
Faster Numerical Univariate Polynomial
Root-Finding by Means of Subdivision

Iterations

Qi Luan1, Victor Y. Pan1,2(B), Wongeun Kim3, and Vitaly Zaderman1

1 Ph.D. Programs in Mathematics and Computer Science, The Graduate Center
of the City University of New York (CUNY), New York, NY 10036, USA

qi luan@yahoo.com, vza52@aol.com
2 Department of Computer Science, Lehman College of CUNY, Bronx,

NY 10468, USA
victor.pan@lehman.cuny.edu

3 Department of Mathematics, The Lander College for Men, Touro College,
Kew Garden, NY 11367, USA
won-geun.kim2@touro.edu

http://comet.lehman.cuny.edu/vpan/

Abstract. Root-finding for a univariate polynomial is four millennia old
and still highly important for Computer Algebra and various other fields.
Subdivision root-finders for a complex univariate polynomial are known
to be highly efficient and practically promising. The recent one by Becker
et al. [2] competes for user’s choice and is nearly optimal for dense poly-
nomials represented in monomial basis, but [18] proposes and analyzes
further significant acceleration, which becomes dramatic for polynomi-
als admitting their fast evaluation (e.g., sparse ones). Here and in the
companion paper [19], we present some of these results and algorithms.

Keywords: Polynomial roots · Subdivision · Sparse polynomials ·
Real polynomial root-finding

1 Introduction

1.1 State of the Art

Root-finding for univariate polynomials has been the central subject of Mathe-
matics and Computational Mathematics for four millennia since Sumerian times
and until the middle of 19th century A.D and began its new life with the advent
of computers. Presently this subject is highly important for Computer Algebra
and many other computational areas. Since 2000, the root-finder of user’s choice
has been the package MPSolve (Multiprecision Polynomial Solver) [3,5], which
implements Ehrlich’s, aka Aberth’s iterations, but recent progress in subdivi-
sion iterations has made them potentially competitive. Due to [23], advanced in
[2,8,14,21], and known in Computational Geometry as Quad-tree Construction,
c© Springer Nature Switzerland AG 2020
F. Boulier et al. (Eds.): CASC 2020, LNCS 12291, pp. 431–446, 2020.
https://doi.org/10.1007/978-3-030-60026-6_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-60026-6_25&domain=pdf
https://doi.org/10.1007/978-3-030-60026-6_25

432 Q. Luan et al.

they extend bisection of a line segment to root-finding in the complex plane.
Their advanced version of 2016–2018 by Becker et al. [2] is the second known
nearly optimal root-finder1 for a polynomial represented in monomial basis – by
its coefficients:

p = p(x) =
d∑

i=0

pix
i = pd

d∏

j=1

(x − xj), pd �= 0. (1)

The implementation in [11] has slightly outperformed MPSolve for root-finding
in a region containing a small number of roots,2 while the implementation in [12]
is user’s current choice for the highly important task of real polynomial root-
finding, where the input and output are real.

The main and bottleneck block of the known subdivision iterations, including
those of [2,14,21], is the application of an exclusion test, which either certifies
or does not certify that a fixed disc on the complex plane contains no roots
of an input polynomial p. This test is a special case of root-counting in the
disc, which is another basic block of subdivision algorithms. According to [2] its
main algorithmic novelty versus its predecessors is its root-counting by means of
pairwise comparison of the absolute values of the coefficients of p(x) and invoking
Pellet’s classical theorem.

1.2 Our Progress

A new significant acceleration in [18] relies on another novel approach to root-
counting and exclusion tests. Unlike the case of [2] these blocks and the whole
root-finder work for a black box input polynomial – defined by a black box for
its evaluation at a given point. This class includes polynomials represented in
Bernstein and Chebyshev bases – admitting numerically stable evaluation, as
well as sparse, Mandelbrot’s, and various other polynomials, which admit dra-
matically faster evaluation. [2] takes no advantage of this huge benefit, but [18]
fully exploits it and thus dramatically accelerates [2] for the latter input class.
In particular, Taylor’s shift of the variable and Dandelin–Lobachevsky–Gräffe’s
recursive root-squaring [9], being two well-known drawbacks of the subdivision
root-finder [2], are avoided in [18].

Work [18] also accelerates polynomial root-finding based on Ehrlich’s, New-
ton’s, and other functional iterations, as well as numerical multipoint polyno-
mial evaluation, extensively involved in polynomial root-finding but also having
independent importance. Because of the size limitation, however, we skip these
subjects, omit many details, and leave to [18] formal support for our algorithms,

1 The first such root-finder, of [16], is nearly optimal also for the task of numerical fac-
torization of a polynomial into the product of its linear factors, having independent
importance.

2 Throughout the paper we count m times a root of multiplicity m and handle it as
a cluster of m roots whose diameter is smaller than the tolerance to the output
approximation errors.

Faster Numerical Univariate Polynomial Root-Finding 433

including correctness proof and Boolean cost estimates. We occasionally esti-
mate arithmetic complexity where we can control the precision of computing.
Already an initial implementation of our algorithms in [10] demonstrates 3-fold
acceleration of the previous best implementation of subdivision root-finding,
even though we have not yet incorporated many promising directions for further
progress specified in [18]. Our present paper and its companion [19] together
cover only a fraction of the results of [18], focusing on new exclusion test and
root-counting in subdivision iterations and extension to real root-finding.

