
Influence of Periodic Role Switching
Intervals on Pair Programming

Effectiveness

Bin Xu, Sheng Yan(B), Kening Gao, Yu Zhang, and Ge Yu

School of Computer Science and Engineering, Northeastern University,
Shenyang 110189, China

{xubin,gkn,zhangyu,yuge}@mail.neu.edu.cn, yansheng1117@foxmail.com

Abstract. Pair programming has been widely used in programming
experiment teaching in programming courses. One of the important fac-
tors affecting the successful completion of pair programming is the timing
of periodic role switching. We organized an experiment in the course of
Python Programming for 102 freshmen who did not major in computer
science. By comparing the accuracy of code submitted by students in
the online judge system, we evaluated the influence of pairing program-
ming on students’ programming ability under three different periodic
role switching intervals of 15 min, 20 min and 30 min, and collected stu-
dents’ perception towards pairing programming under different modes.
We also made a standard to judge the normalization of code, to study the
influence of pair programming on the normalization of code written by
students. The results show that when the periodic role switching interval
is 30 min, pairing programming is helpful for students to solve difficult
problems, and it has a positive impact on the solution of subsequent prob-
lems after experiencing the process of solving difficult problems. When
the periodic role switching interval is 20 min, students have a positive
attitude towards pair programming. Therefore, the best switching inter-
val can be set between 20 min and 30 min. However, in terms of code
normalization, there is no significant relationship between the standard
degree of student code and the switching interval of pair programming.
We gave some explanations for this in this paper.

Keywords: Programming course · Pair programming · Assessment

1 Introduction

In the past few decades, computers have become a basic tool in people’s daily life.
Programming is also required by all walks of life as an important skill. Therefore,
more and more people choose to study computer science courses in colleges and
universities [1]. Pair programming has been proved that students’ programming
levels can be improved in programming courses [13,14,16]. In pair programming,

Supported by the National Natural Science Foundation of China (U1811261).

c© Springer Nature Switzerland AG 2020
G. Wang et al. (Eds.): WISA 2020, LNCS 12432, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-60029-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60029-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-60029-7_1


4 B. Xu et al.

two students coordinate to build codes by playing different roles, the driver is
responsible for writing codes, and the navigator is responsible for finding errors
and providing feedback. Periodic role switching allows pairs of programming
students to share their ideas and collaborate in writing higher-quality programs
[5,17].

Previous studies have shown that there are many factors that have a signifi-
cant impact on the effectiveness of pair programming [6,8,19], including whether
students have been exposed to programming before and the differences between
teachers’ pair programming methods. We have studied the correct rate and stan-
dard degree of codes written by students at different switching intervals in pair
programming to explore the influence of different times on the effectiveness of
pair programming.

2 Background

Pair programming is a programming technique in which two programmers, usu-
ally from the same workstation, work together on a task. With the rise of extreme
programming [2], it has been widely used in professional applications for the
first time and has since become a common programming method in the software
industry. Two programmers work side by side in front of the same computer.
One enters the code, while the other reviews every line of code he enters. The
person who enters the code is called the “driver” and the person who reviews the
code is called the “navigator”. Usually, two programmers switch roles regularly.

Pair programming, as a well-known learning programming strategy, has
proved to be a more effective method than individual programming methods
[7,12,20], so pair programming is also used as part of or in conjunction with
various teaching methods [9,15]. One advantage of pair programming is accessi-
bility. Pair programming enables students who have just come into contact with
programming to have confidence in programming, which essentially lowers the
threshold for students to learn to program [4,18].

Under the educational background, there have been many kinds of research
on pair programming, such as exploring the correlation between self-reporting
preferences [10] and curriculum performance [3] and the core contributors in
projects [11]. Pair programming also enables students to constantly check their
views on programming and exchange learning strategies. This expands students’
learning programming strategies and helps to open up students’ thinking mode.
However, the factors that affect pair programming are still largely unexplored,
so this paper makes a quantitative analysis of the periodic switching interval of
the two roles in pair programming.

