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Abstract. Tropical geometry ideas were developed by mathematicians
that got inspired from very different topics in physics, discrete mathe-
matics, optimization, algebraic geometry. In tropical geometry, tools like
the logarithmic transformation coarse grain complex objects, drastically
simplifying their analysis. I discuss here how similar concepts can be
applied to dynamical systems used in biological modeling. In particular,
tropical geometry is a natural framework for model reduction and for the
study of metastability and itinerancy phenomena in complex biochemical
networks.
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1 Introduction

Mathematical modelling of biological systems is a daunting challenge. In order
to cope realistically with the biochemistry of cells, tissues and organisms,
both in fundamental and applied biological research, systems biology mod-
els use hundreds and thousands of variables structured as biochemical net-
works [1,16,38]. Nonlinear, large scale network models are also used in neuro-
science to model brain activity [7,29]. Ecological and epidemiological modelling
cope with population dynamics of species organized in networks and interacting
on multiple spatial and temporal scales [2,28]. Mathematical models of complex
diseases such as cancer combine molecular networks with population dynam-
ics [5].

Denis Noble, a pioneer of multi-cellular modelling of human physiology, advo-
cated the use of middle-out approaches in biological modelling [23]. Middle-out
is an alternative to bottom-up, that tries to explain everything from detailed
first principles, and to top-down, that uses strongly simplified representations
of reality. A middle-out model uses just enough details to render the essence
of the overall system organization. Although this is potentially a very power-
ful principle, the general mathematical methods to put it into practice are still
awaited.

Recently, we have used tropical geometry to extract the essence of biologi-
cal systems and to simplify complex biological models [24,25,30,32,33]. Tropical
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geometry methods exploit a feature of biological systems called multiscale-
ness [11,35], summarized by two properties: i) the orders of magnitude of vari-
ables and timescales are widely distributed; and ii) at a given timescale, only a
small number of variables or components play a driving role, whereas large parts
of the system have passive roles and can be reduced.

Modellers and engineers reduce models by introducing ad hoc small param-
eters in their equations. After scaling of variables and parameters, singular
perturbations techniques such as asymptotic approximations, boundary lay-
ers, invariant manifolds, etc. can be used to cope with multiple time scales.
These techniques, invented at the beginning of the 20th century for problems in
aerodynamics and fluid mechanics [26] are also known in biochemistry under the
name of quasi-equilibrium and quasi-steady state approximations [10,12,13,36].
The reduction of the model in a singular perturbation framework is tradition-
ally based on a two time scales (slow and fast) decomposition: fast variables
are slaved by the slow ones and can therefore be eliminated. Geometrically,
this corresponds to fast relaxation of the system to a low dimensional invari-
ant manifold. The mathematical bases of the slow/fast decomposition were set
in [14,39,40] for the elimination of the fast variables, and in [8] for the existence
of a low dimensional, slow invariant manifold. However, the slow/fast decomposi-
tion is neither unique, nor constant; it depends on model parameters and can also
change with the phase space position on a trajectory. Despite of several attempts
to automatically determine small parameters and slow/fast decompositions, the
problem of finding a reduced model remains open. We can mention numerical
approaches such as Computational Singular Perturbations [18], or Intrinsic Low
Dimensional Manifold [21] that perform a reduction locally, in each point of the
trajectory. Notwithstanding their many applications in reactive flow and com-
bustion, these methods are simulation based and may not provide all the possible
reductions. Furthermore, explicit reductions obtained by post-processing of the
data generated by these numerical methods may be in conflict with more robust
approaches [33]. A computer algebra approach to determine small parameters
for the quasi-steady state reduction of biochemical models was proposed, based
on Gröbner bases calculations, but this approach is limited to models of small
dimension [9].

Perturbation approaches, both regular and singular, operate with orders of
magnitude. In such approaches, some terms are much smaller than others and
can, under some conditions, be neglected. Computations with orders of magni-
tudes follow maxplus (or, depending on the definition of orders, minplus) alge-
braic rules. The same rules apply to valuations, that are building blocks for
tropical geometry [22]. We developed tropical geometry methods to identify sub-
systems that are dominant in certain regions of the phase- and/or parameter-
space of dynamical systems [30,32]. Moreover, tropical geometry is a natural
approach to find the scalings needed for slow/fast decompositions and perform
model order reduction in the framework of geometric singular perturbation the-
ory. Scaling calculations are based on finding solutions of the tropical equili-
bration problem, which is very similar to computing tropical prevarieties [25].
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For such a problem we have effective algorithms that work well for medium size
biochemical models (10–100 species) [20,33,37].

