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Abstract. Software maintenance is an important part of the software
life cycle. People use bug tracking systems to collect bugs in the system.
There are a lot of bug reports in open source software. Researchers con-
ducted a series of studies on these reports, such as automatically deter-
mining whether two bug reports were duplicates. This article provides a
detailed survey of the researchers’ analysis of bug reports. In this paper,
we conduct a comprehensive survey of the works concerning the mining of
the software engineering forums. Specifically, we formulate these works in
a three-dimensional style, i.e., we classify these studies according to the
data formats they used, the methodology they are adopting, and most
importantly, the questions they are dealing with. With this three dimen-
sional partition, it can be clearly known what has been done, and what
is left, along with the question, say, why left? To go further, beyond
this three-dimensional partition, we are seeking to add research space
through new data, novel techniques, and upcoming research questions.
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1 Introduction

It is difficult for humans to develop software without any problems. So, finding
and fixing bugs is an important process in the software life cycle. People use
bug tracking systems to collect software system errors discovered by develop-
ers, testers, and end-users. The most commonly used bug tracking system is
Bugzilla1. Many open-source projects use Bugzilla to help them manage their
projects. For example, eclipse receives a lot of bug reports every day2. But every-
thing has two sides. On the one hand, a lot of reports can help us improve the
quality of software, however, on the other hand, handling these reports manually
is a very time consuming task. If we can’t extract useful value information from
these bug reports, then more data doesn’t make any sense.
1 https://www.bugzilla.org/.
2 https://bugs.eclipse.org/bugs/.
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Due to a large number of bug reports, it is unrealistic to rely solely on people
to deal with them. People are gradually proposing more and more analytical
methods to deal with bug reports. In this article, we will investigate the different
problems that researchers have studied in existing erroneous data sets. We want
to express what technologies people have used so far to solve the various problems
in the bug report.

In order to better review the existing work and look forward to the future
work, we sort out the previous work of the researchers from the three dimensions:
problem, data and technology. From a problem perspective, some people focus
on the detection of bugs, they want to analyze the existing bug reports and
extract the characteristics of the bugs. When they receive a new bug report,
let the machine automatically determine if this is a real error, whether it is a
duplicate of the bug in the existing bug library, and find a bug similar to this bug
to solve this problem faster. Some researchers want to automatically identify the
severity and priority of new bugs through existing bug reports so that developers
can prioritize the most problem-solving issues and do more meaningful things in
a limited amount of time. There is a bug in the system, usually because some
files are written. Some researchers want to find the relationship between bugs
and source files through the existing repair experience, let people locate bugs
and fix bugs faster. Some researchers believe that different people have different
ability to solve bugs in different fields. They want to learn the distribution of
existing bugs and automatically recommend the most suitable developers to solve
problems when new bugs occur.

From a data perspective, most of the work already done is based on Bugzilla
collecting bug reports. However, the fields that different researchers pay atten-
tion to are not the same. Some people only pay attention to the text information
in the bug report, such as description, summary field. Some people think that
structured information also contains important information. They not only con-
sider text information but also consider structured information such as priori-
ties and components. Still others believe that just analyzing bug reports is not
enough. They introduce external data combined with bug reports to solve prob-
lems. How to reasonably combine different types of information has always been
a difficult point. From a technical point of view, most of the work is based on
traditional information retrieval techniques, machine learning and deep learning
techniques. In recent years, with the development of big data and the significant
improvement of computing power, people think that “big data + complex model”
is a better choice. Therefore, neural networks and deep learning have become
more and more popular, and they have demonstrated their capabilities in var-
ious fields. More and more people are trying to use neural networks instead of
traditional information retrieval and basic machine learning algorithms to solve
different problems.

2 Bug Report Problem Classification

In this survey, we mainly summarize the problems that others have studied on
the bug report from the perspective of the problem and analyze the data and
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technology they use. We divide the existing research related to the bug report
into five categories: bug detection, bug level determination, bug location, bug
developer recommendation, and some other issues.

In terms of bug detection, we mainly consider three sub-problems: bug clas-
sification, to determine whether a report is a bug; Duplicate bug detection to
determine if the two bug reports describe the same problem; Similar bug detec-
tion to determine if two bugs are of the same type. The bug level determination
is mainly divided into two sub-problems: bug severity prediction and bug pri-
ority prediction. The bug location and bug developer recommendations are two
separate and widely studied issues. By dividing the bug report problem into dif-
ferent categories, it is easy to know the hot point research area in recent years
and conclude future tendencies.