3 Method

3.1 Experimental Design

The data for this study come from the Python programming introductory
course of the Northeastern University of China in autumn 2019. Students have



Influence of Switching Intervals on Pair Programming Effectiveness 5

seven weeks of computer programming assignments throughout the semester.
We selected the last four weeks of the semester to conduct pairing programming
experiments to ensure that students have a certain programming foundation.
Students can choose whether to do pair programming or not, and the matching
partners of pair programming are chosen voluntarily. In the experiment, our class
time is usually 120 min, and we provide 15 min, 20 min, and 30 min for students
to switch drivers and navigators. Students can choose the role switching interval
of their group and the role switching interval chosen by each group of students
also remains the same, that is, the students use the same role switching interval
in the whole process of the experiment. There are eight programming problems
in the assignments arranged in four weeks. All students do not adopt pair pro-
gramming in the first week, and the students in the next three weeks will carry
out group pair programming. In the whole experiment, once random matching
partners are selected, the matching partners of each student are fixed. Figure 1
shows the design pattern of the experiment. We counted the behavior records
of the code submission of students in the online judge system, and the home-
work was only rated as passed or failed. In the following chapters, we also give
a standard method to evaluate the normalization of code written by students.

Fig. 1. Design of experiments for comparing three different switching times in pair
programming.

3.2 Data

The data in this study were collected by two methods: (1) Homework records sub-
mitted by students in the online judge system; (2) Voluntary Pair Programming
Strategy Questionnaire. The homework records submitted by the students in
the online judge system include the time the students completed, the number of
exercises completed, and whether they passed the evaluation. The questionnaire
includes questions about pair programming activities. A total of 102 students
participated in the survey, of which 96 students were grouped into pairs for pro-
gramming, with a total inclusion rate of 94.1%. We selected 12 pairs of students
from three groups respectively and took the remaining 12 students who did not



6 B. Xu et al.

adopt pair programming as the control group for experiments. The information
we got from the questionnaire is shown in Table 1.

Table 1. Comparison of the number of people participating in the survey.

15 min 20 min 30 min Solo

Total number 24 24 24 12

Male 18 14 13 7

Female 6 10 11 5

Have programming experience 8 11 8 10

Heard of pair programming 8 9 4 6

In the experiment, each group of pair programming students completed an
assignment together, and the students who programmed independently com-
pleted an assignment. We can see from Table 1 that some students have some
programming experience. Therefore, before the experiment began, we conducted
a test on the students to verify their programming level. We conducted two-
sample T-tests on the scores of each group of students in different modes and
the control group respectively, and the results are shown in Table 2.

Table 2. Differences in programming ability between groups.

Group t Degree of freedom (df) p Homogeneity of variance test (Sig)

15 min −1.42 212.38 0.16 No

20 min 1.18 249.36 0.23 No

30 min −1.13 253.00 0.26 No

The results showed that there was no significant statistical difference between
the test results of each group and the control group. Therefore, the level of
students’ programming ability in our experiment is similar and will not affect
the results of the experiment.

3.3 Research Questions

The research questions in this study are as follows.

– RQ1: What is the influence of different rotation intervals on the passing rate
of students’ pair programming code writing?

– RQ2: Will pair programming improve students’ coding normalization?
– RQ3: What are the students’ perceptions of pair programming under different

switching intervals?



Influence of Switching Intervals on Pair Programming Effectiveness 7

4 Result

4.1 RQ1: Code Pass Rate

To ensure that the students in each mode can accept the same amount of home-
work, we collected the passing rate of 8 program questions in the programming
task and scored the passing rate of each question equally. The code passing rate
of each homework in each mode can be calculated by the following formula:

R (Gi, Pj) =
1
Ni

Ni∑

i

A
(
θik, Pj

)

S
(
θik, Pj

) (1)

Where Gi represents the i-th mode; Ni represents the number of people in i-th
mode; Pj represents the j-th homework; θik represents the k-th person in i-th
mode; A

(
θik, Pj

)
represents the correct number of homework submissions in Pj ;

S
(
θik, Pj

)
represents the total number of homework submissions in Pj .

