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Abstract. As a promising approach to extend cloud resource and ser-
vice on the Internet-of-Things (IoT), edge computing has attracted
significant attention. However, edge computing faces challenges in its
decentralized management and data reliability. To meet this gap, many
approaches propose to use blockchain technology to enable distributed
storage and computation at the edge nodes, thus guaranteeing reli-
able access and control of the network. However, the resource-constraint
nature of the edge node makes it difficult to store the entire chain as
the data volume increases. To address this issue, we propose Re-chain, a
re-writable blockchain with fixed storage. Re-chain supports re-writing of
the onchain historical transactions in chronological order without chang-
ing the block hash, as a result, the total size of the blockchain will not
increase. Our protocol is consensus-based and uses the proposed thresh-
old trapdoor chameleon hash (TTCH) to constraint re-write operations.
With this regards, Re-chain achieves both decentralized re-writing design
and fault-tolerance at the same time. We provide security analysis and
evaluation experiments to demonstrate the feasibility of Re-chain, the
results show that the performance of Re-chain is acceptable when it is
executed at a medium scale.

Keywords: Internet of Things · Chameleon hash · Redactable
blockchain · Edge computing

1 Introduction

As the rapid advancement in computing technologies has enabled a wide range
of applications, edge computing proposes a novel model for providing computa-
tional resources close to billions of end devices at the edge of the network. Edge
computing has numerous applications in the Internet of Things (IoT), including
healthcare, smart grids, manufacturing, etc. [7]. Edge computing that scales to
a large number of sites is a cheaper way to achieve scalability than servers in the
corporate center. However, its heterogeneity and resource-constraint nature will
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bring security challenges. During data transmissions, some attacks (e.g., jam-
ming attacks, sniffer attacks) could disable the links by congesting the network.
Further, the data in edge networks are separate into many parts and stored in
different storage locations, which may cause data reliability issues [8,20].

To address the inherent drawbacks above, many scholars use blockchain as a
building block to integrate with edge computing in IoT systems [22,23,25]. With
the blockchain technology, it is possible to build a distributed control at dozens
of edge nodes. Thanks to the chain structure and consensus process, blockchain
can protect the accuracy, consistency and validity of the collected IoT data
transparently. The integration of blockchain and edge computing seems to be a
win-win solution which can provide secure and reliable services.

However, the integration of blockchain and edge computing still encounters
data storage capacity problem. Although the edge node could offer relatively
large storage, as the collected data and transactions increase, the storage required
for blockchain is ever-growing. As a result, edge nodes will eventually consume
the entire storage. Current Bitcoin chain is more than 225 GB large, in the
industrial IoT settings, the size of the chain could be even more significant. To
address this problem, approaches such as Ethereum differentiate full node and
light node. Only the full node stores the entire chain while the light node only
stores the state.

Nevertheless, it brings centralization risk, since the full nodes may be mali-
cious and the light nodes have no way to detect this [14,21]. Also, the edge node
must be able to verify transactions and blocks, therefore it should store the full
chain. Another solution is to overwrite the original chain directly, but it would
break tamper-resistance property of the blockchain. The existing approaches
cannot effectively solve storage issues.

To address the storage issue, we propose a redactable and reusable blockchain
architecture with fixed storage called Re-chain. In collaborative edges, Re-chain
allows the re-write operations from the earliest block seamlessly when the edge
node reaches the maximum storage size, thus mitigating the storage limitation
of the edge node. Moreover, the re-writing process is controlled by a consortium
of edge nodes. Only approved by a sufficient number of edge nodes can the new
transactions be re-written to the chain. Such a consensus mechanism brings trust
to the system and increases the attacking overheads for the adversaries.

Our observation is that data and transactions in IoT scenario are time-
sensitive. In specific, data generated by the IoT devices (such as sensor mea-
surements, device logs, monitoring data and environmental data) may lose its
value after some time. Based on this observation, Re-chain safely re-writes the
new transactions in the earliest blocks in a seamless way. We can further use
the cloud as a backup node to store the overwritten blocks, which ensures that
the historical data and previous transactions are still accessible and verifiable,
but it beyond the scope of this paper. Edge nodes in the near-end stores blocks
generated in more recent periods and allow transaction query and verification.

