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Abstract. In knowledge graph (KG) based recommender systems, path-based
methods make recommendations by building user-item graphs and exploiting
connectivity patterns between the entities in the graph. To overcome the limi-
tations of traditional meta-path based methods that rely heavily on handcrafted
meta-paths, recent deep neural network based methods, such as the Recurrent
Knowledge Graph Embedding (RKGE) approach, can automatically mine the
connectivity patterns between entities in the KG, thereby improving recom-
mendation performance. However, these methods usually use only one type of
neural network to encode path embeddings, which cannot fully extract path
features, limiting performance improvement of the recommender system. In this
paper, we propose a Deep Hybrid Knowledge Graph Embedding (DHKGE)
method for top-N recommendation. DHKGE encodes embeddings of paths
between users and items by combining convolutional neural network (CNN) and
the long short-term memory (LSTM) network. Furthermore, it uses an attention
mechanism to aggregate the encoded path representations and generate a final
hidden state vector, which is used to calculate the proximity between the target
user and candidate items, thus generating top-N recommendation. Experiments
on the MovieLens 100K and Yelp datasets show that DHKGE overall outper-
forms RKGE and several typical recommendation methods in terms of Preci-
sion@N, MRR@N, and NDCG@N.

Keywords: Top-N recommendation � Knowledge graph � Deep hybrid model �
CNN � LSTM � Attention mechanism

1 Introduction

Knowledge graphs (KGs) have proven to be effective in improving recommendation
performance [7, 16]. According to [7], there are three categories of KG-based rec-
ommendation methods: path-based methods, embedding-based methods, and unified
methods. Path-based methods make recommendations by building a KG which con-
tains users, items, and user-item interactions, and then exploiting connectivity patterns
between the entities (users or items) in the KG. The traditional meta-path based
methods use the semantic similarity of entities in different meta-paths [18] as graph
regularization to refine representations of users and items [7]. However, such methods
rely heavily on handcrafted meta-paths, which further rely on domain knowledge [14].

© Springer Nature Switzerland AG 2020
G. Wang et al. (Eds.): WISA 2020, LNCS 12432, pp. 59–70, 2020.
https://doi.org/10.1007/978-3-030-60029-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-60029-7_6


To overcome the limitations of meta-path based methods, deep neural network
based methods have recently been devised to automatically mine the connectivity
patterns between entities (i.e., path embeddings) in the KG. Path representations are
learned by extracting path features from connectivity patterns to characterize user
preferences towards items, which are finally used to generate recommendation.

However, existing deep neural network based methods, such as the Recurrent
Knowledge Graph Embedding (RKGE) approach [14], usually use only one type of
neural network to encode path embeddings. But this cannot fully extract path features,
which limits performance improvement of the recommender system. Recently pro-
posed deep hybrid models, such as [12], can combine several neural building blocks to
form a more powerful recommendation model. To the best of our knowledge, existing
deep hybrid models seldom use KGs for recommendation.

To overcome the weaknesses of existing methods, in this paper we propose a Deep
Hybrid Knowledge Graph Embedding (DHKGE) method for top-N recommendation.
DHKGE encodes embeddings of paths between users and items that are involved in the
recommender system by combining convolutional neural network (CNN) and the long
short-term memory (LSTM) network. It further uses an attention mechanism to
aggregate the encoded path representations and generate a final hidden state vector.
This vector is then used to calculate the proximity between the target user and can-
didate items, and generate top-N recommendation for the user by ranking the
proximity.

In summary, the main contributions of this paper are as follows:

– We propose the Deep Hybrid Knowledge Graph Embedding (DHKGE) method for
top-N recommendation, which exploits a deep hybrid model to encode the path
between users and items.

– We propose to use the attention mechanism to distinguish the importance of mul-
tiple semantic paths between a user-item pair, so that salient paths play a greater role
in modeling user preferences.

– We evaluated our method on the MovieLens 100K and Yelp datasets. The exper-
imental results show that our method overall outperforms RKGE and several typical
recommendation methods in terms of Precision@N, MRR@N, and NDCG@N.