Fig. 2. Illustration of the passing rate of each group of codes and the difficulty of
homework. (Color figure online)

According to the students’ feedback and the weekly teaching content, com-
bined with the code submitted by all the students, the change curve of homework
difficulty can be obtained. As shown in Fig. 2, the yellow curve indicates the dif-
ficulty of the homework, and the smaller the ordinate indicates the greater the
difficulty of the homework. The difficulty of homework is calculated from the
records submitted by everyone on Online Judge, and the values of each point on
the curve indicate the passing rate of each homework submission. The lower the
pass rate, the more difficult the homework is, and the more difficult it is for the
students to solve the homework. The cylindrical graph represents the passing



8 B. Xu et al.

rate of students’ code submission in the online judge system under the switch-
ing interval of 15 min, 20 min, 30 min, and control group respectively. From the
picture, we can find that the passing rate of students’ codes is positively related
to the difficulty of homework, which accords with our cognition.

In the phase of no pair programming, the three groups of students all adopt
the single programming mode, and there is no obvious difference in the passing
rate of homework submission. In the phase of pair programming, all the students
begin pair programming. When solving the first homework, the group with a
switching interval of 15 min has great advantages, can quickly solve some prob-
lems, and improve the passing rate of homework, while the other two groups have
no obvious difference at the beginning. However, when the difficulty of home-
work increases, the group with a 30-min switching leads the other two groups
by more than 40%.

Two-sample T-test was conducted with the pass rate data of codes with a
switching interval of 15 min and 20 min and the data with a switching interval of
30 min respectively, and the difference between them is shown in Table 3. It can
be seen that the group with a switching interval of 30 min has obvious statistical
differences with the other two groups. Generally speaking, the difference in group
scores is negative, which indicates that the other two groups are worse than the
students whose switching interval is 30 min.

Table 3. Differences in performance between groups.

Group t Degree of freedom (df) p Homogeneity of variance test (Sig)

15min & 30min −6.89 212.38 0.00 Yes

20min & 30min −7.34 187.42 0.00 Yes

4.2 RQ2: Normalization of Codes

To determine whether pair programming can make students write codes more
standardized, we have formulated a standard to grade students’ codes with a
standard degree, and detailed standard information is as follows:

1. Items with a weight of 3
(a) Indentation: Use 4 spaces per indentation level. Continuation lines should

align wrapped elements either vertically using Python’s implicit line join-
ing inside parentheses, brackets, and braces, or using a hanging indent.

(b) Tabs or Spaces: Spaces are the preferred indentation method. Tabs should
be used solely to remain consistent with code that is already indented with
tabs.

(c) Maximum Line Length: Limit all lines to a maximum of 79 characters.
(d) Line Break: A-Line Break should before a Binary Operator.
(e) Blank Lines: Surround top-level function and class definitions with two

blank lines. Method definitions inside a class are surrounded by a single



Influence of Switching Intervals on Pair Programming Effectiveness 9

blank line. Extra blank lines may be used (sparingly) to separate groups
of related functions. Blank lines may be omitted between a bunch of
related one-liners (e.g. a set of dummy implementations). Use blank lines
in functions, sparingly, to indicate logical sections.

2. Items with a weight of 2
(a) Source File Encoding: Code in the core Python distribution should always

use UTF-8.
(b) Imports: Imports should usually be on separate lines. Imports are always

put at the top of the file, just after any module comments and docstrings,
and before module globals and constants.

(c) String Quotes: When a string contains single or double quote characters,
however, use the other one to avoid backslashes in the string. It improves
readability.

(d) Whitespace in Expressions and Statements: Avoid extraneous whitespace.
3. Items with a weight of 1

(a) Comments: Good code should have wonderful comments.
(b) Naming Conventions: Naming in python code should conform to the nam-

ing specification.

The total score of the standard score is 30 points. If there is any nonconform-
ing item in the code, the corresponding points will be deducted. Students have
no professional foundation of programming before, so we pay more attention to
the standardization of students’ code layout. So when we calculate the deducted
score, we give different weights to different items. For example, we give smaller
weights to two items that enhance code readability (variable naming and code
comments). The specific calculation method is as follows:

S = β

11∑

i=1

nIi (2)

Where Ii represent the item i in the table, β represents the weighting coefficient
of each term, and the basic score of each item is 1 point.

