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Abstract. Univariate polynomial root-finding has been studied for four
millennia and is still the subject of intensive research. Hundreds of effi-
cient algorithms for this task have been proposed. A recent front-running
algorithm relies on subdivision iterations. Already its initial implemen-
tation of 2018 has competed for user’s choice for root-finding in a region
that contains a small number of roots. Recently, we significantly accel-
erated the basic blocks of these iterations, namely root-counting and
exclusion tests. In [18], we solidified this approach and made our acceler-
ation dramatic in the case of sparse polynomials and other ones defined
by a black box for their fast evaluation. Our techniques are novel and
should be of independent interest. In the present paper and its compan-
ion [19], we expose a substantial part of that work.

Keywords: Polynomial root-finding · Subdivision · Sparse
polynomials · Exclusion test · Root-counting · Power sums of roots

1 The State of the Art and Our Progress

Univariate polynomial root-finding has been the central problem of mathematics
and computational mathematics for four millennia and remains the subject of
intensive research motivated by applications in Computer Algebra and various
other areas of computing (see pointers to the huge bibliography in [18]).

Subdivision iterations traced back to [5,14,20,22], recently became a leading
root-finder due to the progress reported in [2,9–11]. Our current paper and its
companion [19] represent part of a large work [18] on significant acceleration of
the previous algorithm of [2]. Already the initial implementation of the new algo-
rithm in [9] shows 3-fold acceleration, but further implementation work should
demonstrate substantially stronger progress, including dramatic acceleration in
the important case of a black box polynomial, represented by a subroutine for its
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fast or numerically stable evaluation rather than its coefficients. E.g., black box
evaluation is very fast for sparse, Mandelbrot’s polynomials defined by recurrence
expressions,

p0(x) = 1, p1(x) = x, pi+1(x) = xpi(x)2 + 1 for i = 0, 1, . . . , (1)

and various other polynomials, while evaluation is numerically stable for poly-
nomials represented in Bernstein or Chebyshev bases. Furthermore, dealing
with black box polynomials, we avoid the costly auxiliary stages of Dandelin–
Lobachevsky–Gräffe’s recursive root-squaring [7] and Taylor’s shift of the vari-
able, which greatly slow down the computations of [2].

We refer the reader to [18] for full exposition of this work, which includes
its comparison with other leading root-finders, their acceleration, and Boolean
cost estimates, while we occasionally estimate arithmetic complexity where we
can control the precision of computing. [18] specifies a number of directions for
further progress in subdivision iterations and fully develops some of them. Their
implementation should make the algorithm of [18] competitive with MPSolve
(Multiprecision Polynomial Solver) of [3,4], which is the package of root-finding
subroutines of user’s choice since 2000. Actually already the previous imple-
mentation of subdivision iterations in [10], based on the algorithm of [2], has
slightly outperformed MPSolve for root-finding in a region of the complex plane
containing only a small number of roots.

Organization of the Paper. We devote the next short section to background,
where, in particular, we briefly cover subdivision iterations. We extensively study
their amendments based on the computation of Cauchy sums in a disc on the
complex plane in Sect. 3. We devote Sects. 4 and 5 to deterministic and proba-
bilistic support of the application of our Cauchy sum approach to root-counting
and exclusion tests for a disc without estimation of the isolation of its boundary
circle from the roots.

2 Background

Quite typically in the literature, a polynomial p = p(x) is represented in mono-
mial basis – with its coefficients,

p(x) =
d∑

i=0

pix
i = pd

d∏

j=1

(x − xj), pd �= 0, (2)

where we may have xk = xl for k �= l, but we allow its representation just by a
black box for its evaluation.

We study roots numerically: we count a root of multiplicity m as m simple
roots and do not distinguish it from their cluster whose diameter is within a
fixed tolerance bound.

We deal with the discs D(c, ρ), annuli A(c, ρ, ρ′), and circles C(c, ρ) having
complex centers c and positive radii ρ and ρ′ > ρ.

ζ := ζq = exp(2π
√

i/q) denotes a primitive qth root of unity.
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Definition 1. A domain on the complex plain with a center c and its boundary
have an isolation ratio θ or equivalently are θ-isolated for a polynomial p, real
θ ≥ 1, and complex c if the root set of p in the domain is invariant in its θ-
and 1

θ -dilation with the center c. In particular (see Fig. 1), a disc D(c, ρ) and its
boundary circle C(c, ρ) are θ-isolated for p, θ ≥ 1, and complex c if no roots of p
lie in the open annulus A(c, ρ/θ, ρθ). A domain and its boundary are well-isolated
if they are θ-isolated for θ − 1 exceeding a positive constant.