2 Related Work

2.1 Path-Based Recommendation Methods

Path-based methods make recommendations by building user-item graphs and
exploiting connectivity patterns between the entities in the graph [7]. Traditional meta-
path based methods rely heavily on handcrafted meta-paths. Deep neural network
based methods can automatically mine the connectivity patterns between entities in the
graph, thereby improving recommendation performance. For example, Hu et al. [9]
proposed to leverage meta-path based context for top-N recommendation with a neural
co-attention model. Sun et al. [14] proposed the RKGE approach that employs RNN to
learn high-quality representations of both users and items, which are then used to
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generate better recommendations. Wang et al. [15] proposed the Knowledge-aware
Path Recurrent Network (KPRN) which exploits KG to generate better recommenda-
tion, where the path embeddings in the KG are encoded with LSTM.

Existing path-based recommendation methods usually use only one type of neural
network to encode path embeddings, while our proposed DHKGE exploits a deep
hybrid model to encode path embeddings, which can generate a more comprehensive
path representation for better recommendation.

2.2 Deep Neural Network-Based Recommendation

Deep neural networks have been widely used in recommender systems. The existing
recommendation models can be divided into two categories: recommendation with
neural building blocks and recommendation with deep hybrid models [4, 20].

In the first category, the recommendation models are divided into several subcat-
egories [20] that exploit the deep learning models: CNN, recurrent neural network
(RNN), and attentional model (AM), etc. For example, Kim et al. [10] proposed a
context-aware recommendation model named convolutional matrix factorization
(ConvMF) that integrates CNN into probabilistic matrix factorization.

Recently, researchers have proposed deep hybrid models, which can combine
several neural building blocks to complement one another and form a more powerful
recommendation model [20]. For instance, Lee et al. [12] proposed a deep learning
recommender system that combines RNN and CNN to learn semantic representation of
each utterance and build a sequence model for the dialog thread. To the best of our
knowledge, existing deep hybrid models seldom use KGs for recommendation.

3 DHKGE: Deep Hybrid KG Embedding Method

In this section, we expatiate on our DHKGE method. After introducing concepts and
notations, we first briefly explain its overall framework, then describe its main com-
ponents, and finally describe model learning and recommendation generation.

Given a user set U ¼ fu1; u2; . . . ; umg and an item set V ¼ fv1; v2; . . . ; vng of
the recommender system, we construct the users’ implicit feedback matrix R 2 R

m�n,
where each element is defined as follows: when user ui interacted with item vj set
rij ¼ 1 indicating that the user prefers the item, otherwise set rij ¼ 0. Based on the
matrix R and an external knowledge source (e.g., the IMDB dataset) that describes the
items, we build a KG for recommendation, which contains the users, items, user’s
preference for the items, and the item descriptions extracted from the knowledge
source, such as actors, directors and genres (as entities), as well as rating, categorizing,
acting, and directing (as entity relations) in the domain of movie recommendation. We
refer to all objects (e.g., users, items, actors, directors, and genres) except for various
relations in the KG as entities. The definition [14] of the KG is given below.

Definition 1 (Knowledge Graph). KG is defined as a directed graph G ¼ ðE; LÞ,
where E ¼ fe1; e2; . . . ; e Ej jg denotes the sets of entities and L the sets of links. An
entity type mapping function / : E ! A and a link type mapping function u : L ! R
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are defined for the graph. Each entity e 2 E belongs to an entity type /ðeÞ 2 A, and
each link l 2 L belongs to a link type (relation) uðlÞ 2 R.

Based on the KG definition, we further define the connected semantic paths between
entity pair ðei; ejÞ as Pðei; ejÞ ¼ fp1; p2; . . . ; psg with s being the number of paths.

A semantic path of length T in P is denoted as: p ¼ ei �!
r1
e1 �!

r2 � � � �!rT ej.
Following the two semantic path mining strategies proposed in [14], DHKGE only

considers user-item paths Pðui; vjÞ; ui 2 U; vj 2 V that connect user ui with all her
rated items vj, and sets a length constraint for such paths, i.e., path length is T .

3.1 Overview

Our goal is to fully extract the information in the semantic path to model user pref-
erences, which are then used to generate better recommendations. To achieve this goal,
we propose the deep hybrid knowledge graph embedding (DHKGE) method.