3 Bug Detection

There are three main problems with bug detection. The first question is whether
the problem described in the bug report is about the bug. Users not only submit
a bug to the tracking system, they also mention other requirements, such as how
to make the system more convenient. Thus, we need to identify the real bug and
then solve it. The second question is about duplication. Many reports submitted
by users refer to the same bug but with different descriptions, we need to be
able to determine whether the two bug reports are about the same problem.
The third problem is to identify similar bugs. We know that if the two errors are
very similar, then the reasons for them may be very similar. By recommending
similar bug reports to developers, it may be faster to locate errors and fix bugs.

3.1 Bug Reports Classification

There are a large number of reports that are actually misclassified. Manually
classifying bug reports is a very time consuming task. [1] used 90 days to man-
ually sort over 7,000 error reports. Therefore, it is necessary to classify reports
automatically.

Researchers firstly used the text field in the bug report to extract features
and use this to determine if the new report was a bug. [2] applied topic model-
ing to the corpus of pre-processed bug reports, and then classified bug reports
using decision trees, naive Bayes classifiers, and logistic regression. Experiments
implicate that the topic-based model outperforms than the word-based model,
and the naive Bayesian model is better than the other two in classification.

Some researchers believe that structured information in the bug report can
help judge whether a report is a bug. [3] used a hierarchical Dirichlet process
(HDP) and clustering to classify bug reports. The bug report is projected into the
topic vector space, then clustering method is utilized to aggregate the bug reports
and tag the categories. How to better combine structured and unstructured data
has always been an important issue. Some people [4] proposed a hybrid approach
to classify error reports. They used the text mining method to extract features
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from the report summary, and then used the data mining method to combine
the structured information features in the error report with the previous stage
text features, finally used the Bayesian classifier to predict.

3.2 Duplicate Bug Report

In 2018, [5] found that the proportion of duplicate bugs reached 20% on the bug
repositories of Mozilla Core, Firefox and so on. These duplicated reports may be
solved by developers for many times, resulting in waste of human resources. So
far, the bug tracking system can not detect duplicate bugs automatically when
collecting bugs [6]. The work of detecting duplicate bugs can be divided into
two categories: One is to apply natural language processing (NLP) techniques to
unstructured textual information, such as bug title and bug summary; Another
approach focuses on execution information in bug reports.

Duplicate Bug Detection Based on NLP. [7] used BM25 for term weighting
to transform bug reports into vector space. They found that the right term
weighting is critical for detecting duplicate bug reports.

There are many challenges in using text information. As each person has
different speaking habits, different words may be used to express the same con-
cept, so only use text matching is not enough. Hence, it is necessary to analyze
the semantic of bug report. [8] treated each bug report as a text document and
used it to train word embedding models [9]. Using the trained word embedding
model, They converted the error report into a vector and further trained the
deep neural network above these bug report vectors to understand the distribu-
tion of duplicate bug reports and non-repeated bug reports. In addition to the
above method, there are some other attempts. [10] proposed a combination of
Latent Dirichlet Allocation (LDA) and word embedding method to determine
whether it is a duplicate bug report. The idea of this approach is to use LDA’s
higher recall rate to first exclude the most dissimilar bug reports, and then use
the word embedding model in the remaining reports to calculate the similarity
among reports.

Duplicate Bug Detection Based on Execution Information. The bug
execution information describes the context in which the bug occurred. The
context of repeated bugs is the same. [11] proposed a repetitive error detection
involving both execution information and natural language information. [12]
considered to utilize domain knowledge and context of software. In the Android
bug tracking system experiment, they found that the detection of bug reports
can be improved by considering keywords in the Android domain. Some people
think that the more features of a bug report you have, the more detailed you
can portray a bug. [13] defined 25 features in the bug report as the basis for
the classification, most of which were generated by the TakeLab system, and
then used the SVM training model to classify the bugs. The topic model enables
efficient semantic analysis and text mining. [14] proposed a novel duplication
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detection method based on the topic model. They combined the similarity of
each report in the topic space with the similarity of the classified information of
each report to predict duplication.

Deep learning methods also be involved in this area. [15] proposed a search
and classification model combining CNN and LSTM [16]to solve the problem
of repeated bugs. They used the vanilla single layer neural network to handle
structured information in bug reports, used LSTM to handle short descriptions,
used CNN to process long descriptions, and finally combined them to learn
bug reporting features. Some people [5] proposed to use word embedding and
Convolution Neural Networks to calculate the similarity between bug reports,
because this not only pays attention to textual similarities but also achieves
semantic similarity. This method not only considers the textual information in
the report, but also combines domain-specific features (i.e., Component, Create
time and Priority, etc.) to better detect duplicate bug reports. Over time, more
and more new models have been proposed for specific problems. [17] used stack
traces and hidden Markov models to automatically detect duplicate bug reports.
Based on their research, they recognized the obvious benefits of using stack trace
information. They believe that this information can improve the accuracy of the
detection of repeated bug reports. They used recall rate and Mean Average
Precision (MAP) to evaluate their models on Firefox and GNOME datasets and
found better results than baseline models.