Fig. 1. The internal disc D(X, r) is R/r-isolated

Subdivision iterations extend the bisection iterations from root-finding on
a line to polynomial root-finding in the complex plane and under the name of
Quad-tree Construction have been extensively used in Computational Geometry.
Their version of Becker et al. Algorithm of [2] has nearly optimal Boolean com-
plexity, up to polylogarithmic factor in the input size, provided that an input
polynomial is represented by its coefficients.1

Suppose that we seek all roots of p in a fixed square on the complex plane,
which is well isolated from the external roots of p, e.g., contains all d roots;
call this square suspect. At a low cost, one can readily compute such a square
centered at the origin and containing all roots of p (cf., e.g., [18, Sec. 4.8]).

A subdivision iteration divides every suspect square into four congruent sub-
squares and to each of them applies an exclusion test: a sub-square is discarded
if the test proves that it contains no roots of p; otherwise the sub-square is called
suspect and is processed at the next iteration (see Fig. 2).

1 It becomes the second such root-finder. The first one, of [13,16], has provided nearly
optimal solution also for numerical factorization of a polynomial into the product of
its linear factors, which is a problem of high independent interest [18].
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Fig. 2. Four roots of p are marked by asterisks; sub-squares that contain them are
suspect; the other sub-squares are discarded

A root of p can make at most four squares suspect if an exclusion test enabled
us to discard every square that contains no roots of p, and then we would have
k ≤ 4. Realistically, the subdivision processes have been made less expensive
overall by means of incorporation of soft exclusion tests, which keep a tested
square S(c, ρ) suspect if a disc D(c, uρ) contains a root of p for some u exceed-
ing

√
2. Then the constant k grows above 4, but the cost of performing exclusion

test and the overall cost of subdivision root-finding can decrease.
Exclusion tests are the main computational block; their cost strongly domi-

nates the overall complexity of subdivision root-finding.
At every subdivision iteration, all roots are approximated by the centers of

suspect squares, within at most their half-diameter. This bound decreases by
twice at every subdivision, and [2,14,20] accelerate such a linear convergence to
the roots to superlinear – by using Newton’s or QIR iterations, which combine
the secant and Newton’s iterations. The transition to faster iterations involves
root-counting in a disc on a complex plane – the second main computational
block of the algorithms of [2,14,20].

Work [2] proposed a novel exclusion test and root-counter by means of Pel-
let’s classical theorem, based on pairwise comparison of the absolute values of
the coefficients of p. The authors justly referred to its as the main algorithmic
novelty versus [20] and [14], but [18] achieves new significant progress based on
novel efficient root-counting and exclusion test for a black box polynomial, not
handled by [2].

The new approach relies on the approximation of the power sums of the roots
of a polynomial lying in a disc D(c, ρ) on the complex plane

sh = sh(D(c, ρ)) :=
∑

xj∈D(c,ρ)

xh
j =

∫

C(c,ρ)

p′(x)
p(x)

xh dx, h = 0, 1, . . . ; (3)

the latter representation is valid by virtue of Cauchy integral theorem.
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3 Power Sums, Cauchy Sums, Root-Counting,
and Exclusion Test

3.1 Cauchy Sum Computation

Let f :=
∏din

j=1(x − xj) where the roots x1, . . . , xdin of p lie in a disc D(c, ρ),
while all other roots lie outside it; f = p for d = din. We approximate the power
sums sh, h = 0, 1, . . . , of the roots of p in a disc D(c, ρ) with the Cauchy sums
in that disc, which discretize the contour integral above:

s∗
h :=

1
q

q−1∑

g=0

ζ(h+1)g p′(c + ρζg)
p(c + ρζg)

for h = 0, 1, . . . , q − 1. (4)

Algorithm 1. Computation of Cauchy sum in a disc D(c, ρ).
Fix a positive integer q and assume that p(c + ρζg) �= 0 for g = 0, 1, . . . , q − 1.
Successively compute the values

(i) p(c + ρζg), p′(c + ρζg), σg = p′(c+ρζg)
p(c+ρζg) for g = 0, 1, . . . , q − 1,

(ii) s∗
h of (4) for h = 0, 1, . . . , q − 1.

qs∗
h =

∑q−1
g=0 σgζ

(h+1)g for h = q − 1, 1, 2, . . . , q − 2 are the values of the poly-
nomial σ(x) =

∑q−1
g=0 σgx at the qth roots of unity, and so the computation of

qs∗
h for h = q−1, 1, 2, . . . , q−2 at stage (ii) is precisely the discrete Fourier trans-

form (DFT) on q points, which one can perform fast by using FFT (see, e.g., [15,
Section 2.2] or [19, Appendix]). Consequently, at a dominated cost of performing
less than 3q log2 q arithmetic operations one can extend the computation of the
Cauchy sum s∗

0 to the computation of all Cauchy sums s∗
h, h = 0, 1, . . . , q − 1.

Remark 1. Instead of assuming that p(c + ρζg) �= 0 for all g we can ensure
these inequalities with probability 1 by applying Algorithm 1 to the polynomial
t(x) = p(ax−c

ρ ) for a = exp(φi) or aq = exp(φi) and a random scalar φ ∈ [0, 2π).

The constructive proof of the following theorem supports application of
Algorithm 1 to a black box polynomial (see [12] or [1]).

