
S:R/(Z—i—z)

so that S is a circle with circumference 1 and let
p:R—S

be the corresponding projection map. We view (—1/2, 1/2] as a fundamental domain
and for each x € S, we let X € R be given by

F=plx)N(=1/2,1/2]. 2)

We view S as being positively oriented and adopt additive notation on the circle, so
thatif x, y € S, thenx +y = p(x + y).
The N-dimensional torus is defined similarly. We view

TV =SxSx---xSEZRN/(Z+1/2)V .

As each component of TV is an element of S, addition is understood to be defined
by addition of their respective components.
The difference equation model to be considered in the rest of this chapter is

n

K
0:t+1)=6:t) +w; — p NZg(Qi(I)—Hj(I)) ,i=1,...,N.

J=1

Here we take discrete steps ¢ € Z*, the coupling constant K is nonnegative, N
is the number of oscillators, denoted as 61, ..., 60y with each 6; € S, and w; € S
corresponds to a rigid rotation in the uncoupled (K = 0) system. Further, p is the
projection map described above, and g : S — R is the coupling function which we
will assume to be an odd function.
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2 Viewpoints of the Model and a Quotient Dynamical
System

There are a couple of ways to visualize the dynamics. The first is the marked particle
viewpoint where we view, as Kuramoto did in the continuous model, all N oscillators
as N particles rotating along a lone circle. The ideas of synchronization and phase-
locking are perhaps more intuitive in this marked particle viewpoint, see Fig. 1. With
synchronization, every oscillator collapses to the same point and rotates around the
circle together thereafter (row 1 of Fig. 1). Phase-locking is similar, with oscillators
having their phase differences approaching a constant, rotating in unison with these
phase differences remaining locked (row 2 of Fig. 1). A lack of either is sometimes
called incoherence (row 3 of Fig. 1). In some coupled oscillator systems, chimera
states (not pictured), where some oscillators phase-lock while others act incoherently,
have been observed [17].

The other torus viewpoint is to view the whole phase space on TV and view the
collection of oscillators as a single point, with the dynamics being an orbit of points on
the torus. That is, we view the equation as §(¢ + 1) = F(0(t)) where F : TV — TV,
0(t) = (01(1‘), Y (t)). Here we denote the i-th component by F;(#), which is
given by

t=0 t=1 t=2

t=0 t=1 =2 =3

alalalea
_// KJ

Fig. 1 Examples of different long term phenomena of coupled oscillators. In the top row, the
oscillators synchronize. In the middle row, the oscillators are phase-locked. In the bottom row, the
oscillators are incoherent
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F; ) =06, + K i G; — 0
i =V Twi — - i —Uj
14 N < g Jj

A synchronized solution is any orbit 6(t) where for all t € Z* we have 6;(¢) =
0;(t) for all i, j € 1,..., N. Similarly, a phase-locked solution is any orbit 0(t)
where for each t € Z*, we have 0; (¢) — 0;(t) = foralli, j el,..., N, with;;
independent of the time parameter . Of course, if all 1;; = 0, then the phase-locked
solution is a synchronized solution.

There are two important observations to be made for these phase-locked solutions,
both of which will motivate our study of a quotient system to be described shortly.
The first observation is that these phase-locked solutions cannot be asymptotically
stable in the usual sense. To see this, observe that if 6(¢) is a phase-locked solution,
then any rotation of 6 is also a distinct phase-locked solution. More generally, we
have the following Lemma.

Lemmal Let0 € TV. Let 2 = (.Q, 2,..., .Q) where §2 € S. Let m be a positive
integer. Then .
F"(0+2)=F"(0)+ 2.

Proof This is just acomputation. Form = 1 we have that the i-th entry of F (0 + 5)
is given by

_ K <
F0+2)=0+2+w +p NZ¥@+Q—@—Q)

K n
=0+ Q2 +w +p ﬁjgl:g(oi_oj)
—F)+2.

The statement for m > 1 follows by induction. (I

This implies we cannot have the usual notion of asymptotic stability for our phase-
locked solutions. For if we have any phase-locked solution, we can translate all of its
components by an arbitrary small constant, and this new solution will never return
to the original solution. However, from a practical point of view, if a perturbation of
a phase-locked solution is asymptotic to a different phase-locked solution with an
identical structure, then in some sense that solution should be stable. Our quotient
system, to be defined shortly, will address this paradox by treating all rotations of a
configuration in the marked particle viewpoint as identical.

The other important observation is to notice that neither synchronized solutions
nor phase-locked solutions are necessarily fixed points of F, as they still rotate with
their locked-phases. However, by equating rotations, we can turn the problem of
finding phase-locked solutions into one of finding fixed points of a quotient map.
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Let us now be more precise. For x, y € TV, where x = (x1, ..., xy) and y=
(y1,--., yn), we define x ~ y if for some §2 € S, we have that x; + 2 = y; fori =
1, ..., N. Notice that Lemma 1 implies that if x ~ y, then F(x) ~ F(y), so that the
equivalence relation respects the dynamics. This gives a quotient space TN/ ~=TV
with a projection map g : TV — TP that sends a point x € TV to its equivalence
class ¥ € TV. We will study the induced quotient mapping F : TV — TV where
F = goFoqg'.

Note that the preimage of a single point X € ™ given by ¢ ~1(X) is an entire
circle in TV. Consequently, if ¥ is a fixed point of F, so that F(¥) = &, then the
corresponding circle ¢! (¥) € TV is invariant under F, ie. F (¢~'(X)) = ¢~' (%).
We will soon show that these invariant circles are the phase-locked solutions of the
original mapping.

We remark that it is straightforward to show that TV is homeomorphic to TV ~!
using the following well known topological lemma.

Lemma 2 Let X and Y be compact Hausdorff spaces and let h be a continuous
function from X onto Y. Let ~ be an equivalence relation on X such that x ~ y if
and only if h(x) = h(y). Then X/ ~ is homeomorphic to Y.

For a proof of the lemma, see e.g. [10].
Corollary 1 The quotient space TV is homeomorphic to TVN=1.

Proof An onto function /2 : TV — T¥~! will be constructed such that x ~ y if and
only if #(x) = h(y). Let x € TV be such that x = (xy, ..., xy) with each x; € S.
Let
h(x) = h(xi,...,x5) = (X| — Xy, X2 — XN, ..., Xy_1 —xy) € TV,
The function 4 is onto since
h(ag,...,an-1,0) = (ai,...,an—1)
for any (ay, ...,ay_;) € TN~!. Further, if h(x) = h(y), then
(X1 — XN, X2 — XN, ooy XN—1 — XN) = (V1 — YN, Y2 — YNs - -» YN-1 — IN) »

sothatx; = y; — yy +xy = y; + 2 foralli,with 2 = xy — yy € S,sothatx ~ y.
If x ~y,then (x1,...,xy) = (1 + £2,...,yny + £2), and

h(x) = (X1 — XN, X2 — XN, ..., XN_1 — XN)
while

) =01+82—yn—2,n+2—yy—£2,..., YN-11+82 —yN —2)=hx).
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Thus, the result follows from the preceding lemma. |

The next lemma says that phase-locked solutions are exactly the trajectories that
correspond to an invariant circle on TV.

Lemma 3 Let 0(¢t) be an orbit of 0(t + 1) = F(0(t)). Then 0(t) is a phase-locked
solution if and only if there exists an X such that 0(t) € q~' (%) for all t.

Proof Recall that a phase-locked solution is any orbit 6(¢) where we have for any
i,je{l,..., N}that
0:(t) — 0;(t) = Uy; 3)

with v;; independent of the time parameter ¢.
First, assume that 6(¢) is a phase-locked solution. Then for all # > 0, we have, by
taking j = 1 in Eq. (3) above for all i, that

(Y11, Y21, - Uwn) = (01(0) = 01(1), 02(1) — 01(2), ..., Oy (1) — 01 (D))
= (61(1), 02(1), ..., On (D) — (61(D), 1 (1), ..., 01(D)) .

Then for any times 7y, 7>, we have that

01(11),s ..., On (1)) — (01(T1), O1(T1), ..., O1(T1))
= (01(12), ..., 0n(12)) — (01(12), 01(12), ..., 01(12)) .

But then 0;(71) = 6;(m2) + ¢;,.», Where ¢, -, = 01(12) — 0;(71) for all i. Conse-
quently 6(71) ~ 0(,) and since 7, 7, are arbitrary, it follows that 6§, € ¢! (¢(6(0)))
for all 7.

Now assume there exists a X such that 0(¢) € ¢! (%) forall . Then §(¢) ~ 0(0) for
all ¢, so that 0; (t) = 0;(0) 4 c(¢) for some c(¢) € Sforalli. Butthen0;(z) — 0;(t) =
0;(0) — 0;(0) for every ¢, with 6;(0) — 6;(0) independent of . O

We remark that in the proof of Lemma 3 we use the difference

(01(0), 02(0), ..., On (D)) — (0:(0), 01(0), ..., 01(0)) .

An intuitive interpretation of this computation in the marked particle viewpoint is
that we mark one of the particles and rotate our point of view after teach time step
so that this particle is always in the same location. As a consequence of Lemma 3,
we have the following.

Corollary 2 Let 6(t) be an orbit of 0(t + 1) = F (6(t)). Then 0(¢) is a phase-locked
solution if and only if q(0(t)) is a fixed point of F for all t.

Proof 1f 0(t) is a phase-locked solution, then by Lemma 3 there exists a X such that
6(t) € g~ (x) for all t. Then

g '@ ={xeT":x=00)+(2,92,...,2), 2 €S}.
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Then for any x € g~!(X), we have
Fx) = F(9(0)+(.Q,.Q,...,.Q)) = F(0(00)) + (.Q,.Q,...,.Q).

Then
G(F(x) = q (FOO) + (2, 2.....2)) = q (FOO) = .

It follows that F (%) = ¢(F (¢~' (X)) = &.
If instead g (6(¢)) is a fixed point of F for all ¢, then 8(¢) € g~'(X) for all t and
the result follows by Lemma 3. ([

Lemma 3 and Corollary 2 imply that phase-locked solutions come in entire circles
in the phase space, and that each phase-locked solution is part of a one parameter
family of solutions. Moreover, these circles correspond to a fixed point of the induced
quotient dynamical system F, so to find all of the phase-locked solutions (and thus
also the synchronized solutions), we only need to find all the fixed points of F. In
the next section, we will explore how to construct this map in more detail, as well as
discuss the stability of these phase-locked solutions.

3 Stability of Phase-Locked Solutions

As noted in the previous section, since phase-locked solutions come in whole circles,
it is impossible to obtain the usual notion of asymptotic stability. We will consider
instead the stability of the entire family of phase-locked solutions. Informally, we
can think of perturbing a phase-locked solution, and asking if the future of this
perturbation is asymptotic to the future of some phase-locked solution in the same
family. As this entire family is a single point in TV, we are really asking for asymptotic
stability of a fixed point of F.

In symbols, by a family of phase-locked solutions we mean the one-parameter set
(1) + 2 with#(z) € TV and our parameter 2 = (£2, ..., 2) with 2 € S.Here 0(1)
satisfies (¢t + 1) = F(6(t)) and corresponds to a fixed point for F, so that q(0(1)) =
x for all 1. We define this family of phase-locked solutions to be asymptotically stable
if the fixed point x of Fis asymptotically stable.

For differentiable maps in RY, we often use eigenvalues to identify equilibria that
are asymptotically stable. For smooth g, let us now see how to both explicitly write
out the quotient mapping using coordinates, as well as how to extract a matrix from
our quotient map so that we can perform the usual type of analysis.

Let & € TV. Then, by Corollary 1, ¥ has a representation (xi, ..., xy_;) € TN,
Since one of the points x € ¢~'(¥) has its last component equal to 0, we can
choose the coordinates in such a way that the first N — 1 coordinates match with
(X1, ..., xy_1) € TN foreach ¥ € TV (see also the proof of Corollary 1). That is,
we have that
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g7 @ ={xeT :x=(....xv1,0)+ (2, 2,...,2), 2 €S}.
Denoting 2 = (£2,£2,...,£2) and ¥ = (xy, ..., xy_1,0), we have by Lemma 1

that

q(F(g7'®))=q(F&G+R)=q(F®) +2)=q((F@) .

Notice the last component

x V!
FyX)=wn+p N g(x;)
j=1
Then consider
N—1 N—1
_ K K
xX*=x—|wy+p NZg(xj) s, WN TP NZg(xj)

so that x* is the same as X but rotated so that the last component of F'(x*) is 0. Since
X ~ x*,wehave qg(F(x)) = q(F(x")), so it suffices to write out the mapping F (x*).
We have fori =1,..., N — 1 that

K K K&
Fi(x")=xi+wi—wy—0p Ng(xi)-i‘ﬁjzg(xi—xj) - NZ!](X:
while by construction
Fy(x*)=0.

It follows that F(¥) = g o F og~!(¥) has as its N — 1 components
~ K «—
F@E) =xi+w —wy—p g(m +— Zg(x, ) | = |5 290
Jj=1

where (x1, ..., xy_1) € TN~ is the coordinate representation of .