1.3 Power Sums and Cauchy Sums

We adopt rather than counter the subdivision iterations of [2,14,21] but enrich
them with performing their main two blocks by means of the approximation of
the power sums of the roots of p(x) that lie in a fixed disc on the complex plain:
(i) the sum of their 0th powers is precisely the number of the roots in the disc,
and (ii) such a disc contains no roots if and only if all the power sums vanish.
We only approximate integers (0 or the number of roots), perform computations
with a low precision, and use just order of log(d) arithmetic operations in an
exclusion test and root-counting for a degree d input polynomial.

A technical point of our departure was the study of the power sums in the
extensive advanced work on the Boolean complexity of polynomial root-finding
by Schönhage in [22, Sects. 12 and 13]. He has approximated the power sums sh

of the roots lying in the unit disc D(0, 1) = {x : |x| ≤ 1} by means of Cauchy
sums s∗

h, being discretizations of Cauchy’s contour integral:3

sh :=
∑

xj∈D(c,ρ)

xh
j =

∫

C(c,ρ)

p′(x)
p(x)

xh dx, for h = 0, 1, . . . , (2)

s∗
h :=

1
q

q−1∑

g=0

ζ(h+1)g p′(c + ρζg)
p(c + ρζg)

for h = 0, 1, . . . , q − 1, ζ := exp
(2πi

q

)
, (3)

where ζ denotes a primitive qth root of unity, for a fixed q > 1.

1.4 Real Root-Finding

Real root-finding is highly important because in many applications, e.g., to geo-
metric and algebraic-geometric optimization, only real roots of a polynomial are
of interest and because they are typically much less numerous than all d complex
roots. In particular, under a random coefficient model, a polynomial of degree d
is expected to have O(log(d)) real roots (cf. [6]).

Real roots of a polynomial defined numerically, with rounding errors, turn
into nearly real roots, whose approximation has rarely if at all been addressed
properly in the known algorithms, while we handle this issue by following [18].
3 Schönhage was seeking a factor of p(x) with root set made up of the roots of p(x)

lying in that disc; he only approximated the power sums sh for positive h.

434 Q. Luan et al.

Namely [18] proposes, elaborates upon and analyzes efficient root-counting and
deflation techniques for the roots of a polynomial lying on and near a circle on
the complex plane, and in Sect. 4, we extend these techniques to the roots lying
on and near a fixed segment of the real axis by applying Zhukovsky’s function
and its inverse. Given a black box polynomial p(x), we deflate its factor f whose
root set is precisely the root set of p(x) lying on or near a fixed segment of the
real axis. Since deg(f) tends to be much smaller than d, deflation of the factor f
and its subsequent root-finding are performed at a low Boolean cost [18].

A preliminary version of this algorithm appeared in [17, Section 7], but
presently we simplify it substantially.4 We perform its stage 1 by means of eval-
uation and interpolation without involving more advanced algorithm of [4]. At
its stage 3, we use more efficient [18, Algorithm 46] instead of [18, Algorithm
45], and we simplify root-finding stage 4 by first applying our new Algorithm 4,
which decreases by twice the degree of the factor f of p and still keeps in its root
set the images of all real roots of p.

Moreover we propose an alternative extension of our study of root-counting
from the complex plain to real interval. This achieves less than deflation but at a
much lower cost, and is still a major stage of real and nearly real root-finding. Our
non-costly root-counter in and near a line segment provides more information
than the customary ones – based on the Descartes rule of signs or Budan–Fourier
theorem, involves no costly computation used in Sturm sequences and, unlike
Budan–Fourier theorem, can be applied to black box polynomials. And as we
said already, unlike the known real root-counters we output the overall number
of roots lying in and near a fixed segment of the real axis.

[18, Section 6] and the paper [20] approximate pairwise well-isolated real roots
fast by narrowing the range for their search.

1.5 Organization of the Paper

We recall some background material in the next section, cover Cauchy sum
computation, root-counting and exclusion tests in Sect. 3, and devote Sect. 4
to real polynomial root-finding. The Boolean complexity of the new algorithms
is estimated in [18] in some detail; we do not include this study because of
size limitation.

2 Background

2.1 Definitions and Auxiliary Results

– S(c, ρ), D(c, ρ), C(c, ρ), and A(c, ρ1, ρ2) denote square, disc, circle (circum-
ference), and annulus on the complex plain, respectively:

S(c, ρ) := {x : |�(c − x)| ≤ ρ, |�(c − x)| ≤ ρ},

D(c, ρ) := {x : |x − c| ≤ ρ|}, (4)

4 Otherwise [17] focuses on deflation, and only half-page [17, Section 6.3] overlaps
with us.

Faster Numerical Univariate Polynomial Root-Finding 435

C(c, ρ) := {x : |x − c| = ρ|}, A(c, ρ1, ρ2) := {x : ρ1 ≤ |x − c| ≤ ρ2|}. (5)

– An annulus A(c, ρ1, ρ2) has relative width ρ2
ρ1

.
– We freely denote polynomials p(x), t(x) =

∑
i tix

i, u(x) =
∑

i uix
i etc. by p,

t, u, etc. unless this can cause confusion.
– |u| =

∑d
i=0 |ui| denotes the norm of a polynomial u(x) =

∑d
i=0 uix

i.
– IND(R), the index of a region R of the complex plain (e.g., a square, a disc,

an annulus, or a circle), is the number of roots of p contained in it.
– A disc D(c, ρ) and circle C(c, ρ) have an isolation ratio θ or equivalently are

θ-isolated for a polynomial p, real θ ≥ 1, and complex c if no roots of p
lie in the open annulus A(c, ρ/θ, ρθ), of relative width θ2, or equivalently if
IND(D(c, ρ/θ)) =IND(D(c, ρθ)). (See Fig. 1.)
A disc and a circle are well-isolated if they are θ-isolated for θ − 1 exceeding
a positive constant.

