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Abstract. Empirical studies of Program Performance, are limited by
the choice and the resulting bias, from the input samples used in the
experiment. Estimation and Prediction based on static analysis, are
more universal, superior and widely accepted. However the higher lan-
guage artifacts such as Procedures, Loops, Conditionals and Recursion
which ease program development can be an hindrance to quality analy-
sis and performance study, both in terms of time and effort spent and
in some extreme cases making it impractical. However, we could trans-
form the program, eliminate the constraints imposed by these program
structures and greatly ease the process of quality analysis and perfor-
mance study. This process may also reduce the errors in the estimation,
and help deliver timely results, when there is still an opportunity to
use them in a later analysis phase. We propose transformations prior
to estimation, such as Procedure Call Expansion, Loop Unrolling and
Control Predication collectively referred to as Program Shape Flattening
here with the structural hindrances themselves referred to as the Pro-
gram Shape. The outcome of this transformation, is sequential code that
is easy to work with. Specifically, for parallel performance estimations,
we now have code that is free from Control Dependencies. We use the
concept of Equivalence Classes to group statements based on their Data
Dependence behavior. Statements that belong to an Equivalence Class
are mutually dependent directly or transitively. On the other hand state-
ments that belong to separate Equivalence Classes are dependence free
and can be run in parallel without compromising on the program cor-
rectness. With this arrangement of program statements we claim that
the program run time is now equal to the run time of the class that
runs the longest. While this scheme of grouping program instructions,
can be viewed as a method of parallel conversion, we use this method
here specifically for parallel performance estimation and prediction. After
surveying the published literature, and searching for similar commercial
products, we did not find a comparable technology, to assess the contri-
butions made by Caliper, at the time of writing, and so we claim that
Caliper is the only product of its kind today.
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1 Introduction

The universal method, of estimating the performance of a program, is the wall
clock method, where the time spent by the program, from start to finish, pro-
vides the measure. But when computers of different speeds are involved, a little
more work is needed, in the form of converting, run times to normalized cycles,
before we can compare. When we need fine grained performance, we can use spe-
cialized counters, to further our quest. However, empirical studies of program
performance, are biased towards the choice of input samples used, which is an
inherent limitation of this method.

As an alternative, study of program characteristics, through static analy-
sis, is encouraged. The process seems simple, but tricky, since the cycles, are
hidden in program structures, such as Procedures, Loops, Recursion and Condi-
tions to name a few. This is even more evident, when we undertake performance
study, of parallel programs and serial programs, that are scheduled for, parallel
conversion. It is an unfortunate paradox that, the syntax features of an imper-
ative language, designed to boost programmer productivity, can be a hindrance
to quality analysis and performance studies. We are at the mercy of Analysis
phases later on in the compilation chain to supply the information for estima-
tion. Many of these phases also perform non trivial program transformations to
assist the analysis step further, reducing the relevance of an estimation phase.
If performance estimates are available early, they could be used to determine,
the choice of transformations to apply. How do we get past this dichotomy? By
realizing that syntactic structures are the cause, and finding a cure for it. From
the perspective of a modern imperative language, this means cleaning up syntax
through Procedure Expansion or Function In-lining, Loop Unrolling, Recursion
to Loop Conversion, and Control Predication prior to the analysis and study
phase.

Performance estimation and prediction of code, that is free of syntactic struc-
tures of high level languages are easy. Thus, converting code with these structures
to sequential code, is the first step in our measurement process. We use a pro-
cess called Program Shape Flattening, to eliminate the estimation hurdles. These
syntactic structures, their number and placement which add a unique character
to the program under study together, is referred to as the Program-Shape,

Next we use the concept of Equivalence Class to solve the central problem
that is addressed in the paper namely, the coarse assessment of parallel per-
formance and providing estimation and prediction to programmers. We define
Equivalence Class as a class that holds objects that share a common property. In
the current context, it holds program statements that share dependency between
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them. We call such a class as a Parallel Equivalence Class. Together, the Parallel
Equivalence Classes, that belong to a program, hold all the statements in the
given program. These Parallel Equivalence Classes can be run in parallel and
hence the name. The number of Parallel Equivalence Classes and the instructions
belonging to each, are good indicators, of the parallel behavior of the program.
A large number of Parallel Equivalence Classes with less number of statements
in each indicates that the given program is parallel conversion friendly.

Finally, we define ready to remember, and easy to use parallel performance
indicators to aid the parallel programmer, referred to as, Maximum Available
Parallelism which in short form is referred to as (MAP) and Speedup After
Parallel Conversion which is abbreviated as (SAP). The coming sections, shall
provide details, of our research activities and their outcomes.

The paper, is organized as follows: Sect. 2 which follows, examines the state
of the art, in the domain of performance assessment in general, and parallel
measurement in particular. Section 3 briefly looks at Asterix, our parallel com-
piler and transformation infrastructure. Section 4 discusses in detail, the work-
ings of Caliper, which is an important piece, in the overall solution, provided
by Asterix. Section 5 which follows, presents Caliper in action, from the con-
cept of an example program, in a higher level, imperative language. Section 6 is
dedicated to Competitive Analysis, which is a study to assess, how Caliper fares
against the opposition, in academia and industry. Finally we conclude the paper,
after highlighting the contributions of our work, with the research community,
in perspective.

2 Previous Work

Early methods of converting, serial code to a parallel form, was a manual process,
was error prone and tedious, and not very productive. Its successor, was a parallel
conversion process, that involved both, the programmer and the compiler. The
programmer supplied the hints and pointed out sections of code and data, that
were parallel friendly, and the compiler provided a working solution.

