)

Check for
updates

Swift UI and Their Integration to MapKit
Technology as a Framework for Representing
Spatial Information in Mobile Applications

Eduardo Eloy Loza Pacheco! ® @), Mayra Lorena Diaz Sosal ®,

Christian Carlos Delgado Elizondo!, and Miguel Jesus Torres Ruiz?

! Universidad Nacional Auténoma de México, Acatlan Edomex,
08544 Naucalpan de Judrez, Mexico
{eduardo.loza,mlds}@acatlan.unam.mx,
805849@pcpuma.acatlan.unam.mx
2 Instituto Politecnico Nacional, Ciudad de México, CDMX, Mexico
mtorres@ipn.mx

Abstract. Mobile applications are becoming as complex as the kind of problems
we need to solve. A normal GIS application needs to incorporate elements such
as artificial intelligence more specifically, pattern recognition or machine learn-
ing, relational or non-relational databases, spatial representation, and reasoning.
In addition to that, it is necessary to design and develop a mobile application
to integrate all these elements. After analysis, planning, and design a company
will require to develop a full team of engineers to accomplish an application. On
the other hand, universities and other organizations, have additional interests. It
is necessary to develop a mobile application to test a hypothesis before a large
development project. The necessity is to use a technology that permits the inte-
gration of advanced technologies and programming tools in a manageable sense.
Companies such as Google and Apple are reducing the gap of learning knowledge.
They are developing new technologies. For example, Apple presented in 2019 at
WWDC2019 and WWDC2020 a novelty technology called SwiftUI, which aims
to reduce the complexity of developing a mobile application and allowing us to
integrate technology such as Mapkit to represent spatial information. This work
presents the advantages of using SwiftUI to integrate Mapkit as a spatial repre-
sentation framework to ease the development of GIS mobile development. And
focus on the problem solution, such as spatial representation and reasoning, robot
planning, content image retrieval, etc.

Keywords: Swift UI - MapKit - GIS - Spatial representation

1 Introduction

Computer Science has a large variety of applications in different fields of science. For
example, artificial intelligence and machine learning are topics and technologies widely
used in several areas of knowledge [1]. The aim is to develop programs that can perform

© Springer Nature Switzerland AG 2020
M. F. Mata-Rivera et al. (Eds.): GIS LATAM 2020, CCIS 1276, pp. 80-91, 2020.
https://doi.org/10.1007/978-3-030-59872-3_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59872-3_6&domain=pdf
http://orcid.org/0000-0003-2871-6409
http://orcid.org/0000-0003-4636-1402
http://orcid.org/0000-0001-8289-6979
https://doi.org/10.1007/978-3-030-59872-3_6

Swift UI and Their Integration to MapKit Technology 81

representation and calculations of the information according to the necessity of the study.
And to develop new way of representation [2] for the large problems we have today, for
example data science. For example, in social sciences, we can create a model that study
people activities [3]. In meteorology, we can represent the predictions of the weather
[4]. In order to achieve computer science collaborations with all sciences is necessary
to use a scientific computing approach. The definition of scientific computing is the
intersection of Numerical Analysis, Modeling, and Computer Science, as we can see in
Fig. 1 [5]. After we have selected a mathematical model and analyze the computational
complexity to reduce error and increase performance. We can design an Algorithm so
we can implement it on a computer.

Computer

Numerical .
Science

Analisis

Scientific
Computin

Modeling

Fig. 1. Definition of scientific computing from [2].

After that, according to [6] the understanding of a computational system has three
levels or layers: The concepts of computational theory we need to consider. The repre-
sentation of the information or knowledge, and the design and implementation of the
algorithm. And finally, the Hardware implementation. We can also add software imple-
mentation in a computer language and the use of a technological platform. In the last
one, we need to consider the technical elements to improve the spatial and temporal
performance of the algorithm, reduce the error, scheduling the transactions of blocks of
data, access to a shared or distributed memory, etc. [7, 8]. So, we can see these as an
architecture that we can use as a framework. As we can see in Fig. 2.