Tropical approaches provide a timescale for each biochemical species or relax-
ation process and one generally has not only two but multiple timescales. This
situation is the rule rather than the exception in biology. For instance, cells or
organisms use multiple mechanisms to adapt to changes of their environment.
These mechanisms involve rapid metabolic or electrophysiological changes (sec-
onds, minutes), slower changes of gene expression (hours), and even slower muta-
tional genetic changes (days, months). Within each category, sub-mechanism
timescales spread over several log scale decades. We are using tropical approaches
also to cover such situations and obtain reductions for systems with more than
two timescales [17].

Interestingly, the dominance relations unravelled by tropical geometry can
highlight approximate conservation laws of biological systems, i.e. conserva-
tion laws satisfied by a dominant subsystem and not satisfied by the full system.
These approximate conservations are exploited for the simplification of biologi-
cal models [6]. Beyond their importance for model reduction, approximate con-
servations and tropical equilibrations can be used for computing metastable
states of biochemical models, defined as regions of very slow dynamics in phase
space [32,34,35]. Metastable states represent a generalization of the stable steady
states commonly used in analyzing biological networks [29]. A dynamical system
spends an infinite time in the neighbourhood of stable steady state, and a large
but finite time in the neighborhood of metastable states. In biology, both steady
and metastable states are important. The existence of metastable states leads
to a property of biological systems called itinerancy, meaning that the system
can pass from one metastable state to another one during its dynamics [15,29].
From a biological point of view itinerancy explains plasticity during adaptation,
occurring in numerous situations: brain functioning, embryo development, cellu-
lar metabolic changes induced by changes of the environment. The study of the
relation between the network structure and the metastable states is also a pos-
sible way to design dynamical systems with given properties. This is related to
the direction suggested by O.Viro at the 3rd European Congress of Mathematics
to use tropical geometry for constructing real algebraic varieties with prescribed
properties in the sense of Hilbert’s 16th problem [41,42].

2 Models of Biological Systems and Their Reductions

Chemical reaction networks (CRN) are bipartite graphs such as those repre-
sented in Fig. 1, where one type of node stands for chemical species and the
other for reactions. Although mainly designed for modelling cell biochemistry,
CRNs can also be used to describe interactions of the cell with its microen-
vironment in tissue models and also the population dynamics in compartment
models in ecology and epidemiology. When the copy numbers of all molecular
species are large, CRN dynamics is given by systems of ordinary differential
equations, usually with polynomial or rational right hand side. For instance, in
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the Michaelis–Menten model, an archetype of enzymatic reactions, the differen-
tial equations for the concentrations of relevant chemical species (substrate and
enzyme-substrate complex) have the form

dx1

dt
= −k1x1 + k2x1x2 + k3x2

dx2

dt
= k1x1 − k2x1x2 − (k3 + k4)x2, (1)

where k1, . . . , k4 are kinetic parameters.
The Michaelis–Menten model is already quite simple, however comprehensive

models of cell biochemistry can be very large. By model reduction one trans-
forms the system of differential equations into a system with less equations and
variables that have approximately the same solutions. The variables of the full
model missing in the reduced model should be also computable, for instance as
functions of the reduced model variables. For applications it is handy when not
only the full model but also the reduced model is a CRN, like in Fig. 1.

3 Tropical Geometry Approaches

In order to “tropicalize” biochemical networks, one replaces parameters and
species with orders of magnitude. This is performed by the change of variables

x �→ a = log(x)/ log ε,

where ε is a small, positive parameter.
This logarithmic change of variables defines a map Vε : R+ → R ∪ {−∞}. It

is easy to check that when ε → 0,

Vε(xy) = Vε(x) + Vε(y),
Vε(x + y) = min(Vε(x), Vε(y)).

This mapping transforms the semifield R+ into the semifield Rmin (or min-plus
algebra) where multiplication, addition, 0 and 1 become addition, multiplica-
tion, −∞ and 0, respectively. Furthermore, Vε(x) represents the order of magni-
tude of x and can express dominance relations, because when ε → 0

Vε(x) < Vε(y) =⇒ x >> y.

Tropicalizing a biochemical model consists of keeping in the r.h.s. of the ODEs
only the dominant terms and eliminating the other terms [24]. As can be seen in
the Fig. 2 for the Michaelis–Menten model, generically there is only one dominant
term, but there are special situations when more than two dominant terms exist.
We called tropical equilibration the situation when at least two dominant terms,
one positive and one negative exist [24]. Heuristically, the tropical equilibration
corresponds to compensation of dominant terms and to slow dynamics, whereas
the dynamics with uncompensated dominant terms is fast.
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Fig. 2. Analysis of dominant terms in the tropicalized Michaelis–Menten model for
k4 << k3. Each ODE corresponds to a tripod (tropical curve) made of three half-lines.
The lines where two monomial terms are dominant in each ODE form the tropical
prevariety (intersection of the two tropical curves). The solid half-lines of the tropical
prevariety form the tropical equilibrations.