There are many research projects that tried out the semi-manual, hints based
approach. For instance the authors of [8], added parallel extensions, to a standard
imperative language, to empower the language for deployment, in both shared
memory by providing thread support, and in a distributed setting, through mes-
sage passing and mailbox support. The authors of [30] propose a parallel conver-
sion library, for Object Oriented Software, which supports both, Shared Memory
and Cluster Paradigms. Standardization efforts, led to the design of OpenMP,
which is based on the Shared Memory Tasking model, and uses clauses added to
existing imperative languages [2]. This was complemented later, by the Message
Passing Interface (MPI), a solution for use in the Distributed Environments, and
is structured as a library [21]. OpenMP and MPI have been used in the produc-
tion of, industrial strength software, especially in the scientific domain. However
the fact remains that, all these approaches require programmer time and effort,
to supply the hints, which translates to a loss of programmer productivity, and
this prompted researchers to find better solutions.
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Automated Parallel Conversion, does not involve the programmer, and the
solution is entirely provided by the compiler, and has received attention of sev-
eral research groups, over the years. The central aspect of this approach, is the
underlying mathematical model used. Models based on Symbolic Algebra, Linear
Algebra, Polyhedra and Graphs are popular [26], and the quality of the results
generated, are in most cases, closely tied with the model. Polyhedra model is
attractive for parallel conversion, due to its simplicity. The models has been used
to extract data dependencies, and to enable transformations for shared memory
multi-core targets [6]. Polyhedral models also referred to as the Polytope models,
have been extensively used for loop optimizations, including Unrolling, Slicing,
Sanitization, etc [34]. However the model is limited to affine expressions involv-
ing index and induction variables, and may not yield results, when dealing with
irregular loop expressions, such as accesses involving sparse matrices.

Graphs are used extensively, to represent various kinds of information, includ-
ing Program Dependence and Flow [23,42]. Graph models are used to detect,
iteration dependencies of loops [38]. Graphs were used to generate, data depen-
dencies and profiles of Object Oriented Programs, to solve data partitioning
problem, and generate synchronization and communication [13]. Researchers
have used Graph Models along with Analytical Models, to solve, Work Dis-
tribution, Communication Overheads, and Data Locality issues in Distributed
Environments [16,18]. Graphs are very intuitive, widely used and the most pop-
ular of all the models, for studying program behavior. However, Graphs without
a good representation, can consume large amounts of memory.

When we have a choice of models to use, for dependency analysis, how do
we pick? Authors of [40] present results of an experimental evaluation, to help
choose an appropriate model. How can a complete Parallel Optimization solution
be structured? Authors of [11] present an Integrated Graphical Environment,
based around an code editor metaphor, with support for debugging and user
feedback, through code annotations.

Recent Parallel Optimization related research efforts, seem to increasingly
pivot around, the data gathered at run time by profiling and sampling. Examples
include, the Binary Rewrite approach to parallel conversion [32], Inter-procedural
Analysis [5], Parallel conversion of Irregular Loops [4] Real World Loops with
irregular structure [33]. Analysis of Object Oriented Programs through spec-
ulation [22], Combined static analysis with sampling [20], Hardware Centric
Dynamic approach [10], Dynamic Feedback through sampling [7]. However all
dynamic schemes, which gather behavior data, using Profile and Sampling, are
biased towards the input samples used, and the resulting program coverage.
Schemes that use executables as source of parallel transformations are limited
by the extent of the metadata present. Speculation centric schemes are simple to
implement, since they bypass extensive analysis upfront, but pay a price when
hit with program dependency conflicts, which requires sufficient time and effort
handling rollbacks. Schemes that focus entirely on one particular aspect of a pro-
gram, such as Loops, pay a price when confronted with, programs of different
genres.
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When it comes to Performance Studies and Predictions how do we get the
necessary information? Should we use Static Analysis Methods or resort to
Dynamic Schemes? Opinions are divided across the research community. A great
many researchers tread the middle ground and use both methods referred to here
as Hybrid Schemes, in their research.

Authors have used Static Schemes since the beginning for Performance Esti-
mation and Prediction. Here are some examples, Support Vector Machines
(SVM) kernel techniques were used to reach Data Partitioning decisions [3],
Machine Learning coupled with Performance Models were used to predict
speedup [15], Static analysis was used to decide Program Distribution on Mes-
sage Passing Architectures [19], Loop Distribution and Array Access Patterns
were studied using static methodologies [17], Algebraic Expressions of Variables
coupled with Analytical Models to collect Execution Times of different Program
Sections [1], Call Graphs combined with Markov Model of Control Flow to gen-
erate Function Call Frequency estimates [44] Critical Path Analysis along with
Execution Time model was used to predict run times [24], A Postmortem Anal-
ysis Tool, based on idleness and overheads to point out areas of improvement,
[43]. Static Schemes are based on Code and Data Analysis, and the knowledge
gained as a result of the analysis. They are more universal, since they do not use
any dynamic data, collected on a target machine, by sample runs of the given
program.