Further, we may identify the tangent space of any ¥ € T¥~! with R¥~!. There,
the matrix representation of DF (x)is an (N — 1) x (N — 1) matrix with the i-th
diagonal entry given by

N-1

2K K
-G —5 2 gi—x)
Jj=Lj#i

and the ij-th entry for i # j given by
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K ’ K /
v (x; —xj) — N7 (x;) .

Eigenvalues may be then computed at a fixed point X, and the eigenvalues A satisfying
|A| < 1is, as usual, equivalent to asymptotic stability for X under the mapping F.
4 Examples

In this section we will give two examples where the coordinates for the quotient map
and the resulting matrix are computed explicitly.

4.1 Two Oscillators with a Sinusoidal Coupling

Consider the system with two oscillators and the coupling function
g(x) = sin(27x)
where X is defined in Eq. (2). Then the system takes the form
0t +1) =0,(1t)+w —p (g sin (2%(91/—\92)))

K . —
Ot +1)=0,(t) +w, — p (5 sin (27r(92 — 91))>
The corresponding quotient map F gives the rather simple equation

K K
xt+1D)=x@)+w —wr—p <E sin(27r32(t))> —-p <3 sin(27r32(t))> .
Phase locked solutions correspond to fixed points of this quotient map, given by
K N K . N
W) —wy —p <3 s1n(27rx)) —-p <E sm(27rx)> =0.
Fixed points are easily found by solving the 1D equation in R given by
K sin(27%) = w; — w; .

The stability of such a solutions is determined by whether

1 —2Kmcos(2nf) € (—1,1) .
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Phase locked solutions are then found by computing g ~! (x), which yields the family
of phase-locked solutions determined by (x + a, a) where a € S with phase differ-
ence x.

We see that we only have phase-locked solutions if K is sufficiently large; in par-
ticular, we need K > |wl/—\wz |. Inthe case of K > |wl/—\wz| there are two solutions
X1 and X, where |x{] < % and % < %] < % We see that the phase-locked solution
corresponding to Xx; is always unstable, as cos(27x;) < 0.

For x1, we see that the expression

— 2
~ W) —w2
1 —2Kmcos(2rf) =1 —27K |1— (—) .

The expression inside the squareroot is positive by assumption, so the above
expression is real and always smaller than 1. A routine computation shows that this
_\2
expression is only greater than —1 if K < # + (w1 — w2> .
We summarize our findings in the following Theorem.

Theorem 1 The system
K . —
O+ =0it)+w —p <E sin (27 (6; — 92)))
K . —
ht+1)=0,)+wr—p (3 sin (27 (6> — 91)))

has both a unique family of unstable phase-locked solutions and a unique family of
asymptotically stable phase-locked solutions if

_— 1 _—\2
|w1—w2|<K<\/—2+<w1—wz> .
™

If instead
K < |w; —w|

then there are no phase-locked solutions, and if

1 \2
K > —2+(w1—w2>
s

then there are two phase-locked families of unstable phase-locked solutions.

) R R .
Let us look at an example. Let us consider w; = le’ Wy = %, so that |w; — wy| =

2
0125 and /L + (Wi —w) ~ 034197 A plot of 61(1) and (1) for
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K=0.1, wy = 0.25 , w, = 0.125

&

t=0 t=3

®

Sie
C

=4 = =7
t t.6 t
* Q
t=8 t=9 ?—10 t=11
t=12 t=13 t=14 t=15

®

Fig. 2 A plot of the first 16 iterates when K = 0.1, & = %, and &y = % is shown. No phase-
locking is observed, as expected for these values as there are no fixed points in the quotient map.
The two oscillators act incoherently for all ¢

O
®
O

t=0,1,...,15 for coupling values K = 0.1, K = 0.25, and K = 0.4 are shown
in Figs.2, 3, and 4 respectively. In the figures, 6, is shown as the larger dot. The
initial condition used was to start §; and 6, on opposite sides of the circle. With
K < |w; — ws| in Fig.2, no phase-locking is observed, and the oscillators act as if
uncoupled, with 6; rotating at a faster frequency and lapping #,. When K = 0.25

. . — 1 _—\2 .
we are in the stability range |w; — w;| < K < \/ -+ (wl — wz) . The orbits are
™

depicted in Fig.3, and we see that by t = 5 the two oscillators begin to lock their
phases and rotate in unison thereafter. When K = 0.4, shown in Fig.4, we have

1 N2
K > \/ -+ (wl — wz) . There the phase-locked families are unstable, and we
Y0

instead observe a period 2 phase-locked orbit, where even ¢ are locked at a different
phase than odd 7.
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5
0
.

K=025,w, =025 ,w,=0.125

t=1 t=2 t=3

O
O

t=6 t=7

Cx
O

-
[}

9 t=10

O
¢
sle

t=12 t=13 t=14 t=15
Fig. 3 A plot of the first 16 iterates when K = 0.25 &) = %, and O, = % is shown. For these
parameter values the quotient map has a stable fixed point. The oscillators quickly become phase-

locked with the phase-difference rapidly converging to ﬁ as t grows. They will continue to rotate
in unison with this fixed separation thereafter

&
o
@

4.2 Five Oscillators with Equal Rotation Frequencies and a
Piecewise Linear Coupling

Let us consider the system where w; = w, i =1,...,5 and the piecewise linear
coupling go : S — {p(1/2)} - R with go(x) = X, with the " operation defined in
Eq.(2). A plot of go o p : R — R is shown in Fig.5. It has discontinuities when-
ever p(x) = 1/2. The coupling function used in this system is also found in [13].
There the intuition behind this map is given, namely that gy(x; — x;) measures what
they call the “oriented distance” between x; and x;, and this distance is undefined
when two points are directly opposite, explaining why we exclude one of the points
in the domain of gy. See Fig. 6 for some examples.

Nonetheless, we can still look for phase-locked solutions that stay away from the
discontinuity set. Our equations take the form
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5
Q
o

t=12 t=13 t=14 t=15

O

Fig. 4 A plot of the first 16 iterates when K = 0.4, &) = %, and @y = % is shown. For these
values both fixed points of the quotient map are unstable. The oscillators appear to settle on a stable
period 2 phase-locked orbit where odd ¢ have a phase-difference of 01/—\92 ~ (0.205 while even ¢
have 01/—\02 ~ —0.054. This suggests the initially stable fixed point undergoes a period doubling
bifurcation in the quotient map as K crosses the stability threshold of 0.34197. This period 2 orbit
in the quotient map corresponds to the continued rotation with alternating phase-differences seen
here

K=04, wy = 0.25 , w, = 0.125

O
{0

=6 =7

(x O
O
O

=9 t=10 t=11

L
L,
e

o 12+

-1/2 + o

Fig.5 Aplotof gy o pis shown. The function is discontinuous whenever p(x) = 1/2. As required,
the function depicted is odd with period 1
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Fig. 6 The coupling
function gy between two
points on the circle gives the
oriented distance between
the two oscillators. The
orientation of the attraction
of the two oscillators is
shown. In (c¢) this orientation fX
i§ undefined, as. is the case @) (b) ©
for any two antipodal points

K 5
bt + 1) =00 +w=p| Y 00:i@0) = 0;0)
j=1

To look for phase-locked solutions, we look at the four-dimensional quotient
mapping with equations

K K o K <
xi+ D) =50 = p | S900O) + 5 D g0 —x;0) | = p | 5 D g0i(0)
j=1 j=1

Fixed points are obtained whenever, for all i = 1, 2, 3, 4, the sums
4 4
K K K
ggo(xi) + 3 ;Qo(xi —xj)+ 3 ;go(xi)

yield an integer. Since gy maps to (—1/2, 1/2], for any K < 2, the only possible
integer is 0. Consequently, the expression can only be made an integer if

4 4
GG+ g —x)+ Y golx) =0.
j=1 j=1

This sum can be simplified by noting that the only three possibilities for go(x; —
Xj) = x; — x; are given by

)’C\,‘—)Ej—i-l, )2,'—)2]‘5—5

=

_ A A 1 A A
Go(xi —x;) = 1% — %;, —5 <X —Xj =
A A A A 1
Xi—x;j—1, xi—X;>3

and that go(x;) = X;. After some omitted calculations, one obtains fixed points of the
form
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x =(0,0,0,0), x = (=2/5,—2/5,2/5,2/5), x = (=2/5, —1/5,1/5,2/5)

as well as the remaining 28 permutations of these solutions. Of note is that the first
of these solutions corresponds to a synchronized trajectory. Each of these is easily
translated to a phase-locked family in the original system.

Let us now determine their stability. Since ¢’(x) = 1, the Jacobian matrix is con-
stant, with diagonal entries given by

Since the off diagonal entries are just 0, the Jacobian is a diagonal 4 x 4 matrix with
diagonal entries 1 — K. We conclude that all of these phase-locked solutions, includ-
ing the synchronized state, are stable whenever K < 2.If K > 2, these solutions still
satisfy the equations, but are unstable. There may also be other fixed points of the
quotient map when K > 2. This leaves us with the following Theorem.

Theorem 2 The model described by the equations
kS
b+ =00 +w-p| < > g0 —0;()) . i=1,2,3,45
=1
has 31 stable phase-locked families if K < 2. They are given explicitly by
(a,a,a,a,a),

the six distinct permutations of the first four coordinates of

2+ 2+ 2+ 2+
5 a, 5 a,5 a,5 a,al ,

and the 24 permutations of the first four coordinates of

2-|- 1+ 1+ 2-|-
5 a, 5 a,5 a,5 a,a

where a € S. All 31 of these phase-locked families are unstable if K > 2.

We emphasize again that when we say a phase-locked family § is asymptotically
stable, such as one of the families in Theorem 2, we do not mean that x € S is
asymptotically stable in the classical sense. It is not true that if x € S and y is a
sufficiently small perturbation of x, that | F"(x) — F"(y)| = 0 asn — oco. What is
true is that there exists a z € S such that |F"(z) — F"(y)| — 0, butin general z # x.
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5 Conclusion and Discussion

We have analyzed a discrete time model on TV for a system of coupled oscillators,
with an emphasis on phase-locking and synchronization. By identifying all rotations
of a configuration of oscillators, we defined a quotient space homeomorphic to TV !
with a quotient map whose fixed points correspond to families of phase-locked and
synchronized solutions in the original system. Moreover, the stability of phase-locked
families can be determined by examining the stability of the fixed point in the quotient
space.

It is appropriate to compare the results here to that of the continuous time
Kuramoto model given by Eq. 1. Though this is an oversimplification, the results
may be broken into two cases, that of finite N and that of the continuum N — oo
limit. We compare only to the former and comment that there are many stability
results in the continuum limit, see [7] for a thorough review of this case.

For finite N, stability results for Eq. 1 are analogous to those in this article in the
sense that they use a rotating frame to translate the problem to one of fixed points,
as we have done with the quotient mapping. In some cases, such as in [4], results are
also given on the size of the basins of attraction by measuring what proportion of
initial conditions will phase-lock. In contrast, the stability results in this article are
local and we have not provided any estimates on the basin of attraction of the stable
phase-locked families.

In the example with two oscillators in Sect.4.1, for the parameter range where
there is a single stable fixed point in the quotient map, numerical simulations suggest
that the lone stable family attracts almost all initial conditions. It is likely that some
of the global convergence results in difference equations on [0, 00)" (see for instance
[2, 3, 11, 18]) can be extended to systems of coupled oscillators on the torus. Future
work on the global properties of phase-locking is planned.
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Reaching a Consensus via Krause Mean )
Processes in Multi-agent Systems: e
Quadratic Stochastic Operators

Tuncay Candan, MANSUR SABUROV, and Unal Ufuktepe

Abstract A multi-agent system is a system composed of multiple interacting so-
called intelligent agents who possibly have different information and/or diverging
interests. The agents could be robots, humans or human teams. Opinions are at the
basis of human behavior, and can be seen as the internal state of individuals that
drives a certain action. Opinion dynamics is a process of individual opinions, in
which a group of interacting agents continuously fuse their opinions on the same
issue based on established rules to reach a consensus in the final stage. To some
extent, the Krause mean process is a general model of opinion sharing dynamics in
which the opinions are represented by vectors. In this paper, we present an opinion
sharing dynamics by using positive quadratic stochastic operators and establish the
consensus in the system.

Keywords Krause mean process + Quadratic stochastic operator + Cubic
stochastic matrix + Consensus

1 Introduction

A multi-agent system is a system composed of multiple interacting so-called intelli-
gent agents who possibly have different information and/or diverging interests. The
agents could be robots, humans or human teams. The humans are complex indi-
viduals whose behaviors are governed by many aspects, related to social context,
culture, law and other factors. In spite of these many factors, human societies are
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characterized by stunning global regularities in which we can see transitions from
disorder to order. These macroscopic phenomena naturally call for a mathematical
model to understand social behavior, i.e., a model to understand regularities at large
scale as collective effects of the interaction among single individuals. Opinions are
at the basis of human behavior, and can be seen as the internal state of individuals
that drives a certain action. Opinion dynamics is a fusion process of individual opin-
ions, in which a group of interacting agents continuously fuse their opinions on the
same issue based on established fusion rules to reach a consensus, polarization, or
fragmentation in the final stage.