3.3 Similar Bug Report

Similar errors mean that bugs in several bug reports are related to common
code files. Unlike duplicate bug reports, we generally think that two reports
are similar reports when they have more than 50% modified common files. By
recommending similar bug reports to developers, we can help them locate the
cause of the error faster and solve new bugs efficiently.

[18] combined traditional information retrieval technology and word embed-
ding technology, and considered the title, description, and other component
information in the bug report to recommend similar reports to developers. They
experimented with similar bug recommendations, and their approach has better
performance than NextBug [19]. Inspired by this, [20] proposed a new method for
using document embedding models in order to further improve the performance
of the method. They added a new document embedding vector component to
the existing three components. This component focuses on mining the poten-
tial relationships between the two bug reports at the document level for better
results.

4 Bug Level Determination

4.1 Bug Reports Severity

The bug report generally includes a severity, which helps the developer to resolve
the serious error first. The severity is divided into crashes, errors, low efficiency
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and minors. Automatically detecting the degree of severity can benefit bug report
processing, letting high severity bug reports be processed preferentially. [21]
extracted the concept word in the bug report to construct the concept profile
(CP). When a new bug report is encountered, they calculate the degree of simi-
larity between the report and the CP severity concept to determine the severity
of the bug. How to determine the severity of the profile requires people to do
it manually. [22] use unsupervised methods to determine whether the severity
of the bug report is correctly assigned. They used a Gaussian mixture model to
group similar bug reports, then assigned severity labels to grouped bug reports,
and finally used supervised algorithms to predict the severity of unmarked bug
reports.

Just thinking about textual information is not enough. [23] proposed a near-
est neighbor method based on information retrieval to predict the severity of
bugs. They used the extended BM25 document similarity function to select the
k reports that are most similar to the new bug report, and then predicted the
severity of the new bug based on the severity of the k reports. In addition to con-
sidering the text information in the bug report, they also considered structured
information like product and component.

4.2 Bug Reports Prioritization

[24] proposed to use different machine learning algorithms such as Näıve Bayes,
decision trees, and random forests to predict the priority of reported bugs. They
experimented on two feature sets. The first feature set is based on the textual
description of the error report. The second feature set is based on the prede-
fined metadata of the bug report. Experiments showed that the classification
results of random forests and decision trees are better than Näıve Bayes, and
the results of the second feature set are better than the first feature set. [25]
thought that previous researchers did not take into account the reporter’s sen-
timent when predicting the priority of bug reports. In the bug report, if the
submitter’s description is very anxious, the severity and priority of the bug may
be high. Therefore, they extracted features from the bug report, then used the
sentiment words involved in the bug report summary to calculate the sentiment
value of each bug report, and then combined the two to train and predict the pri-
ority of the bug report. Rich, unstructured information in bug reports was also
involved. [26] extracted the temporal, textual, author, related-report, severity,
and product in the bug report as features, and then used the linear regression
model to determine the priority of the report. They defined the priority of five
bug reports and then used the thresholding approach to solve the problem of
data imbalance.

5 Bug Localization

To solve the bug, the system developer needs to locate the source file that caused
the bug which would be difficult especially in a huge system. The biggest chal-
lenge in auto-locating bugs is the mismatch between the terms used in the bug
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report and the terms used in the source file. There are lots of methods for solving
this issue. One of the directions is analyzing the source code file. [27] believed
that structured information based on code structure such as class name and a
method name can help us locate bugs better. Their method only required source
code and error reporting. However, the terms used in the error report used to
describe the error may not be the same as the terms used in the source file. [28]
combined DNN and information retrieval (IR) techniques to locate error files
associated with bugs. They used information retrieval techniques to calculate
textual similarities between error reports and source files. DNN is used to link
the specific terms in the bug report to the terms in the source file. [29] found that
if the error report lacks rich and structured information, the information retrieval
technology often does not work well, and too much stack tracking information
does not help the positioning.

Some researchers believed that considering the version history can better
locate potential error locations. [30] proposed AmaLgam, a model that combines
historical data, similar reports, and structural information to locate files related
to bugs and achieved good performance. To help better understand existing code,
researchers use information retrieval techniques to map bug reports to associated
code units. [31] proposed a variant of 15 vector space models based on tf-idf to
form a new composite model. They used the VSM model and AmaLgam [30] to
calculate the weighted sum of suspicious files to locate bug files.

6 Bug Developer Recommendation

When we encounter a new bug, which developer should I assign to fix it? In
general, we can randomly assign bugs to the developer, but it is deficient. Gen-
erally, developers have their own expertise area, so it is better to recommend
bug reports that belongs to this area for them to fix up. Researchers attempt to
address this issue by analyzing different kinds of data, such as text information,
structured information and developer profile, and so on.

