
Effective Knowledge-Aware Recommendation
via Graph Convolutional Networks

Bo Zhao, Zhuoming Xu(&), Yan Tang, Jian Li, Bei Liu,
and Haimei Tian

College of Computer and Information, Hohai University, Nanjing 210098, China
{bzhao,zmxu,tangyan,jli,liubei,hmtian}@hhu.edu.cn

Abstract. Most existing graph neural network (GNN)-based knowledge-aware
recommendation models rely on handcrafted feature engineering and do not
allow for end-to-end training. As a state-of-the-art end-to-end framework, the
Knowledge-aware Graph Neural Networks with Label Smoothness Regular-
ization (KGNN-LS) model can extend GNNs architecture to knowledge graphs
to simultaneously capture semantic relations between entities as well as per-
sonalized user preferences for entities/items, thereby making effective recom-
mendation. However, we believe that KGNN-LS still has two weaknesses: (1) In
KGNN-LS, the weights of the edges in the graph are determined solely by user
preferences for relations without considering user’s (potential) personalized
interests in entities/items. (2) The sum pooling adopted by KGNN-LS cannot
effectively aggregate the most representative information of the neighborhood.
In this paper, we propose the improved Knowledge-aware Graph Neural Net-
works with Label Smoothness Regularization (iKGNN-LS) model, which makes
two improvements to KGNN-LS: (1) In iKGNN-LS, by introducing user-
specific entity scoring functions, the edge weights are determined jointly by
personalized user preferences for relations and for entities. (2) iKGNN-LS uses
max pooling instead of sum pooling for neighborhood aggregation. Top-N
recommendation experiments on three datasets show that iKGNN-LS outper-
forms KGNN-LS in terms of Precision@N, Recall@N, and F1-measure@N.

Keywords: Knowledge-aware recommendation � Knowledge graph � GCN �
User-specific entity scoring function � Pooling aggregator

1 Introduction

Knowledge graphs (KGs) [5] have proven to be effective in enhancing recommendation
performance by providing recommender systems with additional knowledge [2, 4, 7–
10, 12, 13]. KG-based recommender systems exploit knowledge-aware recommenda-
tion models and apply KGs in three ways [3]: embedding-based methods, path-based
methods, and unified methods. Embedding-based methods [2, 13] use KG embedding
algorithms to translate KG elements into low-dimensional vector representations,
which are further integrated into the recommendation models. Path-based methods
[4, 10] leverage the informative connectivity patterns between the entities in the user-
item KG for recommendation. Unified methods [7–9] leverage both the semantic

© Springer Nature Switzerland AG 2020
G. Wang et al. (Eds.): WISA 2020, LNCS 12432, pp. 96–107, 2020.
https://doi.org/10.1007/978-3-030-60029-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-60029-7_9

representation and the connectivity information in the KG for recommendation. Unified
methods generally adopt an architecture based on graph neural networks (GNNs) [11],
such as graph convolutional networks (GCNs) [6].

However, most existing GNN-based knowledge-aware recommendation models
rely on handcrafted feature engineering and do not allow for end-to-end training [8].
The Knowledge-aware Graph Neural Networks with Label Smoothness Regularization
(KGNN-LS) model recently proposed by H. Wang et al. [7, 8] is a state-of-the-art end-
to-end framework that can extend GNNs architecture to KGs to simultaneously capture
semantic relations between entities as well as personalized user preferences for
entities/items, thereby making effective recommendation.

Despite a state-of-the-art model, KGNN-LS still has two weaknesses: (1) In KGNN-
LS, the weights of the edges in the user-specific weighted graph are determined solely
by user preferences for relations without considering user’s personalized interests in
entities/items. This approach cannot distinguish the different contributions of different
neighbor entities connected by the same relation to user interests. (2) The sum pooling
adopted by KGNN-LS cannot effectively aggregate the most representative information
of the neighborhood, resulting in less effective user-specific item embeddings.

To overcome the weaknesses of KGNN-LS, in this paper we propose the improved
Knowledge-aware Graph Neural Networks with Label Smoothness Regularization
(iKGNN-LS) model, which makes two improvements to KGNN-LS: (1) In iKGNN-
LS, by introducing user-specific entity scoring functions, the user-specific edge weights
are determined jointly by personalized user preferences for relations and for entities.
(2) During feature propagation on the user-specific weighted graph, iKGNN-LS uses
max pooling instead of sum pooling for neighborhood aggregation.

