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Abstract. The X-architecture Steiner Minimum Tree (XSMT) is the
best connection model for multi-terminal nets in global routing algo-
rithms under non-Manhattan structures, and it is an NP-hard problem.
And the successful application of Particle Swarm Optimization (PSO)
technique in this field also reflects its extraordinary optimization abil-
ity. Therefore, based on Social Learning Particle Swarm Optimization
(SLPSO), this paper proposes an XSMT construction algorithm (called
SLPSO-XSMT) that can effectively balance exploration and exploitation
capabilities. In order to expand the learning range of particles, a novel
SLPSO approach based on the learning mechanism of example pool is
proposed, which is conductive to break through local extrema. Then the
proposed mutation operator is integrated into the inertia component of
SLPSO to enhance the exploration ability of the algorithm. At the same
time, in order to maintain the exploitation ability, the proposed crossover
operator is integrated into the individual cognition and social cognition
of SLPSO. Experimental results show that compared with other Steiner
tree construction algorithms, the proposed SLPSO-XSMT algorithm has
better wirelength optimization capability and superior stability.

Keywords: Particle Swarm Optimization · Social learning · Steiner
Minimum Tree · X-architecture · Wirelength optimization

1 Introduction

Steiner Minimum Tree (SMT) is the best connection model for multi-terminal
nets in global routing of Very Large Scale Integration (VLSI). The SMT problem
is to find a routing tree with the least cost to connect all given pins by introducing
additional points (Steiner points). Therefore, SMT construction is one of the
most important issues in VLSI routing.

Most current researches on routing algorithms are based on the Manhattan
structure [6,7], which can only routing in horizontal and vertical directions. In
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order to make fuller use of routing resources, the scholars are gradually shifting
their focus to non-Manhattan structures, thereby improving routing quality and
chip performance.

Therefore, the construction of Steiner minimum tree based on non-
Manhattan structure becomes a critical step in VLSI routing. In the early years,
scholars use precise algorithms [2,14] to construct a non-Manhattan structure
routing tree, which can obtain a shorter wirelength than the Manhattan struc-
ture, but the complexity is too high. So some heuristic algorithms [4,17,20] are
proposed to solve larger-scale SMT problems. However, these traditional heuris-
tics are prone to fall into local extrema. In recent years, evolutionary computing
has developed rapidly in many fields, especially Swarm Intelligence (SI) tech-
nology [1,3,12,19]. Some routing algorithms [5,8,13] consider important opti-
mization goals such as wirelength, obstacles, delay and bends based on Particle
Swarm Optimization (PSO) technique. In [10], a hybrid transformation strategy
is proposed to expand the search space based on self-adapting PSO. And an
unified algorithm for constructing Rectilinear Steiner Minimum Tree (RSMT)
and XSMT is proposed in [11], which can obtain multiple topologies of SMT to
optimize the congestion in global routing. It can be seen that PSO technique is
indeed a powerful tool to solve SMT problems.

Based on the analysis of the above related research work, this paper designs
and implements an effective algorithm to solve the XSMT construction problem
using Social Learning PSO (SLPSO), called SLPSO-XSMT. The contributions
of this paper are as follows:

– A novel SLPSO approach based on the learning mechanism of example pool
is proposed to enable particles to learn from different and better particles in
each iteration, and enhance the diversity of population evolution.

– Mutation and crossover operators are integrated into the update formula of
the particles to achieve the discretization of SLPSO, which can well bal-
ance the exploration and exploitation capabilities, thereby better solving the
XSMT construction problem.

The rest of this paper is organized as follows. Section 2 presents the prob-
lem formulation. And the SLPSO method with example pool mechanism is
introduced in Sect. 3. Section 4 describes the XSMT construction using SLPSO
method in details. In order to verify the good performance of the proposed
SLPSO-XSMT algorithm, the experimental comparisons are given in Sect. 5.
Section 6 concludes this paper.