In sociology, different mathematical models have been constructed to study the
evolution of the opinions of a group of interacting individuals. The majority of the
concerned models are linear. Typically researchers are more focused on the consensus
problem and try to find out how to reach it. Historically, an idea of reaching con-
sensus for a structured time-invariant and synchronous environment was introduced
by DeGroot [6]. Later, Chatterjee and Seneta [5] generalized DeGroot’s model for a
structured time-varying and synchronous environment. In these models, an opinion
sharing dynamics of a structured time-varying synchronous multi-agent system is
presented by the backward product of square stochastic matrices. Meanwhile, a non-
homogeneous Markov chain is presented by the forward product of square stochastic
matrices. Therefore, the consensus in the multi-agent system and the ergodicity of
the Markov chain are dual problems to each other. Since that time, the consensus
which is the most ubiquitous phenomenon of multi-agent systems becomes popular
in various scientific communities, such as biology, physics, control engineering and,
social science (see [4, 14, 25, 26, 28, 43-45]). Recently, some nonlinear models
have been constructed to characterize the opinion dynamics in social communities
(see [12, 13, 17-20]). A more general model of the opinion sharing dynamics is the
Krause mean process in which the opinions are represented by vectors. The reader
may refer to the monograph [21] for a complete exposition of the Krause mean
process. In the series of papers [32-37], the correlation between the Krause mean
processes and quadratic stochastic processes was established.

A quadratic stochastic process (see [7, 41]) is the simplest nonlinear Markov
chain. The analytic theory of the quadratic stochastic process generated by cubic
stochastic matrices was established in [7, 41]. Historically, a quadratic stochastic
operator (in short QSO) was first introduced by Bernstein [3]. The quadratic stochas-
tic operator was considered an important source of analysis for the study of dynamical
properties and modeling in various fields such as biology [15, 22], physics [46], and
control system [32-37]. The fixed point sets and omega limiting sets of quadratic
stochastic operators defined on the finite-dimensional simplex were studied in the
references [38—40]. Ergodicity and chaotic dynamics of quadratic stochastic oper-
ators on the finite dimensional simplex were studied in the papers [29-31]. A long
self-contained exposition of recent achievements and open problems in the theory of
quadratic stochastic operators and processes was presented in the survey paper [9].

In this paper, we are aiming to establish a consensus in the multi-agent system
in which an opinion sharing dynamics is presented by positive quadratic stochastic
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operators associated with positive cubic doubly stochastic matrices. We also show
that the proposed nonlinear protocol generates the Krause mean process.

It is also worth mentioning that there are also many recent research papers on this
topic done in time scale calculus, fractional calculus (see [1, 10, 11, 23, 24]).

2 The Krause Mean Processes

We first review a general model of opinion sharing dynamics of the multi-agent
system presented in [12] which encompasses all classical models of opinion shar-
ing dynamics [2, 5, 6]. Consider a group of m individuals I, := {1, ..., m} acting
together as a team or committee, each of whom can specify his/her own subjective
distribution for some given task. It is assumed that if the individual i is informed of
the distributions of each of the other members of the group then he/she might wish
to revise his/her subjective distribution to accommodate the information.

Let (1) = (x;(t), ..., x,(1))" be the subjective distributions of the multi-agent
system at the time ¢ where x;(t) > 0 for all 1 <i < m. Let p;;(¢, x(¢)) denote the
weight that the individual i assigns to x;(tf) when he/she makes the revision at

the time 7 + 1. It is assumed that p;;(f,x(r)) > 0 and ) p;;(t,x(t)) = 1. After
j=1
being informed of the subjective distributions of the other members of the group,

the individual i revises his/her own subjective distribution from x; (¢) to x; (¢ + 1) =
m

-21 pij(t, x(1))x;(1).
i=

Let P (¢, x(¢)) denote an m x m row-stochastic matrix whose (ij) element is
Dij(t, x(1)). A general model of the structured time-varying synchronous system is
defined as follows

x(t + 1) = P, x(1)) x(t). (1)

We may then obtain all classical models [2, 5, 6, 12, 13] by choosing suitable row-
stochastic matrices IP (¢, x(¢)).

We say that a consensus is reached in the structured time-varying synchronous
multi-agent system (1) if x(#) converges to ¢ = (c, ..., c)! as t — oo. It is worth
mentioning that the consensus ¢ = ¢(x(0)) might depend on an initial opinion x(0).

A more general model of the opinion sharing dynamics is the Krause mean process
in which the opinions are represented by vectors. The reader may refer to an excellent
monograph by Krause [21] for a detailed exposition of mean processes.

Let S be a non-empty convex subset of R? and S be the m—fold Cartesian
product of §. A sequence {x(?)};2, C 8", x(t) = (x1(?), oo X ()T s called a
Krause mean process on S if x;(t + 1) € conv{x(¢), ..., x, ()} foralll <i <m
and for all r =0, 1, .... In other words, a sequence {x(¢)}2, C S™ is the Krause



400 T. Candan et al.

mean process if conv{x|(t +1),...,x,( + 1)} C conv{x(?), ..., x, ()} for all
t =0,1,... where conv{A} is a convex hull of a set A. A mapping T : §"" — S§™ is
called a Krause mean operator if its trajectory {x()}2,, x(t) = T (x(0)) starting
from any initial point x(0) € S generates a Krause mean process on S”.

It is worth mentioning that the nonlinear model of opinion sharing dynamics
given by (1) is a Krause mean process due to the fact that the action of a stochastic
matrix P = (p,-j)zlj=1 on a vector X = (xi, ..., x,)" can be viewed as formation of

m
arithmetic means (Px); = >_ p; ;xj with weights p;;. The various kinds of nonlinear

j=1
models of mean processes have been studied in the series of papers [12, 13, 17-20].

3 The Quadratic Stochastic Processes

Let I, := {1, ..., m} be a finite set and {e;};__, be the standard basis of the space
R™. Suppose that R is equipped with the /;—norm [|x||; := Y _;__, |x| where x =
(x1, ..., xm)" e R™". We say that x > 0 (respectively, x > 0) if x; > O (respectively,

x> 0)forall k € I,,,. Let
S" ' ={xeR":x>0, x|l =1}

be the (m — 1)—dimensional standard simplex. An element of the simplex S"~! is
called a stochastic vector. Let ¢ = (%, o %)T be the center of the simplex S"!.
LetintS" ! = {x € S"! : x > 0} and 3S" ' = §"~! \ intS"~! be, respectively, an
interior and boundary of the simplex S~

Let us now provide some necessary definitions of non-homogeneous Markov
chains and quadratic stochastic processes by following the papers [7, 8, 27, 41, 42].

LetlP = (p,»j)ff'j:l be amatrix, pje := (Pi1, ..., Pim)-andps; := (p1;, ...,pmj)T
for any i, j € I,,. A square matrix P = ( p,-_,-);f’jzl is called row-stochastic (respec-
tively, column-stochastic) if p;, (respectively, p, ;) is a stochastic vector foralli € I,
(respectively, for all j € I,,). We say that P > 0 (respectively, P > 0) if p;e >0
(respectively, p;o > 0) foralli € L,,.

During the last few decades, the huge efforts have been made to construct var-
ious necessary and/or sufficient conditions for the ergodicity of non-homogeneous
Markov chains (see [27, 42] and references therein). One of the major areas of study
in non-homogeneous Markov chains is that of finding conditions under which a chain
is weakly/strongly ergodic. A basic technique for doing this is to establish that all
finite products are regular and then require some condition on the size of the positive
entries in the transition matrices [42]. In looking for sets of square stochastic matrices
which can be used in forming weakly/strongly ergodic non-homogeneous Markov
chains, one needs to find subsets of regular square stochastic matrices which form
semi-groups. A set of scrambling square stochastic matrices is one of these sets (for
details see [42]). A stochastic matrix P = (p; j):?_’jzl is called scrambling if for any
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i, j thereis k such that p;;pjx > 0, i.e., any two rows of the square stochastic matrix
are not orthogonal. One of the classical results in the theory of linear Markov chains
states that a stochastic matrix is strongly ergodic if and only if its some power is a
scrambling matrix.

A family of square row-stochastic matrices

m
{]P’["’] = (p};’[]) L TlE Nyt—r> 1}
k=1

is called a discrete time non-homogeneous Markov chain if for any natural numbers
r,s,t withr < s < t the following condition, known as the Chapman—Kolmogorov
equation, is satisfied

m
P = ZP,!_?SIP_LS;QH, 1 <ik<m. )
=1

A linear operator Z""1 : §"~! — S"~! associated with the square row-stochastic

m
matrix P11 = (pl[Z"])i -

(g[r,t](x))k _ inpl[]r(,f]’ 1<k <m, (3)

i=1

is called a linear stochastic operator (a Markov operator) (see [27, 42]).
Notice that the Chapman—Kolmogorov equation can be written in the following
form

L= gbho sy <5 <1 4)

Let & = (pijk)?,lj,k=l be a cubic matrix (see [7, 8, 41]) and p;je := (pij1, .-,
pijm) be a vector for all 1 <i, j <m. A cubic matrix & = (Pijk)f‘rfj,k:1 is called
stochastic if p;;j, is a stochastic vector forall 1 < i, j < m.

A family of cubic stochastic matrices

m
{«@[r’t] = (P,-[Jr'}f])ijk_l D Dijk = Pjik, LT EN, t—r > 1}

with an initial distribution x© € S~ is called a discrete time quadratic stochas-

tic process if for any natural numbers r, s, t with r < s < t one of the following
conditions, the so-called nonlinear Chapman—Kolmogorov equations, is satisfied

m
W pi = 2 pra e 1 <igksm
o, B=1
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m
B plil= > xPpdx0pilpd,  1<ijk<m
o, B,y,0=1

where x"”) = Z x(o)x(o) pl[?k”].
i,j=1
We remark tjhat the conditions (A) and (B) are not equivalent to each other. The
reader may refer to [7, 41] for the exposition of quadratic stochastic processes. The
reasons why the condition (A) is homogeneous degree one in x and the condition
(B) is homogeneous degree two in x were explained in the papers [7, 41].
A nonlinear operator 2"/ : §"~1 — §"~1 agsociated with the cubic stochastic

m
matrix 211 = (pl[]’k’]) A
i,j,k=1

(2" x), Zx,x,p,[;k”, 1<k=<m. ©)

i,j=1

is called a quadratic stochastic operator (a nonlinear Markov operator), Obviously,
we have that x» = 200.vI(x®),

Notice that the nonlinear Chapman—Kolmogorov equation can be written in the
following form

ri(x")y = g (2 (xy) | <5 <t (6)

We define the following stochastic vectors and square row-stochastic matrices
associated with the cubic stochastic matrix & = (p;jK)]"; 1

Pije : = (Dij1s Pij2> -+ » Dijm)s 1<i,j<m,
Piee : = (Piji)} 115 l<i<m,

m
= Z-xiPiou X € Smil.
i=1

It is easy to check that the quadratic stochastic operator has the following vector
and matrix forms

m

2(x) = Z X X;Pije (Vector form) (7)
ij=1
2(x) =x"Py = in (x"Pies) (Matrix form) (8)

i=I

See Sect. 5 for some examples.
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Remark 1 Recall (see [16]) that a continuous mapping .# : S"~! — S"~!is called
a nonlinear Markov operator if one has that .# (x) = x” M for any x € S"~! where
My = ( Dij (X)):lj=1 is a row-stochastic matrix depends on x € S"~! (it introduces
nonlinearity). The quadratic stochastic operator 2 : S"~! — S"™~! given by (7) is
indeed a nonlinear Markov operator since it can be written in the matrix form 2(x) =
xPy for any x € S"~! defined by (8). It is worth mentioning that there are some
nonlinear Markov operators which are not polynomial (see [16]). Therefore, the set
of all quadratic (polynomial) stochastic operators cannot cover the set of all nonlinear
Markov operators.

4 Krause Mean Processes via Quadratic Stochastic
Operators

In this section, we establish some correlation with the Krause mean processes and
quadratic stochastic operators. We first introduce some notions and notations.

Definition 1 A cubic matrix & = (p;i);"; 1= is called stochastic if one has that

m

Zpijkzl» pijk >0, V1<i, jk=<m.
k=1

Definition 2 A cubic matrix & = (p;j)" k=1 is called doubly stochastic if one has
that '

m m
PiijZPijk=1, pijx =0, V1=<i, jk=<m.
=1 k=1

Remark 2 In this paper, we do not require the condition p;jx = pj;x for all
i,j, kel,.

Let & = (pijk)?fj’k:] be a cubic doubly stochastic matrix and P,e; = (pijk);‘r,lj:1
be a square matrix for fixed k € I,,,. It is clear that P = (pi_jk)l’.f‘jzl is also a square
stochastic matrix. In the sequel, we write &2 = (Pee1|Pes2| - - - |Peer) for the cubic
doubly stochastic matrix.

We define a quadratic stochastic operator 2 : S"~! — §”~! associated with the
cubic doubly stochastic matrix &2 = (Pee1|Pes2| - - * |Peer) as follows

(LX), = Z pijpXixj, 1 <k<m. 9)
i,j=1

We also define a linear stochastic operator .%; : S"~! — S§"~! associated with
the square stochastic matrix Pee; = (p; jk)l’."’jzl as
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(£ (x)); = (X" Pout); Zpl,k xi, l<j=m. (10)

It follows from (9) and (10) that
(2(0); = Z (Z p,]kx,> xj = Z (LX) x; = (L&x),x), 1<k<m
j=1 j=1
where (-, -) stands for the standard inner product of two vectors.