Theorem 1. Given an algorithm that evaluates at a point x a black box polyno-
mial p(x) over a field K of constants by using A additions and subtractions, S
scalar multiplications (that is, multiplications by elements from the field K), and
M other multiplications and divisions, one can extend this algorithm to the eval-
uation at x of both p(x) and p′(x) by using 2A + M additions and subtractions,
2S scalar multiplications, and 3M other multiplications and divisions.



466 V. Y. Pan

3.2 Cauchy Sums: Their Link to the Roots and Approximation of
Power Sums

The following basic result is [18, Corollary 4.1].

Theorem 2. For the roots xj of p(x) and all h, the Cauchy sums s∗
h of (4) for

c = 0, ρ − 1 satisfy s∗
h =

∑d
j=1

xh
j

1−xq
j

unless xq
j = 1 for some j.

By virtue of this theorem, the Cauchy sum s∗
h is the power sums sh =∑d

j=1 xh
j with the weights 1

1−xq
j

assigned to the terms xh
j for j = 1, . . . , d. This

defines an upper bound on |sh−s∗
h| that converges to 0 exponentially fast in q−h.

Corollary 1 [21].2 Let the disc D(0, 1) be θ-isolated and contain precisely din
roots of p. Write η := 1/θ. Then

|s∗
h − sh| ≤ dinη

q+h + (d − din)ηq−h

1 − ηq
for h = 0, 1, . . . , q − 1, (5)

and, in particular,

sh = 0 and |s∗
h| ≤ dηq+h

1 − ηq
for h = 0, 1, . . . , q − 1 if din = 0. (6)

μ := |s∗
0 − s0| ≤ d

θq − 1
, and so μ < 1/2 if q >

log(2d + 1)
log(θ)

, (7)

θ ≤
(μ + d

μ

)1/q

, and so θ ≤ (d + 1)1/q if μ = |s∗
0 − s0| ≥ 1. (8)

Corollary 2. Suppose that Algorithm 1, applied to the unit disc D(0, 1) for
q ≥ b log2(2d + 1) and b > 0, outputs s∗

0 > 1/2. Then the disc D(0, θ) contains
a root of p for θ = 21/b.

3.3 Cauchy Root-Counting, Cauchy Exclusion Test, and Isolation
of a Disc

Clearly the 0th Cauchy sum s∗
0 can serve as a root-counter in a disc if μ =

|s0 − s∗
0| < 0.5. By virtue of (7), this holds if q ≥ logθ(2d + 1), e.g., if θ = 2 and

d ≤ 1, 000, 000, and then we can choose any q ≥ 21.

Remark 2. We can narrow Cauchy root-counting to Cauchy exclusion test if we
only check whether s∗

0 ≈ 0, but we can strengthen this test at a low additional
cost by verifying whether s∗

h ≈ 0 for h = 0, . . . , q−1. Indeed, (i) we can compute
the Cauchy sums s∗

h for h = 0, . . . , q−1 at the cost of the computation of s∗
0 and

performing DFT at q points and (ii) s0 = 0 if and only if sh = 0 for h = 0, 1, . . . .

2 Unlike paper [21], this result is deduced in [18] from Theorem 2, which is also the
basis for correctness proof of Sect. 5 for our probabilistic root-counter.
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Hereafter we refer to Algorithm 1 restricted to the computation of s∗
0 as

Algorithm 1a. Seeking correct output of a Cauchy root-counter or exclusion
test but avoiding unnecessary increase of the parameter q, one can first apply
Algorithm 1a for a small integer q and then recursively double it, reusing the
results of the previous computations, until the computed values of the Cauchy
sum s∗

0 stabilize near an integer or just until they approximate an integer closely
enough. Later we prove that such an integer is s0 with a high probability (here-
after whp) under random root models.

This result supports root-finding computations in [18, Section 6.4], but not
in the subdivision processes of [2,14,20], where root-counting is applied only
to well-isolated discs, in which case Algorithm 1a yields non-costly solution s0
by virtue of Corollary 1. For correctness of our exclusion test, we seek stronger
support because in the subdivision iterations of [2,14,20], such a test is applied
to the discs for whose isolation ratios no estimates are known. By virtue of
Corollary 2, Algorithm 1a applied to such a disc certifies that its controlled
dilation contains a root of p unless the algorithm outputs s∗

0 close to 0. The
following algorithm completes an exclusion test in the latter case.

