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Abstract. We discuss recent attempts to extend the ontology-based
data access (aka virtual knowledge graph) paradigm to the tempo-
ral setting. Our main aim is to understand when answering temporal
ontology-mediated queries can be reduced to evaluating standard first-
order queries over timestamped data and what numeric predicates and
operators are required in such reductions. We consider two ways of intro-
ducing a temporal dimension in ontologies and queries: using linear tem-
poral logic LTL over discrete time and using metric temporal logic MTL
over dense time.

1 Introduction

Imagine that you are an engineer and that your task is to analyse the behaviour of
some complex system (such as gas turbines or drilling rigs) in order to understand
what kind of undesirable events have happened in it over the past few days and
why. As many others in this weird time of Covid-19 pandemic, you are working
from home and can only figure out what has been going on with the system by
querying the data, which is automatically collected from the system’s sensors
and stored in the company’s databases. Your intuition and experience suggest
that first you should look for emergency stops and unusually high and low values
of temperature, rotor speed and other parameters read by the sensors. Then you
would investigate more complex events such as ‘purging is over ’ that happens,
according to the manual, when the main flame was on for the past 10 s and also,
within the previous 10 min, there was a 30-s period when the rotor speed was
above 1260 rpm and, at most 2 min before the start of that period, the rotor
speed was below 1000 rpm for at least 1 min.

You might be a brilliant engineer with intimate knowledge of your equip-
ment but alas, the odds are you have no clue where the data is stored and in
which form. (Your IT expert, Joe, would have told you, if asked politely, that the
equipment ID, timestamp and temperature are, respectively, in the first, tenth
and fifth columns of a database table SENSOR TEM C, the rotor speed measure-
ments are in a different table ROTOR SP RPM, and emergency stops are in a special
spreadsheet—but who would you dare ask him in the time of self-isolation with
three kids, a wife-mathematician and a grumpy granny in a one-bedroom flat?)
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The ontology-based data access (OBDA) [29,73,84]—recently rebranded as
the virtual knowledge graph (VKG) [85]—paradigm has been introduced in the
mid 2000s to facilitate access to data, make it more user-friendly, and remove
the dependency on IT experts as far as formalising user queries is concerned.
Informally, an OBDA system such as Mastro1 or Ontop2 allows the users to
think that the data is always at hand in the form of a ‘knowledge graph’ whose
vertices are individuals in the database labelled by classes they belong to and
whose directed edges are labelled by relationships between those individuals.
For example, the database facts that t11 is a gas turbine having rotor r3 as its
moving part can be thought of as a graph edge labelled by hasMovingPart and
going from a vertex t11 with label GasTurbine to a vertex r3 with label Rotor.

As the names of classes and relationships are familiar to the users (taken
from the user manual or a textbook on the relevant domain) and the structure
of the data is transparent (directed graph), formulating queries in the OBDA
system should be much easier than, say, in a relational database management
system (RDBMS)—especially if a visual query interface such as OptiqueVQS [77]
is enabled. Moreover, the OBDA system has a secret weapon in the form of an
ontology, which is supposed to capture the background knowledge about the
domain. In particular, it can contain definitions and descriptions of complex
classes and relationships in terms of primitive ones, which can also be utilised in
user queries. Thus, the ontology provides the user with a high-level conceptual
view of the data and fixes a convenient vocabulary for queries; it supports queries
to multiple and possibly heterogeneous data sources, which are of no concern to
the user; and it allows the system to enrich incomplete data with background
knowledge, which involves reasoning.

Does it sound too good to be true? Let us make the OBDA fairy tale told
above more formal and see what it amounts to computationally. Denote by O
the ontology (designed by a domain expert). There exist dozens of ontology
languages: description logics (DLs) [12,13] of different expressivity, the Web
Ontology Language OWL3 and its profiles, logic programming and deductive
database languages Prolog and datalog, the perennial first-order logic (FO), etc.
Let O be formulated in one of those languages. The knowledge graph, which the
user wants to query, is a set, A, of ground atoms of the form A(a) and P (a, b),
where A is a unary predicate (class or concept such as Rotor) and P a binary
predicate (relationship or property such as hasMovingPart) in the vocabulary of
O. The trouble is that A does not exist, it is virtual. It can be defined by means
of a set, M, of mappings of the form S(x) ← Φ(x), where S is a unary or binary
predicate from O and Φ a query over one of the datasources, D (say, an SQL
query to a relational database). Thus, A can be defined as M(D). The mappings
M are written by an expert with detailed knowledge of both O and D. The users
do not need to know anything about them. The users’ only task is to formulate

1 https://www.obdasystems.com.
2 https://ontopic.biz.
3 https://www.w3.org/TR/owl2-overview/.
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a query ϕ(x) over (imaginary) A in a query language such as SPARQL4 and
press the enter key. The pair q = (O, ϕ(x)) is called an ontology-mediated query,
OMQ for short. The OBDA system is then supposed to find certain answers to q
over A—actually, over D as A does not exist—which are tuples a of individuals
from A such that ϕ(a) is a logical consequence of O and A, in which case we
write O,A |= ϕ(a). Thus, the OBDA system has to somehow compute all tuples
a for which O,M(D) |= ϕ(a) holds. Whether it is feasible or not depends on
the ontology, mapping and query languages involved.

The crucial idea behind the OBDA paradigm is that these languages should
be chosen in such a way that the OMQ answering problem—‘is it the case that
O,M(D) |= ϕ(a)?’—could be reduced to the evaluation problem for standard
database queries directly over D. When D is a relational database, it would be
great if the problem of answering q could be somehow reformulated, or rewritten,
by the OBDA system into an SQL query Q(x) with the answer variables x, which
is then executed over D by an RDBMS at hand. In our theoretical setting we might
as well assume that Q(x) is an FO-formula [1] and call an OMQ q = (O, ϕ(x))
FO-rewritable if there is an FO-formula Q(x), a rewriting of q, such that, for any
data instance D and any tuple a of individuals in D, we have O,M(D) |= ϕ(a) iff
D |= Q(a). If the language for mappings M is sufficiently simple (say, R2RML5),
then it actually suffices to find an FO-rewriting Q(x) of q over possible virtual
knowledge graphs A, which can be later transformed to a proper SQL query over
D by the OBDA system using the mappings (for details on this, consult [84] and
references therein). Thus, we arrive to the main definition of this paper: Q(x) is
an FO-rewriting of q = (O, ϕ(x)) just in case O,A |= ϕ(a) iff A |= Q(a), for
every VKG A (in the language of O) and every tuple a of individuals from A.

FO-rewritability is a very strong requirement for ontology and query lan-
guages; far from all of them satisfy it. By now, description logics and other
fragments of FO that guarantee FO-rewritability are well studied and under-
stood [84]. For example, the OWL2QL profile of the Web Ontology Language
OWL26 (underpinned by the DL-Lite family of description logics [6,29]) is the
W3C standard ontology language for OBDA, which ensures FO-rewritability of
all OMQs with an OWL2QL ontology and a SPARQL or conjunctive query. It
is supported by MASTRO and Ontop. So OBDA is not a fairy tale after all.

But can you use it to spot in the sensor data those nasty events that pos-
sibly happened in your equipment? Unfortunately, not yet. Because the OBDA
framework we discussed above has only been developed and implemented for
querying non-temporal data using atemporal ontologies. Temporal OBDA is still
largely work in progress, and the aim of this paper is to present and discuss some
of the existing approaches to temporalising ontology-mediated query answering
(where the authors have particular research interests). A more comprehensive
recent survey of temporal OBDA can be found in [9], though the area is moving
forward very fast.

4 https://www.w3.org/TR/sparql11-query/.
5 https://www.w3.org/TR/r2rml/.
6 https://www.w3.org/TR/owl2-overview/.
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2 One-Dimensional Temporal OBDA

We begin our discussion of temporal OBDA with a very simple case. Imagine
that the system whose behaviour we need to analyse is equipped with a number
of sensors, say S1, . . . , Sn. At certain moments of time, t, the system records in a
database the current measurement of one or more sensors Si. So we can assume
that the database records take the form Si(t, v), where t is a moment of time, or
a timestamp, and v a measurement value. When speaking of temporal events, we
often classify those values into qualitative categories, which may vary from one
context to another, such as high temperature (e.g., v ≥ 300 ◦C), low temperature
(say, v ≤ 30 ◦C), etc. Thus, we may want to think of the record S3(t, 350 ◦C) as
High(t): at moment t, the temperature was high. The conversion of the original
quantitative 2D data Si(t, v) into qualitative 1D data of the form A(t) can easily
be done by mappings, for example,

High(t) ← SELECT t FROM S3 WHERE v >= 300.

To sum up, let Ai, for i = 1, 2, . . . , be a countably infinite list of unary (or
monadic) predicate symbols representing such qualitative measurements. Then
every data instance we want to query is simply a finite set of atoms of the form
Ai(t) with a timestamp t. But what is time?

In general, this is a very difficult question. Remember ‘There is a time for
everything. [. . . ] Whatever is has already been’ (Ecclesiastes) or ‘Time is an
illusion. Lunchtime doubly so’ (Douglas Adams, The Hitchhiker’s Guide to the
Galaxy)? Even Computer Science uses numerous models of time: linear and
branching, discrete and dense, finite and infinite, etc. [34,36,38,40]. So, what
can we say about our data instances?

One important property is clear: as we store data about events that have
already happened, we may assume that, for any timestamps t and t′, either
t < t′ or t = t′, or t > t′. In other words, our time is linear. Whether the time is
discrete or continuous depends on the type of the system we are dealing with.
If it is synchronous in the sense that all records can only be made at a central
clock signal, then time can be thought of as discrete, and so the timestamps in
each data instance form a finite subset of the natural numbers N or the integer
numbers Z. In this paper, we prefer the integers.

Thus, in the case of discrete time, a data instance, A, is a finite set of ground
atoms of the form Ai(�), where � ∈ Z. We denote by min A and max A the min-
imal and maximal integer numbers occurring in A. The active temporal domain
of a data instance A is the set tem(A) =

{
n ∈ Z | min A ≤ n ≤ max A

}
.

To simplify constructions and without much loss of generality, we assume that
min A = 0 and max A ≥ 1.

If our system is asynchronous, database records can be made spontaneously,
for example, when the current measurement of sensor Si differs ‘substantially’
from the previously recorded measurement taken by Si. In this case, we can
model time by the real numbers R or the rational numbers Q. Since computer
words are binary and finite, we prefer to assume that every timestamp is a dyadic
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rational number of the form n/2m, where n ∈ Z and m ∈ N. The set of these
numbers is denoted by Q2. Note that although rationals such as 1/3 are not
dyadic, by Cantor’s theorem, the order (Q2, <) is dense in the sense that

∀x, y
(
(x < y) → ∃z (x < z < y)

)

and isomorphic to the order (Q, <). Hence, rationals can be approximated with
any accuracy by dyadic rationals. In this case, a data instance A is a finite set
of ground atoms of the form Ai(�) with � ∈ Q2. The active temporal domain of
A is the finite set tem(A) = {� | Ai(�) ∈ A}.

Suppose we are interested in finding certain events in a given data instance.
An event can be classified as instantaneous if it makes sense to say that it
happens at a time instant (for example, an emergency stop or a power trip
happened at moment t) and extended that can happen over a temporal interval
(for example, the temperature was rising between t1 and t2). In this paper, we
mainly consider the former type of events.

A natural language for speaking about temporal instantaneous events over Z

is MFO(<), monadic first-order logic with built-in precedence relation < (cf. [30,
52]). More precisely, MFO(<)-formulas are built from unary predicates Ai(x)
and binary predicates x = y, x < y using the standard Boolean connectives (∧,
∨, →, ¬) and first-order quantifiers (∀ and ∃). They are interpreted in the usual
way in structures, called (temporal) interpretations, of the form

I = (Z, <,AI
1 , AI

2 , . . . ),

which have domain (Z, <) and interpret every predicate Ai as a subset AI
i ⊆ Z.

Let a be an assignment of numbers from Z to individual variables in MFO(<)-
formulas. Given an MFO(<)-formula ϕ(x) with free variables x = (x1, . . . , xn),
we write I |= ϕ(a(x)) to say that ϕ is true in I under the assignment a (which
replaces x with a(x) = (a(x1), . . . , a(xn))).