Therefore, the quadratic stochastic operator 2 : S"~! — S§"~! given by (9) can
be written as follows

T
D(x) = ((.,sﬁ(x),x),..., (.,zﬂm(x),x)) (11)

where % : S"~! — §"~! is defined by (10) for all k € L,,.
‘We now define an m x m matrix as follows

(Z1W), (Z®), - (£1W),

7 LX), - (L
P(x) = ( ZFX))I ( ZFX))z' ( 2(.X))m . (12)

(Zn (X))l (gm (X))2 o (gm (X))m

We show that P(x) is doubly stochastic matrix for every x € S"~!. In fact we
know that P(x) = (pk.,- (X))kmj=1 where

P (%) = (LX), Zp,]kx, (13)

Therefore, we have that

épkj(x) Z (Z p,,kx,> - Z (i ’ ,k> - i _

k=1 \i=1 i=1 \i=
D p(x) = Z (Z pt/kx1> => (Z Pijk) Z =
j=1 j=1 i=1 = i=1

Hence, it follows from (11) and (12) that

2(x) = P(x)x (14)
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and we call it a matrix form of the quadratic stochastic operator (9) associated with
the cubic doubly stochastic matrix.

Remark 3 There is a relation between the matrix forms (8) and (14) of the quadratic
stochastic operators. In fact, it is easy to check that for any i € I, and x € S"~! one
has

Ple) = (Pu)’, P® =PI, 2 =x"P=(P/x)" =Pxx’ (15

‘We now present the nonlinear opinion sharing dynamics of the multi-agent system.

PROTOCOL A:Let P = (Pee1|Pesz]| - - - |Pearn) be a cubic doubly stochastic matrix
and let 2 : S"~! — S"~! be a quadratic stochastic operators associated with the
cubic doubly stochastic matrix & = (Pee1|Pesz] - - - |Poerm)- Suppose that an opinion
sharing dynamics of the multi-agent system is generated by the quadratic stochastic
operators as follows

xth — 9 (X(n)) , x©@ ¢ gn—1 (16)
T
where x™ = (xl("), e x,(yf‘)) is the subjective distribution after n revisions.

Definition 3 We say that the multi-agent system presented by PROTOCOL A even-
tually reaches a consensus if {x"}°°  converges to the center ¢ = (%’ o %)T of
the simplex S”~! for any x@ e §”~!.

It follows from (14) that the opinion sharing dynamics of the multi-agent system
given by PROTOCOL A can be written as

xth) — p (X(n)) X("), x©@ ¢ gt (17)
T
where x™ = (x{”), e x,(,f)) is the subjective distribution after n revisions. This

means that, due to the matrix form (1), the opinion sharing dynamics of the multi-
agent system given by PROTOCOL A generates a Krause mean process.
Consequently, we have shown the following result.

Proposition 1 Let &7 = (Pee|Pee2| - - - |Peein) be a cubic doubly stochastic matrix
and 2 : S""' — S"7! be the associated quadratic stochastic operator. Then the
opinion sharing dynamics of the multi-agent system given by PROTOCOL A generates
the Krause mean process.

We are now ready to state the main result of this paper.

Theorem 1 Let &2 = (Poe1|Peez| - - [P ) be a cubic doubly stochastic matrix and
let @ : S"' — §"~! pe the associated quadratic stochastic operator. If ¥ > 0, i.e.,
pijk > 0 for any i, j, k € 1, then the opinion sharing dynamics of the multi-agent
system given by PROTOCOL A eventually reaches a consensus.
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Proof Let & = (Pye1|Pee2] - - - Paein) > 0 be the positive cubic doubly stochastic
matrix. Let {x™}°2,, x®*) = 2(x) be a trajectory of the associated quadratic
stochastic operator 2 : S"~! — §”~! starting from an initial point x© e §”~1
According to the definition, the multi-agent system eventually reaches a consensus
if {x™}2° converges to the center ¢ = (L, ..., )T of the simplex §"~".
m
Let §(P) = %Ta}zx Zl |pi,j — Pi,j| be Dobrushin’s ergodicity coefficient of a
i =
square stochastic matrix P = (p;; ;” i1 (see [42]). Then we have that

xtD = p (x(")) x" =P (x(")) P (x(l)) P (X(O)) x© (18)

where P (x) is the square doubly stochastic matrix defined by (12). We setup for any
two integer numbers s > r

P2 p (x0) P (xC7D) P (D) P (x0).
We then obtain for any n > r > 0 that

x@ D — P[x"”,xm’]X(O) — px” x4

Since & = (piji);"j =1 > Oisthe positive cubic doubly stochastic matrix, the square
doubly stochastic matrices P, ..., P

lee> mee

are the scrambling matrices (see Sect. 3), i.e.,

are positive. It means that P7__, ... P

lee? mee

§(PL) <1, V1i<i<m.

lee

We let
A= max {§ (]P’-T )} < 1.

I<i<m iee
We then obtain that
SPx)=68P])<r<1, vxes"l (19)

This means that P (x) is also a scrambling (positive) matrix. Hence, we have that

s (P[xm),xm)]) <" 1im § (P[Xm),xm)]) —0

n— 0o

Therefore, the backward product of doubly stochastic matrices {Pyw }ro, is strongly
ergodic (see [42]), i.e., lim P *”] = meT ¢ and
n—oo

lim x™tD = lim PE"X1x@ — ¢ x© ¢ gm-!

n—oo n—oo

1 1
m’" " m

where ¢ = ( )T. This completes the proof.
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Remark 4 Let us now compare the contribution of this paper with some previous
results. In the series of the papers [32-37], we always assume triple stochasticity of
cubic (hyper) matrices. However, in this paper we only assume double stochasticity of
cubic matrices. Since we did not require the condition p;jx = pji foralli, j, k € I,,,
in general, the double stochasticty does not imply the triple stochasticity of cubic
matrices. In this sense, the result of this paper generalizes and extends these previous
results.

5 An Example

We consider the following cubic doubly stochastic matrix &2 = (P1ee|P2ee|P300)
where Pjq,, Pres, P36 are square doubly stochastic matrices given as

a ap ap bi1 by b1z i C12 €13
Plee = | a21 a2 ax Pree = | b21 b2 b23 Psee = | 21 €22 €23
azy azx as b3y b3 b33 €31 €32 €33

The following quadratic stochastic operator 2 : S> — S? presents PROTOCOL A
2(x) = x1 (X Pros) + 22 (X Paea) + 13 (X Paaa) =x"Py = Px)x)"  (20)

where Py = x1Pjee + X2P2ee + x3P340 and P (x) = P! are the square doubly stochas-
tic matrices.

It was shown in [32-37] that if the square doubly stochastic matrices Py,,,
Pee; P34¢ are positive and

IP>loo + ]P)Zoo + ]P)3oo = 111 (21)
111

then the consensus is established in the system described by PROTOCOL A. However,
Theorem 1 improves this result. Namely, without the constraint (21), the consensus
is still established in the system described by PROTOCOL A if the square doubly
stochastic matrices Pjqe, Poee, P3ee are (only) positive. In this sense, the result of this
paper generalizes and extends all results of the papers [32—37]. It is worth mentioning
that if the matrices IPjqe, Pree, P36 are merely scrambling then we may not have a
consensus in the system (see [38] for some supporting examples).
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Global Attractivity For a Volterra )
Difference Equation e

Kaori Saito

Abstract Sufficient conditions for the global asymptotic stability of nonlinear
Volterra difference equations of convolution type, Logistic type and Volterra sys-
tems, which appear as models in science and engineering, are obtained by applying
the technique of comparison method, semi-cycle theory and Liapunov functions,
without the method of Z-transform.

Keywords Global asymptotic stability - Nonlinear Volterra difference equations -
Comparison method - Semi-cycle theory * Liapunov functions

1 Introduction

The stability theory of nonlinear Volterra difference equations has many interest-
ing applications in science and engineering, especially control theory, population
dynamics and others [2-5, 7-10]. Moreover, interesting results and many references
on stability and boundedness of solutions of Volterra difference equations may be
found in [10]. Recently, Elaydi [2] surveyed some of the fundamental results on
the stability and asymptotic stability of linear Volterra difference equations. The
method Z-transform is heavily utilized in equations of convolution type. However,
for nonlinear Volterra difference equations, it is well known that this method does not
work well. Therefore, in this paper, we study the stability and asymptotic stability of
nonlinear Volterra difference equations of convolution type, which is based on our
manuscript [11].

Let Z denotes the set of all integers. For any p, ¢ € Z such that p < g, we define
Z>[p,o)={p,p+1,p+2, ., Z>[p,ql={p,p+1,..,g}andx, = x(n)
forn € [0, 00).
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First, we consider the global asymptotic stability of the Volterra difference equa-
tion of the convolution type

Xn+1 :axn+2bn—jg(xj)a n=071’27"'9 (1)
j=0

where a is a constant such that 1 > a > 0, and each constants b; > 0 such that
o0
> bj=b < oco. )
=0

Moreover, g(x) is a positive continuous monotone function such that g(0) > 0 and
0 < g(x) <Ilforallx e Rt = (0, 00).

Let {x,} be the solution of equation (1) with initial condition xy > 0. Then, from
(1), x, >0, n=0,1,2,.... In what follows, we need the following definitions of
stability (cf. [10]).

Definition 1 The bounded solution y(n) of Eq. (1) with respect to initial condition
Yo is said to be;

(1) Stable (in short, S) if for any € > 0 there exists a §(¢) > 0 such that if |xo —
yo| < &(¢), then |x, — y,| < € for all n > 0, where x(n) is a solution of (1) through
(0, x¢) such that xy > 0.

(ii) Asymptotically stable (in short, AS) if it is S and there exists a §g > 0 such
that if |xo — yo| < 8o, then |x,, — y,| = 0asn — oo, where x(n) is a solution of (1)
through (0, x¢) such that xy > 0.

(iii) Global attractor (in short, GA) if any initial condition xo (> 0) of Eq. (1),
then |x, — y,| — 0 as n — oo, where x(n) is a solution of (1) through (0, xo) such
that xg > 0.

(iv) Globally asymptotically stable (in short, GAS) if it is S, and GA, that is
|X, — yu| = 0 as n — oo, where x(n) is a solution of (1) through (0, x¢) such that
xo > 0.

For (i) and (ii) in the above Definition 1, actually, the S is weaker than the AS and
also, from (ii) and (iv), the AS is weaker than the GAS as [3] shows.

We can see the linearized equation of (1)

n

y,,H:ay,,—i—Zb,,,jyj, n=0,1,2,..., 3)
j=0

with yp > 0. We have the following Lemmas that may proved using mathematical
induction.
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Lemma 1 Let {x,} and {y,} be solutions of the Egs. (1) and (3), respectively, such
that

0 < xo < yo.
Then
0<x, <y, for n=0,1,2,....

Lemma 2 let {x,} be the solution of equation (1) with initial condition xo = 0, and
let {x,} be any solution of equation (1) with initial condition xy > 0. Then X, < x,
forn=1,2,...

If we set w, = x, — X,,then from Lemma 2, we have w, > 0

2 Global Asymptotic Stability

Theorem 1 Under the above assumptions of section 1, we assume that condition
(2) holds with a + b < 1, and let {x,} be the solution of equation (1) with initial
condition xo = 0. Then {x,} is a globally asymptotically stable solution of equation

(1).

Proof The substitution w,, = x,, — X, transforms Eq. (1) into
Wyt = aw, + an_jG_lg(wj), n=0,1,2,..., 4)
j=0
where function G~ := G 1(x;, 5;) = 85080 o) £0 for j =0,1,2, ...

g(w;)
and0 < G~ ! < 1.

To do the proof of Theorem 1, it suffices to show that the zero solution of Eq. (4)
is globally asymptotically stable. We first consider a function V defined by

n—1 oo

V) =1 =) (wa+ Y by Gl gwy). 5)
r=0 s=n
Since foreachr =0, 1, ..., n — 1 the series Z;’in bs_, converges and {w,} is non-

negative sequence, it follows that for every integer n > 0 the function V is well-
defined and nonnegative. The function V plays the role of a “Liapunov function”.
Since (1 — b)~! > 1, it is easy to see that for all integers n > 0,

V(w,) = wy,. (6)
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Next, we prove that for every nonnegative solution {w,} of Eq. (4),
AV (w,) =V (wpy1) = V(w,) < =dG'w,, n=0,1,..., (7

where d is a constant such that 0 < d < 1. Using the facts that {w, } is a nonnegative
solution of Eq. (4), x,, > 0, and g(w) < w for w > 0, we find

AV (wp) = V(wpt1) — V(wn)

A= w1+ Y ber G gwp)

r=0s=n+1
n—1 oo
— =0 (wa+ Y D b G gw)
r=0s=n
n
— (- b)_llawn +3 by G g
=0
n 0o
+ Z Z bserilg(wr)}
r=0s=n+1
n—1 oo
= A =n)7 (w3 Y by G g wp)
r=0s=n
n
= (=0 aws + Y by ;G gw))
j=0
n—1 oo [ee]
+ Z Z bs—rG_lg(wr) + Z bs—nG_lg(wn)
r=0s=n+1 s=n+1
n—1 oo n—1
— Wp — Z Z bs—rG_lg(wr) - Z bn—rG_lg(wr)}
r=0s=n+1 r=0

oo
= (1 =0 (awn +b0G " g + Y2 bs-n G g(wa) = wn)
s=n+1

o
<=5 by — (1= )G gwn) by G <1 and g(wn) < wp).