The core ideas of DHKGE is as follows: Given a user and an item, DHKGE first
automatically extracts all semantic paths between the user and the item from the KG
according to the semantic path mining strategies. It then uses a deep hybrid model to
obtain a final hidden vector for quantifying the relation (proximity) between the user
and the item. Finally, it generates a top-N recommendation list for the user by sorting
the proximity scores of the candidate items in descending order.

The overall framework of DHKGE is depicted in Fig. 1. As shown in the figure,
DHKGE is composed of four key components: the embedding layer, CNN layer,
LSTM layer, and attention layer, which are further described as follows:

– The embedding layer: This layer takes the semantic path of length T as input, learns
T þ 1 low-dimensional embedding vectors for T þ 1 entities on the semantic path,
and outputs these vectors as an embedding of the path.

– The CNN layer: This layer takes the path embedding as input, uses multiple filters
to extract the local features of the path to form T local feature vectors, and outputs
these vectors.

– The LSTM layer: This layer takes the ordered local feature vectors as input, encodes
them to get a representation of the path, and outputs the path representation.

– The attention layer: This layer takes the representations of s paths as input, uses the
attention mechanism to aggregate these path representations by weighting them to
obtain a final hidden state vector, and outputs the vector.

3.2 Embedding Layer

Given a set of s semantic paths of length T between user ui and item vj,
Pðui; vjÞ ¼ fp1; p2; . . . ; psg, where the start entity and end entity of each path in P
are ui and vj, respectively. As shown in Fig. 1, e0 ¼ ui and eT ¼ vj in path p1. The
embedding layer maps each entity et in such a path into a d-dimensional vector
et 2 R

d , which captures the semantic meaning of the entity. The vectors of all entities
in the path constitute an embedding p1 ¼ fe0; e1; . . . ; eTg of the path.
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3.3 CNN Layer

The CNN layer takes path embedding p1 as input, and then slides multiple filters with
the same window size over the path embedding to extract local features of the path. Let
W1 2 R

2�d be a filter with a window size of 2. As shown in Fig. 1, W1 is applied to
two embeddings et and etþ 1 of the adjacent entities to generate a local feature x1, which
is defined as Eq. (1) [5, 11].

x1 ¼ f ðW1 � [et; etþ 1] þ b1Þ ð1Þ

where � denotes the convolution operation, b1 is the bias, and f ð�Þ is the nonlinear
activation function ReLU.

This way, k filters with the same window size,W1; W2; . . . , are applied to the two
entity embeddings et and etþ 1 to obtain a local feature vector xt ¼ ½x1; x2; . . . ; xk�,
where k is a hyperparameter. The CNN layer slides k filters from entity embedding e0
to entity embedding eT�1 with stride 1, thus forming a sequence of local feature vectors
fx0; x1; . . . ; xT�1g.

Fig. 1. The overall framework of DHKGE, which describes the case of a user-item pair ðui; vjÞ.
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3.4 LSTM Layer

Taking T ordered local feature vectors fx0; x1; . . . ; xT�1g as input, the LSTM layer
uses LSTM to encode the sequence information in the local feature vectors to generate
a path representation. At the time step t � 1, LTSM outputs a hidden state vector
ht�1 2 R

d0 , where hyperparameter d0 is the number of LSTM hidden units. As shown in
Fig. 1, the hidden state vector ht�1 and the local feature vector xt are used to learn the
hidden state vector ht at time step t, and ht is defined as Eq. (2) [6, 15].

it ¼ rðUixt þ Wiht�1 þ biÞ
f t ¼ rðUf xt þ Wfht�1 þ bf Þ
ot ¼ rðUoxt þ Woht�1 þ boÞ
ĉt ¼ tanhðUcxt þ Wcht�1 þ bcÞ
ct ¼ it � ĉt þ f t � ct�1

ht ¼ ot � tanhðctÞ

ð2Þ

where, it; f t; ot 2 R
d0 represent the input, forget, and output gates at time step t,

respectively. ĉt; ct; ht 2 R
d0 denote the information transform module, cell state

vector, and hidden state vector at time step t, respectively. Ui; Uf ; Uo; Uc 2 R
d0�k are

input weights, Wi; Wf ; Wo; Wc 2 R
d0�d0 are recurrent weights, and bi; bf ; bo; bc 2

R
d0 are biases. rð�Þ is the sigmoid activation function and � stands for the element-wise

product of two vectors.
As shown in Fig. 1, the learning process continues until the LSTM layer obtains the

hidden state vector at the final time step T � 1. This hidden state vector is therefore
output as a path representation, denoted m1 2 R

d0 .

