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Abstract. The eikonal equation links wave optics to ray optics. In the
present work, we show that the eikonal equation is also valid for an
approximate description of the phase of vector fields describing guided-
wave propagation in inhomogeneous waveguide structures in the adia-
batic approximation. The main result of the work was obtained using the
model of adiabatic waveguide modes. Highly analytical solution proce-
dure makes it possible to obtain symbolic or symbolic-numerical expres-
sions for vector fields of guided modes. Making use of advanced computer
algebra systems, we describe fundamental properties of adiabatic modes
in symbolic form. Numerical results are also obtained by means of com-
puter algebra systems.
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1 Introduction

Vector problems of electrodynamics usually require significant computational
resources and are studied using various numerical methods, such as the finite-
difference time-domain (FDTD) or Yee’s method, finite element method (FEM),
incomplete Galerkin method (IGM) or Kantorovich method, as well as their
combinations.

1.1 Purely Numerical Methods

Finite-Difference Methods. Completely numerical methods, e.g., FDTD
[1–3] and other finite-difference methods, begin from discretization of the
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continuous variables of the problem and, thereby, offer no possibility of ana-
lyzing solutions at the level of symbolic expressions from the very first step.

Finite-difference methods are universal and suitable for the widest class of
problems – both linear and nonlinear problems are approximated by finite-
difference analogues. However, the price to pay for this versatility is the sig-
nificant expenditure of computer resources, especially if the object is extended
and nonuniform in one or several spatial directions. The success of such methods
is directly related to the availability of large computing power.

Finite Element Methods. Finite element methods as well as finite-difference
methods are applicable to a wide class of problems [4–6]. Although the solution
is represented as a functional dependence, this dependence only ensures smooth-
ness of the solution rather than reflects its physical properties. Due to their
versatility, finite element methods are also dependent on computing power.

1.2 Symbolic-Numerical Methods

Galerkin and Kantorovich Methods. In solving electrodynamic problems,
there is an “intermediate” class of methods that represent the approximate solu-
tion as an expansion in a system of basis functions. The expansion coefficients
can be constants (in the classical Galerkin method [12,13]) or functions of one
or several spatial variables (in the Kantorovich method [7,8] and in the incom-
plete Galerkin method [9–11]). The system of functions in which the solution is
expanded must be complete in the functional space to which the desired solution
should belong, and some additional conditions (e.g., matching, smoothness, etc.).

As a rule, a fortunate choice of basis functions allows solving the problem
with sufficient accuracy even keeping a small number of expansion terms.

The main advantages of this “mixed” approach are:

1. Saving computing resources. The initial problem for multidimensional partial
differential equations is reduced at a symbolic level to a system of ordinary
differential equations (ODE) with initial or boundary conditions. The problem
for the ODE system is solved in reasonable time on a personal computer.

2. Representation of results in the form of symbolic expressions allows a more
detailed analysis and provides greater clarity of their physical meaning.

Model of Adiabatic Waveguide Modes. We used the symbolic-numerical
approach to develop the adiabatic waveguide modes (AWM) method based on
the model of adiabatic waveguide modes described in Refs. [14,15].

In Ref. [15], a symbolic form of the adiabatic waveguide modes in an arbitrary
homogeneous layer of a multilayer waveguide was derived, basing on which it is
possible to construct waveguide modes of multilayer smoothly-irregular waveg-
uide structures. With further use of the symbolic-numerical approach, these
modes can serve as a basis for Kantorovich decomposition.
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1.3 Formulation of the Problem

The problem of finding the phase of a waveguide mode in a regular waveguide
(by the example of a three-layer regular waveguide) was considered and numer-
ically solved in [15]. This problem reduces to finding zeros of the characteristic
determinant of the matrix of boundary equations, which yields the phase decel-
eration coefficients of the guided modes βj . The phase of each of the guided
modes ϕj (z) is trivially determined given the phase deceleration coefficient:
ϕj (z) = βj (z − z0) + ϕ0, where ϕ0 is the initial phase, corresponding to z = z0.