Example 1. We illustrate what can be said in MFO(<) by a few examples. Sup-
pose ϕ(t, t′) = (t < t′) ∧ ¬∃t′′ (t < t′′ < t′), where t < t′′ < t′ abbreviates the
formula (t < t′′) ∧ (t′′ < t′). Then, for any interpretation I and any m,n ∈ Z,
we have I |= ϕ(m,n) iff n = m+1. It follows that, in MFO(<)-formulas, we can
freely use the ‘functions’ t + n and t − n, for every fixed n ∈ Z. This allows us
to capture events such as purging is over from the introduction. For instance,
assuming that the clock ticks every second, the following FO-formula ϕ(t) says
that the main flame was on for the past 10 s and that within the previous 10 min,
there was a 30-s period when the rotor speed was above 1260 rpm:

ϕ(t) = ∀t′
(
(t > t′ ≥ t − 10) → MainFlameOn(t′)

)
∧ ∃t′

[
(t > t′ ≥ t − 600) ∧

∀t′′
(
(t′ > t′′ ≥ t′ − 30) → RotorSpeedAbove1260(t′′))

)]
.

We invite the reader to extend this ϕ(t) to a formula ψ(t) that expresses the
event purging is over described in the introduction. Then the sentence

∀t
[
PurgingIsOver(t) ↔ ψ(t)

]
(1)

defines a predicate PurgingIsOver(t) that can be used in queries.
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By an MFO(<)-ontology we mean any finite set, O, of MFO(<)-sentences.
An interpretation I is a model of O if I |= ϕ, for every sentence ϕ ∈ O, in which
case we write I |= O; I is a model of a data instance A if � ∈ AI whenever
A(�) ∈ A. We write O |= ϕ to say that I |= ϕ, for every model I of O.

MFO(<)-formulas ψ(t) with free variables t = (t1, . . . , tm) can also be used
as queries asking for assignments of timestamps to the answer variables t under
which the query holds true in relevant interpretations. An ontology-mediated
query (OMQ) in MFO(<) is a pair q = (O, ψ(t)), where O is an ontology and
ψ(t) a query, both given in MFO(<). If t is empty (m = 0), then q is called a
Boolean OMQ.

A certain answer to an OMQ q = (O, ψ(t)) over a data instance A is any
tuple � = (�1, . . . , �m) such that �i ∈ tem(A), for 1 ≤ i ≤ m, and

I |= ψ(�), for every model I of (O,A). (2)

For a Boolean OMQ q, a certain answer over A is ‘yes’ if I |= ψ, for every
model I of O and A, and ‘no’ otherwise. The set of all certain answers to q
over A is denoted by ans(q,A). As a technical tool in our constructions, we also
consider ‘certain answers’ that range over the whole of Z rather than only the
active temporal domain tem(A); we denote the set of such certain answers over
A and Z by ansZ(q,A).

Example 2. Suppose O = { ∀t (A(t) → B(t + 1)), ∀t (B(t) → A(t + 1)) } and
A = {A(0), C(1) }. Then 2n + 1 ∈ BI , for any n ≥ 0 and any model I of
(O,A). It follows that, for the OMQ q = (O,∃t′ ((t′ = t + 2) ∧ B(t′))), we have
ansZ(q,A) = { 2n+1 | n ≥ −1 }, while ans(q,A) = {1} because tem(A) = {0, 1}.

We are now in a position to introduce the central notion of the paper that
reduces answering OMQs over data instances A to evaluation of first-order
queries over a finite first-order structure SA with domain tem(A) ordered by
<, in which

SA |= A(�) iff A(�) ∈ A,

for any predicate A and any � ∈ tem(A).

Definition 3 (FO-rewritability). Let L be a class of FO-formulas that can be
interpreted over structures SA. (For example, L may coincide with FO(<) or
extend it with some standard numeric predicates such as plus(x, y, z), which
is true iff x + y = z, or even with some operators such as transitive closure
or relational primitive recursion.) Let q = (O, ψ(t)) be an OMQ and Q(t) a
constant-free L-formula with free variables t. We call Q(t) an L-rewriting of q
if, for any data instance A, we have ans(q,A) = {� ⊆ tem(A) | SA |= Q(�)}.7

We say that q is L-rewritable if it has an L-rewriting.
Additionally, as a technical tool to construct L-rewritings, we require the

following notion of phantom. Given an OMQ q = (O, ψ(t)) with one answer

7 Here, we (ab)use set-theoretic notation for lists and write � ⊆ tem(A) to say that
every element of � is an element of tem(A).
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variable t and any integer number k ∈ Z, by a k-phantom we understand an
L-sentence Φk

q such that SA |= Φk
q iff max A + k ∈ ansZ(q,A), for k > 0, and

SA |= Φk
q iff k ∈ ansZ(q,A), for k < 0.

We discuss the relevant classes L of FO-formulas in the Sects. 3 and 5.

Remark 4. In the definition above, we did not allow any constants (numbers)
from Z in rewritings. Note, however, that the MFO(<)-formulas ¬∃t′ (t′ < t)
and ¬∃t′ (t′ > t) define the minimal and maximal numbers that occur in any
given data instance. In view of this, we can use the constants min and max in
FO(<)-rewritings as syntactic sugar.

Example 5. Consider the OMQ q = (O, A(t)), where O is the same as in Exam-
ple 2. It is not hard to see that

Q(t) = ∃s
(
A(s) ∧ P (t, s)

)
∨ ∃s

(
B(s) ∧ Q(t, s)

)

is a rewriting of q in MFO(<) extended with the predicates P (t, s) saying that
t − s = 2n for some n ∈ N, and Q(t, s) saying that t − s = 2n + 1 for some
n ∈ N. Note that the quantified variable s ranges between min A and max A in
any SA; in particular, t ≥ s. Finally, observe that q is not FO(<)-rewritable
since properties such as ‘t is even’ are not definable by FO(<)-formulas [64,79].

FO-rewritability of an OMQ q = (O, ψ(t)) defined above is closely related to
the data complexity of the OMQ answering problem for q: given a data instance
A and a tuple � of elements from tem(A), decide whether � ∈ ans(q,A). If q is
regarded to be fixed and only A is the input, we speak of the data complexity
of this problem; if both q and A are regarded as input, then we speak about
the combined complexity. For example, evaluating standard FO-queries (without
an ontology) over FO-structures—in other words, the model checking problem—
is PSpace-complete for combined complexity and in the class AC

0 for data
complexity8 (which is one of the smallest classes in the complexity hierarchy);
see, e.g., [64, Chapter 6]. It is to be noted that, to measure the data complexity,
we should assume that our data instances A are encoded as strings that can be
given as inputs to computational devices such as Turing machines; see [56,64] for
details. Now, if the OMQ q is FO(<)-rewritable (over data instances represented
as such strings), then the OMQ answering problem for q is in LogTime-uniform
AC

0. In what follows, when discussing various types of FO-rewritablity and the
corresponding complexity classes, we do not want to go into the technical details
of the string representation of data instances.

8 Non-uniform AC
0 is the class of languages computable by bounded-depth

polynomial-size circuits with unary not-gates and unbounded fan-in and- and or-
gates. Evaluation of FO(<)-formulas extended with arbitrary numeric predicates
is known to be in non-uniform AC

0 for data complexity. If the circuits mentioned
above can be generated by a Turing machine in, say, LogTime, we speak about
LogTime-uniform AC

0. For example, evaluation of FO(<)-formulas extended with
plus and times is in LogTime-uniform AC

0.
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For events in asynchronous systems, we need interpretations with a dense
order (in this paper, we use Q2), where FO(<) is not able to express the function
t + a, for a fixed number a ∈ Q2, which is obviously needed in our purging
example. To make FO(<) more expressive, we extend it with built-in binary
predicates δ<a(x, y) and δ=a(x, y), for a ∈ Q

+
2 (non-negative dyadic numbers),

where the former stands for 0 ≤ x − y < a and the latter for x − y = a. This
language is denoted by MFO(<, δ≤Q2 , δ=Q2) and interpreted in structures of the
form

I = (T, <, {δ<a | a ∈ Q
+
2 }, {δ=a | a ∈ Q

+
2 }, AI

1 , AI
2 , . . . ) (3)

with a temporal domain T ⊆ Q2. In fact, there are two types of semantics for
MFO(<, δ≤Q2 , δ=Q2)-formulas; cf. [72]. In one of them, known as the continuous
semantics, the temporal domain of I is always set to T = Q2 in the definition (2)
of the set of certain answers ans(q,A) to an OMQ q over a data instance A.
In the alternative pointwise (or event) semantics, for each data instance A, we
only consider those models of (O,A) in (2) that have the domain T = tem(A).
We illustrate the difference between these two semantics by an example.

Example 6. Consider the OMQ q = (O, A(t)) with

O =
{

∀t
(
∀t′ (δ<2(t, t′) → B(t′)) → B′(t)

)
,

∀t
(
(∃t′(δ=1(t, t′) ∧ B′(t′))) → A(t)

) }
.

Suppose first that A1 = {B(0), B(1/2), C(3/2)} and the semantics is pointwise.
In this case, possible models of (O,A1) have domain {0, 1/2, 3/2}, and so we
obtain ans(q,A1) = {3/2} because the first axiom gives B′ at 0 and then at 1/2,
from which we derive A at 3/2 by the second axiom.

B B′

0

B B′

1
2

C A

3
2

Note that ans(q,A2) = ∅ for A2 = {B(0), C(3/2)}. Under the continuous seman-
tics, we cannot derive B′ at 0 and 1/2 because there exist time instants before 0
and between 0 and 1/2 where B′ can be false. Thus, in this case, ans(q,A1) = ∅.

3 Ontology-Mediated Queries with LTL-Ontologies

In the previous section, we argued that monadic first-order logic MFO(<) pro-
vides a natural formalism for ontology-mediated queries in the synchronous
case, where the time flow is discrete (Z, <). Temporal instantaneous events can
be described then by MFO(<)-formulas with one free variable. We recall now
that, by the celebrated Kamp Theorem [57,74], those formulas have exactly
the same expressive power as the formulas of (propositional) linear temporal
logic LTL, which are built from propositional variables using the Booleans and
the temporal operators ©

F (at the next moment of time), ♦F (eventually),
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�F (always in the future), U (until), and their past-time counterparts ©
P (at

the previous moment), ♦P (some time in the past), �P (always in the past) and
S (since); see [34,40,68] and further references therein.

We give the semantics of LTL-formulas via their standard MFO(<)-
translation † defined inductively as follows. For an atomic proposition A, we
set A† = A(t). The translation † commutes with the Booleans in the sense that
(κ1 ∧ κ2)† = κ

†
1 ∧ κ

†
2, (¬κ)† = ¬(κ†), etc. Finally, for the temporal operators,

we set:

(©
F κ)† = κ

†{t + 1/t},

(�F κ)† = ∀t′
(
(t < t′) → κ

†{t′/t}
)
,

(♦F κ)† = ∃t′
(
(t < t′) ∧ κ

†{t′/t}
)
,

(κ Uλ)† = ∃t′
[
(t < t′) ∧ λ†{t′/t} ∧ ∀t′′

(
(t < t′′ < t′) → κ

†{t′′/t}
)]

,

and symmetrically for the ‘past’ operators, for instance, (©
P κ)† = κ

†{t−1/t},
(♦P κ)† = ∃t′

(
(t > t′) ∧ κ

†{t′/t}
)
, etc. In the translation above, t′ and t′′ are

fresh variables and {t′/t} means a substitution that replaces t with t′. Given a
temporal interpretation I and an LTL-formula κ, we define the extension κ

I of
κ in I as the set of integers κ

I = {n ∈ Z | I |= κ
†(n)}.

In this section, we introduce a number of fragments of LTL as possible tem-
poral ontology languages and discuss FO-rewritability of various types of OMQs
with ontologies in those fragments. Having in mind the OBDA application area
for these languages, we somewhat modify the standard LTL terminology. For
instance, instead of propositional variables, we prefer to speak about atomic
concepts (similarly to concept names in Description Logic).