3.5 Attention Layer

Once the path representations are obtained, the attention layer takes these path repre-
sentations as input and uses the attention mechanism to generate a final hidden state
vector and output it. The process of generating hidden state vectors is as follows: First,
this layer learns an attention score scoreðmiÞ for each path representationmi in the path
representation set fm1; m2; . . . ;msg. Then these scores are normalized, and finally
these path representations are aggregated by weighting them to obtain a final hidden

state vector h
_ 2 R

d0 , which characterizes the user preferences towards items. The above
process is defined as Eq. (3) [17].

scoreðmiÞ ¼ wT
a tanhðWamiÞ

ai ¼ expðscoreðmiÞÞPs
i¼1

expðscoreðmiÞÞ

h
_ ¼ Ps

i¼1
aimi

ð3Þ

where wa 2 R
d0 and Wa 2 R

d0�d0 are weights, and ai the normalized attention score.
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Finally, DHKGE uses a fully connected layer to quantify the proximity ~rij of user ui
and item vj, which is defined as Eq. (4) [14]:

~rij ¼ rðWrh
_ þ brÞ ð4Þ

where Wr 2 R
1�d0 and br are the weights and bias, respectively.

3.6 Method Learning and Recommendation Generation

Like RKGE [14], given the training data Dtrain, which contains instances in the form of
ðui; vj; rij; Pðui; vjÞÞ, DHKGE also uses stochastic gradient descent (SGD) to mini-
mize the loss function defined as Eq. (5) to learn all the parameters in DHKGE.

J ¼ 1
jDtrainj

X
rij2Dtrain

BCELossð~rij; rijÞ ð5Þ

where BCELossð�Þ is the binary cross-entropy between the observed ratings and esti-
mated ones.

The recommendation problem can be dealt with as a binary classification problem
[8, 14]. When user ui prefers item vj, namely rij ¼ 1, we expect the estimated proximity
~rij to approach 1, otherwise it approaches 0. Once the learning process is completed,
DHKGE can obtain all trained embeddings of the users and items.

Following [14, 18], during the testing process DHKGE can obtain the proximity
scores between the target user and candidate items by calculating the inner products of
the user embedding and the item embeddings. DHKGE finally generates top-N rec-
ommendation lists for the user by sorting the proximity scores in descending order.

4 Experimental Evaluation

4.1 Experimental Setup

Datasets. Our experiment used two datasets MovieLens 100K1 and Yelp published on
GitHub2 by [14]. The former is a movie dataset containing user interaction with
movies. Sun et al. [14] combined this dataset with the IMDB dataset3 to add
description information of movies, such as genre, actor, and director. Yelp contains
user check-ins to local business, user reviews, and local business information, and no
external information needs to be added to this dataset. The two datasets were used to
build two KGs following Definition 1. The statistics of two datasets are shown in
Table 1.

1 The experiment of [14] used MovieLens 1M, but the pre-training vectors of users and items in
MovieLens 1M were not published on GitHub, so we can only use MovieLens 100K.

2 https://github.com/sunzhuntu/Recurrent-Knowledge-Graph-Embedding/tree/master/data.
3 https://www.imdb.com/.
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Following [3, 14], we sorted the two datasets according to the feedback timestamp,
and used the earlier 80% feedback as training data and the more recent 20% feedback
as test data. For each user-item pair in the training set, we extracted all paths with a
length of 3 and randomly selected five paths from them to train our model.

