
Uncertainty Quantification in Medical
Image Segmentation with Normalizing

Flows

Raghavendra Selvan1(B), Frederik Faye2, Jon Middleton2, and Akshay Pai1,2

1 Department of Computer Science, University of Copenhagen, Copenhagen,
Denmark

raghav@di.ku.dk
2 Cerebriu A/S, Copenhagen, Denmark

Abstract. Medical image segmentation is inherently an ambiguous task
due to factors such as partial volumes and variations in anatomical defi-
nitions. While in most cases the segmentation uncertainty is around the
border of structures of interest, there can also be considerable inter-rater
differences. The class of conditional variational autoencoders (cVAE)
offers a principled approach to inferring distributions over plausible seg-
mentations that are conditioned on input images. Segmentation uncer-
tainty estimated from samples of such distributions can be more infor-
mative than using pixel level probability scores. In this work, we propose
a novel conditional generative model that is based on conditional Nor-
malizing Flow (cFlow). The basic idea is to increase the expressivity of
the cVAE by introducing a cFlow transformation step after the encoder.
This yields improved approximations of the latent posterior distribution,
allowing the model to capture richer segmentation variations. With this
we show that the quality and diversity of samples obtained from our con-
ditional generative model is enhanced. Performance of our model, which
we call cFlow Net, is evaluated on two medical imaging datasets demon-
strating substantial improvements in both qualitative and quantitative
measures when compared to a recent cVAE based model.

Keywords: Segmentation · Uncertainty · Normalizing flow · cVAE ·
chest CT · Vessels

1 Introduction

Medical image segmentation is inherently an ambiguous task and segmenta-
tion methods capable of quantifying uncertainty by inferring distributions over
segmentations are therefore of substantial interest to the medical imaging com-
munity [7,8,25]. Estimating uncertainty from distributions over segmentations
is closer to the clinical settings, than obtaining pixel-wise uncertainty esti-
mates, where whenever feasible multiple expert opinions are used to ascertain
downstream clinical decisions. Such consensus based decisions not only account
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Fig. 1. Graphical model view of VAE and variations to it including the proposed cFlow
Net (right)

for the aleatoric (inherent) and epistemic (modeling) uncertainties but also
explain the inter-rater variability that is largely inevitable in medical image
segmentation.

Remarkable strides in supervised medical image segmentation have been made
with deep learning methods [4,20,26]. These methods, however, provide point esti-
mates of segmentations – meaning a single segmentation mask per image – which
limits our ability to quantify the uncertainty of said segmentations.

Bayesian deep learning methods offer a natural setting to infer distributions
over segmentations. This has been explored to some extent for medical image
segmentation in the spirit of Monte Carlo estimation where multiple hypotheses
are explored by predicting segmentation masks with different dropout rates [5]
or with an ensemble of models [21]. These methods can output a fixed number
of samples with pixel level probability scores which can be a limitation.

Conditional variational autoencoders (cVAE) [23] belong to the class of con-
ditional generative models. cVAEs can be used to obtain an unlimited number
of predictions by sampling from a latent space conditioned on the input images.
This model was adapted for medical image segmentation as the probabilistic U-
Net (Prob. U-Net) [13] demonstrating the possibility of generating large number
of plausible segmentations. The Prob. U-Net model fuses an additional channel
obtained from the latent space to the final layer (at the highest resolution) of
U-Net to obtain a variety of albeit less diverse and blurry segmentations when
compared to the raters [3]. Quite recently, two models have sought to improve
upon the Prob. U-Net [3,14]. Both these methods hypothesize that the blurriness
and lack of diversity observed in samples obtained from Prob. U-Net is caused
by the use of a single latent variable at the highest resolution. They propose
using latent variables in a hierarchical fashion operating at different resolutions
to make the model more expressive and demonstrate this to be helpful.

