
WLTDroid: Repackaging Detection
Approach for Android Applications

Junxia Guo , Dongdong Liu, Rilian Zhao, and Zheng Li(B)

College of Information Science and Technology,
Beijing University of Chemical Technology, Beijing, China

{gjxia,lizheng}@mail.buct.edu.cn

Abstract. Huge number of mobile applications are downloaded every
year. These benefits promote the rapid development of the mobile appli-
cation industry, especially Android applications for its openness. But,
because of the low cost and good profit, Android application repackaging
also developed quickly, which can make a kind of malware applications
and publish them to the Android market. Therefore, in order to defend
against this dangerous technology, repackaging detection technology has
been continuously studied in recent years. Contrary to the repackaging
detection technique, obfuscation techniques are used in the application
repacking to avoid detection. This makes the effectiveness of many exist-
ing methods be affected. In this paper, we propose a novel approach
based on Dynamic Whole Layout Tree extraction, that we call WLT-
Droid, which can avoid the interference of the layout file obfuscation.
The experimental results show that the approach proposed in this paper
can resist the obfuscation affect better than other repackaging detection
methods. In addition, our approach is more accurate than the existing
method RepDroid.

Keywords: Repackaging detection · Android application ·
Obfuscation · Layout view transfer

1 Introduction

With the rapid development of global smart phones market, smart phone appli-
cations (apps for short) have also been rapidly developed. In the year 2018, global
App downloads exceeded 194 billion, up 35% from 2016, and consumer spending
reached $101billion, up 75% from 2016 [1]. However, application repackaging is
becoming a serious threat to the Android ecosystem, both at the security of app
users and the revenue of app developers [11]. Zhou et al. [22] found out that
among 1260 malicious apps, 1083 (86%) were spread by repackaging other apps.
Another study [5] showed that 14% of apps’ revenue and 10% of apps’ users are
illegally stolen by repackaged apps.

The work described in this paper is supported by the National Natural Science Foun-
dation of China under Grant No. 61702029, No. 61872026 and No. 61672085.

c© Springer Nature Switzerland AG 2020
G. Wang et al. (Eds.): WISA 2020, LNCS 12432, pp. 579–591, 2020.
https://doi.org/10.1007/978-3-030-60029-7_52

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_52&domain=pdf
http://orcid.org/0000-0003-4905-1290
http://orcid.org/0000-0002-3938-7033
https://doi.org/10.1007/978-3-030-60029-7_52

580 J. Guo et al.

In recent years, many Android app repackaging detection methods have been
proposed. They are divided into three kinds, which are code-based detection,
resource-based detection, and UI-based detection. For the code-based methods,
large amount of app codes make time consuming. Meanwhile, the code obfus-
cation methods can cause low code similarity. Researchers [4] found that orig-
inal app and repackaged app have high similarity at the resource level. Thus,
resource-based detection methods are proposed, which detect repackaged apps
by analyzing the type and amount of the decompiled resource files (such as:
xml files, pictures and audios, etc.). However, this kind of methods still have
problems with resource obfuscation and redundant resources in repackaged app.
Layout-based detection methods have been proposed because of the high similar-
ity between the original app and the repackaged app at the layout level. However,
layout files can be easily interfered with or confused during repackaging, resulting
in a decrease in layout similarity.

Considering that the repackaging app need to maintain the same user inter-
face and user interaction, so we assume that the purpose-based measures may
be more effective. Because that no matter how the features change, the high
similarity of user interface and user interaction never change. Therefore, in this
paper, we designed a new approach called whole layout tree (WLT), which is
a purpose-based measure. We use interface transfers to represent user interac-
tions. By analyzing user interfaces and interface transfers of running apps, we
can completely extract the external view layout information and the inner view
transfer information. According to these two kinds of information, we can build
an WLT for app repackaging detection. The evaluation criterion is that WLT
similarity and repackaging possibility have a positive correlation. The primary
contributions of this paper are summarized as follows:

– We design the Whole Layout Tree based on the Android application’s inter-
face layouts and transfers. It represents the application’s external display
information and internal operation logic information. Even with the obfusca-
tion of code, resources and layout, it can still accurately express the applica-
tion.