One of the purposes of a layered architecture is the possibility of divide activities, so
we can reduce the complexity of the modules, specialize, and reuse. The communication
between layers should be simple and easy. As an example, we have the architecture of
the Open System Interconnection, where every layer is defined to provide one service.
For example, the 5-layer hybrid model. Layers provide the service of packing, routing
over the network, synchronization and codifying frames [7]. Finally, the communication



82 E. E. L. Pacheco et al.

Computational Theory

Representation and Algorithm

Hardware and Software Implementation

Fig. 2. Architecture of a computational system implementation according to [3].

between layers is made by an interface. In Fig. 3 we can see a general model a layered
architecture.

Layer 1

Layer 2

Layer N

Fig. 3. Layer of an architecture image base on [7].

1.1 Brief State of the Art of User Interfaces

As mentioned before, every layer performs a function. These functions must be trans-
parent for the other layers. So, the interfaces are the key to their communication. In
the case of development platforms such as Android, Eclipse, and XCode. All of them
have a Graphic User Interface (GUI) that eases the programming [9] and allows to focus
in the programmer [10] and increase the productivity [11]. By making the process of
development more intuitive. In the case of Xcode is integrating a new Technology called
SwiftUI. Arrived in 2019 which is a declarative form of development applications [12,



Swift UI and Their Integration to MapKit Technology 83

13]. The declarative model is now used in major technologies such as Xamarin, UWP,
and WPF with XAML [14] with the intention to simplify tasks [15]. This 2020 Apple
announced new novelties at WWDC 2020 [16], with new features for the stack mode.
These interfaces provide a way to progressively add functionalities. Allow us to develop
algorithms as a Lego blocks. One of the interesting features are the possibility to avoid
and reduce the need to manage technical details. The advantage is that we can develop
advance mobile applications with high-end technology.

2 Methodology

The proposed methodology is agile. The intention is to focus on the development of
the three parts which are design, implementation, and feedback. The advantages of
this approach are. that we can integrate modules gradually to the architecture such as
reconfigure the presentation or add another functionality to the applications. As it seems
in Sect. 4.1. The methodology for example also allows reconfiguring the applications in
a short period of time, whether it is needed to add elements to the GIS functionality or
change the technology from Mapkit to ArcGis without affecting other elements in the
project (Fig. 4).

Plan

Design

Develop

Release

Feedback

Fig. 4. AGILE development methodology

3 Standard Mobile Implementation of MapKit on XCode

XCode allows the development by using a mechanism called a storyboard. This is made
by a file called Main.storyboard. Which represents the structure of the objects and their



84 E. E. L. Pacheco et al.

distribution in the mobile device. As it seems in Xcode the working area of Xcode on
the left have file hierarchy section where we can select any file of the project. There’s
also an edit section where the code can be modified. The file ViewController.swift
controls the behavior of the application. Finally, Xcode shows a graphic representation
of the Main.storyboard. Where we can insert objects such as buttons, images, and maps
and place them where they are suitable. The project needs to be compiled to run in the
simulator or an external device. This program is called Simulator. Xcode allows selecting
the specific device where the application is designed to be executed. For example, iPad,
iPad Pro, iPhone X, iPhone 8, etc. It is important to mention that every time we need
to see the result of output. It has to be executed the simulator or the external device.
The problem with compiling every time is that if we need to see a minor change, is to
spend more time in compiling. As a result, it loses the sense of being programming in
real-time.

4 Implementation Using SwiftUI on Xcode

On the other hand, we have a new technology of GUI called SwiftUI. Similar to
Main.storyboard. But with new characteristics that permits the development be more
dynamically. In Fig. 5 on the left are the working files and edit code (left and center
respectively). On the right there is a novelty. A simulation of a mobile phone where
every time a change is done in the left a change is reflected on the simulated phone. As
was previously described in the last section this model allows also to run the Simulator
program.

