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Abstract. In this paper, we propose an efficient method for removing all
redundant inequalities generated by Fourier-Motzkin Elimination. This
method is based on an improved version of Balas’ work and can also
be used to remove all redundant inequalities in the input system. More-
over, our method only uses arithmetic operations on matrices and avoids
resorting to linear programming techniques. Algebraic complexity esti-
mates and experimental results show that our method outperforms alter-
native approaches, in particular those based on linear programming and
the simplex algorithm.
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1 Introduction

Polyhedral sets play an important role in computational sciences. For instance,
they are used to model, analyze, transform and schedule for-loops of computer
programs; we refer to [3,4,6,15,16,21,38]. Of prime importance are the following
operations on polyhedral sets: (i) conversion between H-representation and V-
representation (performed, for instance, by the double description method); and
(ii) projection, as performed by Fourier-Motzkin Elimination.

Although the double description (DD) method and Fourier-Motzkin Elim-
ination (FME) have a lot in common, and, they are considered as the same
algorithm in the paper [8] of Winfried Bruns and Bogdan Ichim, they are not
totally similar. Quoting Komei Fukuda and Alain Prodon from [18]: “The FME
algorithm is more general than the DD method, but often considered as the
same method partly because it can be used to solve the extreme ray enumera-
tion problem”.

Fourier-Motzkin Elimination is an algorithmic tool for projecting a poly-
hedral set onto a linear subspace. It was proposed independently by Joseph
Fourier and Theodore Motzkin, respectively in 1827 and 1936. See the paper [14]
of George Danzing and Section 12.2 of the book [35] of Alexander Schrijver,
for a presentation of Fourier-Motzkin Elimination. The original version of this
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algorithm produces large amounts of redundant inequalities and has a double
exponential algebraic complexity. Removing all these redundancies is equivalent
to giving the so-called minimal representation of the projection of a polyhe-
dron. Leonid Khachiyan explained in [28] how linear programming (LP) could be
used to remove all redundant inequalities, thereby reducing the cost of Fourier-
Motzkin Elimination to a number of machine word operations singly exponential
in the dimension of the ambient space. However, Khachiyan did not state a more
precise running time estimate taking into account the characteristics of the poly-
hedron being projected, such as the number of its facets.

As we shall prove in this paper, rather than using linear programming one
may use only matrix arithmetic, increasing the theoretical and practical effi-
ciency of Fourier-Motzkin Elimination while still producing an irredundant rep-
resentation of the projected polyhedron.

Other algorithms for projecting polyhedral sets remove some (but not all)
redundant inequalities with the help of extreme rays: see the work of David A.
Kohler [29]. As observed by Jean-Louis Imbert in [24], the method he proposed
in that paper and that of Sergei N. Chernikov in [11] are equivalent. On the topic
of finding extreme rays of a polyhedral set in H-representation, see Natálja V.
Chernikova [12], Hervé Le Verge [30] and Komei Fukuda [18]. These methods are
very effective in practice, but none of them can remove all redundant inequalities
generated by Fourier-Motzkin Elimination.

Fourier-Motzkin Elimination is well suited for projecting a polyhedron,
described by its facets (given by linear inequalities), onto different sub-spaces.
And our paper is about projecting polyhedral sets to lower dimensions, elim-
inating one variable after another, thanks to the Fourier-Motzkin Elimination
algorithm as described in Schrijver’s book [35]. In fact, our goal is to find the
minimal representations of all of the successive projections of a given polyhedron
(in H-representation, thus given by linear inequalities), by eliminating variables
one after another, using the Fourier-Motzkin Elimination algorithm. Comput-
ing these successive projections has applications in the analysis, scheduling and
transformation of for-loop nests of computer programs. For instance, after apply-
ing a uni-modular transformation to the loop counters of a for-loop nest, the loop
bounds of the new for-loop nest are derived from the successive projections of a
well-chosen polyhedron.

In this paper, we show how to remove all the redundant inequalities gener-
ated by Fourier-Motzkin Elimination, considering a non-empty, full-dimensional,
and pointed polyhedron as the input. Our approach is based on an improved ver-
sion of a method proposed by Egon Balas in [2]. To be more specific, we first
compute a so-called initial redundancy test cone from which we can derive the
so-called redundancy test cone, which is used to detect the redundant inequalities
generated after each elimination of a variable.

Consider a non-empty, full-dimensional, and pointed polyhedron Q ⊆ Qn

as input, given by a system of m linear inequalities of height h. We show,
see Theorem 5, that eliminating the variables from that system, one after
another (thus performing Fourier-Motzkin Elimination) can be done within
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O(m
5n
2 nθ+1+εh1+ε) bit operations, for any ε > 0, where θ is the exponent of

linear algebra, as defined in the landmark book [19].
Therefore, we obtain a more favourable estimate than the one presented

in [25,26] for Fourier-Motzkin Elimination with a removal of the redundant
inequalities via linear programming. Indeed, in those papers, the estimate is
O(n2 m2n LP(n, 2nhn2mn)) bit operations, where LP(d,H) is an upper bound
for the number of bit operations required for solving a linear program in n
variables and with total bit size H. For instance, in the case of Karmarkar’s
algorithm [27], we have LP(d,H) ∈ O(d3.5H2 · log H · log log H). Then, compar-
ing the exponents of m, n and h, we have 5n

2 , θ + 1 + ε, 1 + ε respectively with
the method proposed in the present paper and 4n + ε, 6 + ε, 2 + ε respectively
with the estimate of [25,26].

Our algorithm is stated in Sect. 4 and follows the revisited version of Balas’
algorithm presented in Sect. 3. Since the maximum number of facets of any
standard projection of Q is O(m�n/2�), our running time for Fourier-Motzkin
Elimination is satisfactory; the other factors in our estimate come from the cost
of linear algebra operations for testing redundancy.

We have implemented the algorithms proposed in Sect. 4 using the BPAS
library [10] publicly available at www.bpaslib.org. We have compared our code
against other implementations of Fourier-Motzkin Elimination including the CDD
library [17]. Our experimental results, reported in Sect. 6, show that our pro-
posed method can solve more test-cases (actually all) that we used, while the
counterpart software failed to solve some of them.

Section 2 provides background materials about polyhedral sets and polyhe-
dral cones together with the original version of Fourier-Motzkin Elimination. As
mentioned above, Sect. 3 contains our revisited version of Balas’ method and
detailed proofs of its correctness. Based on this, Sect. 4 presents a new algo-
rithm producing a minimal projected representation for a given full-dimensional
pointed polyhedron. Complexity results are established in Sect. 5. In Sect. 6 we
report on our experimentation and in Sect. 7 we discuss related works.

To summarize, our contributions are: (i) making Balas’ algorithm to be
practical, by devising a method for finding the initial redundancy test cone
efficiently and using it in the Fourier-Motzkin Elimination, (ii) exhibiting the
theoretical efficiency of the proposed algorithm by analyzing its bit complexity,
and, (iii) demonstrating its practical effectiveness (implemented as part of the
BPAS library) compared to other available related software.

2 Background

In this section, we review the basics of polyhedral geometry. Section 2.1 is dedi-
cated to the notions of polyhedral sets and polyhedral cones. Sections 2.2 and 2.3
review the double description method and Fourier-Motzkin elimination. We con-
clude this section with the cost model that we shall use for complexity analysis,
see Sect. 2.4. As we omit most proofs, for more details please refer to [18,35,37].
For the sake of simplicity in the complexity analysis of the presented algorithms,

www.bpaslib.org
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we constraint our coefficient field to the field of rational numbers Q. However,
all of the algorithms presented in this paper apply to polyhedral sets with coef-
ficients in the field R of real numbers.

