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5.1 Introduction

The smart energy hub (SEH) concept is widely used in power system literature based
on the fact that the smart grid (SG) infrastructure utilizes multi-carrier distributed
energy resources (DERs) that are controlled in a decentralized manner [1]. The SEH
can generate, store, and convert electrical, heating, and cooling energy and utilizes a
different form of energy conversion technologies [2].

The main facilities of SEHs are combined cool, heat, and power (CCHP), boilers,
absorption chiller (ACH), compression chiller (CCH), electrical storage system
(ESS), cooling energy storage system (CSS), and thermal energy storage system
(TSS) [1]. Further, the demand response programs (DRPs), plug-in hybrid electric
vehicles (PHEVs), and intermittent electricity generation facilities such as wind
turbines (WTs) and photovoltaic arrays (PVAs) can be utilized in a smart distribution
system. These energy resources have stochastic behavior and the integration of these
resources into the smart distribution system may complicate the operational
paradigms [3].

An active multi-carrier energy distribution system (AEDS) may utilize SEH
facilities, WTs, PVAs, and PHEV parking lots as DERs and supply its electrical,
heating, and cooling loads through the multi-carrier energy transmission networks.
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The optimal day-ahead operational planning (ODAOP) consists of the commit-
ment of distributed energy resource facilities considering uncertainties of variables,
security criteria, economic evaluations, and environmental aspects.

The ODAOP problem has been explored over recent years and multiple types of
research were carried out to assess different aspects of this complicated problem.