To verify the effectiveness of iKGNN-LS and its performance advantage over
KGNN-LS, we conducted two comparative experiments of top-N recommendation.
First, we used the MovieLens 20M dataset and KGNN-LS to study the influences of
edge weights and pooling aggregators on the performance of top-N recommendation.
The results show that the edge weights determined jointly by user preferences for
relations and for entities, as well as the use of max pooling in neighborhood aggre-
gation can improve recommendation performance. Second, we used three datasets,
MovieLens 20M, Last.FM, and Yelp2018, to compare the top-N recommendation
performance between KGNN-LS and iKGNN-LS. The results indicate that iKGNN-LS
outperforms KGNN-LS in terms of Precision@N, Recall@N, and F1-measure@N.

In summary, the main contributions of this paper are as follows:

– We propose the knowledge-aware recommendation model iKGNN-LS that can
calculate user-specific item embeddings more effectively. The model exploits user
preferences for relations and for entities to jointly determine user-specific edge
weights and uses max pooling instead of sum pooling to aggregate the most rep-
resentative information of the neighborhood.

– Our comparative experiment on KGNN-LS indicates that both the improved edge
weights and max pooling can improve recommendation performance.

– Our comparative experiment between KGNN-LS and iKGNN-LS demonstrates the
recommendation performance advantage of iKGNN-LS over KGNN-LS.

Effective Knowledge-Aware Recommendation via Graph Convolutional Networks 97

2 Improved Knowledge-Aware Recommendation Model

In this section, we expatiate on our proposed iKGNN-LS model. We first give the
overview of the model, and then describe three major steps of the model in detail.

In the following, we first introduce some concepts and notations, and then for-
mulate the problem of knowledge-aware recommendation.

A recommender system (RS) has a set of m users U ¼ u1; u2; . . .; umf g and a set
of n items V ¼ v1; v2; . . .; vnf g. According to users’ implicit feedback, a user-item
interaction matrix Y 2 R

m�n can be defined for the system. The matrix’s element
yuv ¼ 1 indicates that user u 2 U engages with item v 2 V, such as clicking, browsing,
or purchasing; otherwise yuv ¼ 0.

A knowledge graph GðE; RÞ has a set of entities E and a set of relations R. The
graph consists of entity-relation-entity triples ðh; r; tÞ, where h 2 E, r 2 R, and t 2 E
are the head, relation, and tail of a triple. In the recommendation setting, each item
v 2 V in the RS corresponds to an entity e 2 E in the knowledge graph.

As formulated in [7, 8], given the interactionmatrixY and the knowledge graphG, the
goal of knowledge-aware recommendation is to predict whether user u 2 U has potential
interest in item v 2 V with which the user has not engaged before. That is, the task is to
learn a prediction function ~yuv ¼ Fðu; vjH;Y;GÞ, where ~yuv denotes the probability that
user u will engage with item v, and H are model parameters of function F .

2.1 Overview

The main goal of our proposed iKGNN-LS is to learn user-specific item embeddings
more effectively. The overview of iKGNN-LS is depicted in Fig. 1, where the learning
and recommendation process can be divided into the following steps:

– Transforming the KG into a user-specific weighted graph: The KG is transformed
into a user-specific weighted graph, where a limited number of direct neighbors of
each entity are sampled, and each relation (edge) between two sampled entities is
given a user-specific weight to reflect the user’s personalized interest.

– Learning the prediction function: iKGNN-LS takes the user-specific weighted
graph as input, and uses knowledge-aware GCN to calculate user-specific item
embeddings via feature propagation on the graph. Simultaneously, it performs label
smoothness regularization on the edge weights via label propagation on the graph.
Finally, iKGNN-LS uses the unified loss function to learn the prediction model.

– Making top-N recommendation: iKGNN-LS uses the learned prediction function to
predict probabilities that the user will engage with candidate items, and then
employs the probabilities to produce a top-N recommendation list for the user.

98 B. Zhao et al.

Fig. 1. Overview of our proposed iKGNN-LS model

Effective Knowledge-Aware Recommendation via Graph Convolutional Networks 99

2.2 Transforming the KG into a User-Specific Weighted Graph

Given a user in the RS, iKGNN-LS transforms the KG into a user-specific weighted
graph [8]. In such a graph, at most K direct neighbors of each entity node are sampled
(concerned), an edge (representing a relation) between each sampled entity pair is given
a user-specific weight to reflect the user’s personalized interest in the relation.