In this work, we focus on obtaining expressive latent representations that can
yield diverse segmentations within the cVAE setting. While we agree with [3,14]
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that Prob. U-Net suffers from using the latent representation at a single res-
olution, we argue that it can be alleviated by using a more expressive latent
posterior distribution instead of using multiple latent variables in a hierarchical
setting. This arises from the fact that all cVAE type models, including Prob.
U-Net, use an axis aligned Gaussian as the latent distribution which can be
limiting when approximating a complex latent posterior distribution [11,19].
We propose to improve the approximation of the latent posterior distribution
with conditional normalizing flows (cFlow) which can yield arbitrarily complex
distributions starting from simple ones. We demonstrate that these complex dis-
tributions operating at a single resolution are able to capture richer diversity of
realistic segmentations. We propose a novel conditional normalizing flow model
– cFlow Net – and demonstrate the use of two types of normalizing flow transfor-
mations: Planar flows [19] and Generative Flows [10]. We evaluate the method on
two medical imaging datasets: LIDC-IDRI [2] for detecting lesions in lungs from
chest CT and for detecting retina blood vessels from on a new Retinal Vessel
dataset created from three older datasets [6,16,24]. We compare the performance
of our model with deterministic U-Net [20] and Prob. U-Net demonstrating sig-
nificant improvements on both quantitative (generalized energy distance and
dice) and qualitative measures.

2 Background and Problem Formulation

Image segmentation tasks can be formulated in a conditional generative model
setting with the objective of estimating the conditional distribution p(s|x), where
x ∈ R

H×W×C and s ∈ {0, 1}H×W are the input images and corresponding binary
segmentations, respectively, of dimensions H,W with C channels. This has been
approached using the conditional VAE formulation where the conditional dis-
tribution p(s|x) is approximated by introducing dependency on a d-dimensional
latent variable z ∈ R

d [13,23], as shown in Fig. 1 (center).
The cVAE objective minimizes the KL divergence between the true latent

posterior distribution p(z|s,x) and its variational approximation q(z|s,x) result-
ing in an objective of the form [23]:

LcVAE = −Eqφ(z|s,x)
[
log pθ(s|z,x)

]
+ KL

[
qφ(z|s,x)||pψ(z|x)

]
(1)

The first term is the expected conditional log-likelihood (CLL) under the varia-
tional distribution qφ(z|s,x) and the second term can be seen as the regulariza-
tion forcing the posterior distribution to match the conditional prior distribu-
tion pψ(z|x). In cVAE, the posterior density is modeled as a diagonal Gaussian
density for tractability reasons: qφ(z|s,x) = N(z;μφ,σ2

φ). The mean μφ and
variance σ2

φ are predicted using an encoder network parameterized by φ. The
decoder and prior networks are parameterized by θ and ψ, respectively.

Normalizing flows can be used to transform simple base distributions into
complex ones using a sequence of bijective transformations (the flow chain) with
easy to compute Jacobians [17,19]. They basically extend the change of variable
rule to transform a base distribution into a target distribution in K successive
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steps. Normalizing flows can transform a simple base distribution p(z0) into
an arbitrarily complex target distribution, p(zK), by composing complex flow
transformations with simpler flow steps [17].

Consider one such bijective transformation T composed of K steps:

T = TK ◦ TK−1 ◦ · · · T1. (2)

Forward evaluation of this flow chain, transforming z0 → zK , can be written as:

zk = Tk(zk−1) for k = 1 . . . K (3)

where z0 is distributed according to the base distribution p(z0).
Reverse evaluation of the flow chain, transforming zK → z0, can be written as:

zk−1 = T−1
k (zk) for k = K . . . 1. (4)

The transformed distribution, p(zK), is obtained from the base distribution,
p(z0), adjusted by the inverse absolute Jacobian determinant of the flow trans-
formation. For a single flow step k:

p(zk) = p(zk−1)
∣
∣
∣
∂Tk(zk−1)

∂zk−1

∣
∣
∣
−1

= p(zk−1)
∣
∣
∣JTk

(zk−1)
∣
∣
∣
−1

(5)

where JTk
(zk−1) denotes the Jacobian determinant. The complete transforma-

tion using the full flow chain in log domain is given by

log p(zK) = log p(z0) + log
∣
∣
∣

K∏

k=1

J−1
Tk

(zk−1)
∣
∣
∣ = log p(z0) −

K∑

k=1

log
∣
∣
∣JTk

(zk−1)
∣
∣
∣,

(6)

where the last equality follows from log
∣
∣J−1

Tk

∣
∣ = log |JTk

|−1 = − log |JTk
|.