Reference [1] introduced a two-level optimization framework for DA scheduling
of distribution system that transacted electricity with energy hubs. The energy hubs
proposed their contribution bids and the distribution system explored the optimality
of submitted bids. The algorithm adopted linear optimization process and the 33-bus
IEEE test system was utilized to assess the method. The operational costs of the
system were reduced by 82% with respect to the base case. Reference [2] introduced
an energy flow model to determine the capacity of energy-generating units. The TSS
and CSS were modeled and the environmental, energetic, and economic variables
were presented in the formulation. The particle swarm optimization (PSO) algorithm
was utilized and the cost of system, environmental emission, and energy consump-
tion were reduced by 11.2%, 25.9%, and 12.2%, respectively. Reference [3] pro-
posed the optimal scheduling of energy centers, gas network, and electric system.
Emission, voltage deviations, energy loss, operation costs, and pressure deviation of
natural gas were considered and the analytic hierarchy process was utilized. The
proposed method reduced the operating costs and energy consumptions by 21.77%
and 39.12%, respectively. Reference [4] introduced the optimal scheduling of
intelligent park MicroGrid (MG) in China and the genetic algorithm was utilized
to optimize the problem. The proposed method reduced operation costs by 1.68%.
Reference [5] proposed a stochastic optimization algorithm for energy hub DA
scheduling that utilized conditional value-at-risk method. The risk mitigation
method was used and operation cost was reduced by 1.37%. Reference [6] presented
an energy hub model for optimal scheduling of DERs and mixed-integer linear
programming (MILP) approach was utilized to minimize the operation costs. The
results showed that the optimization algorithm reduced the operation costs by about
23%. Reference [7] introduced an iterative two-stage framework for optimization of
interactions of the electric distribution system and SEHs. The stochastic optimization
process was utilized to model the uncertainties of the wind electricity generations.
Reference [8] proposed a mixed-integer nonlinear programming (MINLP) approach
to scheduling of CCHP-based systems. The energy and cost-saving ratios were
utilized to model the problem and the results compared the conventional systems
with the CCHP-based systems. Reference [9] described the integrated model of
CCHP-based energy hub wherein the emission pollution and operation costs were
minimized. The algorithm successfully reduced emission pollution and operation
costs by 2.3% and 4%, respectively. Reference [10] utilized an MINLP algorithm to
schedule an energy hub. The efficiencies of electrical system for a cold day and hot
day were improved by 59% and 47%, respectively. Further, the efficiencies of the
heating load system for a cold day and hot day were improved by 15% and 29%,
respectively. Reference [11] introduced an energy consumption model for a
decentralized energy system that reduces energy consumption and peak load. The
algorithm reduced the emission pollutant by about 46% that utilized DERs for
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energy generation. Reference [12] utilized a two-stage framework that carried out
the stochastic optimization for scheduling of energy and reserve. The method
considered intermittent electricity generation and heating loads. The DRP procedure
was utilized to minimize the operation costs and the results showed that the method
reduced the system costs by about 15%. Reference [13] explored the effectiveness of
DRP alternatives for modifying the heating and electrical loads. The model mini-
mized the procurement costs; meanwhile, it maximized the system’s profits. The
consumption cost of the multi-carrier energy system was reduced and the peak load
of energy carriers was modified. Reference [14] introduced a framework for energy
management of multi-energy hubs and the model considered power quality, regula-
tion costs, and voltage deviation variables in the goal programming. Reference [15]
presented an algorithm for minimizing operation costs and emission pollution of
energy hubs and modeled the PHEVs, DRPs, and ESSs as control variables. The
procedure considered the revenue of energy sold to the upward network and the
process increased the energy hub revenue by about 105% with respect to the base
case. Reference [16] introduced a two-stage optimization algorithm for the DA and
RT operation horizons. The optimization process was performed for electrical and
thermal systems and results showed that the algorithm successfully reduced the
system costs. Reference [17] proposed a multi-objective optimization process that
considered the emission pollution, energy consumption, and system costs. The
introduced method reduced operation costs by 24%. Reference [18] modeled an
energy hub that utilized CCHP facilities and DRP alternatives. The operation costs
of the energy hub and distribution system were reduced by 14% and 10%, respec-
tively. Reference [19] introduced the responsive load model applications in a multi-
carrier energy system and the procedure modeled different alternatives for respon-
sive loads. The case study was carried out for a home and its costs were reduced by
4%. Reference [20] introduced a six-level optimization algorithm for optimal oper-
ation of a distribution system in DA and RT horizons considering risk-averse
strategy. The DRP alternatives were utilized by the system. The 123-bus IEEE test
system was utilized to assess the proposed method and the results showed that the
revenue of the system was increased by 324% risk-averse conditions with respect to
the base case. Reference [21] utilized an information-gap decision theory to model
the stochastic behavior of the electricity and natural gas networks. The model
minimized total costs of operation and encountered the uncertainties of electrical
load, wind electricity generation, and gas load demands. Reference [22] presented a
hydrogen-based smart micro-energy hub model that considered demand response
alternatives and fuel cell-based hydrogen storage systems. The proposed model
minimized the DA operational costs using the robust optimization process. Refer-
ence [23] introduced a two-stage unit commitment process for optimal operation of
gas and electricity networks considering DRPs. The optimization procedure utilized
e-constraint technique to find the best solutions. Reference [24] proposed a
two-stage stochastic network-constrained unit commitment for coordinated power
and gas networks considering air energy storage and wind turbines. The effect of the
participation of gas-fueled power plant in the energy and reserve markets has been
investigated. Reference [25] introduced a value-at-risk-based stochastic model to
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determine the optimal DA scheduling of energy hubs. The model considered the
power-to-gas storage and compressed air energy storage systems. The model utilized
the load shifting procedure for multiple electrical loads and reduced the operational
costs by 4.5%.

The described references do not consider the locational marginal price (LMP)
optimization on their operational scheduling optimization. Further, the introduced
algorithm simultaneously optimizes DA and RT energy transactions in different
multi-carrier energy resources.

5.2 Problem Modeling and Formulation

The AEDS operator (AEDSO) transacts energy with the upward electricity market
and supplies the electrical, heating, and cooling load of downward customers. The
AEDSO can sell active and reactive power to the upward electricity market. Further,
it can transact electricity with PHEV parking lots. As shown in Fig. 5.1, the AEDS is
equipped with the CCHPs, PVAs, SWTs, gas-fueled distributed generation (DGs),
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Fig. 5.1 The schematic diagram of AEDS energy interactions
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TSSs, CSSs, and ESSs. The customers may have different energy generation,
storage, and conversion facilities that can be modeled as energy hubs [26-28].

The AEDSO utilizes the DRP alternatives that consist of direct load control
(DLC), time of use (TOU), and involuntary load shedding (ILS) alternatives and it
schedules the distributed energy resources to maximize its revenues. The energy hub
of customer that is named as the nonutility energy hub (NUEH) can sell its surplus
active and reactive electrical energy to the upward system and participate in DRPs in
DA and RT markets.