Algorithm 2. Completion of a Cauchy soft exclusion test.
Input: A black box polynomial p(x) of degree d such that Algorithm 1a, applied
to the disc D(0, 2) and3 the polynomial p(x) has output s∗

0 close to 0.
Output: Certification that (i) the disc D(0, 2) contains a root of p definitely if
q > d or whp otherwise or (ii) the unit disc D(0, 1) definitely contains no roots
of p, where cases (i) and (ii) are compatible.
Initialization: Choose an integer q such that

q0 < q ≤ 2q0 for q0 ≥ max
{

1, log2
( d

q0αd

√
3

)}
and αd =

√
d +

√
d. (9)

Computations: Apply Algorithm 1 to the unit disc D(0, 1) for the selected q.
Hereafter

s∗ := (s∗
q−1, s

∗
0, s

∗
1, . . . , s

∗
q−2)

T (10)

denotes the vector of the values s∗
h of the Cauchy sums output by the algorithm

and ||s∗|| denotes the Euclidean norm (
∑q−1

h=0 |s∗
h|2)1/2. If ||s∗|| q0 αd ≥ 1, con-

clude that the disc D(0, θ) definitely contains a root of p. Otherwise conclude
that the disc D(0, 1) contains no roots of p definitely if q > d or whp otherwise.

Work [18] as well as [19] readily prove that the disc D(0, 2) contains a root
of p if ||s∗|| q0 αd ≥ 1, and this reduces correctness proof of the algorithm to
certification that the disc D(0, 1) contains no roots of p if the vector of the q
Cauchy sums s∗ has Euclidean norm satisfying ||s∗|| q0 αd < 1. This certification,
deterministic for q > d and probabilistic for 2 ≤ q ≤ d, is the subject of the next
two sections.
3 One can extend the algorithm by applying Algorithm 1a to a disc D(0, θ) for smaller

θ > 1 and modifying bound (9) accordingly. See a refined version of this algorithm
in [18].
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Remark 3. For the computation of Cauchy sums for q of order of d, we should
evaluate p and p′ at order of d points; by applying our reduction of multi-
point polynomial evaluation (MPE) to fast multipole method (FMM) (see [18,
Appendix E]), we can do this by using order of d log2(d) arithmetic operations,
performed numerically with the precision of order log(d) bits. It outputs the
vector of the first q Cauchy sums s0, . . . , sq−1 within a relative error of order
log(d). This should be sufficient in order to verify the bounds of Algorithm 2,
[18, Theorem 19 and Corollaries 4.2 and 4.3] because FMM is celebrated for
being very stable numerically, although further formal and experimental study
is in order.

The algorithm runs faster as we decrease integer q, and already under the
choice of q0 of order of log(d) the disc D(0, 2) contains a root of p if ||s∗|| q0 αd ≥
1. For q ≤ d, we have only probabilistic support of correctness of Algorithm 2
in the case where ||s∗|| q0 αd < 1, but we can try to strengthen reliability of
our exclusion tests by verifying additional necessary conditions for correctness
of our exclusion test and root-counting:

(a) the Cauchy sums s∗
h for h = 0, 1, . . . , q −1 still nearly vanish for the polyno-

mials t(x) obtained from p(x) by means of various mappings of the variable
x that keep an input disc and the power sum s0 invariant (cf. Remark 1);

(b) an exclusion test should succeed for any disc lying in the disc D(c, ρ). In
particular, if the disc covers a suspect square, then exclusion tests should
succeed for the four discs that cover the four congruent sub-squares obtained
from sub-dividing the input square;

(c) all suspect squares of a subdivision iteration together contain precisely d
roots of p.

If these additional necessary conditions hold, it is still plausible that the disc
D(c, ρ) contains a root of p. We can, however, detect whether we have lost any
root at the end of the subdivision process, when d − w roots are tamed, that is,
closely approximated, and when w roots remain at large; we call the latter roots
wild. If 0 < w � d, then at a low cost, we can deflate the wild factor of p, whose
root set is made up of the w wild roots; then we can approximate the roots of
this factor at a low cost (see [18, Section 7]).

It is natural to call a point c a tame root of p if rd(c, p) ≤ TOL for
a fixed tolerance TOL. The algorithm of [18, Section 6.2] closely approxi-
mates rd(c, p) at a relatively low cost, but it is even less expensive to verify
whether d |p′(c)/p(c)| ≤TOL and then to recall that rd(c, p) ≤ d |p′(c)/p(c)| (see
[5, Theorem 6.4g]).

Empirical support from the initial implementation and testing of our algo-
rithms in [9] has substantially superseded their formal support here and in [18].
In these tests, subdivision iterations with Cauchy exclusion tests by means
of Algorithm 1a have consistently approximated the integer s0 = 0 within
1/4 for q = 	log(4d + 1)/ log(4θ)
. For discs containing no roots and for
q = 	log(4d + 1)/ log(4θ)
 + 1, Algorithm 1 has consistently approximated both
s0 and s1 within 1/4 (cf. [9, equation(22) in Corollary 12 for e = 1/4]).
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4 Correctness Certification of an Exclusion Test

In this section, we complete the correctness certification of the exclusion test by
means of Algorithm 2.

4.1 Deterministic Certification

We begin with a lemma that implies q linear equations on the coefficients of the
polynomial p provided that s∗

h = 0 for h = 0, 1, . . . , q − 1.