Re-chain uses chameleon hash [15] to enable the re-write operation. The con-
cept of chameleon hash was first proposed by Krawczyk and Rabin [3]. It is a
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one-way hash function that contains public key and trapdoor, where hashing
is parametrized by public key pk. As long as the trapdoor sk is not known, it
is hard to find a collision. Conversely, if the trapdoor sk is known, the arbi-
trary collision can be efficiently found. However, the chameleon hash cannot be
directly used in our scenario since the trapdoor needs to be managed by a cen-
tralized party. Instead, we require a consortium of edge nodes to reach consensus
before re-writing a block, and the consensus process should be able to tolerate
a considerable number of faulty nodes. To meet this gap, we propose threshold
trapdoor chameleon hash (TTCH) by using multiple secret keys instead of a
single fixed secret key to finding collisions. We incorporate TTCH into our con-
sensus mechanism. Moreover, to achieve a higher performance in the throughput
and reduce the large cryptographic overhead incurred during the consensus pro-
cess, we construct two different hashes in the Merkel tree, TTCH hash function
and SHA256, which only needs to calculate once of the TTCH collision during
the block re-write process.

The main contributions of this work are summarized as follows:

– We propose a reusable and redactable blockchain called Re-chain, which can
re-write the historical data and transaction of the earlier blocks without
affecting the integrity of the original chain. Re-chain allows the most recent
data and transactions on the blockchain accessible with a fixed size in space,
addressing the storage issues for the large scale edge-based IoT system.

– We propose TTCH to achieve a consensus-based re-write operations, which
allows a t-out-of-n edge nodes to compute a hash collision collaboratively in
order to re-write block transactions.

– We instantiate a prototype implementation of Re-chain and TTCH, and
evaluate the performance of the different operations through comprehensive
experiments. The results demonstrate that Re-chain is practical when apply-
ing to a medium-scale IoT system.

2 Related Work

2.1 Integrated Blockchain and Edge Computing Systems

The study of [16] proposes a permissioned blockchain edge model to address
privacy protections and energy security in smart grid, and they use the voting
functionality of blockchain to validate the users’ identities and smart contract to
achieve optimal energy resource management. Sharma et al. [17] presented dis-
tributed blockchain cloud architecture with Software-Defined Networking (SDN)
enabled edge computing, the SDN controllers based on blockchain is used for a
low-latency service of computing resources. Qi et al. [24] use blockchain technol-
ogy to build Cpds to prevent the participants from acquiring trusted traceability
of products in industrial IoT data sharing arena.

In edge computing environments with a massive amount of data collected
from IoT devices, the scalability issues hinder the practical feasibility of
blockchain-based solutions. In the following, we summarized works on massive
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data storage empowered by blockchain. InterPlanetary File System (IPFS) [18]
is a decentralized and distributed file system with high integrity and robustness.
IPFS runs over a peer-to-peer network to store and share data over the network
nodes.

However, none of those above works has explicitly addressed the storage issue
of ever-growing blockchain and the reuse of blockchain, existing approaches can
only enhance the limited scalability, and security level will decrease accordingly.
By contrast, Re-chain can gain storage space by constantly re-writing outdated
historical transactions to ensure edge node acting as a full node.

2.2 Redactable Blockchain

Ateniese et al. [15] first proposed redactable blockchain by using chameleon hash
(CH) to replace traditional hash function, so that block content can be re-written
without causing hard forks. Huang et al. [10] proposed a threshold chameleon
hash (TCH) for Industrial Internet-of-Things (IIoT) environment, and it allows
a group of authorized sensors to re-write blockchain. However, in the re-write
process, TCH requires a ring of k authorized sensors to compute collision one
by one, which means, k sensors must behave correctly, and the system cannot
tolerate malicious sensors, once a sensor being compromised, the entire system
can fail.