Other researchers have used Dynamic Schemes, for Performance Estimation
and Reporting. Here are a few examples, Compile Time Models, augmented
with profile data, was used for performance prediction [9], Compiler Generated
Instrumentation was used to develop Performance Models [14], Parallelism Iden-
tification and Advice Tool was created using profile data [31], Instrumentation
Tool was created to operate at the Program Section level using trace techniques
[37], Visualization System was developed that uses Software Instrumentation
and Hardware Counters [41], Deterministic Replay Debug Tool was created using
Trace Driven Simulations and Models [47] A Dynamic Binary Instrumentation
(DBI) framework was created, to build heavy weight tools, for analysis and pro-
filing [39], Industrial strength Software Instrumentation Tool Set, was created
for profiling, performance study, and defect fixing [35]. Information collected by
Dynamic Schemes are tainted by the Sample Inputs used, and the Hardware
bias of the target machine, used in the experiment. But researchers have care-
fully constructed input sets, and laboriously formulated data gathering scenarios
to limit the sampling errors.

Hybrid Schemes have been employed by a few researchers in recent times.
Here are a few examples, A Transformation Framework that uses Architecture
Specific Cost Models, for estimation coupled with Dynamic Feedback as a sup-
plement [45], Source Code Instrumentation along with Instruction Scheduling on
Simulated Architectures to estimate performance [46], Performance Prediction
Tool using Code Analysis and Trace Simulation [12], A toolkit for Static Anal-
ysis and Dynamic Measurements to develop Architecture Neutral Models [36].
Hybrid Schemes are attractive at a higher level, since they are supposed to pro-
vide, the benefits of both Static and Dynamic Schemes. But merging information
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collected through two separate sources, is always a tricky problem, exacerbated
by the scenario, when the results from the two sources of collection, do not
converge.

How important are the Performance Estimation and Prediction steps, in the
overall Parallel Conversion process? A programmer, would like to know how
much parallel potential, a program has, before he commences the conversion
work. This information provided when required, can boost programmer produc-
tivity. Researchers have usually avoided this step, due to the unavailability of
all the pieces of information, in the early phases of the Program Compilation
process. When it is eventually available, several phases downstream, they feel
that the information is outdated and useless. This has led to the wide spread
belief that performance estimation is hard.

All prior research studies in the estimation and prediction domain, have rel-
egated the performance estimation, to a later phase in the compilation process,
when detailed analysis results are available, essentially ignoring the benefits of
early assessment. In this research work we perform our estimation and predic-
tion when it matters, before detailed analysis and program transformations have
been carried out, and there is still an opportunity, to use the predictions for driv-
ing future transformations, including parallel conversions. This paper is entirely
dedicated, to the problem of performance estimation and reporting, which is just
one solution, in the tool chest of a compiler. We have reported our other research
findings, elsewhere in other publications.

3 Asterix

Caliper is a parallel opportunity, prediction and estimation module. It is part
of the compilation pipeline, of Asterix our compiler, optimizer and parallel con-
verter.

We provide a high level view, of each of the Asterix modules next:

– Paracite
This module is essentially, the front end of Asterix, where the lexical analysis,
syntax analysis and semantics analysis occur. The input to this phase. is
the program in an imperative language, and the outcome of the phase, is
the equivalent program in ASIF, the Intermediate Representation (IR) in
Asterix [25].

– ASIF
ASIF is an acronym and stands for Asterix Intermediate Format the language,
that mainly includes an IR instruction set invented for the Asterix com-
piler suite. It is based on the three address instruction format, with explicit
Operand followed by the Result, And two Source operands.

– Caliper
Caliper reads the code in the ASIF format, and does a coarse estimation, of
the nascent parallel opportunities, that exist in the given program. This pro-
vides a starting point, for the users, to position their reference performance.
The following section discusses exhaustively on the topic.
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– Graft
This module performs the bulk of the analysis work, on the IR code in ASIF
format. The result of the analysis, is represented in the form of several tables
and graphs which are consulted, for identifying code transformation oppor-
tunities, including optimizations and parallel conversions.

– 3PO
3PO stands for Parallel Performance Predictor and Oracle. This module is a
fine grain, performance estimation and prediction module, which reports at
the local block level, and also at the global program level and uses several
mathematical models, one for each transformation category, for its opera-
tion. The various 3PO sub-models are categorized based on the nature of the
transformation, or parallel conversion. Accordingly we have transformations
that improve instruction counts, transformations that improve cache latency,
transformations that enable other transformations including parallel conver-
sions [29]. The main performance numbers reported are, Inherent Parallel
Potential (IPO) and the Expected Speedup from Parallel Conversion (ESP)
with obvious connotations for parallel conversion. For transformations, the
numbers are similar but with slightly different semantics, and they are, Inher-
ent Speedup Potential (ISP) and the Expected Speedup from Transformation
(EST) using the appropriate category model.

– Transgraph
This is the module in charge of, generating code transformations, that are
beneficial, from a performance perspective. Some of the transformations, are
solely concerned, about generating code, that is parallel friendly. The input
and output for the module, is IR in ASIF code, and supplementary IR struc-
tures data such as graphs and tables.

– Paragraph
This is the module, that actually generates the parallel code. The basic unit
of parallel code which is conceptually a task, is called a Prune after morph-
ing the phrase, Parallel IR Unit. Each Prune is assigned, to an independent
processing element, in a virtual topology and this mapping is preserved, for
the entire duration, of the application existence. The input for the module, is
IR code and IR supplements, from Transgraph. Output is IR in Prune form.

– Pigeon
Pigeon is a word, that originates from the phrase, Parallel Code Generator. It
is the module that converts Prunes, to executable versions of Prunes. These
executable Prunes are called Proxies, singular is Proxy. The name evolved
from the phrase, Parallel Execution Unit, are generated and assigned, to
respective execution units, in an actual physical topology in a later phase.
These mappings are subject to change, during the life cycle of the applica-
tion.