Lemma 1. Suppose that s∗
h = 0 for a polynomial p(x), s∗

h of (4), c = 0, ρ = 1,
h = 0, 1, . . . , q − 1, and a positive q. Then the polynomial p′(x) is divided by
xq − 1.

Proof. Observe that

s∗ = Fv for v =
( p′(ζg)

qp(ζg)

)q−1

g=0
, ζ = exp

(2π
√

i
q

)
, F := (ζij)q−1

i,j=0 (11)

denoting the matrix of DFT at q points, and s∗ := (s∗
q−1, s

∗
0, . . . , s

∗
q−2)

T of (10).
Under the assumptions of the lemma s∗ = Fv = 0 for the vector 0 of length q

filled with 0s. Pre-multiply this vector equation by the matrix 1
q F ∗ of the inverse

DFT at q points and obtain that p′(ζg)
qp(ζg) = 0 for all g. Hence p′(ζg) = 0, for

g = 0, 1, . . . , q − 1, and, therefore, xq − 1 divides p′(x).

Corollary 3. Under the assumptions of Lemma 1 let q ≥ d. Then the polyno-
mial p′(x) is identically 0, and so the polynomial p(x) is a constant and has no
roots unless it is identically 0.

Next we assume that q > d and extend the corollary under much weaker
assumption that ||s∗|| < 1

qαd
rather than s∗ = 0. Recall that ||v|| =

(
∑k

i=1 |vi|2)1/2 denotes the Euclidean norm of a vector v = (vi)k
i=1vi.

Theorem 3. Given a polynomial p(x) of (2) and a positive integer q, write

p̂(x) := p(x) mod (xq − 1), p̂′(x) := p′(x) mod (xq − 1), (12)

and p̂0 := p̂(0), let p̂′, p̂, and p̂1 denote the coefficient vectors of the polynomials
p̂′(x), p̂(x), and p̂(x) − p̂0, respectively, and suppose that

||s∗|| = ||Fv|| ≤ τ, (13)

for s∗ = Fv, F and v of (11), and a positive tolerance τ . Then

|p̂0|2 ≥ |(τq)−2 − 1| ||p̂1||2. (14)
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Proof. Multiply equation (13) by the matrix 1
q F ∗ of the inverse DFT and obtain

1
q
F ∗s∗ = v.

Hence
||v|| ≤ 1

q
||F ∗|| ||s∗|| ≤ τ√

q
.

Therefore, ∣∣∣
∣∣∣
( p′(ζg)

qp(ζg)

)q−1

g=0

∣∣∣
∣∣∣ ≤ τ√

q
,

and consequently

||(p′(ζg))q−1
g=0|| ≤ τ

√
q

q−1
max
g=0

|p(ζg)| ≤ τq ||(p(ζg))q−1
g=0||.

Substitute the equations p(ζg) = p̂(ζg) and p′(ζg) = p̂′(ζg) in the above and
obtain

||(p̂′(ζg))q−1
g=0|| ≤ τq ||(p̂(ζg))q−1

g=0|| (15)

for the polynomials p̂′(x) and p̂(x) of (12) with the coefficient vectors p̂′ and p̂,
respectively. Observe that

(p̂′(ζg))q−1
g=0 = F p̂′ and (p̂(ζg))q−1

g=0 = F p̂

for the DFT matrix F = (ζij)q−1
i,j=0 of (11).

Substitute these expressions into bound (15) and obtain ||F p̂′|| ≤ τq ||F p̂||.
Hence

||p̂′|| ≤ τq ||p̂|| (16)

because F is a unitary matrix up to scaling by
√

q.
Furthermore observe that

||p̂||2 = |p̂0|2 + ||p̂1||2 and ||p̂′||2 ≥ ||p̂1||2

for p̂0 = p̂(0) and the vector p̂1 of the coefficients of p̂(x) − p̂0.
Combine these observations with bound (16) and obtain the theorem.

Corollary 4. Under the assumptions of Theorem 3 let

q > d and (1 +
√

d)τ2q2
√

d < 1.

Then the polynomial p(x) has no roots in the unit disc D(0, 1) = {x : |x| ≤ 1}.
Proof. The bound (1 +

√
d)τ2q2 < 1 implies that (τq)−2 − 1 >

√
d, while the

bound q > d implies that p̂(x) = p(x) and p̂0 = p(0) = p0. Hence Theorem 3
implies that |p0|2 >

√
d

∑d
i=1 |pi|2 and so |p0| > |p| =

∑d
i=1 |pi|. The latter

bound is impossible if p(x) = 0 for |x| ≤ 1.
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Remark 4. We proved this corollary assuming that Cauchy exclusion test by
means of Algorithm 2 has been applied to the roots of a polynomial p(x) in the
unit disc D(0, 1), but our proof supports such a test for the roots of a polynomial
t(x) = p((x − c)/ρ) in that disc for any complex c and positive ρ. Hence the
corollary also holds if the test is applied to the roots of a polynomial p(x) in a
disc D(c, ρ).