In Re-chain, the re-write operation is governed by a consortium of edge nodes,
which makes the process more controllable. Further, TTCH find collision through
a threshold number of trapdoor keys rather than relies on a single trapdoor key,
hence, has better resilience to key compromise. The entire re-write process relies
on a consensus protocol similar to Proof of Authority (PoA), which can tolerate
faulty nodes. When an edge node leading the re-write process, other edge nodes
remain unlinkable, this will not bring higher latency and cost. We believe Re-
chain achieves a higher decentralized design and acts more efficient.

3 Background

3.1 System Model

The existing multi-layer edge-IoT system mainly consists of four entities as iden-
tified below.

1. Cloud : Central cloud in the cloud layer can provide gigantic data storage and
computational power. The cloud can back up the blocks which have been
overwritten at the edge node in an off-chain manner, therefore it can still
recover the overwritten data through the cloud and make the data accessible
to the users.

2. Edge node: Edge nodes provide fixed storage and computational power which
is higher than which of the end device’s, but smaller than the cloud. We notice
that Re-chain stores at the edge node which has fixed storage. Re-chain is
used to record the transactions and data collected from end devices, along
with resource management and data processing operations.
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3. Key authority : Key authority is a trusted entity in the edge layer which is
responsible for publishing the genesis block and generating secret keys for
edge nodes.

4. End device: End devices (e.g., sensors, actuators) are used for collecting data
in different circumstances. The storage and computational power are con-
strained, therefore the end device will send and store the collected data in
the edge node.

3.2 Design Goals

Re-chain has the following design goals:

– Liveness: Re-chain must guarantee the liveness as long as the minimum
number of edge nodes maintains liveness and honest, thus weak synchrony
assumptions hold for the key distribution [2].

– Collision-resistance:Without knowing the trapdoor of TTCH, no adversary
can efficiently find a collision for any pair of (�∗, R∗,m∗) and (�∗, R′∗,m′∗)
with PPT algorithm.

– Unforgeability: Unforgeability requires that it is even intractable for the
adversary who possesses secret keys to find collisions, this definition is
stronger than and key-exposure freeness [4,5].

– Efficiency: When the space used for Re-chain does not reache the edge node’s
storage limit, Re-chain uses baseline consensus to write new blocks to the
chain, while it reaches the storage limit, Re-chain re-write the historical blocks
with our proposed proof-of-concept consensus protocol. The performance of
re-writing consensus must be as efficient as basic consensus.

3.3 Threat Model

Our adversary’s goal is to find arbitrary collision to break the security of the
re-write process. The adversary may hold part of secret keys (less than the
threshold) and try to compute collision by invalid credentials. The adversary
may take any action within enough secret keys to obtain the hash trapdoor
among all edge nodes it controls. We assume that the adversary cannot break
standard cryptographic primitives and assumption, such as finding hash colli-
sions or forging digital credentials. The adversary also cannot compromise the
private keys of arbitrary domains. In our instantiation, we further assume that
the adversary cannot control a majority of edge nodes (more than the threshold)
in the blockchain network. We do not consider the privacy and access control
of the data stored in the cloud in this paper, as works [9,11,19] are orthogonal
with our work and they can integrated into Re-chain.

3.4 Preliminaries

Notations. Let g be a generator of a cyclic group G of order p a for a λ-bit prime
p, an algorithm is efficient if it runs in probabilistic polynomial time (PPT) in
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the length of its input. We write the integer modulo p as Zp and r
R← Zp denote

that r is chosen uniformly at random from Zp, ab represent the multiplication of
two integers a ∈ Zp and b ∈ Zp. Let BGGen be a PPT algorithm that returns BG
= (G1, G2, GT , p, g1, g2, e) of asymmetric pairing groups where G1, G2, GT are
cyclic groups of order p, g1 and g2 are generators of G1 and G2, e: G1×G2 → GT

is a computable bilinear map.