The next stage of the study is to formulate the problem of finding the phase
of an adiabatic waveguide mode in an irregular waveguide (by the example of a
four-layer waveguide with one irregular layer) and to solve it numerically. In this
case the presence of a layer with variable thickness violates the linear behaviour
of the phase, so that if the layer irregularity depends on both y and z, the phase
will also be a function of y and z.

The formulation of this problem and the development of an approximate
method for solving it is the subject of the present paper. As an irregular struc-
ture, we consider the Luneburg waveguide lens, which is a three-layer regular
waveguide with a fourth layer having variable thickness depending on y and z.

The structure choice was not accidental: it is an object rather complicated
for modeling, however, its basic properties are known from physical experiments.
So, we will carry out numerical calculations using the example of a Luneburg
waveguide lens.

2 Methods and Approaches

2.1 AWM Model, the Form of the Solution

The AWM model approximately describes the guided modes in smoothly-irreg-
ular waveguide structures (for details see Section 2 of Ref. [15]). In this study
without loss of generality, a four-layered structure will be considered.

The AWM model makes use of the asymptotic method [16], in which elec-
tromagnetic fields are presented in the form [15]:

�E (x, y, z, t) =
∞∑

s=0

�Es (x; y, z)
(−iω)γ+s exp {iωt − ik0ϕ (y, z)} , (1)

�H (x, y, z, t) =
∞∑

s=0

�Hs (x; y, z)
(−iω)γ+s exp {iωt − ik0ϕ (y, z)} , (2)

where k0 is the wavenumber, ϕ (y, z) is the phase, and �Es (x; y, z), �Hs (x; y, z)
determine the amplitude of the s-th order. In the notation of �Es (x; y, z),
�Hs (x; y, z) the separation of x by a semicolon means the following assumption:
∂ �Es/∂y, ∂ �Es/∂z, ∂ �Hs/∂y, ∂ �Hs/∂z are small quantities.
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In other words, the following expressions for the derivatives are valid:

∂ �E

∂y
= −ik0ϕy

�E,

∂ �E

∂z
= −ik0ϕz

�E,

and the analogous expressions:

∂ �H

∂y
= −ik0ϕy

�H,

∂ �H

∂z
= −ik0ϕz

�H,

in which ϕy and ϕz are partial derivatives of ϕ (y, z) in y and z, respectively.

2.2 AWM Model. Reduction of Maxwell Equations

The Maxwell equations in the zero order (s = 0) of the asymptotic expansion
reduce to a system of ordinary differential equations of the first order [15]:

∂�u

∂x
+ A (x, y, z) �u = �0, (3)

and two additional relations

E0
x =

1
ε

(
ϕzH

0
y − ϕyH0

z

)
, (4)

H0
x = − 1

μ

(
ϕzE

0
y − ϕyE0

z

)
, (5)

where the desired vector function �u (x; y, z) consists of the variables

�u (x; y, z) =
(
E0

y H0
z H0

y E0
z

)T

that describe the distribution of the appropriate field components along the
x-axis at each point (y, z). Matrix A is defined as follows [15]

A (x, y, z) =

⎛

⎜⎜⎜⎜⎝

0 − ik0ϕ2
y

ε + ik0μ
ik0ϕyϕz

ε 0
− ik0ϕ2

z

μ + ik0ε 0 0 ik0ϕyϕz

μ

− ik0ϕyϕz

μ 0 0 ik0ϕ2
y

μ − ik0ε

0 − ik0ϕyϕz

ε
ik0ϕ2

z

ε − ik0μ 0

⎞

⎟⎟⎟⎟⎠
(6)

where ε = ε (x, y, z) and μ = μ (x, y, z) are the piecewise constant permittivity
and permeability, respectively.
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2.3 AWM Model. Reduction of Boundary Conditions for Maxwell
Equations

At the discontinuity surfaces of ε = ε (x, y, z) and μ = μ (x, y, z) the match-
ing conditions must be satisfied that follow from the boundary conditions for
Maxwell equations. For planar boundaries x = c (c = const) the tangential com-
ponents E0

y ,H0
z ,H0

y , E0
z must be continuous, i.e., in vector notation [15],

[�u]|x=c = �0, (7)

where [�u]|x=c = �u|x=c−0 − �u|x=c+0 is the jump of vector function �u at the point
x = c. For curved boundaries x = h (y, z) the continuity conditions [15]