Thus, in this paper, we think of the alphabet of LTL as a countably infinite
set of atomic concepts Ai, for i < ω. Basic temporal concepts, C, are defined by
the grammar

C ::= Ai | �F C | �P C | ©
F C | ©

P C. (4)

An LTL-ontology, O, is a finite set of clauses of the form

C1 ∧ · · · ∧ Ck → Ck+1 ∨ · · · ∨ Ck+m, (5)

where k,m ≥ 0 and the Ci are basic temporal concepts. As usual, we denote the
empty conjunction (k = 0) by � and the empty disjunction (m = 0) by ⊥. We
often refer to the clauses in O as (ontology) axioms. Intuitively, the axioms are
supposed to hold at every moment of time. In other words, (5) is just a shortcut
for the MFO(<)-sentence

∀t (C†
1 ∧ · · · ∧ C†

k → C†
k+1 ∨ · · · ∨ C†

k+m). (6)

It is true in an interpretation I iff

CI
1 ∩ · · · ∩ CI

k ⊆ CI
k+1 ∪ · · · ∪ CI

k+m.
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An ontology O entails a clause (5) if this clause is true in every model I of O.
We classify ontologies by the shape of their axioms9 and the temporal opera-

tors that occur in them. Let c ∈ {horn, krom, core, bool} and o ∈ {�, ©,�©}. By
an LTLo

c -ontology we mean any LTL-ontology whose clauses satisfy the following
restrictions on k and m in (5) indicated by c:

horn : m ≤ 1,
krom : k + m ≤ 2,
core : k + m ≤ 2 and m ≤ 1,
bool : any k,m ≥ 0,

and may only contain occurrences of the (future and past) temporal operators
indicated in o (for example, o = � means that only �F and �P may occur in
the temporal concepts). Note that an LTLo

c -ontology of any type may contain
disjointness axioms of the form C1 ∧ C2 → ⊥. Although both LTLo

krom- and
LTLo

core-ontologies may only have binary clauses as axioms (with at most two
concepts), only the former are allowed to contain universal covering axioms such
as � → C1 ∨ C2; in other words, core = krom ∩ horn.

The definition above identifies a seemingly very restricted set of LTL-formulas
as possible ontology axioms. For example, it completely disallows the use of the
standard temporal operators ♦F (sometime in the future), ♦P (sometime in the
past), U (until) and S (since). Whether or not these operators can be somehow
expressed in a given fragment LTLo

c (in the context of OMQ answering) depends
on c and o. The following example clarifies the picture.

Example 7. Observe first that the clause ♦P A → B is equivalent to the LTL�
core

clause A → �F B. Also, the former clause can be expressed in LTL
©
core by three

clauses: A → ©
F X, X → ©

F X and X → B, for a fresh atomic concept X that
is not supposed to occur in any data instances.

To see why, we need a few definitions. By the signature of an ontology we
mean the set of atomic concepts that occur in it. An ontology O′ is called a
model conservative extension of an ontology O if O′ |= O, the signature of O is
contained in the signature of O′, and every model of O can be expanded to a
model of O′ by providing interpretations of the fresh symbols of O′ and leaving
the domain and the interpretation of the symbols in O unchanged. Observe that
if q = (O, κ) is an OMQ and O′ a model conservative extension of O, then the
certain answers to q over a data instance A in the signature of O coincide with
the certain answers to q′ = (O′, κ) over A. Thus, any FO-rewriting of q′ is also
an FO-rewriting of q.

The ontology O′ obtained from O by replacing ♦P A → B with A → ©
F X,

X → ©
F X and X → B is a model conservative extension of O, and so we can

use it for OBDA in place of O.
The clause A → ♦P B cannot be expressed in any of the LTLo

core fragments
but can be expressed in LTL�

krom by A∧�P X → ⊥ and � → X ∨B. The clauses
of the form A ∧ B → C are in the LTLo

horn fragments but not in LTLo
core or

9 This classification originates in the DL-Lite family of description logics [6].
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LTLo
krom. The clause AUB → C can be expressed in LTL

©
horn by B → ©

P X
and X ∧ A → ©

P X and X → C, also for a fresh X. The clause A → B UC can
be expressed in LTL�©

bool using the well-known fixed-point unfolding of BUC as
©

F C∨(©
F B∧©

F (B UC)), which gives rise to 4 clauses A → X, X → ©
F C∨©

F B,
X → ©

F C ∨ ©
F X and A → ♦F C (the ♦F in the last clause can be replaced with

�F as described above).

Exercise 8. Imagine that we would like to query the data about the status of
a research article submitted to a certain journal. We are interested in temporal
events such as Submission, Notification, Accept, Reject, Revise, Publication. Our
background knowledge about these events can be formulated as an LTL-ontology
O with the axioms below. We invite the reader to transform those axioms to the
required form (5) using common sense and the previous example.

Notification ↔ Reject ∨ Accept ∨ Revise, (7)
Reject ∧ Accept → ⊥, Revise ∧ Accept → ⊥, Reject ∧ Revise → ⊥ (8)

(at any moment of time, every notification is either a reject, accept, or revision
notification, and it can only be one of them)

P → ¬♦P P ∧ ¬♦F P (9)

(for every event P we are interested in except Notification and Revise, P can
happen only once for any article)

Publication → ♦P Accept, Notification → ♦P Submission, (10)
Accept → ♦F Publication, Submission → ♦F Notification, (11)
Revise → ♦F Notification (12)

(obvious necessary pre-conditions for publication and notification and also the
post-conditions—eventual consequences—of acceptance, submission and a revi-
sion notification; for simplicity, we assume that after a revision notification the
authors always eventually receive a notification regarding a revised version)

Accept ∨ Reject → ¬♦F Notification (13)

(acceptance and rejection notifications are final).

We distinguish between three types of ontology-mediated queries (OMQs)
with LTL-ontologies:

– Atomic OMQs (or OMAQs, for short) take the form q = (O, A(t)) with an
atomic concept A.

– A positive ontology-mediated instance query (OMPIQ) (O, κ(t)) with a posi-
tive LTL-formula κ, which is constructed from atoms in the standard way but
using ∧ and ∨ only (or an equivalent MFO(<)-formula with one free variable
t, which will be discussed below).
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– Quasi-positive OMQs (or OMQPQs) q = (O, ψ(t)) have a quasi-positive
MFO(<)-formula ψ(t), which is recursively constructed using ∧, ∨, ∀, ∃, as
well as the guarded universal quantification of the form

∀y
(
(x < y < z) → ϕ

)
, ∀y

(
(x < y) → ϕ

)
, ∀y

(
(y < z) → ϕ

)
, (14)

where ϕ is a quasi-positive MFO(<)-formula.
– Finally, general OMQs q = (O, ψ(t)) may have arbitrary MFO(<)-formulas

ψ(t).

Example 9. Consider O from Exercise 8. Then (O,Revise(t)) is an OMAQ asking
when the paper was sent back for revision. As an example of OMPIQ, consider
(O, (♦P Revise ∧ Accept)(t)) asking when (and whether) the paper was accepted
after revision. As an example of OMQPQ, consider (O, ψ(t, t′)), where

ψ(t, t′) = ∃x
(
(t < x < t′) ∧ Revise(x)

)
∧ Submission(t) ∧ Accept(t′),

looking for time intervals [t, t′] over which a submitted article underwent at
least one revision before acceptance. Finally, an example of a (general) OMQ is
(O, ψ(t)) with

ψ(t) = Submission(t) ∧ ¬∃t′ ((t′ > t) ∧ (Accept(t′) ∨ Reject(t′))).

that checks if and when the article was submitted without accept or reject deci-
sion so far.

OMAQs are the simplest and arguably most convenient queries from the
user’s point of view as they presuppose that definitions of relevant events should
be provided by the ontology. However, they are not suitable in situations when
more than one answer variable is needed as, for example, in the query ‘find all
timestamps t1 and t3 with t1 < t3, for which there is t2 such that t1 < t2 < t3
and some event (say, the temperature is lower than 50 ◦C) happens everywhere
in the interval [t1, t2) and some other event (say, the temperature is higher
than 90 ◦C) happens everywhere in the interval [t2, t3]’. As we shall see below,
arbitrary OMQs have worse computational properties compared to OMQPQs.
In fact, one can show the following version of Kamp’s Theorem: every consis-
tent quasi-positive MFO(<)-formula ψ(t) with one free variable t is equivalent
over (Z, <) to a positive LTL-formula constructed using any temporal operators
and the ‘positive’ Boolean connectives ∧ and ∨ only [10]. Another important
semantic characterisation of quasi-positive formulas is as follows. Given tempo-
ral interpretations I1 and I2, we write I1 � I2 if AI1 ⊆ AI2 , for every atomic
concept A. An MFO(<)-formula ψ(t) is called monotone if I1 |= ψ(n) and
I1 � I2 imply I2 |= ψ(n), for any tuple n in Z. Now, one can show [10] that an
MFO(<)-formula is monotone iff it is equivalent over (Z, <) to a quasi-positive
MFO(<)-formula.

Let us now focus on rewritability of LTL OMQs. Is there a ‘standard’ query
language into which any such OMQ can be rewritten? The following example
shows that FO(<), even extended with arbitrary arithmetic predicates, is not
powerful enough for this purpose:
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Example 10. Consider the OMAQ q = (O, B0), where O consists of the axioms

©
P Bk ∧ A0 → Bk and ©

P B1−k ∧ A1 → Bk, for k = 0, 1.

For every binary word e = e1 . . . en ∈ {0, 1}n, we take the data instance Ae =
{B0(0) } ∪ {Aei

(i) | 0 < i ≤ n }. It is not hard to check that n is a certain
answer to q over Ae iff the number of 1s in e is even (PARITY): intuitively,
the word is processed starting from the minimal timestamp and moving towards
the maximal one, and the first axiom preserves Bi if the current symbol is 0,
whereas the second axiom toggles Bi if the current symbol is 1. As PARITY is
not in AC

0 [39], it follows that q is not FO-rewritable even if arbitrary numeric
predicates are allowed in rewritings.

A natural and more expressive target language for rewritings is FO(RPR)
that extends FO with the successor relation and relational primitive recur-
sion (RPR, for short). Evaluation of FO(RPR)-formulas is known to be NC

1-
complete10 for data complexity [32], with AC

0
� NC

1 ⊆ L. We remind the
reader that, using RPR, we can construct formulas such as

Φ =

⎡

⎣
Q1(z1, t) ≡ Θ1

(
z1, t, Q1(z1, t − 1), . . . , Qn(zn, t − 1)

)

. . .
Qn(zn, t) ≡ Θn

(
zn, t, Q1(z1, t − 1), . . . , Qn(zn, t − 1)

)

⎤

⎦ Ψ,

where the part of Φ within [. . . ] defines recursively, via the FO(RPR)-formulas
Θi, the interpretations of the predicates Qi in the FO(RPR)-formula Ψ (see
Example 11 below). Note that the recursion starts at t = 0 and assumes that
Qi(z,−1) is false for all Qi, i = 1, . . . , n, and all z. Thus, the truth value of
Qi(z, 0) is computed by substituting falsehood ⊥ for all Qi(z,−1). For every
t = 1, 2, . . . , the recursion is then applied in the obvious way.

We illustrate relational primitive recursion by a concrete example.

Example 11. The OMQ q = (O, B0) from Example 10 can be rewritten to the
following FO(RPR)-formula:

Q(t) =
[

Q0(t) ≡ Θ0

Q1(t) ≡ Θ1

]
Q0(t),

where, for k = 0, 1,

Θk(t,Q0(t−1), Q1(t−1)) = Bk(t) ∨
(
Qk(t−1) ∧ A0(t)

)
∨

(
Q1−k(t−1) ∧ A1(t)

)
.

As noted above, the recursion starts from the minimal timestamp 0 in the data
instance (with Qi(−1) regarded as false) and proceeds to the maximal one.

The next theorem shows that all LTL OMQs can be rewritten into FO(RPR).
As follows from [32, Proposition 4.3], this means that we can also rewrite our
OMQs into the language MSO(<) of monadic second-order formulas that are
built from atoms of the form A(t) and t < t′ using the Booleans, first-order
quantifiers ∀t and ∃t, and second-order quantifiers ∀A and ∃A [28].
10

NC
1 is the class of languages computable by a family of polynomial-size logarithmic-

depth circuits with gates of at most two inputs.
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Remark 12. It is worth reminding the reader (see [33,78,79] for details) that, by
the Büchi–Elgot–Trakhtenbrot Theorem [28,35,81], MSO(<)-sentences define
exactly the class of regular languages. FO(RPR), extended with the predicates
plus and times or, equivalently, with one predicate bit [56], captures exactly
the languages in NC

1 (which are not necessarily regular) [32].