4 Scaling and Singular Perturbation Schemes

In singular perturbation problems it is considered that both parameters and
species concentrations depend on some small parameter. In practice we consider
that the parameters of the model can be written as k = k̄(ε∗)γ where ε∗ is a
small positive parameter1. Next, we replace k by k(ε) = k̄εγ and we study the
asymptotic solutions in the limit ε → 0. If ε∗ is small enough, then the asymptotic
solutions are close to the solutions of the model.

The tropical geometry approaches allow to find the appropriate scalings.
To this end, we use valuations of parameters and species concentrations defined
as V (x(ε)) = limε→0 Vε(x(ε)), V (k(ε)) = limε→0 Vε(k(ε)). It follows, at lowest
order that

x(ε) = x̄εV (x), k(ε) = k̄εV (k). (2)

The valuations of the parameters can be obtained by rounding from their actual
numeric values V (k) = round(Vε∗(k)), where ε∗ can be any small positive num-
ber. Different choices of ε∗ are only approximately equivalent and in practice
one tries several values and selects a robust choice. We showed in [32] that the
valuations of the concentrations V (x) have to satisfy tropical equilibrations.

1 this procedure restricts the asymptotic regime to very small or very large parameters;
translation is needed for asymptotic studies close to finite special parameter values.



Tropical Geometry of Biological Systems 7

Let us illustrate how this can be used to define slow/fast decompositions
and reduce the Michaelis–Menten model. Consider the case when k3 << k4
corresponding to the quasi-steady state approximation. In this case we have

dx̄1

dt
= −εγ1 k̄1x̄1 + εγ2+a2 k̄2x̄1x̄2 + εγ3+a2−a1 k̄3x̄2,

dx̄2

dt
= εγ1+a1−a2 k̄1x̄1 − εγ2+a1 k̄2x̄1x̄2 − εγ4 k̄4x̄2 − εγ3 k̄3x̄2, (3)

where γi = V (ki), 1 ≤ i ≤ 4, aj = V (xj), 1 ≤ j ≤ 2.
Each tropical equilibration leads to a scaling and to a candidate reduced

model. For instance, the tropical equilibration γ1 + a1 − a2 = γ2 + a1 = γ4
leads to

x̄′
1 = −k̄1x̄1 + k̄2x̄1x̄2 + εγ3−γ4 k̄3x̄2,

εγ1−γ4 x̄′
2 = k̄1x̄1 − k̄2x̄1x̄2 − k̄4x̄2 − εγ3−γ4 k̄3x̄2, (4)

where the derivatives are with respect to the rescaled time τ = εγ1 and γ3−γ4 > 0
(because k3 << k4).

The case γ1−γ4 > 0 is typically a singular perturbation case and the solution
of (4) converges to the solution of

x̄′
1 = −k̄1x̄1 + k̄2x̄1x̄2,

0 = k̄1x̄1 − k̄2x̄1x̄2 − k̄4x̄2, (5)

as ε → 0.
The justification of the convergence lies outside tropical geometry consid-

erations and uses singular perturbations results; in this simple case it follows
from [39]. Some general results of convergence can be found in [32] for the two
time scale case and in [17] for the multiple timescale case.

The second equation of (5) is called quasi-steady state condition. Using this
condition to eliminate x̄2, we obtain the reduced model

x̄′
1 = − Vmaxx̄1

x̄1 + Km
, (6)

that is the Briggs-Haldane approximation to the Michaelis–Menten model, with
Vmax = k̄1k̄4/k̄2, Km = k̄4/k̄2.

By this procedure a model of two differential equations and four parameters
was reduced to a model of one differential equation and two parameters.

5 Approximate Conservation Laws

In the case when k3 >> k4 using the same procedure as in the preceding section
for the tropical equilibration γ1 + a1 − a2 = γ2 + a1 = γ3 leads to
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0 = −k̄1x̄1 + k̄2x̄1x̄2 + k̄3x̄2,

0 = k̄1x̄1 − k̄2x̄1x̄2 − k̄3x̄2, (7)

as ε → 0.
The quasi-steady state equations are indeterminate and one can not elimi-

nate both fast variables x1 and x2 as usual in the quasi-steady state approxi-
mation. Furthermore, the slow variables whose dynamics have to be retained in
the asymptotic limit are not explicit.