2 Problem Formulation

The XSMT problem can be described as follows: Given a set of pins P =
{P1, P2, ..., P3}, each pin is represented by a coordinate pair (xi, yi). Then con-
nect all pins in P through some Steiner points to construct an XSMT, where
the direction of routing path can be 45◦ and 135◦, in addition to the traditional
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horizontal and vertical directions. Taking a routing net with 10 pins as an exam-
ple, Table 1 shows the input information of the pins. The layout distribution of
the given pins is shown in Fig. 1(a).

Table 1. The input information for the pins of a net

Pi 1 2 3 4 5 6 7 8 9 10

xi 35 19 24 24 38 10 15 4 20 7

yi 27 8 33 5 12 22 29 59 42 47
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Fig. 1. Routing graph corresponding to Table 1: (a) the layout distribution of pins;
(b) an X-architecture Steiner tree with the given pin set.

Definition 1. Pseudo-Steiner point. In addition to original points formed by
given pins, the final XMST can be constructed by introducing additional points
called pseudo-Steiner points (PSP). In Fig. 2, the point S is PSP, and PSP
contains the Steiner point.

Definition 2. Choice 0 (as shown in Fig. 2(b)). The Choice 0 of PSP corre-
sponding to edge L is defined as leading rectilinear side first from A to PSP S,
and then leading non-rectilinear side to B.

Definition 3. Choice 1 (as shown in Fig. 2(c)). The Choice 1 of PSP corre-
sponding to edge L is defined as leading non-rectilinear side first from A to PSP
S, and then leading rectilinear side to B.

Definition 4. Choice 2 (as shown in Fig. 2(d)). The Choice 2 of PSP corre-
sponding to edge L is defined as leading vertical side first from A to PSP S, and
then leading horizontal side to B.
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Definition 5. Choice 3 (as shown in Fig. 2(e)). The Choice 3 of PSP corre-
sponding to edge L is defined as leading horizontal side first from A to PSP S,
and then leading vertical side to B.

A

B

L S

A

B

S

A

B S

A

B

SA

B

(a) (b) (c) (d) (e)

Fig. 2. Four choices of Steiner point for the given segment: (a) line segment L; (b)
Choice 0; (c) Choice 1; (d) Choice 2; (e) Choice 3.

3 SLPSO

Social learning plays an important role in the learning behavior of swarm intelli-
gence, which helps individuals in the population to learn from other individuals
without increasing the cost of their own trials and errors. In SLPSO [18], each
particle learns from better individuals (called examples) in the current popula-
tion, while each particle in PSO only learns from its pbest and gbest.

Definition 6. Example Pool. All particles in the swarm S = {Xi|1 ≤
i ≤ M} are arranged in ascending order according to the fitness: S =
{X1, ...,Xi−1,Xi,Xi+1, ...,XM}, and then EP = {X1, ...,Xi−1} constitutes the
example pool of particle Xi.

Based on the example learning mechanism, the new formulas for updating
particles are proposed as follows:

V t+1
i = ω · V t

i + c1 · r1 · (P t
i − Xt

i ) + c2 · r2 · (Kt
i − Xt

i ) (1)

Xt+1
i = V t+1

i + Xt
i (2)

where Pi is the personal historical best position of particle i, Ki is the historical
best position of the Kth particle in the example pool, which is the social learning
object for particle i. ω is the inertia weight. c1 and c2 are acceleration coefficients,
which respectively adjust the step size of the particle flying to personal historical
best position (Pi) and its social learning object (Ki). r1 and r2 are mutually
independent random numbers uniformly distributed in the interval (0, 1).

Figure 3 shows the example pool of a particle. For particle Xi, the particles
with better fitness values than it including the global optimal solution XG con-
stitute its example pool. Xi randomly selects any particle in the example pool at



SLPSO-Based X-Architecture Steiner Minimum Tree Construction 135

... ... ... ...
 Xi XG

Example pool

Best fitnesss Worst fitnesss

Fig. 3. Example pool of particle Xi

each iteration, and learns the historical experience of this particle to complete
its own social learning process. This social learning mechanism allows parti-
cles to improve themselves through continuous learning from different excellent
individuals during the evolution process, which is conducive to the diversified
development of the population.

