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Abstract In this paper, measures of mutual independence of many-vector random
processes were defined. Based on these measures, permutation tests of mutual inde-
pendence of these random processes were also given. The properties of the described
methods were presented using simulation studies for univariate and multivariate
processes.
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1 Introduction

Many processes currently used in different fields of science and research lead to
random observations that can be analyzed as curves. We can also find a large amount
of data for which it would be more appropriate to use some interpolation techniques
and consider them as functional data. This approach turns out to be essential when
data have been observed at different time intervals.

Earlier,Górecki et al. (2017, 2020) showedhow to use commonly knownmeasures
of correlation for two sets of variables: ρV coefficient (Escoufier 1973), distance
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e-mail: wolynski@amu.edu.pl

© Springer Nature Switzerland AG 2021
T. Chadjipadelis et al. (eds.), Data Analysis and Rationality in a Complex World,
Studies in Classification, Data Analysis, and Knowledge Organization,
https://doi.org/10.1007/978-3-030-60104-1_8

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60104-1_8&domain=pdf
mailto:tomasz.gorecki@amu.edu.pl
mailto:mkrzysko@amu.edu.pl
mailto:wolynski@amu.edu.pl
https://doi.org/10.1007/978-3-030-60104-1_8


66 T. Górecki et al.

correlation coefficient (dCorr) (Székely et al. 2007), and HSIC coefficient (Gretton
et al. 2005) for multivariate functional data.

In this paper, using ρV and dCorr coefficients, we define measures of mutual
independence of vector random processes whose realizations are multidimensional
functional data. Based on these measures, permutation tests of mutual independence
of vector random processes XXX1, . . . , XXXK , K ≥ 2, XXXi ∈ L pi

2 (I ), where L2(I ) is a
Hilbert space of square-integrable functions on the interval I , i = 1, . . . , K are also
considered.

The rest of this paper is organized as follows. We first review the concept of
transformation of discrete data to multivariate functional data (Sect. 2). Section 3
contains the functional version of the ρV and dCorr coefficients. Section 4 is devoted
to measures of mutual independence of vector random processes and permutation
tests of mutual independence associated with these measures. Section 5 contains the
results of our simulation experiments.

2 Functional Data

Let us assume that XXX = (X1, X2, ..., X p)
� ∈ L p

2 (I ) is p-dimensional random pro-
cess, where L2(I ) is the Hilbert space of square-integrable functions on the interval
I . Moreover, assume that the kth component of the vector XXX can be represented by
a finite number of orthonormal basis functions {ϕb} of space L2(I ):

Xk(t) =
Bk∑

b=0

αkbϕb(t), t ∈ I, k = 1, . . . , p.

Let ααα = (α10, . . . , α1B1 , . . . , αp0, . . . , αpBp )
� and

���(t) =

⎡

⎢⎢⎣

ϕϕϕ�
1 (t) 000 . . . 000
000 ϕϕϕ�

2 (t) . . . 000
. . . . . . . . . . . .

000 000 . . . ϕϕϕ�
p (t)

⎤

⎥⎥⎦ , (1)

where ϕϕϕk(t) = (ϕ0(t), ..., ϕBk (t))
�, k = 1, ..., p.

Using the above matrix notation, process XXX can be represented as

XXX(t) = ���(t)ααα.

This means that the realizations of a process XXX are in finite-dimensional subspace of
L p
2 (I ).
We can estimate the vector ααα on the basis of n independent realizations

xxx1, xxx2, . . . , xxxn of the random process XXX (functional data).
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Typically data are recorded at discretemoments in time.Let xk j denote an observed
value of the feature Xk , k = 1, 2, . . . , p at the j th time point t j , where j = 1, 2, ..., J .
Then our data consist of the pJ pairs (t j , xk j ). These discrete data can be smoothed
by continuous functions xk and I is a compact set such that t j ∈ I , for j = 1, ..., J .

Details of the process of transformation of discrete data to functional data can be
found in Ramsay and Silverman (2005), Horváth andKokoszka (2012), or in Górecki
et al. (2014).

3 K = 2 Case

For two randomvectorsXXX ∈ Rp andYYY ∈ Rq , Escoufier (1973) introduced correlation
coefficient ρV as a nonnegative number given by

ρVXXX ,YYY = ‖���XY‖F√‖���XX‖F‖���YY‖F
,

where ‖ · ‖F denoted the Frobenius norm and

��� =
[
���XX ���XY

���Y X ���YY

]

is a covariance matrix of vectors XXX and YYY .
Correlation coefficient ρV has the following properties: ρVXXX ,YYY = 0 if and only

if random vectors XXX and YYY are uncorrelated. Moreover, if the joint distribution of
XXX and YYY is p + q dimensional normal distribution, random vectors XXX and YYY are
independent.