3 Methods

When using cVAE-like models for medical image segmentation tasks, it is
assumed that the diversity of segmentations is captured with the latent pos-
terior distribution. However, using a simple distribution such as an axis-aligned
Gaussian to approximate the latent posterior distribution can be too restric-
tive and might not be sufficiently expressive to capture richer variations. This is
noticeable in the Prob. U-Net model [13] where the segmentations are blurry and
lack diversity [3,14]. It is in this context that normalizing flows can be used to
improve the flexibility of the approximate posterior density to capture a richer
diversity of high quality segmentations.

If we denote the approximate posterior density output by the encoder network
as the base distribution, q(z0|s,x), using the latent variable z0, then using the
idea of normalizing flows in Sect. 2 can yield more expressive posterior densities.
If the base distribution is transformed using a flow chain of K steps according
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Fig. 2. Proposed cFlow Net model. (Training) The training process takes the refer-
ence segmentations s and the image data x as input to the encoder, which predicts
the mean μ and standard deviation σ of the base distribution along with the con-
text vector c for the flow transformation. The flow transformation block transforms
the base distribution, qφ(z0|s,x) to an approximation of the target posterior distri-
bution q(z|s,x) in K steps. The latent space is jointly learned by minimizing the KL
divergence between the transformed posterior distribution q(z|s,x) and the conditional
prior pψ(z|x). (Sampling) The sampling process involves obtaining samples from the
conditional prior which is used with the input image together to be decoded in the
decoder pθ(s|z,x) to obtain the segmentation ŝ. After training the model, only the
sampling part of the network is used for inference.

to Eq. (2), then the transformed distribution after K steps with z = zK can be
written using Eq. (6) as:

log q(z|s,x) = log q(zK |s,x) = log q(z0|s,x) −
K∑

k=1

log
∣
∣
∣JTk

(zk−1|x)
∣
∣
∣. (7)

It can be shown that the modified objective for the conditional flow-based model
becomes (see Sect. 6.1 in the online supplementary material [22]):

LcFlow = −Eqφ(z0|s,x)
[
log pθ(s|zK ,x)

]

+ KL
[
qφ(z0|s,x)||pψ(zK |x)

]
− Eqφ(z0|s,x)

[ K∑

k=1

log
∣
∣
∣JTk

(zk−1|x)
∣
∣
∣
]
. (8)

Note that the expectation is with respect to the base distribution of the nor-
malizing flow qφ(z0|s,x). The KL divergence is similar to the term for cVAE in
Eq. 1 except for an additional term due to the log determinant of the Jacobian
terms in Eq. (7).
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Planar Flows: In this work we use planar flows introduced in [19] modified to
be conditioned on the input image x with each step of the flow:

uk,wk, bk = fk(x) (9)

T (zk|x) = zk−1 + ukh(wT
k zk−1 + bk) (10)

where {uk,wk ∈ R
L, bk ∈ R} are learnable parameters predicted by a condition-

ing neural network fk(·) similar to the conditioning network used in [15], L is
the dimensionality of the latent space and h(·) is an element-wise non-linearity
such as tanh with derivative h′(·). The Jacobian determinant for the planar flow
step Tk is given by

∣
∣
∣JTk

(zk−1|x)
∣
∣
∣ =

∣
∣
∣1 + uT

k ψk(zk−1)
∣
∣
∣ where ψk(zk−1) = h′(wT

k zk−1 + bk)wk.

(11)
The conditioning on the flow chain is introduced through the context vector c
which is dependent on x. The context vector c ∈ R

H of dimension H is also
predicted by the encoder network. The proposed cFlow Net model is visualized
in Fig. 2.

Note that at inference, to sample multiple segmentations only the Sampling
Process part of the model is used. Given an image x, the prior network can be
used to obtain multiple latent variable samples z which are then decoded by the
decoder network to output multiple segmentations for the input image.

4 Experiments and Results

4.1 Data

All experiments are performed on two publicly available datasets. Both datasets
comprise labels from at least two raters used to quantify the performance of all
models. We use a training-validation-test split of 60:20:20 for both datasets.

LIDC-IDRI Dataset: The LIDC-IDRI dataset consists of 1018 thoracic CT
scans with four raters annotating the lesions in them [2]. We use patches of
size 128 × 128 centered on lesions similar to the procedures followed in [3,13] to
obtain 15, 096 patches in total. The preprocessed data is obtained from [12].