4.2 Probabilistic Certification Under Random Coefficient Model

Our next extensions of the result to the case 2 ≤ q ≤ d are probabilistic under
a random coefficient model. We only state asymptotic probability estimates in
the case where τ → 0, but specific estimates for fixed bounds on τ are implicit
in the proofs.

Corollary 5. Define a Random Coefficient Model such that the coefficients p0,
p1, . . . , pd of p are independent Gaussian random variables having expected val-
ues ai and positive variance σ2

i , for i = 0, 1, . . . , d. Suppose that the Cauchy
exclusion test by means of Algorithm 2 has been applied to the unit disc D(0, 1)
and a polynomial p(x) under this model and let 2 ≤ q ≤ d. Then the bound of
Theorem 3 holds with a probability that fast converges to 0 as τ → 0.

Proof. Let d = (k − 1)q + l for k ≥ 0 and 0 ≤ l ≤ q − 1 and write

p̂i :=
ki∑

j=0

pjq+i, i = 0, 1, . . . , q − 1, ki = k for i < l, ki = k − 1 for i ≥ l.

Then
p̂ = (p̂i)

q−1
i=0 , p̂1 = (p̂i)

q−1
i=1 (17)

where p̂i for all i are independent Gaussian variables with expected values âi

and positive variance values σ̂2
i given by

âi =
ki∑

j=0

ajq+i and σ̂2
i =

ki∑

j=0

σ2
jq+i, i = 0, 1, . . . , q − 1. (18)

Such variables are strongly concentrated about their expected values. Bound (14)
of Theorem 3 implies that

|â0| = |
k0∑

j=0

ajq| ≥ |(τq)−2 − 1| q−1
max
i=1

|âi|

for âi of (18).4 Since p̂0, . . . , p̂q−1 are independent Gaussian random variables,
which are strongly concentrated about their expected values âi, this inequality
strongly restricts the class of polynomials p(x) satisfying (14) for small τ and
q ≥ 2; furthermore, the probability that this inequality and bound (14) hold
converges to 0 exponentially fast as τ → 0.
4 One can slightly strengthen our estimates based on the observation that |p̂0|2 and
||p̂1||2 are χ2-functions of dimension 1 and q − 1, respectively.
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Now suppose that the Cauchy exclusion test has been applied to the disc
D(c, ρ) for a complex c and a positive ρ and restate the above argument for the
polynomial t(x) :=

∑d
j=0 tjx

j := p(x−c
ρ ) where (cf. [15, Problem 2.4.3])

tj =
d∑

i=j

pi · (−c)i−jρ−i

(
i
j

)
, j = 0, 1, . . . , d, (19)

and so the partial sums t̂j , j = 0, 1, . . . , q − 1, are still independent Gaussian
variables strongly concentrated about their expected values E(t̂j). Equations (19)
imply that

E(t̂j) =
d∑

i=j

ai · (−c)i−jρ−i

(
i
j

)
, j = 0, 1, . . . , d. (20)

Expressions t̂ = (t̂i)
q−1
i=0 , t̂1 = (t̂i)

q−1
i=1 replace (17), and bound (14) restricts

the classes of polynomials t(x) and consequently p(x).
Now observe that limρ→∞ t̂0 = t0, where t0 does not depend on ρ. Further-

more, tj → 0 as ρ → ∞ for j �= 0, and so limρ→∞ t̂1 = 0. Therefore, the value
E|t̂0|2 strongly dominates the value E||̂t1||2, and this strongly restricts the the
classes of polynomials t(x) and consequently p(x).

Next assume that the ratio |p0| = |t0|/maxd
i=1 |ti| is not large and then

argue that bound (14) strongly restricts the classes of polynomials t(x) and p(x).
Indeed rewrite equation (20) as follows:

E(tj) =
d∑

i=j

ui(−c)−j

(
i
j

)
, for ui = ai(−c)iρ−i, i, j = 0, 1, . . . , d.

Now observe that L0 = E(t̂0 − t0) and L1 = E(t̂1) are linear combinations in the
same variables ui, for i = 0, 1, . . . , d, whose coefficients are polynomials in −1/c
with positive integer coefficients. Furthermore, such polynomials in L0 and L1

consist of the terms (−c)j
(

i
j

)
, which make up pairs of terms, such that one term

of every pair is in L0, another is in L1, and dc exceeds the ratio of these terms
in every pair. It follows that bound (14) for |(τq)−2 −1| | 
 dc strongly restricts
the classes of polynomials p(x) and t(x). Then again this follows because of the
strong concentration of a Gaussian variable about its expected value.

5 Cauchy Root-Counting Under Two Random Root
Models

5.1 Error Estimates

Random root models are less popular in the study of root-finding than random
coefficient models but still enable some insight into this subject: indeed, if a
property holds whp under a random root model, then it must hold for a large
input class if not for most of inputs.
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Definition 2. Under Random Root Models 1 and 2, the roots of p are iid ran-
dom variables sampled under the uniform probability distribution from some fixed
regions D on the complex plain.