We collected the codes of all students participating in pair programming and
then calculated the standard rate according to the code length of each program.
The standard rate of each group of modes takes the average value of the standard
rate of all codes in that group. The formula of code normalization is calculated
as follows:

N (Gi, Pj) =
1
Ni

Ni∑

i

Ssum − S
(
θik, Pj

)

L
(
θik, Pj

) (3)

Where N (Gi, Pj) represents the standard degree of the code of the i-th mode,
Ni represents the number of people in the i-th mode, Pj represents the j-th
topic, Ssum represents the total score of each program, S

(
θik, Pj

)
represents the

score deducted by each program according to the standard items, and L
(
θik, Pj

)

represents the length of the code.
Figure 3 shows the changing trend of standard rates for each group of codes.

It can be seen from the figure that there is no correlation between the standard



10 B. Xu et al.

Fig. 3. A comparative diagram of the changing trend of the standard rate of codes in
each group and the difficulty of homework.

rate and the difficulty of the homework, and the standard rate of each group
has no obvious upward trend with the pair programming. We analyze that the
reason why this may happen is that students learn and do while learning, which
leads to the students’ programming foundation not reaching the standard level.
Therefore, we analyzed the codes written by students in the final examination
and selected two questions to calculate the standard rate of codes written by
students in the examination. The significance test of the regression coefficient
for each group of data shows that there is no obvious linear correlation between
the standard rate of codes and the time of pair programming.

4.3 RQ3: Students’ Attitude to Pair Programming

After the experiment, to measure the students’ experience in pair programming,
a short questionnaire was distributed to the students.

– Q1: Are you willing to continue pair programming?
– Q2: Do you think pair programming is more efficient?
– Q3: Do you think pair programming is helpful to improve the programming

level?

The results in Fig. 4 show that the students’ attitude towards pair program-
ming is positive. Most students are in favor of pair programming mode and
are willing to continue pair programming. Figures show that students with a
20-min switching interval for pair programming feel more able to benefit from
pair programming, and they feel that pair programming is more effective and
can improve their programming level.



Influence of Switching Intervals on Pair Programming Effectiveness 11

Fig. 4. Results of the questionnaire.

5 Discussion

The results show that the longer the pairing time is, the better it is for stu-
dents to overcome difficult homework. Moreover, judging from the submission
of homework after solving difficult problems, the passing rate of the submitted
codes of this group of students is higher than that of the other two groups after
experiencing cooperation in solving difficult problems. This shows that students
benefit more from pair programming within 30 min.

In order to verify the validity of this result, we have a test for students after
the pair programming course. It includes a simple programming problem and
a programming problem beyond the syllabus. We counted the passing rate of
each group of students. The results show that whether it is a simple question
or a more difficult question, the students with a 30-min rotation time for pair
programming have a higher pass rate. This shows that our previous results are
valid.

As far as the normalization of codes is concerned, from the data obtained
from the overall statistics, pairing programming has no effective influence. There
is no significant linear correlation between the increase of pairing time and the
standard degree of codes. We analyze the possible reasons for this situation
include students’ lack of programming experience, a small number of samples,
and difficulty in homework. In order to verify whether it is related to the students’
programming experience, we also selected the codes submitted by the students
at the end of the final exam and calculated the standard scores of each group.
The results show that after the end of the course, the code normalization has
not been greatly improved, and there is no significant difference between the



12 B. Xu et al.

code normalization when the pair programming is not adopted and when the
course is not studied. This reason is not the cause of this result. In the following
research, we will expand the sample of the experiment and set up homework
with different difficulties to analyze the normalization of the code.

In the process of practice, it is found that when the pairing programming
mode is not carried out, the students with weak foundation are more dependent
on the guidance teachers and treat the problems that cannot be solved passively.
After developing the pairing programming mode, this part of the students can
discuss it with the pairing members. According to the code submission time
recorded by the system, it is found that these students can quickly solve the
problems in programming, and students can obtain more satisfaction, and their
learning enthusiasm and initiative have also been greatly improved. And we can
see from the statistical results that students with a 20-min switching interval
for pair programming think they can benefit more from pair programming. This
also inspired us that the switching interval of pair programming is not as long
as possible. Excessively long switching intervals will cause students to have a
negative attitude towards pair programming.