Retinal Vessel Dataset: As a secondary dataset we create a new dataset
derived from three older retinal vessel segmentation datasets: DRIVE [24],
STARE [6] and CHASE [16]. Each of these datasets has a subset of images
with labels from two raters. We collected images with two raters from these
three datasets, extracted retinal masks when there were none and resized them
such that all images are of height 512 px. This yields 68 images of which 20 are
of size 620×512 px and the remaining 48 are 512×512 px. All images have vessel
annotations from two raters. (Figure 4 in online supplementary material [22]).
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Table 1. Performance comparison of all models. Higher is better for Dice and lower is
better for -CLL and d2GED. Significant differences are shown in bold.

Models LIDC dataset Retina dataset

All raters Single rater All raters Single rater

-CLLd2GED -CLLd2GED Dice -CLL (×103)d2GED -CLL (×103)d2GEDDice

Det.U-Net [20] – – – – 0.727– – – – 0.624

Prob.U-Net [13] 52.1 0.279 238.90.579 0.698 4.738 0.905 4.495 0.946 0.616

cFlow Net (Planar)47.3 0.20489.0 0.2880.713 4.436 0.8844.482 0.877 0.632

cFlow Net (Glow) 49.2 0.302 217.00.547 0.704 4.482 0.901 4.488 0.878 0.620

4.2 Experiments and Results

The proposed cFlow Net model is compared with the probabilistic U-Net [13],
and additionally with the deterministic U-Net [20] for the single rater setting.
Other than the cFlow Net model described in Sect. 3 with planar flows [19],
we additionally report the cFlow model with conditional generative flow model
which uses the Glow transformation steps [10,15] (Sect. 6.2 in the online supple-
mentary material [22]).

Performance of the models in the multiple annotator setting is evaluated
based on the generalized energy distance (d2GED) which captures the diversity of
samples obtained from the generative models when compared to the annotators.
It is given by

d2GED(PR, PM ) = 2E
[
d(s, ŝ)

]
− E

[
d(s, s′)

]
− E

[
d(ŝ, ŝ′)

]
, (12)

where s, s′ are samples from the ground truth distribution, PR, comprising dif-
ferent raters, ŝ, ŝ′ are samples from the generative distribution, PM , learned by
the model and d(·) is 1-IoU (intersection-over-union) measure. Additionally, we
report the negative conditional log likelihood (-CLL = − log p(s|x)) approxi-
mated with 128 samples (Sect. 6.3 in the online supplementary material [22])
and the dice accuracy for the single rater settings.

Both variants of the cFlow Net models use K = 4 flow steps. The decoder
network in the cFlow Net and Prob. U-Net was a deterministic U-Net with 4
resolutions identical to the ones used in [13]. Architectures of both encoder and
prior networks were similar to the encoding path of the decoder network. In
addition to predicting the mean μ and variance σ2, the encoder network in the
cFlow Net model outputs a context vector c of dimension H = 128 which is
input to the flow transformation block as illustrated in Fig. 2. The conditioning
network fk(·) is a three layered multi-layer perceptron (MLP) with 8 hidden
units. Latent space dimension of L = 6 was used for the Prob. U-Net and the
cFlow Net models. All the models were trained using a batch size of 96 and a
learning rate of 10−4 with the Adam optimizer [9]. The models were trained for a
maximum of 300 epochs and training convergence was assumed when there was
no improvement in validation loss for 20 epochs. Models with the best validation
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Fig. 3. Qualitative results showing the segmentation diversity of the cFlow Net model
and Prob. U-Net for one scan from LIDC-IDRI test set. First row shows the input
image, segmentation masks from the four raters; Rows 2 and 3 are samples from cFlow
Net model when trained with all and a single (first) rater; Rows 4 and 5 show samples
from the Prob. U-Net model for all and single rater setting. Mean prediction over all
samples are shown in the last column (brigher regions correspond to higher probability).

loss was used to evaluate the performance on test set reported in Table 1. The
experiments were run using PyTorch [18] on a single Tesla K80 GPU with 12GB
memory. The computation time for both variants of the cFlow Net models on
LIDC dataset was 250s, and about 30s on the Retinal Vessel dataset per training
epoch. The average CO2 footprint of developing and training the baseline and
proposed models is estimated to be 22.3 kg or equivalently about 180 km traveled
by a car, measured using Carbontracker [1].