Evaluation Metrics. Three popular evaluation metrics [1], Precision at N (Prec@N),
Mean Reciprocal Rank at N (MRR@N), and Normalized Discounted Cumulative Gain
at N (NDCG@N), are adopted to evaluate the top-N recommendation methods in our
experiment. We set N = {1, 5, 10, 20} for Prec@N, and N = {5, 10, 20} for MRR@N
and NDCG@N.

Comparison Methods and Their Implementation. We compared our DHKGE with
the following four recommendation methods:

• BPRMF [13]: It is a Bayesian personalized ranking method based on Matrix Fac-
torization. We used the Cornac4 framework to implement BPRMF.

• NCF [8]: It is a classic neural network-based recommendation method. It was also
implemented by using the Cornac framework.

• CKE [19]: It is the recently proposed state-of-the-art KG embedding based rec-
ommendation method. This method directly used the Python code5 provided in [2].

• RKGE [14]: It is a state-of-the-art recommendation method based on KG path. This
method directly used the Python code published on GitHub6 by the authors.

We used PyTorch to generate the code of DHKGE by modifying the recurrent
network module and performance evaluation module in the RKGE code.

Hyperparameter Settings. For DHKGE, we used grid search to select both the
dimension d of the entity embedding and the number k of convolution filters in
f10; 20; 30; 40; 50; 100g, the number d0 of LSTMhidden units in f16; 32; 64; 128g,
and the learning rate k of SGD in f0:001; 0:01; 0:1; 0:2g. The hyperparameters for

Table 1. Dataset and knowledge graph statistics

Datasets MovieLens 100K Yelp

User-item interaction # Users 943 37,940
# Items 1,675 11,516
# Ratings 99,975 229,178

Knowledge graph # Entities 7,744 50,028
# Entity types 5 4
# Links 112,321 272,057
# Links types 7 5

4 https://github.com/PreferredAI/cornac.
5 https://github.com/TaoMiner/joint-kg-recommender.
6 https://github.com/sunzhuntu/Recurrent-Knowledge-Graph-Embedding.
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DHKGE were set to d ¼ 10; k ¼ 10; d0 ¼ 16; k ¼ 0:2 on MovieLens 100K and d ¼
20; k ¼ 40; d0 ¼ 32; k ¼ 0:01 on Yelp. For the four comparison methods, the hyper-
parameters were set as suggested by the original papers.

4.2 Experimental Results

Tables 2 and 3 show the results of top-N recommendation performed on the two
datasets. In the tables, bold numbers indicate the best performance among all the
methods; underlined numbers are the best performance among the four comparison
methods; the numbers in the “Improve” column indicate the percentage (%) of per-
formance improvement achieved by DHKGE relative to the best performance among
the comparison methods. The same way as in [14], we also created two views for each
dataset: “All Users” means that all users are considered in the test data, whereas “Cold
Start” indicates that the test data only includes users with less than 5 ratings.

Observing these results, we can obtain the following findings:

1. The performance of both DHKGE and RKGE in terms of all metrics except for
Prec@1 is significantly better than the other three methods. This indicates DHKGE
and RKGE can make full use of the path information to model user’s preference for
items, thereby improving the recommendation performance.

2. DHKGE’s performance is better than RKGE in all metrics (the performance in
terms of Prec@1 on MovieLens 100K is the same). This indicates that deep hybrid

Table 2. Results of top-N recommendation on MovieLens 100K

Views Metrics BPRMF NCF CKE RKGE DHKGE Improve (%)

All Users Prec@1 0.0382 0.0509 0.1044 0.1469 0.1548 5.38
Prec@5 0.0418 0.0492 0.0826 0.1044 0.1103 5.65
Prec@10 0.0431 0.0467 0.0735 0.0890 0.0962 8.09
Prec@20 0.0467 0.0481 0.0660 0.0777 0.0822 5.79
MRR@5 0.1135 0.1247 0.2272 0.2760 0.2883 4.46
MRR@10 0.1221 0.1388 0.2637 0.3284 0.3416 4.02
MRR@20 0.1278 0.1416 0.3031 0.3760 0.3876 3.09
NDCG@5 0.0412 0.0498 0.1976 0.2552 0.2623 2.78
NDCG@10 0.0488 0.0541 0.2133 0.2853 0.3006 5.36
NDCG@20 0.0705 0.0735 0.2597 0.3256 0.3316 1.84