– AIDE
AIDE stands for, Asterix Integrated Development Environment, is a graphical
tool to display the important results, of the compilation process, starting
from the source code, to the generation of Prunes and Proxies and their
interdependence [27]. The various views include, Annotated Source and ASIF
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IR, Caliper Predictions, 3PO Oracles, Prunes, Proxies, their distribution and
orchestration

– Concerto
This module as the name suggests is the Distributor, Coordinator and Orches-
tration Manager of the Proxies in action. It chooses the mapping of Proxies
to their respective processing elements, manages their remote executions and
also provides synchronization primitives. In a NUMA distributed environ-
ment, it also decides on how to partition data, between the Proxies, manages
mapping to processing elements and provides communication primitives for
data sharing [28]. Actual mapping is handled by a sub module of Concerto,
called the Topology Mapper, TOPMAP for short and offers a choice of, dif-
ferent mapping algorithms.

The Fig. 1 illustrates the different phases involved in the operation of the
Asterix compiler.

The block diagram is intuitive for the most part. As seen from the figure,
the higher level source program is input to the Paracite module and passed
through a series of modules, each represented by a block in the diagram. The
arrows pointed towards and away from their blocks, signify either the input(s)
or the output(s) from the module respectively. The final step in the chain is the
Orchestration of all the parallel run time components and combining the results
in a coherent fashion, handled by the Concerto module. Readers may refer to
the earlier descriptions of the phases of Asterix, which are synonymous with the
modules here.

4 Caliper

The main objective of the Caliper module, is to provide the user, with a base
expectation of parallel performance, that is inherent in the program, under con-
sideration. This prediction can help dictate, the choice of transformations to
apply on the program, including the parallel conversion decisions. The higher
level syntactic structures, of an imperative program, offer impedance, to the
effective computation of, performance estimates, and prediction. Each program
is unique, from the perspective of the collection of the syntactic structures, con-
stituting the program, which offer unique difficulties, for estimation and predic-
tion. We refer to this trait of the program, as the Shape of the program. The
transformations applied to a program, to strip the Shape of a program as the
Program-Shape-Flattening.

Input to the Caliper module, consists of IR in ASIF format. It performs the
following, Program-Shape-Flattening transformations such as, Function-Call-
Expansion, Loop-Unrolling and Control-Predication, which are described individ-
ually later. The output from the Caliper module, is the performance estimation,
in the form of Maximum-Available-Parallelism (MAP), and the performance
prediction, in the form of Speedup-After-Parallel Conversion (SAP). These two
terms, are described later.
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Fig. 1. Block diagram of Asterix phases and operation

The Caliper operation is characterized by the following phases:

– Function Call Expansion
The purpose Function-Call-Expansion, is to replace, all function calls, with
the code, that constitutes the function block. It should be noted that, it is a
recursive process, and the process stops only, after all user defined functions,
have been expanded.
Library Functions and System Calls, are normally not considered for call
expansion. They are essentially treated as any other instruction, which suffices
for coarse estimates. A user program that is loaded with library calls and
system calls, may skew the prediction somewhat, but it is usually not the
case, with a majority of the real world programs.

– Loop Unrolling
As a result of Loop-Unrolling, all Loops and Multi-Loops are replaced with
their respective code blocks, and the instructions making up the Entry, Exit
Conditions and the Loop Back Jumps removed.

– Control Predication
Control Predication is a transformation, that replaces Conditional Blocks,
with equivalent Predicated Blocks. The Conditional Statements, are another
hindrance, to the correct estimation, of performance. However, most of the
architectures, provide support for Predicated-Execution of instructions, with
varying degree of support. However all of them support Conditional-Move
instruction which is a powerful construct when used with predicates, to com-
pute the condition of the move, and combined with regular instructions, com-
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puting to temporary result variables, offer a powerful and compelling solution,
to implement Control-Predication.

We next describe the purpose of the following performance metrics:

– Maximum Available Parallelism
Maximum-Available-Parallelism, MAP for short, is a metric, that reports
the amount of parallelism present, in a given program, as a percentage. For
instance, a MAP of 33% means that, one third of the code is parallel convert-
ible, and the other two thirds of the code, 66% is serial in nature. It should be
noted, that this number, takes in to consideration, all the dependencies, that
exist in the program, which includes, both the data, and the control kinds.

– Speedup After Parallel Conversion
Speedup-After-Parallel Conversion, SAP in short form, is a metric that
reports the benefits of parallel conversion. In the example discussed earlier,
since 33% is subject to parallel conversion, the effective run time is deter-
mined by the 66% of the serial part, and the expected speedup, would be
1.52 and reported as a fraction.

The Fig. 2 illustrates the different steps involved, in the operation of the
Caliper module. As you can see, translated IR code in ASIF format is fed to
the Inliner module, which carries out the expansion of all function calls, and
this modified IR is fed to the next module in the chain, which is the Unroller.
This module unrolls all loops, and its output is sent to the next module in the
chain, which is the Predicator. The purpose of this module, is to convert all
conditionals in the IR to Predicated statements. The output from this module,
is shape sanitized IR, that is ready for performance estimation.

4.1 Performance Estimation Equations

Performance estimation and prediction, for both serial and parallel versions,
revolve around the following parameters, which are defined below, and also given
are the equations for computing them.