Chameleon Hash

Definition 1 (Chameleon Hash). A chameleon hash with message space M
contains five algorithms (HGen, Hash, HVer, HCol) specified as follows:

– HGen(1λ). The algorithm HGen, on input a parameter λ output a public
hash key hk and a secret key sk.

– Hash(m,hk). The algorithm Hash, on input the public hash key hk and a
message m ∈ M and output the hash value and randomness r.

– HVer(m,hk, (�, r)). The algorithm HVer, on input m, �, r verify that (�, r) is
a valid hash pair for message m.

– HCol(sk, (�,m, r),m′). The algorithm HCol, on input the secret key and
(�,m, r), for a new message m′ ∈ M return new randomness r′ to satisfies

HVer(m,hk, (�, r)) = HVer(m′,hk, (�, r′))

Fig. 1. Re-chain architecture

4 Re-chain Design

4.1 Re-chain Architecture

The core property of Re-chain is the re-writing of the historical transactions
when reaching a consensus. We assume that the data collected by the end device
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is time-sensitive, and the value of data is reducing as the time passing by. Mean-
while, the data collected earlier is less likely to be accessed by the user. After the
IoTs system run a period of time, the storage of the edge node will eventually use
up by the Re-chain as the collected data volume increases. The edge node will
back up all the data to the cloud in case that the data may be requested in later
time if the requested data has been overwritten at the edge node. As shown in
Fig. 1, in the re-writing phase, Re-chain re-writes from the earliest block seam-
lessly, which will maintain the structure of the original chain without affecting
the accessibility of the most recent transactions and data. The re-writing phase is
controlled by the consortium of edge nodes while not by a single entity, it means
that the transactions are validated in the same way as which for the ordinary
transactions.

As for the block structure in Re-chain, like what is for most blockchains, each
block consists of data records (e.g., transactions), block headers, and the source
device signed individual transactions. Blocks are chained together by referenc-
ing previous blocks via the inclusion of the hash of the previous block header
into the header of the current block. Also, block headers include a timestamp
which corresponds to the time window of the current block, and integrity mea-
surements, a Merkle tree [12]. In the Merkle Tree, each leaf node contains the
hash of a transaction, while each non-leaf node carries with the hash of the con-
catenation of its child nodes’ hashes. To construct our consensus protocol, we
modified the hash used by the Merkle tree, for all intermediate tree nodes, we
use SHA256, while for the Merkle root hash, we use our designed TTCH which
will be discussed in Sect. 4-B. The Merkle root will then be used to verify the
integrity of the data records.

Fig. 2. The structure of blocks used by Re-chain and the Merkle tree update process
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4.2 Threshold Trapdoor Chameleon Hash

Building Block of TTCH Scheme. Before giving the full scheme construction,
we first recall the public coin chameleon hash proposed by Mojtaba Khalili et al.[1],
their hash function satisfies DCDH assumption in the standard model. The scheme
works in a billinear group G1, G2, GT as described in Sect. 3-B.

– K.Setup(1λ): Choose a billinear group (G1, G2, GT ) with order p, where p
is a λ-bit prime number. Let g1 be a generator of G1 and g2 be a generator
of G2. The system parameters are params = (G1, G2, p, g1, g2).

– K.KeyGen(params): Choose x
R← Zp and ̂h

R← G1, set h1 = gx
1 and h2 = gx

2 .
Then set hk = (h1, h2,̂h) and tk = x.

– K.Hash(m,hk): Select a random number r
R← Zp. compute h = hr

1
̂hm and

R = hr
1.

– K.HVerify(m,hk,R): Output true if e(�/̂hm, g2) = e(R, h2), otherwise out-
put false.

– K.Hcol(tk,m,m′): For message m′, computes new R′ as follows:

R′ = (
�

̂hm′ )
1
x

The randomness R in this scheme belongs to a source group of a bilinear
pairing and correctness of it can be verified by a pairing product equation. Based
on the above scheme, we construct a scheme to support threshold trapdoor
aggregate to achieve our design goals as the next section describes.