[�u + V �u]|x=h(y,z) = �0, (8)

must be fulfilled, where matrix V has the following form:

V =

⎛

⎜⎜⎜⎝

0 hyϕy

ε −hyϕz

ε 0
−hzϕz

μ 0 0 hzϕy

μ
hyϕz

μ 0 0 −hyϕy

μ

0 −hzϕy

ε
hzϕz

ε 0

⎞

⎟⎟⎟⎠ , (9)

where hy and hz are partial derivatives of h (y, z) in y and z, respectively.
Guided modes correspond to electromagnetic fields that satisfy the asymp-

totic conditions [17]
‖�u‖ −−−−−→

x→±∞ 0. (10)

2.4 AWM Model. The Approximation of “Horizontal” Boundary
Conditions

At first let us restrict ourselves to the approximation of “horizontal” bound-
ary conditions (7), which will play the role of zero-order approximation to the
boundary conditions (8) with respect to the small parameter ν at

ν = ‖V ‖ � 1, (11)

where ‖V ‖ = max
i,j

{|vi,j |}.

Remark. Relation (11) is valid if any of the quantities hyϕy, hyϕz, hzϕy and
hzϕz is small in absolute value. In the AWM model the smoothly irregular
structures are considered, for which hy, hz are small. Hence, ν is not small only
when the quantities ϕy and ϕz (or at least one of them) are much greater than
unity. Therefore, the principal aspect of the considered approximation is the
estimation of smallness of ν, which will be performed a posteriori in the course
of numerical calculations.
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2.5 AWM Model. Setting of the Problem for the Current Study

In Ref. [15], system (3) is solved in the symbolic form for constant ε, μ, which
offers a possibility of solving the system (3) for piecewise constant ε, μ. Given
the general solution of the system (3) in each domain of constant ε, μ and the
matching conditions (7) for the boundaries between these domains, using the
conditions (10) for unlimited domains of constant ε, μ, we derive a homogeneous
system of equations. The unknowns in this system are coefficients at the func-
tions of the fundamental system of solutions in each domain of constant ε, μ.
The determinant of this system should be zero to ensure the existence of a non-
trivial solution.

In the layer number α with constant permittivity and permeability ε = εα,
μ = μα the solution of the system of differential Eq. (3) has the form [15]

�uα (x; y, z) = Aα

⎛

⎜⎜⎝

qα

−iεαηα

0
ϕyϕz

⎞

⎟⎟⎠ eγαx + Bα

⎛

⎜⎜⎝

−iμαηα

pα

ϕyϕz

0

⎞

⎟⎟⎠ eγαx+

+ Cα

⎛

⎜⎜⎝

qα

iεαηα

0
ϕyϕz

⎞

⎟⎟⎠ e−γαx + Dα

⎛

⎜⎜⎝

iμαηα

pα

ϕyϕz

0

⎞

⎟⎟⎠ e−γαx,

(12)

where qα = ϕ2
y − εαμα, pα = ϕ2

z − εαμα, ηα =
√

ϕ2
y + ϕ2

z − εαμα, γα = k0ηα,

and Aα, Bα, Cα,Dα are indefinite constants at each point (y, z).
In this study, using the computer algebra system, we formulate an approx-

imate problem of computing the coefficient of phase deceleration in a general
case of a smoothly irregular four-layer structure by an example of the Luneburg
waveguide lens.

To present the problem in symbolic form, we consider a four-layer waveguide
structure with one layer of variable thickness, which is characterized by the
following permittivity and permeability:

ε =

⎧
⎪⎪⎨

⎪⎪⎩

εc, x > h2 (y, z)
εl, h1 < x < h2 (y, z)
εf , 0 < x < h1

εs, x < 0

, μ =

⎧
⎪⎪⎨

⎪⎪⎩

μc, x > h2 (y, z)
μl, h1 < x < h2 (y, z)
μf , 0 < x < h1

μs, x < 0

(13)

The symbolic representation of the solution �uα (x; y, z) in each layer α =
s, f, l, c is known (see (12)). This allows writing down a symbolic representation
of the characteristic matrix of boundary conditions in the zero-order approxima-
tion with respect to ν, i.e., the conditions (7) at the boundaries x = 0, x = h1

and x = h2 (y, z). Using standard Maple [18] commands subs, expand and
simplify, we derive a system of boundary equations based on the solutions
�uα (x; y, z) and the boundary conditions. In each of the four layers, the solution
comprises four indefinite constants (see (12)), while the boundary conditions at
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three boundaries x = 0, x = h1 and x = h2 (y, z) yield only 12 equations. The
other 4 equations follow from asymptotic conditions (10).