Fig. 2. Block diagram of Caliper steps and operation

1. Serial Execution Cycles
Since we are measuring performance, in coarse fashion here, we are not
accounting, for the individual instruction differences. Each instruction counts
as one cycle, and we are also not considering, the memory hierarchy, into
these computations. Fine grained estimations, are for a later pass, where
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they use the 3PO model which has an in built cycle accurate simulator, we
call Kinetics, for accurate estimates. It includes hardware accurate models of
cache, memory and storage supporting the simulator. The workings of 3PO
and Kinetics, are subject matter of a different paper, and we shall not discuss
them any further here.
The following equation, describes the process, for measuring Serial-Execution-
Cycles. Here CCY C is the count of cycles, to run the serial version of the
program, NINC is the instruction count, for the given program.

CSER = NINC (1)

2. Parallel Execution Cycles
Computation of the parallel execution cycles, is more involved, and requires a
check, for data dependence between operands and results, belonging to differ-
ent instructions. Since we have eliminated, control dependencies of all kinds,
through Shape-Flattening, this is not an issue any more. A later subsection,
shall describe the Shape-Flattening algorithm in more detail.
Calculating Parallel-Execution-Cycles involves, classifying instructions, based
on their data dependence, into different equivalence classes. Instructions
belonging to the same equivalence class, are data dependent with one another,
and so we have to honor, their ordinal order of issue, to maintain correctness.
However instructions belonging to different classes, have no data dependen-
cies, and hence allow, concurrent execution between them. Once the equiva-
lence classes, have been finalized, the execution time is dictated by, the longest
running equivalence class. The algorithm for creating equivalent dependence
classes, shall be given later in a following subsection.
The equation for computing, the parallel execution cycles, is given below.
CPAR is the parallel cycle count, EQC1, EQC2, . . . , EQCn are the total
cycles needed to execute the, individual equivalence class instructions in serial
fashion.

CPAR = max (EQC1, EQC2, . . . , EQCn) (2)

3. Maximum Available Parallelism
Maximum Available Parallelism, abbreviated as MAP is a measure of the
inherent parallelism available in a program, and is reported as a percent of
the total program instructions. The following equation precisely defines the
metric. CPAR is the number of cycles required to run the parallel version of
the program and CSER is the cycle count for the serial version of the program.

MAP = (CSER − CPAR) ÷ CSER) × 100 (3)

4. Speedup After Parallel Conversion
Speedup After Parallel Conversion, SAP for brevity, is an estimate of how
much faster the program will run, after parallel conversion. The equation that
follows, describes the metric. CPAR is the number of cycles required to run



CALIPER: Performance Estimator and Predictor 27

the parallel version of the program and CSER is the cycle count, for the serial
version of the program.

SAP = (CSER ÷ CPAR) (4)

4.2 Program Shape Flattening

As alluded to earlier, program syntax structures such as Functions, Loops and
Conditionals, are a hindrance to effective estimation and predictions of perfor-
mance. So as a first step, it is essential to flatten these high level language
structures and then proceed with the estimation.

In the following paragraphs, we will give brief procedures in algorithmic form
to perform these preparatory steps towards estimation. Refer to Algorithm1 for
the detailed steps.

4.3 Parallel Equivalence Classes

Parallel Equivalence Classes are a set of items, that satisfy a single property. In
the context of Parallel Conversions, it means sets of instructions, that can be

Algorithm 1. Program Shape Flattening
1: procedure Flatten Program
2: Inline Function
3: Unroll Loop
4: Predicate Condition
5: end procedure
6: procedure Inline Function
7: for Fnc ← 1, n do � sweep through function calls in the program
8: Get Function Definition(Def, Fnc) � fetch code block defined for the

call
9: Replace Call With Definition(Def, Fnc) � replace call with the code

block
10: end for
11: end procedure
12: procedure Unroll Loop
13: for Glp ← 1, n do � sweep through loops in the program
14: Get Loop Block(Blk, Glp) � fetch code block for the loop
15: Replace Loop With Private Blocks(Blk, Glp) � duplicate code block

for each iteration
16: end for
17: end procedure
18: procedure Predicate Condition
19: for Cnd ← 1, n do � sweep through conditionals in the program
20: Get Condition Block(Blk, Cnd) � fetch code block for the conditional
21: Replace Condition With Predicates(Blk, Cnd) � replace condition

with the predicated block
22: end for
23: end procedure
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executed concurrently. However it should be noted that, instructions within a
particular class, are to be executed in serial, to satisfy the property of an equiva-
lence class. When the instructions of a program, are organized in to equivalence
classes, the run time of the program, is reduced from the time spent, by all
instructions of the program executing serially, to the run time of the longest
running equivalence class.

What follows is the algorithm to create the Equivalence Classes, also referred
to as Dependence Classes here. Once created, it becomes trivial to assess the run
time and predict performance. Refer to Algorithm 2 for the detailed steps.

Algorithm 2. Parallel Equivalence Classes Creation
1: procedure Build Parallel Equivalence Classes
2: Build Equivalence Classes
3: Merge Equivalence Classes
4: end procedure
5: procedure Build Equivalence Classes
6: for Ins ← 1, n do � sweep through the program’s instructions
7: Get Result Operand(R, Ins) � fetch result operand of instruction
8: Add Instruction(R, Ins) � add instruction to class R of global parallel

equivalence class list
9: end for

10: end procedure
11: procedure Merge Equivalence Classes
12: for Ins ← 1, n do � sweep through the program’s instructions
13: Get Result Operand(R, Ins) � fetch result operand of instruction
14: Get Source1 Operand(S1, Ins) � fetch source1 operand of instruction
15: Get Source2 Operand(S2, Ins) � fetch source2 operand of instruction
16: Merge(R, S1) � merge class S1 to class R and update global parallel

equivalence class list
17: Merge(R, S2) � merge class S2 to class R and update global parallel

equivalence class list
18: end for
19: end procedure

5 Analysis

Given below is a code listing of a program, in a popular imperative language,
which is used for illustrating the workings of Caliper. For listing see Listing 1.1
The program has the three structural components we alluded to earlier, which
are hindrances for estimation and prediction purposes, namely a function, loop
and a conditional block. See lines numbered 2, 9 and 24 for these blocks.
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Listing 1.1. A program with a
function, loop and condition