– We proposed a new repackaging detection method named WLTDroid for
Android applications based on the WLT. WLTDroid is a purpose-based
method which has strong resistance.

The rest of this paper is organized as follows: Sect. 2 describes design princi-
ples, definitions and features of WLT in detail. Section 3 shows the architecture
and implementation of our repackaging detection method. In Sect. 4 we set up
the experiments and evaluate the method proposed in this paper. Related work
is briefly introduced in Sect. 5. Section 6 concludes our work.

2 Design of Whole Layout Tree

Basically, repackaging detection is using metric methods to find similar appli-
cations. To address the problems that existing methods are not resistant to

WLTDroid: Repackaging Detection Approach for Android Applications 581

obfuscation technology and easily avoided by attackers, we propose a new mea-
surement method based on Whole Layout Tree (WLT). It is a kind of expression
for dynamic user interface layout of Android applications. We explain the detail
of WLT, including the design principle, definition and features.

2.1 Design Principles of WLT

As we mentioned, repackaging detection methods need to have strong resistance
and good accuracy. Thus, we design WLT with two design principles: strong
resistance and high accuracy.

When using applications, users mainly interact with applications’ interface
instead of directly access applications’ source code, resources or XML layout files.
Therefore, users are more sensitive to applications’ changes in interface than
the changes in code, resources, XML layout files. To cheat users, repackaging
attackers can modify everything except user interface and interface transfer.
Based on above facts, WLT should be designed from the user interface and
interface to get strong resistant.

The way how to denote and compare the similarity of the user interface
and interface transfer will determine the accuracy of this kind of repackaging
detection methods. In an Android application, the user interface is composed of
widgets. Each widget has many attributes. Those widget attributes jointly deter-
mine the final display of the widgets in the user interface. Therefore, those widget
information and widget attribute information should be properly recorded and
used for ensure the accuracy.

2.2 Definition of WLT

The WLT is defined as follows1.

Definition 1. Whole Layout Tree (WLT)
The Whole Layout Tree (WLT) is a multi-fork tree with a hierarchical struc-

ture which is consists of a limited number of nodes and edges, denoted as T (W,
R), where W is a finite set of widgets, R is a finite set of widgets’ relationship.

The node set W is consisted of 3 types of nodes, which are “Container Node”,
“Display Node”, and “Transfer Node”. Container Nodes are those who have sub-
widgets, such as FrameLayout and so on. Display Nodes are those who do not
have any sub-widgets, such as TextView and so on. Transfer Nodes are those
who can trigger interface transfer, such as Button and so on.

The edge set R is consisted of 2 kinds of relationships. (1) iR <a, b>, rep-
resents that the widget a and widget b are inclusion relationship, in which the
widget a and b belong to the same interface view, and widget a is a layout widget
which contains widget b. (2) tR <a, b>, represents that the widget a and widget

1 An example figure is given at https://github.com/pro-resrc/figure. The app has four
interface views, with 3 view transfers, 79 container nodes, 54 display nodes, 3 transfer
nodes, 132 inclusion edges and 3 transfer edges.

https://github.com/pro-resrc/figure

582 J. Guo et al.

Algorithm 1. Whole Layout Tree Generation
Input: HomeActivity(HomeView) from the testing APK
Output: a whole layout tree,WLT
1: dump view layout,HomeLayout from HomeActivity(HomeView)
2: extract core view layout,cLayout from HomeLayout by Filter
3: InitializationWLT(cLayout)
4: extract visual components,taskComponent from HomeLayout
5: while WLT is changing AND taskComponent is not empty do
6: todoComponent=taskComponent.pop()
7: transfer,newView=todoComponent.simulate()
8: add transfer into WLT
9: dump view layout,newLayout from newView

10: extract core view layout,cNewLayout from newLayout by Filter
11: updateWLT(cNewLayout)
12: update taskComponent according to newLayout

13: return WLT

b are transfer relationship, in which the widget a and b do belong to two different
interface views, widget a can trigger the response event and leads the transfer to
the new view which widget b belongs to.