Theorem 13. Every LTL OMQ is FO(RPR)- and MSO(<)-rewritable, and so
can be answered in NC

1 for data complexity.

Note that the SQL:1999 ISO standard contains a WITH RECURSIVE con-
struct that allows users to implement various FO-queries with relational prim-
itive recursion such as the query in Example 11, which cannot be expressed in
FO without recursion.

The next example shows that our OMQs can simulate arbitrary finite
automata, and so FO(RPR) appears to be an optimal target language for rewrit-
ings in general (since there exist NC

1-complete regular languages).

Example 14. Let A be a DFA with a tape alphabet Γ, a set of states Q, an initial
state q0 ∈ Q, an accepting state q1 ∈ Q and a transition function →: we write
q →e q′ if A moves to a state q′ ∈ Q from a state q ∈ Q while reading e ∈ Γ.
(Without loss of generality we assume that A has only one accepting state.) We
take atomic concepts Ae for tape symbols e ∈ Γ and atomic concepts Bq for
states q ∈ Q, and consider the OMAQ q = (O, Bq0), where

O =
{

©
P Bq′ ∧ Ae → Bq | q →e q′ }.

For any input word e = (e1 . . . en) ∈ Γ∗, we set

Ae =
{

Bq0(0)
}

∪
{

Aei
(i) | 0 < i ≤ n

}
.

It is easy to see that A accepts e iff max(Ae) ∈ ans(q,Ae). We invite the reader
to show that A accepts e iff 0 ∈ ans(q′,Ae), where q′ = (O′, ψ(t)),

O′ =
{

Bq ∧ Bq → ⊥, � → Bq ∨ Bq | q ∈ Q
}
,

and ψ(t) is the standard FO-translation of the LTL-formula

κ = Bq1 ∨
∨

q→eq′
♦+

P (©
P Bq′ ∧ Ae ∧ Bq),

where ♦+
P C is an abbreviation for C ∨♦P C. (Hint: Bq represents the complement

of Bq, and κ is equivalent to formula
[ ∧

q→eq′ �+
P (©

F Bq′ ∧ Ae → Bq)
]

→ Bq1 ,
where �+

P C is an abbreviation for C ∧ �P C.)

Now we present classes of OMQs that are rewritable to FO-formulas without
recursion. Namely, we have rewritings of two types. One type is the usual FO(<)-
formulas. The other one comprises FO(<,≡N)-formulas that can use numeric
predicates x ≡ 0 (mod n), for any fixed n ∈ N. (As shown in [16], FO(<,≡N) is
exactly the class of regular languages in AC

0.)
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Exercise 15. Note that FO(RPR) does not contain x < y or x ≡ 0 (mod n),
for n > 1, as atoms. We invite the reader to show that both of them can be
expressed in FO(RPR) in the sense that (i) there exists an FO(RPR)-formula
ϕ<(x, y) such that S |= ϕ<(a, b) iff S |= a < b, for any FO-structure S and
a, b in its domain; and (ii) for any n > 1, there exists an FO(RPR)-formula
ϕn(x) such that S |= ϕn(a) iff S |= a ≡ 0 (mod n), for any FO-structure S and
a in its domain. (A solution to (i) can be found in [32] and a solution to (ii)
in [10].) As a consequence, we obtain that, for every FO(<,≡N)-formula, there
is an equivalent FO(RPR)-formula.

Theorem 16. Any LTL
©
krom OMAQ is FO(<,≡N)-rewritable, and so can be

answered in AC
0 for data complexity.

Proof (Sketch). Suppose q = (O, A) is an LTL
©
krom OMAQ. By a literal, L, we

mean an atomic concept in q or its negation. We use ©nL in place of ©n
F L if

n > 0, L if n = 0, and ©−n
P L if n < 0. We write O |= L → ©kL′ if I |= ∀t (L →

©kL′)† in every model I of O. For any data instance A consistent with O, we
have:

� ∈ ansZ(q,A) iff either O |= � → A

or O |= B → ©�−nA, for some B(n) ∈ A.

Given literals L and L′, let AL,L′ be an NFA whose tape alphabet is {0}, the
states are the literals, with L initial and L′ accepting, and whose transitions are
of the form L1 →0 L2, for O |= L1 → ©L2 (without loss of generality we assume
that O does not contain nested ©). It is easy to see that AL,L′ accepts 0k (k > 0)
iff O |= L → ©kL′. By [31,80], there are N = O(|AL,L′ |2) arithmetic progressions
ai + biN = {ai + bi · m | m ≥ 0}, 1 ≤ i ≤ N , such that 0 ≤ ai, bi ≤ |AL,L′ | and
AL,L′ accepts 0k iff k ∈ ai + biN for some i, 1 ≤ i ≤ N . These progressions give
rise to the FO-rewriting we need. To illustrate, suppose q = (O, A) and

O = {A → ©B, B → ©C, C → ©D, D → ©A, D → ©E, E → ©D}.

The NFA AB,A (more precisely, the states reachable from B) is shown below,

B A

C
D

E

and for L ∈ {A,C,D,E}, AL,A is the same NFA but with the initial state L. It
is readily seen that AB,A accepts 0k iff k ∈ 3 + 2N, which can be described by
the formula

ϕB,A(t) = ∃s
(
B(s) ∧

(
t − s ∈ a + bN

))
,

where a = 3, b = 2, and
(
t − s ∈ 3 + 2N

)
is an abbreviation for

∃n [(n = s + 3) ∧
(
((n ≡ 0 (mod 2)) ∧ (t ≡ 0 (mod 2))) ∨

∃n′, t′ ((n′ = n + 1) ∧ (t′ = t + 1) ∧ (n′ ≡ 0 (mod 2)) ∧ (t′ ≡ 0 (mod 2)))
)
]
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(the reader is invited to provide the definition of
(
t − s ∈ a + bN

)
for arbitrary

a and b). Similarly, for AE,A, we have a = b = 2. (Note that in general more
than one progression is needed to characterise automata AL,A.) To obtain an
FO(<,≡N)-rewriting of q, we take a disjunction of ϕL,A(t), for all literals L.
One can also construct any phantom Φk

(O,A) in FO(<,≡N). ��

Theorem 17. Any LTL�
bool OMAQ is FO(<)-rewritable, and so can be

answered in AC
0 for data complexity.

Proof (Sketch). Given an LTL�
bool-ontology O, we construct an NFA A that takes

as input a data instance A written as the word A0, . . . ,Ak, where k = max A
and Ai = {A | A(i) ∈ A}. Let Σ be the set of temporal concepts in O and their
negations. Each state of A is a maximal set S ⊆ Σ that is consistent with O; let
S be the set of all such states. For S, S′ ∈ S and a tape symbol (set of concept
names) X, we set S →X S′ just in case X ⊆ S′, �F β ∈ S iff β,�F β ∈ S′,
and �P β ∈ S′ iff β,�P β ∈ S. A state S ∈ S is accepting if A has an infinite
‘ascending’ chain S →∅ S1 →∅ . . . ; S is initial if A has an infinite ‘descending’
chain · · · →∅ S1 →∅ S. The NFA A simulates O in the following sense: for any
ABox A, concept name A and � ∈ Z, we have � ∈ ansZ((O, A),A) iff A does not
contain an accepting path S0 →X1 · · · →Xm

Sm (S0 initial and Sm accepting)
such that A /∈ S�, Xi+j = Aj if 0 ≤ j ≤ k, and Xj = ∅ otherwise, for some i,
0 < i ≤ m − k.

Define an equivalence relation, ∼, on S by taking S ∼ S′ iff S = S′ or A
has a cycle with both S and S′. Let [S] be the ∼-equivalence class of S. One
can check that S →X S′ implies S1 →X S′, for any S1 ∈ [S]. Let A′ be the
NFA with states [S], for S ∈ S, and transitions [S] →X [S′] iff S1 →X S′

1, for
some S1 ∈ [S] and S′

1 ∈ [S′]. The initial (accepting) states of A′ are all [S] with
initial (accepting) S. The NFA A′ also simulates O and contains no cycles other
than trivial loops, which makes it possible to express the simulation condition by
an FO(<)-formula. For example, A′ for O = {A → �P B, �P B → C} is shown
below, where all states are initial and accepting, and negated concepts omitted:

[S1]
{�PB,B,A,C}
{�PB,B,C} [S′

2]{�PB,C}

[S2]
{�PB,A,C} [S3]

2{B,C}

2{C}

2{A,C}

2{A,B,C}

2{B,C}

2{B,C}
2{B,C}

Let q = (O, C). Take all accepting paths π in A′ with pairwise distinct states at
least one of which has a set without C. Thus, for π = [S1] →{A} [S2] →∅ [S3], a
set in [S3] has no C, and the simulation condition for π, which makes sure that
¬C holds at t, can be written as

∃t1, t2
[
∀t′

(
(t′ < t1) → loop[S1](t

′)
)

∧ sym{A}(t1) ∧
∀t′

(
(t1 < t′ < t2) → loop[S2](t

′)
)

∧ sym∅(t2) ∧
∀t′

(
(t′ > t2) → loop[S3](t

′)
)

∧ (t ≥ t2) ∧ ¬C(t)
]
,



Temporal Ontology-Mediated Queries and First-Order Rewritability 125

where sym{A}(t) = A(t) ∧ ¬B(t) ∧ ¬C(t) and sym∅(t) = ¬A(t) ∧ ¬B(t) ∧ ¬C(t)
define transitions →{A} and →∅ in π, and loop[S1] = �, loop[S3] = ¬A(t) and
loop[S2] = ⊥ say that [S1] and [S3] have loop transitions with any input and any
input but A, respectively, but [S2] has no loop. To obtain an FO(<)-rewriting
of q, we take a disjunction of such formulas for all accepting paths π in A′ and
negate it. It is also possible to construct any phantom Φk

(O,A) in FO(<). ��

Theorem 18. Any LTL�©
krom OMAQ is FO(<,≡N)-rewritable, and so can be

answered in AC
0 for data complexity.

Proof (Sketch). The proof utilises the monotonicity of the � operators, similarly
to the proof of Theorem 17. However, the latter relies on partially-ordered NFAs
accepting the models of (O,A), which do not work in the presence of ©. Our key
observation here is that every model of (O,A) has at most O(|O|) timestamps
such that the same �-concepts hold between any two nearest of them. The
placement of these timestamps and their concept-types can be described by
an FO(<)-formula. However, to check whether these types are compatible (i.e.,
satisfiable in some model), we require FO(<,≡N)-formulas similar to those in
the proof of Theorem 16. ��

So far, we have considered the simplest class of OMQs with atomic queries.
But what if we are interested in spotting complex events whose definitions are
not provided by the available ontology? Or what if we need queries with multiple
answer variables? Can we still rewrite some of the resulting OMQs into FO-queries
without recursion? First, observe that we cannot use arbitrary MFO-formulas as
queries if we want to achieve FO-rewritability without recursion. This is the case
already for OMQs with empty ontologies as shown by Example 14. It also follows
from the same example that OMQs q = (O, ψ(t)) with monotone (quasi-positive)
ψ and O containing only binary disjunctions, can simulate an arbitrary DFA.

On the other hand, we show now how to obtain a strong positive rewritability
result for OMQs with a Horn ontology and a monotone query. The key property
of Horn ontologies required in the proof of this result is the following fact, which
is well known and documented in the Prolog and datalog settings [1,4]. The
intersection of two interpretations I1 and I2 is the interpretation I3 such that
AI3 = AI1 ∩ AI2 , for every atomic concept A.

Example 19. Consider I1 with AI1 = {0, 5}, BI1 = {n ∈ Z | n > 0} and I2

with AI2 = {−5, 0}, BI2 = Z. Then the intersection of I1 and I2 is I3 with
AI3 = {0}, BI3 = {n ∈ Z | n > 0}.

In general, if we take a pair of models of (O,A), their intersection does not
need to be a model of (O,A). The reader is invited to verify this on the simple KB
({A → B ∨ C}, {A(0)}). However, for O in LTL�©

horn, the intersection of models
of (O,A) will be always a model of (O,A), too. Indeed, in Example 19 both I1

and I2 are models of (O,A) = ({A → �F B}, {A(0)}) and so is their intersection
I3. The canonical (or minimal) model CO,A of (O,A), is the intersection of all
the models of (O,A). For ({A → �F B}, {A(0)}), the canonical model is I3 from
Example 19.
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Theorem 20. Let q = (O, ψ(t)) be an OMQPQ with an LTL�©
horn-ontology O

and let L be FO(<) or FO(<,≡N). Suppose that, for each atomic A in ψ,

– every OMAQ (O, A) is L-rewritable
– there exists a phantom Φk

(O,A) in L, for every k ∈ Z

Then, (O, ψ(t)) is L-rewritable.