1 #include <stdio.h>
2 float cal_function() {
3 int a, b, c, d, e;
4 a = 10; b = 20;
5 c = 30; d = 40;
6 e = a + b * c / d;
7 return e;
8 }
9 float cal_loop() {

10 int i, j, k;
11 float sum[3][3][3];
12 float ssum = 0.0;
13 for (i = 0; i < 3; i++)
14 for (j = 0; j < 3; j++)
15 for (k = 0; k < 3; k++) {
16 sum[i][j][k] = i + j + k;
17 }
18 for (i = 0; i < 3; i++)
19 for (j = 0; j < 3; j++)
20 for (k = 0; k < 3; k++)
21 ssum += sum[i][j][k];
22 return ssum;
23 }

24 float cal_condition() {
25 int x = 10;
26 float y = 0.0;
27 if (x < 10) {
28 y = 2 * x;
29 }
30 else if (x == 10) {
31 y = x * x;
32 }
33 else {
34 y = x * x * x;
35 }
36 return y;
37 }
38 int main() {
39 float x, y, z;
40 x = cal_function();
41 y = cal_loop();
42 z = cal_condition();
43 printf("x = \%f\n", x);
44 printf("y = \%f\n", y);
45 printf("z = \%f\n", z);
46 }

The next listing consists of, the equivalent program in ASIF, with all the
program structures preserved, namely the functions, loops and conditionals
untouched. See Listing 1.2 for the code listing. The translated higher language
code for the function, loop and conditional, can be found under the respective
labels named as such. See lines 4, 18, 70 in the listing. ASIF code is easy to
follow. Each block starts with a label, and so there is one for each function,
loop and conditional. See lines 5, 20, 71 and 91. At the start of the block are
the declarations, DCL is the opcode to define an integer and FDCL for a float.
STP is the push and POP is pop. The arithmetic operators have easy to spot
Mnemonics. FNC is the Call and RET is the return opcode.
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Listing 1.2. ASIF Code

1 ! start entry
2 start:
3 ! cal_function entry
4 cal_function:
5 DCL a, 4
6 DCL b, 4
7 DCL c, 4
8 DCL d, 4
9 DCL e, 4

10 !
11 MUL T1, b, c
12 DIV T2, T1, d
13 ADD e, a, T2
14 !
15 STP e
16 RET
17 ! cal_loop entry
18 cal_loop:
19 !
20 DCL i, 4
21 DCL j, 4
22 DCL k, 4
23 FDCL sum, 4, 27
24 FDCL ssum, 4
25 MOV i, @0
26 for1_entry:
27 MOV j, @0
28 for2_entry:
29 MOV k, @0
30 for3_entry:
31 ADR T5, &sum
32 MUL T5, i, j
33 MUL T5, T5, k
34 ADD T6, i, j
35 ADD T6, T6, k
36 MST T5, T6
37 INC k
38 BLE for3_entry , k, 3
39 for3_exit:
40 INC j
41 BLE for2_entry , j, 3
42 for2_exit:
43 INC i
44 BLE for1_entry , i, 3

45 for1_exit:
46 MOV i, @0
47 !
48 for4_entry:
49 MOV j, @0
50 for5_entry:
51 MOV k, @0
52 for6_entry:
53 ADR T7, &sum
54 MUL T7, i, j
55 MUL T7, T7, k
56 MLD T8, T7
57 ADD, ssum, ssum, T8
58 INC k
59 BLE for3_entry , k, 3
60 for6_exit:
61 INC j
62 BLE for2_entry , j, 3
63 for5_exit:
64 INC i
65 BLE for1_entry , i, 3
66 for4_exit:
67 STP ssum
68 RET
69 ! cal_condition entry
70 cal_condition:
71 DCL x, 4
72 FDCL y, 4
73 JGE LB1, x, @10
74 NOP
75 MUL T3, @2, x
76 MOV y, T3
77 JMP LB2
78 LB1:
79 NEQ LB2, x, @10
80 MUL T4, x, x
81 MOV y, T3
82 JMP LB3
83 LB2:
84 MUL T4, x, x
85 MOV y, T3
86 LB3:
87 STP y
88 RET
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89 ! main entry
90 main:
91 FDCL x
92 FDCL y
93 FDCL z
94 FNC cal_function
95 POP x

96 FNC cal_loop
97 POP y
98 FNC cal_condition
99 POP z

100 ! end entry
101 end:

The next program listing consists of the ASIF code after it has passed through
the structure filter which expands all functions, unrolls all loops and coverts
conditionals to predicated blocks. See Listing 1.3 for reference. See line 8 for
the inlined function cal function. See lines starting from 25 for the first of the
unrolled loop nests. The second unrolled loop nest starts from line 76. Each
unrolled iteration is marked with a number under comment to designate the
code for the corresponding iteration. At the end of each unrolled iteration is
the handling (management) of index (induction) variables appropriate for the
iteration. Finally the condition block starting at line 123 starts the block. PGE
is a predicate which evaluates to True or False depending on the condition check
and set the result variable appropriately. CMOV is the conditional move that
moves the value to the result variable if the earlier predicate evaluated to true
and not otherwise. There are some architectures belonging to the Very long
instruction word (VLIW) class which allow predicated versions of all arithmetic
operators in which case CMOV will be unnecessary. But the important thing
to notice is the absence of jumps and labels which have been removed prior to
estimation and prediction.
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Listing 1.3. Flattened ASIF Code