Throughout this paper, we use bold letters, e.g. v, to denote vectors and
we use capital letters, e.g. A, to denote matrices. Also, we assume that vectors
are column vectors. For row vectors, we use the transposition notation, as in At

for the transposition of matrix A. The concatenation of two column vectors v
and w is denoted (v,w), thus using parentheses, while the concatenation of two
row vector vt and wt is denothed [vt,wt], thus using square brackets. For a
matrix A and an integer k, we denote by Ak is the row of index k in A. More
generally, if K is a set of integers, we denote by AK the sub-matrix of A with
row indices in K.

2.1 Polyhedral Cones and Polyhedra

Polyhedral Cone. A set of points C ⊆ Qn is called a cone if for each x ∈ C
and each real number λ ≥ 0 we have λx ∈ C. A cone C ⊆ Qn is called convex
if for all x,y ∈ C, we have x + y ∈ C. If C ⊆ Qn is a convex cone, then
its elements are called the rays of C. For two rays r and r′ of C, we write
r′ � r whenever there exists λ ≥ 0 such that we have r′ = λr. A cone C ⊆ Qn

is a polyhedral cone if it is the intersection of finitely many half-spaces, that
is, C = {x ∈ Qn | Ax ≤ 0} for some matrix A ∈ Qm×n. Let {x1, . . . ,xm}
be a set of vectors in Qn. The cone generated by {x1, . . . ,xm}, denoted by
Cone(x1, · · · ,xm), is the smallest convex cone containing those vectors. In other
words, we have Cone(x1, . . . ,xm) = {λ1x1 + · · · + λmxm | λ1 ≥ 0, . . . , λm ≥ 0}.
A cone obtained in this way is called a finitely generated cone.

Polyhedron. A set of vectors P ⊆ Qn is called a convex polyhedron if
P = {x | Ax ≤ b} holds, for a matrix A ∈ Qm×n and a vector b ∈ Qm, for
some positive integer m. Moreover, the polyhedron P is called a polytope if P
is bounded. From now on, we always use the notation P = {x | Ax ≤ b} to
represent a polyhedron in Qn. The system of linear inequalities {Ax ≤ b} is
called a representation of P . We say an inequality ctx ≤ c0 is redundant w.r.t.
a polyhedron representation Ax ≤ b if this inequality is implied by Ax ≤ b. A
representation of a polyhedron is minimal if no inequality of that representation
is implied by the other inequalities of that representation. To obtain a mini-
mal representation for the polyhedron P , we need to remove all the redundant
inequalities in its representation. This requires the famous Farkas’ lemma. Since
this lemma has different variants, we simply mention here the variant from [35]
which we use in this paper.

Lemma 1 (Farkas’ lemma). Let A ∈ Qm×n be a matrix and b ∈ Qm be a
vector. Then, there exists a vector t ∈ Qn with t ≥ 0 satisfying At = b if and if
ytb ≥ 0 holds for every vector y ∈ Qm satisfying ytA ≥ 0.

A consequence of Farkas’ lemma is the following criterion for testing whether an
inequality ctx ≤ c0 is redundant w.r.t. a polyhedron representation Ax ≤ b.
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Lemma 2 (Redundancy test criterion). Let c ∈ Qn, c0 ∈ Q, A ∈ Qm×n

and b ∈ Qm. Assume Ax ≤ b is a consistent linear inequality system. Then,
the inequality ctx ≤ c0 is redundant w.r.t. Ax ≤ b if and only if there exists a
vector t ≥ 0 and a number λ ≥ 0 satisfying ct = ttA and c0 = ttb + λ.

Characteristic Cone and Pointed Polyhedron.The characteristic cone of P
is the polyhedral cone denoted by CharCone(P ) and defined by CharCone(P ) =
{y ∈ Qn | x + y ∈ P, ∀x ∈ P} = {y | Ay ≤ 0}. The linearity space of
the polyhedron P is the linear space denoted by LinearSpace(P ) and defined as
CharCone(P ) ∩ −CharCone(P ) = {y | Ay = 0}, where −CharCone(P ) is the set
of the −y for y ∈ CharCone(P ). The polyhedron P is pointed if its linearity
space is {0}.

Lemma 3 (Pointed polyhedron criterion). The polyhedron P is pointed if
and only if the matrix A is full column rank.

Extreme Point and Extreme Ray. The dimension of the polyhedron P ,
denoted by dim(P ), is the maximum number of linearly independent vectors in
P . We say that P is full-dimensional whenever dim(P ) = n holds. An inequality
atx ≤ b (with a ∈ Qn and b ∈ Q) is an implicit equation of the inequality system
Ax ≤ b if atx = b holds for all x ∈ P . Then, P is full-dimensional if and only if
it does not have any implicit equation. A subset F of the polyhedron P is called
a face of P if F equals {x ∈ P | Asubx = bsub} for a sub-matrix Asub of A and
a sub-vector bsub of b. A face of P , distinct from P and of maximum dimension
is called a facet of P . A non-empty face that does not contain any other face
of a polyhedron is called a minimal face of that polyhedron. Specifically, if the
polyhedron P is pointed, each minimal face of P is just a point and is called an
extreme point or vertex of P . Let C be a cone such that dim(LinearSpace(C)) = t.
Then, a face of C of dimension t + 1 is called a minimal proper face of C. In
the special case of a pointed cone, that is, whenever t = 0 holds, the dimension
of a minimal proper face is 1 and such a face is called an extreme ray. We
call an extreme ray of the polyhedron P any extreme ray of its characteristic
cone CharCone(P ). We say that two extreme rays r and r′ of the polyhedron
P are equivalent, and denote it by r � r′, if one is a positive multiple of the
other. When we consider the set of all extreme rays of the polyhedron P (or
the polyhedral cone C) we will only consider one ray from each equivalence
class. A pointed cone C can be generated by its extreme rays, that is, we have
C = {x ∈ Qn | (∃c ≥ 0) x = Rc}, where the columns of R are the extreme
rays of C. We denote by ExtremeRays(C) the set of extreme rays of the cone C.
Recall that all cones considered here are polyhedral. The following, see [32,37],
is helpful in the analysis of algorithms manipulating extreme rays of cones and
polyhedra. Let E(C) be the number of extreme rays of a polyhedral cone C ∈ Qn

with m facets. Then, we have:

E(C) ≤
(

m − 
n+1
2 �

m − 1

)
+

(
m − 
n+2

2 �
m − n

)
≤ m�n

2 �. (1)
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Algebraic Test of (Adjacent) Extreme Rays. Given t ∈ C and a cone
C = {x ∈ Qn | Ax ≤ 0}, we define the zero set ζA(t) as the set of row indices i
such that Ait = 0, where Ai is the i-th row of A. For simplicity, we use ζ(t)
instead of ζA(t) when there is no ambiguity. The proof of the following, which
we call the algebraic test, can be found in [18]: Let r ∈ C. Then, the ray r is
an extreme ray of C if and only if we have rank(Aζ(r)) = n − 1. Two distinct
extreme rays r and r′ of the polyhedral cone C are called adjacent if they span a
2-dimensional face of C. From [18], we have: Two distinct extreme rays, r and r′,
of C are adjacent if and only if rank(Aζ(r)∩ζ(r′)) = n − 2 holds.

Polar Cone. Given a polyhedral cone C ⊆ Qn, the polar cone induced by C,
denoted by C∗, is defined as: C∗ = {y ∈ Qn | ytx ≤ 0,∀x ∈ C}. The proof of
the following property can be found in [35]: For a given cone C ∈ Qn, there is a
one-to-one correspondence between the faces of C of dimension k and the faces
of C∗ of dimension n − k. In particular, there is a one-to-one correspondence
between the facets of C and the extreme rays of C∗.

Homogenized Cone. The homogenized cone of the polyhedron P = {x ∈ Qn |
Ax ≤ b} is denoted by HomCone(P ) and defined by: HomCone(P ) = {(x, xlast) ∈
Qn+1 | Ax − bxlast ≤ 0, xlast ≥ 0}.