[32] believed that most of the previous work focused only on open source
projects. They used convolutional neural networks and word embedding to build
auto-recommended developers to fix bugs and apply the technology to indus-
trial projects and open source projects. They believed that there are two main
challenges. The first challenge is that in multinational companies whose native
language is not English, bug reports often appear in their native language and
English. The second challenge is that industrial projects are different from open
source projects, and there may be many specific terms in specific fields. They
mainly extracted the two text fields of description and summary in the bug report
as features. They also proposed the idea of manual and automated classification
cooperation and introduced the experience used in the industrial development
environment.

Textual information in bug reports alone often does not yield satisfactory
results. [33] introduced a highly scalable recommendation system for bug report-
ing assignments. In addition to considering the textual information of the report,
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they also used structured information such as component id, product id, and bug
severity as feature data. They used convolutional neural networks and recurrent
neural networks as deep learning classifiers. At the same time, they also made
certain restrictions on developers. They believe that only developers who are
still active in the project should be assigned bug fixes. They believe that only
developers who have been fixing bugs for a while can be considered an active
developer. They opened up further research directions in optimizing training
speed and predictive performance.

Summarizing the bugs that each developer has fixed in the past is a good
way to portray developers. [34] proposed to create an activity profile for the
history of all activities of all users in the bug tracking system, then model it
according to this file, and then recommend the appropriate developer to solve
the bug through this model. Through this file, we can probably know the role of
the developer in this system and the areas of expertise. Although we can better
distribute bugs to developers through configuration files, it takes time to mine
the configuration files for each developer’s historical data. [35] proposed a new
method called DevRec, which consists of two types of analysis, bug reports based
analysis and developer based analysis. The bug-based analysis is mainly to find
bugs similar to the newly collected bugs from the bug repository. By analyzing
the bug fixers, he can found potential fix developers for new bugs. They converted
the features in the bug report into vectors to calculate the similarity between the
two reports. The developer-based analysis measures the distance between the bug
report and the developer, correlating the developer with the characteristics of
the bug report. They combined these two analyses for optimal performance. [36]
proposed a unified model based on learning ranking technology, which combines
activity-based technology to find out which developers have solved similar bugs
and location-based techniques to find the right developer for the bug location.

7 Other Problems

7.1 Generating Bug Fixes

Although the bug report tells the developer that there is a defect in the system, it
may not be able to fix the defect due to the lack of a development environment,
and the defect remains in the system. [37] proposed a method called R2Fix,
which automatically generates bug fixes from bug reports. They chose buffer
overflow, null pointer error and memory leak to evaluate the proposed method,
because the repair methods of these three types of errors are relatively simple,
and the repair mode can be found. When R2Fix received a new bug report, it
analyzed the bug report, determined which error belongs to the above three types
of errors, and finally generates a possible patch to fix the bug. In the verification
experiment, R2Fix automatically generated the correct patch for 57 errors with
an accuracy of 71.3%, and it also found potential errors that the tester did not
find. Due to the difficulty of automatically generating bug fix, there is still a
long way to go to generalize automatic patch generation.
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7.2 Automatic Vulnerability Recognition

Automatically identify potential bugs will greatly improve the efficiency of soft-
ware maintenance. In order to find unrecognized vulnerabilities in the open-
source library and fix it, Some people [38] proposed an automatic vulnerability
identification system. They used a variety of machine learning classifiers as basic
classifiers to extract features from bug report submissions and reports themselves
and automatically discovered unrecognized errors in submitted reports through
natural language processing and machine learning techniques. However, because
of the complexity of this issue, existing methods perform not well. Future work
will continue exploring new methods to solve this problem.

7.3 Bug Report Summarization

In order to help developers quickly understand the information in the bug report,
[39] proposed a two-layer semantic model (TSM) to extract important informa-
tion from the report. They first used the extended NR (ENR) model to pre-
serve the sentences with important semantics in the report, then used BRC
(Bug Report Classifier) to extract the text features from these sentences, and
finally used the logistic regression training model to select the sentences with
high scores to generate the abstract of the article. [40] explored the use of deep
neural networks to generate a summary of bug reports. They used bug report
preprocessing, unsupervised network training and summary generation to assign
scores to sentences in bug reports, and then dynamically selected sentences with
high scores to generate summaries.

8 Conclusion - What’s the Outlook?

We have presented a comprehensive survey of bug report, categorizing current
bug report tasks based on problem, data and technology and summarizing the
current situation for each tasks. What’s the next for bug report? We end with
future potential directions by applying past insights to the current situation.
Firstly, different types of data will be used to better analyze bug reports; Then,
advanced models will be invented to better address specific problems; Last but
not least, the efficiency and practicability of methods will be considered.
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