The optimization process of AEDSO has two-time horizons: DA market and RT
market. Thus, the objective functions of ODAOP can be decomposed into DA and
RT market horizons.

For the DA horizon, the AEDSO should optimize the scheduling of its distributed
energy resources in DA horizon considering the uncertainties. The uncertainties of
the problem in DA horizon are upward electricity market price, multi-carrier energy
demands, intermittent DERs, PHEV contribution scenarios, and NUEH commitment
strategies.

The AEDSO distributed energy resources are CCHPs, TSSs, CSSs, intermittent
power generations (IPGs), and ESSs. Further, the PHEVs, NUEHs, and DRPs can be
utilized as energy resources.

Thus, the objective function of optimal scheduling of system resource problem
for the DA horizon can be proposed as Eq. (5.1):

Wi(CRipsoVagpso + 2. Prob.Cofey Whiey

NPHEVS
Cgﬁchdse + Z prObCBﬁP+
Min A = Z prob. DRPS (5.1)
NWMS > prob. CIPG > prob. CNUEH
NIPGS NNUEHS

—revenueP?) + W, (3" LMP)

The objective function is decomposed into eight groups: (1) the commitment
costs of DERSs that consist of CCHPs, PVAs, SWTs, gas-fueled DGs, TSSs, CSSs,
and ESSs; (2) the energy purchased from the PHEVs costs; (3) the energy purchased
from wholesale market costs; (4) the DRP costs; (5) the IPG costs; (6) the energy
purchased from NUEH costs; (7) the revenue of AEDSO; and (8) the sum of LMPs.

The AEDSO can sell active, reactive, and spinning reserve to the upward
wholesale market. Thus, the revenue of AEDSO can be written as Eq. (5.2):

DA __ DA DA __upward DA_upward
revenue - = E prOb(§ Xactive P active + § :ﬂ active* aclive
NWMS (5.2)

DA_upward
+§ :}/spmmng spinning )

The revenue of AEDSO consists of three terms: (1) the revenue of active energy,
(2) the revenue of reactive energy, and (3) the revenue of spinning reserve.
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Equation (5.1) has the following groups of constraints of which some are not
presented due to the lack of space:

1. The maximum discharge and charge constraints of ESS, TSS, and CSS [29].

2. The maximum discharge and charge constraints of PHEVs [1].

3. The energy storage facilities cannot discharge and charge at the same time
constraints [29].

4. The DRP constraints [1].

5. The AEDS device loading constraints, electrical load flow constraints, and mass
balance equations.

For the RT horizon, the AEDSO should minimize the deviations of its scheduling
from the optimal values of DA horizon. Thus, the objective function of optimal
scheduling of system resource problem for the RT horizon can be proposed as
Eq. (5.3):

Min 9 = W, (ACIXI{;DSO + AC}EIEEV + ACEIE‘Chase + AC§£P+

5.3
ACRE 4 ACRUgy — ArevenueR™) + W, (Z LMP) (53)

The objective function is decomposed into eight groups: (1) the mismatch values
of commitment costs of DERs; (2) the mismatch values of energy purchased from
the PHEV costs; (3) the mismatch values of energy purchased from wholesale
market costs; (4) the mismatch values of DRP costs; (5) the mismatch values of
IPG costs; (6) the mismatch values of energy purchased from NUEH costs; (7) the
mismatch values of revenue of AEDSO; and (8) the sum of LMPs.

The mismatch values of revenue of AEDSO in RT horizon can be written as
Eq. (5.4):

RT __ T RT_upward RT RT__upward
Arevenue - (E :ai:tive'APactive + E :ﬂaclive'AQactive (54)

The revenue of AEDSO in RT horizon consists of two terms: (1) the mismatch
values of revenue of active energy and (2) the mismatch values of revenue of reactive
energy.

Equation (5.3) has the same constraints as in Eq. (5.1) in the RT scheduling
horizon.

5.3 Solution Algorithm

For the optimization algorithm, the following assumptions are considered:

1. The alternating current (AC) load flow is linearized [1].
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Fig. 5.2 Flowchart of the proposed algorithm

2.

Scenario generation and reduction procedures are performed for modeling of
uncertainties using the proposed procedure in [1].

. All of the bids/offers of the distribution system are accepted by the wholesale

market operator.

. The DA load and price forecasting procedures are performed using the introduced

method in [30].