– Define the reverse polynomial of p(x):

prev(x) := xdp
(1

x

)
=

d∑

i=0

pix
d−i, prev(x) = p0

d∏

j=1

(
x − 1

xj

)
if p0 �= 0. (6)

Fig. 1. The internal disc D(X, r) (cf. (4)) is R/r-isolated

Equation (6) implies that the roots of prev are the reciprocals of the roots
of p, which leads to the following results:

rj(0, p)rd+1−j(0, prev) = 1 for j = 1, . . . , d. (7)

436 Q. Luan et al.

Proposition 1. The unit disc D(0, 1) is θ-isolated for p if and only if it is
θ-isolated for prev.

The proof of the following theorem of [13] and [1, Theorem 2] is constructive.

Theorem 1. An algorithm that evaluates at x0 a black box polynomial p(x) over
a field K of constants by using A additions/subtractions, S multiplications by
elements from the field K, and M other multiplications/divisions can be extended
to evaluate both p(x0) and p′(x0) at the cost 2A + M , 2S, and 3M .

2.2 Subdivision Iterations

Suppose that we seek all roots of p in a fixed square on the complex plane
well-isolated from the external roots of p; call this square suspect. One can read-
ily compute such a square centered at the origin and containing all roots of p
(cf. [18, Section 6.2]). A subdivision iteration divides every suspect square into
four congruent sub-squares and to each of them applies an exclusion test: a sub-
square is discarded if the test proves that it contains no roots of p; otherwise the
sub-square is called suspect and is processed in the next iteration (see Fig. 2).

Fig. 2. Four roots of p are marked by asterisks; sub-squares that contain them are
suspect; the other sub-squares are discarded

There are at most kd suspect squares at every iteration for a constant k. A
root of p can make at most four squares suspect if an exclusion test enabled us to
discard every square that contains no roots of p, and then we would have k ≤ 4.
Realistically the subdivision processes have been made less expensive overall by
means of incorporation of soft exclusion tests, which keep a tested square S(c, ρ)

Faster Numerical Univariate Polynomial Root-Finding 437

suspect if a disc D(c, uρ) contains a root of p for some u exceeding
√

2. Then
the constant k grows above 4, but the cost of performing exclusion test and the
overall cost of subdivision root-finding decrease.

A subdivision iteration begins with approximation of every root of p by the
center of some suspect square with an error of at most one half of the diameter
of the square and ends with decreasing this bound by twice; the papers [2,14,21]
accelerate such a linear convergence to a root to quadratic based on Newton’s
or QIR iterations applied where one knows: (i) a component formed by suspect
squares containing a root of a polynomial p and covered with a well-isolated disc
and (ii) a number of the roots of p in that component.

3 Cauchy Root-Counting and Soft Exclusion Test

Algorithm 1. Cauchy sum computation.
Input: An integer q > 1, a disc D(c, ρ), and a black box polynomial p of degree
d satisfying the following inequalities (cf. Remark 1):

p(c + ρζg) �= 0 for g = 0, 1, . . . , q − 1. (8)

Output:5 The vector s∗ = (s∗
q−1, s

∗
0, . . . , s

∗
q−2)

T for s∗
0, . . . , s

∗
q−1 of (3).

Computations: Successively compute the values

1. p(c + ρζg) and p′(c + ρζg) for g = 0, 1, . . . , q − 1.
2. rg := p′(c+ρζg)

p(c+ρζg) for g = 0, 1, . . . , q − 1,

3. s̃h :=
∑q−1

g=0 ζ(h+1)grg for h = q − 1, 0, 1, . . . , q − 2, and
4. s∗

h = s̃h/q for h = q − 1, 0, 1, . . . , q − 2.

We evaluate the polynomials p(x) and p′(x) at the q points c + ρζg for g =
0, 1, . . . , q − 1, perform q divisions at each of stages 2 and 4, and perform DFT
on q points at stage 3.

Remark 1. We can ensure (8) with probability 1 if we randomly rotate an input
disc D(c, ρ): p(x) ← t(x) for t(x − c) = p(α · (x − c)) and a random α sampled
under the uniform probability distribution on C(0, 1). At stage 1, we can detect
if p(c + ρζg) ≈ 0 and then recursively reapply random rotation. The rotation
can be generalized to other maps [18, Remark 8].

Hereafter Algorithm 1a denotes Algorithm 1 restricted to the computation
of just the first Cauchy sum s∗

0 and its closest integer s̄0 provided that it breaks
ties by assigning s̄0 =
s∗

0�. In transition to Algorithm 1a both stages 1 (dom-
inant) and 2 of Algorithm 1 stay unchanged, but stages 3 and 4 are simplified
and involve just 2q arithmetic operations.
5 With this order of its components the vector s∗ turns into the vector of discrete

Fourier transform (DFT) at q points (upon a reviewer request we recall its celebrated
fast solution FFT in the Appendix). Here and hereafter we assume that v denotes
a column vector, while vT denotes its transpose.

438 Q. Luan et al.

In the special case where D(c, ρ) = D(0, 1), expressions (3) are simplified and
if a polynomial p is represented in the monomial basis, then the computation at
the bottleneck stage 1 of Algorithm 1a can be reduced to performing DFT at q
points twice [18, Sub-algorithm 7.1].