S=n
Since Z;’in bs_, = b, it follows from the above inequality that
AV(w,) < (1 =b)"'(b— (1 —a)G ' g(w,) = —dG ' g(wy), (8)

whered = (1 — (a + b))/(1 —b), 0 <d < 1, and (8) proved. From (8), it follows
that the sequence {V (w,,)} is non-increasing for all nonnegative solutions {w, } of Eq.
(4) and so {V(w,)} is convergent. Thus, there exists an « > 0 such that V (w,) —
a < oo forn — oo. Letting n — oo into (8) we obtain
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lim AV (w,) = lim (V(wpp1) — V(w,)) =0 < —d lim G~ 'g(w,),
which implies, lim,,_, oo w, = 0.

To complete the proof of Theorem 1 it remains to establish the local stability of
the zero solution. From (5) and (7) it follows from G, '<1and g(wp) < wy that

w,; < V(wn) < V(U)())

. SN L el — g
—(1-b) l(wo-i-;bsGolg(wo)) (where Gy = £ S5
1+b

1-b

Wo

from which the stability of the zero solution of Eq. (4) follows and then, the zero
solution of Eq. (1) is globally asymptotically stable. Thus, the proof of theorem is
complete.

3 A Volterra Difference Equation of Logistic Type

Next, we consider global attractivity of a positive equilibrium point of a nonlin-
ear Volterra difference equation of logistic type, modeling a population of a single
species, such that the present population size is affected by the sizes of earlier times
due to resource availability (cf. for differential equations, see in [1, 6]).

Recently, Elaydi et al [5] have employed Liapunov-Razumikhin function tech-
niques to investigate the stability of nonlinear functional difference equations. Then
they applied their results to investigate the stability of generalized discrete logistic
equations and solved some open problems [3, 5] that were raised by Kocic and Ladas
[9]. In section 4, we shall give a new proof (cf. [8]) of the extended result in [5] by
employing the idea of semi-cycle theory of Kocic and Ladas in [9].

We consider the following difference equation

Xopt = Xo{r —ax, — ) _biglxas)}h,  n=0,1,... ©)
=1

where r, a, b, b; € R, g(x) is a positive continuous monotone increasing function on
R*, g(0) =0 and,

3>r>1,a>0, b >0, oo>b=:Zbl, a>b,
=1
ki,....ky, € ZT, and k = max(ky, ..., kn). (10)
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Then, it is easy to see that Eq. (9) has a unique positive equilibrium point x* > 0,
which satisfies
ax* +bg(x*)=r — 1. (11)

In the case where g(x) is a linear function; g(x) = px +¢q, p,q > 0, we have

r—1—bq
a+bp

* = , whenever r > 1+ bq.

Here x,, denotes the density of the population at time n and we assume the existence
of positive solution {x,} for Eq. (9) whenever the initial conditions are such that
O0<x_j<x* forj=0,1,2,... k.

4 Global Attractor

In this section we study global attractivity of the positive equilibrium point x* of Eq.
(9). First, we need the concept of the semi-cycle of a sequence (cf. [9]).

Definition 2 A positive semi-cycle of a solution {x,} of Eq. (9) consists of a string

of terms {x;, x;41, ..., X}, all greater than x*, with / > —k and m < oo and such
that

either 1=—k or | >—k and x_; <x*
and

either m=00 or m<oo and X,y <x*.

A negative semi-cycle of a solution {x,} of Eq. (9) consists of a string of terms
{x1, X141, .. ., X}, all less than x*, with [ > —k and m < oo and such that

either |=—k or | >—k and x_; > x*
and
either m=00 or m<oo and Xpuy > x*.

Let
{xPiJrl’ Xpid2s oo xPi+1}

be the ith positive semi-cycle of solution {x,} (i.e. x,, < x*), and let

{xq,'Jrl’ Xgid2s -« xCIi+1}
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be the ith negative semi-cycle of solution {x,} (i.e. x;, > x*). Let x3;, and x,,, be
the extreme values in these two semi-cycles, respectively, with the smallest possible
indices M; and m;.

To prove Theorem 2, we need the following Lemmas.

Lemma 3 F € C([0, 00), (0, 00)) and F is non increasing in [0, 00).
Lemma4 F?(x) > x for0 < x < x*.

Lemma S We have
M;—pi <k+1 and m;—gq <k+1. (12)
Lemma 6 Let . = liminf, o x, = liminf;_, o x,,. For € (0 < € < A), we have
xu;, < GA —€,xp,) (13)

where G is given by

m m—1

G(x,y) =y(r—ay— Y big()(r —ax* =Y bigx*) — bng(»))
=1 =1

X (r —ax™ — Zblg(x))k_l, (14)

=1

where x* is only one fixed point of F?(x*).

Lemma 7 Equation (9) is permanent, that is, there exist numbers o and 8 with
0 < o < B < oo such that for any initial conditions x_y, . .., xg € (0, 00) there is a
positive integer ny which depends on the initial conditions such that

o <x,<pBforn=>n. (15)

The main result in this section is the following:
Theorem 2 In addition to (10), suppose that x* is the only fixed point of F?. Then,
the positive solution {x,} of Eq. (9) satisfies

lim x, = x*.
n—oo

Here x* is the one in (11), and we set

max,<y<x+ G(x,y) (0 <x < x7%),
minx*fyfx G(.X, )’) (-x > X*),

F(x):{

where G(x, y) is satisfies (14).
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Remark 1 The hypothesis of, only one fixed point x* with F?(x) = x, Theorem 2
is natural condition since F'(x*) = x* and F is non increasing function by Lemma 3.
Moreover, we are able to drop this assumption of our theorem. However, We do not
have the proof for it. On the other hand, condition 3 > r in (10) is sharp condition,
which was given in [5] and the numerical test.

Now, we will start to prove the theorem. The idea of this proof is based on [8, 9].

4.1 Proof of Theorem 2

Assume for the sake of contradiction that Eq. (9) has a positive solution {x,} which
is eventually nonnegative or is eventually non positive about x*. We will assume
that {x,} is eventually nonnegative. The case where {x,} is eventually non positive
is similar and will be omitted. We claim that

lim x, = x*. (16)
n—00
Let n be an integer such that
Xn—ky = x*  for n=no+k, I=1,...,m.

Then, by (8) and (11),
Xntl = -xn(r —ax, — Z blg(xnfk,))
=1

< Xu(r —ax® =) big(x")
=1
= Xn-

Thus the sequence {x,} is monotone decreasing for n > ny + k. Then there is an
a > 0 such that lim,,, o x, = «. If ¢ > x*, by taking limits in (9),

l=r—aa— Zb,g(a).
I=1

This is a contradiction by the uniqueness of x*, and hence (16) holds. Therefore
it remains to establish (16) when solution {x,} is the case of except for the above
statement. To this end, we obtain (12) in Lemma 5, that is

Mi—pi<k+1 and m;—q <k-+1.
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We will prove (16) for positive semi-cycles. The proof for negative semi-cycles is
similar and will be omitted. Suppose M; — p; < k 4 1 is not true. Then M; — p; >
k + 1. We set

A = liminf x, = liminf x,,,,

n—o00 1—> 00
@ = limsup x, = lim sup xy,. (17
n—o00 i—o00

which in view of (15) exist and are such that
O<op <A=<x*=<p<Bp.
To complete the proof it suffices to show that

A=u=x".

From (17) it follows that if © € (0, co) and € € (0, 1) are given, then there exists
n, € N such that

A—€e<xpp <puforn>ny+k, I=1,...,m.
We now have that, by Lemma 6,
xu, < GA—€,xp,). (18)
Since A — € < x,, < x*, it follows from (18) that

xu, < GA—€,xp,) Sx max G —¢€,y) = F(A —¢). (19)

—e<y<x*

Therefore, as € > 0 is arbitrary, xp, < F(A) and so from (17)

u=<FQ).
In a similar way we can show that
A= F(u).
By applying Lemma 3,
F(u) <A <x"<u<FQ). (20)

Then, we can show that A = x*. If we have that A < x* < u, from (19), Lemma 3
and 4,
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A > F(p) > F(F(A\) = F*(A) > A.

This is a contradiction. By the same argument, we can show that u = x*. Thus, it
finally follows that (16) is true and the proof is complete.

S Volterra Difference Systems

Finally, we consider the following Volterra difference system.

Xnt1 = 1% + 3o bayn-j8()),
Yot = @yn + Y jobon-jg(x)), n=0,1,2,..., (Eo)

where a;, a, are positive constants such that 0 < a; < 1, fori = 1, 2 and each con-
stants b(;); > 0 fori = 1, 2 such that

a® = max{a, a»} < 1 and,

o0
Y by =bf <oo fori=12, and b* =max(bj, b3} <1.  (21)
j=0

We can rewrite equation (Ey) to the following equation (E).

Wat1 = 1w, + 5o ban—iG;'e(z)),
Zntl = 2Zp + Z?:O b(z)n_jC;lg(wj), n= 0, 1, 2, ey (E)

where functions G,)' := G, '(x;, x;) = W, g(w;) #0for j =0,1,2,...
J -
and 0 < G,' <1,and G]' := G ' (y;, ) = 80)-8G) g(zj) #0for j =0,1,

8(z;)
2,...and 0 < G ' < 1.
Theorem 3 Assume that condition (21) holds with a* + b* < 1, and let ({x,,}, {y.})

be the solution of equation (E) with initial condition xo = 0 and yo = 0. Then
{x.}, {u}) is a globally asymptotically stable solution of equation (E).

Remark 2 (cf. [2, 7]). It is natural to extend equation (Ej) to the general system of

n

Xor1 = A%y + ) Biuglw), n=0,1,2,... 0<l=<n, (22)
1=0

where x € RF and A = (agj)) is a k x k real matrix such that 1 > |A]| :=a* >0,
and B, = (bgjys) is a k x k real matrix defined on Z7 such that
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o0
bjml >0, 1<i,j<k and Y |bgjul =b" < oo. (23)
n=0

Moreover, g(x) is a positive continuous monotone function such that [g(0)| > 0 and
0 < |g'(x)| < 1 for all nonnegative x € R¥™).

Then, we can obtain the similar stability result of Theorem 3 for Eq. (22) by using

the extended Liapunov function:

k k n—1 oo
Vw,) =1 =b") ") wan+ DD Y bujs—rG gwi)}
i=1 Jj=1r=0 s=n

forall j =1,2,...,k.

Theorem 4 Under the above assumptions, we assume that condition (23) holds with
a*™ + b** < 1, and let {x,} be the solution of equation (22) with initial condition

Xo

= 0. Then {X,} is a globally asymptotically stable solution of equation (22).
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Bifurcation Scenarios Under Symbolic m
Template Iterations of Flat Top Tent e
Maps

Luis Silva

Abstract The behavior of orbits for iterated flat top maps has been widely studied
since the dawn of discrete dynamics as a research field. However, little is known
about orbit behavior if the map changes along with the iterations. In this work we
consider a family of flat top tent maps and investigate in which ways the iteration
pattern (symbolic template) can affect the structure of the bifurcation scenarios.

Keywords Nonautonomous dynamical systems - Bifurcations + Piecewise smooth
maps * Stunted tent maps

1 Introduction

To our knowledge, the first paper dedicated to the study of flat top tent maps was [7].
If a dynamic process is generated by a one-dimensional map, then insertion of a flat
segment on the map will often lead to a superstable periodic orbit. This mechanism
has been widely used in the control of chaos on one-dimensional systems in areas
as diverse as cardiac dynamics (see [6]), telecommunications or electronic circuits
(see [1, 5, 12] and references therein). Families of flat top tent maps have also been
used as models to study related families of differentiable maps, since they are closely
related with symbolic dynamics and are rich enough to encompass in a canonical
way all possible kneading data and all possible itineraries, see [8, 9].

Parameters in real world situations very often are not constant with time. In that
cases, the evolutionary equations have to depend explicitly on time, through time-
dependent parameters or external inputs. Then the classical theory of autonomous
dynamical systems is no longer applicable and we get into the field of nonautonomous
dynamical systems. The time dependence may be periodic or not. Nonautonomous
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periodic dynamical systems can be used, for example, to model populations with
periodic forcing, see [4].

In [11] we studied the local bifurcation structure of a family of 2-periodic nonau-
tonomous dynamical systems, generated by the alternate iteration of two flat top tent
maps.

In [10], it was introduced the idea of iteration pattern. It was considered the
iteration scheme x,+1 = fe, (x,), where (¢,)qen, € {co, 1YY and (¢, ¢1) € C?, for
the complex logistic family f.(z) = z> + ¢, z € C, and studied how the iteration
pattern (symbolic template) can affect the topology of the Julia and Mandelbrot sets.