Construction of TTCH Scheme

– TT.Setup(1λ) → (params): Choose a billinear group (G1, G2, GT ) with
order p, where p is a λ-bit prime number. Let g1 be a generator of G1 and g2
be a generator of G2. The system parameters are params = (G1, G2, p, g1, g2)

– TT.KeyGen(params, t, n) → (hk, (sk1, .., skn)): Pick x
R← Zp and ̂h

R← G1,
set h1 = gx

1 and h2 = gx
2 . Compute d s.t. xd ≡ 1 mod p. Pick a polynomial

v of degree t − 1 with coefficients in Zp, and set the constant term of v to
d, which means v(0) = d. Issue to each edge node i ∈ [1, ..., n] a secret key
ski = v(i), and public the hash key hk = (h1, h2,̂h).

– TT.Hash(m,hk) → (�, R): On input a hash key hk and message m. Select
a random number r

R← Zp, compute h = hr
1
̂hm and R = hr

1.
– TT.HVerify(m, �, hk,R) → (true or false): On input a committed mes-

sage m, chameleon hash �, hash key hk and randomness R, check whether
e(h/̂hm, g2) = e(R, h2), if yes, output true, otherwise output false.

– TT.Sign(ski,m
′, �) → (σi): The edge node i parses its secret key ski and a

new message m′, output:

σi = (
�

̂hm′ )
ski

as a credential of message m′.
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– TT.Hcol((σ1, .., σt), R, hk, �,m) → (⊥ or R′): First make a check by running
Hverify(m, �, hk,R), if check failed then return ⊥. Otherwise, parse each σi

for i ∈ [1, .., t]. compute Lagrange coefficient l:

li =

⎡

⎣

t
∏

j=1,j �=i

(0 − j)

⎤

⎦

⎡

⎣

t
∏

j=1,j �=i

(i − j)

⎤

⎦

−1

mod p

Then compute a new randomness R′ =
∏t

i=1 σli
i .

Next, check whether equation: e(�/̂hm′
, g2) = e(R′, h2) holds. If yes, output

R′, otherwise output ⊥.

4.3 Consensus Protocol

In order to put the block re-writing operation to the hands of the consortium
of edge nodes, we propose a consensus protocol inspired by Proof of Authority
(PoA) [6]. Our consensus protocol can tolerate a number of malicious or failure
edge nodes. We assume the majority of N edge nodes are honest, which means
at least N/2 + 1 edge nodes are honest. The edge nodes are responsible for
processing data and transactions from the end devices, and also executing the
block re-writing operations on Re-chain. The protocol will run by round where
in each round an edge node will be selected as proposal node. To prevent a
single Byzantine node from attacking the network by imposing a large number
of blocks, each edge node is allowed to propose only one block every N/2 + 1
blocks.

To run the consensus protocol, the key authority first generates system
parameters during the system initialization. Then it sets the threshold parameter
of TTCH function as t = N/2+1, and runs TT.KeyGen to generate N thresh-
old secret keys (sk1, ..., skN ) and a hash key hk. The key authority assigns the
secret key to the corresponding edge nodes. Each edge node has its own secret
key for issuing credential in consensus. We assume that this consensus protocol
only applies to the re-writing operation when the storage space of the Re-chain is
used up. The detailed process of the consensus protocol is listed in the following.

– Step 1: Block proposal. At the very beginning of the process, an edge node
generates transactions with the collected data assembled and proposes a block
as proposal node. The proposal node will verify the Block id of the re-written
block, and then re-write the earliest transactions. To form a new Merkle Tree,
the proposed node calculates the hash corresponding to each new transaction
and the hash of the intermediate node with SHA256, while the chameleon
hash of the Merkle root remains the same as the original block. Therefore,
the Merkle root hash cannot be verified by an intermediate node hash at this
time. The proposal node then digitally signs the block and use the timestamp
to guarantee authenticity and accuracy. Lastly, it broadcasts the proposed
block to other edge nodes.
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– Step 2: Credential issuance. Upon receiving the proposed block, other edge
nodes which act as validators will first validate the signature and the Block id,
if verification fails, the proposed block will be dropped by the validators.
Upon successfully authenticated, the validator node j will run the TT.Sign
algorithm to sign the Merkle root’s child nodes’ hashes with its secret key
skj , as Fig. 2 shows, the credential σj =TT.Sign(skj , �

′
01, �

′
23, �root) will be

issued by node j and sent to the proposal node, while the validated block will
be temporarily saved by node j.