2.3 Features of WLT

According to the definition, a WLT should have following features:

1. WLT has only one root node.
2. The parent nodes of a WLT should be container nodes or transfer nodes.
3. The leaf nodes of a WLT should be display nodes.
4. A container node connects to one or more different types of child-nodes, those

nodes are connected by inclusion edges.
5. A transfer node connects to a node which belongs to another interface view.
6. The order of the interface view that appears during a user operating the app

is the order of the view layout in the WLT.

2.4 Generation of WLT

According to the extracted interface view layout xml file and the view transfer
information, we start to generate WLT. Firstly, we initialize WLT with the home
view’s layout content. Then query the transfer node’s information and connect
the root node of the transferred new interface view as a child node to the transfer
node with a transfer edge. Next, a transfer attribute is added to the transfer node
for recording the related information. The above operation is repeated until the
WLT no longer changes or there is no more transfer information. In addition, we
make several optimization in WLT generation to make the process more efficient.
Algorithm 1 shows the pseudocode of generating a WLT.

WLTDroid: Repackaging Detection Approach for Android Applications 583

(a) When transfer to a interface view in the blacklist, only record the transfer
information without the interface view information.

(b) If a interface view is already appeared in the WLT, it will not be added
to the WLT again. We only keep the transfer information.

(c) When the task stack is empty or WLT does not change in 3 min, the WLT
generation process ends.

3 Repackaging Detection Method Based-on WLT

Based on the definition and features of WLT, we design a similarity measurement
method for the repackaging detection. In addition, we implement a repackaging
detection method, which is named WLTDroid. We explain the details in this
section.

3.1 Similarity Measurement of WLT

Hashing algorithms are widely used in file similarity comparison for its good
performance. For comparing the similarity of WLT, we design a method based
on the Context Triggered Piecewise Hashing (CTPH) [9]. However, the tree-
structured texts of WLT can not be used for the CTPH algorithm. In addition,
the information of the inclusion and transfer edges need to be calculated for the
similarity measurement.

Therefore, we transform the WLT into a kind of sequential text information
from two levels, which are interface layout and interface transition. First, we
convert each interface layout individually, then convert the processed interface
layout as a whole according to the order of interface transition by using a method
similar to the binary tree preorder traversal algorithm.

For the inclusion edge information in WLT, we convert the inclusion infor-
mation to the sequential information as text directly. For the transfer edge infor-
mation in WLT, in addition to converting the transfer information into sequence
information, a special weight needs to be given because of the special.

We have added the transfer attributes to all the transfer nodes as an identifier
in the WLT generation step, so those two types of edges have been distinguished
in the preprocessed WLT.

The CTPH algorithm first calculates the hash value of the testing text, then
get the similarity score by calculating the minimum edit distance between the
two hashes. The preprocessed WLT already contains the view layout information
and the view transfer information, so the similarity score calculated by the CTPH
algorithm represent the similarity of the apps. The formula for calculating the
SimilarityScore is show in Formula 1, where pp means preprocess.

SimilarityScore = CTPH(WLT1
pp,WLT2

pp) (1)

The similarity score ranged from 0 to 100. A score of 0 means that two WLTs
are completely dissimilar and the possibility of repackaging for these two apps
is extremely low. A score of 100 means that two WLTs are exactly the same,

584 J. Guo et al.

and those two apps most likely to be repackaged. We set a threshold θ, when
the similarity score of two apps exceeds the threshold, it represents that the two
apps have high similarity which need to do the signature verification for the final
confirmation.

3.2 Framework of WLTDroid

The framework of repackaging detection method based on WLT is showed in
the Fig. 1, which is consisted of four parts. They are data extraction, birthmark
generation, similarity measurement and signature verification.

Fig. 1. The framework of WLTDroid

Firstly, WLTDroid dynamically extracts the view layout information of a
testing app, and records the view transfer information. Testing app may jump
to other apps (such as sharing button, etc.), whose view information does not
belong to the original app, so we only save the view transfer information without
further data extraction. In addition, for a special widget who names WebView
we only retain the information of the native widgets.