4.3 Results and Discussion

Performance of all the models on test set of both the datasets are reported in
Table 1. Within each dataset we report the performance when compared to All
Raters and a Single Rater. Statistically significant improvement in performance
(based on paired sample t-tests with p < 0.05) when compared to other models
are highlighted in bold.

The proposed cFlow Net (Planar) model is consistently better than the base-
line Prob. U-Net model on the LIDC dataset in d2GED and -CLL measures. The
performance of the cFlow Net (Planar) model in the Single Rater setting shows
a large improvement when compared to Prob. U-Net model. This is also demon-
strated in Fig. 3 seen as more realistic and diverse samples generated only by
training only on a single (the first) rater. There is a small reduction in perfor-
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mance of all the conditional generative models when compared to the Det. U-Net
model in dice accuracy.

The significant improvements in d2GED for the cFlow Net models reported in
Table 1 are also reflected qualitatively in the samples shown in Fig. 3. Samples
from cFlow Net (row 2) are not only able to capture the variations amongst all
four raters (row 1) but the remainder samples appear plausible. When trained
with a single rater (row 3), the cFlow Net model is still able to capture a richer
diversity of segmentations. As annotations are available from only a single rater
in majority of applications, this behaviour of the cFlow Net of being able to
capture diverse segmentations from single rater is desirable. This is in contrast
with the samples from Prob. U-Net even when trained with all raters (row 4),
where the samples appear blurry and are unable to reflect the diversity of the
four raters. This lack of diversity becomes more pronounced when trained with a
single rater, as the Prob. U-Net model outputs almost identical looking samples
(row 5).

In the last column of Fig. 3 we also show the mean prediction obtained from
samples of each model (brighter regions have higher probability). The mean
predictions from the cFlow Net model trained on a single rater could be more
informative than the mean prediction from Prob. U-Net trained on a single rater.
This further strengthens our argument that improving the approximation to the
latent posterior distribution with conditional normalizing flows helps capture
meaningful uncertainty with the possibility of sampling unlimited number of
diverse segmentations.

A similar trend is also observed with the Retinal Vessel dataset. This is a far
more challenging dataset as the images are acquired differently and the quality
of annotations vary between the six annotators. This is captured as higher d2GED

and -CLL across all models. Even within this setting, the cFlow Net models
fare better than the Prob. U-Net model in both the single and multiple rater
experiments. There was no significant difference in dice accuracy between any
of the methods indicating the stochastic generative components of the proposed
models do not affect segmentation accuracy.

5 Conclusion

We proposed a novel conditional generative model based on conditional nor-
malizing flows to quantify uncertainty in segmentations. The use of cFlow steps
improved the approximation of the latent posterior distribution, captured in
the smaller negative conditional log likelihood values and also manifested in the
diversity of samples. The primary contribution in this work is the incorpora-
tion of conditional normalizing flows for handling high dimensional data such
as medical images. The flow transformation block is modular and can be easily
replaced with any suitable normalizing flow providing access to a rich class of
improved conditional generative models [17]. We demonstrated this feature of
cFlow Net with two types of normalizing flow transformations: Planar [19] and
Glow [10] with promising performance.
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24. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., Van Ginneken, B.:
Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med.
Imaging 23(4), 501–509 (2004)

25. Wilson, R., Spann, M.: Image Segmentation and Uncertainty. Wiley, Hoboken
(1988)

26. Zhou, T., Ruan, S., Canu, S.: A review: deep learning for medical image segmen-
tation using multi-modality fusion. Array 100004 (2019)

http://arxiv.org/abs/1912.02762
http://arxiv.org/abs/1505.05770
https://doi.org/10.1007/978-3-319-24574-4_28
http://arxiv.org/abs/2006.02683

	Uncertainty Quantification in Medical Image Segmentation with Normalizing Flows
	1 Introduction
	2 Background and Problem Formulation
	3 Methods
	4 Experiments and Results
	4.1 Data
	4.2 Experiments and Results
	4.3 Results and Discussion

	5 Conclusion
	References