This degenerate case occurs quite often in practice. In order to obtain a reduc-
tion, we exploit approximate conservations. When k3 >> k4, the fast dynamics
of the Michaelis–Menten model can be approximated by

dx1

dt
= −k1x1 + k2x1x2 + k3x2,

dx2

dt
= k1x1 − k2x1x2 − k3x2. (8)

It can be easily checked that this system has a first integral d(x1+x2)
dt = 0.

x1 +x2 is called an approximate conservation law because it is conserved by the
fast approximated system and is not conserved by the full system.

By introducing the new variable x3 = x1 + x2 = x̄3ε
min(a1,a2) we get

dx̄1

dt
= εγ3+a2−a1(−k̄1x̄1 + k̄2x̄1x̄2 + k̄3x̄2),

dx̄2

dt
= εγ3(k̄1x̄1 − k̄2x̄1x̄2 − k̄3x̄2 − εγ4−γ3 k̄4x̄2),

dx̄3

dt
= −εγ4+a2−min(a1,a2)k̄4x̄2. (9)

As γ4 + a2 − min(a1, a2) > γ3 and γ4 + a2 − min(a1, a2) > γ3, it follows
that the variable x3 is slower than both x1 and x2, with no condition on the
valuations of parameters and variables.

More generally, approximate conservations can be defined each time a scaling
of the system by powers of ε is known. We proved, for polynomial ODEs, that
any approximate linear or polynomial conservation law is a slow variable [6].
This result can be used for model reduction in the degenerate situation when
the quasi-steady state equations are indeterminate.

6 Metastability

A typical trajectory of a multiscale system consists in a succession of quali-
tatively different slow segments separated by fast transitions (see Fig. 3). The
slow segments, corresponding to metastable states or regimes, can be of sev-
eral types such as attractive slow invariant manifolds, Milnor attractors, saddle
connections, etc.



Tropical Geometry of Biological Systems 9

According to the famous conjecture of Jacob Palis, smooth dynamical sys-
tems on compact spaces should have a finite number of attractors whose basins
cover the entire ambient space [27]. These conditions apply to biochemical reac-
tion networks whose ambient space is compact because of conservation, or dissi-
pativity. The conjecture could be extended to metastable states where smooth-
ness of the vector fields and compactness of the ambient space should lead to
a finite number of such states. In this case, symbolic descriptions of the trajecto-
ries as sequences of symbols, representing the metastable states that are visited,
are possible.

Tropical equilibrations are natural candidates for slow attractive invariant
manifolds and metastable states. Beyond the purely geometric conditions, hyper-
bolicity conditions are needed for the stability of such states [17,32]. The set of
tropical equilibrations is a polyhedral complex. The maximal dimension faces of
such a complex are called branches (Fig. 4).

Because it is much easier to make calculations in polyhedral geometry than
with high dimensional smooth dynamical systems, the computation of tropical
branches represents a useful tool for understanding complex dynamical systems.
Moreover, many dynamical properties such as timescales, are linear functions of
parameter and species concentrations orders after tropicalization. Thus, polyhe-
dral geometry can be used for expressing conditions for particular model behav-
iors. This opens fascinating directions for the synthesis of systems with desired
properties.

Fig. 3. Dynamics of multiscale systems can be represented as itinerant trajectory in a
patchy phase space landscape made of slow attractive invariant manifolds. The term
crazy-quilt was coined to describe such a patchy landscape [11]. In the terminology of
the singular perturbations theory slow dynamics takes place on these slow manifolds,
while fast transitions (layers) occur by following the flow of the fast vectorfield (long
arrows) away from the slow manifolds. From [35].
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Fig. 4. Left: Polyhedral tropical branches for a model of MAPK cellular signaling in
projection on directions of variation of three chemical species; a real trajectory spans
several such branches in a well defined sequence, from alpha (initial condition) to
omega (steady state). Right: The adjacency relations of the branches in the polyhedral
complex are represented as a graph.

7 Conclusion

Tropical geometry has promising applications in the field of analysis of biological
models.

The calculation of tropical equilibrations is a first important step in algo-
rithms for automatic reduction of complex biological models. By model reduc-
tion, complex models are transformed into simpler models that can be more
easily analyzed, simulated and learned from data.

Tropical geometry methods are possible ways to symbolic characterization of
dynamics in high dimension, also to synthesis of dynamical systems with desired
features. This may have important practical applications but can also provide
at least partial answers to open questions in mathematics.

Several tools for tropical simplification of biological systems are currently
being developed within the French-German Symbiont consortium [3,4] and will
be made available to the computer algebra and computational biology commu-
nities.
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