Let NðeiÞ represent a set of neighbor entities directly connected to entity ei 2 E in
GðE; RÞ. In a real-world KG, the number of entities in NðeiÞ may vary greatly. Using
the same approach as in KGNN-LS [7, 8], iKGNN-LS samples at most K direct
neighbors of each entity to form the (single-layer) receptive field SðeiÞ, fejjej�NðeiÞg,
jSðeiÞj ¼ K of entity ei. This receptive field is used to compute the user-specific

neighborhood representation of ei, denoted as e
SðeiÞ
u , where u 2 U is a specific user. eSðeiÞu

can capture structural proximity among entities in the KG. As stated in [7], the receptive
field can be extended to multiple hops away (i.e., multiple layers) to model high-order
structural proximity and capture users’ potential interests. As in KGNN-LS, iKGNN-LS
uses the h-layer receptive field to compute the h-order structural proximity, denoted as

eSðeiÞu ½h�; h ¼ 1; 2; . . .;H, whereH is the maximum depth of the receptive field. Figure 1
depicts the H-layer receptive field of item entity v 2 V �E, where K ¼ 2.

In each layer of receptive field, user-specific edge weights are calculated as follows.
Given two entities ei 2 E, ej 2 SðeiÞ and their relation rei;ej , iKGNN-LS uses user-
specific relation scoring function suðrei;ejÞ defined as Eq. (1) [7, 8] to calculate the user-
relation score between u 2 U and rei;ej , and uses user-specific entity scoring function
tuðejÞ defined as Eq. (2) to calculate the user-entity score between u and ej.

suðrei;ejÞ ¼ gðu; rei;ejÞ ð1Þ

tuðejÞ ¼ gðu; e juÞ ð2Þ

where u; rei;ej ; e
j
u 2 R

d are the representations of u, rei;ej , and ej, respectively. d is the
dimension of representations. g is a differentiable function (e.g., inner product).

The above two scores are normalized separately, that is, the user-relation score is
normalized to ~suðrei;ejÞ, as defined by Eq. (3) [7], and the user-entity score is nor-
malized to ~tuðejÞ, as defined by Eq. (4).

~suðrei;ejÞ ¼
expðsuðrei;ejÞÞP

e2SðeiÞ expðsuðrei;eÞÞ
ð3Þ

~tuðejÞ ¼ expðtuðejÞÞP
e2SðeiÞ expðtuðeÞÞ

ð4Þ

iKGNN-LS uses Eq. (5) to compute the weight of the edge (representing relation rei;ej)
with respect to user u, which is referred to as user-specific edge weight.

100 B. Zhao et al.

aiju ¼ ~suðrei;ejÞ �~tuðejÞ ð5Þ

The weight aiju is used as an element to form a user-specific adjacency matrix
Au 2 R

E�E , which represents user-specific edge weights for the weighted graph.

2.3 Learning the Prediction Function

As mentioned earlier, our task is to learn a prediction function Fðu; vjH;Y;GÞ. The
learning process includes three steps: feature propagation on the graph, label propa-
gation on the graph, and model learning. Below we describe these three steps.

Feature Propagation on the Graph. The goal of feature propagation is to calculate
user-specific item embeddings. The calculation process takes the user-specific weighted
graph (including the H-layer receptive field and user-specific edge weights) as input,
and employs GCN to compute the final H-order entity representation by aggregating
and incorporating neighborhood information (i.e., structure information) in an iterative
layer-by-layer manner. The total number of neighborhood aggregation iterations is
H. In h-th iteration (h ¼ 1; 2; . . .;H), iKGNN-LS uses max-pooling instead of sum-
pooling to aggregate all entities in SðeiÞ to form the (h − 1)-order neighborhood rep-

resentation of entity ei, denoted as eSðeiÞu ½h� 1�, which is defined by Eq. (6).

eSðeiÞu ½h� 1� ¼ maxðfaiju � e ju½h� 1�; 8ej 2 SðeiÞgÞ ð6Þ

where aiju is the user u specific weight of the edge between ei and ej, and e ju½h� 1�
denotes the (h − 1)-order representation of entity ej 2 SðeiÞ.