4 XSMT Construction Using SLPSO

4.1 Particle Encoding

The edge-vertex encoding strategy [11] is adopted in this paper, which is more
suitable for evolutionary algorithms, especially PSO. For a net with n pins, the
corresponding spanning tree has n-1 edges and one extra digit that is the fitness
value of particle. Thus the length of a particle encoding is 3 × (n − 1) + 1.

For example, Fig. 1(b) shows an X-architecture routing tree (n = 10) corre-
sponding to the layout distribution of pins given in Fig. 1(a), where the symbol
‘×’ represents PSP. And this routing tree can be expressed as the particle whose
encoding is the following numeric string:

9 3 2 3 7 0 7 6 1 3 1 1 1 5 2 9 10 1 10 8 0 5 4 0 4 2 0 108.6686

where the length of the particle is 3 × (10 − 1) + 1 = 28, the last bold number
108.6686 is the fitness of the particle and each italic number represents the choice
of PSP for each edge. The first substring (9, 3, 2 ) represents that Pin 9 and Pin
3 of the spanning tree in Fig. 1(a) are connected through Choice 2.

4.2 Fitness Function

The length of an X-architecture Steiner tree is the sum of the lengths of all the
edge segments in the tree, which is calculated as follows:

L(Tx) =
∑

ei∈Tx

l(ei) (3)
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where l(ei) represents the length of each segment ei in the tree Tx.
The smaller the fitness value, the better the particle is represented. Thus the

particle fitness function is designed as follows.

fitness = L(Tx) (4)

4.3 Particle Update Formula

In order to better solve the XSMT problem, a new particle update method with
mutation and crossover operators is proposed. The specific formula is as follows:

Xt
i = F3(F2(F1(Xt−1

i , ω), c1), c2) (5)

where ω is the mutation probability, c1 and c2 are crossover probability. F1 is
the mutation operator, which corresponds to the inertia component of PSO. F2

and F3 are crossover operators, corresponding to the individual cognition and
social cognition, respectively.

Inertia Component. The particle velocity of SLPSO-XSMT is updated
through F1, which is expressed as follows:

W t
i = F1(Xt−1

i , ω) =
{

M(Xt−1
i ), r1 < ω

Xt−1
i , otherwise

(6)

where ω is the probability of mutation operation, and r1 is a random number in
[0,1].

Mutation
3

1 5
2

4 3

1 5
2

67

4

67

Xi : 321 122 253 423 260 673 Xi’ : 322 122 250 423 260 673

m1

m2

m1

m2

Fig. 4. Mutation operator of SLPSO-XSMT

The proposed algorithm uses two-point mutation. If the generated random
number r1 < ω, the algorithm will randomly replace the PSP choices of any two
edges. Otherwise, keep the routing tree unchanged. Figure 4 gives a routing tree
with 6 pins. It can be seen that after F1, the PSP choices of m1 and m2 are
replaced to Choice 2 and Choice 0, respectively.
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Individual Cognition. The SLPSO-XSMT algorithm uses F2 to complete the
individual cognition of particles, which is expressed as follows:

St
i = F2(W t

i , c1) =
{

Cp(W t
i ), r2 < c1

W t
i , otherwise (7)

where c1 represents the probability that the particle crosses with its personal
historical optimum (XP

i ), and r2 is a random number in [0, 1).

Social Cognition. The SLPSO-XSMT algorithm uses F3 to complete the social
cognition of particles, which is expressed as follows:

Xt
i = F3(St

i , c2) =
{

Cp(St
i ), r3 < c2

St
i , otherwise (8)

where c2 represents the probability that the particle crosses with the historical
optimum of any particle XP

k in the example pool, and r3 is a random number
in [0, 1).
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Fig. 5. Crossover operator of SLPSO-XSMT

Figure 5 shows the crossover operation in individual cognition and social
cognition of a particle. Xi is the particle to be crossed, and its learning object
is XP

i or XP
k . The proposed algorithm firstly selects a continuous interval of

the encoding, like the corresponding edges to be crossed e1, e2, and e3. Then,
replace the encoding on this interval of particle Xi with the encoding string of
its learning object. After the crossover operation, the PSP choices of edges e1,
e2, and e3 in Xi are respectively changed from Choice 2, Choice 3, and Choice 3
to Choice 1, Choice 0, and Choice 3, while the topology of the remaining edges
remains unchanged.