– Step 3: Computing collision.After collecting t,i.e. (N/2+1) credentials (Includ-
ing self-signed credential) (σ1, ..., σt) from the edge nodes, proposal node enters
collision computation phase. By running TT.Hcol((σ1, ..., σt), R, hk, �root),
while keeping the chameleon hash of Merkle root unchanged, the proposal node
will calculate a new randomness R′, which enables the �root to be verifiable by
its child nodes’ hash. After that, the proposal node broadcasts the commit mes-
sage with the new randomness R′ to all the edge nodes in the network. If the pro-
posal node does not collect t credentials within the pre-defined time limit, this
consensus round will be terminated and enter into the next round of consensus.

– Step 4: Commit. When a validator receives the commit message with random-
ness R′, it will first validate the Merkle root hash by running TT.Hverify, if
verified, the validator will re-write the original block with the new validated
block, and update the randomness corresponding to the Merkle root hash to
R′, and the consensus on re-writing is reached.

4.4 Security Analysis

The Security of TTCH Collision Resistance. We argue that if an adversary
A can break collision resistance. Adversary A receive a divisible tuple (gx

1 , gx
2 ,

gy
1 ), set h1 = gx

1 , h2 = gx
2 and ̂h = gy

1 , without knowing x, the A can find
(�∗, R∗,m∗) and (�∗, R′∗,m′∗) as collision where R∗ = gr

1 and R′∗ = gr′
1 , obtain

the equation:

hr
1
̂hm∗

= hr′
1

̂hm′∗

⇒ gxr
1 gym∗

1 = gxr′
1 gym′∗

1

⇒ gxr
1 g

y
xxm∗

1 = gxr′
1 g

y
xxm′∗

1

⇒ R∗g
y
xm∗

1 = R′∗g
y
xm′∗

1

A divide both sides of the equation and obtain g
y
x
1 = (R′∗

R∗ )(
1

m∗−m′∗ ). Since divis-
ible CDH in billinear group is hard, so the adversary A cannot compute x from
two collisions, our proposed TTCH is collision-resistant. Unforgeability: We
consider two possible ways for adversary A to forge collision.

(1) The adversary A without valid credentials manages to compute collision.
While forged or wrong credentials will not be able to get new random num-
bers through TT.Hcol.
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(2) An adversary A that has successfully collected fewer than t credentials.
While running TT.Hcol involves performing Lagrange interpolation. If A
has fewer than t partial credentials, then they have fewer than t points,
which makes the resulting the t − 1 degree polynomial undetermined and
impossible to compute collision.

The Security of Re-chain. The security of Re-chain is based on the security
of TTCH.

(1) A malicious edge node A may attempt to calculate the hash trapdoor by
continuous collecting the re-write operation records. While according to the
property of Collision Resistance of TTCH, A cannot get trapdoor through
hash tuples.

(2) A small subset of malicious edge node cannot corrupt re-write operation,
since the threshold property of Re-chain implies that the adversary needs
to corrupt at least t authorities for this attack to be possible.

5 Implementation and Experiments

In this section, we first implement our construction and present the evaluation
result of the concrete TTCH. Then we instantiate a proof-of-concept prototype
of Re-chain and evaluate its performance through experiments.

5.1 TTCH Implementation

We implement the construction described in Sect. 4 in python 3.6 using petlib
and bplib. The bilinear pairing is defined over the Barreto-Naehrig [13] curve,
using OpenSSL as arithmetic backend. All simulations are run on desktop com-
puter with Intel i5-3210M CPU and 2 core processors running at 2.3 GHz and
4-GB RAM with 64-bits Linux system.