Fig. 5. SwiftUI graphic interface on Xcode.

One of the features of this technology is that it is possible to build all the components
the application needs independently. Which eases the modularity. In addition to that, it
allows to create systems and algorithms more robust [8]. Increase cohesion and reduce



Swift UI and Their Integration to MapKit Technology 85

the coupling of the modules. These are valuable to detect errors easily [17]. That is
because the constructions of the elements in SwiftUI use verticals and horizontals stacks
structures (Vstack and HStack). In the WWDC2020 introduce an enhance of these struc-
tures. As it is shown in Fig. 6 the structures can be nested. In addition to that SwiftUI
manages almost automatically the alignment of the elements. So, there is less need to
program restrictions. In Fig. 7 we can see the automatic align in a vertical and horizontal
position.

ScrollView {
VStack {
MapView().frame(height:300)
SwiftUIView().offset(y:-130).padding(
.bottom,-130)
VStack {
Text("UNAM-FES").font(.title)
.foregroundColor(.blue)

}

HStack {
Text("Matematicas").font(.subheadline)
Spacer()

Text("Computacion"

}

.padding()

Fig. 6. Use of Stacks and Scroll View.

4.1 Geographical Implementation Using MapKit and SwiftUI

Suppose our application must add a geographical representation. So, we need to use
MapKit. We can divide the application in four parts. One part can describe the distribution
of the elements in the phone, similar to HTML. Then we add a functionality or some
other elements to the application. We have a module that manages the geographical
representation and receive geographical data, longitude and latitude. Finally, a layer
that processes the data. In the Fig. 8, we can see the architecture that can be used
interchangeably to add the functionality we need. We can see that at the top of the stack
we find the Application representation.



86 E. E. L. Pacheco et al.

UNAM-FES

Mateméticas Computacién

UNAM-FES

Computacion

Fig. 7. A vertical and horizontal simulation of an mobile phone.

ContentView.swift

Application Presentation

SwiftUIView.swift

4

MapView.swift

' Geographic Representation

GIS Algorithms Aplication Algorithms

Other App Funcionalities

Datos.swift

Fig. 8. An architecture for a general geographic application.

4.2 Data Structures Such as GEO JASON or SHAPEFILES

For the manipulation of the Map we have a file that contains all code related to the Maps
management. In this case, it is called MapView. And it is important to import the libraries
SwiftUI and MapKit and extend the class UIViewRepresentable. The file allows us to
represent the geographic locations as it seems in Fig. 9. In SwiftUI, we can add new
locations and we will see the change on the right. (The location Added is UNAM-FES
Acatlan.).

Then we can add another swift file (In this case SwiftUIView.swift), to add a func-
tionality. In this case we only are interested in adding an image. The result is observed



Swift UI and Their Integration to MapKit Technology 87

Fig. 9. Adding a map and showing the results on the right.

on the right in the Fig. 9. For this example, the processing of the data is static. But for
other applications it is possible to use a database, a GEOJson file (Fig. 10), storing data
on the device, etc. The structure uses a class model called DataModel.swift to store the
receiving information. The file needs to import the MapKit library so we can use the
objects of CLLocationCoordinate and MKAnnotation [18-20]. We also have the option
to manipulate shape files. Because as it seems in their technical description [21]. It can
be processed as a structure to use it as a Polygon or Multipoint. Now there are also work
in ArCGIS to connect it to iOS such as [22] and use it in the ArcGIS implementation in
our proposed architecture.

The final result is showed in Fig. 11. Where the ContentView integrates all the
elements.

4.3 Similarities Between Main.Storyboard and SwiftUI

However, it is not necessary to learn new concepts. Whether you are familiarized with
Swift and XCode environment. For SwiftUI the structure MKMap View use the function
updateUIView(). The function processes the map. And it is possible to set and get
elements from MKMapView (such as longitude, latitude, region, zoom). See Fig. 12a).