Cauchy sum s∗
h is a weighted power sum sh, with the weights 1

1−xq
j

(see

Theorem 2); as a simple Corollary 1, we obtain the bounds of [22] on |s∗
h − sh|.

Theorem 2 [18]. For the roots xj of p(x) and all h, the Cauchy sums s∗
h (3)

satisfy s∗
h =

∑d
j=1

xh
j

1−xq
j
unless xq

j = 1 for some j.

Corollary 1 [22].6 Let the disc D(0, 1) be θ-isolated and let din and dout =
d − din denote the numbers of the roots of p lying in and outside that disc,
respectively. Write η := 1/θ. Then

|s∗
h − sh| ≤ dinη

q+h + doutη
q−h

1 − ηq
for h = 0, 1, . . . , q − 1. (9)

In particular7

sh = 0 and |s∗
h| ≤ dηq+h

1 − ηq
for h = 0, 1, . . . , q − 1 if din = 0. (10)

μ := |s∗
0 − s0| ≤ d

θq − 1
, and so μ < 1/2 if q >

log(2d + 1)
log(θ)

, (11)

θ ≤
(μ + d

μ

)1/q

, and so θ ≤ (d + 1)1/q if μ = |s∗
0 − s0| ≥ 1. (12)

Corollary 2. Suppose that Algorithm 1a, applied to the unit disc D(0, 1) for
q ≥ b log2(2d + 1) and b > 0, outputs s∗

0 > 1/2 and consequently outputs a
positive integer s̄0. Then the disc D(0, θ) contains a root of p for θ = 21/b.

Proof. Suppose that the disc D(0, θ) contains no roots of p. Then the unit
disc D(0, 1) contains no roots of p as well and is θ-isolated. Apply bound (11)
for θ = 21/b and obtain |s∗

0 − s0| ≤ d
2q/b−1

and q ≥ b log2(2d + 1). Conclude that
2q/b ≥ 2d + 1 and hence |s∗

0 − s0| ≤ 1/2, while we assumed that s∗
0 > 1/2.

Remark 2. (i) By applying equations (3) to the reverse polynomial prev(x) =
xdp(1

x) rather than p(x) extend Corollaries 1 and 2 to the approximation of the
power sums of the roots of p(x) lying outside the unit disc D(0, 1), whose isolation

6 Unlike paper [22], this result is deduced in [18] from Theorem 2, which is also the
basis for probabilistic support of correctness of Cauchy root-counter in [18].

7 Clearly, we can only improve our approximation of the integer s0 by the Cauchy
sum s∗

0 if we drop its imaginary part �(s∗
0). The power sum s0 of the roots in a

well-isolated disc is only slightly closer to �(s∗
0) than to s∗

0 but can be dramatically
closer when some or all roots lie on the boundary circle of an input disc (see [18,
Section 3.7]).

Faster Numerical Univariate Polynomial Root-Finding 439

ratio is invariant in the transition from p to prev, by virtue of Proposition 1.
(ii) Extend Corollaries 1 and 2 and part (i) of this remark to the case of any
disc D(c, ρ) by means of shifting and scaling the variable y ← x−c

ρ and observing
that this does not change the isolation ratio of the disc (see the definition of the
isolation ratio and Proposition 1).

We obtain a root-counter s0 in a disc by means of rounding the 0th Cauchy
sum s∗

0 if τ = |s0 − s∗
0| < 0.5, e.g., if q > logθ(2d + 1) for θ > 1 by virtue of (11),

and if θ = 2, then we can choose any q ≥ 21 for d ≤ 1, 000, 000.
Seeking correct output of a Cauchy root-counter or exclusion test without

unnecessary increase of the parameter q, one can first apply Algorithm 1a for a
small integer q and then recursively double it, reusing the results of the previous
computations, until the computed values of the Cauchy sum s∗

0 stabilize near an
integer or just until they approximate an integer closely enough. [18, Section 5]
proves that such an integer is s0 with a high probability (hereafter whp) under
random root models.

This result supports root-finding computations in [18, Section 6.4], but not
in the subdivision processes of [2,14,21], where root-counting is applied only
where an input disc is well-isolated, and then Algorithm 1a yields non-costly
solution s0 by virtue of Corollary 1. For correctness of our exclusion test, we
seek stronger support because in the subdivision iterations of [2,14,21], such a
test is applied to the discs for whose isolation ratios no estimates are known.
By virtue of Corollary 2 Algorithm 1a applied to such a disc certifies that its
controlled dilation contains a root of p unless the algorithm outputs s̄0 = 0. The
following algorithm completes an exclusion test in the latter case.

Algorithm 2. Completion of a Cauchy soft exclusion test.
Input: A black box polynomial p(x) of degree d such that Algorithm 1a, applied
to the or equivalently to the disc D(0, 2) and8 the polynomial p(x), has out-
put s̄0 = 0.
Output: Certification that (i) the disc D(0, 2) contains a root of p definitely if
q > d or whp otherwise or (ii) the unit disc D(0, 1) definitely contains no roots
of p, where cases (i) and (ii) are compatible.
Initialization: Choose an integer q such that

q0 < q ≤ 2q0 for q0 ≥ max{1, log2(
d

q0αd

√
3
)} and αd =

√
d +

√
d. (13)

Computations: Apply Algorithm 1 to the unit disc D(0, 1) for the selected q.
Let

s∗ := (s∗
q−1, s

∗
0, s

∗
1, . . . , s

∗
q−2)

T (14)

denote the vector of the values s∗
h of the Cauchy sums output by the algorithm

and let |s∗| denote the Euclidean norm (
∑q−1

h=0 |s∗
h|2)1/2. If |s∗| q0 αd ≥ 1, con-

clude that the disc D(0, θ) definitely contains a root of p. Otherwise conclude
that the disc D(0, 1) contains no roots of p definitely if q > d or whp otherwise.
8 One can extend the algorithm by applying Algorithm 1a to a disc D(0, θ) for smaller

θ > 1 and modifying bound (13) accordingly.