Proof (Sketch). To simplify presentation, we assume that O does not contain
⊥. The proof relies on the fact that, for any A, there exists a canonical model
CO,A of (O,A). Then, using the monotonicy of ψ, one can establish the following
property, for all � ∈ tem(A):

� ∈ ans(q,A) iff CO,A |= ψ(�). (15)

The second important component of the proof is the fact that every OMPIQ
(O, κ) is L-rewritable and has phantoms Φk

(O,κ) in L if every OMAQ (O, A)
with A from κ is such. This fact is shown by induction on the construction of
κ using (15). As an example, we show how to construct a rewriting ϕκ(t) for
κ = ♦F A from a rewriting ϕA(t) for A and phantoms Φk

(O,A). By the semantics
of ♦F , we could take

ϕκ(t) = ∃t′
(
(t′ > t) ∧ ϕA(t′)

)
∨

∨

k>0

Φk
(O,A).

Indeed, provided that ‘infinite’ formulas are allowed in rewritings, it is not hard
to check, using (15), that ϕκ(t) is a rewriting of (O, κ). To avoid the ‘infinite’
disjunction, we need an additional periodicity property of the LTL�©

horn canonical
models: for every ontology O, there are positive integers sO and pO such that,
for any data instance A,

tO(n) = tO,A(n + pO), for n ≥ max A + sO.

In view of this periodicity, we can finitise the ‘infinite’ rewriting of (O, κ) by
taking

ϕκ(t) = ∃t′
(
(t′ > t) ∧ ϕA(t′)

)
∨

∨

0<k<sO+pO

Φk
(O,A).

The reader is invited to define phantoms Φk
(O,κ) for (O, κ) and k > 0 using the

method above.
The third and last important component of this proof is that every monotone

formula ψ(t) is equivalent to a disjunction ϕ(t) =
∨k

l=1 ϕl(t) of formulas of the
following form, for l = 1, . . . , k:

ϕl(t) = ∃x1, . . . , xn

[ m∧

i=1

(ti = xji
) ∧ (x1 < · · · < xn) ∧

n∧

i=1

αi(xi) ∧

n−1∧

i=1

∀y
(
(xi < y < xi+1) → βi(y)

)]
, (16)
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where the first conjunction contains (ti = x1) and (tj = xn) with free vari-
ables ti, tj ∈ t, and the αi and βi are FO(<)-formulas with one free variable
equivalent to some OMPIQs (O, κi) and (O, λi) (respectively). This equivalence
result is shown using Rabinovich’s proof of Kamp’s Theorem [74]. Let us assume
that ψ(t) is a disjunction of formulas (16), and substitute in it each αi(xi) by
ϕκi

(xi), where ϕκi
(xi) is a rewriting of (O, κi), and similarly for βi(y). It is then

straightforward to verify, relying on (15), that the result of this substitution is
a rewriting of (O, ψ(t)). ��

Corollary 21. All monotone LTL�©
core OMQs are FO(<,≡N)-rewritable, and all

monotone LTL�
horn OMQs are FO(<)-rewritable.

4 OBDA with Temporalised DL-Lite

The OMQs considered so far are one-dimensional. For example, the ontology
from Exercise 8 captures background knowledge about temporal events that
can happen with one article submitted to a journal. If we want to use OBDA
in order to query data about other articles, authors, co-authors, editors, etc.,
we need a language that is capable of representing knowledge about a second
dimension, a domain populated by those articles, authors, co-authors, editors,
and relationships between them.

Description logics (DLs) [12,13] form a prominent family of knowledge rep-
resentation formalisms designed specifically for atemporal domains of that sort.
However, far from all of the existing DLs are suitable for OBDA because OMQs
with DL ontologies are not necessarily rewritable to standard target query lan-
guages such as FO (which is essentially SQL) or datalog; for more details we refer
the reader to the course [61]. The DL-Lite family of DLs was developed for OBDA
with relational databases and with the aim of guaranteeing FO-rewritability of
all OMQs with conjunctive queries [6,29,73,84]. DL-Lite logics also underpin the
OWL2QL profile of the Web Ontology Language OWL 2 standardised by the
W3C.

We illustrate DL-Lite by a simple example (borrowed from [21]); for a detailed
introduction to OBDA with OWL2QL, we refer the reader to [59,61].

Example 22. Consider the following ontology O given in the DL syntax and, for
the reader’s convenience, translated into first-order logic:

ProjectManager � ∃isAssistedBy.PA
∀x

(
ProjectManager(x) → ∃y (isAssistedBy(x, y) ∧ PA(y))

)

∃managesProject � ProjectManager
∀x

(
∃y managesProject(x, y) → ProjectManager(x)

)

ProjectManager � Staff
∀x

(
ProjectManager(x) → Staff(x)

)

PA � Secretary
∀x

(
PA(x) → Secretary(x)

)
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Here, ProjectManager, PA, Staff, and Secretary are concept names (correspond-
ing to the unary predicates in the FO-translations), while isAssistedBy as well
as managesProject are role names (corresponding to the binary predicates). The
conjunctive query

ψ(x) = ∃y
(
Staff(x) ∧ isAssistedBy(x, y) ∧ Secretary(y)

)

asks for the members of staff that are assisted by secretaries. We invite the reader
to verify that the following FO-query

Q(x) = ∃y
[
Staff(x) ∧ isAssistedBy(x, y) ∧ (Secretary(y) ∨ PA(y))

]
∨

ProjectManager(x) ∨ ∃z managesProject(x, z)

is an FO-rewriting of the OMQ Q(x) = (O, ψ(x)) in the sense that, for any
data instance A (which contains ground atoms such as ProjectManager(bob),
PA(joe) and isAssistedBy(bob, sam)) and any individual name a from A, we
have O,A |= ψ(a) iff Q(a) is true when evaluated directly over A.

Being able to speak about domain concepts and roles, DL cannot say anything
about their evolution in time. Following [8], we next introduce two-dimensional
combinations of the LTL ontology languages from the previous section and
various species of DL-Lite. The 2D language now contains individual names
a0, a1, . . . , concept names A0, A1, . . . , and role names P0, P1, . . . . Roles S, tem-
poralised roles R, basic concepts B, and temporalised concepts C are defined by
the following grammars:

S ::= Pi | P−
i , R ::= S | �F R | �P R | ©

F R | ©
P R,

B ::= Ai | ∃S, C ::= B | �F C | �P C | ©
F C | ©

P C.

A concept or role inclusion takes the form

ϑ1 � · · · � ϑk � ϑk+1 � · · · � ϑk+m, (17)

where the ϑi are all temporalised concepts of the form C or, respectively, tem-
poralised roles of the form R. When it does not matter whether we talk about
concepts or roles, we refer to the ϑi as terms. A TBox T and an RBox R are
finite sets of concept inclusions (CIs, for short) and, respectively, role inclusions
(RIs, for short); their union O = T ∪ R is called an ontology.

As before, we classify ontologies by the form of their inclusions and the
temporal operators that occur in them. Let c, r ∈ {bool, horn, krom, core} and
o ∈ {�, ©,�©}. We denote by DL-Liteo

c/r the temporal description logic whose
TBoxes and RBoxes contain concept and role inclusions (17) satisfying c and r,
respectively, and the only temporal operators that occur in them are indicated
in o. Whenever c = r, we use a single subscript, that is, DL-Liteo

c = DL-Liteo
c/c .

Note that, unlike the standard atemporal DL-Lite logics [6,29], which can
have various types of CIs but allow only core RIs (of the form S1 � S2 and
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S1�S2 � ⊥), here we treat CIs and RIs in a uniform way and impose restrictions
on the clausal structure of CIs and RIs separately.

An ABox (data instance, in DL parlance), A, is a finite set of atoms of the
form Ai(a, �) and Pi(a, b, �), where a and b are individual names and � ∈ Z.
We denote by ind(A) the set of individual names in A; as before, we also set
tem(A) =

{
n ∈ Z | min A ≤ n ≤ max A

}
. A DL-Liteo

c/r knowledge base (KB)
is a pair (O,A), where O is a DL-Liteo

c/r ontology and A an ABox. The size |O|
of an ontology O is the number of occurrences of symbols in O; the size of a
TBox, RBox, ABox, and knowledge base is defined analogously.

A (temporal) interpretation is a pair I = (ΔI , ·I(n)), where ΔI �= ∅ and, for
each n ∈ Z,

I(n) = (ΔI , aI
0 , . . . , AI(n)

0 , . . . , P I(n)
0 , . . . ) (18)

is a standard (atemporal) DL interpretation with aI
i ∈ ΔI , AI(n)

i ⊆ ΔI and
P I(n)

i ⊆ ΔI ×ΔI . Thus, we assume that the domain ΔI and the interpretations
aI

i ∈ ΔI of the individual names are the same for all n ∈ Z. (However, we do
not adopt the unique name assumption.) The description logic and temporal
constructs are interpreted in I(n) as follows:

(P−
i )I(n) =

{
(u, v) | (v, u) ∈ P

I(n)
i

}
,

(∃S)I(n) =
{

u | (u, v) ∈ SI(n), for some v
}
,

(�F ϑ)I(n) =
⋂

k>n

ϑI(k), (�P ϑ)I(n) =
⋂

k<n

ϑI(k),

(©
F ϑ)I(n) = ϑI(n+1), (©

P ϑ)I(n) = ϑI(n−1).

As usual, ⊥ is interpreted by ∅, and � by ΔI for concepts and by ΔI × ΔI for
roles. CIs and RIs are interpreted in I globally, i.e., (17) holds in I if

ϑ
I(n)
1 ∩ · · · ∩ ϑ

I(n)
k ⊆ ϑ

I(n)
k+1 ∪ · · · ∪ ϑ

I(n)
k+m, for all n ∈ Z.

Given an inclusion α, we write I |= α if α holds in I. We call I a model of
(O,A) and write I |= (O,A) if

I |= α, for all α ∈ O, aI ∈ AI(�), for all A(a, �) ∈ A,

and (aI , bI) ∈ P I(�), for all P (a, b, �) ∈ A.

We say that O is consistent if there is an interpretation I, a model of O, such
that I |= α, for all α ∈ O; we also say and that A is consistent with O if there is
a model of (O,A). For an inclusion α, we write O |= α if I |= α for every model
I of O. A concept C is consistent with O if there is a model I of O and n ∈ Z

such that CI(n) �= ∅; consistency of roles with O is defined analogously.
We now define a language for querying temporal knowledge bases, which

was inspired by the SPARQL 1.1 entailment regimes [44]; see also [46,69].
The main ingredients of the language are positive temporal concepts κ and pos-
itive temporal roles � given by the following grammars:
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κ ::= � | Ak | ∃S.κ | κ1 � κ2 | κ1 � κ2 |
op1 κ | κ1 op2 κ2,

� ::= S | �1 � �2 | �1 � �2 | op1 � | �1 op2 �2,

where op1 ∈ {©
F ,♦F ,�F , ©

P ,♦P ,�P } and op2 ∈ {U ,S}. Let I = (ΔI , ·I(n)) be
an interpretation. The extensions κ

I(n) of κ in I, for n ∈ Z, are computed using
the definition above and the following items:

(∃S.κ)I(n) =
{

u ∈ ΔI | (u, v) ∈ SI(n), for some v ∈ κ
I(n)

}
,

(κ1 � κ2)I(n) = κ
I(n)
1 ∩ κ

I(n)
2 , (κ1 � κ2)I(n) = κ

I(n)
1 ∪ κ

I(n)
2 ,

(♦F κ)I(n) =
⋃

k>n

κ
I(k), (♦P κ)I(n) =

⋃

k<n

κ
I(k),

(κ1Uκ2)I(n) =
⋃

k>n

(
κ

I(k)
2 ∩

⋂

n<m<k

κ
I(m)
1

)
,

(κ1 S κ2)I(n) =
⋃

k<n

(
κ

I(k)
2 ∩

⋂

k<m<n

κ
I(m)
1

)
.