In this work we will consider an analogous iteration scheme for a family of flat
top tent maps and investigate in which ways the iteration pattern (symbolic template)
can affect the structure of the bifurcation scenarios.

2 Template Iterations of Flat Top Tent Maps

We will consider the family of flat top tent maps f,, : [—1, 1] — [—1, 1],u € [—1, 1],
such that
2x+1, if —1<x<@m-1))/2
fulx) = u, if u—0)72<x<U—-u)/2.
—2x+1, if —u)/2<x<l1

We study iterations of two different functions, f,, and f,,, according to a general
binary sequence s € {0, 1}'° (template), in which

— the “zero” positions correspond to iterating the function f,,, and
— the “one” positions correspond to iterating the function f,,.

For fixed parameters ug, u; € [—1, 1], and a fixed binary sequence s = (s,), €
{0, 1}", one can define the s-template orbit for any xo € [—1, 1] as the sequence

0;0,141 (x0) = (xn)nzo Xnl = fum (xn).

Through this work we fix u; = 1, so f,, is the usual tent map and the parameters
space is
[—1,1] x {0, 1},

Definition 1 For fixed s € {0, 1}M, y e [-1, 1], a point x € [—1, 1] is said to be
periodic for s, u if its orbit o}, (x) is a periodic sequence. Moreover, we say that
a periodic point x for s, u is stable if there is a neighborhood J of x such that
0(0;(y)) = o(0,(x)) forall y € J, where o is the shift map.

Remark 1 It follows immediately (see Lemma 1 in [5]) from the definition of sta-
bility that a periodic point x is stable if and only if o (0} (x)) = o (0 (0)). So, to study
the stable periodic behavior we just have to study o} (0).
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Remark 2 Stable periodic orbits are not the only kind of attractors. Indeed, the orbit
of 0 always attracts a set of positive Lebesgue measure and if s is periodic then the
set of initial values converging to this orbit is dense in [—1, 1]. If O is mapped after
some iteration steps in to a point of an unstable periodic orbit, then this orbit will
attract a set of positive Lebesgue measure. These orbits are commonly known as
Milnor attractors and will be studied in a future work.

Throw this work we will the notation (X ... X,,)”, 0 < p < oo for the concate-
nation p times of the finite sequence X ... X, if p = oo then we are considering a
periodic infinite sequence.

Considering the periodic template sequence s = (011)*°, and printing the orbits
of 0, varying u € [—1, 1] we obtain the following bifurcation scenario, see Fig. 1

We will use Symbolic dynamics to describe the bifurcation scenarios.

Definition 2 Define the symbolic address of a point x € [—1, 1], as
L, if x<0

ad(x) =130, if x=0
R, if x>0

LORL™

075
050

025 i

0.00

LLO LI

-0.25

-0.50

-1.00 -0.75 -0.50 -0.25 050 075 100

Fig. 1 Bifurcation scenario with template s = (011)*°, u € [—1, 1]. For each parameter u we
calculated 600 iterates with initial value xo = 0, ignored the first 100 and ploted the last 500
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Definition 3 For fixed s € {0, 1}, u € [—1, 1] and a point x € [—1, 1] with orbit
0, (x) = (Xn)nen,

define the itinerary of x as
I(x) = ad(xpad(xy) . . ..

Let ¥ be the set of sequences X ... X, such that X; € {L,0, R} for all j <
n<4ocand X' =X;...X, € X suchthat X, =0and X; # 0 forall j <n. We
say that X € ¥’ has length |X| =n < +o0.

To each symbol X ; # 0 we associate a sign,

€(L) =+ and €(R) = —.

Define
—L =R and — R=1L.

Letl’lR(Xl...Xk)I#{Xj 1§]§kande=R}
For X € ¥’ and 0 < j < |X|, define

€;(X) =+ (resp. —)ifng(X;...X;) is even (resp. odd).

and
€(X) = € x-1(X).

Considering the natural order relation L < 0 < R, we will introduce an order
structure in X':

X < Y if and only if there exists r < min{|X|, |V}, such that X; = Y; for all
j<rande (X)X, <€_1(Y)Y,.

Definition 4 For s € {0, 1} and u € [—1, 1], define the kneading data
Ky = I;(0).

Leto(X1X,...) = X, ... be the usual shift map on X.
From now on we will restrict ourselves to the family of periodic sequences s =
017~H>® p e N.

Definition 5 A sequence X € ¥ is admissible for (017~!)* if the following condi-
tions are verified:

1. o”(X) < X foralln € N.
2. If Xpx = 0 for some k, then X = (X ... X —10)*.
3. If X; = 0 for some j such that p  j then 0/ (X) = RL™.
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Denote the set of admissible sequences for (017~1)> by £

From now on we identify the periodic sequences (X ... X ,x—10)*> with the cor-
responding finite sequence X; ... X ;10 € ¥'.

Proposition 1 Let X € ¥ and s = (01771, then X = K* for some u € [—1, 1] if
and only if X € 20",

Proof Condition 2 follows from the fact that, if X = K and X, = 0 then O is
periodic with period pk, while Condition 3 follows from the fact that (f,, o f;)(0) =
—1 is a fixed point for all f,,, u € [—1, 1]. The rest of the proof follows analogously
to the proof of Theorem 2.2 in [3]. O

3 Characterization of the Bifurcation Scenarios

We will now use the kneading data to describe the bifurcation scenarios. Basically
there are two main symbolic structures involved:

— x-product, described in Theorem 1 and Proposition 3;
— period adding, described in Theorem 2.

The idea of symbolic * product was introduced in [2] for the kneading data of the
quadratic family and since then it has been widely used to interpret renormalization
at a symbolic level and describe period-doubling and, more generally, box-within-a-
box structures in bifurcation scenarios.

Definition 6 Let X = X;...X,,_10 € X'. Define

- XE=X1... Xpn1€(X)L.
- XR=X,... Xp_1e(X)R.
-X'=xXx.

Remark 3 It is immediate to see that, forall X € ¥, e(X%) = + and e(X®) = —.

Definition 7 (*-product) Let X € X’ andY =Y;...Y, € X then
XxYy=x"_ . x"

Definition 8 A sequence X € X’ is unimodal if 6" (X) < X foralln < |X]|.
Denote the set of unimodal sequences by %Y.

Remark 4 X%V is the set of kneading sequences realized by the unimodal family,
see [7].

The following two propositions are analogous, respectively, to Theorem 3.5 and
Proposition 3.3 in [3] and the proofs follow analogously with the necessary adapta-
tions.
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Proposition 2 LetX € X'andY € X, then X x Y € 2V ' ifandonlyif X € 0"
andY € 2V,

Proposition3 Let X € &' N =" and Y, Y> € £V such that Y, < Y», then X *
Y] < X * YQ.

Theorem 1 LetX € &' NE" " and X < Z < X % (RL™®), then Z € " ifand
onlyif Z =X %Y forsomeY € V.

Proof X = (X1 ... Xp—10)® and X * RL™ = X®(X*)™, so the conditions imply
that Z = X% ...
Let us suppose that there are j > 0, minimal, and 1 < i < pk, such that

oPN(Zy=X,...X;1Y;. ..

with ¥; # X;. From the admissibility of Z, X; ... X;1Y; < X; ... X;1 X;.

IfZ = X®8XH"X,...X;_1Y; ..., then, since e (XX (X%)") = —, we would have
Z > X % RL* and this contradicts the hypothesis.

If, forsomen > Oandm > 0, Z = X®(XL)y"XR .. . XRXYHu Xy ... Xi Y ..,
then admissibility of Z implies that m < n but in that case X®(XL)"X, ... X;_,
Yi...> X®R(X"),X,...X;_1X;...and this violates the admissibility of Z. O

From the previous theorem, foreach X € ¥’ N o1 , the symbolic interval [ X *
(L), X % (RL*®)] N %" is a copy (box-within-a-box) of the space of unimodal
kneading data XV (in particular it contains the period-doubling sequences, see Fig. 2).
These are the reducible kneading data and it can be proved that the corresponding
maps are renormalizable to flat top tent maps.

Now, the period-adding structure will generate the irreducible kneading data. This
kind of structure was studied in [5] for discontinuous flat top tent maps.

In our context it can be represented by the following infinite directed acyclic
graph.

Consider the 27! finite words in ¥/, B' < ... < B such that |B/| = p for
all j. These are the source vertices of the graph.

Fori=1,...,2P71 — 1, 1let

ri =min{j : B} # B/},

and . . '

I(B') = Bj...B, |ORL™.

From the point of view of graph theory the sequences [ (B") correspond to sink ver-

tices(i.e., vertices with no outgoing edges). The sinks /(B') correspond to kneading
data KSI')_] such that (1) o £,(0) = 0.

Obviously

B' <IBY<B><...<BY "' < (B¥'y < B,
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-0.56 -0.55 -0.54 -0.53 -0.52 -0.51 -0.50
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Fig. 2 Bifurcation scenario with template s = (011)°°, u € [—0.56, —0.5]. We can observe the
orbits corresponding to the period doubling sequence, LLO, LLO %« RO, LLO %« RLRO, ...

For p = 3 we have
B'=LL0, B>=LR0O, B> = RRO, B* = RLO,

and
I(B") = LORL™, I(B*) = ORL*®, I(B*) = RORL®™,

see Fig. 1.
We say that X € X’ has a repeated prefix if there exists m € N such that

Xpm—H ...X|x|_1 =X ...X|x|_pm_1.

For any set W C ¥/, set
w=w?uwV?,

where WY is the subset of sequences X € WV such that X has a repeated prefix and
WNP = WAWP.
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We will now build recursively the levels of the period-adding graph. Denote by
Ly = By UI(By) the k-th level in the graph, where By are the vertices with outgoing
edges and /(By) the sinks in level k.

So the first level is

Ly =By UI(B)

where
Bi={B,i=1,....,2" andI(B) = {{(B), i=1,...,2°P" " —1}.

Next, for general k,

Biyr = {(X5)"Y, XRY : X e BNP and ¥ < X}
{(XE)"Y : X € B, e(X) = €)xj—pm—1(X) and ¥ < X}
(XRY : X € B], e(X) = €x)—pm—1(X) and c XI=P"(X) < ¥ < X} U
{(XH"Y : X € BY, e(X) # €x)—pm—1(X) and s XI=P"(X) < ¥ < X}
{(XRY : X e B], e(X) # €x)—pm—1(X) and Y < X},

where Y, k', n,m are such that k' <k, Y € By, n €N, and X,p41... X|xj-1 =
X. ~~X|X|—pm—l if X e BP,

I(Biy1) = {(XE)"L(Y): X € By, Y € By, k' < kand (XY)"Y € By} U
{(XRI(Y): X € B, Y € By, kK <kand X®Y € By}

and Ly = Biy1 UL(Bg1).

There exists one edge (X, Y) from X to Y iff X € £;,Y € Ly andY = (X5)"Z
orY = XRZ with Z € Ly, k' < k.

The descendants (respectively, ancestors) of a vertex X are all vertices ¥ # X
such that there is a directed path from X to Y (respectively, from Y to X).

The reachable set from X, 7 (X), is the vet of vertices containing X and all its
descendants.

Let PA = LkJEk be the set of period-adding sequences, the following Theorem

follows directly from the construction.
Theorem 2 PA C "
Moreover; let X, Y, Z, Z' € PA, then:

e IfX <Y, TX)NTY)=0,ZecTX)andZ € T(Y)thenZ < Z'.
e IfX e By, Z,Z' € By with k' < k are such that X" Z and X" Z' belong to By
and Z < 7' then, foralln € N

xXhH"z < (XH"12z) < (xXH'z < xt7 < X.

o IfX € By, Z,Z' € By withk' < k are such that X® Z and XRZ' belong to By
and Z < Z' then, foralln € N
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Fig. 3 Template s = (011)*°, u € [—0.5, 0]. Here we can observe the interlacement of *-product
and period adding, we pointed the parameters corresponding to the sequences A = LROVLLO <
B=LR0O<C=LR0OxR0O<D=LRORLLO

X < XR7' < xR1(2) < xR2Z.

Now we will study the interaction between the two stuctures, see Fig. 3.

Proposition4 If Z € X « 2V for some X € " then ZEW ¢ 2V for any
W W <X.

Proof Let Z = X % Y. We will make the proof considering €(Z) = +, being com-
pletely analogous when €(Z) = —.

1. e(X) =+.
€(Z) = €(X) = + implies that ng(Y) > 1, so

Y =RL*...RLFO

with k' < k (k' # k because RL¥O > RL¥R...), then e(XR(XL)X) = —,
Zixiw+y = Land XR(XL)X XLW > XR(XL)*XLX ... = Z.
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2. e(X)=—.
This case follows immediately because Xi...X|x_1LW > X;...X|x-1
LX,....

]

Proposition 5 IfZ € X x SV forsome X € £ and ZRW € =% forany W <
X then Z = X x RL*0 and Z®W > X x RL™.

Proof Let Z = X x Y. We will first prove that, if Y = RL*0, then ZRW ¢ norrt
Z = XR(X1)*X0,s0ife(X) = +thene(Z) = —and ZXW = XR(XL)*XLW e
¥ because Xt < XK,

If €(X)=— then €(Z) =+ and ZRW = XL(XB®)XRW € 9" because
XR < XL,

Let us now suppose that ¥ = RL* ... RL¥0 with k' < k.