Repeated iterative learning can gradually make particle Xi move closer to the
global optimal position. Moreover, the acceleration coefficient c1 is set to decrease
linearly and c2 is set to increase linearly, so that the algorithm has a higher
probability to learn its own historical experience in the early iteration to enhance
global search ability. While it has a higher probability to learn outstanding
particles in the later iteration to enhance exploitation ability, so as to quickly
converge to a position close to the global optimum.
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4.4 Overall Procedure

Property 1. The proposed SLPSO-XSMT algorithm with example pool learning
mechanism has a good balance between global exploration and local exploitation
ability so as to effectively solve the XSMT problem.

The steps for SLPSO-XSMT can be summarized as follows.

Step 1. Initialize the population and PSO parameters, where the minimum
spanning tree method is utilized to construct initial routing tree.

Step 2. Calculate the fitness value of each particle according to Eq. (4), and
sort them in ascending order: S = {X1, ...,Xi−1,Xi,Xi+1, ...,XM}.

Step 3. Initialize pbest of each particle and its learning example pool EP =
{X1, ...,Xi−1}, and initialize gbest.

Step 4. Update the velocity and position of each particle according to Eqs.
(5)–(8).

Step 5. Calculate the fitness value of each particle.
Step 6. Update pbest of each particle and its example pool EP, as well as gbest.
Step 7. If the termination condition is met (the set maximum number of itera-

tions is reached), end the algorithm. Otherwise, return to step 4.

4.5 Complexity Analysis

Lemma 1. Assuming the population size is M , the number of iterations is T ,
the number of pins is n, and then the complexity of SLPSO-XSMT algorithm is
O(MT · nlog2n).

Proof. The time complexity of mutation and crossover operations are both lin-
ear time O(n). As for the calculation of fitness value, its complexity is mainly
determined by the complexity of the sorting method O(nlog2n). Since the exam-
ple pool of each particle would change at the end of each iteration, the time
for updating example pool is mainly spent on sorting, that is, its time com-
plexity is also O(nlog2n). Therefore, the complexity of the internal loop of the
SLPSO-XSMT algorithm is O(nlog2n). At the same time, the complexity of the
external loop of the algorithm is mainly related to the size of the population and
the number of iterations. Therefore, the complexity of proposed SLPSO-XSMT
algorithm is O(MT · nlog2n).

5 Experiment Results

In order to verify the performance and effectiveness of the proposed algorithm in
this paper, experiments are performed on the benchmark circuit suite [15]. The
parameter settings in this paper are consistent with [8]. Considering the ran-
domness of the PSO algorithm, the mean values in all experiments are obtained
by independent run 20 times.
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5.1 Validation of Social Learning Mechanism

In order to verify the effectiveness of proposed social learning mechanism based
on example pool, this section applies PSO [8] and the proposed SLPSO method
to seek the solution of XSMT, in which the social cognition of PSO is achieved
through crossing with the global optimal solution (gbest). The experiments com-
pare the wirelength optimization capabilities and stability of the two methods,
as shown in Table 2. In all test cases, the SLPSO method can achieve shorter
wirelength and lower standard deviation than the PSO method. On the three
evaluation indicators (best wirelength, mean wirelength and standard devia-
tion), the SLPSO method can achieve optimization rates of 0.171%, 0.289%,
and 35.881%, respectively. The experimental data show that SLPSO method
has better exploration and exploitation capability than PSO method.