. The LMPs are calculated based on the introduced models of References [31-33].

The linear optimization of the two-staged problem was carried out using the

CPLEX solver of GAMS. The flowchart of the algorithm is presented in Fig. 5.2.
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5.4 Simulation Results

An industrial district 125-bus test system was used to assess the proposed algorithm.
The NUEHSs are presented in Fig. 5.3. Tables 5.1 and 5.2 present the optimization
input data for the 125-bus system and NUEHS, respectively. The 125-bus industrial
district system consists of multiple NUEHs, parking LOTs (PLOTs), CCHs, ACHs,
CHPs, DGs, TSSs, CSSs, ESSs, and IPGs.

Figure 5.4 presents the wholesale electricity market price for three reduced
scenarios. Figure 5.5 shows the hourly cooling, heating, and electrical load of the
NUEHSs for one of the reduced scenarios. Figure 5.6 presents the PVA and SWT
electricity generation for energy hub for one of the reduced scenarios. Multiple
scenario generation and reduction procedures were carried out.

The two-staged optimization procedure was carried out for DA and RT opera-
tional horizons. Figure 5.7 presents the estimated stacked column PLOT electricity
generation/consumption for DA horizon. The estimated net transacted energy of
PLOTs for DA was about 1233.40 kWh and its mean value was about 2.447 kWh.
The estimated maximum values of DA PLOTs’ charge and discharge were
20.7895 kWh and 11.1845 kWh, respectively. The optimization procedure updated
the input data using the described process and the estimated PLOT electricity
generation/consumption for RT horizon was determined.

Figure 5.8 shows the estimated stacked column PLOT electricity generation/
consumption for RT horizon. The estimated net transacted energy of PLOTSs for
RT was about 1326.69 kWh and its mean value was about 2.632 kWh. The estimated
maximum values of RT PLOTs’ charge and discharge were 23.5473 kWh and
10.8208 kWh, respectively.

Figure 5.9 depicts the estimated CCH and ACH cooling energy generation, CSS
cooling energy charge and discharge, and cooling energy loss for DA horizon. The
aggregated cooling energy generations of CCHs and ACHs in DA horizon were
about 81.111 MWh and 23.371 MWh, respectively. Further, the mean values of
cooling energy generations of CCHs and ACHs in DA horizon were about
3.379 MWh and 0.973 MWh, respectively.

Figure 5.10 shows the estimated CCH and ACH cooling energy generation, CSS
cooling energy charge and discharge, and cooling energy loss for RT horizon. The
aggregated cooling energy generations of CCHs and ACHs in RT horizon were
about 59.843 MWh and 18.112 MWh, respectively. Further, the mean values of
cooling energy generation of CCHs and ACHs in RT horizon were about
2.493 MWh and 0.754 MWh, respectively.

Figure 5.11 presents the estimated stacked column NUEH electricity generation/
consumption for DA horizon. The estimated net transacted energy of NUEHs for DA
was about 24.229 MWh and its mean value was about 72.11 kWh. The estimated
maximum values of DA NUEHSs’ electricity consumptions/generations were
2357.33 kWh and 2538.12 kWh, respectively.

Figure 5.12 depicts the estimated stacked column of NUEH electricity generation/
consumption for RT horizon. The estimated net transacted energy of NUEHs for RT
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Fig. 5.3 The 125-bus industrial district distribution system
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Table 5.1 The optimization input data for the 125-bus system

Distribution system parameters Value
Number of solar irradiation scenarios 5000
Number of SWT power generation scenarios 5000
Number of upward market price scenarios 150
Number of PHEV contribution scenarios 5000
Number of DRP commitment scenarios 3000
Number of solar irradiation reduced scenarios 20
Number of SWT power generation reduced scenarios 20
Number of upward market price reduced scenarios 3
Number of PHEV contribution reduced scenarios 20
Number of DRP commitment reduced scenarios 20

Table 5.2 The optimization input data for the NUEHs

NUEH parameters Value
Number of solar irradiation scenarios 5000
Number of SWT power generation scenarios 5000
Number of proposed DSO TOU price and DLC fee scenarios 15
Number of PHEV contribution scenarios 1000
Number of solar irradiation reduced scenarios 5
Number of SWT power generation reduced scenarios 5
Number of TOU price and DLC fee reduced scenarios 3
Number of PHEV contribution reduced scenarios 4
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Fig. 5.4 The wholesale electricity market price for three reduced scenarios

was about 20.206 MWh and its mean value was about 60.13 kWh. The estimated
maximum values of RT NUEHs’ electricity consumptions/generations were
1497.23 kWh and 1381.83 kWh, respectively.