Lemma 4 (H-representation correspondence). An inequality Aix ≤ bi is
redundant in P if and only if the corresponding inequality Aix − bixlast ≤ 0 is
redundant in HomCone(P ).

Theorem 1 (Extreme rays of the homogenized cone). Every extreme
ray of the homogenized cone HomCone(P ) associated with the polyhedron P is
either of the form (x, 0) where x is an extreme ray of P , or (x, 1) where x is an
extreme point of P .

2.2 The Double Description Method

It follows from Sect. 2.1 that any pointed polyhedral cone C can be represented
either as the intersection of finitely many half-spaces (given as a system of linear
inequalities Ax ≤ 0 and called H-representation of C) or as Cone(R), where R is
a matrix, the columns of which are the extreme rays of C (called V-representation
of C). The pseudo-code of the double description method, as presented in [18],
and implemented in the CDD library [17] is shown in Algorithm 1. This algo-
rithm calls partition and AdjacencyTest functions. Given a set of vectors J and
an inequality Ai, the partition function places each member j of J into one of the
sets J+, J0, J−, according to the sign (positive, null or negative) of Aij . More-
over, the AdjacencyTest determines adjacency of the input extreme rays. This
algorithm produces the V-representation of a pointed polyhedral cone given by
its H-representation. Some of the results presented in our paper depend on alge-
braic complexity estimates for the double description method. In [18], one can
find an estimate in terms of arithmetic operations on the coefficients of the input
H-representation. Since we need a bit complexity estimate, we provide one as
Lemma 9.
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Algorithm 1. DDmethod
1: Input: a matrix A ∈ Qm×n defining the H-representation of a pointed cone C
2: Output: a matrix R defining the V-representation of C
3: let K be the set of the indices of A’s independent rows
4: R′ := (AK)−1

5: let J be the set of the columns of R′

6: while K �= {1, . . . , m} do
7: select a A-row index i �∈ K
8: set R′ to be an empty matrix
9: J+, J0, J− := partition(J, Ai)

10: add the vectors in J+ and J0 as columns to R′

11: for p ∈ J+ do
12: for n ∈ J− do
13: if AdjacencyTest(AK , rp, rn) = true then
14: rnew := (Airp)rn − (Airn)rp

15: add rnew as a column to R′

16: end if
17: end for
18: end for
19: let J be the set of the columns of R′

20: K := K ∪ {i}
21: end while
22: let R be the matrix created by the vectors in J as its columns
23: return (R)

2.3 Fourier-Motzkin Elimination

Let A ∈ Qm×p and B ∈ Qm×q be matrices. Let c ∈ Qm be a vector. Consider
the polyhedron P = {(u,x) ∈ Qp+q | Au + Bx ≤ c}. We denote by proj(P ;x)
the projection of P on x, that is, the subset of Qq defined by proj(P ;x) = {x ∈
Qq | ∃ u ∈ Qp, (u,x) ∈ P}.

Fourier-Motzkin elimination (FME for short) is an algorithm computing the
projection proj(P ;x) of the polyhedron of P by successively eliminating the u-
variables from the inequality system Au + Bx ≤ c. This process shows that
proj(P ;x) is also a polyhedron.

Let �1, �2 be two inequalities: a1x1+· · ·+anxn ≤ c1 and b1x1+· · ·+bnxn ≤ c2.
Let 1 ≤ i ≤ n such that the coefficients ai and bi of xi in �1 and �2 are positive
and negative, respectively. The combination of �1 and �2 w.r.t. xi, denoted by
Combine(�1, �2, xi), is:

−bi(a1x1 + · · · + anxn) + ai(b1x1 + · · · + bnxn) ≤ −bic1 + aic2.

Theorem 2 shows how to compute proj(P ;x) when u consists of a single
variable xi. When u consists of several variables, FME obtains the projection
proj(P ;x) by repeated applications of Theorem 2.

Theorem 2 (Fourier-Motzkin theorem [29]). Let A ∈ Qm×n be a matrix
and let c ∈ Qm be a vector. Consider the polyhedron P = {x ∈ Qn | Ax ≤ c}.
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Let S be the set of inequalities defined by Ax ≤ c. Also, let 1 ≤ i ≤ n. We
partition S according to the sign of the coefficient of xi:

S+ = {� ∈ S | coeff(�, xi) > 0},

S− = {� ∈ S | coeff(�, xi) < 0},

S0 = {� ∈ S | coeff(�, xi) = 0}.

We construct the following system of linear inequalities:

S′ = {Combine(sp, sn, xi) | (sp, sn) ∈ S+ × S−} ∪ S0.

Then, S′ is a representation of proj(P ; {x \ {xi}}).

With the notations of Theorem 2, assume that each of S+ and S− counts
m
2 inequalities. Then, the set S′ counts (m

2 )2 inequalities. After eliminating p

variables, the projection would be given by O((m
2 )2

p

) inequalities. Thus, FME
is double exponential in p.

On the other hand, from [33] and [26], we know that the maximum number
of facets of the projection on Qn−p of a polyhedron in Qn with m facets is
O(m�n/2�). Hence, it can be concluded that most of the generated inequalities
by FME are redundant. Eliminating these redundancies is the main subject of
the subsequent sections.

2.4 Cost Model

For any rational number a
b , thus with b = 0, we define the height of a

b , denoted
as height(a

b ), as log max(|a|, |b|). For a given matrix A ∈ Qm×n, let ‖A‖ denote
the infinity norm of A, that is, the maximum absolute value of a coefficient
in A. We define the height of A, denoted by height(A) := height(‖A‖), as the
maximal height of a coefficient in A. For the rest of this section, our main
reference is the PhD thesis of Arne Storjohann [36]. Let k be a non-negative
integer. We denote by M(k) an upper bound for the number of bit operations
required for performing any of the basic operations (addition, multiplication,
and division with remainder) on input a, b ∈ Z with |a|, |b| < 2k. Using the
multiplication algorithm of Arnold Schönhage and Volker Strassen [34] one can
choose M(k) ∈ O(k log k log log k).

We also need complexity estimates for some matrix operations. For positive
integers a, b, c, let us denote by MM(a, b, c) an upper bound for the number of
arithmetic operations (on the coefficients) required for multiplying an (a × b)-
matrix by an (b× c)-matrix. In the case of square matrices of order n, we simply
write MM(n) instead of MM(n, n, n). We denote by θ the exponent of linear
algebra, that is, the smallest real positive number such that MM(n) ∈ O(nθ).

We now give the complexity estimates in terms of M(k) ∈ O(k log k log log k)
and B(k) = M(k) log k ∈ O(k(log k)2 log log k). We replace every term of the
form (log k)p(log log k)q(log log log k)r, (where p, q, r are positive real numbers)
with O(kε) where ε is a (positive) infinitesimal. Furthermore, in the complex-
ity estimates of algorithms operating on matrices and vectors over Z, we use a
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parameter β, which is a bound on the magnitude of the integers occurring dur-
ing the algorithm. Our complexity estimates are measured in terms of machine
word operations. Let A ∈ Z

m×n and B ∈ Z
n×p. Then, the product of A by B

can be computed within O(MM(m,n, p)(log β)+(mn+np+mp)B(log β)) word
operations, where β = n ‖A‖ ‖B‖ and ‖A‖ (resp. ‖B‖) denotes the maximum
absolute value of a coefficient in A (resp. B). Neglecting logarithmic factors,
this estimate becomes O(max(m,n, p)θ max(hA, hb)) where hA = height(A) and
hB = height(B). For a matrix A ∈ Z

m×n, a cost estimate of Gauss-Jordan
transform is O(nmrθ−2(log β) + nm(log r)B(log β)) word operations, where r
is the rank of the input matrix A and β = (

√
r‖A‖)r. Let h be the height

of A, for a matrix A ∈ Z
m×n, with height h, the rank of A is computed

within O(mnθ+εh1+ε) word operations, and the inverse of A (when this matrix
is invertible over Q and m = n) is computed within O(mθ+1+εh1+ε) word oper-
ations. Let A ∈ Z

n×n be an integer matrix, which is invertible over Q. Then,
the absolute value of any coefficient in A−1 (inverse of A) can be bounded up to
(
√

n − 1‖A‖(n−1)).