Like KGNN-LS, iKGNN-LS then combines neighborhood representation

eSðeiÞu ½h� 1� with the (h − 1)-order representation of the entity itself, eiu½h� 1�, to form
its h-order entity representation eiu½h�, which is defined as Eq. (7) [7].

eiu½h� ¼ rðWh � ðeiu½h� 1� þ eSðeiÞu ½h� 1�Þ þ bhÞ ð7Þ

where Wh and bh are transformation weight and bias, and r is the nonlinear function
such as ReLU.

For item entity v 2 V �E, after H iterations, the final H-order entity representation
eu½H� (i.e., vu½H�) is the user-specific item embedding vu. We can thus input vu and user
representation u into a differentiable function (e.g., inner product) to predict the
probability ~yuv that user u will engage with item v, as defined by Eq. (8) [7, 8].

~yuv ¼ f ðu; vuÞ ð8Þ

Effective Knowledge-Aware Recommendation via Graph Convolutional Networks 101

Label Propagation on the Graph. The goal of label propagation is to assist the
learning of entity representations and to help predict unobserved user-item interactions
through label smoothness (LS) regularization on the edge weights [8]. As formulated in
[8], let lu : E ! R denote a real-valued label function on G, which is constrained to take
a specific value luðvÞ ¼ yuv 2 Y at node v 2 V �E. The label smoothness assumption
that adjacent entities in the graph are likely to have similar relevancy labels [8] leads to
the following definition of energy function E.

Eðlu;AuÞ ¼ 1
2

X

ei2E;ej2E
aijuðluðeiÞ � luðejÞÞ2 ð9Þ

where aiju is the user specific edge weight. luðeiÞ and luðejÞ are user relevancy scores of
ei and ej, respectively. Like the approach in KGNN-LS, iKGNN-LS repeats the fol-
lowing two steps [8] to achieve the minimum-energy of function E, thereby predicting a
user relevancy label/score for each unlabeled entity:

– Propagate labels for all entities: luðEÞ D�1u AuluðEÞ, where luðEÞ is the vector of
labels for all entities, Du is a diagonal degree matrix with Dij

u ¼
P

j a
ij
u .

– Reset labels of all items to initial labels: luðVÞ Y½ u;V �>, where luðVÞ is the
vector of labels for all items and Y½ u;V � ¼ ½yuv1 ; yuv2 ; . . .� are initial labels.

iKGNN-LS uses the same approach as KGNN-LS to perform label smoothness
(LS) regularization on the edge weights. Specifically, as described in [8], a single item
v 2 V �E is held out and it is treated as unlabeled; the label of v can then be predicted
by using the rest of (labeled) items and (unlabeled) non-item entities. The LS regu-
larization on the edge weights can thus be achieved via a learning procedure that uses
the difference between the true relevancy label of v (i.e., yuv) and the predicted label
~luðvÞ as a supervised signal. The regularization is defined as Eq. (10) [8].

RðAÞ ¼
X

u

RðAuÞ ¼
X

u

X

v

J ðyuv;~luðvÞÞ ð10Þ

where J is the cross-entropy loss function.

Model Learning via the Unified Loss Function. iKGNN-LS uses the same loss
function as iKGNN-LS to learn the prediction model. The unified loss function, which
combines knowledge-aware GCN and LS regularization, is defined as Eq. (11) [8].

min
W;A
L ¼ min

W;A

X

u;v

J ðyuv;~yuvÞþ kRðAÞþ c Fk k22 ð11Þ

where J is the cross-entropy loss function, k and c are balancing hyper-parameters,
RðAÞ is LS regularization on edge weights A, Fk k22 is the L2-regularizer. By mini-
mizing the loss function, iKGNN-LS uses stochastic gradient descent (SGD) to
simultaneously update model parameters: transformation matrixW and edge weights A.

102 B. Zhao et al.

Note that in Eq. (11), the first term corresponds to feature propagation on the KG,
whereas the second term RðAÞ corresponds to label propagation on the KG. Once the
trainable parameters are learned, the prediction function of iKGNN-LS is achieved.

2.4 Making Top-N Recommendation

For a specific user u 2 U in the RS, iKGNN-LS can use the learned prediction function
to compute a predicted probability that user u will engage with item v 2 V �E with
which the user has not engaged before. As shown in Fig. 1, given user representation u
and user-specific item embedding vu, prediction function ~yuv ¼ f ðu; vuÞ (being inner
product \u; vu [in our experiments) generates predicted probability ~yuv. iKGNN-LS
sorts the probabilities in descending order to produce a top-N recommendation list for
the user.