Figure 5.13 shows the estimated NUEH electricity generation/consumption, IPG
electricity generation, CHP and DG electricity generation, and import/export of
electricity for the DA horizon. The aggregated electricity generation of IPGs and
CHPs and DGs were about 117.848 MWh and 123.432 MWh, respectively.
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Fig. 5.7 The stacked column of PLOT electricity generation/consumption for DA horizon

The net transacted energy of the system with the upward market was about
228.447 MWh for the DA horizon.

Figure 5.14 presents the estimated NUEH electricity generation/consumption,
IPG electricity generation, CHP and DG electricity generation, and import/export of
electricity for RT horizon. The aggregated electricity generation of IPGs and CHPs
and DGs were about 140.132 MWh and 136.187 MWh, respectively.

The net transacted energy of the system with the upward market was about
189.349 MWh for the RT horizon.
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Figure 5.15 depicts the estimated CHP and boiler heating energy generation, TSS
heating energy charge and discharge, and heating energy loss for DA horizon.

The aggregated heating energy generation of CHPs and boilers in DA horizon
were about 178.358 MWh and 183.102 MWh, respectively. Further, the mean values
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Fig.5.16 The estimated CHP and boiler heating energy generation, TSS heating energy charge and
discharge, and heating energy loss for RT horizon

of heating energy generation of CHPs and boilers in DA horizon were about
7.431 MWh and 7.629 MWh, respectively.

Figure 5.16 shows the estimated CHP and boiler heating energy generation, TSS
heating energy charge and discharge, and heating energy loss for RT horizon.
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Fig. 5.18 The estimated electrical load after DRP and the base electrical load for RT horizon

The aggregated heating energy generation of CHPs and boilers in RT horizon
were about 178.698 MWh and 183.732 MWHh, respectively. Further, the mean values
of heating energy generation of CHPs and boilers in RT horizon were about
7.659 MWh and 7.425 MWh, respectively.

Figure 5.17 presents the estimated electrical load after DRP and the base electrical
load for DA horizon. The aggregated electrical energy consumptions before and after
DRP implementation in DA horizon were about 443 MWh and 455 MWh, respec-
tively. Further, the mean values of electrical energy consumptions before and after
DRP implementation in DA horizon were about 18.52 MWh and 19.01 MWh,
respectively.

Figure 5.18 shows the estimated electrical load after DRP and the base electrical
load for RT horizon. The aggregated electrical energy consumptions before and after
DRP implementation in RT horizon were about 461 MWh and 442 MWh, respec-
tively. Further, the mean values of electrical energy consumptions before and after
DRP implementation in RT horizon were about 19.21 MWh and 18.40 MWh,
respectively.

Figure 5.19 depicts the estimated cost/benefit of NUEHs and distribution system
for DA horizon. The estimated aggregated revenues of NUEHs for purchasing of
active and reactive power to the distribution system in DA horizon were about
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Fig. 5.19 The estimated cost/benefit of NUEHs and distribution system for DA horizon
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Fig. 5.20 The estimated cost/benefit of NUEHSs and distribution system for RT horizon

1.37 MMU and 0.116 MMU, respectively. The aggregated revenues of AEDSO for
purchasing of active and reactive power to its customers in DA horizon were about
37.8 MMU and 4.15 MMU, respectively. The aggregated cost of electricity gener-
ation of CHPs and DGs was about 9.37 MMU s. Finally, the aggregated costs of
active and reactive energy purchased from DA upward market were about
14.1 MMU and 1.28 MMU, respectively.