440 Q. Luan et al.

Correctness proof. If the disc D(0, θ) contains no roots of p, then the unit disc
D(0, 1) is θ-isolated, and we can apply bound (10) to the Cauchy sums s∗

h output
in the above application of Algorithm 1. This would imply that |s∗

h| ≤ d
(θq−1)θh ,

and then we would deduce that |s∗
h|2 ≤ d2

(θq−1)2θ2h , and so |s∗|2 ≤ d2

(θq−1)2(θ2−1) .
Under the assumed choice of θ = 2 it follows that

|s∗| ≤ d

(2q − 1)
√

3
<

d

(2q0 − 1)
√

3
for q0 < q,

and then (13) would imply that |s∗| q0 αd ≤ 1 and hence |s∗| q αd < 1. Therefore,
the disc D(0, θ) contains a root of p unless the latter bound holds, as claimed.
Correctness of the algorithm in the case where |s∗| q αd < 1 follows from [18,
Corollaries 4.2 and 4.3].

Remark 3. For the computation of Cauchy sums for q of order of d we should
evaluate p and p′ at order of d points; by applying our reduction of multi-
point polynomial evaluation (MPE) to fast multipole method (FMM) (see [18,
Appendix E]) we can do this by using order of d log2(d) arithmetic operations,
performed numerically with the precision of order log(d) bits. It outputs the vec-
tor of the first q Cauchy sums s0, . . . , sq−1 within a relative error of order log(d).
This should be sufficient in order to verify the bounds of Algorithm 2 [18, The-
orem 19 and Corollaries 4.2 and 4.3], because FMM is celebrated for being very
stable numerically, although further formal and experimental study is in order.

The algorithm runs faster as we decrease integer q, and already for q0 of order
of log(d) the disc D(0, 2) contains a root of p if |s∗| q0 αd ≥ 1, while the unit
disc D(0, 1) contains a root of p with a probability that fast converges to 1 as the
value |s∗| q0 αd decreases under a random coefficient model for the polynomial p,
by virtue of [18, Corollary 4.3].

For q ≤ d we have only probabilistic support of correctness of Algorithm 2
in the case where |s∗| q0 αd < 1, but we can try to strengthen reliability of our
exclusion tests by verifying additional necessary conditions for correctness of our
exclusion test and root-counting:

(a) the Cauchy sums s∗
h for h = 0, 1, . . . , q − 1 still nearly vanish for the polyno-

mials t(x) obtained from p(x) by means of various mappings of the variable
x that keep an input disc and the power sum s0 invariant (cf. Remark 1);

(b) an exclusion test should succeed for any disc lying in the disc D(c, ρ). In
particular, if the disc covers a suspect square, then exclusion tests should
succeed for the four discs that cover the four congruent sub-squares obtained
from sub-dividing the input square;

(c) all suspect squares of a subdivision iteration together contain precisely d
roots of p.

If these additional necessary conditions hold, it is still plausible that the
disc D(c, ρ) contains a root of p.9 We can, however, detect whether we have lost
9 A polynomial p has no roots in a closed disc D(0, 1) if and only if prev has precisely d

roots in the open disc D(0, 1); similar property holds for Cauchy sums s∗
0 (see [18]).

Faster Numerical Univariate Polynomial Root-Finding 441

any roots at the end of the subdivision process, when d−w roots are tamed, that
is, closely approximated, and when w roots remain at large; we call the latter
roots wild. If 0 < w � d, then at a low cost we can deflate the wild factor of p,
whose root set is made up of the w wild roots; then we can approximate the
roots of this factor at a low cost (see [18, Section 7]).

It is natural to call a point c a tame root of p if rd(c, p) ≤ TOL for a
fixed tolerance TOL. The algorithm of [18, Section 6.2] closely approximates
rd(c, p) at a relatively low cost, but it is even less expensive to verify whether
d |p′(c)/p(c)| ≤TOL and then to recall that rd(c, p) ≤ d |p′(c)/p(c)| (see [8, The-
orem 6.4g]), although his upper bound on rd(c, p) is extremely poor for a worst
case input such as p(x) = xd − hd for h �= 0.

Empirical support from the initial implementation and testing of our algo-
rithms in [10] has substantially superseded their formal support here and in [18].
In these tests, subdivision iterations with Cauchy exclusion tests by means
of Algorithm 1a have consistently approximated the integer s0 = 0 within
1/4 for q =
log(4d + 1)/ log(4θ)�. For discs containing no roots and for
q =
log(4d + 1)/ log(4θ)� + 1 Algorithm 1 has consistently approximated both
s0 and s1 within 1/4 (cf. [10, equation (22) in Corollary 12 for e = 1/4]).

4 Real Root-Finding

The algorithm of [12] specializes subdivision iterations of [2] to real univariate
polynomial root-finding and is currently the user’s choice algorithm, but we can
readily accelerate it by narrowing the search for the real roots by means of
incorporation of the techniques of [18, Section 6].