We may extend this coefficient to two random processes XXX ∈ L p
2 (I ) and YYY ∈

Lq
2(I ) assuming that

‖���XY‖F =
√∫

I

∫

I
tr(����

XY (s, t)���XY (s, t))dsdt .

Moreover, if processes XXX and YYY have the form

X(t) = ���1(t)ααα, Y(s) = ���2(s)βββ, t, s ∈ I, (2)

then Górecki et al. (2017)
ρVXXX ,YYY = ρVααα,βββ .

In this case, the problem of testing the correlation of processes XXX and YYY is equiv-
alent to the problem of zeroing the coefficient ρVααα,βββ .
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Note, that the coefficient ρVXXX ,YYY is appropriate only for linear dependence. It is
useless for more complicated situations. It “cannot see” nonlinear dependencies. In
such a situation, we ought to use some other measures of dependence.

One such measure is proposed by Székely et al. (2007) distance correlation. Let
us denote by φX,Y and φX , φY the joint and the marginals characteristic functions of
random vectors XXX ∈ Rp and YYY ∈ Rq , respectively. Distance correlation of random
vectors XXX ∈ Rp and YYY ∈ Rq is a nonnegative number given by

dCorr(XXX ,YYY ) = dCov(XXX ,YYY )√
dCov(XXX , XXX) dCov(YYY ,YYY )

,

where
dCov(XXX ,YYY ) = ‖φX,Y (lll,mmm) − φX (lll)φY (mmm)‖w,

and

‖ f ‖w =
√∫∫

| f (l,ml,ml,m)|2w(l,ml,ml,m)dllldmmm.

The weight functionw is chosen to produce scale free and rotation invariant measure
that does not go to zero for dependent random vectors.

Defining the joint characteristic function of processes XXX ∈ L p
2 (I ) and YYY ∈ Lq

2(I )
as

φXXX ,YYY (lll,mmm) = E{exp[i < lll, XXX >p +i < mmm,YYY >q ]},

where

< lll, XXX >p=
∫

I1

lll ′(s)XXX(s)ds, < mmm,YYY >q=
∫

I2

mmm ′(t)YYY (t)dt

and assuming that processes XXX and YYY have the form (2) we have

dCorr(XXX ,YYY ) = dCorr(ααα,βββ)

Górecki et al. (2017).
Thus, we can reduce the problem of testing the independence of random processes

XXX and YYY to the problem of testing the significance of their distance correlation
dCorr(XXX ,YYY ).

4 K > 2 Case

Let us now discuss the problem of testing mutual independence for more than two
vector processes.

Let XXX1 ∈ L p1
2 (I ), XXX2 ∈ L p2

2 (I ), . . . , XXXK ∈ L pK
2 (I ) be random processes with the

following representation:
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XXX1(t) = ���1(t)ααα1, XXX2(t) = ���2(t)ααα2, . . . , XXXK (t) = ���K (t)αααK , t ∈ I. (3)

Additionally, let the covariance matrix for vectors ααα1,ααα2, . . . ,αααK have the form:

��� =

⎡

⎢⎢⎢⎣

���11 ���12 · · · ���1K

���21 ���22 · · · ���2K
...

...
...

���K1 ���K2 · · · ���KK

⎤

⎥⎥⎥⎦ .

Assuming joint p1 + p2 + · · · + pk dimensional normal distribution of vectors
ααα1,ααα2, . . . ,αααK , the problem of testing the null hypothesis

H0 : XXX1, XXX2, . . . , XXXK are independent

is equivalent to the problem of testing the null hypothesis

H0 :
∑

i< j

‖���i j‖F = 0.

Let us define coefficient of mutual correlation ρMV as a positive number given
by

ρ2MV = 2

K (K − 1)

∑

i< j

ρ2V (XXXi , XXX j ).

Assuming that the processes meet the assumptions of model (3) and that the joint
distribution of vectors ααα1,ααα2, . . . ,αααK is normal, the problem of testing the mutual
independence is equivalent to the problem of testing the significance of coefficient
ρMV .

Anotherway to test themutual independence is to reduce this problem to a problem
using two processes.

Let Corr(XXXi , XXX j ) be some measure of dependence for vector processes XXXi and
XXX j with property: Corr(XXXi , XXX j ) = 0 if and only if vector processes XXXi and XXX j are
independent, i, j = 1, 2, . . . , K , i �= j .

Note that in the place of Corr we may put, e.g., dCorr.
Let

XXXc+ = (XXX�
c+1, . . . , XXX

�
K )�, c = 1, . . . , K − 1,

XXXc− = (XXX�
1 , . . . , XXX�

c−1, XXX
�
c+1, . . . , XXX

�
K )�, c = 1, . . . , K .