3 Experiments

This section presents our two parts of top-N recommendation experiments: (1) we used
KGNN-LS to study the influences of edge weights and pooling aggregators on top-N
recommendation performance; (2) we used three datasets to compare the top-N rec-
ommendation performance of KGNN-LS and iKGNN-LS in order to show the per-
formance advantages of iKGNN-LS over KGNN-LS. It is worth noting that the
experiments in [8] have shown that KGNN-LS outperforms six state-of-the-art base-
lines. Therefore, our experiments do not need to compare iKGNN-LS with the baselines.

3.1 Experimental Setup

Datasets. Our experiments used the MovieLens 20M, Last.FM, and Yelp2018 datasets
for movie, music, and local business recommendations. The first two datasets were
published by H. Wang et al. [7, 8] on GitHub1. The authors used Microsoft Satori to
construct the KGs for the MovieLens 20M and Last.FM datasets. The details on the
datasets and the corresponding KGs can be found in [7, 8]. The Yelp2018 dataset,
which is the 2018 edition of the Yelp challenge, was published by X. Wang et al. [9] on
GitHub2. The authors extracted item knowledge from the local business information
network (e.g., category, location, and attribute) to construct the KG. The details on the
dataset and the corresponding KG can be found in [9]. Following [7, 8], for each
dataset, the ratio of training set, validation set, and test set is 6:2:2. Table 1 shows the
statistics of the datasets and the KGs.

1 https://github.com/hwwang55/KGNN-LS/tree/master/data.
2 https://github.com/xiangwang1223/knowledge_graph_attention_network/tree/master/Data.

Effective Knowledge-Aware Recommendation via Graph Convolutional Networks 103

https://github.com/hwwang55/KGNN-LS/tree/master/data
https://github.com/xiangwang1223/knowledge_graph_attention_network/tree/master/Data

Evaluation Metrics. Three popular evaluation metrics [1], Precision at N (P@N),
Recall@N (R@N), and F1-measure@N (F1@N), are used to evaluate the top-N rec-
ommendation performance (N = 5 or 10).

Model Implementation. The Python code of KGNN-LS was obtained from the
GitHub webpage3. The code of iKGNN-LS was generated by modifying the Python
code of KGNN-LS, specifically, by adding the implementation of the user-specific
entity scoring function and the improved edge weights, as well as replacing the sum
pooling aggregator with the max pooling one.

Hyperparameter Setting. Like [7, 8], in both iKGNN-LS and KGNN-LS, we set r as
ReLU for non-last-layers and tanh for the last-layer. We used grid search to select the
hyperparameters for the two models. More specifically, just as in [7, 8], we selected the
number K of sampled neighbors for entities in 2; 4; 8; 16; 32f g, the dimension d of
hidden layers in 4; 8; 16; 32f g, the number L of layers in 1; 2f g, the label smoothness
regularizer weight k in 0:01; 0:1; 0:5; 1:0; 1:5f g, the L2-regularizer weight c
in 10�9; 10�8; 5� 10�8; 10�7; 5� 10�7; 10�6; 5� 10�6; 10�5; 5� 10�5; 10�4

� �
,

and the learning rate g in 10�4; 2� 10�4; 5� 10�4; 10�3; 2� 10�3; 5� 10�3; 10�2;
�

2� 10�2g. The resulting optimal hyperparameter settings for the three datasets are
shown in Table 2.

Table 1. Statistics of the three datasets

MovieLens 20M Last.FM Yelp2018

users 138,159 1,872 45,919
items 16,954 3,846 45,538
interactions 13,501,622 42,346 1,185,068
entities 102,569 9,366 90,961
relations 32 60 42
KG triples 499,474 15,518 1,853,704

Table 2. Hyperparameter settings for the three datasets

MovieLens 20M Last.FM Yelp2018

K 16 8 32
d 32 16 16
L 1 1 1
k 1.0 0.1 1.0
c 10−7 10−4 10−9

η 2 � 10−2 5 � 10−4 5 � 10−3

3 https://github.com/hwwang55/KGNN-LS.