Furthermore, we can extend all our other accelerations of subdivision itera-
tions from a disc to a line segment. E.g., our simple root-counting Algorithm 5
provides more information than the customary counting based on the Descartes
rule of signs and on Budan–Fourier theorem, involves no costly computation
of the Sturm sequences, and unlike Budan–Fourier theorem can be applied to
black box polynomials. Our real root-counter amounts essentially to multipoint
evaluation. Allowing also interpolation we deflate a factor of p whose root set is
precisely the set of roots of p that lie in a fixed segment of real axis. Typically,
the degree of the factor is dramatically smaller than d, even where the line seg-
ment contains all real roots of p (cf. [6]), and so root-finding on the segment is
simplified accordingly.

Actually by saying “real roots” we mean both real and nearly real roots,
which is appropriate where an input polynomial is studied numerically with
rounding errors.

Next we extend our root-counters and deflation algorithms from the unit
disc D(0, 1) to the unit segment S[−1, 1], but this actually covers the case of
any disc and any segment: we can perform the relevant shift and scaling of
the variable implicitly because we reduce our real root-counting essentially to
multipoint evaluation and reduce real root-finder to multipoint evaluation and
interpolation.

442 Q. Luan et al.

We first reduce root-counting and root-finding on the unit segment S[−1, 1]
to that on the unit circle C(0, 1). We assume that the segment is reasonably well
isolated from the external roots of p, and this implies that so is the unit circle
(see Remark 4). Then Algorithm 5 for root-counting is readily reduced to our
root-counting on the complex plane.

Root-counting and root-finding on an isolated circle are reduced to the same
tasks for a pair of θ-isolated discs D(0, θ−) and D(0, θ+) for a constant θ > 1;
for root-counting it is sufficient to apply Algorithm 1a (see Algorithm 5).

By scaling the variable x we reduce the root-finding task to that in the well-
isolated unit disc D(0, 1), and then apply highly efficient deflation algorithms
of [22, Section 13].

It remains to specify back and forth transition between the segment and the
circle. We apply the two-to-one Zhukovsky’s function z = J(x) and its one-to-
two inverse, for complex variables x and z. It maps the circle C(0, 1) to the
segment S[−1, 1], and vice versa:

x = J(z) :=
1
2

(
z +

1
z

)
; z = J−1(x) := x ±

√
x2 − 1. (15)

Algorithm 3. Root-finding on a line segment.
Input: A polynomial p = p(x) of (1).
Output: The number w of its roots on the unit segment S[−1, 1] and approxi-
mations to all these roots.
Computations:

1. Compute the values vh = p(�(ζh
2d)) of the polynomial p at the Chebyshev

points �(ζh
2d) = cos(πh

2d) for h = 0, 1, . . . , 2d − 1 and ζ2d of (3).
2. Interpolate to the polynomial s(z) of degree 2d such that

s(z) = zdp(x) for x =
1
2
(z + z−1) (16)

from its values

s(ζh
2d) = (−1)hvh for h = 0, 1, . . . , 2d − 1

by means of applying Inverse DFT. [Recall that ζdh
2d = (−1)h.]

3. Approximate a factor (e.g., the monic factor) g = g(z) of p whose root set is
made up of all roots of the polynomial s(z) that lie on the unit circle C(0, 1).
[By virtue of (15) �(s(zj)) = 0 if �(s(z−1

j)) = 0, and so these roots appear
in complex conjugate pairs; if p(x) = 0 for x = 1 and/or x = −1, then 1
and/or −1 are also the roots of g(z) with double multiplicity.] At this stage,
first compute the power sums of the roots of g(z) by applying Algorithm 1 to
the discs D(0, 1/θ) and D(0, θ) provided that the circle C(0, 1) is θ2-isolated;
then recover the coefficients of g(z) from the power sums by applying [22,
Algorithm 46]. Output w = 0.5 deg(g).

4. By applying MPSolve, subdivision iterations, or another root-finder approx-
imate all 2w roots of g(z). Let z1, . . . , zw denote the first w of them in the
order of increasing their arguments from 0.

Faster Numerical Univariate Polynomial Root-Finding 443

5. Compute and output the w roots of p lying in the segment S[−1, 1] and given
by the values xj = 1

2 (zj + 1
zj

) for j = 1, . . . , w.

Correctness of this algorithm follows from (15) and (16).
Its Stage 2 is DFT. Its Stage 1 of the evaluation at Chebyshev’s points can

be performed by means of the algorithm of [7] or Discrete Cosine Transform,
which is similar to DFT (cf. [15, Section 3.11 and the notes to it in Sect. 3.12]).
In both cases, the computation is simplified if d is a power of 2; we ensure this
by replacing p with xup for the minimal non-negative integer u such that d + u
is a power of 2. Studying stage 3 observe that the polynomial g(z) has the same
roots z1, . . . , z2w on the circle C(0, 1) and in a concentric annulus defined as the
difference of two θ-isolated discs D(0, θ) and D(0, 1/θ) for some θ > 1.

All power sums sh of these roots are the differences of the power sums sh of
the roots in these two discs. At first closely approximate these pairs of power
sums by applying Algorithm 1; their differences approximate the power sums of
the roots of g(z) on the circle C(0, 1). Then approximate g(z) by applying the
algorithms of [22, Section 13].

The converse transition from the unit circle C(0, 1) to the unit segment
S[−1, 1] enables us to simplify stages 4 and 5 of Algorithm 3 by moving from g(z)
to a polynomial of degree w whose all roots lie in the segment S[−1, 1]. Then
again we achieve this by means of evaluation and interpolation.