However, the original layout contents contain redundant information, which
do not have any effect on the structure of the interface layout and transfer,
but will seriously affect the results of similarity measurement. Because that the
attacker can easily add this kind of redundant information in the xml file for
avoiding the detection. Therefore we need to filter such redundant information.

WLTDroid: Repackaging Detection Approach for Android Applications 585

(a) Redundant UI widgets: Layout widgets that contain only one or no child
are redundant. (b) Redundant attributes of widgets: There are some redundant
attributes of the widgets. We found six redundancy attributes which are text,
package, bounds, resource-id, index, and content-desc. For example, although the
bounds attributes directly reflect the position of the widget, a subtle changes
will not lead to a huge change in the view which may affect the results of our
detection.

Next, generation module will construct WLT. Then, the similarity score
between WLTs is calculated when the WLTs no longer change. Finally, if the
score exceeds the setted threshold, signature verification will starts.

4 Experimental and Evaluation

Here we design two research questions to verify the effectiveness of our repack-
aging detection method.

RQ1: Does the WLTDroid has strong resistant when facing the obfuscated
apps?

RQ2: How is the accuracy of the WLTDroid?

4.1 Dataset

The data sets used for the experiments are all from the Wandoujia app store (the
largest third-party app store in China) [17] and F-Droid (an open source Android
app store) [6]. We used three data sets named SR, S1 and S2. SR contains
30 Android apps from Wandoujia, which is used for resistance experiment. It
includes the latest version of 30 apps randomly selected from Wandoujia’s top
50 apps. We leverage Shengtao Yue’s work (RepDroid) [12] to create S1 and S2

for Accuracy experiment. Unfortunately, we can only download 45 (41 of 45 apps
can run) of 58 apps for S1, and 115 (103 of 115 apps can run) of 125 apps for
S2 because that they are out of stock. The apps cover different fields, such as
News, Reading, Education, etc. Totally, 190 apps are used in the experiments.

4.2 Resistance Testing

The resistance testing experiment adopts the current four major Android app
packers in China (360, Tencent, Aliyun, Bangcle) to obfuscate or encrypt data
set SR. Through code obfuscation, resource file encryption, and Dex file packing,
we can simulate the real world Android repackaging environment. Then set the
obfuscated app and the original app as a pair. In addition, we use XML files for
obfuscation by adding redundant XML files to the decompiled 30 original apps
to generate obfuscated apps.

We perform detection using WLTDroid, SUIDroid [11], AndroGuard [8], and
FSquaDRA [20] for comparison with the existing methods. AndroGuard is a

586 J. Guo et al.

code-based repackaging detection method. FSquaDRA is a code-and-resource-
based repackaging detection method. SUIDroid is a layout-based repackaging
detection method.

Using the 30 original apps and the apps obfuscated by above five packers,
totally 150 comparison pairs are prepared for the experiment as shown in the
upper part of Table 1. The results are shown in Fig. 2.

Table 1. Obfuscated or encrypted apps

Repackaging type Data set Original app count Repackaged app count

360 5 * SR 5 * 30(Wandoujiatop50) 30

Tencent 30

Aliyun 30

Bangcle 30

RedundantXML 30

IJiami 4 * S1 30(Wandoujia) 30

AndroCrypt 3 * 11(F-droid) 11

FakeActivity 11

NestedLayout 11

Fig. 2. Results of resistance testing

WLTDroid: Repackaging Detection Approach for Android Applications 587

The horizontal axis represents similarity scores, also represents resistance of
methods. The four stacked bars represent four repackaging detection methods.
The stacks of five colors represent five types of app packers. The total similarity
score of detections is 500 points. The scores from high to low are: 450 points for
WLTDroid, 428 points for FSquaDRA, 411 points for SUIDroid, and 104 points
for AndroGuard.