1 ! start entry
2 start:
3 ! main entry
4 main:
5 FDCL x
6 FDCL y
7 FDCL z
8 !x = FNC cal_function
9 DCL a, 4

10 DCL b, 4
11 DCL c, 4
12 DCL d, 4
13 DCL e, 4
14 !
15 MUL T1, b, c
16 DIV T2, T1, d
17 ADD e, a, T2
18 MOV x, e
19 !y = FNC cal_loop
20 DCL i, 4
21 DCL j, 4
22 DCL k, 4
23 FDCL sum, 4, 27
24 FDCL ssum, 4
25 ! FIN block starts, #0
26 MOV i, @0
27 MOV j, @0
28 MOV k, @0
29 ADR T5, &sum
30 MUL T5, i, j
31 MUL T5, T5, k
32 ADD T6, i, j
33 ADD T6, T6, k
34 MST T5, T6
35 INC k
36 ! #1
37 ADR T5, &sum
38 MUL T5, i, j
39 MUL T5, T5, k
40 ADD T6, i, j
41 ADD T6, T6, k
42 MST T5, T6

43 INC k
44 ! #2
45 ADR T5, &sum
46 MUL T5, i, j
47 MUL T5, T5, k
48 ADD T6, i, j
49 ADD T6, T6, k
50 MST T5, T6
51 MOV k, @0
52 INC j
53 ! #3 <#4 - #7 snipped>
54 ! #8
55 ADR T5, &sum
56 MUL T5, i, j
57 MUL T5, T5, k
58 ADD T6, i, j
59 ADD T6, T6, k
60 MST T5, T6
61 INC i
62 MOV j, @0
63 MOV k, @0
64 ! #9 <#10 - #25 snipped>
65 ! #26
66 ADR T5, &sum
67 MUL T5, i, j
68 MUL T5, T5, k
69 ADD T6, i, j
70 ADD T6, T6, k
71 MST T5, T6
72 INC i
73 MOV j, @0
74 MOV k, @0
75 ! FIN block ends
76 ! FIN block starts, #0
77 MOV i, @0
78 MOV j, @0
79 MOV k, @0
80 ADR T7, &sum
81 MUL T7, i, j
82 MUL T7, T7, k
83 ADD T8, i, j
84 ADD T8, T8, k
85 MLD T8, T7
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86 ADD ssum, ssum, T8
87 INC k
88 ! <#1 snipped> #2
89 ADR T7, &sum
90 MUL T7, i, j
91 MUL T7, T7, k
92 ADD T8, i, j
93 ADD T8, T8, k
94 MLD T8, T7
95 ADD ssum, ssum, T8
96 MOV k, @0
97 INC j
98 ! #3 <#4 - #7 snipped>
99 ! #8

100 ADR T7, &sum
101 MUL T7, i, j
102 MUL T7, T7, k
103 ADD T8, i, j
104 ADD T8, T8, k
105 MLD T8, T7
106 ADD ssum, ssum, T8
107 INC i
108 MOV j, @0
109 MOV k, @0
110 ! <#9 - #25 snipped>, #26
111 ADR T7, &sum
112 MUL T7, i, j

113 MUL T7, T7, k
114 ADD T8, i, j
115 ADD T8, T8, k
116 MLD T8, T7
117 ADD ssum, ssum, T8
118 INC i
119 MOV j, @0
120 MOV k, @0
121 ! FIN block ends
122 MOV y, ssum
123 !z = FNC cal_condition
124 DCL x3, 4
125 FDCL y3, 4
126 PGE TP1, x1, @10
127 MUL T3, @2, x3
128 CMOV y3, T3, TP1
129 PEQ TP2, x3, @10
130 MUL T4, x3, x3
131 CMOV y3, T3, TP2
132 AND TP3, TP1, TP2
133 NOT TP3, TP3
134 MUL T4, x3, x3
135 CMOV y3, T3, TP3
136 MOV y, y3
137 !
138 end:

5.1 Reporting Estimates and Prediction

For the present, Caliper reports interesting numbers in plain text in Csv format
as shown below:

CALIPER,,,
(Performance_Estimation_and_Prediction_Tool),,,

1., Serial Instruction Count, SIN, 472
2., Equivalence Class Count, EQC, 10
3., Mean Instruction Count, MIN, 65.8
4., Parallel Instruction Count, PIN, 249
5., Serial Execution Cycles, SEC, 472
6., Parallel Execution Cycles, PEC, 249
7., Maximum Available Parallelism, MAP, 47.25
8., Speedup After Parallel Conversion, SAP, 1.9

However the future version will be enhanced, to report more information in
graphical format, and will be integrated with AIDE.
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Table 1. Caliper performance estimates and prediction

CALIPER (performance estimation and prediction tool)

Sl. no. Metric name Code Value

1 Serial Instruction Count SIN 472

2 Equivalence Class Count EQC 10

3 Mean Instruction Count MIN 65.8

4 Parallel Instruction Count PIN 249

5 Serial Execution Cycles SEC 472

6 Parallel Execution Cycles PEC 249

7 Maximum Available Parallelism MAP 47.25

8 Speedup After Parallel Conversion SAP 1.9

Table 1 displays the same numbers in tabular form for clarity purposes.
Serial Instruction Count is the number of instructions, detected by Caliper.