The definition of �I(n) is analogous. Note that positive temporal concepts κ and
roles � include all temporalised concepts C and roles R, respectively (∃S is a
shortcut for ∃S.�).

A DL-Liteo
c/r ontology-mediated instance query (OMIQ) is a pair of the form

q = (O, κ) or q = (O, �), where O is a DL-Liteo
c/r ontology, κ is a positive

temporal concept and � a positive temporal role (which can use all temporal
operators, not necessarily only those in o). If κ is a basic concept (i.e., A or ∃S)
and � a role, then we refer to q as an ontology-mediated atomic query (OMAQ,
as before). A certain answer to an OMIQ (O, κ) over an ABox A is a pair
(a, �) ∈ ind(A) × tem(A) such that aI ∈ κ

I(�) for every model I of (O,A). A
certain answer to (O, �) over A is a triple (a, b, �) ∈ ind(A) × ind(A) × tem(A)
such that (aI , bI) ∈ �I(�) for every model I of (O,A). The set of all certain
answers to q over A is denoted, as before, by ans(q,A).

Let A be any given ABox with ind(A) = {a1, . . . , am}. We always assume,
without much loss of generality, that |tem(A)| ≥ |ind(A)| (if this is not the
case, we can simply add the required number of dummies with the missing time
instances to |tem(A)|). We represent A as a structure SA with domain tem(A)
ordered by < such that

SA |= A(k, �) iff A(ak, �) ∈ A, SA |= P (k, k′, �) iff P (ak, ak′ , �) ∈ A,

for any concept and role names A, P and any k, k′, � ∈ tem(A). To simplify
notation, we often identify an individual name ak ∈ ind(A) with its number
representation k ∈ tem(A). The structure SA represents a temporal database
over which we can evaluate first-order formulas (queries) with predicates of the
form A(x, t), P (x, y, t) and t1 < t2 as well as other standard numeric predicates
and relational primitive recursion.
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Definition 23 (FO-rewritability). Let L be one of the three languages FO(<),
FO(<,≡N) or FO(RPR). Let q = (O, κ) be an OMIQ and Q(x, t) a constant-free
L-formula with free variables x and t. We call Q(x, t) an L-rewriting of q if, for
any ABox A, any a ∈ ind(A) and any � ∈ tem(A), we have (a, �) ∈ ans(q,A) iff
SA |= Q(a, �). Similarly, a constant-free L-formula Q(x, y, t) is an L-rewriting of
an OMIQ q = (O, �) if, for any ABox A, any a, b ∈ ind(A) and any � ∈ tem(A),
we have (a, b, �) ∈ ans(q,A) iff SA |= Q(a, b, �).

Having all the definitions given, it is time to recall that two-dimensional
combinations of knowledge representation formalisms can be computationally
very complex if any non-trivial interaction between the dimensions is available;
see, e.g., [41–43,54,65]. Our temporalised DL-Lite logics are not an exception as
the following theorem demonstrates:

Theorem 24. (i) Consistency checking for DL-Lite
©
bool KBs is undecidable.

(ii) There are DL-Lite
©
bool OMAQs q1 = (O, A) and q2 = (O, S) such that

the problems whether, for a given ABox A, the pair (a, 0) is a certain answer to
q1 over A and (a, b, 0) is a certain answer to q2 over A are undecidable.

Proof (Sketch). (i) The proof is by reduction of the undecidable N × N-tiling
problem [19]. Given a set T = {1, . . . , k} of tile types, we define a DL-Lite

©
bool

KB (OT, {I(a, 0)}) with the following ontology OT, where the Ri are role names
associated with the tile types i ∈ T and top(i), bot(i), right(i), left(i) are the
colours on the four edges of any tile type i:

I �
⊔

i∈T

∃Ri, Ri �
⊔

right(i)=left(j)

©
F Rj ,

∃R−
i �

⊔

top(i)=bot(j)

∃Rj , ∃Ri � ∃Rj � ⊥, for i �= j.

It is readily checked that {I(a, 0)} is consistent with OT iff T can tile the N×N

grid.
(ii) Using the representation of the universal Turing machine by means of

tiles (see, e.g., [23]), we obtain a set U of tile types for which the following
problem is undecidable: given a finite sequence of tile types i0, . . . , in, decide
whether U can tile the N × N grid so that tiles of types i0, . . . , in are placed
on (0, 0), . . . , (n, 0), respectively. Given such i0, . . . , in, we take the ABox A =
{ I(a, 0), Ri0(a, b, 0), . . . , Rin

(a, b, n) }. Then U can tile N × N with i0, . . . , in on
the first row iff A is consistent with OU iff A(a, 0) is not a certain answer to
OMAQ (OU, A) over A, where A is a fresh concept name; similar considerations
apply to the case of a fresh role S. ��

We can obtain better-behaved logics by restricting the expressive power of
role inclusions. The proof of the following result can be found in [60].

Theorem 25. Consistency checking for DL-Lite
©
bool/krom, DL-Lite�©

bool/horn

and DL-Lite�©
horn is ExpSpace-complete for combined complexity ; for

DL-Lite�©
bool/core and DL-Lite�©

horn/core, it is PSpace-complete.
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Let us now consider FO-rewritability of OMQs with ontologies in tempo-
ralised DL-Lite. To avoid many a technical detail and concentrate on the main
ideas, we only discuss here OMQs with atomic queries (that is, OMAQs) and
ontologies without occurrences of ⊥ (which, therefore, are always consistent).
Let L be one of the target languages FO(<), FO(<,≡N) or FO(RPR). We show
that L-rewritability of a ⊥-free OMAQ with an DL-Lite�©

bool/horn ontology is
reducible to L-rewritability of a role-free OMAQ. Ontologies without roles are
clearly a notational variant of LTL ontologies; hence, in this case we can write
‘LTL�©

bool ontologies’. We explain the reduction by instructive examples. The first
two of them illustrate the interaction between the DL and temporal dimensions
in DL-Lite�©

bool/horn that we need to take into account when constructing the LTL
OMAQs to which the rewritability of ⊥-free DL-Lite�©

bool/horn OMAQs is reduced.

Example 26. Suppose T = {B � ∃P, ∃Q � A } and R = {P � ©
F Q }.

An obvious idea of constructing a rewriting for the OMAQ q = (T ∪ R, A)
would be to find first a rewriting of the LTL OMAQ (T †, A†) obtained from
(T , A) by replacing the basic concepts ∃P and ∃Q with surrogate concept names
(∃P )† = EP and (∃Q)† = EQ, respectively. This would give us the FO-query
A(x, t)∨EQ(x, t). By restoring the intended meaning of EQ, we would then obtain
A(x, t) ∨ ∃y Q(x, y, t). The second step would be to rewrite, using the RBox R,
the atom Q(x, y, t) into Q(x, y, t)∨P (x, y, t−1). However, the resulting formula

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t − 1)

)

is not a rewriting of q as it does not return the certain answer (a, 1) over the ABox
A = {B(a, 0), C(a, 1)} because so far we have not taken into account the CI
∃P � ©

F ∃Q, which is a consequence of R. If we now add the ‘connecting axiom’
(∃P )† � ©

F (∃Q)† to T †, then in the first step we obtain A(x, t) ∨ EQ(x, t) ∨
EP (x, t − 1) ∨ B(x, t − 1), which gives us the correct FO(<)-rewriting of q:

A(x, t) ∨ ∃y
(
Q(x, y, t) ∨ P (x, y, t − 1)

)
∨ ∃y P (x, y, t − 1) ∨ B(x, t − 1).

Example 27. Let q = (T ∪ R, A) with T = { ∃Q � �P A } and

R = {P � �F P1, T � �F T1, T1 � �F T2, P1 � T2 � Q}.

The two-step construction outlined in Example 26 would give us first the formula

Φ(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧ ∃y Q(x, y, t′)

)

as a rewriting of (T , A). It is readily checked that the following formula Ψ(x, y, t′)
is a rewriting of (R, Q):

Q(x, y, t′) ∨
([

P1(x, y, t′) ∨ ∃t′′
(
(t′′ < t′) ∧ P (x, y, t′′)

)]
∧

[
T2(x, y, t′) ∨ ∃t′′

(
(t′′ < t′) ∧

(
T1(x, y, t′′) ∨

∃t′′′
(
(t′′′ < t′′) ∧ T (x, y, t′′′)

)))])
.

However, the result of replacing Q(x, y, t′) in Φ(x, t) with Ψ(x, y, t′) is not an
FO(<)-rewriting of (O, A): when evaluated over A = {T (a, b, 0), P (a, b, 1) }, it
does not return the certain answers (a, 0) and (a, 1); see the picture below:
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0 1 2 3 4

a A A A A A

b
T P , T1 P1, T1, T2, Q P1, T1, T2, Q P1, T1, T2, Q

(Note that these answers would be found had we evaluated the obtained ‘rewrit-
ing’ over Z rather than {0, 1}.) This time, we miss the concept inclusion
∃(�F P1 � �F T2) � �F ∃Q, which follows from R and T . To fix the problem,
we can take a fresh role name Gρ, for ρ = {�F P1,�F T2 }, and add the ‘connect-
ing axiom’ ∃Gρ � �F ∃Q to T . Then, in the first step, we rewrite the extended
TBox and A to the formula

Φ′(x, t) = A(x, t) ∨ ∃t′
(
(t < t′) ∧
(
∃y Q(x, y, t′) ∨ ∃t′′

(
(t′′ < t′) ∧ ∃y Gρ(x, y, t′′)

)))
,

where we replace Q(x, y, t′) by Ψ(x, y, t′) and restore the meaning of Gρ(x, y, t′)
by rewriting (R,�F P1 � �F T2) to P (x, y, t′) ∧

(
T1(x, y, t′) ∨ ∃t′′

(
(t′′ < t) ∧

T (x, y, t′′)
))

and substituting it for Gρ(x, y, t′) in Φ′(x, t).

We now formally define the connecting axioms for O, assuming that R con-
tains all role names in T . Let ρ be a set of (temporalised) roles from R consistent
with R. Let rρ be the R-canonical rod for {S(d, e, 0) | S ∈ ρ}. Clearly, there are
positive integers s ρ ≤ |R| and p ρ ≤ 22|R| with

rρ(n) = rρ(n − p ρ), for n ≤ −s ρ,

rρ(n) = rρ(n + p ρ), for n ≥ s ρ.

Then we take a fresh role name Gρ and fresh concept names Dn
ρ , for −s ρ −p ρ <

n < s ρ + p ρ, and construct the CIs

∃Gρ � D0
ρ, Dn

ρ � ©
F Dn+1

ρ , for 0 ≤ n < s ρ + p ρ − 1,

Ds ρ+p ρ−1
ρ � ©

F Ds ρ

ρ ,

Dn
ρ � ∃S, for S ∈ rρ(n), 0 ≤ n < s ρ + p ρ,

and symmetrical ones for −s ρ − p ρ ≤ n ≤ 0. Let (con) be the set of such CIs
for all possible ρ. Set TR = T ∪ (con).

Example 28. In Example 26, for ρ = {P, ©
F Q}, we have s ρ = 2, p ρ = 1, and so

TR contains the CIs

∃P � D0
ρ, D0

ρ � ©
F D1

ρ, D1
ρ � ©

F D2
ρ,

D2
ρ � ©

F D2
ρ, D0

ρ � ∃P, D1
ρ � ∃Q,
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which imply ∃P � ©
F ∃Q. In the context of Example 27, for ρ = {�F P1,�F T2},

we have s ρ = 1, p ρ = 1, and so TR contains the following CIs:

∃Gρ � D0
ρ, D0

ρ � ©
F D1

ρ, D1
ρ � ©

F D1
ρ,

D1
ρ � ∃P1, D1

ρ � ∃T2, D1
ρ � ∃Q.

We denote by T †
R the LTL�©

bool TBox obtained from TR by replacing every
basic concept B with its surrogate B†.

Theorem 29. Let L be one of FO(<), FO(<,≡N), FO(RPR).
A DL-Lite�©

bool/horn OMAQ (O, A) with a ⊥-free O = T ∪ R is L-rewritable
whenever

– the LTL�©
bool OMAQ (T †

R, A) is L-rewritable and

– the LTL�©
horn OMAQ (R, R) is L-rewritable, for every temporalised role in R.