3 Revisiting Balas’ Method

As recalled in Sect. 2, FME produces a representation of the projection of a poly-
hedron by eliminating one variable at a time. However, this procedure generates
lots of redundant inequalities limiting its use in practice to polyhedral sets with
a handful of variables only. In this section, we propose an efficient algorithm
which generates the minimal representation of a full-dimensional pointed poly-
hedron, as well as its projections. Throughout this section, we use Q to denote
a full-dimensional pointed polyhedron in Qn, where

Q = {(u,x) ∈ Qp × Qq | Au + Bx ≤ c}, (2)

with A ∈ Qm×p, B ∈ Qm×q and c ∈ Qm. Thus, Q has no implicit equations
in its representation and the coefficient matrix [A,B] has full column rank. Our
goal in this section is to compute the minimal representation of the projection
proj(Q;x) given by proj(Q;x) := {x | ∃u, s.t.(u,x) ∈ Q}. We call the cone
C := {y ∈ Qm | ytA = 0 and y ≥ 0} the projection cone of Q w.r.t.u. When
there is no ambiguity, we simply call C the projection cone of Q. Using the
following so-called projection lemma, we can compute a representation for the
projection proj(Q;x):

Lemma 5 ([11]). The projection proj(Q;x) of the polyhedron Q can be repre-
sented by

S := {ytBx ≤ ytc,∀y ∈ ExtremeRays(C)},

where C is the projection cone of Q defined above.

Lemm 5 provides the main idea of the block elimination method. However,
the represention produced in this way may have redundant inequalities. In [2],
Balas observed that if the matrix B is invertible, then we can find a cone such
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that its extreme rays are in one-to-one correspondence with the facets of the
projection of the polyhedron (the proof of this fact is similar to the proof of our
Theorem 3). Using this fact, Balas developed an algorithm to find all redundant
inequalities for all cases, including the cases where B is singular.

In this section, we will explain Balas’ algorithm1 in detail. To achieve this,
we lift the polyhedron Q to a space in higher dimension by constructing the
following objects.

Construction of B0. Assume that the first q rows of B, denoted as B1, are
independent. Denote the last m − q rows of B as B2. Add m − q columns,
eq+1, . . . , em, to B, where ei is the i-th vector in the canonical basis of Qm,
thus with 1 in the i-th position and 0’s anywhere else. The matrix B0 has the
following form:

B0 =

[
B1 0

B2 Im−q

]
.

To maintain consistency in the notation, let A0 = A and c0 = c.

Construction of Q0. We define:

Q0 := {(u,x′) ∈ Qp × Qm | A0u + B0x′ ≤ c0 , xq+1 = · · · = xm = 0}.

From now on, we use x′ to represent the vector x ∈ Qq, augmented with m − q
variables (xq+1, . . . , xm). Since the extra variables (xq+1, . . . , xm) are assigned
to zero, we note that proj(Q;x) and proj(Q0;x′) are “isomorphic” by means of
the bijection Φ:

Φ :
proj(Q;x) → proj(Q0;x′)

(x1, . . . , xq) �→ (x1, . . . , xq, 0, . . . , 0)

In the following, we will treat proj(Q;x) and proj(Q0;x′) as the same polyhedron
when there is no ambiguity.

Construction of W 0. Define W 0 to be the set of all (v,w, v0) ∈ Qq ×Qm−q ×Q

satisfying

W 0 = {(v,w, v0) | [vt,wt]B−1
0 A0 = 0, [vt,wt]B−1

0 ≥ 0,
−[vt,wt]B−1

0 c0 + v0 ≥ 0}.
(3)

Similar to the discussion in the work of Balas, the extreme rays of the cone
proj(W 0; {v, v0}) are used to construct the minimal representation of the pro-
jection proj(Q;x).

Theorem 3 shows that extreme rays of the cone proj(W 0; {v, v0}), which is
defined as

proj(W 0; {v, v0}) := {(v,−v0) | (v, v0) ∈ proj(W 0; {v, v0})},

1 It should be noted that, although we are using his idea, we have found a flaw in
Balas’ paper. In fact, the last inequality in representation of W 0 is written as equality
that paper.
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are in one-to-one correspondence with the facets of the homogenized cone of
proj(Q;x). As a result its extreme rays can be used to find the minimal repre-
sentation of HomCone(proj(Q;x)).

Lemma 6. The operations “computing the characteristic cone” and “computing
projections” commute. To be precise, we have:

CharCone(proj(Q;x)) = proj(CharCone(Q);x).

Proof. By the definition of the characteristic cone, we have CharCone(Q) =
{(u,x) | Au + Bx ≤ 0}, whose representation has the same left-hand side as
the one of Q. The lemma is valid if we can show that the representation of
proj(CharCone(Q);x) has the same left-hand side as proj(Q;x). This is obvious
with the Fourier-Motzkin Elimination procedure.

Theorem 3. The polar cone of HomCone(proj(Q;x)) equals to
proj(W 0; {v, v0}).

Proof. By definition, the polar cone (HomCone(proj(Q;x))∗ is equal to

{(y, y0) | [yt, y0][xt, xlast]t ≤ 0,∀ (x, xlast) ∈ HomCone(proj(Q;x))}.

This claim follows immediately from (HomCone(proj(Q;x))∗ = proj(W 0; {v, v0}).
We prove this latter equality in two steps.

(⊇) For any (v,−v0) ∈ proj(W 0; {v, v0}), we need to show that

[vt,−v0][xt, xlast]t ≤ 0

holds when (x, xlast) ∈ HomCone(proj(Q;x)). Remember that Q is pointed. As
a result, HomCone(proj(Q;x)) is also pointed. Therefore, we only need to verify
the desired property for the extreme rays of HomCone(proj(Q;x)), which either
have the form (s, 1) or (s, 0) (Theorem 1). Before continuing, we should notice
that since (v, v0) ∈ proj(W 0; {v, v0}), there exists w such that [vt,wt, v0] ∈ W 0.
Cases 1 and 2 below conclude that (v,−v0) ∈ HomCone(proj(Q;x))∗ holds.

Case 1: for the form (s, 1), we have s ∈ proj(Q;x). Indeed, s is an extreme
point of proj(Q;x). Hence, there exists u ∈ Qp, such that we have Au+ Bs ≤ c.
By construction of Q0, we have A0u + B0s′ ≤ c0, where s′ = [st, sq+1, . . . , sm]t

with sq+1 = · · · = sm = 0. Therefore, we have:

[vt,wt]B−1
0 A0u + [vt,wt]B−1

0 B0s′ ≤ [vt,wt]B−1
0 c0.

This leads us to vts = [vt,wt]s′ ≤ [vt,wt]B−1
0 c0 ≤ v0. Therefore, we have

[vt,−v0][st, xlast]t ≤ 0, as desired.
Case 2: for the form (s, 0), we have

s ∈ CharCone(proj(Q;x)) = proj(CharCone(Q);x).