Algorithm 4. Transition to unit segment.

1. Compute the values uh = g(ζh
2K) of the polynomial g(z) at the 2K-th roots

of unity for h = 0, 1, . . . ,K − 1 and K > w.
2. Interpolate to the polynomial f(x) of degree at most w from its values

f(�(ζh
2K)) = (−1)huh at the Chebyshev points �(ζh

2K) = cos(πh
2K), for

h = 0, 1, . . . , K − 1. [Recall that ζKh
2K = (−1)h.]

3. Approximate the w roots of the polynomial f = f(x) by applying to it
MPSolve, subdivision iterations, or another real polynomial root-finder, e.g.,
that of [12].

We propose to perform steps 1 and 2 above by means of forward DFT and
inverse Cosine Transforms, applying them to the polynomial zvg(z), replac-
ing g(x), for the minimal non-negative integer v such that w + v is a power 2.

Remark 4. Represent complex numbers as z := u + vi. Then Zhukovsky’s map
transforms a circle C(0, ρ) for ρ �= 1 into the ellipse E(0, ρ) whose points (u, v)
satisfy the following equation,

u2

s2
+

v2

t2
= 1 for s =

1
2

(
ρ +

1
ρ

)
, t =

1
2

(
ρ − 1

ρ

)
.

Consequently it transforms the annulus A(0, 1/θ, θ) into the domain bounded by
the ellipses E(0, 1/θ) and E(0, θ), and so the circle C(0, 1) is θ-isolated if and
only if no roots of p lie in the latter domain.

444 Q. Luan et al.

We can simplify Algorithm 3 and use only evaluations if we restrict our task
to counting the roots that lie on or near a line segment. Here is a high level
description of this algorithm where we do not specify the parameters θ and q
and assume that the input includes the polynomial s(z).

Algorithm 5. Root-counting on a line segment.
Input: A real θ > 1 and the polynomial s(z) of Eq. (16) such that the unit
circle C(0, 1) is θ2-isolated, that is, the annulus A(0, 1/θ2, θ2) contains no roots
of s(z) except possibly some roots on the unit circle C(0, 1).
Output: The number w of the roots of p in the segment S[−1, 1] or FAILURE.
Computations:

1. Compute the polynomial s−(z) = s(z/
√

θ).
2. Choose a sufficiently large q and compute Cauchy’s sums s̃∗

0,− of the roots of
s−(z) in the unit disc D(0, 1).

3. If the value s∗
0,− is sufficiently close to an integer s̃0,−, then output w :=

d − s̃0,− and stop. Otherwise output FAILURE.

By assumption, the circle C(0, 1/θ) is (θ−ε)-isolated for s(z) and any positive ε,
and so s̃0,− is the number of the roots of s(z) in the disc D(0, 1/θ) by virtue of
bound (11). Clearly the same number s̃0,− of the roots of the polynomial s(z)
of degree 2d lie inside and outside the unit disc, and so 2d − 2s̃0,− its roots lie
on the unit circle C(0, 1). Divide this bound by 2 and obtain the number of the
roots of p(x) on the unit segment [−1, 1].

Acknowledgements. This research has been supported by NSF Grants CCF–
1563942 and CCF–1733834 and PSC CUNY Award 69813 00 48. We also thank the
reviewers for thoughtful comments.

Appendix A. Discrete Fourier transform (DFT)

DFT(p) outputs the vector of the values p(ζj) =
∑d−1

i=0 piζ
ij of a polynomial

p(x) =
∑d−1

i=0 pix
i on the set {1, ζ, . . . , ζd−1}. The fast Fourier transform (FFT)

algorithm, for d = 2h recursively splits p(x):

p(x) = p0(y) + xp1(y), where y = x2,

p0(y) = p0 + p2x
2 + · · · + pd−2x

d−2, p1(y) = x(p1 + p3x
2 + · · · + pd−1x

d−2).

This reduces DFTd for p(x) to two DFTd/2 (for p0(y) and p1(y)) at a cost of d
multiplications of p1(y) by x, for x = ζi, i = 0, 1, . . . , d − 1, and of the pairwise
addition of the d output values to p0(ζ2i). Since ζi+d/2 = −ζi for even d, we
perform multiplication only d/2 times, that is, f(d) ≤ 2f(d/2)+1.5d if f(k) ops
are sufficient for DFTk. Recursively we obtain the following estimate.

Theorem 3. For d = 2h and a positive integer h, the DFTd only involves
f(d) ≤ 1.5dh = 1.5d log2 d arithmetic operations.

Faster Numerical Univariate Polynomial Root-Finding 445

Inverse DFT is the converse problem of interpolation to a polynomial p(x) from
its values at the dth roots of unity. At the cost of performing d divisions, this
task can be reduced to DFT (see, e.g., [15, Theorem 2.2.2]).