The resulting system of equations at any fixed (y, z) is a system of linear
algebraic homogeneous equations having the form

M∗ (y, z, ϕy, ϕz) �C = �0, (14)

where M∗ is the matrix of coefficients generally dependent on both y, z and
partial derivatives of the sought function ϕy, ϕz; �C is a vector composed of the
indefinite coefficients Aα, Bα, Cα and Dα looked for. System (14) has a nontrivial
solution if and only if

det M∗ (y, z, ϕy, ϕz) = 0. (15)

Equation (15) is a nonlinear partial differential equation of the first order. It
is convenient to solve this equation using the method of characteristics, which
reduces the initial nonlinear partial differential equation to a system of ordinary
differential equations for the characteristics [19].

Thus, the sought phase of the adiabatic waveguide mode ϕ (y, z) must satisfy
the nonlinear Eq. (15), which can be explicitly written only after calculating the
determinant in a symbolic form.

Remark. Symbolic calculation of a 12 × 12 determinant is possible only using
the libraries of symbolic transformations. The authors make use of Maple system
for this purpose.

Before calculating the determinant (15), we performed symbolic transforma-
tions to simplify the elements of matrix M∗ specified symbolically. As a result
of symbolic simplifications, problem (15) reduces to two problems:

1. Finding zeros of the determinant of the reduced matrix for the considered
domain of (y, z), or, in other words, solving the non-linear equation
det M

(
y, z, β2 (y, z)

)
= 0 (where β2 (y, z) = ϕ2

y + ϕ2
z) and finding desired

β2 (y, z) for each (y, z) from the considered domain;
2. Subsequent solution of the reduced nonlinear differential equation with the

right-hand side calculated at Step 1: ϕ2
y + ϕ2

z = β2 (y, z).

Problem 1 was solved using the function Determinant of the Maple package
LinearAlgebra. The zeros of determinant were approximately found using the
classical bisection method [20].

Remark. A specific feature of waveguide problems is that the localizing a zero of
the determinant within an interval of 10−15 one has to deal with the values of the
determinant itself of the order of 1030. Therefore, in the numerical calculations
we used the numbers with enlarged mantissa by setting Digits := 30.

Problem 2 was solved by the method of characteristics [19] using the com-
mand charstrip from the library PDETools [18], which allows getting a system
of ordinary differential equations for characteristics from a nonlinear first-order
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partial differential equation. This system complemented with the initial condi-
tions was solved numerically using a Fehlberg fourth-fifth-order Runge-Kutta
method with degree four interpolant – rkf45 – with the parameter, determining
the relative error relerr = 10−12 [18]. The method is implemented in Maple in
a symbolic-numerical form.

2.6 Numerical Experiment. Verification

To verify the implemented method we consider the waveguide Lunenburg lens
of the radius R, designed to focus the waveguide mode TE0 at the distance
F = 2R. Within the frameworks of the AWM in the zero-order approximation
with respect to ν � 1 (approximation of “horizontal” boundary conditions) the
problem of finding the phase for different lens radii (from 102 to 104 wavelengths)
was solved. Besides, we estimated a posteriori the order of ν for the same lens
radii to determine the range of validity of the approximation of “horizontal”
boundary conditions.

As the initial data we took the parameters of the Luneburg lens designed by
Konstantin Lovetskiy [21] using the method of cross sections, the initial data for
which were provided by the solution of the Morgan equation [22].

3 Results

3.1 Results Obtained in Symbolic Form

We consider the four-layer waveguide structure, formed by a three-layered waveg-
uide on which the fourth layer of variable thickness is deposited, sufficiently
extended in the plane yOz to ensure the conditions |∂h2/∂y| � 1, |∂h2/∂z| � 1.