Cold Start Prec@1 0.0250 0.0500 0.0503 0.0625 0.0625 0.00
Prec@5 0.0225 0.0275 0.0287 0.0325 0.0350 7.69
Prec@10 0.0163 0.0213 0.0265 0.0263 0.0288 9.51
Prec@20 0.0175 0.0194 0.0239 0.0206 0.0213 3.40
MRR@5 0.0794 0.0872 0.0922 0.1008 0.1056 4.76
MRR@10 0.0823 0.0953 0.1003 0.1143 0.1206 5.51
MRR@20 0.0846 0.1067 0.1107 0.1237 0.1289 4.20
NDCG@5 0.0278 0.0365 0.0744 0.1029 0.1103 7.19
NDCG@10 0.0345 0.0459 0.0953 0.1354 0.1404 3.69
NDCG@20 0.0530 0.0635 0.1184 0.1604 0.1658 3.37
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models can encode semantic paths more efficiently than one type of neural network,
because by extracting the local features of the path and encoding the sequence
information in the path, DHKGE can generate a more comprehensive path repre-
sentation for recommendation.

3. On most metrics, the performance improvement of DHKGE in the “All Users” view
is higher than in the “Cold Start” view. This indicates that in the “Cold Start” view,
the quality and quantity of the semantic paths extracted from the KG are limited,
which affects the recommendation performance of DHKGE since this method relies
on the user’s historical interaction information to make recommendations.

Based on these findings, we can draw the conclusion that DHKGE’s recommen-
dation performance is generally better than RKGE and other comparison methods.

5 Conclusions

To overcome the weaknesses of existing KG path-based recommendation methods, in
this paper we propose the DHKGE method for top-N recommendation. DHKGE
exploits a deep hybrid model to encode the path between users and items, and uses the
attention mechanism to distinguish the importance of multiple semantic paths between
a user-item pair. Experiments on the MovieLens 100K and Yelp datasets show that

Table 3. Results of top-N recommendation on Yelp

Views Metrics BPRMF NCF CKE RKGE DHKGE Improve (%)

All Users Prec@1 0.0038 0.0050 0.0076 0.0093 0.0102 9.68
Prec@5 0.0041 0.0044 0.0053 0.0078 0.0085 8.97
Prec@10 0.0039 0.0043 0.0050 0.0066 0.0075 13.64
Prec@20 0.0036 0.0041 0.0047 0.0058 0.0063 8.62
MRR@5 0.0134 0.0164 0.0171 0.0194 0.0210 8.25
MRR@10 0.0162 0.0181 0.0195 0.0231 0.0252 9.09
MRR@20 0.0185 0.0206 0.0226 0.0270 0.0286 5.93
NDCG@5 0.0072 0.0084 0.0197 0.0243 0.0253 4.12
NDCG@10 0.0103 0.0118 0.0213 0.0320 0.0339 5.94
NDCG@20 0.0148 0.0172 0.0256 0.0418 0.0432 3.35

Cold Start Prec@1 0.0031 0.0035 0.0064 0.0061 0.0062 −3.13
Prec@5 0.0030 0.0034 0.0045 0.0048 0.0050 4.17
Prec@10 0.0028 0.0031 0.0036 0.0040 0.0043 7.50
Prec@20 0.0027 0.0030 0.0031 0.0032 0.0035 9.38
MRR@5 0.0108 0.0114 0.0117 0.0121 0.0127 4.96
MRR@10 0.0134 0.0142 0.0144 0.0143 0.0150 4.90
MRR@20 0.0149 0.0161 0.0162 0.0159 0.0168 3.70
NDCG@5 0.0069 0.0079 0.0134 0.0149 0.0157 5.37
NDCG@10 0.0100 0.0114 0.0187 0.0200 0.0212 6.00
NDCG@20 0.0151 0.0170 0.0212 0.0259 0.0274 5.79
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DHKGE overall outperforms RKGE and several typical recommendation methods in
terms of Precision@N, MRR@N, and NDCG@N. In future work, we plan to improve
our method by adding entity relations to path embeddings.
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