Thus, there exists u ∈ Qp such that Au + Bs ≤ 0. Similarly to Case 1, we
have [vt,wt]B−1

0 A0u + [vt,wt]B−1
0 B0s′ ≤ [vt,wt]B−1

0 0. Therefore, we have
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vts = [vt,wt]s′ ≤ [vt,wt]B−1
0 0 = 0, and thus, we have [vt,−v0][st, xlast]t ≤ 0,

as desired.
(⊆) For any (y, y0) ∈ HomCone(proj(Q;x))∗, we have [yt, y0][xt, xlast]t ≤ 0

for all (x, xlast) ∈ HomCone(proj(Q;x)). For any x ∈ proj(Q;x), we have ytx ≤
−y0 since (x, 1) ∈ HomCone(proj(Q;x)). Therefore, we have ytx ≤ −y0, for all
x ∈ proj(Q;x), which makes the inequality ytx ≤ −y0 redundant in the system
{Au + Bx ≤ c}. By Farkas’ Lemma (see Lemma 2), there exists p ≥ 0,p ∈ Qm

and λ ≥ 0 such that ptA = 0, y = ptB, y0 = ptc + λ. Remember that A0 = A,
B0 = [B,B′], c0 = c. Here B′ is the last m − q columns of B0 consisting of
eq+1, . . . , em. Let w = ptB′. We then have

{ptA0 = 0, [yt,wt] = ptB0,−y0 ≥ ptc0,p ≥ 0},

which is equivalent to

{pt = [yt,wt]B−1
0 , [yt,wt]B−1

0 A0 = 0,

− y0 ≥ [yt,wt]B−1
0 c0, [yt,wt]B−1

0 ≥ 0}.

Therefore, (y,w,−y0) ∈ W 0, and (y,−y0) ∈ proj(W 0; {v, v0}). From this,
we deduce that (y, y0) ∈ proj(W 0; {v, v0}) holds.

Theorem 4. The minimal representation of proj(Q;x) is given exactly by

{vtx ≤ v0 | (v, v0) ∈ ExtremeRays(proj(W0; (v, v0))) \ {(0, 1)}}.
Proof. By Theorem 3, the minimal representation of the homogenized cone
HomCone(proj(Q;x)) is given exactly by

{vx − v0xlast ≤ 0 | (v, v0) ∈ ExtremeRays(proj(W0; (v, v0)))}.

Using Lemma 4, any minimal representation of HomCone(proj(Q;x)) has at most
one more inequality than any minimal representation of proj(Q;x). This extra
inequality is xlast ≥ 0 and, in this case, proj(W 0; (v, v0)) will have the extreme
ray (0, 1), which can be detected easily. Therefore, the minimal representation
of proj(Q;x) is given by

{vtx ≤ v0 | (v, v0) ∈ ExtremeRays(proj(W0; (v, v0))) \ {(0, 1)}}.
For simplicity, we call the cone proj(W 0; {v, v0}) the redundancy test cone

of Q w.r.t. u and denote it by Pu(Q). When u is empty, we define P(Q) := Pu(Q)
and we call it the initial redundancy test cone. It should be noted that P(Q)
can be used to detect redundant inequalities in the input system, as it is shown
in Steps 3 to 8 of Algorithm 4.

4 Minimal Representation of the Projected Polyhedron

In this section, we present our algorithm for removing all the redundant inequal-
ities generated during Fourier-Motzkin elimination. Our algorithm detects and
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eliminates redundant inequalities, right after their generation, using the redun-
dancy test cone introduced in Sect. 3. Intuitively, we need to construct the cone
W 0 and obtain a representation of the redundancy test cone, Pu(Q), where u
is the vector of eliminated variables, each time we eliminate a variable during
FME. This method is time consuming because it requires to compute the pro-
jection of W 0 onto {v, v0} space at each step. However, as we prove in Lemma 7,
we only need to compute the initial redundancy test cone, using Algorithm 2,
and the redundancy test cones, used in the subsequent variable eliminations,
can be found incrementally without any extra cost. After generating the redun-
dancy test cone, the algorithm, using Algorithm 3, keeps the newly generated
inequality only if it is an extreme ray of the redundancy test cone.

Note that a byproduct of this process is a minimal projected representation
of the input system, according to the specified variable ordering. This repre-
sentation is useful for finding solutions of linear inequality systems. The notion
of projected representation was introduced in [25,26] and will be reviewed in
Definition 1.

For convenience, we rewrite the input polyhedron Q defined in Eq. (2) as:
Q = {y ∈ Qn | Ay ≤ c}, where A = [A,B] ∈ Qm×n, n = p + q and y =
[ut,xt]t ∈ Qn. We assume the first n rows of A are linearly independent.

Algorithm 2. Generate initial redundancy test cone
Input: S = {Ay ≤ c}, a representation of the input polyhedron Q;
Output: P, a representation of the initial redundancy test cone;
1: Construct A0 in the same way we constructed B0, that is, A0 := [A,A′], where

A′ = [en+1, . . . , em] with ei being the i-th vector of the canonical basis of Qm;
2: Let W := {(v,w, v0) ∈ Qn×Qm−n×Q | −[vt,wt]A−1

0 c+v0 ≥ 0, [vt,wt]A−1
0 ≥ 0};

3: P = proj(W ; {v, v0});
4: return (P);

Remark 1. There are two important points about Algorithm 2. First, we only
need a representation of the initial redundancy test cone. This representation
does not need to be minimal. Therefore, calling Algorithm 2 in Algorithm 4
(which computes a minimal projected representation of a polyhedron) does not
lead to a recursive call to Algorithm 4. Second, to compute the projection
proj(W ; {v, v0}), we need to eliminate m − n variables from m + 1 inequali-
ties. The block elimination method is applied to achieve this. As it is shown
in Lemma 5, the block elimination method will require to compute the extreme
rays of the projection cone (denoted by C), which contains m+1 inequalities and
m+1 variables. However, considering the structural properties of the coefficient
matrix of the representation of C, we found out that computing the extreme
rays of C is equivalent to computing the extreme rays of another simpler cone,
which still has m + 1 inequalities but only n + 1 variables.
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Lemma 7. A representation of the redundancy test cone Pu(Q) can be obtained
from P(Q) by setting coefficients of the corresponding p eliminated variables to 0
in the representation of P(Q).

Proof. To distinguish from the construction of P(Q), we rename the vari-
ables v,w, v0 as vu,wu, vu, when constructing W 0 and computing the test
cone Pu(Q).

That is, we have Pu(Q) = proj(W 0; {vu, vu}), where W 0 is the set of all
(vu,wu, vu) ∈ Qq × Qm−q × Q satisfying

{(vu,wu, vu) | [vt
u,wt

u]B−1
0 A = 0,−[vt

u,wt
u]B−1

0 c + vu ≥ 0, [vt
u,wt

u]B−1
0 ≥ 0},

while we have P(Q) = proj(W ; {v, v0}) where W is the set of all (v,w, v0) ∈
Qn×Qm−n×Q satisfying {(v,w, v0) | −[vt,wt]A−1

0 c+v0 ≥ 0, [vt,wt]A−1
0 ≥ 0}.

By Step 1 of Algorithm 2, [vt,wt]A−1
0 A = vt holds for all (v,w, v0) ∈ W . We

can rewrite v as vt = [vt
1,v

t
2], where v1 and v2 are the first p and last n−p vari-

ables of v. Then, we have [vt,wt]A−1
0 A = vt

1 and [vt,wt]A−1
0 B = vt

2. Similarly,
we have [vt

u,wt
u]B−1

0 A = 0 and [vt
u,wt

u]B−1
0 B = vt

u for all (vu,wu, vu) ∈ W 0.
This lemma holds if we can show Pu = P|v1=0. We prove this in two steps:

(⊆) For any (vu, vu) ∈ Pu(Q), there exists wu ∈ Qm−q, such that

(vu,wu, vu) ∈ W 0.