Using the Maple toolkit, we write the boundary equations of the AWM model
in the zero-order approximation with respect to ν � 1 in a symbolic form.

The Main Result. In the zero-order approximation with respect to ν � 1
(the approximation of “horizontal” boundary conditions) the phase ϕ (y, z) in
the AWM model satisfies the eikonal equation

ϕ2
y + ϕ2

z = β2 (y, z) , (16)

where β2 (y, z) is the square of the phase deceleration coefficient.

Appendix. The quantity β2 (y, z) is determined as a root of the equation

det M
(
y, z, β2 (y, z)

)
= 0, (17)

where the 8 × 8 matrix M is defined as

M =
(

M11 M12

M21 M22

)
, (18)
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Fig. 1. Structure of the irregular four-layer waveguide (additional waveguide layer has
variable thickness d = h2 (y, z) − h1)

where

M11 =

⎛

⎜⎜⎝

θs iηfμf − iηsμs θs −iηfμf − iηsμs

iηfεf − iηsεs θs −iηfεf − iηsεs θs

θfeγf h1 −ieγf h1ηfμf θfe−γf h1 ie−γf h1ηfμf

−ieγf h1ηfεf θfeγf h1 ie−γf h1ηfεf θfe−γf h1

⎞

⎟⎟⎠ , (19)

M12 =

⎛

⎜⎜⎝

0 0 0 0
0 0 0 0
0 ie−γldηlμl 0 −ieγldηlμl

ie−γldηlεl 0 −ieγldηlεl 0

⎞

⎟⎟⎠ , (20)

M21 =

⎛

⎜⎜⎝

eγf h1 0 e−γf h1 0
0 eγf h1 0 e−γf h1

0 0 0 0
0 0 0 0

⎞

⎟⎟⎠ , (21)

M22 =

⎛

⎜⎜⎝

−e−γld 0 −eγld 0
0 −e−γld 0 −eγld

θc iηcμc + iηlμl θc iηcμc − iηlμl

iηcεc + iηlεl θc iηcεc − iηlεl θc

⎞

⎟⎟⎠ (22)

and ηα =
√

β2 (y, z) − εαμα, d = h2 (y, z)−h1, θc = εlμl−εcμc, θf = εlμl−εfμf ,
θs = εfμf − εsμs.



Study of Geometric Properties of Adiabatic Waveguide Modes 237

3.2 Results Obtained Numerically

To verify the result obtained we consider the Luneburg waveguide lens designed
to focus the waveguide mode TE0 at length F = 2R, where R is the waveguide
lens radius.

We consider the guided mode TE0, propagating in a three-layer waveguide
from z = −∞ (see Fig. 1) in the positive direction of the z-axis with the phase
ϕ0 (z) = β0 (z + R), where β0 is the coefficient of phase deceleration. At z = −R
the mode enters the waveguide lens. The phase in this domain satisfies the eikonal
Eq. (16), which is to be solved.

Initial Data: The wavelength λ = 0.55 [μm]; the wavenumber k0 =
2π/λ

[
μm−1

]
; the waveguide lens radius R = 103λ; the thickness of the main

waveguide layer h1 = 2λ; the coating and the substrate in the model are
semi-infinite; the variable thickness of the additional waveguide layer is defined
as d (y, z) = h2 (y, z) − h1. Due to the cylindrical symmetry of the lens,
h2 (y, z) = h (r)|

r=
√

y2+z2/R
, the plot of h (r) is shown in Fig. 2; the permittivi-

ties of the materials are εc = 1, εf = 2.449225, εl = 3.61, εs = 2.1609, and their
permeabilities are μc = μf = μl = μs = 1; the coefficient of phase deceleration
of the mode TE0 of the three-layer waveguide is β0 ≈ 1.55149273806929012586.

Fig. 2. The upper boundary of the additional waveguide layer

Numerical Results. The variable thickness d (y, z) of the additional waveguide
layer corresponds to the function β2 (y, z) that determines the square of the phase
deceleration coefficient at the point (y, z), presented in Fig. 3.

The characteristics of the eikonal equation with the right-hand side β2 (y, z)
(shown in Fig. 3) are presented in Fig. 4 by the projections of the characteristics
on the plane yOz, which we will refer to as rays, and in Fig. 5 by the integral
surface ϕ (y, z) of the eikonal Eq. (16), composed of the family of integral curves.