88

E. E. L. Pacheco et al.
import MapKit

class DataModel: NSObject, MKAnnotation {

title: String?
on : String?
' String?
c inate: CLLocationCoordinate2D

init(

title: String?,
locationName: String?,

discipline: String?,
coordinate: ClLLocationCoordinate2D){

self.title = title
self.locationName = locationName
self.discipline = discipline
self.coordinate coordinate

super.init()

Fig. 10. Class DataModel.

In the case of the Main.storyboard the same methods and properties are used (region,

location, span). In this case, there were written in the function viewDidLoad(). To load
the map after the application is executed. The difference is that we have to add manually
an outlet to communicate the Main.storyboard to the ViewController.swift. As it seems
on line 15 in the following Fig. 12b).



Swift UI and Their Integration to MapKit Technology 89

IBOutlet private v

e func
Jper.

e N let coordinate =
n : M /i ew : -
func v (_ uiview: MKMapView, cantext..contnxt) { a CLLocati ordinate2D(latitude:
let coordinate = CLLocationCoordinate2D(latitude: 19.486770630, 19.486770630, longitude: -99.248268127)
longitude: -99.248268127)
) . let span =
let span = MKCoordinateSpan(latitudeDelta: 2, longitudeDelta: 2 ) MKCoordinateSpan(latitudeDelta: 2,
let region = MKCoordinateRegion(center: coordinate, span: span) longitudeDelta: 2 )
uiview. (region, animated: true)

»t region = MKCoordinateRegion(center:
uiview. (MKMapView coordinate, span: span)
.CameraZoomRange (maxCenterCoordinateDistance: 5000), animated:
true) . (region, animated: true)

- (MKMapView
let puntoDeReferencia = DataModel( title: d .CameraBoundary (coordinateRegion:
€ ' region), animated: true)
locationName: jenie " et rangoZoom =
discipline: "MAC", MKMapView
coordinate: CLLocationCoordinate2D(latitude: 19.48033, .CameraZoomRange
longitude: -99.248380)) (maxCenterCoordinateDistance: 5008)

uiview. (puntoDeReferencia) ds. (rangoZoom, animated:
true)

(a) (b)
Fig. 12. a) updateUIView function, b) viewDidLoad function

5 Conclusions

We can see that a simple implementation can be developed with SwiftUI. SwiftUT offers
us a high level of characteristics like WYSIWYG. Because as we are implementing
a section of code, we can see the result in real-time. This is very helpful when we
are searching for accelerated results or testing a functionality. On the other hand, is
clear that an application more extensive will require more degree of expressiveness that
Main.storyboard can offer. But these two forms of development are not exclusive of
any implementation. All the code made in SwiftUI is functional and easily adapted to
traditional modality (Main.storyboard) and vice versa. Once you have an algorithm in
one version, it can be translated into another. The intention of using this framework



90 E. E. L. Pacheco et al.

is to use SwiftUI as a laboratory. And then integrate the functionalities with a major
application or system, isolating possible errors. In addition to that as it was mention
in the introduction, now major technologies are used declarative language to ease the
development. Summarizing we can see that SwiftUI offers a functional user experience.
The Architecture divided into layers is useful to trace errors and add functionalities
without affect other modules.

Acknowledgements. The authors would like to thank to the Universidad Nacional Auténoma
de México and the Department of Applied Mathematics and Computer Science of FES Acatlan,
The “Consejo Nacional de Ciencia y Tecnologia” of México. and DGAPA-UNAM (PAPIME PE
304717) for the funds to support this work.