Let [vt,wt] := [vt
u,wt

u]B−1
0 A0, where vt = [vt

1,v
t
2] (v1 ∈ Qp,v2 ∈ Qn−p, and

w ∈ Qm−n). Then, because (vu,wu, vu) ∈ W 0, we have vt
1 = [vt

u,wt
u]B−1

0 A = 0
and vt

2 = [vt
u,wt

u]B−1
0 B = vu. Let v0 = vu, it is easy to verify that (v,w, v0) ∈

W . Therefore, (0,vu, vu) = (v, v0) ∈ P(Q).
(⊇) For any (0,v2, v0) ∈ P(Q), there exists w ∈ Qm−n, such that

(0,v2,w, v0) ∈ W.

Let [vt
u,wt

u] := [0,vt
2,w

t]A−1
0 B0. We have vu = [0,vt

2,w
t]A−1

0 B = v2. Let
vu = v0, it is easy to verify that (vu,wu, vu) ∈ W 0. Therefore, (v2, v0) =
(vu, vu) ∈ Pu(Q).

Consider again the polyhedron Q = {y ∈ Qn | Ay ≤ c}, where A =
[A,B] ∈ Qm×n, n = p + q and y = [ut,xt]t ∈ Qn. Fix a variable order-
ing, say y1 > · · · > yn, For 1 ≤ i ≤ n, we denote by A(yi) the inequalities
in the representation Ay ≤ c of Q whose largest variable is yi. We denote by
ProjRep(Q; y1 > · · · > yn) the linear system A(y1) if n = 1 and the conjunction of
A(y1) and ProjRep(proj(Q;y2); y2 > · · · > yn) otherwise, where y2 = (y2, . . . , yn).
Of course, ProjRep(Q; y1 > · · · > yn) depends on the representation which is
used of Q.

Definition 1 (Projected representation). For the polyhedron Q ⊆ Qn, we
call projected representation of Q w.r.t. the variable order y1 > · · · > yn any
linear system of the form ProjRep(Q; y1 > · · · > yn). We say that such a linear
system P is a minimal projected representation of Q if, for all 1 ≤ k ≤ n,
every inequality of P , with yk as largest variable, is not redundant among all the
inequalities of P with variables among yk, . . . , yn.
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We can generate a minimal projected representation of a polyhedron, w.r.t. an
specific variable ordering by Algorithm 4.

Algorithm 3. Extreme ray test
Input: (P, �), where (i) P := {(v, v0) ∈ Qn ×Q | M [vt, v0]

t ≤ 0} with M ∈ Qm×(n+1),
(ii) � : aty ≤ c with a ∈ Qn and c ∈ Q;

Output: true if [at, c]t is an extreme ray of P, false otherwise;
1: Let s := M [at, c]t;
2: Let ζ(s) be the index set of the zero coefficients of s;
3: if rank(Mζ(s)) = n then
4: return (true);
5: else
6: return (false);
7: end if

5 Complexity Estimates

In this section, we analyze the computational complexity of Algorithm 4, which
computes a minimal projected representation of a given polyhedron. This com-
putation is equivalent to eliminating all variables, one after another, in Fourier-
Motzkin elimination. We prove that using our algorithm, finding a minimal pro-
jected representation of a polyhedron is singly exponential in the dimension n
of the ambient space. The most consuming procedure in Algorithm 4 is finding
the initial redundancy test cone. This operation requires another polyhedron
projection in higher dimension. As it is shown in Remark 1, we can use block
elimination method to perform this task efficiently. This requires the computa-
tion of the extreme rays of the projection cone. The double description method
is an efficient way to solve this problem. We begin this section by computing the
bit complexity of the double description algorithm.

Lemma 8 (Coefficient bound of extreme rays). Let

S = {x ∈ Qn | Ax ≤ 0}

be a minimal representation of a cone C ⊆ Qn, where A ∈ Qm×n. Then, the
absolute value of a coefficient in any extreme ray of C is bounded over by (n −
1)n‖A‖2(n−1).

Proof. From the properties of extreme rays, see Sect. 2.1, we know that when r
is an extreme ray, there exists a sub-matrix A′ ∈ Q(n−1)×n of A, such that
A′r = 0. This means that r is in the null-space of A′. Thus, the claim follows by
proposition 6.6 of [36].
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Algorithm 4. Minimal Projected Representation of Q

Input: S = {Ay ≤ c}: a representation of the input polyhedron Q;
Output: A minimal projected representation of Q;
1: Generate the initial redundancy test cone P by Algorithm 2;
2: S0 := { };
3: for i from 1 to m do
4: Let f be the result of applying Algorithm 3 with the inputs P and Aiy ≤ ci;
5: if f = true then
6: S0 := S0 ∪ {Aiy ≤ ci};
7: end if
8: end for
9: P := P|v1=0;

10: for i from 0 to n − 1 do
11: Si+1 := { };
12: for �pos ∈ Si with positive coefficient of yi+1 do
13: for �neg ∈ Si with negative coefficient of yi+1 do
14: �new := Combine(�pos, �neg, yi+1);
15: Let f be the result of applying Algorithm 3 with the inputs P and �new;
16: if f = true then
17: Si+1 := Si+1 ∪ {�new};
18: end if
19: end for
20: end for
21: for � ∈ Si with zero coefficient of yi+1 do
22: Let f be the result of applying Algorithm 3 with the inputs P and � ;
23: if f = true then
24: Si+1 := Si+1 ∪ {�};
25: end if
26: end for
27: P := P|vi+1=0;
28: end for
29: return (S0 ∪ S1 ∪ · · · ∪ Sn);

Lemma 9. Let S = {x ∈ Qn | Ax ≤ 0} be the minimal representation of
a cone C ⊆ Qn, where A ∈ Qm×n. The double description method requires
O(mn+2nθ+εh1+ε) bit operations, where h is the height of the matrix A.

Proof. The cost of Algorithm 1 during the processing of the first n inequalities
(Line 4) is negligible (in comparison to the subsequent computations) since it
is equivalent to find the inverse of an n × n matrix. Therefore, to analyze the
complexity of the DD method, we focus on the while-loop located at Line 6
of the Algorithm 1. After adding t inequalities, with n ≤ t ≤ m, the first
step is to partition the extreme rays at the t − 1-iteration, with respect to the
newly added inequality (Line 9 of Algorithm 1). Note that we have at most
(t − 1)� n

2 � extreme rays (Eq. (1)) whose coefficients can be bounded over by
(n − 1)n‖A‖2(n−1) (Lemma 8) at the t − 1-iteration. Hence, this step needs at
most C1 := (t − 1)�n

2 � × n × M(log((n − 1)n‖A‖2(n−1))) ≤ O(t�
n
2 �n2+εh1+ε)
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bit operations. After partitioning the vectors, the next step is to check adja-
cency for each pair of vectors (Line 13 of of Algorithm 1). The cost of this
step is equivalent to computing the rank of a sub-matrix A′ ∈ Q(t−1)×n of
A. This should be done for tn

4 pairs of vectors. This step needs at most
C2 := tn

4 × O((t − 1)nθ+εh1+ε) ≤ O(tn+1nθ+εh1+ε) bit operations. We know
there are at most t�

n
2 � pairs of adjacent extreme rays. The next step is to com-

bine every pair of adjacent vectors in order to obtain a new extreme ray (Line 14
of Algorithm 1). This step consists of n multiplications in Q of coefficients with
absolute value bounded over by (n − 1)n‖A‖2(n−1) (Lemma 8) and this should
be done for at most t�

n
2 � vectors. Therefore, the bit complexity of this step, is

no more than C3 := t�
n
2 � × n × M(log((n − 1)n‖A‖2(n−1))) ≤ O(t�

n
2 �n2+εh1+ε).

Finally, the complexity of iteration t of the while loop is C := C1 + C2 + C3.
The claim follows after simplifying m × C.