Remark. The calculations for lenses with radii R = 102λ, 103λ, 104λ yield
seemingly similar results (like in Fig. 4, 5) differing only in the scale of the
considered domain.
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Fig. 3. Plot of β2 (y, z)

Fig. 4. Projections of characteristics on the yOz plane for the Luneburg lens with
R = 103λ, F = 2R
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Fig. 5. Integral surface of the phase, composed of the family of integral curves for the
Luneburg lens with R = 103λ, F = 2R

Table 1. Lengths of the localization interval of the ray crossing point and apertures
for different lens radii

R |IF | , μm |IF | /F A/R, %

102λ 1.53 × 10−3 1.39 × 10−5 93.8

103λ 1.78 × 10−2 1.62 × 10−5 97.9

104λ 1.54 × 10−1 1.40 × 10−5 98.8

The crossing points of all calculated rays passed through the lens are localized
in the interval IF = [zmin ; zmax]. In Table 1 for R = 102λ, 103λ, 104λ we
present the calculated interval lengths |IF | = zmax − zmin, as well as |IF | /F ,
where F = 2R. For each R = 102λ, 103λ, 104λ we also present the limit value
of A/R in percent, where the rays, coming from the points −A ≤ z ≤ A cross
among themselves, while the rays coming from the points z > A and z < −A
are parallel to the z-axis.

We also calculate the discrepancy of the eikonal equation

δabs = max
∣∣ϕ2

y + ϕ2
z − β2 (y, z)

∣∣ ,

δrel = max
{∣∣ϕ2

y + ϕ2
z − β2 (y, z)

∣∣ /
∣∣β2 (y, z)

∣∣}

along the rays, where ϕy and ϕz are found approximately using the method of
characteristics (Table 2).

The calculated values of max |ϕyhy| ,max |ϕzhy| ,max |ϕyhz| and max |ϕzhz|
are summarized in Table 3.
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Table 2. Discrepancy of the eikonal equation

R δabs δrel

102λ 9.95 × 10−6 4.11 × 10−6

103λ 7.69 × 10−6 3.19 × 10−6

104λ 7.34 × 10−6 3.00 × 10−6

Table 3. Calculated values of max |ϕyhy| , max |ϕzhy| , max |ϕyhz| and max |ϕzhz|

R max |ϕyhy| max |ϕzhy| max |ϕyhz| max |ϕzhz|
102λ 1.79 × 10−3 7.36 × 10−2 3.97 × 10−2 1.19 × 100

103λ 1.79 × 10−4 7.36 × 10−3 3.97 × 10−3 1.19 × 10−1

104λ 1.79 × 10−5 7.36 × 10−4 3.97 × 10−4 1.19 × 10−2

4 Discussion

4.1 Symbolic Results

In this paper, we investigate the AWM model [14,15] in the zeroth order of
the asymptotic method using the approximation of “horizontal” boundary con-
ditions. The latter is important from a physical point of view, since it allows
comparing the AWM model calculations with the results of the cross-sectional
method [21,23,24], which also makes use of “horizontal” boundary conditions.

In waveguide problems, the system of boundary equations plays an important
role, because its solution determines the phase of the guided modes and the
constants for their further numerical construction.

A symbolic-calculation study of the system of boundary equations (in the
zeroth approximation with respect to the parameter ν) allowed simplifying the
form of the system at the symbolic level and reducing the problem in a form
convenient for numerical solution.

Instead of solving equation detM∗ (y, z, ϕy, ϕz) = 0, which is extremely diffi-
cult to analyze in the symbolic form (the matrix dimension in the general case is
12 × 12) we obtain symbolically the eikonal equation ϕ2

y + ϕ2
z = β2 (y, z), where

only the right-hand side is specified numerically. The quantity β2 (y, z) is speci-
fied numerically because it is a solution of the equation detM

(
y, z, β2 (y, z)

)
= 0,

where due to symbolic manipulations the initial system of boundary equations
with the 12 × 12 matrix M∗ is reduced to an equivalent system with the 8 × 8
matrix M (see. (18)–(22)). Moreover, the computer algebra tools allow deter-
mination of β2 (y, z) with enhanced accuracy, using the values with extended
number of decimal digits.