References

1. Theobald, O.: Machine Learning for Absolute Beginners (2017)

2. Bernstein, G.L., Kjolstad, F.: Perspectives: why new programming languages for simulation?
ACM Trans. Graph. (TOG) 35(2), 1-3 (2016)

3. Sarker, I.: Exploiting data-centric social context in phone call prediction: a machine learning
based study. EAI Endorsed Trans. Scalable Inf. Syst. 6(20) (2019)

4. Aybar-Ruiz, A., Jiménez-Ferndndez, S., et al.: A novel grouping genetic algorithm—extreme
learning machine approach for global solar radiation prediction from numerical weather
models inputs. Solar Energy 132, 129-142 (2016)

5. Karniadakis, G., Robert, M., Kirby II, M.: Parallel Scientific Computing in C ++ and MPL

Cambridge University Press (2003)
. Alpaydin, E.: Machine Learning, pp. 48—49. MIT Press (2016)
Tanenbaum, A., Wetheall, D.: Computer Networks. Pearson (2013)
Levitin, A.: Introduction to the Design & Analysis of Algorithms, Boston (2012)
Inie, N., Dalsgaard, P.: How interaction designers use tools to manage ideas. ACM Trans.
Comput.-Hum. Interact. (TOCHI) 27(2), 1-26 (2020)
10. Dix, A.: Human—computer interaction, foundations and new paradigms. J. Vis. Lang. Comput.
42, 122-134 (2017)

11. Mcgill, M., Kehoe, A., Freeman, E., Brewster, S.: Expanding the bounds of seated virtual
workspaces. ACM Trans. Comput.-Hum. Interact. (TOCHI) 27(3), 1-40 (2020)

12. Apple. Inc.: Xcode - SwiftUI- Apple Developer. https://developer.apple.com/xcode/swiftui/.
Accessed 28 June 2020

13. Apple. Inc.: Introducing Swift UI, v. https://developer.apple.com/tutorials/swiftui. Accessed
28 June 2020

14. Microsoft 2020. Xamarin.Forms | NET . https://dotnet.microsoft.com/apps/xamarin/xamarin-
forms. Accessed 28 June 2020

15. Heer, J., Bostock, M.: Declarative language design for interactive visualization. IEEE Trans.
Visual Comput. Graphics 16(6), 1149-1156 (2010)

16. Apple WWDC 2020. https://developer.apple.com/videos/play/wwdc2020/10031. Accessed
27 June 2020

17. Singh, Y., Malhotra, R.: Object Oriented Software Engineering. PHH, India (2012)

18. Raywenderlich. https://www.raywenderlich.com/3715234-swiftui-getting-started. Accessed
27 June 2020

19. Hacking with swift. https://www.hackingwithswift.com/books/ios-swiftui/integrating-map
kit-with-swiftui. Accessed 27 June 2020

© %N o


https://developer.apple.com/xcode/swiftui/
https://developer.apple.com/tutorials/swiftui
https://dotnet.microsoft.com/apps/xamarin/xamarin-forms
https://developer.apple.com/videos/play/wwdc2020/10031
https://www.raywenderlich.com/3715234-swiftui-getting-started
https://www.hackingwithswift.com/books/ios-swiftui/integrating-mapkit-with-swiftui

20.

21.
22.

Swift UI and Their Integration to MapKit Technology 91

Apple Inc. https://developer.apple.com/documentation/mapkit/mkannotation. Accessed 27
June 2020

ESRI. ESRI Shapefile Technical Description (1998)

ArcGIS Runtime SDK Samples. App Store (2020). https://apps.apple.com/us/app/arcgis-run
time-sdk-samples/id1180714771?mt=8. Accessed 24 July 2020


https://developer.apple.com/documentation/mapkit/mkannotation
https://apps.apple.com/us/app/arcgis-runtime-sdk-samples/id1180714771%3fmt%3d8

	Swift UI and Their Integration to MapKit Technology as a Framework for Representing Spatial Information in Mobile Applications
	1 Introduction
	1.1 Brief State of the Art of User Interfaces

	2 Methodology
	3 Standard Mobile Implementation of MapKit on XCode
	4 Implementation Using SwiftUI on Xcode
	4.1 Geographical Implementation Using MapKit and SwiftUI
	4.2 Data Structures Such as GEO JASON or SHAPEFILES
	4.3 Similarities Between Main.Storyboard and SwiftUI

	5 Conclusions
	References