104 B. Zhao et al.

https://github.com/hwwang55/KGNN-LS

3.2 Experimental Results

As in [8], each experiment was repeated 5 times, and the average performance is
reported here. For the influence of edge weights on recommendation performance,
Table 3 shows the top-N recommendation results on MovieLens 20M, where the fig-
ures in columns KGNN-LS and KGNN-LS-entity mean the results of the original
KGNN-LS and the KGNN-LS that adds the user-specific entity scoring function,
respectively, and the “Improvement (%)” figures refer to the percentages of perfor-
mance improvement of KGNN-LS-entity over KGNN-LS. The results suggest that the
KGNN-LS that adds the user-specific entity scoring function outperforms KGNN-LS in
terms of all the metrics. This indicates that the edge weights determined jointly by
personalized user preferences for relations and for entities can improve recommenda-
tion performance.

For the influence of pooling aggregators on recommendation performance, Table 4
shows the top-N recommendation results on MovieLens 20M, where the figures in
columns KGNN-LS and KGNN-LS-max mean the results of the original KGNN-LS
and the KGNN-LS that uses max pooling instead of sum pooling for neighborhood
aggregation, respectively, and the “Improvement (%)” figures refer to the percentages
of performance improvement of KGNN-LS-max over KGNN-LS. The results suggest
that the KGNN-LS that uses max pooling outperforms KGNN-LS in terms of all the
metrics. This indicates that the max pooling is better than the sum pooling in aggre-
gating neighborhood in the recommendation context.

For the comparative experiment between KGNN-LS and iKGNN-LS, Table 5
shows the top-N recommendation results on the MovieLens 20M, Last.FM, and
Yelp2018 datasets, where the “Improvement (%)” figures refer to the percentages of
performance improvement of iKGNN-LS over KGNN-LS. The results suggest that on
the three datasets, iKGNN-LS outperforms KGNN-LS in terms of all the metrics. This
indicates the performance advantage of iKGNN-LS over KGNN-LS.

Table 3. Top-N recommendation results on MovieLens 20M (influence of edge weights)

Metrics KGNN-LS KGNN-LS-entity Improvement (%)

P@5 0.1260 0.1280 1.59
P@10 0.0940 0.0980 4.26
R@5 0.0989 0.0996 0.71
R@10 0.1550 0.1550 0.00
F1@5 0.1108 0.1120 1.08
F1@10 0.1173 0.1201 2.39

Effective Knowledge-Aware Recommendation via Graph Convolutional Networks 105

4 Conclusions

To overcome the weaknesses of KGNN-LS and learn user-specific item embeddings
more effectively, in this paper we propose the improved iKGNN-LS model, which
exploits user preferences for relations and for entities to jointly determine user-specific
edge weights and uses max pooling instead of sum pooling to aggregate the most
representative information of the neighborhood. Our comparative experiments of top-N
recommendation on three datasets demonstrate the performance advantage of iKGNN-
LS over KGNN-LS. Our future work will focus on further enhancing the iKGNN-LS
model by integrating knowledge about users from social networks into the model.

Table 5. Top-N recommendation results on MovieLens 20M, Last.FM, and Yelp2018

Dataset Metrics KGNN-LS iKGNN-LS Improvement (%)

MovieLens 20M P@5 0.1260 0.1290 2.38
P@10 0.0940 0.1020 8.51
R@5 0.0989 0.1022 3.34
R@10 0.1550 0.1559 0.58
F1@5 0.1108 0.1141 2.98
F1@10 0.1173 0.1232 5.03

Last.FM P@5 0.0300 0.0320 6.67
P@10 0.0280 0.0300 7.14
R@5 0.0589 0.0649 8.53
R@10 0.1223 0.1329 8.67
F1@5 0.0399 0.0429 7.52
F1@10 0.0456 0.0491 7.68

Yelp2018 P@5 0.0100 0.0110 10.00
P@10 0.0070 0.0070 0.00
R@5 0.0122 0.0128 4.92
R@10 0.0184 0.0195 5.98
F1@5 0.0110 0.0118 7.27
F1@10 0.0101 0.0103 1.98

Table 4. Top-N recommendation results on MovieLens 20M (influence of pooling aggregators)

Metrics KGNN-LS KGNN-LS-max Improvement (%)

P@5 0.1260 0.1280 1.59
P@10 0.0940 0.0990 5.32
R@5 0.0989 0.0994 0.51
R@10 0.1550 0.1607 3.68
F1@5 0.1108 0.1118 0.90
F1@10 0.1173 0.1225 4.43

106 B. Zhao et al.

References

1. Aggarwal, C.C.: Evaluating recommender systems. Recommender Systems, pp. 225–254.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_7

2. Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.: Unifying knowledge graph learning and
recommendation: towards a better understanding of user preferences. In: Proceedings of the
World Wide Web Conference, WWW 2019, pp. 151–161. ACM (2019). https://doi.org/10.
1145/3308558.3313705

3. Guo, Q., Zhuang, F., Qin, C., et al.: A survey on knowledge graph-based recommender
systems. CoRR abs/2003.00911 (2020). https://arxiv.org/abs/2003.00911

4. Ma, W., Zhang, M., Cao, Y., et al.: Jointly learning explainable rules for recommendation
with knowledge graph. In: Proceedings of the World Wide Web Conference, WWW 2019,
pp. 1210–1221. ACM (2019). https://doi.org/10.1609/aaai.v33i01.33015329

5. Nickel, M., Murphy, K., Tresp, V., Gabrilovich, E.: A review of relational machine learning
for knowledge graphs. Proc. IEEE 104(1), 11–33 (2016). https://doi.org/10.1109/JPROC.
2015.2483592

6. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs.
In: Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
JMLR Workshop and Conference Proceedings, vol. 48, pp. 2014–2023. JMLR.org (2016).
http://proceedings.mlr.press/v48/niepert16.html

7. Wang, H., Zhao, M., Xie, X., Li, W., Guo, M.: Knowledge graph convolutional networks for
recommender systems. In: Proceedings of the World Wide Web Conference, WWW
2019 pp. 3307–3313. ACM (2019). https://doi.org/10.1145/3308558.3313417

8. Wang, H., Zhang, F., Zhang, M., et al.: Knowledge-aware graph neural networks with label
smoothness regularization for recommender systems. In: Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, pp. 968–977. ACM (2019). https://doi.org/10.1145/3292500.3330836

9. Wang, X., He, X., Cao, Y., Liu, M., Chua, T.: KGAT: knowledge graph attention network
for recommendation. In: Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD 2019, pp. 950–958. ACM (2019). https://
doi.org/10.1145/3292500.3330989

10. Xian, Y., Fu, Z., Muthukrishnan, S., Melo, G., Zhang, Y.: Reinforcement knowledge graph
reasoning for explainable recommendation. In: Proceedings of the 42nd International ACM
SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2019,
pp. 285–294. ACM (2019). https://doi.org/10.1145/3331184.3331203

11. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In:
Proceedings of the 7th International Conference on Learning Representations, ICLR 2019.
OpenReview.net (2019). https://openreview.net/forum?id=ryGs6iA5Km

12. Xu, W., Xu, Z., Ye, L.: Computing user similarity by combining item ratings and
background knowledge from linked open data. In: Meng, X., Li, R., Wang, K., Niu, B.,
Wang, X., Zhao, G. (eds.) WISA 2018. LNCS, vol. 11242, pp. 467–478. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-02934-0_43

13. Ye, Y., Wang, X., Yao, J., et al.: Bayes EMbedding (BEM): refining representation by
integrating knowledge graphs and behavior-specific networks. In: Proceedings of the 28th
ACM International Conference on Information and Knowledge Management, CIKM 2019,
pp. 679–688. ACM (2019). https://doi.org/10.1145/3357384.3358014

Effective Knowledge-Aware Recommendation via Graph Convolutional Networks 107

https://doi.org/10.1007/978-3-319-29659-3_7
https://doi.org/10.1145/3308558.3313705
https://doi.org/10.1145/3308558.3313705
https://arxiv.org/abs/2003.00911
https://doi.org/10.1609/aaai.v33i01.33015329
https://doi.org/10.1109/JPROC.2015.2483592
https://doi.org/10.1109/JPROC.2015.2483592
http://proceedings.mlr.press/v48/niepert16.html
https://doi.org/10.1145/3308558.3313417
https://doi.org/10.1145/3292500.3330836
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3292500.3330989
https://doi.org/10.1145/3331184.3331203
https://openreview.net/forum?id=ryGs6iA5Km
https://doi.org/10.1007/978-3-030-02934-0_43
https://doi.org/10.1145/3357384.3358014

	Effective Knowledge-Aware Recommendation via Graph Convolutional Networks
	Abstract
	1 Introduction
	2 Improved Knowledge-Aware Recommendation Model
	2.1 Overview
	2.2 Transforming the KG into a User-Specific Weighted Graph
	2.3 Learning the Prediction Function
	2.4 Making Top-N Recommendation

	3 Experiments
	3.1 Experimental Setup
	3.2 Experimental Results

	4 Conclusions
	References