1. D is the disc D(0, R) for a fixed positive R in Random Root Model 1.
2. D is the union of two distinct domains in Random Root Models 2: for a fixed

R > 1 and a fixed nonnegative integer k ≤ d, the roots xk+1, . . . , xd of p are
sampled from a disc D(0, R), but the roots {x1, . . . , xk} are sampled from
a fixed narrow annulus A(0, 1/θ, θ) about the boundary circle C(0, 1), for a
reasonably small positive θ − 1.

The following readily verified theorem implies that the roots of p lie on or
near any fixed circle on the complex plain with a low probability (wlp) under
Random Root Model 1.

Theorem 4. For a polynomial p = p(x), θ > 1, a complex c, and positive ρ
and R such that R > ρ + |c| and ρ

√
d = O(R), assume Random Root Model 1.

(i) Then for any fixed integer j in the range [0, d], the root xj lies in the
annulus A(c, ρ/θ, ρθ) with the probability PR,ρ,θ = (θ4−1)ρ2

R2θ2 .
(ii) The probability that at least one root of p lies in the annulus A(c, ρ/θ, ρθ)

is at most PR,ρ,θd = (θ4−1)ρ2d
R2θ2 .

Proof. Recall that the probability PR,ρ,θ is the ratio of the areas (θ4 − 1)ρ2/θ2

and πR2 of the annulus A(c, ρ/θ, ρθ) and the disc D(0, R), respectively, and
obtain claim (i). Immediately extend it to claim (ii).

Notice that the bound PR,ρ,θd converges to 0 as ρ
R

√
(θ − 1)d → 0, where the

ratio ρ/R never exceeds 1 and decreases by twice at every subdivision iteration
and hence by a factor of d in 	log2(d)
 iterations.

Combine claim (ii) of the theorem with bound (7) and conclude that the
Cauchy sum s∗

0 approximates the power sum s0 within less than 1/2 unless some
roots of p(x) lie on or very close to the boundary circle C(c, ρ), and the latter
property of the roots holds wlp under Random Root Model 1.

5.2 Probabilistic Correctness Verification

The latter claim is no longer valid under Random Root Model 2 because of the
impact of the roots lying on or near boundary circle the Cauchy sum s∗

0 can
be misleading, that is close to a wrong integer, distinct from s0. We are going
to prove, however, that this can only occur wlp. We begin with an alternative
proof that the value |s∗

0 − s0| is small whp under Random Root Model 1 and
then readily extend it to proving similar results under Random Root Model 2.

We will only deduce that

|s∗
0 − u| ≤ 0.1v (21)

wlp P for a fixed complex number u and a fixed positive v under Random
Root Models 1 and 2. This will immediately imply that |s∗

0 − i| ≤ 0.1v for i ∈
{0, 1, . . . , d} with a probability at most (d + 1)P . Therefore, if (21) holds, then
i = s0 with a probability at least 1−(d+1)P under Random Root Models 1 and 2.
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Lemma 2. Write

y :=
1

1 − xq
, ỹ :=

1
1 − x̃q

, and δ = |ỹ − y| (22)

where |y| ≥ v > 10δ > 0. Then

|x̃ − x| ≤ ∇ for ∇ :=
δ

q
·
(
1 +

1
0.81v2

)(1−q)/q

. (23)

Proof. Equation (22) implies that

x =
(
1 − 1

y

)1/q

, x̃ =
(
1 − 1

ỹ

)1/q

, and x̃ − x =
(
1 − 1

ỹ

)1/q

−
(
1 − 1

y

)1/q

.

Apply Taylor–Lagrange formula to the function x(y) =
(
1 − 1

y

)1/q

and obtain

x̃ − x = (ỹ − y)
d

dy

((
1 − 1

y

)1/q)
=

ỹ − y

q

(
1 +

1
(y + ξ)2

)(1−q)/q

for ξ ∈ [0, ỹ − y]. Substitute δ = |ỹ − y| and |y + ξ| ≥ 0.9|y| ≥ 0.9v.

Theorem 5. For R > 1 and any fixed complex number u, write s :=∑d
j=2

1
1−xq

j
= s∗

0 − 1
1−xq

1
, v := 1

Rq−1 , and δ := |s∗
0 − u| for the Cauchy sum s∗

0 in

the unit disc D(0, 1) and assume Random Root Model 1. Then δ ≤ 0.1v with a
probability at most

P =
4∇
R

·
(
1 − ∇

R

)
for ∇ of (23). (24)

In particular, bound (24) is close to

4∇
R

≈ 4δ

Rq
(25)

if v is a small positive number, in which case ∇ ≈ δ/q.

Proof. Keep the root x1 random, but fix the other roots x2, . . . , xd. Apply
Lemma 2 for x = x1, y = 1

1−xq
1
, ỹ = u − s, and x̃ such that ỹ = 1

1−x̃q . Notice
that in this case, |y| ≥ v because |x1| ≤ R, and so the assumptions of the lemma
are fulfilled.