6 Conclusion

In this study, we discussed the influence of periodic role switching interval on the
effectiveness of pair programming and analyzed the pass rate, normalization, and
students’ cognitive attitude towards pair programming under different switching
intervals. Our results show that students can benefit from pair programming
when the switching interval for pair programming is 30 min. However, when we
investigate students’ attitudes, we find that students prefer to set the switching
interval at 20 min.

Therefore, in the actual programming language teaching environment, we
suggest that more attention should be paid to the pairing scheme of pairing
programming. However, in the switching interval, we suggest to give priority to
work continuity, and there is no need to specify specific time rigidly. According to
the experimental results, to balance students’ enthusiasm for pair programming
and the benefits of pair programming in normal teaching, we suggest that the
switching interval of pair programming in class can be set to 20–30 min.

When studying the influence of pair programming on the normalization of
students’ code writing, we got the opposite result. Our results show that there is
no obvious linear correlation between the standard degree of code and the time
of pair programming. We analyzed and verified that the reason for this result
has nothing to do with whether the students study the whole course. In the
following research, we will further expand the sample size and set up different
difficult assignments to verify the remaining reasons.



Influence of Switching Intervals on Pair Programming Effectiveness 13

References

1. Computer Research Association., et al.: Generation CS: computer science under-
graduate enrollments surge since 2006 (2017). http://cra.org/data/Generation-CS/

2. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change.
Addison-Wesley Professional, USA (2004). https://doi.org/10.5555/318762

3. Braught, G., Wahls, T., Eby, L.M.: The case for pair programming in the com-
puter science classroom. ACM Trans. Comput. Educ. (TOCE) 11(1), 1–21 (2011).
https://doi.org/10.1145/1921607.1921609

4. Carver, J.C., Henderson, L., He, L., Hodges, J., Reese, D.: Increased retention of
early computer science and software engineering students using pair programming.
In: 20th Conference on Software Engineering Education & Training (CSEET 2007),
pp. 115–122. IEEE (2007). https://doi.org/10.1109/CSEET.2007.29

5. Celepkolu, M., Boyer, K.E.: Thematic analysis of students’ reflections on pair pro-
gramming in cs1. In: Proceedings of the 49th ACM Technical Symposium on Com-
puter Science Education, pp. 771–776 (2018). https://doi.org/10.1145/3159450.
3159516

6. Chaparro, E.A., Yuksel, A., Romero, P., Bryant, S.: Factors affecting the perceived
effectiveness of pair programming in higher education. In: Proceedings of PPIG,
pp. 5–18 (2005)

7. Declue, T.: Pair programming and pair trading: effects on learning and motivation
in a CS2 course. J. Comput. Sci. Coll. JCSC 18 (2003). https://doi.org/10.5555/
771832.771843

8. Hanks, B.: Student attitudes toward pair programming. In: Proceedings of the 11th
Annual SIGCSE Conference on Innovation and Technology in Computer Science
Education, pp. 113–117 (2006). https://doi.org/10.1145/1140123.1140156

9. Heinonen, K., Hirvikoski, K., Luukkainen, M., Vihavainen, A.: Learning agile
software engineering practices using coding dojo. In: Proceedings of the 14th
Annual ACM SIGITE Conference on Information Technology Education, pp. 97–
102 (2013). https://doi.org/10.1145/2512276.2512306

10. Khan, S., Ray, L., Smith, A., Kongmunvattana, A.: A pair programming trial in
the CS1 lab. In: Proceeding Annual International Conference on Computer Science
Education: Innovation and Technology (CSEIT), pp. 6–7 (2010)

11. Liu, X., Bai, J., Liu, L., Ouyang, H., Zhou, H., Xu, L.: Mining core contributors
in open-source projects. In: Ni, W., Wang, X., Song, W., Li, Y. (eds.) WISA 2019.
LNCS, vol. 11817, pp. 690–703. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-30952-7 70