We first evaluate TT.KeyGen, TT.Hash, TT.HVerify and TT.Sign, we
fix the message size to 1 KB, each of our results is taken by a mean of 1000 execu-
tions. As shown in Fig. 3, we can see that as the threshold parameter increases,
the time spent in Hash and HVerify phases are constant, this is because the cal-
culation process of these algorithms does not involve threshold parameter t. The
average time cost of Sign increases linearly, it is reasonable as in Sign phase it
has to gett credentials, so that the algorithm will run t times with different secret
keys. However, the time spent of the KeyGen phase increases as the threshold
parameter increases, this is due to the KeyGen algorithm has to generate t
secret keys.

The performance of TT.Hcol algorithm is depicted in Fig. 4(i), we demon-
strate the linear relationship between threshold parameter and computing cost
through the experiments by setting t value from 5 to 30. As it is shown in the
figure, the time spent on running Hcol increases linearly when t increases. It is
because as the t increases, the algorithm has to compute more parameters when
finding the collision.
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Fig. 3. Average time cost of KeyGen, Hash, HVerify and Sign in TTCH

(i) (a)time cost of Hcol. (b)Box-Plots of
the Hcol

(ii) (a)throughput. (b) latency

Fig. 4. Performance of Re-chain

5.2 Re-chain Implementation

We instantiate a prototype of Re-chain with python 3.6. To demonstrate the
performance of our proposed consensus protocol, We use the following baseline
consensus protocol which is used when the space used for Re-chain is not reach
the edge node’s storage limit. The baseline consensus procedure are as follows:
1) step 1 : The proposal node propose a block and broadcasts it to the rest of
edge nodes. 2) step 2: The edge node will first validate signatures and Block id
of the proposed block, if verified, it will accept the proposal block and broadcasts
the preset message to all the other edge nodes. 3) step 3: If the proposal node
receive over N/2 correct preset messages, the edge node will broadcast a commit
message. 4) step 4: A consensus is reached if the proposal node accepts N/2 + 1
(possibly including its own) commit messages.

We use Aliyun CES as the experimental platform, all nodes are running in
the Docker containers on four servers, each server is equipped with two Intel(R)
Xeon(R) Platinum 8269CY CPU at 2.50 GHz and 4 GB of RAM, the operating
system is 64-bit Ubuntu 18.04.4 LTS. Each block contains 100 transactions. We
test the performance of our proposed consensus protocol through the compari-
son experiments with the baseline consensus protocol. The experiments record
the throughput and latency of both protocols with different numbers of nodes
varying from 5 to 30. We use the HTTP protocol for the communication between
different nodes. And we record the average result out of six tests for each exper-
iment. As shown in Fig. 4(ii)(a), the results show that the throughput for our
proposed consensus protocol is about 5% less than which of the baseline when
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relatively fewer nodes in the system. However, the difference will become more
significant when the number of nodes increases. Figure 4(ii)(b) shows that the
latency gap is slightly larger between the proposed consensus and baseline con-
sensus. It is reasonable as our proposed method requires more computational
overhead in finding collisions and other cryptographic calculations such as digi-
tal signing. Moreover, as the number of nodes increases, the threshold t will also
increase, therefore it requires more computational power to execute TT.Hcol
to reach consensus during re-writing process.

6 Conclusion

In this paper, we proposed TTCH to build a reductable and reusable blockchain
called Re-chain at the edge. Through Re-chain we address the storage prob-
lem of conventional blockchain caused by ever-growing information chunks. The
proposed proof-of-concept consensus is used when Re-chain reaches the maxi-
mum storage size, and it empowers Re-chain to re-write historical blocks in a
controllable and secure way while maintaining the connectivity of the chain,
meanwhile, the consensus process can guarantee the liveness even if there are
N/2 − 1 faulty edge nodes in the network. Re-chain can be applied to the con-
sortium blockchain-based industrial IoT systems which have storage limitation
issues. The experimental results showed that the re-write operation is efficient,
and the performance of Re-chain is acceptable at a medium scale (under 30 edge
nodes).
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