Table 2. Comparison between PSO and the proposed SLPSO method

Test Pins Best wirelength Mean wirelength Standard deviation

PSO SLPSO Imp (%) PSO SLPSO Imp (%) PSO SLPSO Imp (%)

1 8 16918 16918 0.00 16918 16918 0.00 0.00 0.00 0.00

2 9 18041 18041 0.00 18041 18041 0.00 0.00 0.00 0.00

3 10 19696 19696 0.00 19696 19696 0.00 0.00 0.00 0.00

4 20 32193 32193 0.00 32217 32195 0.07 11.95 6.31 47.17

5 50 47960 47953 0.01 48103 47959 0.30 55.04 14.49 73.68

6 70 56357 56278 0.14 56536 56314 0.39 106.72 42.65 60.04

7 100 68650 68462 0.27 69047 68623 0.61 222.04 90.21 59.37

8 410 141520 140858 0.47 141908 141172 0.52 243.95 164.87 32.42

9 500 154365 153708 0.43 154760 153951 0.52 246.25 162.83 33.87

10 1000 220774 219928 0.38 221196 220132 0.48 235.45 112.40 52.26

Avg 0.17 0.29 35.88

5.2 Validation of SLPSO-Based XSMT Construction Algorithm

In order to verify the good performance of proposed SLPSO-XSMT algorithm,
this section gives a comparison between SLPSO-XSMT and two SMT algorithms
which are traditional RSMT (R) [9] and DDE-based XSMT (DDE) [16] algo-
rithms. As shown in Table 3, ours performs well in wirelength optimization, and
can reduce the average wirelength by 8.76% and 1.81%, respectively. It can be
found from the comparison with DDE-based XSMT algorithm that our algo-
rithm is more conducive to the construction of large-scale Steiner trees.

Additionally, SLPSO-XSMT algorithm has an overwhelming advantage in
stability. It can be seen that ours is far superior to the two algorithms and
can greatly reduce the standard deviation of the algorithm. Among them, the
DDE-based algorithm has the worst stability, and ours can reduce the standard
deviation by 97.39% on average.
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Table 3. Comparison between SLPSO-XSMT and other SMT algorithms

Test Mean wirelength Standard deviation

Absolute values Imp (%) Absolute values Imp (%)

R DDE Ours O/R O/D R DDE Ours O/R O/D

1 17931 16911 16918 5.65 −0.04 0.00 33.65 0.00 – 100.00

2 20503 18039 18041 12.01 −0.01 0.00 41.47 0.00 – 100.00

3 21910 19469 19696 10.11 −1.16 0.00 132.73 0.00 – 100.00

4 35723 32342 32195 9.88 0.45 0.00 165.03 6.31 – 96.18

5 52509 48668 47959 8.66 1.46 54.67 827.25 14.49 73.50 98.25

6 60909 57255 56314 7.55 1.64 75.08 1134.68 42.65 43.19 96.24

7 74107 70686 68623 7.40 2.92 219.21 1802.17 90.21 58.85 94.99

8 154835 147115 141172 8.82 4.04 524.25 3615.35 164.87 68.55 95.44

9 167751 159672 153951 8.23 3.58 530.39 3687.87 162.83 69.30 95.58

10 242587 232359 220132 9.26 5.26 465.02 4088.80 112.40 75.83 97.25

Average 8.76 1.81 64.87 97.39

6 Conclusion

Aiming at the XSMT construction problem in VLSI routing, this paper proposes
the SLPSO-based XSMT algorithm with the goal of optimizing the total wire-
length. The algorithm adopts a novel social learning mechanism based on the
example pool, so that particles can learn from different and better particles in
each iteration, which expands searching range and helps to break through local
extremes. At the same time, mutation and crossover operators are integrated
into the update formula of particles to better solve the discrete XSMT problem.

The experimental results show that the proposed SLPSO-XSMT algorithm
has obvious advantages in reducing wirelength and enhancing the stability of the
algorithm, especially for large-scale Steiner trees. In future work, we will continue
to improve this high-performance SLPSO to better solve various problems in the
field of VLSI routing.
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