As a consequence of Theorems 13 and 29, we obtain:

Theorem 30. Every DL-Lite�©
bool/horn OMAQ is FO(RPR)-rewritable.

Moreover, we also have the following:

Corollary 31. (i) All DL-Lite�©
krom/core OMAQs, and so all DL-Lite�©

core OMAQs
are FO(<,≡N)-rewritable.

(ii) All DL-Lite�©
bool/horn OMAQs are FO(RPR)-rewritable.

These results can be extended to OMQs with more complex queries:

Theorem 32. (i) All DL-Lite�
horn/core OMIQs are FO(<)-rewritable.

(ii) All DL-Lite
©
core OMIQs are FO(<,≡N)-rewritable.

(iii) All DL-Lite�©
horn OMIQs are FO(RPR)-rewritable.

It is to be noted that Theorem 32 holds for core and Horn DL-Lite logics
only because even very simple disjunctive axioms lead to coNP-complete OMIQ
answering problem. For example, as follows from [76], answering the atemporal
DL-Litekrom OMIQ

(
{� � A � B}, ∃R.(∃P1.A � ∃P2.A � ∃N1.B � ∃N2.B)

)

is coNP-complete for data complexity.

5 Ontology-Mediated Queries with MTL Ontologies

So far, we have discussed temporal ontologies with LTL-operators, which allowed
us to naturally describe the behaviour of synchronous systems. Note, however,
that LTL-representations of metric statements such as ‘high temperature will be
reached in at most 100 s’ require long and unreadable disjunctions of the form

©
F HighTemp∨ ©

F
©

F HighTemp∨ ©
F

©
F

©
F HighTemp∨ · · · ∨ ©

F . . . ©
F︸ ︷︷ ︸

100

HighTemp.
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Moreover, such formulas become meaningless in the case of asynchronous systems
where time is dense and there is no next or previous moment.

A more suitable temporal knowledge representation formalism in this case
is metric temporal logic MTL, which was introduced for modelling and reason-
ing about real-time systems [3,62]. Essentially, MTL-operators are obtained by
indexing the LTL-operators with arbitrary intervals �, which allow concise rep-
resentation of metric information and which can be used over dense time. We
denote the metric counterparts of the future LTL-operators ♦F , �F , and U by
��, ��, and U�, respectively; their past analogues are ��, ��, and S�. Recall
from Sect. 2 that, in the case of dense time, we assume that timestamps are
dyadic rational numbers (whose set is denoted by Q2). Each interval �, indexing
an MTL-operator and called its range, has non-negative end-points from Q

≥0
2

or ∞.

Example 33. The formula �(0,100]HighTemp is regarded to be true at a time
instant t ∈ Q2 if HighTemp is true at some moment in the interval (t, t + 100];
dually, the formula �(0,100]HighTemp holds at t if HighTemp is true at every point
of that interval. Note that the LTL-formula ♦F HighTemp has the same meaning
as the MTL-formula �(0,∞)HighTemp and �F HighTemp as �(0,∞)HighTemp.

Similarly to the case of LTL, we treat ontology axioms with MTL-operators
as (variable-free) abbreviations for monadic first-order formulas. However, since
now time is dense, instead of MFO(<)-formulas, we use MFO(<, δ≤Q2 , δ=Q2)-
formulas, where δ<a and δ=a, for a ∈ Q

+
2 , are additional built-in binary predi-

cates allowing us to speak about the distance between moments of time. Recall
that δ<a(x, y) stands for 0 ≤ x − y < a, and δ=a(x, y) for x − y = a. Using
these predicates, for every range �, we can define a predicate δ�(x, y) saying that
x − y ∈ �; for example, we can set

δ[1,2)(x, y) = δ≥1(x, y) ∧ δ<2(x, y).

We can define the standard translation ‡ from MTL into MFO(<, δ≤Q2 , δ=Q2),
similar to the translation † of LTL into MFO(<), by taking, for example

(��κ)‡ = ∀t′
(
δ�(t′, t) → κ

‡{t/t′}
)
,

(��κ)‡ = ∃t′
(
δ�(t′, t) ∧ κ

‡{t/t′}
)
.

As mentioned in Sect. 2, there are two semantics for MFO(<, δ≤Q2 , δ=Q2) and
MTL. In the continuous semantics, the temporal domain in the definition (2) of
ans(q,A) is the whole of Q2; in the pointwise semantics, it coincides with the
active domain tem(A). Under the former, MFO(<, δ≤Q2 , δ=Q2)-formulas with
one free variable have the same expressive power as MTL-formulas interpreted
over the reals R [55]. On the other hand, the satisfiability and model checking
problems turn out to be undecidable in this case [50]. However, as shown in [71],
both problems become decidable, albeit with non-primitive recursive complexity,
if the pointwise semantics is adopted.
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Let us now turn to OBDA with MTL-ontologies. Compared to the LTL
OMQs, research of the MTL case has just begun, and very few results are known
at the moment. In particular, FO-rewritability of MTL OMQs under the contin-
uous semantics is practically terra incognita; we refer the reader to [25,26,82,83]
and the survey [9]. In the remainder of this section, we discuss what is known
about FO-rewritability of MTL OMQs under the pointwise semantics follow-
ing [75]. We begin with an example.

Example 34. Consider the MTL-ontology O = {�[0,2)B → B′, �[1,1]B
′ → A}

and the data instances A1 = {B(0), B(1/2), C(3/2)} and A2 = {B(0), C(3/2)}.
Then tem(A1) = {0, 1/2, 3/2} and tem(A2) = {0, 3/2}. The minimal models I1

of (O,A1) and I2 of (O,A2) are shown in the picture below:

I1 : I2 :
B B′

0

B B′

1/2

C A

3/2

B B′

0

C

3/2

Hence, 3/2 is a certain answer to the OMAQ (O, A) over A1, but there is no
certain answer to (O, A) over A2.

In what follows, we consider FO-rewritability of MTL OMAQs only. The
following observation is simple and left to the reader.

Theorem 35. Answering MTL OMAQs is in coNP for data complexity.

The next theorem establishes some lower complexity bounds for answering
MTL OMQs, which should be compared with the data complexity of LTL OMQs.
In this theorem, MTL− means MTL with past operators only, with MTL−

horn

and MTL−
core being its Horn and core fragments, respectively.

Theorem 36. (i) Answering MTL OMAQs is coNP-hard for data complexity.
(ii) Answering OMAQs with an MTL−

core ontology is P-hard for data com-
plexity.

(iii) Answering OMAQs with an MTL−
core ontology containing � operators

only is NL-hard for data complexity.

Proof (Sketch). We show (i) by reduction of the complement of the NP-
complete circuit satisfiability problem [5]. Instead of presenting the details
of the construction, we only consider the Boolean circuit below, which con-
tains two input gates, one AND gate, one OR gate, and one NOT gate.

∨
2

∧
3

¬
4

X
1

X
0

First, we enumerate the gates of the circuit with consecutive numbers starting
from 0 so that if there is an edge from n to m, then n < m (observe that such
an enumeration always exists). Then we define a data instance A stating that
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A holds in 25 timestamps. These timestamps form 5 sections, each containing 5
timestamps (as there are 5 gates in the circuit) as depicted below:

A A A A A A A A A A A A A A A A A A A A A A A A A

0
8

1
8

2
8

3
8

4
8

16
8

17
8

18
8

19
8

20
8

32
8

33
8

34
8

35
8

36
8

48
8

49
8

50
8

51
8

52
8

64
8

65
8

66
8

67
8

68
8

X X I1 I2 D I1I2 C I0N
T T F T F T T F T F T F T F T

The data instance A also contains facts about X (for the input gates), D (for
the OR gate), C (for the AND gate), N (for the NOT gate), I0 (for the input of
the NOT gate), and I1 and I2 (for the first and the second inputs to the binary
gates, i.e., OR and AND). The i-th section of A represents information about
the i-th gate. For example, the left-most section of A describes the gate 0 by
stating that X holds in the left-most timestamp in this section. On the other
hand, the third section from the left describes the OR gate by stating that D
holds in the third from the left timestamp in this section (which expresses that
the gate number 2 is an OR gate), that I1 holds in the first timestamp from the
left in the section (which expresses that the gate number 0 is the first input to
the OR gate), and that I2 holds in the second timestamp from the left in the
section (which expresses that the gate number 1 is the second input to the OR
gate).

We can now construct an ontology that allows checking unsatisfiability of
any circuit. The ontology uses two more atoms T and F , which stand for ‘true’
and ‘false’ and which allow us to simulate propagation of signals in the circuit:

X → T ∨ F, �[2,2]T → T, �[2,2]F → F,

N ∧�[0,1](I0 ∧ T ) → F, N ∧�[0,1](I0 ∧ F ) → T,

D ∧�[0,1](I1 ∧ T ) → T, D ∧�[0,1](I2 ∧ T ) → T,

C ∧�[0,1](I1 ∧ F ) → F, C ∧�[0,1](I2 ∧ F ) → F,

D ∧�[0,1](I1 ∧ F ) ∧�[0,1](I2 ∧ F ) → F,

C ∧�[0,1](I1 ∧ T ) ∧�[0,1](I2 ∧ T ) → T.

A possible propagation of T and F enforced by the ontology is shown in the
previous picture with T and F written in grey. A given circuit is unsatisfiable
iff the right-most timestamp in A is a certain answer to an OMAQ consisting of
the above ontology and the query F .

(ii) The proof is by reduction of path system accessibility (PSA) which con-
sists of checking whether there exists a hyperpath between two nodes in a hyper-
graph (the problem is well-known to be P-complete). For example, assume that
a hypergraph contains vertices 0, 1, 2, 3, and a single hyperedge (0, 1, 2). Suppose
we want to check whether the vertex t = 3 is accessible from the set of vertices
S = {0, 1}, i.e., whether t ∈ S or there are vertices u,w accessible from S and



138 V. Ryzhikov et al.

(u,w, t) is a hyperedge. For such an instance of PSA, we construct the following
data instance A:

AAAA AAAAA

5
4

AAA

0
4

1
4

2
4

3
4

8
4

9
4

10
4

16
4

17
4

18
4

19
4

RR RRR′
R′R′R′′ Rby O:

A :

hyperedge (v0, v1, v2)

We next define an MTL−
core-ontology O with the axioms:

�[2,2]R → R′, �[0,1]R
′ → R′′, �[2,2]R

′′ → R, �[4,4]R → R.

Then 4k+t/N is a certain answer to (O, R) over A iff t is accessible from S
in G.

We prove (iii) by reduction of the NL-complete reachability problem in
acyclic digraphs. As an example, assume that we want to check whether t = 3
is accessible from s = 0 in the following directed graph G:

•
s = 0

•
1

•
2

•
3 = t

To this end, we construct a data instance AG, whose initial segment (corre-
sponding to the edge from 0 to 2) is depicted below:

AAAA AAAAA A

0
4

1
4

2
4

3
4

8
4

10
4

16
4

17
4

18
4

19
4

R R
R′ R′′ Rby O:

A :

edge e0 = (0, 2)

Let O be a MTL−
core-ontology with the following rules:

�[2,2]R → R′, �(0,1]R
′ → R′′, �[2,2]R

′′ → R, �[4;4]R → R.

Then 4k + t/N is a certain answer to (O, R) over A iff t is reachable from s
in G. ��

In the next theorem, we show that, for each MTL−
horn-OMAQ, there is a

rewriting to datalog queries with additional FO-formulas built from EDB pred-
icates in their rule bodies, answering which is in P [45].

Theorem 37. Every MTL−
horn-OMAQ is datalog(FO)-rewritable, and so can

be answered in P for data complexity.

Proof (Sketch). To illustrate how one can construct a datalog(FO)-rewriting, we
consider the MTL−

horn-OMAQ q = (O,Alert), where O consists of the axiom:

�(0,600]RotorSpeedAbove1260 ∧ �[0,10]MainFlameOn → Alert.



Temporal Ontology-Mediated Queries and First-Order Rewritability 139

We construct a datalog(FO)-rewriting (Π, G) of q. We will use suc(x, y) stating
that x is the immediate successor of the timestamp y.

The first block of Π has the following rules for every atom B occurring in q:

B(x) → B′(x, x), B′(x, y) ∧ B′(z, z) ∧ suc(y, z) → B′(x, z).