We can found that WLTDroid performs much better than AndroGuard.
AndroGuard detects repackaged apps based on the decompiled source code.
Once the source code was confused, it will be affected much. Except for the XML
packer, AndroGuard almost cannot work for the other four packers. In contrast,
SUIDroid performs poorly when detecting redundant XML packer. Only scores
17 points (WLTDroid scores 91 points). But, it performs well when detecting
the other four types of app packers. That is because SUIDroid is based on ana-
lyzing the decompiled XML layout files. Once the attacker adds a large number
of redundant XML files to the repackaged app, it will cause the repackaged
app’s schema layout to be completely different from the original app’s schema
layout, which makes SUIDroid get the wrong result. FSquaDRA has a better
performance than AndroGuard and SUIDroid. FSquaDRA uses a combination
of source code and resource files for detecting repackaged apps. Code obfuscation
still affects FSquaDRA and may lead to instability during detection.

4.3 Accuracy Testing

We use S1 and S2 for Accuracy experiment. We compare the accuracy results
of WLTDroid with RepDroid, because that RepDroid is also a repackaging
detection technology based on interface layout and transition. The experiment
is divided into two steps. Step one, we use S1 to determine the thresholds of
WLTDroid and RepDroid. Step two, we use S2 to evaluate the counts of false
positive(FP) and false positive rates(FPR) of WLTDroid and RepDroid, besides
time consumption.

S1 contains 41 apps that can run, of which 30 apps are from Wandoujia, 11
apps are from F-Droid. We use Ijiami to encrypt 30 Wandoujia’s apps, and use
three encryption tools: AndroCrypt, FakeActivity and NestedLayout, to encrypt
11 11 F-Droid apps. Totally 33 encrypted apps are used here. The encrypted
apps and the original apps are combined as a pair. There are a total of 63
comparison pairs as shown in lower part of Table 1. S2 contains 103 apps that
can run from Wandoujia. The apps are compared with each other, and formed
5253 comparison pairs.

1) Determine the threshold
By comparing all similar scores of 63 comparison pairs, we select the low-

est score as the best threshold. Because that 63 comparison pairs all belong
to repackaged pairs, similarity scores represent the effectiveness of repackaging
detection method, where the lowest similarity score represents the lower limit of

588 J. Guo et al.

the method. The FNR and FPR of the method with this threshold are both to
be at a lowest level. For WLTDroid, 59 similar scores are not less than 80 points,
34 similar scores are not less than 90 points, 4 similar scores are between 75 and
80 points, and the lowest similarity score is 75 points. For RepDroid, 59 similar
scores are not less than 80, 45 similar scores are not less than 90, 4 similar scores
are between 76 and 80, and the lowest similarity score is 76 points.

2) Evaluate FP, FPR, and time consumptions
We use WLTDroid and RepDroid to detect all the 5253 comparison pairs of

apps. The detection results are shown in Fig. 3. We use logarithmic coordinates to
make them more intuitive. The horizontal axis represents similar score sections.
The vertical axis represents the number of comparison pairs belong to the section.

According to statistics, the distribution of similarity score is almost the same.
More than half of the comparison pairs score 0. In detail, there are 6 comparison
pairs with a value equal to or greater than 75 points for WLTDroid. Through
manually check, we find that 3 pairs are actually repackaged apps, and the other
3 pairs belong to FP. The FPR of WLTDroid is 0.057%. There are 7 comparison
pairs with a value equal to or greater than 76 points for RepDroid. Through
manually check, there are 3 comparison pairs are repackaged apps, and the other
4 pairs belong to FP. The FPR of RepDroid is 0.076%.

In addition, we recorded the time consuming of two methods. The results are
shown in Table 2. It shows that the most time consuming part is to generate the
birthmark. However, there is 36% shorter for our method.