The lemma implies that |x1 − x̃| ≤ ∇ for ∇ of (23). Hence x1 lies in the
annulus

A(0, |x̃| − ∇, |x̃| + ∇) = {z : |x̃| − ∇ ≤ z ≤ |x̃| + ∇}, (26)

whose area is maximized for x̃ = R − ∇ and then reaches

π · (R2 − (R − 2∇)2) = 4π · (R − ∇)∇.

Divide this by the area πR2 of the disc D(0, R) and obtain bound (24).
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We have proved Theorem 5 assuming that the Cauchy sum s∗
0 is computed

for the unit disc D(0, 1). We can extend this study to any disc D(c, ρ) such
that R + |c| > ρ by replacing an input polynomial p(x) with the polynomial
t(x) = p(x−c

ρ ). We can apply the same proof if we replace the disc D(0, R) with

D(c, R−|c|
ρ ). This would imply that in the statement of the theorem, R changes

into R/ρ and v := 1
Rq−1 changes into

v :=
1

R(c, ρ)q − 1
for R(c, ρ) =

R + |c|
ρ

> 1. (27)

Here is the resulting extended version of this theorem.

Theorem 6. Let the assumptions of Theorem 5 hold except that now the Cauchy
sum s∗

0 has been computed in a sub-disc D(c, ρ) of the disc D(0, R) for a complex c
and a positive ρ. Then δ := |s∗

0 − u| ≤ 0.1v with a probability at most

P =
4∇ρ

R
·
(
1 − ∇

R

)
for ∇ of (23). (28)

We can readily extend the estimates of Theorems 5 and 6 to the case where
the roots are sampled under Random Root Model 2 because under that model,
we can prove that the contribution of the roots x1, . . . , xk to the Cauchy sum s∗

0

moves it close to an integer distinct from s0 wlp if ∇ = o(θ−1). Indeed repeat the
proof of Theorem 5 but replace R by θ while estimating the area of annulus (26).
Then divide this area by the area π · (θ2 − 1

θ2 ) of the annulus A(0, 1
θ , θ) and thus

extend Theorem 5. Similarly extend Theorem 6.

Theorem 7. Under Random Root Model 2, write v := 1
θq−1 and fix ∇ of (23)

and a complex number u. Then |s∗
0 − u| ≤ 0.1v with a probability at most

P =
4∇ · (ρθ − ∇)

ρ2 · (θ2 − 1/θ2)
, and in particular

4∇ · (θ − ∇)
θ2 − 1/θ2

for ρ = 1. (29)

In the rest of this subsection, we soften the assumption that y can be required to
be as small as v := 1

Rq−1 under Random Root Model 1 (cf. (27)). Under Random
Root Model 2, (27) turns into quite a reasonable bound v := 1

θq−1 , and we do
not need to soften it.

Theorem 8. Let the assumptions of Theorem 5 hold except that we can choose
any positive value v. Then δ := |s∗

0 − u| ≤ 0.1v for the Cauchy sum s∗
0 with a

probability at most P0 + P1 for ∇ of (23),

P0 =
( r

R

)2d

≤
( 1

R

)2d

, P1 =
4r∇

R2 − r2
≤ 4∇

R2 − 1
, and r =

∣∣∣
v − 1

v

∣∣∣
1/q

. (30)

Proof. P0 bounds the probability that all d independent random variables
x1, . . . , xd lie in the disc D(0, r), whose area is πr2, while the area of the disc
D(0, R) is πR2.
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Hence xj lies outside the disc D(0, r) for at least one j, say, j = 1 with a
probability at least 1 − P0. In this case, |y1| ≥ v, and then Theorem 5 narrows
the range for x1 from the annulus A(0, r, R) = D(0, R) − D(0, r) to the annulus
A(0, r−∇, r+∇) = D(0, r+∇)−D(0, r−∇) for ∇ of (23). Obtain the bound P1

as the ratio of the areas of these two annuli.

We extend Theorem 6 similarly.

Theorem 9. Let the assumptions of Theorem 6 hold except that we can choose
any positive value v. Then δ := |s∗

0 − u| ≤ 0.1v for the Cauchy sum s∗
0 with a

probability at most P0 + P1 for

P0 =
(rρ

R

)2d

, P1 =
4rρ∇

R2 − (rρ)2
, r =

∣∣∣
v − 1

v

∣∣∣
1/q

, and ∇ of (23). (31)

Remark 5 [Optimization of the probability bound.] For a fixed pair of a disc
D(c, r/ρ) and an integer q, Theorem 9 bounds the probability P0 +P1 of having
|s∗ − u| ≤ 0.1v as a function of a single parameter v in the range [0, 1

R(c,ρ)q−1 ]

for R(c, ρ) = R+|c|
ρ . We leave to the reader the challenge of the choice of this

parameter that would minimize our bound on P0 + P1 or a similar bound under
the inequalities |s∗

0 − u| ≤ βu for any reasonable choice of a small positive β.
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