Intuitively, instead of unary predicates B(x) stating that B holds at a timestamp
x, we want to obtain binary predicates B′(x, y) stating that B holds in the
interval [x, y] (i.e., in all timestamps from the temporal domain that belong to
this interval). The first rule converts B(x) into B′(x, x), while the second rule
allows us to coalesce intervals by stating that if B holds in [x, y] and in z, and
moreover, there is no timestamp between y and z, then B holds in [x, z].

The second block of Π consists of rules obtained by modifying axioms in O,
where every atom B not in the scope of a metric operator is replaced by B′(x, x),
whereas atoms in the scope of metric operators are replaced by corresponding
formulas using predicates such as δ<a and δ>a. In particular, in our example the
single rule in O would be replaced with:

(
MainFlameOn′(w, z) ∧ δ≥600(x,w) ∧ δ<0(x, z) ∧ δ≥600(z, w)

)
∧

(
RotorSpeedAbove1260′(w, z) ∧ δ>0(x,w) ∧ δ≤6000(x, z)

)
→ Alert′(x, x).

Finally, the program Π contains the rule

Alert′(x, x) → G(x),

which states that if A holds at x, then G also holds at x.
Now, for every data instance A, t is a certain answer to q over A iff t is an

answer to (Π, G) over A. As a result, (Π, G) is a datalog(FO)-rewriting of q.
Note that so far we have assumed that A is in the signature (3). However,

this assumption does not differentiate between small (e.g., 0.01) and large (e.g.,
1000.00000001) timestamps in A. Instead, we can consider A in a different sig-
nature using binary predicates bit(i, j) indicating that the integer part of the
timestamp i has bit j equal to 1, and analogous predicates for the fractional
part. In this new representation of A, we do not assume the predicates δ<a(x, y)
and δ=a(x, y), however, we can express them as FO(<)-formulas ϕ<a(x, y) and
ϕ=a(x, y) with the predicates bit (see [75] for details). The predicate suc(x, y) is
also expressible in the new representation as (y < x) ∧ ¬∃z (y < z < x). ��

The next theorem establishes rewritability into FO(TC) that extends
FO(<) with the transitive closure operator. In complexity-theoretic terms,
FO(TC) corresponds to NL [56].

Theorem 38. Every MTL−
core-OMAQ with an ontology containing �� opera-

tors only is FO(TC)-rewritable, and so can be answered in NL for data com-
plexity.

Proof (Sketch). Let q = (O, A) be an MTL−
core-OMAQ with �� operators only.

First, we delete all disjointness constraints of the form C1 ∧C2 → ⊥ from O and
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we translate the query into datalog(FO) in the same way as we did in the proof
of Theorem 37. Since q is core, by the form of this translation, we obtain a linear
datalog(FO) program. It is well-known that such a program can be transformed
into an FO(TC)-query ΨA(x) [45]. For every disjointness constraint C1∧C2 → ⊥
in O, we take the sentence ∃x (ΨC1(x) ∧ ΨC2(x)) and, finally, form a disjunction
of ΨA(x) with those sentences, which is an FO(TC)-rewriting of q. ��

The rewritability results we are going to present next impose restrictions
on the range of metric operators: in particular, we consider ontologies with
unbounded ranges of the form 〈r,∞), for r ∈ Q

≥0
2 and 〈 being ( or [, punc-

tual ranges [r, r], for r ∈ Q
≥0
2 , and non-punctual ranges.

Theorem 39. Every MTL−-OMAQ q = (O, A) with temporal operators in O
of the form

– �〈r,∞) and �〈r,∞) only is FO(<)-rewritable, and so can be answered in AC
0;

– �[r,r] and �[r,r] only is FO(RPR)-rewritable, and answering such OMAQs is
NC

1-complete for data complexity;
– �� and ��, for non-punctual �, only is FO(TC)-rewritable; answering such

OMAQs is in NL and NC
1-hard for data complexity.

Moreover, MTL−
horn-OMAQs from the last item are also FO(DTC)-rewritable

(FO with deterministic transitive closure), and so answering them is in L for data
complexity. These rewritings heavily depend on the properties of the minimal
models of OMAQs of a given type. For example, in the case of MTL-OMAQ
with temporal operators of the forms �〈r,∞) and �〈r,∞) only, we can observe
that the minimal model is monotonic in the sense that if �〈r,∞)P holds in a
timestamp t, then the same formula holds in all timestamps greater than t.
Analogously, if �〈r,∞)P does not hold in a timestamp t, then this formula holds
in all timestamps smaller than t. It turns out that we can use this observation
(and some additional properties of the minimal model) to construct an FO(<)-
rewriting. For more details of the constructions we refer the reader to [75].

So far in this section we discussed MTL-OMAQs. What do we know about
wider classes of MTL OMQs (under the pointwise semantics)? First, we have:

Theorem 40. Every MTL OMQ q = (O, ψ(t)) with an MFO(<, δ≤Q2 , δ=Q2)-
formula ψ(t) is coNP-complete for data complexity.

Note that the counterpart of this result in LTL is Theorem 13. Furthermore, we
say that MFO(<, δ≤Q2 , δ=Q2)-formula is positive, if it is constructed using ∧, ∨,
∀, ∃. We say that an MTL-OMQ q = (O, ψ(t)) is positive, if ψ(t) is a positive
MFO(<, δ≤Q2 , δ=Q2)-formula. The following result follows from [75]:

Theorem 41. Suppose q = (O, ψ(t)) is a positive MTLhorn-OMQ and L a
language containing FO(<). Suppose also that, for each atomic A in ψ, the
OMAQ (O, A) is L-rewritable. Then, q is also L-rewritable.

Therefore, by Theorems 37, 38, and 39, we obtain:
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Corollary 42. (i) Every positive MTL−
horn-OMQ is datalog(FO)-rewritable.

(ii) Every positive MTL−
core-OMQ with an ontology containing �� operators

only is FO(TC)-rewritable.
(iii) Every positive MTL−-OMQ with an ontology containing �〈r,∞) and

�〈r,∞) operators only is FO(<)-rewritable.
(iv) Every positive MTL−-OMQ with an ontology containing �[r,r] and �[r,r]

operators only is FO(RPR)-rewritable.
(v) Every positive MTL−-OMQ with an ontology containing �� and �� for

non-punctual � only is FO(TC)-rewritable.

It is of interest to compare the results above to the results in the LTL case
given by Corollary 21. The latter results also hold for positive OMQs, since every
positive OMQ is also monotone. The comparison shows that, even in the case of
positive Horn OMQs, the complexity landscape is more diverse for MTL than
for LTL.

6 Future Research

In this paper, we have tried to overview recent developments in ontology-based
access to temporal data, focusing primarily on the problem of rewriting tempo-
ral ontology-mediated queries into first-order queries over the data. For other
aspects of temporal OBDA the reader is referred to the survey [9]. Compared
to the classical atemporal OBDA, its temporal counterpart is still an infant,
from both theoretical and especially practical points of view. In the remainder
of this concluding section, we briefly discuss a few open problems and directions
for future research that are related to OBDA with LTL, MTL and temporal
DL-Lite.

LTL. The classical OBDA theory has recently investigated the fine-grained com-
bined and parameterised complexities of OMQ answering and the succinctness
problem for FO-rewritings [15,20–22]. These problems are of great importance
for the temporal case, too (in particular, because the rewritings discussed above
are far from optimal). Another development in the classical OBDA theory is
the classification of single ontologies and even OMQs according to their data
complexity and rewritability [51,66,67]. Extending this approach to temporal
OMQs will most probably require totally different methods because of the lin-
early ordered temporal domain.

Temporal DL-Lite. The technique considered above does not seem to work for
(two-sorted) conjunctive queries in place of instance queries; on the other hand,
the methods of [7] indicate a somewhat different approach to deal with not
necessarily tree-shaped conjunctive queries having multiple answer variables. It
is of interest what happens with OMAQs when we consider Krom role inclu-
sions. There are two open questions: the upper bound for DL-Lite�

bool OMAQs
and FO-rewritability of DL-Lite�

krom and DL-Lite�©
krom OMAQs. We conjecture
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that DL-Lite�
krom OMAQs are FO(<)-rewritable and DL-Lite�©

krom OMAQs are
FO(<,≡N)-rewritable. To show this, one may need a type-based technique sim-
ilar to the approach in the proof of Theorem 18 as Theorem 29 is not appli-
cable to Krom role inclusions. Another open question is the upper bound for
DL-Lite�

bool OMAQs. On the practical side, more real-world use cases are needed
to understand which temporal constructs are required to specify relevant tempo-
ral events and evaluate the performance of OMQ rewritings; for some activities
in this direction we refer the reader to [17,24,25,58].

MTL. Much less is known about OMQs with MTL-ontologies than about ontolo-
gies with LTL-operators. The results presented in this paper show that some
MTL-ontologies can be rewritten to FO (and its extensions), which indicates
that reasoning with such ontologies may be feasible in practise. However, the
computational properties of MTL-ontologies heavily depend on many aspects,
such as the form of available metric operators and the type of ranges they use.
The results presented in the previous section are only preliminary observations,
and we are clearly far from understanding well the complexity of answering
MTL-OMQs and classifying them accordingly. Here we mention some interest-
ing open problems. Observe that Theorem 39 about OMAQs with non-punctual
ranges contains a gap between NL and NC

1, and between L and NC
1. It would

be interesting to establish tight complexity bounds for such OMAQs, as non-
punctuality of ranges is a standard approach in MTL, which often allows one to
reduce significantly the computational costs [2]. There are also many types of
MTL-OMQs that have not been considered so far, for example, the ones with
the ‘since’ and ‘until’ operators, as well as more complex queries, such as quasi-
positive, or general (used in LTL-OMQs).

Another direction of future work concerns adopting the continuous semantics.
Interestingly, such an approach has been already considered with respect to
extensions of Datalog with MTL-operators [26,82] and applied, for example, to
stream reasoning [48,49,63,83]. It is also worth mentioning that there is work
on combining DLs with MTL [11,47]. As there is a big variety of potential
applications of ontologies with MTL-operators, for instance, to image sequence
evaluation [27], to ambient intelligence context [18,70], or to online monitoring
asynchronous systems [14,37,53], among others, this direction of research looks
very promising.
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in nc1. J. Comput. Syst. Sci. 44(3), 478–499 (1992). https://doi.org/10.1016/0022-
0000(92)90014-A

17. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: a logic-based framework for
analyzing reasoning over streams. In: Bonet, B., Koenig, S. (eds.) Proceedings
of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin, Texas,
USA, 25–30 January 2015, pp. 1431–1438. AAAI Press (2015). http://www.aaai.
org/ocs/index.php/AAAI/AAAI15/paper/view/9657

http://dx.doi.org/10.1006/inco.1993.1025
https://doi.org/10.1016/b978-0-444-88074-1.50015-9
https://arxiv.org/abs/2004.07221
https://doi.org/10.1007/978-3-319-66167-4_4
https://doi.org/10.1007/978-3-319-66167-4_4
https://doi.org/10.1007/978-3-642-35632-2_24
https://arxiv.org/abs/2003.07800
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657


144 V. Ryzhikov et al.

18. Benfold, B., Harland, H., Bellotto, N., Bellotto, N., et al.: Cognitive visual tracking
and camera control. Comput. Vis. Image Underst. 116(3), 457–471 (2012)

19. Berger, R.: The Undecidability of the Domino Problem. American Mathematical
Society (1966)

20. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Ryzhikov, V.,
Zakharyaschev, M.: The complexity of ontology-based data access with OWL 2
QL and bounded treewidth queries. In: Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 2017, pp.
201–216. ACM (2017)

21. Bienvenu, M., Kikot, S., Kontchakov, R., Podolskii, V.V., Zakharyaschev, M.:
Ontology-mediated queries: combined complexity and succinctness of rewritings
via circuit complexity. J. ACM 65(5), 28:1–28:51 (2018)

22. Bienvenu, M., Kikot, S., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: On the
parametrised complexity of tree-shaped ontology-mediated queries in OWL 2 QL.
In: Artale, A., Glimm, B., Kontchakov, R. (eds.) Proceedings of the 30th Inter-
national Workshop on Description Logics, CEUR Workshop Proceedings, Mont-
pellier, France, 18–21 July 2017, vol. 1879 (2017). CEUR-WS.org. http://ceur-ws.
org/Vol-1879/paper55.pdf
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