Fig. 3. Distribution of the similarity for WLTDroid and RepDroid

WLTDroid: Repackaging Detection Approach for Android Applications 589

Table 2. Accuracy and Time-consuming for WLTDroid and RepDroid

WLTDroid RepDroid

3 * S1 θ 75 76

FN 0 0

FNR 0% 0%

2 * S2 FP 3 4

FPR 0.057% 0.076%

2 * Time consumptions Birthmark generation 10.02 min 15.74 min

Similarity calculation 0.029 s 0.034 s

5 Related Work

Most of the studies in earlier years were based on decompiled source code. For
example, DroidMOSS [21] handle the Dalvik bytecode to get the features of code
by using the fuzzy hashing, then calculate the similarity of the two apps by using
the edit distance algorithm [10]. DNADroid [3] generate program dependency
graph as the program features based on the source code, then use the subgraph
isomorphism algorithm to calculate the similarity of two dependency graphs.
Steve Hanna et al. designed a repackaging detection system named Juxtapp,
hashing the extracted features of testing apps’ code for detection [7]. Jonathan
Crussell et al. proposed AnDarwin, which combines the code information with
other related information, for example the store information of testing app, for
detection [2].

Later, many resource-based methods are proposed. FSquaDRA [20] decom-
pile the testing app to extract all the code and resource files, then encode them
with a hashing algorithm for calculating the similarity with Jaccard distance.
ViewDroid [19] builds the view graph of the testing app by counting keywords
in the app’s source code for detection. ResDroid [14] calculates all the resource
files contained in the apk file and transforms them into vectors for detection.
Research [15] extracts the resource files, such as pictures, videos and so on to
detecting repackage applications by using machine learning methods.

Recent years, the layout-based methods for repackaging detection are often
used. DroidEagle [16] gets the layout files in the testing apk file, then uses the
edit distance to calculate the similarity between individual layouts. SUIDroid
[11] also gets the layout files from the testing apk file, then combine multiple
layout files to get the app’s schema layout for detection. RepDroid [12] proposes
a layout group graph (LGG) based repackaging detection method, which built
LGG from UI behaviors. Research [13] extracts user interfaces from mobile apps
and analyzes the extracted screenshots to detect repackaging apps. RegionDroid
[18] proposed an approach based on the app UI regions extracted from app’s
runtime UI traces.

The method in this paper is different from the above methods. This method
dynamically extracts the interface layout and view transfer information of the

590 J. Guo et al.

testing apps, then combines those two types of information to form a whole
layout tree (WLT) for similarity detection.

6 Conclusion

We proposed a novel repackaging detection approach, WLTDroid, for Android
applications by dynamically extracting the interface layout and transfer informa-
tion of the testing apps. WLTDroid firstly builds the whole layout tree (WLT)
for the apps, then calculate the similarity score. If the score exceeds the thresh-
old which is set according to the experiment, signature verification will start to
give the final result. The experimental results show that WLTDroid has strong
resistance than the other three existing methods. Meanwhile, the accuracy of
WLTDroid is good.

References

1. State of Mobile 2019. https://www.appannie.com/en/go/state-of-mobile-2019/?
utm source=AppStats2019&utm medium=appdata&utm campaign=AppAnnie

2. Crussell, J., Gibler, C., Chen, H.: AnDarwin: scalable detection of semantically sim-
ilar android applications. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS
2013. LNCS, vol. 8134, pp. 182–199. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40203-6 11

3. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: detecting cloned applications
on android markets 81(13), 2454–2456 (2012)

4. Gadyatskaya, O., Lezza, A.-L., Zhauniarovich, Y.: Evaluation of resource-based
app repackaging detection in android. In: Brumley, B.B., Röning, J. (eds.) NordSec
2016. LNCS, vol. 10014, pp. 135–151. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47560-8 9

5. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: AdRob: examin-
ing the landscape and impact of android application plagiarism. In: Proceedings of
the International Conference on Mobile Systems, Applications, and Services, pp.
431–444 (2013)

6. Gultnieks, C.: f-droid.org/packages/ (2018)
7. Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: a scalable system

for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62–81. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-37300-8 4

8. Kim, J.-H., Im, E-.G.: AndroGuard: similarity analysis for android application
binaries. J. Korean Inf. Sci. Soc. (2014)

9. Kornblum, J.: Identifying almost identical files using context triggered piecewise
hashing. Digit. Invest. 3, 91–97 (2006)

10. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Phys. Doklady 10, 707–710 (1966)