The eikonal equation links geometric optics to wave optics, and in the present
work its explicit derivation in the AWM model for the particular case of small ν
is important for geometric interpretation of the guided propagation of adiabatic
modes.
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Moreover, numerical experiments answer the question about the applicability
of the approximation of “horizontal” boundary conditions within the frameworks
of the AWM model.

4.2 Numerical Results

In numerical experiments we consider the waveguide Luneburg lens designed
to focus the radiation at the distance F = 2R, where R is the waveguide lens
radius. The calculated rays, passing through the lens, with sufficient accuracy
intersect in the focus point (see Fig. 4). The relative error is of the order of 10−5

(see Table 1, column 3) for the radii of the lens 102λ − 104λ.
In fact, the rays calculated using the AWM model with high accuracy cross

in the lens focus at any considered radii of the lens. It is important that the
calculations demonstrate that the greater the lens radius (see Table 1, column 4),
the greater is the lens aperture within the given accuracy. Thus, for the lens
radius 104λ the aperture amounts to 98.8%.

In other words, the greater the radius of the waveguide lens, the more exactly
the behavior of the rays close to the lens edges is described by the AWM model
in the approximation of “horizontal” boundary conditions.

The applicability of “horizontal” boundary conditions is largely determined
by the smallness of the parameter ν. Commonly ν is considered small if it is by
two orders of magnitude smaller than unity, i.e., if ν ∼ 10−2. By definition,
ν = ‖V ‖ = max {max |ϕyhy| ,max |ϕzhy| ,max |ϕyhz| ,max |ϕzhz|}. Table 3
presents the values of max |ϕyhy| ,max |ϕzhy| ,max |ϕyhz| and max |ϕzhz| cal-
culated along the rays. Only for the lens with the radius 104λ the parameter ν
is of the order of 10−2 and can be considered small.

From Table 3 it is also seen that the larger the radius of the waveguide lens,
the smaller the parameter ν. Therefore, for extended Luneburg lenses with R >
104λ the approximation of “horizontal” boundary conditions is likely to be valid.

The AWM model is formulated for smoothly irregular waveguide structures,
so that the approximation of “horizontal” boundary conditions is a natural first
step. However, this approximation does not describe the complete variety of
physical effects, e.g., the effect of mode hybridization. Note, that the AWM
model as such can describe vector fields without using the approximation of
“horizontal” boundary conditions. In this case it is necessary to solve the problem
det M∗ (y, z, ϕy, ϕz) = 0, to which the method of characteristics can be also
applied. An additional difficulty will consist in the necessity to calculate partial
derivatives of the determinant. This problem is also expected to be solved using
the computer algebra system that allows symbolic differentiation of cumbersome
expressions like a determinant.

In the present work, we solved only the problem of approximate determi-
nation of the phase. We did not set the problems of describing the field in the
waveguide lens completely and, what is of primary importance, of constructing
the field near the focal point, which is much more difficult.



242 D. V. Divakov et al.

The present study is focused at developing symbolic-numerical techniques for
phase determination. A necessary condition is the use of symbolic manipulations
with symbolic expressions, which allows the formulation of the main result.

The Maple option of numerical calculations using extended number of
decimal digits appears to be extremely important for solving ill-conditioned
problems.

All Maple programs created within the framework of the current study are
publicly available at the following link https://bitbucket.org/DmitriyDivakov/
waveguide-luneburg-lens/downloads/.

5 Conclusion

In this work, the eikonal equation is symbolically derived, governing the phase
of the adiabatic waveguide mode in the approximation of “horizontal” boundary
conditions. Based on numerical calculations, it was found that the approximation
of “horizontal” boundary conditions is valid for Luneburg waveguide lenses with
a radius of more than 104λ.

Potential applicability of the model of adiabatic waveguide modes to describ-
ing the electromagnetic field behavior in focusing problems is demonstrated,
which is of importance for modeling and design of waveguide lenses.

As the next step, it is planned to consider the same Luneburg waveguide
lens without using the approximation of “horizontal” boundary conditions in
the frameworks of the AWM model.
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