Lemma 10 (Complexity of constructing the initial redundancy test
cone). Let h be the maximum height of A and c in the input system, then
generating the initial redundancy test cone (Algorithm 2) requires at most

O(mn+3+ε(n + 1)θ+εh1+ε)

bit operations. Moreover, proj(W ; {v, v0}) can be represented by O(m� n+1
2 �)

inequalities, each with a height bound of O(mεn2+εh).

Proof. We analyze Algorithm 2 step by step.

Step 1: Construction of A0 from A. The cost of this step can be neglected.
However, it should be noticed that the matrix A0 has a special structure. With-
out loss of generality, we can assume that the first n rows of A are linearly
independent. The matrix A0 has the following structure:

A0 =

(
A1 0

A2 Im−n

)
,

where A1 is a full rank matrix in Qn×n and A2 ∈ Q(m−n)×n.

Step 2: Construction of the Cone W . Using the structure of the matrix A0,
its inverse can be expressed as

A−1
0 =

(
A−1

1 0

−A2A
−1
1 Im−n

)
.

Also, from Sect. 2.4 we have ‖A−1
1 ‖ ≤ (

√
n − 1‖A1‖)n−1. Therefore, ‖A−1

0 ‖ ≤
n

n+1
2 ‖A‖n, and ‖A−1

0 c‖ ≤ n
n+3
2 ‖A‖n‖c‖ + (m − n)‖c‖. That is, height(A−1

0 ) ∈
O(n1+εh) and height(A−1

0 c) ∈ O(mε + n1+εh). As a result, height of coefficients
of W can be bounded over by O(mε + n1+εh).

To estimate the bit complexity, we need the following consecutive steps:
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– Computing A−1
0 , which requires

O(nθ+1+εh1+ε) + O((m − n)n2M(max(height(A2), height(A−1
1 ))))

≤ O(mnθ+1+εh1+ε) bit operations;

– Constructing W := {(v,w, v0) | − [vt,wt]A−1
0 c + v0 ≥ 0, [vt,wt]A−1

0 ≥ 0}
requires at most

C1 := O(m1+εnθ+1+εh1+ε) + O(mnM(height(A−1
0 , c)))

+O((m − n)h) ≤ O(m1+εnθ+ε+1h1+ε) bit operations.

Step 3: Projecting W and Finding the Initial Redundancy Test Cone.
Following Lemma 5, we obtain a representation of proj(W ; {v, v0}) through find-
ing extreme rays of the corresponding projection cone.

Let E = (−A2A
−1
1 )t ∈ Qn×(m−n) and gt be the last m − n elements of

(A−1
0 c)t. Then, the projection cone can be represented by:

C = {y ∈ Qm+1 | yt

⎛
⎜⎝

E

gt

Im−n

⎞
⎟⎠ = 0,y ≥ 0}.

Note that yn+2, . . . , ym+1 can be solved from the system of equations in the
representation of C. We substitute them in the inequalities and obtain a repre-
sentation of the cone C ′, given by:

C ′ = {y′ ∈ Qn+1 | y′t
(

E

gt

)
≤ 0,y′ ≥ 0}

In order to find the extreme rays of the cone C, we can find the extreme
rays of the cone C ′ and then back-substitute them into the equations to find
the extreme rays of C. Applying the double description algorithm to C ′, we
can obtain all extreme rays of C ′, and subsequently, the extreme rays of C.
The cost estimate of this step is bounded over by the complexity of the dou-
ble description algorithm with C ′ as input. This operation requires at most
C2 := O(mn+3(n + 1)θ+ε max(height(E,gt))1+ε) ≤ O(mn+3+ε(n + 1)θ+εh1+ε)
bit operations. The overall complexity of the algorithm can be bounded over by:
C1+C2 ≤ O(mn+3+ε(n+1)θ+εh1+ε). Also, by Lemma 8 and Lemma 9, we know
that the cone C has at most O(m�n+1

2 �) distinct extreme rays, each with height
no more than O(mεn2+εh). That is, proj(W 0; {v, v0}) can be represented by at
most O(m�n+1

2 �) inequalities, each with a height bound of O(mεn2+εh).

Lemma 11. Algorithm 3 runs within O(m
n
2 nθ+εh1+ε) bit operations.

Proof. The first step is to multiply the matrix M and the vector (t, t0).
Let dM and cM be the number of rows and columns of M , respectively.
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Thus, M ∈ QdM×cM . We know that M is the coefficient matrix of
proj(W 0, {v, v0}). Therefore, after eliminating p variables cM = q + 1, where
q = n − p and dM ≤ m

n
2 . Also, we have height(M) ∈ O(mεn2+εh). With

these specifications, the multiplication step and the rank computation step need
O(m

n
2 n2+εh1+ε) and O(m

n
2 (q + 1)θ+εh1+ε) bit operations, respectively. The

claim follows after simplification.

Using Algorithms 2 and 3, we can find the minimal projected representation
of a polyhedron in singly exponential time w.r.t. the number of variables n.

Theorem 5. Algorithm 4 is correct. Moreover, a minimal projected representa-
tion of Q can be produced within O(m

5n
2 nθ+1+εh1+ε) bit operations.

Proof. The correctness of the algorithm follows from Theorem 4 and Lemma 7.
By [24,29], we know that after eliminating p variables, the projection of the

polyhedron has at most mp+1 facets. For eliminating the next variable, there will
be at most (mp+1

2 )2 pairs of inequalities to be considered and each of the pairs
generate a new inequality which should be checked for redundancy. Therefore,
the overall complexity of the algorithm is:

O(mn+3+ε(n + 1)θ+εh1+ε) +
n∑

p=0

m2p+2O(m
n
2 nθ+εh1+ε) = O(m

5n
2 nθ+1+εh1+ε).

6 Experimentation

In this section we report on our software implementation of the algorithms pre-
sented in the previous sections. Our implementation as well as our test cases are
part of the BPAS library, available at http://www.bpaslib.org/.

We report on serial and parallel implementation of the Minimal Projected
Representation (MPR) algorithm. Comparing with the Project command of
the PolyhedralSets package of Maple 2017 and the famous CDD library (ver-
sion 2018), we have been able to solve our test cases more efficiently. We believe
that this is the result of using a more effective algorithm and an efficient imple-
mentation in C.

As test cases we use 16 consistent linear inequality systems. The first 9 test
cases, (t1 to t9) are linear inequality systems that are randomly generated. The
systems S24 and S35 are 24-simplex and 35-simplex polytopes. The systems C56
and C510 are cyclic polytopes in dimension five with six and ten vertices, The
system C68 is a cyclic polytope in dimension six with eight vertices, C1011 is
cyclic polytope in dimension ten with eleven vertices, and, Cro6 is the cross
polytope in 6 dimension [22]. The test column of Table 1 shows these systems
along with the number of variables and the number of inequalities for each of
them.

We implemented the MPR algorithm with two different approaches: one iter-
ative following closely Algorithm 4, and the other reorganizing that algorithm by
means of a divide and conquer scheme. In both implementations, we use a dense

http://www.bpaslib.org/
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representation for the linear inequalities. In the first approach, we use unrolled
linked lists to encode linear inequality systems. Indeed, using this data structure,
we are able to store an array of inequalities in each node of a linked list and we
can improve data locality. However, we use simple linked lists in the divide and
conquer version to save time on dividing and joining lists. Although both these
approaches have shown quite similar and promising results in terms of running
time, we anticipate to get better results if we combine unrolled linked lists with
the divide and conquer scheme while using a varying threshold for recursion as
the algorithm goes on.

Columns MPR-itr and MPR-rec of the Table 1 give the running time (in mil-
liseconds) of these implementations on a configuration with an Intel-i7-7700T
CPU (4 cores, 8 threads, clocking at 3.8 GHz). Also, columns CDD, Maple,
and Maple-MPR are corresponding to running times of the Fourier algorithm
in the CDD library, which uses LP for redundancy elimination, the function
PolyhedralSets:-Project of Maple, and, an implementation of our algorithm
in the Maple programming language, on the same system, respectively.