11. Lyu, F., Lin, Y., Yang, J., Zhou, J.: SUIDroid: an efficient hardening-resilient app-
roach to android app clone detection. In: 2016 IEEE Trustcom/BigDataSE/ISPA,
pp. 511–518. IEEE (2016)

12. Ma, J.: RepDroid: an automated tool for android application repackaging detection.
In: ICPC (2017)

https://www.appannie.com/en/go/state-of-mobile-2019/?utm_source=AppStats2019&utm_medium=appdata&utm_campaign=AppAnnie
https://www.appannie.com/en/go/state-of-mobile-2019/?utm_source=AppStats2019&utm_medium=appdata&utm_campaign=AppAnnie
https://doi.org/10.1007/978-3-642-40203-6_11
https://doi.org/10.1007/978-3-642-40203-6_11
https://doi.org/10.1007/978-3-319-47560-8_9
https://doi.org/10.1007/978-3-319-47560-8_9
https://f-droid.org/packages/
https://doi.org/10.1007/978-3-642-37300-8_4

WLTDroid: Repackaging Detection Approach for Android Applications 591

13. Malisa, L., Kostiainen, K., Och, M., Capkun, S.: Mobile application impersonation
detection using dynamic user interface extraction. In: Askoxylakis, I., Ioannidis, S.,
Katsikas, S., Meadows, C. (eds.) ESORICS 2016. LNCS, vol. 9878, pp. 217–237.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45744-4 11

14. Shao, Y., Luo, X., Qian, C., Zhu, P., Zhang, L.: Towards a scalable resource-driven
approach for detecting repackaged android applications. In: Proceedings of the 30th
Annual Computer Security Applications Conference, pp. 56–65. ACM (2014)

15. Sibei, J., Lingyun, Y., Yi, Y., Yao, C., Purui, S., Dengguo, F.: An anti-obfuscation
method for detecting similarity among android applications in large scale. J. Com-
put. Res. Dev. 51(7), 1446 (2014)

16. Sun, M., Li, M., Lui, J.: DroidEagle: seamless detection of visually similar android
apps. In: Proceedings of the 8th ACM Conference on Security & Privacy in Wireless
and Mobile Networks, p. 9. ACM (2015)

17. Wang. www.wandoujia.com/apps (2018)
18. Yue, S., Sun, Q., Ma, J., Tao, X., Xu, C., Lu, J.: RegionDroid: a tool for detecting

android application repackaging based on runtime UI region features. In: IEEE
International Conference on Software Maintenance & Evolution (2018)

19. Zhang, F., Huang, H., Zhu, S., Wu, D., Liu, P.: ViewDroid: towards obfuscation-
resilient mobile application repackaging detection (2014)

20. Zhauniarovich, Y., Gadyatskaya, O., Crispo, B., La Spina, F., Moser, E.:
FSquaDRA: fast detection of repackaged applications. In: Atluri, V., Pernul, G.
(eds.) DBSec 2014. LNCS, vol. 8566, pp. 130–145. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43936-4 9

21. Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone appli-
cations in third-party android marketplaces. In: ACM Conference on Data and
Application Security and Privacy, pp. 317–326 (2012)

22. Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution.
In: 2012 IEEE Symposium on Security and Privacy (SP), pp. 95–109. IEEE (2012)

https://doi.org/10.1007/978-3-319-45744-4_11
http://www.wandoujia.com/apps
https://doi.org/10.1007/978-3-662-43936-4_9

	WLTDroid: Repackaging Detection Approach for Android Applications
	1 Introduction
	2 Design of Whole Layout Tree
	2.1 Design Principles of WLT
	2.2 Definition of WLT
	2.3 Features of WLT
	2.4 Generation of WLT

	3 Repackaging Detection Method Based-on WLT
	3.1 Similarity Measurement of WLT
	3.2 Framework of WLTDroid

	4 Experimental and Evaluation
	4.1 Dataset
	4.2 Resistance Testing
	4.3 Accuracy Testing

	5 Related Work
	6 Conclusion
	References