References

1. Baur, W., Strassen, V.: On the complexity of partial derivatives. Theoret. Comput.
Sci. 22, 317–330 (1983)

2. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the Pellet test and Newton iteration. J.
Symb. Comput. 86, 51–96 (2018), Proceedings version. In: ACM ISSAC, pp. 71–78
(2016). https://doi.org/10.1016/j.jsc.2017.03.009

3. Bini, D.A., Fiorentino, G.: Design, analysis, and implementation of a multiprecision
polynomial rootfinder. Numer. Algorithms 23, 127–173 (2000). https://doi.org/10.
1023/A:1019199917103

4. Bini, D., Pan, V.Y.: Graeffe’s, Chebyshev-like, and Cardinal’s processes for split-
ting a polynomial into factors. J. Complex. 12, 492–511 (1996)

5. Bini, D.A., Robol, L.: Solving secular and polynomial equations: a multiprecision
algorithm. J. Comput. Appl. Math. 272, 276–292 (2014). https://doi.org/10.1016/
j.cam.2013.04.037

6. Erdős, P., Turán, P.: On the distribution of roots of polynomials. Ann. Math 2(51),
105–119 (1950)

7. Gerasoulis, A.: A fast algorithm for the multiplication of generalized Hilbert matri-
ces with vectors. Math. Comput. 50(181), 179–188 (1988)

8. Henrici, P.: Applied and Computational Complex Analysis, Vol. 1: Power Series,
Integration, Conformal Mapping, Location of Zeros. Wiley, New York (1974)

9. Householder, A.S.: Dandelin, Lobachevskii, or Graeffe? Amer. Math. Mon. 66,
464–466 (1959). https://doi.org/10.2307/2310626

10. Imbach, R., Pan, V.Y.: New progress in univariate polynomial root-finding. In:
Proceedings of ACM-SIGSAM ISSAC 2020, pp. 249–256, July 20–23, 2020, Kala-
mata, Greece, ACM Press, New York (2020). ACM ISBN 978-1-4503-7100-1/20/07.
https://doi.org/10.1145/3373207.3403979

11. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-96418-8 28

12. Kobel, A., Rouillier, F., Sagralo, M.: Computing real roots of real polynomials...
and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation (ISSAC 2016), pp. 301–310. ACM Press,
New York (2016) https://doi.org/10.1145/2930889.2930937

13. Linnainmaa, S.: Taylor expansion of the accumulated rounding errors. BIT 16,
146–160 (1976)

14. Pan, V.Y.: Approximation of complex polynomial zeros: modified quadtree
(Weyl’s) construction and improved Newton’s iteration. J. Complex. 16(1), 213–
264 (2000). https://doi.org/10.1006/jcom.1999

15. Pan, V.Y.: Structured Matrices and Polynomials: Unified Superfast Algorithms.
Birkhäuser/Springer, Boston/New York (2001) https://doi.org/10.1007/978-1-
4612-0129-8

https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1023/A:1019199917103
https://doi.org/10.1023/A:1019199917103
https://doi.org/10.1016/j.cam.2013.04.037
https://doi.org/10.1016/j.cam.2013.04.037
https://doi.org/10.2307/2310626
https://doi.org/10.1145/3373207.3403979
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1145/2930889.2930937
https://doi.org/10.1006/jcom.1999
https://doi.org/10.1007/978-1-4612-0129-8
https://doi.org/10.1007/978-1-4612-0129-8

446 Q. Luan et al.

16. Pan, V.Y.: Univariate polynomials: nearly optimal algorithms for factorization and
rootfinding. J. Symb. Comput. 33(5), 701–733, : Proceedings version. ACM STOC
1995, 741–750 (2002). https://doi.org/10.1006/jsco.2002.0531

17. Pan, V.Y.: Old and new nearly optimal polynomial root-Finding. In: England,M.,
Koepf, W., Sadykov, T.M., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC2019.
LNCS, vol. 11661, pp, 393–411. Springer, Nature Switzerland (2019) https://doi.
org/10.1007/978-3-030-26831-2

18. Pan, V.Y.: New Acceleration of Univariate Polynomial Root-finders, August 2020.
arXiv: 1805.12042

19. Pan, V.Y.: Acceleration of subdivision root-finding for sparse polynomials. to
appear. In: Boulier, F., England, M., Sadikov, T.M., Vorozhtsov, E.V. (eds.) CASC
2020. Springer Nature, Switzerland (2020)

20. Pan, V.Y., Zhao, L.: Real root isolation by means of root radii approximation. In:
Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.), CASC 2015. LNCS,
vol. 9301, pp. 347–358. Springer, Heidelberg (2015). arXiv:1501.05386

21. Renegar, J.: On the worst-case arithmetic complexity of approximating zeros
of polynomials. J. Complex. 3(2), 90–113 (1987). https://doi.org/10.1016/0885-
064X(87)90022-7

22. Schönhage, A.: The fundamental theorem of algebra in terms of computational
complexity. Math. Dept., Univ. Tübingen, Germany (1982)

23. Weyl, H.: Randbemerkungen zu Hauptproblemen der Mathematik. II. Fundamen-
talsatz der Algebra und Grundlagen der Mathematik. Mathematische Zeitschrift
20, 131–151 (1924)

https://doi.org/10.1006/jsco.2002.0531
https://doi.org/10.1007/978-3-030-26831-2
https://doi.org/10.1007/978-3-030-26831-2
http://arxiv.org/abs/1805.12042
http://arxiv.org/abs/1501.05386
https://doi.org/10.1016/0885-064X(87)90022-7
https://doi.org/10.1016/0885-064X(87)90022-7

	Faster Numerical Univariate Polynomial Root-Finding by Means of Subdivision Iterations
	1 Introduction
	1.1 State of the Art
	1.2 Our Progress
	1.3 Power Sums and Cauchy Sums
	1.4 Real Root-Finding
	1.5 Organization of the Paper

	2 Background
	2.1 Definitions and Auxiliary Results
	2.2 Subdivision Iterations

	3 Cauchy Root-Counting and Soft Exclusion Test
	4 Real Root-Finding
	References