If e(X) = €(Z) then ¢ XIYI=D(ZRW) = XRW > XRX ... = Z.

Analogously, if €(X) # €(Z) then oXIIYI=K=2(zRW) = xR(xL)K+ly >
XR(XLH+x =27, O

Finally, the following result follows from Theorems 1 and 2.

Proposition 6 If X € B,,Y € By, k' <k are such that (X*)"Y € By, then
(XD (Y % Z) € 20 forany Z € 2V,

Analogously, if X € By, Y € By, k' < k are such that XRY € By then XR(Y *
Z) e 2 forany Z € EV.
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Linear Operators Associated with m
Differential and Difference Systems: e
What Is Different?

Petr Zemanek

Abstract The existence of a densely defined operator associated with
(time-reversed) discrete symplectic systems is discussed and the necessity of the
development of the spectral theory for these systems by using linear relations instead
of operators is shown. An explanation of this phenomenon is provided by using the
time scale calculus. In addition, the density of the domain of the maximal linear
relation associated with the system is also investigated.

Keywords Discrete symplectic system -+ Linear hamiltonian differential system -
Linear relations - Multi-valuedness - Densely defined operator - Time scale

1 Introduction

The study of the spectral theory of linear operators acting on a (finite or infinite
dimensional) Hilbert space is a classical topic in functional analysis. The develop-
ment of this theory for operators associated with differential equations or systems
can be seen (from the mathematical point of view) as one of the cornerstones in the
mathematical physics. Roughly speaking, quantum mechanics is Hilbert space theory
(or vice versa), see e.g. [27, 28]. However, from [3, 4, 6, 10, 14] we may observe
that even difference equations or systems should not be ignored in this direction.
Hence, it is not very surprising that the spectral theory of linear operators associated
with difference equations or systems attracts more and more attention in the last
two decades. Nevertheless, it remains significantly underdeveloped except for some
special cases as for the Jacobi and CMYV operators in [11, 15, 26]. In the present
note we aim to point out a phenomenon concerning the foundations of the theory
of linear operators given by certain differential and difference expressions, which
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is from time to time overlooked by some authors (including the unification of these
theories based on the time scale calculus).

In our recent works [12, 31] we established the foundations of this theory in
connection with the time-reversed discrete symplectic systems depending linearly
on the spectral parameter, i.e.,

2N = SN 21 (N, k €L, (S»)

where A\ € C is the spectral parameter and S;(\) := S; + AV, with the 2n x 2n
complex-valued matrices Sy and V; such that

S; ISk =J, VIS is Hermitian,

1
ViTVi=0, and W = JSJV:T >0 &

for the skew-symmetric 2n x 2n matrix J := ( _(} (I)) and the superscript * meaning

the conjugate transpose. Furthermore, 7, denotes a discrete interval, which is finite or
unbounded from above. It should be also pointed out that the assumptions concerning
the matrix Vy in (1) or ¥ in (2) below are naturally forced by the Lagrange identity,
which is the main tool in the study of square summable solutions of system (S)),
see [12, Theorem 2.5]. The term “symplectic” refers to the fact that the first three
conditions in (1) are equivalent to the symplectic-type equality S; NTSk\) =T
for all (k, A\) € Z, x C. Discrete symplectic systems were established in [7] as the
natural generalization of the second order Sturm-Liouville difference equations and
as the proper discrete analogue of linear Hamiltonian differential systems (4) below,
see also [1]. They play an important role in the discrete Hamiltonian mechanics,
numerical analysis of Hamiltonian differential systems, discrete variational theory,
numerical optimal control, and in the theory of continued fractions.

Although system (S,) is determined by the pair of matrices S, Vy satisfying (1)
it can be alternatively given by the pair S, ¥ satisfying

SZJS]CIJ, Wk*z'lszo, and ¥, JY, =0, 2)

because it follows from (1) that V;, = —J ¥ Sy for all k € 7. In any case, the matrix
Y, is absolutely crucial in study of the spectral theory for system (S, ), because it
appears as the weight matrix in the associated semi-inner product and it enables us
to write system (S)) by using the linear map 2 (z2)x := J (zx — Sk 2k+1) as

LMk = Az (N).

However we illustrated in [12, Example 5.1 and Remark 5.3] that this natural map
may not give rise to a linear operator. Hence, the results of [12, 31] were phrased
by using the concept of linear relations instead of operators. At the same time, with-
out going into further details and only for completeness, we derived a sufficient
condition for the existence of a densely defined (minimal) operator associated with
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system (S)), see [12, Theorem 5.4]. In the present paper we return to this result and
give “a very explicit characterization” of system (S,) satisfying the latter condition.
More specifically, we show that (except the trivial case ¥, = 0) the natural maximal
operator associated with the map Z(-) is never well-defined (i.e., it must be mul-
tivalued) and the density of the domain of the corresponding minimal operator is
always violated, see Corollary 1. This fact means that the approach based on linear
relations is the most proper way for the development of the spectral theory for the dis-
crete symplectic mapping .Z (). In addition, we attempt to explain this phenomenon
by using the time scale calculus, from which we shall see the “singularity” of the
truly possible single-valuedness and density in the purely continuous time case, see
Theorems 3 and 4. Finally, we discuss also the density of the domain of the maximal
linear relation.

The paper is organized as follows. In the next section, for a better insight into the
problem at hand, we summarize the situation in the cases of the second order Sturm—
Liouville differential and difference equations and the linear Hamiltonian differential
systems. The main result is established in Sect. 3 and the time scale explanation is
provided in Sect. 4.

2 Motivation

The traditional approach to the spectral theory requires the existence of a densely
defined operator, because only in that case the classical adjoint operator is well-
defined. In the simplest case, we can take the operator associated with the second
order Sturm-Liouville differential expression

. 1 ’ 4 3
@) = === [P0y 0] +40y0) )

acting on the interval [a, b), where —00 < a < b < oo and the coefficients p, g, w :
[a, b) — R are (locally) integrable on [a, b) with p(¢) # 0 and w(z) > O for almost
all ¢ € [a, b). If we denote by Lﬁ, the Hilbert space of (equivalence classes of)
measurable functions y : [a, b) — C such that the function w | y|? is integrable over
[a, b), then the corresponding maximal operator Tncfalx Y 1= Teq ¥ 1s generated by 7
on the domain

max

dom T .= {y € L%V | y and py’ are (locally) absolutely

continuous infa, b) and 7.5 y € LW},

while the minimal operator is defined as T := T¢*, i.e., as the closure of the

pre-minimal operator, which is given by the restriction of the maximal operator to
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dom T3 := [y € dom T | yhas compact support in[a, b)}.

max

Then it can be shown that dom TOCSl is dense in L%V and (TOCSI)* = (Tnclf}l)* = T;ﬁilx
with the superscript * denoting now the adjoint operator, cf. [29, Chap. 3].
The natural generalization of 7. leads us to operators associated with the linear

Hamiltonian differential system
= JZ@, N =[H@) + AWz, N), t€la,b), “)

where H, W : [a, b) — C***?" are Hermitian matrix-valued (locally) integrable
functions, and W (z) > 0 for almost all ¢ € [a, b). At this moment we should men-
tion one big difference between system (4) and its discrete counterpart represented
by system (S)), for which explanation we refer to [25]. There is no restriction on
the invertibility of the matrix W (¢), while the third condition in (1) implies that the
matrices V; and ¥, must be singular over Z,.

If we proceed in the same way as before, we obtain the maximal operator T
with

domTH = {z € L2, NAC | it holds (ry2)(r) = W (r) £ (1) for some f € L%V},
where (14 y)(¢) := —JZ/(t) — H(t)z(z), the symbol AC denotes the set of all 2n-
vector-valued (locally) absolutely continuous functions on [a, b), and L%V means the
Hilbert space of (equivalence classes of) 2n-vector-valued square integrable func-
tions, i.e., it consists of all measurable functions z : (a, b)) — C?" such that

b
/ ZOOW () z(t)dt < oo.

Then we put
T2 = f

and for the domain of the pre-minimal operator we consider only z € dom 7,! | with
compact support in (a, b). However, in contrast to the previous case, we need to
employ an additional assumption, otherwise it is possible to have system (4) such
that the corresponding maximal operator is not well-defined (multivalued) and the

density of the domain of the pre-minimal operator is violated. It typically reads as

whenever (tTyz)(t) = W(t) f(t) for some pair z € L%V NACand ©)
f e L%v suchthat W(t)z(t) =0, thenz(t) =0on (a, b).

Condition (C) generalizes the classical Atkinson (or definiteness) condition, see [5,
Inequality (9.1.6)], and it is satisfied, e.g., when W(¢) > 0 on (a, b) or if the weight
matrix W(¢) has a very special structure such as
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W) = <W10(’) 8) and H(t) = <§*((’t)) gﬁg)

with the n x n blocks being such that A(t) = A*(¢), C(t) = C*(t), det C(¢r) # O,
and Wi (t) > 0 on (a, b). We note that the latter case includes also the situation
when the second order equation (7¢g y) (¢, \) = Ay(f, \) is written in the form of
system (4). To the best of the author’s knowledge, condition (C) appeared for the
first time in [20, Theorem 7.6], where it was used to guarantee the density of yet
another set (domain) associated with 7y, see [20, Definition 7.1] and compare with
[16, Hypothesis 2.2].

The discrete counterpart of 7 is provided by the second order Sturm-Liouville
difference expression or by the three term recurrence relation, i.e.,

1 1
(Tast Vi == w—[— V(pr Ayi) +qkyk] = w—( — Pret Vet + Tk Yk — PrYit1)s
k k

where k € 7, = [0, N + 1), :==[0, N+ 1) N Z for a given N € NU {0, oo}, the
symbols A and V mean the forward and backward difference operators, respec-
tively, and {pehee 1, {qi)p—os {Witi—os {ri}ie are real-valued sequences such that
wr > 0 and ry = pr—1 + pr + qx for all k € Z,. In addition, for N # oo we put
I := [0, N + 1],, otherwise Z," := T,, and in both cases we let Z= := 7} U {—1}.
The maximal operator associated with 74 is acting on the domain
dom T8 =y € 2 | gqy € €2} with TH y =747y,

where ¢2 denotes the Hilbert space of equivalence classes of complex-valued
sequences {yx} keTE such that ), ez, Wk |vk|?> < oo. However, in contrast to the con-
tinuous time case, it was shown in [23, p. 904] that the maximal operator is always
multivalued under the classical assumption p; # 0 for all k € Z, U {—1}, which
guarantees the equivalence between equation (745 y)r = Ay and system (Sy) with
% = (, o e ) and the coefficient matrices

0 1/ 0 0
S = d V = .
¢ <Pk L+ (pe—1 + qk)/Pk) ame vk (0 _wk/pk)

This multi-valuedness can be suppressed if we put p_; =0 (and py =0 if N is
finite), in which case the recurrence relation 744 can be expressed as the multiplication
by a tridiagonal (Jacobi) matrix, see [9] and also [21, Remark 10]. In the next section
we will see that the situation in the setting of system (S)) is even worse.
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3 Main Result

Before we establish the main result for system (S)) with the coefficients specified
in (1) or (2), we need to recall some fundamental results from the theory of linear
relations, which was established as a suitable tool for the study of multivalued or
non-densely defined linear operators in a Hilbert space, cf. [2]. A (closed) linear
relation T in a Hilbert space H over the field of complex numbers C with the inner
product (-, -) is a (closed) linear subspace of the product space #> := H x #, i.e.,
the Hilbert space of all ordered pairs {z, £} such that z, f € #. By T we mean the
closure of 7. The domain and the multivalued part of T are, respectively, defined as

dom 7T :={ze€ H |{z, f} € T} and mul‘l‘::{feﬂ-[|{0,f}e’l‘}.

A linear relation 7 is the graph of a linear operator in # if and only if the subspace
mul 7 is trivial.
The adjoint T* of the linear relation 7 is the closed linear relation given by

T = {y, g} € 97 | (2. 4) = (f. y) forall {z,f} e T}

The definition of 7* reduces to the standard definition for the graph of the adjoint
operator when 7 is a densely defined operator. The following proposition is crucial
for our present treatment, see [2, Proposition 3.32] and also [13, Theorem 1].

Proposition 1 Let T be a linear relation in #*. Then dom T is dense in H if and
only if the adjoint T* is single-valued, i.e., mul T* = {0}.