Figure 5.20 shows the estimated cost/benefit of NUEHs and distribution system
for RT horizon. The aggregated revenues of NUEHs for purchasing of active and
reactive power to the distribution system in RT horizon were about 1.3664 MMU
and 0.11559 MMU, respectively. The aggregated revenues of AEDSO for purchas-
ing of active and reactive power to its customers in RT horizon were about
37.73 MMU and 4.1492 MMU, respectively. The aggregated cost of electricity
generation of CHPs and DGs was about 10.29 MMUs. Finally, the aggregated
costs of active and reactive energy purchased from RT upward market were about
10.76 MMU and 0.9037 MMU, respectively.
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Fig. 5.22 The estimated maximum and mean values of LMPs for RT horizon

Figure 5.21 presents the estimated maximum and mean values of LMPs for DA
horizon. The maximum values of LMP,,,,, and LMP,,.., were about 276.8 MU/h and
200.94 MU/h, respectively. Further, the average values of LMP,,,, and LMP e,
were about 210.7 MU/h and 143.61 MU/h, respectively

Figure 5.22 shows the estimated maximum and mean values of LMPs for RT
horizon. The maximum values of LMP,,,, and LMP,,.., were about 269.08 MU/h
and 198.32 MU/, respectively. The average values of LMP,,,, and LMP,,.., were
about 210.26 MU/h and 144.71 MU/h, respectively

The proposed algorithm successfully reduced the maximum values of LMP .,
and LMP,;c.n.

5.5 Conclusion

This chapter presented an optimal operational scheduling algorithm for active
distribution system that utilized multiple-energy resources to supply the electrical,
cooling, and heating loads. The nonutility energy hubs transacted with the system
and participated in the demand response programs. Further, the absorption chillers,
compression chillers, boilers, thermal and cooling energy storages, electrical storage
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systems, plug-in hybrid vehicle parking lots, and intermittent energy generation
facilities were considered in the model and optimization process. The introduced
algorithm optimized the multi-carrier energy system operational scheduling in
day-ahead and real-time horizons.

The costs of operation and energy purchased from active and reactive upward
markets were considered in the optimization process. Further, the locational mar-
ginal prices of system buses were formulated in the introduced optimization proce-
dure. The objective functions and constraints were linearized and the CPLEX solver
was utilized to optimize the problem.

An industrial district multiple-energy carrier system was used to assess the
introduced method. The optimization process was carried out and the operational
scheduling of system in day-head and real-time horizons was determined. The
optimization algorithm successfully minimized the operational costs and locational
marginal prices of the system and encountered the nonutility energy hub contribu-
tions in the operational scheduling of multi-carrier energy system. The optimization
procedure successfully reduced the locational marginal prices by about 2.78%.

Nomenclature

Abbreviations

AC Alternating current

AEDS Active multi-carrier energy distribution system
AEDSO  AEDS operator

ACH Absorption chiller

CCH Compression chiller

CCHP Combined cool, heat, and power
CSS Cooling energy storage system
DA Day-ahead

DER Distributed energy resource

DLC Direct load control

DRP Demand response program

ESS Electrical storage system

ILS Involuntary load shedding

LMP Locational marginal price

MG Microgrid

MILP Mixed-integer linear programming

MINLP  Mixed-integer nonlinear programming
NUEH Nonutility energy hub

ODAOP  Optimal day-ahead operational planning
PHEV Plug-in hybrid electric vehicle

PLOT Parking LOT

PSO Particle swarm optimization
PVA Photovoltaic arrays

SEH Smart energy hub

SG Smart grid

TSS Thermal energy storage system
TOU Time of use

WT Wind turbine
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Variables
CRoso The day-ahead cost of operation of AEDSO
Coiey The day-ahead cost of operation of PHEV
CRA The day-ahead cost of electricity purchased from upward market
Cgﬁp The day-ahead cost of DRP
CR,% The day-ahead cost of IPG
CRA e The day-ahead cost of electricity purchased from NUEHs
W The binary decision variable of resource commitment
revenue* The revenue of active and reactive sold to the DA upward market
Prob Probability of scenario
w Weighting factor
abh The price of active energy sold to DA electricity market
ﬁaDCﬁve The price of reactive energy sold to DA electricity market
NWMS Number of wholesale market price scenarios
AC&EDSO The mismatch of real-time cost of operation of AEDSO
ACE{EEV The mismatch of real-time cost of operation of PHEV
Acﬁgmhasc The mismatch of real-time cost of electricity purchased from upward market
ACRT, The mismatch of real-time cost of DRP
ACE,TG The mismatch of real-time cost of IPG
AC‘I\‘IITJEH The mismatch of real-time cost of electricity purchased from NUEHs
Arevenue®T  The mismatch of revenue of active and reactive sold to the RT upward market
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