Following the idea from Jin and Matteson (2018), we may define the coefficients
of multiple independence as

R(XXX) = 1

K − 1

K−1∑

c=1

Corr2(XXXc, XXXc+),
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and

S (XXX) = 1

K

K∑

c=1

Corr2(XXXc, XXXc−).

Thus, the following theorem is true:

Theorem 1 XXX1, XXX2, . . . , XXXK are independent if and only if R(XXX) = 0
or S (XXX) = 0.

Hence, the problem of testing the null hypothesis

H0 : XXX1, XXX2, . . . , XXXK are independent

is equivalent to the problem of testing the null hypothesis

H0 : R(XXX) = 0 (S (XXX) = 0).

To verify these hypotheses, we propose to use a permutation test.

5 Example

5.1 Univariate Case

Let

Xt = ε1t ,

Yt = 3Xt + ε2t ,

Zt = X2
t + ε3t ,

where ε1t , ε2t and ε3t are independent random variables with N (0, 0.25) distribution.
We generated 1000 random realizations for each process with length 100 (Fig. 1). To
smooth the data we used Fourier series with 15 elements. Clearly, processes Xt and
Yt are linearly dependent and processes Xt , Zt and Yt , Zt are non-linearly dependent.

From Table 1 (third column), we see that all measures of correlation for func-
tional data detect dependence (at significance level 5%) when at least one pair of
linearly dependent processes exist. However, when we have nonlinear dependence
only measures based on dCorr detect it.
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Fig. 1 10 realizations of univariate processes Xt , Yt , and Zt (functional means in red)

Table 1 Results of simulations (significant (5%) results are in bold)

Coefficient’s
name

Processes p-value (Univ.) p-value (Multi.
– S1)

p-value (Multi.
– S2)

ρMV Xt , Yt , Zt 0.014 0.757 0.036

R − ρV Xt , Yt , Zt 0.006 0.767 0.015

S − ρV Xt , Yt , Zt 0.027 0.787 0.024

R − dCorr Xt , Yt , Zt 0.007 0.581 0.017

S − dCorr Xt , Yt , Zt 0.016 0.592 0.006

ρV Xt vs Yt 0.001 0.783 0.632

Xt vs Zt 0.367 0.568 0.203

Yt vs Zt 0.481 0.566 0.526

dCorr Xt vs Yt 0.001 0.827 0.773

Xt vs Zt 0.003 0.486 0.094

Yt vs Zt 0.025 0.457 0.470

5.2 Multivariate Case

Following Krzyśko and Smaga (2019) we consider the functional sample xxx1(t), . . . ,
xxxn(t) of size n = 1000 containing realizations of the random process XXX(t) =
(X (t),Y (t), Z(t)), t ∈ [0, 1] of dimension p = 3. These observations are generated
in the following discretized way:
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xxxi (t j ) = ���(t j )αααi + εεεi j ,

where i = 1, . . . , n, t j , j = 1, . . . , 100 are equally spaced design time points
in [0, 1], the matrix ���(t) is as in (1) and contains the Fourier basis functions
only and Bk = 5, k = 1, . . . , p, αααi are 5p-dimensional random vectors, and εεεi j =
(εi j1, . . . , εi j p)

� are measurement errors such that εi jk ∼ N (0, 0.025rik) and rik is
the range of the kth row of the matrix

���(t1)αααi . . .���(t100)αααi ,

k = 1, . . . , p. The random vectors αααi are generated similarly to Todorov and Pires
(2007) and Jin and Matteson (2018) in the following two setups:

S1 Normal distribution and equal covariance matrices: αααi ∼ N (0005p, III 5p).
S2 Part of αααi for (X (t),Y (t)) is from N (0005(p−1), III 5(p−1)) and the first element of

αααi for Z(t) is sgn(α1α5+1)W, whereW ∼ Exp(1/
√
2) and the remaining p − 1

elements are N (0005(p−1)−1, III 5(p−1)−1). Clearly, (X (t),Y (t), Z(t)) is a pairwise
independent but mutually dependent triplet.

Setup S1 is simple no dependence example. All tests correctly deal with this
problem (Table 1, fourth column). Setup S2 is much harder to deal with. For whole
triplet of data, all methods indicate dependence (Table 1, fifth column). For a pair of
variables, all methods correctly detect independence for all pairs of processes.

6 Conclusions

We have considered the measuring and testing mutual dependence for multivariate
functional data based on the basis functions representation of the data. We propose
few measures of mutual dependence for multivariate functional data based on the
equivalence to mutual independence through characteristic functions (Székely et al.
2007) and on ρV coefficient (Escoufier 1973). The performance of the proposed
methods was studied in simulations. Their results have indicated that the proposed
methods perform quite well. Finally, we can propose to use measures and tests based
dCorr coefficient. Such methods correctly detect linear and nonlinear dependence
structure both for univariate and multivariate processes.
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