Let us denote by £2 the linear space of all complex 2n-vector-valued sequences
defined on Z;\, which are square summable with respect to the weight ¥, i.e.,

€5 = {{2hier: | 2 € C*" and |z]ly < oo},

where ||z]lg := +/(z, z)w is the natural semi-norm determined by the semi-inner
product with the weight ¥, i.e., (z, v)y = ZkeIZ Zf Wi vk As the consequence of
the singularity of W, it follows that £2, is not a Hilbert space. However, the quotient
space fﬁ, obtained after factoring out the kernel of the semi-norm, i.e.,

0 = Zé/{z €ty | llzlle =0}, o)

is a Hilbert space. Henceforth, the equivalence class corresponding to a sequence
z € Z%, will be written by using the brackets [-], i.e., z € [z] € Eé One can easily
observe that we have zI!, 712! € [z] if and only if lllkz,EI] = lI/kz,[{Z] forallk € 7,. We
also need to define the subspace

2 [z€ty 120=0=2zyu1} if NeNU{0},
o {z € E&, | zhas a compact support inZ, and zgp = 0} if N = oo,
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With this notation, we introduce the maximal linear relation Ty as a subspace
of the product space K&,XZ = 63, X Zé given by
Tmax = {{[2], [f]} € £3"? | there exists x € [2] such that
Z(%)k = kak forall k € Iz}

and we emphasize that it does not depend on the choice of the representative
f € [f]. Similarly, we define the pre-minimal linear relation
To = {{[z]. [f]} € €5 | there exists % € [z] N {3 o such that

L(%)p = Vi frforallk e L},

which evidently satisfies Ty € Tiax. The closure of Ty is said to be the minimal
linear relation, i.e.,
Tmin = TOv

and the following equalities for these three linear relations were established in [12,
Theorem 5.10].

Theorem 1 The linear relations Tyax, To, and Tuin as defined above satisfy
T = T = T

The latter statement together with Proposition 1 implies that dom 7y and dom T,
are dense subsets of 575, if and only if mul Ti,,x = {[0]}, i.e., Thax 1S a (graph of a)
linear operator. Equivalently, it means that there is no z € [0] such that equality
L (2 = Y fi is satisfied for all k € Z, and some f ¢ [0]. In particular, this is true
when z = 0 on Z; is the only representative of the class [0] such that the equality
ZL(2)r = W fx is satisfied for all k € Z, and some f € Z&,. As we mentioned in the
introductory section, this condition was proposed in [12, Theorem 5.4], compare also
with condition (C) for system (4). But is it even possible? The following theorem
shows that the answer is negative for every nontrivial choice of the weight matrices
.

Theorem 2 The condition mul T,,,x = {[0]} holds if and only if ¥, = 0 on the dis-
crete interval IT,.

Proof 1f ¥, = 0 on 7,, then 573,, = {[0]} and the statement is trivial. On the other
hand, let ¥ # 0 on Z, and denote by m € Z, the first index such that ¥, # 0, i.e.,
Y, =0forallk € Z, N (—o0, m),. Moreover, let £ € (CZ"\ Ker ¥, be arbitrary, i.e.,
¥, & # 0. If m = 0, then the pair

_ —jlp()fa k=07 f _ 55 k=07
“=o, kezr/ 00,  * 7 o, kezi/o)

satisfies .2 (z)x = W fi for all k € 7, and simultaneously

@)

IzlIf = & %ITWITWE =0, |flly =& WE #0.
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Therefore, we have {[z], [ f]} € Tmax for the corresponding equivalence classes with
[z] = [0]and [ f] # [0], which shows that mul T},,,x # {[0]}. Similarly, one can verify
directly that for m > 0 the pair

—(M SN T W€, kel0.m—1],
k=3 —T¥,E, k=m, £
0, keZfN[m+1,00),

)& k=m,
o, kezf/im),

satisfies .2 (z)x = W fi forall k € 7, and

2
Izl = 3 Wz = —E W T Tt 20, II£1} = £ W, #0.

kEI’/Z
k>m

Hence again {[z], [ f]} € Tmax for the corresponding equivalence classes with [z] =
[0] and [f] # [O], i.e., mul Tinax # {[O]}.

As the direct consequence of Theorem 2 we get the main result concerning the
fundamental characterization of T, and the domains of T, and Tiy;,. It shows that
the development of the spectral theory for discrete symplectic systems in [12, 31]
by using the linear relations instead of operators is not only fruitful because of its
generality but it is, in fact, necessary. In contrast to the continuous time case and
condition (C), it is not possible to “fix” it by any additional condition.

Corollary 1 The maximal linear relatiorNL Tmax is always multivalued and the sets
dom Ty and dom Ty, are never dense in Zé but for ¥, = 0 on Z,.

From the proof of Theorem 2 one can observe that the permanent multi-valuedness
of Thhax 1s caused by the singularity of the weight matrices ;. For nonsingular weight
matrices in the setting of discrete symplectic systems it is necessary to have at least a
quadratic dependence on the spectral parameter, which was studied in [24]. Alterna-
tively and less generally, we could consider the linear Hamiltonian difference systems
instead of (S,). But, although such systems allow nonsingular weight matrices, they
lead to the same conclusion because of the presence of a partial shift, cf. [22].

Finally, Proposition 1 applied to the linear relation T = Ty, yields the depen-
dence of the density of dom Tiax in Zé on the single-valuedness of Ti,,, because
it holds 7%, = T = Tnin. Is there a nontrivial case where this is not possible?
For example, let us take N > 1, Sy =1 on Z,, ¥y = ¥; # 0, and ¥, = 0 for all
k € [2, N 4+ 1),. Then ¥, & # 0 for some & € C?* and the pair

£, k=0,
fi=1-¢€ k=1,
0, keZ,/{0,1)

_JITWE, k=1,
o, k e IS /{1},

satisfies .Z(2)x = ¥ fr on Z,. Simultaneously, we have z € Eﬁ,qo, z€[0], and f ¢
[0], which yields that {[z], [ ]} € To S Tmin. Hence mul Tyin # {[0]} and so the set
dom T;,,x 1S not dense in E?I,.
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On the other hand, if system (S)) is definite on the discrete interval Z,, i.e., there
exists A € C and a finite discrete subinterval [a, b], € Z, such that every nontrivial
solution of (S,) satisfies ZZ:a 2L (M) Wz (N) > 0, then for every {[z], [f1} € Tmax
there exists a unique z € [z] satisfying .Z(Z)x = ¥ fx on Z, and the minimal linear

relation admits the representation

{lz]. [f1} € Toax | 20 = 0 = limg o0 25 T i
Thin = for all [w] € dom Tinax } (6)
{Iz], [f1} € Tomax | 20 = 0 = Zy41 },

see [12, Theorem 5.2] and [31, Theorem 3.2]. In that case the equality mul 71y, =
{[0]} is true, e.g., for the choice

. A By . Wi 0

Sk_<Cka and ¥, = 0 0
withthen x nblocks suchthat W, > 0anddet B; # 0onZ;, compare with condition
(C).Indeed, if {[z], [ f1} € Tmin with ||Z]ly = Oandz = (x* #*)*, then the given form
of W and the expression of Ty, given above imply that X; = 0 on IZ+ . Consequently,
the block structure of S, the invertibility of By, and (6) yield also i = 0 on Z;f, i.e.,

Z =0 on Z;. Therefore [ f] = [0], which shows the single-valuedness of Ty, and
simultaneously the density of dom Tj,,x in ZE,,.

4 Time Scale Explanation

In this final section we attempt to provide an explanation of the phenomenon con-
cerning the density of T, by using the time scale calculus, which was developed for
the simultaneous study of differential and difference equations and many cases “in
between”. Henceforth we suppose that the reader is familiar with the foundations of
the time scale calculus as it can be found in the original works [17-19] by Hilger or in
the monograph [8] by Bohner and Peterson. In particular, by a time scale T we mean
an arbitrary nonempty closed subset of real numbers. Every time scale is equipped
with the forward jump operator and graininess function defined respectively as

o(t):=inf{s €T, s >t} and u(t) :=o0()—1t.

If the time scale T has a right-scattered maximum M, then T" := T/ {M}. Otherwise
we let T := T. The time scale A-derivative f(t) is defined forallt € T* in such a
way that, inthe case T = R, we get the classical derivative, while for T = Z itreduces
to the forward difference operator. In addition, we recall two useful formulas

a(t)
fO@) = f@) + p@) f2(@) and F(M) AT = p(t) f(1) (7
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for any ¢+ € T", where we apply the abbreviation f7(¢) := f(o(?)).
Systems (4) and (S)) are the simplest examples of the time-reversed symplectic
dynamic system

22, N =[SE) + AV, \), e T, Sh)

where the coefficients S,V : T* — C?'*?" are piecewise rd-continuous functions
(i.e., from Cpq) on T* and such that the function S(z, A) := S(¢) + AV(¢) satisfies
the symplectic-type identity

S*(t, N T + TS, \) — p(@)S*(t, N TS(t, \) = 0. (8)

for all (r, \) € T" x C, see [30, Section4] for more details. More specifically, if
T = [a, b) then o(¢) = ¢ and system (8) corresponds to (4) with H(t) := — T S(¢)
and W(¢) := —J V(¢). Inthe case T = Z, we have o(¢) =t + 1, and so system (8)
corresponds to (S)) with the coefficients Sy := I — S(k) and V; := —V(k). The
existence and uniqueness of a solution being piecewise rd-continuously differentiable
on T (i.e., from Crl)rd) of any initial value problem associated with (S}) is guaranteed
by the relation

[ — (S, )™ = =T — u(t)S*(t, V1T, )

which follows directly from (8). Furthermore, by (7)—-(9) we obtain that system (S})
can be equivalently written as

22,0 =827 (1, N) + AT W (1)z(1), where W (1) := TV(1)T[I — pu(t)S*(1)1T

is such that
U*() =w () and p@)P@)JW (@) =0. (10)

With these assumptions, we could define the space of square integrable functions
with respect to the weight ¥ (¢) > 0, the corresponding Hilbert space, the maximal
and minimal linear relations, and establish a connection between them. However, it
is not needed for the present investigation and it will be done in our subsequent work.
At this moment we focus only on the existence of a function z € C! (T) such that

prd
lzllg == [ z*()¥ (1) z(r) At = 0 and

— T4 =S0O =¥ @) f@), 1eT, Y

for some f € Cpq (T") with || f ||y := fw fX@W () f(t) At # 0. In this context we
remark that every solution of (11) can be expressed as

2= o [n+7 [ *@w@ mar)
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where n = ® !(a)z(a) and ®(-) denotes an arbitrary fundamental matrix of the
homogeneous system (Sj) satisfying the condition ® () J ®*(¢) = J for some (and
hence for any) ¢ € T. Before we analyze the problem in question, we summarize the
basic assumptions concerning system (S7). Note that we require T # [a, b) as it was
already discussed in detail.

Hypothesis 1 A time scale T is given with a := inf T > —o0 and at least one point
t € T" is right-scattered. We have S(t, \) := S(t) + AV(¢) on T* x C, where the
2n x 2n matrix-valued functions S, V : T# — C2*21 gre piecewise rd-continuous
on T* such that condition (8) holds and ¥ (¢) := JV() T [l — p®)S*()1T =0
for all r € T*".

If a is a right-scattered point and ¥ (a) # 0, then one can readily verify that the
pair

and f(z) :=

2(0) = —@) J¥(@)§, t=a, £ t=a,
o t € T/{a}, 0, t eT"/{a},

is such that (11) holds and by (7), we see that

(10)

o(a)
zllo =/ FOWD 20 At = i@ E W (@) T (@) T ¥ (@€ 2o,
o(a)

I flle = FTOW @) f@) At = p(@) ¥ (@))€ #0

a
forany ¢ € C¥'\ Ker ¥ (a). This simple observation justifies the following statement.

Theorem 3 Let Hypothesis 1 be satisfied and, in addition, the left-end point a be
right-scattered with ¥ (a) # 0. Then there exist z € Cérd (T) and f € Cpa(T") such
that equation (11) is satisfied, ||zll¢ = 0, and || f|ly # O.

On the pother hand, let a be right-dense and #; € T* be an arbitrary right-scattered
point such that ¥ (fy) # 0. If we put

2= 00| ~ i TEWE+T [ @0 (]
and

s =1y,
f@) = ; .
0, teT"/{t},
where the fundamental matrix ®(-) is determined by the initial condition ®(#y) = 1
and the vector & € C?"\ € Ker ¥ (t) is arbitrary, then we have
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a(to)
I fllw =/ FEOW@) ) At L i) €W (10)€ # 0

and simultaneously

() = — () @) T W (10)€, t €la, to]NT,
0, t €lo(ty),oc0)NT,

which yields that

to o(t)
lzllg = (/ +/ )z*(t)llf(t)z(t)At

= —uz(to)f*k”(to)J</0 <D*(t)‘P(t)¢(t)At)J‘P(to)§,

because [/ (D)W (1) 2(1) At = =1 (1) €W (10) T W (10) T ¥ ()€ = 0 by (10).
Consequently we get the following statement, which shows the sporadic nature of
densely defined operators associated with system (S}) as in the case T = [a, b),
i.e., for the linear Hamiltonian differential system (4). Actually, this fact is (again)
closely connected with the necessary singularity of the weight matrix W (-) at every
right-scattered point, which follows from (8), see the second condition in (10).

Theorem 4 Let Hypothesis 1 be satisfied and, in addition, the left-end point a be
right-dense. If there exist a right-scattered point ty € T" with W (ty) # 0 and a vector
& € C¥"\ Ker ¥ (ty) such that

é*W(to)J(/o <I9*(t)‘1’(t)<1>(t)At>\7‘1’(&))5 =0,

then system (11) possesses a solution z € Cérd (T) with ||z|lg = O for some function
J € Cpua(T™) with || flly # 0.
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