12. McDowell, C., Hanks, B., Werner, L.: Experimenting with pair programming in
the classroom. In: Proceedings of the 8th Annual Conference on Innovation and
Technology in Computer Science Education, pp. 60–64 (2003). https://doi.org/10.
1145/961511.961531

13. McDowell, C., Werner, L., Bullock, H., Fernald, J.: The effects of pair-programming
on performance in an introductory programming course. In: Proceedings of the 33rd
SIGCSE Technical Symposium on Computer Science Education, pp. 38–42 (2002).
https://doi.org/10.1145/563340.563353

14. Nagappan, N., et al.: Improving the CS1 experience with pair programming. vol.
35, pp. 359–362. ACM New York (2003). https://doi.org/10.1145/792548.612006

15. Porter, L., Simon, B.: Retaining nearly one-third more majors with a trio of instruc-
tional best practices in CS1. In: Proceeding of the 44th ACM Technical Sym-
posium on Computer Science Education, pp. 165–170 (2013). https://doi.org/10.
1145/2445196.2445248

http://cra.org/data/Generation-CS/
https://doi.org/10.5555/318762
https://doi.org/10.1145/1921607.1921609
https://doi.org/10.1109/CSEET.2007.29
https://doi.org/10.1145/3159450.3159516
https://doi.org/10.1145/3159450.3159516
https://doi.org/10.5555/771832.771843
https://doi.org/10.5555/771832.771843
https://doi.org/10.1145/1140123.1140156
https://doi.org/10.1145/2512276.2512306
https://doi.org/10.1007/978-3-030-30952-7_70
https://doi.org/10.1007/978-3-030-30952-7_70
https://doi.org/10.1145/961511.961531
https://doi.org/10.1145/961511.961531
https://doi.org/10.1145/563340.563353
https://doi.org/10.1145/792548.612006
https://doi.org/10.1145/2445196.2445248
https://doi.org/10.1145/2445196.2445248


14 B. Xu et al.

16. Quintana, H., Grados, B.: Applying pair programming practice in the improvement
of software design skills, in an undergraduate course. In: Proceedings of the 2020
ACM Conference on Innovation and Technology in Computer Science Education,
pp. 543–544 (2020). https://doi.org/10.1145/3341525.3393985

17. Reckinger, S., Hughes, B.: Strategies for implementing in-class, active, program-
ming assessments: a multi-level model. In: Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pp. 454–460 (2020). https://doi.org/
10.1145/3328778.3366850

18. Venkatesan, V., Sankar, A.: Adoption of pair programming in the academic envi-
ronment with different degree of complexity in students perspective-an empirical
study. Int. J. Eng. Sci. Technol. 2(9), 4791–4800 (2010)

19. Xinogalos, S., Satratzemi, M., Chatzigeorgiou, A., Tsompanoudi, D.: Factors affect-
ing students’ performance in distributed pair programming. J. Educ. Comput. Res.
57(2), 513–544 (2019). https://doi.org/10.1177/0735633117749432

20. Zhong, B., Wang, Q., Chen, J.: The impact of social factors on pair programming
in a primary school. Comput. Hum. Behav. 64, 423–431 (2016). https://doi.org/
10.1016/j.chb.2016.07.017

https://doi.org/10.1145/3341525.3393985
https://doi.org/10.1145/3328778.3366850
https://doi.org/10.1145/3328778.3366850
https://doi.org/10.1177/0735633117749432
https://doi.org/10.1016/j.chb.2016.07.017
https://doi.org/10.1016/j.chb.2016.07.017

	Influence of Periodic Role Switching Intervals on Pair Programming Effectiveness
	1 Introduction
	2 Background
	3 Method
	3.1 Experimental Design
	3.2 Data
	3.3 Research Questions

	4 Result
	4.1 RQ1: Code Pass Rate
	4.2 RQ2: Normalization of Codes
	4.3 RQ3: Students' Attitude to Pair Programming

	5 Discussion
	6 Conclusion
	References