Table 1. Running time (in milliseconds) table for a set of examples, varying in the
number of variables and inequalities, collected on a system with Intel-i7-7700T 4-core
processor, clocking at 3.8 GHz.

Test (var, ineq) MPR-itr MPR-rec CDD Maple Maple-MPR

S24 (24,25) 46 41 411 6485 3040

S35 (35,36) 205 177 2169 57992 9840

Cro6 (6,64) 28 29 329 246750 8610

C56 (5,6) 1 1 13 825 140

C68 (6,16) 4 4 866 20154 650

C1011 (10,11) 95 92 >1h >1h >1h

C510 (5,42) 23 22 7674 6173 6070

T1 (5,10) 7 7 142 7974 1400

T2 (10,12) 109 112 122245 3321217 13330

T3 (7,10) 26 26 8207 117021 2900

T4 (10,12) 368 370 1177807 >1h 26650

T5 (5,11) 7 7 75 8229 1650

T6 (10,20) 26591 26156 >1h >1h >1h

T7 (9,19) 162628 158569 >1h >1h >1h

T8 (8,19) 21411 20915 >1h >1h >1h

T9 (6,18) 1281 1263 77372 >1h 267920

Using the divide and conquer scheme, we have been able to parallelize our
program, with Cilk [5]. We call this algorithm Parallel Minimal Projected Rep-
resentation (PMPR). Table 2 presents the running time (in milliseconds) and
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speedup of the multi-core version of the algorithm. The columns PMPR-1, PMPR-
4, PMPR-8, and, PMPR-12 demonstrate the running time of the multi-core program
on a system with Intel-Xeon-X5650 (12 cores, 24 threads, clocking at 2.6 GHz),
using 1, 4, 8, and 12 Cilk workers, respectively. The numbers in brackets show
the speedup we gain using multi-threading.

Table 2. Running time (in milliseconds) table for our set of examples, with different
number of Cilk workers, collected on a system Intel-Xeon-X5650 and 12 CPU cores,
clocking at 2.6GHz.

Test PMPR-1 PMPR-4 PMPR-8 PMPR-12

S24 67 71 (0.9 x) 73 (0.9 x) 83 (0.8 x)

S35 291 308 (0.9 x) 310 (0.9 x) 375 (0.7 x)

Cro6 54 45 (1.2 x) 36 (1.5 x) 34 (1.5 x)

C56 2 3 (0.6 x) 3 (0.6 x) 12 (0.1 x)

C68 8 7 (1.1 x) 7 (1.1 x) 19 (0.4 x)

C1011 176 62 (2.8 x) 47 (3.7 x) 53 (3.3 x)

C510 38 33 (1.1 x) 34 (1.1 x) 40 (0.9 x)

T1 13 8 (1.6 x) 9 (1.4 x) 17 (0.7 x)

T2 205 67 (3.0 x) 55 (3.7 x) 57 (3.5 x)

T3 48 20 (2.4 x) 18 (2.6 x) 20 (2.4 x)

T4 685 207 (3.3 x) 141 (4.8 x) 126 (5.4 x)

T5 14 9 (1.5 x) 10 (1.3 x) 11 (1.2 x)

T6 44262 12995 (3.4 x) 6785 (6.5 x) 5163 (8.5 x)

T7 282721 78176 (3.6 x) 48048 (5.8 x) 35901 (7.8 x)

T8 41067 10669 (3.8 x) 5689 (7.2 x) 4471 (9.1 x)

T9 2407 742 (3.2 x) 491 (4.8 x) 448 (5.3 x)

7 Related Works and Concluding Remarks

As we previously discussed, removing redundant inequalities during the exe-
cution of Fourier-Motzkin Elimination is the central issue towards efficiency.
Different algorithms have been developed to solve this problem. They also have
been implemented in the various software libraries, including but not limited to:
CDD[17], VPL[7], PPL[1], Normaliz[9], PORTA[13], and Polymake[20] In this section,
we briefly review some of these works.

In [11], Chernikov proposed a redundancy test with little added work, which
greatly improves the practical efficiency of Fourier-Motzkin Elimination. Kohler
proposed a method in [29] which only uses matrix arithmetic operations to test
the redundancy of inequalities. As observed by Imbert in his work [24], the
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method he proposed in his paper as well as those of Chernikov and Kohler are
essentially equivalent. Even though these works are effective in practice, none
of them can remove all redundant inequalities generated by Fourier-Motzkin
Elimination.

Besides Fourier-Motzkin Elimination, block elimination is another algorith-
mic tool to project polyhedra on a lower dimensional subspace. This method
relies on the extreme rays of the so-called projection cone. Although there exist
efficient methods to enumerate the extreme rays of this projection cone, like the
double description method [18] (also known as Chernikova’s algorithm [12,30]),
this method can not remove all the redundant inequalities.

In [2], Balas shows that if certain inconvertibility conditions are satisfied,
then the extreme rays of the redundancy test cone exactly defines a minimal
representation of the projection of a polyhedron. As Balas mentioned in his
paper, this method can be extended to any polyhedron.

A drawback of Balas’ work is the necessity of enumerating the extreme rays
of the redundancy test cone (so as to produce a minimal representation of the
projection proj(Q;x)) which is time consuming. Our algorithm tests the redun-
dancy of the inequality ax ≤ c by checking whether (a, c) is an extreme ray of
the redundancy test cone or not.

Another related topic to our work is the concept of subsumption cone,
as defined in [23]. Consider the polyhedron Q given in Eq. (2), define T :=
{(λ, α, β) | λtA = αt, λtc ≤ β, λ ≥ 0}, where λ and α are vectors of dimen-
sion m and n respectively, and β is a variable. The subsumption cone of Q is
obtained by eliminating λ in T , that is, proj(T ; {α, β}). We proved that con-
sidering a full-dimensional, pointed polyhedron, where the first n rows of the
coefficient matrix are linearly independent, the initial redundancy test cone and
the subsumption cone are equivalent.

Given a V-representation of a polyhedron P , one can obtain the V-repre-
sentation of any projection of P 2. The double description method turns the
V-representation of the projection to its H-representation. Most existing soft-
ware libraries dealing with polyhedral sets store a polyhedron with these two
representations, like the Parma Polyhedra Library (PPL) [1]. In this case, it
is convenient to compute the projection using the block elimination method.
When we are only given the H-representation, the first thing is to compute the
V-representation, which is equivalent to the procedure of computing the initial
test cone in our method. When we need to perform successive projections, it
is well-known that Fourier-Motzkin Elimination performs better than repeated
applications of the double description method.

Recently, the verified polyhedron library (VPL) [7] takes advantage of para-
metric linear programming to project a polyhedron. Like PPL, VPL may not
beat Fourier-Motzkin Elimination when we need to perform successive projec-
tions. In VPL, the authors rely on raytracing to remove redundant inequali-
ties. This is an efficient way of removing redundancies, but this cannot remove

2 For example, P is generated by {(1, 2, 3, 4)t, (2, 3, 4, 5)t, (2, 3, 7, 9)t}, the projection
of P onto the last two coordinates is generated by {(3, 4)t, (4, 5)t, (7, 9)t}.
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them all, thus Linear Programming (LP) is still needed. As pointed out in [31],
raytracing is effective when there are not many redundancies; unfortunately,
Fourier-Motzkin Elimination typically generates lots of redundancies.

Another modern library dealing with polyhedral sets computation is the Nor-
maliz library [9]. In this library, Fourier-Motzkin Elimination is used for conver-
sion between different descriptions of polyhedral sets. This is a different strategy
than the one of our paper. As discussed in the introduction, we are motivated
here by performing successive projections as required in the analysis, scheduling
and transformation of for loop nests of computer programs.
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