Equivalence Class Count is the number of Parallel Equivalence Classes detected.
Mean Instruction Count is the average count of instructions, in each class. Par-
allel Instruction Count is the maximum value of instruction count, among all
the classes. Serial Execution Cycles is the number of execution cycles consumed,
by the given program, when operating in serial mode. It should be noted that,
since Caliper is designed to be a Coarse Performance Estimator and Predictor,
we treat all instructions the same. Each instruction is assumed to take a cycle,
for its execution and so this metric has the same value as the Serial Instruction
Count. Parallel Execution Cycles is the total processor cycles, required to run
the program in parallel mode, which is same as the Parallel Instruction Count.
Maximum Available Parallelism as defined earlier, is a measure of the inherent
parallel potential, of the given program. Speedup After Parallel Conversion is
a multiple, that measures how much faster, the parallel version of the program
runs, in comparison to the serial version.

The column with the heading Code, is the abbreviation for the metric and
the column with the heading Value is the value reported for the corresponding
metric. The program fed to Caliper, is the same program we saw earlier, and
the numbers reported, are the estimates from Caliper. The two most interesting
numbers are MAP which is reported as 47.25 and a SAP of 1.9. This means that,
about half of the program is parallel convertible, and it will run 1.9 times faster
than the serial version, after parallel conversion.

6 Competitive Analysis

We started a search of the research publications, for a solution similar to Caliper.
Since the survey revealed, the absence of a comparable product in the research
domain, we focused our search to the state of the art, in the industry.
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We short listed the competition to the following major players in the domain,
Gcc from GNU, Clang from LLVM group and Parallel Studio and Icc from Intel.
We learned that none of them have a Parallel Performance, Estimation and
Prediction component, that is comparable with Caliper.

However we wanted to study the results of parallel conversions, made by
these compilers. We first searched for a compiler flag, that can emit diagnostics,
specific to the Optimizations and Parallel Conversions, being carried out. We
found a few flags we thought were relevant, such as the -openmp-report from
icc. But either they were non operational, or the information required, for the
comparative study was missing. Similarly, the flag to turn on the Auto Parallel
conversion feature was either a place holder or missing at this point. However
all of the above compilers are enabled for OpenMP and use them for parallel
conversions.

We continued our quest for a parallel build enabling the openmp feature
with these compilers. We used the following pragma or directive to enable the
following block for possible parallel conversion.

#pragma omp parallel
We experimented by placing the pragma at various points in the source code

such as the following, at Main function entry, at other Function entry points, at
the start of Loops and Multi-level loops, and Control entry points, to see if it
makes any difference to the LLVM assembly generated by the Clang compiler,
since the -emit-llvm flag to Clang was the only viable option, to generate diag-
nostics. We did not see any trends in the parallel code generated, which could
be used to make any useful comparison with Caliper’s estimates or prediction.

The Intel Parallel Studio and its associated icc provide a flag called -openmp-
report, which apparently is supposed to generate diagnostics, but we had trouble
enabling after installation, so we could not get any useful data on icc also.

At this point we have to conclude the study, and claim that in comparison
with the available state of the art, both in academia and industry, Caliper is the
only working, Performance Estimation and Prediction Solution available, at the
time of writing.

7 Conclusion

Caliper is a coarse performance estimator and predictor solution, for a given
serial program, that is scheduled for parallel conversion. It operates on the IR
code generated from the program, after the translation phase of compilation
and provides an early indicator, about the program’s expected parallel behav-
ior, after transformation. Our solution, to the performance assessment problem,
involves two phases. We perform a coarse assessment of performance, at the start
of the compilation pipeline, and postpone the detailed estimation and predic-
tion for a phase that follows the analysis phase. That way, the results of coarse
prediction, are available to drive transformation, and parallel conversion deci-
sions. The structural components of a program such as Procedures, Loops and
Conditionals, their count and placement adds an unique character to the pro-
gram which are referred to collectively as the Program-Shape. Program-Shape is
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an hindrance to effective performance estimation and prediction. So prior to the
estimation phase, we perform transformations, such as Function Call Expansion,
Loop Unrolling and Control Predication that specifically target these program
structures. The transformations are referred to collectively as Program-Shape-
Flattening. The transformation eases the process of measurement and prediction,
by transforming the given program, to straight line code. After flattening trans-
formations, we are also freed of the concerns, of Control Dependencies and they
stop being a factor, in parallel performance. To collect the parallel run time
estimates, we use the concept of Equivalence-Classes. An Equivalence Class col-
lects objects, that share the class property. We use Equivalence Classes here to
group instructions, that are mutually data dependent on each other. We refer to
these classes either as Dependence-Classes or Parallel-Classes. Since instructions
belonging to separate Dependence Classes share no dependencies, they can be
safely scheduled for parallel execution. Effectively, we have converted a serial
program to a set of Dependence Classes that can be run concurrently. Such a
scenario of parallel execution of a program allows us to conclude, that the run
time of the program, is now equal to, the run time of the Dependence-Class that
runs the longest. Finally we report two numbers that we believe are of interest to
a parallel programmer namely, Maximum-Available-Parallelism which is a mea-
sure of the inherent parallel conversion potential of the program, also referred
to in short form as MAP and Speedup-After-Parallel Conversion, which predicts
the expected speedup after parallel conversion, also referred to as SAP for the
purpose of brevity. After a thorough search of published literature and compar-
ative study of the practicing state of the art, we are convinced that there is no
viable research or commercial product, that can be compared to Caliper at the
time of writing.
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